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Summary

Bulk metallic glasses (BMGs), compared to their crystalline counterparts,
show remarkable mechanical properties like high strength, high wear, and corro-
sion resistance, very high resilience, etc., within the elastic limit for very small
deformations. Despite all these promising mechanical properties, the response of
BMGs to an external load beyond the elastic limit for large deformations often
results in a catastrophic failure due to brittleness and limited ductility. Therefore,
the mechanical properties of BMGs, especially when subjected to an external
load, has been a topic of many research groups during the last decades.

We investigate the effects of deformation on mechanical properties of a Ni80P20

model metallic glass former, using non-equilibrium molecular dynamics com-
puter simulations. Using a Lennard-Jones model, samples are equilibrated in the
super-cooled liquid (SCL) state from which the glass state is obtained via a fast
quench. The response of the prepared samples in the SCL and glass state is stud-
ied by subjecting them to shear via a simple planar Couette flow geometry. These
responses are reflected in the stress-strain curve in which, for the SCLs, a cross
over from a Newtonian to non-Newtonian response, marked by the occurrence
of an overshoot, is observed.

Within the elasticity limit, a linear response is observed in the elastic regime
of the stress-strain curve of the SCLs and glasses. The effect of deformation
on elastic properties of the samples in the glass state is studied by applying
a stress-fluctuation formalism and calculating the elastic constant tensor. The
elastic constants of the undeformed states are then compared to those of the
deformed states, after switch-off the shear load. The latter samples are in
a new glass state with residual stresses. Also, as the elastic properties are
reflected in the low-frequency spectrum of the vibrational modes, the density of
states is calculated for both undeformed and deformed states. The vibrational
properties of the samples, before and after deformation, are also studied in
terms of current correlation functions and the Boson peak. After the overshoot,
while short-lived in-homogeneous flow patterns are observed in SCLs, in glasses,
these inhomogeneities appear to be more persistent and often result in the
formation of shear bands. We characterize the formation and evolution of these
in-homogeneous flow pasterns both in SCLs and glasses, as they play a crucial
role in a better understanding of yielding and plastic deformation. Further, we
adjust the ductility of our model by introducing a minor micro-alloying in the
system such that while, the elastic properties of the system remain similar to the
original model the plasticity is enhanced.
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Zusammenfassung

Massive metallische Gläser zeigen im Vergleich zu ihren kristallinen Pendants
bemerkenswerte mechanische Eigenschaften, wie zum Beispiel eine hohe Fes-
tigkeit, eine hohe Verschleiß- und Korrosionsbeständigkeit und eine sehr hohe
Elastizität innerhalb des Elastizitätsbereiches bei sehr kleinen Verformungen.
Trotz all dieser vielversprechenden mechanischen Eigenschaften führt die Antwort
metallischer Gläser auf eine äußere Belastung jenseits der Elastizitätsgrenze,
d.h. bei großen Verformungen, häufig zu einem katastrophalen Materialversagen
aufgrund von Sprödigkeit und begrenzter Duktilität. Daher hat sich in den
letzten zwanzig Jahren die Forschung intensiv den mechanischen Eigenschaften
metallischer Gläser gewidmet.

Wir untersuchen die Auswirkungen der Verformung auf die mechanischen
Eigenschaften des metallischen Glasbildners Ni80P20 mithilfe von Nichtgleich-
gewichtsmolekulardynamikcomputersimulationen. Unter Verwendung eines
Lennard-Jones-Modells werden unterkühlte Flüssigkeiten (engl.: super-cooled liq-
uids, SCL) äquilibriert und aus diesen Glassamples über ein schnelles Abkühlen
generiert. Die so erhaltenen Gläser werden dann in einer ebenen Couetteströ-
mungsgeometrie geschert. Für die unterkühlten Flüssigkeiten zeigen die Spannungs-
Dehnungskurven mit zunehmender Scherrate einen Übergang von einer newton-
schen zu einer nichtnewtonschen Flüssigkeit, wobei in letzterem Fall ein Über-
schwinger bei einer Dehnung von etwa 10% in der Spannungs-Dehnungskurve
auftritt.

Unterhalb der Elastizitätsgrenze wird eine lineare Antwort in der Spannungs-
Dehnungs-Kurve der unterkühlten Flüssigkeiten und Gläser beobachtet. Der
Einfluss der Verformung auf die elastischen Eigenschaften der Proben im Glaszu-
stand wird untersucht, indem ein Formalismus zur Beschreibung der Span-
nungsfluktuationen angewendet und der Elastizitätstensor berechnet wird. Die
elastischen Konstanten der unverformten Zustände werden dann mit denen
der verformten Zustände nach dem Abschalten der Scherbelastung verglichen.
Letztere Proben befinden sich in einem neuen Glaszustand, der Restspannungen
aufweist. Da sich die elastischen Eigenschaften im Niederfrequenzspektrum
der Schwingungsmoden widerspiegeln, wird die Zustandsdichte sowohl für
unverformte als auch für verformte Zustände berechnet. Die Schwingungseigen-
schaften der Proben vor und nach der Verformung werden mit Stromkorrela-
tionsfunktionen analysiert, insbesondere im Hinblick auf die Untersuchung des
Bosonenpeaks. Während in unterkühlten Flüssigkeiten kurzlebige inhomogene
Strömungsmuster beobachtet werden, sind in Gläsern solche Inhomogenitäten
beständiger und es zeigt sich häufig (insbesondere bei genügend kleinen Scher-
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raten) die Bildung von Scherbändern. Wir charakterisieren die Bildung und En-
twicklung dieser inhomogenen Fließmuster sowohl in unterkühlten Flüssigkeiten
als auch in Gläsern, da sie eine entscheidende Rolle für ein besseres Verständnis
der Fließgrenze und der plastischen Verformung spielen. Darüberhinaus passen
wir die Duktilität unseres Modells an, indem wir eine kleine Menge einer dritten
Komponente einführen (“micro-alloying”), was zu einer besseren Duktilität des
Systems führt, während seine elastischen Eigenschaften nahezu unverändert
bleiben.
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1 Introduction

The synthesis of a metallic glass, by quenching a Gold-Silicon alloy (Au75Si25)
from the melt, was first reported by [Klement, Willens, and Duwez (1960)]1. A
glass state is obtained by extremely fast cooling of a melted glass-forming alloy
below its melting temperature. Generally, the cooling rate should be fast enough
to bypass crystallization, and therefore, in a small temperature window above
Tg (the glass transition temperature), the viscosity increases by several orders of
magnitude and the glass-forming liquid forms an amorphous solid. At this stage,
the structural relaxation times exceed experimentally accessible timescales and
the so-called glass transition happens [Binder and Kob (2011)]. Due to technical
difficulties in production, mainly achieving sufficiently fast cooling rates; initially,
metallic glasses were only produced as narrow ribbons or wires and only by a few
research groups. Metallic glasses were produced in bulk2 after some development

1This had happened as part of a research program “whose purpose was far remote from metallic
glasses” said by P. Duwez in a report twenty-one years later [Duwez (1981)]. The purpose of the
latter research program was to obtain a solid solution in binary alloys of Cu and Ag. In this
report, the author describes: “The phase diagram of CuAg is a eutectic type, which is in contradiction
to the generally accepted Hume-Rothery rules. Since the separation of the homogeneous liquid into Cu-rich
and Ag-rich phases during cooling is a rate process, I thought that by cooling the melt very rapidly,
the Cu and Ag atoms would not have time to cluster and would be forced into a nonequilibrium solid
solution”. Successfully designing a piece of simple equipment which is now referred to as “gun
technique”, they quenched small pieces of single-phase, face-centered solid solution of CuAg.
The author continues that: “The next alloy to be quenched could have been another system in which
complete solubility would be predicted but does not occur under normal conditions. I was more interested,
however, in finding out what would happen in a system in which the two components cannot form a solid
solution under any circumstances because, for example, they have different crystal structures and very
different valences”. Surprisingly, an unexpected result occurs when a Ag−Ge alloy with 23 at.%Ge

concentration was quenched and found to be in a hexagonal close-packed phase, which does
not exist in equilibrium. This was the first nonequilibrium crystalline phase obtained by liquid
quenching. The author continues: “The next move was a lucky one leading to the first metallic glass.
The alloy system Au− Si is very similar to Ag−Ge, and it was expected that a hexagonal close-packed
phase would also be obtained in Au− Si alloys. Instead, the x-ray diffraction pattern of the quenched
Au− 20 at.%Si alloy indicated the absence of crystallinity. But was the alloy really amorphous, or were
we overenthusiastic about some rather questionable results ?”.

2Hereafter, Bulk metallic glasses are referred to as BMGs in this thesis.
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was made in the cooling methods, e.g., fast-spinning wheel method [Liebermann
and Graham (1976)].

On the other hand, the amorphous state and the glass transition phenomenon,
as one of “the deepest and most interesting unsolved problems in solid-state theory” said
by the Nobel laureate Philip W. Anderson [Anderson (1995)], had always been
a puzzling problem among theoretical physicists. In parallel to experimental
developments, there have been many theoretical approaches towards a fundamen-
tal understanding of the glass transition phenomenon. Among them, the only
microscopic approach is the mode-coupling theory (MCT) of the glass transition,
proposed by [Bengtzelius, Götze, and Sjölander (1984) and Leutheusser (1984)],
which made many predictions about features of glassy dynamics [Janssen (2018)].
During late 1980s and beginning of 1990s, also particle-based computer simula-
tion [Allen and Tildesley (2017)] were used to model glass-forming systems. An
important issue of the early simulation methods was to test the predictions of
MCT. A model for Ni80P20 metallic glass former was introduced by [Kob and
Andersen (1994)] with the aim of testing MCT predictions [Kob and Andersen
(1995a) and Kob and Andersen (1995b)]. The so-called Kob-Andersen binary mix-
ture, consists of two types of particles which are interacting via a Lennard-Jones
[Lennard-Jones (1924)] potential. Kob-Andersen binary Lennard-Jones mixture is
a good glass former system that can bypass crystallization without showing any
phase separation. Using short-range pairwise additive Lennard-Jones interaction,
without any orientations degrees of freedom, this model is a significantly reliable
and simple (in comparison to organic systems, polymers, silicates, and other
network makers systems) model which has been extensively used during the last
decades and made a significant increase in the number of publications during
the last decades (check Fig. 1.1).

Figure 1.1: Number of publications by keyword “metallic glasses” per year. Data source: the
Clarivate Analytics (following the acquisition of Thomson Reuters) Web of Science.

Rather than testing the theoretical predictions, another primary focus of the
latter simulation methods was to try to investigate the poorly understood mechan-
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ical responses of BMGs when subjected to an external load. BMGs have unique
mechanical properties (high strength, high wear, and corrosion resistance, etc.)
compared to their crystalline counterparts. Therefore, they are of great techno-
logical interest [Wang, Dong, and Shek (2004)]. The possibility of controlling the
viscosity of BMGs over a wide range, such that one can form them into different
shapes, made commercial use of these materials possible, e.g., golfing putters and
tennis racquets were designed by Liquidmetal Technologies3 and electric guitars
made of amorphous metal by Heraeus4. BMGs were used in creating NASA’s
Genesis spacecraft solar wind collectors5. Possible medical applications of these
materials also have been studied during the last years [Schroers, Kumar, et al.
(2009) and Zberg, Uggowitzer, and Löffler (2009)]. Nevertheless, a significant
drawback in the mechanical properties of these materials is their limited ductility
and catastrophic failures in tension after reaching the elastic limit [Ashby and
Greer (2006)]. Many research groups (both in theory and experiment) have in-
vestigated and studied the rheological properties of bulk metallic glasses being
subjected to an external load [Inoue (2000) and Schuh, Hufnagel, and Ramamurty
(2007)].

A reference state (in equilibrium) in order to study the rheological properties
appears slightly above the glass transition temperature Tg where the system
enters a metastable regime, the so-called super-cooled liquid (SCL) state [Öttinger
(2006)]. The macroscopic response of SCLs and glasses when subjected to an
external load can be studied via the so-called stress-strain curve [Larson (1999)]
which, represents the evolution of stresses in a system as a function of strain.
A typical stress-strain curve for glasses consists of three regimes: namely an
elastic, a transient, and a steady-state regime. Beyond the elastic regime of the
stress-strain curve, the cross-over response to a non-Newtonian liquid is marked
by the occurrence of an overshoot in the transient regime, while the stress-strain
curve of the glasses always represents a non-Newtonian response, the super-
cooled liquids show a cross-over response from a Newtonian (for low strain
rates) to a non-Newtonian liquid (for high strain rates). Initially, in the elastic
regime, both SCLs and glasses behave as Hookean materials [Hooke (2016)],
showing a linear response between the stresses and the applied external force.
To obtain the elastic properties of glasses in computer simulations, applying a
stress-fluctuation formalism [Lutsko (1989)], one can directly calculate the elastic
moduli of a system. The elastic properties of a system can also be characterized
in the low-frequency regime of the vibrational density of states [Sólyom (2007)].
A characteristic feature of amorphous solids in the low-frequency range of the
spectrum (≈ 1THz) is the occurrence of the Boson peak [Wang (2012a)]. In the

3www.liquidmetal.com
4www.heraeus.com
5http://genesismission.jpl.nasa.gov
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limit of low frequencies, acoustic sound waves reflect the elastic features of the
system and can be studied via the current correlation functions [Boon and Yip
(1991)].

In the case of the super-cooled liquids, right after the overshoot, short-lived in-
homogeneous flow patterns appear in the system, which span the whole system
in a tiny strain window. On the other hand, in glasses, the inhomogeneities
appear to be more persistent and often result in the formation of shear bands
[Hays, Kim, and Johnson (2000) and Varnik, Bocquet, Barrat, and Berthier (2003)].
The shear bands are band-like structures with a higher strain or mobility than
in other regions of the system, and play an essential role in understanding the
phenomenon of yielding in glasses under external load [Hofmann, Suh, et al.
(2008)]. Studying the effects of shear bands on mechanical properties of BMGs,
and understanding the underlying processes which result in the formation and
evolution of these inhomogeneities in the system, plays a crucial role in better
understanding the phenomenon of yielding and plastic deformation in glasses.

Micro-alloying, as a method to adjust the mechanical properties of BMGs
beyond the elastic limit, has been used in experiments by adding a tiny amount
(≈ 1%) of an alloying element to the glass-forming system [Hubek, Seleznev,
et al. (2018) and Nollmann, Binkowski, et al. (2016)]. As a result of adding 1%
of Co in a Pd40Ni40P20 glass former in the latter references, minor changes are
reported in the elastic response of the materials but, the significant effect of
micro-alloying is for large deformations where the samples appeared to be more
ductile concerning the original material without micro-alloying.

In this thesis, we study the effect of a simple planar Couette flow shear
deformation (in which, the upper and lower planes of the samples are moving
in the opposite direction with a constant velocity) on mechanical properties
of a Ni80P20 metallic glass former, using non-equilibrium atomistic molecular
dynamics computer simulation [Alder and Wainwright (1959) and Rahman
(1964)]. In order to model the Ni80P20 metallic glass former, we used the Kob-
Andersen binary Lennard-Jones mixture [Kob and Andersen (1994)] which consist
of 80% A-type particles and 20% B-type particles, interacting via a Lennard-Jones
[Lennard-Jones (1924)] potential. The samples are equilibrated in the super-
cooled liquid state, and from there, we obtain the glass state via a sudden quench.
The response of the samples in the super-cooled liquid and glass state to an
external load is studied by subjecting them to a shear deformation using Lees-
Edwards boundary conditions [Lees and Edwards (1972)]. The main focus of the
current study is to try to characterize the effects of deformation on the mechanical
properties of the model metallic glass former. Therefore, throughout this thesis,
we make a comparison between the mechanical properties of the samples in
the quiescent undeformed states, as a reference, and the deformed states. The
latter state is obtained after switching off the shear load at a certain strain point
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in the steady-state regime and allowing the stresses to relax for a certain time.
A characteristic feature of BMGs are the remaining stresses in the system after
switching off the external load, the so-called residual stresses [Ballauff, Brader,
et al. (2013)]. After switching off the external load, the stresses show a decay
towards a finite value, and a new deformed glass state with residual stresses
is obtained. Therefore, another key focus of our study is to try to investigate
the effects of residual stresses on the mechanical properties of our model glass
former.

The elastic properties of the samples in the quiescence undeformed state are
obtained by calculating the elastic moduli (shear modulus, Young’s modulus,
Poisson’s ratio, and bulk modulus) with which later we compare the results
of the deformed states. Further, as the elastic properties are reflected in the
low-frequency spectrum of the vibrational modes, we characterize the effects of
deformation on the vibrational modes in the low-frequency regime by means of
current correlation functions and the Boson peak.

Beyond the elastic limit, we characterize the formation of inhomogeneous
flow patterns (both in SCLs and glasses) that appear as a transient response
to the external shear. For the super-cooled liquids, we analyze the crossover
from Newtonian to non-Newtonian behavior. We show that, while in SCLs, the
in-homogeneous flow patterns are short-lived, in glasses, these inhomogeneities
are long-lived and form shear bands. Further, we will show that in glasses, shear
bands can form in the flow direction as horizontal bands or perpendicular to the
flow direction as vertical bands. We characterize the latter shear bands in terms
of mobility maps, stress-strain relations, mean-squared displacements, and (local)
potential energies.

The mechanical properties of a BMG, at large deformation, can be adjusted
by making a minimal change in the alloy composition of the material. Therefore,
in this work, we propose a model for micro-alloying in Ni80P20 metallic glass
former, based on the original Kob-Andersen binary Lennard-Jones mixture. This
has been done by introducing a third species type C, therefore, turning the binary
mixture into a ternary system. We characterize the effects of micro-alloying on
the mechanical properties of the new model by applying deformation on the
system and comparing the macroscopic response of the system to the original
model.

In the following, this thesis is organized into five main chapters. After
the introduction, in chapter 2 we discuss about the response of liquid and
glasses under mechanical load. The chapter will begin with a brief introduction
to the phenomenon of glass transition, including an overview of the changes
occurring in the glass-forming liquid, in terms of dynamics and microscopic
structure. Different regimes in the stress-strain curve (including the crossover
response of the SCLs from a Newtonian to a non-Newtonian liquid) are also
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discussed for SCLs and glasses. In chapter 3, we will give a theoretical description
of the quantities which we have calculated in this work. This includes an
overview of the elastic constant tensor definition and calculation of different
elastic moduli, and the Lamé coefficients. Then, we will give a brief description of
the vibrational properties of solids. This includes a brief description of the density
of phonon states within the harmonic approximation and the corresponding
Einstein and Debye descriptions. Furthermore, we will discuss the Boson peak
as a characteristic feature in glasses, and introduce the dynamic correlation
functions with which we study the propagation of acoustic sound waves in the
system. In chapter 4, we will introduce the computational methods which we
have used in our study. This consists of an overview of Molecular Dynamics
simulations, including the requirements needed to perform non-equilibrium
simulations in micro-canonical and canonical ensembles (numerical integration
methods, thermostating, boundary conditions, etc.). The last subsection of this
chapter describes the simulation details. In chapter 5 we will present the results
of our study. We will begin this chapter by discussing the response of SCLs
and glass samples when subjected to a shear deformation. The formation and
evolution of inhomogeneities in both SCLs and glass samples will be discussed in
detail. Then, the effects of deformation on the elastic moduli of the glass samples,
with respect to their initial undeformed states, will be presented. Furthermore,
we investigate the effects of deformation on vibrational properties and the Boson
peak of the glass samples. In the final section, we will present the results for a new
micro-alloyed model, which we have proposed and make a detailed comparison
to the original model.

6



2 Liquids and glasses under
mechanical load

2.1 Liquids and the glass transition

“If you have a glass full of liquid, you can discourse forever on its qualities, discuss
whether it is cold, warm, whether it is really and truly composed of H-2-O, or even
mineral water, or saki. Meditation is Drinking it!”
Taisen Deshimaru

Simple liquids, crystalline solids, and the corresponding liquid-to-crystal transi-
tion have been studied for a long time, and their properties have been properly
understood but, on the other hand, what makes glasses and the glass transition a
puzzling phenomenon, relies on several un-answered rather poorly understood
questions which have been addressed to these materials. Why does glass transi-
tion happen, and what are the underlying mechanism (or mechanisms)!? Why
do the properties of the material depend on the history of their production and
are time-dependent? What are the mechanical responses of these materials when
subjected to an external load, and how does deformation change these responses?
Etc. We will try to address these questions in detail. In this chapter, we will
discuss the phenomenology of the glass transition, including an overview of
the changes occurring during this transition in terms of dynamics and atomic
correlations, from a simple to a super-cooled liquid and also in glasses. We will
also discuss the glass transition temperature and discuss different glass-forming
systems. Further, as the main focus of this thesis, we will make a comparison
between the response of super-cooled liquids and glasses when subjected to an
external load, including the cross-over response of super-cooled liquids from a
Newtonian to a non-Newtonian liquid.
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2.1.1 The onset of slow dynamics and the glass transition

When a liquid is cooled down slowly below its melting temperature Tm, the
nucleation of crystalline nuclei, starts in the liquid. The nucleation is activated
in the cooled liquid (in the metastable regime) with a small perturbation like
a change in pressure. The nucleation process (homogeneous or heterogeneous
nucleation) then follows by the formation of nuclei, which can grow in the system
in a crystallization process [Mullin (2001)]. Therefore, the liquid will undergo
a phase transition and become a crystalline solid. The process is schematically
illustrated in Fig. 2.1. By slowly cooling a liquid, its volume will decrease as a
function of temperature and shows a discontinuity at Tm. This discontinuity, is by
definition, the signature of a first-order phase transition, as volume V = (∂G/∂P)T ,
is the first derivative of Gibbs free energy G with respect to its thermodynamic
conjugate variable pressure, P [Binder (1987) and Stanley (1971)]. If the cooling
process is very fast, the story becomes very different. When a multi-component
liquid (later in this chapter, we will discuss glass-forming liquids in more details)
is quenched to temperatures below its melting temperature, there will be no
discontinuity in the V − T phase diagram and the liquid will undergo a gradual,
continuous transition (the so-called “glass transition”) and become an amorphous
solid. A key remark here is that the crystallization process has to be bypassed
during the glass transition in order to obtain an amorphous phase (later in this
chapter, we will discuss this in more detail). In contrast to the liquid/crystal
transition, the glass transition is not a thermodynamic transition. There is
no phase coexistence between the two phases, and extensive variables (in this
case volume) do not show any discontinuity. The liquid-to-glass transition is a
kinetically driven phenomenon during which, the dynamics of the system shows
a tremendous slowing down in a small temperature window around the glass
transition temperature (Tg). Therefore, the glass transition can be considered as a
“kinetic phase transition” [Debenedetti and Stillinger (2001)]. During the quench
process (as illustrated in Fig. 2.1), the liquid will experience a metastable state in
the super-cooled liquid regime [Öttinger (2006)] and show a glass transition at Tg.

In order to understand the glass transition phenomenon and the underlying
processes during this transition, we need to have a clear picture of different
aspects of this transition, e.g., what happens when a liquid is quenched to low
temperatures? What kind of fluids shows a glass transition? What are the under-
lying processes resulting in the slowing down of the dynamics? Etc. Here, we try
to give a brief and clear answer to these questions.

“How does fast cooling bypass the crystallization process?”

8



Figure 2.1: Schematic phase diagram of liquid to solid transition, showing different paths
which will lead to crystalline or a glass phase.

By quenching a liquid with a sufficiently high cooling rate, the system will
be driven out of equilibrium, and the liquid structure gets arrested in an amor-
phous state. The term “sufficient” here means that the cooling rate is much
faster than the typical time needed for structural rearrangements. Therefore, the
crystallization process is avoided as the system does not find the time to undergo
a first-order liquid-to-crystal phase transition. This is due to the fact that, in a
liquid-to-crystal transition, the activated nucleation processes in the metastable
temperature regime will be followed by a crystallization process, but, at high
cooling rates the system bypasses all these processes, and liquid structure gets
frozen in a solid-state [Zallen (2008)].

“Do all liquids show glass transition by quenching?”

Even though in principle, by quenching any liquid, one can obtain a glass
[Zallen (2008)], in a more realistic picture, one has to distinguish between glass-
forming liquids and non-glass-forming liquids (which can be only driven to an
amorphous state under special laboratory conditions). Glass-forming liquids are
multi-component liquids in which, this multi-component nature bypasses the
crystallization process. On the other hand, non-glass-forming liquids are mostly
one-component liquids. This does not mean that one-component glass-forming
liquids do not exist at all. Selenium (Se) [Pang, Wang, and Ding (1989) and
Stephens (1976)] as an example, is a one-component glass-former. Obtaining a
glass state is a matter of “how fast” and “how far” the liquid is quenched from the
melting temperature. Therefore, glass transition in one-component liquids (also
many multi-component fluids) is very difficult as bypassing the crystallization
process needs special quench treatments, e.g., for the case of Se the crystalliza-
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tion is suppressed kinetically, similar for polymer glass. Bulk metallic glasses
(BMGs), being the subject of this study, are good glass-formers which are usu-
ally multi-component. Some examples are, Zn20Ca20Sr20Yb20Li11Mg9, Ni80P20,
Fe41Co7Cr15Mo14C15B6Y2 [Wang (2012b)], etc. BMGs have many applications
[Inoue, Wang, and Zhang (2008) and Louzguine-Luzgin and Inoue (2013)], and
therefore, have been the subject of many studies during the last decades.

The typical structural relaxation time in normal liquids are in the range of
a few picoseconds1. As a result of lowering the temperature, there will be an
increase in relaxation times of the liquid, which is a direct result of slowing down
in the liquid’s dynamics (check Fig. 2.2). This means relaxation times in liquids
are strongly temperature-dependent [Binder and Kob (2011)]. Experimental
studies have shown this strong temperature dependence such that a small change
in temperature results in an increase in relaxation times by several orders of
magnitude [Angell, Poole, and Shao (1994)]. Figure 2.2 is an Arrhenius plot (i.e.
log (η) vs. 1/T ) of the temperature dependence of the viscosity. Viscosity shows
a very similar temperature dependence behavior to structural relaxation times.
However, experimentally η (T) is a much easier quantity to measure (depending
on the system) rather than relaxation times. As it is shown in Fig. 2.2, for some
glass-formers, a change of the order of 1 − 2% in temperature results in a change
by several orders of magnitude in viscosity. For example, if one takes CKN in
Fig. 2.2 where, log(viscosity) is plotted as a function of inverse temperature KT−1

with large open circles, a small change from 1 to 3 in inverse temperature results
in an increase in viscosity by 14 orders of magnitude. Different glass-forming

Figure 2.2: Arrhenius plot of temperature dependence of viscosity for several glass-forming
liquids. Image source: [Angell, Poole, and Shao (1994)]

liquids show different tendency (with respect to different Tg’s) towards glass
transition. This has been shown in an Arrhenius plot (log(η) vs. T−1) in Fig. 2.2.
This makes the comparison between the curves in Fig. 2.2 very difficult. In order

1Rather than structural relaxation time, the bulk relaxation time τ = η/G∞ in which, η is
the viscosity, and G∞ is the instantaneous shear modulus [Dyre (2006)], was first introduced by
[Maxwell (1867)] (although Maxwell’s description does not explain the non-exponential relaxation
behaviors in glasses, nevertheless, it gives some reliable estimates).
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Figure 2.3: Arrhenius plot of temperature dependence of viscosity for different glass-forming
liquids, scaled with glass transition temperature Tg. Image source: [Angell (1988)]

to overcome this problem, [Angell (1988)] suggested a classification in which, the
glass-forming liquids are divided into two branches of strong and fragile (which
does not refer to mechanical properties of the material). The Arrhenius plot of
viscosities as a function of scaled temperature (Tg/T with Tg = T

(
η = 1013P

)
),

shown in Fig. 2.3, is called Angell plot2. With this representation one can clearly
distinguish between a strong glass-former like SiO2 (the linear line with close
black squares, showing an Arrhenius increase) and a fragile glass-former like
O-Terphenyl (the curved line with crosses, showing a non-Arrhenius increase). In
a more quantitative way the so-called “fragility” of a glass-former is characterized
with fragility index:

m =
dlog10η

dTg/T

∣∣∣∣
T=Tg

, (2.1)

with m being the slope of the curve in Angell plot in Fig. 2.3 at Tg, and ranges
from 15 for strong glass-formers up to 200 for fragile glass-formers. Here it
should be mentioned that, with this classification, the meaning of strong and
fragile in Angell plot (shown in Fig. 2.3) is to show the temperature dependence
of the increase in viscosity for different glass-forming liquids. Therefore, with
this representation, the strong glass-former follows an Arrhenius law and the
fragile glass-formers shows a non-Arrhenius behavior which can be fitted by the
so-called Vogel-Fulcher-Tammann [Vogel (1921), Fulcher (1925) and Tammann and

2It should be mentioned that the choice of 1013P is arbitrary and reflects a relaxation time of
about one-two minutes (≈ 100s) for a system at this viscosity. [Binder and Kob (2011)]
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Hesse (1926)] function as:

η (T) = η0exp

(
B

T − T0

)
(2.2)

which shows a divergence at the so-called “Vogel-temperature”, T = T0 and a super
Arrhenius increase of viscosity close to T0. Here, the parameter B/T0 determines
the strong glass-formers when its very large and the fragile glass-formers for
small values.

“What is Tg?”

In Fig. 2.1 we showed that, while quenching a glass-forming liquid, the vol-
ume shows a decrease down to the glass transition temperature Tg. At this
point, the structural relaxation times increase by several orders of magnitude.
Therefore, the system runs out of equilibrium and shows a glass transition. The
temperature at which this transition happens, the glass transition temperature
Tg, is not an intrinsic property of the system and it is highly dependent on the
average cooling rate Ṫ = −dT/dt with which the temperature is lowered [Aklonis
and Kovacs (1979) and Zallen (2008)]. Figure 2.4 shows schematically how Tg

changes with different Ṫ . For Ṫ3 < Ṫ2 < Ṫ1 one obtains three different glass
transition temperatures as: Tg3 < Tg2 < Tg1 . The lower the cooling rate, the lower
the glass transition temperature. Tg shows a weak temperature dependence, i.e.,
a change of the order of one order of magnitude in cooling rate results in a shift
of a few Kelvin in glass transition temperature. The shift in Tg towards the lower
temperatures by extending the cooling process arises from the temperature de-
pendence of relaxation times in the system. Close to glass transition temperature,
the relaxation time increases by several orders of magnitude as a result of slow
dynamics. Therefore, understanding the changes in the system dynamics during
this transition will give us a more clear picture of the underlying processes which
change the glass transition temperature.

“What are the underlying processes leading to slow dynamics?”

So far, we have seen that, by lowering the temperature in a glass-forming liquid,
the relaxation times (typical time needed for structural re-arrangements) increase
rapidly. As a result, the particle motion becomes slower and instead of a diffusive
motion3, the particles become trapped by the cages of their surrounding particles
and become more and more correlated to their neighboring particles. In order to

3In terms of time-scales, diffusive motion corresponds to the linear regime at long times
(t → ∞) of the mean squared displacements where, MSD ∝ t (check Fig. 2.5). In terms of length
scales, the diffusive regime corresponds to displacements larger than a particle radius (check
Fig. 2.6).
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Figure 2.4: Schematic plot of cooling rate dependence of glass transition temperature.

investigate the underlying processes happening in the system dynamics while
lowering the temperature, one can study the so-called “mean-squared displacement”
(MSD)4. The MSD of a tagged particle i (in an N particle system) is defined as
[Hansen and McDonald (2013)]:

〈
Δr2 (t)

〉
=

1
N

N∑
i=1

〈
|�ri (t) −�ri (0) |2

〉
, (2.3)

with �ri (t) the position of particle i at time t. The brackets denote an ensemble or
time average. In the limit of t → ∞; one expects that the Einstein relation holds,
which is given by: 〈

Δr2 (t)
〉
= 2dDt, (2.4)

with d the dimension and D the self-diffusion coefficient. Understanding the
temperature dependence of MSD helps us to give a furthermore clear picture of
the changes occurring in the system dynamics while lowering the temperature
from a simple liquid to a super-cooled liquid just above the glass transition
temperature and finally in a glass. This is shown in Fig. 2.5 (The presented results
are obtained from a molecular dynamics computer simulation of Kob-Andersen
binary Lennard-Jones mixture [Kob and Andersen (1994)] and are presented
in reduced units. The details about the model and how it is implemented in
computer simulation will be shown in chapter 4).

At short times, the MSD shows a quadratic behavior in time, for all tempera-
tures (the purple dashed line in Fig. 2.5 is a quadratic function plotted next to

4Mean-squared displacement is the 2nd moment of a time-dependent correlation function
Gs (�r, t) = 1

N

∑
j

〈δ (�r− (�rj (t) −�rj (0)
))〉, the so-called self-part of the van Hove function. Gs (�r, t) is

the probability that a particle at time t has made a displacement �r from its reference position
�r (0). [Harp and Berne (1970)]
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the MSDs to show the t2 dependence at short times). In this short-time regime,
the tagged particle shows a ballistic motion and does not see the interactions
with the other particles (“ballistic regime”). This quadratic behavior can be shown
by a Taylor expansion of the trajectories in time: �ri(t) = �ri(0) +�vi(0)t+ O

(
t2)

and therefore,
〈
Δr2(t)

〉
=
〈
|�vi(0)|2

〉
t2 + O

(
t4). Considering velocities are given

from a Maxwell-Boltzmann distribution one can easily show the temperature de-
pendence of squared thermal velocities on temperature as

〈
|�vi(0)|2

〉
= 3kBT/2m

[Binder and Kob (2011)]. The temperature dependence of MSD is shown in
Fig. 2.5 where we clearly see that by lowering the temperature, the particle mo-
tion becomes slower and slower. For the liquid at high temperature one can
distinguish between two different regimes. The ballistic regime at early times
(t → 0) and non-ballistic motion at later times (t → ∞) where, the tagged par-
ticle sees the surrounding particles and interacts with them. As a consequence
of these particle interactions at later times, the particles start to have random
diffusive motion and MSD becomes a linear function of time (the linear regime is
illustrated with gray dashed lines in Fig. 2.5). This is called the “diffusive regime”.

Figure 2.5: Mean squared displacement (solid lines correspond to particle type A and dashed
lines with similar color correspond to particle type B), obtained from molecular dynamics
computer simulation of Kob-Anderson binary Lennard-Jones mixture [Kob and Andersen
(1994)] (the details about the model and how it is implemented in computer simulation will
be shown in chapter 4), plotted at different temperatures (the values are in Lennard-Jones
reduced units (check table 4.2)). The gray dashed lines are linear functions with slope = 1 and
the purple dashed line is a quadratic function with slope = 2.

But, the difference between liquid dynamics at high and low temperatures
arises from a third regime which, appears at low temperatures between the
short-time regime and the diffusive regime at long times. As the temperature
decreases and after the particles leave the ballistic regime and start to interact
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with each other, they become trapped in the cages of their neighboring particles.
This is called the “caging regime”. At this stage, the particles are not moving that
much, and MSD stays at a finite value. During this temporary time, the particles
are only able to move within their cages, and it is only at relatively long times
that they can leave their cages and show diffusive motion. This cage breaking
behavior corresponds to the bending of the MSD at later times before reaching
the diffusive regime. The importance of the caging regime comes from the fact
that, as it is shown in Fig. 2.5, the caging regime is temperature-dependent, and it
becomes broader at lower temperatures. Such that, in the glass state (black curve
in Fig. 2.5), the particles need infinite time to break their cages and show diffusion
motion. Another significance of the plateau regime in the super-cooled liquid is
the occurrence of the so-called β-relaxations modes, which are due to the rattling
of the particles within their cages. Therefore, the regime around the plateau in
the MSD is called the β-relaxation regime. The β-relaxations are then followed,
at later times, by the α-relaxation towards the diffusive regime [Binder and Kob
(2011)]. The importance of the β-relaxation regime becomes even more significant
at lower temperatures in the glass state (in the absence of α-relaxation) in which,
the β-relaxation regime plays an important role in the mechanical properties,
yielding, diffusion, aging, etc. of the material [Yu, Wang, and Samwer (2013)]. An
extensive theoretical work has been done on the β-relaxation regime in terms of
the mode-coupling-theory (MCT) [Bengtzelius, Götze, and Sjölander (1984) and
Leutheusser (1984)]. The MCT predicts a dynamic singularity in the super-cooled
liquids when the temperature is lowered below a certain critical temperature of
Tc [Kob and Andersen (1994)]. Another prediction by the MCT, regarding the
β-relaxation regime, is the existence of a von Schweidler law [Schweidler (1907)]
in the plateau regime. The MSD(t) (in the latter regime) can be written as:

MSD (t) = r2
c +A

(
t

τβ

)b

, (2.5)

with rc a constant, A an amplitude, τβ the temperature-dependent relaxation
time of the β-relaxation and b a critical exponent.

“What makes a liquid, solid, at microscopic level?”

Up to now, we have seen that, by quenching a glass-forming liquid, the vis-
cosity increases by several orders of magnitude, and the particles become trapped
within the cages of their nearest neighbors. As a result, the liquid gets frozen in an
amorphous solid state. What does this mean? By looking at a snapshot of atomic
configurations solely, one cannot distinguish between a liquid and an amorphous
solid. This is because, in a similar manner, in amorphous solids, there is no
long-range structural order in the system. Meaning, in a crystalline solid where
we have long-range order, by knowing the position of a single particle and the
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Figure 2.6: Schematic representation of particles motion in the super-cooled liquid state (at
T = 0.44). Particle trajectory (in red) shows the distance that particle has traveled by hopping
from one cage to another one. Figures (a), (b) and (c) correspond to t1 < t2 < t3 respectively. In
figure (c) the particle has reached the diffusive regime in Fig. 2.5

lattice constant, one can predict the average position of all the other atoms in any
arbitrary direction [Kittel (1968) and Sólyom (2007)]. This is due to periodicity in
crystalline solids. But, in amorphous solids and liquids, there are no periodicities
and long-range order (this has been schematically shown in Fig. 2.7). What differs
between an amorphous solid and a liquid are the short-range order and particle
correlations with their nearest neighbors. The short-range orders in amorphous
solids, allows us to study the physical quantities which are dependent on such a
short-range correlation (interaction of particles with their nearest neighbors), like
vibrational modes and propagation of sound waves. We will discuss this in more
detail in the section (2.2.3).

Figure 2.7: Schematic representation of a crystalline solid (a) and an amorphous solid (b).

Short and long-range correlations can be studied via spatial correlation func-
tions. Here, we will introduce the “radial distribution function” (g(r)) as a tool
to investigate the changes happening in particle correlations while lowering the
temperature from a liquid state to obtain a glassy state eventually.

The radial distribution function measures to what extent the structure of
a system is deviating from a random structure. This means, for an ideal gas,
we expect the function to be 1, as the structure is completely random, and the
possibility of finding a particle at a given distance in an arbitrary direction is 1.
Considering particle i at position �ri the probability of finding other particles at
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a given distance r, away from particle i can be obtained from the normalized
pair correlation function as follows [Binder and Kob (2011) and Hansen and
McDonald (2013)]:

g (r) =
V

N2

〈∑
i

∑
j�=i

δ
(
r−
∣∣�rij∣∣)

〉
, (2.6)

in which, V is the volume, N is the number of particles and
∣∣�rij∣∣ = ∣∣�ri −�rj

∣∣ is
the relative distance between particle i and j. The role of the delta function in
equation (2.6) is to count the number of particles which can be found within a
shell of size r and r+ dr from the pinned particle. This is shown schematically in
Fig. 2.8.

Figure 2.8: Schematic plot of g (r), showing the position of first and second peak with respect
to the first and second nearest neighbors. Image source: [Ziman and Ziman (1979)]

In Fig. 2.9, radial distribution functions are shown for four different tempera-
tures (The presented results are obtained from a molecular dynamics computer
simulation of Kob-Anderson binary Lennard-Jones mixture [Kob and Andersen
(1994)] and are presented in reduced units. The details about the model and how
it is implemented in computer simulation will be shown in chapter 4). These
results are for three different states, namely liquid, a super-cooled liquid, and
glass. The overall shape of all curves, as expected, shows a peak at distances
relative to the shell of the first nearest neighbors. Here, we can see the increase
in correlations between the first nearest neighbors (short-range order) with de-
creasing temperature. Before that, the function is just zero, as the particles cannot
overlap.
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The short-range order (the first peak in Fig. 2.9) shows an increase by lowering
the temperature until in the glass state (black curve in Fig. 2.9) it shows the highest
peak (it will further increase with decreasing T ). The correlations eventually
disappear at long distances and saturate at a value of 1, as there is no long-range
order in the system. Here, rather than the increase in short-range correlations,
another important observation can be made. In Fig. 2.9, we can see a significant
change occurring in the second peak (corresponding to the second layer of nearest
neighbors) as the temperature decreases from T = 1 to T = 0.2 (in reduced units
see chapter 4). This split of the second peak (camel shaped black curve) is a
characteristic behavior of metallic glasses. This splitting (often called medium-
range order in the literature) already starts to appear in the super-cooled liquid
state at T = 0.44 but gets very pronounced in the glass. There are several
approaches in understanding the splitting of the second peak. For example,
[Binder and Kob (2011)] explain this feature using random close packing structure
and show that there are two layers of typical second nearest neighbors. Some
other studies [Sheng, Luo, et al. (2006) and Wen, Cheng, Wang, and Ma (2009)]
show that this splitting is due to the ordering of quasi-equivalent clusters, i.e., a
minority of the particles in the system shows ordering. Despite being a topic of
several studies, this phenomenon is still under a lot of debate!

Figure 2.9: Radial distribution function calculated for correlations between A type particles
(gAA (r)) obtained from Molecular Dynamics computer simulation of Kob-Anderson binary
Lennard-Jones mixture [Kob and Andersen (1994)] (the details about the model and how it is
implemented in computer simulation will be shown in chapter 4). gAA(r) is shown for four
different temperatures at three different states, from liquid to super-cooled liquids and the
glass.
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2.2 Rheology

In the previous section, we gave a brief overview of the changes occurring while
lowering the temperature in a glass-forming liquid and different states which the
fluid experiences before showing a glass transition. We saw that by quenching the
liquid to temperatures well below the glass transition temperature, the viscosity
increases rapidly. Finally, instead of a viscous liquid in the super-cooled liquid
state, we obtain an amorphous solid. The rheological behavior of these materials
is of great technological and scientific importance [Larson (1999)]. In this section,
we will try to give a brief overview of the responses of glass-forming liquids to
shear deformation in super-cooled liquid and glassy state.

2.2.1 From Newtonian liquids to glasses

To begin with, let’s consider a fluid being subjected to a shear deformation using
a simple planar Couette flow geometry [Batchelor and Batchelor (2000)]. The
shear protocol is illustrated in Fig. 2.10. The flow is imposed to the system with
constant shear rate γ̇ in x-direction with a gradient in z-direction, such that the
velocity profile will be given by vx (z) = γ̇z. For the Newtonian fluids, linear
response holds such that, the steady-state stress, σss, shows a linear increase with
respect to the applied shear rate γ̇, i.e. σ = ηγ̇ with η the zero shear viscosity
[Binder and Kob (2011)]. The conditions under which this linearity holds and how
one can distinguish between Newtonian and non-Newtonian liquids, strongly
depends on the choice of shear rates and how far the fluid is from the glass
transition temperature. As we discussed in the previous section, as the system
reaches the glass transition temperature Tg, the viscosity increases by several
orders of magnitude. Therefore, the linear response does not hold anymore even
for very small γ̇, as η decreases with increasing γ̇ [Varnik (2006)], which is a
characteristic property of glasses called shear thinning. This is shown in Fig. 2.11
where we present the shear rate dependence of viscosity for super-cooled liquids
and glasses. From Fig. 2.11, we can see the decrease in viscosity with increasing
shear rate. The only difference between the two appears at very low shear rates
where the viscosity remains constant in the super-cooled liquids as they respond
as a Newtonian liquid (we will discuss Newtonian and non-Newtonian liquids
in more details in the next section). The time scale at which shear-thinning
happens can be understood from the Weissenberg number, We = γ̇τ (τ being the
relaxation time of the un-sheared liquid) [Larson (1999)]. For We > 1 shear-
thinning happens, the flow pattern will be non-linear, and the fluid behaves as a
non-Newtonian fluid, and vice versa. This means, by a proper choice of shear
rates, one can study different regimes in a super-cooled liquid where the system
behavior changes from Newtonian to non-Newtonian (check Fig. 2.15) [Golkia,
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Shrivastav, Chaudhuri, and Horbach (2020)]. Therefore, studying the response
of glasses and super-cooled liquids to external load is of great importance in
a deeper understanding of the properties of glasses [Lu, Ravichandran, and
Johnson (2003)].

Figure 2.10: Schematic representation of shear protocol with a planar Couette flow geometry.
The shear load is imposed in x-direction with a constant shear rate γ̇ such that, the velocity
profile shows a gradient in z-direction. The xz plane is being deformed and the corresponding
component of the stress tensor will be σxz.

Figure 2.11: Viscosity as a function of shear rate for super-cooled liquids at T = 0.44, 0.45, 0.5
and glass at T = 0.2. At low shear rates (in the Newtonian regime) the viscosity remains
constant for super-cooled liquids. But, by increasing shear rate (in the non-Newtonian regime)
both super-cooled liquids and the glass show a decrease in viscosity.
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2.2.2 Affine vs. non-affine deformation

In the previous section, we discussed the factors affecting the material’s response
to shear deformation from a Newtonian to a non-Newtonian flow. As it was
mentioned earlier, in normal liquids, the relaxation times are in the range of a few
picoseconds. Therefore, these materials have very low viscosities (e.g. compare
viscosity of water = 1.0016 mPa.s at T = 20◦C [Rumble (2017)] with viscosity of
honey ≈ 2 × 103 − 104 mPa.s at T = 20◦C [Yanniotis, Skaltsi, and Karaburnioti
(2006)]) and even for very high shear rates, show a fast response to external load
by a Newtonian flow. But, this is not the case for viscous liquids and glasses.
When a viscous liquid in the super-cooled regime or glass is subjected to an
external load (in this study shear deformation), the stresses start to build up in
the system. The macroscopic response of the system and the increase of stresses
as a function of applied strain rate, can be studied via the so-called stress-strain
curve [Shrivastav, Chaudhuri, and Horbach (2016), Varnik, Bocquet, and Barrat
(2004), and Zausch and Horbach (2009)]. Figure 2.12 shows a typical stress-strain
curve obtained from a computer simulation of a metallic glass-former (the details
of the simulation and the model which has been used will be discussed in chapter
4), being imposed to a shear deformation with a constant shear rate γ̇ = 10−4

(stress-strain curves have been studied for different systems being imposed to
shear deformation, e.g. [Zausch, Horbach, et al. (2008)] is a comparison between
the results from Molecular Dynamics simulation, Mode Coupling Theory and
confocal microscopy experiments on a colloidal system).

Figure 2.12: Stress-strain curve obtained from Molecular Dynamics simulations of metallic
glass model (the simulation details will be shown in chapter 4), being imposed to a shear
deformation with a constant shear rate γ̇ = 10−4.
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In Fig. 2.12 we see that, as a result of the applied deformation, initially the
stresses (σxz) increase as a linear function of strain rate γ = γ̇t until it reaches a
maximum (called overshoot). Then, after the overshoot, there is a small stress drop,
and it continues gradually until the stresses remain at a finite value. Therefore,
one can talk about three different regimes in stress-strain curve [Larson (1999)].
In Fig. 2.12, these three regimes (a, b and c) are shown with different colors.
Initially, there is a linear relation between σxz and γ. This is called the elastic
regime.

In the elastic regime (blue regime (a) in Fig. 2.12), the system responds
elastically to an applied deformation (Hooke’s law) [Landau, Lifshitz, et al. (1986)]
and undergoes an affine deformation. This means by canceling the external
load, the system can recover its original undeformed state, and the particle
rearrangements are reversible. But, as the stresses are reaching a maximum,
the stress-strain relation begins to deviate from a linear relation, the particle
rearrangements are no longer reversible, and the system undergoes a non-affine
(plastic) deformation [Falk and Langer (1998)]. This is called the transient regime.

Considering particle i being subjected to an external load (check Fig. 2.13),
the displacement vector can be written as �ui = �ri − �Ri. Here, �Ri is the reference
position and �ri is the new displaced position. If the particle displacement �ui

can be expressed as: �ui = D�Ri, in which, D = C−1
αβχκσαβ is the deformation

tensor, C−1
αβχκ is the inverse elastic constant tensor and σαβ the stress tensor

(will be discussed in details in chapter 3. αβχκ are Cartesian coordinates.),
the deformation is considered as an affine deformation (Fig. 2.12(a)). When the
linear relation between displacements and the reference position does not hold
anymore, the deformation is considered as non-affine (Fig. 2.12(b)) [Ganguly,
Sengupta, Sollich, and Rao (2013) and Ogden (1997)].

Figure 2.13: Schematic representation of affine deformation (a) and non-affine deformation
(b) being imposed to a shear deformation. The gray circles represent the reference positions
and the black circles show the displaced final position of particles. The dashed circles in (b)
represent the expected position for an affine deformation.

In the transient regime (red regime (b) in Fig. 2.12), the stresses reach a
maximum, and after crossing an overshoot, they decay and saturate at a finite

22



value. This is the regime in which the yielding occurs in the system [Shrivastav,
Chaudhuri, and Horbach (2016) and Varnik, Bocquet, Barrat, and Berthier (2003)].
When a shear deformation is subjected to a system with a constant shear rate of
γ̇, a new time scale is introduced in the system as 1/γ̇. The occurrence of the
overshoot, exhibiting a non-Newtonian response to the applied shear load, is
a result of the latter time scale when its much smaller than the time scale for
structural relaxation, i.e., γ̇τ > 1. The stresses show a compressed exponential
decay towards the steady-state from the overshoot maximum, which occurs in a
tiny strain window such that it often results in the formation of inhomogeneous
flow patterns in the system. These band-like inhomogeneities, called shear
bands (being another characteristic behavior of metallic glasses imposed on shear
deformation, see section 2.2.4) appear to be a result of locally mobile regions in
contrasts to regions with lower mobilities [Binkowski, Shrivastav, et al. (2016)
and Shrivastav, Chaudhuri, and Horbach (2016)]. The shear bands tend to appear
in metallic glasses under shear deformation after the overshoot (it should be
mentioned here that the shear bands do not always appear in the system. “How,
why and when do the shear bands form?” are open questions which are still under a
lot of debates. [Golkia, Shrivastav, Chaudhuri, and Horbach (2020)]). Here, we
should draw the readers attention to the fact that the response of the material
in the transient regime and formation of in-homogeneous flow patterns, is high
temperature and shear-rate dependent [Shrivastav, Chaudhuri, and Horbach
(2016) and Varnik and Henrich (2006)] (This will be discussed in more details
in chapter 5, where, we make a comparison between the mobility maps of the
systems in the super-cooled liquid state and glass). In Fig. 2.14 we show the
temperature dependence of the transient regime, for a system being imposed to
a constant shear rate γ̇ = 10−4 at three different temperatures T = 0.5, 0.44, 0.2.
The first two temperatures are in the super-cooled liquid state, and the last
temperature is well below the glass transition temperature.

It is clear from Fig. 2.14 that the transient regime becomes less pronounced
with increasing temperature, such that, for T = 0.5, we do not observe an over-
shoot anymore. The stress-strain curve only shows a shoulder type increase and
saturates at a finite value. But in an opposite manner, by decreasing temperature
the overshoot and the transient regime become more and more pronounced until
in the glass state, we observe a well-pronounced overshoot (more details on the
shear rate dependence of the in-homogeneous flow patterns and the shear bands,
can be found in [Shrivastav, Chaudhuri, and Horbach (2016)]. The temperature
dependence has been studied in [Golkia, Shrivastav, Chaudhuri, and Horbach
(2020)]). In the super-cooled liquids, the shoulder becomes even less pronounced
in the limit of low shear rates. This is due to the fact that at low shear rates,
the whole system starts to flow homogeneously but, at lower temperatures and
higher shear rates, the in-homogeneities start to grow in the system, which results
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Figure 2.14: Stress-strain curves obtained from Molecular Dynamics simulations of metallic
glass model (the simulation details will be shown in chapter 4) at three different temperatures.
T = 0.5, 0.44 in the super-cooled liquid state and T = 0.2 in glass state. The systems are imposed
to a shear deformation with a constant shear rate γ̇ = 10−4.

in an overshoot in the stress-strain curve.

The third regime (c) in Fig. 2.12 is called the steady-state regime. In this regime,
there are no shear bands and the non-mobile regions of the system also become
mobile, the system fluidizes, and the whole system starts to show a steady flow
with a linear velocity profile. These flow patterns can be studied in terms of
the so-called flow curve which is the evolution of the steady-state stress σss as a
function of shear rate γ̇. This is shown in Fig. 2.15 (The presented results are
obtained from a molecular dynamics computer simulation of Kob-Anderson
binary Lennard-Jones mixture [Kob and Andersen (1994)] and are presented
in reduced units. The details about the model and how it is implemented in
computer simulation will be shown in chapter 4. In Fig. 2.15, as it was discussed
earlier, we can clearly see a crossover from a Newtonian (linear increase of σss

as a function of γ̇, dashed gray lines in panel (a)) to a non-Newtonian (non-
linear increase of σss as a function of γ̇, dashed gray lines in panel (b)) response
in super-cooled liquids at the temperatures T = 0.44, 0.45, 0.5. This is not
the case for the system in the glass state. Even at low shear rates, the flow
pattern remains non-Newtonian and shows a typical Herschel–Bulkley behavior
[Shrivastav, Chaudhuri, and Horbach (2016) and Varnik, Bocquet, and Barrat
(2004)]. Herschel–Bulkley [Herschel and Bulkley (1926)] response of a fluid to an
applied strain is associated to the non-Newtonian fluids where, the stress and
strain do not have linear relation and the stress formation has a more complex
relation with the applied strain as: σ = σ0 + κγ̇n, with σ0 the yield stress, κ a
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Figure 2.15: (a) Flow patterns for systems in the super-cooled liquid state at T = 0.44, 0.45, 0.5
and glass at T = 0.2. (dashed gray lines are linear fits in the limit γ̇ → 0). (b) Herschel–Bulkley
behavior of non-Newtonian fluid in the glass state (dashed gray lines).

constant and n the flow index (for n < 1 the fluid is shear-thinning and for n > 1
the fluid is shear-thickening. n = 1 and σ0 = 0 corresponds to a Newtonian
fluid). In Fig. 2.15(b) the data for system in glass state at temperature T = 0.2
has been fitted with the latter function (dashed gray lines. The fit values for
the glass at T = 0.2 are σ0 = 0.389395, κ = 2.63875 and n = 0.446392. The fit
values for the super-cooled liquid at T = 0.44 are σ0 = 0.154735, κ = 2.6597
and n = 0.386652). An important message here is, as the system reaches the
temperatures close to glass transition temperature in the super-cooled liquid
state, the Herschel–Bulkley behavior gets more pronounced. This is shown in
Fig. 2.15(b), where, we also fitted the super-cooled liquid data at T = 0.44 with a
Herschel–Bulkley function. But, eventually at low shear rates (γ̇ → 0) the data
starts to deviate from the fit function and becomes linear. This response is clearly
less pronounced at higher temperatures in Fig. 2.15(b).

Up to now, we showed how the stresses build up in a metallic glass being
imposed to shear deformation, which results in different responses in the system
against the applied external load. But, another phenomenological behavior of
metallic glasses appears when the external load is canceled, and the stresses
are allowed to relax in the system. When the shear load is switched off from
a metallic glass, not only the stresses, do not drop to zero, but they remain at
a finite value in the system. These remaining stresses in the system are called
residual stresses [Ballauff, Brader, et al. (2013)]. When a system is imposed to
a shear deformation with a constant shear rate γ̇, the stress relaxation in the
system, is in the time-scale of 1/γ̇. But, as the system has been deformed in the
time-scales of multiples of 1/γ̇ when the shear load is switched off, the stresses
don’t find the time needed to relax and remain as residual stresses in the system
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(check Fig. 2.16).
Fig. 2.16 shows stress relaxation as a function of time (the shear load is

switched off at strain γ = 3 in the steady-state regime of the stress-strain curve
shown in Fig. 2.12, and the stresses are allowed to relax). We can see that the
stresses tend to saturate at a finite value after a sharp stress drop from the switch-
off point. Understanding the nature of these residual stresses and their effect on
the mechanical properties of the material is of great importance [Withers (2007)].
Therefore, in this study, we tried to characterize the effect of deformation and the
residual stresses on the mechanical properties of the metallic glasses by making
a comparison between the undeformed (as reference) and deformed states.

Figure 2.16: Stress relaxation as a function of time, obtained from Molecular Dynamics sim-
ulations of a metallic glass model (the simulation details will be shown in chapter 4), after
switching off the shear load at γ = 3 in the steady state regime shown in Fig. 2.12.

2.2.3 Vibrational properties of metallic glasses

In the previous sections, we showed that, by lowering the temperature in a glass-
forming liquid, the viscosity increases, and eventually below the glass transition,
the viscous fluid behaves like an (amorphous) solid. We also discussed the
fact that, during these transitions, the short-range order increase in the system,
which results in higher correlations between the nearest neighbors. As a result of
these short-range order, one can study some collective properties, similarly as
for the crystalline solids, like vibrational excitations and propagation of sound
waves for glasses within the classical harmonic approximation [Horbach, Kob,
and Binder (1999) and Tanguy (2015)]. Of course, the challenge in the case of
glasses and super-cooled liquids arises from the fact that there is no long-range
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order in the system. Therefore, there is a limit in continuum responses of these
materials beyond which the disorder changes the elastic responses of the system
[Horbach, Kob, and Binder (2001) and Leonforte, Boissiere, et al. (2005)]. The
interference of the collective excitations of the system with the disorder (in the
time and length-scales at which the vibrational modes cannot be expressed in
terms of plane waves anymore), results in another characteristic behavior of
amorphous solids, the Boson peak (more details will be discussed in chapter 3.)
[Grigera, Martin-Mayor, Parisi, and Verrocchio (2003) and Horbach, Kob, and
Binder (1999)].

In this study, we tried to investigate the vibrational modes in metallic glasses
in terms of some dynamic correlation functions, which will be discussed in the
next chapter (3). We also investigate the effect of deformation and the residual
stresses on vibrational excitations in metallic glasses, which will be discussed in
detail in chapter 5.

2.2.4 Shear banding in BMGs

As it was discussed earlier in section 2.2.1, we showed that, while the steady-state
shear stress (σss) has a linear dependence on the applied shear rate (γ̇) in a New-
tonian fluid (σss = ηγ̇ with η the shear viscosity), a non-Newtonian fluid shows
a nonlinear response to an applied shear load and the shear viscosity decreases
by increasing shear rate (check Fig. 2.11). This crossover from a Newtonian to a
non-Newtonian liquid was shown in Fig. 2.15(a) where the linear response of the
flow curve for the SCLs in the limit of γ̇ → 0 changes to a non-linear response
around a critical shear rate γ̇c (we will discuss this in more details in chapter 5).
In glasses reaching a linear response regime is not accessible, and the glass, under
applied shear deformation, follows a Herschel-Bulkley law (as it was discussed
in section 2.2.2 and shown in Fig. 2.15).

Going back to BMGs (as the main focus of this study), another characteristic
behavior of the BMGs is the occurrence of long-lived in-homogeneous flow
patterns, in the form of shear bands [Greer, Cheng, and Ma (2013) and Schuh,
Hufnagel, and Ramamurty (2007)], after the overshoot on the stress-strain curve.
These band-like structures are the regions with local higher mobilities to the rest
of the system. Shear bands have been studied both in experiments as well as
simulations [Binkowski, Shrivastav, et al. (2016) and Shrivastav, Chaudhuri, and
Horbach (2016)]. In this work, we investigate and characterize the formation of
different types of shear bands (horizontal or vertical). Also, we make a systematic
comparison between the properties of the system (in terms of potential energy,
dynamics, etc.) inside and outside of the shear band zones. All this has been
done by making a comparison with the response of a super-cooled liquid to
shear deformation as a reference where we extensively studied the shear rate
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dependence of the formation of inhomogeneous flow patterns in the super-cooled
liquid state. We will present and discuss the results for this part of the work in
section 5.1.4.

2.2.5 Effect of micro-alloying on mechanical properties of metallic glasses

Even though BMGs have many promising mechanical properties like high
strength and corrosion resistance or extended elasticity [Ashby and Greer (2006)],
still, a major drawback associated with these materials is their limited ductility
and catastrophic failures in tension after reaching the elastic limit. Therefore,
designing new methods to enhance the mechanical properties of the BMGs has
been an active topic of research during the last decades. One of the methods in
which one can adjust the mechanical properties of a BMG, at large deformation,
is making a tiny change in the alloy composition of the material [Hofmann, Suh,
et al. (2008)]. This is called minor- or micro-alloying. This is a method in which
a small change has a huge impact on the mechanical and thermodynamical
properties of the BMGs.

The motivation for this part of the project came from the work of our collabo-
rators (check footnote 6 in section 5.3.3) who reported a significant change in the
mechanical properties of their Pd based metallic glass-former, by adding 1% of
Co to the samples. As a result of minor micro-alloying, the (Pd40Ni40P20)99Co1

showed much more ductility [Nollmann, Binkowski, et al. (2016)] under compres-
sion and bending. They were able to deform the material up to very large strains
without breaking. Also, very interestingly, the Boson peak in the specific heat
changed significantly [Hubek, Seleznev, et al. (2018)] in their experiments for both
as-cast and cold rolled samples. The Boson peak appeared to increase slightly
and saturate at a finite value at low temperatures. Therefore, to investigate the
effect of micro-alloying on mechanical properties and the Boson peak of metallic
glasses, we also tried to obtain a new ternary model based on the original binary
Kob-Anderson mixture [Kob and Andersen (1994)]. The details of this model in
computer simulation is discussed in section 4.3.4 and we will discuss the results
in section 5.5.
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3 Quantities of interest

“As she has the beauty of glass, she has its brittleness.”
Pierre Corneille, Polyeucte Martyr - 1643

In this study, our primary focus is studying the effect of deformation and the
residual stresses on mechanical properties of bulk metallic glasses. In this chapter,
we define mechanical properties (including the elastic moduli) and also quantities
such as the vibrational density of states and current correlation functions that
are well suited to characterize the vibrational dynamics of amorphous solids. In
particular, we used these quantities to compare undeformed glass states with
deformed ones, i.e., glass states with residual stresses.

29



3.1 Elastic constant tensor

3.1.1 Lamé coefficients and the elastic moduli

The elastic constants of a solid are obtained from correlation functions, which
are defined in terms of microscopic variables. Therefore, the elastic constants
represent the macroscopic response of the material having the information about
the microscopic state of the system. Understanding and linking these microscopic
events to the macroscopic response of the system is one of the central issues in
the studying of the mechanical response of solids.

The elastic constants of an isotropic solid can be expressed in terms of two in-
dependent constants, the so-called Lamé coefficients λ and μ [Chaikin, Lubensky,
and Witten (1995)]. These constants can be calculated from the elastic constant
tensor Cαβχκ in the framework of the stress fluctuation formalism as it was dis-
cussed earlier [Barrat, Roux, Hansen, and Klein (1988) and Wittmer, Xu, et al.
(2013)]. The elastic constant tensor is defined as [Ray, Moody, and Rahman
(1985)]:

Cαβχκ = CB
αβχκ +CK

αβχκ −CF
αβχκ , (3.1)

in which CB is the Born term (corresponding to affine deformations [Born and
Huang (1954) and Tsamados, Tanguy, Goldenberg, and Barrat (2009)]), CF is the
term related to mean-squared stress fluctuations (corresponding to non-affine
displacement [Maloney and Lemaître (2004)]), and CK is a constant tensor related
to the temperature and number density of the system as:

CK
αβχκ = 2kBTρ

(
δακδβχ + δαχδβκ

)
, (3.2)

with αβχκ components of Cartesian coordinates in 3D, kB the Boltzmann constant,
T the temperature, ρ the number density of the system and δαβ the Kronecker
delta defined as:

δαβ =

{
0 if α �= β

1 if α = β
(3.3)

The Born term is defined as:

CB
αβχκ =

1
V

∑
i<j

〈(
∂2U

∂r2
ij

−
1
rij

∂U

∂rij

)
rαijr

β
ijr

χ
ijr

κ
ij

r2
ij

〉
, (3.4)

in which V corresponds to the volume of the system, rij = |�ri −�rj| is the distance
between particles i and j, and U is the pair potential. The 〈〉 bracket represents
a canonical average. The Born term takes into account displacements on the
microscopic level solely due to particle interactions. Therefore, the terms in
the brackets correspond to forces acting between the particles and their relative
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positions which, has been obtained via a Taylor expansion of the potential energy
around the reference positions of the particles. The Born term expresses the
Hooke’s Law [Hooke (2016)], meaning, as the Hooke’s law denotes a linear relation
between the applied force and displacement caused by this force in a spring-mass
system, the Born term also describes the affine displacements caused by an
external force considering there is a linear relation between the applied force and
the displacement.

[Hoover, Holt, and Squire (1969)] found a correction term to the Born expres-
sion of elastic constants at finite temperature [Born and Huang (1954)], showing
that, rather than affine displacements (elastic/reversible deformations, cf. section
2.2.2), there are also non-affine displacements (irreversible/plastic deformations,
cf. section 2.2.2) which effect the material’s mechanical properties. Therefore, they
introduced the fluctuation formalism as an extension to Born’s theory. Initially, the
correction term related the non-affine displacements to mean-square fluctuations
of the strain (strain-fluctuation formalism) [Parrinello and Rahman (1982) and Ray
and Rahman (1987)]. But, several disadvantages (e.g. slow converging elastic
moduli, difficulties in performing constant-stress computer simulations, etc.) with
the method [Gusev, Zehnder, and Suter (1996)] result in a different approach in
which, the non-affine displacement were related to mean-squared fluctuation of
stresses [Schnell, Meyer, et al. (2011), Voyiatzis (2013), and Yoshimoto, Jain, et al.
(2004)], in the so-called stress-fluctuation formalism method. Implementing the lat-
ter method in computer simulations has been a valuable and reliable tool to study
elastic moduli of different systems [Lutsko (1989)] such as hard-sphere system
[Farago and Kantor (2000)], polymeric nanocomposites [Papakonstantopoulos,
Yoshimoto, et al. (2005)] etc.

The stress fluctuation term CF is defined as:

CF
αβχκ =

V

kBT

[〈
σαβσχκ

〉
−
〈
σαβ

〉 〈σχκ〉
]

, (3.5)

σαβ =
1
V

⎡
⎣∑

i<j

(
∂U

∂rij

)
rαijr

β
ij

rij
−

N∑
i=1

mvαi v
β
i

⎤
⎦ , (3.6)

σαβ are the components of virial stress tensor, in which m is the mass of particle
i with a velocity vi [Schnell, Meyer, et al. (2011)]. Eq. (3.5) measures the width of
fluctuations in stress components of the virial stress tensor Eq. (3.6) [Tsai (1979)].
The first sum in the brackets in Eq. (3.6) measures the forces acting on particles
across the plane of reference and the second sum corresponds to the momentum
transfer by the particle motion towards the plane of reference (cf. Fig. 3.1). At
zero temperature the second sum vanishes and the stress in the system only
corresponds to particle interactions in the system in the absence of external force
[Morante, Rossi, and Testa (2006)].
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Figure 3.1: Schematic representation of different components of the stress tensor.

The elastic constant tensor is related to the Lamé coefficients λ and μ via
[Chaikin, Lubensky, and Witten (1995)]:

Cαβχκ = λδαβδχκ + μ
(
δαχδβκ + δακδβχ

)
. (3.7)

Once we have the information about the elastic constant tensor Eq. (3.1), we can
obtain the two independent Lamé coefficients. Here for simplicity we present
the tensor components in Voigt notation [Voigt (1928)]. The Voigt notation is an
easy way to represent a symmetric tensor by reducing its order. For example,
considering the stress tensor as follows:

σ =

⎡
⎢⎣σ

1
xx σ6

xy σ5
xz

σyx σ2
yy σ4

yz

σzx σzy σ3
zz

⎤
⎥⎦ , (3.8)

using the upper-diagonal and diagonal terms with the red notation, one can
rewrite the stress tensor using Voigt notation as a 6-dimensional vector σ̃ =

(σ1,σ2,σ3,σ4,σ5,σ6). In the same manner the elastic constants tensor can be
rewritten in Voigt notation such that:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.9)
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with 1, 2, 3 corresponding to x,y, z Cartesian coordinates in 3D respectively, and

11 → 1 23 → 4

22 → 2 13 → 5

33 → 3 12 → 6

such that, e.g. C11 ≡ C1111 ≡ Cxxxx or C44 ≡ C2323 ≡ Cyzyz. Therefore, using this
notation, the Lamé coefficients can be obtained from:

C12 = λ (= C21 = C13 = C31 = C23 = C32) , (3.10)

C44 = μ (= C55 = C66) . (3.11)

The elastic moduli of the system (i.e., shear modulus, bulk modulus, Young’s
modulus, and Poisson’s ratio) can be defined in terms of the Lamé coefficients
[Barrat, Roux, Hansen, and Klein (1988) and Barron and Klein (1965)]. For
example, the shear modulus G is defined as,

G = μ− pexc , (3.12)

where pexc is the excess pressure. Care has to be taken here about the appearance
of pexc in the calculation of the elastic moduli. The excess pressure pexc ≡ p−pid,
with p the total pressure of the system and pid = kBTρ the ideal gas pressure,
appears in the systems with pair potentials interactions as [Wittmer, Xu, et al.
(2013)]:

σex
αα

!
= −pexc =

1
dV

〈∑
l

rlu
′ (rl)

〉
, (3.13)

with d the spatial dimension, V the volume of the system, r the distance between
two particles and u ′ (rl) the first derivative of the pair potential. Here σex

αα is the
Kirkwood expression for the excess stress tensor [Allen and Tildesley (2017)]:

σex
αα = 〈σ̂ex

αα〉 ≡
1
V

∑
l

rlu
′ (rl)nα,lnβ,l , (3.14)

with nα,l and nβ,l being the normalized distance vectors.
The shear modulus measures the material’s resistance against shear defor-

mation (being imposed to an external force, perpendicular to the normal of the
plane to which the force has been applied, cf. Fig. 3.2). This means, the larger the
value of G, the more force we need to apply to deform the system. Therefore, as
a measure of material rigidity, it is also called modulus of rigidity.

1Wang (2012b)
2McSkimin and Andreatch Jr (1972)
3Ledbetter (1981)
4Archer, Crandall, et al. (2012)
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Figure 3.2: Schematic representation of a system being imposed to shear deformation. Shear
modulus of the system is then defined as G =

F/A

ΔL/L
= shear stress

shear strain .

Shear modulus (GPa)

Ni80P20 36.71

Diamond 478.02

Stainless steel 316 (at 5◦K) 81.03

Polyethylene 0.1174

Table 3.1: Reported values of shear modulus in literature for some typical materials, compared
to Ni80P20 being the subject of this study.

The bulk modulus K is defined as:

K = λ+
(2μ+ pexc)

3
. (3.15)

The bulk modulus (check Fig. 3.3) measures a material’s resistance against volu-
metric compression.

Bulk modulus (GPa)

Ni80P20 161.05

Diamond (at 4◦K) 443.06

Stainless steel 316 (at 5◦K) 158.97

Silicon rubber 1.5 − 28

Table 3.2: Reported values of bulk modulus in literature for some typical materials, compared
to Ni80P20 being the subject of this study.

5Wang (2012b)
6Kittel (1968)
7Ledbetter (1981)
8O’hara (1983)
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Figure 3.3: Schematic representation of a system being imposed to volumetric compression.
Bulk modulus of the system is then defined as K = −V

d(F/A)
dV . V being the volume of the

system.

The Young’s modulus E is defined as:

E =
9KG

3K+G
. (3.16)

The Young’s modulus (check Fig. 3.4) measures a material’s resistance against
uniaxial tensile or compressive stress. Young’s modulus is a measure of stiffness
of the system.

Figure 3.4: Schematic representation of a system being imposed to uniaxial tensile. Bulk modu-
lus of the system is then defined as E = σ

ε . Where, σ is the uniaxial stress and ε is the strain.

The Poisson’s ratio ν is defined as:

ν =
3K− 2G

2 (3K+G)
. (3.17)

The Poisson’s ratio (check Fig. 3.5) is the ratio of transverse strain to axial strain
(i.e., the rate of transverse compression/contraction to axial expansion).

9Wang (2012b)
10Spear and Dismukes (1994)
11Ledbetter (1981)
12O’hara (1983)
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Young’s modulus (GPa)

Ni80P20 102.59

Diamond 1220.010

Stainless steel 316 (at 5◦K) 207.711

Silicon rubber 0.01–0.112

Table 3.3: Reported values of bulk modulus in literature for some typical materials, compared
to Ni80P20 being the subject of this study.

Figure 3.5: Schematic representation of a system being imposed to uniaxial tensile. The Pois-
son’s ratio of the system, for small strains, can then be defined as ν = −ΔL ′

ΔL .

Poisson’s ratio

Ni80P20 0.39413

Diamond 0.214

Stainless steel 316 (at 5◦K) 0.28215

Silicon rubber 0.49916

Table 3.4: Reported values of Poisson’s ratio in literature for some typical materials, compared
to Ni80P20 being the subject of this study.

In this study, using molecular dynamics computer simulations, the stress-
fluctuation formalism has been performed to calculate different elastic moduli of
the bulk metallic glasses. The obtained values for the deformed glass states are
then compared to those of the undeformed states (as reference). The simulation
details will be presented in chapter 4, and we will discuss the results in chapter
5.

13Wang (2012b)
14Spear and Dismukes (1994)
15Ledbetter (1981)
16O’hara (1983)
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3.2 Vibrational modes in solids

In solids, at low-temperatures (i.e. well below melting temperatures for crys-
talline solids and far from glass transition temperature for amorphous solids),
atoms perform small amplitude oscillations around their equilibrium position
(quasi-equilibrium position for amorphous solids). These oscillatory motions
result in collective vibrational modes in the system. Understanding these vibra-
tional modes is of great importance as these microscopic features (depending
on the range of frequencies and wavenumbers) make a strong connection to
mechanical and thermodynamical properties of the material (throughout this
section our primary references were [Balucani and Zoppi (1995), Boon and Yip
(1991), and Sólyom (2007)]).

3.2.1 Harmonic approximation

Both classical and quantum mechanical descriptions of atomic vibrations in
harmonic solids are constructed under the basis of the so-called harmonic approxi-
mation. Considering the rest position of particle i as �R

(0)
i , from which it show’s

an oscillatory motion, we can write the quasi-equilibrium configuration of a
N-particle system as:

�R
(0)

= (�R
(0)
1 ,�R(0)

2 , · · · ,�R(0)
N ) . (3.18)

therefore the particle positions can be written as:

�Ri = �R
(0)
i + �ui , (3.19)

with �ui the displacement vector from the rest position18. The Hamiltonian of the
system can be written as:

H =

N∑
i=1

�P2
i

2Mi
+ V(�R1 ,�R2, · · · ,�RN) , (3.20)

with �Pi and Mi the momentum and mass of particle i, respectively. But, this
is a many-body problem that only can be solved analytically under certain
assumptions. The first assumption was already mentioned above that; the atoms
have vibrational motion around their rest position. Secondly, we assume that the
interacting potential between particles has an absolute minimum for �R(0)

i . Thirdly,
we assume that the particle displacements are much smaller than interatomic

18It should be mentioned that the reason why within harmonic approximation particles are
considered to be at their rest position is due to the fact that, the potential energy of the system
has its minimum (quasi-local minimum). Therefore, the particles only show small amplitude
oscillatory motion around this point. In amorphous solids, this quasi-rest position can be
obtained at very low temperatures where there is no particle hopping from one cage to another.
For example, one can quench the system to T = 0 and consider this stage as a rest position where
the potential energy has its minima.
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distances. Now we perform a Taylor expansion on the potential energy around
�u = 0:

V(�R) = V(�R
(0)

) +

N∑
i=1

3∑
α=1

∂V

∂Riα
|
�R
(0)uiα +

1
2

∑
i,j

∑
α,β

∂2V

∂Riα∂Riβ
|
�R
(0)uiαujβ + O(u3) .

(3.21)
Since we made the assumption that the potential has a minimum at �R(0)

i , the terms
linear in the displacement (∝ uiα) will vanish, and we can set the equilibrium

energy to zero (V(�R
(0)

) = 0). Therefore, by making the substitution ũiα =
√
Miuiα

and P̃iα = 1√
Mi

Piα, we can rewrite the Hamiltonian as:

H =

N∑
i=1

1
2
�̃P2
i +

1
2

∑
i,j

∑
α,β

1√
MiMj

∂2V

∂Riα∂Riβ
|
�R
(0)ũiαũjβ . (3.22)

This is the Hamiltonian of 3N coupled harmonic oscillators. As a result of this
approximation, the potential only consists of the second-order terms, and thus, it
is called the harmonic approximation. The Hamiltonian can be further simplified
by defining the so-called dynamical matrix as follows:

(D)iα,jβ =
1√

MiMj

∂2V

∂Riα∂Riβ
|
�R
(0) . (3.23)

The dynamical matrix is a 3N × 3N matrix, which is symmetrical and real.
By diagonalization of the dynamical matrix numerically, we can decouple the
harmonic oscillators and rewrite the Hamiltonian as:

H =
1
2

3N∑
i=1

(
�̂P2
i +ω2

i �̂u
2
i

)
. (3.24)

This is the Hamiltonian of 3N independent harmonic oscillators. Therefore, we
have simplified the many-body problem effectively to a one-particle problem by
approximating the potential at its minimum with a harmonic potential.

3.2.2 Einstein model vs. Debye model

Having described the thermal motion of particles at a finite temperature about
their rest position in the framework of the harmonic approximation, one can also
make a connection between these thermal excitations and the thermal properties
of the solid. Among these properties, the specific heat is of great interest, as it
describes the energy fluctuations in the system. The specific heat at constant
volume is defined as:

Cv =
∂E

∂T

∣∣∣∣
V

. (3.25)
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In which, E is the total thermal energy of the system, which can be obtained from
[Sólyom (2007)]:

E =

∫
dΓHe−βH∫
dΓe−βH

, (3.26)

with β = 1/kBT and dΓ =
∏
�q,j

d|Qj (�q) |d|Pj (�q) | the volume element in the phase

space in terms of normal coordinates Qj (�q) and its conjugate momentum Pj (�q).
Therefore, the total thermal energy can be written as:

E =
∑
�q,j

∫
dΓj (�q)Hj (�q) e

−βHj(�q)∫
dΓj (�q) e

−βHj(�q)
, (3.27)

in which the Hamiltonian for each mode j has the form:

Hj (�q) =
1
2

{∣∣Pj (�q)∣∣2 +ω2
j (q)

∣∣Qj (�q)
∣∣2} . (3.28)

The terms in the curly brackets in Eq. (3.28), correspond to the kinetic and poten-
tial energy of the vibrational modes, correspondingly. Based on the equipartition
theorem, potential and kinetic energies of the system have kBT/2 contribution in
total energy. Therefore, for a system having 3N possible modes, each contributing
kBT , the total energy can be written as:

E = 3NkBT . (3.29)

Using Eq. (3.25) and plugging in Eq. (3.29), we obtain the Dulong-Petit law for the
specific heat [Petit and Dulong (1819)]:

Cv =
∂E

∂T
= 3NkB = 24.943 J/molK . (3.30)

The classical expression for the specific heat given by Dulong-Petit is a constant.
Although the theory is in good agreement with experimental results at high
temperatures, it does not provide reliable results at low temperatures compared
to experimental data. Here we should also remark that at high temperatures
close to the melting temperature of a solid, the vibrations of the atoms increase
such that higher-order corrections become important. Therefore, the harmonic
approximation becomes less accurate, the phonons cannot be considered as well
defined elementary excitation, and anharmonicities appear as deviations from
the Dulong-Petit law. [Sólyom (2007) and Stern (1958)].

The most important result of the classical description of atomic vibration is
that the motion of particles in the solid is described as harmonic oscillators for
which the solutions are propagating plane waves. Based on this, Einstein applied
the quantum mechanical description on atomic vibrations and assumed that a
given harmonic oscillator with a vibrating frequency of ω has a quanta of energy
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εn = �hω [Einstein (1907)]. Therefore, the mean thermal energy of a vibrational
mode is given by [Sólyom (2007)]:

〈ε〉 =

∞∑
n=0

n�hωe−n�hω/kBT

∞∑
n=0

e−n�hω/kBT

. (3.31)

Einstein assumed that all the atoms in the solid are oscillating with the same
frequency and in all directions (i.e., frequency is independent of the wave vector).
This is called the Einstein model for solids, and the frequency with which the atoms
are oscillating is called the Einstein frequency ωE. Therefore, one can write the
total internal energy of a system of N particles, all oscillating in the three spatial
directions, as:

E = 3N〈ε〉 = 3N
�hω

e�hω/kBT − 1
. (3.32)

As a result, the specific heat based on Einstein description has the form of (cf.
Fig. 3.6):

CV = 3NkB

(
�hωE

kBT

)2
e

�hω/kBT(
e�hω/kBT − 1

)2 . (3.33)

Figure 3.6: Temperature dependence of specific heat from Einstein model fitted to experimental
data for diamond. Image source: [Einstein (1907)]

At high temperatures (i.e., kBT � �hω), the Einstein model approaches 3NkB,
as predicted by the Dulong-Petit law. But, in the limit of low temperatures (i.e.,
�hω � kBT ), although the model agrees with experimental data to some extent
at intermediate temperatures, the Einstein model of specific heat shows a rapid
exponential decay toward zero. This is not in agreement with experimental data,
in which the specific heat shows a slower decay compared to the Einstein model.
The reason behind the fast decay of Einstein’s model can be understood from
the fact that in the long-wavelength limit (wavenumber q → 0 and, frequency
ω → 0) the atomic vibrations are acoustic sound waves which can be excited
easily. But, as long as in the Einstein model, all the vibrations have the same
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frequency, the long-wavelength limit (i.e., low-frequency, low-energy) collective
modes are ignored.

In order to obtain a model for low temperatures, Debye proposed a model
in which he assumed the vibrational modes are propagating in the system as
acoustic waves and there is a linear dispersion relation between the frequencies
and the wavenumber ω (�q) = csq (cs being the average sound velocity for
longitudinal and transverse sound waves). Therefore, the acoustic modes based
on their polarization (i.e. longitudinal with frequency ωL or transverse with
frequency ωT ), carry quanta of energies �hωL or �hωT [Debye (1912)]. Based on
this description, we can write the thermal energy associated with vibrations with
polarization λ (longitudinal or transverse) and wave vector �q as:

〈ελ (�q)〉 =
�hωλ (�q)

e�hωλ(�q)/kBT − 1
, (3.34)

and therefore, the total thermal energy would be:

E =
∑
�q,λ

�hωλ (�q)

e�hωλ(�q)/kBT − 1
. (3.35)

By this description, Debye proposed a reasonable prediction for the specific
heat at low temperatures (�hω (�q) � kBT ) in good agreement with experimental
results (cf. Fig. 3.7). It can be shown [Sólyom (2007)] that by Debye’s description

Figure 3.7: Experimental results for temperature dependence of the specific heat of different
metals and crystals. The solid lines are from Debye interpolation formula. Image source: [Born
and Huang (1954)]

at low temperatures (�hω (�q) � kBT ) the specific heat shows a cubic temperature
dependence as:

CV =
∂E

∂T

∣∣∣∣
V

=
12π4

5
NkB

(
T

θD

)3

. (3.36)
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The above expression can be obtained by plugging in Eq. (3.35) in Eq. (3.25), and
defining the Debye temperature as θD = �hωD/kB. Here, ωD = csqD is the Debye
frequency and qD =

(
6π2N/V

)1/3 the Debye wave number.

3.2.3 Density of phonons states

So far, we have discussed that the thermally excited vibrations (propagating as
acoustic waves) can be considered as quasi-particles (fictitious particles carrying
the quanta of energy) called phonons (the name phonon, has been chosen for
quanta of acoustic vibrations in the same analogy that the quanta of the elec-
tromagnetic field are called a photon). Therefore, by having information about
the phonons in the system, one obtains all the necessary data about the system
energy/thermal state. But, all this is achieved once we have enough information
about the contribution of all individual phonons in a specific state of the system.
This is obtained by density of state g (ω). The density of states in d dimension is
defined as:

g (ω) =
∑
λ

∫
d�q

(2π)d
δ (ω−ωλ (�q)) , (3.37)

such that the quantity gλ (ω)dω gives us the number of states with energies
between �hω and �h (ω+ dω) and the role of the delta function in the above
definition is to count the number of phonons within this energy interval. The
above expression is obtained by replacing the sum over all possible wave vectors
�q (cf. Eq. (3.35)), by an integral over frequencies ωλ (�q) using g (ω) as a weight
function. The total density in three dimensions, in the framework of Debye’s
model, can be written as:

g (ω) =
ω2

2π2

[
1
c3
L

+
2
c3
T

]
. (3.38)

Where, there are one longitudinal and two transverse propagating waves with
the sound velocity cL and cT , respectively.

From Debye’s density of states Eq. (3.38), assuming ωλ (�q) = cs|�q| and cs

being the mean sound velocity 3/c3
s = 1/c3

L + 2/c3
T , we can rewrite the total

density of states based on Debye’s description as:

g (ω) =

⎧⎪⎨
⎪⎩

9N
V

ω2

ω3
D

for ω � ωD ,

0 for ω > ωD .
(3.39)

The most important message from the above relation is the quadratic dependence
of the density of states on frequency (in three dimensions). It has been shown
that, in general for the limit of small frequencies where the dispersion relation of
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the acoustic phonons is linear, the density of states (in d dimensions) shows the
following proportionality to the frequency:

g (ω) ∝ ωd−1 . (3.40)

In computer simulations the density of states can be obtained by a Fourier
transform of the velocity autocorrelation function, using the relation [Dove
(1993)]:

g (ω) =
1

NkBT

∑
j

∫∞
−∞mjdte

iωt〈�vj (t)�vj (0)〉 . (3.41)

As long as we are interested in studying the vibrational modes in the system,
we are interested in the power spectrum of the time correlation functions, rather
than their time dependence. The Fourier transform of the velocity autocorrelation
function gives an equal weight contribution for each normal mode in the system.
Therefore, the power spectrum of the mass-weighted velocity autocorrelation
function is equal to the vibrational density of states.

Earlier in this section, it was mentioned that, by having information about
the phonons (in terms of the density of states), we could obtain the thermal
properties of the system. In Eq. (3.35), we obtained the relation for the total
energy of the system. By applying the same treatment as for the density of states
(replacing some overall possible wave vectors by an integral over frequencies),
we can rewrite the total energy as:

E = V

∫
�hω

e�hω/kBT − 1
g (ω)dω . (3.42)

Therefore, we can obtain a relation for the specific heat as:

CV = V

∫
∂

∂T

�hω

e�hω/kBT − 1
g (ω)dω

= VkB

∫ (
�hω

2kBT

)2

sinh−2
(

�hω

2kBT

)
g (ω)dω .

(3.43)

In this work, to study the effect of deformation and the residual stresses on the
density of states and specific heat, using Eqs. (3.41) and (3.43), these quantities
are calculated for both the undeformed (as the reference) and deformed states. A
detailed comparison between these states will be presented in chapter 5.

3.2.4 The Boson peak

Two important messages from the last section were the frequency dependence
of the density of states (in the long-wavelength limit, low frequencies) and
temperature dependence of specific heat (at low temperatures). We have seen that,
in the framework of Debye’s model in three dimensions, g (ω) ∝ ω2 and CV ∝ T3.
Another characteristic behavior of the amorphous solids arises from deviations of
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the density of states and specific heat from these proportionalities. This deviation
appears as a peak in g (ω) /ω2 and Cv/T

3, in the frequency/temperature spectra
as the so-called Boson peak.

The boson peak, sometimes referred to in the literature as the excess over
Debye’s squared-frequency law, has been the subject of many studies on different
glass-forming materials. For example, for silica glass, the Raman and neutron
scattering experiments [Foret, Courtens, Vacher, and Suck (1996) and Winterling
(1975)] showed a boson peak around frequencies ω ≈ 1THz, the simulation
studies also reported occurrence of a boson peak around the same frequency
range [Horbach, Kob, and Binder (2001)]. The boson peak was also observed in
the specific heat around T ≈ 10K, both in experiment [Buchenau, Prager, et al.
(1986) and Zeller and Pohl (1971)] and simulation studies [Horbach, Kob, and
Binder (1999) and Scheidler, Kob, et al. (2001)]. Also similar observations were
made in experiments [Jiang, Peterlechner, et al. (2017), Li, Yu, and Bai (2008), and
Mitrofanov, Peterlechner, Divinski, and Wilde (2014)] on metallic glasses. But the
most important question here is,

“What is the nature of the Boson peak?”

The discussion on the origin of the boson peak has been very controversial,
e.g., while [Benassi, Krisch, et al. (1996)] argued that the boson peak has its
origin in the propagating acoustic waves which, even up to frequencies above
the location of the boson peak, can be considered as plane waves, [Courtens,
Foret, et al. (2003)] showed that around the frequencies in which the boson peak
is observed (ω ≈ 1THz) the acoustic vibrational modes are strongly scattered
by disorder, and this leads to the occurrence of the boson peak. [Buchenau,
Galperin, et al. (1992)] used a soft potential model and related the coexistence
of an-harmonic localized vibrations with the high-frequency acoustic modes
within the frequency range around the occurrence of the boson peak. [Grigera,
Martin-Mayor, Parisi, and Verrocchio (2003)] used the inherent structures (local
minima of the potential energy) of a realistic glass model and claimed that the
boson peak is a signature of a phase transition, from a minima-dominated phase
(with phonons) at low energy, to a saddle-dominated phase (without phonons).
[Taraskin and Elliott (2000)] used the criteria which correspond to a crossover
between weakly and strongly scattered acoustic waves (the Ioffe-Regel crossover
[Ioffe and Regel (1960)]) to investigate the propagation of the vibrational acoustic
modes. By this analogy, the boson peak appears beyond the Ioffe-Regel limit,
in which the longitudinal and transverse excitation become proportional to the
lifetime of the modes, and they cannot be considered as plane waves anymore.
In other words, around the frequency range in which the boson peak occurs, the
phonons are not independent anymore. Therefore, we have the contribution of
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phonon-phonon interaction as an excess over the Debye prediction. This corre-
sponds to length-scales beyond the nearest neighbors of a single particle, where
there are no more short-range orders, and the sound waves see the disorder in
the system and become scattered. Despite all the descriptions mentioned above,
still, the phenomena of the boson peak are under a lot of debates.

In this study, we tried to investigate the effects of deformation and the residual
stresses on the boson peak and the acoustic sound modes. The boson peak (by
means of the density of states and the specific heat) in the undeformed state (as
the reference) has been compared to the corresponding deformed states. We will
discuss this in detail in chapter 5.

3.3 Dynamic correlation functions

3.3.1 Microscopic dynamical variables

To begin this section, as we are interested in the time evolution of spatial correla-
tions, we take into account the time dependence of particle coordinates �ri. The
time dependence of particle coordinates can be studied in terms of microscopic
dynamical variables. A dynamical variable of a system of N particles is a func-
tion of some or all of the time-varying coordinates of the system. In general, a
microscopic dynamical variable is defined as [Hansen and McDonald (2013)]:

A (�r, t) =
N∑
i=1

ai (t) δ [�r−�ri (t)] , (3.44)

in which ai is a physical quantity such as mass, velocity, energy, etc. of particle i.
The spatial Fourier components of Eq. (3.44) can be written as:

A (�q, t) =
∫
A (�r, t) e−i�q.�rd�r =

N∑
i=1

ai (t) e
−i�q.ri(t) . (3.45)

When a microscopic dynamical variable satisfies the so-called continuity equation:

∂A (�r, t)
∂t

+∇ ·�JA (�r, t) = 0 , (3.46)

in which �JA is the current associated with the variable A, the microscopic dynam-
ical variable is said to be conserved. The corresponding Fourier components of
the continuity equation can be written as:

∂A (�q, t)
∂t

+ i�q ·�JA (�q, t) = 0 . (3.47)

In the limit q → 0 and ω → 0 Eq. (3.47) shows the slow decay of the spontaneous
fluctuations in a conserved variable. An example of a conserved local variable,
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for the case of ai = 1, is the time-dependent microscopic particle density:

ρ (�r, t) =
N∑
i=1

δ [�r−�ri (t)] . (3.48)

The associated particle current then can be defined as:

�J (�r, t) =
N∑
i=1

�̇r (t) δ [�r−�ri (t)] , (3.49)

in which, �̇r (t) is the velocity of particle i. The Fourier components of the particle
current can be written as:

�Jα (�q, t) =
N∑
i=1

�̇r (t) e−i�q·ri(t) , (3.50)

in which, α denotes whether the corresponding current is longitudinal (parallel
to wavevector �q) or, transverse (perpendicular to wavevector �q). We will discuss
these current correlations in more detail in the next section.

3.3.2 Current correlations

In this study, we tried to characterize the properties of the vibrational acoustic
modes in terms of longitudinal and transverse current correlation functions
(�JL (�q, t) and �JT (�q, t), respectively). By calculating these quantities, we were able
to obtain the information about the longitudinal and transverse sound velocities
from the corresponding dispersion branches of the dispersion relation. We were
also able to investigate the properties of the corresponding longitudinal and
transverse vibrations in the range of frequencies around the occurrence of the
boson peak. This is associated with the time and length scales at which the
vibrational modes can no longer be described as plane waves (although still, one
can consider longitudinal and transverse projections), which will be discussed in
detail in chapter 5. The longitudinal and transverse current correlation functions
are defined as [Boon and Yip (1991)]:

Jα (q,ω) =
1
N

∫∞
−∞ dte(iωt)〈�Jα (�q, t) ·�Jα (−�q, 0)〉 , (3.51)

in which α = L, T stands for the corresponding longitudinal and transverse
currents. Since �Jα (�q, t) is a vector, the current correlation function is a second-
rank tensor, but rotational invariance implies that for an isotropic fluid the
longitudinal and transverse currents are un-correlated and independent (we
discussed earlier the regime in which these modes become correlated) [Hansen
and McDonald (2013)]. Therefore, the longitudinal and transverse current can be
obtained from the total current:

�J (�q, t) =
∑
k

�̇rk (t) e
(i�q·�rk(t)) , (3.52)
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as:

JL (q,ω) =
�q
(
�q ·�J (�q, t)

)
q2 , (3.53)

JT (q,ω) = �J (�q, t) −
�q
(
�q ·�J (�q, t)

)
q2 . (3.54)

In this work, we made a comparison between the properties of the longitudi-
nal and transverse currents in the undeformed state (as a reference) and the
corresponding currents of the deformed state. By doing so, we were able to
investigate the effect of deformation and residual stresses on acoustic modes and
the corresponding sound velocities.

3.3.3 Dynamic structure factor

The dynamic structure factor S (q,ω), defined as:

S (q,ω) =
1
N

∫∞
−∞ dt〈e(iωt)

N∑
k,l=1

e(i�q·(�rk(t)−�rl(0)))〉 , (3.55)

is a quantity of great interest. Firstly, because it can be directly measured in
scattering experiments [Scopigno, Suck, et al. (2006) and Suck, Rudin, Güntherodt,
and Beck (1983)], and secondly, because of its direct relation to the longitudinal
current correlation function as [Boon and Yip (1991)]:

S (q,ω) =
q2

ω2 JL (q,ω) . (3.56)

Although, the above relation shows that, the dynamic structure factor contains
the same information as the longitudinal current correlation function, but, at
low frequencies the dynamic structure factor is a more sensitive quantity. This is
because of the 1/ω2 term which, enhances the features at low frequency range
(occurrence of the boson peak in dynamic structure factor at low frequencies).

For the case of dynamic structure factor, also we have made a comparison
between the S (q,ω) of the undeformed states with those of the deformed ones,
to investigate the effect of deformation and residual stresses on these dynamic
quantities. We will discuss this in detail in chapter 5.
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4 Atomistic computer simulation

“Our brain simulates reality. So, our everyday experiences are a form of dreaming, which
is to say, they are mental models, simulations, not the things they appear to be.”
Stephen LaBerge

In this study, we performed extensive molecular dynamics computer simulations
to study a model of the glass-forming system Ni80P20 under shear. In this chapter,
we will give a brief introduction to molecular dynamics simulations, and discuss
the tools we have used and the details of our simulations.
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4.1 Molecular Dynamics simulation

Solving Newton’s equation of motion for a many-body system (e.g., system of
N particles interacting via a pair potentials) has been a challenging problem in
theoretical soft condensed matter physics. Numerical computation, as part of
statistical mechanics, plays a crucial role in solving these ordinary differential
equations. Many particle-based simulation techniques have been developed
during the last decades [Binder and Ciccotti (1996), Car and Parrinello (1985),
and Landau and Binder (2014)]. Molecular dynamics (MD) simulations, being a
well known method for atomistic simulations, was developed in 1950’s [Alder
and Wainwright (1959) and Rahman (1964)]. The main goal in MD simulations is
to calculate the structural and dynamical properties of a model system [Allen
and Tildesley (2017) and Frenkel and Smit (2001)]. The basis of MD simulations
is classical mechanics, and the idea is to numerically solve Newton’s equations of
motion for a many-body system (i.e., a large number of particles interacting with
each other, e.g., via a pair potential) [Binder, Horbach, et al. (2004) and Rapaport
(2004)]. Let’s consider a system of N particles (atoms) with position vector �ri,
with i = 1, · · · ,N, in d-dimensions. Then, we can write Newton’s equations of
motion [Newton (1687)] for this system as:

mi�̈ri = −
∂Upot

∂�ri
= �fi , (4.1)

with mi the mass of the i’th particle, Upot the total potential energy and �fi the
total force acting on particle i due to other particles in the system. The total
potential energy (assuming a pairwise-additive potential which is only a function
of distances between the particles) can be written as:

Upot =

N−1∑
i=1

N∑
j>i

u
(
�rij
)

, (4.2)

where, �rij = �ri −�rj is the distance vector between particle i and j. Therefore,

�fi = −
∑
j(�=i)

∂u
(
�rij
)

∂�ri
=

∑
j(�=i)

�fij , (4.3)

with �fij the force of particle j on particle i. As a result the total energy of the
system can be written as:

E = Ekin + Epot =

N∑
i=1

mi�̇ri
2

2
+Upot , (4.4)

which is constant in time,

dE

dt
=

N∑
i=1

mi�̇ri�̈ri −

N∑
i=1

mi�̇ri · �fi = 0 . (4.5)
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Thus, the role of MD simulations is to find the evolution of particle trajectories
in time; i.e. position and velocities (�ri and �̇ri ≡ �vi), for a many body systems. A
numerical solution of Eq. (4.1) requires a discretization of these equations with
respect to time. Numerical integration requires a discretization of time into
equidistant time steps with steps of length δt. Among many different methods
for performing numerical integration, the so-called Velocity-Verlet algorithm as a
stable and accurate method, is mostly used in MD simulations.

4.1.1 Velocity-Verlet algorithm

Energy conservation, time reversibility and accuracy (at least up to O (δt)2) are
requirements for a good numerical integration algorithm. The velocity-Verlet
algorithm which is originated from the Verlet algorithm [Verlet (1967)], satisfies
these requirements. The idea in Verlet algorithm (like other numerical methods) is
that, by knowing the previous and the current position of particles (also knowing
the forces acting on them), we can obtain the position of the particles in the
next step. And, with the updated positions then, we are able to get the updated
velocities in the next step. The Verlet algorithm can be obtained by performing
a second order Taylor expansion of particle positions, once forward and once
backward in time, as follows:

�ri (t+ δt) = �ri (t) + δt�vi (t) +
1

2mi

(δt)2 �fi (t) +
1
6
(δt)3 �bi (t) + O

(
(δt)4

)
, (4.6)

�ri (t− δt) = �ri (t) − δt�vi (t) +
1

2mi

(δt)2 �fi (t) −
1
6
(δt)3 �bi (t) + O

(
(δt)4

)
. (4.7)

With �̇ri ≡ �vi, �̈ri ≡ �fi/mi (making use of Eq. (4.1), mi the mass of particle i) and...
�r i ≡ �bi. Adding and subtracting Eq. (4.6) and (4.7) gives:

�ri (t+ δt) = 2�ri (t) −�ri (t− δt) +
1
mi

(δt)2 �fi (t) + O
(
(δt)4

)
, (4.8)

�vi (t) =
1

2 (δt)
[�ri (t+ δt) −�ri (t− δt)] + O

(
(δt)3

)
. (4.9)

The Verlet algorithm is time-reversible [Allen and Tildesley (2017), Frenkel and
Smit (2001), and Verlet (1967)]. This means using −δt and writing �ri (t+ δt)

as �ri (t− δt) the particles will follow their trajectories back in time. One of the
drawbacks of the Verlet algorithm is that, the velocities are always updated one
step behind (cf. Eq. (4.9)). This is also problematic in terms of computational
costs, as one has to store too much data (meaning, previous and next positions,
including all the information about the current status of the system). An alter-
native solution for this problem was introduced as the so-called velocity-Verlet
algorithm [Andersen (1983) and Swope, Andersen, Berens, and Wilson (1982)].
In velocity-Verlet algorithm, the positions are updated via [Tuckerman (2010)]:

�ri (t+ δt) = �ri (t) + δt�vi (t) +
1

2mi

(δt)2 �fi (t) . (4.10)

51



One can also start from �ri (t+ δt) and �vi (t+ δt), compute �fi (t+ δt) and by
backward evolution in time obtain �ri (t) from:

�ri (t) = �ri (t+ δt) − δt�vi (t+ δt) +
1

2mi

(δt)2 �fi (t+ δt) . (4.11)

And therefore, by substituting Eq. (4.10) into Eq. (4.11), in the same analogy as in
Verlet algorithm, one can obtain a relation for updating velocities as follows:

�vi (t+ δt) = �vi (t) +
δt

2mi

[
�fi (t) + �fi (t+ δt)

]
. (4.12)

Velocity-Verlet is equivalent to Verlet algorithm1. The advantage of the velocity-
Verlet algorithm, as a method which conserves the energy of the system, in
comparison with the Verlet algorithm is that, in order to update the velocities
we need only need the current and updated forces acting on particles, and the
updated forces is accessible right after updating the positions of the particles.

4.1.2 Dissipative particle dynamics thermostat

Up to here, a simulation can be carried out in the micro-canonical ensemble
(NVE) in which, the number of particles N, the volume of the system V and the
total energy of the system E are kept constant. As the main focus of this work,
we study the response of glass-forming systems when subjected to an external
field. This means as a result of the external field, extra energy is pumped into the
system which produces heat. Therefore, in order to be able to control this extra
heat and perform non-equilibrium simulations under fixed temperature, one
needs to couple the system to a thermostat [Golkia, Shrivastav, Chaudhuri, and
Horbach (2020)]. In canonical ensemble (NVT ), making use of the equipartition

1In order to show this alikeness, we can write [Frenkel and Smit (2001)]:

�ri (t+ 2δt) = �ri (t+ δt) +�vi (t+ δt) δt+
1

2mi
(δt)2 �fi (t+ δt) . (4.13)

By rewriting Eq. (4.10) in the following form:

�ri (t) = �ri (t+ δt) −�vi (t) δt−
1

2mi
(δt)2 �fi (t) ,

and adding the latter two equations we get:

�ri (t+ 2δt) +�ri (t) = 2�ri (t+ δt) + [�vi (t+ δt) −�vi (t)] δt+

[
�fi (t+ δt) − �fi (t)

]
2mi

(δt)2 . (4.14)

By substituting Eq. (4.12) in the above expression we obtain:

�ri (t+ 2δt) +�ri (t) = 2�ri (t+ δt) +
�fi (t+ δt)

mi
(δt)2 , (4.15)

which is the coordinate version of the Verlet algorithm.
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theorem [Boltzmann (1871)] one can obtain the temperature T of the system.
For a system of N particles in equilibrium (i.e. the properties of the system
no longer change with time and saturate at a finite value), the distributions of
positions and velocities follow Maxwell–Boltzmann distribution. Therefore, the
temperature can be inferred from the kinetic energy of the particles such that, for
all degrees of freedom in the system one can obtain the kinetic temperature T (in
three dimension) as:

T =
2Ekin

3kBN
=

1
3kBN

N∑
i=1

mi�v
2
i . (4.16)

Then, the systems temperature is obtain from an average over these instantaneous
temperatures via T = 〈T〉. In which, the brackets 〈〉 represent a time average.

Here, we introduce the Dissipative Particle Dynamics (DPD) thermostat [Hooger-
brugge and Koelman (1992)]. DPD thermostat is Galilean invariant, gives the
correct hydrodynamic behavior on the sufficiently large length and time scales,
and conserves local momentum [Frenkel and Smit (2001)]. The latter is an es-
sential advantage of the DPD thermostat in comparison to other thermostating
methods and is a direct result of considering relative velocities between pairs
of particles. These advantages make DPD thermostat a reliable method for
performing non-equilibrium simulations [Soddemann, Dünweg, and Kremer
(2003)].

In DPD thermostat, a pairwise random (�fR) and dissipative (�fD) force is added
to the conservative force acting between particles (�fC) such that, the total force
acting on particle i has the form:

�Fi =
∑
j�=i

[
�fC
(
�rij
)
+ �fD

(
�rij,�vij

)
+ �fR

(
�rij
)]

, (4.17)

in which, �rij = �ri−�rj and �vij = �vi−�vj are relative distance and velocities between
particle i and j , respectively. The conservative force (�fC) can be obtained via
Eq. (4.3), as it was discussed earlier in this chapter, from the interaction potential.
The dissipative force (�fD) is a function of relative distance and relative velocities
of the particles and is defined as:

�fD
(
�rij,�vij

)
= −γωD

(
rij
) (

�vij.r̂ij
)
r̂ij , (4.18)

in which, r̂ij is the unit vector in the direction of �rij, γ is the coupling coefficient,
controlling the strength of friction force and ωD

(
rij
)

describes the variation of
the friction coefficient (cut-off function of dissipative force) with distance. The
random force (�fR) is defined as:

�fR
(
�rij
)
= σωR

(
rij
)
ξijr̂ij , (4.19)

in which, σ controls the magnitude of the random force and ωR
(
rij
)

controls
the variation of random force with distance (cut-off function of random force).
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ξij are random variables from a Gaussian distribution with a zero mean and a
unit variance, which are independent for different pairs of particles and different
times. The condition ξij = ξji is employed to ensure momentum conservation.
The cut-off functions of the dissipative and random force cannot be chosen
independently and they are related to each other via:

ωD
(
rij
)
=
[
ωR
(
rij
)]2

, (4.20)

in order to satisfy the fluctuation-dissipation theorem and give the correct distri-
bution of particle positions and velocities [Español and Warren (1995)]. Therefore,
σ and γ are also related to temperature via:

σ2 = 2kBTγ . (4.21)

The additional force terms in DPD thermostat has the functional form such that
the method conserves local momentum. This is also essential for recovering
correct hydrodynamics while performing simulations on sufficiently large length
and time scales, specially under specific situations e.g. being imposed to an
external force.

4.1.3 Lees-Edwards boundary conditions

In computer simulations, in order to mimic an infinite bulk surrounding the
model system, boundary conditions play a very important role. The importance
of the boundary conditions is due to the fact that, although the modern technolog-
ical resources make it possible to simulate very large systems, containing millions
of particles but nevertheless, still we are far from thermodynamic limit (N → ∞
and V → ∞). Also, in computer simulations, in order to prevent particles from
spreading away, they are bound within a fictitious box (the so-called simulation
box). But, this consideration also has consequences, as the particle-wall inter-
actions (surface effects) might change the force acting on particles. In order to
overcome these problems one often uses periodic boundary conditions (pbc) [Allen
and Tildesley (2017), Born and Huang (1954), and Frenkel and Smit (2001)] (cf.
Fig. 4.1).

Fig. 4.1 shows a schematic representation of pbc in computer simulations in
which the central box containing N atoms is considered as the primitive cell of
particles, surrounded by infinite identical replicas. With this representation, not
only the particles within the simulation box will interact with each other, but also,
they interact with all their image particles in their neighboring cells (although
the range of the interactions depends on the interaction potential). Let’s consider
particle i shown in Fig. 4.1 in red. What pbc implies is that, when particle i leaves
the primitive simulation box, its image comes back into the simulation box from
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Figure 4.1: Schematic representation of periodic boundary conditions.

exactly the opposite side. With this approach, we can simulate the bulk of the
material without particles being affected at the surface.

As it was mentioned earlier, one important role of pbc comes into play
when the system is subjected to a deformation in non-equilibrium situations.
[Lees and Edwards (1972)] introduced a technique (named after them as Lees-
Edwards bondary conditions LEbc) with which one can perform purely boundary
driven shear deformation in MD simulation without modifying the equations of
motion. The technique is based on the original pbc (discussed earlier) with some
modification (cf. Fig. 4.2). Considering a shear deformation in x-direction with a
flow gradient in z-direction, meaning that the xz plane is being deformed (shown
schematically in Fig. 4.2), the LEbc implies:

• The upper and lower periodic replicas (C and B in Fig. 4.2, respectively) of
the principal simulation box (the blue box (A) in Fig. 4.2), drift in opposite
directions with a constant velocity vd.

• vd = γ̇Lbox, Lbox being the length of the simulation box (here considered
to be a cubic box, otherwise the corresponding length in the gradient
direction).

• As a result of this drift velocity, when particle i leaves the simulation box
(A) at point P1, instead of returning into the simulation box at point P2 (as
expected from pbc), it will enter the simulation box at point P3.

• The pbc is applied in the conventional way in the other directions.

As a result of this drift, a linear velocity profile in z-direction is obtained [Lees
and Edwards (1972)]:

�vx (z) = γ̇zêx , (4.22)
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Figure 4.2: Schematic representation of Lees-Edwards periodic boundary conditions.

with γ̇ the shear rate, z the z-component of the particle position and êx the unit
vector in x-direction. This linear velocity profile is a consequence of an extra term
Δv being added to particles velocity in the direction of the shear load, defined as:

Δv = vd

(
z

Lbox
−

1
2

)
. (4.23)

Therefore, the corresponding component of particle velocity in the direction of
the shear will be effected after applying LEbc while, the other components will
be intact. This means in the example above:

v ′x = vx +Δv

v ′y = vy

v ′z = vz ,

(4.24)

with prime indices indicating the new velocity components after applying LEbc.
Another consequence of LEbc is that, as the simulation box are slipping on each
other and particles are feeling the shear deformation as an additional term in their
velocities, their positions also gets drifted in the direction of shear (cf. Fig. 4.3).
As it was discussed earlier, within the framework of pbc, particle i (at position
xi) not only will interact with particle j (at position xj) in the simulation box, but
also, will interact with its image at position xj ′ . But, as a result of LEbc, particle’s
j image, is at position xj ′′ . This means, particle i will interact with particle j

at position xj and its image at xj ′′ , while, there is a xj ′′ − xj ′ displacement in
x-direction. Therefore, this drift in particle’s position is a very important point to
be considered while updating the forces at each MD time-step.
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Figure 4.3: Particles position drift in the direction of the shear deformation.

4.2 Potential model for the glass forming system
Ni80P20

In order to study the effect of deformation on mechanical properties of the
glass-forming system Ni80P20, as the main focus of this study, we performed
extensive MD simulations. Up to now, we briefly discussed how to perform MD
simulations and implement the shear deformation technique in these simulations.
But so far, a big building block of our simulations, which is, the model which we
are using to study Ni80P20 in computer simulations, is missing. In this study, we
considered a Kob-Andersen binary Lennard-Jones (KABLJ) model glass former.
The model has it’s origin in the earlier studies of [Weber and Stillinger (1985)] on
Ni80P20 in computer simulations and introduced by [Kob and Andersen (1994)].
Since that time, the model has been developed [Kob and Andersen (1995a) and
Kob and Andersen (1995b)] and extensively used in many computer simulations
[Golkia, Shrivastav, Chaudhuri, and Horbach (2020) and Shrivastav, Chaudhuri,
and Horbach (2016)].

The KABLJ model consists of a binary mixture of particles (of two species
A and B), with 80 : 20 ratio of A and B types, interacting via Lennard-Jones
(LJ) [Hansen and McDonald (2013) and Lennard-Jones (1924)] potential which is
defined as:

φαβ = 4εαβ

[(σαβ

r

)12
−
(σαβ

r

)6
]

, (4.25)

with α and β corresponding to the particle types of A and B and r = |�ri −�rj|

the relative distance between pairs of particles. In order to save computing time
while using periodic boundary conditions, a cut-off radius rc is considered for
the range of particle interactions and therefore the potential is modified such
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that:

φαβ =

⎧⎪⎨
⎪⎩

4εαβ

[(σαβ

r

)12
−
(σαβ

r

)6
]

for r � rc ,

0 for r > rc .
(4.26)

The LJ potential is smoothly truncated and shifted to zero at the cut-off [Frenkel
and Smit (2001) and Smit (1992)] such that:

ULJ = φαβ (r) −φαβ (rc) − (r− rc)
dφαβ

dr
(rc) . (4.27)

Both particle types have the same mass, i.e. mA = mB = 1.0 and other interaction
parameters between different species are listed in table (4.1) [Kob and Andersen
(1994)]. σAA and εAA set the length scale and energy of the system, respectively.

interactions AA AB BB

εαβ 1.0 1.5 0.5

σαβ 1.0 0.8 0.88

Table 4.1: Interaction parameters between different particle types for KABLJ system. α and β

denote A and B type particles respectively.

In this work we use reduced LJ units [Rapaport (2004)]. In table (4.2) we have
listed the conversion parameters with which on can convert the reduced LJ units
to the corresponding real units.

quantities LJ unites real units

mass m∗ m∗ ·m
length L L · σ
energy E E · ε

time τ τ ·
√

mσ2

ε

force F F · εσ
temperature T T · ε

kB

number density ρ ρ · σ−3

shear rate γ̇ γ̇ ·
√

ε
mσ2

Table 4.2: Conversion parameters between LJ reduced units and real units. kB the Boltzmann
factor is set to := 1.0.

In this thesis, we used LAMMPS [Plimpton (1995)], which is an open-source
MD simulation package. The LAMMPS package allows running large-scale
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atomic/molecular parallel simulations. In the following, we will discuss the
details of our simulations (i.e., sample preparation, deformation), and then, the
results will be discussed in chapter 5.

4.3 Details of simulations

In this section, for convenience purposes, we will present the simulation details
of each part of the project, independently. Therefore, this section is divided into
the following subsections:

• Effect of deformation on elastic constants of BMGs

• Effect of deformation on vibrational modes in BMGs

• Shear-bands in glasses, and in-homogeneous flow patterns in super-cooled
liquids

• Effect of micro-alloying on mechanical properties of BMGs

4.3.1 Effect of deformation on elastic constants of BMGs

• Glass preparation

The number density is fixed at ρ = 1.2mA/σ
3
AA, and cubic box geometry of

linear size 30σAA is considered. Therefore, the number of particles is fixed at
N = NA +NB = 32400, consisting of NA = 25920 and NB = 6480 particles
of A and B type, respectively. The equations of motion are integrated via the
velocity-Verlet algorithm using an integration time step Δt = 0.005. The initial
sample was generated at T = 5 in the liquid state, and equilibrated at this
temperature for t = 104τLJ. Using the equilibrated liquid configuration, we
stored configurations in time intervals of 500 time steps in a production run. We
used these configurations as independent samples for the rest of the simulations
(in total, 250 samples were generated). The samples were then equilibrated at
T = 0.44 in the super-cooled liquid state above glass transition temperature for
t = 2 × 105τLJ. The glass state was obtained by quenching the super-cooled
samples to a temperature T = 0.2, well below the mode coupling glass transition
temperature Tc = 0.435, known for the model glass former [Kob and Andersen
(1994)]. The glass samples were then relaxed for a waiting time of tw = 104τLJ

in canonical ensemble and in addition a production run of tw = 104τLJ in micro-
canonical ensemble (NVE). Samples at this stage are considered as “undeformed”
glass samples. To obtain instantaneous values of the elastic constants in the
undeformed state, short production runs in micro-canonical (NVE) ensemble was
performed and data (stresses, configuration, etc.) for each sample (in a short time
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window of the order of t = 500τLJ) was stored. Elastic constants tensor (Eq. 3.1)
was then calculated for the undeformed samples, as a reference, during this short
time window and then averaged over all samples.

As was discussed earlier in this chapter, we used the DPD thermostat in our
simulations. The thermostat has been used for fixing the temperature during
canonical runs (NVT ), quenching, and also during the shear deformation. DPD
thermostat is implemented in LAMMPS package [Plimpton (1995)] and can be
used via the following input scripts. pair style calls DPD thermostat to start the
simulations with Tstart as the starting temperature and fixing the temperature at
Tstop. cutoff is the pairwise interaction cut-off radius, and the argument seed is
used as an input in the random number generator. The pair coeff command is
used to define different pairwise interaction parameters between particle types i

and j, and the args gets the friction coefficient, cut-off radius, etc. as input. The
canonical run is achieved, therefore, by fixing the temperature with thermostat
while performing a micro-canonical run using the fix nve command applied on
the specified particle IDs by group-ID.

p a i r _ s t y l e 1 dpd/ t s t a t T s t a r t Tstop c u t o f f seed
p a i r _ c o e f f 2 i j dpd/ t s t a t args
f i x 3 ID group−ID nve

• Shear deformation

Shear deformation was applied in x-direction (gradient direction in z-direction,
such that, the corresponding component of the stress tensor would be σxz), with a
variety of shear rates γ̇ =

[
102, 3 × 103, 103, 3 × 104, 104, 3 × 105, 105] τ−1

LJ . The
samples were deformed up to strain γ = 3 (except for the shear rate γ̇ = 105τ−1

LJ

for which samples were deformed up to γ = 2) in order to make sure that we
reach a homogeneous flow [Barrat and Lemaître (2011) and Rodney, Tanguy, and
Vandembroucq (2011)]. At this point shear was switched off and we allowed the
samples to relax for t = 4 × 104τLJ, until the stresses reach a finite value [Ballauff,
Brader, et al. (2013)]. The glass samples at this stage with residual stresses are
considered as “deformed” glass samples.

The shear deformation in LAMMPS can be performed after preparing the
simulation box for deformation via change box command, by using a fix deform
command. Then, to trace the formation of stresses in the system and obtain
the stress-strain curve of the system, one can access different components of the
stress tensor with a compute stress/atom command. This command contains the

1https://lammps.sandia.gov/doc/pair_dpd.html.
2https://lammps.sandia.gov/doc/pair_coeff.html.
3https://lammps.sandia.gov/doc/fix_nve.html.
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whole stress tensor information per-atom, which can then be averaged over a
specific group of atoms or the whole system with a compute reduce ave command.
Different components of the stress tensor can be stored as an output via a fix
print command. Here is a list of commands used in our simulations:

change_box4 group−ID parameter args
f i x 5 ID group−ID deform N parameter args
compute6 ID group−ID s t r e s s /atom temp−ID keyword
compute7 ID group−ID s t y l e arg mode input
f i x 8 ID group−ID p r i n t N s t r i n g keyword value

In order to obtain the elastic constants for deformed glasses, as the stresses are
relaxing, at the long tail of the stress-relaxation curve, we took six different time
origins. At each of these time origins, we again performed short production runs
in micro-canonical (NVE) ensemble and stored data. By doing so, we were able
to calculate the instantaneous elastic constants of the samples while the stresses
are relaxing and with different amounts of residual stresses in the system (details
will be discussed in chapter 5). These values were then compared to those of
the undeformed ones (as reference) to study the effect of deformation and the
residual stresses on elastic constants.

4.3.2 Effect of deformation on vibrational modes in BMGs

• Glass preparation

In order to study the vibrational modes at low temperatures, the number density
is fixed at ρ = 1.3mA/σ

3
AA to avoid negative pressure after quenching to low

temperatures. At very low temperatures, for lower densities, the system enters
a mechanically unstable state. This unstable two-phase region becomes stable
by formation of cavities in the system [Chaudhuri and Horbach (2016)]. A
cubic box geometry of linear size of L ≈ 31.336σAA (in order to study finite size
effects other system sizes with the same number density were also considered
which, will be discussed in chapter 5) is considered. Therefore, the number
of particles is fixed at N = NA +NB = 40000, consisting NA = 32000 and
NB = 8000 of A and B type particles, respectively (in order to study the finite
size effects in our calculations we also considered the following system sizes
with N = [1300, 3000, 200000, 1500000] particles). The equations of motion
are integrated via the velocity-Verlet algorithm using an integration time step

4https://lammps.sandia.gov/doc/change_box.html.
5https://lammps.sandia.gov/doc/fix_deform.html.
6https://lammps.sandia.gov/doc/compute_stress_atom.html.
7https://lammps.sandia.gov/doc/compute_reduce.html.
8https://lammps.sandia.gov/doc/fix_print.html.
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Δt = 0.002. The initial sample was generated at T = 5 in the liquid state, which
was then equilibrated at this temperature for t = 104τLJ.

Using the equilibrated liquid configuration, we stored configurations in time
intervals of 500 time steps and used these configurations as independent samples
for the rest of simulation (in total 20 samples were generated). The samples
were then equilibrated at T = 0.75 in the super-cooled liquid state above the
glass transition for t = 2 × 104τLJ. The glass state is obtained by quenching the
super-cooled binary mixture to a temperature T = 10−4 which is well below the
glass transition temperature Tg ≈ 0.65 (in LJ units) known for the same model
glass former following the same quench protocol [Chaudhuri and Horbach
(2016)]. We prepare the glass samples aged up to waiting time tw = 2 × 103τLJ

in canonical NVT ensemble followed by a production run of tw = 104τLJ in the
micro-canonical NVE ensemble. Samples at this stage were then, considered as
“undeformed”.

• Shear deformation

Shear deformation was then applied to the system in the same manner as it was
discussed in the previous section with only a single shear rate of γ̇ = 104τ−1

LJ

up to strain γ = 1 from which, we switched off the shear load. We allowed the
glass samples to relax for a waiting time of t = 4 × 104τLJ until we obtained glass
samples with residual stresses. At this point, in the same manner, as for the
undeformed samples, the thermostat was switched off, followed by a production
run of tw = 104τLJ in the micro-canonical NVE ensemble. The glass samples at
this stage, with residual stresses, were considered as “deformed”.

In order to calculate the density of states for both undeformed and deformed
samples, we performed production runs of length 131076 time-steps (26.215ps in
real time), and stored configurations every 32 time-steps. By doing so, we had
a resolution of Δω ≈ 0.023THz in frequency domain and reached a maximum
frequency of ωmax = 47.1THz. Density of states was then calculated by applying
a Fast Fourier Transform (FFT) [Press, Teukolsky, Vetterling, and Flannery (2007)]
on velocities [Dove (1993)].

4.3.3 Shear-bands in glasses vs. in-homogeneous flow patterns in
super-cooled liquids

For this part of the work the glass samples were prepared as it was discussed
earlier in the previous sections (4.3.1,4.3.2). For the super-cooled liquids following
the previous protocol, the number density is fixed at ρ = 1.2mA/σ

3
AA. Three

simulation box sizes of 30σAA, 40σAA, 50σAA is considered. Therefore, the
number of particles is fixed at N = NA +NB = [32400, 76800, 150000], consisting
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of NA = [25920, 61440, 120000] and NB = [6480, 15360, 30000] particles of A and
B type, respectively. The equations of motion are integrated via the velocity-Verlet
algorithm using an integration time step Δt = 0.005. The initial samples were
generated at T = 5 in the liquid state, and equilibrated at this temperature for t =
104τLJ. Using the equilibrated liquid configuration, we stored configurations in
time intervals of 500 time-steps in a production run, and used these configurations
as independent samples for the rest of the simulations. The 303 samples were
equilibrated at T = 0.44 (also equilibrated at T = 0.45 and T = 0.5) in the super-
cooled liquid state above glass transition temperature for t = 2 × 105τLJ and
403, 503 samples were each equilibrated for t = 5 × 104τLJ at T = 0.44. Then, in
order to study the flow patterns in the super-cooled liquids while being imposed
to shear deformation (in the same manner as it was discussed earlier in this
section) shear deformation was imposed to systems with a variety of shear rates
γ̇ =
[
102, 3 × 103, 103, 3 × 104, 104, 3 × 105, 105, 3 × 106, 106, 107] τ−1

LJ . Results
of these simulations will be discussed in chapter 5.

4.3.4 Effect of micro-alloying on mechanical properties of BMGs

In order to study the effect of micro-alloying on mechanical properties of BMGs,
we made a minor modification on the KABLJ [Kob and Andersen (1994)] by
adding 1% of a third species (type C) in the system. Therefore, a ternary mixture
of 79% particles of type A, 20% of type B and 1% of type C has been obtained.
All particles have the same mass (mA = mB = mC = 1.0) and the interaction
parameters are as follows:

interactions AA/CC AB/BC BB AC

εαβ 1.0 1.5 0.5 0.1

σαβ 1.0 0.8 0.88 1.0

Table 4.3: Interaction parameters for the ternary system.

α and β correspond to different particle types. We made the minimum
change in the original model by changing only one parameter εAC. Therefore,
for εAC = 1.0, we reproduce the original results.

• Glass preparation

Following the same protocol as in (4.3.2), the number density is fixed at ρ =

1.3mA/σ
3
AA. A cubic box geometry of linear size of L ≈ 31.336σAA is consid-

ered. Therefore, the number of particles is fixed at N = NA +NB +NC = 40000,
consisting NA = 31600, NB = 8000 and NC = 400 of A, B and C type particles
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respectively. The equations of motion are integrated via the velocity-Verlet algo-
rithm using an integration time step Δt = 0.002. The initial sample was generated
at T = 5 in the liquid state, which was then equilibrated at this temperature
for t = 2 × 103τLJ. Using the equilibrated liquid configuration we stored con-
figurations in time intervals of 500 time-steps and used these configurations as
independent samples for the rest of simulation (in total 20 samples were gener-
ated). The samples were then equilibrated at T = 0.75 in the super-cooled liquid
state for t = 2× 104τLJ. The glass state is obtained by quenching the super-cooled
binary mixture to a temperature T = 10−4. We prepare the glass samples aged up
to waiting time tw = 2 × 103τLJ in canonical NVT run followed by a production
run of tw = 104τLJ in micro-canonical ensemble NVE. The micro-alloyed samples
at this stage are then considered as “undeformed” samples.

• Shear deformation

Shear deformation was applied to the system in the same manner as it was
discussed in the previous section, with only a single shear rate of γ̇ = 104τ−1

LJ

up to strain γ = 1 from which, we switched off the shear load. We allowed the
glass samples to relax for a waiting time of t = 4 × 104τLJ until we obtained
glass samples with residual stresses. At this point, in the same manner, as for
the undeformed samples, the thermostat was switched off, a production run of
tw = 104τLJ was performed in micro-canonical ensemble NVE. The glass samples
at this stage, with residual stresses, were considered as “deformed”.

The mechanical properties and the vibrational modes of the new ternary
system were then compared to those of the binary mixtures, and also between
the undeformed and deformed states. Details of these results will be discussed
in chapter 5.
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5 Results

“People love chopping wood. In this activity one immediately sees results.”
Albert Einstein

As the main focus of this work, we studied the effect of deformation on mechani-
cal properties of a Ni80P20 model glass-forming system. In order to get a more
comprehensive picture, we tried to investigate these effects from different angles.
This consists of the changes in elastic constants and vibrational modes of the
material, formation of shear bands, and micro-alloying. All the obtained results
from the deformed samples are compared to those of the undeformed states (as
a reference).

In this chapter, we will discuss the results obtained from extensive MD simu-
lations. The chapter is divided into five sections:

• Glasses and super-cooled liquids under shear deformation
• Stress relaxation and residual stresses
• Effect of deformation on elastic constants
• Effect of deformation on time-dependent vibrational properties
• Micro-alloying
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5.1 Glasses and super-cooled liquids under shear
deformation

We open the result section by discussing the response of the SCLs being subjected
to a shear deformation with a constant shear rate γ̇, in terms of the stress-strain
curves. The results for SCLs will be then used later, as a reference, to compare
to the obtained results for glasses. When a highly viscous liquid is subjected to
shear deformation with a constant shear rate γ̇, a new time scale is introduced
by 1/γ̇. If the latter time scale becomes smaller than the time scale for structural
relaxation in the system, the response of the system exhibits a crossover from a
Newtonian to non-Newtonian liquid with the steady-state shear stress σss, being
no longer proportional to the shear rate γ̇. Here, we investigate this crossover
response in the SCLs, which is reflected in the transient regime of stress-strain
curve.

5.1.1 Transient response of SCLs to shear deformation

The macroscopic response of the samples in the super-cooled liquid state (at
T = 0.44 and ρ = 1.2) being imposed to shear deformation with a wide range of
shear rates γ̇ = [103, 3 × 104, 104, 3 × 105, 105, 3 × 106, 106, 107] τ−1

LJ is shown in
Fig. 5.1. The shear rate dependence of the stress-strain curves is clearly visible
from the figure such that, for high shear rates (e.g. γ̇ = 10−3 presented with
green lines) the stress-strain curves exhibit three distinguishable regimes, namely
an early elastic regime, a transient regime and the steady-state regime. For low
shear rates (e.g. γ̇ = 10−5 presented with dark-gray lines) there is a shoulder type
increase and the system reaches the steady-state in a rather small strain window.
This shoulder type increase disappears in the limit of low shear rates, such that,
for example for γ̇ = 10−7 (light-gray curve) the increase in the stresses are so
small that the stress-strain curve almost fluctuates around its equilibrium stress
values (dashed black line). The overshoot peak maximum increases by increasing
shear rate (direction of the black arrow) towards larger strains. The occurrence
of the overshoot in the transient regime, marks the onset of plastic flow and the
non-Newtonian response of the SCLs to shear deformation, we will come back to
this point later in this section.

In panel (a) and (b) of Fig. 5.2, we investigate the behavior of the overshoot
peak position1 γp and height σp, as a function of shear rate at different tempera-
tures in the SCL state. The symbols corresponding to different temperatures are
shown in Fig. 5.2(b) and in panel (a) the corresponding shear rates are marked

1In order to obtain γp and σp, the corresponding stress-strain curves data are fitted with
a Gaussian function of the form Aexp(B(x−C)2) around the overshoot, in which, A ≡ σp and
C ≡ γp.
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Figure 5.1: Stress-strain curves for super-cooled liquids (T = 0.44, N = 32400, ρ = 1.2) being
imposed to shear deformation with different shear rates. The dashed black line is drawn at
σxz = 0.0.

with vertical solid lines. In panel (a) of Fig. 5.2 we see that, irrespective of tem-
perature, in the SCL state the values for γp of different shear rates sit very closely
on top of each other. In order to investigate the functional behavior of the result,
the data is fitted with a function of the form A0 +A1x

A2 (dashed gray line). The
values obtained for the fit parameters are shown in table (5.1). The obtained

Figure 5.2: panel (a): the overshoot peak position γp as a function of shear rate γ̇ (the corre-
sponding shear rates are marked with solid vertical lines) in the SCL state. panel (b): the stress
maximum at the overshoot σp as a function of shear rate γ̇, in the SCL states. The correspond-
ing colors for each temperatures are shown in this panel.

data for σp in panel (b) of Fig. 5.2 is also fitted with the same function (dotted
black lines). The obtained values are presented in table (5.2). By comparing the
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Fit parameters for γp in the SCL state

A0 A1 A2

SCL 0.051 0.407 0.369

Table 5.1: Values are obtained by fitting the results
with a function of the form A0 +A1x

A2

results in panel (a) and (b) of Fig. 5.2 we can see that, σp shows a slightly stronger
temperature dependence compared to γp. In highly viscous SCLs, the elastic
response to the applied shear load becomes more pronounced with decreasing
temperature, denoting an increase in the elastic modulus of the system. Therefore,
the temperature dependence of σp and γp can be well understood by the change
in the elastic modulus of the system. Comparing the values shown in tables (5.1)
and (5.2) we can see that, γp, having a power-law exponent of ≈ 0.4, shows a
stronger power-law behavior, with respect to the applied shear rates, compared
σp with a power-law exponent of ≈ 0.2.

Fit parameters for σp in the SCL state

A0 A1 A2

SCL|T=0.44 −0.336 2.810 0.155

SCL|T=0.45 −0.243 2.891 0.185

SCL|T=0.5 −0.393 3.174 0.212

Table 5.2: Values are obtained by fitting the results
with a function of the form A0 +A1x

A2

In order to further investigate the temperature dependence of the transient
regime in the SCLs, in Fig. 5.3 we present the stress-strain curves for SCLs at
ρ = 1.2 and for T = 0.44, 0.45, 0.5 in red, blue and orange, respectively. Here,
we compare the response of the super-cooled liquids being imposed to two
constant shear rates γ̇ = 10−3, 10−5, the upper and lower curves, respectively.
In Fig. 5.3 we can see that, for temperatures T = 0.44, 0.45 and shear rate
γ̇ = 10−3 (upper curves) the stress-strain curves show a pronounced overshoot.
But, the non-Newtonian response to the applied shear deformation becomes less
pronounced for SCLs at T = 0.5 at the same shear rate. This difference becomes
less pronounced at lower shear rates, γ̇ = 10−5 in this case. For the latter shear
rate in Fig. 5.3 we can see that, although the increase in the stresses are more
pronounced for SCLs at T = 0.44, but the differences between the curves are not
as large as the responses to γ̇ = 10−3. This is due to the fact that, for shear rate
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γ̇ = 10−5 the samples are already in the Newtonian regime, therefore, irrespective
of temperature, the samples exhibit a similar response to the applied shear load.

Figure 5.3: Comparison between the stress-strain curves of SCLs at ρ = 1.2 and for T =
0.44, 0.45, 0.5 in red, blue and orange, respectively. The samples at each temperature are
subjected to shear deformations with constant shear rates γ̇ = 10−3, 10−5, the upper and lower
curves, respectively.

As it was mentioned before, the occurrence of the overshoot in the transient
regime, marks the non-Newtonian response of the SCLs to a shear deformation.
The crossover response of SCLs from a Newtonian to a non-Newtonian liquid
can be characterized by Δσ = σp − σss, the difference between the σp and the
steady-state stress σss, which decreases with decreasing shear rate and vanishes
in the Newtonian regime. This is shown in Fig. 5.4 where we see that, for the
SCLs at ρ = 1.2 and T = 0.44, 0.45, 0.5, Δσ disappears at a critical shear rate
γ̇c for which the value of Δσ = 0. In Fig. 5.4 one can extrapolate a critical
shear rate γ̇c which marks the crossover response from a Newtonian to a non-
Newtonian liquid at Δσ = 0. Therefore, in Fig. 5.4 we fit the results for Δσ, for
different temperatures, with a function of the form f(γ̇) = a+ b (ln(γ̇)) (dashed
black lines). The obtained values are shown in table (5.3). Now, we scale the
results shown in Fig. 5.4 with the obtained values for the γ̇c. This is shown in
Fig. 5.5. From the figure we see that, irrespective of temperature, all the data
collapse on top of each other which can be well fitted with a function of the form
Bcln(γ̇/γ̇c) (Bc is the fit parameter). By fitting the data for SCLs at ρ = 1.2 and
T = 0.44, 0.45, 0.5 in red, blue and orange, respectively, in Fig. 5.5 we obtained a
fit parameter Bc = 0.0699007 (dashed black line).

The crossover response of the SCLs is also reflected in the flow curve (σss

as a function of shear rate γ̇) shown in Fig. 5.6 where we see that, the flow
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Figure 5.4: Comparison between Δσ in SCLs. The dashed black lines are fits (check the text) to
data with the given values in table (5.3).

Comparison between the γ̇c in SCL state

a b γ̇c = exp(−(ab))

SCL|T=0.44 0.762 0.070 1.8 × 10−5

SCL|T=0.45 0.732 0.070 2.7 × 10−5

SCL|T=0.5 0.577 0.069 2.3 × 10−4

Table 5.3: Critical shear rate γ̇c, obtained for SCLs from fits to the
shown data in Fig. 5.4 with function of the form f(γ̇) = a+ b (ln(γ̇)).

curve of the SCLs shows a crossover from a linear response (fitted with a linear
function shown with dashed gray line) for γ̇ < γ̇c to a non-linear response for
γ̇ > γ̇c. In Fig. 5.6 the data has been scaled with the corresponding values of
γ̇c for each temperature, presented in table (5.3), and the vertical black dotted
line at γ̇/γ̇c = 1.0 marks the crossover point. In the non-Newtonian regime for
γ̇ > γ̇c the data for the SCL at T = 0.44 is fitted with a Herschel–Bulkley function
of the form σss = σyield +A (γ̇/γ̇c)

α with the “yield stress” σyield = 0.127334,
the amplitude A = 0.0502496 and the exponent α = 0.357024 (dashed green
line). The latter behavior in the flow curve is directly reflected in the evolution
of the viscosity of SCLs as a function of shear rate. This is shown Fig. 5.7.
The viscosity η of the samples in the super-cooled liquid state at ρ = 1.2 and
T = 0.44, 0.45, 0.5 in red, blue and orange, respectively, is scaled with the viscosity
in the Newtonian regime at low shear rates ηN in Fig. 5.7, and the x-axis is scaled
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Figure 5.5: Scaled Δσ for super-cooled liquids at ρ = 1.2 and T = 0.44, 0.45, 0.5 in red, blue and
orange, respectively. The dashed black line is a function of the form ln(γ̇/γ̇c) (see text).

Figure 5.6: Flow curves for super-cooled liquids at ρ = 1.2 and T = 0.44, 0.45, 0.5 in red, blue
and orange, respectively. The x-axis is scaled with the corresponding critical shear rate γ̇c for
each temperature. The gray dashed line is a linear function and dotted vertical line marks the
crossover point. The green dashed line is a Herschel–Bulkley type fit function applied to the
data for T = 0.44 in the non-Newtonian regime (see text).
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with the corresponding γ̇c for each temperature. Here we can see that, while in
the Newtonian regime, in the limit of very small shear rates, the viscosity of the
samples is (on average) constant, the response of the system shows a crossover
(marked by the vertical black dotted line) to a non-Newtonian liquid with a
power-law decrease of viscosity (shear thinning) which can be fitted with the
scaled Herschel–Bulkley function from Fig. 5.6 (the dashed green line).

Figure 5.7: Scaled viscosity with respect to the viscosity in the Newtonian regime for super-
cooled liquids at ρ = 1.2 and T = 0.44, 0.45, 0.5 in red, blue and orange, respectively. The x-axis
is scaled with the corresponding critical shear rate γ̇c for each temperature. The black dotted
vertical line marks the crossover point. The dashed green line is a Herschel–Bulkley type fit
function from Fig. 5.6 (see text).

The change in response of SCLs from a Newtonian to the non-Newtonian
liquid, can also be studied in terms of one-particle dynamics by means of the
mean-squared displacement. This is shown in Fig. 5.8. The z-component of
the MSD (Eq. 2.3) for both particle types A and B, with solid and dashed lines,
respectively, is shown in Fig. 5.8 for SCLs at T = 0.44 and ρ = 1.2, as a function of
time. The samples are subjected to shear deformation with constant shear rates γ̇

shown in Fig. 5.8. Also, the MSD of undeformed samples is shown in the plot
with gray squares for A type particles, and black squares for B type particles.
From the figure we can see that, while, at high shear rates (γ̇ = 10−3 and γ̇ = 10−4

in green and light blue, respectively) the MSD shows a super-diffusive behavior
before reaching the diffusion regime (for both particle types), at low shear rates
(γ̇ = 10−6 and γ̇ = 10−7 in light orange and red, respectively) the MSD sits on top
of their respective quiescent undeformed state and shows a Newtonian response.
The dashed black line is a linear function of time with slope 1.0. In order to have
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Figure 5.8: Mean-squared displacement (for particle types A and B, solid and dashed lines, re-
spectively) as a function of time for SCLs at T = 0.44 under shear load and in the undeformed
state (gray squares for A type particles and black squares for A type particles). The dashed
black line denotes a linear function with slope = 1.

a more clear picture, in Fig. 5.9 we show only the MSD of A type particles for
SCLs at T = 0.44 and for more shear rates.

Figure 5.9: Mean-squared displacement of A type particle as a function of time for SCLs at
T = 0.44 under shear load and in the undeformed state (black circles). The dashed black line
denotes a linear function with slope = 1.

We also investigate the change in potential energy (< U >, the brackets denote
average over many samples) of SCLs as a function of strain, while the samples
are subjected to a shear load. This is shown in Fig. 5.10 for SCL at T = 0.44
and a variety of different shear rates. In Fig. 5.10 we can see that, the potential
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Figure 5.10: Evolution of potential energy as a function of strain, for SCLs at T = 0.44 under
shear load. The dashed black line is the averaged potential energy obtained from undeformed
samples.

energy for shear rates well above the γ̇c (e.g. γ̇ = 10−3, 3 × 10−4), shows a step
like increase around strain ∼ 0.1, before reaching the steady state regime. This
step like increase disappears for shear rates below γ̇c in the Newtonian regime
(e.g. γ̇ = 10−6, 10−7) where, the potential energy just fluctuates around the
values of its initial undeformed state U0 = −6.48224 (dashed black line). We
also characterize the increase in potential energy of the samples subjected to
shear load, by looking at ΔU = 〈Uss〉− 〈U0〉, which is the difference between the
averaged potential energies of the samples under shear load in the steady state,
〈Uss〉, and their quiescent undeformed state, 〈U0〉. This is shown in Fig. 5.11.

In Fig. 5.11 we compare ΔU between SCLs samples at T = 0.44, 0.5 (red and
orange symbols, respectively) as a function of shear rate γ̇. The fit to the data
shows a power law increase with increasing shear rate. The power law exponents
are shown in the figure for different temperature. Figure 5.11 represents the
ΔU for a range of shear rates above the γ̇c in the non-Newtonian regime. In
Fig. 5.12 we present the ΔU/| 〈U0〉 | as a function of scaled shear rates γ̇/γ̇c, for
super-cooled liquids at T = 0.44, 0.45, 0.5. With this representation, we can see a
clear crossover from the Newtonian regime towards the non-Newtonian regime
around γ̇/γ̇c = 1.0. In the Newtonian regime we see a clear linear response for
all the super-cooled liquids. For γ̇/γ̇c > 1.0 the data for super-cooled liquids
at T = 0.44, 0.45 can be well fitted with a power law function ((γ̇/γ̇c)

β) with a
component β ∼ 0.38.
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Figure 5.11: ΔU as a function of shear rate for SCLs at T = 0.44 , 0.5 (red and orange closed
symbols, respectively) and ρ = 1.2. The dashed lines are power law fits to data with exponents
shown in the plot.

Figure 5.12: ΔU/| 〈U0〉 | as a function of scaled shear rates γ̇/γ̇c for super-cooled liquids at
ρ = 1.2 and T = 0.44, 0.45, 0.5 in red, blue and orange, respectively.
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5.1.2 In-homogeneous flow patterns in super-cooled liquids

Up to now, we characterized the macroscopic response of SCLs when subjected to
a shear deformation with a constant shear rate. We showed that the macroscopic
response in the SCLs shows a crossover from a Newtonian to a non-Newtonian
behavior. In the non-Newtonian regime, local events such as local mobilities
result in the formation of inhomogeneities in the system. In this section, we study
these in-homogeneous flow patterns in super-cooled liquids.

In SCLs the decay of the stress from the overshoot maximum towards the
steady-state regime, occurs in a strain window of the order of Δγ = 0.1. This
stress decay appears to occur in a much smaller strain window for glasses with
horizontal shear bands (we will come back to this point when we discuss about
Fig. 5.27). In Fig. 5.13 we present the stress decay σr for SCLs at T = 0.44 obtained
from the stress-strain curve shown in Fig. 5.1.

Figure 5.13: Stress decay from the overshoot maximum towards the steady-state (check 5.2) for
SCLs at T = 0.44 under shear load.

In Fig. 5.13 we can see that, as it was mentioned before, the stress decay
occurs in a strain window of Δγ = 0.1 and can be well fitted with a compressed
exponential function (dashed black line2) exp (xα) with α > 1. Note that the
fit with the compressed exponential does not provide a perfect description of
the data over the whole strain window, but it just gives a rough idea about
the functional form of the decay of σ from σp to σss. The plastic events in
this strain window, which result in a stress release towards the steady-state

2In order to fit the data we used a Kohlrausch-Williams-Watts (KWW) function [Zausch and
Horbach (2009)], f (x) = Aexp

(
−BxC

)
. The fitting values are as follows, A = 1.004, B = 103.823

and C = 1.699.
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regime, occur in a much smaller time window than the structural relaxation
times in an undeformed SCL. Therefore, for a given γ̇ > γ̇c in-homogeneous flow
patterns may occur in SCL by the formation of vertical bands at strains right after
the overshoot on the stress-strain curve. Although these inhomogeneities are
short-lived and span the whole system in a rather short strain window in SCLs,
later we will show that in glasses, these inhomogeneities are more stable and
localized, and often result in the formation of shear bands. In order to investigate
the formation of these inhomogeneities, we have calculated per-particle MSD
and assigned these values as a mobility factor to each particle. We have traced
the inhomogeneities via these mobility maps3 a long the stress-strain curve in
SCL state for two shear rates, one well above γ̇c (γ̇ = 10−3) and also below
γ̇c (γ̇ = 10−6). These results are shown in Fig. 5.14. The mobility maps of the
non-Newtonian regime, for shear rate γ̇ = 10−3, are shown in panel A of Fig. 5.14,
and the mobility maps for the Newtonian regime, for the shear rate γ̇ = 10−6, are
shown in panel B. The corresponding strain points at which the mobility maps
are calculated are indicated on the stress-strain curve. From Fig. 5.14 following
the stress-strain curve for the shear rate γ̇ = 10−3, we can see that at the overshoot
maximum (γ = 0.08) some small hot spots (locally mobile regions shown in red)
are appearing in the system. Right after the overshoot (γ = 0.15), these hot spots
evolve towards some vertical band-like regions. But, as it was discussed before,
these vertical bands are short-lived and, in a short strain window, span the whole
system such that, at γ = 0.3, they have already spanned the whole system before
reaching the steady-state. The behavior of the sample is different for the shear
rate of γ̇ = 10−6. From panel B of Fig. 5.14 we can see that, while at very early
times (strain point γ = 0.01) the hot spots start to appear in the system, these
hot spots are not localized, and they span the whole system in a tiny strain
window such that, at γ = 0.03 in Fig. 5.14 we can see that, the hot spots have
covered the whole system. Therefore, the SCL subjected to shear deformation
with the constant shear rate γ̇ = 10−5 reaches the steady-state regime much
earlier compared to the other sample subjected to a constant shear rate γ̇ = 10−3

such that already at γ = 0.06 the whole system is flowing almost homogeneously.
In order to further investigate the inhomogeneities, we characterize the non-

Gaussian behavior of the stress fluctuations by calculating the so-called Kurtosis
[Pearson (1905)] as:

κ =

〈
(Δσxz)

4
〉

〈
(Δσxz)

2
〉2 , (5.1)

where Δσxz = σxz− 〈σxz〉 denotes the fluctuation in the xz-component of the stress
tensor σxz Eq. (3.6) and 〈σxz〉 defines the mean stress averaged over independent

3Because of large sample to sample fluctuations; these features can only be seen in single
samples, therefore, here we present non-averaged results for single samples.
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Figure 5.14: panel A: Mobility maps for a SCL sample at T = 0.44 being imposed to constant
shear rate γ̇ = 10−3 in the non-Newtonian regime, at different strain points indicated on the
corresponding stress-strain curve. panel B: Mobility maps for a SCL sample at T = 0.44 being
imposed to constant shear rate γ̇ = 10−6 in the Newtonian regime, at different strain points
indicated on the corresponding stress-strain curve.

samples. (Δσxz)
4 and (Δσxz)

2 in Eq. (5.1), denote the fourth and second moments
of the stress probability distribution, respectively. In Fig. 5.15 we present the
non-Gaussian behavior of the stresses for SCLs at T = 0.44, and for three different
shear rates γ̇ = 10−3, 10−4, 10−6. From Fig. 5.15 we can see that, irrespective
of the shear rate, κ fluctuates around κ0 = 3.055 (dashed black line) obtained
from the samples in the quiescence undeformed state (for a Gaussian distribution
κ = 3). Therefore, the inhomogeneities are so short-lived and small that they do
not change the Gaussian behavior of the stress distribution in the system with
respect to the quiescence undeformed states.
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Figure 5.15: κ as a function of strain, for SCL samples at T = 0.44, being imposed to a shear
deformation with shear rates γ̇ = 10−3, 10−4, 10−6 in pale orange, blue and green, respectively.
The dashed black line is the averaged κ obtained from the undeformed samples.

5.1.3 Glasses under shear

Up to now, we discussed the response of SCLs being subjected to shear deforma-
tion. We showed that the SCL’s response shows a crossover from a Newtonian
to non-Newtonian liquid, wherein the non-Newtonian regime short-lived in-
homogeneous flow patterns might appear in the system. Here, we discuss the
response of glasses when subjected to a shear deformation with a constant shear
rate and make a comparison to the results which we showed for SCLs.

In Fig. 5.16 we present the stress-strain curves obtained from the glass samples
at T = 0.2 and ρ = 1.2, subjected to shear deformation with a variety of shear
rates γ̇ = [102, 3× 103, 103, 3× 104, 104, 3× 105, 105] τ−1

LJ . The stress-strain curves
shown in Fig. 5.16, for all shear rates, shows three clear distinguishable regimes,
same as SCLs in non-Newtonian regime. In Fig. 5.16, we can clearly see the shear
rates dependence of the stress-strain curves. By increasing shear rate (direction
of the black arrow in the plot), the peak maximum of the stress-strain overshoot
also increases. This is similar to the results which we discussed earlier for SCLs
with the exception that, even for small shear rates (γ̇ = 10−5, gray lines), the
stress-strain curve shows a non-Newtonian response marked by a pronounced
overshoot. The response of the samples in the elastic regime (cf. 2.2.2), shows no
shear rate dependence. This is expected as the linear response of the stress-strain
curve, in the limit of small strains, gives the shear modulus of the samples.
Therefore, no matter what shear rate is imposed to the system, the shear modulus
should not change. Here, in order to study the transient response of glasses to
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Figure 5.16: Stress-strain curves for glasses (T = 0.2, N = 32400, ρ = 1.2) being imposed to shear
deformation with different shear rates.

shear deformation in more details, and make a comparison to the results which
we discussed earlier for SCLs, we look at the same quantities as presented in
section (5.1.1).

Figure 5.17: panel (a): the overshoot peak position γp as a function of shear rate γ̇ (the corre-
sponding shear rates are marked with solid vertical lines) in the glass state at ρ = 1.2 and
T = 0.2. The dashed lines are fit functions (see the text). panel (b): the stress maximum at the
overshoot σp as a function of shear rate γ̇.

In panel (a) of Fig. 5.17 we present γp as a function of shear rate (shear rates
are marked with vertical solid lines) for glass samples at ρ = 1.2 and T = 0.2.
Here we can see that, similar to the results we showed for SCLs, γp increases
with increasing shear rate. Similarly, here we also fit the data with a function
of the form A0 +A1x

A2 and obtained the values shown in table (5.4). The fit
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parameters show a small difference between the power law behavior of γp for
glasses and SCLs where, the power-law behavior of glasses appears to be slightly
weaker. Further, following the results reported recently by [Reddy, Nath, et al.
(2020)] on the shear rate dependence of γp in crystals, we fitted the data from the
glass samples shown in panel (a) of Fig. 5.17, with a function of the form:

γp =

(
W[2(d− 1)α(γ̇τ0)

−2(d−1)]

2(d− 1)α

)−1/[2(d−1)]

, (5.2)

with d the dimensionality of the system, τ0 a kinetic time scale and α describing
the interfacial free energy cost and W a Lambert W function [Hayes (2005)].
The Lambert W function is used to solve equations in which the unknown
appears both outside and inside an exponential function or a logarithm, e.g.
if xex = f(x) = y, then x = f−1(x) = W(y). Using the asymptotic behavior
[de Bruijn (1981)] of W(y) = ln(y) − ln(ln(y)) + · · · for small shear rates, we
have fitted the data once only with the first leading order term (red dashed line,
with fit values α = 0.000237694 and τ0 = 7.26094) and also by considering the
second leading order term (blue dashed line, with fit values α = 0.000217689
and τ0 = 5.20679). In Fig. 5.17 we can see that, although the function has been
tested for shear rate dependence of γp in crystals, it also shows good agreement
with the results for the glass samples. We should also mention that, keeping
the second leading order term, the fit function (dashed blue line) seems to agree
better with the data.

Fit parameters for γp in the glass state

A0 A1 A2

Glass 0.068 0.287 0.340

Table 5.4: Values are obtained by fitting the results
with a function of the form A0 +A1x

A2

In panel (b) of Fig. 5.17 we show the shear rate dependence of σp as a function
of shear rate. Similar to the analysis before, here also the data has been fitted with
a function of the form A0 +A1x

A2 (dotted black line) and the obtained values
are shown in table (5.5). Making a comparison between tables fit parameters in
tables (5.2) and (5.5) we can see that, σp shows a stronger power-law behavior in
glasses compared to the SCLs.

Here, in order to compare the transient response between SCLs and glasses,
we compare the temperature dependence of σp between, glasses at temperatures
T = 10−4, 0.2 and SCLs at temperatures T = 0.44, 0.5, being imposed to a single
constant shear rate γ̇ = 10−4. This is shown in Fig. 5.18. At low temperatures
(light-blue curve) in the glass state, we have a well pronounced overshoot. But, the
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Fit parameters for σp in the glass state

A0 A1 A2

Glass 0.494 2.350 0.258

Table 5.5: Values are obtained by fitting the results
with a function of the form A0 +A1x

A2

Figure 5.18: Temperature dependence of the overshoot for glasses at T = 10−4, 0.2, N =
40000, 32400, ρ = 1.3, 1.2, respectively, and super-cooled liquids at T = 0.44, 0.5, N = 32400, ρ =
1.2, being imposed to a single constant shear rate γ̇ = 10−4.

overshoot maximum decreases by increasing temperature such that, it vanishes
for super-cooled liquid at T = 0.5 (orange curve). The peak maximum position
also shifts towards larger strain points with decreasing temperatures, indicating
a larger strain window in the glass state in which, the response of the system is
elastic. Therefore, the glass samples are reaching the steady-state regime at larger
strains compared to SCLs. Here, we should mention that, although the results
shown in Fig. 5.18 for SCLs and glasses are obtained from samples which are
prepared with the same cooling rate, the transient response of the samples in the
glass state strongly depends on the annealing time and the history of preparation.

The temperature dependence, and the effect of annealing on the transient
response of a glass forming system, being subjected to a shear deformation with
constant shear rates, has been extensively studied by [Shrivastav, Chaudhuri,
and Horbach (2016)]. In this work, using a Kob-Andersen binary Lennard-
Jones mixture [Kob and Andersen (1994)], the authors showed that at a given
temperature in the glass state, σp increases with increasing annealing time
(waiting time tw) for the samples which are imposed to a single constant shear
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rate γ̇. They showed that, the latter increase (for a wide range of shear rates γ̇) can
be well fitted with a logarithmic function of the form σp = C (γ̇, T)+A(T)ln (γ̇tw),
with A(T) a temperature-dependent amplitude that is independent of γ̇ and tw,
and C (γ̇, T) a function that solely depends on γ̇ and T . They also showed that,
σp decreases by increasing temperature, which is consistent with our findings.

The transient response of glasses under shear load can be further investigated
by looking at the shear rate dependence of Δσ. Similar to the results shown
for SCLs (cf. Fig. 5.4), here, in Fig. 5.19 we show Δσ for glasses at ρ = 1.2 and
T = 0.2, as a function of shear rate. In comparison to the results for SCLs, here
we can see that, in case of glasses the non-Newtonian response holds up to much
smaller shear rates. Following the same analysis for SCLs, here we also fit the

Figure 5.19: Δσ as a function o shear rate in glass state at ρ = 1.2 and T = 0.2. The dashed
black line is a fit (check the text).

data with a function of the form f(γ̇) = a+ b (ln(γ̇)) (dashed black line) with
the fit parameters, a = 0.663 and b = 0.041. Here we should note that, as we
discussed earlier, the transient responses in the glass state highly depend on the
history with which the samples are prepared, therefore, a change in annealing of
the samples may affect these results.

As it was discussed before (cf. section (2.2.2)), the flow curve of glasses under
shear load shows a Herschel–Bulkley behavior. This is shown in Fig. 5.20, where,
steady state stress σss is plotted as a function shear rate γ̇ for glasses at ρ = 1.2
and T = 0.2. In Fig. 5.20 the data is fitted with a Herschel–Bulkley function
of the form σss = σyield +A (γ̇)α with the “yield stress” σyield = 0.389395, the
amplitude A = 2.63875 and the exponent α = 0.446392 (dashed gray line).

We also characterize the response of glass samples at ρ = 1.2 and T = 0.2 being

83



Figure 5.20: Flow curve for glasses at ρ = 1.2 and T = 0.2. The dashed gray line is a Her-
schel–Bulkley type fit function (see the text).

subjected to shear deformation (with constant shear rates shown in Fig. 5.21)
in terms of single particle dynamics by looking at MSDz(τLJ) and MSDy(τLJ)

of the A type particles in panel (a) and (b) of Fig. 5.21, respectively. In panel

Figure 5.21: panel (a): MSDz(τLJ) as a function of time for glass samples imposed to shear
deformation with shear rate shown in the plot. The curve with black open circles shows
the MSDz(τLJ) of an undeformed glass sample over time. panel (b): same as in panel (a) for
MSDy(τLJ).

(a) and (b) of Fig. 5.21 MSDz(τLJ) and MSDy(τLJ) of samples subjected to shear
deformation are compared to the corresponding MSD of the undeformed states
(curves with black open circles). The data for the deformed samples, are shown
only for the time scales at which the particles are leaving the plateau region and
cage breaking happens. By comparing the two panels in Fig. 5.21 we can see
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that, the MSDz(τLJ)
4 shows a jump-like increase after the cage breaking happens,

before reaching the diffusion regime. This response is not that pronounced for
MSDy(τLJ). Another difference between the two panels of Fig. 5.21 is that, for
high shear rates (10−2, red curve) MSDz(τLJ) appears to reach diffusion regime
after showing a super-diffusive increase, but, for lower shear rates the samples
appear to need more time to reach the diffusion regime, and show a sub-diffusive
behavior over a large strain window. This is not the case for MSDy(τLJ). In
panel (b) of Fig. 5.21 the MSDs appear to reach diffusion regime after showing
a super-diffusive increase in a very small strain window. Later in section (5.1.4)
we will show that, the super-diffusive increase of MSDz(τLJ) is the fingerprint
of in-homogeneous flow patterns which result in formation vertical shear bands
in the glass samples. Before closing this section we make another important
comparison between MSDz(τLJ) for SCLs at ρ = 1.2 at T = 0.44 and glass samples
at T = 0.2 and same number density. This is shown in Fig. 5.22.

Figure 5.22: MSDz(τLJ) as a function of time for SCLs and glass at ρ = 1.2, T = 0.44 and
T = 0.2, respectively. Samples are imposed to shear deformation with shear rate shown in the
plot. The curve with black open circles and gray open squares, shows the MSDz(τLJ) of an
undeformed glass and SCLs samples over time, respectively.

The MSDz(τLJ) of undeformed samples is shown in Fig. 5.22 with open black
circles and open gray square for glasses and SCLs, respectively. Both SCL and
glass samples are subjected to constant shear rates, which are shown in the
figure with a different color. From Fig. 5.22 we can see that, at high shear rates
(10−3, green solid and dashed lines for glass and SCL samples, respectively) in
the non-Newtonian regime, the curves sit very close to each other showing a
super-diffusive increase followed by a diffusion regime. At lower shear rates,
where there is a crossover from non-Newtonian to a Newtonian in the response
SCLs the curves start to show deviations from each other. While, in the SCL state

4Here we should remind the reader that, the shear deformation has been applied in x-direction,
therefore, z-direction corresponds to the gradient direction.
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for shear rate, γ̇ = 10−5 (gray dashed line) MSDz(τLJ) sits on top of the curve for
undeformed states, in the glass state, at the same shear rate, the glass samples
(solid gray line) still show a super-diffusive increase after leaving the plateau.
This means, as we discussed before, the non-Newtonian response in glasses holds
even at very low shear rates.

Here, we also characterize the macroscopic response of glass samples subjected
to shear deformation, in terms of the changes occurring in the potential energy
< U >. This is shown in Fig. 5.23 where, we show the evolution of averaged
(over many samples) potential energy < U > as a function of strain γ for glass
samples at ρ = 1.2 and T = 0.2 subjected to shear defamation with a wide range
of constant shear rates shown in the figure in different colors. In Fig. 5.23 we

Figure 5.23: Evolution of potential energy as a function of strain, for glasses at T = 0.2 and
ρ = 1.2 under shear load.

can see that, < U > shows a step-like increase which has a higher amplitude
for larger shear rates and stays at a finite value in the steady-state regime. An
interesting observation from Fig. 5.23 is the occurrence of a shallow overshoot
around γ = 0.1, for shear rates γ̇ = 10−3, 3 × 10−4, 10−4. Later in section
(5.1.4) we will come back to this point. Similar to the analysis for SCLs (shown
in Fig. 5.11), here we also look at ΔU for the glass samples. This is shown in
Fig. 5.24 where we present ΔU, the difference between the steady state value
of potential energy < Uss > and the initial undeformed values < U0 >, as a
function of shear rate γ̇. In Fig. 5.24 we can see that, ΔU increases by increasing
shear rate and shows a power law behavior shown in the figure with dashed gray
line. In contrast to SCLs ΔU does not disappear at small shear rates and shows a
non-Newtonian response even for very small shear rates. But, the data shows a
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Figure 5.24: ΔU as a function of shear rate for glass samples at T = 0.2 and ρ = 1.2. The dashed
line is power law fit to data with exponent shown in the plot.

weaker power law behavior compared to the results for SCLs (cf. Fig. 5.11).

5.1.4 Shear bands in glasses

Up to now, we discussed the macroscopic response of SCLs and glasses when
subjected to shear deformation. We also showed that at a microscopic level, in the
non-Newtonian regime of the SCLs, in-homogeneous flow patterns appear by the
formation of short-lived vertical bands. In this section, we try to characterize the
formation and evolution of long-lived in-homogeneous flow patterns in glasses,
which can result in the formation of shear bands. The results discussed in this
section are for two glass samples at ρ = 1.3 and T = 10−4, with a cubic simulation
box of length L = 104.886σA containing N = 1.5M particles (cf. 4.3.2), being
imposed to shear deformation with a constant shear rate γ̇ = 10−4.

5.1.5 Horizontal bands vs. vertical bands

The shear bands appear to start to form right after the overshoot of the stress-
strain curve in glasses. The hot spots of locally mobile regions begin to create
larger clusters of mobile particles and eventually evolve towards the formation of
shear bands [Shrivastav, Chaudhuri, and Horbach (2016)]. These local mobile
regions are long-lived in contrast to what we showed for SCLs. In a computer
simulation, the local mobile regions tend to create vertical or horizontal shear
bands [Golkia, Shrivastav, Chaudhuri, and Horbach (2020)]. The mechanisms
which result in the formation of a vertical or a horizontal shear band are still
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under debate. From now on, we will present the results which we have obtained
for a sample with a horizontal shear band (will be referred to as SWHB) and a
sample with a vertical band (will be referred to as SWVB).

As it was shown and discussed before, we use per-particle mean-squared
displacement to characterize the mobile regions in the system. In Fig. 5.25 we
present the mobility maps of a SWHB and a SWVB (being imposed to shear
deformation with a constant shear rate γ̇ = 10−4) at different strain points, which
are shown on the corresponding stress-strain curve of these two samples. By

Figure 5.25: panel A: Mobility maps for a SWHB, being imposed to constant shear rate γ̇ =
10−4, at different strain points indicated on the corresponding stress-strain curve (black curve).
panel B: Mobility maps for a SWVB, being imposed to constant shear rate γ̇ = 10−4, at different
strain points indicated on the corresponding stress-strain curve (red curve).

comparing the mobility maps in panel A and B of Fig. 5.25, we can see that around
the overshoot maximum (γ = 0.1) the mobile zones are almost homogeneously
distributed in both samples. The stress-strain curve of the SWHB shows a sharp
stress decay after the overshoot (check discussion for Fig. 5.27), and a secondary
overshoot is visible in the stress-strain curve of the SWVB. The sharp release
of the stresses in the SWHB results in the formation of the shear bands at later
strain points such that, while around strain, γ = 0.12 pronounced shear bands
are forming in the SWVB, in the SWHB only some local mobile zones are visible.
The shear band in the SWHB is well pronounced at a strain of γ = 0.2. On the
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other hand, in the SWVB around this range of strains, the vertical bands already
spanned the whole system and left two small planes of immobile particles. The
width of the shear band in the SWHB increases by increasing strain such that,
at a strain of γ = 1.0, the width of the shear band is almost double the size of
the shear band at strain γ = 0.2. The vertical bands in the SWVB also span more
regions in the system making the immobile regions narrower and narrower such
that, eventually at a strain of γ = 1.0, the dark immobile planes in the middle of
the system tilt a little in the direction of the applied shear and the regions close
to the boundaries of the simulation box start to flow in opposite directions in the
system, resulting an ‘S’ shaped dark region between the bands.

In a set of plots in Fig. 5.26(a-d), we compare different quantities (stress-
strain curve, the evolution of the potential energy, kurtosis, and mean-squared
displacement) between the SWHB and the SWVB. In Fig. 5.26(a) we compare the
stress-strain curves of the SWHB (black curve) and the SWVB (red curve). The
stress-strain curve peak maximum position γp = 0.0932 is marked with vertical
dashed blue line in panel (a-d) of Fig. 5.26. As it was discussed before, the stress-
strain curve of the SWHB shows a sharp stress decay after the overshoot, which is
a characteristic behavior for samples with horizontal bands in comparison to those
with vertical bands. Another characteristic behavior of SWHB is the occurrence
of an overshoot in the potential energy in the range of strains where the stress
decay towards the steady-state occurs in the stress-strain curve (γ ≈ 0.11 − 0.12
in this case). This is in the range of strains after stress-strain overshoot maximum,
marked with the vertical dashed blue line. As it is shown in Fig. 5.26(b), while
the potential energy of the SWHB shows an overshoot (black curve), the potential
energy of the SWVB has a small plateau shape which follows by a sudden step-
like (exactly in the same strain window where the secondary overshoot occurs
in the stress-strain curve) increase towards the steady-state. In Fig. 5.26(c) we
compare the kurtosis κ for the SWHB and SWVB (in black and red, respectively),
as a function of strain. From the figure, we can see that κ (for both samples)
is constant in the early elastic regime and shows a decrease before reaching γp

(dashed blue vertical line). The slight decrease in κ follows with a slight increase,
as the samples leave the transient regime and, eventually, start to fluctuate around
a finite value in the steady-state regime. In Fig. 5.26(d) we present the mean-
squared displacement in y and z-direction for both particle types A and B, for the
SWHB and the SWVB (the corresponding color coding for different components
are shown in the plot). Different regimes, with different power-law behaviors,
are visible in the plot. Both MSDy and MSDz for both samples and both particle
types show a ballistic regime at short times (marked with a solid blue line), which
is followed by a plateau regime. The plateau regime, as it was shown before
and expected, shows a slight off-set between the B and A-type particles (B type
particles showing slightly higher mobilities). The mean-squared displacements
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Figure 5.26: panel (a): Stress-strain curves for SWHB and SWVB (black and red curve, respec-
tively), being imposed to a constant shear rate γ̇ = 10−4. panel (b): Evolution of potential
energy of the SWHB and the SWVB (black and red curve, respectively), as a function of strain.
panel (c): κσxz (close black circles and red close circles for SWHB and SWVB, respectively)
and κp (black open squares and red open squares for SWHB and SWVB, respectively) for the
SWHB and the SWVB as a function of strain.

show a super-diffusive regime (marked with a solid purple line) after leaving
the caging regime, for both y and z-components of the SWHB and SWVB and
both particle types, with an exponent of ≈ 2.5. This power-law behavior shows a
slight decrease to ≈ 1.7 (solid gray line), in a very small strain window. Around
γp (marked with the vertical dashed blue line), the MSDz for the SWVB (for both
A and B type particles) shows a sudden jump. This sharp increase is due to the
formation of vertical bands around this strain window, as it was shown in panel
B of Fig. 5.25. Eventually in the steady-state regime, the MSDy for both samples
(and for both A and B type particles) reaches the diffusion regime. The MSDz of
the SWHB also, shows a similar behavior and reach a diffusive regime (marked
with linear orange solid line). In contrast, the MSDz of the SWVB (for both A

and B type particles) shows a sub-diffusive behavior with a power-law exponent
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of ≈ 0.2 (marked with a solid green line).

Figure 5.27: σr for the SWHB and the SWVB (in back and red, respectively) as a function of
strain.

As we discussed earlier in this section, the stress-strain curve of the SWHB
shows a sharp stress decay from the overshoot maximum. In Fig. 5.27 we compare
σr for the SWHB with that for the SWVB. In Fig. 5.27, we see that, the SWHB
(black curve) shows a much faster stress decay from the overshoot maximum
towards the steady-state in a strain window of Δγ < 0.1. On the other hand, the
SWVB shows an initial stress drop which follows by a secondary increase and
eventually in a strain window of Δγ > 0.1 the stresses reach the stead-state value.

Further, in Fig. 5.28 we slice the SWHB into 5 layers and look at the averaged
stress and potential energy in each layer as a function of strain. In Fig. 5.28(a),
we show the layer-wise stress-strain curve, and, as it is clear from the plot, no
difference is visible between the stress-strain curve of different layers, and they
all sit on top of each other. On the other hand in Fig. 5.28(b) we can see that,
the layers out and far from the shear band (L1 and L2, blue and green curves,
respectively) show an overshoot followed by a steady-state regime, but, the layer
exactly in the middle of the shear band (L4, red curve) shows an increase to the
steady-state without overshoot and the potential energy is higher than the layers
out of the shear bands. Layers L3 and L5 (orange and black curve, respectively),
below and above layer L4 (which partially cover the shear band), also show an
overshoot, but they tend to reach the steady-state potential of L4.

Before closing this section, in Fig. 5.29 we present a final plot for evolution
of the averaged potential energy < U > as a function of strain γ for 250 glass
samples at T = 0.2 and ρ = 1.2, being subjected to shear deformation with
shear rates γ̇ = 10−2, 10−3, 10−4, 10−5 (with black, gray, pale red and pale blue,
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Figure 5.28: panel (a): Layer wise stress-strain curve for the SWHB. panel (b): Layer wise evolu-
tion of potential energy as a function of strain. Different layers are shown schematically in the
figure.

respectively). For better visibility the data for shear rates γ̇ = 10−3, 10−4, 10−5

are shifted down by subtracting a factor 0.03, respectively. The steady-state value
< Uss > is shown in the figure with a dashed turquoise line, and the values
are written in the figure for each shear rate. While, for shear rate γ̇ = 10−2

we observe a step-like increase in potential energy around strain γ ≈ 0.1 (the
white line represents the averaged result over all samples), as it was discussed
before in Fig. 5.23, for the other lower shear rates, one can divide the curves
into three different regimes of samples with vertical bands (“V bands” in the
figure), horizontal bands (“H bands” in the figure) and a regime of mixed vertical
and horizontal bands (“M bands” in the figure). These different regimes are
highlighted for shear rate γ̇ = 10−3 such that the upper curve (which shows a
step-like increase) corresponds to samples with vertical shear bands and the lower
curve (which shows a small overshoot) corresponds to samples with horizontal
bands. In between, we have the samples with a mixture of vertical and horizontal
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Figure 5.29: Averaged potential energy < U > as a function of strain γ for 250 glass samples
at T = 0.2 and ρ = 1.2, subjected to shear deformation with the mentioned shear rates in the
figure. The data for shear rates γ̇ = 10−3, 10−4, 10−5 are shifted down by subtracting a factor
0.03, respectively. The values of the steady state values are shown in mentioned in the figure
and shown for each shear rates with dashed turquoise line.

bands. For shear rates γ̇ = 10−3, 10−4, 10−5 the curves for these three regimes
(shown in black, red, and blue) are obtained by averaging over all the samples
with the corresponding band. The number of samples with a specific kind of
shear band for different shear rates are shown in the table (5.6).

Variation of different kinds of shear bands
in glass state at T = 0.2 and ρ = 1.2

H
band

V
band

M
band

γ̇ = 10−3 25 88 137

γ̇ = 10−4 39 95 116

γ̇ = 10−5 17 50 183

Table 5.6: Number of samples with horizontal, vertical
and mixed shear bands out of 250 glass samples, being
subjected to shear deformation with the mentioned
shear rates in the table.

From table (5.6), we can see that the maximum number of horizontal and
vertical bands are observed for the shear rate of γ̇ = 10−4. This can be due to
the fact that the latter shear rate introduces a new time scale 1/γ̇ in the system
which is in the time range of some aging processes in the system and also, it
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is in the range of structural relaxation times of the initial super-cooled liquid
state from which the glass samples are obtained. As a result, we observe more
distinguishable shear bands (less mixed states) for this shear rate.

5.1.6 Remarks

The response of the SCLs to an external shear load shows a crossover from a
Newtonian to non-Newtonian liquid around a critical shear rate of γ̇c. This
crossover response can be marked via Δσ, which decreases with decreasing shear
rate in the non-Newtonian regime and vanishes in the Newtonian regime. The
stress-strain curve overshoot maximum σp shows a dependence on shear rate γ̇

and temperature T , such that it increases by increasing shear rate and decreases
by increasing temperature. The stress-strain curve overshoot maximum position
γp also shows a shear rate dependence such that, by increasing shear rate, it
moves towards larger strains but has a much weaker temperature dependence
compared to σp. Short-lived inhomogeneous flow patterns are observed in SCLs
when subjected to a shear load with a shear rate of γ̇ > γ̇c by the formation of
vertical band-like regions which span the whole system in a small strain window
before reaching the steady-state. The stress decay from the overshoot maximum
towards the steady-state occurs in a strain window of the order of Δγ = 0.1.
The potential energy also shows a step-like increase towards the steady-state
values in a strain window of the order of Δγ = 0.1. In the case of glasses, the
inhomogeneous flow pasterns are more persistent, and rather than only vertical
bands, we also observed long-living horizontal bands (even mixed states with
vertical and horizontal bands). The sharp decay of the stresses from the overshoot
maximum towards the steady-state value (occurring in a strain window in the
order of Δγ < 0.1), followed by an overshoot in the potential energy of the system
marks the occurrence of a horizontal band in the system while, in case of the
vertical bands, the stress decay is slower and there is no overshoot in the potential
energy.

5.2 Stress relaxation and residual stresses

Up to here, we showed that the stresses start to form in the samples, in the
SCL and glass state, when the samples are subjected to a shear deformation
with a constant shear rate. Now, we would like to characterize the evolution
of the stresses when the shear load is switched off. As it was discussed in
section 2.2.2, stresses remain at a finite value in metallic glasses when the external
load is switched off as residual stresses and do not decay to zero. Therefore,
understanding the effect of the residual stresses on mechanical properties is of
great importance.
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After the samples reached the steady state regime (check Fig. 5.16) at strain
γ = 3 (γ = 2 for shear rate 10−5), the shear load was switched off and we let
the samples relax. This is shown in Fig. 5.30. The figure represents the stress

Figure 5.30: Stress relaxation as a function of time, after switching off the shear load from the
steady state in Fig. 5.16. The dashed lines indicate the τLJ = 1/γ̇ with the corresponding color
for each shear rate.

relaxation for different shear rates as a function of time (double logarithmic scale
in the inset). From the plot we can clearly see a significant difference in the stress
relaxation for different shear rates. While for high shear rates (10−2, red curve)
the stresses drop quite fast, for lower shear rates (10−5, dark-gray curve) the
relaxation processes are much slower. This is due to the fact that, as we discussed
earlier in section (2.2.2), after switching off the imposed shear load (with the rate
γ̇) in glasses, initially one observes typical stress relaxation times of the order
of 1/γ̇, from which, the stress relaxation behavior changes (see in the inset of
Fig. 5.30 for shear rate γ̇ = 10−2, the red curve. 1/γ̇ is marked with dashed red
line). But, what is similar between all the curves is that, the stresses saturate at a
finite value for all the shear rates, which then results in obtaining deformed glass
samples with different amount of residual stresses. In Fig. 5.31 we show that, if
we take a first derivative of the stress relaxation data (shown in Fig. 5.30), all the
curves (irrespective of shear rate), saturate at a finite value (dashed pale orange
line) at the long tail of the relaxation curves.

The stress relaxation behavior also depends on the stage at which the shear
load is switched off. In Fig. 5.32(b), the shear load is switched off at three different
stages while the system is being deformed (marked by vertical dashed lines in
panel (a)). In panel (b) of Fig. 5.32, we see the stress relaxations (scaled to one)
from these switch off points (marked with vertical dashed lines). From the plot,
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Figure 5.31: First derivative of the stresses as a function of time, after switching off the shear
load.

we can see that; the stress relaxations are much faster when the shear load is
switched off at the long tail of the steady-state regime (red curve) at strain γ = 4,
compared to the initial times (blue curve) before the overshoot. This is due to
the fact that, for the small strains before the overshoot, the system shows slow
dynamics similar to the initial undeformed glass state, but, at large strains, the
whole system fluidizes and therefore, the dynamics (relaxation processes) are
much faster than the initial times.

Figure 5.32: left panel: stress-strain curve for a glass system at T = 0.2, N = 38400, ρ = 1.2
being imposed to a constant shear rate γ̇ = 10−4. The vertical dashed line represents the strain
points at which the shear load was switched off, and the system was allowed to relax. right
panel: stress relaxation as a function of time, after switching off the shear load from the marked
point in the left panel, scaled to one.

96



Furthermore, we also investigate the temperature dependence of stress relax-
ation in glasses and SCL. This is shown in Fig. 5.33. In this figure, we compare
the stress relaxation after switching off the shear load in the steady state regime.
Here, the glasses are at T = 10−4 and T = 0.2 and the super-cooled is liquid at
T = 0.44. All the systems have been imposed to a constant shear rate γ̇ = 10−4.
From Fig. 5.33, we can clearly see that, stress relaxations are much faster in
super-cooled liquids (red curve) and there are no residual stresses (stresses drop
to zero after switching off the shear load). But, deep in the glass state at very
low temperatures, the stress relaxations are very slow and they saturate at a
finite/constant value of residual stress (blue curve). We will discuss this in more
details in the next subsection.

Figure 5.33: left panel: stress-strain curve for glass systems at T = 10−4, 0.2, and a super-
cooled liquid at T = 0.44, being imposed to a constant shear rate γ̇ = 10−4. The shear load
was switched off at the long tail of the steady state regime. right panel: stress relaxation as a
function of time, after switching off the shear load.

Before closing this section, we make a final comparison between the stress
decay from the overshoot towards the stead state 〈σr〉 = 〈σp − 〈σss〉〉, in the glass
(at T = 0.2) for different shear rates, with the stress relaxation after switching
off the shear load in the long tail of the stress-strain curve. These results are
shown in Fig. 5.34. In order to obtain this figure, the corresponding γp for
each shear rate (shown in Fig. 5.16) is subtracted from the stress-strain curves.
Therefore, the stress-strain curve maximum at the overshoot is shifted to zero.
Then, the corresponding steady-state stress σss is subtracted from the data, and
finally, we normalized the results to one. The stress relaxation from the overshoot
maximum are shown with gray curves in Fig. 5.34. The stress relaxation curves
after switching off the shear load in the steady-state regime (shown in Fig. 5.30)
are first scaled with their corresponding shear rates. Then, the data is shifted
to zero by subtracting corresponding residual stresses, and finally, the results
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Figure 5.34: Stress relaxation from the overshoot maximum to the steady-state (gray curves),
compared to the stress relaxation after switching off the shear load in the long tail of the stress-
strain curve. The dashed lines are exponential fits to the data.

are normalized to one. The stress relaxation after switching off the shear load,
is shown with pale orange curves in Fig. 5.34. The arrow shows the direction
of decreasing shear rate for both sets of curves. By fitting these curves with an
exponential function, we can see the difference between the behavior of stress
decay in these two states. While, the stress decay from the overshoot maximum
fits a compressed exponential function exp

(
x1.7), the dashed black line, the stress

relaxation after switching off the shear load has a stretched exponential form
exp
(
x0.65), red dashed line. The sharp compressed exponential decay of the

stresses from the overshoot maximum is a result of the imposed external field
which, forces the cages to break and results in a fast stress release from the
maximum. But, the stretched exponential response of the stress relaxation after
switching off the shear load is only due to structural relaxations in the absence of
the external field. As we discussed before, it follows an initial stress relaxation in
a time window of the order of 1/γ̇ from which, the relaxation processes become
slower.

5.2.1 Residual stresses in glasses at T = 10−4 vs. T = 0.2

Earlier in this section we made a comparison between the stress relaxation in
SCL and glasses at different temperature in Fig. 5.33. We showed that at low
temperatures one obtains deformed glass samples with higher residual stresses.
Here, we make a comparison between stress relaxations in samples at T = 10−4

and T = 0.2 an with ρ = 1.3 and ρ = 1.2, respectively, subjected to constant
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shear rates γ̇ = 10−3, 10−4. This is shown in Fig. 5.35. The glass samples at

Figure 5.35: left panel: stress-strain curve for glass samples at T = 10−4, 0.2 and ρ = 1.3, 1.2,
respectively, being imposed to constant shear rates γ̇ = 10−3, 10−4. right panel: stress relaxation
as a function of time, after switching off the shear load.

ρ = 1.3 are subjected to constant shear rates γ̇ = 10−3, 10−4 (blue and black
lines, respectively) and the shear load was switched off at the strains γ = 5, 1,
respectively. The glass samples at ρ = 1.2 are also deformed with same shear
rates (red and orange lines, respectively) up to strain γ = 3, where, the shear load
is switched off. Form Fig. 5.35 we can see that, at both temperatures the stresses
decay to lower values after shear switch off for higher shear rates (γ̇ = 10−3).
As we discussed earlier, when a glass sample is subjected to shear deformation
with a constant shear rate γ̇, a new time scale is introduced in the system by
1/γ̇, therefore, the higher the shear rate the faster the stress decays. What is
important here is that, at low temperatures (T = 10−4) where the thermal noises
are negligible, the stress decay is much smaller than the stress decay at higher
temperature (T = 0.2). At the latter temperature in Fig. 5.35, the glass samples
show an initial 1/γ̇ stress decay but this follows with further decay due to thermal
noises, and in the time window shown in the figure, still the stresses are decaying.
On the other hand, the samples at T = 10−4 show an initial decay in a small time
window after shear switch off after which, the stresses saturate at a finite value
of residual stresses and remain at this finite value for a very long time.

But, the finite amount of residual stresses in samples at T = 10−4 sometimes
shows secondary stress decay processes. This is shown in Fig. 5.36. The initial
undeformed glass sample is subjected to a shear deformation with a constant
shear rate of γ̇ = 10−4. At the strain γ = 1, the shear load is switched off, and
stresses start to decay in the system5. This corresponds to the black curve in

5These features vary from sample to sample, therefore, here we show only results for single
samples.
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Figure 5.36: Stress decay after shear switch-off for samples at T = 10−4 and ρ = 1.3. The
dashed line is a stretched exponential fit to the data (see the text).

Fig. 5.36 considered as S0. After detecting this secondary relaxation processes, we
used the same deformed sample at strain γ = 1 and performed four additional
production runs, all with the same starting deformed configuration, and only
with different seeding numbers for the thermostat random number generator.
These samples are considered in Fig. 5.36 as S1 to S4. From the figure, we
can see that, only by changing the seed numbers, the stress relaxation changes
stochastically and significantly. This is consistent with the results which we
showed in [Golkia, Shrivastav, Chaudhuri, and Horbach (2020)] where, following
the same protocol, using a similar starting configuration and changing the seed
numbers for glass samples under shear load, we obtained samples with different
shear bands.

By performing the latter production runs, we obtained four deformed samples
with different amounts of residual stresses, and only one sample (S2, shown with
blue line) showed secondary relaxation processes. To further investigate these
relaxation processes, we calculated the total MSD for samples S1 to S4, to study
the changes in the dynamics of different samples after shear switch-off. This is
shown in Fig. 5.37. The total MSD is shown in Fig. 5.37 for samples S1 to S4 in
red, blue, green and orange, respectively, as a function of time τLJ. The MSD of
all samples shows an initial ballistic regime at early times, marked with a dashed
black line. In a time window between τLJ ≈ 0.05 and τLJ ≈ 20, before reaching
the caging regime, still, the MSDs for different samples sit on top of each other
showing similar dynamics. This time window corresponds to the initial stretched
exponential decay of the stresses marked with black dashed line in Fig. 5.36
where, the data is fitted with a function of the form f(x) = Aexp(−BxC) with fit
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Figure 5.37: MSD of samples at T = 10−4 and ρ = 1.3 after the shear load is switched off. The
dashed black line marks the ballistic regime.

parameters A = 0.883816, B = −0.00322023 and C = 0.873818. In a rather small
time window, the curves start to separate and saturate at different values in the
plateau regime. Here, the lower the residual stress (S3 in Fig. 5.36) means more
structural rearrangements after the shear switch off and therefore, the higher
the MSD stands in Fig. 5.37. Interestingly, the MSD of S2 follows the curve for
S1 up to τLJ ≈ 20. At this point, the stresses in S2 stay at a finite value for a
very small time window but, the stresses in S1 saturate at a slightly lower value.
This results in the first separation of the MSD curves between these to samples.
Around τLJ ≈ 100, the stresses in S2 show a small decay and, again, saturate at
a finite value for another small time window, very close to stress values for S1.
This narrow time window is where the MSDs of the latter samples meet again.
The more pronounced step-like decay of stresses in sample S2 around τLJ ≈ 220,
separates both the stress curves in Fig. 5.36 and the MSDs in Fig. 5.37 of samples.

To further investigate the secondary stress relaxations in sample S2, in Fig. 5.38,
we look at mobility maps and the layer-wise MSD of the sample after the shear
switch-off, as a function of time. The sample is sliced into ten layers of the
width L ≈ 3σAA in the x-direction, and the corresponding MSD of each layer is
shown in the upper panel of Fig. 5.38, as a function of time. Further, the total
per-particle MSD is assigned to each particle as a mobility parameter. Therefore,
in the lower panel of Fig. 5.38, we show mobility maps of the system at the time
origins marked with vertical gray dashed lines on the MSD curves. From the
figure, we can see that the MSD curves for all the layers show an early ballistic
regime marked with a black dashed line in the figure. At these early times, the
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Figure 5.38: upper panel: layer-wise total MSD for the layers shown schematically on the snap-
shot, as a function of time. lower panel: mobility maps of the sample at the time origins marked
with vertical gray dashed lines on the MSD curves.

mobilities are so small that even the snapshot corresponding to τLJ ≈ 1 shows no
activity in the system. Around a time window between τLJ ≈ 10 and τLJ ≈ 100,
some activities appear in the system, resulting in the formation of some red
spots in the snapshots. This time window corresponds to the regime where the
MSD curves for different layers start to divide and saturate at different values.
By comparing the mobility maps with MSD curves, we can see that the local
mobilities are concentrated in the first three layers (L1, L2 and L3) and the last
two layers (L9 and L10). This resulted in two slaps with higher local mobilites,
which does not change in the plateau regime for τLJ > 1000, as the particles
become frozen in the cages of neighboring particles.

5.2.2 Remarks

After switching off the external load, the stresses relax to zero in SCLs. But
in glasses, they remain in the system at a finite value, as residual stresses. In
contrast to the stress decay from the overshoot maximum towards the steady-
state, which shows a compressed exponential behavior, after the shear switch-off,
the stress decay shows an initial stretched exponential decay before saturating
at a finite value. After canceling the external load, one obtains a new glass state
with residual stresses. The amount of residual stresses depends on the stage at
which the external load is canceled and also temperature. At low temperatures
where the thermal noises are negligible, one obtains deformed glass samples
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with a higher amount of residual stresses. The stress relaxation in some of the
glass samples at T = 10−4 and ρ = 1.3 shows a secondary, step-like release of
stresses. The latter secondary relaxation processes correspond to local particle
rearrangements in some regions of the system.

5.3 Effect of deformation on elastic constants

As it was discussed earlier in this thesis, the main focus of this work was
studying the effect of the residual stresses (discussed in the previous section) and
deformation on the mechanical properties of metallic glasses. In this section, we
present the results which we have obtained by calculating the elastic moduli in
the undeformed and deformed states.

5.3.1 Evolution of elastic constants during stress relaxation

The elastic moduli, namely the shear modulus (G) Eq. (3.12), bulk modulus (K)
Eq. (3.15), Young’s modulus (E) Eq. (3.16) and Poisson’s ratio (ν) Eq. (3.17), of the
system are obtained by calculating the Lamé coefficients as defined by Eq. (3.7),
from the elastic constants tensor, Eq. (3.1). The calculation is initially done for the
quiescent undeformed states (check table (5.7)). These values are then used as a
reference with which the results from the deformed states are compared to.

Elastic constants values for the undeformed states

C̄a λ̄b μ̄c E G K ν

80.360 54.514 12.875 33.185 11.744 63.475 0.413

Table 5.7: The values obtained for the elastic moduli of the unde-
formed samples by calculation of the elastic constant tensor, Eq. (3.1).
The elastic moduli are calculated using Eq. (3.12-3.17)

a C̄ = (C11 +C22 +C33) /3
b λ̄ = (C12 +C13 +C23) /3
c μ̄ = (C44 +C55 +C66) /3

As it was discussed earlier, the deformed states are obtained after switching off
the shear load in the steady-state regime (shown in Fig. 5.39). To investigate the
effect of the residual stresses more systematically, while the stresses are relaxing
in the system, we took six-time origins on the long tail of the stress relaxation
curve (vertical gray dashed lines in Fig. 5.39). The elastic moduli of the system
are calculated at each of these time origins with different amount of residual
stresses, and for all the shear rates. By doing so, we can probe the effect of the
residual stresses on the elastic moduli from points with high residual stresses
(single dotted dashed lines in Fig. 5.39) to the points at the long tail of the stress
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relaxation, with low residual stresses (double dotted dashed lines in Fig. 5.39).
Another question that we addressed here is about anisotropies in the system with
residual stresses. To this end, we have calculated the elastic moduli of the system,
for each Cartesian coordinate independently. This means for example for shear
modulus G, different components Gxz, Gxy, Gyz are calculated (the symmetries
in elastic constant tensor imply that, Gxz = Gzx, Gxy = Gyx, Gyz = Gzy). For an
isotropic system, these values should be (on average) the same in all directions.
Therefore, we can identify anisotropies by checking these symmetries.

Figure 5.39: Stress-strain curves in the left panel, obtained for different shear rates and the
corresponding stress relaxation curves after switching off the shear load from the steady-state
regime, in the right panel. The vertical dashed gray lines mark the time origins at which the
elastic moduli have been calculated for the deformed samples. The first time origin at high
residual stresses is marked with single dotted dashed gray line and the time origin at low
residual stresses is marked with a double dotted dashed gray line.

The first set of results are shown in Fig. 5.40(a-c) for the Young’s modulus. In
Fig. 5.40(a-c) we can see the evolution of different components of the Young’s
modulus as a function of scaled time (in order to have a more clear picture the
obtained values for each time origin are scaled with the corresponding shear rate)
for all the six time origins (shown in Fig. 5.39) and for all the shear rates (with
the same colors as shown in Fig. 5.39). Therefore, it should be clear that the six
data points of the same color represent the obtained values of the moduli, from
the six time origins (left to right), and the horizontal dashed blue line represents
the values of the undeformed state.

The overall behavior of the Young’s modulus is shown in Fig. 5.40(a-c) for
all three components. For all the components, with longer relaxation times the
values of the moduli, irrespective of the shear rate, evolve towards their initial
undeformed values. But, the values saturate at a lower value before reaching the
initial undeformed value (this will be shown more clearly in Fig.5.47), showing
minor softening in the system. Another interesting observation from the plot
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Figure 5.40: Evolution of different components (Exy, Exz, Eyz, in a,b and c respectively) of the
Young’s modulus as a function of scaled time with the corresponding shear rate. The dashed
blue horizontal line represents the values obtained for the undeformed state.

is the variation of different components. By comparing Fig. 5.40(a and c) with
Fig. 5.40(b), we can clearly see that, the component which is directly related
to the direction of the applied shear deformation (Exz component) has been
effected more, and shows a larger variation. While, the other two perpendicular
components (Exy and Eyz) show less variation, they also have a very similar
behavior. This indicates small anisotropies in the system which will be discussed
in more details later in this section. The same behavior is observed for the shear
modulus and Poisson’s ratio, shown in Fig. 5.41(a and c) and 5.42(a and c). From
these figures we also see the same behavior. The moduli tend to evolve towards
their initial undeformed values (horizontal dashed blue line), and while the
term corresponding to the direction of the shear shows the most changes and
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variation, the other two perpendicular components have a similar behavior with
less variations. Both moduli (shear modulus and Poisson’s ratio), in the same
manner as for the Young’s modulus, saturate at a finite value before reaching the
initial undeformed values, showing slight softening in the system.

Figure 5.41: Evolution of different components (νxy, νxz, νyz, in a,b and c respectively) of the
Poisson’s ratio as a function of scaled time with the corresponding shear rate. The dashed blue
horizontal line represents the values obtained for the undeformed state.

One important point to be mentioned here is the behavior of the data points
corresponding to the xz-components of the moduli at the first time origin. These
data points are shown with open symbols in panel (b) of Fig. (5.40-5.43), and
the time origin to which we are referring to, is shown in Fig. 5.39 with single
dotted vertical dashed line. The samples have the highest amount of residual
stresses at this time origin, compared to the other time origins. From these data
points, we can see that the higher the residual stresses, the larger the change in
the moduli. For all the moduli, the first open dark-gray circle corresponding to
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Figure 5.42: Evolution of different components (Gxy, Gxz, Gyz, in a,b and c respectively) of the
shear modulus as a function of scaled time with the corresponding shear rate. The dashed blue
horizontal line represents the values obtained for the undeformed state.

the first time origin of the shear rate 10−5 with the highest residual stress (check
Fig. 5.39), shows the largest deviation from the undeformed values, while, the
first open red circle corresponding to the first time origin of the shear rate 10−2

with the lowest residual stress (check Fig. 5.39), shows smaller changes. One
important point here is that the corresponding stress tensor component related
to the applied shear deformation is σxz. Therefore, after switching off the shear
load, the residual stresses are stored in the σxz component of the stress tensor. As
a result of these residual stresses, the non-affine component of the elastic constant
tensor (CF

xz) Eq. (3.5), shows larger deviations from its initial undeformed values
(we will come back to this point shortly when we discuss the results shown in
Fig. 5.45). Here, the question is, can we conclude that the elastic constants of the
system are mostly affected by the plastic deformations as a result of non-affine
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displacements? We will come back to this shortly.

Figure 5.43: Evolution of different components (Kxy, Kxz, Kyz, in a,b and c respectively) of the
bulk modulus as a function of scaled time with the corresponding shear rate. The dashed blue
horizontal line represents the values obtained for the undeformed state.

The last set of plots (Fig. 5.43(a and c)) represent the obtained results for the
bulk modulus. The first evident difference by looking at these plots comes from
the fact that the bulk modulus seems to increase and stay at a finite value. While
we observed a gradual evolution towards the initial undeformed values for the
other moduli, in the case of bulk modulus, the values show an increase and stay
at a finite value above the initial undeformed results. Even for the xz component,
the behavior is similar. Initially, Kxz (Fig. 5.43(c)), for low shear rates and high
residual stresses at first time origin, shows deviations below the undeformed
value, and with decreasing stress (longer stress relaxation time), starts to increase
and saturates at a finite value. The other difference compared to other moduli
rises from the fact that, despite the minor deviation described for the Kxz at early
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times, all the moduli seem to have similar behavior by an increase and saturating
at the same value (on average). Here, we try to investigate what causes the
increase in bulk modulus and why should the behavior of the bulk modulus
be different from other moduli. Therefore, we need to recall the definition of
different moduli shown in Fig. 3.2-3.5. From these schematic figures, we can see
that what is different for bulk modulus compared to the other moduli is that the
bulk modulus (by definition) is the resistance of the material against volumetric
compression. This means that the bulk modulus is sensitive to all Cartesian
directions. While all the other moduli are only sensitive to one axial direction.
Therefore, the bulk modulus should indeed behave differently compared to the
other moduli. Also, we need to recall the mathematical definition of the bulk
modulus Eq. (3.15). The excess pressure pexc in Eq. (3.15) is a constant and has
a small contribution in the changes. Therefore, the main contribution to the
changes occurring in the bulk modulus should be related to the other terms, λ
and μ. Here, we investigate the changes occurring in the Lamé coefficients after
deformation and while the stresses are decaying in the system.

Figure 5.44: Evolution of C̄ as a function of relaxation time for all the time origins shown in
Fig. 5.39, and for all the shear rates in the main panel and λ̄ and μ̄ in the inset a and b respec-
tively. The horizontal dashed blue lines represent the initial undeformed values.

The main panel of Fig. 5.44 shows the evolution of C̄ = (C11 +C22 +C33) /3
(check section 3.1.1) as a function of relaxation time, for all the time origins
shown in Fig. 5.39, and for all the shear rates. The horizontal dashed blue
line represents the initial undeformed value. It is clear from the plot that, C̄
shows an initial decrease from its undeformed value for the first time origin
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with the highest residual stresses and then increases as the stresses further relax,
and eventually saturates at a finite value above its undeformed value. This is
quite a similar behavior which we also observed for the bulk modulus, and
as long as by definition C̄ = λ̄ + 2μ̄ (in which, λ̄ = (C12 +C13 +C23) /3 and
μ̄ = (C44 +C55 +C66) /3), which is very similar to the definition of bulk modulus
Eq. (3.15), it makes sense to look at the evolution of λ and μ to see what is causing
the offset increase in C̄. The evolution of λ and μ as a function of relaxation
time, is represented in the insets (a,b) of Fig. 5.44 respectively, for all the six time
origins shown in Fig. 5.39 and for all the shear rates. The horizontal dashed blue
lines represent the initial undeformed values. From the insets we can see that, μ̄
(inset (b)) evolves towards its initial undeformed values and saturates at a finite
value very close to that. But, λ̄ (inset (a)) saturates at a finite value above its
initial undeformed value. Therefore, from this result it is evident that the offset
in the final value of C̄ is caused by λ̄. As it was discussed in chapter 3, the elastic
constant tensor Eq. 3.1 consist of three different components. Therefore, in order
to understand the offset in C̄ caused by λ̄, we need to check the evolution of
each of these components. Meaning, λ̄B and μ̄B corresponding to the Born term
Eq. 3.4, and λ̄F and μ̄F corresponding to the stress fluctuation component Eq. 3.5.
This is shown in Fig. 5.45(a-c).

Fig. 5.45(a-c) shows the evolution of λ̄B =
(
CB

12 +CB
13 +CB

23
)
/3, μ̄B = (CB

44 +

CB
55 +CB

66)/3, λ̄F =
(
CF

12 +CF
13 +CF

23
)
/3 and μ̄F =

(
CF

44 +CF
55 +CF

66
)
/3 as a func-

tion of relaxation time, for all the time origins shown in Fig. 5.39 and for all the
shear rates. By comparing Fig. 5.45(a,b) with Fig. 5.45(c) we can clearly see that
the contribution of the non-affine components of the elastic constant tensor is
much more pronounced than the affine (Born) term. Although, all the compo-
nents show an evolution towards their initial undeformed values (the horizontal
dashed blue line) and saturate at a finite value before reaching these values,
the offset contribution of the non-affine terms, is larger than the affine terms.
Therefore we can conclude that the main contributions in the changes occurring
in the elastic constant tensor (caused by the residual stresses), comes from the
non-affine deformations (with respect to the initial undeformed states) in the
system. This is expected, because the shear load is switched off in the steady state
regime where, the system has under gone plastic deformation and the plastic
deformations are associated to non-affine displacements.

One last cross-check on the bulk modulus was done by performing simula-
tions under constant pressure (NPT ). To do so, we took the relaxed undeformed
samples from the canonical simulations (NVT ) and calculated the average pres-
sure of the samples. The samples were then coupled to a barostat, and the
pressure was fixed at the obtained mean pressures. Then, the samples were
relaxed at fixed pressure by performing a production run of the order of 104τLJ in
the NPT ensemble. Shear deformation was then applied to the relaxed samples
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Figure 5.45: Evolution of λ̄F, μ̄F, λ̄B and μ̄B as a function of relaxation time for all the time ori-
gins shown in Fig. 5.39, and for all the shear rates. The horizontal dashed blue lines represents
the initial undeformed values. The shaded are shows the percentage of deviation from the
undeformed value.

with a constant shear rate of γ̇ = 10−4. Then shear load was switched off in
the steady-state regime, and we followed the same protocol, as it was discussed
earlier in this section, to calculate the elastic constant tensor from the six-time
origins (cf. Fig. 5.39). These results are shown in Fig. 5.46.

Fig. 5.46 shows the obtained values for different components of the bulk
modulus (the open circles represent the xy components, open squares the yz

component and the open triangles the xz components. The closed triangles
show the averaged values overall components.) for NVT runs in sharp and
light blue and NPT runs in gray and black. The horizontal dashed line (in light
blue) and dotted line (in black) are the obtained values for the undeformed
states of the NVT and NPT runs, respectively. From Fig. 5.46 we can see that we
observe qualitatively the same behavior for the NPT runs. The bulk modulus
also increases and stays at a finite value. While the undeformed values agree
for both cases, the final values after deformation seem to be slightly different
which can be caused by minor increases in the volume of the system at constant
pressure (by coupling the system to a barostat to fix the pressure, we allow the
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Figure 5.46: Comparison between the obtained results for the evolution of different compo-
nents of the bulk modulus as a function of relaxation time, for NVT runs (in sharp and light
blue), and NPT runs (in gray and black).

simulation box to fluctuate).
As it was discussed earlier in this section, by calculating all different com-

ponents of the elastic moduli, we tried to investigate anisotropies in the system
while the stresses are relaxing. The signs of these anisotropies were already
visible in the results which we have shown so far. In order to give a more clear
picture on these anisotropies, we present in a set of plots (Fig. 5.47(a-d)), the
obtained values for all the components of the elastic moduli for a single shear
rate (γ̇ = 10−4), and for all three different components in a single plot.

From Fig. 5.47(a-d), we can see that, while the xy and yz components of the
moduli stay close to each other even at early times, the xz component shows
minor deviations. Especially at the early times for the first time origins shown in
Fig. 5.39. But, these minor anisotropies seem to vanish the more the stresses are
relaxing in the system, and the system becomes isotropic. Therefore we can see
that the residual stresses are inducing anisotropies in the system, and the higher
the residual stresses, the more pronounced the anisotropies. In the next section,
we will try to investigate these anisotropies in the macroscopic response of the
system.

5.3.2 Macroscopic response of deformed glasses with residual stresses

In the previous section, we observed minor anisotropies in the elastic moduli
of the system. To cross-check these results and see whether we can observe the
same anisotropies in the macroscopic response of the system, we performed a
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Figure 5.47: Evolution of different components of the Young’s modulus (a), the Poisson’s ratio
(b), the shear modulus (c) and the bulk modulus (d) as a function of relaxation time for a
single shear rate γ̇ = 10−4, and for all the time origins shown in Fig. 5.39.

simulation in which we took the deformed samples from the first and last time
origins shown in Fig. 5.39. The first time origin is at early times after switching
off the shear load where the samples have high residual stresses (single dotted
dashed line in Fig. 5.39) and the last time origin at the late relaxation times where
the samples have less residual stresses (double dotted dashed line in Fig. 5.39).
From these points, we started to deform the samples again by applying a shear
deformation, in the same direction as it was initially imposed to the samples (x-
direction) and also in the two other perpendicular directions (y and z-direction).
By doing so, we were able to obtain the stress-strain curves shown in Fig. 5.48
and 5.49.

Fig. 5.48 represents the stress-strain curve obtained for the samples which
are deformed from the initial undeformed state (in black) by performing a shear
deformation in x-direction with a constant shear rate γ̇ = 10−4. The deformed

113



Figure 5.48: Stress-strain curves for the samples being deformed from the initial undeformed
state (in black) in x-direction, and from the last time origin on the stress relaxation curve (dou-
ble dotted dashed line in Fig. 5.39) in x, y and z directions in red, blue and orange respectively.
All the samples are deformed with a single constant shear rate γ̇ = 10−4.

samples, after switching off the shear load from the steady states, were then
taken from the last time origin on the stress relaxation curve (double dotted
dashed line in Fig. 5.39). The red curve represents the stress-strain curve obtained
by performing the shear deformation on these deformed samples in x-direction.
The blue and the orange curves represent the stress-strain curves obtained by
performing the shear deformation on deformed samples in y and z-directions,
respectively. The dashed lines in the elastic regime are linear fits to the data. By
fitting the data in the elastic regime with a linear function of the form σ(γ) = Gγ,
we are able to read off the slope of these linear functions G (which corresponds to
the shear modulus of the samples) and cross check these values with the values
we have obtained from calculation of the elastic constants tensor. These values
are shown in table (5.8). By looking at the linear fits in the elastic regime of the
stress-strain curves in Fig. 5.48 we can see that, the dashed lines have similar
slopes (on average) and therefore the values of the shear modulus should not
vary a lot. By comparing the obtained values from the linear fits in the elastic
regime and the obtained values from the calculation of the elastic constant tensor
(shown in table (5.8)) we can clearly see that, both calculations agree nicely with
each other within an error of about 5%. Minor softenings are visible by the small
decrease and shift of the stress overshoots to lower strains of the stress-strain
curves. These softenings are also observed in the obtained values of the shear
modulus from the calculation of the elastic constant tensor and the linear fits in
the elastic regime of the stress-strain curves, compared to the undeformed states.
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Comparisona between the shear modulus obtained from ECTband fits on SSCc

GECT GSSC

Gxz 11.744 12.406

Gxz 11.190 11.771

Gyx 11.422 11.906

Gzy 11.338 11.860

Table 5.8: Comparison between the values of different component os the shear modulus, obtained
from the calculation of the elastic constant tensor and linear fits in the elastic regime of the stress-
strain curves shown in Fig. 5.48. The colors are chosen in accordance to

a For the deformed samples taken from the last time origin on the stress relaxation curve (double
dotted dashed line in Fig. 5.39).

b Elastic constant tensor
c Fits in the linear regime of stress-strain curve

Also, another remark which should be made here is that from both calculations
(elastic constant tensor and linear fits in the elastic regime of the stress-strain
curve) we can see that, as it was also discussed earlier, the system seems to
recover its isotropies, and different component of the shear modulus have similar
values on average.

Figure 5.49: Stress-strain curves for the samples being deformed from the initial undeformed
state (in black) in x-direction, and from the first time origin on the stress relaxation curve (sin-
gle dotted dashed line in Fig. 5.39) in x, y and z directions in red, blue and orange respectively.
All the samples are deformed with a single constant shear rate γ̇ = 10−4.
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Comparisona between the shear modulus obtained from ECT and fits on SSC

GECT GSSC

Gxz 11.744 12.406

Gxz 8.990 9.499

Gyx 9.906 10.543

Gzy 10.005 10.490

Table 5.9: Comparison between the values of different component os the shear modulus, obtained
from the calculation of the elastic constant tensor and linear fits in the elastic regime of the stress-
strain curves shown in Fig. 5.49.

a For the deformed samples taken from the first time origin on the stress relaxation curve (single
dotted dashed line in Fig. 5.39).

The linear fits in the elastic regime of the stress-strain curves in Fig. 5.49,
show much more variation compared to the previous plot and they have rather
different slopes. Also, the softenings in the system are much pronounced here,
as the overshoot in the stress-strain curves shows even a larger decrease and
the samples seem to be more ductile. By looking at the obtained values in table
(5.9) we can see that, the shear modulus shows a large decrease compared to the
values of the initial undeformed state, and also, from both calculations (elastic
constant tensor and linear fits in the linear regime of the stress-strain curve) we
are able to observe anisotropies in the system. While, the values for yx and zy

components are very close to each other, the xz component has a lower value
and shows a large deviation from the initial undeformed values. This means,
the system seem to be more ductile in x-direction compared to the other two
perpendicular directions.

Before closing this section, we present one last result, which is obtained by
applying shear deformation on deformed samples with residual stresses. In
Fig. 5.50 we compare between the stress-strain curve obtained by performing
shear deformation with a constant shear rate γ̇ = 10−4 on samples from the initial
undeformed states (black curve) and the deformed samples are taken from the
first and last time origin, shown in Fig. 5.39, with the highest (abs(< σ−xz >)S)
and lowest (abs(< σ−xz >)L) residual stresses (in orange and green, respectively)
subjected to shear deformation with a constant shear rate γ̇ = −10−4, in the
opposite direction with respect to the initial deformation. From the figure, we can
see that the deformed samples show an initial release of stresses followed by an
elastic response after the release of the stresses. In both cases (samples with high
and low residual stresses), samples appear to be more ductile. The softenings are
reflected in the stress-strain curve overshoot where, for the samples with lowest
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Figure 5.50: main panel: Stress-strain curve obtained by performing shear deformation with a
constant shear rate γ̇ = 10−4 on samples from the initial undeformed states (black curve) and
the deformed samples are taken from the first and last time origin, shown in Fig. 5.39, with
the highest and lowest residual stresses (in orange and green, respectively) subjected to shear
deformation with a constant shear rate γ̇ = −10−4, in the opposite direction with respect to the
initial deformation. inset: represents the same data in double-logarithmic scales.

residual stresses, we observe a large decrease in the overshoot maximum. In
the case of samples with high residual stresses, the stress-strain curve does not
show any overshoot and shows a shoulder type increase. The shear modulus
(reflected in the linear response of the samples in the elastic regime) seems to
show minor changes with respect to the initial undeformed samples, which is
in good agreement with the results which we have shown before. The inset
in Fig. 5.50 corresponds to the full stress-strain curve for all cases in double-
logarithmic scales. As expected (the steady-state response should be the same
for samples at a fixed temperature and a constant shear rate), in the steady-state
regime, all the curves sit on top of each other.

5.3.3 Simulation results vs. experimental results

This part of our work (effect of deformation on elastic constants of BMGs) was in
collaboration with our experimental collaborators at the University of Münster6.
They studied the effects on elastic constants of a Pd40Ni40P20 metallic glass-former
by deforming the samples via cold rolling. In their studies, they also measured
the elastic constants of the system both for the undeformed and the deformed
samples. In table (5.10) we present a comparison between the experimental

6Group of Prof. Dr. Gerhard Wilde, Institut für Materialphysik, Westfälische Wilhelms-
Universität Münster, Germany
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and simulation results. From table (5.10) we can see that, both simulations and

Comparison between elastic moduli, obtained from
simulationa and experiment

Un-deformed glass Deformed glass

Simulation Experiment Simulation Experiment

E 97.06 ± 2.5 (GPa) 101 ± 2 (GPa) 93.78 ± 2.8 (GPa) 100 ± 2 (GPa)

K 185.65±1.1 (GPa) 175 ± 76 (GPa) 187.5 ± 1.1 (GPa) 172 ± 75 (GPa)

G 34.35 ± 0.9 (GPa) 36.1 ± 0.7 (GPa) 33.10 ± 1.1 (GPa) 35.5 ± 0.7 (GPa)

ν 0.413 ± 0.002 0.404 ± 0.003 0.417 ± 0.002 0.403 ± 0.003

Table 5.10: A comparison between the obtained values of elastic moduli, from simulation and
experiment, for both undeformed and deformed samples of a Ni80P20 (in simulation) and
Pd40Ni40P20 (in experiment) glass former.

a The simulation results are converted from reduced units (table (4.2)) to real units, with a
single factor (2.925 × 109), by considering Nickel’s atomic information. In order to do so, we
have used the Van der Waals Radii of Nickel σNi = 1.9Å, atomic mass mNi = 9.75 × 10−26kg,
melting temperature TNi

m = 1453◦K [Batsanov (2001), Hu, Zhou, and Robertson (2009), and
Ruben (1985)] and the Boltzmann’s constant kB = 1.38 × 10−23m2kg/s2K [Pitre, Plimmer,
Sparasci, and Himbert (2019)].

experimental results show softenings in the system after deformation (here it
should be mentioned that, the reported simulation values for the deformed cases
are obtained by calculating the elastic constants for the deformed samples at the
longest relaxation time origin shown in Fig. 5.39 (double dotted dashed line). The
shear modulus and the Young’s modulus show a decrease, both in simulation
and experiment. But, the bulk modulus appears to decrease in experiment after
deformation, which is not completely reliable because of the large statistical
errors in the measurements.

But, as a general conclusion, the appearance of these softenings both in
simulation and experiment were impressive results that needed to be investigated
in more detail. Therefore, we tried to study the effect of deformation on elastic
properties of the system using the vibrational modes and see whether we can
observe the same softenings or not?! These results will be presented in the next
section.

5.3.4 Remarks

The elastic constants (shear modulus, Young’s modulus, and Poisson’s ratio)
of the deformed samples with residual stresses, evolve towards their initial
undeformed values as the stresses relax in the system. But, the bulk modulus
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increases and stays at a finite value. This increase, compared to the quiescence
values, is caused by non-affine displacements in the system and is reflected in
the non-affine component of the elastic constant tensor. Residual stresses induce
minor anisotropies in the elastic constants of the system while the stresses are
relaxing in the system. The macroscopic response of the deformed samples
with residual stresses also reflects the same minor anisotropies when subjected
to secondary shear deformation. The deformed samples show softenings after
deformation compared to their quiescence states. Therefore, here we can conclude
that, rather than last minor changes in the mechanical responses of the system,
the elastic constants appear not to be very sensitive to deformation.

5.4 Effect of deformation on time-dependent
vibrational properties

As the main focus of this work, in order to investigate the effect of deforma-
tion and the residual stresses on the mechanical properties of BMGs, we also
studied the time-dependent vibrational properties of BMGs in terms of current
correlation functions and dynamic structure factor. We also looked at the density
of vibrational states and the Boson peak. The elastic properties of a physical
system are related to the low-frequency regime of the density of states where the
collective modes appear as acoustic sound waves. Therefore, one can obtain the
sound velocities in the system and also the specific heat. For all the mentioned
quantities, the calculation has been done both for the undeformed (as a reference)
and the deformed states.

5.4.1 Density of states and the Boson peak

The density of vibrational states was obtained using Eq. (3.41), by performing a
FFT (as it was discussed in section 4.3.2) on the velocities of the prepared samples
in the undeformed state and transforming the time domain to the frequency
domain (check Fig. 5.51). Fig. 5.51 shows the total density of states (in black)
and the partial density of states for A and B-type particles (in blue and red,
respectively), for the initial undeformed states. From the figure we can see
that, while gA (ω) (corresponding to A-type particles) has quite a symmetric
distribution, gB (ω) (corresponding to B-type particles) is skewed to the lower
frequencies. This corresponds to a frequency window of ≈ 5 − 20[τ−1

LJ ] (which
is far from the frequency range of our interest. Our main focus is on the low-
frequency limit (ω → 0) of the density of states where the collective modes
appear as acoustic waves.). This means that the phonons, corresponding to
B-type particles, are slightly easier to excite with lower energies, and the main
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Figure 5.51: Total density of states (in black) and the density of states corresponding to A and
B-type particles (in blue and red respectively).

energy carriers in the system are the phonons corresponding to A-type particles.
This can also be understood since, the B-type particles are slightly smaller in size
(effective radius, check table (4.1)), and they have faster dynamics compared to
A-type particles (check Fig. 2.5).

To study the finite-size effects in our calculations, we performed extensive
MD simulations and calculated the density of states for different system sizes
(see section 4.3.2). In Fig. 5.52 we show a comparison between the total density
of states of a small system (with N = 1300 particles in a cubic simulation box
size of L ≈ 10σAA, in green) and a large system (with N = 40000 particles in a
cubic simulation box size of L ≈ 31.34σAA, in black), for the initial undeformed
states7. In the main panel of Fig. 5.52 we can see that the total density of states
corresponding to two system sizes seems to be consistent with each other and
sit on top of each other. But, the finite-size effects emerge in the inset where
we have plotted the same data in double logarithmic scales. In the inset of
Fig. 5.52 one can see that, while at higher frequencies the curves sit on top of
each other, at lower frequencies we are detecting some modes in the large system
(by the appearance of the spikes) which are not visible in the small system for
this frequency range. The Boson peak was obtained, for both system sizes, by
g (ω) /ω2 for the initial undeformed states (check Fig. 5.53).

In the main panel of Fig. 5.53, we show g (ω) /ω2 which, shows a peak around

7Hereafter, all the results we are presenting are for the large system with N = 40000 par-
ticles. Whenever we make a comparison between different system sizes, we will mention the
corresponding system sizes.
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Figure 5.52: main panel: Total density of states for a system of 40000 particles (in black) com-
pared to the total density of states of a system 1300 particles (in blue). inset: The same data is
presented in logarithmic representation.

≈ 1THz for the large system (the total g (ω) /ω2 in black and the corresponding
Boson peak associated to the A and B type particles in blue and red, respectively)
and the small system (in green). What is important here, as we discussed earlier
in this section, is the appearance of the finite size effects in our calculations by the
emergence of two sharp spikes in the low frequency limit of the Boson peak for
the large system (in black). While, in the small system (the green curve) we do
not detect them. Later when we make a comparison between the Boson peak of
the undeformed and deformed states we present a more comprehensive picture
of these finite size effects. What is shown in the inset of Fig. 5.53 is basically the
same data from the main panel by performing a running average of length 208.
By performing a small averaging on the data we get a typical Boson peak shown
in many literature but, we loose a lot of valuable information. An important
question to ask here is that: what is the origin of these spikes in the low frequency
limit? We will answer this question in section 5.4.3.

Shear load was then applied on the undeformed samples (as it was discussed
in 4.3.2) with a single shear rate γ̇ = 10−4. Therefore, we obtained the stress-strain
curve shown in the main panel of Fig. 5.54. The samples were deformed up to
strain γ = 1. At this point the shear load was switched off, and we allow the
samples to relax. Therefore, we obtained deformed samples with a finite amount

8In a running average (RA) of length m over N data points D(n) with n = 1, · · · ,N, the
data points are averaged in windows of length m around a central value y such that, RAD(n) =

1
m

k∑
j=−k

yn+j with k = m−1
2 .
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Figure 5.53: main panel: The Bososn peak obtained by g (ω) /ω2 for the large system (in black)
and the small system (in blue). inset: Represents the same data by performing a running aver-
age of length 20.

Figure 5.54: main panel: Stress-strain curve obtained by performing a shear deformation on the
prepared samples (check 4.3.2) with a constant shear rate γ̇ = 10−4. inset: Stress relaxation after
switching off the shear load at strain γ = 1 as a function of time.
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of residual stresses, as it is shown in the inset of Fig. 5.54. The density of states
was then calculated for the deformed samples and the result was compared to
the initial undeformed samples as a reference. This is shown in Fig. 5.55. In the

Figure 5.55: main panel: Comparison between the density of states of the undeformed samples
(in black) with those of the deformed samples (in gray). inset: represents the same data in
double logarithmic scales.

main panel of Fig. 5.55 the density of states of the undeformed samples (in black)
is compared with those of the deformed samples (in gray). A slight decrease
is noticeable in the maximum peak. Small changes are also happening in the
density of states of the deformed samples both at high and low frequencies,
where, at low frequencies these changes indicate small softenings in the system.
In the inset of Fig. 5.55 we see the same data in double logarithmic scale, and we
can see the minor effects after deformation in the low frequencies, where, the
detected modes are showing slight decrease in their peaks.

These effects are much more pronounced when we obtain the Boson peak
by dividing the density of states for the deformed samples by omega squared.
This is shown in Fig. 5.56. In the main panel of Fig. 5.56, we see a comparison
between the Bososn peak of the undeformed samples (in black) and the deformed
samples with residual stresses (in gray). From the figure, we can see that the
deformation has effected the low-frequency limit of the Bososn peak in the
samples with residual stresses. The Boson peak has slightly shifted towards the
lower frequencies, and spikes in the low-frequency limit show a small broadening
with a decrease in the peak. These effects show the emergence of softenings in the
system which is consistent with the results obtained from calculations of elastic
constants, discussed in the previous section (in section 5.4.3 we will discuss the
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Figure 5.56: main panel: Comparison between the Boson peak of the undeformed samples
(in black) with those of the deformed samples (in gray). inset: represents the same data by
performing a running average of length 20.

effects on the low-frequency regime of the Bososn peak in more details when we
present the results obtained from the time-correlation functions). The inset in
Fig. 5.56 shows the same data by performing a running average of length 20 on
the data. From the inset, we can also see that the Boson peak has shifted towards
lower frequency by showing a minor increase in the peak.

Figure 5.57: main panel: The Boson peak obtained for different system sizes (as it was discussed
in 4.3.2) for undeformed states (the filled symbols). The black, orange, red, green and blue
curves correspond to systems with N = [1300, 3000, 40000, 200000, 1500000] particles respec-
tively. The open symbols represent the results for deformed states. inset: Represents the same
data by performing a running average of length of 20.
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As it was mentioned earlier in this section, to study the finite-size effects in
our calculations, we have performed extensive MD simulations and calculated
the density of states and the Boson peak for different system sizes (as it was
discussed in 4.3.2). Fig. 5.57 shows a comparison between the Boson peak of
different system sizes in the undeformed and deformed state. From the main
panel, we can see that by increasing system size, we can detect more modes in the
system (we will talk about this in more detail in section 5.4.3). The curves with
closed symbols correspond to undeformed states, and the corresponding open
symbols (with the same color, respectively) represent the result for deformed
states. The inset shows the same data by performing a running average of length
20 on the data (dashed lines represent the undeformed states and the open
symbols the deformed states). In large system sizes, as a result of the shift of
the modes towards lower frequencies after deformation, the Boson peak shows a
more pronounced change by an increase of the peak amplitude and shift towards
lower frequencies. But, these effects are less pronounced for the small system
sizes (black and orange curves) where only a small increase in the peak amplitude
in the limit of low frequencies occurs. Another conclusion that can be made from
the plot is that is simulations, the Boson peak in the low frequency of the density
of state is mainly due to finite size effects and strong softenings. The fact that in
experiments, much smoother Boson peak can be detected, might be due to better
annealing of the samples.

5.4.2 Heat capacity

As it was discussed earlier in section 3.2.4, by Debye’s description, the specific
heat CV is proportional to T3 in the limit of low temperatures. In glasses, the
specific heat deviates from the Debye’s description by showing a Boson peak
around T ≈ 10◦K. To study the effect of deformation and the residual stresses
on the specific heat and the Boson peak of the system, using Eq. (3.43), we have
calculated the specific heat from the obtained density of states. The calculation
was initially performed on the undeformed samples. Here also, to study the
finite size effects, we have calculated the specific heat for all the system sizes
shown in Fig. 5.57. These results are shown in Fig. 5.58.

The obtained specific heat CV are shown in the inset of Fig. 5.58 for different
system sizes. From the figure, we can see that irrespective of the system size, all
the curves sit on top of each other, and as expected (check 3.2.2), they saturate
at a finite value at high temperatures. In the main panel, we see the obtained
Boson peak by CV/T

3, for different system sizes. The first interesting observation
is that the spikes appearing in the low-frequency limit of the Boson peak do
not appear in the low-temperature limit of the Boson peak in specific heat. But,
the Boson peak appears to be shifted towards lower temperatures in the larger
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Figure 5.58: main panel: The Boson peak obtained by CV/T3 for different system sizes (for cor-
responding system sizes check caption in Fig. 5.57). inset: Specific heat obtained for different
system sizes (system sizes are shown in Fig. 5.59).

systems, followed by an increase in the peak. This is an effect of the acoustic
modes in the low-frequency range of the Boson peak. The same calculation was
done to obtain the specific heat and the corresponding Boson peak appearing in
the low-temperature limit of the specific heat of the deformed states. The latter
results were then compared to those of the undeformed states as a reference.
These results are shown in Fig. 5.59.

In Fig. 5.59 we can see that similar to the results presented for the Boson peak
in the density of states (Fig. 5.57), the Boson peak in the specific heat also shows a
slight increase after deformation (the open symbols in Fig. 5.59) compared to the
initial undeformed states (the closed symbols in Fig. 5.59) with a shift towards
the lower temperatures. This is consistent with the reported experimental and
simulation results by [Bünz, Brink, et al. (2014)] for a Zr50Cu40Al10 metallic glass-
former. In the latter work, the authors showed that after deformation, the Boson
peak amplitude shows a small increase for the deformed samples compared to
the Boson peak of the undeformed samples. In the latter work, the authors also
studied the effect of annealing on the Boson peak. We also studied these effects
and found consistent results. In Fig. 5.60(a) we compare the Boson peak in the
density of states of samples prepared via a fast quench (black open circles) and
longer annealed samples with quench rates 2 × 10−3 and 2 × 10−4 (in orange and
blue open squares, correspondingly). Panel (b) of Fig. 5.60 presents the Boson
peak in the specific heat for the samples with the same temperature history. From
Fig. 5.60(a), we can see that, for longer annealed samples, the amplitude of the
spikes in the low-frequency range of the Boson peak increase and show a slight
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Figure 5.59: Comparison between the Boson peak, obtained by CV/T3, of the undeformed
(close circles) and deformed (open circles) samples, for different system sizes. The number of
particles N, is shown in the figure for different system sizes.

Figure 5.60: panel (a): presents the Boson peak in the density of states obtained by g (ω) /ω2,
for glass samples obtained via a fast quench (black open circles) and longer annealed samples
(in orange and blue open squares, correspondingly). panel (a): presents the Boson peak in the
specific heat, obtained by CV/T3, for the glass samples with the same temperature history. The
arrows in both panels show the direction for longer annealing time.
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shift towards larger frequencies. This is also reflected in the Boson peak in the
specific heat in panel (b) of Fig. 5.60 where, for longer annealed samples, a small
decrease is visible in the amplitude of the peaks.

5.4.3 Correlation functions

In this work, we also investigate the effect of deformation and the residual stresses
on the vibrational modes in BMGs via studying the time-correlation functions
(discussed in section 3.3). Similar to the results we have shown so far, these
quantities are calculated initially for the undeformed states (as a reference) with
which then, the corresponding deformed states are compared to.

Using Eq. (3.52), the total current correlation function is calculated for the
undeformed samples (shown in Fig. 5.61). In the main panel of Fig. 5.61, we

Figure 5.61: main panel: The total current correlation function for the three lowest wave num-
bers of the system. The corresponding transverse and longitudinal current correlations are
shown, respectively. inset: The total current correlation function for three large wavenumbers
of the system.

see the total current correlation function for the three lowest wave numbers q =

0.2, 0.284, 0.347[σ−1
A ] of the system (large system). The total current correlation

function shows two well distinguishable peaks for lowest q values of the system,
corresponding to the transverse (JT ) and longitudinal (JL) current correlation
functions, respectively. In the hydrodynamic limit (q → 0 and ω → 0), these
correlation functions give information about the acoustic modes in the system.
In Fig. 5.61, we see the transverse and longitudinal acoustic sound modes in
the main panel. By increasing q, these modes become less pronounced and
start to overlap. This is shown in the inset of Fig. 5.61 for three large wave
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numbers q = 1.003, 2.103, 3.502[σ−1
A ] of the system. By increasing q, we are

probing the small length scales in which the acoustic modes are scattered by
disorder in the system. Therefore, for example in the inset of Fig. 5.61 we can see
for q = 3.502[σ−1

A ] (purple curve), we cannot distinguish between these modes
anymore, and they start to sit on top of each other on a single peak at higher
frequencies. This corresponds to time and length scales beyond the Ioffe-Regel
crossover at which the Boson peak has already occurred, and where the mean free
path between plane waves becomes proportional to their wavelength (cf. 3.2.4).
Here we should also mention that the higher amplitude and larger contribution
of the transverse modes at low q, compared to those of longitudinal modes, is
since the transverse modes have two degrees of freedom compared to those of
the longitudinal modes.

Going back to results which we discussed on the Boson peak earlier in section
5.4.1, we have seen the occurrence of some sharp spike-like peaks in the low-
frequency limit of the Boson peak in Fig. 5.54. So far, we have mentioned that
these peaks are caused by vibrational modes in the system appearing in the low-
frequency limit of the Boson peak. Here, we show that these peaks correspond to
transverse acoustic modes in the system (shown in Fig. 5.62). In Fig. 5.62 we plot

Figure 5.62: Transverse current correlation function for the three lowest wave numbers of
the system plotted on top of the Boson peak (in the initial undeformed state). Note that the
JT (q,ω) curves are divided by a factor 5.

the transverse current correlation function (for the three lowest wave numbers of
the system) on top of the Boson peak in the undeformed state. From the figure,
we can see that the peaks sit exactly on top of spikes in the Boson peak. The
low-frequency regime of the Boson peak corresponds to the range of frequencies
where elastic scattering occurs, and one can observe collective acoustic modes.
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But, the higher frequency regime of the Bososn peak corresponds to a higher q
values where the modes are damped, and the scattering is not elastic anymore.
Therefore, the Boson peak decays to zero. One more important thing to be
mentioned here is that, earlier we showed the finite-size effects in our calculations
(check Fig. 5.54 and Fig. 5.57). Here, we can see that the transverse acoustic
modes appearing in the low-frequency regime of the Boson peak corresponds
to the lowest wave numbers of the system. Therefore, they correspond to large
wavelengths (λ = 2π/q). This means the system needs to be large enough such
that the acoustic modes fit into the simulation box, and we can detect them.

Using the obtained longitudinal and transverse modes we are able to get some
dispersion-like curves by reading off 9 the corresponding frequency at which the
peaks occur (we call it ωmax (q)) for each wave number, from the longitudinal
and transverse current correlation functions, respectively. Also, the full width at
half maximum (FWHM, we call it Γ(q)) of the corresponding longitudinal and
transverse modes, will give us a length scale up to which the elasticity theory
holds. These results are shown in Fig. 5.63 and Fig. 5.64.

Figure 5.63: ωmax (q) as a function of q (in the initial undeformed state) for both longitudinal
acoustic modes (L-modes, close gray circles) and transverse acoustic modes (T-modes, close
red squares). The dashed lines are linear fits. The slopes at low frequency/low q limit, cor-
responds to transverse and longitudinal sound velocities (vt and vl respectively, in reduced
units).

9 In order to obtain ωmax(q) and Γ(q), the corresponding longitudinal and transverse current
correlation functions are fitted via a Lorentzian function as follow:

f (x) =
A

π

[
F

(x−M)2 + F2

]
, (5.3)

in which, A is the amplitude, F reads the FWHM and M reads the pick maximum position.
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Figure 5.64: Γ (q) of the transverse and longitudinal current correlation functions as a function
of q (in the initial undeformed state) for both longitudinal acoustic modes (L-modes, close
gray circles) and transverse acoustic modes (T-modes, close red squares). The dashed lines are
quadratic fits at low frequency/low q limit.

In Fig. 5.63 we see the dispersion relations for the corresponding longitu-
dinal (close gray circles) and transverse (close red squares) branches. As it
was discussed earlier, in the hydrodynamic limit the dispersion relation, for
each acoustic branch, shows a linear behavior. The dashed lines in Fig. 5.63
correspond to linear fits in the limit of low ω and q. The slope of these linear
fits, on each acoustic branch, corresponds to the longitudinal and transverse
sound velocities, respectively. These values are shown in the plot. In order to
crosscheck our results, we also calculate the elastic constant tensor for these
samples. Therefore, we obtained the corresponding longitudinal and transverse
sound velocities via vl =

√
C̄ud/ρ and vt =

√
C̄ld/ρ, in which, ρ is the number

density, C̄ud corresponds to upper diagonal elements of the elastic constant tensor
(C̄ud = (C11 +C22 +C33) /3) and C̄ld corresponds to lower diagonal elements of
the elastic constant tensor (C̄ld = (C44 +C55 +C66) /3). These values are shown
in table (5.11). In table (5.11) we see a good agreement between the obtained
values for the sound velocities from the calculation of the elastic constant tensor
and the linear fits in the low ω and low q regime of the dispersion relations
shown in Fig. 5.63, with the experimental values reported in the literature. Later,
we will compare the obtained values for the deformed states with the values
in table (5.11) as reference. In Fig. 5.64 we see that, Γ(q) for both longitudinal
and transverse modes shows a quadratic q dependence in the limit of small
wave numbers. This is shown by the quadratic fits on the data (dashed lines)
in Fig. 5.64. The linear fits in Fig. 5.63 and the quadratic fits in Fig. 5.64, mark
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Comparison between sound velocities obtained
from simulationa and experiment

ECTb Exp.c

vl(km/s) vt(km/s) vl/vt vl(km/s) vt(km/s) vl/vt

4.824 2.139 2.256 5.060 2.130 2.38

Table 5.11: A comparison between the sound velocities obtained
from the calculation of elastic constant tensor and the reported
values for Ni80P20 BMG in literature.

a For unit conversion we used the Nickel’s atomic information
(check table (5.10)).

b Elastic constant tensor.
c Experimental values reported for Ni80P20 BMG [Wang (2012b)].

(roughly) the time and length scales in which the system behaves as an isotropic
elastic medium. The latter time scale and the frequency range is also indicated by
Γ(q) in Fig. 5.64. Comparing the corresponding Γ(q) (which gives an inverse time
scale) of the longitudinal and transverse modes in Fig. 5.64 with the dispersion-
like curves in Fig. 5.63, we can give a rough estimate that, up to ω ≈ 5 − 6[τ−1

LJ ],
the system response as an isotropic elastic medium.

Using Eq. (3.55), the dynamic structure factor was calculated for the unde-
formed samples (as it was discussed in 3.3.3). This is shown in Fig. 5.65. In the

Figure 5.65: main panel: The dynamic structure factor for the three lowest wave numbers of the
system. inset: The dynamic structure factor for three large wavenumbers of the system.

main panel of Fig. 5.62, we see the dynamic structure factor for the three lowest
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wave numbers q = 0.2, 0.284, 0.347[σ−1
A ], and in the inset we see the dynamic

structure factor for the three large wave numbers q = 1.003, 2.103, 3.502[σ−1
A ]. As

the relation between the dynamic structure factor and the longitudinal current
correlation function was shown in Eq. (3.56), we see a similar behavior in the evo-
lution of the dynamic structure factor in Fig. 5.65 compared to those of discussed
in Fig. 5.61. Similar to the longitudinal current correlation functions, for small q
values, the dynamic structure factor shows a sharp peak at low frequencies. The
peak starts to move to higher frequencies by increasing q and eventually leaving
a flat background behind and disappearing at high frequencies. This corresponds
to the range of frequencies and wavenumbers for which the lifetime of the sound
modes becomes so small that the acoustic waves cannot live long. Therefore, it
is often mentioned in the literature that q is not a good wave number anymore
to describe the propagation of the overdamped waves. Here we should mention
that, rather than the acoustic modes, there are also optical modes in the system
which are out of the scope of this thesis.

In order to investigate the effect of deformation and the residual stresses on
the vibrational modes the same calculation was performed for the deformed
samples, and the result was compared to the initial undeformed states. The
first set of plots presented here, show a comparison between the longitudinal
(ch. Fig. 5.66) and transverse (ch. Fig. 5.67) current correlations functions in the
undeformed and deformed states. In Fig. 5.66 we compare the longitudinal

Figure 5.66: Comparison between the longitudinal current correlation functions in the unde-
formed states (close squares) and the deformed states (open circles), for the three lowest wave
numbers q = 0.2, 0.284, 0.347[σ−1

A ] (in red, gray and blue) of the system (in the same color
respectively).

current correlation functions for the three lowest wave numbers of the system in
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Figure 5.67: Comparison between the transverse current correlation functions in the unde-
formed states (close squares) and the deformed states (open circles), for the three lowest wave
numbers q = 0.2, 0.284, 0.347[σ−1

A ] (in red, gray and blue) of the system (in the same color
respectively).

undeformed (closed symbols with lines) with the corresponding deformed values
(open symbols with dashed lines) in the same color, respectively. From the figure
we can see that, in the deformed state the peaks show a slight decrease and a
very small shift towards the higher frequencies. In contrast, there is difference in
the behavior of the transverse current correlation functions shown in Fig. 5.67. In
Fig. 5.67 we compare the transverse current correlation functions for the three
lowest wave numbers of the system in the undeformed states (closed symbols
with lines) with the corresponding deformed values (open symbols with dashed
lines) in the same color, respectively. Here, the peaks also show a decrease
but they shift towards the lower frequencies followed by a slight broadening of
the peaks. This is a fingerprint of appearance of softenings in the system after
deformation. This is in good agreement with the results which we discussed
earlier in Fig. 5.57 where we also see that after deformation the Boson peak shifts
slightly to the lower frequencies by showing softenings in the system. Here, we
can also perform the same calculation and obtain the dispersion relation and
Γ(q) in the same way that we did for the undeformed states. This is shown in
Fig. 5.68 and Fig. 5.69.

In Fig. 5.68 and Fig. 5.69 the open symbols correspond to the deformed states
and we can clearly see that, it is very difficult to observe the minor changes
appearing in the deformed states at low wave numbers. While the effect of
deformation appears to be more pronounced only at higher wave numbers, at
low q regime still the dispersion relations show the linear response, for both
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Figure 5.68: Comparison between the longitudinal branch (close gray circles) and the trans-
verse branch (close red square) of the dispersion relation in the undeformed state with corre-
sponding deformed states (same open black symbols respectively).

Figure 5.69: Comparison between the Γ(q) for the longitudinal modes (close gray circles) and
the transverse modes (close red square) in the undeformed state with corresponding deformed
states (same open black symbols respectively).
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longitudinal and transverse branches, and Γ(q) shows a quadratic behavior. In
order to investigate these minor changes in more details, we also looked at the
corresponding longitudinal and transverse sound velocities for the deformed
states and then compared these results with those of the initial undeformed states
which we presented earlier. These results are shown in table (5.12). In table (5.12)

Comparison between sound velocities
of undeformed and deformed states

Un-deformed

ECT FDR

vl vt vl vt

10.634 4.714 10.963 4.407

Deformed

ECT FDR

vl vt vl vt

10.74 4.543 11.119 4.364

Table 5.12: Comparison between the values of the lon-
gitudinal and transverse sound velocities, obtained
from calculation of the elastic constant tensor and lin-
ear fits in the hydrodynamic regime of the dispersion
relations, of the undeformed and deformed states.

we can see a nice agreement with the obtained values for the deformed states
from the calculation of the elastic constant tensor and the fits on the dispersion
relation. As we have discussed earlier, while the transverse sound velocities
show a minor decrease after deformation (from both methods of calculation),
the longitudinal sound velocities show a slight increase (from both methods of
calculation). The reason behind this increase can be the fact that, by applying the
shear deformation the particles are slightly compressed in the direction of shear.
Therefore, the longitudinal sound velocities increase slightly, and as a result in
perpendicular directions the transverse sound velocities show minor decreases
with respect to their initial undeformed values.

Further, we make a comparison between the dynamic structure factor of the
undeformed and deformed states. This is shown in Fig. 5.70. In Fig. 5.70(a), we
make a comparison between the dynamic structure factor for the three lowest
wave numbers of the system in the undeformed states (closed symbols) and
the deformed states (open symbols) with the same color, respectively. In panel
(b), the same comparison has been made for three large wavenumbers of the
system (again, the closed symbols correspond to undeformed states, and the open
symbols correspond to deformed states). What we observe from both panels is
that the effect of deformation is only visible at low-frequency limits where the
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Figure 5.70: Comparison between the dynamic structure factor of the undeformed states
(closed symbols) and the deformed symbols (open symbols), for the three lowest wave num-
bers of the system in (a) and three large wavenumbers in (b). The corresponding undeformed
and deformed states are presented with the same color for each q value.

minimum valley of the deformed samples shows a slight increase which, might
be due to some relaxation processes in the system after deformation. Rather
than these minor effects, the large frequency limit of the dynamic structure factor
shows similar behavior for both undeformed and deformed states. As it was
discussed earlier, the peak shifts towards higher frequencies by increasing wave
number and leaves a flat background behind. The peak disappears finally for
large wavenumbers (q = 3.502 in panel (b) of Fig. 5.70) at high frequencies.

5.4.4 Remarks

Finite-size effects appear in the limit of ω → 0 of the DOS. These finite size effects
are more pronounced in the low-frequency regime of the Boson peak where the
transverse acoustic modes are detected for smallest wave numbers. Deformation
results in a slight shift of the Boson peak towards lower frequencies. This shift is
also visible in the Boson peak from the specific heat. In the limit of q → 0, the
total current correlation function has two distinct acoustic modes, which start
to overlap by reaching the Ioffe-Regel limit. This is in the range of frequencies
and wavenumbers where the lifetime of the waves becomes proportional to their
width, and the modes become scattered (in-elastically) by the disorder in the
system. The dynamic structure factor shows a sharp peak for small wavenum-
bers, which moves towards the more significant frequencies by increasing wave
numbers and disappears at large wavenumbers, leaving a flat background be-
hind. The transverse acoustic modes slightly shift towards lower frequencies
after deformation, therefore, showing a slight decrease in the transverse sound
velocities. On the other hand, the longitudinal acoustic modes show a very small

137



shift towards higher frequencies, and therefore, a minor increase in longitudinal
sound velocities are observed. We cross-checked the latter results by calculating
the elastic constant tensor and found similar results.

5.5 Micro-alloying in Ni80P20 metallic glass former

In this section, we will present the results10 which we obtained for the micro-
alloyed samples, by introducing a third species in the Kob-Andersen binary
mixture (as it was discussed in section 2.2.5 and 4.3.4) and therefore, obtaining
a ternary mixture. The first set of results, which we present are a comparison
between the new ternary system and the original binary mixture.

As we discussed in section 2.2.5, we made the minimum change in the original
model and therefore, we should be able to reproduce the original results from
the binary mixture by switching back the value of the interaction parameter εAC

between the A and C type particles. Therefore, hereafter it should be clear that,
by assigning εAC = 1.0 we obtain the results for the binary mixture, and by
assigning εAC = 0.1 we obtain the results for the ternary mixture. In Fig. 5.71
we compare the mean-squared displacement of the binary (open triangle-up)
and the ternary mixture (closed circles), and for different particle types in the
super-cooled liquid state at T = 0.44.

Figure 5.71: main panel: Comparison between the mean-squared displacement of different
particle types in binary (triangle ups) and ternary (closed circles) system, in the super-cooled
liquid state at T = 0.44 as a function of time. inset: The long tail of the MSDs in the diffusion
regime. The gray-dashed line is a linear function for comparison.

10The results shown in (Fig. 5.71-5.74), are part of a project done by Konstantin Lamp who
collaborated with us during his master studies in the group of Prof. Dr. Jürgen Horbach.
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In the main panel of Fig. 5.71, we can see that, compared to the original model,
the dynamics of the system in the new ternary model has slightly changed. The
A type particles (closed black circles) and the B type particles (closed blue circles)
in the new ternary system show slightly higher mobilities compared to the binary
mixture. Another interesting result from the plot is that the C type particles
seem to follow the B type particles in the new ternary system. From the plot, we
can see that, by switching back the interaction parameter between the A and C

type particles, as expected, the MSD of the A and C type particles (open black
triangle-up and closed red triangle-up respectively) sit on top of each other. This
is more visible in the inset of Fig. 5.71 where we show the MSD in the diffusion
regime. The dashed gray line in the inset is just a linear function with a slope
one. The slight increase in system mobilities is also visible in the inset of Fig. 5.71
for different particle types. The change in system dynamics is also visible if we
compare the diffusion coefficients of the two systems. This is shown in Fig. 5.72.

Figure 5.72: Comparison between the diffusion coefficient of different particle types in binary
(triangle ups) and ternary (closed circles) system, as a function of inverse temperature.

In Fig. 5.72, we present the diffusion coefficient for different particle types in
the binary and ternary system, as a function of inverse temperature. From the
figure we can see that, similar to the previous results, the dynamics of the system
has slightly changed in the new ternary system for all particle types (closed
circles) compared to the original model, especially at lower temperatures. Also
similar to the results of the MSD, the C type particles (closed red circles) seem to
follow the B type particles (closed blue circles) in the new ternary system, and by
switching back the interaction parameter to εAC = 1.0 the diffusion coefficient of
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the A and C type particles (open black triangle-up and closed red triangle-up,
respectively) sit on top of each other, and we obtain a binary mixture.

In the next set of plots, we compare the correlations between different particle
types in terms of radial distribution function and partial static structure factor,
Fig. 5.73 and Fig. 5.74, respectively. The radial distribution function was already
discussed in section 2.1.1 and partial static structure factor we discuss briefly
here.

Considering a many component system consisting of n different species, the
total number of particles N in the system is given by N =

∑n
α=1 Nα, where Nα

denotes the number of particles of type α. Therefore, the local number density of
the system in the reciprocal space, for a particle of type α is given by [Hansen
and McDonald (2013)]:

ρα (�q) =

Nα∑
k=1

exp (i�q.�rk) , α = {A, B, C} , (5.4)

where �q is the wave vector and �rk is the position of kth particle of type α.
Therefore, the partial static structure factor can be written as

Sαβ (q) =
1
N

〈
ρα (�q) ρβ (−�q)

〉
, α,β = {A, B, C} . (5.5)

The partial static structure factor only depends on the magnitude of the wave
vector �q. The Sαβ (q) functions are symmetric (Sαβ (q) = Sβα (q)) and therefore
there are n(n+ 1)/2 independent partial static structure factors. In the limit of
q → ∞ the partial structure factor saturates at the mean particle concentration
xα = Nα/N for α = β and for α �= β reaches zero.

In Fig. 5.73(a-f) we compare the radial distribution function for different
particle types between the binary and ternary system. In Fig. 5.73(a and b) we
can see that, gAA(r) and gBB(r) are not effected by introducing the new species in
the system, and therefore, the AA and BB correlations sit on top of each other for
both binary and ternary systems (open blue and closed black circles, respectively).
This is also true for AB correlations in Fig. 5.73(d) where, the results for binary
and ternary system sit very close to each other. This is in good agreement with
the correlations in static structure factor shown in Fig. 5.73(a-b) and (d). Where
we can see that, the preferred length scales for the AA, BB and AB correlations
are not effected by micro-alloying, and we found very similar results both for
the binary and ternary systems. In the main panel of Fig. 5.73(c), we look at the
correlations between the C type particles in ternary system. From the figure we
can see that gCC(r) shows a sharp peak followed by a sharp decay. Interestingly,
the function does not show many oscillations while decaying compared to the
other correlation functions. This is even more visible if we look at the long
tail of gCC(r) in the inset of Fig. 5.73(c). The fast decay of gCC(r) is due to
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Figure 5.73: Comparison between the radial distribution function of the binary (open blue
circles) and ternary (closed black circles) system in the glass state at T = 0.2. The correlations
between different pairs of particles types, are shown in panels (a) to (f).

Figure 5.74: Comparison between the static structure factor of the binary (open blue circles)
and ternary (closed black circles) system in the glass state at T = 0.2. The correlations between
different pairs of particles types, are shown in panels (a) to (f).
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the low concentration of C type particles which is also visible in Fig. 5.74(c)
where, we show SCC(q). In Fig. 5.74(c) one can see the preferred length scales
(2π/q) at 1st maximum in SCC(q), which are occupied by the C type particles.
The distribution of different particle types is illustrated in a snapshot of the
simulation box in Fig. 5.75. From Fig. 5.75 we can clearly see that there is no

Figure 5.75: A snap shot of different particle types distribution in the simulation box for the
ternary system. Different particle types are shown in different color.

clustering between the C type particles and they are homogeneously distributed
in the system. The rather far distances between C type particles, corresponds to
their preferred length scales around q = 0.760953, shown in Fig. 5.74(c). These
results are nicely in agreement with Fig. 5.73(e) and Fig. 5.74(e) where, we present
gBC(r) andSBC(q), respectively. As it was discussed earlier in this section, the
C type particles tend to follow the B type particles. Therefore, in Fig. 5.73(e),
we can see that the first peak (corresponding to the nearest neighbors) in gBC(r)

shows a slight increase in the ternary system compared to binary mixture. These
results are also reflected in the SBC(q) in Fig. 5.74(e) where, we can clearly see
the preferred length scales around q = 0.760953 for BC interactions. At large q

values the results for both systems sit on top of each. At low q values, SBC(q)
of the binary mixture does not have any information because of the fact that
basically, we are looking at the correlations between a very small fraction of
A type particles and B type particles. Finally in Fig. 5.73(f) and Fig. 5.74(f) we
show the gAC(r) and SAC(q), respectively. As a result of weaker interactions
between A and C type particles in the ternary system, in Fig. 5.73(f), the first
peak in gAC(r) has slightly shifted towards lower r values. This means that the
particles can slightly get closer to each other. This is consistent with the results
shown in Fig. 5.74(f) for SAC(q) where the main peak has slightly shifted towards
larger q values. Another interesting result which is visible in Fig. 5.74(f) is the
occurrence of anti-correlations (negative peak), exactly at the length scales shown
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in Fig. 5.74(c and e) for CC and BC correlations.

In order to further investigate the structural correlations between the new
ternary and binary mixture, following the calculations which have been done
in reference [Pfleiderer, Horbach, and Binder (2006)] for amorphous aluminum
silicates, we calculated the concentration-concentration structure factor from the
partial structure factors of different particle types and for both systems. These re-
sults are shown in Fig. 5.76(a-c). The concentration-concentration structure factors

Figure 5.76: Comparison between concentration-concentration partial structure factor for
particle types A, B and C in panel a, b an c respectively, for both binary (open blue circles) and
ternary system (closed black circles).

are linear combinations of partial static structure factors defined as [Pfleiderer,
Horbach, and Binder (2006)]:

ScAcA (q) = (xB + xC)
2
SAA (q) − 2xA (xB + xC) [SAB (q) + SAC (q)]

+ x2
A [SBB (q) + 2SBC (q) + SCC (q)] ,

(5.6)

ScBcB (q) = (xA + xC)
2
SBB (q) − 2xB (xA + xC) [SAB (q) + SBC (q)]

+ x2
B [SAA (q) + 2SAC (q) + SCC (q)] ,

(5.7)

ScCcC (q) = (xA + xB)
2
SCC (q) − 2xC (xA + xB) [SAC (q) + SBC (q)]

+ x2
C [SAA (q) + 2SAB (q) + SBB (q)] ,

(5.8)
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with cα a concentration fluctuation for particle type α, which is given by:

cα (�q) = ρα (�q) − xα

n∑
β=1

ρβ (�q) , α = {A, B, C} . (5.9)

And therefore, the partial structure factors can be expressed in terms of these
concentration fluctuation as:

Scαcβ (q) =
1
N

〈
cα (�q) cβ (−�q)

〉
, α,β = {A, B, C} . (5.10)

In Fig. 5.76(a-c) we present the results for concentration-concentration partial
structure factor of the binary (open blue circles) and ternary system (closed
black circles). The first visible result from these figures is that, by introducing
the new species in the ternary system the overall behavior of concentration-
concentration structure factors have not changed and both systems show similar
results. In good agreement with our previous results, the concentration of C type
particles (ScCcC (q) shown in Fig. 5.76(c)) shows a peak in the range of length
scales (q ≈ 6.09629) where, the concentration of B type particles also show a
maximum peak. This means, there is a big concentration of C type particles
around B type particles. In contrast, the C type particle tend to segregate from
the A type particles. This is clearly visible by making a comparison between
the anti-correlations shown in Fig. 5.76(a) for ScAcA (q) and in Fig. 5.76(c) for
ScCcC (q). While around length scales q ≈ 7.67264 there is large concentration
of A type particles, the concentration of C type particles shows a negative
peak (anti-correlation) within this length scales. In the limit of small q, all the
concentration-concentration partial structure factors saturate finite value which
indicates the microscopic concentration fluctuations.

In order to investigate the effect of micro-alloying on the vibrational modes
of the system we also compared the density of the vibrational modes and the
Boson peak between the binary and ternary mixture. These results are shown in
Fig. 5.77(a-b).

In panel (a) of Fig. 5.77, partial g (ω) is compared between the binary and
ternary system for different particle types. From the figure we can see that the
density of states for A (black curve for ternary and gray curve for the binary
system) and B (orange curve for ternary and green curve for the binary system)
type particles stay very close to each other between the binary and ternary system.
The g (ω) for C type particles (red curve) shows a higher peak and skewed to
lower frequency. This is in good agreement with the results, which we presented
earlier in this section, where we showed that the new C type particles show
faster dynamics compared to other particle types. Therefore, as we can see
here, they are thermally easier to excite. This is also in good agreement with
the results which we present in panel (b) of Fig. 5.77 where we compare the
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Figure 5.77: panel (a): comparison between the partial density of states of different particle
types of the binary and ternary system. panel (b): comparison between the Boson peak for
different species of the binary and ternary mixture.

g (ω) /ω2 between different particle species in the binary and ternary system. As
we can see in the figure, the main effect of micro-alloying on the Bososn peak
is a slight shift towards lower frequencies followed by a slight increase in the
peak, for all different particle types in the new ternary system, compared to the
binary mixture. This was expected, as we showed earlier in this section that,
as a result of micro-alloying, the dynamics of the system slightly become faster.
Therefore, as a result of these minor changes, the system shows a slight softening
in the Boson peak regime. These small softenings are slightly more pronounced
for particle types with higher mobilities and therefore, following the results
shown in Fig. 5.71, the Boson peak height has its maximum for C type particles
followed by B and A particles (the red, orange, and black curves respectively).
To test these softenings in the system, we imposed external load to the new
ternary system by applying shear deformation, with a constant shear rate of
γ̇ = 10−4. We compared the obtained stress-strain curve with the original binary
mixture. These results are shown in Fig. 5.78. In the main panel of Fig. 5.78,
we can see that the overshoot maximum in the stress-strain curve of the new
ternary system (red curve) shows a slight decrease. Also, in the elastic regime,
if we compare the linear fits to the data (dashed lines in the inset), we can see
that the slope of the linear fit function has slightly decreased for the ternary
system compared to the binary mixture, meaning, the new ternary system has a
lower shear modulus slightly compared to the original binary system. We can
conclude here that microalloying induced some softenings in the new ternary
system. These softenings are also visible if we compare the specific heat between
the binary and ternary systems. This is shown in Fig. 5.79. In Fig. 5.79 the specific
heat, for both undeformed and deformed states, are compared between the binary
and ternary system (black curve with closed black circles for an undeformed
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Figure 5.78: main panel: The stress-strain curve for the binary (in black) and the ternary (in red)
system, being imposed to a constant shear rate γ̇ = 10−4. inset: Linear fit in the early elastic
regime of the stress-strain curve for both the binary and ternary system with black and red
dashed lines, respectively.

Figure 5.79: Comparison between the Boson peak in the specific heat for both undeformed
(black curves) and deformed (red curves) states of the binary (curves with closed symbols) and
ternary mixture (curves with open symbols).
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binary system, black curve with open black circles for an undeformed ternary
system, red curve with closed red circles for deformed binary system and red
curve with open red circles for a deformed ternary system). Minor softenings
are visible already in the undeformed state where the Boson peak amplitude
for the ternary system shows a small increase and shifts slightly towards lower
temperatures. After deformation, the same behavior, as we discussed earlier in
the previous sections, is visible for the deformed states with an increase in Boson
peak and shift towards lower temperatures compared to the undeformed state.
What is interesting here is the behavior of the Boson peak of the ternary system
in the deformed state in the limit of T → 0. The curve appears to be saturating at
a finite value. This behavior can be compared to the experimental observations
reported in [Hubek, Seleznev, et al. (2018)], where they also reported that for
a deformed micro-alloyed Pd base metallic glass the Boson peak appears to be
saturating at a finite value in the limit of low temperatures.

5.5.1 Remarks

A new ternary model is developed by introducing a third species (type C) in
the original Kob-Andersen binary mixture [Kob and Andersen (1994)]. The first
evident result of the minor micro-alloying is the change in the dynamics of the
system such that, in the new ternary model, the MSD of the A and B type particles
shows slightly higher mobilities. This is also reflected in the low-frequency range
of the Boson peak, where the peaks show a minor increase and shift towards
the lower frequencies. These effects are more pronounced in the specific heat
where the Boson peak shows a pronounced increase and shift towards lower
temperatures. These changes are an indication of softenings in the system as
a result of micro-alloying. These softenings are also visible in the stress-strain
curve of the new ternary system compared to the original binary mixture (being
subjected to a shear deformation with a constant shear rate γ̇), showing a slight
decrease in the overshoot maximum.

147





6 Conclusions & Outlook

As it was discussed earlier in this work, BMGs have many promising mechanical
properties like high strength and corrosion resistance. But, the main drawback
of their mechanical properties is their limited ductility. Therefore, studying
the poorly understood plasticity, including the underlying features of yielding
transition in BMGs, is a hot topic of research communities and also is of great
technological interest. In this regard, SCLs play a key role in understanding
elastic to plastic flow in metallic glasses. The response of highly viscous SCLs,
subjected to a shear deformation with a constant shear rate, shows a crossover
from a Newtonian to a non-Newtonian behavior. Therefore the SCLs, as a
visco-elastic medium at equilibrium, on the one hand, have the features of well
studied Newtonian liquids in literature, and on the other hand, show consistent
non-Newtonian responses similar to those of glasses.

In this work, using MD simulations, we modeled a Ni80P20 glass-forming
system. We showed that the response of samples to shear deformation with a
constant shear rate (γ̇) in the SCL state, becomes non-Newtonian when γ̇ > γ̇c,
with γ̇c being a critical shear rate. In the latter non-Newtonian regime, the
steady-state shear stress σss is no longer proportional to the shear rate γ̇, and
the flow curve of SCLs can be fitted with a Herschel–Bulkley type of function,
similar to the response of glasses but, with weaker power-law behavior. However,
one cannot extrapolate a yield stress from the latter power-law behavior for
SCLs, as in the case of glasses. The onset of plastic flow is marked by the
occurrence of an overshoot in the stress-strain curve. The stress-strain curve
in the non-Newtonian regime shows three distinguishable regimes: namely an
elastic, a transient, and a steady-state regime. A feature of yielding transition is
the occurrence of in-homogeneous flow patterns in the transient regime.

In SCLs, short-lived in-homogeneous flow patterns appear in the system, per-
pendicular to the direction of flow, when γ̇ > γ̇c. In glasses, these homogeneities
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are long-lived and form different types of shear bands: namely, horizontal, paral-
lel to the direction of flow, vertical, perpendicular to the direction of flow, and
mixed bands. The type of the shear band is not predetermined by the structure of
the initial undeformed sample and appears to be a stochastic process. However,
the formation of a horizontal shear band is marked by the occurrence of an over-
shoot in the potential energy of the system, which is not the case for samples with
vertical shear bands. We showed that in both SCLs and glasses, the deformed
samples eventually transform into a homogeneously flowing state that can be
characterized as an anisotropic non-equilibrium fluid. For the sheared glass, the
pathways with which the stationary fluid state is reached can completely differ
from sample to sample. While in the case of samples with horizontal shear bands,
one observes a kind of nucleation of the flowing fluid phase, which grows slowly
towards the homogeneously flowing stationary state, in case of samples with
vertical shear bands the steady-state is reached much earlier.

A characteristic feature of metallic glasses are the residual stresses. When
the external load is canceled, the stresses do not fully relax to zero in the glass
samples and remain at a finite value. Therefore, after deformation, one obtains
deformed glass samples, which are in a new glass state with residual stress,
unlike the initial undeformed state where the stress is zero on average. A crucial
issue here is that, how do the residual stresses change the plasticity of the material
after deformation.

Hence, as one of the main focuses of this study, we characterized the effects of
the residual stresses on elastic-to-plastic responses of the glass samples. Keeping
the quiescent undeformed states as a reference, we made a comparison between
the results from the deformed and undeformed states. In the elastic regime, the
elastic moduli of the deformed glass samples show small changes with respect
to their initial undeformed values. They tend to evolve towards their initial
undeformed values as the residual stresses decay in the system. Although the
residual stresses induce small anisotropies in the elastic moduli of the deformed
samples, these effects also appear to fade away with further stress relaxations.
Therefore, the elastic responses of the system show very small sensitivity to
deformation, and the residual stresses have minor effects on the elastic moduli.
However, beyond the elastic limit, the yield point identified with the maximum in
the stress-strain overshoot shows a pronounced decrease, which indicates small
softenings in the deformed samples.

The latter small softenings are also reflected in the low-frequency spectrum
of the density of states for the deformed samples, where the Boson peak shows
a small shift towards lower frequencies. The same behavior was shown for the
Boson peak of the deformed samples in the specific heat. In the latter case, the
Boson peak shows a small increase and shift towards lower temperatures, in
comparison to its quiescent state. We also showed that these small softenings
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appear as a slight shift of transverse current correlation functions towards lower
frequencies; therefore, a small decrease in the transverse sound velocity.

The ductility of metallic glasses can be adjusted by introducing micro-alloying.
Experimental and theoretical works [Dasgupta, Mishra, Procaccia, and Samwer
(2013), Hubek, Seleznev, et al. (2018), Peng and Zhang (2011), and Qiao, Yao,
Pelletier, and Keer (2016)] showed that adding a small amount (≈ 1%) of a new
species in the alloying composition of the material can change the ductility of the
material significantly.

Thus, in this work, we proposed a model for micro-alloying in the Ni80P20

metallic glass former and showed that by adding 1% of a new species in the Kob-
Andersen binary mixture, therefore, turning the model into a ternary mixture, the
material appears to be more ductile. We showed that the latter softenings are a
direct result of dynamical enhancements, which are appearing in the new ternary
system, as the particles tend to have higher mobilities. The latter softenings
show a small decrease in the yield point of the stress-strain curve, marked by
the maximum of the stress-strain overshoot. However, the transient responses
of metallic glasses under mechanical load are highly dependent on the degree
of annealing, and the history with which the samples are prepared. The better-
annealed samples show a higher overshoot maximum, followed by a sharper
stress decay from the maximum towards the steady-state.
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Outlook. Following our previous discussion and the results shown in this
work (cf. (5.4.2)) and also recent work by [Bünz, Brink, et al. (2014)], the degree
of annealing has significant effects on plasticity of metallic glasses. Although in
recent works by [Ozawa, Berthier, et al. (2018) and Ozawa, Berthier, Biroli, and
Tarjus (2019)], using swap Monte Carlo algorithm [Grigera and Parisi (2001)],
they were able to achieve large degrees of annealing at low temperatures; still,
new algorithms need to be developed (especially for the binary Lennard-Jones
mixture) such that, at a reasonable computation cost, one can study mechanical
properties of well-annealed samples.

The new micro-alloyed model proposed in this work seems to have a lot of
potential for further investigation. Similar to the results reported by [Nollmann,
Binkowski, et al. (2016)], we also showed that micro-alloying results in a decrease
of the overshoot maximum in the transient regime such that the material yields
at lower stress. Also, we observed that the Boson peak curve in the specific heat
(after deformation) seems to saturate at a finite value in the limit of low tempera-
tures. This is a similar observation reported by [Hubek, Seleznev, et al. (2018)]
where, adding 1% of Co in a Pd40Ni40P20 metallic glass former, they showed
that the Boson peak appears to saturate at a finite value at low temperatures.
But, the effect of different alloying compositions on the mechanical properties of
the system is a challenging problem. Developing new micro-alloyed models in
computer simulations, with different alloying compositions, can make predictions
which might give a more effortless directional guideline in experiments.
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