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Abstract

Quantum entanglement is a unique property of quantum particles. It can correlate
them in such a way, that further correlations to an additional unwanted party is pre-
vented. This renders quantum theory as the prime candidate to implement a secure
distribution of an encryption key. Quantum key distribution (QKD) is dedicated to
this task. A striking feature of correlations in a statistical experiment is, that they
can, in principle, always be approximated. Even more so, correlations can be ob-
tained without a detailed knowledge about the underlying physical process that gen-
erated the experimental data. This no-characterization approach is at the heart of
the device-independent (DI) paradigm. Here, Bell inequalities are an imperative tool
to detect nonlocal correlations, which are necessary for a DI secret key.

One central subject of this thesis is multipartite DIQKD and the implications of
Bell nonlocality in this context. Any DIQKD protocol involves test rounds in which
the violation of a Bell inequality is checked. For multipartite DIQKD, however, not
all Bell inequalities are suitable. We identify the crucial properties a Bell test requires
to be a viable option. In this light, a published protocol for multipartite DIQKD is ex-
amined. We establish an incompatibility which is inherent to the proposed Bell test in
combination with the required quantum states. This leads us to the conclusion, that
the proposed protocol necessarily aborts. In a subsequent work, we develop a fam-
ily of multipartite Bell inequalities, specifically tailored to the task of DI conference
key agreement (CKA). Several features of this Bell inequality are analytically charac-
terized. In addition, we prove its usefulness for the purposes of DICKA. To this end,
semidefinite programming techniques are employed and extended to themultipartite
scenario which allows us to quantify asymptotic DI conference key rates.

In a second part, we explore the challenges of implementing (bipartite) long-
distance DIQKD with quantum repeaters. For two repeater protocols, we describe
how experimental parametersmanifest themselves inDI secret-key rates. In doing so,
we shed light on the fundamental differences between the usual and the DI scenario
and we benchmark the threshold requirements of quantum devices to make prof-
itable DI secret-key rates feasible. Finally, we develop a general method to describe
in a non-DI setting the propagation of an important class of errors through quan-
tum circuits in arbitrary dimensions. With this, we discuss the potential of error-
corrected quantum repeaters to overcome fundamental point-to-point limitations.
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Zusammenfassung

Quantenverschränkung ist eine bemerkenswerte Eigenschaft von Quantenteilchen,
die eine derart starke Korrelation zwischen ihnen erlaubt, sodass eine weitere Kor-
relation zu einer unerwünschten dritten Partei ausgeschlossen werden kann. Die
Quantentheorie ist daher der optimale Rahmen, um eine sichere Übertragung eines
kryptographischen Schlüssels zu implementieren. Dies ist die zentrale Aufgabe der
Quantenschlüsselverteilung (QKD). Ein wichtiges Merkmal von Korrelationen in ei-
nem statistischen Experiment ist, dass diese prinzipiell immer zugänglich sind und
beliebig genau approximiert werden können. Insbesondere ist hierfür ein genaues
Verständnis des physikalischen Ablaufs, der die Messdaten generiert, nicht erforder-
lich. Dieser Ansatz steckt im Kern des apparateunabhängigen (DI) Paradigmas. Bell
Ungleichungen sind in diesem Kontext unverzichtbar, wegen ihrer Fähigkeit nicht-
lokale Korrelationen detektieren zu können, die für einen DI sicheren Schlüssel not-
wendig sind.

Ein zentrales ThemadieserDissertation ist diemultipartite apparateunabhängige
Quantenschlüsselverteilung (DIQKD) und die Implikationen von Bell Nichtlokalität
in diesem Kontext. In jedem DIQKD Protokoll wird die Verletzung einer Bell Un-
gleichung in Testrunden geprüft. Für multipartite DIQKD ist jedoch nicht jede Bell
Ungleichung geeignet. Wir identifizieren entscheidende Merkmale, die ein Belltest
aufweisenmuss, um eine gangbare Option für DIQKD darzustellen. Vor diesemHin-
tergrund untersuchen wir ein publiziertes Protokoll für multipartite DIQKD. Wir
etablieren eine, dem vorgeschlagenen Belltest inhärente, Inkompatibilität mit den
für QKD notwendigen Quantenzuständen. Dies führt uns zu der Schlussfolgerung,
dass das Protokoll zwangsläufig abbrechen muss. Darauf aufbauend entwickeln wir
speziell für multipartite DIQKD eine Familie von Bell Ungleichungen. Verschiedene
Eigenschaften dieser Bell Ungleichung werden analytisch beschrieben. Wir stellen
außerdem deren Verwertbarkeit für multipartite DIQKD unter Beweis. Zu diesem
Zweck, nutzen wir semidefinite Programmierung, erweitert auf mehrere Parteien,
und quantifizieren DI Konferenzschlüsselraten.

In einem zweiten Themenkomplex erforschen wir die Möglichkeit (bipartite)
DIQKD über große Distanzen mittels Quantenrepeater zu realisieren. Wir beschrei-
ben für zwei Quantenrepeatermodelle, wie sich typische experimentelle Parameter
in den DI Schlüsselraten manifestieren. In dieser systematischen Analyse arbeiten
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CHAPTER 0. ZUSAMMENFASSUNG

wir fundamentale Unterschiede zwischen dem apparateabhängigem (DD) und dem
DI Szenario heraus. Darüber hinaus setzen wir den Maßstab für die Mindestanfor-
derung an die Qualität der Quantenapparate, um profitable DI Schlüsselraten zu er-
halten. Schließlich entwickeln wir, in dem DD Szenario und für beliebige Dimensio-
nen, ein allgemeines Verfahren zur Beschreibung der Propagation einer wichtigen
Fehlerklasse durch den Quantenrepeater. Ausgestattet mit diesem Werkzeug unter-
suchen wir das Potential von fehlerkorrigierten Quantenrepeatern um fundamentale
Grenzen von Punkt-zu-Punkt Verbindungen zu überschreiten.
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Chapter 1

Introduction

Quantum cryptography emerged in the early 1980s [Wie83] as one of the corner-
stones of quantum information science. The central idea in quantum cryptography
is to use the laws of quantummechanics for the purposes of secrecy. To exploit quan-
tum theory to its full potential for quantum cryptographic applications, a profound
theoretical understanding of quantum correlations and their implications is required.
So-called Bell inequalities [Bel64a] are an integral part of this foundational research.

Arguably the most important subfield of quantum cryptography is quantum key
distribution (QKD) which was born in 1984 with the famous BB84 protocol [BB84]. It
is dedicated to the task of distributing a secure encryption key to the honest parties
who wish to communicate. Quantum mechanics offers a unique way to achieve this,
by employing intrinsic features of quantum particles such as entanglement.

Since BB84, a variety of QKD protocols have been published [Eke91, Ben92,
Bru98]. Although pioneering work, a common flaw of these protocols is that they
have extreme demands on their physical implementation which in general cannot be
realized. Any experimental deviation which is not accounted for in the theoretical
description potentially allows a malicious eavesdropper to break the security of the
QKD scheme.

This calls for a new standard of security which is independent of the exact inter-
nal workings of the quantum devices that are required for QKD. Surprisingly, quan-
tum mechanics provides such a device-independent (DI) way to certify the security of
a cryptographic protocol. Security is established by means of certain classical input-
output correlations [MY98] which serve as a witness for the integrity of the data. Bell
inequalities are indispensable for a DI security.

Quantum key distribution becomes meaningful if it can be realized in a large-
scale quantum network including multiple parties. However, quantum correlations
which grant the aforementioned benefits are fragile and easily disturbed by the influ-
ence of the environment or by quantum operations. A straightforward amplification
or repetition of the quantum signal in the classical sense is fundamentally prevented
by the laws of quantummechanics. Hence, amore sophisticated approach in the form
of quantum repeaters [BDCZ98] is required, inter alia, to realize long-distance QKD.
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CHAPTER 1. INTRODUCTION

This thesis aims at a concise and self-contained presentation of our research in
multipartite DIQKD, the role of Bell nonlocality therein, and the prospects of its im-
plementation in a quantum repeater network. To this end, our manuscript exhibits
the following logical structure.

In Chap. 2 we introduce basic notions of many concepts in quantum information
theory and the required mathematical tools.

Chapter 3 is devoted to Bell nonlocality and Bell inequalities. We thoroughly
introduce the best known representative of Bell inequalities and discuss its general-
izations. Multipartite Bell inequalities are of particular interest to us. We go on to
discuss these inmore detail, including supplemental results whichwere not explicitly
contained in previously published work. In addition, we will review numerical tools
required for a further characterization of quantum correlations and explicitly apply
them to a Bell inequality we developed.

An introduction to QKD is provided in Chap. 4. This serves two purposes. First,
we require the fundamental concepts that allow the secure distribution of an encryp-
tion key, and the BB84 protocol allows a rather intuitive way to get familiar with
them. Second, some notions of QKD need to be refined and adjusted in the multipar-
tite setting, which we also address in this chapter.

Bell inequalities and QKD lay the foundations for DIQKD, which is the subject
of Chap. 5. The DI security of quantum cryptographic protocols was extensively
investigated in recent years. We give a brief survey of the development and then
provide an in-depth reviewof one of themost central resultswhich is relevant for this
thesis. In the subsequent section, we address the extension to multipartite DIQKD.
Here, two proposals are investigated from which only the second is a viable option.
We explain in detail why the first approach cannot succeed and provide additional
information not included in our publication. The chapter concludes with a short
discussion of state-of-the-art DIQKD experiments.

A survey of the quantum repeater concept is provided in Chap. 6. First, we ex-
plain the fundamental limitation faced by point-to-point quantum communication.
Afterwards, we introduce the original quantum repeater protocol and put it into the
context of QKD. An alternative quantum repeater based on error-correction is the
subject of the subsequent section.

A brief summary of our main results can be found in Chap. 7.
We conclude with Chap. 8 and give an outlook for future research based on our

work.
The original articles that constitute themain content of our research are attached

in Appendices A to E.
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Chapter 2

QuantumMechanics and Linear Algebra

Quantum theory [Pla00] dictates the behavior of nature at the smallest scales of length
and energy, with laws that are comparatively simple, but generally perceived as coun-
terintuitive. Predictions of quantum theory, however, are in striking accordancewith
experimental observations, thus witnessing its superiority over the classical formu-
lation.

In this chapter, we provide the essential mathematical tools needed for a pre-
cise description of many quantum mechanical concepts. The postulates of quan-
tum mechanics are introduced alongside the required elements of linear algebra.
Inspiration was taken from a variety of literature, most importantly though from
Refs. [NC10, KLM07, CTDL77] and [Fis75].

2.1. The State Space and the Dirac Notation

In this thesis, we exclusively consider discrete quantum systems with a finite number
d ∈ N of inherent degrees of freedom. There are numerous quantum systems fulfill-
ing this requirement, such as an atom and its energetic excitations, an electron and its
spin, or a photon and its polarization. The following statement offers a mathematical
way to describe the state of a quantum system.

Postulate 1. At each instant of time t, the state of a physical system is defined by an
element ∣ψ(t)⟩ of a state space H.

In 1939, Dirac [Dir39] introduced the notation ∣ψ(t)⟩ for a state space element.
The state space H is a finite dimensional vector space over the field C of complex
numbers that is supplemented with an inner product, denoted by ⟨⋅ ∣ ⋅⟩, i.e., H is a
Hilbert space. Note that the identification of the state space with the mathematical
notion of a vector space, already has profound implications, namely that a linear
combination or a superposition of elements of H again represent a quantum state.
To rigorously define the inner product of the Hilbert spaceH, we introduce the dual
version ofH.

3



CHAPTER 2. QUANTUMMECHANICS AND LINEAR ALGEBRA

Definition 2.1 (Dual Space). Let H be a Hilbert space over the field C. The dual spaceH∗ is the vector space of all linear maps H → C.

Elements of the dual space H∗ are denoted by ⟨ϕ∣. They act onto ∣ψ⟩ ∈ H ac-
cording to ⟨ϕ∣ ∶ ∣ψ⟩ ↦ ⟨ϕ∣ψ⟩ ∈ C, i.e., they map the state to a complex scalar – the
inner product ⟨ϕ∣ψ⟩ of the states ∣ψ⟩ , ∣ϕ⟩ ∈ H. The standard inner product in vector
spaces over the complex field C is a sesquilinear form, i.e., it fulfills⟨ϕ∣αψ1 + βψ2⟩ = α⟨ϕ ∣ψ1⟩ + β⟨ϕ ∣ψ2⟩ , (2.1a)⟨αϕ1 + βϕ2∣ψ⟩ = α∗⟨ϕ1 ∣ψ⟩ + β∗⟨ϕ2 ∣ψ⟩ , (2.1b)

for all ∣ψi⟩ , ∣ψ⟩ ∈ H, ⟨ϕ∣ , ⟨ϕi∣ ∈ H∗, and α,β ∈ C, where α∗ denotes the complex
conjugation ofα. The inner product induces a norm ∥⋅∥ onH, via ∥ψ∥ ∶= √⟨ψ∣ψ⟩ and
we call states with ∥ψ∥ = 1 normalized. Furthermore, a sense of relative orientation
between states is provided by the inner product, that is, states with ⟨ϕ∣ψ⟩ = 0 are
orthogonal to each other. This leads us to:

Definition 2.2 ((Orthonormal) Basis). Let H be a d-dimensional Hilbert space. A set{∣bi⟩}di=1 =∶ B ⊂ H of linear independent vectors is called a basis of H, if every element∣ψ⟩ ∈ H can be written as a (unique) linear combination of elements of B, i.e.,
∣ψ⟩ = d∑

i=1
ci ∣bi⟩ , with ci ∶= ⟨bi∣ψ⟩ ∈ C. (2.2)

The basis B is called orthonormal, if its elements are of unit length and they are pairwise
orthogonal, i.e., if ⟨bi∣ bj⟩ = δi,j .

Here, δi,j denotes the Kronecker delta which is equal to one for i = j and zero
otherwise. Often, the orthonormal basis of choice is the so-called computational ba-
sis, with elements {∣k⟩}d−1k=0. Two orthonormal bases {∣bi⟩}di=1,{∣b′j⟩}dj=1 of H are
mutually unbiased if ∣⟨bi∣ b′j⟩∣2 = 1

d for all i, j.

2.2. Linear Operators

To describe the manipulation of a quantum state we define:

Definition 2.3 (Linear Operator). A linear operator on a Hilbert space H is a linear
mapM ∶ H → H, ∣ψ⟩ ↦M ∣ψ⟩.

In Dirac notation we can write certain linear operators via the dyadic product
as ∣ψ⟩⟨ϕ∣. Such an operator maps the state ∣χ⟩ ∈ H to ⟨ϕ∣χ⟩ ∣ψ⟩ ∈ H. The set of
all linear operators on H form again a vector space, which we denote with L(H).
Consider a d-dimensional Hilbert space with an orthonormal basis {∣bi⟩}di=1. Via
the resolution of the identity property, 1 = ∑i ∣bi⟩⟨bi∣, we can represent every linear
operatorM ∈ L(H) as

M = d∑
i,j=1

Mi,j ∣bi⟩⟨bj ∣ , with Mi,j = ⟨bi∣M ∣bj⟩ . (2.3)

4



2.3. DENSITY OPERATOR FORMALISM

Definition 2.4 (Eigenvalue, Eigenstate). LetM ∈ L(H). A scalarm ∈ C is eigenvalue
ofM if there exists a ∣ψ⟩ ∈ H with ∣ψ⟩ ≠ 0, such that

M ∣ψ⟩ =m ∣ψ⟩ , (2.4)

and ∣ψ⟩ is eigenstate of M to eigenvalue m. The set of all eigenvalues of M is called
spectrum ofM , denoted by σ(M).

Of particular importance for quantum mechanics are self-adjoint or Hermitian
operators. To introduce them, we need the notion of Hermitian conjugation. That is,
to each operatorM ∈ L(H), there exists a unique operatorM † ∈ L(H∗) that fulfills(⟨ϕ∣M ∣ψ⟩)∗ = ⟨ψ∣M †∣ϕ⟩ for all ∣ψ⟩ , ∣ϕ⟩ ∈ H. Hermitian operators satisfyM † =M .

Lemma 2.5 (Spectrum of Hermitian Operators). Let M ∈ L(H) be a self-adjoint
operator. Then, σ (M) ⊂ R.

Proof. Let ∣ψ⟩ be a (normalized) eigenstate ofM to eigenvaluem. Therefore,

m = ⟨ψ∣ (m ∣ψ⟩) = ⟨ψ∣M ∣ψ⟩ = ⟨ψ∣M †∣ψ⟩ = (⟨ψ∣m∗) ∣ψ⟩ =m∗. ∎
Theorem 2.6 (Spectral Theorem). Let H be a Hilbert space of finite dimension d and
M ∈ L(H) a Hermitian operator. Then, there exists an orthonormal basis of H that
consists of eigenstates ofM .

Proof. LetM ∈ Cd×d be the matrix representation of a self-adjoint operator. SinceC
is algebraically closed, the characteristic polynomial ofM can be decomposed into
linear factors of its eigenvaluesmi which are real due to Lemma 2.5. The rest of the
proof can be done via induction, where the case d = 0 is trivial. For d ⩾ 1, there exists
a normalized eigenstate ∣ψ1⟩ ofM to eigenvaluem1. Let W ∶= {∣ϕ⟩ ∈ H ∣ ⟨ψ1∣ϕ⟩ =
0}. For all ∣ϕ⟩ ∈ W , it holds

⟨ψ1∣ (M ∣ϕ⟩) = (⟨ψ1∣M †) ∣ϕ⟩ =m1 ⟨ψ1∣ϕ⟩ = 0, (2.5)

i.e.,M ∣ϕ⟩ ∈ W . By induction base, there exists a orthonormal basis of W that con-
sists of (d − 1) eigenstates of M , which together with the state ∣ψ1⟩ yields the or-
thonormal basis ofH. ∎

The condition of finite dimension in Theorem 2.6 is crucial. In infinite dimen-
sionalHilbert spaces, only the eigenstates of particularHermitian operators, so-called
observables, form an eigenbasis of H. Observables are key ingredients for quantum
measurements, which will be further discussed in Sec. 2.4.

2.3. Density Operator Formalism

Often, a more convenient description of quantum states is provided by the density
operator formalism. We call a density operator w.r.t. a fixed basis a density matrix. A
quantum source which provides with probability pi the quantum state ∣ψi⟩motivates
the definition of quantum states in terms of a statistical mixture.

5



CHAPTER 2. QUANTUMMECHANICS AND LINEAR ALGEBRA

Definition 2.7 (DensityOperator). Let {∣ψi⟩}ni=1 be a set of quantum states and{pi}ni=1
a probability distribution, i.e., ∑n

i=1 pi = 1 and pi ∈ [0,1] for all i. The operator
ρ = n∑

i=1
pi ∣ψi⟩⟨ψi∣ (2.6)

is called a mixed state if pi < 1 for all i. We call ρ a pure state if there exists one index i′
for which pi′ = 1.

To further characterize density operators, we introduce the trace function of a
matrixM , which is defined as the sum of its diagonal elements, i.e., for a basis {∣bi⟩}i
the trace of M is given by tr (M) ∶= ∑d

i=1 ⟨bi∣M ∣bi⟩ which is independent of the
particular choice of the basis. Density operators fulfill the following properties:

(i) Density operators are self-adjoint operators, i.e., ρ† = ρ.
(ii) The trace of density operators is tr (ρ) = 1. Moreover, tr (ρ2) = 1 if and only

if ρ is a pure state.
(iii) They are positive semidefinite, i.e., ⟨ψ∣ρ ∣ψ⟩ ⩾ 0 ∀ ∣ψ⟩ ∈ H, denoted by ρ ⩾ 0.

2.3.1. The Quantum Bit and the Bloch Sphere

The most simple, yet nontrivial states are of dimension d = 2. Commonly, the two
degrees of freedom are labeled with ∣0⟩, ∣1⟩ ∈ H2. Such quantum states represent the
fundamental unit of quantum information, hence the name quantum bit or qubit. A
general qubit state can thus be written as

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , with ∣α∣2 + ∣β∣2 = 1, α, β ∈ C. (2.7)

Quantum states which only differ by a global phase are indistinguishable, thus phys-
ically equivalent, and we can take α to be real without loss of generality. A parame-
trization in spherical coordinates then turns Eq. (2.7) into

∣ψ⟩ = cos (θ/2) ∣0⟩ + eiφ sin (θ/2) ∣1⟩ , with 0 ⩽ θ ⩽ π, 0 ⩽ φ < 2π. (2.8)

We now identify the parameters θ, φwith the polar θ and azimuthal angle φ in a unit
vector in spherical coordinates, i.e., eφ,θ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T .
The vector eφ,θ defines for φ ∈ [0,2π) and θ ∈ [0, π] the surface of a sphere, embed-
ded in the R3 and thus allows for θ ∈ (0, π) a unique mapping of a pure qubit state∣ψ⟩ with a point on the surface of this Bloch sphere. This is visualized in Fig. 2.1.

In 1927, Wolfgang Pauli introduced the Pauli matrices to describe the spin of an
electron [Pau27], which only has two different spin-degrees of freedom and thus
represents a qubit quantum system. The Pauli matrices in the computational basis{∣0⟩ = (1 0)T , ∣1⟩ = (0 1)T } are given by

σx ≡ σ1 = (0 1
1 0

) , σy ≡ σ2 = (0 −i
i 0

) , σz ≡ σ3 = (1 0
0 −1) . (2.9)

6



2.3. DENSITY OPERATOR FORMALISM

Figure 2.1: Any pure qubit state corresponds to a point of the surface of the Bloch
sphere. The depicted general qubit state ∣ψ⟩ according to Eq. (2.8) is shown for some
angles θ andφ. For θ = 0 (θ = π) and arbitraryφ, the state ∣ψ⟩marks the north (south)
pole of the sphere and corresponds to the pure state ∣0⟩ (∣1⟩).
They are Hermitian, traceless operators with eigenvalues ±1 and satisfy the relation

σiσj = δi,j1 + 3∑
k=1

εi,j,kσk. (2.10)

Here, εi,j,k denotes the Levi-Civita symbol which is +1 (−1) if the triple (i, j, k) is a
cyclic (anticyclic) permutation of (1,2,3), and 0 otherwise.

The set {σi}3i=1 of Pauli matrices is a basis for all Hermitian, traceless matrices
on a two-dimensional Hilbert space. Together with the identity matrix 1, any qubit
state ρ can be expressed according to

ρ = sTσ + 1

2
, with ∥s∥ ⩽ 1, σ ∶= (σx, σy, σz)T , (2.11)

where s is the Bloch vector of ρ. Recalling property (ii) of density operators, one can
identify the interior of the Bloch sphere with mixed states. The completely mixed state
1
21 has s = 0 and is thus located at the center of the Bloch sphere.

2.3.2. The Quantum Dit

The qubit concept can be generalized to a quantum dit or qudit. Here, the quantum
system has a discrete and finite number d ⩾ 2 of inherent degrees of freedom, with
labels according to the computation basis {∣k⟩}d−1k=0. One can introduce a Pauli basis
for all linear operators on a d-dimensional Hilbert space. This basis , {XrZs}d−1r,s=0,
consists of d2 independent operators and follows from [Got99]

X ∶= d−1∑
k=0

∣k ⊕ 1⟩⟨k∣ and Z ∶= d−1∑
k=0

ωk ∣k⟩⟨k∣ , (2.12)

7



CHAPTER 2. QUANTUMMECHANICS AND LINEAR ALGEBRA

where ω ∶= e
2πi
d and ⊕ denotes the addition modulo d. The generalized Pauli op-

erators XrZs are traceless for all r, s ∈ {0, . . . , d − 1}. In contrast to their two
dimensional counterparts, however, they are not self-adjoint.

2.4. QuantumMeasurements

To extract information from a physical system, some sort of interaction is required.
Here, we explain how a quantummeasurement is described, which measurement re-
sults are possible, and how the measurement itself affects the quantum system.

Postulate 2. A quantum measurement of a physical quantity of a system in quantum
state ρ is described by a set of measurement operators {Mm}m ∈ L(H), satisfying the
completeness relation∑mM

†
mMm = 1. A possible measurement outcomem is measured

with probability

p(m) = tr (M †
mMmρ) (2.13)

and the state of the system after the measurement is

ρm = 1

tr (M †
mMmρ)MmρM

†
m. (2.14)

In projective measurements the measurement operatorsMm correspond to projec-
torsPmwith the defining propertiesP 2

m = Pm andP †
m = Pm. The operatorsPm form

the spectral decomposition of the observable that is measured, i.e.,M = ∑mmPm.
To get familiarwith the concept of a projectivemeasurement, consider a quantum

source that randomly generates a pure state from an orthonormal set {∣ψk⟩}nk=1. In
order to reliably identify which state is produced, define the projective measurement
operators Pm ∶= ∣ψm⟩⟨ψm∣ form ∈ {1, . . . , n} and P0 ∶= 1 − ∑n

m=1 Pm. Given the
state ∣ψk⟩, we find outcome m with probability p(m) = tr (Pm ∣ψk⟩⟨ψk∣) = δk,m,
which allows us to distinguish the states with certainty.

The situation is different for non-orthogonal states, in which case there exists no
set of measurement operators that provides a reliable way to distinguish these states.
For an heuristic way to comprehend this statement suppose that the quantum source
distributes either ∣ψ⟩ or ∣ϕ⟩. Because of ⟨ϕ∣ψ⟩ ≠ 0, we can decompose the state

∣ϕ⟩ = c� ∣ψ�⟩ + c∥∣ψ∥⟩, with ∣c�∣2 + ∣c∥∣2 = 1, (2.15)

into a nontrivial linear combination of states ∣ψ�⟩ and ∣ψ∥⟩ that are orthogonal and
parallel to ∣ψ⟩, respectively. Suppose the source provides the state ∣ϕ⟩ on which we
perform a measurement. Depending on the result we make a guess which state was
produced by the source. But because of ⟨ϕ∣ψ⟩ ≠ 0 we measure outcomemψ (based
on which we infer that ∣ψ⟩ was measured) with probability ∣c∥∣2 ≠ 0. Hence, we
cannot deterministically distinguish the states ∣ψ⟩ and ∣ϕ⟩.
8
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The task above is related to unambiguous state discrimination [Iva87]. As argued,
no measurements can reliably differentiate between quantum states with a nonzero
overlap. With general quantummeasurements, however, a misidentification as above
can be avoided. The corresponding measurement operators Em ∶= M †

mMm ⩾ 0 are
POVM elements and the set {Em}m is called POVM, an acronym for positive operator-
valued measure. Note that POVM measurements include projective measurements,
that is, forMm = Pm with PkPm = δk,mPm we find Em = Pm.

Importantly, any POVM measurement on a Hilbert space H of dimension d can
be expressed as a projective measurement on a Hilbert spaceH′ of dimension d′ ⩾ d,
which is the essence of the so-called Naimark extension [DJR05, Per06].

2.5. Composition of Quantum Systems

So far, we only considered a single quantum system. The extension tomultiple quan-
tum systems is achieved via the tensor or Kronecker product.

Postulate 3. The state space of a composite system is given by the tensor product of the
state spaces of the components, i.e., HAB = HA ⊗HB.

For a state of HAB we equivalently write ∣ψA⟩ ⊗ ∣ψB⟩ = ∣ψA⟩ ∣ψB⟩ = ∣ψA, ψB⟩.
Note that not all elements of HAB can be written in product form. For all ∣ψAi⟩ ∈HA, ∣ψBj ⟩ ∈ HB, αi, βj ∈ C, the tensor product is further characterized by

( dA∑
i=1
αi ∣ψAi⟩ ) ⊗ ( dB∑

j=1
βj ∣ψBj ⟩) = dA,dB∑

i,j=1
αiβj ∣ψAi , ψBj ⟩. (2.16)

Any two orthonormal bases {∣ai⟩}dAi=1, {∣bj⟩}dBj=1 for HA, HB, give rise to an or-
thonormal basis {∣ai, bj⟩}i,j of the composite Hilbert space HAB. However, the fol-
lowing theorem tells us, i.a., that we can always find a pair of orthonormal bases such
that all cross terms ∣ai, bj⟩ with i ≠ j vanish in the representation of ∣ψAB⟩ ∈ HAB.

Theorem 2.8 (Schmidt Decomposition). Let ∣ψAB⟩ ∈ HAB = HA ⊗ HB. There exists
an orthonormal basis {∣ai⟩}dAi=1 for HA and {∣bj⟩}dBj=1 for HB and a set of nonnegative
number {pi} such that

∣ψAB⟩ = min{dA,dB}∑
i=1

√
pi ∣ai, bi⟩ . (2.17)

Proof. Let {∣āi⟩}dAi=1,{∣̄bj⟩}dBj=1 be an orthonormal basis for HA,HB, respectively.
Thus, we can write

∣ψAB⟩ = ∑
i,j

āib̄j ∣āi, b̄j⟩ = ∑
i,j

ci,j ∣āi, b̄j⟩ , (2.18)

9
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where we identified āib̄j with the entry ci,j of a coefficient matrix C ∈ C
dA×dB . Ac-

cording to the singular value decomposition, any complex matrix can be decomposed
asC = UDV †, with unitary matricesU ∈ CdA×dA , V ∈ CdB×dB , and a diagonal matrix
D ∈ CdA×dB with nonnegative entries dk,k ∈ R. With d ∶= min{dA, dB}, we obtain

∣ψAB⟩ = d∑
k=1

∑
i,j

ui,kdk,kv
∗
k,j ∣āi, b̄j⟩ = d∑

k=1
dk,k ∣ak, bk⟩ , (2.19)

where in the last step we defined ∣ak⟩ ∶= ∑i ui,k ∣āi⟩ , ∣bk⟩ ∶= ∑j v
∗
k,j ∣̄bj⟩. Orthonor-

mality of the Schmidt basis is guaranteed by the unitarity of U and V . Finally, as dk,k
are nonnegative and real, we may identify them with√

pk . ∎
Given a state ρAB of a composite system, a natural question that arises is how the

state of the respective subsystems ρA, ρB can be accessed. To answer this question,
we require an additional tool.

Definition 2.9 (Partial Trace). Let ρAB be the state of a system composed of two Hilbert
spaces HA,HB with basis {∣ai⟩}dAi=1,{∣bj⟩}dBj=1, respectively. The partial trace over sub-
system B is defined by

trB (ρAB) ∶= dA∑
i,i′=1

dB∑
j=1

⟨ai, bj ∣ρAB ∣ai′ , bj⟩ ∣ai⟩⟨ai′ ∣ , (2.20)

which yields the reduced density operator ρA ∶= trB (ρAB) of subsystem A.

Consider a pure two-qubit state ρAB = ∣φ+⟩⟨φ+∣, with ∣φ+⟩ ∶= 1√
2
(∣00⟩ + ∣11⟩).

The reduced density matrix of system A is given by

ρA = 1

2
(∣0⟩⟨0∣ + ∣1⟩⟨1∣) = 1

2
1. (2.21)

Hence, the partial trace of a pure state can result in a completely mixed state. This
example leads us to a general statement regarding the inverse transformation.

Proposition 2.10 (Purification). Consider a system A and an auxiliary system X with
associated Hilbert spacesHA,HX, respectively. Let ρA be a state on system A. Then, there
exists a pure state ∣ψAX⟩ ∈ HAX, called the purification of ρA, such that

trX (∣ψAX⟩⟨ψAX∣) = ρA. (2.22)

Proof. Let {∣ai⟩}di=1 be an orthonormal basis of HA that admits the spectral decom-
position ρA = ∑i pi ∣ai⟩⟨ai∣. Take an additional Hilbert spaceHX of equal dimension
with orthonormal basis {∣xi⟩}di=1 and define the state∣ψAX⟩ ∶= ∑

i

√
pi ∣ai, xi⟩ . (2.23)

The partial trace over the auxiliary system reveals

trX (∣ψAX⟩⟨ψAX∣) = ∑
i,j

√
pipj ∣ai⟩⟨aj ∣ tr (∣xi⟩⟨xj ∣) (2.24)

= ∑
i

pi ∣ai⟩⟨ai∣ = ρA.
Hence, the state ∣ψAX⟩ is indeed the purification of ρA. ∎
10



2.6. QUANTUM CHANNELS

2.5.1. Entanglement and Separability

The consideration of multiple quantum systems allows us to introduce one of the
most intriguing and puzzling features of quantum mechanics.

Definition 2.11 (Entanglement, Separability). A mixed quantum state ρAB is called
separable, if there exists a convex combination of pure product states ∣ψi, ϕi⟩⟨ψi, ϕi∣,
with ∣ψi⟩ , ∣ϕi⟩ ∈ HA,HB, respectively, such that

ρAB = ∑
i

pi ∣ψi, ϕi⟩⟨ψi, ϕi∣ . (2.25)

Otherwise, ρAB is called entangled.

A famous example of bipartite qubit entangled states are the Bell states

∣φ±⟩ ∶= 1√
2
(∣00⟩ ± ∣11⟩) and ∣ψ±⟩ ∶= 1√

2
(∣01⟩ ± ∣10⟩) . (2.26)

For more than two parties, the terminology of entanglement and separability
has to be refined. Consider multiple parties, labeled according to the index set I ∶={1, . . . , n}. A partition of I is a set {Ii}i of disjoint subset Ii ⊆ I such that I = ⊍i Ii.
A state is called separable w.r.t. to the partition {Ii}i if it is of the form

ρ = ∑
j

pj ⊗
i

ρj,Ii . (2.27)

If every index subset Ii contains exactly one label, ρ is called fully separable and every
state which cannot be expressed as a convex combination of a fully separable states is
entangled. A state is biseparable if the partition contains only two subsets Ii and gen-
uinely multipartite entangled states cannot be decomposed into a sum of biseparable
states. The pure n-qubit Greenberger-Horne-Zeilinger (GHZ) state [GHZ89]

∣GHZn⟩ ∶= 1√
2
(∣0⟩⊗n + ∣1⟩⊗n) , (2.28)

is an example for a genuinely multipartite entangled state.

2.6. Quantum Channels

The defining property of a unitary operator U ∈ L(H) is U † = U−1. They are re-
quired to describe the time evolution of a closed quantum system, i.e., a system that is
perfectly isolated from the environment.

Postulate 4. The time evolution of a closed quantum system initialized in state ∣ψ(t0)⟩
is described by a unitary operator U(t, t0), that is, ∣ψ(t)⟩ = U(t, t0) ∣ψ(t0)⟩.

11
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However, in reality there is always an interaction of the quantum system with its
environment and we speak of an open quantum system. Postulate 4 can be employed
to describe the dynamics of an open system, if we consider the environment as part
of the quantum system. Let {∣ei⟩}i be an orthonormal basis of the Hilbert space HE
associated to the environment, which is in a pure state ∣e0⟩ at some initial time.1 As-
sume that the state of the total system can be prepared in a product state ρ⊗∣e0⟩⟨e0∣.
The quantum dynamics of the total system is governed by a unitary operatorU . After
this evolution, we trace out the degrees of freedom of the environment and obtain,

E (ρ) ∶= ∑
i

⟨ei∣U (ρ⊗ ∣e0⟩⟨e0∣)U † ∣ei⟩ = ∑
i

KiρK
†
i , (2.29)

the operator-sum representation of the quantum operation E with the Kraus operators
Ki ∶= ⟨ei∣U ∣e0⟩ for all i. To make the notion of quantum operations more precise,
let us define:

Definition 2.12 ((Completely) Postitive Map). Let H be a Hilbert space. A linear mapE ∶ L (H) → L(H) ,M ↦ E (M) is a positive map, if E (M) ⩾ 0 for allM ⩾ 0.
Beyond that, E is a completely positive map if (idX ⊗ E)(M) ⩾ 0 for allM ⩾ 0, where
idX denotes the identity map on an additional system HX of arbitrary dimension.

For quantummechanics, we require E to be a completely positive (CP) map. This
stronger notion ensures the positivity of the state after operations performed on sub-
systems. A quantum operation E is trace-preserving (TP) if tr (E(M)) = tr (M) for
allM ∈ L(H). In terms of Kraus operators, E is TP if and only if ∑iK

†
iKi = 1,

which follows immediately from

tr(E(M)) = ∑
i

tr(KiMK†
i) = tr(∑

i

K†
iKiM), (2.30)

where we used linearity of the trace function and its invariance under cyclic permu-
tation. Quantum channels or quantum operations are CPTP maps that map an input
state ρ to an output state E(ρ).
2.6.1. Depolarizing Noise

To make quantum operations more accessible, consider as an example the operator-
sum representation of the depolarizing noise channelEdepol, that affects a qubit system.
The Kraus operators are given by [NC10]

K0 = √
1 − 3p

4
1 and Ki = √

p

2
σi for i ∈ {1,2,3}, (2.31)

where p ∈ [0,1] denotes the noise parameter. The Pauli matrices are Hermitian and
square to the identity, hence the completeness relation ∑3

i=0K†
iKi = 1 is satisfied.

1As we did not specify the dimension ofHE, it is not restrictive to assume that the environment is
initialized in a pure state ∣e0⟩, cf. Prop. 2.10.

12



2.7. ELEMENTS OF INFORMATION THEORY

Consider the pure, equally weighted qubit state ∣+⟩ ∶= 1√
2
(∣0⟩ + ∣1⟩), corrupted byEdepol. A straightforward calculation shows

Edepol (∣+⟩⟨+∣) = 1

2
(∣0⟩⟨0∣ + ∣1⟩⟨1∣) + 1 − p

2
(∣0⟩⟨1∣ + ∣1⟩⟨0∣)

= 1

2
( 1 1 − p
1 − p 1

) . (2.32)

The depolarizing noise affects the off-diagonal elements and for maximal noise p = 1,
the state becomes the completely mixed state 1

21.

2.7. Elements of Information Theory

We conclude this chapter with some fundamental definitions and notions for infor-
mation processing tasks. We follow Ref. [NC10] and define:

Definition 2.13 (Shannon Entropy [Sha48]). Let p ∶= {pi}i be a probability distribu-
tion for a random variable X with possible values {xi}i. The Shannon entropy of X (or
of p) is defined by

H (X) ≡H (p) ∶= −∑
i

pi log2 (pi) . (2.33)

The Shannon entropy measures the average amount of uncertainty inherent to
random variable X . We write

h(p) ∶= −p log2(p) − (1 − p) log2(1 − p) (2.34)

for a binary-valued random variable X and call h the binary entropy. For two ran-
dom variablesX and Y , with values {xi}i and {yj}j governed by a joint probability
distribution {p (xi, yj)}i,j , we define the joint and conditional entropy,

H (X ,Y) ∶= −∑
i,j

p(xi, yj) log2 p(xi, yj) and (2.35a)

H (X ∣Y) ∶=H (X ,Y) −H (Y) , (2.35b)

respectively. The conditional Shannon entropy quantifies the average amount of un-
certainty of the value of X , conditioned on the information one has about the value
of Y . This becomes meaningful, if the random variables are correlated.

Definition 2.14 (Correlation). Let X ,Y be two random variables with possible values{xi}i,{yj}j , respectively, governed by a joint probability distribution {p (xi, yj)}i,j .
The random variablesX andY are called uncorrelated if and only if all joint probabilities
factorize into a product of their respective marginal probabilities, that is,

p (xi, yj) = p (xi)p (yj) ∀i, j . (2.36)

Otherwise, they are correlated.
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A quantifier of the average amount of information one can obtain aboutX based
on the knowledge about Y and vice versa is the mutual information

H (X ∶ Y) ∶=H (X) +H (Y) −H (X ,Y) =H (X) −H (X ∣Y) . (2.37)

The maximization of the mutual information H (X ∶ Y) over all possible ways to
infer X from Y is called accessible information. Interestingly, the accessible informa-
tion is fundamentally different in classical and in quantum information theory. To
make this statement more formal, let us define the quantum version of the Shannon
entropy.

Definition 2.15 (Von Neumann Entropy). Let ρ be a density matrix. The Von Neu-
mann entropy is defined as

S (ρ) ∶= −tr (ρ log2(ρ)) , (2.38)

which becomes S(ρ) = −∑
i
λi log2(λi), with the spectral decomposition of ρ.

Now consider two parties, Alice and Eve, and suppose Alice has a random vari-
able X with values {xi}di=1 according to a probability distribution {pi}di=1. Eve’s
task is to access the value xi of X , guided by Alice who sends a (possibly mixed)
state drawn from a set {ρi}di=1 according to {pi}di=1. Eve performs a measurement
described by POVM elements {Ev}v on the states she receives and obtains results{vj}j from V . In general, she cannot perfectly distinguish between the states ρi. For
any measurement, her accessible information is upper bounded by the Holevo quan-
tity χ (X ∶ V) [Hol73], that is,

H (X ∶ V) ⩽ χ (X ∶ V) ∶= S(ρ) − d∑
i=1
piS(ρi), (2.39)

where ρ = ∑i piρi. If ρ = 1
d ∑d

i=1 ∣i⟩⟨i∣ is a completelymixed state of orthogonal states∣i⟩, Eve can obtain maximal information. In this case, her accessible information
saturates theHolevo bound (2.39). TheVonNeumann entropy of a pure state vanishes
and it is maximal for completely mixed state, hence

χ (X ∶ V) = S ( d∑
i=1

1

d
∣i⟩⟨i∣) − d∑

i=1
1

d
S(∣i⟩⟨i∣) = log2(d). (2.40)

Quantum communicationwith orthogonal states is classical in the sense that they
can be perfectly distinguished. However, the fact that the quantum accessible infor-
mation can be smaller than the information prepared by Alice, literally invites us to
exploit quantum mechanics for cryptographic tasks.
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Chapter 3

Bell Nonlocality and Bell Inequalities

Bell’s theorem [Bel64b], in its essence, states that any physical theory incorporating
local hidden variables – entities hidden from the grasp of quantum mechanics which
determine the properties of nature – is in discord with the predictions of quantum
mechanics.

Local-hidden-variable (LHV) theories are based onprofound assumptions in clas-
sical physics. Beyond the axiom of free will, an LHV theory postulates [EPR35]:
Locality. An event can only be causally affected by events which lie in the interior of
its past light cone.
Realism. Properties in nature exist independent of our understanding and obser-
vation. The value of any measurable quantity of a physical system is well defined,
independent of measurements.

Via these assumptions, Bell derived inequalities consisting of correlator functions
which are bounded in any LHV theory [Bel64a]. A violation of such bounds by any
type of correlations unambiguously proves the nonclassical nature of them. Quan-
tum theory allows for such correlations and therefore contradicts at least one of the
assumptions of an LHV theory. In principle, it is justified to abandon either one of
them and there is no general consensus up to this day, see for instance [Leg08, GG99].
However, we (and themajority of quantum information scientists) opt to drop the lo-
cality assumption and speak of the nonlocality of quantum theory. The merit of Bell
inequalities lies in their ability to identify nonlocal correlations in a mathematically
precise fashion.

We open this chapter with Sec. 3.1 which surveys the best known example of Bell
inequalities, the Clauser-Horne-Shimony-Holt (CHSH) inequality [CHSH69]. After-
wards, we briefly discuss the general Bell setting and review generalizations of the
CHSH case in Sec. 3.2. We primarily focus on multipartite Bell inequalities of which
we discuss two examples in Sec. 3.3. Section 3.4 outlines experimental realizations
of Bell inequality violation. In Sec. 3.5 we discuss different types of correlation. We
will learn that the description of the set of quantum correlations is a nontrivial task.
To this end, we require a numerical tool which is the subject of Sec. 3.6.
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3.1. The CHSH Inequality and the Tsirelson Bound

Let us consider the most simple, yet nontrivial Bell inequality [CHSH69]. The CHSH
inequality is of particular importance, as for example the vast majority of quantum
cryptographic tasks that rely on a Bell inequality violation, is either tailored to or
depends on the CHSH inequality [Eke91, HHH96, ABG+07, AMPS16]. We thus want
to pay particular attention to this Bell setup and properly introduce it.

A rather intuitive access to this Bell inequality is provided in terms of a game
that two parties play [BCP+14]. The rules of this game are simple. An unbiased third
party, the referee, sends binary values x ∈ {0,1} and y ∈ {0,1} to Alice and Bob,
respectively, which are chosen uniformly at random. After receiving the bit values,
Alice and Bob have to answer to the referee a binary value a ∈ {0,1} and b ∈ {0,1}.
The two parties win one round of this game if and only if

a⊕ b = x ⋅ y, (3.1)

where ⊕ denotes the addition modulo 2. The task of Alice and Bob is to maximize
their winning probability pwin. There is no communication allowed during the game,
but they can agree on a strategy before the game starts. The truth table, Table 3.1,
reveals, that the best strategy is to always answer both 0 (or 1), which maximizes
their winning probability, that is, pwinmax = 3

4 and thus plosemin = 1
4 .

Table 3.1: The truth table of the CHSH game.

x y x ⋅ y ax ⊕ by
0 0 0 a0 ⊕ b0
0 1 0 a0 ⊕ b1
1 0 0 a1 ⊕ b0
1 1 1 a1 ⊕ b1

Let usmove away from the deterministic strategywhere Alice and Bob always out-
put the same value. The expectation valueE(ax, by)∶=P (a = b∣x, y)−P (a ≠ b∣x, y)
is the difference between the probability that Alice and Bob answer the same value
and the probability that their values are unequal, conditioned on the inputs x and y.
We are now in the position to formulate the CHSH inequality:

BCHSH ∶= ∣E(a0, b0) +E(a1, b0) +E(a0, b1) −E(a1, b1)∣ ⩽ 2, (3.2)

where the upper bound corresponds to 4 (pwinmax − plosemin) = 2 which is called the clas-
sical or local bound. In any LHV model, the CHSH value BCHSH cannot exceed this
bound, in contrast to correlations of quantumorigin aswewill show in the following.

Let Alice and Bob measure two dichotomic observables Ax and By with eigen-
values ±1 for x, y ∈ {0,1} and spectral decomposition

Ax = A+x −A−x and By = B+y −B−y . (3.3)
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Here,A±x,B±y denote the rank-1 projectors onto the respective eigenstates. Depend-
ing on the inputs x and y, a measurement of a quantum system in state ρ is imple-
mented. The conditional probability that their outcomes coincide and mismatch are
given by

P (a = b∣x, y) = tr (A±x ⊗B±y ρ) and P (a ≠ b∣x, y) = tr (A±x ⊗B∓y ρ) , (3.4)

respectively. Therefore, we can write E (ax, by) = tr (Ax ⊗Byρ) = ⟨Ax ⊗By⟩ρ.
Now let ρ = ∣φ+⟩⟨φ+∣ be the pure Bell state in Eq. (2.26) and

A0 = σz, A1 = σx, B0 = σz + σx√
2

, and B1 = σz − σx√
2

, (3.5)

be the observables of Alice and Bob. A straightforward calculation shows that the
Bell value for the CHSH inequality (3.2) is BCHSH = 4 1√

2
= 2

√
2, which violates the

classical bound and thus demonstrates the nonlocality of quantum correlations.
The maximum Bell value attainable with quantum correlations for a specific Bell

setting is the Tsirelson bound [Tsi80]. This brings us to the following theorem, which
we present here without proof.

Theorem 3.1 (Tsirelson [Tsi80]). Let {Ax}α−1x=0 and {By}β−1y=0 be two sets of observables
with eigenvalues in [−1,1]. Then, for any state ∣ψ⟩ ∈ HA⊗HB there exist real normalized
vectors {vx}α−1x=0 ,{wy}β−1y=0 ∈ Rα+β , such that

⟨AxBy⟩∣ψ⟩ = vT
xwy ∀ x ∈ {0, . . . , α − 1}, y ∈ {0, . . . , β − 1}. (3.6)

This theorem allowed Tsirelson to prove that the maximum quantum value for
the CHSH inequality is 2

√
2. We verify this via the method presented in [EKB13].

As α = β = 2, there exist unit vectors v0,v1,w0,w1 ∈ R
4, which we write into

V = (v0,v1)T andW = (w0,w1)T , such that
BCHSH = 1∑

x,y=0
(−1)x⋅y ⟨AxBy⟩∣ψ⟩ = 1∑

x,y=0
(−1)x⋅yvT

xwy = V TGW , (3.7)

whereG ∶= (1 1
1 −1) ⊗ 14. An upper bound on Eq. (3.7) is established by

V TGW ⩽ ∣V TGW ∣ ⩽ ∣V ∣ ∥G∥∞ ∣W ∣ = 2
√
2. (3.8)

In the last step, we used ∣V ∣ = ∣W ∣ = √
2 which follows from the normalization of

vi and wj . We also introduced the spectral norm ∥⋅∥∞ which is the largest singular
value of a matrix. As G is hermitian, its singular values are given by absolute value
of its eigenvalues, which are either

√
2 or −√2. Hence, ∥G∥∞ = √

2. The bound in
Eq. (3.8) is tight, as we already discussed an example with Bell value 2

√
2, cf. Eq. (3.5).
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3.2. General Bell Setting

Since their discovery, Bell inequalities are at forefront of foundational research re-
garding quantum mechanics and quantum correlations. It is thus useful to develop
newBell inequalities and employ themnot only for purposes of quantum information
tasks, but also to gain a deeper and more profound understanding about the implica-
tions of quantum mechanics. To ease notation, we consider a symmetric Bell setting,
where each party measuresm different k-valued observables and we denote such a
Bell inequality as (n,m, k)-Bell inequality [BBB+12]. Furthermore, full-correlation
Bell inequalities are inequalities that exclusively consist of full-correlation functions,
i.e, k-valued functions that include all n parties, and where all k values can, in prin-
ciple, be attained, in particular for a fixed measurement settings. Full-correlation(n,m,2)-Bell inequalities are so-calledCHSH-type inequalities. Figure 3.1 illustrates
a general symmetric (n,m, k)-Bell setup.

Figure 3.1: A generic symmetric Bell setting consisting of n parties called Alice and
Bob(j) for j ∈ {2, . . . , n}. A quantum source repeatedly distributes a state to all
parties, which perform measurements on their share of the global state specified by
an input x, y(j) ∈ {0, . . . ,m−1}. Each measurement yields one of k different results
a, b(j) ∈ {0, . . . , k − 1}. After many repetitions, a correlator function such as the
conditional probability P(a, b(2), . . . , b(n)∣x, y(2), . . . , y(n)) can be estimated.

Generalizations of the CHSH inequality were achieved into full-correlation Bell
inequalities for multiple parties (n,2,2) [WW01], multiple inputs (2,m,2) [Pea70,
BC90], multiple outputs (2,2, k) [CGL+02], and the (2,m, k) case [BKP06]. A uni-
fied full-correlation (n,m, k)-Bell expression is introduced in [BBB+12], which re-
produces the aforementioned generalizations.

Regarding the derivation of the Tsirelson bound of a Bell inequality, we want to
stress that the approaches of Tsirelson [Tsi80] and the ones presented in Refs. [Weh06,
EKB13] are only applicable to bipartite CHSH-type inequalities. Beyond that, little is
known. For arbitrary Bell inequalities, there is no general methodology that yields a
tight analytical Tsirelson bound. It was only achieved in some cases as for example
in [WW01] for n ⩾ 2 and in [SAT+17] form ⩾ 2, k ⩾ 2. Numerically, however, one
can establish an upper bound on the Tsirelson bound, which we discuss in Sec. 3.6.

18



3.3. TWO EXAMPLES FORMULTIPARTITE BELL INEQUALITIES

3.3. Two Examples for Multipartite Bell Inequalities

Primarily, we focus on multipartite Bell inequalities with two binary observables on
each site. Here, we discuss two important examples: TheMermin-Ardehali-Belinskiı̆
-Klyshko (MABK) inequality [Mer90, Ard92, BK93] and the Parity-CHSH inequal-
ity [RMW19].

3.3.1. MABK Inequality

The MABK inequality is a rather straightforward generalization of the CHSH in-
equality (3.2) to the multipartite case. To introduce them, we label the n parties
Paul(j) for j ∈ {1, . . . , n} and define [RMW18]:

Definition 3.2 (MABKOperator). Let P (j)i for i ∈ {0,1} be dichotomic observables of
party j ∈ {1, . . . , n}. By recursion, the MABK operator is defined via

M2 ∶= 1

2
[P (1)0 ⊗ (P (2)0 + P (2)1 ) + P (1)1 ⊗ (P (2)0 − P (2)1 )] , (3.9a)

Mn ∶= 1

2
[Mn−1 ⊗ (P (n)0 + P (n)1 ) +Mn−1 ⊗ (P (n)0 − P (n)1 )] ∀ n ⩾ 3, (3.9b)

whereMn−1 is obtained fromMn−1 by inverting the measurement input of all observ-
ables, i.e., by replacing P (j)0 with P (j)1 and vice versa for all j ∈ {1, . . . , n − 1}.

Note the CHSH structure in the recursive definition in Eqs. (3.9). Via the MABK
operator, we obtain the MABK inequality for n ⩾ 2,

Mn ∶= ∣tr (Mnρ) ∣ ⩽ 2
m−1
2 ∀ m ∈ {1, . . . , n}, (3.10)

where m denotes the maximum cardinality of parties which are entangled via the
state ρ [WW00]. Hence, a Bell value above the bound 2

m−1
2 certifies entanglement of at

leastm parties. The classical bound corresponds tom = 1, which cannot be exceeded
by fully separable states. On the other hand,m = n leads to the Tsirelson bound and
form = n − 1 the MABK inequality represents a Svetlichny inequality [Sve87], which
can only be violated by genuinely multipartite entangled states.

As an instructive example, let us consider the 3-MABK inequality

1

2
∣⟨A0B

(2)
0 B

(3)
1 ⟩ + ⟨A0B

(2)
1 B

(3)
0 ⟩ + ⟨A1B

(2)
0 B

(3)
0 ⟩ − ⟨A1B

(2)
1 B

(3)
1 ⟩∣ ⩽ 1 ⩽ √

2 ⩽ 2,

(3.11)

where we renamed the three parties Alice, Bob(2), and Bob(3). The bounds 1,
√
2, and

2 are the classical, the Svetlichny, and the Tsirelson bound, respectively. The Tsirelson
bound can be saturated with the 3-GHZ state, cf. Eq. (2.28), with measurement ob-
servables that have to be chosen in the σx-σy plane of the Bloch sphere. One choice
that saturates the Tsirelson bound is given by

A0 = σx = B(2)0 = B(3)1 and A1 = σy = B(2)1 = −B(3)0 . (3.12)
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Due to structure of theMABK test, the optimalmeasurements cannot contain contri-
butions in σz direction. Let us make this more precise and consider the pure 3-GHZ
state χ3 = ∣GHZ3⟩⟨GHZ3∣, which is given by

χ3 = 1

23
(1⊗3 + σzσz1 + σz1σz + 1σzσz + σ⊗3x − σxσyσy − σyσxσy − σyσyσx),

(3.13)

a normalized sum of products of Pauli operators. The weight of such operators is the
number of nontrivial Pauli operators it contains. Now takeA0 = σz and consider the
correlator ⟨A0B

(2)
y(2)

B
(3)
y(3)

⟩χ3 , where

B
(j)
y(j)

∶= β
(j)T
y(j)

σ = 3∑
i=1
β
(j)
y(j),i

σi , with ∥β(j)
y(j)

∥ = 1, j ∈ {2,3}, (3.14)

are general qubit observables. Due to the Pauli product relation (2.10), operators in
the χ3 state, Eq. (3.13), with full Pauli weight lead to either σy or σx on Alice’s site.
Both operators are traceless and hence the respective contribution to the expecta-
tion value vanishes. Likewise, every contribution of operators with non-full Pauli
weight in Eq. (3.13) vanishes, because at least one Pauli operator remains in the full-
correlator. In total, we find ⟨A0B

(2)
y(2)

B
(3)
y(3)

⟩χ3 = 0, which prevents the 3-MABK
value in Eq. (3.11) from exceeding the classical bound. We can make a stronger state-
ment for general Bell inequalities with qubit measurements:

Remark 3.3. Full-correlator expressions in any Bell inequality with an odd number of
parties that contain at least one observable equal to σz vanish, given the n-GHZ state is
measured.

Consequently, odd-partite, full-correlation Bell inequalities cannot bemaximally
violated via σz measurements on the n-GHZ state. In Ref. [HMKB19], App. C, we
discuss this property in full depth for the MABK inequality. Based on these results
we developed in Ref. [HKB19], App. E, a genuine multipartite Bell inequality which
can bemaximally violated with Pauli-σz measurements. Furthermore, it contains the
Parity-CHSH inequality as a subclass, which we introduce in the following section.

3.3.2. Parity-CHSH Inequality

In Ref. [RMW19], the Parity-CHSH inequality is introduced in terms of a nonlocal
game. To put this inequality into perspective and identify it as a subclass of our Bell
inequality, we establish here the actual inequality in terms of expectation values. The
rules of the game are similar to the CHSH case in Sec. 3.1. A referee sends inputs to
Alice and all Bobs. However, all Bobs except the first one only receive one input. All
parties report a binary value to the referee. They win the game if and only if

a⊕ b(2) = x ⋅ (y(2) ⊕ b̄) , where b̄ ∶= n⊕
j=3

b(j). (3.15)
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For b̄ = 0, the game is identical to the CHSH game, cf. Ref [RMW19]. For b̄ = 1,
however, it is not clear how to exactly phrase the game in terms of expectation values.
To develop this, let us consider the tripartite case with a third party Bob(3) and let
b̄ = b(3) = 1. According to Eq. (3.15), the parties win the game if they announce
a = b(2) for (x, y(2)) ∈ {(0,0), (0,1), (1,1)}. Because of b̄ = 1, the input pair(x, y(2)) = (1,0) plays the role of the (1,1) input in the CHSH game, cf. Table 3.1.
The 3-Parity-CHSH inequality can thus bewritten as twoCHSH inequalities for Alice
and Bob(2), conditioned on differentmeasurement results of the third party. In terms
of qubit observables, the 3-Parity-CHSH operator is given by

⎡⎢⎢⎢⎢⎣
1∑

x,y(2)=0
(−1)x⋅y(2)AxB

(2)
y(2)

⎤⎥⎥⎥⎥⎦B(3)+ + ⎡⎢⎢⎢⎢⎣
1∑

x,y(2)=0
(−1)x⋅(y(2)⊕1)AxB

(2)
y(2)

⎤⎥⎥⎥⎥⎦B(3)−,
(3.16)

whereB(3)± denotes the projector on the ±1 eigenstate of observableB(3), and the
measurement results are relabeled according to +1 → 0 and −1 → 1. The expres-
sion (3.16) can be simplified withB(3)± = 1±B(3)

2 . This leads us to

B(3)Parity ∶= ⟨A1 (B(2)0 −B(2)1 )B(3)⟩ + ⟨A0 (B(2)0 +B(2)1 )⟩ ⩽ 2 ⩽ 2
√
2, (3.17)

which is the Parity-CHSH inequality for n = 3 parties. From here on, the generaliza-
tion to n parties is straightforward. We define:

Definition 3.4 (Parity-CHSH Inequality). LetAx,B
(2)
y(2)

, andB(j) forx, y(2) ∈ {0,1}
and j ∈ {3, . . . , n} be binary observables. The Parity-CHSH inequality is defined as

B(n)Parity ∶= ⟨A1
B
(2)
0 +B(2)1

2

n⊗
j=3

B(j)⟩ − ⟨A0
B
(2)
0 −B(2)1

2
⟩ ⩽ 1 ⩽ √

2, (3.18)

for all n ⩾ 2, with classical bound 1 and Tsirelson bound
√
2 .

Note thatwe substitutedA0 → −A0 andB
(2)
1 → −B(2)1 , whichmerely represents

a relabeling of measurement results, and we divided the inequality by two. These
changes allow a straightforward identification of the Parity-CHSH inequality as a
subclass of the Bell inequality in Ref. [HKB19], App. E.

In summary, the multipartite Parity-CHSH game corresponds to two bipartite
CHSH games, for b̄ ∈ {0,1}. In terms of expectation values, this translates to a slight
modification of the CHSH inequality (3.2). The Parity-CHSH inequality (3.18) main-
tains the core of the original CHSH inequality and nonlocality can be certified by
an effective bipartite Bell test, depending on the measurement results of the other
parties.
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3.4. On the Experimental Violation of Bell Inequalities

To unequivocally falsify LHVmodels as an accurate description of nature, a loophole-
free experimental demonstration of a Bell inequality violation is needed. Loopholes
are rather subtle obstacles which could, in principle, explain the nonlocality of corre-
lations within a classical model [Pea70]. Two important loopholes are the detection
and the locality loophole, which are open in a Bell test with detectors of insufficient
efficiencies and Bell tests where measurement events are not spacelike separated. See
Ref. [BCP+14] for a thorough discussion. In order to close loopholes, the experimen-
tal demands increase, as meticulous timing and highly efficient devices are required.
Because of this, loophole-free Bell tests of high statistical relevance were performed
only recently [HBD+15] and [GVW+15], where the violation of a Bell inequality via
entangled electron spins and entangled photons, respectively, is reported.
However, many experiments with less strict regulations regarding loopholes and on
various platforms were performed. All of them substantiate the nonlocal nature
of quantum theory. For example, Refs. [FC72, AGR82, CMA+13] and [RKM+01]
demonstrated a Bell inequality violation via entangled photons and trapped ions, re-
spectively. The latter can be read-out with high efficiency and is thus robust with
respect to the detection loophole. Furthermore, genuine multipartite nonlocality via
anMABK inequality violation is reported in Refs. [PBD+00, ZYC+03, EMSF+14] with
photonic three- or fourpartite GHZ state.

3.5. Classical, No-signaling, and Quantum Correlations

Generally, we categorize the different types of correlations according to their ori-
gin. We follow Ref. [BCP+14] and consider a bipartite Bell setting in which Alice
and Bob perform measurements specified by inputs x, y ∈ {0, . . . ,m − 1} and out-
puts a, b ∈ {0, . . . , k − 1}. The Bell setting is completely characterized by the set
P ∶= {P (a, b∣x, y)}a,b,x,y of all joint conditional probabilities which we refer to
as a behavior. For a fixed Bell setting, a behavior defines a subspace C ⊂ R

m2k2 .
A behavior is a set of probabilities. Thus, first constraints on the boundaries ofC are imposed by the conditions of positivity P (a, b∣x, y) ⩾ 0 and normalization∑k−1

a,b=0 P (a, b∣x, y) = 1 for all x, y. For more specific statements, the origin of cor-
relations are decisive for the boundaries of C. We distinguish between classical, no-
signaling, and quantum correlations, see also Fig. 3.2.

(i) Classical. Correlations of classical origin form a convex polytope P [Pit89],
that is, the convex hull of a finite number of extremal points vi ∈ R

m2k2 , so-called
vertices, which correspond to all possible deterministic assignments of outputs to in-
puts. Every classical behaviour can thus be written as

P cl = ∑
i

λivi, with ∑
i

λi = 1, λi ⩾ 0 ∀ i. (3.19)
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Conversely, every behavior which admits no such decomposition is nonlocal and vi-
olates at least one Bell inequality.

(ii) No-signaling. In a spacelike separated setup, superluminal communication
cannot be achieved between Alice and Bob. In terms of correlations this can be ex-
pressed by the no-signaling constraints [Tsi80, PR94],

k−1∑
b=0

P (a, b∣x, y) = P (a∣x) ∀a, x, y and (3.20a)

k−1∑
a=0

P (a, b∣x, y) = P (b∣y) ∀b, x, y, (3.20b)

which state that themarginal probability distribution of Alice is independent of Bob’s
input y and vice versa. The set of all correlations satisfying the no-signaling con-
straints form a convex polytopeN .

(iii) Quantum. A behavior is quantum if there exist a quantum state ρAB and mea-
surement operators {Ea∣x}a,x and {Eb∣y}b,y which describe the performedmeasure-
ment in the sense of the measurement postulate 2. We will make this more precise in
the subsequent section. The set of all quantum behaviors forms a convex setQ, but it
is not a polytope. The boundaries ofQ are still unknown in spite of analytical efforts
to describe it [PPK+09, FSA+13].

See Fig. 3.2 and the caption of it for a visualization and further explanations.

Figure 3.2: A graphical representation of a two-dimensional section of the no-
signaling polytope N , the convex quantum set Q, and the classical polytope P ,
adapted from [BCP+14]. Note the strict inclusions P ⊂ Q ⊂ N . The boundaries
of the classical polytope sharply separate local and quantum correlations and there-
fore represent tight Bell inequalities in terms of probabilities. Hyperplanes, defined
by a normal vector h, thus represent Bell inequalities.

3.6. A Numerical Tool: Hierarchy of Semidefinite Programs

In this section, we introduce a powerful and extremely versatile numerical method to
describe the set of quantum correlationsQ, the Navascués-Pironio-Acín (NPA) hier-
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archy [NPA07, NPA08]. Applications for this numerical toolbox are manifold, most
notably it allows to upper bound the Tsirelon bound of an arbitrary Bell inequality
and, as we will see in Chap. 5, it allows us to bound the information an eavesdropper
has access to.

3.6.1. Introduction to Semidefinite Programming

First, we require the basics of semidefinite programming (SDP) for which we closely
follow [NPA08, VB96]. In SDPs a linear objective function is optimized over convex
constraint functions and it can be formulated as

maximize tr (F0Z) , (3.21a)
subject to tr (FiZ) = ci, ∀i ∈ {1, . . . , s}, (3.21b)

Z ⩾ 0,

which is known as the primal problem. The problem variable is the Hermitian matrix
Z ∈ C

r×r and the problem parameters or problem data are the Hermitian matrices
F0, Fi ∈ Cr×r and scalars ci. The variable Z is primal feasible if tr (FiZ) = ci for all
i ∈ {1, . . . , s} and Z ⩾ 0. It is strictly primal feasible if Z > 0 instead of Z ⩾ 0.

Every primal problem has its dual, which is a minimization of a linear function
of x = (x1, . . . , xs)T subject to constraints stipulated by an affine combination of
Fi,

minimize cTx, (3.22a)

subject to F (x) ∶= s∑
i=1
xiFi − F0 ⩾ 0. (3.22b)

The variable x is dual feasible if F (x) ⩾ 0 and strictly dual feasible if F (x) > 0.
The solution of the dual problem provides useful bounds on the optimal value

for the primal solution and vice versa. To see this, define the optimal primal and dual
solutions

p∗ ∶= sup{tr (F0Z) ∣ Z ⩾ 0, tr (FiZ) = ci ∀i ∈ {1, . . . , s}} and (3.23a)

d∗ ∶= inf{cTx ∣ F (x) ⩾ 0}. (3.23b)

Let Z and x be primal and dual feasible, respectively. Then,

cTx − tr (F0Z) = m∑
i=1

tr (FiZ)xi − tr (F0Z) = tr (F (x)Z) ⩾ 0 (3.24)

and therefore p∗ ⩽ d∗, which proves the weak duality between the primal and dual
problem. For strong duality p∗ = d∗, the existence of a strictly feasible primal point
Z or dual point x is a sufficient condition [VB96].

Semidefinite programs represent a vast generalization of linear programs, while
remaining efficiently solvable, in part due to the duality discussed above. Impor-
tantly, a hierarchy of SDPs can approximate the solution of polynomial optimization
problems. This makes the transition to the NPA hierarchy.
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3.6.2. The Navascués-Pironio-Acín Hierarchy

The question Refs. [NPA07, NPA08] address is the following: Given a behavior P ,
do there exist local measurement operators and a quantum state that reproduce the
behavior P , i.e., is the behavior of quantum origin? Instead of directly seeking a
quantum realization for a given behavior, which in full generality is a difficult task,
in part because the dimensions of the quantum system can be unbounded, a family of
weaker conditions is considered. Each condition represents a level of the NPA hier-
archy that can be formulated as an SDP. Any behavior that satisfies the conditions in
all levels is necessarily of quantum origin. Conversely, if a condition is not fulfilled,
we can rule out the quantum origin of the behavior.

Let ∣ψ⟩ ∈ H be a pure state and {Ea∣x}a,x, {Eb∣y}b,y be sets of projective mea-
surement operators for Alice and Bob, respectively. A quantum behavior is a set of
conditional probabilities

P = {P (a, b∣x, y)}a,b,x,y, such that P (a, b∣x, y) = ⟨ψ∣Ea∣x ⊗Eb∣y ∣ψ⟩ (3.25)

for all a, b, x, y. As we did not specify the dimension of H, we can assume the state
to be pure and the measurements to be projective, recalling the purification and the
Naimark extension in Chap. 2.

Let further O ∶= {O1, . . . ,Or} be a set of r operators Oi, which contains all
projectorsEa∣x,Eb∣y and (depending on the level of the hierarchy) additionally some
linear combinations of finite products of these projectors. By construction, Γij ∶=⟨ψ∣O†

iOj ∣ψ⟩ is a linear function of probabilities P (a, b∣x, y). All coefficients Γij

form themoment matrixΓ ∈ Cr×r associated to the setO. IfP is a quantum behavior,
Γ fulfills:

(i) The moment matrix is positive semidefinite, i.e., Γ ⩾ 0.
(ii) The entries Γij fulfill a set of linear equalities that depend on the behavior P ,

cf. the SDP constraints (3.28b).
(iii) The behavior P defines a subset of entries Γij .

For a given unspecified behavior P , the existence of such a moment matrix Γ is a
necessary condition for the behavior to be of quantum origin.

Consider theCHSH setting as an example, see also [NPA07]. Let ∣ψ⟩ be a quantum
state and define the set

O ∶= {Ea∣x,Eb∣y}a,b,x,y∈{0,1}, (3.26)

which contains all projective measurement operators Ea∣x,Eb∣y . The behavior P
consists of 24 conditional probabilities P (a, b∣x, y). A necessary condition for this
set of probabilities to admit a quantum representation, is the existence of real sym-
metric and positive semidefinite moment matrix Γ ⩾ 0 of the form

Γ = ( Q P

P T R
) , with Q,R,P ∈ R

4×4. (3.27)
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As argued, entries of the moment matrix Γ are probabilities, where the submatrix
P contains all 24 probabilities P (a, b∣x, y). The submatrices Q and R are ordered
such that the diagonal entries are the marginal probabilities for Alice and Bob, re-
spectively. That is, for x = x′ the elements ofQ areQa,a′ = δa,a′P (a∣x). For x ≠ x′
and a = a′, the entries ofQ are undetermined as they correspond to non-commuting
measurements on the same subsystem, which cannot be measured simultaneously. If
P is a quantum behavior, however, one can add a value ⟨ψ∣Ea∣xEa′∣x′ ∣ψ⟩ to this en-
try, such that Γ ⩾ 0. The same arguments hold for R. An SDP checks if it is possible
to complete Γ in this way.

Going back to the general discussion, we call a moment matrix Γ that fulfills
properties (i) to (iii) a certificate associated to O. The existence of such a certificate
can be verified by the solution of the SDP [NPA08]

maximize ν, (3.28a)
subject to tr (FiΓ) = gi(P ), ∀i ∈ {1, . . . , s}, (3.28b)

Γ − ν1 ⩾ 0,

where Eq. (3.28b) is the set of linear constraints mentioned in item (ii) above. If a
certificate Γ exists, the SDP (3.28) finds a positive solution ν ⩾ 0. On the other hand,
a negative solution ν < 0 identifies the behavior as nonquantum.

Now let Oq contain operators that are nontrivial products of at most q of the
projectors Ea∣x and Eb∣y . The set of behaviors {P q}, for which a certificate of order
q in terms of the moment matrix Γq associated to Oq exists, defines a subspace Qq

of the probability space that contains Q. The SDPs which check for the existence
of a certificate Γc for c ∈ {1, . . . , q} give rise to the sequence Q1 ⊇ Q2 ⊇ ⋅ ⋅ ⋅ ⊇ Qq

of outer approximations of the true quantum set Q. The limit of approximations
becomes limq→∞Qq = Q and we can state the main result of Ref. [NPA08].

Theorem 3.5. Let P be a behavior such that there exists a certificate Γq of order q for
all q ⩾ 1. Then P ∈ Q.

See Ref. [NPA08] for the proof and Fig. 3.3 for a graphical representation of the
NPA hierarchy.

The certificates of order q impose with increasing hierarchy level q stronger con-
ditions on the behavior P to not be identified as nonquantum. In other words, if
there exists a certificate of order q for a behavior P , then there necessarily exists a
certificate of order q′ for all q′ < q. As the numerical resources increase with the
hierarchy level, the canonical way to search for a certificate of a given behavior P is
to start with the first level and proceed in increasing order in the hierarchy. Fortu-
nately, the numerical calculations often converge already at a low hierarchy level and
the computation can be aborted if a desired numerical precision is achieved. Within
this precision, the quantumness of a given behavior is then certified.
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Figure 3.3: Illustration of the working principle of the NPA hierarchy, adapted
from [BCP+14]. The set Qq contains all behaviors {P q} for which a certificate of
order q exists. With increasing hierarchy level q, the approximation of the set of true
quantum correlations Q becomes better, hence the inclusion Q1 ⊇ . . .Qq ⊇ . . .Q.
The better description of Q comes at the expense of an increased demand for nu-
merical resources.

A Bound on the Tsirelson Bound

As an application, we nowuse theNPAhierarchy to upper bound the Tsirelson bound
of the genuinemultipartite Bell inequality we introduced in Ref. [HKB19], App. E, for
n = 3 parties. The inequality is given by

1

4
⟨A1(B(2)0 +B(2)1 )(B(3)0 +B(3)1 )⟩ − 1

2
⟨A0(B(2)0 −B(2)1 ) +A0(B(3)0 −B(3)1 )⟩

− 1

4
⟨(B(2)0 −B(2)1 )(B(3)0 −B(3)1 )⟩ ⩽ 1, (3.29)

with classical upper bound 1. We are interested in an approximation of the Tsirelson
bound of inequality (3.29) from above. As the NPA hierarchy optimizes over behav-
iors {P }, we first translate the correlator inequality (3.29) into a Bell inequality of
conditional probabilities to make the arguments more transparent. Via the spectral
decompositionAx = A+x −A−x and the completeness relation 1 = A+x +A−x (and like-
wise for the Bobs), we can relate the correlators to the joint conditional +1-outcome
probabilities according to:

⟨AxB
(2)
y(2)

B
(3)
y(3)

⟩
ρ
= tr((2A+x − 1)(2B(2)+

y(2)
− 1)(2B(3)+

y(3)
− 1)) (3.30)

= 8P+++
xy(2)y(3)

− 4(P++
xy(2)

+ P++
xy(3)

+ P++
y(2)y(3)

)
+ 2 (P+x + P+

y(2)
+ P+

y(3)
) − 1.

Here, we introduced the shorthand notation

P+++
xy(2)y(3)

∶= P (a = b(2) = b(3) = +1 ∣x, y(2), y(3)) (3.31)

and likewise for all other probabilities. Similarly, one can relate the two-party cor-
relators to the +1-outcome probabilities. A substitution of the correlators in the Bell
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inequality (3.29) with the corresponding probabilities leads us to:

1 ⩾ B(3)P ∶= P+++100 + P+++110 + P+++101 + P+++111 + P+x=1 + P+
y(2)=0 + P+

y(3)=0 (3.32)

− 1∑
x,y(2)=0

(−1)(x⊕1)⋅y(2)P++
xy(2)

− 1∑
x,y(3)=0

(−1)(x⊕1)⋅y(3)P++
xy(3)

− P++
y(2)=0,y(3)=0 − P++

y(2)=1,y(3)=1.

The objective function B(3)P is maximized by the NPA hierarchy. Note, however,
that B(3)P is maximized over all behaviors {P } which are compatible with quantum
correlations at a fixed level, that is, w.r.t. all possible projective measurement oper-
ators E+∣x,E+∣y(2) ,E+∣y(3) and all quantum states ∣ψ⟩ that lead to a behavior P for
which a certificate of a fixed order exists. The maximization converges sufficiently
well at the second level and an upper bound on the Tsirelson bound for inequal-
ity (3.32) is gPNPA ≈ 1.25. This translates to the bound gNPA ≈ 1.5 in the correlator in-
equality (3.29). One can straightforwardly verify that the pure 3-GHZ state together
with the measurement observables

A0 = σz, B
(j)
0 = √

3

2
σx − 1

2
σz, and (3.33a)

A1 = σx, B
(j)
1 = √

3

2
σx + 1

2
σz ∀ j ∈ {2,3}, (3.33b)

yield 1.5 as a quantum value. Hence, we proved within numerical precision that the
(tight) Tsirelson bound of inequality (3.29) is given by gqm = 1.5.
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Chapter 4

An Introduction to Quantum Key Distribution

Classical cryptography can only guarantee security of a protocol, if one assumes that
the eavesdropper Eve has access to limited computational resources. Security is thus
based on the computational hardness of certain mathematical problems. A famous
example is the RSA encryption [RSA78], which exploits that the factorization of large
numbers into primes (presumably) cannot be done in polynomial time on a classical
computer.1 In contrast, the security of quantum key distribution (QKD) is based on
intrinsic and fundamental properties of quantum particles.

This chapter is designed to give an introduction to QKD and the concepts are
mainly adapted from [SBPC+09, PAB+19]. To this end, we start with Sec. 4.1 in which
we describe the one-time-pad encryption and prove the no-cloning theorem. After-
wards, in Sec. 4.2, we discuss the BB84 protocol in detail, as it represents the ori-
gin of (bipartite) QKD. Section 4.3 reviews an extension of QKD to multiple parties,
so-called conference key agreement. Finally, in Sec. 4.4 we reevaluate fundamental
assumptions upon which the security of QKD is built. This makes the semantic tran-
sition to Chap. 5.

4.1. One-time-pad Encryption and No-cloning Theorem

Let us consider two parties, called Alice and Bob as usual. Alice, the sender, wants to
transmit a messagem to the receiver Bob in a secure fashion. They can use the one-
time-pad encryption [Mil82, Ver26], which is unconditionally secure under mild as-
sumptions, that is, it provides security against an eavesdropper with unlimited com-
putational power. The one-time pad is provably optimal in terms of required key
length [Sha49]. See Fig.4.1 for a visualization and further explanations. To enable
secure communication via this encryption scheme, a secure way to distribute the key
k is required. This is the ultimate task of QKD.

1Currently, the largest integer that was factorized into prime numbers, is a 232-digit number which
requires about 2000 years of computational time on a single core [KAF+10].
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Figure 4.1: Sketch of the one-time-pad encryption. Alice and Bob are located in iso-
lated laboratories and they can communicate via an authenticated channel. To en-
crypt a messagem in a binary alphabet, Alice adds tom a random bit string k , the
key, which is of equal length as the messagem. This yields the cipher text c, which
she publicly sends via the channel to the receiver Bob. He holds a copy of the key k
that was securely distributed beforehand. To recover the message m, Bob adds the
key k to the cipher text c. Eve has full access to the cipher text c, but she cannot
decrypt it, because every message is equally probable from her point of view.

The following theorem describes one feature of quantum particles that allows the
security of QKD protocols.

Theorem 4.1 (No-cloning [WZ82]). It is not possible to perfectly clone an unknown
quantum state.

Proof. We follow [NC10] and prove this theorem by contradiction. Let ∣ψ⟩ , ∣ϕ⟩ be
two unknown quantum states, i.e., in general ∣ψ⟩ ≠ ∣ϕ⟩ and ⟨ψ ∣ϕ⟩ ≠ 0 holds. A
unitary operator U determines the cloning procedure for ∣ψ⟩ and ∣ϕ⟩, which copies
the states into some auxiliary state ∣x⟩, hence

U ∣ψ⟩ ∣x⟩ = ∣ψ⟩ ∣ψ⟩ and U ∣ϕ⟩ ∣x⟩ = ∣ϕ⟩ ∣ϕ⟩ . (4.1)

As U †U = 1 and ∣x⟩ is normalized, the inner product of Eqs. (4.1) yields

⟨ϕ ∣ψ⟩ = ⟨ϕ ∣ψ⟩2 , (4.2)

which is only true for ∣ψ⟩ = ∣ϕ⟩ and ⟨ϕ ∣ψ⟩ = 0. ∎
Quantum mechanics provides another way to guarantee security in a QKD pro-

tocol, which is the monogamy of entanglement [CKW00, Ter04]. That is, given ρAB
is maximally entangled, it cannot be correlated to a third party. This strong form
of correlation certifies security in the Ekert protocol [Eke91], which was the first
entanglement-based proposal for QKD. Beyond that, monogamy of entanglement is
at the heart of security in the device-independent formulation of QKD, which we
thoroughly discuss in Chap. 5.

4.2. The BB84 Protocol

According to the no-cloning Theorem 4.1, we prevent the eavesdropper from per-
fectly cloning the quantum states by encoding the quantum information into non-
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orthogonal states. This leads us to the BB84 protocol [BB84]. In its original ver-
sion, the polarization of photons was used for encoding. The key distribution was a
prepare-and-measure scheme, which we describe in the following. For now, let us ne-
glect the effect of noise and assume that there is no eavesdropper present. The BB84
protocol consists of the following steps:

(i) Alice prepares with a single-photon source and polarizers a sequence of 2n
signals. Each signal is a quantum state, chosen randomly from the set

{ ∣→⟩ , ∣↑⟩ , ∣↗⟩ = 1√
2
(∣→⟩ + ∣↑⟩) , ∣↘⟩ = 1√

2
(∣→⟩ − ∣↑⟩) }, (4.3)

which she sends to Bob via a quantum channel.
(ii) Bob receives the states and measures them by a proper alignment of his polar-

izers either in the Z ∶= {∣→⟩ , ∣↑⟩} or in theX ∶= {∣↗⟩ , ∣↘⟩} basis. They agree
to code the bit 0 in the non-orthogonal states ∣↑⟩ and ∣↗⟩, whereas the bit 1 is
coded in the non-orthogonal states ∣→⟩ and ∣↘⟩.

(iii) After the quantum communication, Alice and Bob publicly compare their basis
choice in each round. Given their choices are in discord, they discard the cor-
responding bit value. In the absence of noise (and perfect quantum devices),
this sifting leads to identical keys of approximately n bits.

In Table 4.1, we give an example for a sequence in the BB84 protocol.

Table 4.1: In each round Alice and Bob choose randomly Z or X . If they
choose the same basis, their results are perfectly correlated. In rounds where
their basis choice does not coincide, Bob measures either 0 or 1 with equal
probability, because theZ andX bases are mutually unbiased, recall Sec. 2.1.
These instances are indicated by "?" and they are discarded in the sifting phase
of the protocol.

Alice’s Basis X Z Z Z X Z X Z Z Z Z X X

State ↗ → ↑ ↑ ↘ → ↘ → ↑ → ↑ ↗ ↘
Bob’s Basis X X Z Z X X Z Z X X Z X Z

Result 0 ? 0 0 1 ? ? 1 ? ? 0 0 ?

Sifted Key 0 0 0 1 1 0 0

A straightforward eavesdropping strategy is the intercept-resend attack, in which
Eve randomly chooses theX orZ basis in each round aswell. As Eve cannot perfectly
clone non-orthogonal states, she needs to perform a measurement to obtain infor-
mation. By doing so, she necessarily introduces errors in rounds where her choice is
in discord with the choice of Alice. In the absence of noise, the disturbance by Eve
manifests itself in measurement results for Bob (who is waiting for a signal), which
can only be explained by the interaction of a third party. However, on average, Eve
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guesses the correct basis in half of themeasurement rounds, inwhich case she obtains
full information without revealing her presence.

4.2.1. Entanglement-based BB84

In the entanglement-based version of the BB84 protocol [BBM92], Alice is in control
of a quantum source and both parties hold measurement devices with two inputs,
x, y ∈ {0,1} associated to the observables A0 = B0 = σz andA1 = B1 = σx.

(i) In each round, the parties perform the following steps:
State preparation. Alice prepares the Bell state ∣φ+⟩ and sends one qubit to Bob.
Measurements. Alice and Bob choose the inputs x, y ∈ {0,1} uniformly at ran-
dom. If their choice coincides, they obtain perfectly correlated measurement
results. For x ≠ y, however, their measurement results are uncorrelated.

(ii) Parameter estimation. The parties publicly communicate the list of their input
choices and perform the sifting procedure. A small subset of measurement
outcomes for the input pairs (x, y) ∈ {(0,0), (1,1)} is also announced. Alice
and Bob check for a disturbance by Eve via the estimation of the quantum bit
error rate (QBER)

Qz ∶= P (a ≠ b∣x = y = 0) and Qx ∶= P (a ≠ b∣x = y = 1) , (4.4)

which is the probability that they obtain different outcomes conditioned on a
fixed measurement input. The remaining signals constitute the raw key.

(iii) Classical postprocessing. Alice and Bob evaluate their data and perform an error-
correction protocol, which removes the discrepancies in their raw key. The final
step is privacy amplification, which eliminates Eve’s knowledge about the raw
key, see Ref. [RK05, SBPC+09] for details. At the end of the classical postpro-
cessing, Alice and Bob successfully established a common and secure key.

In general, the measurement rounds in a QKD protocol can be divided in two
types, raw key generation and parameter estimation, where the latter is used much
less frequently [LCA05]. For key generation, the parties are inclined to use measure-
ments and quantum states that lead to highly correlated measurement results. The
data from the parameter estimation rounds are evaluated to quantify the amount of
error-correction information and to bound the knowledge of Eve about the raw key.
We will make these notions more precise in the following section.

4.2.2. Asymptotic Secret-Key Rate

A central task in QKD is to quantify the secret-key rate, which is the number of secure
bits the parties can establish per time unit. This figure of merit depends on a variety
of parameters, such as errors introduced by quantum devices and by the eavesdrop-
per. Beyond that, it depends on the very structure of the QKD protocol, as well as on
the number of rounds performed in the protocol. The finite size effects are discussed
in Ref. [Ren08, SR08]. Throughout this thesis, however, we focus on the asymptotic
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limit of infinitely long keys. In this case the secret-key rate has to be understood as
the fraction of secure bits per time unit.

Let us calculate the asymptotic secret-key rate for the BB84 protocol. Assuming
one-way classical postprocessing, the starting point is a lower bound known as the
Devetak-Winter rate [DW05]

r ⩾H (A ∶ B) − χ (A ∶ E) (4.5)=H (A ∶ B) − (S(ρE) − ∑
a=±1

P (a)S(ρE∣a)),
which is the difference between the mutual information H(A ∶ B), Eq. (2.37), (be-
tween Alice and Bob) and the Holevo quantity χ (A ∶ E), Eq. (2.39), (between Alice
and Eve). The reduced state ρE = ∑a P (a)S(ρE∣a) of Eve is a mixture of states ρE∣a,
conditioned on the value of Alice’s signal. The Devetak-Winter rate has the following
interpretation: The mutual information describes the amount of information shared
by Alice and Bob. Due to the action of Eve, this information is only partially secure,
which is why the Holevo quantity, an upper bound on Eve’s accessible information,
is subtracted. In this worst-case scenario, the security of the remaining information
is ensured.

For the BB84 protocol it holds, recalling the QBERQz in Eq. (4.4):

P (a, b) = Qz

2
for a ≠ b and P (a, b) = 1 −Qz

2
for a = b, (4.6)

and the marginal probability distributions are uniform, i.e., P (a) = P (b) = 1
2 for all

a, b ∈ {±1} and thusH(A) = H(B) = log2(2) = 1. With this, we can quantify the
mutual information in terms of the parameterQz ,

H(A ∶ B) = 2 + ∑
a,b s.t. a=b

P (a, b) log2 P (a, b) + ∑
a,b s.t. a≠b

P (a, b) log2 P (a, b)
= 2 + (1 −Qz) (log2(1 −Qz) − 1) +Qz (log2Qz − 1)= 1 − h(Qz), (4.7)

with the binary entropy h, Eq. (2.34). Intuitively, the mutual information is reduced
by the rate of which mismatching measurement results occur.

For the calculation of the Holevo quantity, we follow Refs. [KGR05, RGK05]. Due
to the symmetry of the BB84 protocol, it is not restrictive to assume that the final state
Alice and Bob share is Bell diagonal. That is, ρAB = ∑4

i=1 λi ∣φi⟩⟨φi∣, with ∑i λi =
1. Here, we relabeled the Bell states in Eq. (2.26) according to ∣φ+,−⟩ → ∣φ1,2⟩ and∣ψ+,−⟩ → ∣φ3,4⟩. Recall that the measurement observables of Alice and Bob are σz
and σx in the BB84 protocol. The QBER Qz , Eq. (4.4), with Bell-diagonal states ρAB
is calculated according to

Qz = tr(( ∣01⟩⟨01∣ + ∣10⟩⟨10∣ )ρAB). (4.8)

33



CHAPTER 4. AN INTRODUCTION TO QUANTUM KEY DISTRIBUTION

Perfect correlation in the σz basis is provided by ∣φ1,2⟩ , while ∣φ3,4⟩ lead to perfect
anticorrelations, henceQz = λ3 + λ4. A similar calculation leads toQx = λ2 + λ4.
Once the quantum signal leaves the laboratory of Alice, we assume that Eve has full
knowledge of the state, i.e., Eve holds the purification ∣ψ⟩ABE = ∑i

√
λi ∣φi⟩ ∣ei⟩ of

ρAB. We obtain the reduced state ρAE by partially tracing out Bob’s degrees of freedom
from the purification ∣ψ⟩ABE. After the measurement of Alice, the system is projected
into an eigenstate of A0 = σz . This leads to:

ρE∣a=±1 = (√λ1 ∣e1⟩ ±√
λ2 ∣e2⟩)h.c. + (√λ3 ∣e3⟩ ∓√

λ4 ∣e4⟩)h.c., (4.9)

where h.c. is a shorthand notation for the hermitian conjugate of the expression in
the preceding parenthesis. The nontrivial eigenvalues of both states in Eq. (4.9) are
Λ1 ∶= λ3 + λ4 and Λ2 ∶= 1 −Λ1 = λ1 + λ2, such that the Von Neumann entropy is

S (ρE∣a) = − 2∑
i=1

Λi log2Λi = h(Λ1) = h(Qz) ∀ a ∈ {±1}. (4.10)

Since ρAB is Bell diagonal and Eve holds the purification, we have S(ρE) = S(ρAB) =
H(λ), where λ ∶= {λi}4i=1. The Shannon entropyH(λ) has to be chosen such that
Eve’s information is maximized. One finds [SBPC+09]:

H(λ) = h(Qz) + (1 −Qz)h(Qx) +Qzh(Qx)= h(Qz) + h(Qx) (4.11)

and the asymptotic secret-key rate of the BB84 protocol becomes:

r ⩾ 1 − h(Qz) − h(Qx). (4.12)

4.3. Extension to Conference Key Agreement

The building block in a quantum communication network is a bipartite point-to-
point connection. To distribute a secure key in such a network, one can either per-
formmultiple bipartite QKD protocols or exploit a genuinely multipartite entangled
quantum resource to establish a conference key. The protocol proposed in [EKMB17]
involves n parties, with three binary observables on each site. The n-QKD protocol
can thus be seen as an entanglement-basedmultipartite generalization of the six-state
protocol [Bru98]. In networks with a bottleneck architecture, such as the butterfly
example [ACLY00], then-QKDprotocol can outperformmultiple bipartite protocols.
Here, we briefly discuss differences which arise in the multipartite extension that are
important for our purposes. The quantum resource used in the n-QKD protocol is
the n-GHZ state in Eq. (2.28). Recall that in the bipartite case, the pure 2-GHZ state∣φ+⟩ provides perfectly correlated measurement results, if Alice and Bob measure
both in either the σz or in the σx basis. The situation is different in the multipartite
case.
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Theorem 4.2 (Perfect Correlation [EKMB17]). For n ⩾ 3 qubits, the state ∣ϕcorr⟩ =
a0 ∣0⟩⊗n + a1 ∣1⟩⊗n leads to perfect classical correlations between any number of parties,
if and only if each of them measures in the σz basis.

See [EKMB17] for the proof. The ideal quantum resource is the equally weighted
n-GHZ state in Eq. (2.28) to guarantee the randomness of the final secure bit string.
Another difference is the definition of the QBERQz , which is in the multipartite set-
ting the probability that at least one Bob obtains a different measurement result w.r.t.
Alice in the σz basis. The bipartite error rates are denoted byQAB(j) and the noisiest
channel between Alice and Bob(j) determines the error-correction information that
Alice has to publish in the classical postprocessing step of the protocol, i.e., [EKMB17]

Qz ∶= max
j∈{2,...,n} (QAB(j)) . (4.13)

4.4. Imperfections Break Security

So far, we tacitly and lightheadedly assumed that our devices behave exactly as we
want them to. This, however, is a radical demand from our devices. Every realistic
implementation is necessarily imperfect, which can be exploited by Eve to break the
security of a cryptographic protocol. Subject of such adapted eavesdropping strate-
gies, so-called side-channel attacks, can be any device involved in the QKD scheme.
For example, the photon-number splitting attack [BLMS00] exploits that a realistic
quantum source emits photons according to a Poissonian distribution. Another vul-
nerability is the dead time of single photon detectors [WKR+11].

Here, we follow an example given in Ref. [PAB+09], which illustrates that the
security of the entanglement-based BB84 protocol critically requires that the QKD-
resource state ∣ψ⟩ is an element of a four dimensional Hilbert spaceHAB. As already
discussed, the measurements results of Alice and Bob are perfectly correlated if their
input values coincide and they are uncorrelated if their inputs are in discord. In terms
of expectation values this translates to

⟨AxBy⟩∣ψ⟩ = δx,y ∀ x, y ∈ {0,1} (4.14)

with A0 = B0 = σz and A1 = B1 = σx. In four dimensions, the only state compat-
ible with this statistics is the Bell state ∣φ+⟩. Alice and Bob trust that the quantum
source distributes the maximally entangled state ∣φ+⟩ and they commence the key
generation. In a larger-dimensional Hilbert space, however, even separable and thus
insecure quantum states can reproduce the statistics in Eq. (4.14), as the following
example shows [PAB+09]. The state

ρ′AB = 1

4

1∑
k,k′=0

∣k, k′⟩⟨k, k′∣ ⊗ ∣k, k′⟩⟨k, k′∣ (4.15)

together with the extended observables A′0 = B′0 = σz ⊗ 1 and A′1 = B′1 = 1 ⊗ σz ,
reproduce the statistics in Eq. (4.14).
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As demonstrated, the security of the BB84 protocol is compromised if the behav-
ior of the quantum devices behavior is different from the description of the theoret-
ical model used in usual security proofs. This calls for a new level of security, which
leads us to device-independent QKD.
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Chapter 5

The Device-independent Approach to QKD

A device-independent formulation claims the highest level of security in quantum
cryptography. In this approach, an exact internal characterization of any quantum
device is avoided. Security is verified by data (acquired from test rounds in a protocol)
that exhibits nonlocal output statistics, which witnesses the desired behavior of the
quantum devices. This no-characterization approach deprives the eavesdropper of
the possibility to take advantage of the malfunctions of the devices, which virtually
removes the threat of side-channel attacks. Beyond that, it bridges reality and the
necessarily idealized description of it. This motivates DIQKD from a practical point
of view, even in the absence of an eavesdropper.

We open this chapter with Sec. 5.1 which briefly surveys different levels of secu-
rity in the DIQKD and assumptions therein. Afterwards, we review a central result
for this thesis in Sec. 5.2 which is a direct connection of the CHSH inequality vio-
lation to the asymptotic DI secret-key rate [PAB+09]. In Sec. 5.3 an extension to DI
conference key agreement (DICKA) is discussed [RMW18, RMW19]. Section 5.4 out-
lines how numerical bounds on the DI secret-key rate can be achieved in a general
Bell setting [MPA11]. The current status of DIQKD in experiments is the subject of
Sec. 5.5.

5.1. Overview and Foundations

As argued, DI security proofs require aDIwitness to certify nonlocal correlations and
it is thus natural, and in fact necessary, to incorporate a Bell test in a DI cryptographic
protocol. The underlying physical principle that grants security is the monogamy
of entanglement, which was already implicitly described in Ekert protocol [Eke91].
However, the idea to certify a certain behavior of a device via input-output corre-
lations, so-called self-checking, was first put forward in [MY98]. First quantitative
progress was achieved by bounding the information of a no-signaling eavesdropper
about a single signal between Alice and Bob [BHK05]. This enabled subsequent publi-
cations, as for example [PAB+09], in which security of a DIQKD protocol was proven
under the assumption that the devices behave identically and independently (iid) in
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each round. In the DI setting, however, the iid assumption is generally not justified
and the first security proof in the fully DI setting, i.e., without the iid assumption,
was established in [VV14] and improved in [AFRV19, AFDF+18] by means of entropy
accumulation [DFR16].

5.1.1. Different Nuances of Security

Behavior of the eavesdropper – Eve’s different types of attacks are in ascending order
of generality, individual, collective, and coherent attacks [SBPC+09]. In the first two
types, Eve is assumed to hold a purification ∣Ψ⟩ABE = ∣ψ⟩⊗NABE, that is factorized in the
states of each round of the protocol. She distributes the states ρAB = trE (∣ψ⟩⟨ψ∣ABE)
to Alice and Bob in every round. Furthermore, Eve performs the same attack on
each signal. In individual attacks, she performs the attack before the honest parties
start the classical communication. In collective attacks, Eve stores her ancillas in a
quantum memory until she gathered additional information from the classical com-
munication to optimize her attack. The most general attacks are the coherent ones,
where Eve is only restricted by quantum mechanics. She can for instance entangle
multiple signals and alter her strategy after intermediate steps. Eve holds the purifi-
cation of the global quantum state of allN signals, i.e., ∣Ψ⟩ABE in a total Hilbert spaceH⊗NA ⊗H⊗NB ⊗HE of unknown local dimensions.
Behavior of the quantum devices – The iid assumption in particular imposes, that the
devices have no internal memory which affects subsequent measurements, i.e., the
measurement in round i of the protocol is only a function of the ith input. An impor-
tant tool to deal with non-iid implementations is the entropy accumulation theorem
(EAT). In plain terms, the EAT allows to relate Eve’s uncertainty about the total out-
put of Alice a = {ai}Ni=1 to a sum of Eve’s uncertainties about each individual output
ai, up to corrections that are of order

√
N and provided the protocol is a sequential

procedure [AFRV19, AFDF+18].
However, we don’t want to delve into the technicalities of entropy accumulation

for the following reason: In Sec. 5.2, we will relate the violation of the CHSH in-
equality to the asymptotic DI secret-key rate under the iid assumption and given Eve
performs collective attacks. As proven in Ref. [AFRV19], this key rate represents an
upper bound on the key rates in the non-iid implementation and against the most
general Eve. In the asymptotic limit, which we consider, the rates coincide and we
can use the more accessible results of Ref. [PAB+09] with a clear conscience.

5.1.2. Assumptions of DIQKD

As argued, we drop any assumptions regarding details of the inner workings of quan-
tumdevices. However, some prerequisitesmust be in place in order tomake quantum
cryptography meaningful. We assume [PAB+09, RMW18]:

(i) Quantum mechanics is correct.
(ii) The laboratories of the honest parties are isolated, that is, there is no unwanted

leakage of information into the environment.
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(iii) Each party is in possession of a trusted, genuine random number generator.
The parties trust all classical devices they use for classical data processing. They
further communicate via authenticated classical channels.

(iv) Eachmeasurement device hasm inputs and generates in each round one out of
k measurement results. There is no further specification of the measurement
device and it could therefore be manufactured and prepared by Eve.

(v) Alice holds a quantum source which generates some unknown quantum state
of arbitrary local dimension. The eavesdropper holds the purified quantum
state. No further assumptions are imposed on the source and equivalently, it
could be Eve who prepares and distributes the states.

(vi) There is no unwanted communication between the quantum source and the
measurement device of Alice.

5.2. The Bipartite Case

The central result of Ref. [PAB+09] is a lower bound on the asymptotic bipartite DI
secret-key rate. As it is essential for our work in Refs. [HKB18, HMKB19, HKB19],
cf. App. A, C, and E, respectively, we want to properly introduce it. To this end, we
first describe the setting under which the results are derived and review the DIQKD
protocol. An upper boundon theHolevo quantity betweenAlice andEve as a function
of the CHSH inequality violation is presented afterwards.

5.2.1. Setting and Modified DI Ekert Protocol

Alice has an uncharacterized measurement device with two inputs x ∈ {0,1} that
implements some measurement on her share of the quantum state, which outputs a
binary value a ∈ {±1}. Likewise, Bob has a black box with three inputs y ∈ {0,1,2}
with dichotomic outcomes b ∈ {±1}. We assume that Eve performs collective attacks
and the devices behave according to the iid assumption. Furthermore, the honest
parties perform one-way classical postprocessing from Alice to Bob. See Fig. 5.1 for
a schematic representation of the bipartite DIQKD setting.

Figure 5.1: Alice and Bob are connected with a classical and a quantum channel. Eve
holds the purification ∣Ψ⟩ABE = ∣ψ⟩⊗NABE and distributes in each round an uncharac-
terized bipartite state ρAB to Alice and Bob. The honest parties choose x ∈ {0,1} and
y ∈ {0,1,2}, which implements a measurement with a binary output a, b ∈ {±1}.
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Before the protocol starts, Alice fixes the value of two parameters β ∈ (2,2√2]
and δ ∈ (0,2√2 − 2), see also [PAB+19]. The protocol involves the following steps:

(i) Measurements. In each round, the parties perform a measurement on their
share of an unknown quantum state ρAB. There are two types of rounds, the
key generation (type-0) and the parameter estimation (type-1) round, where
the latter is performed much less frequently. A preshared random key deter-
mines the type of each round. For type 0, Alice and Bob choose the input(x, y) = (0,2). In type-1 measurement rounds, the parties choose their in-
puts x, y ∈ {0,1} uniformly at random.

(ii) Parameter estimation. For all type-1 rounds, Bob sends all inputs and outputs
to Alice and she estimates the CHSH value

S = 1∑
x,y=0

(−1)x⋅y ⟨AxBy⟩ . (5.1)

If S ⩽ β − δ, Alice announces that the protocol aborts. Given that the protocol
continues, the parties publicly communicate the list of inputs for type-0 rounds
to generate the raw key. Bob sends the outputs for a small amount of type-0
rounds as well, with which Alice estimates the QBER

Q = P (a ≠ b∣x = 0, y = 2) . (5.2)

The data which is used to calculate the parameters S andQ is discarded. This
classical communication is not attributed to the postprocessing.

(iii) Classical postprocessing. Similar to a usual QKD protocol, error-correction and
privacy amplification are performed.

The type-1 rounds are called spot-checking rounds. For this reason, the above pro-
tocol is also known as spot-checking CHSH protocol. A value β − δ closer to the
Tsirelson bound 2

√
2 increases the secret-key rate, as we will see. However, it comes

at the expense of an increased probability that the protocol aborts.
We call an honest implementation of the protocol, an implementation where the

devices behave in a specified way, as for example according to the iid assumption. A
protocol is called εc-complete, if the probability that the protocol aborts in an honest
implementation is at most εc. Likewise, we say a protocol is incomplete, if there exists
no honest implementation that leads to not aborting the protocol.

5.2.2. Asymptotic DI Secret-Key Rate

In the setting described above, the asymptotic secret-key rate in the limit ofN → ∞
signals is lower bounded by the Devetak-Winter rate

r ⩾H(A0 ∶ B2) − χ (A0 ∶ E) . (5.3)

We can assume w.l.o.g. that the marginal probabilities are uniform, i.e., ⟨Ax⟩ =⟨By⟩ = 0, as it can be achieved by classical postprocessing and it does not affect
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the values of Q and S. Therefore, as in Sec. 4.2, the mutual information is given by
H(A0 ∶ B2) = 1 − h(Q). The goal is now to upper bound the Holevo quantity

χ (A0 ∶ E) = S(ρE) − 1

2
∑

a0=±1
S(ρE∣a0) (5.4)

in terms of CHSH inequality violation, where the factor 1
2 is due to the symmetriza-

tion of the marginal probability distribution ⟨A0⟩ = 0.

Theorem5.1 (Upper Bound onHolevoQuantity [PAB+09]). Let ∣ψ⟩ABE be a quantum
state and {A0,A1,B0,B1} a set of measurements, yielding a violation S of the CHSH
inequality. Then, after Alice and Bob have symmetrized their marginals,

χ (A0 ∶ E) ⩽ h⎛⎝1 +√
S2/4 − 1

2

⎞⎠ . (5.5)

An immediate consequence is a lower bound on theDI secret-key rate in Eq. (5.3),

r ⩾ 1 − h (Q) − h⎛⎝1 +√
S2/4 − 1

2

⎞⎠ . (5.6)

Given the importance of Theorem 5.1, we want to outline the proof.

(i) Reduction to qubits. As we are not allowed to assume specifics of the Hilbert
space dimension, we have to ensure that Eve’s accessible information is not
compromised by the reduction to qubit states. Thus, the first step is to prove
that we are allowed to assume w.l.o.g., that Eve sends mixed two-qubit states
ρAB = ∑λ pλρλ. This can be achieved by employing the structure of the CHSH
test with two binary observables on each site.1

(ii) Reduction to Bell-diagonal states. It is further not restrictive to assume, that
ρλ = ∑i λi ∣φi⟩⟨φi∣ is Bell diagonal and that the measurements of Alice and
Bob are carried out in the σz-σx plane.

(iii) Upper bound. In this step, one first calculates χλ(A0 ∶ E) for any Bell-diagonal
state ρλ. We already presented a similar calculation for the BB84 protocol in
Sec. 4.2. One obtains an expression that depends on the eigenvalues λ and the
polar angle θ of Alice’s general qubit observable

A0 = cos(θ)σz + sin(θ)σx. (5.7)

Next, Eve’s accessible information is maximized w.r.t. θ and one finds θ = 0,
henceA0 = σz . Therefore, the upper boundχλ(A0 ∶ E) ⩽H(λ)−h(λ1+λ2)
can be established, similar to the BB84 case, cf. Eq (4.10). This upper bound,
in turn, is upper bounded by a concave function F (Sλ) of CHSH inequality
violation Sλ with a Bell-diagonal state ρλ. The function F is a binary entropy
function in the form of the right-hand side of inequality (5.5).

1Note that this step can be generalized ton parties with a correspondingmultipartite Bell inequality
with two dichotomic observables on each side.
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(iv) Last step. With the concavity of F , one finds

χ (A0 ∶ E) = ∑
λ

pλχλ (A0 ∶ E) ⩽ ∑
λ

pλF (Sλ) ⩽ F(∑
λ

pλSλ). (5.8)

Finally, it holds that S ⩽ ∑λ pλSλ and for S ⩾ 2, F is monotonically decreas-
ing function of S. Therefore, the right-hand side in inequality (5.8) is upper
bounded by F (S), which finishes the proof.

Importantly, the parameters Q and S are two independent quantities accessible
from the classical data, which can be used to certify the correctness and secrecy of the
exchanged key. No assumptions have to bemade about the specifics of the implemen-
tation. A secret key can be extracted from the data, if it exhibits nonlocal correlations
that give rise to a Bell inequality violation and if the QBER is below a certain thresh-
old. Reference [PAB+09] provides a specific example for an honest implementation
that saturates the bound in Theorem 5.1, which is thus tight.

We stress that there is no analytical expression for a DI secret-key rate known,
which does not rely on the bound in inequality (5.6) or on the violation of the CHSH
inequality.

5.3. Extension to DI Conference Key Agreement

Tomotivate the extension to DI conference key agreement (DICKA), we want to clar-
ify an important subtlety, which we kept quiet about so far. Two ingredients are
crucial in any viable DIQKD protocol. Measurements and quantum states are re-
quired that provide on one hand highly correlated measurement results to reduce
the amount of error-correction information and on the other hand a maximum Bell
inequality violation to certify security of the correlation between the honest parties.
However, themeasurement settings in different types ofmeasurement rounds cannot
be chosen arbitrarily.

Remark 5.2 (Requirements on Bell Test). At least one party, say, Alice, has to use one
input for key generation and for spot-checking. By doing so, Alice is able to monitor the
honesty of her device. 2 This necessitates a Bell test in which maximum violation and
perfect correlation among all parties are possible at the same time.

This requirement was first explicitly described and exploited in Refs. [HMKB19]
and [HKB19], cf. App. C and E. The statement above suggests that not all Bell in-
equalities are suitable for DIQKD and this is in fact true as we will see in this section.

2Otherwise the eavesdropper, who potentially manufactured the devices, could have prepro-
grammed them in the following way to break the security of the protocol: Eve equips the measurement
devices with quantum states that maximally violate the Bell inequality and which are measured if Alice
uses the input for spot-checking rounds. On the other hand, if Alice uses her key generation input, the
device always outputs a fixed binary value. In this way, Alice and Bob conclude that they share nonlocal
correlations and Eve obtains full information without revealing her presence.
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To this end, recall the MABK and Parity-CHSH inequality in Sec. 3.3. We will review
two proposals [RMW18] and [RMW19] to achieveDICKA based on these inequalities,
and we will pinpoint the reason that prevents the first proposal from being a viable
option.

5.3.1. First Approach - MABK Inequality

Recall that the MABK inequality (3.10), is a full-correlation (n,2,2)-Bell inequality
and it is recursively defined according to Eq. (3.9), which imprints the CHSH struc-
ture into the multipartite generalization. Thus, given an MABK value Mn > 2

n−2
2 ,

that is, certified genuine multipartite entanglement, one can reformulate the MABK
inequality violation as violation of an effective CHSH inequality between one party
and the remaining n − 1 other parties. This is the statement of the MABK-CHSH
correspondence [RMW18]:

Mn > 2
n−2
2 ⇒ M2 = Mn

2
n−2
2

> 1. (5.9)

The security proof of the DICKA protocol in [RMW18] proceeds as follows: First
the EAT is used to relate Eve’s uncertainty about the total output of Alice to a sum of
VonNeumann entropies evaluated on each signal, as described in [AFRV19]. The next
step is to find a so-calledmin-tradeoff function, that is a differentiable function of a Bell
value that bounds the single-round Von Neumann entropy. This is the challenging
part. However, by identifying the violation of theMABK inequalitywith the violation
of an effective CHSH inequality, a bound on Eve’s accessible information via the tight
results of [PAB+09] is enabled. Exchanging theCHSHvalue in Eq. (5.5) with a rescaled
n-MABK value then quantifies Eve’s information about Alice’s output.

To put achievable DI conference key rates into perspective, an honest implemen-
tation is proposed in [RMW18], which reveals the flaw of this approach. In the ideal
scenario, the quantum resource distributed to all parties is the archetypical n-GHZ
state. The protocol stipulates two observables for Alice, A0 = σz and A1 = σx. All
Bobs measure σz in key generation rounds and in spot-checking rounds, they mea-
sure observables that maximally violate the MABK inequality. With a combination
of statements we already formalized, the fundamental problems of the honest imple-
mentation become clear. Recall:

(i) Theorem 4.2: Perfect correlation requires all parties to measure σz .
(ii) Remark 5.2: The structure of the Bell setting has to be such that perfect corre-

lation and maximum violation can be achieved at the same time.
(iii) Remark 3.11: Measurements of σz are suboptimal to maximally violate full-

correlation Bell inequalities .

The proposed honest implementation claims to allow perfectly correlated mea-
surement results and at the same time violate the Svetlichny bound 2

n−2
2 of theMABK

inequality. Due to the arguments listed above, this is not the case, see [HMKB19],
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App. C. If the parties verify genuine multipartite entanglement, the MABK-CHSH
correspondence applies which guarantees security. However, in this case the parties
cannot be perfectly correlated and the amount of error-correction information is too
large, which thus prevents the generation of a common raw conference key. Alterna-
tively, the parties are perfectly correlated, but then the Svetlichny bound cannot be
violated and the security is breached.

Beyond the honest implementation, we proved in [HMKB19] forn = 3 parties via
the NPA hierarchy that perfect correlation and violation of the Svetlichny bound are
mutually exclusive in the MABK test. Consequently, there cannot exist any honest
implementation that does not abort the protocol. This renders the DICKA protocol
based on the MABK test incomplete.

5.3.2. Second Approach - Parity-CHSH Inequality

In Ref. [RMW19] a corrected version of the DICKA protocol is presented, which in-
cludes an adjustment of both the protocol and the Bell test. The Parity-CHSH test
is compatible with constraints imposed by Theorem 4.2 and Remark 5.2. As already
discussed in Sec. 3.3.2, the Parity-CHSH inequality is closely related to the CHSH
inequality. It represents two CHSH inequalities (that are equivalent up to relabelling)
depending on the measurement results of n − 2 parties. This constitutes the coun-
terpart to the MABK-CHSH correspondence and allows again to employ the good
lower bounds of the bipartite setting. The security proof then proceeds in a similar
way as the former version with the MABK inequality.

In the proposed honest implementation, all parties measure σz in key generation
rounds. For spot-checking rounds, Alice and Bob(2) measure

A0 = σz, A1 = σx, B
(2)
0 = σz + σx√

2
, B

(2)
1 = σz − σx√

2
, (5.10)

and all other Bobs measureB(j⩾3) = σx. The quantum resource is the n-GHZ state.
Conditioned on the parity b̄ = 0 or b̄ = 1, cf. Eq. (3.15), the puren-GHZ state is turned
into the pure Bell state ∣φ+⟩ or ∣φ−⟩, respectively, betweenAlice andBob(2). With this,
they can maximally violate the respective CHSH inequalities, thereby guaranteeing
security.

5.4. Quantifying DI Secret-Key Rates via NPA

In this section, we describe how the NPA hierarchy, cf. Sec. 3.6, can be used to lower
bound the DI secret-key rates in terms of an observed Bell inequality violation. We
follow the methods described in [MPA11]. First, we provide a different expression
for the bipartite asymptotic DI secret-key rate. Multiple techniques [Ren08, TSSR11,
AFDF+18] reduce its calculation to

r ⩾ S(A∣E) −H(A∣B), (5.11)
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the difference between Eve’s uncertainty about Alice’s output, described by the condi-
tional Von Neumann entropy S(A∣E), and the amount of required error-correction
information quantified by the conditional Shannon entropyH(A∣B). In the multi-
partite setting [EKMB17],H(A∣B) is replaced bymaxjH(A∣B(j)), as explained in
Sec. 4.3.

Consider a bipartite DIQKD setup, in which the honest parties exchangeN sig-
nals. Eve is allowed to perform coherent attacks and she holds the purification ρABE
of the global state with trE(ρABE) = ρAB. We further assume an iid implementa-
tion.3 Let xr denote the string of Alice’s input values to generate her outputs a, the
raw key. After Alice performed her measurements, her parts of the global state can
be written in a classical register ∣a⟩⟨a∣ and the joint state between her and Eve is a
classical-quantum (cq) state

ρAE = ∑
a

P (a∣xr) ∣a⟩⟨a∣ ⊗ ρE∣a, (5.12)

where ρE∣a denotes the reduced state of Eve conditioned on the output a. For cq
states, the conditional min-entropy Smin(a∣E) quantifies the amount of Eve’s uncer-
tainty about the output a. We gain virtually nothing by rigorously defining the min-
entropy and refer to [Ren08] for details. Importantly S(a∣E) ≥ Smin(a∣E) always
holds, which is the first step towards a lower bound on S(a∣E). For cq states, the
min-entropy is related to Eve’s guessing probability Pg(a∣E) according to [KRS09]

Smin(a∣E) = − log2(Pg(a∣E)), (5.13)

where Pg(a∣E) is the maximum probability with which Eve can guess the output a
conditioned on her information E. For a single binary-valued signal ai, maximum
uncertainty of Eve translates to Pg(ai∣E) = 1

2 . Likewise, in case of minimal uncer-
tainty, Eve correctly predicts every output of Alice and thus Pg(ai∣E) = 1.

Our objective is to find an upper bound on Pg(a∣E) to cover the worst-case
scenario. Because − log2(x) is a monotonically decreasing function of x, Eq. (5.13)
then provides a lower bound on Smin(a∣E). Consider a single signal (N = 1) ρ′AB
which is uncorrelated to Eve and measured by Alice with outcome a. Then, Eves
optimal strategy to correctly guess a is to output the most probable outcome, i.e.,
Pg(a) = maxa P (a∣xr). Let G denote the Bell operator associated to the DIQKD
setting4 and let gobs be the (expected) observed Bell inequality violation. We canwrite
Pg(a) ⩽ f(gobs), where f is a concave and monotonically decreasing function of
gobs. The bound f(gobs) can always be established with the NPA hierarchy and the

3 In the DIQKD model of Ref. [MPA11], the iid assumption is necessarily fulfilled if the N signals
are measured in parallel onN pairs of devices. Thus, fully DIQKD is in principle possible. However, for
a realistic implementation where the raw key is generated by consecutive measurements on the same
devices the iid assumption is required.

4 For exampleGCHSH = A0B0+A1B0+A0B1−A1B1 is the Bell operator of the CHSH inequality,
which can then be written as ∣tr (GCHSHρ) ∣ ⩽ 2.
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solution of the following SDP provides the maximum possible value for Pg(a) for a
fixed parameter gobs:

max
ρ′AB,Ax,By

tr (A0 ρ
′
AB) (5.14)

subject to: tr(Gρ′AB) = gobs.
Note that the maximization is performed over all states ρ′AB and observablesAx,By

that are compatible with the observed data tr (Gρ′AB) = gobs.
Now consider the general case of N signals and where Eve can use her infor-

mation to increase her guessing probability. Let us denote with Nest, the number
of signals used by Alice and Bob to perform spot-checking measurements, by which
they calculate the estimated Bell inequality violation gest. Then, the total guessing
probability is upper bounded as [MRC+14]

Pg(a∣E) ⩽ (f(gest) +N− 1
4

est )N , (5.15)

which is independent of Eve. This implies that in the asymptotic limit N → ∞, a
lower bound on the DI secret-key rate (5.11) is given by

r ⩾ − log2 (f(gest)) −H(A∣B), (5.16)

where f(gest) is obtained from the solution of the SDP (5.14).

Note that we did not specify anything about the observables and states, merely an
observed Bell inequality violation is required. Bounds by SDPs of the form (5.14) are
thus device-independent and they are valid against the most general adversary. They
are, however, often overly pessimistic. It is an open problem how to obtain tighter
bounds in a general setting, numerically, as well as analytically. Recent develop-
ment [TSG+19] hints at improvement with the SDP approach, by employing the full
output statistics as constraints in the SDP. From the analytical side, Refs. [RMW18,
RMW19] showed how relations of Bell inequalities to the CHSH inequality can en-
able good analytical bounds via the results presented in Sec. 5.2. Finally, recall that
the upper bound on the Holevo quantity in the bipartite case, cf. Theorem 5.5, is
derived by using various techniques specific to the CHSH setting. Therefore, a tai-
lored Bell inequality for the purposes of DIQKD is a potentially fruitful approach. In
Ref. [HKB19], App. E, we take a first step into this direction by introducing a genuine
multipartite Bell inequality which is specifically designed for DICKA.

5.5. State-of-the-art DIQKD Experiments

While QKD is already successfully realized in the experiment and increasingly be-
comes commercially available (see for example Ref. [ZXC+18] for an overview), its
DI counterpart faces fundamental challenges [GPS10]. In particular, because all op-
tical Bell tests are susceptible to the detection loophole. Due to photon losses during

46



5.5. STATE-OF-THE-ART DIQKD EXPERIMENTS

the transmission, not all entangled photons can be detected, which effectively com-
promises the detection efficiency. These non-detection events lead to post-selected
measurement statistics. Post-selected data can exhibit nonlocal properties even if the
origin of the correlations is in fact not nonlocal. One way to deal with this problem
is to randomly assign measurement results to non-detection events [TT08], as this
leads to a decrease of nonlocality. Closing the detection loophole is a crucial require-
ment for the implementation of a DIQKD protocol. Here, the recently demonstrated
loophole-free Bell inequality violation [GVW+15, HBD+15] represents an advance in
this direction.

In a more restricted setting where the quantum source is assumed to be well
characterized and only the measurement devices are treated as black boxes (so-called
measurement DI QKD), meaningful progress is reported in Ref. [TYC+14]. Here, 102
secure bits per second can be established over a distance of 50 km in anMDI setting,
which was improved in a follow-up work [YCY+16].

A first step towards DICKA is to reliably certify multipartite entanglement in a
DI manner. For up to six parties, the detection of genuine multipartite entanglement
is achieved in the MDI setting in Ref. [BBS+13] with the detection loophole closed.

Last but not least, in Ref. [HKB18], App. A, we consider multiple honest imple-
mentations for the spot-checking CHSH protocol to benchmark the threshold re-
quirements for experimental parameters, such as the detector efficiency or the fi-
delity of the quantum resource w.r.t. to the Bell state ∣φ+⟩. To access profitable DI
rates, our findings highlight the necessity for experimental improvement of virtually
all quantum devices involved in the DIQKD scheme.
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Chapter 6

Quantum Repeaters

To exploit quantum key distribution to its full potential, a reliable method to dis-
tribute entangled states over large distances in a quantum network is required. The
canonical choice for the carrier of quantum information is the photon, as it can be
transmitted through optical fibers, free space, or, more generally, through a quantum
channel. Such channels are necessarily lossy and in this context, photon losses are
the main source of errors. These losses scale exponentially with the length L of the
point-to-point connection. This is characterized by the transmissivity

η(L) = 10−α L
10 , (6.1)

which represents the probability that a photon is not lost in the channel. The attenu-
ation coefficient α describes the weakening of the electromagnetic field caused by the
material of the channel. For optical fibers at fixed wavelengths around 1550 nm, a
minimal attenuation coefficient α ≈ 0.17 dB/km can be achieved.

Clearly, photon losses fundamentally limits any point-to-point quantum com-
munication. Besides losses, there are other sources of errors that probabilistically
alter the quantum state of the photons. Therefore, a repetition of the quantum signal
at an intermediate point in the classical sense is prevented by the no-cloning theo-
rem. This calls for a more sophisticated approach to overcome photon losses, which
brings us to the quantum repeater.

Based on [PLOB17], we render the limitations of repeaterless quantum commu-
nication more precise in Sec. 6.1. Afterwards, in Sec. 6.2, we introduce the first quan-
tum repeater protocol [BDCZ98] and embed it into the framework QKD. An alterna-
tive quantum repeater proposal [MLK+16] is discussed in Sec. 6.3. We conclude with
Sec. 6.4 which outlines the current status of quantum repeater implementations.

6.1. Fundamental Repeaterless Bound

To identify a quantum repeater as a device that offers an advantage for quantum com-
munication in comparison to a direct link, we first need to quantify what ultimately
can be achieved with a point-to-point connection. Here, we require the notion of
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the quantum capacity C(E) of a quantum channel E [BDS97]. To this end, consider
a bipartite setup with two remote parties Alice and Bob. Suppose Alice sequentially
wants to distribute a specific target state φ via a quantum channel E to Bob. Due to
the action of the quantum channel, however, the actually transmitted state ρAB differs
from the desired target state. The parties are allowed to perform arbitrary local op-
erations (LOs) and unlimited classical communication (CCs). These adaptive LOCCs
assist the parties in implementing any quantum-state distribution protocol. AfterN
uses of the channel E , Alice and Bob share a global quantum state ρNAB, which depends
on the channel E and on the sequence of performed adaptive LOCCs. One way to
characterize the performance of such a protocol, is the rate at which the protocol
allows Alice to distribute a state ρNAB, that is ε-close to the target state φ

N , i.e.,

∥ρNAB − φN∥
1
⩽ ε, (6.2)

where the trace norm ∥⋅∥1 of a linear operator is defined as the sum of its singular
values. The maximum rate optimized over all adaptive LOCCs that the quantum
channel E asymptotically permits, is defined as the two-way quantum capacity C (E)
of the channel. We refer to Ref. [PLOB17] for the formal definition of the quantum
capacity, as we restrict our discussion to a specific class of channels and therefore,
the general framework is not required.

As the capacity C(E) is optimized over all LOCCs, it provides a fundamental
upper bound on the amount of quantum information that Alice can asymptotically
transmit to Bob. Via these benchmarks, one can unambiguously identify any type
of device that supports the quantum communication between Alice and Bob as a
quantum repeater. The device only has its justification as a quantum repeater, if it
provides a larger quantum capacity than the direct link. In this case, we call the device
genuine or effective quantum repeater [MHKB19, PAB+19].

6.1.1. Pure-Loss Channel

We focus on optical communication via free-space or fiber point-to-point connec-
tions. Suppose the quantum channel between Alice and Bob carries a single photonic
mode. Let b† denote the photonic creation operator which creates a photon in the
mode of the channel. That is, if ∣vac⟩ denotes the vacuum state, the action of the
creation operator is b† ∣vac⟩ = ∣1⟩.1 The capacity of the pure-loss channel E(η)loss is com-
pletely characterized by the transmissivity η, as we will see in Eq. (6.4). We canmodel
its action by a beam splitter that, with probability 1−η, injects the photon of the sin-
gle mode of the channel into a vacuum mode of the environment. To this mode, we
associate a creation operator b†E, i.e., the action of the pure-loss channel reads

E(η)loss ∶ b† ↦ √
ηb† +√

1 − ηb†E. (6.3)

1A thorough discussion of basic concepts of quantum optics goes beyond the scope of this thesis.
We refer to Ref. [SZ99] for an in-depth and excellent introduction to quantum optics.
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Now consider a quantum channel which admits the decomposition E = EB ○E(η)loss ○EA into a lossy componentE(η)loss and some arbitrary, but fixed quantum channelsEA,B that describe the quantum operation on Alice’s and Bob’s site, respectively. The
PLOB-repeaterless bound [PLOB17] states that the capacity of such quantum channels
is upper bounded by capacity of the pure-loss channel E(η)loss , which is directly related
to the transmissivity η according to:

C(E) ⩽ C(E(η)loss ) = − log2 (1 − η) . (6.4)

Figure 6.1 visualizes the described notions.

.

Figure 6.1: Alice wants to distribute quantum states to Bob via a pure-loss channelE(n)loss , which is modeled by a beam splitter that couples the photon into a vacuum
mode of the environment with probability 1 − η. The parties perform some local
operation (LO), described by the CPTP map EA,B, respectively, and they can commu-
nicate via a classical channel.

In the case where the target state φN allows to establish a secret key between
Alice and Bob, we call C(E) the secret-key capacityK(E). This puts a fundamental
limit on the secret-key rate, achievable with any point-to-point link. For the pure-
loss channel,K(E(n)loss ) = − log2(1−η) holds. In the regime of high losses η ≪ 1, the
secret-key capacity can be approximated as

K(E(n)loss ) = − log2(1 − η) ≈ 1.44η, (6.5)

that is,K(E(n)loss ) scales linearly with the transmissivity η, which in turn is exponen-
tially suppressed by the length of the link, cf. Eq. (6.1). This, in particular, means
that the repeaterless maximum secret-key rate per optical mode is upper bounded
by 1.44η bits per channel use at high loss [PAB+19]. This highlights the fundamental
limitations of point-to-point (fiber-based) QKD, which is limited to some hundreds
of kilometers [BBR+18]. Similar results where obtained by Ref. [TGW14].

To circumvent the detrimental impact of the channel attenuation on the photons,
the total length can be split into multiple segments. This approach is at the heart
of every quantum repeater concept, which leads to a series of pure-loss channels.
The overall capacity of the quantum repeater (per mode) then needs to outperform
the capacity of the direct link, cf. Eq. (6.4). Different quantum repeater proposals
are categorized into generations based on their technical demands and implemented
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methods to overcome loss and operational errors [MLK+16]. The first generation
employs quantum memories [BDCZ98, vLLS+06, DLCZ01], from which we intro-
duce one example in the following section. Other proposals use implemented error-
correction [JTN+09, FWH+10, MKL+14], which we survey in Sec. (6.3).

6.2. The Original Quantum Repeater

In the so-called nested repeater scheme of Ref. [BDCZ98], the total length consists
of 2N segments of a fixed fundamental length L0 = L2−N (see also Fig. 6.2). Entan-
gled states are distributed among adjacent repeater stations, which are equippedwith
quantum memories to store the incoming entangled states, as well as with quantum
processors in order to perform local operations on the quantum states. Importantly,
they are able to perform so-called entanglement swapping (ES), which is an applica-
tion of quantum teleportation [BBC+93]. In this way, the distance over which entan-
glement is distributed is doubled with each successful ES, at the cost of consuming
quantum states as a resource. Figure 6.2 visualizes the architecture of the original
quantum repeater and illustrates the notion of ES.

.. .. .. ..

....

Figure 6.2: The original quantum repeater scheme [BDCZ98] with N nesting levels
and 2N − 1 intermediate repeater stations. Entangled states which successfully con-
nect two adjacent repeater stations at nesting level s = 0 are called elementary links,
which are created by individual quantum sources. Once two neighboring elementary
links are established, ES swapping is performed which creates an entangled link in
nesting level s = 1. Here, this is illustrated at the third repeater station, where a Bell
measurement is performed on the two subsystems stored in the quantum memories.
Depending on the measurement result, a local operation is applied to the subsystem
stored at the fourth repeater station. This creates an entangled link in nesting level
s = 1 in the form of the state ρ(1)24 . A consecutive execution of successful ES in N
nesting levels, ultimately distributes an entangled state ρAB among two remote parties
separated by the full distance L.
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6.2.1. Repeater Rate

The task of the quantum repeater is to distribute entangled quantum states among
Alice and Bob. A suitable figure of merit that quantifies the performance of a quan-
tum repeater is the repeater rate Rrep, i.e., the rate at which the quantum repeater
distributes entangled states to the remote parties. This quantity depends on the ar-
chitecture of the quantum repeater and the quantum systems used for its implemen-
tation. The quantum repeater consists of the entire segmented line between Alice
and Bob. Every building block consists of many quantum devices, including memo-
ries, sources, processors, detectors, and channels. Consequently, the repeater rate is
a complicated function of the operational performance of all these quantum devices.
Here, we outline some parts of the quantum repeater and address how the corre-
sponding errors are modeled in the original quantum repeater, cf. Ref. [ABB+13].
For simplicity, we assume perfect quantum memories and perfect single-qubit gates.

(i) Quantum channel. The segments of length L0 are pure-loss channels, char-
acterized by the transmissivity η(L0) in Eq. (6.1). Every fundamental link in
nesting level s = 0 has a capacity that is upper bounded by − log2(1− η(L0)).

(ii) Quantum source. An ideal quantum source generates a pure maximally entan-
gled Bell state, as for example ∣φ+⟩, Eq. (2.26), and distributes it to adjacent
repeater stations i and i+ 1. The quality of the source can be described by the
quantum fidelity F (∣φ+⟩ , ρ(0)i,i+1) ∶= ⟨φ+∣ρ(0)i,i+1 ∣φ+⟩ [NC10], which quantifies

the overlap between the distributed state ρ(0)i,i+1 and the ideal one ∣φ+⟩. 2
(iii) Detectors.We assume photon number resolving detectors of efficiency ηd, with

measurements that can be described by POVM elements [KL10],

Π(n) ∶= ηnd ∞∑
m=0

(n +m
n

)(1 − ηd)m ∣n +m⟩⟨n +m∣ , (6.6)

associated to the detection of n photons. Here, ∣n +m⟩ denotes the Fock state
of corresponding photon number.

(iv) Quantum gates. Entanglement swapping requires controlled two-qubit oper-
ations, performed by gates of a certain quality pG. Naturally, these gates are
imperfect and introduce errors. For the original quantum repeater [BDCZ98],
the depolarizing noise model,

E(ρ) = pGE ideal(ρ) + (1 − pG)1
4
, (6.7)

is proposed, where the gate operates ideally with probability pG. If an error
occurs, however, the gate converts the state into a complete mixed state.

2The quality of the state can be improved by performing so-called entanglement distillation (ED).
These additional quantum operations introduce further operational errors. For an increased overall
success probability, the advantages gained via ED need to outweigh the disadvantages due to the addi-
tional operational errors. Here, we neglect the possibility of ED for the sake of simplicity and refer to
Ref. [BDCZ98, BPvL11, ABB+13] for further readings.
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The errors introduced by the components of the quantum repeater give rise to a
success probability P (i)ES for ES swapping at nesting level i, which affects the repeater
rate Rrep. For low success probability P0 ≪ 1 of establishing an elementary link, a
concise expression for the repeater rate is given by [SSdRG11]

Rrep = c

2L0
(2
3
)N P0

N∏
i=1
P
(i)
ES , (6.8)

where c = 2 × 108m/s denotes the speed of light in the fiber.
In practice, the optimal strategy is to immediately perform ES as soon as two

neighboring elementary links are established and then proceed by already distribut-
ing new states among the empty quantum memories. This approach can signifi-
cantly increase the repeater rate, as numerical computations suggest. However, this
is difficult to characterize analytically, in part because the success probabilities in
higher nesting levels depend on the successful ES in all preceding nesting levels. In
Ref. [HKB18], App. A, we derived a modified and generalized expression of the re-
peater rate in Eq. (6.8). In doing so, we obtain slightly higher key rates that are closer
to the optimal strategy we investigated via Monte Carlo simulations.

6.2.2. Quantum Key Distribution with Quantum Repeaters

Finally, let us put the quantum repeater into the context of QKD. The repeater rate
Rrep, Eq. (6.8), as a function of loss and operational errors, allows us to investigate
the secret-key rate that Alice and Bob can achieve within the described error models.
In this setting, we adopt the figure of merit of Ref. [ABB+13] for the QKD protocol
and call

R ∶= Rrawr∞ = RrepPclickRsiftr∞ (6.9)

the secret-key rate, which consists of the raw key rateRraw and the secret fraction r∞.3
The raw key rate Rraw is given by the product of the repeater rate Rrep, the sifting
rateRsift, and the probability Pclick, which we comment on in the following:

(i) The sifting rate Rsift describes the fraction of key generation rounds in the
QKD protocol. We can achieve approximately Rsift ≈ 1 in an asymmetric
protocol where the type-1 measurement rounds are chosen much less fre-
quently [LCA05].

(ii) The parameter Pclick describes the probability that Alice and Bob detect an
event that they can use for QKD. For single-photon detectors of efficiency ηd
and in the usual device-dependent (DD) QKD setup, Pclick is given by η2d . The
situation is different in the DI setting. As already discussed for the detection
loophole, cf. Sec. 5.5, we cannot ignore no-detection events. They have to be

3 Note that in the asymptotic limit, the secret fraction corresponds to the secret-key rates we dis-
cussed in chapters 4 and 5.
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incorporated into the statistics of the protocol. Usually, this is done by ran-
domly assigning a measurement result to no-detection events [TT08]. In this
sense every event is a valid QKD event, that is, Pclick = 1. However, this ran-
dom output guessing decreases the nonlocality of the quantum correlations
between Alice and Bob. We can describe its affect by an additional error model
that mixes the quantum state, e.g.,

ρAB a→ η2dρAB + (1 − η2d)14 , (6.10)

for two-qubit states ρAB.

The task is now to maximize the overall secret-key rate in Eq. (6.9). The repeater
rateRrep clearly depends on the actual implementation of the quantum repeater. The
secret fraction r∞, however, only depends on the type of QKD protocol that is em-
ployed byAlice and Bob. If they choose to run the BB84 protocol, we use Eq. (4.12) for
r∞. If the parties choose to run the spot-checking CHSH protocol, we use Eq. (5.6)
instead. Note that in latter case, the parties assume that the entire quantum repeater
is under Eve’s control.

In Ref. [HKB18], App. A, we consider a scenario that allows a direct and reason-
able comparison of achievable secret-key rates in the DD and DI case. By investigat-
ing multiple honest implementations, we quantify how experimental malfunctions
manifest themselves in achievable DI secret-key rates.

6.3. The Third-generation Quantum Repeater

Here, we briefly address the third-generation or error-corrected quantum repeater,
where quantum error correction (QEC) is used to tackle loss and operational errors. In
particular, no quantum memories are required at intermediate repeater stations.

Quantum Error Correction in a Nutshell

Here, we briefly discuss the central idea of QEC and refer to [LB13] for an in-depth
introduction. Consider a bipartite setup in which Alice wants to transmit a general
pure qubit state ∣ψ⟩ to Bob. Due to errors during the transmission, however, Bob
receives a different state ∣ψ′⟩, which we assume to be pure for simplicity. One ap-
proach that allows Bob to recover the original state is to send redundant quantum
information. An example where this built-in redundancy is most transparent, is the
three-qubit repetition code,

∣0⟩ a→ ∣0,0,0⟩ =∶ ∣0̄⟩ and ∣1⟩ a→ ∣1,1,1⟩ =∶ ∣1̄⟩ , (6.11)

where one logical qubit ∣0̄⟩ , ∣1̄⟩ is encoded in three physical qubits. Under the simple
assumption that only a single bit-flip error can occur, Bob is able to unambiguously
identify and correct this error.
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More generally, a quantum error-correcting code (QECC) encodes k logical qu-
dits of dimension d into n > k physical qudits. The logical states are the codewords
of the QECC and span the code space C of dimension dk , which is a subspace of the
total Hilbert spaceH = C

dn . The code distance δ of a QECC quantifies the maximum
number t of independent errors that can be corrected according to t ∶= ⌊ δ−12 ⌋. We call
a QECC with n physical qudits, k logical qudits and distance δ an [[n, k, δ]]d-QECC.

An example for a QECC is the [[9,1,3]]2-Shor code, which can correct an ar-
bitrary single-qubit error. More sophisticated QECCs exist in the form of quantum
polynomial codes [CGL99], where for every prime number d ⩾ 2δ + 1, there exist
a [[2δ − 1,1, δ]]d-QECC. Such codes are well-suited for third-generation quantum
repeaters [MZL+17, MHKB18].

Qudit Noise Model

In Sec. 2.6 we already introduced the depolarizing channel for qubits. A generaliza-
tion for a qudit state ρ of dimension d is given by

EP ∶ ρ a→ d−1∑
r,s=0

pr,s (XrZs)ρ (XrZs)† , (6.12)

also called generalized Pauli-error channel with Kraus operators {√pr,sXrZs}d−1
r,s=0,

that are proportional to the generalized Pauli operators defined in Eq. (2.12). In this
error model, the Pauli operator XrZs is applied to the qudit state with probability
pr,s. This quantum channel includes the qudit depolarizing channel, in which the
trivial errorX0Z0 = 1 occurs with probability p0,0 = 1− p(d2 − 1)/d2 and all other
errors are equiprobable, i.e., pr,s = p/d2 for all (r, s) ≠ (0,0). Note that for d = 2,
the qubit depolarizing Kraus operators in Eq. (2.31) are reproduced.

Error-corrected Qudit Quantum Repeater

We conclude this discussion with a protocol that allows the distribution of entangled
states to two remote parties. Alice and Bob are connected with an error-corrected
qudit repeater, that is a segmented line with N − 1 intermediate repeater stations,
located at the intersection points of N segments of fundamental length L0 = L/N .
These segments are quantum channels, which wemodel according to the generalized
Pauli-error channel introduced above. We assume that Alice, Bob, and each repeater
station are equipped with a quantum source which can generate the equally weighted
qudit superposition:

∣+⟩d ∶= 1√
d

d−1∑
i=0

∣i⟩ . (6.13)

Furthermore, the two-qudit controlled-Z gate,

cz ∶= d−1∑
k=0

∣k⟩⟨k∣ ⊗Zk (6.14)
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is required. It applies the generalized Pauli-Z operator Zk on the target qudit, given
the control qudit is in state ∣k⟩. The cz gate is an example of so-called Clifford
gates [Got99], a class of unitary operators U that transforms a generalized Pauli op-
eratorXrZs intoXr′Zs′ , with r ≠ r′ and s ≠ s′. An application of the cz gate onto∣+⟩⊗2d generates the maximally entangled two-qudit state,

∣Ψ⟩ ∶= cz ∣+⟩d ⊗ ∣+⟩d = 1

d

d−1∑
j,k=0

ωjk ∣j⟩ ⊗ ∣k⟩ , (6.15)

recalling the definition ω ∶= e 2πi
d . With these notions, we can explain the ideal qudit

quantum repeater protocol supported by an illustration, see Fig. (6.3).

Figure 6.3: A sketch of the error-corrected qudit repeater linewithN−1 intermediate
repeater stations, adapted fromRef. [MHKB19], App. D. Alice generates the entangled
two-qudit state ∣Ψ⟩ = cz ∣+⟩d ⊗ ∣+⟩d in Eq. (6.15), stores one qudit in her quantum
memory (QM), and sends the other qudit to the first intermediate repeater station.
There, an additional state ∣+⟩d is preparedwhich is entangledwith the incoming qudit
via the application of a cz gate. This step corresponds to the entanglement swapping.
The qudit that already traveled 1/N of the total distance L, is measured in the X
basis, which yields a classical outcome c1 ∈ {0, . . . , d − 1} that is communicated to
Bob. Meanwhile, the fresh qudit is sent to the next repeater station, where the same
procedure is repeated. Ultimately, Bob receives a list ofmeasurement results {ci}N−1i=1
from each repeater station and a qudit from repeater stationN−1which he entangles
with a fresh ∣+⟩d-qudit. Again, the former qudit is measured in the X-basis which
outputs a result cN . Conditioned on all measurement results ci, Bob applies a specific
generalized Pauli operator on his remaining qudit. Upon a successful application,
Alice and Bob share the entangled state ∣Ψ⟩.

To effectively perform QEC in such a quantum repeater line, a precise under-
standing of how Pauli errors propagate across Clifford gates is instrumental [Got98,
Got99]. An error analysis for a third-generation qubit repeater is carried out based on
these propagation rules in [EKB16]. In Ref. [MHKB18], App. B, we present a gener-
alization for error-corrected qudit quantum repeaters. In this analysis, the full error
statistics of the qudit states ρ distributed to Alice and Bob is computed. This paves
the way for further investigations, as for example the application of third-generation
quantum repeaters for QKD in arbitrary dimensions and for a systematic analysis
to identify parameter regimes, in which error-corrected qudit repeaters are able to
surpass the PLOB-repeaterless bound which we present in [MHKB19], App. D.
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6.4. On the Experimental Status of Quantum Repeaters

A promising new proposal for QKD beyond the PLOB bound is so-called twin-field
(TF) QKD [LYDS18]. Here, two parties generate optical fields, with an electromag-
netic phase that are sufficiently close, hence the term twin. The states are sent to
a single middle node where they are combined and detected. This scheme already
proved its usefulness for establishing a secret key and it allows to beat the PLOB
bound, as recently demonstrated in a proof-of-principle experiment [MPR+19]. This
demonstration represents the first prototype of a genuine quantum repeater.

The architecture of TFQKD is derived from the Lütkenhaus protocol [LJKL16], a
simple quantum repeater line with a single middle node, equipped by two quantum
memories. This proposal is a promising candidate for a near-term realization of a
full-fledged quantum repeater with state-of-the-art technology. Different platforms
can be used for its implementation, such as the TFQKD example or with quantum
memories in the form of nitrogen-vacancy centers in diamonds [RYG+19]. Further
analysis has been performedwith the TFQKD approach, indicating that the repeater-
less bound can be surpassed with so-called decoy-state methods [CAL19, GC19]. Last
but not least, we present in Ref. [MHKB19], App. D, a systematic analysis in order to
benchmark experimental requirements, such that a third-generation qudit quantum
repeater can overcome the repeaterless bound.
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Chapter 7

Overview of Results

This chapter summarizes the main results achieved in the course of my research. For
details, I refer to the respective publications and to Appendices A to E, where my
scientific contributions are described.

Appendix A
Device-independent secret-key-rate analysis for quantum repeaters

In publication [HKB18], App. A, we study achievable device-independent (DI) secret-
key rates in a bipartite setting with two different quantum repeater proposals. We
systematically analyse various honest implementations in the DI setting and com-
pare it to the device-dependent (DD) counterpart. Secret-key rates depend on the
employed quantum key distribution (QKD) protocol. Thus, it is crucial to identify
and consider an implementation in which the DD and the DI QKD protocol are ef-
fectively equivalent. As we describe, the asymmetric versions of the BB84, cf. Sec. 4.2,
and the spot-checking CHSH protocol, cf. Sec. 5.2, are equivalent in the asymptotic
limit. This guarantees a fair DD-to-DI comparison, effectively independent of a pos-
sible imbalance due to the protocol. In doing so, we shed light on the fundamental
differences between both scenarios.

Furthermore, our systematic analysis serves as a guideline for implementing a
quantum repeater for the purposes of DIQKD, as we benchmark the threshold re-
quirements for experimental parameters, such as the detector efficiency or the quality
of the quantum states. To obtain profitable DI rates, our findings highlight the neces-
sity for experimental improvement of virtually all quantum devices involved in the
DIQKD scheme. In addition, we show that the proneness of DIQKD to imperfections
implies different optimization strategies for the secret-key rate. This, in particular,
limits the number of tolerable entanglement swapping (ES) procedures and thus im-
plies a different optimal architecture of the quantum repeater in comparison to the
DD case.

As a side product, we develop a slightly generalized repeater rate for quantum
repeaters with probabilistic ES. This repeater rate is closer to the achievable rates
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with an optimal repeating strategy, cf. Sec. 6.2.1, which we verify by means of Monte
Carlo simulations.

Appendix B
Propagation of generalized Pauli errors in qudit Clifford circuits

In Ref. [MHKB18], App. B, we introduce a so-called error probability tensor. A use-
ful tool to track how generalized Pauli errors in arbitrary dimensions, cf. Sec. (6.3),
propagate through quantum circuits that consist of Clifford gates only. Via this error
probability tensor, the full error statistics of qudit states sent through the circuit, can
be computed. We apply this tool to a third-generation qudit repeater line with arbi-
trarily many intermediate repeater stations. This, in particular, allows us to quantify
the distributed entanglement in terms of logarithmic negativity. Our analysis shows
that higher dimensional qudit systems can provide an advantage in this regard.

More generally, the full knowledge about the distributed qudit states paves the
way for further investigations. As for example the application forQKDunder realistic
noise models or the systematic analysis we perform in [MHKB19], App. D.

Appendix C
Comment on “Fully device-independent conference key agreement”

Publication [HMKB19], App. C, is a comment to the article [RMW18], which proposes
a protocol to achieve device-independent conference key agreement (DICKA). The
DICKA protocol is based on theMABKBell test, recall Secs. 3.3 and 5.3, which suffers
from fundamental flaws, as we explain in the article. In plain terms, the protocol
allows the distribution of secret keys, which are either highly correlated but insecure
or secure but uncorrelated. For DIQKD, both requirements have to be fulfilled. For
odd-numbered parties, we analytically establish this incompatibility in the form of:

Theorem [HMKB19].—Letn ⩾ 3 be odd and let then parties perform the honest
implementation of the DICKA protocol. Then, the n-MABK value cannot exceed the
bound that certifies genuine multipartite entanglement among all n parties.

Furthermore, we provide numerical evidence that the same argument holds for
the even-partite case. Beyond the proposed honest implementation, we discover that
this incompatibility is deeply rooted in the structure of the MABK test. Concretely,
we prove via semidefinite programming (SDP), that for three parties there cannot ex-
ist measurements and quantum states that provide perfectly correlatedmeasurement
results and a sufficiently large violation of theMABK inequality at the same time. Due
to the symmetry of the MABK test, we further conjecture that this fundamental in-
compatibility applies for all n, which renders the protocol incomplete.
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Appendix D
Parameter regimes for surpassing the PLOB bound with
error-corrected qudit repeaters

As discussed in Sec. 6.1, point-to-point quantum communication faces fundamental
limitations. The implementation of a full-fledged quantum repeater is a demanding
and expensive challenge. A thorough study to identify suitable candidates and pa-
rameter regimes which allow to overcome the repeaterless bound is thus essential. In
Ref. [MHKB19], App. D, we provide such a study for third-generation qudit quantum
repeaters with the generalized Pauli error channel, cf. Sec. 6.3, as a noise model. We
analytically devise a figure of merit, which allows the certification of a larger capacity
with the repeater than the direct link in certain parameter regimes. We performed
the analysis with the tools of Ref. [MHKB18], App. B, and for two different types of
encoding, namely Fock and multimode encoded qudits.

Appendix E
A Genuine Multipartite Bell Inequality for Device-independent Con-
ference Key Agreement

Bell inequalities are the cornerstone ofDI security proofs. In Ref. [HKB19], App. E,we
establish a novel family of genuine multipartite Bell inequalities. For n ∈ N parties,
it is given by
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∈S(n)

2k

2k⊗
j=1

B
(α(n)

2k,j
)

− ⟩⎤⎥⎥⎥⎥⎥⎦{ ⩽ 1⩾ −(2n−1 − 1) , (7.1)

which recovers the well knownClauser-Horne-Shimony-Holt (CHSH) inequality for
n = 2 and contains the Parity-CHSH inequality as a subclass. Based on our results in
Ref. [HMKB19], App. C, we identified crucial properties that a Bell inequality needs to
fulfill in order to be a viable option for multipartite DIQKD. As a result, we were able
to tailor our Bell inequalities specifically to the task of multipartite DIQKD.With this
new approach, we take first steps towards multipartite secret-key rates, depending
on a Bell inequality violation, different from the CHSH inequality which, so far, is
missing.

Our manuscript furthermore provides several characterizations of the Bell in-
equality. Among them:

(i) We analytically prove the classical upper and lower bounds for any n ∈ N.
(ii) Via the Navascués-Pironio-Acín hierarchy, cf. Sec. 3.6.2, we established the

Tsirelson bound of our Bell inequality (7.1) for n ∈ {3,4}, which are tight
within numerical precision. These bounds can be saturated with the GHZ
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state. Further numerical evidence and the symmetry of our Bell inequality
indicate, that the GHZ state can saturate the Tsirelson bound for all n ∈ N.

(iii) Measurement observables are proposed for any number of parties which al-
low maximum Bell value with the n-GHZ state. Our results suggest, that the
Tsirelson bound of our Bell inequality can be analytically calculated and it
amounts to an optimization over a single parameter.

(iv) In addition, we discuss the existence of intermediate bounds. A violation of
such bounds device-independently certifies, that at least a certain amount of
parties are entangled with Alice. In particular, forn = 3we establish that

√
2 is

a Svetlichny bound, i.e., a Bell value larger than
√
2 certifies genuine tripartite

entanglement.
Finally, we prove the usefulness of our Bell inequality for multipartite DIQKD. We
consider an honest implementation and calculate via the NPA hierarchy achievable
conference key rates, which we compare to multiple bipartite DIQKD protocols. In
the low noise regime and in bottleneck networks, higher DI secret-key rates can be
achieved with the multipartite protocol.
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Chapter 8

Conclusion and Outlook

Two main topics constitute the core of this dissertation. On one hand, multipar-
tite device-independent (DI) quantum key distribution (QKD) and the importance of
Bell inequalities therein. On the other hand, quantum repeaters which, hitherto, are
the most promising candidates for a quantum device that implements long-distance
QKD, as well as for overcoming fundamental limitations on point-to-point quantum
communication.

For multipartite DIQKD, we studied in our article [HMKB19] a published proto-
col, which we proved to be incomplete. That is, there cannot exist an honest imple-
mentation that does not lead to the protocol aborting. We precisely described that
the fundamental problem of the protocol lies within the structure of the Mermin-
Ardehali-Belinskiı̆-Klyshko (MABK) inequality, which prevents to achieve perfectly
correlated measurement results and sufficiently large MABK inequality violation at
the same time. These results lay the foundation for the subsequent work [HKB19],
in which we identified the structural properties a Bell test requires, in order to be
a viable option for DI conference key agreement (CKA). This, in turn, allowed us to
tailor a Bell inequality specifically to this task. As a result, we discovered a family of
genuine multipartite Bell inequalities which was motivated by the structure of the
Greenberger-Horne-Zeilinger (GHZ) qubit state. This class of inequalities exhibits
intriguing properties which we analytically characterized. Moreover, we demon-
strated the usefulness of these Bell inequalities for DICKA by quantifying DI con-
ference key rates. To this end, semidefinite programming techniques are employed,
combined with multipartite constraints.

Although several aspects of our Bell inequalitywere described in [HKB19], amore
in-depth analysis of its properties is desirable. A starting point is to clarify the role
of partially entangled states and the existence of associated intermediate bounds. As
we conjectured in the article, our Bell inequality serves as a DI witness for entan-
glement among a certain number of parties (one of them being Alice). Such DI en-
tanglement witnesses are useful to avoid a false-positive entanglement detection, as
described in Ref. [BBS+13]. Beyond that, an important goal is to analytically relate
the violation of our Bell inequality to a bound on Eve’s accessible information. So far,
every established analytical bound [PAB+09, RMW19] relies on the Clauser-Horne-
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Shimony-Holt (CHSH) Bell setting. Here, several techniques, specific to the structure
of the CHSH inequality, are instrumental for the derivation. Thus, we believe that
Bell inequalities tailored to DICKA are a fruitful approach to achieve secret-key rates
based on a violation different from the CHSH inequality.

Besides conceptualizing theoretical tools for DIQKD, we also investigated the
possibilities of implementing large-scale (bipartite) DIQKD via quantum repeaters in
our publication [HKB18]. We provided a systematic analysis on how experimental
quantities affect achievable DI secret-key rates and identified parameters with par-
ticularly detrimental impact. Our findings highlight the proneness of the desired
DI security to imperfections of virtually all quantum devices. This, in particular,
calls for a different optimal architecture of the quantum repeater for the purposes
of DIQKD and further limits the distance one can overcome in comparison to the
device-dependent (DD) version.

Our systematic analysis is not exhaustive. It remains for future research to in-
clude further quantum repeater models and error sources in the analysis to identify
the quantum repeater implementation most-suitable for DIQKD. An advance in this
regard is the measurement DI middle-note in twin-field QKD proposed in [LYDS18].

In the DD setting, we devised a general method to describe the error propagation
of generalized Pauli errors in a error-corrected qudit quantum repeater [MHKB18].
In doing so, we can compute the full error statistics of the distributed qudit states.
This paved the way for a follow-up work [MHKB19], in which we investigated the
potential of error-corrected quantum repeaters to surpass the fundamental repeater-
less bound dictated by [PLOB17]. Our results show that higher dimensional quantum
states can provide an advantage for this task.

In Refs. [MHKB18, MHKB19], we focused on a specific class of quantum error-
correcting codes (QECCs). Future research could, inter alia, investigate potential im-
provement by employing different QECCs.

Our research is part of a global trend towards the so-called second quantum rev-
olution [MDM03], which promises concrete quantum technology applications. We
hope that our scientific contributions provide additional insight and stimulate further
research in the field of (device-independent) quantum communication in a large-scale
quantum network.

64



Bibliography

[ABB+13] S. Abruzzo, S. Bratzik, N. K. Bernardes, H. Kampermann, P. van Loock,
andD. Bruß. Quantum repeaters and quantumkey distribution: Analysis
of secret-key rates. Phys. Rev. A, 87:052315, 2013.

[ABG+07] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani.
Device-independent security of quantum cryptography against collec-
tive attacks. Phys. Rev. Lett., 98(23):230501, 2007.

[ACLY00] R. Ahlswede, N. Cai, S.-R. Li, and R. W. Yeung. Network information
flow. IEEE Trans. Inf. Theor., 46(4):1204–1216, 2000.

[AFDF+18] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick. Prac-
tical device-independent quantum cryptography via entropy accumula-
tion. Nat. Commun., 9(1):459, 2018.

[AFRV19] R. Arnon-Friedman, R. Renner, and T. Vidick. Simple and tight device-
independent security proofs. SIAM J. Comp., 48(1):181–225, 2019.

[AGR82] A. Aspect, P. Grangier, and G. Roger. Experimental realization of
einstein-podolsky-rosen-bohm gedankenexperiment: A new violation
of bell’s inequalities. Phys. Rev. Lett., 49:91–94, 1982.

[AMPS16] N. Aharon, S. Massar, S. Pironio, and J. Silman. Device-independent bit
commitment based on the chsh inequality. New J. Phys., 18(2):025014,
2016.

[Ard92] M. Ardehali. Bell inequalities with a magnitude of violation that grows
exponentially with the number of particles. Phys. Rev. A, 46(9):5375,
1992.

[BB84] C.H. Bennett andG. Brassard. Quantumcryptography: Public key distri-
bution and coin tossing. In Proc. IEEE International Conference on Com-
puters, Systems and Signal Processing, pages 175–179. IEEE, New York,
1984.

65



BIBLIOGRAPHY

[BBB+12] J.-D. Bancal, C. Branciard, N. Brunner, N. Gisin, and Y.-C. Liang. A
framework for the study of symmetric full-correlation bell-like inequal-
ities. J. Phys. A: Math. Theor., 45(12):125301, 2012.

[BBC+93] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters. Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, 1993.

[BBM92] C. H. Bennett, G. Brassard, and D. N. Mermin. Quantum cryptography
without bell’s theorem. Phys. Rev. Lett., 68:557–559, 1992.

[BBR+18] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Per-
renoud, G. Gras, F. Bussières, M.-J. Li, et al. Secure quantum key distri-
bution over 421 km of optical fiber. Phys. Rev. Lett., 121:190502, 2018.

[BBS+13] J. T. Barreiro, J.-D. Bancal, P. Schindler, D. Nigg, M. Hennrich, T. Monz,
N. Gisin, and R. Blatt. Demonstration of genuine multipartite entangle-
ment with device-independent witnesses. Nat. Phys., 9(9):559, 2013.

[BC90] S. L. Braunstein and C. M. Caves. Wringing out better bell inequalities.
Ann. Phys., 202:22–56, 1990.

[BCP+14] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell
nonlocality. Rev. Mod. Phys., 86:419–478, 2014.

[BDCZ98] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters: The
role of imperfect local operations in quantum communication. Phys. Rev.
Lett., 81:5932–5935, 1998.

[BDS97] Charles H. Bennett, David P. DiVincenzo, and John A. Smolin. Capacities
of quantum erasure channels. Phys. Rev. Lett., 78:3217–3220, 1997.

[Bel64a] J. S. Bell. Physics (Long Island City N.Y.), 1:195, 1964.

[Bel64b] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika,
1(3):195, 1964.

[Ben92] C. H. Bennett. Quantum cryptography using any two nonorthogonal
states. Phys. Rev. Lett., 68:3121–3124, 1992.

[BHK05] J. Barrett, L. Hardy, and A. Kent. No signaling and quantum key distri-
bution. Phys. Rev. Lett., 95(1):010503, 2005.

[BK93] A. V. Belinskiı̆ andD.N. Klyshko. Interference of light and bell’s theorem.
Phys. Usp., 36(8):653–693, 1993.

[BKP06] J. Barrett, A. Kent, and S. Pironio. Maximally nonlocal andmonogamous
quantum correlations. Phys. Rev. Lett., 97:170409, 2006.

66



BIBLIOGRAPHY

[BLMS00] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders. Limitations on
practical quantum cryptography. Phys. Rev. Lett., 85:1330–1333, 2000.

[BPvL11] N. K. Bernardes, L. Praxmeyer, and P. van Loock. Rate analysis for a
hybrid quantum repeater. Phys. Rev. A, 83:012323, 2011.

[Bru98] D. Bruß. Optimal eavesdropping in quantum cryptography with six
states. Phys. Rev. Lett., 81:3018–3021, 1998.

[CAL19] M. Curty, K. Azuma, and H.-K. Lo. Simple security proof of twin-field
type quantumkey distribution protocol.Npj Quantum Inf., 5(1):64, 2019.

[CGL99] R. Cleve, D. Gottesman, and H.-K. Lo. How to share a quantum secret.
Phys. Rev. Lett., 83:648–651, 1999.

[CGL+02] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu. Bell inequali-
ties for arbitrarily high-dimensional systems. Phys. Rev. Lett., 88:040404,
2002.

[CHSH69] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed exper-
iment to test local hidden-variable theories. Phys. Rev. Lett., 23(15):880,
1969.

[CKW00] V. Coffman, J. Kundu, and W. K. Wootters. Distributed entanglement.
Phys. Rev. A, 61:052306, 2000.

[CMA+13] B. Christensen, K. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita,
A. Miller, L. Shalm, Y. Zhang, S. Nam, et al. Detection-loophole-free test
of quantum nonlocality, and applications. Phys. Rev. Lett., 111:130406,
2013.

[CTDL77] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum mechanics. volume
1 and. Willey-VHC, Berlin, 1977.

[DFR16] F. Dupuis, O. Fawzi, and R. Renner. Entropy accumulation.
arXiv:1607.01796, 2016.

[Dir39] P. A. M. Dirac. A new notation for quantum mechanics. In Math. Proc.
Camb. Philos. Soc., volume 35, pages 416–418. Cambridge University
Press, 1939.

[DJR05] T. Decker, D. Janzing, and M. Rötteler. Implementation of group-
covariant positive operator valued measures by orthogonal measure-
ments. J. Math. Phys., 46(1):012104, 2005.

[DLCZ01] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quan-
tum communication with atomic ensembles and linear optics. Nature,
414(6862):413, 2001.

67



BIBLIOGRAPHY

[DW05] I. Devetak and A. Winter. Distillation of secret key and entanglement
from quantum states. In Proc. R. Soc. A, volume 461, pages 207–235. The
Royal Society, 2005.

[EKB13] M. Epping, H. Kampermann, and D. Bruß. Designing bell inequalities
from a tsirelson bound. Phys. Rev. Lett., 111:240404, 2013.

[EKB16] M. Epping, H. Kampermann, andD. Bruß. On the error analysis of quan-
tum repeaters with encoding. Appl. Phys. B, 122(3):54, 2016.

[Eke91] A. K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev.
Lett., 67:661–663, 1991.

[EKMB17] M. Epping, H. Kampermann, C.Macchiavello, andD. Bruß. Multi-partite
entanglement can speed up quantum key distribution in networks. New
J. Phys., 19(9):093012, 2017.

[EMSF+14] C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J.
Pugh, J.-P. Bourgoin, R. Prevedel, L. K. Shalm, et al. Experimental three-
photon quantum nonlocality under strict locality conditions. Nat. Pho-
tonics, 8(4):292, 2014.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical
description of physical reality be considered complete? Phys. Rev.,
47(10):777, 1935.

[FC72] S. J. Freedman and J. F. Clauser. Experimental test of local hidden-
variable theories. Phys. Rev. Lett., 28:938–941, 1972.

[Fis75] G. Fischer. Lineare Algebra. Vieweg, 1975.

[FSA+13] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier,
and A. Acín. Local orthogonality as a multipartite principle for quantum
correlations. Nature commun., 4:2263, 2013.

[FWH+10] A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd, R. VanMeter, and L. C. L.
Hollenberg. Surface code quantum communication. Phys. Rev. Lett.,
104:180503, 2010.

[GC19] F. Grasselli and M. Curty. Practical decoy-state method for twin-field
quantum key distribution. New J. Phys., 21(7):073001, 2019.

[GG99] N. Gisin and B. Gisin. A local hidden variable model of quantum corre-
lation exploiting the detection loophole. Phys. Lett. A, 260(5):323 – 327,
1999.

[GHZ89] D. M. Greenberger, M. A. Horne, and A. Zeilinger. Going beyond bell’s
theorem. In Bell’s theorem, quantum theory and conceptions of the universe,
pages 69–72. Springer, 1989.

68



BIBLIOGRAPHY

[Got98] D. Gottesman. The heisenberg representation of quantum computers.
arxiv:9807006, 1998.

[Got99] D. Gottesmann. Fault-tolerant quantum computation with higher-
dimensional systems. Chaos Soliton Fract, 10:1749 – 1758, 999.

[GPS10] N. Gisin, S. Pironio, and N. Sangouard. Proposal for implementing
device-independent quantum key distribution based on a heralded qubit
amplifier. Phys. Rev. Lett., 105:070501, 2010.

[GVW+15] M. Giustina, M. Versteegh, S. Wengerowsky, J. Handsteiner,
A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson,
C. Abellán, et al. Significant-loophole-free test of bell’s theorem with
entangled photons. Phys. Rev. Lett., 115:250401, 2015.

[HBD+15] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruiten-
berg, R. Vermeulen, R. Schouten, C. Abellán, et al. Loophole-free bell
inequality violation using electron spins separated by 1.3 kilometres.Na-
ture, 526(7575):682, 2015.

[HHH96] R. Horodecki, M. Horodecki, and P. Horodecki. Teleportation, bell’s in-
equalities and inseparability. Phys. Lett. A, 222(1):21 – 25, 1996.

[HKB18] T. Holz, H. Kampermann, and D. Bruß. Device-independent secret-key-
rate analysis for quantum repeaters. Phys. Rev. A, 97:012337, 2018.

[HKB19] T. Holz, H. Kampermann, and D. Bruß. A genuine multipar-
tite bell inequality for device-independent conference key agreement.
arXiv:1910.11360, 2019.

[HMKB19] T. Holz, D. Miller, H. Kampermann, and D. Bruß. Comment on
“fully device-independent conference key agreement”. Phys. Rev. A,
100:026301, 2019.

[Hol73] A. S. Holevo. Bounds for the quantity of information transmitted by a
quantum communication channel. Probl. Peredachi Inf., 9(3):3–11, 1973.

[Iva87] I.D. Ivanovic. How to differentiate between non-orthogonal states. Phys.
Lett. A, 123(6):257 – 259, 1987.

[ JTN+09] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D.
Lukin. Quantum repeater with encoding. Phys. Rev. A, 79:032325, 2009.

[KAF+10] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,
P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, et al. Factoriza-
tion of a 768-bit rsa modulus. In Annual Cryptology Conference, pages
333–350. Springer, 2010.

69



BIBLIOGRAPHY

[KGR05] B. Kraus, N. Gisin, and R. Renner. Lower and upper bounds on the
secret-key rate for quantum key distribution protocols using one-way
classical communication. Phys. Rev. Lett., 95:080501, 2005.

[KL10] P. Kok and B. W. Lovett. Introduction to optical quantum information pro-
cessing. Cambridge University Press, 2010.

[KLM07] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Com-
puting. Oxford University Press, 2007.

[KRS09] R. König, R. Renner, and C. Schaffner. The operational meaning of min-
and max-entropy. IEEE Transactions on Information theory, 55(9):4337–
4347, 2009.

[LB13] D. A. Lidar and T. A. Brun. Quantum error correction. Cambridge Uni-
versity Press, 2013.

[LCA05] H.-K. Lo, H.F. Chau, andM. Ardehali. Efficient quantum key distribution
scheme and a proof of its unconditional security. J. Cryptol., 18(2):133–
165, 2005.

[Leg08] A. J. Leggett. Realism and the physical world. Rep. Prog. Phys.,
71(2):022001, 2008.

[LJKL16] D. Luong, L. Jiang, J. Kim, andN. Lütkenhaus. Overcoming lossy channel
bounds using a single quantum repeater node. Appl. Phys. B, 122(4):96,
2016.

[LYDS18] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields. Overcoming
the rate–distance limit of quantum key distribution without quantum
repeaters. Nature, 557(7705):400, 2018.

[MDM03] A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn. Quantum tech-
nology: the second quantum revolution. Philos. Trans. Royal Soc. A,
361(1809):1655–1674, 2003.

[Mer90] D. N. Mermin. Extreme quantum entanglement in a superposition of
macroscopically distinct states. Phys. Rev. Lett., 65(15):1838, 1990.

[MHKB18] D. Miller, T. Holz, H. Kampermann, and D. Bruß. Propagation of gen-
eralized pauli errors in qudit clifford circuits. Phys. Rev. A, 98:052316,
2018.

[MHKB19] D. Miller, T. Holz, H. Kampermann, and D. Bruß. Parameter regimes
for surpassing the plob bound with error-corrected qudit repeaters.
arXiv:1906.05172, 2019.

[Mil82] F. Miller. Telegraphic code to insure privacy and secrecy in the transmission
of telegrams. CM Cornwell, 1882.

70



BIBLIOGRAPHY

[MKL+14] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang. Ul-
trafast and fault-tolerant quantumcommunication across long distances.
Phys. Rev. Lett., 112:250501, 2014.

[MLK+16] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang.
Optimal architectures for long distance quantum communication. Sci.
Rep., 6:20463, 2016.

[MPA11] L.Masanes, S. Pironio, and A. Acín. Secure device-independent quantum
key distribution with causally independent measurement devices. Nat.
Commun., 2:238, 2011.

[MPR+19] M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F. Dynes, Z. L.
Yuan, and A. J. Shields. Experimental quantum key distribution beyond
the repeaterless secret key capacity. Nat. Photonics, 13(5):334, 2019.

[MRC+14] L. Masanes, R. Renner, M. Christandl, A. Winter, and J. Barrett. Full se-
curity of quantum key distribution from no-signaling constraints. IEEE
Trans. Inf. Theor., 60(8):4973–4986, 2014.

[MY98] D.Mayers and A. Yao. Quantum cryptographywith imperfect apparatus.
In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, pages 503–509. IEEE Computer Society, 1998.

[MZL+17] S. Muralidharan, C.-L. Zou, L. Li, J. Wen, and L. Jiang. Overcoming era-
sure errors with multilevel systems. New J. Phys., 19(1):013026, 2017.

[NC10] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[NPA07] M. Navascués, S. Pironio, and A. Acín. Bounding the set of quantum
correlations. Phys. Rev. Lett., 98:010401, 2007.

[NPA08] M. Navascués, S. Pironio, and A. Acín. A convergent hierarchy of
semidefinite programs characterizing the set of quantum correlations.
New J. Phys., 10(7):073013, 2008.

[PAB+09] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani.
Device-independent quantum key distribution secure against collective
attacks. New J. Phys., 11(4):045021, 2009.

[PAB+19] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Col-
beck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, et al. Advances in
quantum cryptography. arXiv:1906.01645, 2019.

[Pau27] W. Pauli. Zur quantenmechanik des magnetischen elektrons. Z. Phys.,
43:601–623, 1927.

71



BIBLIOGRAPHY

[PBD+00] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger.
Experimental test of quantum nonlocality in three-photon greenberger-
horne-zeilinger entanglement. Nature, 403(6769):515, 2000.

[Pea70] P. M. Pearle. Hidden-variable example based upon data rejection. Phys.
Rev. D, 2:1418–1425, 1970.

[Per06] A. Peres. Quantum theory: concepts and methods, volume 57. Springer
Science & Business Media, 2006.

[Pit89] I. Pitowsky. Quantum Probability – Quantum Logic. Lect. Notes Phys.
Vol. 321. Springer-Verlag, Berlin Heidelberg, 1989.

[Pla00] M. K. E. L. Planck. Zur theorie des gesetzes der energieverteilung im
normalspectrum. Verhandl. Dtsc. Phys. Ges., 2:237, 1900.

[PLOB17] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi. Fundamental lim-
its of repeaterless quantum communications. Nat. Commun., 8:15043,
2017.

[PPK+09] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and
M. Żukowski. Information causality as a physical principle. Nature,
461(7267):1101, 2009.

[PR94] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom. Found.
Phys., 24(3):379–385, 1994.

[Ren08] R. Renner. Security of quantum key distribution. Int. J. Q. Inf., 6(01):1–
127, 2008.

[RGK05] R. Renner, N. Gisin, and B. Kraus. Information-theoretic security proof
for quantum-key-distribution protocols. Phys. Rev. A, 72:012332, 2005.

[RK05] R. Renner and R. König. Universally composable privacy amplification
against quantum adversaries. In Theory of Cryptography, pages 407–425.
Springer Berlin Heidelberg, 2005.

[RKM+01] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Mon-
roe, andD. J.Wineland. Experimental violation of a bell’s inequality with
efficient detection. Nature, 409(6822):791, 2001.

[RMW18] J. Ribeiro, G. Murta, and S. Wehner. Fully device-independent confer-
ence key agreement. Phys. Rev. A, 97:022307, 2018.

[RMW19] J. Ribeiro, G. Murta, and S. Wehner. Reply to “comment on ‘fully device-
independent conference key agreement’ ”. Phys. Rev. A, 100:026302,
2019.

72



BIBLIOGRAPHY

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–
126, 1978.

[RYG+19] F. Rozpędek, R. Yehia, K. Goodenough,M. Ruf, P. C. Humphreys, R. Han-
son, S. Wehner, and D. Elkouss. Near-term quantum-repeater exper-
iments with nitrogen-vacancy centers: Overcoming the limitations of
direct transmission. Phys. Rev. A, 99:052330, 2019.

[SAT+17] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio.
Bell inequalities tailored to maximally entangled states. Phys. Rev. Lett.,
119:040402, 2017.

[SBPC+09] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütken-
haus, and M. Peev. The security of practical quantum key distribution.
Rev. Mod. Phys., 81:1301–1350, 2009.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech.
J., 27(3):379–423, 1948.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28(4):656–715, 1949.

[SR08] V. Scarani and R. Renner. Quantum cryptography with finite resources:
Unconditional security bound for discrete-variable protocols with one-
way postprocessing. Phys. Rev. Lett., 100:200501, 2008.

[SSdRG11] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nico-
las Gisin. Quantum repeaters based on atomic ensembles and linear op-
tics. Rev. Mod. Phys., 83:33–80, 2011.

[Sve87] G. Svetlichny. Distinguishing three-body from two-body nonseparabil-
ity by a bell-type inequality. Phys. Rev. D, 35:3066–3069, 1987.

[SZ99] M. O. Scully andM. S. Zubairy. Quantum optics. Am. J. Phys., 67(7):648–
648, 1999.

[Ter04] B. M. Terhal. Is entanglement monogamous? IBM J. Res. Dev., 48(1):71–
78, 2004.

[TGW14] M. Takeoka, S. Guha, and M. M. Wilde. Fundamental rate-loss tradeoff
for optical quantum key distribution. Nature commun., 5:5235, 2014.

[TSG+19] E. Y.-Z. Tan, R. Schwonnek, K. T. Goh, I. W. Primaatmaja, and C. C.-
W. Lim. Computing secure key rates for quantum key distribution with
untrusted devices. arXiv:1908.11372, 2019.

[Tsi80] B. S. Tsirelson. Quantum generalizations of bell’s inequality. Lett. Math.
Phys., 4(2):93–100, 1980.

73



BIBLIOGRAPHY

[TSSR11] M. Tomamichel, C. Schaffner, A. Smith, and R. Renner. Leftover hash-
ing against quantum side information. IEEE Transactions on Information
Theory, 57(8):5524–5535, 2011.

[TT08] T. Tsurumaru and K. Tamaki. Security proof for quantum-key-
distribution systems with threshold detectors. Phys. Rev. A, 78:032302,
2008.

[TYC+14] Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang,
J. Wang, L.-X. You, J.-Y. Guan, et al. Measurement-device-independent
quantum key distribution over 200 km. Phys. Rev. Lett., 113:190501,
2014.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev.,
38(1):49–95, 1996.

[Ver26] G. S. Vernam. Cipher printing telegraph systems: For secret wire and
radio telegraphic communications. Journal of the A.I.E.E., 45(2):109–115,
1926.

[vLLS+06] P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J.
Munro, and Y. Yamamoto. Hybrid quantum repeater using bright co-
herent light. Phys. Rev. Lett., 96:240501, 2006.

[VV14] U. Vazirani and T. Vidick. Fully device-independent quantum key dis-
tribution. Phys. Rev. Lett., 113(14):140501, 2014.

[Weh06] S. Wehner. Tsirelson bounds for generalized clauser-horne-shimony-
holt inequalities. Phys. Rev. A, 73:022110, 2006.

[Wie83] S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[WKR+11] H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter.
Quantum eavesdropping without interception: an attack exploiting the
dead time of single-photon detectors. New J. Phys., 13(7):073024, 2011.

[WW00] R. F. Werner and M. M. Wolf. Bell’s inequalities for states with positive
partial transpose. Phys. Rev. A, 61:062102, 2000.

[WW01] R. F. Werner and M. M. Wolf. All-multipartite bell-correlation inequali-
ties for two dichotomic observables per site. Phys. Rev. A, 64(3):032112,
2001.

[WZ82] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802, 1982.

[YCY+16] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J.
Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, et al. Measurement-device-
independent quantum key distribution over a 404 km optical fiber. Phys.
Rev. Lett., 117:190501, 2016.

74



BIBLIOGRAPHY

[ZXC+18] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan. Large scale
quantum key distribution: challenges and solutions. Opt. Express,
26(18):24260–24273, Sep 2018.

[ZYC+03] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski, and J.-W. Pan.
Experimental violation of local realism by four-photon greenberger-
horne-zeilinger entanglement. Phys. Rev. Lett., 91:180401, 2003.

75





Appendix A

Device-independent secret-key-rate analysis for quantum
repeaters

Title: Device-independent secret-key-rate analysis for quantum
repeaters

Authors: Timo Holz, Hermann Kampermann, and Dagmar Bruß

Journal: Physical Review A

Impact factor: 2.909 (2017)

Date of submission: 24 November 2017

Publication status: Published

Contribution by TH: First author (input approx. 80%)

This publication corresponds to Ref. [HKB18]. A summary of the results is presented
in Chap. 7. The general framework and research objective were worked out in col-
laboration with my co-authors and were regularly discussed with them. Together
with HK, I identified a way to compare the device-dependent BB84 protocol to the
device-independent spot-checking CHSH protocol, which was a crucial step for the
systematic analysis presented in the article. I performed all analytical calculations
myself, except the one presented in App. A.1 of the article, for which HK gave valu-
able input. All numerical computations (except the Monte Carlo simulations) were
carried out by me. I created all plots and figures in the article. I wrote the entire
manuscript which was proofread and improved by my co-authors.

77



PHYSICAL REVIEW A 97, 012337 (2018)

Device-independent secret-key-rate analysis for quantum repeaters

Timo Holz,* Hermann Kampermann, and Dagmar Bruß
Theoretical Physics III, Heinrich Heine University Duesseldorf, D-40225 Duesseldorf, Germany

(Received 24 November 2017; published 31 January 2018)

The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between
two ormore parties with untrusted devices, potentially under full control of a quantum adversary. The performance
of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an
appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent
scenario for different quantum repeater setups and compare them to their device-dependent analogon.Thequantum
repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998)]
and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006)]. For a given
repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the
gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest
optimized strategies.

DOI: 10.1103/PhysRevA.97.012337

I. INTRODUCTION

Quantum cryptography—the science of (secure) private
communication based on fundamental properties of quantum
particles—is a very active field of research and was founded
in the early 1980s [1]. An unconditionally secure encryption
technique, the one-time pad [2], relies on a preshared key
between the parties who wish to communicate. Secure com-
munication can thus be achieved by securely distributing this
key, which is the ultimate task of quantum key distribution
(QKD). The famous BB84 protocol [3] was the first proposal
for achieving secure QKD. Since then, a variety of other QKD
protocols have been published [4–6]. However, the security
of these device-dependent (DD) protocols relies on a perfect
characterization of the measurement devices and the source,
which is impossible in practice. Any realistic implementation
is imperfect, which makes these QKD protocols vulnerable to
an adversary [7–10]. Ideally, onewants to drop any assumption
about any device involved in the QKD scheme, which is
referred to as device-independent (DI) QKD [11,12].
As photons possess a long coherence time, one can transmit

these particles through fibers or free space, thus allowing
long-distance QKD. Due to photon losses, though, which
exponentially scale with the distance one wants to overcome,
QKD is limited to distances of L � 150 km [13,14]. This
problem can be circumvented with quantum repeaters [15].
In this work, we aim at comparing achievable secret key

rates in the DD andDI scenario for different quantum repeaters
without implemented error correction. In particular,weprovide
a systematic analysis onhowexperimental quantities and errors
manifest themselves in the corresponding secret key rates. The
DD case has been analyzed in [16]. Here, we shed light on
the fundamental differences betweenboth scenarios, especially

*holzt@uni-duesseldorf.de

the requirements needed for a reasonably high DI secret key
rate.
The structure of this paper is as follows. In Sec. II we

review a generic quantum repeater model [15], recapitulate
the fundamentals of QKD, and explain the peculiarities in the
device-independent case. Important ingredients, such as the
secret key rateR and the errorswe account for, are described. In
Sec. III we apply the given framework to the original quantum
repeater proposal by Briegel et al. [15]. Section IV focuses on
the key analysis for the hybrid quantum repeater [17].

II. GENERAL FRAMEWORK

The main source of errors in quantum communication
with photons are losses in the optical fiber, which scale
exponentially with the length L0, such that the transmittivity
ηt is given by

ηt (L0) = 10−α
L0
10 , (1)

where α denotes the attenuation coefficient. In this work we
use α = 0.17 dB/km, which is the attenuation coefficient at
wavelengths around 1550 nm. To overcome the exponential
photon loss, quantum repeaters for long-distance quantum
information transmission have been suggested.
In this section we review a generic model for a quantum

repeater, originally introduced by Briegel et al. [15]. Further-
more, we briefly discuss other sources of errors in QKD and
how we model and incorporate them in the quantum repeater
scheme. See [16] for a detailed discussion of imperfections.
We also review the main ideas of DIQKD, in particular the DI
protocol that we use [11].

A. Generic quantum repeater model

The purpose of a quantum repeater is to generate and
distribute entangled states over a large distanceL that separates
two parties, typically called Alice and Bob. In order to increase

2469-9926/2018/97(1)/012337(14) 012337-1 ©2018 American Physical Society
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FIG. 1. A generic quantum repeater setup proposed by [15]. Let
k denote the number of distillation rounds performed prior to the first
ES and N the maximum nesting level. Alice and Bob are separated
by the distance L = 2NL0 and share at the end of the nested protocol
the entangled state ρ.

the distance over which the states are entangled, one performs
entanglement swapping (ES) at intermediate repeater stations
equally separated by a fundamental length L0. In the nested
quantum repeater proposal (see Fig. 1 for a schematic represen-
tation), ES is performed inN consecutive nesting levels, where
2N segments of fundamental length L0 amount to the total
distanceL = 2NL0,which corresponds to 2N − 1 intermediate
repeater stations. For the sake of simplicity, we only allow state
purification via entanglement distillation (ED) before the first
ES is done. The repeater stations are equipped with quantum
memories and processors to perform the mentioned quantum
operations. For ED,we employ theDeutsch et al. [18] protocol,
whichgenerates after k roundsof distillation afinal state of high
purity out of 2k copies of an initial state ρ0. The ES protocol
involves Bell measurements, which can be implemented in
various ways in the experiment [19,20]. We review the ED
and ES protocol in Appendix B.
As entanglement can be used as a resource for many

quantum informational tasks [21,22], it is important to quantify
the number of entangled states that can be distributed between
Alice and Bob per second by a quantum repeater. This quantity
is described by the repeater rate Rrep, which clearly depends
on errors that occur in the quantum repeater.We briefly discuss
which errors are taken into account and how we model them.
Afterwards we discuss the time restrictions that we focus on
and explicitly give the expression for the repeater rate.

1. Errors of the quantum repeater

The elements of a quantum repeater and their errors are
as follows: (i) Quantum channel – Photon losses in the fiber
are described via the transmittivity ηt , Eq. (1). (ii) Source –
We assume that the source creates on demand a state ρ0 and
distributes it to adjacent repeater stations. The quality of these
states is described via the fidelity F0 with respect to a certain
Bell state, defined in Eqs. (14a) and (14b). (iii) Detectors –
We assume photon number resolving detectors (PNRDs) with
efficiency ηd , where dark counts of the detectors are neglected.
This is a reasonable approximation for realistic dark counts of

the order of 10−5 or below, see [16]. (iv) Gates – ED and
ES rely on controlled two-qubit operations, implemented by
a gate with quality pG. This imperfect gate introduces noise,
thus mixing the ideal pure entangled state. We further assume
that one-qubit gates work perfectly.
The errors in (i)–(iv) give rise to a success probability for

ED in round k and for ES in nesting level n. We denote those
probabilities with P

(k)
ED and P

(n)
ES , respectively. Finally, let P0

denote the probability that a source successfully links two
adjacent repeater stations in the 0th nesting level with an initial
entangled state ρ0.

2. Repeater rate

For a given set of parameters and within a model that
respects the errors we introduced in the previous section, one
can achieve a certain repeater rateRrep. In order to characterize
this repeater rate, we need to clarify which time restrictions
we account for. The only time-consuming operation that we
consider is the time needed to distribute an entangled photon
pair among adjacent repeater stations and acknowledge their
successful transmission. This so-called fundamental time T0
depends on the speed of light c = 2× 108 m/s in the fiber,
the fundamental length L0 separating two repeater stations,
and the location of the photon source. We consider the case
where the source is located at one repeater station, which
yields the fundamental time T0 = 2L0/c [16]. Furthermore,
we investigate repeaters with deterministic and probabilistic
ES, i.e., P (n)

ES = 1 and P
(n)
ES < 1, respectively.

a. Deterministic ES. For perfect detectors ηd = 1, the ES
can be performed in a deterministicmanner. The corresponding
repeater rate is given by [23]

Rdetrep = 1

T0

1

Zn

(
P
(k)
L0

) , (2)

where the recursive probability P
(k)
L0
in distillation round k is

defined via

P
(k)
L0
:= P

(k)
ED

Z1
(
P
(k−1)
L0

) ∀ k � 1 (3)

and P
(0)
L0
:= P0. Here, Zn(p) denotes the average number of

attempts to successfully establish 2n entangled pairs (each
generated with probability p) and it is given by [23]

Zn(p) :=
2n∑

j=1

(
2n

j

)
(−1)j+1

1− (1− p)j
. (4)

The 2n generated pairs are then deterministically converted via
ES in the repeater stations to an entangled pair between Alice
and Bob.

b. Probabilistic ES. ES is a probabilistic procedure for
imperfect detectors. Given P0 � 1, the repeater rate of a
quantum repeater with k rounds of ED and ES in n nesting
levels can be approximated by

Rprobrep = 1

T0

(
2

3

)n+k

P0

k∏
j=1

P
(j )
ED

a
(j−1)
ED

n∏
i=1

P
(i)
ES

a
(i−1)
ES

, (5)
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FIG. 2. A typical QKD setup. Alice and Bob share a classical and
a quantum channel. A source provides possibly entangled states ρ that
can be measured by the perfectly characterized measurement devices.
A dichotomic classical output is generated in each measurement
round.

which is a generalized and slightly modified version of the
repeater rates given in [16,24].1 Here, a(j )ED and a

(i)
ES denote con-

stants that one has to choose depending on success probabilities
to create an entangled state in the corresponding ED round
and nesting level, respectively. They fulfill 0 < a

(j )
ED,a

(i)
ES � 1

and are typically close to 1. The repeater rate in Eq. (5)
underestimates the actual repeater rate, as already pointed out
in [23]. Recently, amore sophisticated approach to quantify the
repeater rate with probabilistic ES appeared in the literature
[25].2 To our knowledge, an analytical study of the optimal
strategy has not been performed yet.3

B. Quantum key distribution

With the repeater rates in Eqs. (2) and (5), we now study the
possibility to use the entangled states as a resource to generate
a secret key.

1. Device-dependent QKD

Suppose that Alice and Bob share a classical, authenticated
channel and a possibly entangled state ρ, transmitted through
a quantum channel. A typical QKD setup is shown in Fig. 2.
In each measurement round, Alice and Bob can choose from
a set of measurement settings {A0,A1, . . . } and {B0,B1, . . . }.
The setting determines which measurement is performed on

1In [24], the repeater rate for probabilistic ES is derived without
initial ED and without the constants a(i)ES. In [16] initial ED is included
and a common constant aED is introduced for every ED round, which
results in a larger repeater rate. In general, it is not justified to
use a common constant aED, as they quickly approach unity for an
increasing number of ED steps. As we show in Appendix A, one can
tackle this problem in a more efficient way and one can similarly
introduce constants for the ES procedure.
2Note, however, that for more than n = 2 nesting levels, the repeater
rate of [25] rapidly becomes only numerically feasible and provides
no further insight into our analysis. Also, since we want to keep n

in principle arbitrary, we settle for the approximated repeater rate in
Eq. (5).
3In practice, the optimal strategy for maximizing the repeater rate
is to immediately perform ES as soon as entangled pairs are available
in two neighboring repeater links and then proceed by already
distributing new states among these available repeater stations.Monte
Carlo simulations suggest that this approach can significantly exceed
the analytical repeater rates in Eqs. (2) and (5), depending on n.

their subsystem. Throughout thisworkwe consider dichotomic
measurement outcomes ai,bj ∈ {±1}.
The performance of a QKD protocol is quantified by the

secret key rate [16]

R := Rrawr∞ = RrepRsiftPclickr∞, (6)

which is our figure ofmerit. The quantities introduced inEq. (6)
are the raw key rate Rraw, the fraction Rsift of measurements
performed in the same basis by Alice and Bob, the probability
Pclick for a valid measurement result, and the secret fraction r∞
(see below).
After generating an arbitrarily long bit string, the classical

postprocessing of the measurement data begins, including
sifting, which corresponds to discarding measurements where
the settings of Alice and Bob did not match. Note that we fix
Rsift = 1, which can be approximately achieved by choosing
the measurement settings with biased probabilities [26]. The
sifted or raw key leads to the raw key rate Rraw, which is
the number of raw bits Alice and Bob generate per second.
These bits are only partially secure, which is described by
the secret fraction r∞. The explicit form of r∞ depends on
the protocol one employs. A variety of QKD protocols exist
in the literature, such as the BB84 and the six-state protocol
[3,6]. In theseQKDprotocols one has full knowledge about the
Hilbert space dimensions, which is crucial for the security of
these protocols. For instance, the security of the BB84 protocol
critically depends on the four dimensions of the Hilbert space
associated to a qubit pair [27]. The secret fraction for the BB84
protocol is given by [13]

rBB84∞ = max{0,1− h(Qz)− h(Qx)}. (7)

In Eq. (7) the binary entropy is denoted as h(p) :=
−p log2(p)− (1− p) log2(1− p) and the quantum bit error
rate (QBER) in measurement direction i is Qi . The QBER
is defined as the probability that Alice and Bob generate
discordant outcomes, given afixed set ofmeasurement settings,
i.e.,

Qz = P (a �= b | A = Z,B = Z), (8a)

Qx = P (a �= b | A = X,B = X), (8b)

for measuring Pauli Z and X operators.

2. Device-independent QKD

In practice, it is impossible to have full control over the
devices involved in a QKD setup. The idea of DIQKD is
to extract a secret key without making detailed assumptions
about the involved devices [11]. The security of such DIQKD
protocols is based on a loophole-free Bell-inequality violation
[28], for which we have to assume that the two parties are
causally separated. In the spirit of device independence, the
measurement devices are treated as black boxes that perform
some (unknown)measurement conditioned on a classical input
chosen by Alice and/or Bob. The measurement should again
yield a dichotomic classical output. However, in practice some-
times detectors fail and produce no outcome. Measurements
where any of the black boxes do not produce an output have to
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FIG. 3. The DIQKD setup. The measurement devices are treated
as black boxes, i.e., the exact internal operations are unknown.
Additionally, the dimension of the Hilbert space associated to the
state ρ is not specified.

be incorporated into the measurement data. Alice and Bob can
achieve this by randomly assigning a measurement result {±1}
to such events [29]. In this sense, every event is a valid DIQKD
measurement, yielding Pclick = 1. Note that these events can
be incorporated in our description by substituting the final state
that Alice and Bob share in the following way:

ρ → η2dρ + 1− η2d

4
1, (9)

where ηd refers to the probability that a no-detection event
was replaced by a random outcome. Note that ηd enters the
expression in (9) quadratically, because two detectors of the
same efficiency are involved in each measurement. Figure 3
shows the DIQKD setup. The DI secret key rate can be
calculated via

RDI = RrawrDI∞ = Rrepr
DI
∞ , (10)

where we used Pclick = 1 and Rsift = 1 (see above). In the
DD case, the probability Pclick is a function of the detector
efficiency ηd , whereas in the DI scenario ηd enters the secret
fraction rDI∞ due to the modification of the quantum state in (9).
Comparing Eqs. (6) and (10) reveals that both key rates

share the common repeater rate Rrep, which is consistent with
the fact that the purpose of the quantum repeater is simply
to provide entangled states to the two parties. Alice and Bob
can then choose to trust their devices or not. Several DIQKD
protocols have been proposed in the literature [11,30,31]. We
employ the protocol in [11].

3. DIQKD protocol

In the DIQKD protocol of [11] Alice randomly (with
biased probabilities) chooses between three measurement set-
tings {A0,A1,A2}. The exact internal measurement process
is unknown, but the device generates a dichotomic classical
output a ∈ {±1} (no-detection events get an assignment of±1,
uniformly at random). Similarly, Bob chooses between two
measurement settings {B0,B1}, producing a binary output b ∈
{±1} in each round. A random small subset of their (classical)
measurement data generated with the setting {A2,B1} is used
to estimate Q := P (a �= b | A2,B1) and the outcomes of the
settings {A0/1,B0/1} are used to calculate

S := Tr

⎡
⎣ρ

∑
i,j∈{0,1}

(−1)i·jAi ⊗ Bj

⎤
⎦. (11)

The main result of [11] is a lower bound for the DI secret
fraction of the remaining measurement data of the setting

{A2,B1}, given by

rDI∞ = max

{
0,1− h(Q)− h

(
1+

√
S2/4− 1
2

)}
, (12)

under the condition that S > 2 and that the marginal proba-
bilities of Alice and Bob are symmetric, i.e., Tr[ρAi ⊗ 1] =
0 = Tr[ρ1 ⊗ Bj ] for all i,j . This lower bound was proven for
collective attacks and one-way classical postprocessing in [11].
See also [32] formore general quantumadversaries and general
communication between the parties. In the following section
we adopt the specific implementation given in [11], where Q

and S are the QBER and the Clauser-Horne-Shimony-Holt
(CHSH) parameter [33], respectively.

4. Comparing DDQKD and DIQKD protocols

To point out the distinct features separating both scenarios
and how they impact the secret key rates, we have to make the
DD and the DI protocol effectively comparable. The specific
implementation given in [11] for the DI protocol uses

A0,1 = X ± Z√
2

, A2 = Z, (13a)

B0 = X, B1 = Z, (13b)

for the measurement operators. To compare this to the
BB84 protocol, where Alice uses {Ax = X,Az = Z} and Bob
{B0,B1} as in Eq. (13b), we also consider the asymmetric im-
plementation of theDI protocol, such that {A2 = Z,B1 = Z} is
measured with probability→ 1 and with a negligible but equal
fraction with which the other measurement operators are used.
In the DI and DD case they use these measurement settings
to estimate the CHSH value, Eq. (11), and the QBER Qx ,
respectively. Then, in the asymptotic limit, these protocols are
equivalent in the sense that almost always the Z measurement
is used. Alice and Bob only rely on different assumptions
regarding the trust in their measurement devices.

5. Entangled state, QBER, and CHSH parameter

The explicit form of the state that is distributed to Alice and
Bob by the quantum repeater is of fundamental importance
for achievable secret key rates. Maximal correlation, and thus
maximal security is provided if the state ρ is pure and in one
of the four Bell states:

|φ1,2〉 := 1√
2
(|00〉 ± |11〉), (14a)

|φ3,4〉 := 1√
2
(|01〉 ± |10〉). (14b)

For the specific implementation in Eqs. (13), the ideal state
is the pure state |φ1〉 for which the CHSH parameter reaches
its maximum value 2

√
2 [34] and the QBERs vanish. Then,

the DD and DI secret fraction are both equal to 1, which
maximizes the corresponding secret key rates. In practice, the
source cannot provide perfectly pure states due to noise and
other imperfections. Under the assumption that the initially
distributed states ρ0 are genuine two-qubit states, they can be
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transformed into a generic Bell-diagonal state

ρ0 =
4∑

i=1
c
(0)
i,0 |φi〉〈φi | (15)

by using local operations [35].4 The Bell coefficients c
(0)
i,0 are

non-negative and fulfill normalization
∑

i c
(0)
i,0 = 1.We assume

throughout thiswork that the sources generate the generic Bell-
diagonal state given in Eq. (15). The ED and ES protocols we
use produceBell-diagonal states, provided the input states have
been of the form (15). The quantum repeater thus distributes
the final state,

ρ =
4∑

i=1
c
(k)
i,n|φi〉〈φi |, (16)

to Alice and Bob, where c
(k)
i,n denotes the Bell coefficients after

ED in k rounds and ES in n nesting levels. The coefficients c(k)i,n

fulfill normalization, and they depend on c
(0)
i,0 and on the explicit

form of the protocol. See [16,18] or Appendix B for details of
the protocols. The transformation rules for the coefficients c(k)i,n

under ED and ES are summarized in Appendixes C and D for
the two quantum repeater setups. For Bell-diagonal states, as
in Eq. (16), the QBERsQ(k)

x,n andQ(k)
z,n are given by

Q(k)
x,n = c

(k)
2,n + c

(k)
4,n, (17a)

Q(k)
z,n = c

(k)
3,n + c

(k)
4,n. (17b)

To calculate the quantities needed for the DI secret fraction,
one needs to substitute the state ρ, Eq. (16), with its noisy
version (9). This results in

Q(k)
z,n = η2d

(
c
(k)
3,n + c

(k)
4,n

)+ 1− η2d

2
, (18a)

S(k)n = 2
√
2η2d
(
c
(k)
1,n − c

(k)
4,n

)
, (18b)

where S(k)n denotes the violation of the CHSH inequality with
the final state.

III. THE ORIGINAL QUANTUM REPEATER

Now we want to compare achievable secret key rates for
the original quantum repeater (OQR) [15] in the DD and
DI scenario. In Sec. IIIA we give the missing expressions
needed to calculate the repeater rate Rrep. This is followed
by a systematic secret-key-rate analysis, where we compare
the DD and DI QKD performance numerically (Sec. IIIB) and
analytically (Sec. IIIC). Since any two-qubit mixture can be
transformed into depolarized Bell states with local operations
[36], we assume that the sources initially distribute such
stateswithBell coefficients c(0)1,0 = F0 and c

(0)
i�2,0 = (1− F0)/3,

whereF0 denotes the fidelity with respect to the Bell state |φ1〉.

4Note that depolarizing reduces only nonlocal correlations.

A. Parameters and error model

In order to calculate the repeater rate Rrep, we need to
specify the probabilities P0, Pclick, P

(n)
ES , and P

(k)
ED and how the

gate quality pG enters the expression. The probability that the
source successfully connects two adjacent repeater stations
with an entangled photon pair is given by the transmittivity
P0 = ηt (L0), Eq. (1), and the probability for a valid QKD
measurement is Pclick = η2d . The ED and ES protocol employ
controlled two-qubit gates, that may introduce noise due to
imperfections. We adopt the depolarizing model of [15] for
noisy gates,

O(χ ) = pGOideal(χ )+ 1− pG

4
1, (19)

where χ denotes an arbitrary two-qubit state on which the gate
O acts. TheEDandES include twofold detectionswith PNRDs
of efficiency ηd . For perfect detectors ηd = 1, the repeater rate
is given by Eq. (2). In case of nonperfect detectors, however,
the detection events lead to a factor η

2(k+n)
d for the success

probabilities P
(k)
ED and P

(n)
ES . Starting from Eq. (5), we thus get

Rprobrep = 1

T0

(
2

3

)k+n

η
2(k+n)
d ηt (L0)

n∏
i=1

1

a
(i−1)
ES

k∏
j=1

P
′ (j )
ED

a
(j−1)
ED

(20)

for the repeater rate with probabilistic ES, where P
′ (j )
ED now

denotes the success probability for ED in round j without
the detector efficiency ηd , which can be calculated via the
coefficients c

(j )
i,0 only [see Appendix C, Eq. (C2)].

B. Performance: DD vs DI secret key rate

With the framework provided in the previous sections, we
nowwant to systematically analyze achievable secret key rates
in the DD and DI scenario. We split the analysis into two
parts, onewith perfect detectors ηd = 1 and onewith imperfect
detectors ηd < 1, as this quantity determines which repeater
rate has to be used for the calculation. Currently feasible
PNRDs reach detector efficiencies ofηd ≈ 0.95 atwavelengths
around 1550 nm [37].

1. Perfect detectors

For this part we use the deterministic repeater rate in
Eq. (2). Note that for ηd = 1, the differences in the secret
key rates solely originate from the DD and DI secret fraction.
We begin the performance analysis with perfect gate qualities
pG = 1 to understand how ED and ES influence the secret
key rates. Suppose Alice and Bob are separated by the total
distanceL = 600 km. At the end of the repeater protocol, they
receive a Bell-diagonal state with coefficients c

(k)
i,n. Figure 4

shows the secret key rates R and RDI (upper subfigures), the
corresponding secret fractions r∞ and rDI∞ (middle subfigures),
and the fidelity F (|φ1〉,ρ) := 〈φ1|ρ|φ1〉 of the final state ρ and
the pure Bell state |φ1〉 (lower subfigures) as a function of the
initial fidelity F0 for various numbers of initial ED rounds k

and nesting levels n. The secret key rates are calculated via
Eqs. (6) and (10). The secret fractions, Eqs. (7) and (12), are
calculated via the QBERs and the CHSH parameter given in
Eqs. (17) and (18).
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FIG. 4. Secret key rate R, secret fraction r∞, and final fidelity
F = c

(k)
1,n with respect to |φ1〉 in the DD (dashed lines) and DI (solid

lines) scenario versus the initial fidelityF0 for the gate qualitypG = 1,
perfect detector efficiency ηd = 1, and the total distanceL = 600 km.
Different numbers of initial ED rounds are shown, where k = 0
corresponds to the rightmost curve and k = 3 to the leftmost one. The
left (right) column represents n = 2 (n = 3) nesting levels, which
corresponds to a fundamental length L0 = 150 km (L0 = 75 km).
Note that for ηd = 1, the curves for the final fidelity F for the DD and
DI scenario coincide.

The first feature that one notices is the fact that R � RDI

holds, which is what we expect since in the DD case, Alice and
Bob can rely on more assumptions, which directly leads to a
higher secret fraction. This should hold in any fair DD to DI
comparison. The secret key rates are only identical in the ideal
case where ηd = 1, pG = 1, and F0 = 1. Only under these
perfect conditions do Alice and Bob share the pure and maxi-
mally entangled state |φ1〉〈φ1|, which yields a secret fraction of
1. Comparing the case of n = 2 nesting levels with n = 3, one
observes that both secret key rates significantly increasewithn.
For perfect gates, it is advantageous to reduce the fundamental
length L0 to decrease photon losses. This holds although
more intermediate repeater stations involve more noisy states
connected by ES, which reduces the secret fractions r∞ and
rDI∞ as shown in Fig. 4. For a larger number of ED rounds
k, both QKD protocols become more resistant to noise in the
initial state ρ0 but they suffer from an overall smaller secret key
rate, as several copies of states are consumed. From the lower
subfigures, we observe that ED and ES are two counteracting
processes, when it comes to the final fidelity F with respect to
|φ1〉. This is consistent with the shown secret fractions, since
a lower fidelity F results in an increase of the QBERs and in a
decrease of the CHSH parameter [see Eqs. (17) and (18)].
We now consider imperfect gates. Figure 5 shows the same

quantities as in Fig. 4 but forpG = 0.99. The lower gate quality
has a strong impact on theDI secret fraction rDI∞ and thus also on
the DI secret key rate, especially for more nesting levels n. The

FIG. 5. Secret key rate R, secret fraction r∞, and final fidelity
F = c

(k)
1,n with respect to |φ1〉 in the DD (dashed lines) and DI

(solid lines) scenario versus the initial fidelity F0 for pG = 0.99,
perfect detector efficiency ηd = 1, and the total distanceL = 600 km.
Different numbers of initial ED rounds are shown, where k = 0
corresponds to the rightmost curve and k = 3 to the leftmost one.
The left (right) column represents n = 2 (n = 3) nesting levels. Note
that for ηd = 1, the curves for the final fidelity F for the DD and DI
scenario coincide.

mixing of the final state due to noisy gates has a significantly
larger influence on the CHSH parameter as it has on the QBER
Qx . If the source distributes states with a high initial fidelity
F0, it is not beneficial for the final fidelity F to perform any
ED. (See crossing points of solid lines in Fig. 5.)

2. Imperfect detectors

For an imperfect detector efficiencyηd < 1, the repeater rate
is calculated via Eq. (5). The DD secret key rate additionally
suffers from the global scaling factor Pclick = η2d [see Eq. (6)].
In the DI scenario, however, the lack of perfect detectors is
equivalent to performing QKD with states having increased
noise, see substitution (9). These differences aside, the DD
and DI secret key rates can be calculated as before. Figure 6
compares the secret key rates as a function of the fidelity F0
for various numbers of ED rounds k, different numbers of
nesting levels n, and different gate qualities pG for ηd = 0.975
and L = 600 km. By comparing the upper two subfigures, we
again observe that the gate quality has a much stronger impact
on the DI secret key rate. Reducing pG = 1 to pG = 0.99
results in significantly smaller DI secret key rates, while the
DD secret key rates are more or less of the same order. The
difference between the DD and DI secret key rate becomes
higher by increasing the number of initial ED rounds, which
indicates that the number of imperfect quantum operations is
a critical quantity for DIQKD. This is also confirmed by the
lower subfigure, where we increased the number of nesting
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FIG. 6. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelity F0 with imperfect detectors of efficiency ηd =
0.975 and the total distance L = 600 km. We use different gate
qualities pG and different number of nesting levels n. The rightmost
curve corresponds to k = 0 and the leftmost curve to k = 3 initial ED
rounds.

levels from n = 2 to n = 3. One gets only a nonvanishing DI
secret key rate for k = 0, whereas the DD secret key rates
gain about 1 order of magnitude. Recall that performing ES
in more nesting levels decreases the fundamental length L0,
thus reducing the probability of photon losses in the fiber. This
explains the higher DD secret key rates for n = 3. However, in
the DI case, the errors introduced by imperfections outweigh
the benefits that one gains from a reduced fundamental length
L0. Hence, in the DI case one has to accept a larger amount of
photon losses in the fiber of larger fundamental length L0 in
comparison to the DD case. In addition, one has to ensure that
the source distributes entangled states of high initial fidelityF0.
This decreases the number of ED andES steps and thus reduces

FIG. 7. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelityF0 for various different detector efficiencies ηd . The
gate quality, the number of nesting levels, and the total length are set
to pG = 0.99, n = 2, and L = 600 km, respectively. The rightmost
curve corresponds to k = 0 and the leftmost curve to k = 3 initial ED
rounds.

the errors introduced by imperfect devices. We conclude that
in general, the strategy for optimizing the DI secret key rate
is different from the DD case. In Fig. 7 we vary the detector
efficiency ηd and keep the gate qualitypG fixed. It comparesDI
(solid lines) and DD (dashed lines) secret key rates for various
values of ηd and confirms the intuition that a reduction of the
detector efficiency has a larger impact on theDI secret key rate.
We observe a similar pattern as in Fig. 6. With a decreasing
detector efficiency both secret key rates drop, but the DI secret
key rate is farmore affected by the imperfections of the detector
than its DD analogon.

C. Analytical results – Performance

As the secret fractions are calculated via the coefficients c(k)i,n

of the final Bell-diagonal state, it is desirable to analytically
characterize the behavior of the coefficients c

(k)
i,n under ED and

ES operations with imperfect devices. Formulating general
analytical results is cumbersome due to the recursive nature
of the transformation rules for the Bell coefficients under ED
and ES, see Eqs. (C1) and (C3). In an idealized scenario, where
the source distributes pure states, however, we can find closed
transformation rules for the coefficients c

(k)
i,n, depending on the

number of nesting levels n and the gate quality pG. We thus
consider the case c(0)1,0 = F0 = 1 and c

(0)
i�2,0 = 0, and sinceED is

obsolete for maximally entangled states we set k = 0. One can
show via Eqs. (C3) that the coefficients transform according to

c
(0)
1,n = 1+ 3pn̄

G

4
and c

(0)
i�2,n = 1− pn̄

G

4
∀ n ∈ N, (21)

where n̄ := 2n − 1 denotes the number of intermediate re-
peater stations. With Eq. (21) one can express the QBERs and
the CHSHparameter in terms of n̄ andpG. For theDDQBERs,
Eqs. (17), one immediately finds

Q(0)
x,n = Q(0)

z,n = 1− pn̄
G

2
(22)

and for the DI quantities via Eqs. (18) similarly,

Q(0)
z,n = 1− η2dp

n̄
G

2
, (23a)

S(0)n = 2
√
2η2dp

n̄
G. (23b)

Recall that the DI secret fraction is only nonvanishing if the
CHSH inequality is violated. Thus, we obtain the condition

S(0)n > 2 ⇔ η2dp
n̄
G >

1√
2
, (24)

which the parameters pG, ηd , and n̄ have to fulfill. The DD and
DI secret fractions then become

rDD∞ = η2d

[
1− 2h

(
1− pn̄

G

2

)]
, (25a)

rDI∞ = 1− h

(
1− η2dp

n̄
G

2

)
− h

(
1

2
+ 1

2

√
2η4dp

2n̄
G − 1

)
,

(25b)
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FIG. 8. Relative change ∂pG
r∞/r∞ versus the gate quality pG in

the DD (dashed lines) and DI (solid lines) scenario for detector effi-
ciencies ηd = 1 and ηd = 0.975 [see Eqs. (C4b) and (C6b)]. Different
numbers of nesting level n are shown, where n = 1 corresponds to
the leftmost curves and n = 3 to the rightmost ones.

where for rDD∞ , we included the factor η2d compared to Eq. (7).
Now, we can investigate the impact of the experimental
quantities ηd , pG, and n onto the secret fractions in terms of
partial derivatives, which are given in Eqs. (C4) and (C6) in
Appendix C2.We quantify the influence of the parameter onto
the secret fractions via these partial derivatives and thus ask the
question which of the two secret fractions, DD or DI, alters its
value faster when the corresponding parameter is changed.

1. Impact of the detector efficiency ηd .

Using the fact that ∂ηd
rDI∞ is a monotonic function and

respecting the condition given inEq. (24), one can show that the
inequality ∂ηd

rDI∞ > ∂ηd
rDD∞ holds, seeEq. (C8) inAppendixC2

for details. Hence, theDI secret fraction reactsmore sensitively
to changes in the detector efficiency than the effective DD
secret fraction does.

2. Impact of the gate quality pG

For the derivatives of the secret fractions with respect to the
gate quality pG and the nesting levels n, the ordering of the
corresponding expressions in Eqs. (C4) and (C6) in Appendix
C2 is not as obvious as for the detector efficiency ηd . Thus, for
the sake of simplicity, we settle for a numerical comparison.
Figure 8 shows the relative change of the derivatives ∂pG

r∞ in
the DD [Eq. (C4b)] and DI [Eq. (C6b)] case with respect to the
corresponding secret fraction r∞ for ηd = 1 and ηd = 0.975
as a function of the gate quality. We observe that the relative
change of the DI secret fraction is larger than its DD analogon.
For ηd < 1 and almost perfect gates 1− pG � 1, though, the
opposite is true (see inset in Fig. 8). This follows from the
fact that ∂pG

rDI∞ no longer diverges for pG → 1 and ηd < 1, in
contrary to ∂pG

rDD∞ ; see Eqs. (C4b) and (C6b).
However, an important difference is that the relative change

in the DI case also depends on the detector efficiency ηd , in
contrast to the DD case. Figure 8 also verifies the intuition
that the impact of the gate quality pG rises with an increasing

FIG. 9. Relative change ∂nr∞/r∞ versus the number n in the DD
(dashed lines) and DI (solid lines) scenario for detector efficiencies
ηd = 1 and ηd = 0.975 [see Eqs. (C4c) and (C6c)]. The rightmost
curves correspond to the gate quality pG = 0.99 and the leftmost
ones to pG = 0.95.

number of nesting levels, i.e., with an increasing number of
imperfect quantum operations.

3. Impact of the nesting levels n

Toquantify the influence ofn, let us extrapolate the integern
to a continuous variable. In Fig. 9 we numerically compare the
relative change of ∂nr∞, Eqs. (C4c) and (C6c), with respect to
corresponding secret fractions r∞. It confirms that the relative
change ∂nr∞/r∞ in the DI case is larger than its DD analogon,
as expected. Note that ∂nr∞/r∞ is negative and that the DD
ratio is again independent of the detector efficiency ηd . One
can also observe, that the impact of n dramatically increases
with a decreasing gate quality pG, which is consistent with
previous results.
To close this sectionwe conjecture that our analytical results

approximately hold for sufficiently pure initial states, since ε

small contributions to other Bell states |φi �=1〉 in the initially
distributed states do not significantly alter the state at the end
of the ES protocol.

IV. THE HYBRID QUANTUM REPEATER

Let us now consider the hybrid quantum repeater (HQR)
introduced by van Loock et al. [17] and Ladd et al. [38]. It
still employs the nested scheme for ES as shown in Fig. 1, but
the repeater stations and the physical system representing the
qubits are of fundamental difference compared to the OQR.
As in [16], we also restrict our investigation to HQRs where
unambiguous state discrimination (USD) measurements are
involved for state generation [39,40]. In Part IVA of this
section, we introduce the concepts of HQRs, and in Part IIIB
the comparison of the DD-DI performance follows.

A. Setup, error model, and repeater rate

In Sec. IVA1 we review the model for intermediate re-
peater stations and briefly capture the main ideas behind the
entanglement creation in this setup. Afterwards, we present in
Sec. IVA2 the error model for noisy two-qubit gates and
explain how to calculate the repeater rate. See [16] for more
details.

1. Repeater station – Model

The HQR combines discrete and continuous degrees of
freedom. Entanglement is for instance generated between two
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FIG. 10. Illustration of repeater stations in the HQR setup and the
USD scheme following [40]. A coherent state |α〉, the local oscillator
(LO), is generated and sent through linear optical elements, such
as beam splitters and optical switches. Different optical modes are
denoted with a and bi , for i ∈ {1, . . . ,5}. The LO passes a beam
splitter and a part of it interacts with qubit Q1, which is prepared in
an equally weighted superposition of its two possible states |0〉 and
|1〉. The resulting optical state is sent together with the LO to the next
repeater station, where again a part of the LO interacts with qubitQ2,
also prepared in an equally weighted superposition of |0〉 and |1〉. A
50 : 50 beam splitter is applied tomodes b1 and b2 and a displacement
operation D to the pulse in mode b4. Depending on the measurement
results of detectors d1 and d2, an entangled state between qubits Q1

andQ2 is generated.

trapped ions inside a cavity, which represent the qubits. The
entangling interaction, however, is induced via coherent optical
states. The interaction between the qubits and the light can thus
be described within the Jaynes-Cummings framework [41]. A
schematic model for intermediate repeater stations is shown in
Fig. 10.
By performing a USD measurement on the optical modes,

after they interacted with the qubits, the entangled state

ρ0 = F0|φ1〉〈φ1| + (1− F0)|φ2〉〈φ2| (26)

can be conditionally prepared. For the HQR, the probability
P0 to connect two adjacent repeater stations with an entangled
state is given by [16]

P0 = 1− (2F0 − 1)
ηt ηd

1+ηt (1−2ηd ) . (27)

Note that the probability P0 vanishes for pure states ρ0 =
|φ1〉〈φ1|withF0 = 1, inwhich case it is not possible to generate
a secret key. Formore details regarding the implementation and
state preparation see [16,40].

2. Error model and repeater rate

ES and ED rely on controlled-Z operations. The model
for a noisy two-qubit gate needs to be adjusted for the HQR
implementation. According to [42], the noisy two-qubit gate
O acting upon the two-qubit state χ ≡ χab, which describes
the main errors due to dissipation, is modeled by

O(χ ) =Oideal[p2c (pG)χ + (1− pc(pG))2ZaZbρZaZb

+ pc(pG)(1− pc(pG))(ZaχZa + ZbχZb)
]
. (28)

FIG. 11. DD (dashed lines) and DI (solid lines) secret key rate
for the HQR versus the fidelity F0. The total distance is L = 300 km,
with n = 2 nesting levels. Different numbers of initial ED rounds k

are shown, where the most narrow curves correspond to k = 0 and
the most wide ones to k = 3. The upper two subfigures show the
impact of the effective gate quality, as it is reduced from pG = 1 to
pG = 0.99 with a fixed detector efficiency of ηd = 0.975. The lower
subfigures similarly display the influence of the detector efficiency,
where we reduce it from ηd = 1 to ηd = 0.95with the fixed parameter
pG = 0.995.

Here,

pc(pG) :=
1+ exp

(
− π

(
1−p2G

)
2
√

pG(1+pG)

)
2

(29)

represents the probability for each qubit to not suffer a Z

error. The quantity pG in Eq. (29) is the local transmission
parameter that describes the effect of photon losses onto
the gate and can thus be seen as an effective gate quality.
Following [16], we calculate the repeater rate according to
Eq. (2) with deterministic ES, i.e., PES = 1. We use perfect
qubit measurements for the ES and also ED operations, since
the imperfections can in principle be eliminated from the
protocol at the cost of additional photon losses in the quantum
channel, which effectively reduces the gate quality [39]. Note,
however, that we account for detector imperfections at the
initial entanglement distribution [as ηd enters the probability
P0 in Eq. (27)] and detector imperfections at the final qubit
measurements in the laboratories of Alice and Bob. The latter
one implies again a factor Pclick = η2d for the DD secret key
rate, while in the DI scenario the substitution (9) has to be
performed. The DD and DI secret fractions are calculated
according to Eqs. (7) and (12), and since the final state is again
Bell diagonal, the QBERs and the CHSH parameter are given
by Eqs. (17) and (18).

B. Performance: DD vs DI secret key rate

We now want to investigate the influence of the effective
gate quality pG, the detector efficiency ηd , and the number
of ED and ES operations on the secret key rates. Figure 11
shows the DD and DI secret key rates versus the fidelity
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FIG. 12. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelity F0. The total distance, the gate quality, and the
detector efficiency are L = 300 km, pG = 0.995, and ηd = 0.975,
respectively. As in Fig. 11, the most narrow curves correspond to
k = 0 and the most wide ones to k = 3 ED rounds. The figure shows
the impact of different nesting levels n, varied from n = 1 to n = 3.

F0 for several numbers of initial ED rounds k. The total
distance is L = 300 km with a fixed number of nesting levels
n = 2.We can observe from the upper two subfigures that gate
imperfections have a large impact on the DD secret key rate, as
already pointed out in [16]. In the DI case, this becomes even
more dramatic. The lower two subfigures show that detector
errors do not significantly reduce the DD secret key rate. The
DI secret key rate, however, is heavily compromised by these
imperfections, as they lead to a mixed state due to the random
assignment of measurement results.
We conclude the key rate analysis with Fig. 12, where the

secret key rates are shown as a function of the initial fidelity
F0 for several numbers of nesting levels n at a fixed total
distance of L = 300 km. We consider gate and detector errors
by pG = 0.995 and ηd = 0.975, respectively. As we can see, it
is beneficial for theDDsecret key rate to increase the number of
nesting levels beyondn = 2 to reduce photon losses in thefiber.
Bydoing so, theDDsecret key rates gain approximately 1 order
of magnitude. In the DI case, however, the errors introduced by
the larger number of imperfect quantum operations outweigh
again the benefits that one gains from a reduced fundamental
length L0. For a given fidelity F0 the optimal number k of ED
rounds is in general different from the DD scenario as well.

V. CONCLUSION AND OUTLOOK

In this work, we provided a detailed systematic analysis on
achievable secret key rates of two quantum repeater setups in
the device-independent (DI) scenario and compared it to the
device-dependent (DD) case. We studied the original quantum
repeater (OQR) [15] and the hybrid quantum repeater (HQR)
[17]. The analysis includes a numerical investigation on how
experimental quantities, such as the gate quality pG, the
detector efficiency ηd , the initial fidelity F0, and the number
of nesting levels n and initial entanglement distillation rounds
k, influence the secret key rate. We observed for both setups

that the DI security comes at the expense of being particularly
sensitive towards malfunctions in the devices. Imperfections
of the gates, the detectors, and the sources compromise the
achievable DI secret key rate more than the DD one. Hence,
for any realistic implementation, there is a gap between these
secret key rates that increases with an increasing number of
imperfect quantum operations. For the OQR with an idealized
photon source, we additionally verified analytically that the
parameters pG, ηd , and n have a stronger impact on the DI
secret key rate as they have in the DD scenario.
The proneness ofDIQKDto imperfections naturally implies

different optimization strategies for the DI and DD secret key
rate. In the DD scenario the influence of the gate errors is
not as severe as it is in the DI case, thus allowing a shorter
fundamental distance L0 and thus reducing photon losses in
the fiber, i.e., in the DI case there are not as many intermediate
repeater stations feasible as in the DD one. This immediately
yields a stronger limitation for the total distanceL that one can
overcome in the DI setup. Similarly, the purity of the initially
distributed states can be improved via more entanglement
distillation rounds in the DD protocol, which makes it more
robust to imperfections of the source.
It remains for future investigations to compare different

DD and DI protocols, besides the BB84 and the modified
Ekert protocol [3,11]. Other ideas are to extend this analysis to
different quantum repeatermodels, such as theDLCZquantum
repeater [43]. One could also include more error sources
of the quantum repeater, e.g., errors introduced by quantum
memories, and investigate their impact on the secret key rates.
For the latter one, we conjecture from the provided secret-
key-rate analysis that further imperfections have a qualitatively
similar impact on the DI secret key rate as the ones discussed
in this work.
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APPENDIX A: REPEATER RATE – PROBABILISTIC ES

Here, we provide more details for the repeater rate with
probabilistic ES in Eq. (5). In [24], the repeater rate

Rprobrep = 1

T0

(
2

3

)n

P ′
0

n∏
i=1

P
(i)
ES (A1)

without initial ED is derived for P ′
0 � 1, where P ′

0 denotes the
success probability to connect two adjacent repeater stations in
nesting level n = 0 with an entangled pair (see also Fig. 1).We
review the derivation of Eq. (A1) and explain how to improve
this rate. Afterwards we include initial ED, inspired by [16].

1. Repeater rate without ED

Following [24], the number of attempts n0 to successfully
create an elementary link is governed by the probability
distribution

p(n0) = (1− P ′
0)

n0−1P ′
0, (A2)
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which yields the expectation value

〈n0〉 =
∑
n∈N0

n0p(n0) = 1

P ′
0

. (A3)

In order to perform ES, one needs entangled states in two
neighboring segments of the repeater line. The corresponding
combined probability distribution is given by

p̃(n0) = p(n0)
2 + 2p(n0)

n0−1∑
k=1

p(k), (A4)

which results in the average number of attempts

〈ñ0〉 =
∑

n0∈N0

n0p̃(n0) = 3− 2P ′
0

(2− P ′
0)P

′
0

. (A5)

The first ES step can now be performed, which succeeds
with probability P

(1)
ES , thus increasing the average number of

attempts to create an entangled link in nesting level n = 1
according to

〈n1〉 = 〈ñ0〉
∑
k∈N0

(k + 1)(1− P
(1)
ES )

kP
(1)
ES = 〈ñ0〉

P
(1)
ES

. (A6)

From now on, our approach deviates from the one in [24],
where 〈ñ0〉 in Eq. (A5) is set to 3/2P ′

0, which is a good
approximation for P ′

0 � 1. Here, we rewrite Eq. (A5) as

〈ñ0〉 = 3− 2P ′
0

(2− P ′
0)P

′
0

= 1

P ′
0

3

2
a
(0)
ES, (A7)

where we defined

a
(0)
ES :=

1− 2P ′
0/3

1− P ′
0/2

. (A8)

In complete analogy to Eq. (A3), the probability P1 to create
an entangled link in nesting level n = 1 is given by the inverse
of Eq. (A6), and we can define an according probability
distribution p(n1) via P1. This is in general not true, as the
success probability of establishing a link in a higher nesting
level n = i in the ni th attempt depends on success probabilities
of the previous nesting levels [24] and the corresponding
probability distribution p(ni) is not analog to the form given
in Eq. (A2). However, this modification allows us to obtain the
recursion

〈ni〉 = 1

Pi

= 〈ñi−1〉
P
(i)
ES

∀ i ∈ N, (A9)

〈ñi〉 = 3− 2Pi

(2− Pi)Pi

= 1

Pi

3

2
a
(i)
ES ∀ i ∈ N, (A10)

if we iterate this argument to arbitrary nesting levels. The
constants a(i)ES are defined as in Eq. (A8) with the corresponding
probability Pi . The beginning of the recursion is given in
Eqs. (A3) and (A7). Note that this approach also only yields
a good approximation for P ′

0 � 1, but this strategy leads to
repeater rates which are closer to achievable ones that are
calculated with Monte Carlo simulations.
With the relations (A9) and (A10) we can express the

average number of attempts to establish a single entangled

link at the maximum nesting level n = N as

〈nN 〉 = 〈ñN−1〉
P
(N)
ES

= 3

2

a
(N−1)
ES

P
(N)
ES

1

PN−1
= · · ·

=
(
3

2

)N 1

P ′
0

N∏
i=1

a
(i−1)
ES

P
(i)
ES

. (A11)

Each attempt lasts the fundamental time T0, thus yielding the
repeater rate

Rprobrep = 1

T0

(
2

3

)N

P ′
0

N∏
i=1

P
(i)
ES

a
(i−1)
ES

. (A12)

2. Repeater rate with ED

In the spirit of [16], we now include initial ED, which
is performed at each segment at nesting level n = 0 and
which thus only affects the success probability P ′

0. Thus, P
′
0

is given by the recursively defined probabilities P ′
0 = P

(k)
L0
for

successful ED in k rounds in Eq. (3). By plugging the recursive
probabilities into each other, one arrives at

P
(k)
L0

= 2

3

P
(k)
ED

a
(k−1)
ED

P
(k−1)
L0

= · · · =
(
2

3

)k

P0

k∏
j=1

P
(j )
ED

a
(j−1)
ED

, (A13)

where we defined the constants a
(j )
ED for ED as in Eq. (A8).

ReplacingP ′
0 inEq. (A12)with the right-hand side ofEq. (A13)

yields the repeater rate in Eq. (5).

APPENDIX B: ED AND ES PROTOCOL

For completeness, we review the ED and ES protocols
[16,18], which determine together with the noisy two-qubit
gate models in Eqs. (19) and (28) the transformation of the
coefficients c

(k)
i,n (see Appendixes C and D). Let C

s→t
NOT denote a

controlled-X operation, where s and t indicate the source and
the target qubit, respectively.

1. Entanglement distillation

Suppose Alice and Bob share the two states ρai ,bi
for i ∈

{1,2}. The following steps are performed. (i) Alice/Bob rotates
her/his particles by +/ − π

2 around the X axis in the compu-

tational basis {|0〉,|1〉}. (ii) Alice/Bob applies C
a1→a2
NOT /Cb1→b2

NOT .
(iii) The state ρa2,b2 is measured in the computational basis.
Then, if their measurement results coincide, the state ρa1,b1 has
been purified. Otherwise the state is discarded.

2. Entanglement swapping

Suppose the two entangled states ρa,b and ρc,d are dis-
tributed among two adjacent repeater stations. The follow-
ing algorithm performs ES between these two states. (i) A
Cb→c
NOT -gate is applied. (ii) Qubits b and c are measured in
the basis {|±〉 := (|0〉 ± |1〉)/√2} and {|0〉,|1〉}, respectively.
(iii) Depending on the measurement outcomes, a single-qubit
rotation on qubit d is performed and one obtains the entangled
state ρa,d .
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APPENDIX C: ADDITIONAL MATERIAL – OQR

1. Transformation under ED and ES

With the discussed error models and the ED and ES proto-
cols, we recall the transformation rules of the coefficients c

(k)
i,n.

For the OQR, gate errors are modeled according to Eq. (19).
See [16,18] for details.

a. Entanglement distillation. Two copies of the Bell-
diagonal state ρ(k−1) =∑4

i=1 c
(k−1)
i |φi〉〈φi | represent the input

states for the ED protocol. Provided the ED protocol is
successful, one is left with one Bell-diagonal state with the
coefficients

c
(k)
1 = 1

8P ′ (k)
ED

[
1+ p2G

(
8c(k−1) 2
1 + 8c(k−1) 2

4 − 1)], (C1a)

c
(k)
2 = 1

8P ′ (k)
ED

[
1− p2G

(
1− 16c(k−1)

1 c
(k−1)
4

)]
, (C1b)

c
(k)
3 = 1

8P ′ (k)
ED

[
1+ p2G

(
8c(k−1) 2
2 + 8c(k−1) 2

3 − 1)], (C1c)

c
(k)
4 = 1

8P ′ (k)
ED

[
1− p2G

(
1− 16c(k−1)

2 c
(k−1)
3

)]
, (C1d)

where the success probability of ED round k is

P
′ (k)
ED = 1

2

[
1+ p2G

(
2c(k−1)
1 + 2c(k−1)

4 − 1)2]. (C2)

b. Entanglement swapping. Two qubit pairs, each in the
Bell-diagonal state ρn−1 =∑4

i=1 ci,n−1|φi〉〈φi |, are the input
states to the ES protocol, that includes a probabilistic Bell
measurement on two qubits, one of each pair. The two qubits
not involved in the Bell measurement are again in a Bell-
diagonal state with coefficients ci,n. The transformation rules
are

c1,n = 1− pG

4
+ pG

4∑
i=1

c2i,n−1, (C3a)

c2,n = 1− pG

4
+ 2pG(c1,n−1c2,n−1 + c3,n−1c4,n−1), (C3b)

c3,n = 1− pG

4
+ 2pG(c1,n−1c3,n−1 + c2,n−1c4,n−1), (C3c)

c4,n = 1− pG

4
+ 2pG(c1,n−1c4,n−1 + c2,n−1c3,n−1), (C3d)

and the success probability for ES is given by P
(n)
ES = η2d ,

neglecting dark counts of the detector.

2. Analytical calculations

a. Partial derivatives of secret fractions. The partial deriva-
tives of rDD∞ , Eq. (25a), with respect to ηd , pG, and n are given
by

∂ηd
rDD∞ = 2ηd

[
1− 2h

(
1− pn̄

G

2

)]
, (C4a)

∂pG
rDD∞ = 2

n̄η2dp
n̄−1
G

ln(2)
artanh

(
pn̄

G

)
, (C4b)

∂nr
DD
∞ = 2(n̄ + 1)η2dpn̄

G ln(pG)artanh
(
pn̄

G

)
, (C4c)

where we introduced the area hyperbolic tangent

artanh(x) := 1

2
ln

(
1+ x

1− x

)
∀ x ∈ (−1,1), (C5)

which is the inverse tangent hyperbolic function. The partial
derivatives of rDI∞ , Eq. (25b), with respect to ηd , pG, and n are

∂ηd
rDI∞ = 2ηdp

n̄
G

ln(2)
q(ηd,pG,n̄), (C6a)

∂pG
rDI∞ = n̄η2dp

n̄−1
G

ln(2)
q(ηd,pG,n̄), (C6b)

∂nr
DI
∞ = (n̄ + 1)η2dpn̄

G ln(pG)q(ηd,pG,n̄), (C6c)

where the function q(ηd,pG,n̄) is defined as

q(ηd,pG,n̄) := 2η2dp
n̄
G√

2η4dp
2n̄
G − 1

artanh
(√
2η4dp

2n̄
G − 1)

+ artanh
(
η2dp

n̄
G

)
. (C7)

b. Comparison: Impact of detector efficiency. For the partial
derivatives of rDD∞ and rDI∞ with respect to the detector effi-
ciency, Eqs. (C4a) and (C6a), one can derive an ordering rela-
tion to show that ηd has a larger impact in the DI scenario. Note
that ∂ηd

rDI∞ is positive for all parametersηd ,pG, and n̄ that fulfill
the condition (24) and that ηd∂ηd

rDI∞ is a strictly monotonically
increasing function of η2dp

n̄
G. Hence, the following ordering

holds:

∂ηd
rDI∞ � ηd∂ηd

rDI∞ � lim
η2dpn̄

G→√
2

−1

(
ηd∂ηd

rDI∞
)

=
√
2

ln(2)
[artanh(1/

√
2)+

√
2] > 2, (C8)

where we used artanh(1/
√
2) > 0 and 0 � ηd, ln(2) � 1. Fi-

nally, note that in the DD case, ηd enters the effective secret
fraction η2dr

BB84
∞ as a factor with rBB84∞ given in Eq. (7). This

partially derived with respect to ηd yields 2ηdr
BB84
∞ , which

is upper bounded by 2. This proves the inequality ∂ηd
rDI∞ >

∂ηd
rDD∞ as claimed in Sec. IIIC.

APPENDIX D: ADDITIONAL MATERIAL – HQR

1. Transformation under ED and ES

Here, we give the transformation relations for the Bell coefficients under ED and ES for the HQR, where gate errors enter the
calculation via Eq. (28). See [16].
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a. Entanglement distillation. We calculate the coefficients after ED round k with respect to the coefficients after ED round
k − 1, which we do not label here explicitly for a better overview. Also, we suppress the dependency on pG of pc(pG) and
introduce the abbreviation p̄ := 2pc(pc − 1):

c
(k)
1 = 1

P
(k)
ED

{
p̄2(c1 − c4)(c1 − c4 + c2 − c3)+ p̄

[
c21 + c24 + (c1 − c4)

2 − c1c3 − c2c4
]+ c21 + c24

}
, (D1a)

c
(k)
2 = 1

P
(k)
ED

{p̄2[c1c3 + (c2 − c3 − c4)c4]− p̄(c3 + c4)c4 + 2(p̄ + 1)2c1c4 − p̄(p̄ + 1)c1(c1 + c2)}, (D1b)

c
(k)
3 = 1

P
(k)
ED

{
p̄2(c1c2 + c3c4)+ (p̄ + 1)2(c22 + c23

)− p̄(p̄ + 1)[c2(c3 + c4)+ (c1 + c2)c3]
}
, (D1c)

c
(k)
4 = 1

P
(k)
ED

{p̄2[c2c4 + (c1 − c3 − c4)c3]− p̄c3(c3 + c4)+ 2(p̄ + 1)2c2c3 − p̄(p̄ + 1)(c1 + c2)c2}. (D1d)

The success probability for ED round k is given by

P
′ (k)
ED = (c1 + c4)

2 + (c2 + c3)
2 + p̄(2c1 + 2c4 − 1)2. (D2)

b. Entanglement swapping. Similar to Eqs. (D1), we neglect the index for the previous nesting level n − 1. The Bell coefficients
transform under the ES protocol according to

c1,n = 2(c1c4 + c2c3)+ 2pc[c1(1− c1 − 3c4)− c2(c3 − c4)− (c2 − c4)c3]+ p2c (2c1 + 2c4 − 1)2, (D3a)

c2,n = 2(c1c3 + c2c4)+ pc[(2c1 + 2c4 − 1)2 + 2(c1 − c4)(c2 − c3)]− p2c (2c1 + 2c4 − 1)2, (D3b)

c3,n = 2(c1c2 + c3c4)+ pc[(2c1 + 2c4 − 1)2 − 2(c1 − c4)(c2 − c3)]− p2c (2c1 + 2c4 − 1)2, (D3c)

c4,n =
4∑

i=1
c2i − 2pc

[
4∑

i=1
c2i − (c1 + c4)(c2 + c3)

]
+ p2c (2c1 + 2c4 − 1)2. (D3d)
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It is important for performance studies in quantum technologies to analyze quantum circuits in the presence
of noise. We introduce an error probability tensor, a tool to track generalized Pauli error statistics of qudits
within quantum circuits composed of qudit Clifford gates. Our framework is compatible with qudit stabilizer
quantum error-correcting codes. We show how the error probability tensor can be applied in the most general
case, and we demonstrate an error analysis of bipartite qudit repeaters with quantum error correction. We provide
an exact analytical solution of the error statistics of the state distributed by such a repeater. For a fixed number
of degrees of freedom, we observe that higher dimensional qudits can outperform qubits in terms of distributed
entanglement.

DOI: 10.1103/PhysRevA.98.052316

I. INTRODUCTION

Quantum computation and quantum communication are
progressing fields with the prospect of faster computa-
tion [1,2] and secure communication [3–5] in comparison
to their respective classical counterparts. Entangled quantum
states are a key resource for quantum communication. The
most promising approach to distribute entangled states among
remote users are quantum repeaters [6–8]. Potentially fruit-
ful candidates for units of quantum information are higher
dimensional quantum systems, so-called qudits, as they in-
herently possess multiple degrees of freedom while being
implementable with single photons [9–14].
Often, quantum protocols are designed under the assump-

tion of perfect control of the utilized quantum systems.
Real experiments, however, are always subject to noise. This
necessitates studying such protocols in the presence of er-
rors. In general, this problem is computationally hard since
exponentially many classical resources are needed to sim-
ulate a quantum system. Explicit error analyses, however,
have been carried out, e.g., for protocols based on qubits
[15–17]. In accordance with the Gottesman-Knill theo-
rem [18], this is possible due to the restriction to Clifford
gates and Pauli error channels. In Ref. [17], Janardan et al.
introduce a so-called error probability vector which can be
used to estimate the success probability of quantum protocols
composed of Clifford operations in the presence of Pauli
errors.
In this paper, we extend the applicability of this tool to

qudits of fixed but arbitrary dimension D � 2. For analytical
investigations, it is helpful to rearrange its entries into a tensor,
which we refer to as error probability tensor. To maintain
compatibility with qudit stabilizer quantum error-correcting
codes (QECCs), we use the same generalization of Pauli op-
erators as in Refs. [19,20]. These generalized Pauli operators
are unitary, traceless, and form an orthonormal basis for com-

*daniel.miller@hhu.de

plex D × D matrices. Our error probability tensor provides
a systematic procedure to track the statistics of generalized
Pauli errors through quantum circuits composed of Clifford
gates—gates which transform generalized Pauli operators into
one another.
The paper is structured as follows. In Sec. II, we review

the necessary background about qudits. In Sec. III, we define
the error probability tensor and describe its use. In Sec. IV,
we apply the error probability tensor for the error analysis of
a qudit repeater line [21–23]. In Sec. V, we conclude and give
an outlook on future work.

II. SETTING

In this section, the notation we will use throughout the
paper is introduced. It covers basic quantum information
processing with qudits.

A. Physical and logical qudits

A qudit is a quantum system with a Hilbert space of di-
mension D � 2. Following Ref. [24], we label computational
basis states with elements in Z/DZ = {0, 1, . . . , D − 1}, the
ring of integers modulo D. Qudit pure states are written as
z0 |0〉 + z1 |1〉 + · · · + zD−1 |D − 1〉with coefficients zj ∈ C,∑

j∈Z/DZ |zj |2 = 1. Similarly, for pure n-qudit systems
we have

|ψ〉 =
∑

j∈(Z/DZ)n

zj |j〉 , (1)

where the multiqudit computational basis states |j〉 are labeled
by vectors j = (j1, . . . , jn) in the free module (Z/DZ)n. In
the special case where D is a prime number, Z/DZ is the
same as FD , the finite field of order D. If all qudits are
measured in the computational basis, the measurement result
is the vector j with probability |zj|2.
To correct errors, QECCs can be employed. An �n, k, d�D

QECC encodes n physical qudits into k � n logical qudits.
The distance d of the code is the minimal weight of an error
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that maps a codeword to a different codeword. A QECC with
distance d can correct up to �(d − 1)/2� errors on arbitrary
qudits [24]. Stabilizer QECCs for higher dimensional qudits,
first introduced by Gottesman [19], have a logical code space
stabilized by an Abelian subgroup of the generalized Pauli
group. In our error analysis, we consider quantum polynomial
codes [25–28] whose construction is outlined in Appendix A.

B. Quantum computation with qudits

Here we review the important classes of generalized Pauli
gates and error channels, as well as qudit Clifford gates [19].
Up to a global phase, the generalized Pauli operators on a
single qudit are products of the unitary operators

X :=
∑

k∈Z/DZ

|k + 1〉 〈k| (2)

and

Z :=
∑

k∈Z/DZ

ωk |k〉 〈k| , (3)

where ω := e2πi/D . For n qudits, there are (up to a global
phase) D2n different generalized Pauli operators, each of
which can be written as

XrZs :=
n⊗

i=1
Xri Zsi =

∑
k∈(Z/DZ)n

ωk·s |k + r〉 〈k| (4)

for unique vectors r, s ∈ (Z/DZ)n, where k · s =∑n
i=1 kisi

is the standard bilinear form, and k + r = (k1 + r1, . . . , kn +
rn) is the vector addition in (Z/DZ)n. Two generalized Pauli
operators commute up to a phase,

(XrZs)(Xr′
Zs′
) = ωr′ ·s−r·s′

(Xr′
Zs′
)(XrZs). (5)

A generalized Pauli error channel F : ρ �→ F (ρ) is a com-
pletely positive trace-preserving map with Kraus operators√

fr,sX
rZs,

F (ρ) =
∑

r,s∈(Z/DZ)n

fr,s(X
rZs)ρ(XrZs)†, (6)

where
∑

r,s fr,s = 1. This can be seen as the application of the
Pauli operator XrZs to the state ρ with probability fr,s. The
n-qudit depolarizing channel (see Appendix B),

Fdep : ρ �−→ f
1

Dn
+ (1− f )ρ, (7)

is such a generalized Pauli error channel with probabilities

fr,s =
{
1− f + f

D2n if r = s = (0, . . . , 0)

f

D2n otherwise .
(8)

The qudit Clifford group is the largest set of unitary opera-
tors which transform Pauli operators into one another; i.e., for
every Clifford operator U and all vectors r, s, there are some
vectors r′, s′ such that U (XrZs)U † ∝ Xr′

Zs′
holds (∝ means

up to a global phase). An important single-qudit Clifford gate
is the Fourier gate,

F := 1√
D

∑
j,k∈Z/DZ

ωjk |j〉 〈k| , (9)

which satisfies FXF † = Z and FZF † = X−1. For D =
2, the Fourier gate equals the Hadamard gate H =
(X + Z)/

√
2. Another common single-qudit Clifford gate is

the multiplication-with-l gate,

M (l) :=
∑

k∈Z/DZ

|kl〉 〈k| , (10)

where l ∈ Z/DZ must be invertible such thatM (l) is unitary.
The controlled-X and controlled-Z gates,

CX :=
∑

k∈Z/DZ

|k〉 〈k| ⊗ Xk (11)

and

CZ :=
∑

k∈Z/DZ

|k〉 〈k| ⊗ Zk, (12)

are examples of important two-qudit Clifford gates.

III. TRACKING OF ERROR STATISTICS

Errors can originate from the malfunction of quantum
gates. One can model a noisy quantum circuit by a sequence
of ideal quantum gates Ui , each of which is followed by an
error channel Fi , as depicted in Fig. 1(a). All errors propagate
to the end of the circuit giving rise to a single error channel E ;
cf. Fig. 1(b), which describes the error statistics of the circuit
as a whole. In general, it is difficult to derive E from the Fi .
Here, we develop a mathematical framework to calculate

the final error channel E in the case of qudit Clifford gates
Ui and generalized Pauli channels Fi . We start with the def-
inition of the error probability tensor, and, in the subsequent
subsections, we describe how to employ it for error analyses.

A. Definition of the error probability tensor

Throughout this paper, we can consider the case where
the error statistics of the qudits’ state are given by some
generalized Pauli error channel E ; i.e., the qudits are in an
erroneous state

E (ρ) =
∑

r,s∈(Z/DZ)n

pr,s(X
rZs)ρ(XrZs)†, (13)

U1 F1

U2 F2

U3 F3

U1

U2

E
U3

FIG. 1. A quantum circuit with noise modeled by error channels
Fi , after ideal unitary gates Ui (top), is mathematically equivalent to
an ideal quantum circuit followed by some error channel E (bottom).
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instead of the desired state ρ, where the coefficients pr,s � 0
sum to 1. Inspired by the notion of error probability vectors
[17], we regard these D2n coefficients as entries of a tensor

P := (pr,s)r,s∈(Z/DZ)n , (14)

which has 2n indices, (r, s) = ((r1, . . . , rn), (s1, . . . , sn)). We
call P the error probability tensor. The error statistics of the
state ρ are uniquely determined by the entries of this tensor.

B. Updating the error probability tensor

In our approach, it suffices to know how E , or equiva-
lently P , changes after each instance in a quantum circuit.
Starting with the identity channel E = id at the beginning of
the circuit, one can track how the error statistics transform
step by step, until the end of the circuit. In this section, we
present rules of how the error probability tensor is updated at
every single step. Across qudit Clifford gates, its entries are
permuted. At generalized Pauli error channels, the entries are
updated via a tensor equation.

1. Qudit Clifford gates; permutations

The propagation of single generalized Pauli errors across
qudit Clifford gates is well known [19,20]; cf. Fig. 2. For
the propagation of full error statistics, we use the fact that a
qudit Clifford gateU defines an automorphism of (Z/DZ)n ×
(Z/DZ)n, πU : (r′, s′) �→ (r, s) via

U (XrZs)U † ∝ Xr′
Zs′

. (15)

After the application of the (ideal) gate U , the error probabil-
ity tensor P = (pr,s)r,s is updated to

P ′ := (p′
r′,s′ )r′,s′ = (pπU (r′,s′ ) )r′,s′ . (16)

X F Z Z F X−1

X M(l) X l Z M(l) Z(l−1)

X • X

X X

Z • Z

X

•
X X X

• Z−1

Z X Z

X • X

Z Z

Z • Z

Z

• Z

X Z X

•
Z Z Z

FIG. 2. Propagation rules of generalized Pauli errors for the F ,
M (l), CX, and CZ gate. Across the F gate,X propagates intoZ, andZ

intoX−1. Across two-qudit gates, some single-qudit errors propagate
into two-qudit errors; e.g., X ⊗ 1 propagates into X ⊗ Z across the
CZ gate.

FIG. 3. Across a sequence of CXai and CZbi gates, the error
XjZk ⊗ XlZm propagates into XjZk+l·b−m·a ⊗ Xl+jaZm+jb. This
defines the automorphism πC(a,b) in Eq. (17):

In other words, the entries of the error probability tensor are
permuted.
Now, we state explicit updating rules for the Clifford

gates introduced in Sec. II: For every generalized Pauli gate
A = XrZs, the automorphism πA is the identity since Pauli
operators commute up to a phase; recall Eq. (5). For other
Clifford gates, πU might be nontrivial. For example, for the
Fourier gate πF (r, s) = (s,−r ), and for the multiplication-
with-l gate πM (l)(r, s) = (l−1r, ls). Denoting by C(a, b) the
sequence of CXai and CZbi gates (cf. Fig. 3), we find

πC(a,b)((j, l), (k, m))

= ((j, l − ja), (k − l · b + m · a, m − jb)), (17)

where ja = (ja1, . . . , jan) is scalar multiplication in the
module (Z/DZ)n.

2. Generalized Pauli channels; tensor equations

An n-qudit Pauli error channel F with coefficients fr,s,
as in Eq. (6), causes further errors. This is taken into ac-
count by updating the error probability tensor P = (pr,s) to
P ′ = (p′

r,s), where p′
r,s are the coefficients of the composed

generalized Pauli error channel E ′ = F ◦ E ,

E ′(ρ) =
∑

i, j, k, l, r, s ∈ (Z/DZ)n

such that
i + k = r and j + l = s

fi,jpk,l(X
rZs)ρ(XrZs)†. (18)

Rewriting the sum and comparing to Eq. (13), the entries of
P ′ are given by

p′
r,s =

∑
k,l∈(Z/DZ)n

fr−k,s−l pk,l

=
∑

k,l∈(Z/DZ)n

Fr
k

s
l pk,l, (19)

where (Fr
k

s
l) is a tensor with 2n covariant and 2n con-

travariant indices. Its entries are given by Fr
k

s
l := fr−k,s−l.

This notation becomes very handy when we deal with several
error channels, since we can abbreviate the last expression
in Eq. (19) in the spirit of Einstein’s sum convention as
Fr

k
s

l pk,l.

C. Contractions of the error probability tensor

In this section, we describe how contractions of the error
probability tensor can be used to collect probabilities that
correspond to similar events.
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1. Measurements

If a qudit is measured in the computational basis, phase
errors on that qudit become irrelevant. Therefore, it is mean-
ingful to add up the probabilities of all errors which only differ
by Z errors. For example, suppose qudit n is measured. Then
the error probability tensor is truncated to a tensor with 2n − 1
indices with entries

p′
r,s′ =

∑
t∈Z/DZ

pr,(s′,t ), (20)

where s′ = (s1, . . . , sn−1). After the contraction, the index rn

is related to Ditflip errors on the measurement result; i.e., if
c was the correct outcome, the actual outcome is c + rn with
conditional probability pr,s′ (conditioned on the presence of
an X(r1,...,rn−1 )Zs′

error on the unmeasured qudits). This ap-
proach can be easily extended to the measurement of multiple
qudits. A measurement in the eigenbasis of a different Pauli
operator can be substituted by an appropriate Clifford gate
followed by a measurement in the computational basis.

2. Discarding qudits

If, at some point in the analysis, one wants to keep track of
errors on only n′ < n qudits (e.g., after discarding ancillas),
one can trace out the error statistics of the n − n′ unnecessary
qudits. Assume without loss of generality that qudits n′ + 1 to
n are discarded. The error statistics of the remaining qudits,
stored in an error probability tensor P ′ = (p′

r′,s′ ) with 2n′
indices, are given by

p′
r′,s′ =

∑
rn′+1,...,rn,sn′+1,...,sn∈Z/DZ

pr,s, (21)

where r = (r1, . . . , rn) is truncated to r′ = (r1, . . . , rn′ ), and
likewise for s and s′.

3. Adding up probabilities of equivalent errors

So far, we have shown how the error probability tensor
describes the performance of a studied quantum circuit, inde-
pendent of its input state. If, however, one is interested in the
error statistics of a particular stabilizer state, it is reasonable
to consider equivalence classes of errors: The stabilizer group
of an n-qudit state |ψ〉 is generated by n independent Pauli
operators Si ∝ Xai Zbi with ai , bi ∈ (Z/DZ)n. The exponents
of all stabilizer operators form a submodule

W := spanZ/DZ{(ai , bi )| i ∈ {1, . . . , n}} (22)

of V := (Z/DZ)n × (Z/DZ)n. By definition, XaZb |ψ〉 ∝
|ψ〉 holds for every (a, b) ∈ W . Likewise, for a given coset

co(r, s) := {(r + a, s + b)| (a, b) ∈ W }; (23)

i.e., for an element in the quotient module V/W , every pair of
representatives (j, k), (j′, k′) ∈ co(r, s) satisfies

XjZk |ψ〉 ∝ Xj′Zk′ |ψ〉 , (24)

since XjZk and Xj′Zk′
are the same up to a stabilizer of

|ψ〉 (and a global phase). It is not meaningful to distinguish
between such errors as they lead to the same erroneous state.
Hence, the error probability tensor P = (pr,s), as given in

Eq. (14), can be reduced to a tensor P̄ = (pco(r,s) ) with Dn

entries

pco(r,s) =
∑

(j,k)∈co(r,s)
pj,k. (25)

We use cosets as indices because each of them corresponds to
a whole class of errors with the same effect.
Consider, for example, the maximally entangled state

|�〉 := 1

D

∑
j,k∈Z/DZ

ωjk |j 〉 ⊗ |k〉 , (26)

where again ω = e2πi/D . The stabilizers of |�〉 are
S1 = X ⊗ Z = X(1,0)Z(0,1) and S2 = Z ⊗ X = X(0,1)Z(1,0).
Hence, the submodule W in Eq. (22) is spanned by
(a1, b1) = ((1, 0), (0, 1)) and (a2, b2) = ((0, 1), (1, 0)),
i.e., W = {((λ,μ), (μ, λ)) | λ,μ ∈ Z/DZ}. The elements
in V/W can be expressed as co((0, r ), (0, s)) =
{((λ,μ + r ), (μ, λ + s)) | λ,μ ∈ Z/DZ}, where r, s ∈
Z/DZ. The probability for an XrZs error on the second
qudit—or equivalently an X−sZ−r error on the first qudit—is
given by

pco((0,r ),(0,s)) =
∑

λ,μ∈Z/DZ

p(λ,μ+r ),(μ,λ+s). (27)

It is also possible to update the error probability tensor
in its truncated form, where the stabilizers—and hence W

and V/W—have to be updated after every Clifford gate.
This approach is recommended for numerical treatments as
it gives an advantage in execution time and memory. For
analyses carried out by hand, however, we recommend to
first compute P for the whole circuit and to truncate to P̄

afterward, since calculating with quotient modules and cosets
can be cumbersome.

IV. APPLICATION: QUDIT REPEATER LINE

The purpose of quantum repeater networks is the distribu-
tion of entangled states among remote users. The approaches
to overcome the presence of noise in quantum repeaters
are categorized into three so-called generations [7]. Third-
generation quantum repeaters have, compared to generation 1
and 2, the advantage of fast one-way communication [29,30].
There, qudits are encoded with a QECC which is used to
correct loss and operational errors at the repeater stations.
An �n, k, d�D QECC is optimal if it saturates the quantum
singleton bound 2d − 2+ k � n [24]. Prominent examples
of such codes are �2d − 1, 1, d�D quantum polynomial codes
[25–28], where D is a prime and d � (D − 1)/2 is arbitrary.
These are specified in Appendix A.
Using the error probability tensor, we carry out an

error analysis of third-generation quantum repeaters; cf.
Appendixes C–E. This is a generalization of the error analysis
of qubit repeaters, performed in Refs. [15,16], to the bipartite
qudit case, which is a building block in qudit repeater net-
works [22]. In contrast to previous work [15,16,31–34], we
do not compute secret key rates and certain cost functions.
Instead, we focus on deriving the full error statistics of the
distributed state ρ and thus ρ itself. Similar results are known
for the qubit repetition code [35].
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In Sec. IVA, the ideal qudit repeater protocol is explained.
In Sec. IVB, we present an exact analytical solution of the
error statistics of ρ in terms of the qudit dimension D, the
number of repeater stations N , and various error rates, fT
(transmission), fG (CZ gate), fM (measurement), and fS (stor-
age). The distanceL0 between the repeater stations is only im-
plicitly built in via the transmission error rate fT. For example,
optical fiber at telecommunication wavelengths has a channel
loss of 0.2 dB/km [36]. In Sec. IVC, we discuss a quality-
quantity trade-off of distributed states. Finally, in Sec. IVD,
we compare the performance of �2d − 1, 1, d�D QECCs for
variable code distance d and physical qudit dimension D.

A. The ideal qudit repeater line protocol

Consider two parties, Alice and Bob, both holding a single
qudit. They want to create the maximally entangled state
|�〉 defined in Eq. (26). To achieve this, Alice and Bob
perform entanglement swapping via a one-way qudit repeater
line. The protocol is as follows [21–23]: Alice prepares two
qudits (labeled A and 1), each of them in the state |+〉 :=
1√
D

∑
j∈Z/DZ |j 〉. She then applies a CZ gate between these

qudits, which yields the state |�〉 of Eq. (26). Afterward, she
stores her qudit A and sends qudit 1 to repeater station 1.
There, another qudit (labeled 2) is prepared in the |+〉 state.
When qudit 1 arrives, a CZ gate is applied between qudits
1 and 2. Qudit 1 is then destructively measured in the X

basis. The measurement result is a classical digit c1 ∈ Z/DZ.
Meanwhile, qudit 2 is sent to the second repeater station,
where the same steps as at station 1 are performed. Finally,
after N − 1 repeater stations, Bob receives qudit N , applies a
CZ gate to quditN and his own qudit (labeled B) and measures
qudit N in the X basis. These steps are depicted in Fig. 4.
Alice and Bob now share a maximally entangled state

whose exact form depends on all measurement outcomes
ci ∈ Z/DZ. Using the main-stabilizer approach of Ref. [22],
one can show that it is the common+1 eigenstate of ωcAXA ⊗
ZB and ωcB ZA ⊗ XB , where

cA :=
N/2∑
i=1
(−1)ic2i and cB :=

N/2∑
i=1
(−1)icN+1−2i , (28)

and we assume that N is even for simplicity. All classical
digits ci are sent to Bob. He postprocesses them into cA and

FIG. 4. A quantum circuit diagram representation of the qudit
repeater line between Alice and Bob. Intermediate repeater stations
are introduced to shorten the transmission distance of the qudits. All
outcomes ci of the X measurement at repeater i are transmitted to
Bob (who counts as repeater N ) for the Pauli-frame recovery of |�〉.

FIG. 5. Error statistics, Eq. (29), of a state distributed with a
ququint repeater line encoded with the �5, 1, 3�5 quantum polyno-
mial code. The entries of the (reduced) error probability tensor are
plotted as functions of the number of repeater stations, N , where
transmission, measurement, gate, and storage error rates are set to
fT = 0.05, fM = 0.01, fG = 0.001, and fS = 0.0001, respectively.
There are 1 green (circles; no errors), 4 red (triangles up; Xr

B error),
4 blue (triangles down; Zs

B error), and 16 gray identical curves
(squares; Xr

BZ
s
B error). The pink curve (dots) shows the difference

between red and blue curves.

cB and applies the Pauli gate XcAZ−cB to his qudit B. Taking
Eq. (5) into account, this so-called Pauli-frame recovery pro-
duces the desired state |�〉, as it is the unique two-qudit +1
eigenstate of XA ⊗ ZB and ZA ⊗ XB.

B. Error statistics of noisy qudit repeater lines

We now present analytical results for the error statistics
of the third-generation qudit repeater line described in the
previous section. These results are valid for all polynomial
codes and other �n, 1, d�D codes with similar properties. The
probability of a logical XrZs error on Bob’s qudit B, or
equivalently of a logical X−sZ−r error on Alice’s qudit A
[recall Eq. (27)] is

pco((0,r ),(0,s)) = f local0,0 f X
r f Z

s + f localerr

(
1− f X

r f Z
s

)
, (29)

where f local represent errors occurring locally on Alice’s or
Bob’s qudit and f X and f Z represent errors propagating from
repeater stations to the final state via Pauli-frame recovery.
See Appendix C (without QECCs) and Appendix D (with
QECCs) for detailed derivations.
The error statistics for a fixed-error-rate1 ququint repeater

line encoded with the �5, 1, 3�5 quantum polynomial code is

1A transmission error rate of fT = 0.05 corresponds to a re-
peater spacing of L0 ≈ 1km [36]. The best single-photon detector
efficiencies are about 95% [37], so we choose fM = 10−2 to keep
the same order of magnitude. Gate error rates are not known for
qudit CZ gates. We assume fG = 10−3 because this is the error rate of
state-of-the-art single-qudit gates [12], as well as a typical value for
two-qubit gates in quantum communication [6,15,16,29,31]. There
are no good quantum memories yet. We still include storage errors
with an optimistic assumption of fS = 10−4.
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plotted as a function of the number of repeater stations in
Fig. 5. Note that we choose D = 5 because it is the simplest
case where a quantum polynomial code with code distance
d = 3 exists. In total, there are D2 curves in the figure, as
curves of equal color overlap: one green, D − 1 red, D − 1
blue, and (D − 1)2 gray. The green curve,

pco((0,0),(0,0)) = 1−
∑

(r,s)�=(0,0)
pco((0,r ),(0,s)), (30)

is uniquely determined by the other curves and is directly
related to the Uhlmann fidelity

√〈�| ρ |�〉 = √
pco((0,0),(0,0))

of the distributed state ρ [38,39]. This curve decreases as a
function of N due to the fact that longer repeater lines contain
more error sources, thus mixing the state ρ. For N ≈ 200
repeater stations, f local0,0 and f localerr converge to 1/D2, and f X

r

and f Z
s converge to 1/D, forcing all error probabilities to

converge to an equilibrated value of 1/D2 = 0.04 as seen in
Fig. 5. Hence, the distributed state approaches the maximally
mixed state. The red and blue curves in the figure are the prob-
abilities of singleXr andZs errors, respectively. TheseDitflip
and phase errors are introduced independently with proba-
bilities f X

r and f Z
s , respectively, which are relatively small

(0 < f X
r �=0, f

Z
s �=0 � 1/D) for short repeater lines (N < 20).

As a result, it is more likely that Dit-flip and phase errors
occur alone than together. This is why, for short repeater lines,
the red and blue curves are much higher than the gray curves
(simultaneous XrZs error). The red and blue curves surpass
the equilibrium because accumulating X and Z errors have a
low chance of canceling each other out. However, they can
never surpass 1/D = 0.2 because the corresponding errors
originate inD-outcome measurements at the repeater stations.
There is an asymmetry in the probabilities of X and Z errors,
as they accumulate differently at the ends of the repeater line.
The difference between red and blue, which is plotted in pink,
decreases in the repeater line’s length, demonstrating the role
of the finite-size of the repeater line. Note that, for qubits, the
red and blue curves would not show a local maximum in N

since two X and Z errors, respectively, always cancel.

C. Tradeoff: Fidelity vs distribution probability

In practice, each qudit is encoded into the state of a photon,
e.g., into its temporal or orbital-angular-momentum degrees
of freedom [12]. During its transmission from one repeater
station to the next, the photon is absorbed with probability

fabs = 1− (1− fC)e
−γ , (31)

where fC represents coupling losses, and the damping param-
eter γ := L0/Latt is the ratio of the repeater spacing L0 to the
attenuation length Latt ≈ 20 km of the fiber through which the
photon is transmitted [15,16]. An error, which is caused by
the absorption of the photon, is noticed by a nonclick event at
its measurement. On the other hand, fT represents unnoticed
transmission errors. In the previous section, all errors were
assumed to be undetected.
Similar to Refs. [15,16], we consider a variation of the

protocol. A measurement outcome is marked as “?” if an
absorption of the corresponding photon is noticed. Such a lost
qudit can be thought of as being in the completely mixed state,
which is equivalent to XrZs errors, each with probability

1/D2. Hence, Zr errors are induced on the next qudit through
the CZ gate (recall Fig. 2), so the measurement of the next
qudit has an error with probability (D − 1)/D. As this is a
high probability, we preventively also mark that measurement
outcome as “?”. The adapted strategy is to abort and restart
the protocol if more than a fixed number kmax of measurement
outcomes at a given repeater station have been marked as
“?”. If, however, only k � kmax outcomes are marked as “?”,
they are discarded and the n − k remaining outcomes form a
classical error-correcting code with a Hamming distance of at
least d − k. The logical measurement outcome is obtained by
decoding the remaining physical outcomes according to this
code.
As an example, we present this scheme for a �13, 1, 7�13

QECC. The top plot in Fig. 6 shows the behavior of the
fidelity F (kmax) :=

√〈�| ρ(kmax) |�〉 of the distributed state
ρ(kmax) in terms of unnoticed and noticed transmission errors
for various choices of kmax. The bottom plot of Fig. 6 shows
the corresponding probability P distr

kmax
of the protocol not being

aborted; cf. Eq. (E5) in Appendix E. Because of the brute
force approach, we can only solve P distr

kmax
for a repeater line

withN = 2 repeater stations (including Bob); see Appendix E
for more details.
In the following, we set f := fT = fabs. First, consider the

top plot of Fig. 6. At f = 0, the fidelity of the distributed
state is F (kmax) = 1− 10−5, which is almost optimal. (For
comparison, an unencoded repeater line yields a fidelity of
0.987.) Note that this is independent of kmax since no photons
are lost. The fidelities decrease in f because of additional
transmission errors. For f > 0, they are arranged as

F (0) > F (1) ≈ F (2) > F (3) ≈ F (4). (32)

The difference between F (0) and F (1) is already significant
for f ≈ 0.05 because, in the case of an absorbed photon, a
reduced [12, 1, 6]13 code which can only correct up to two
errors is used for kmax = 1, while for kmax = 0 the protocol is
aborted if the original distance-7 code cannot be used. Note
that F (1) and F (2) are approximately the same because the
[11, 1, 5]13 code, which is additionally employed for kmax =
2, can correct as many errors as the [12, 1, 6]13 code. A
similar argument holds for F (3) ≈ F (4). In the limit f → 1,
all fidelities approach the worst-case value F (kmax) = 1/13 ≈
0.077.
Now consider the bottom plot in Fig. 6. Note that the

distribution probability does not depend on fT. At f = 0,
the probability of distributing a state is P distr

kmax
= 1 because

no qudits are lost and the protocol never aborts. In total,
Nn = 26 photons are transmitted. For kmax = 0, the protocol
is aborted if at least one photon is absorbed. This happens
with probability P distr

0 = (1− f )26. This explains the rapid
drop of the blue (solid) curve, P distr

0 . For higher kmax, P distr
kmax

decreases more slowly in f [cf. Eq. (E5)] as more photon
losses are tolerated.2 Thus, the distribution probabilities are

2For example, for kmax = 1, the probability of distributing a
state is P distr

1 = (1− f )26 + 26f (1− f )25 + 13f 2(1− f )24, where
26f (1− f )25 accounts for the 26 events where exactly one photon is
lost. Similarly, the term 13f 2(1− f )24 accounts for 13 combinations
of 2 lost photons which do not lead to an abortion.
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FIG. 6. The fidelity, F (kmax), of the distributed state (top), and
the probability of successfully distributing the state (bottom) as a
function of unnoticed (fT) and noticed (fabs ) transmission error rates
f := fT = fabs for different abortion strategies. The repeater line has
N = 2 stations, and measurement, gate, and storage error rates are set
to fM = 0.01, fG = 0.001, and fS = 0.0001, respectively. The gray
(dotted) curve shows the performance of an unencoded qudit with
D = 13. The other curves show the performance of the �13, 1, 7�13
quantum polynomial code for different abortion conditions kmax. If
at any of the repeater stations the number of qudits marked as “?” is
greater than kmax, the protocol is aborted.

ordered as

P distr
0 < P distr

1 < P distr
2 < P distr

3 < P distr
4 . (33)

Equations (33) and (32) show the tradeoff between the
quantity and the quality of distributed states. Naturally, one
should not choose kmax to be odd (if d is odd), since the fi-
delity is approximately that of kmax + 1 but the corresponding
distribution probability is significantly lower.

D. Optimizing the distributed entanglement

Consider the following scenario: Alice and Bob want to
create an entangled state by using a qudit repeater line a
single time. The qudit can be encoded into an arbitrary
�2d − 1, 1, d�D QECC with a fixed physical Hilbert space
dimension dim(H) = D2d−1. (For example, if dim(H) = 27,
Alice and Bob can choose between �1, 1, 1�27 and �3, 1, 2�3

FIG. 7. The logarithmic negativity EN (ρ ) of the state ρ dis-
tributed via a repeater line with N = 50 stations and encoded with
a �2d − 1, 1, d�D code for varying qudit dimension D and code dis-
tance d . The ambient Hilbert space of a logical qudit isH; i.e., if for
example D = 100 and dimH = 1070, one logical qudit is encoded
into 35 physical qudits. The transmission, measurement, gate, and
storage error rates are set to fT = 0.05, fM = 0.01, fG = 0.001,
and fS = 0.0001, respectively. The dots represent parameters for
which quantum polynomial codes exist, namely 1 � d � (D + 1)/2
for every fixed prime D. The crosses represent the codes listed in
Table I. The white curve exemplary shows codes with constant code
distance d = 15.

encoding.) They adjust the parameters D and d in order to
maximize the logarithmic negativity

EN (ρ) = log2(||ρTA ||1), (34)

where ρTA is the partial transpose of ρ with respect to Alice,
and || · ||1 is the trace norm [40]. The logarithmic negativity is
an entanglement measure and thus a quantifier of distributed
resources.
In Fig. 7, we show the logarithmic negativity EN (ρ) for all

�2d − 1, 1, d�D codes with 2 � D � 100 and D2d−1 � 1070,
the latter of which is the physical Hilbert space dimension of
the system into which one logical qudit is encoded; i.e., H
is the ambient Hilbert space of a logical qudit. The state ρ

is distributed by a qudit repeater line with N = 50 repeater
stations (including Bob), where we assume that the error rates
are independent of D.3 We observe characteristic features in
three different regions: (i) For small code distances d, the
repeater line distributes no entanglement; i.e., EN (ρ) = 0.
(ii) For small dimensionD and large code distances d, the log-
arithmic negativity is approximately optimal; i.e., EN (ρ) ≈
log2(D). This is the region below the crosses in Fig. 7. (iii) In
between, 0 � EN (ρ) � log2(D) holds. For a fixed dimension
D, the logarithmic negativity takes on values in an alternating
fashion, governed by an overall trend to its maximum value,

3For storage, gate, and measurement errors, this assumption is
probably not justified. However, experiments with time-bin qudits
suggest that the transmission errors, which are the main error source,
do not depend on D [13]. For orbital angular momentum qudits, on
the other hand, transmission errors increase with D [41].
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TABLE I. Parameter of the smallest �2dmin − 1, 1, dmin�D codes
for which in Fig. 7 EN (ρ ) > 0.99× log2(D) holds.

D 2 3 4 5 6,7 8, . . . , 11 12, . . . , 23

dmin 15 19 21 23 25 27 29

with increasing code distance d. We will comment on these
three regions in the following:
In region (i), for d ∈ {1, 2, 3, 4, 6}, too few errors can be

corrected by the QECCs. Hence, the final state distributed
to Alice and Bob lost any logarithmic negativity. Thus, it
cannot even be used for entanglement distillation [40]. The
first nonzero logarithmic negativity arises for d = 5, which
shows that, for example, �9, 1, 5�D codes perform sufficiently
well in the considered parameter region to distribute states that
are entangled to some degree. For d = 6, �10, 1, 6�D codes are
used, which correct as many errors as the �9, 1, 5�D codes but
rely on an additional physical qudit which also accumulates
errors. Overall, these perform worse, explaining the respective
vanishing of the logarithmic negativity.
In region (ii), note that for a fixed dimension D and

sufficiently large distances d � dmin, the distributed state ρ

is almost pure. Under these conditions, the logarithmic neg-
ativity is approximately that of a pure maximally entangled
state |�〉 〈�|, i.e., EN (ρ) ≈ log2(D). In Table I, we show the
values of dmin such that EN (ρ) is above 0.99× log2(D) for
various dimensions D.
Finally, in region (iii), recall that codes with an odd code

distance are beneficial for error correction. This argument ex-
plains the alternating values of EN (ρ) for fixed dimension D.
The overall trend to higher values of the logarithmic negativity
is simply explained by the fact that the corresponding QECCs
can correct more errors with increasing code distance.
Overall, EN (ρ) increases in the qudit dimension D and the

code distance d. Fixing either d or D and varying the other is
not a fair comparison because the requirements to Alice and
Bob also change, for example, the number of physical qudits
n = 2d − 1 (for fixed D). A better comparison is obtained if
dim(H) = Dn (x axis in Fig. 7) is fixed instead. This would
be relevant if, for example a single ququad (D = 4, n = 1) is
as expensive as two entangled qubits (D = 2, n = 2). Figure 7
shows that the optimal strategy depends on the chosen value
of dim(H). If it is small, e.g., 1010, Alice and Bob should not
increase D too much. If it is large, e.g., 1070, the logarithmic
negativity is optimized for large D. Even above the crosses,
where distributed states are not maximally entangled (for the
corresponding D), EN (ρ) still increases in D. For experi-
mental implementations, this is good because more quantum
polynomial codes exist for larger D, while no QECCs are
known in the region where EN (ρ) ≈ log2(D).

V. CONCLUSION AND OUTLOOK

The error probability tensor framework developed here is a
useful tool for analyzing the propagation of generalized Pauli
errors in quantum circuits composed of qudit Clifford gates.
It enabled us to analytically derive the full error statistics of a
state distributed via a qudit repeater line with arbitrary qudit

dimension and arbitrarily many repeater stations. Our analysis
demonstrates the advantage of quantum repeaters with quan-
tum error correction, as well as the tradeoff between quality
and preparation rate of distributed quantum states. For a fixed
number of provided degrees of freedom our analysis suggests
that higher dimensional qudits can increase the amount of dis-
tributed entanglement. In particular, we find that the amount
of entanglement does increase in the qudit dimension only if
sufficiently many errors can be corrected. Fortunately, in the
superior parameter region, explicit quantum error-correcting
codes are feasible in the form of quantum polynomial codes.
Experimentally, photonic qudits with physical qudit di-

mension up to the order of 105 can be realized [13]. Missing
key ingredients for the realization of the here-discussed qudit
repeaters are a procedure to encode logical states into a
multiphoton system, as well as a way to physically implement
the two-qudit controlled-phase gate between two physical
photonic qudits. Gates between time-bin-encoded qudits are
especially desirable, as time-bin qudits are less prone to errors
than, for example, orbital angular momentum qudits.
In future work, we want to investigate the parameter

regimes in which a bipartite qudit repeater can beat the PLOB
repeaterless bound [42]. Furthermore, we aim to generalize
our error analysis to multipartite qudit repeater networks. To
conclude, we claim that the error probability tensor can be ap-
plied for analytical analyses of other quantum communication
protocols, as they often only require Clifford gates.

ACKNOWLEDGMENTS

The authors thank Michael Epping and Liang Jiang for
helpful discussions and Eric Sabo for feedback on the
manuscript. The circuit diagrams were typeset using the
package Qcircuit.tex [43]. The authors acknowledge sup-
port from the Federal Ministry of Education and Research
(BMBF).

APPENDIX A: QUANTUM POLYNOMIAL CODES

An important class of higher dimensional stabilizer QECCs
are polynomial codes [25–28]. They are examples of non-
binary CSS codes whose explicit construction is given in
Ref. [27]. Quantum polynomial codes have already proven
to be useful in the context of qudit quantum repeaters [33].
Among codes with other parameters (e.g., codes which encode
more than one logical qudit), there is a �2d − 1, 1, d�D quan-
tum polynomial code for every prime number D and every
number d � (D + 1)/2. Here, we outline a specific subfamily
of these QECCs.
Let D � 3 be an odd prime and let d := (D + 1)/2. Con-

sider the (d − 1)× D parity check matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
0 1 2 3 · · · D − 1
0 1 22 32 · · · (D − 1)2
...

...
...

...
. . .

...
0 1 2d−2 3d−2 · · · (D − 1)d−2

⎞
⎟⎟⎟⎟⎟⎟⎠ (A1)

with entries hj,k := kj ∈ FD , where 00 := 1. The vectors
hj := (kj )0�k�D−1 ∈ (FD )D (rows of H ) are mutually
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orthogonal, each of them is orthogonal to i := (kd−1)0�k�D−1,
and i · i = −1 [44]. Therefore, the operators SX

j := Xhj and
SZ

j := Zhj mutually commute, each of the SX
j and SZ

j com-
mutes withXL := Xi andZL := Z−i, andXLZL = ω−1ZLXL

is fulfilled. It follows that S := 〈SX
j , SZ

j | j ∈ {0, . . . , d − 2}〉
is an Abelian subgroup of the qudit Pauli group on D qu-
dits. Therefore, S defines a QECC [19,20] which encodes
D − 2(d − 1) = 1 logical qudit with logical operatorsXL and
ZL. For each a ∈ FD , the logical code space has a basis state

|aL〉 := 1√
Dd−1

∑
λ0, . . . , λd−2 ∈ FD

λd−1 = a

|fλ(0), . . . , fλ(D − 1)〉 ,

(A2)

where for every vector λ := (λ0, . . . , λd−1) ∈ (FD )d a cor-
responding polynomial is defined as fλ(T ) := λ0 + λ1T +
· · · + λd−1T d−1.
The reason this constitutes a good QECC is the redun-

dancy inherent in this construction: Since the polynomial
fλ is defined via its coefficients λi , one can reveal fλ if
d evaluation values are known. Let k0, . . . , kd−1 ∈ FD be
mutually distinct and define the d × d Vandermonde matrix
V := (kj

i )0�i,j�d−1 whose inverse is derived in Ref. [45]. This
reveals λ = V −1(fλ(ki ))0�i�d−1. That is, the system of linear
equations

fλ(0) = λ0
fλ(1) = λ0 + λ1 + · · · + λd−1

...
fλ(D − 1) = λ0 + · · · + (D − 1)d−1λd−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A3)

can be solved from only d of itsD = 2d − 1 equations. Based
on the construction, one can see that quantum polynomial
codes can correct up to 50% erasure errors, which is the bound
set by the no-cloning theorem. Note that for these QECCs the
CZ gate is transversal in the sense that applying CZ−1 to each
pair of physical qudits within two logical qudits constitutes a
logical CZ gate [26].

APPENDIX B: DISCRETIZATION OF
THE DEPOLARIZING CHANNEL

Here, we show that for each normalized n-qudit state ρ the
relation

1

Dn
= 1

D2n

∑
r,s∈(Z/DZ)n

(XrZs) ρ (XrZs)† (B1)

holds. This states that the depolarizing channel corresponds to
some probability for discreteX andZ errors on the qudits—an
observation mentioned in Ref. [22].
To prove this, we expand the state ρ in the computational

basis,

ρ =
∑

j,k∈(Z/DZ)n

zj,k |j〉 〈k| , (B2)

and insert this expression and the expansion for Pauli op-
erators, Eq. (4), into the right-hand side of Eq. (B1). By

orthonormality, we find∑
r,s∈(Z/DZ)n

(XrZs) ρ (XrZs)†

=
∑

r,s,j,k∈(Z/DZ)n

zj,k ω(j−k)·s |j + r〉 〈k + r| . (B3)

Using the fact that complex roots sum up to zero,∑
s∈(Z/DZ)n ω(l−m)s = Dnδl,m and Tr(ρ) = 1, the entries of

the operator in Eq. (B3) are given by

〈l|
⎛
⎝ ∑

r,s,j,k∈(Z/DZ)n

zj,k ω(j−k)·s |j + r〉 〈k + r|
⎞
⎠ |m〉

=
∑

r,s∈(Z/DZ)n

zl−r,m−r ω(l−m)·s

= Dnδl.m

∑
r∈(Z/DZ)n

zl−r,l−r = Dnδl.m. (B4)

Division by D2n yields Eq. (B1) and finishes the proof.

APPENDIX C: ERROR ANALYSIS OF THE QUDIT
REPEATER LINE WITHOUT QEC

Here, we derive Eq. (29) from the main text for unencoded
repeater lines. We begin with the error model in Sec. C 1. In
Sec. C 2, we compute the error statistics of the measurement at
intermediate repeater stations, from which we derive the error
statistics of the distributed state in Sec. C 3.

1. Error model

Since we do not assume a specific physical implementation
of the qudits, all error sources are modeled by depolarizing
channels. This is reasonable because for every error channel
there is a worst-case approximation by a depolarizing channel.
Nevertheless, our analysis can be adjusted to more specific
error sources, if they can be modeled by Pauli error channels
with independent X- and Z-type errors. Each faulty CZ gate is
modeled by a perfect gate followed by single-qudit error chan-
nels FG on each qudit. Every time a qudit is transmitted from
one station to the next, it is acted upon by an error channel
FT. Each faulty measurement is modeled by an error channel
FM followed by a perfect measurement. Moreover, Alice’s
qudit undergoes storage errors, modeled by N channels FS.
For simplicity, we assume that the respective error rates,
fG, fT, fM, and fS ∈ [0, 1], are the same for each instance.
Experimentally, we should also take preparation errors into

account, but we find they are not a dominating source of error
and do not include them here for the sake of simplicity. The
framework presented in this paper can handle such errors if
desired.

2. Error statistics of measurements at intermediate
repeater stations

As argued in Refs. [15,16], errors propagate a distance
of at most two repeater stations. Hence, an error on the
measurement outcomes ci , where i ∈ {2, . . . , N}, can arise
from six sources:X errors from FG at repeater i − 2 and from
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FIG. 8. Adapted from Fig. 3 of Ref. [15]. Sources of undetected
errors on the measurement outcome at repeater i ∈ {2, . . . , N}. If
an X error occurs on qudit i − 1 (one gate, one transmission), it
induces a Z error on qudit i across the CZ gate. If this happens, or
Z errors directly occur on qudit i (two gates, one transmission, one
measurement), the measurement outcome might be erroneous.

FT between repeaters i − 2 and i − 1 and Z errors from FG

at repeater i − 1, from FT between repeaters i − 1 and i, as
well as from FG and FM at repeater i; cf. Fig. 8.
Thus, the statistics of Z errors right before the measure-

ment are given by an error probability tensor P ′ = (p′
s ) with

entries given by the tensor equation

p′
s = Ms

a Ga
b Tb

c Gc
d Td

e Ge
f pf . (C1)

Thereby, the error probability tensor is initialized to P = (ps )
with ps = δs,0, and the tensors M,G, and T , which take
measurement, gate, and transmission errors into account, re-
spectively, can be regarded as matrices of the form fα

D
O +

(1− fα )1, where α ∈ {M,G,T} and O is the D × D matrix
with all entries equal to 1. Because ofO2 ∝ O, the product of
all matrices in Eq. (C1) is also a matrix of the form aO + b1,
for some a, b ∈ [0, 1]. Expanding the product of matrices
yields b = (1− fT)2(1− fG)3(1− fM), and the normaliza-
tion Da + b = 1 determines a. Hence, the entries of P ′ are
p′
0 = a + b and p′

s �=0 = a,

p′
0 = 1

D
[1+ (D − 1)(1− fT)

2(1− fG)
3(1− fM)],

p′
s �=0 = 1

D
[1− (1− fT)

2(1− fG)
3(1− fM)]. (C2)

Note that for measurements at station 1, the error proba-
bility tensor p′

s = Ms
a Ga

b Tb
c Gc

d pd differs slightly from
Eq. (C2) because, in contrast to qudits 1 to N − 1, qudit A
was not exposed to the channels FG and FT before the first CZ
gate.

3. Error statistics of the distributed state

Since the error statistics of measurements at different
repeater stations are independent of each other,4 the proba-
bility of a Pauli-frame recovery error follows from the joint

4Error statistics of non-neighboring repeater stations are inde-
pendent because errors propagate across at most one CZ gate.
Moreover, for the depolarizing channel fr,s = f X

r f Z
s holds, where

f X
r =∑s fr,s and f Z

s =∑r fr,s , since X and Z errors are created
independently. Because of this and because only Z errors lead to
measurement errors, and only X errors induce Z errors across the CZ
gate, the error statistics of measurements at neighboring stations are
also independent.

probability of measurement errors at the respective repeater
stations. In particular, recovery errors give rise to an error
channel on qudit B with coefficients fr,s = f evenr f odds deter-
mined by

F even
a

z = F (2)
a

b F (4)
b

c F (6)
c

d . . . F (N )
y

z, (C3)

F odd
a

z = F (1)
a

b F (3)
b

c F (5)
c

d . . . F (N−1)
y

z, (C4)

where F (i)
a

b := f
(i)
a−b is the abbreviation introduced in

Sec. III B 2. Thereby, f (i)a−b comes from the the measurement
error statistics of repeater station i, f (i)s := p′

±s as in Eq. (C2),
and the signs of the indices come from Eq. (28).5 The solution
of Eq. (C3) and (C4) is

f even0 = 1

D
{1+ (D − 1)[(1− fG)

3N/2(1− fT)
N (1− fM)

N/2]},

f evenr �=0 = 1

D
{1− [(1− fG)

3N/2(1− fT)
N (1− fM)

N/2]}, (C5)

f odd0 = 1

D
{1+ (D − 1)[(1− fG)

3N/2−1(1− fT)
N−1

× (1− fM)
N/2]},

f odds �=0 = 1

D
{1− [(1− fG)

3N/2−1(1− fT)
N−1(1− fM)

N/2]},
(C6)

where N � 2 is even. This noise, f evenr and f odds , depolarizes
along only the X and Z directions, respectively, as the other
part of the (symmetrically) depolarizing noise vanishes since
the X errors commute with the X measurements. Since the
error statistics of the measurements are independent of those
of qudits A and B, the error statistics of the distributed
state are given by the truncated error probability tensor
P̄ = (pco((0,r ),(0,s))) with entries given by

F local
r

a
s

b F prop
b

c F odd
c

d︸ ︷︷ ︸
=:FZ

b
d

F even
a

e︸ ︷︷ ︸
=:FX

a
e

(δ(d,e),(0,0))

= f local0,0 f X
r f Z

s + f localerr

(
1− f X

r f Z
s

)
, (C7)

where

f Z
k = f X

k := f evenk (C8)

with f evenk as in Eq. (C5). This finishes the proof of Eq. (29)
for unencoded repeaters. Note that this solution can be ob-
tained by taking normalization conditions into account, e.g.,
1 = f Z

0 + (D − 1)f Z
s �=0. Also note that F local

r
a

s
b is the

error probability tensor of a depolarizing channel on qudits
A and B with strength parameter

f local := 1− (1− fG)
2(1− fS)

N, (C9)

5The sign of the index of p′
±s alternates in i in the following way:

2 : −; 4 : +; 6 : −; . . ., and, ...; N − 5 : −; N − 3 : +; N − 1 : −.
To be more explicit, e.g., f (i )

2 = p′
−2 and f

(i )
4 = p′

+2. Note that for
depolarizing noise, f (i )

s = f
(i )
−s .

052316-10



PROPAGATION OF GENERALIZED PAULI ERRORS IN … PHYSICAL REVIEW A 98, 052316 (2018)

which defines f local0,0 and f localerr := f local(r,s)�=(0,0) via Eq. (8). More-
over, if anX error occurs on quditN , which can happen at the
CZ gate in repeater N and during its transmission to Bob, this
X will induce aZ error at qudit B across Bob’s CZ gate. This is
taken into account via F prop

b
c, the tensor corresponding to a

Z-depolarizing error channel with strength parameter f prop =
1− (1− fG)(1− fT). Finally, note that Eq. (C7) holds for all
even N � 0.

APPENDIX D: ERROR ANALYSIS OF THE QUDIT
REPEATER LINE WITH QEC

Here, we derive Eq. (29) from the main text for encoded
repeater lines. In particular, we generalize our error analysis
to a qudit repeater line where each logical qudit consists of
n physical qudits. For each physical qudit, we use the error
model of Sec. C 1. Consider an �n, 1, d�D QECC with the
following properties: It allows transversal CZ gates, it can
correctX andZ errors independently, and it has logical opera-
torsXL = Xr and ZL = Zs, where r, s ∈ (Z/DZ)n have only
invertible entries. Note that, for example, quantum polynomial
codes satisfy all of these properties.

1. Error statistics of logical measurements at intermediate
repeater stations

At the logical X measurement in a given repeater station,
each of the n physical qudits are individually measured in the
X basis. Since the CZ gate is transversal, errors do not spread
across different blocks of physical qudits. Because of this and
our depolarizing noise model, the error statistics of individual
physical qudits at the measurement in a repeater station are
the same as in Sec. C 2. The probability pei

that an error
ei ∈ Z/DZ occurs on one of the n measurement outcomes is
given in Eq. (C2). In particular, p1 = · · · = p(D−1). Thus, the
probability of an error e = (e1, . . . , en) on the measurement
outcomes at this station, is given by

pe =
n∏

i=0
pei

= p
n−H (e)
0 p

H (e)
1 , (D1)

where the Hamming weight H (e) is the number of nonzero
digits in e. Since an �n, 1, d�D code can correct up to � d−1

2 �
arbitrary single qudit errors, we can consider the following
(not necessarily efficient) strategy: If an error e with H (e) �
� d−1
2 � occurs, we identify and correct it. If, on the other hand

H (e) > � d−1
2 �, we assign a random digit to the logical mea-

surement outcome. The probability that a correctable error
occurs is

pcor :=
� d−1

2 �∑
j=0

(D − 1)j
(

n

j

)
p

n−j

0 p
j

1 , (D2)

where (D − 1)j (n
j

)
is the number of vectors in (Z/DZ)n with

exactly j nonzero entries. It follows that the probability of a
particular logical error eL �= 0 is pguess = 1− pcor/D, which
is independent of e. The error correction is successful if either
the error can be corrected or the occurred error was guessed.

This happens with probability

psucc = pcor + pguess = 1

D
[1+ (D − 1)pcor]. (D3)

As before, all error rates are the same for each repeater station
except for the first.

2. Error statistics of the distributed logical state

We assume that Bob can perform a (perfect) round of stabi-
lizer measurements before adjusting the Pauli frame according
to his and the repeater stations’ measurement outcomes. In
this way, we reduce the error statistics of the 2n physi-
cal to just two logical qudits, while preserving all relevant
information.
As per our error model, Xr and Zs errors can be treated

separately, and the respective probabilities are also indepen-
dent of r, s �= 0. Because of this and the fact that the logical
state is stabilized by XA ⊗ ZB and ZA ⊗ XB, each X error
on one of Alice’s physical qudits can be treated as some Z

error on the corresponding physical qubit of Bob, and vice
versa. (Here we need XL = Xr and ZL = Zs, where r, s ∈
(Z/DZ)n have only invertible entries.)
As in the unencoded case, errors which are introduced

by one gate and one transmission induce Z errors on each
physical qudit of Bob. Additionally, local errors on the phys-
ical qudits are introduced by two gate and N storage error
sources. The probability of an Xr and Zs error on qudit B
right before the stabilizer measurements is therefore pX

r =
S (N ) r

a G(2)
a

b δb,0 and pZ
s = S (N ) s

a G(3)
a

b T (1) b
c δc,0,

respectively. Analogous to Eq. (C2), the solution of these
tensor equations is

pX
0 = 1

D
[1+ (D − 1)(1− fG)

2(1− fS)
N ],

pX
r �=0 = 1

D
[1− (1− fG)

2(1− fS)
N ],

pZ
0 = 1

D
[1+ (D − 1)(1− fG)

2(1− fS)
N (1− fT)],

pZ
s �=0 = 1

D
[1− (1− fG)

2(1− fS)
N (1− fT)]. (D4)

Employing the same correction strategy as before, the prob-
ability of a successful correction of X and Z errors is pX

succ
and pZ

succ, analogous to Eq. (D2), and the probability of a
specific error is pX,Z

err = (1− pX,Z
succ )/D. Hence, the probability

of a logical XrZs error on Bob’s qudit after the stabilizer
measurement is

pr,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pX
succp

Z
succ if r = 0, s = 0

pX
succp

Z
err if r = 0, s �= 0

pX
errp

Z
succ if r �= 0, s = 0

pX
errp

Z
err if r �= 0, s �= 0 .

(D5)

After the Pauli-frame adjustment, the error statistics of the
distributed state finally become

pco((0,r ),(0,s)) = F even
r

a F odd
s

b pa,b, (D6)

where F even and Fodd are the error channels defined in
Eqs. (C3) and (C4), respectively, but this time with the error
rates of measurements on the logical level. In this way,
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TABLE II. The number of accepted configurations α(2, 13, kmax;m). Using a brute-force search over all matrices, A ∈ FN×n
2 , we obtain

the values α(N, n, kmax;m) = #{(ai,j ) ∈ FN×n
2 |m = #{ai,j = 0},∀i ∈ {1, . . . , N} : kmax � #{j |ai,j ai−1,j = 0}}, for N = 2 and n = 13.

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

kmax = 0 1 0 0 0 0 0 0 0 0 0
kmax = 1 1 26 13 0 0 0 0 0 0 0
kmax = 2 1 26 325 312 78 0 0 0 0 0
kmax = 3 1 26 325 2600 3510 1716 286 0 0 0
kmax = 4 1 26 325 2600 14 950 24 596 17 446 5720 715 0

Eq. (D6) gets the same form as Eq. (C7), the analytical result
for the unencoded repeater line. In particular, this finishes the
proof of Eq. (29) for encoded repeaters.

APPENDIX E: ERROR ANALYSIS OF THE QUDIT
REPEATER LINE WITH QEC AND ABORTION STRATEGY

Here, we adapt our error analysis to repeaters with an
abortion strategy; cf. Sec. IVC. Recalling Eq. (31), a photon
is absorbed during its transmission from repeater station i − 1
to i with probability fabs, and its absence is detected at the
measurement of the corresponding qudit. The outcomes of
such measurements at repeater stations i and i + 1 are marked
with a “?”. The probability that k of the n measurement
outcomes are marked as “?” at the first repeater station is
given by

P first
? (k) :=

(
n

k

)
f k
abs(1− fabs)

n−k, (E1)

and for every following repeater station by

P?(k) :=
(

n

k

)
[1− (1− fabs)

2]k[(1− fabs)
2]n−k. (E2)

The outcomes which are marked as “?” are discarded, and
the remainingDits constitute a classical error-correcting code
with a Hamming distance of at least d − k (equality if
the original code does not inherit unnecessary redundancy).
Hence, the logical measurement outcome is obtained by de-
coding the n − k remaining physical outcomes according to
a [n − k, 1, d − k]D error-correcting code. The probability
of successfully correcting a given error with such a code is
given by

pcor,?(k) :=
� d−k−1

2 �∑
j=0

(D − 1)j
(

n − k

j

)
p

n−k−j

0 p
j

1 . (E3)

The quality of the distributed state can be improved if the
protocol is aborted if too many noticed errors occur. Given
that at most kmax < d qudits are discarded, the probability that
repeater station i ∈ {2, . . . , N} can correct an error is

pcor,kmax =
kmax∑
k=0

(
P?(k)∑kmax
k=0 P?(k)

)
pcor,?(k), (E4)

and likewise for the first repeater station. This is because,
in the case that the protocol is not aborted, which happens
with probability

∑kmax
k=0 P?(k), the conditional probability that

k qudits are discarded is P?(k)∑
k P?(k)

.
Assume that Alice and Bob do not know the number of

noticed errors at the repeater stations. Then, the rest of the
analysis is analogous to Appendix D, where pcor in Eq. (E3)
is replaced by pcor,kmax .

The probability of distributing the state

Here, we outline our approach for computing the probabil-
ity of not aborting the protocol. There are N logical qudits
transmitted, each of which is encoded into n physical qudits
(photons). Therefore, there are Nn photons transmitted in
total.
As the probabilities of the individual repeater stations

not to abort the protocol depend on each other, the overall
probability of successfully distributing the state (none of the
repeater stations aborts) has to be computed via

P distr
kmax

:=
Nn∑

m=0
α(N, n, kmax;m)f

m
abs(1− fabs)

Nn−m, (E5)

where α(N, n, kmax;m) is the number of configurations with
exactly m absorbed photons, for which the protocol is not
aborted (no logical measurement with more than kmax physical
outcomes marked as “?”). We formalize this combinatorial
problem in the following way. To each possible configuration
of absorbed photons, we assign an N × n matrix A = (ai,j ).
If, at the transmission from repeater i − 1 to i, the j th
qudit is absorbed, the corresponding matrix entry is set to 0.
Otherwise, it is set to 1. With this, a matrix A corresponds to
a successful distribution attempt if, for each of its rows i ∈
{1, . . . , N}, the number of columns j fulfilling ai,j ai−1,j = 0
(the number of outcomes at repeater i marked as “?”) is at
most kmax, where we set a0,j = 1 for 1 � j � n (as there is
no transmission before repeater 1). Thus, α(N, n, kmax;m) can
be computed as the number of matrices, A ∈ FN×n

2 , which
correspond to a successful distribution attempt with exactly
m zero entries. For N = 2 and n = 13, we find the values
of α(N, n, kmax;m) via a brute force computer search; see
Table II.
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In this Comment we discuss the device-independent conference key agreement (DICKA) protocol
[Phys. Rev. A 97, 022307 (2018)]. We show that the suggested honest implementation fails, because perfectly
correlated measurement results and the required Bell-inequality violation cannot be achieved simultaneously,
in contradiction to what is claimed. We further show via semidefinite programming that there cannot exist any
suitable honest implementation in the tripartite setting, rendering the DICKA protocol incomplete.

DOI: 10.1103/PhysRevA.100.026301

In Ref. [1], Ribeiro et al. proposed a protocol to generate a
secret key among multiple parties, called device-independent
conference key agreement (DICKA). The security proof cru-
cially depends on the observation of genuine multipartite
entanglement certified by a particular violation of a multipar-
tite Bell inequality, the Mermin-Ardehali-Belinskiı̆-Klyshko
(MABK) inequality [2–4]. Here, we analytically prove that
the honest implementation of the DICKA protocol cannot
yield a nonzero secret-key rate for an odd number of parties
and provide numerical evidence that the first nontrivial even-
numbered case fails as well. Finally, we use semidefinite
programming (SDP) to prove that there cannot exist any
honest implementation that leads to a nonvanishing secret-key
rate for three parties, thus proving the incompleteness of the
DICKA protocol. We use the same notation as Ref. [1].

MABK inequality. Consider a Bell setup with N parties
called Pauli with two dichotomic observables Pi

0, Pi
1 ∀i ∈

[N] := {1, . . . , N}. We require an explicit expression for the
odd-partite MABK operator. Let F2 = {0, 1} denote the finite
field with two elements, from which we obtain the vector
space FN

2 of bit strings of length N . We define the Hamming
weight

H (x) := |{1 � i � N |xi = 1}| (1)

of a bit string x = (x1, . . . , xN ). For now, let N be an odd
integer and define the set

LN :=
{

x ∈ FN
2

∣∣∣∣H (x) = N − 1
2

mod 2

}
, (2)

i.e., if (N − 1)/2 is odd (even) the set LN contains all bit
strings x with an odd (even) number of bits 1.

Proposition. Let N � 3 be odd. An explicit form of the
N-MABK operator is given by

MKN = 1

NN

∑
x∈LN

(−1)ξN (x)
N⊗

i=1
Pi

xi
, (3)

where ξN (x) := N−1
4 − H (x)

2 and NN := 2
N−1
2 .

*holzt@uni-duesseldorf.de

A single application of the recursion rule in Eq. (8) of
Ref. [1] yields the MABK operator for N even. For all N � 3
the N-MABK inequality is given by the corresponding
MABK operator MKN , according to

MKN :=
∣∣tr(MKNρP(1...N )

)∣∣ � 2
m−1
2 , (4)

where ρP(1...N ) denotes the quantum state shared among all N
parties and m ∈ [N] indicates the maximum number of parties
that are entangled via ρP(1...N ) . A violation of the bound form =
N − 1 certifies genuine N-partite entanglement [5], which is
crucial for the security proof of the DICKA protocol.
There are |LN | = 2N−1 different operators in the sum of

Eq. (3). Thus, the N-MABK valueMKN contains EN = 2N−1
different expectation values. For general N � 2, the number
of different expectation values EN and the normalization
factor NN are given by

EN = 22� N
2 �, and NN = 2� N

2 �. (5)

DICKA protocol and honest implementation. Alice has a
measurement device with two inputs X ∈ {0, 1}, and each
Bobk has three inputs Y(k) ∈ {0, 1, 2} for k ∈ [N − 1]. The
DICKA protocol consists of two different types of mea-
surement rounds, one for key generation (type 0), where
(X,Y(1...N−1)) = (0, 2, . . . , 2), and one for parameter estima-
tion (type 1), where X,Y(k) are chosen uniformly at ran-
dom from {0, 1}. In the honest implementation and in the
asymptotic limit, the parties have access to infinitely many
copies of the pure N-Greenberger-Horne-Zeilinger (GHZ)
state GHZN := |GHZN 〉〈GHZN |, with |GHZN 〉 := |0〉⊗N +|1〉⊗N√

2
,

which are distributed to the parties. Alice and the Bobs
measure the observables (see the section between Protocol 2
and Theorem 4 of the Ref. [1]):
(i) For X = 0 (X = 1) Alice’s observable is σz (σx).
(ii) For type-0 measurement rounds, i.e., for Y(k) = 2,

all Bobs measure the observable σz. And for type 1, i.e.,
Y(k) ∈ {0, 1}, they measure observables “that are defined by
a strategy that maximally violates the N-MABK inequality
when the measurements are performed on an N-GHZ state.”
We want to emphasize the following remarks. First, note

that in any DI quantum key distribution (QKD) protocol, at
least one party, say, Alice, is obliged to incorporate at least one

2469-9926/2019/100(2)/026301(3) 026301-1 ©2019 American Physical Society
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measurement setting that is used for key generation rounds
also in the parameter estimation rounds, to detect a potential
preprogramming of the devices by the adversary. And second,
in order to minimize the error correction information that
is publicly communicated, and given that the N-GHZ state
is measured, every party necessarily needs to measure the
observable σz in type-0 rounds of the protocol, see Theorem 1
of Ref. [6]. Therefore, Alice has to use A0 = σz in both types
of measurements. We claim that under these conditions there
exist no measurement settings for the Bobs such that the
N-MABK value exceeds the bound 2

m−1
2 for m = N − 1 in

inequality (4), at least for odd N . Hence, the security of the
DICKA protocol cannot be guaranteed.
Let PN denote the N-qubit Pauli group. We define

S := {S ∈ PN | S|GHZN 〉 = |GHZN 〉}, (6)

i.e., S denotes the stabilizer group of the N-GHZ state. The
group S is generated by the N independent operators

G1 := σ⊗N
x , and for all j ∈ {2, . . . , N} : (7a)

Gj :=
j−2⊗
i=1

1(i)2 ⊗ σ ( j−1)z ⊗ σ ( j)z ⊗
N⊗

i= j+1
1(i)2 , (7b)

where the superscript denotes the corresponding subsystems.
In general, the projector of any stabilizer state can be written
as the normalized sum of all of its stabilizer operators [7,8].
We obtain for GHZN and with s := (s1, . . . , sN ) the represen-
tation:

GHZN = 1

2N

∑
s∈FN

2

(
σ s1

x

)⊗N(
σ s2

z ⊗ σ s2+s3
z ⊗

· · · ⊗ σ sN−1+sN
z ⊗ σ sN

z

)
. (8)

No-go theorem for N odd.With the general form of the pure
N-GHZ state in Eq. (8) and the properties of the N-MABK
inequality, cf. Eq. (5), we state our initial claim:

Theorem 1. Let N � 3 be odd and let the N parties perform
the honest implementation of the DICKA protocol. Then,
the N-MABK value cannot exceed the bound that certifies
genuine multipartite entanglement among all N parties.

Proof. Let N ∈ N be an odd integer and let

B(k)Y(k)
:= β

(k) T
Y(k)

σ, ∀k ∈ [N − 1], Y(k) ∈ {0, 1} (9)

be a general qubit measurement, where

β
(k)
Y(k)
:= (β1, β2, β3)

(k) T
Y(k)

≡ (βx, βy, βz )
(k) T
Y(k)

, (10a)

σ := (σ1, σ2, σ3)
T ≡ (σx, σy, σz )

T (10b)

denote normalized Bloch vectors and a vector that contains
the Pauli matrices. Recall that the product of Pauli matrices is
given by

σ jσk = δ j,k12 + i
3∑

l=1
ε jklσl , (11)

where δ j,k and ε jkl denote the Kronecker delta and the Levi-
Civita tensor, respectively. With Eq. (8) and for A0 = σz, we

obtain for the expectation value〈
A0

N−1⊗
k=1

B(k)Y(k)

〉
=
∑
s∈FN

2

2

2N
δs1,0 δs2,1 tr

(
B(1)Y(1)

σ s1
x σ s2+s3

z ⊗

· · · ⊗ B(N−1)
Y(N−1) σ

s1
x σ sN

z

)
, (12)

for all Y(k) ∈ {0, 1}, where we used Eq. (11) and the fact that
Pauli matrices are traceless to establish

tr
(
σzσ

s1
x σ s2

z

) = 2δs1,0δs2,1. (13)

Therefore, only operators with components s1 = 0 and s2 = 1
in Eq. (8) yield a nonvanishing contribution to the expectation
value in Eq. (12). Now consider

B(1)Y(1)
σ s1

x σ s2+s3
z =

3∑
i=1

β
(1)
i,Y(1)

σiσ
s1
x σ s2+s3

z (14)

and note that we only get a nonvanishing contribution to the
expectation value in Eq. (12), if there remains no nontrivial
Pauli matrix in this expression. As s1 = 0 and s2 = 1, we see
that s3 = 0 needs to hold. Repeating this argument reveals
that the only term in Eq. (8) that potentially gives a nonzero
contribution to the expectation value is the bit string s with
alternating entries of 0 and 1. Here, we observe a fundamental
difference between odd and even numbers N . For N odd, the
alternating pattern in s implies sN = 0, thus for the observable
of BobN−1 in Eq. (12), we obtain B(N−1)

Y(N−1) σ
s1
x σ sN

z = B(N−1)
Y(N−1) 1,

which is traceless. Hence, the expectation value in Eq. (12)
necessarily vanishes if A0 = σz, i.e., for all N � 3 odd, we
obtain 〈

σz ⊗
N−1⊗
k=1

B(k)Y(k)

〉
GHZN

= 0. (15)

The structure of the N-MABK inequality (4) is such that half
of the expectation values EN include the observable A0 = σz.
Thus, only EN/2 nonzero expectation values, each of them
upper bounded by +1, can be present. A multiple application
of the triangle inequality leads to

MKN = |tr(MKNρ)| � 1

2

EN

NN
= 2

N−3
2 (16)

as a generous upper bound on the N-MABK value. A compar-
ison with the bound that certifies genuine N-partite entangle-
ment, cf. inequality (4) for m = N − 1, reveals

MKN � 2
N−3
2 < 2

N−2
2 , (17)

which finishes the proof. �
The even-partite case. The even-numbered analogon to

Eq. (15) is given by〈
σz ⊗

N−1⊗
k=1

B(k)Y(k)

〉
GHZN

=
N−1∏
k=1

β
(k)
z,Y(k)

, (18)

which is in general nonvanishing and thus prohibits an anal-
ogous analytical proof of a similar no-go theorem for even
N . Numerical optimization procedures, however, can be uti-
lized to find the maximum possible N-MABK value, where
the maximization is done over all Bloch components of all
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observables but A0 under the constraints of normalization for
each Bloch vector. For N = 4, the maximization yields an
upper bound of 1 for the maximum 4-MABK value, which
constitutes the classical bound. Thus, we obtain numerical
evidence, that in the first nontrivial even-numbered case of
multipartite DICKA, the honest implementation fails as well.

A device-independent generalization. The results presented
so far hint at fundamental problems of the DICKA protocol
employing the MABK inequality. More precisely, perfect
classical correlations and certified genuine multipartite entan-
glement via an MABK-inequality violation seem to be incom-
patible. So let us move away from the honest implementation.
All we demand is that there exists a set of observables and a
quantum state that perfectly correlate the measurement results
of all parties in type-0 measurement rounds of the DICKA
protocol. Besides this premise, no specific structure on the
quantum state and the (projective, dichotomic) measurements
are imposed. In this sense, it is a DI way to reinforce the
results presented so far. To do this, we employ the Navasqués-
Pironio-Acín (NPA) hierarchy [9], whose generality comes at
the cost of being numerically expensive. We thus restrict the
discussion to N = 3 parties. Note, however, that the extension
to larger N is straightforward.

Theorem 2. Given a 3-partite quantum state ρ and a set of
observables (AX , B(1)Y(1)

, B(2)Y(2)
) that lead to perfectly correlated

measurement results among all parties in type-0 measurement
rounds of the DICKA protocol, then

MK3 � 2
1
2 (19)

holds, i.e., the 3-MABK value cannot exceed the bound that
certifies genuine multipartite entanglement.

To show this theorem, let without loss of generality the
indices (X,Y(1),Y(2) ) = (0, 2, 2) indicate the set of inputs
that yields perfect classical correlations. Let A±

0 , B(1)±2 , and

B(2)±2 denote the projectors onto the ±1 eigenstate of the
corresponding observables and define

C := A+
0 ⊗ B(1)+2 ⊗ B(2)+2 + A−

0 ⊗ B(1)−2 ⊗ B(2)−2 . (20)

The solution of the following SDP, for which we use Ref. [10],
is the maximum 3-MABK value in this general setting, subject
to the constraint of perfect correlations,

max
AX ,B(1)Y(1)

,B(2)Y(2)
,ρ

|tr(MK3ρ)|
(21)

subject to: tr(Cρ) = 1.

The upper bound on the 3-MABK value obtained via the
solution of the SDP (21) coincides with the bound that
certifies genuine multipartite entanglement within numerical
precision. Thus, there cannot exist a quantum state and a set of
observables that simultaneously perfectly correlate all parties
and lead to the required 3-MABK-inequality violation, which
proves Theorem 2. The N-partite generalization of the SDP
(21) can be carried out for arbitrary integers N at a proper
hierarchy level.

Conclusion. We presented an analytical proof that the
honest implementation of the DICKA protocol proposed in
Ref. [1] fails for an odd number N of parties and provided
numerical evidence that the protocol fails in the first non-
trivial even-numbered case as well. We furthermore proved
via SDP that there cannot exist any honest implementation of
the DICKA protocol relying on the violation of the MABK
inequality for N = 3 parties, thus proving its incompleteness.
We finally conjecture that the N-partite generalization of
Theorem 2 holds also true, which suggests that there cannot
exist any honest implementation of the N-partite DICKA
protocol that leads to a nonzero secret-key rate.
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A potential quantum internet would open up the possibility of realizing
numerous new applications, including provably secure communication. Since
losses of photons limit long-distance, direct quantum communication and wide-
spread quantum networks, quantum repeaters are needed. The so-called PLOB-
repeaterless bound [Pirandola et al., Nat. Commun. 8, 15043 (2017)] is a fun-
damental limit on the quantum capacity of direct quantum communication.
Here, we analytically derive the quantum-repeater gain for error-corrected,
one-way quantum repeaters based on higher-dimensional qudits for two dif-
ferent physical encodings: Fock and multimode qudits. We identify parameter
regimes in which such quantum repeaters can surpass the PLOB-repeaterless
bound and systematically analyze how typical parameters manifest themselves
in the quantum-repeater gain. This benchmarking provides a guideline for the
implementation of error-corrected qudit repeaters.
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1 Introduction

The prospect of an eventual world-spanning quantum internet motivates tremendous in-
terest and investments [1-3]. A quantum internet offers—among an increasing number
of other applications [3-7]—the possibility of quantum key distribution (QKD), a cryp-
tographic procedure whose security is not based on computational hardness assumptions
but on the laws of quantum mechanics [8-10]. Although state-of-the-art experiments can
perform fiber-based direct-transmission QKD across a few hundred kilometers [11], they
face fundamental limitations [12-14]. The so-called PLOB-repeaterless bound (named after
Pirandola, Laurenza, Ottaviani and Banchi) states that the quantum capacity of a fiber
directly connecting two parties is exponentially suppressed in their distance [14]. As the
quantum capacity is closely related to the amount of transmissible quantum information,
direct transmission channels are not well suited for long distance quantum connections. To
overcome these limitations, quantum repeaters have been proposed [15-20]. They shorten
the distance of direct transmissions by introducing intermediate repeater stations such
that losses and errors can be tackled using entanglement heralding, quantum memories,
entanglement distillation, or quantum error-correcting codes (QECCs) [20]. Recent inves-
tigations have shown that quantum repeaters based on currently available technology have
the potential to surpass the PLOB-repeaterless bound, even with a single intermediate
repeater station [21-26]. Laboratory experiments have been reported which prove that it
is in principle possible to surpass the PLOB-repeaterless bound over distances of tens and
hundreds of kilometers [27-29].

For world-spanning quantum communication, error-corrected, one-way [17-19] (also
known as third generation [20]) quantum repeaters are promising candidates. Since the
implementation of such quantum repeaters will be demanding and expensive, it is crucial to
identify under which circumstances they can be superior to direct quantum communication.
Here, we address this problem in the case of error-corrected, one-way quantum repeaters
based on qudits (discrete variable quantum systems of dimension D ≥ 2), as such higher-
dimensional qudits offer the advantage that more noise can be tolerated before entangle-
ment is lost [30]. (See Refs. [31-34] for previous investigations in quantum repeaters based
on qudits.) To conclude that a quantum repeater can overcome the PLOB-repeaterless
bound, it is instrumental to find a lower bound on the achievable quantum capacity of
quantum repeaters. In previous approaches [21-26], this figure of merit usually was given
by the secret key rate achievable with a specific protocol; see also Refs. [35-39] for earlier
investigations in secret key rates of quantum repeaters. In this paper, we use a different
approach by exploiting that the quantum capacity of an error-corrected quantum repeater
can be lower bounded by log2(D)−H(P ), where H(P ) is the Shannon entropy of the error
probability distribution P of the state distributed by the repeater [14, 40]. There are nu-
merous parameters influencing the performance of quantum repeaters, e.g., total distance,
number of intermediate repeater stations, various error rates and choice of a QECC. In
Ref. [33], we derived an expression of the error probability distribution P in terms of these
parameters. Here, we identify and discuss parameter regimes in which error-corrected,
one-way quantum repeaters based on qudits can beat the PLOB-repeaterless bound.

This paper is structured as follows. In Sec. 2, we explain our method to assess the
quantum capacity of quantum repeaters. In Sec. 3, we identify parameter regions where
error-corrected qudit repeaters can surpass the PLOB-repeaterless bound. Finally, in Sec. 4
we conclude and give an outlook on possible future work.
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2 Identification of genuine quantum repeaters

Consider two remote parties called Alice and Bob. A quantum channel E from Alice to Bob
is a completely positive, trace-preserving map from the space of density operators on Alice’s
Hilbert space to that of Bob. The (two-way) quantum capacity, C(E), quantifies how much
quantum information Alice can transmit asymptotically to Bob through E using adaptive
local operations and classical communications. See Ref. [14] for the formal definition. We
call such a quantum channel a genuine quantum repeater if it has a quantum capacity that is
larger than that of any direct transmission. In Sec. 2.1, we explain how this characterization
depends on the encoding of qudits into photons by relating it to the multimode PLOB-
repeaterless bound. In Sec. 2.2, we recall a more abstract description of qudits which we
will use throughout this paper. In Sec. 2.3, we present the here-considered protocol for an
error-corrected qudit repeater and define its quantum-repeater gain. If this figure of merit
is positive, a genuine quantum repeater is identified.

2.1 Bosonic qudits and the PLOB-repeaterless bound

Consider a photonic mode with a bosonic creation operator b†. The pure-loss channel
E(η)

loss : b† �→ √
η b† +

√
1 − η b†

E, mixes such a mode with a vacuum mode via a beam splitter
with transmissivity η, where b†

E is the creation operator of an environmental bosonic mode
initialized in the zero-photon state |0〉E [41,42]. The PLOB-repeaterless bound states that
the quantum capacity of every quantum channel E is limited by that of E(η)

loss,

C(E) ≤ C(E(η)
loss) = − log2(1 − η), (1)

provided there exists a decomposition of the form E = EB ◦ E(η)
loss ◦ EA for some quantum

channels EA and EB [14]. As this type of decomposition is typical for direct quantum
communication scenarios, this bound is fundamental. Moreover, such decompositions are
known for all Gaussian channels [14,42].

The pure-loss channel transforms a pure Fock number state |k〉 = 1√
k!

(b†)k |0〉 into

E(η)
loss (|k〉 〈k|) =

k∑
j=0

(
k

j

)
ηj(1 − η)k−j |j〉 〈j| . (2)

Let E(η)
Fock;D denote the D-dimensional restriction of the pure-loss channel to inputs with k ≤

D−1 photons. This channel possesses a decomposition E(η)
Fock;D = ECV→DV ◦E(η)

loss ◦EDV→CV,
where EDV→CV is the inclusion map from C

D to the single mode Fock space, i.e., EDV→CV
sends a computational basis state to the state with the corresponding photon number, and
similarly for ECV→DV, cf. Ref. [14]. Thus, the PLOB-repeaterless bound yields

C
(
E(η)

Fock,D

)
≤ C(E(η)

loss) = − log2(1 − η), (3)

where equality is reached in the limit D → ∞. However, if D is finite, the inequality is
strict, as not the full potential of the pure-loss channel is exploited.

Instead of encoding a D-dimensional qudit into the Fock basis, one could also use time-
bin encoding [43-46], temporal modes (TM) [47,48] or modes of orbital angular momentum
(OAM) [49-51]. For any of these implementations—to which we will from now on refer to
as multimode encoding—the computational basis states are given by a single photon in one
of D modes, i.e.,

|m〉 := b†
m |vac〉 , (4)
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where b†
m is the creation operator of a bosonic mode labeled by m ∈ {0, . . . , D − 1} and

|vac〉 = |0, . . . , 0〉 is the vacuum state of all D modes. Sending such a qudit through a
beam splitter gives rise to the D-dimensional erasure channel,

E(η)
erase;D : ρ �−→ η ρ + (1 − η) |vac〉 〈vac| . (5)

Its quantum capacity is known to be C
(
E(η)

erase;D

)
= η log2(D) [14]. If D bosonic modes

are employed, the quantum capacity Erep of a genuine quantum repeater has to beat the
multimode PLOB-repeaterless bound,

C(Edirect) ≤ −D × log2(1 − η), (6)

which is the ultimate limit of direct quantum communication using D bosonic modes
through free space or an optical fiber with transmissivity η because the quantum capacity
of the pure loss channel is additive. At high loss η ≈ 0, the multimode PLOB-repeaterless
bound scales linearly in the transmissivity according to −D × log2(1 − η) ≈ 1.44Dη [14].

2.2 Abstract description of qudits

Formally, a qudit is a quantum system with a Hilbert space of dimension D ≥ 2. We label
its computational basis states |j〉 by elements j in Z/DZ = {0, 1, . . . , D − 1}, the ring of
integers modulo D. For example,

|+〉 := 1√
D

∑
j∈Z/DZ

|j〉 , (7)

is the equally weighted superposition of all computational basis states. Up to a global
phase, the generalized Pauli-operators of a qudit are products of

X :=
∑

k∈Z/DZ

|k + 1〉 〈k| and Z :=
∑

k∈Z/DZ

ωk |k〉 〈k| , (8)

where ω := e2πi/D, i.e., the generalized Pauli-operators are of the form

XrZs =
∑

k∈Z/DZ

ωks |k + r〉 〈k| , (9)

where r, s ∈ Z/DZ. They constitute a basis of the vector space of complex D × D ma-
trices [53,54]. The generalized Pauli-error channel, given an error probability distribution
P = (pr,s)r,s∈Z/DZ with

∑
r,s pr,s = 1, is defined as the quantum channel,

EP : ρ �−→
∑

r,s∈Z/DZ

pr,s(XrZs)ρ(XrZs)†, (10)

with Kraus operators √
pr,sXrZs. It corresponds to the random application of a Pauli-

operator XrZs to the state ρ with probability pr,s. The depolarizing channel,

E(1−f)
depol;D : ρ �−→ (1 − f)ρ + f

D
, (11)

is an example of a generalized Pauli-error channel where the trivial error X0Z0 = occurs
with probability p0,0 = 1−f +f/D2 and any other error occurs with probability f/D2 [33].
The controlled-Z gate,

cz :=
∑

k∈Z/DZ

|k〉 〈k| ⊗ Zk (12)
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a) Quantum repeater line

b) Physical encoding Multimode (MM)

Fock

|3〉 = b†
3 |vac〉

.

|3〉 = 1√
3!

(b†)3 |vac〉

...

Figure 1: a) An error-corrected, one-way qudit quantum repeater line with N −1 intermediate repeater
stations [33,37-39]. Alice produces the two-qudit state |Φ〉 = cz |+〉⊗2, stores one qudit into a quantum
memory (QM), and sends the other qudit to the first intermediate repeater station. At every repeater
station, the incoming qudit is entangled via a cz gate with a new qudit prepared in the |+〉 state. Then,
the previous qudit is measured in the X basis and the other qudit is sent to the next repeater station.
After N transmissions, Bob receives the last qudit, entangles it with his own |+〉 state, measures it,
and stores the remaining qudit in his own QM. As a result, Alice and Bob have stored an entangled
qudit pair in their QMs. The protocol takes place on a logical level where each logical qudit consists
of n physical qudits. b) Visualization of two different encoding methods into photons.

is a two-qudit Clifford gate which can be used to produce the maximally-entangled state,

|Φ〉 := cz |+〉⊗2 = 1
D

∑
j,k∈Z/DZ

ωjk |j〉 ⊗ |k〉 , (13)

from two copies of the |+〉 state.

2.3 Error-corrected qudit repeaters and the quantum-repeater gain

Assume that Alice and Bob make use of the one-way quantum repeater protocol described
in the caption of Fig. 1. In the ideal case, they obtain a maximally entangled state B† |Φ〉 in
their quantum memories (QMs) which only differs from |Φ〉 of Eq. (13) by the application of
the byproduct operator B = XcevenZcodd to Bob’s qudits, where the number of elementary
links N is even. The exponents

ceven :=
N/2∑
i=1

(−1)ic2i and codd :=
N/2∑
i=1

(−1)i+1cN+1−2i, (14)

are computed from the measurement outcomes ci at the i-th repeater station, i.e., ceven
depends on the measurement outcomes of even-numbered repeater stations and likewise
for codd. See Ref. [33] for more details.

To overcome the limit of direct quantum communication, the quantum repeater employs
logical qudits which are encoded using an �n, 1, d�D QECC such that each qudit is replaced
by n physical qudits of dimension D. The code distance d determines the number t of
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correctable errors by the QECC according to t = �(d − 1)/2�, see Ref. [55] for its formal
definition. Note that QECCs do not exist for all code parameters, e.g., all QECCs fulfill the
quantum singleton bound 2d−1 ≤ n. However, if D is a prime number and d ≤ (D −1)/2,
an explicit construction of �2d − 1, 1, d�D QECCs saturating the quantum singleton bound
is known in the form of quantum polynomial codes [56-59]. We focus on this encoding
because quantum polynomial codes can give an advantage over other QECCs for quantum
repeaters [31,32].

At every repeater station, the (logical) X measurement is performed as follows. All
physical qudits are measured individually in the eigenbasis of the X operator. If the number
of erroneous measurement results is smaller than or equal to t, the error pattern can be
corrected successfully. Otherwise, the repeater station guesses a random measurement
result. It turns out [33] that all repeater stations (except for the first) have the same
probability prep

succ of a successful correction. For the first repeater station, where fewer error
sources contribute, we denote this probability by p1.rep

succ . To simplify the error analysis, we
furthermore assume that Bob performs a (perfect) round of stabilizer measurements. As
quantum polynomial codes belong to the class of Calderbank-Shor-Steane codes [59], Bob
can independently correct X and Z errors. Again, if the number of X (Z) errors exceeds
t, Bob guesses a recovery operation. Otherwise, with probability pBob,X

succ (pBob,Z
succ ), he can

successfully reveal the error pattern and applies the appropriate recovery operation. In the
final step of the entanglement swapping protocol, Bob has to apply the byproduct operator
B = XcevenZcodd . In doing so, errors on the measurement results of the even-numbered
repeater stations propagate to X errors on Bob’s qudit which gives rise to an X dephasing
channel, ρ �→ prep

succρ + 1−prep
succ

D

∑
r∈Z/DZ XrρX−r. Likewise, wrong measurement results at

odd-numbered repeater stations induce Z errors on Bob. In conclusion, the overall error
statistics are of the form P = (pfin

r,s)r,s∈Z/DZ = (pfin,X
r pfin,Z

s )r,s∈Z/DZ, where

pfin,X
0 = 1

D

[
1 + (D − 1)(prep

succ)
N
2 pBob,X

succ

]
and (15)

pfin,X
r �=0 = 1

D

[
1 − (prep

succ)
N
2 pBob,X

succ

]

are the probabilities of X errors on Bob’s qudit, and

pfin,Z
0 = 1

D

[
1 + (D − 1)p1.rep

succ (prep
succ)

N
2 −1pBob,Z

succ

]
and (16)

pfin,Z
s �=0 = 1

D

[
1 − p1.rep

succ (prep
succ)

N
2 −1pBob,Z

succ

]

are the probabilities of Z errors. We will explain in Sec. 3.2 how these success probabilities
depend on the physical error rates.

The erroneous state distributed by the quantum repeater is ρ = EP (Φ), where Φ =
|Φ〉 〈Φ| is the projector onto the maximally entangled state defined in Eq. (13), and EP is
the generalized Pauli-error channel, recall Eq. (10), corresponding to the error distribution
P acting on Bob’s qudit. The quantum capacity of a generalized Pauli-error channel C(EP )
can be lower bounded by

C(Erep) = C(EP ) ≥ max{0, log2(D) − H(P )} =: B↓
rep, (17)

see suppl. of Ref. [14]. Note that B↓
rep is also a lower bound on the distillible entanglement

of EP (Φ) which is achievable with a distillation protocol given in Ref. [40]. Since a logical
qudit is encoded into n physical qudits, the number of photonic modes used to connect
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two repeater stations is M = n and M = nD for Fock and MM encoding, respectively.
Thus, the multimode PLOB-repeaterless upper bound, recall Eq. (6), is given by

B↑
PLOB :=

{
−n × log2(1 − η), Fock encoding
−nD × log2(1 − η), MM encoding ,

(18)

where η is the transmissivity of a pure-loss channel corresponding to the total distance
L from Alice to Bob. Every direct transmission channel employing the same number of
photonic modes, as the quantum repeater has a quantum capacity smaller than B↑

PLOB.
The quantum repeater, on the other hand, has a quantum capacity larger than B↓

rep. Hence,
the quantum repeater is genuine if (but not necessarily only if) the quantum-repeater gain,

Δ := B↓
rep − B↑

PLOB, (19)

is positive.

3 Parameter regimes for genuine quantum repeaters

As we have argued in Sec. 2.3, error-corrected, one-way qudit repeaters have a quantum
capacity of at least B↓

rep = log2(D) − H(P ), where the error probability distribution
P = (pfin

r,s)r,s∈Z/DZ depends on various parameters of the quantum repeater such as the
qudit dimension D, the distance L between Alice and Bob, the number N − 1 of repeater
stations, and the parameters of the �n, 1, d�D QECC. In Sec. 3.1, we introduce our noise
model and derive a worst-case approximation of the pure-loss channel for Fock qudits. In
Sec. 3.2, we provide the analytical dependence of P on all these parameters for both Fock
and MM encoding. Afterwards, in Secs. 3.3−3.5, we investigate parameter regimes for
genuine quantum repeaters.

3.1 Noise model

In a realistic scenario, Alice and Bob have to deal with errors. Each transmission chan-
nel from one repeater station to the next is modeled as a pure-loss channel E(η0)

loss with
transmissivity

η0 = 10− αL0
10 , (20)

where L0 is the distance between the repeater stations and α = 0.2 dB/km is the attenua-
tion of optical fibers at 1550 nm wavelength [60]. We derive an approximation of pure-loss
channels with generalized Pauli-error channels in Sec. 3.1.1 as preparation for an error
analysis using the framework of Ref. [33].

Besides transmission losses, we also include measurement errors (fM), modeled by a
depolarizing channel E(1−fM)

depol;D, recall Eq. (11), before each measurement. Unless stated
otherwise, we use the value fM = 0.01, as the best single-photon detector efficiencies of
about 95% match this order of magnitude [61]. To model gate errors (fG), we furthermore
assume that all cz gates are followed by two depolarizing channels (one on each qudit)
with an optimistic error parameter fG = 10−3. Deterministic photon-photon gates for
polarization qubits based on light-matter interactions have been demonstrated with an
average gate fidelity of 76.2±3.6% [62]. Two-mode gates for Fock qudits could in principle
be realized using Kerr-interactions [63], however, high-fidelity phase gates have only been
reported for a single photonic mode [64]. In Sec. 3.4, we will examine how the quantum-
repeater gain Δ depends on the operational error rates fM and fG.
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Finally, storage errors (fS) affecting Alice’s physical qudits in the QMs are modeled by
depolarizing channels, E(1−fS)

depol;D, with

1 − fS = 10− γL/c
10 , (21)

where γ is the decaying rate of Alice’s QM and c = 200km/ms is the speed of light in a
fiber with a refractive index of 1.5. Optical fiber loop QMs, with γfiber = αc = 40dB/ms,
are not useful, as the stored qudits decay with the same rate as the flying qudits. However,
matter-based QMs have been demonstrated: Cold atomic ensembles provide QMs with
γatom = 5dB/ms (50% efficiency in 0.6ms) [65]. Promising candidates are based on nitrogen
vacancy centers in diamond which range from γNV = 4 × 10−3dB/ms (coherence time
T2 ≈ 1s) [66, 67] to γNV = 7 × 10−5dB/ms (T2 ≈ 60s) [68]. Using trapped ions, decaying
rates of γion = 7 × 10−6dB/ms are possible [69]. Since these proof-of-principle QMs do
not take storage-and-retrieval efficiencies into account, we use a more realistic value of
γ = 10−2dB/ms (T2 ≈ 100ms [70]) for our analysis.

3.1.1 Approximation of pure-loss channels with generalized Pauli-channels

Recall from Eq. (5) that the pure-loss channel, E(η0)
loss , acts on MM qudits as an erasure

channel which, in turn, can be regarded as a depolarizing channel, as it converts a pure
input state ρ = |ψ〉 〈ψ| into

E(η0)
erase;D(ρ) = η0ρ + (1 − η0)ρ⊥ = (1 − fT)ρ + fT

D
= E(1−fT)

depol;D(ρ), (22)

where ρ⊥ = −ρ
D−1 is a normalized state orthogonal to ρ = |ψ〉 〈ψ|, and fT = (1−η0)(D−1)/D

can be interpreted as transmission error rate. Since each of the pure-loss channels between
the individual repeater stations is applied exactly once, we can thus replace them by
depolarizing channels, E(1−fT)

depol;D.
If, on the other hand, the qudits are encoded in the Fock basis, the pure-loss channel

introduces errors on the number of photons. Losing exactly r photons can be regarded as
an application of the error operator E = X−r, recall Eq. (8). For a given input state |k〉,
the probability for this to happen is given by

Pr
(
E = X−r

∣∣ ρin = |k〉 〈k|) =
{(k

r

)
ηk−r

0 (1 − η0)r, r ≤ k

0, r > k
, (23)

where k, r ∈ {0, . . . , D − 1}, as we have seen in Eq. (2). To upper bound the X error
probabilities, we set

pappr
−r := max

k∈{0,...,D−1}
Pr

(
E = X−r

∣∣ ρin = |k〉 〈k|) (24)

for all r �= 0. If pappr
0 := 1 − ∑D−1

r=1 pappr
−r is positive, we can model the pure-loss channel on

Fock state qudits of a single bosonic mode by the generalized Pauli-error channel,

E(η0)
appr;D : ρ �−→

D−1∑
r=0

pappr
−r X−rρ(X−r)†, (25)

as a worst-case approximation. In the error analysis for Fock-state encoding, we thus
replace each pure-loss channel,E(η0)

loss , between any two repeater stations by E(η0)
appr;D. Note

that this further decreases B↓
rep; thus, Δ > 0 will still indicate a genuine quantum repeater.
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We will only consider repeater lines for which the repeater stations are spaced close enough
such that pappr

0 ≥ 0, i.e., η0 ≈ 1. To compute the error probabilities in Eq. (24), we have to
find the input state |k〉 with the highest probability to lose r photons. By differentiating
the analytical continuation of Eq. (23), we obtain

0 = ∂

∂k

[(
k

r

)
ηk−r

0 (1 − η0)r

]
=

(
k

r

)
ηk−r

0 (1 − η0)r (ln(η0) + Hk − Hk−r) , (26)

where

Hk :=
k∑

j=1

1
j

= ln(k) + γEM + 1
2k

− 1
12k2 + 1

120k4 − . . . (27)

is the kth Harmonic number and γEM ≈ 0.577 is the Euler-Mascheroni constant. For
large k, the approximation Hk − Hk−r ≈ ln(k) − ln(k − r) yields k ≈ r/(1 − η0) as the
solution of Eq. (26). This is indeed a maximum because the sign of the derivative given
in Eq. (26) changes at k ≈ r/(1 − η0) from plus to minus, when increasing k. This follows
from the positivity and the strictly monotonic decrease of the derivative of the analytical
continuation of Hk. Let rd(x) denote the integer that is closest to x ∈ R. Because of η0 ≈ 1,
the approximation is so good that the integer k̃(r, η0) := min{rd (r/(1 − η0)) , D − 1} is
the number of input photons having the highest probability (among inputs of up to D − 1
photons) to lose exactly r photons. This yields

pappr
−r =

(
k̃(r, η0)

r

)
η

k̃(r,η0)−r
0 (1 − η0)r (28)

as the solution of Eq. (24).

3.2 Error statistics for error-corrected, one-way qudit repeaters

In order to evaluate the quantum-repeater gain defined in Eq. (19), one has to know the
error probability distribution P of the entangled state distributed by the quantum repeater.
In Sec. 3.2.1 and Sec. 3.2.2, we derive for MM and Fock qudits, respectively, the expression
of the success probabilities p1.rep

succ , prep
succ, pBob,X

succ , and pBob,Z
succ (recall the paragraph above

Eq. (15) for their definitions) from which P follows via Eqs. (15) and (16).

3.2.1 Error statistics for multimode qudits

Here, we review our previous results [33] which hold for error-corrected qudit repeater
lines where the qudits are encoded into multiple bosonic modes, e.g., time-bin, TM, and
OAM qudits. Recall from Eq. (22) that the pure-loss channel with transmissivity η0 can be
modeled by a depolarizing channel with error rate fT = (1 − η0)(D − 1)/D. Depolarizing
channels can be regarded as sources of discrete X and Z errors which propagate through
the repeater line. It turns out that there are six sources from which a Zei error at the X
measurement of qudit i can originate: two transmission, three gate, and one measurement
error channel [33,37-39]. Such an error will change the physical measurement result ci into
ci + ei ∈ Z/DZ with probability prep

ei
, where

prep
ei �=0 = 1

D

[
1 − (1 − fT)2(1 − fG)3(1 − fM)

]
(29)

and prep
0 = 1 − (D − 1)prep

ei �=0. For the first repeater station, fewer error sources contribute:
p1.rep

ei �=0 = 1
D

[
1 − (1 − fT)(1 − fG)2(1 − fM)

]
and p1.rep

0 = 1 − (D − 1)p1.rep
ei �=0 . Similarly, the
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probability of an Xei and Zei error on Bob’s qudit right before the stabilizer measurement
is given by pBob,X

ei
and pBob,Z

ei
, respectively, where pBob,X

ei �=0 = 1
D

[
1 − (1 − fG)2(1 − fS)

]
,

and pBob,Z
ei �=0 = 1

D

[
1 − (1 − fT)(1 − fG)3(1 − fS)

]
, and pBob,X

0 , pBob,Z
0 again follow from

normalization. See Ref. [33] for more details.
In the following, let pei be either prep

ei
, p1.rep

ei
, pBob,X

ei
, or pBob,Z

ei
, and likewise for psucc.

In either situation, n individual measurement results are employed for the error correction
attempt based on the �n, 1, d�D QECC. Since the error probability of a single error ei ∈
Z/DZ is given by pei , the probability of an error pattern e = (e1, . . . , en) at the respective
error correction attempt is given by

pe =
n∏

i=0
pei = p

n−wt(e)
0 p

wt(e)
e�=0 , (30)

where the Hamming weight wt(e) denotes the number of nonzero entries of e. As the
QECC can correct up to �(d − 1)/2� errors, the probability of a correctable error pattern
is given by

psucc =
� d−1

2 �∑
k=0

(D − 1)k

(
n

k

)
pn−k

0 pk
e�=0. (31)

If an error pattern occurs which cannot be corrected, a logical error is guessed with prob-
ability pguess = (1 − psucc)/D. Combining the respective success probabilities according to
Eqs. (15) and (16) yields the final error distribution on the distributed state.

3.2.2 Error statistics for Fock qudits

Here, we adapt the error analysis of Ref. [33] to error-corrected qudit repeater lines with
physical qudits encoded in the Fock basis of a single bosonic mode. In this case, the
propagation of errors is more complicated, as the error probabilities of E(η0)

appr;D all differ
from each other. A logical cz gate for the �n, 1, d�D quantum polynomial code is transversal
in the sense that there are invertible elements s1, . . . , sn ∈ Z/DZ such that

⊗n
i=1 czsi(ai, bi)

acts as a cz gate between two logical qudits a and b, where cz(ai, bi) denotes a physical
cz gate from the ith physical qudit of the logical qudit a to the ith qudit of b. For MM
qudits, in the previous section, this is not important because, at a depolarizing channel,
every nontrivial error occurs with the same probability. Here, however, an Xs−1

i ei error,
occurring during the transmission to physical qudit i, will induce a Zei error to qudit i of
the next logical qudit for all ei ∈ Z/DZ. Employing the error tracking tools of Ref. [33]
and taking all relevant error sources into account, we obtain that the probability for an
error ei on the measurement result of qudit i at every repeater station but the first is given
by

prep
ei

= pappr
s−1

i ei
(1 − fG)3(1 − fM) + 1

D

[
1 − (1 − fG)3(1 − fM)

]
, (32)

recall Eq. (28) for the definition of pappr
−r . For the first repeater station,

p1.rep
ei �=0 = 1

D

[
1 − (1 − fG)2(1 − fM)

]
(33)

10



and p1.rep
0 follows from normalization; note that transmission errors do not contribute, as

they are of X type for the channel E(η0)
appr;D. Similarly, pBob,X

ei
and pBob,Z

ei
are given by

pBob,X
ei �=0 = 1

D

[
1 − (1 − fG)2(1 − fS)

]
, (34)

and pBob,Z
ei

= pappr
s−1

i ei
(1 − fG)3(1 − fS) + 1

D

[
1 − (1 − fG)3(1 − fS)

]
.

This time, let pei be either prep
ei

or pBob,Z
ei

(for p1.rep
ei

and pBob,X
ei

we can continue as in
Sec. 3.2.1), and likewise for psucc. Again, the probability of an error pattern e = (e1, . . . , en)
is given by pe = ∏n

i=1 pei , but here we cannot simplify this expression using the Hamming
weight because the nontrivial error probabilities do not coincide. The probability that
a correctable error pattern occurs is given by the sum over all probabilities pe where
wt(e) ≤ �(d − 1)/2�. Since the substitution e′

i := s−1
i ei does not change the Hamming

weight, this sum does not depend on the si and can be expressed as

psucc =
� d−1

2 �∑
k=0

(
n

k

)
pn−k

0

⎛
⎝ ∑

r∈{1,...,D−1}k

pr

⎞
⎠ , (35)

where pr := pr1pr2 . . . prk
. By combining terms with equal probability in the inner sum

over all combinations of nontrivial error patterns r = (r1, . . . , rk), we find

∑
r∈{1,...,D−1}k

pr =
∑

�1+...+�D−1=k

(
k

	1, . . . , 	D−1

)
p�1

1 . . . p
�D−1
D−1 , (36)

where for 	1 + . . . + 	D−1 = k the multinomial coefficient is defined as(
k

	1, . . . , 	D−1

)
= k!

	1! . . . 	D−1! . (37)

Note that s1 = . . . = sn = 1 can be assumed for the evaluation of Eq. (36). Because pei �=
pe′

i
for ei �= e′

i, no further simplification can be made through combining coinciding terms.
As before, the final error distribution follows from the corresponding success probabilities.

3.3 Optimizing the quantum-repeater gain

In order to identify genuine quantum repeaters, we want to find parameter regions where
the quantum-repeater gain, Δ = B↓

rep − B↑
PLOB, takes values which are significantly larger

than zero. The first parameter we focus on is the repeater spacing L0. In Fig. 2, Δ is
plotted as a function of L0 for a quantum repeater line of total length L = 200km, a
distance large enough that Δ takes positive values while the M -mode PLOB-repeaterless
bound, B↑

PLOB ≈ 1.44M × 10−4, still has a recognizable influence. The selected QECCs
have parameters �D, 1, (D+1)/2�D, i.e., they saturate the quantum singleton bound. Note
that this also is the largest possible code distance for which quantum polynomial codes
are available at a given dimension D, where D is a prime number. Thus, the considered
QECCs are the best available for a given qudit dimension. The prime dimensions D ∈
{13, 17, 29, 37} are selected such that the code distance d = (D + 1)/2 of the QECC is
odd, as this ensures that the number of correctable single qudit errors is t = (d − 1)/2
(and not t = (d − 2)/2). For large D, the error correction capabilities perform sufficiently
good, such that H(P ), the Shannon entropy of the error probability distribution, is almost
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Figure 2: Quantum-repeater gain Δ = B↓
rep − B↑

PLOB in terms of the spacing L0 between adjacent
repeater stations for a quantum repeater line of total length L = 200km. The qudits are encoded with
a �D, 1, (D + 1)/2�D QECC where the qudit dimension D is color coded. Dashed and solid curves
correspond to MM and Fock qudits, respectively. Note that Δ is negative for D = 13 Fock qudits
because it cannot be ensured that sufficiently many errors can be corrected. We use the error model
of Sec. 3.1 with α = 0.2dB/km, fM = 10−2, fG = 10−3, and γ = 10−2dB/ms, i.e., fS ≈ 2.3 × 10−3.

zero, i.e., Alice and Bob have almost perfect knowledge about the state of their qudits. In
this saturated regime, where Δ does not significantly change with respect to L0 over some
orders of magnitude, the height of the plateau, maxL0 Δ = log2(D) − H(P ) − B↑

PLOB ≈
log2(D)−B↑

PLOB, is, by Eq. (18), larger for Fock qudits than for MM qudits because logical
Fock qudits employ only M = D modes while MM qudits require M = D2 modes. Thus,
for short distances L0, the repeaterless quantum capacity is larger for MM qudits. Indeed,
the gap between the Fock and the MM plateau is given by

B↑
PLOB(MM) − B↑

PLOB(Fock) ≈ 1.44 × 10−4 × (D2 − D) ≈
{

0.2 for D = 37
0.1 for D = 29 .

(38)

As L0 further increases, transmission losses start to significantly deteriorate the error
correction procedure, causing a sudden drop of Δ. The largest possible repeater spacing
for which the PLOB-repeaterless bound is surpassed is on the order of L0 ∼ 1km for
MM qudits and L0 ∼ 0.01 − 0.1km for Fock qudits, respectively. For Fock qudits, the
quantum-repeater gain is more vulnerable to transmission losses because of our worst-
case approximation of the corresponding pure-loss channel, recall Eq. (25). On the other
hand, for repeater lines with a very small repeater spacing L0, operational errors (gate
and measurement errors) start to play a critical role, as more repeater stations increase
the number of error sources, until eventually the lower bound on the repeater’s quantum
capacity, B↓

rep, vanishes and Δ coincides with −B↑
PLOB. Since we assume depolarizing

noise for operational errors in both encodings, repeaters based on MM and Fock qudits
qualitatively show the same behavior for small L0. For small D, the code distance d is
too small, both transmission losses and operational errors deteriorate the error correction
procedure, which prohibits the formation of a plateau where Δ(L0) is constant. We stress
that the repeater spacing L0 can be raised tremendously if the intended quantum-repeater
gain Δ is sub-optimal, e.g., B↓

rep = 0.9 × B↓max
rep .

In Fig. 3, we display the quantum-repeater gain Δ (color coded) for quantum repeater
lines of varying total length L (abscissa) and qudit dimension D (ordinate). We vary
D in steps of 4 such that the considered �D, 1, (D + 1)/2�D QECCs have an odd code
distance d, in between, we interpolate. The corresponding values of L0 are included in

12



Multimode qudits Fock qudits

D D Δ

L in km L in km

Figure 3: Quantum-repeater gain Δ = B↓
rep − B↑

PLOB and corresponding repeater spacing L0 (white
lines) for D-dimensional qudits based on MM (left) and Fock (right) encoding, The qudits are encoded
with a �D, 1, (D +1)/2�D QECC where the qudit dimension varies in steps of 4 from D = 5 to D = 93
and D = 33 for MM and Fock encoding, respectively. Note that the computational complexity of
Eq. (35) limits D ≤ 33 for Fock qudits. The total distance between Alice and Bob varies from L = 0km
to L = 500km and the repeater spacing L0 = L/N is adjusted such that B↓

rep = 0.9 × B↓max
rep . We use

the error model of Sec. 3.1 with α = 0.2dB/km, fM = 10−2, fG = 10−3, and γ = 10−2dB/ms.

Fig. 3 via white contour lines. For MM and Fock qudits, respectively, the repeater spacing
is on the order of L0 ∼ 1km and L0 ∼ 0.01km, respectively. If the total length L of
the repeater line is shortened, transmission losses become less important and operational
errors begin to dominate. Thus, to reach B↓

rep = 0.9 × B↓max
rep , the spacing L0 between two

adjacent repeater stations is increased, as this decreases the number of operational error
sources. The spacing L0 also increases with D because QECCs with a higher code distance
d = (D + 1)/2 can correct more errors.

We find three distinct regions in Fig. 3, each with a typical signature: (i) For small
L, the PLOB-repeaterless bound cannot be surpassed, i.e., Δ < 0. (ii) For large L and a
large code distance d = (D + 1)/2 we observe Δ > 0. (iii) For large L and small d we find
Δ ≈ 0. We now discuss the signatures of these three regions:

(i) [Δ < 0] At the brown region on the left, the M -mode PLOB-repeaterless bound is
much larger than log2(D) ≥ B↓

rep. Asymptotically, it is even unbounded,

B↑
PLOB = −M × log2(1 − η) L→0−→ ∞. (39)

As logical �D, 1, (D + 1)/2�D MM qudits are encoded into M = D2 modes, this
region extends to longer total lengths L of the repeater line if the qudit dimension
D is larger, e.g., L(Δ < 0, D = 13) � 100km and L(Δ < 0, D = 85) � 150km. For
Fock qudits, which only require M = D modes, this effects is barely noticeable and
L(Δ < 0) � 50km for all D.

(ii) [Δ > 0] At the purple region on the upper right, quantum repeaters can surpass
the PLOB-repeaterless bound because B↑

PLOB ≈ 0 while B↓
rep > 0. The quantum-

repeater gain Δ = B↓
rep − B↑

PLOB ≈ log2(D) − H(P ) increases (for a fixed L) in D if
the distance d = (D + 1)/2 of the QECC is large enough, as this causes H(P ) ≈ 0.
Genuine MM quantum repeaters are possible for D ≥ 13, whereby the minimal
repeater length increases with the number of modes M = D2, as already discussed
for region (i). For quantum repeaters with Fock encoding, the PLOB-repeaterless
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Figure 4: The quantum-repeater gain Δ in terms of the measurement error rate fM. The other error
parameters are fixed to α = 0.2dB/km, fG = 10−3, and γ = 0.01dB/ms, i.e., fS ≈ 2.3 × 10−3. The
qudits are encoded with a �D, 1, (D+1)/2�D QECC. The repeater line has a total length of L = 200km
and the repeater spacing L0 = L/N is adjusted such that B↓

rep = 0.9 × B↓max
rep .

bound can be outperformed for D ≥ 17 and L > 50km. For D = 13, we observe a
small quantum-repeater gain Δ ∈ (0.1, 0.5) for quantum repeater lines with a total
length L between 60km and 110km.

(iii) [Δ ≈ 0] At the white region on the lower right, the total length L is too large and
the code distance d is too small such that B↑

PLOB ≈ 0 and B↓
rep = 0, respectively.

Recall that we consider �D, 1, (D + 1)/2�D quantum polynomial codes, as they have
the highest code distance for a given dimension, as well as transversal cz gates and
transversal X measurements. For D ≤ 9, we find B↓

rep = 0 which implies Δ ≈ 0.

Let us summarize what can be learned from Figs. 2 and 3. Using higher-dimensional
qudits, it is possible to reach a larger quantum-repeater gain because the ideal quantum
capacity of the quantum repeater is given by log2(D). In many cases, this optimum can be
reached by an appropriate choice of L0. Since the code distance of the best known QECCs
also grows with the qudits’ dimension, a side effect of higher-dimensional qudits is the
possibility to increase the distance L0 between two neighboring repeater stations. For MM
qudits, L0 is two orders of magnitude larger than for Fock qudits, which could be due to
our worst-case Pauli-approximation of the pure-loss channel for Fock qudits. Within our
error model, Fock and MM quantum repeaters can surpass the PLOB-repeaterless bound
for L > 50km and L > 100 − 150km, respectively. MM repeaters require a larger total
length because the PLOB-repeaterless bound is higher for a larger number of modes.

3.4 Influence of operational errors on the quantum-repeater gain

As it is easier to implement a �D, 1, (D + 1)/2�D QECC for smaller qudit dimension D,
it is desirable to lower the demands on error correction. One way to achieve this is the
improvement of operational error rates. As we have shown in Sec. 3.2, operational errors
mainly originate from intermediate repeater stations, where gate and measurement errors
enter via (1 − fG)3 and (1 − fM), respectively, recall Eqs. (29) and (32). Thus, gate errors
affect the quantum-repeater gain three times as large as measurement errors do, but they
otherwise lead to the same qualitative behavior of Δ. Hence, we restrict the investigation
of the influence of operational errors to the measurement error rate fM and fix fG = 10−3,
as before. Figure 4 shows the quantum-repeater gain as a function of the measurement
error rate fM. We observe a similar pattern for all curves: At low error rates fM ≤ 10−3 the
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Nmin
L[km]

102 103 104

100

101

102
D = 17, Fock

D = 29, Fock

D = 13, MM

D = 17, MM

D = 29, MM

D = 73, MM

L in km
Figure 5: The minimal number of repeater stations per km for which the PLOB-repeaterless bound can
be just surpassed by a quantum repeater line of total length L with MM and Fock qudits encoded by
a �D, 1, (D + 1)/2�D QECC. The error parameters are α = 0.2dB/km, fM = 10−2, fG = 10−3, and
γ = 10−2dB/ms.

quantum-repeater gain Δ is almost constant. As fM increases, the smaller the dimension
D, the sooner the corresponding quantum-repeater gain drops to zero, as fewer errors can
be corrected by the QECC. In terms of quantum-repeater gain and in direct comparison,
the MM encoding is more tolerant towards measurement errors than the Fock encoded
repeater line. As expected, lower operational error rates allow genuine quantum repeaters
with smaller dimension D, as fewer errors need to be corrected. In this range of fM, the
smallest dimension for which genuine quantum repeaters are possible is D = 11 with MM
qudits.

3.5 Estimate of resources

For a resource-efficient use of quantum repeaters it is crucial to identify cost-saving can-
didates. Naturally, the costs of developing and maintaining a single repeater station will
increase with D, as a �D, 1, (D + 1)/2�D QECC is employed. However, higher-dimensional
qudits have the advantage of better error correction capabilities, thus, the number of nec-
essary repeater stations is lower. Table 1 provides the minimal requirement on the number

D 13 17 29 73
MM Nmin 325 228 155 118

L(Nmin) 120km 130km 140km 170km
Fock Nmin - 2070 1705 ?

L(Nmin) 56km 60km

Table 1: The minimal number Nmin of repeater stations for which the PLOB-repeaterless bound can
be just surpassed by a quantum repeater line of a total length L(Nmin), see also Fig. 5. We use the
error model of Sec. 3.1 with α = 0.2dB/km, fM = 10−2, fG = 10−3, and γ = 10−2dB/ms. For
D = 13 Fock qudits, the PLOB-repeaterless bound is not surpassed, and for D = 73 Fock qudits, the
corresponding minimum cannot be evaluated due to the computational complexity of Eq. (35).

of repeater stations of a genuine error-corrected qudit repeater.
A relevant figure of merit to compare different quantum repeater lines is the minimum

number of repeater stations per unit length Nmin/L, which we plot in Fig. 5 as a function of
the total length L for various encodings. All curves qualitatively show the same behavior:
For very small L, the PLOB-repeaterless bound is not surpassed, as direct quantum com-
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munication is still possible. Eventually, with increasing L, the PLOB-repeaterless bound
has dropped to a quantum capacity which can be surpassed by B↓

rep. At this minimal total
length Lmin, the curves in Fig. 5 begin. For Fock qudits, Lmin is smaller than for MM
qudits because fewer modes are used, consistent with previous observations above. If L is
slightly above Lmin, the PLOB-repeaterless bound B↑

PLOB quickly approaches zero. Thus,
the lower bound on the quantum capacity of the repeater, B↓

rep = log2(D) − H(P ), is al-
lowed to decrease as well, which leads to the possibility of setting up the quantum repeater
with fewer repeater stations per unit length. This explains the initial drop of the curves
for L � Lmin. At some point, the global minima from Tab. 1 are reached. For larger L,
the regime B↑

PLOB ≈ 0 is entered. Since we consider 0 � Δ, this implies H(P ) � log2(D).
That is, the number of repeater stations is adjusted such that the Shannon entropy of the
error distribution on the distributed state is kept slightly below log2(D). If, in this regime,
L is increased, the amount of error correction overhead has to be adjusted accordingly.
Therefore, the minimal number of repeater stations per unit length increases with L. The
(log-log) slope of the corresponding curves in this intermediate region decreases with D
because QECCs with a larger code distances can more readily cope with the additional
transmission losses. For D = 73 MM qudits, the code distance d = 37 of the QECC is
large enough such that the curve just barely grows. Eventually, so many storage errors
of Alice’s quantum memory have accumulated that the pseudothreshold1 of the respective
QECC is reached. In that region, storage errors strongly influence H(P ) until the condi-
tion H(P ) � log2(D) cannot be fulfilled for any choice of N/L. This explains the sudden
growth of the curves in Fig. 5 for large values of L and is clearly visible in Fig. 6.

H(P )

100 1012× 100 3× 100 4× 100 6× 100
0

2

4

6

8

L = 25, 000km

L = 20, 000km

L = 10, 000km

L = 1, 000km

log2(D)

N
L[km]

Figure 6: The Shannon entropy H(P ) of the error distribution of a state distributed by a �29, 1, 15�29
error-corrected MM quantum repeater for different total lengths L as a function of the inverse repeater
spacing 1/L0 = N/L. Perfect error correction means H(P ) = 0. For L ≤ 20, 000km, one can
reach H(P ) � log2(D) by an adjustment of N/L. Since the global minimum of H(P ) grows in
L, the value of N/L where log2(D) intersects H(P ) exponentially increases. For L = 25, 000km,
B↓

rep = max{log2(D) − H(P ), 0} is zero for any choice of N/L, i.e., the quantum-repeater gain Δ is
negative. As in Fig. 5, we use α = 0.2dB/km, fM = 10−2, fG = 10−3, and γ = 10−2dB/ms.

1The (code capacity) pseudothreshold of a QECC is the error rate at which the physical error rate is
equal to the logical error rate, in Eq. (31) with fS = pe�=0. For �29, 1, 15�29 and �73, 1, 37�73 QECCs, our
calculations show that this pseudothreshold is approximately 20%. By Eq. (21), fS = 0.2 is reached for
L ≈ 20, 000km since γ = 10−2dB/ms.
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In conclusion of this subsection, we observe that for our error model and existing
QECCs, genuine error-corrected qudit repeater lines require at least about 102 and 103

repeater stations for MM and Fock qudits, respectively. For a total length L between
102km and 104km, the PLOB-repeaterless bound can be surpassed while the minimum
number of repeater stations per unit length, Nmin/L , gradually increases in L. This
increase is less pronounced for quantum repeaters with better error-correcting capabilities,
i.e., for a higher qudit dimension D.

4 Conclusion and Outlook

In this paper, we have analyzed the applicability of error-corrected quantum repeaters
based on higher-dimensional qudits as long-term candidates of a quantum communication
infrastructure. By making explicit how the PLOB-repeaterless bound relates to the en-
coding of abstract qudits into photonic modes, we obtain a bound on the capacity of the
quantum repeater using the Shannon entropy of the error distribution of the final state.
We defined the quantum repeater-gain as a figure of merit and used it to identify genuine
quantum repeaters by a systematic analysis of its dependency on a variety of parameters.

We derived an analytical solution of the quantum-repeater gain for error-corrected,
one-way qudit repeaters based on two different types of physical encoding: Fock encoding,
where each qudit is encoded into a single photonic mode; and multimode encoding, where
each computational basis state of a qudit has its own mode. While Fock encoding is inter-
esting from a theoretical perspective, as it allows to surpass the PLOB-repeaterless bound
over shorter distances by harnessing higher photon numbers of the photonic mode, multi-
mode qudits pose the more realistic way of implementing error-corrected qudit repeaters,
as they are more readily available in the form of e.g., time-bin qudits, temporal modes,
and modes of orbital angular momentum. We found that genuine quantum repeaters are
feasible if the distance L0 between adjacent repeater stations is on the order of 1km for mul-
timode encoding, independent of its total length. For Fock qudits, we can only prove that
L0 ∼ 10m is sufficient however, we expect that this is due to our worst-case approximation
of the pure-loss channel and that Fock repeaters can also surpass the PLOB-repeaterless
bound with L0 ∼ 100m − 1km.

We have shown that an improvement of operational error rates makes it possible to
decrease the necessary number of physical qudits per logical qudit, as well as the qudit
dimension. For realistic error rates, the smallest qudit dimension with which a genuine
quantum repeater could be realized within our error model is D = 13 and D = 11 for
Fock and MM qudits, respectively. Although theoretical proposals for the generation of
Fock states with an arbitrary photon number exist [71], high-quality Fock states have
experimentally only been realized up to four photons, i.e., DFock ≤ 5, and no significant
improvement was made over the last 10-15 years [72,73]. For MM qudits, on the other hand,
the state-of-the-art continuously progresses: Qudits based on temporal modes, orbital an-
gular momentum and time bin can be realized up to DTM ≤ 7 [48], DOAM � 100 [52],
and Dtime-bin � 105 [45, 46], respectively. An experimental challenge that has to be over-
come to realize the here-considered protocol is the development of high-fidelity, two-photon
controlled-phase gates, as well as the preparation of multipartite entangled photons, in par-
ticular in the logical |+〉 state of a quantum polynomial code.

While near-term candidates such as the so-called single photon scheme based on a
nitrogen vacancy architecture [23] and twin-field quantum key distribution [24-26] are
within experimental reach, they are spatially restricted to tens and hundreds of kilometers,
respectively. As we showed here, error-corrected qudit repeaters, on the other hand, have
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the potential to overcome the PLOB-repeaterless bound over length scales on the same
order of magnitude as the Trans-Siberian railroad, i.e., 104km. These length scales are
sufficient to connect any two points on earth.

Here, we have focused on subspace quantum error-correcting codes (QECCs) [55], in
particular, quantum polynomial codes [56-59]. However, recently it was shown that sub-
system QECCs can have an advantage in fighting leakage errors in ion trap quantum
computers [74]. It would be interesting to find out whether subsystem codes, such as
Bacon-Shor codes [75-77], subsystem surface codes [78], 2D compass codes [79], and op-
timal generalized Bacon-Shor codes [80], also have an advantage in coping with photon
losses in an error-corrected quantum repeater protocol.
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lished by me. For the numerical calculations of the secret-key rates, HK provided a
program for the bipartite case which was generalized to the multipartite case by me.
Moreover, I developed the remaining programs, carried out all numerical computa-
tions, and created all plots and figures in the article. I wrote the entire manuscript
which was proofread and improved by my co-authors.
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A Genuine Multipartite Bell Inequality for
Device-independent Conference Key Agreement

Timo Holz,∗ Hermann Kampermann, and Dagmar Bruß
Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

(Dated: October 28, 2019)

In this work, we present a new class of genuine multipartite Bell inequalities, that is particularly
designed for multipartite device-independent (DI) quantum key distribution (QKD), also called
DI conference key agreement. We prove the classical bounds of this inequality, discuss how to
maximally violate it and show its usefulness by calculating achievable conference key rates via the
violation of this Bell inequality. To this end, semidefinite programming techniques based on [Nat.
Commun. 2, 238 (2011)] are employed and extended to the multipartite scenario. Our Bell inequality
represents a nontrivial multipartite generalization of the Clauser-Horne-Shimony-Holt inequality and
is motivated by the extension of the bipartite Bell state to the n-partite Greenberger-Horne-Zeilinger
state. For DIQKD, we suggest an honest implementation for any number of parties and study the
effect of noise on achievable asymptotic conference key rates.

Introduction.— Among a variety of quantum technol-
ogy applications [1–3], quantum key distribution (QKD)
is one of the most prominent concepts, in particular for
multiple parties in a quantum network [4]. Early pro-
posed QKD protocols [5–7] have high demands on ex-
perimental assumptions which are difficult to guarantee.
Device-independent (DI) QKD aims at establishing a se-
cret key without making detailed assumptions about the
inner working processes of the quantum devices [8–12].
The security of DIQKD protocols is based on a loophole-
free violation of a Bell inequality [11–18]. A connec-
tion between the DI secret-key rate and the violation
of the associated Clauser-Horne-Shimony-Holt (CHSH)
inequality [19] was established in [11, 12] for the bipar-
tite setting. In Ref. [18], a protocol to generate a secret
key among n parties, called DI conference key agreement
(DICKA) was introduced, which relies on the violation of
the Parity-CHSH inequality. Hereby, nonlocality is cer-
tified via an effective Bell test of two parties depending
on the measurement results of the remaining ones.

Not all multipartite Bell inequalities are suitable for
DIQKD because measurements and quantum resources
are required that allow a sufficiently large Bell-inequality
violation and at the same time provide highly correlated
measurement results among all parties. Moreover, at
least one party has to use one measurement for key gen-
eration and for the Bell test, to detect a potential tam-
pering of the devices. Achieving these requirements si-
multaneously should therefore be guaranteed by the very
structure of the Bell inequality. This constraint disquali-
fies several known Bell inequalities as a viable option for
a Bell test in DIQKD with certain quantum states. For
instance, the archetypical n-partite Greenberger-Horne-
Zeilinger (GHZ) state [20] can maximally violate the n-
partite Mermin-Ardehali-Belinskĭı-Klyshko (MABK) in-
equality [21–23] and also the Bell inequality most recently
introduced in Ref. [24]. However, as proven in Ref. [4],
perfectly correlated measurement results with the n-GHZ
state can only be obtained if and only if all parties mea-

sure in the σz eigenbasis, which then excludes maximum
violation of the Bell inequalities in Refs. [21–24], see [25].
In this work, we specifically design a novel class of mul-
tipartite Bell inequalities that fulfills the aforementioned
conditions. We prove the classical bounds of this inequal-
ity and discuss some features of it, in particular how
to obtain a large Bell-inequality violation. To demon-
strate the usefulness of our Bell inequality, we quantify
achievable conference key rates based on its violation.
For this, we use the approach of Ref. [13], which employs
the Navasqués-Pironio-Acin (NPA) hierarchy [26, 27], to-
gether with a multipartite constraint. We propose an
honest implementation for a multipartite DIQKD proto-
col and briefly discuss how noise affects the achievable
asymptotic DI secret conference key rates.
A genuine multipartite Bell inequality.— We impose the
following condition on the Bell test: Its structure has to
be such that it allows to simultaneously yield highly cor-
related measurement results and sufficiently large Bell-
inequality violation for certain quantum states. These
are crucial ingredients in any DIQKD protocol.
Consider a setup of n parties, called Alice and Bob(j) for
j ∈ {2, . . . , n} =: [n], cf. Fig. 1. Let each party measure
two dichotomic observables Ax and B

(j)

y(j) , with inputs
x, y(j) ∈ {0, 1}. We define a set that contains all ordered
possibilities to choose l out of the labels {2, . . . , n} for
the Bobs:

S(n)
l :=

{
α

(n)
l :=

(
α
(n)
l,1 , . . . , α

(n)
l,l

)∣∣∣ α(n)
l,j < α

(n)
l,j+1 (1)

∀j ∈ {1, . . . , l − 1}, α(n)
l,j ∈ [n]

}
,

for all n ∈ N, l ∈ {1, . . . , n − 1}, with vectors α
(n)
l of

length l, whose ordered components α(n)
l,j label a specific

Bob; e.g., S(4)
2 = {(2, 3), (2, 4), (3, 4)}. For the sake of

legibility, we also use the abbreviation

B
(j)
± :=

1

2

(
B

(j)
0 ±B

(j)
1

)
. (2)
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FIG. 1. A multipartite DIQKD setting, with parties Alice and{
Bob(j)

}n

j=2
. Alice distributes a multipartite quantum state

via quantum channels (dashed lines). The parties commu-
nicate over classical channels (solid lines) and they perform
measurements on their part of the quantum resource, specified
via an input x, y(j) ∈ {0, 1} that yields a result a, b(j) ∈ {±1}.

Definition. (Genuine multipartite Bell inequality) Let
n � 3 be an integer and S(n)

l the set defined in Eq. (1).

B(n) :=

〈
A1

n⊗
j=2

B
(j)
+

〉
− δ�n

2 �,n2

〈
A0

n⊗
j=2

B
(j)
−

〉
(3)

−
�n−1

2 �∑
k=1

[〈
A0 ⊗

∑
α

(n)
2k−1

∈S(n)
2k−1

2k−1⊗
j=1

B

(
α

(n)
2k−1,j

)

−

〉

+

〈 ∑
α

(n)
2k

∈S(n)
2k

2k⊗
j=1

B

(
α

(n)
2k,j

)

−

〉] {
� g

(n)↓
cl

� g
(n)↑
cl

defines a genuine multipartite Bell inequality, with upper
and lower classical bound g(n)↓cl and g(n)↑cl , respectively.

Remember that B(j)
+ and B

(j)
− depend on each other,

see Eq. (2). In the Suppl. Mat., we elaborate in detail on
the construction of the Bell inequality. To make it more
accessible, we state the Bell correlator for n = 3,

B(3) =
〈
A1B

(2)
+ B

(3)
+

〉
−
〈
A0

(
B

(2)
− +B

(3)
−

)〉
−
〈
B

(2)
− B

(3)
−

〉
, (4)

and visualize it in Fig. 2 for n = 4.

FIG. 2. Graphical representation of the correlators in the Bell
inequality (3) for n = 4, which highlights the special role of
Alice and the symmetry of the inequality w.r.t. to the Bobs.
Vertices denote observables, and each hyperedge symbolizes
a correlator the contains the corresponding observables.

Lemma. (Reduction of party number) For all n � 2,
B(n−1) is recovered from B(n) via B(n)

0 = B
(n)
1 = 1.

Proof. We have B(n)
− = 0, hence

l⊗
j=1

B

(
α

(n)
l,j

)

− = 0 ∀ α
(n)
l ∈ S(n)

l \ S(n−1)
l . (5)

Therefore, the sum over the set S(n)
l is converted into a

sum over S(n−1)
l . For n odd, the term 〈A0

⊗n−1
j=2 B

(j)
− 〉

emerges from the sum in inequality (3) for k = n−1
2 . As

B
(n)
+ = 1, the proof is complete. �
By iteration, B(k) is obtained from B(n) for all k < n.
Theorem. (Classical Bounds) In any classical theory,

the lower and upper bounds on B(n) are given by

g
(n)↑
cl = − (

2n−1 − 1
)

and g
(n)↓
cl = 1 ∀n ∈ N. (6)

Note that the upper bound is independent of n. See
Suppl. Mat. for the analytical proof, whose idea is to
consider all classical deterministic strategies, which can
be significantly reduced by exploiting the invariance of
B(n) under arbitrary relabeling of Bobs.
Here, some remarks are due. First, note that for n = 2,
B(n) and the classical bounds reproduce the CHSH in-
equality (normalized with a factor 1

2 ). Furthermore,
the Parity-CHSH inequality [18] is in fact a subclass
of our Bell inequality, that is recovered via the choice
B

(j)
0 = B

(j)
1 =: B(j) for all j � 3. Also, note that the

lower classical bound on B(n) is close to the algebraic
minimum of −2n−1. As we did not find a way to vi-
olate the lower bound, a violation of the Bell inequal-
ity (3) refers to the upper bound throughout this paper.
Beyond that, a characterization of the maximum Bell
value achievable with quantum correlations, the Tsirelson
bound g(n)qm [28], is desirable. However, there is no general
approach known that yields a tight Tsirelson bound for
an arbitrary Bell inequality, as mentioned in Ref. [29]. An
upper bound on the Tsirelson bound can be found by us-
ing the NPA hierarchy [27]. Usually, this procedure is nu-
merically expensive, which is why we only calculate this
bound for the first nontrivial odd- and even-numbered
case, i.e., for n ∈ {3, 4}:

g(3)qm = 1.5 and g(4)qm ≈ 1.5539. (7)

These bounds are tight within numerical precision, cf.
Table I. The Bell inequality (3) is particularly designed
for the state |GHZn〉 = 1√

2

( |0〉⊗n + |1〉⊗n ), under the
condition that the choice A0 = σz does not prohibit a
violation of this inequality. The optimal measurements
can be chosen to be in the σz − σx plane of the Bloch
sphere, as further argued in the Suppl. Mat., in detail,

A0 = σz , B
(j)
0 = sin(θ)σx + cos(θ)σz , (8a)

A1 = σx, B
(j)
1 = sin(θ)σx − cos(θ)σz , (8b)
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for all j ∈ [n], where the optimal value of the polar angle
θ depends on the number of parties n. Note that, due to
the symmetry of the Bell correlator and the target state,
θ does not depend on j. This choice allows a straight-
forward calculation of the Bell value achievable with the
n-GHZ state, which reads

g
(n,odd)
GHZ = 1− (1 + cos (θ))n−1+ sinn−1(θ) , (9a)

g
(n,even)
GHZ = 1− (1 + cos (θ))

n−1
+

cot (θ/2) sinn(θ)

1 + cos (θ)
. (9b)

Table I displays some quantities of interest for n � 7.

TABLE I: Maximum Bell value g
(n)
GHZ achievable with n-GHZ

state, cf. Eq. (9), the ratio of g
(n)
GHZ and g

(n−1)
GHZ , and the

corresponding polar angle θ for all Bobs. The quantum-to-
classical ratio is given by g

(n)
GHZ, as g

(n)↓
cl = 1 for all n. The

values are rounded to the fourth decimal place.

B(n) g
(n)
GHZ g

(n)
GHZ/g

(n−1)
GHZ θ

B(2)
√
2 ≈ 1.4142 3π

4
≈ 2.3562

B(3) 1.5 3

2
√

2
≈ 1.0607 2π

3
≈ 2.0944

B(4) 1.5539 1.0359 1.9786

B(5) 1.5926 1.0249 1.9106

B(6) 1.6224 1.0187 1.8650

B(7) 1.6464 1.0148 1.8318

For a given number of parties n, the corresponding
relation in (9) can be numerically optimized w.r.t. θ and
the limits become

lim
n→∞ g

(n)
GHZ = 2 and lim

n→∞ θ(n) =
π

2
, (10)

which is visualized in Fig. 3.
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FIG. 3. Achievable Bell value g
(n)
GHZ according to Eq. (9) as a

function of the polar angle θ for various number of parties n.

From Table I, we notice that the Bell value g(n)GHZ for
n ∈ {3, 4} coincides with the Tsirelson bound in Eq. (7).
Due to the symmetry and construction of the Bell in-
equality, we conjecture that this holds for general n. If

this is true, finding the Tsirelson bound to our Bell in-
equality boils down to a simple numerical optimization
over the parameter θ in Eq. (9). To conclude this dis-
cussion, consider the Bell inequality for n = 3 parties.
States of the form ρ = ρAB(2) ⊗ ρB(3) do not allow to
exceed the Tsirelson bound for n = 2 parties, which one
can verify – either analytically or via the NPA hierarchy –
by taking all classical deterministic strategies for Bob(3)

into account. Thus,
√
2 is a Svetlichny bound [30] which

can certify genuine tripartite entanglement. Likewise,
one observes that states of the form ρ = ρA ⊗ ρB(2)B(3)

cannot violate the classical bound. Beyond the tripartite
case, we have numerical indication for analogous state-
ments concerning biseparable splits, cf. Outlook.
Bounding Eves guessing probability.— Finally, we want
to apply our Bell inequality (3) for DIQKD. As prepa-
ration, we briefly describe how to obtain a lower bound
on the DI conference key rates. We focus on asymptotic
secret-key rates and assume that quantum devices behave
identically and independently in each round (i.i.d.). Let
G(n) denote the Bell operator corresponding to our Bell
inequality (3), i.e., B(n) = tr

(G(n)ρAB

)
, where ρAB :=

ρAB(2)...B(n) represents the quantum state shared among
all parties. Let Alice use measurement input x = 0 for
raw key generation and define By := (B

(2)

y(2) , . . . , B
(n)

y(n)).
Eve’s guessing probability Pg(a|E) about Alice’s A0-
measurement results a conditioned on her information
E can be upper bounded by a function f of the observed
Bell violation g(n)obs, i.e., Pg(a|E) � f(g

(n)
obs). For fixed g(n)obs,

it amounts to the solution of the SDP [13, 27, 31]

max
ρAB ,Ax,By

tr (A0ρAB) (11)

subject to: tr
(G(n)ρAB

)
= g

(n)
obs.

For classical-quantum states ρAE , the guessing prob-
ability is connected to the quantum min-entropy via
Hmin (a|E) = − log2 Pg(a|E) [32], from which we ob-
tain a lower bound on the DI asymptotic secret-key rate,
rSDP∞,n � − log2 f (gobs)−h (Q), where h(p) := −p log2(p)−
(1− p) log2(1− p) and Q denote the binary entropy and
the quantum bit error rate (QBER), respectively. The
noisiest channel determines the QBER [4], hence

Q = max
j∈[n]

(QAB(j)) , (12)

where QAB(j) is the QBER between Alice and Bob(j).
The bound established by the SDP (11) is valid against
the most general attacks the eavesdropper can per-
form [13] but they are in general rather loose. Recent
development promises improvement in this regard [33].
Application: DI conference key agreement.— Here, we
present achievable DI secret-key rates for n ∈ {2, 3, 4}
parties with a DIQKD protocol similar to the one in
Ref. [34]. In the honest implementation, the quantum
state distributed in each round of the protocol is the n-
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GHZ state. To minimize the error-correction informa-
tion, all parties measure σz in key generation rounds. To
test for Bell-inequality violation, the parties choose ob-
servables as proposed in Eq. (8) that lead to a maximum
violation. The protocol is aborted if the Bell inequal-
ity (3) is not violated. For a realistic scenario, we as-
sume local depolarizing noise, that corrupts each qubit
subsystem ρi according to

Ddep (ρi) = (1 − p)ρi +
p

2
12, (13)

where p ∈ [0, 1] denotes the noise parameter. In this
scenario, the marginal probability distribution of Alice’s
A0 measurement is uniform, i.e., 〈A0〉 = 0. Since we
consider binary outcomes, we can lower bound the Von
Neumann entropy in terms of the guessing probability via
H(a|E) � 2 (1− Pg(a|E)) [33, 35], which in turn yields

rB
(n)

∞ � 2 (1− Pg(a|E))− h (Q) . (14)

Figure 4 displays the lower bound on the asymptotic DI
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FIG. 4. Asymptotic DI secret-key rates according to Eq. (14)
in dependence of the noise parameter p (solid lines) for
n ∈ {2, 3, 4}. In bottleneck networks and for low noise, the
multipartite DIQKD protocol outperforms multiple bipartite
DIQKD protocols, Eq. (15), (dashed lines). The dotted line
corresponds to the analytical bounds of Ref. [18], Eq. (4) for
n = 4 in the same implementation. In terms of key rates cal-
culated via SDP, however, our Bell inequality leads to better
results compared to the Parity-CHSH inequality (not shown
in this Figure), an advantage that increases with the noise pa-
rameter p. For example for n = 3 and p ∈ {3, 4, 5}%, key rates
based on B(3) are larger by approximately {1.2, 3.6, 16.8}%.

secret-key rate, Eq. (14), as a function of the parameter
p of the noise model in Eq. (13). To put these key rates
into perspective, we consider the same comparison as in
Ref. [18], where the conference key rates are compared

with multiple bipartite key rates, described by [11]

rCHSH
∞ � 1− h (Q)− h

(
1 +

√
S2/4− 1

2

)
, (15)

where S denotes the violation of the CHSH inequal-
ity. For illustration, we consider the Bell state |φ+〉 ∝
|00〉+ |11〉 under the noise model in Eq. (13), which con-
nects S with Q according to S = 2

√
2 (1− 2Q). The

QBER Q as defined in Eq. (12) is related to the noise
parameter via Q = p (1− p/2) for all n. Under the as-
sumption that Alice cannot perform the bipartite QKD
protocols with every Bob simultaneously, which can be
the case in bottleneck networks, cf. Ref. [4], the bipartite
key rates get a prefactor of (n− 1)−1.
As mentioned, the bounds on the guessing probability
in terms of SDPs are often too pessimistic. Therefore,
we cannot beat the analytical results of Ref. [18]. In di-
rect comparison via the SDP, however, our Bell inequal-
ity leads to slightly better conference key rates than the
Parity-CHSH inequality, see caption of Fig. 4.
Conclusion and Outlook.— In this manuscript, we in-
troduced a novel family of genuine multipartite Bell in-
equalities, that is specifically tailored to the n-GHZ state,
while maintaining the possibility to maximally violate it
with σz measurements. As argued, an application is to
use this Bell inequality for a Bell test in a DIQKD proto-
col, because there highly correlated measurement results
and maximal violation are required at the same time.
We established the classical bounds of this Bell inequal-
ity and suggested measurements that lead to the maximal
Bell value, given the n-GHZ state is measured. Finally,
we calculated via semidefinite programming conference
key rates based on the violation of our Bell inequality
and discussed its robustness against depolarizing noise.
For future work, a more thorough study of our Bell in-
equality (3) is desirable. A starting point is to clarify
the role of partially entangled states and the existence
of associated intermediate bounds in our Bell inequality,
similar to the MABK case [36]. We conjecture that the
maximum Bell value B(n) for n parties with biseparable
states where at most k − 1 Bobs are entangled with Al-
ice, is determined by the maximum Bell value B(k) for k
parties. In this case a Bell value larger then B(k) is a DI
witness for entanglement of at least k + 1 parties, one of
them being Alice. An important goal would be to find an
analytical bound on the Von Neumann entropy in terms
of the violation of our Bell inequality (3). As we provided
a nontrivial genuinely multipartite generalization of the
CHSH inequality – in a similar spirit as the n-GHZ state
represents a multipartite generalization of the Bell state
– we hope that our contribution paves the way for further
insight into multipartite quantum communication.

The authors acknowledge support from the Federal
Ministry of Education and Research BMBF (Project
Q.Link.X and HQS) and from ML4Q Excellence Clus-
ter of DFG. We thank Reinhard Werner, Gláucia Murta,
and Lucas Tendick for helpful discussions.
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Supplemental Material

We split the Suppl. Mat. into four parts. First, we prove the classical upper and lower bounds of our Bell inequality.
Afterwards, we elaborate on the construction of the Bell inequality and discuss optimal measurements to achieve a
maximum Bell value with the n-GHZ state. Finally we state the DIQKD protocol for completeness. We recall our
Bell inequality for convenience:

− (
2n−1 − 1

)
�
〈
A1

n⊗
j=2

B
(j)
+

〉
− δ�n

2 �,n2

〈
A0

n⊗
j=2

B
(j)
−

〉
(16)

−
�n−1

2 �∑
k=1

⎡
⎢⎣
〈
A0 ⊗

∑
α

(n)
2k−1∈S(n)

2k−1

2k−1⊗
j=1

B

(
α

(n)
2k−1,j

)

−

〉
+

〈 ∑
α

(n)
2k ∈S(n)

2k

2k⊗
j=1

B

(
α

(n)
2k,j

)

−

〉⎤
⎥⎦ � 1.

Proof of the Theorem

The maximal and minimal classical value is achieved for deterministic strategies. To establish the classical bounds,
we thus consider the variables Ax and B

(j)

y(j) for x, y(j) ∈ {0, 1}, j ∈ {2, . . . , n} to take on values from the set {±1}
and denote with the vector

(
A,B(j)

)
a strategy from the set that contains every possible combination of ±1 as

components for this 2n-dimensional vector. We also define

B̃(n) := −δ�n
2 �,n2 A0

n∏
j=2

B
(j)
− −

�n−1
2 �∑

k=1

⎡
⎢⎣A0

∑
α

(n)
2k−1∈S(n)

2k−1

2k−1∏
j=1

B

(
α

(n)
2k−1,j

)

− +
∑

α
(n)
2k ∈S(n)

2k

2k∏
j=1

B

(
α

(n)
2k,j

)

−

⎤
⎥⎦ , (17)

such that we can write B(n) = A1

∏
j B

(j)
+ + B̃(n) for the classical Bell value. We make the important observation,

that any strategy
(
A,B(j)

)
that leads to A1

∏
j B

(j)
+ �= 0, eliminates the value of B̃(n) as this requires that B(j)

+ �= 0

(and thus B(j)
− = 0) for all j ∈ [n]. Therefore, we can maximize and minimize the expressions A1

∏
j B

(j)
+ and B̃(n)

independently. This distinction into cases allows us, to map the strategies for the maximization (minimization) of
B̃(n) from

(
A,B(j)

) ∈ {±1}2n to
(
A0,B

(j)
−

)
with A0 ∈ {±1} and B(j)

− = 1
2

(
B

(j)
0 −B

(j)
1

) ∈ {±1, 0}. For the proof we
require three important properties of the binomial coefficients:

n∑
l=0

(
n

l

)
= 2n (Normalization), (18a)

(
n

l

)
=

(
n− 1

l

)
+

(
n− 1

l − 1

)
(Pascal triangle), (18b)

(
n

l

)
=

l∑
j=0

(
m

j

)(
n−m

l − j

)
(Chu-Vandermonde identity). (18c)

Note, that we make use of the conventions 0! = 1 and
(
n
l

)
= 0 ∀l > n, l < 0. We divide the proof into two parts, one

for the lower and one for the upper bound.
(i) Lower bound. To establish the lower classical bound, note that the minimization of A1

∏
j B

(j)
+ leads only to the

value of −1. A minimization of B̃(n), however, is given by the choice B(j)
− = +1 for all j and A0 = +1, as this turns

every contribution in Eq. (17) negative, in detail

B̃(n) = −δ�n
2 �, n2 −

�n−1
2 �∑

k=1

[(
n− 1

2k − 1

)
+

(
n− 1

2k

)]
= −δ�n

2 �,n2 −
2�n−1

2 �∑
k=1

(
n− 1

k

)
, (19)

where we used the cardinality #S(n)
l =

(
n−1
l

)
. Via the normalization condition, Eq. (18a), the expression above

simplifies for both n odd and even to −(2n−1 − 1
)
, as claimed.
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(ii) Upper bound. A maximization of A1

∏
j B+(j) leads to the value of 1, but a priori it is not clear that this is indeed

the maximum possible B(n)-value. We start by counting all possible strategies for B̃(n) and categorize them, such
that we can calculate its value by a distinction of cases. There are 2× 3n−1 different possibilities to choose a strategy(
A0,B

(j)
−

)
, however, we notice that the expression B̃(n) in Eq. (17) is invariant under permutation of Bobs, i.e., we

only need to calculate the B̃(n)-value for a subset of strategies
(
A0,B

(j)
−

)
, that cannot be converted into each other

by permutation of Bobs. This reduces the number of different deterministic strategies to only n(n + 1). As a final
remark before we work through the different strategies note that the amount of nonzero values for the variables B(j)

−
determines which summands give a nontrivial contribution to B̃(n). To be more specific, let q± denote the amount of
±1-values in the strategy

(
A0,B

(j)
−

)
, and let q+ + q− =: q � n− 1 be the amount of nonzero B(j)

− -values. Due to the
permutational invariance of B̃(n) we order without loss of generality the strategy

(
A0,B

(j)
−

)
such that B(j)

− = 0 for all
j > q + 1. Then, every product in Eq. (17) associated to a label α(n)

l ∈ S(n)
l \ S(q+1)

l vanishes, as it contains at least
one Bob(j) with B

(j)
− = 0. This converts the sum over the set S(n)

l into a sum over the set S(q+1)
l of cardinality

(
q
l

)
.

The expression A0

∏n
j=2 B

(j)
− always vanishes for q < n− 1.

(a) q � n− 1, q = q±. For these cases, B(j)
− = B

(k)
− holds for all j, k ∈ {2, . . . , q + 1}. Applying this strategy, yields

B̃(n) = −δ�n
2 �,n2 δn−1,qA0(±1)n−1 −

�n−1
2 �∑

k=1

⎡
⎢⎣A0

∑
α

(q+1)
2k−1 ∈S(q+1)

2k−1

(±1)2k−1 +
∑

α
(q+1)
2k ∈S(q+1)

2k

(±1)2k

⎤
⎥⎦

= −δ�n
2 �,n2 δn−1,qA0(±1)n−1 −

�n−1
2 �∑

k=1

[
±A0

(
q

2k − 1

)
+

(
q

2k

)]
. (20)

To proceed, let n be an odd integer, hence δ�n
2 �,n2 = 0. Then, the best Alice can do is to choose her variable A0 ∈ {±1}

such that the sum is minimized, because of the global minus sign in Eq. (20). Exploiting identity (18b), leads to

B̃(n) = −
n−1
2∑

k=1

[
−
(
q − 1

2k − 2

)
+

(
q − 1

2k

)]
, (21)

where the only nonvanishing term is
(
q−1
0

)
and thus results in B̃(n) = 1. For n even, we can make a similar argument.

Choosing the value for A0 that maximizes the total expression leads us to

B̃(n) = δn−1,q +

(
q − 1

0

)
−
(
q − 1

n− 2

)
= δn−1,q + 1− δn−1,q = 1. (22)

(b) q+ + q− = q � n − 1, q± � 1. For the remaining cases, at least one variable B(j)
− is +1 and at least one is −1.

From Eq. (17) we obtain with this strategy

B̃(n) = (−1)q−+1δ�n
2 �,n2 δn−1,q A0 −

�n−1
2 �∑

k=1

[
A0

2k−1∑
r=0

(−1)r
(

q+
2k − 1− r

)(
q−
r

)
+

2k∑
r=0

(−1)r
(

q+
2k − r

)(
q−
r

)]
. (23)

Recall, that in the case where all Bobs have the same value, we have #S(q+1)
l combinations to attribute the value

±1 to all l out of q Bobs. Here, the sum still has
(
q
l

)
many terms, but some multiply to +1, while others to −1,

depending on how many elements are drawn from q−. To correctly count the numbers of combinations leading to the
sign ±1, we use the Chu-Vandermonde identity (18c). The idea here is to divide the total amount of options q into
two subsets q+ and q−, and then count all possible combinations to draw elements from these subsets. But due to
the negativity of elements from the set q−, we need to include a negative sign for

(
q−
r

)
if r is odd. Important is, that

due to the alternating sign, almost all terms in Eq. (23) cancel each other. In fact, the following two relations hold

�n−1
2 �∑

k=1

[
2k−1∑
r=0

(−1)r
(

q+
2k − 1− r

)(
q−
r

)]
= (−1)q−+1δ�n

2 �,n2 δn−1,q and (24a)

�n−1
2 �∑

k=1

[
2k∑
r=0

(−1)r
(

q+
2k − r

)(
q−
r

)]
= −1 ∀ n ∈ N, q± � 1, q+ + q− � n− 1. (24b)
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Showing the validity of these relations concludes the prove, as inserting them into Eq. (23) leads to the maximum of
B̃(n) = 1. To prove Eq. (24a) we order the left-hand side of it by positive and negative contributions

�n−1
2 �∑

k=1

[
2k−1∑
r=0

(−1)r
(

q+
2k − 1− r

)(
q−
r

)]
=

�n−1
2 �∑

k=1

[
k−1∑
r=0

(
q+

2k − 1− 2r

)(
q−
2r

)]
(25a)

−
�n−1

2 �∑
k=1

[
k−1∑
r=0

(
q+

2k − 1− (2r + 1)

)(
q−

2r + 1

)]
. (25b)

The idea is to use the Pascal triangle relation (18b), to eliminate the problems that arise due to the alternating sign.
Via Eq. (18b) we thus split the right-hand side of Eq. (25a) into the following two expressions:

�n−1
2 �∑

k=1

k−1∑
r=0

(
q− − 1

2r

)[(
q+ − 1

2k − 1− 2r

)
+

(
q+ − 1

2(k − 1)− 2r

)]
=

2�n−1
2 �−1∑
x=0

�x
2 �∑

r=0

(
q− − 1

2r

)(
q+ − 1

x− 2r

)
, (26a)

�n−1
2 �∑

k=2

k−1∑
r=1

(
q− − 1

2r − 1

)[(
q+ − 1

2(k − 1)− (2r − 1)

)
+

(
q+ − 1

2(k − 1)− 1− (2r − 1)

)]
=

2�n−1
2 �−2∑
x=1

� x+1
2 �∑

r=1

(
q− − 1

2r − 1

)(
q+ − 1

x− (2r − 1)

)
,

(26b)

where we introduced a new index of summation x to simplify both expressions. We dropped the contributions from
k = 1 and r = 0 in Eq. (26b), as they vanish anyway. To proceed, we add the right-hand sides of Eqs. (26a) and (26b).
All integers from r = 0 up to r = x, for all x ∈ {0, . . . , 2�n−1

2  − 2} appear in this sum. Therefore, the right-hand
side of Eq. (25a) is given by

�n−1
2 �∑

k=1

[
k−1∑
r=0

(
q+

2k − 1− 2r

)(
q−
2r

)]
=

2�n−1
2 �−2∑
x=0

x∑
y=0

(
q− − 1

y

)(
q+ − 1

x− y

)
+

�n−1
2 �−1∑
r=0

(
q− − 1

2r

)(
q+ − 1

2�n−1
2  − 1− 2r

)
, (27)

where we used ��n−1
2  − 1

2 = �n−1
2  − 1. To simplify Eq. (27), note that the second sum only yields a nontrivial

contribution, if 2r � q−−1 and 2r � 2�n−1
2 −q+q−, which is only possible if q � 2�n−1

2 +1. As we additionally have
the constraint q � n− 1, we require q = n− 1 and n needs to be an even integer. In this case, the only nonvanishing
term in the second sum in Eq. (27) is a single expression equal to +1, corresponding to r = q−−1

2 , which can only be
a valid integer if q− is odd. Beyond this, we use the Chu-Vandermonde identity (18c) to simplify the first expression
of the right-hand side in Eq. (27) and obtain

�n−1
2 �∑

k=1

[
k−1∑
r=0

(
q+

2k − 1− 2r

)(
q−
2r

)]
=

2�n−1
2 �−2∑
x=0

(
q − 2

x

)
+ δn−1,qδ�n

2 �,n2 δ� q−−1

2 �, q−−1

2

. (28)

The same procedure can be applied to the right-hand side of Eq. (25b). Ultimately, it leads to

�n−1
2 �∑

k=1

[
k−1∑
r=0

(
q+

2k − 1− (2r + 1)

)(
q−

2r + 1

)]
=

2�n−1
2 �−2∑
x=0

(
q − 2

x

)
+ δn−1,qδ�n

2 �,n2 δ� q−
2 �, q−2 , (29)

where the additional contribution is now only obtained if q− is an even integer. The difference between Eqs. (28)
and (29) represents the left-hand side of Eq. (25a). We thus obtain

�n−1
2 �∑

k=1

[
2k−1∑
r=0

(−1)r
(

q+
2k − 1− r

)(
q−
r

)]
= δn−1,qδ�n

2 �,n2

(
δ� q−−1

2 �, q−−1

2

− δ� q−
2 �, q−2

)
= (−1)q−+1δn−1,qδ�n

2 �,n2 , (30)

which proves identity (24a). Essentially the same approach now leads to the prove of relation (24b). Only minor and
straightforward adjustments for the index of summations are needed, which then leads to

�n−1
2 �∑

k=1

[
2k∑
r=0

(−1)r
(

q+
2k − r

)(
q−
r

)]
= −

(
q − 2

0

)
+

(
q − 2

2�n−1
2  − 1

)
− δn−1,qδ�n

2 �,n2 = −1, (31)

because the second binomial coefficient is +1 if n is even and q = n− 1, and 0 otherwise. This concludes the proof. �
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On the Construction of the Bell Inequality

The Bell inequality (16) is constructed around two central restrictions we impose on the Bell setting. First, we
want to achieve a large Bell value if the quantum resource is given by an n-GHZ state and second, that this Bell
value is achievable if Alice measures A0 = σz. As the Bell inequality is tested for violation in a DIQKD protocol,
these restrictions are clearly motivated by Theorem 1 of Ref. [4], which states that maximum correlation among all n
parties with a GHZ state requires all parties to measure σz . We set the stage by discussing known multipartite Bell
inequalities and introducing some notation. A priori, it is not clear, how to devise a useful Bell inequality, that is
particularly well suited for the n-GHZ state. The MABK inequality [21–23] for instance allows a maximum violation
by the n-GHZ state, as discussed in Ref. [37]. For DIQKD however, the MABK inequality is not suitable because the
very structure of it prohibits to simultaneously achieve perfectly correlated measurement results among all parties
and sufficiently high Bell-inequality violation, see Ref. [25] for details. Also most recently, Ref. [24] introduces a Bell
inequality which is tailored to be maximally violated by an n-GHZ state of any local dimension d. However, at least
for d = 2 and m = 2 measurement settings, this inequality suffers from the same drawbacks as the MABK inequality.
Imposing the additional constraint on the Bell setting, that Alice should in principle be able to measure A0 = σz
without compromising the possibility to violate the Bell inequality has led us to our inequality (16). Another Bell
inequality which embraces this idea, is the Parity-CHSH inequality [18]

B(n)
Parity := A1 ⊗ B

(2)
0 +B

(2)
1

2

n⊗
j=3

B(j) −A0 ⊗ B
(2)
0 −B

(2)
1

2
� 1 �

√
2, (32)

where each Bob(j) for j � 3 only has one observable. In fact, the Parity-CHSH inequality can be reproduced from
our Bell inequality (16), by choosing B(j)

0 = B
(j)
1 for all j � 3 and therefore B(j)

− = 0 and B(j)
+ = B

(j)
0 =: B(j).

We briefly recall the notation we already introduced in Ref. [25], as it is crucial for the construction of the Bell
inequality (16). Let F2 = {0, 1} denote the finite field with two elements, which allows us to define the vector space
Fn
2 of bit strings of length n. Let further Pn denote the n-qubit Pauli group. We define the stabilizer group

S :=
{
S ∈ Pn

∣∣∣ S |GHZn〉 = |GHZn〉
}

(33)

of the n-GHZ state χn = |GHZn〉〈GHZn|. The group S is generated by the n independent operators

G1 := σ⊗n
x , and for all j ∈ [n] : (34a)

Gj :=

j−2⊗
i=1

1
(i)
2 ⊗ σ(j−1)

z ⊗ σ(j)
z ⊗

n⊗
i=j+1

1
(i)
2 , (34b)

where the superscript denotes the corresponding subsystems. In general, the projector of any stabilizer state can be
written as the normalized sum of all of its stabilizer operators [38, 39]. We obtain for χn with s := (s1, . . . , sn) ∈ Fn

2

the representation:

χn =
1

2n

∑
s∈F

n
2

(σs1
x )

⊗n(
σs2
z ⊗ σs2+s3

z ⊗ · · · ⊗ σsn−1+sn
z ⊗ σsn

z

)
. (35)

The sum in Eq. (35) consists of 2n individual terms, where 2n−1 of them contain only Pauli σz and identity operators
(namely those with s1 = 0), while the other 2n−1 ones consists of only Pauli σx and σy operators. The weight of
such operators is given by the number of nontrivial Pauli matrices it contains. For s1 = 1, the operators always have
full weight, while for s1 = 0 the weight of the operators is always an even number, but all possible combinations
(with respect to the subsystems) of all even numbers 2k � n of σz occur. For the construction of our Bell inequality,
we pursue a strategy which matches the restrictions we initially imposed on the Bell setting. To obtain a large
quantum value with the n-GHZ state, the idea is to gain a contribution from as many operators as possible from the
representation in Eq. (35). To quantify this, recall that Pauli matrices are traceless and that their product is given by

σjσk = δj,k12 + i

3∑
l=1

εjklσl, (36)
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where δj,k and εjkl denote the Kronecker delta and the Levi-Civita tensor, respectively. As we require A0 = σz and
because of relation (36) the expression

tr
[
A0

⊗
j∈I

(
B

(j)
0 −B

(j)
1

) ∑
s∈F

n
2 ,s1=1

(
σxσ

s2
z ⊗ · · · ⊗ σxσ

sn
z

)]
= 0 (37)

always vanishes, for any index subset I ⊆ {2, . . . , n}, for all s with s1 = 1 and for all dichotomic observables B(j)
i . The

counterpart of expression (37) for s1 = 0 however, is nonvanishing if the observables have an even weight. The same
argument can be done for the corresponding expression without an observable of Alice. As all possible combinations
occur in the n-GHZ state, we also include all possible combinations of observables with respect to the parties for
expectation values in our Bell inequality. This explains the term

−
�n−1

2 �∑
k=1

[〈
A0 ⊗

∑
α

(n)
2k−1∈S(n)

2k−1

2k−1⊗
j=1

B

(
α

(n)
2k−1,j

)

−

〉
+

〈 ∑
α

(n)
2k ∈S(n)

2k

2k⊗
j=1

B

(
α

(n)
2k,j

)

−

〉]
(38)

in our Bell inequality. The expression −δ�n
2 �,n2

〈
A0

⊗n
j=2 B

(j)
−

〉
is included due to a fundamental difference between

the odd- and even-numbered n-GHZ state. For n even, the operator σ⊗n
z occurs in the GHZ state representation in

Eq. (35), while for n odd, this is not the case. Finally, since operators with s1 = 1 have full weight, we include one
additional expectation value in the Bell inequality that contains observables of all parties, hence the first term in our
Bell inequality.

Optimal Measurements and Properties of the Bell Inequality

As our main goal was to establish a useful Bell inequality for multipartite device-independent quantum key distri-
bution (DIQKD), our focus is not the complete characterization of our Bell inequality. For completeness, however,
we want to address some properties, in particular we suggest measurement observables for all parties that lead to a
maximum Bell value if the n-GHZ state is measured, because this is relevant for QKD. Further properties which could
be worth investigating are, if it is possible to analytically derive the Tsirelson bounds [28], if the Bell inequalities
constitute facets of the classical polytope [40], or if there exist intermediate bounds for separable states with respect
to different splits of parties, as it is the case for the MABK inequality [36]. For n = 3 we discovered that B(3) is in
fact a facet inequality, as one can show with the methods presented in Ref. [41]. As already mentioned in the main
article, we conjecture that there exist intermediate bounds.
To motivate the optimal choices for the observables given the GHZ state χn is measured, recall that a general qubit
observable can be parametrized as

B
(j)
i = cos

(
ϕ
(j)
i

)
sin

(
θ
(j)
i

)
σx + sin

(
ϕ
(j)
i

)
sin

(
θ
(j)
i

)
σy + cos

(
θ
(j)
i

)
σz , (39)

and analogously for A1. Note that B(j)
0 , B

(j)
1 always appear as B(j)

− ∝ B
(j)
0 −B(j)

1 in our Bell inequality, if paired with
A0 or if no observable of Alice is included. To maximize the corresponding expectation values, it is best to eliminate
the contribution of all B(j)

− in σx and σy direction, as this part vanishes anyway due to the structure of the GHZ state
in Eq. (35). This translates to ϕ(j)

0 = ϕ
(j)
1 for all j ∈ [n], as a necessary condition to guarantee B− ∝ σz . Likewise,

the expression B(j)
+ ∝ B

(j)
0 +B

(j)
1 appears only in combination with A1. Because all operators with s1 = 1 in Eq. (35)

have full weight, we might as well take that A1 and all B(j)
+ expressions have no contribution in σz direction, to gain

a large contribution to the Bell value from
〈
A1

⊗n
j=2 B

(j)
+

〉
. Due to cos(α) = − cos(π±α), we extract θ(j)1 = π± θ

(j)
0

for all j ∈ [n] from the representation (39), as a necessary condition to eliminate the σz contribution of B(j)
+ . Beyond

that, we note that sin(π±α) = ∓ sin(α). Together with ϕ(j)
0 = ϕ

(j)
1 , the choice θ(j)1 = π+θ

(j)
0 eliminates B(j)

+ , which is
why we use θ(j)1 = π− θ(j)0 in the following. Finally, we numerically find that for a given choice of A1, the actual value
of the azimuthal angle ϕ(j)

0 , ϕ
(j)
1 is irrelevant for maximizing the Bell value, as long as they are equal for each Bob.

Therefore, we set ϕ(j)
0 = ϕ

(j)
1 = 0 for all j ∈ [n] and ϕA1 = 0. Furthermore, the polar angles θ(j)0 , θ

(j)
1 can be chosen

the same for every Bob, without compromising the possibility to achieve the maximum Bell value. We therefore set
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θ
(j)
0 = θ and θ

(j)
1 = π − θ for all j ∈ [n]. In total, the maximum Bell value B(n) given an n-GHZ state is measured,

can be achieved with

A0 = σz , A1 = σx, B
(j)
0 = sin (θ)σx + cos (θ) σz , B

(j)
1 = sin (θ) σx − cos (θ)σz ∀ j ∈ [n], (40)

where the optimal value of the polar angle θ depends on the number of parties n. This choice allows a straightforward
calculation of the Bell value with the n-GHZ state

g
(n)
GHZ =

[
sin (θ)n−1 − δ�n

2 �, n2 cos (θ)n−1
]
−

�n−1
2 �∑

k=1

cos (θ)2k−1

[(
n− 1

2k − 1

)
+ cos (θ)

(
n− 1

2k

)]
, (41)

which can be simplified to

g
(n)
GHZ = 1− (1 + cos (θ))

n−1
+ sin (θ)

n−1 for n odd, (42a)

g
(n)
GHZ = 1− (1 + cos (θ))

n−1
+

cot (θ/2) sin (θ)
n

1 + cos (θ)
for n even. (42b)

For given n, the corresponding relation (42) can be numerically optimized for θ and the limits become

lim
n→∞ g

(n)
GHZ = 2 and lim

n→∞ θ(n) =
π

2
. (43a)

Multipartite DIQKD Protocol

Finally, we want to state the DIQKD protocol. Alice has two measurement inputs x ∈ {0, 1} implementing the
measurement of a dichotomic observable Ax. Each Bob(j) has three inputs y(j) ∈ {0, 1, 2}, with dichotomic observables
B

(j)

y(j) . The protocol includes the following steps, see also [4, 34]:

(i) In every round of the protocol, the parties do:
State preparation - Alice produces and distributes a multipartite state ρAB. Since we assume an i.i.d. imple-
mentation, the source generates the same state in every round.
Measurement - There are two types of measurement rounds, key generation (type-0) and parameter estimation
(type-1) measurement rounds. For type 0, the parties choose the inputs (x,y) = (0, 2, . . . , 2), and for type 1
they choose their inputs x, y(j) ∈ {0, 1} uniformly at random. The parties use a preshared random key to agree
on the type of measurement round.

(ii) Parameter estimation - The parties publicly communicate the list of bases and outcomes for type-1 rounds and
an equal amount of measurement outputs for type-0 rounds. The publicly announced data from type 1 is used
to estimate the Bell value g(n)obs of inequality (16), whereas the announced type-0 data is used to estimate the
quantum bit error rate Q, which quantifies the asymptotic error-correction information.

(iii) Classical postprocessing - Similar to the device-dependent multipartite QKD protocol [4], an error-correction
and privacy-amplification protocol is performed.

If the parties verify, that their data violates our Bell inequality (16), they commence the error correction. The solution
of the SDP in the article then upper bounds Eve’s guessing probability. If g(n)obs � g

(n)↓
cl they abort the protocol.
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