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Chapter 1 
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1.1 Liver: Structure and function

The liver is the largest internal organ in 

quadrant in the abdominal cavity below 

exocrine function. Hormones like Insulin

Thrombopoietin are secreted through 

bile is the major secretion compound 

properties, the liver also participates in various 

detoxification, control of metabolism, regulation of cholesterol synthesis and transport, urea 

metabolism, and secretion of an extensive array of plasma proteins including Albumin and 

Apolipoproteins. Because the 

such as hepatic fibrosis and cirrhosis, hepatocellular carcinoma can destroy the architecture 

of the liver which eventually leads to liver failure and 

mortality. Liver diseases is the fourth leading cause of death among middle

United States (1). So, it’s very urgent to discover novel drug target

rates due to liver diseases. Characterizing the molecular mechanisms of regulators and 

signalling cascades which drives liver diseases would pave the way to discover a new drug 

target.  

 

1.1.1 Architecture of the Liver

The basic architectural unit of the liver is the

hepatocytes lined by sinusoidal capillaries that radiate toward

lobules are roughly hexagonal in shape with each of six corners separated by the

a portal triad of vessels which consists of a portal vein

(Graphical figure 1).  

Graphical figure 1: Structure of portion
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Liver: Structure and function 

iver is the largest internal organ in the human body which is located in right upper 

quadrant in the abdominal cavity below the diaphragm which possesses both endocrine and 

Hormones like Insulin-like growth factors, Angiotensinogen, and 

Thrombopoietin are secreted through the endocrine system whereas for the 

ile is the major secretion compound of the liver. In addition to its endocrine and exocrine 

liver also participates in various other functions such as glycogen storage, drug 

detoxification, control of metabolism, regulation of cholesterol synthesis and transport, urea 

n of an extensive array of plasma proteins including Albumin and 

the liver is involved in various essential functions, liver diseases 

such as hepatic fibrosis and cirrhosis, hepatocellular carcinoma can destroy the architecture 

ntually leads to liver failure and results in high rates of morbidity and 

the fourth leading cause of death among middle

. So, it’s very urgent to discover novel drug targets to reduce the mortality 

rates due to liver diseases. Characterizing the molecular mechanisms of regulators and 

signalling cascades which drives liver diseases would pave the way to discover a new drug 

Architecture of the Liver 

chitectural unit of the liver is the liver lobule. The liver lobule 

hepatocytes lined by sinusoidal capillaries that radiate towards a central efferent vein. Liver 

lobules are roughly hexagonal in shape with each of six corners separated by the

a portal triad of vessels which consists of a portal vein, bile duct, and hepatic artery

tructure of portion of a liver lobule. Image was adapted from 

human body which is located in right upper 

both endocrine and 

like growth factors, Angiotensinogen, and 

the exocrine system, 

to its endocrine and exocrine 

functions such as glycogen storage, drug 

detoxification, control of metabolism, regulation of cholesterol synthesis and transport, urea 

n of an extensive array of plasma proteins including Albumin and 

involved in various essential functions, liver diseases 

such as hepatic fibrosis and cirrhosis, hepatocellular carcinoma can destroy the architecture 

results in high rates of morbidity and 

the fourth leading cause of death among middle-aged adults in the 

to reduce the mortality 

rates due to liver diseases. Characterizing the molecular mechanisms of regulators and 

signalling cascades which drives liver diseases would pave the way to discover a new drug 

liver lobule. The liver lobule consists of 

a central efferent vein. Liver 

lobules are roughly hexagonal in shape with each of six corners separated by the presence of 

, bile duct, and hepatic artery (1, 2) 

 

lobule. Image was adapted from (3).  
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Both the portal vein and hepatic artery supply blood to the lobule, which flows through a 

network of sinusoidal capillaries before leaving the lobule through the central vein. Although 

hepatocytes are the major parenchymal cell type of the liver and account for 78% of the liver 

volume (4), they function together with cholangiocytes (biliary epithelial cells), endothelial 

cells, sinusoidal endothelial cells, Kupffer cells (resident liver macrophages), pit cells (natural 

killer cells), and hepatic stellate cells (1).  

1.1.2 Liver cellular anatomy 

The liver is composed of parenchymal cells namely hepatocytes, which are the largest 

proportion of liver cells with approximately 78% of total liver cells. Non-parenchymal cells 

include cholangiocytes, hepatic stellate cells, Kupffer cells and liver sinusoidal endothelial 

cells with approximately 20-40 % of total liver. Each of these cell types possesses unique 

functions which cooperatively regulate hepatic functions at multiple levels (Graphical figure 

2).  

Hepatocytes are the major proportion of hepatic cell populations in the liver. They are 

polyhedral in shape, arranged in single-cell cords or plates. Hepatocytes are linked together 

via intercellular adhesion complexes and tight junctions (5). Hepatocytes are responsible for 

most of the liver functions such as metabolism, detoxification, synthesis, and storage of 

nutrients such as carbohydrates, fats, and vitamins. Hepatocyte is involved in endocrine and 

exocrine functions along with other hepatic cells. These functions are performed by different 

hepatocytes residing in different zones of hepatic lobules. This zonation has been correlated 

with the direction blood flow and help in carrying metabolites (6). Most of the hepatic toxins 

cause necrosis and damage, which varies with different zonal of hepatic lobules (7). 

 

Cholangiocytes are heterogeneous, highly dynamic population of epithelial cells that line the 

intra- and extrahepatic ducts of the biliary tree. The bililary tree runs along the portal tracts 

adjacent to a branch of the portal vein and hepatic artery (8), this forms a hallmark 

anatomical arrangement called portal triad (9). In response to injury, cholangiocytes become 

reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of 

peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte 

biology and determine the evolution of biliary damage. The failure of such mechanisms is 

believed to influence the progression of cholangiopathies, a group of diseases that selectively 

target biliary cells (10). In normal conditions, one of the most important and well-studied 
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functions of cholangiocytes is secretin-induced release of bicarbonate into bile. One of the 

major function of bile is to emulsify dietary fats and facilitate their intestinal absorption (11).  

 

Hepatic stellate cells (HSCs) represent a dynamic cell population that can exist in a 

quiescent or activated state and it is located in the space of Disse. In the quiescent state, 

HSCs store vitamin A in lipid droplets; however, other functions in this quiescent state 

remain unclear. Damage to the liver leads to activation of HSCs. Upon activation, HSCs 

proliferate and progressively lose vitamin A stores. HSCs are also responsible for deposition 

and organization of collagen in the injured liver. This process contributes to scarring of the 

liver, which can progress to cirrhosis, a critical pathology contributing to end stage liver 

disease (12). 

 

Graphical figure 2: Picture shows different cellular population of the liver.  Image was 

adapted from (3).  

Kupffer cells (KCs) are the resident macrophage population of the liver. As shown in 

Graphical Figure 2, KCs are attached to the lumen of sinusoidal endothelial cells. KCs are 

scavengers that move along the sinusoids and phagocytose foreign material present in the 

blood stream; fusion of the phagosome with a lysosome leads to digestion of the ingested 

material (13). Cytokines such as IL-6 and TNF-α which is produced from hepatic 

macrophages is essential for liver regeneration (14). In a same way, Kupffer cells, and 

monocytes are recruited and/or activated during liver injury which can induce increased pro-

inflammatory cytokines in liver tissue which can contribute to liver fibrosis (15). So, the 
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cytokines released from liver resident KCs or recruited monocytes have both beneficial and 

adverse effects on the liver during its damage and regeneration.  

Liver sinusoidal endothelial cells (LSECs) are the largest group of non-parenchymal cells 

of the liver and line the intrahepatic circulatory vessels to provide a large surface area for 

nutrient absorption. LSECs form the wall of the liver sinusoids which represent 

approximately 15 to 20 % of liver cells but only 3% of the total volume. LSECs are 

comprised of fenestrations, display high endocytic capacity and play a prominent role in 

maintaining overall liver homeostasis (16, 17).  

1.1.3 Liver diseases and its causes:  

Liver diseases account for approximately 2 million per year worldwide, 1 million is due to 

liver cirrhosis and 1 million is due to liver hepatitis and liver carcinoma. Together, liver 

cirrhosis and liver cancer account for 3.5% of all deaths worldwide (18). Since the liver is 

involved in multiple functions, liver injury or liver damage can cause serious complications 

to the human body. Importantly, liver function can be compromised in many diseased 

conditions, some of them are mentioned below which are more prevalent and can cause 

chronic liver disease: 

1.1.3.1 Chronic Viral Hepatitis  

    1.1.3.2 Alcoholic liver disease (ALD) 

1.1.3.3 Non-Alcoholic Fatty Liver Disease (NAFLD) 

1.1.3.4 Autoimmune Hepatitis (AIH) 

1.1.3.5 Primary biliary cholangitis (PBC) 

1.1.3.1 Chronic Viral Hepatitis 

Hepatitis B (HBV) and hepatitis C (HCV) virus are the two major viruses which can cause 

chronic liver inflammation (19, 20). HBV is a partially double-stranded DNA virus (21, 22). 

The HBV is most commonly transmitted from the mother to child during birth and delivery, 

as well as through contact with blood and other body fluids (23, 24). HBV infects and 

replicates in hepatocytes (25). Chronic HBV infections can cause immune mediated liver 

damage progressing to liver cirrhosis and hepatocellular carcinoma (HCC) (26). Two 

approaches are used to treat HBV patients (i) interferon therapy and (ii) treatment with 

nucleoside analog inhibitors of HBV reverse transcription (26). Interferon therapy aims to 

induce host anti-viral immune responses to clear the virus permanently (27), whereas 

nucleoside analog therapy aims to block viral DNA synthesis and thereby reduces the number 
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of infected hepatocytes. Nucleoside analog therapy can also inhibit progression of fibrotic 

and cirrhotic liver injury (28, 29), which can be life threatening.  

HCV is a small enveloped virus with a positive-sense, single-stranded RNA genome that 

encodes a large polyprotein of 3010 aminoacids (30). HCV is a bloodborne virus and 

transmission happens mostly through blood from infected patient to a non-infected healthy 

person. Like HBV, HCV also infects hepatocytes. HCV infection is rarely diagnosed during 

the acute phase; therefore, the treatment of acute hepatitis is very limited. The choice of 

medications and length of treatment depends on the HCV genotype, severity of liver damage 

and prior treatments. In 2018, World Health Organization recommended a pan-genotypic 

direct-acting antivirals (DAAs) for the treatment of HCV infected patients. DAAs are 

molecules that specifically target viral proteins which results in the disruption of viral 

replication and infection. There are four classes of DAAs, which are defined by their 

mechanism of action and therapeutic target. The four classes are nonstructural proteins 3/4A 

(NS3/4A) protease inhibitors (PIs), NS5B nucleoside polymerase inhibitors (NPIs), NS5B 

non-nucleoside polymerase inhibitors (NNPIs) and NS5A inhibitors (31). 

 

Altogether, both HBV and HCV infections can lead to irreversible liver cirrhosis and HCC.  

 

1.1.3.2 Alcoholic liver disease (ALD) 

Alcoholic-associated liver diseases is a major cause of liver diseases worldwide (32) and it is 

associated with high morbidity and mortality rates (33, 34). ALD comprises different stages 

of liver diseases ranging from asymptomatic steatosis, alcoholic steatohepatitis, fibrosis, 

cirrhosis and its related complications. Moreover, patients can develop an acute-on-chronic 

form of liver failure called alcoholic hepatitis (AH) (35, 36). Alcohol abuse can progress to 

liver fibrosis, liver cirrhosis, which leads to high risk of complications such as hepatic 

encephalopathy, renal failure and bacterial infections (37, 38). In the pathogenesis of AH, 

several cytokines have been involved, specially TNF-α has emerged as a key factor in the 

inflammatory process (39-41).  So, the anti-TNF agents such as infliximab and etanercept 

were investigated as potential therapies for AH. However, studies did not support this 

hypothesis, since anti-TNF treatments has lot of adverse side effects such as increased 

susceptible to infection and mortality (42).  
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1.1.3.3 Non-Alcoholic Fatty Liver Disease (NAFLD) 

NAFLD comprises a large spectrum of clinical and pathological liver conditions such as 

simple steatosis, non-alcoholic steatohepatitis (NASH) and fibrosis (43, 44). NASH is 

characterized by diffused fatty infiltration, lobular inflammation and ballooning degeneration 

in the liver. Studies have shown that various cytokines play a pivotal role in the process from 

steatosis to NASH, importantly TNF-α considered as a key inducer of nutrient and obesity-

associated NASH (45, 46). During the onset of NASH, TNF-α is able to activate hepatic 

stellate cells, expression and remodeling of the extracellular matrix, which are important 

drivers for liver fibrosis (47). Studies from different groups have demonstrated that anti-TNF 

treatment could rescue the hepatic inflammation, liver steatosis, fibrosis and insulin signal 

transduction in the experimental rat model of NASH (48, 49).   

 

1.1.3.4 Autoimmune Hepatitis (AIH) 

Autoimmune hepatitis is a rare chronic liver disease which affects mainly women and in AIH 

our own immune system attacks liver cells causing inflammation. AIH is characterized by 

increased transaminases, hypergammaglobulinaemia, circulating autoantibodies and interface 

hepatitis at liver histology. If AIH is not treated in an appropriate time period, it often leads to 

cirrhosis, liver failure and eventually death (50). AIH patients display different cytokine 

expression such as IL-6, IL-8 and TNF-α (51). The anti-TNF-α drug, Infliximab may be 

considered as a treatment in young patients although the therapy may be associated with 

infections (52, 53).  

1.1.3.5 Primary biliary cholangitis (PBC) 

Primary biliary cholangitis results from a slow progressive destruction of the small bile ducts 

of the liver which leads to accumulation of bile and causes damage to the liver tissue which 

eventually triggers liver fibrosis and cirrhosis (54, 55). PBC is characterized by serological 

presence of the antimitochondrial antibodies (AMA) and considered as immunologically 

mediated diseases where TNF-α plays a prominent pathogenic role (56). A study reported a 

case of a female patient with Rheumatoid arthritis (RA) and concomitant PBC with poor 

clinical response to conventional treatment. However, the anti-TNF-α drug, Infliximab 

treatment improved RA and stabilized the liver function (56). Importantly, reversible 

cholestatic liver disease has been observed in few patients receiving Infliximab for various 

autoimmune disorders (57).  
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Taken together, liver diseases from different aetiology can cause liver fibrosis. Moreover, 

TNF-α is considered as one of the important factors which triggers liver fibrosis and cirrhosis 

in many liver diseases.  

 

1.2 Liver fibrosis and hepatic stellate cells 

Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) such as 

collagen and fibronectin in and around inflamed or damaged tissue, which can lead to 

permanent scarring, organ malfunction and, ultimately, death, as seen in end stage liver 

diseases, kidney diseases, idiopathic pulmanory fibrosis (IPF) and heart failure (58-60). 

Fibrosis is also a major pathological feature of many chronic autoimmune diseases such as 

scleroderma, rheumatoid arthritis, Crohn’s diseases, ulcerative colitis, myelofibrosis and 

systemic lupus erythematosus (60). Fibrosis can be induced by a variety of stimulus including 

persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, 

and tissue injury (61). Chronic inflammation in the liver leads to liver cirrhosis, which is the 

11
th

 leading cause of death, accounting for 41,743 deaths in US, 2017 according to the 

Centers for Disease Control and Prevention (CDC). The accumulation of ECM proteins in the 

liver during liver fibrosis can misshape the hepatic architecture by forming a fibrotic scar, 

and the subsequent development of nodules of regenerating hepatocytes defines cirrhosis 

(62).    

 

Graphical figure 3: Functions, features and phenotypes of HSCs in normal and diseased 

liver. Figure was adapted from (63).  
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Fibrotic changes in liver disease are mediated by increased production of collagens and the 

transdifferentiation of HSCs into myofibroblasts (64-66). HSCs represent approximately 5-8 

% of the total liver (67). HSCs are progenitor cells that are normally quiescent but proliferate 

in response to liver injury and contribute to liver regeneration (68). Under normal conditions, 

quiescent HSCs reside in the space of Disse, store Vitamin A, and produce a specific marker 

called glial fibrillary acid protein (GFAP). Following stimulation with CD95 or other death 

receptor ligands, HSCs have the paradoxical tendency to proliferate (69). In response to liver 

injury, HSCs undergo a physiological change by reducing their Vitamin A storage, migrate to 

pericentral areas, and transdifferentiate into collagen type I– and α-smooth muscle actin (α-

SMA)–producing myofibroblasts (Graphical figure 3) (70, 71).  

Over all, activated HSCs are the major driving factor for liver fibrosis during liver injury 

which can lead to liver cirrhosis and HCC.  

1.2.1 Mechanism of HSC activation  

Multiple factors can contribute to activation, differentiation and proliferation of HSCs during 

liver injury. Since, activated HSCs are the major cellular factor which contribute to liver 

fibrosis, it should be considered as a primary cellular target for anti-fibrotic therapy (65). 

HSCs express specific genes and proteins which help to distinguish them from other liver 

resident cell types. These markers include: the cell-surface protein platelet-derived growth 

factor receptor-β (PDGFRβ); the enzyme lecithin retinol acyltransferase (LRAT); the 

cytoskeletal proteins desmin and glial fibrillary acidic protein (GFAP); and the transcription 

factor heart-and neural crest derivatives-expressed protein 2 (HAND2) (65, 72-77). 

The activation of HSCs is mediated by various growth factors such as transforming growth 

factor-β (TGF-β), platelet derived growth factor (PDGF), vascular endothelial growth factor 

(VEGF), and connective tissue growth factor (CTGF). These growth factors are generally 

considered as fibrogenic and proliferative cytokines (78-83) in chronic liver diseases. 

Another important factor is immune cells; hepatic fibrogenesis is induced by multiple 

resident and recruited immune cells during liver injury. Most importantly, resident Kupffer 

cells and recruited monocytes can contribute to liver fibrosis by increased production of pro-

inflammatory cytokines. Survival of activated HSCs is mainly driven by NF-κB signalling 

which is activated by macrophage mediated TNF- and IL-1β production (15). Consistently, 

macrophage depletion results in reduced liver injury and liver fibrosis (84) in carbon 

tetrachloride treated mice. Like cytokines, chemokines also can promote liver fibrosis. 
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Chemokines such as CCR1 and CCR2 is highly expressed in Ly6G
hi

 infiltrated monocytes 

which can promote liver fibrosis. Macrophage infiltration and liver fibrogenesis is redcued 

after BDL and carbon tetrachloride treatment in CCR1 and CCR2 deficient animals (85, 86). 

Chemokine ligands such as CCL3 and CCL5 can also promote HSC activation and immune 

cell infiltration during liver injury. In absence of CCL3 and CCL5, both HSCs activation and 

immune cell infiltration is reduced in carbon tetrachloride treated mice (87, 88). Hepatic 

injury is associated with increased bacterial translocation and can activate TLR4, an 

important pattern recognition receptor (PRR). Bacterial translocation and TLR4 activation 

can trigger liver fibrosis by inducing chemotaxis of kupffer cells (89).  

All together, the secretion of growth factors, cytokines and chemokines during liver injury 

regulates HSC activation, proliferation and transdifferentiation into myofibroblasts which can 

contribute to liver fibrosis.  

 

1.2.2 Role of TNF- in HSC activation 

TNF- is a proinflammatory cytokine that can induce liver cell death during liver diseases 

(90). TNF- is synthesized as a membrane-bound protein that is proteolytically cleaved by 

the metalloprotease ADAM17, also known as TACE (91, 92). TNF- has diverse biological 

roles in liver diseases including cytotoxicity, inflammation, growth stimulation and immune 

modulation (93). Increased level of TNF-α were found in patients with PBC (94), chronic 

viral hepatitis (95), fulminant hepatic failure (96), and alcoholic liver cirrhosis (97). 

Furthermore, TNF-α mediates liver injury in several animal models such as alcohol- or 

dimethylnitrosamine-induced liver injury (98, 99) and by exposure to hepatotoxins such as 

carbon tetrachloride or amanitin (100, 101). 

Cholestasis can be induced in animals by BDL, which is used to study chronic liver injury 

because it duplicates the hepatocyte damage, HSC activation and liver fibrosis similar to what 

we observe in human liver diseases. Like in other liver disease models, TNF- is also 

elevated in BDL animals (102). Importantly, liver injury and liver fibrosis is reduced in TNF-

 deficient animals by reduced production of ECM (103, 104). Previous studies have 

demonstrated that TNFR1 deficient HSCs showed decreased proliferation upon exposure to 

PDGF and thereby decreased liver fibrosis in BDL animals, whereas TNFR2 deficient mice 

didn’t show any difference in liver fibrosis compared to WT animals suggesting that TNF- 

regulates HSC biology through its binding to TNFR1 (105). Consistently, another study 
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shows that liver fibrosis is reduced in TNFR1 deficient animals in carbon tetrachloride 

induced liver injury models suggesting that NF-κB, STAT3 and AP1 signals transduced 

through TNFR1 play important roles in the formation of liver fibrosis (106). On the other 

hand, TNF- also plays a pivotal role in liver regeneration in partial hepatectomy (107, 108) 

and in carbon tetrachloride induced liver injury model (109) showing that TNFR1 is 

necessary for hepatocyte proliferation through NF-κB and STAT3 signalling pathways.  

Taken together, TNF- acts as a double-edged sword by inducing proliferation of HSCs, 

which is a hallmark for liver fibrosis in chronic liver diseases and it is also very essential for 

liver regeneration through the proliferation of hepatocytes during acute liver damage.  

 

1.3 ADAM proteases 

ADAM (a disintegrin and metalloprotease) proteins are membrane-anchored metalloproteases 

that process and shed the ectodomains of membrane-anchored growth factors, cytokines and 

receptors (110).  ADAMs are single pass transmembrane metalloproteases which contain well 

defined domains including an extracellular metalloprotease domain, a disintegrin domain, a 

cysteine rich domain, a EGF-like domain, a transmembrane domain and a cytoplasmic 

domain (110-112).  

 

Graphical figure 4: Structure of ADAM domain. Figure was adapted from (110) 

The prodomain inhibits the ADAM protease activity and it is cleaved by the protease furin 

(113-115). The ADAM disintegrin-domain can interact with integrins to influence cell 

adhesion and cell-cell interactions. The disintegrin and EGF-domain are thought to be 
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involved in substrate recognition (116). The catalytically active domain contains a specific 

sequence: HEXXH in their catalytic site of the metalloprotease domain. ADAMs that do not 

contain the HEXXH sequence at their conserved metalloprotease domain probably do not 

possess catalytic activity, and those ADAMs probably can have their biological function 

mainly by protein-protein interaction (110, 116). Among all ADAM proteases, ADAM10 and 

ADAM17 are well studied ADAMs and they have been shown to be essential in fertilization, 

angiogenesis, neurogenesis, heart development and cancer (110).  

1.3.1 ADAM17 / TACE 

ADAM17 is a well-defined member of the ADAM family (110). ADAM17 was first 

discovered in 1997 by two research groups showing that the ADAM17 enzyme can release 

membrane-bound TNF- into a soluble form (91, 92). Importantly, expression of ADAM17 

can vary from embryonic development to adult stage and it is widely expressed in different 

organs such as brain, heart, kidney and skeletal muscle (91). ADAM17 is synthesized as 

inactive protease that requires furin mediated cleavage in the trans Golgi-network (TGN) to 

become active (110). The main function of ADAM17 is to cleave ectodomains of various 

transmembrane proteins such as Epidermal growth factor receptor (EGFR) ligands, TNF- 

and its receptors, adhesion molecules and the amyloid precursor protein (91, 92, 117-120). 

The cleaved ligand can bind either to the same cell (autocrine) or to nearby cells (paracrine) 

(121, 122). Since, ADAM17 is involved in the shedding of 76 membrane-anchored ligands 

(123), its activation has to be tightly regulated. Excess ADAM17 activation can trigger tumor 

progression by increasing EGFR signalling and also can cause inflammatory related diseases 

by increased shedding of membrane-bound TNF- (124, 125). On the other hand, low 

ADAM17 activation can cause defects in development and regeneration (124). Mice with 

specific ADAM17 inactivation in the myeloid cells are protected against endotoxin shock by 

preventing cleavage of membrane-bound TNF- (125).  However, factors regulating 

ADAM17 activation and maturation is still poorly understood.  

1.3.2 Role of ADAM17 in liver diseases  

Since ADAM17 is involved in the shedding of various membrane-bound ligands and 

receptors, it is highly possible that ADAM17 might play a crucial role during liver damage 

and liver regeneration. Hepatocyte-specific ADAM17 deletion significantly attenuated the 

induction of TNF-, TNFR1 and amphiregulin after partial hepatectomy suggesting that 
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ADAM17 is the primary sheddase during liver regeneration (126). Tissue inhibitor of 

metalloproteinase 3 (TIMP3) is a known inhibitor for ADAM17 activity and it regulates 

ADAM17 at a posttranslational level (127). TIMP3 deficient animals show enhanced 

activation of ADAM17 by constitutive release of TNF- and increased activation of TNF 

signalling in the liver which leads to inappropriate induction of inflammation and TNF-

mediated cell death (128) suggesting that ADAM17 regulation is very crucial during partial 

hepatectomy. Conversely, enhanced shedding of ADAM17 ligands such as TNF receptor 1 

(TNFR1), TGF-α, amphiregulin and HB-EGF in TIMP3 deficient animals are protected 

against Fas mediated apoptosis (129). Importantly, ADAM17 expression is increased in liver 

and spleen tissue after partial hepatectomy (130) suggesting that ADAM17 activity is 

indispensable during liver regeneration. ADAM proteases might also regulate liver fibrosis at 

different levels: (a) release of paracrine-acting cytokines and growth factors, (b) shedding of 

receptors on HSC membrane, and (c) modulation of ECM (131). Studies from different 

research groups have revealed the expression of several ADAM proteases including ADAM 

8, ADAM 9, ADAM 10, ADAM 12, ADAM 17 and ADAM 28 are increased with HSCs 

activation and their expression was also detectable in fibrotic liver diseases (132-135). 

Recently, two interesting parallel studies demonstrated that the inactive member of rhomboid 

protease 2 (iRhom2) encoded by Rhbdf2 is essential for ADAM17 trafficking from 

endoplasmic reticulum to the cell surface and also for its activation (136, 137). Taken 

together, ADAM17 is a very critical metalloprotease which regulate liver regeneration and 

liver fibrosis by shedding of membrane-bound growth factors, cytokines and receptors.  

1.4 Rhomboid proteases 

Rhomboid proteases are well-conserved family of intramembrane serine proteases. The active 

site of rhomboids is generally buried within the transmembrane domain (TMD), and they 

cleave substrates in or near transmembrane domains, thereby releasing soluble domains from 

membrane proteins (138). There are four different classes of intramembrane proteases that 

have been discovered so far such as metalloproteases (139-141); aspartyl proteases, of which 

two classes are gamma secretase and the signal peptide peptidase-like family (142-144); and 

the rhomboid-like family, which are serine proteases (145, 146). The first rhomboid was 

discovered in a Drosophila mutation with an abnormally rhomboid-shaped head skeleton 

(147). Further studies demonstrated that Drosophila rhomboid participated in developmental 

control by the EGFR pathway (148, 149). Eukaryotic rhomboids can be classified into three 

major groups based on membrane topology, structure and function information: (a) the active 
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Graphical figure 5: Image shows the rhomboid family. Image was adapted from 
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a tightly clustered group of apparently inactive rhomboid-like proteins (termed 

iRhoms), which resemble rhomboids in most regards but which lack catalytic residues; and 

a number of other rhomboid-like proteins that are predicted to be inactive but which do 

not cluster with themselves or with the iRhoms (138, 145) (Graphical figure 5). 

shows the rhomboid family. Image was adapted from 

inactive rhomboid protease 2 

which lack the catalytic domain of rhomboid proteases, but they 
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reach plasma membrane in absence of iRhom2 and consistently shedding of ADAM17 

also decreased in iRhom2 deficient animals (136, 137) (Graphical figure 6)

Graphical figure 6: Schematic representation of ADAM17 and iRhom2 trafficking 

reticulum to cell surface. Figure was adapted from (152).  
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regulates STING in two different ways: by mediating TRAPβ-dependent translocation and 

activation of STING and by linking the deubiquitinase EIF3S5 to STING facilitating the 

deubiquitination and stability of STING (156). iRhom2 also protects mitochondrial 

membrane-located adaptor protein VISA from degradation. VISA is an essential regulator for 

antiviral genes, iRhom2 deficiency showed reduction in antiviral response to several RNA 

viruses, including Sendai virus and vesicular stomatitis virus (VSV). iRhom2 deficient mice 

had higher VSV titers in spleen and liver and these mice are highly susceptible to VSV 

infection when compared to WT animals (157).  

1.4.3 Role of iRhom2 in inflammatory diseases 

iRhom2 is an important contributor for inflammation as it is tightly connected with ADAM17 

/ TNF-α signaling. iRhom2 knockout mice showed significant reduction of circulating TNF-α 

after LPS injection compared to control mice (137). Septic shock can be induced in vivo by 

combined injection of D-galactosamine (GalN) and LPS (158).  iRhom2 deficient animals are 

protected from TNF-α mediated septic shock and liver damage compared to WT mice. 

Control mice showed an increased disrupted liver architecture and are highly susceptible to 

LPS and D-galactosamine (GalN) injection compared to iRhom2 knockout animals (137). 

iRhom2 expression is upregulated in synovial macrophages from rheumatoid arthritis (RA) 

patients compared to healthy controls. Using K/BxN mouse RA model, this study shows that 

iRhom2 knockout mice are significantly protected from inflammatory arthritis as shown by 

less joint swelling, synovial inflammation and cartilage erosion (159). iRhom2 deficient 

animals are protected from kidney inflammatory disease Lupus nephritis (LN) by inhibiting 

HB-EGF/EGFR and TNF-α signaling in the kidney tissues (160). iRhom2 knockout mice are 

also protected from Hemophilic arthropathy (HA), a degenerative joint disease that is a major 

manifestation of the bleeding disorder hemophilia A. iRhom2 loss in a mouse model for HA 

led to a marked reduction in osteopaenia and synovial inflammation (161). Airborne 

particulate matter (PM2.5) induces hepatic steatosis, metabolic syndrome and dyslipidaemia 

along with an increased expression of iRhom2 and elevated TNF-α in WT mice and these 

effects are significantly reduced in iRhom2 deficient animals. Knockdown of iRhom2 in 

Kupffer cells (liver-resident macrophages) leads to decrease in inflammatory cytokines, 

suggesting a role for iRhom2/ADAM17/TNF-α signaling axis in regulating hepatic 

inflammation and lipid metabolism in response to PM2.5 (155). TNF-α levels are increased in 

the serum and lungs of wild-type mice when subjected to Intestinal ischemia-reperfusion 

(I/R) and the effect is significantly reduced in iRhom2 deficient animals suggesting that 
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iRhom2 can be a novel therapeutic target for acute lung injury (AKI) after Intestinal 

ischemia-reperfusion (162). iRhom2 also participates in mediating pro-inflammatory 

responses during myocardial infarction, which is driven by TNF-α signalling (163). iRhom2 

has been suggested as a therapeutic target for LPS-induced cardiac injury by regulating the 

inflammatory response (164). Taken together, iRhom2 is a critical regulator for ADAM17 

activity and TNF-α secretion.  

1.4.4 Role of iRhom2 in cancer 

EGFR and TNF-α signalling are highly implicated in tumour growth and development (165). 

Moreover, iRhom2 has been shown to be involved in the shedding of EGFR ligands and 

TNF- α together with ADAM17, it is highly possible that iRhom2 could be a major driving 

factor for tumour progression.  Mutations in the iRhom2 gene cause the rare autosomal 

dominant disease Tylosis with oesophageal cancer (TOC). This is consistent with increased 

EGFR ligand shedding, proliferation and migration potential observed in tylotic keratinocytes 

(166-168). iRhom2 also regulates thickening of footpad epidermis through its interaction with 

keratin 16 (K16). iRhom2 interacts with K16 and this interaction is increased in TOC 

keratinocytes (169).  iRhom2 is also highly expressed in Cancer-associated fibroblasts 

(CAFs) which is the major cellular component in the tumour environment which supports 

tumour growth and development. iRhom2 deletion in CAFS shows reduction in their 

elongation and motility, whereas overexpression of iRhom2 in non-cancer fibroblasts (NF) 

showed increased motility in extra cellular matrix in response to TGFB1. iRhom2 has been 

reported to regulate ADAM17-dependent cleavage of TGFβ receptor (TGFBR1) and 

contribute to the progression of diffuse-type gastric cancers (DGCs) (170).  

1.5 TNF-α signalling 

TNF-α exists in 2 forms membrane-bound TNF-α (mTNF, 26 KDa) and soluble TNF-α 

(sTNF, 17 KDa). Membrane-bound TNF-α can be cleaved by ADAM17 together with 

iRhom2 (136, 137). TNF-α signals through 2 transmembrane receptors, TNFR1 and TNFR2 

(171). Membrane-bound TNF is a potent ligand for TNFR2 that is expressed mostly by 

immune cells (171). On the other hand, TNFR1 is expressed at low levels by most cell types 

and can respond to both membrane-bound and soluble forms of TNF. Cell death and 

inflammatory cytokine production in response to TNF signaling is induced primarily by 

TNFR1 signaling (172-175), while the precise role of TNFR2 is relatively unclear (176, 177). 

TNFR2 has been shown to promote TNFR1-mediated cell death signaling (173, 178, 179) 
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and, in other cases, to promote cell survival, proliferation, and tissue homeostasis (180-184). 

TNFR signals nuclear factor-κB (NF-κB) for cell survival by recruiting TRADD and TRAF2, 

which results in the activation of NF-κB signalling pathway (185). NF-κB induces the 

expression of various pro-inflammatory cytokines and chemokines which plays a critical role 

in regulating the survival, activation and differentiation of innate immune cells (186). NF-κB 

proteins are normally sequestered in the cytoplasm by an inhibitory protein called inhibitor of 

κB α (IκBα). There are two different mechanisms by which NF-κB signalling can be 

activated, the canonical and noncanonical (or alternative) pathways (187, 188). The canonical 

NF-κB pathway responds to diverse stimuli, including ligands of various cytokine receptors, 

pattern recognition receptors (PRRs), TNFR superfamily members, as well as T-cell 

receptors (TCR) and B-cell receptors (BCR) (189). Upon activation, IKK phosphorylates 

IκBα and triggers ubiquitin-dependent degradation resulting in rapid and transient nuclear 

translocation of canonical  NF-κB members predominantly p50/RelA and p50/c-Rel dimers 

(190-192). Noncanonical NF-κB pathway responds to a specific group of stimuli, including 

ligands of a subset of the TNFR superfamily members LTβR, BAFFR, CD40 and RANK 

(193, 194). Noncanonical NF-κB activation does not involve IκBα degradation but relies on 

processing of the NF-κB2 precursor protein, p100 (187, 193). Mostly, canonical NF-κB 

pathway participates in almost all aspects of immune responses, whereas the noncanonical 

NF-κB pathway appears to cooperate with canonical NF-κB pathway in the regulation of 

specific functions of the adaptive immune system (194).  
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2. Materials and Methods: 

Part of the materials and methods have been adapted from a published manuscript, 

 

B. Sundaram, K. Behnke, A. Belancic, M. A. Al-Salihi, Y. Thabet, R. Polz, R. Pellegrino, 

Y. Zhuang, P. V. Shinde, H. C. Xu, J. Vasilevska, T. Longerich, D. Herebian, E. Mayatepek, 

H. H. Bock, P. May, C. Kordes, N. Aghaeepour, T. W. Mak, V. Keitel, D. Häussinger, J. 

Scheller, A. A. Pandyra, K. S. Lang, P. A. Lang, iRhom2 inhibits bile duct obstruction–

induced liver fibrosis. Sci. Signal. 12, eaax1194 (2019). 

 

2.1 Animal experiments 

All mice were maintained under specific pathogen-free (SPF) conditions at the authorization 

of the Landesamt für Natur, Umwelt und Verbraucherschutz of North Rhine-Westphalia 

(LANUV NRW) in accordance with the German laws for animal protection. 

Rhbdf2
-/- 

whole-body knockout mice were bred in ZETT - Univeristat Dusseldorf on a 

C57BL/6 background as previously described, and are available at MMRRC 

(https://www.mmrrc.org/) (137). Experiments were performed in 10 -12 weeks old male mice 

with littermate controls. All animal experiments were conducted according to the German 

law for the welfare of animals and were approved by local authorities.  

2.1.1 Bile Duct Ligation  

Bile Duct Ligation (BDL) is a well-established surgical technique to study liver fibrosis. BDL 

leads to an acute obstructive jaundice with progressive activation of hepatic stellate cells 

causing liver fibrosis (195-197).  

For BDL, Laparotomy was performed predominantly on male mice at 10–14 weeks of age, 

animals were anaesthetised by isoflurane and placed on a heating pad. The animals were 

shaved and the skin was disinfected with 70% ethanol and povidone-iodine. A midline 

incision in the upper abdomen was made and the common bile duct and the gallbladder were 

identified, isolated, and ligated with silk. Abdomen and peritoneum were closed with a 

running silk suture. Sham treatment was performed similarly but without ligation of the bile 
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duct and gallbladder. Animals were monitored during recovery and treated with carprofen 

(0.05 mg/kg b.w.) after surgical intervention.  

2.1.2 Etanercept (Enbrel) treatment 

Etanercept (Enbrel, Pfizer) is a well-known inhibitor for TNF-α and previous studies have 

shown that etanercept treatment helps the host to recover from severe liver damage (198, 

199).  Etanercept was reconstituted in PBS to a final concentration of 10 mg/ml. Mice were 

subcutaneously injected with 10 mg/kg Etanercept 24h before surgery and every other day 

after surgery until day 14.  

2.2 Analysis of human material 

Serum samples from patients suffering from liver disease and healthy volunteers were 

collected (Table 3, Cohort A). Patients gave informed consent and analysis was approved by 

the ethics committee of the Faculty of Medicine at the Heinrich-Heine-University of 

Dusseldorf under the Study-No. 5350. Expression levels of RHBDF2 were determined in 

(Table 3, Cohort B) under approval of the ethics committee of the Medical Faculty of 

University of Heidelberg: Study-No. 206/05.  

2.3 Histology 

Histological analysis of snap-frozen tissue was performed as previously described (200).  

Briefly, snap-frozen tissue sections were cut to 7 μm sections, air dried and fixed with 

acetone for 10 min. Sections were blocked with 2% fetal calf serum in PBS for 1h. Sections 

were stained with primary antibody for 1h, washed with PBS containing 0.05% Tween 20 

(Sigma), and incubated with secondary antibody together with DAPI (1:1000) for 1h. Then 

sections were washed and mounted using fluorescence mounting medium (Dako). Images 

were taken by the Axio Observer Z1 fluorescence microscope (Zeiss). Analysis of the 

fluorescence images was performed using ImageJ software. Picro Sirius Red and Masson’s 

Trichrome Staining Kits were purchased from Polysciences, Inc., and staining was performed 

according to the manufacturer’s instructions.   
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Table 1: List of antibodies used for immunofluorescence (IF)  

Primary Antibodies Company Dilution 

Col1A1 Thermo Scientific 1:100 

αSMA Abcam 1:100 

PDGFRβ Cell Signaling Technology 1:100 

Desmin Cell Signaling Technology 1:100 

p65 Santa Cruz Biotechnology 1:100 

CD68 Bio-Rad 1:200 

F4/80 eBioscience 1:200 

LY6G eBioscience 1:200 

Secondary Antibodies Company Dilution 

anti-rabbit-Cy Jackson ImmunoResearch 

Laboratories, Inc 

1:200 

anti-rat APC for CD68 Jackson ImmunoResearch 

Laboratories, Inc 

1:200 

anti-rat PE for Ki67 Jackson ImmunoResearch 

Laboratories, Inc 

1:200 

 

2.4 RT-PCR analyses 

RNA purification was performed according to manufacturer’s instructions (Qiagen RNeasy 

Kit or Trizol). Gene expression of Rhbdf2, Tnfrsf1a, Tnfrsf1b, Tnf, Hbegf, Areg, Tgfa, Il6r, 

Il6, Col1a1, Col3a1, and Acta2 was performed using FAM/VIC probes (Applied Biosystems) 

and iTAQ™ One step PCR kit (Bio-Rad). Gene expression of Il1b, Il10, Cd80, Cd86, Ccl2, 

Ccl3, Ccl4, Ccl5, Ccl8, Ccl9, Ccl12, Ccl17, Ccl20, Cxcl2, Cxcl9, Cxcl10 Cxcl11, and Cxcl13 

was performed using SYBR GREEN probes. For analysis, the expression levels of all target 

genes were normalized to Gapdh expression (∆Ct). Gene expression values were then 

calculated based on the ∆∆Ct method, using naive WT mice as a control to which all other 

samples were compared. Relative quantities (RQ) were determined using the equation: 

RQ=2^-∆∆Ct.  

2.5 Immunoblotting 

Briefly, liver tissue was lysed in PBS containing 1% TX-100 (Sigma), EDTA-free protease 

inhibitor cocktail (Roche), Phospho stop (1 tablet/10mL), and the inhibitors BB-2516 (20µM, 

Tocris Bioscience) and 1,10-phenanthroline (10mM, Sigma). After lysis, the sample was used 

for Immunoblotting.  
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Table 2: List of antibodies used for western blotting  

Primary antibodies Company Dilution 

anti-ADAM17 Abcam 1:2000 

anti-p-STAT3 Cell Signaling Technology 1:1000 

anti-total-STAT3 Cell Signaling Technology 1:1000 

anti-p-ERK1/2 Cell Signaling Technology 1:2000 

anti-total-ERK1/2 Cell Signaling Technology 1:2000 

anti-total-IκBα Cell Signaling Technology 1:1000 

anti-p-p65 Cell Signaling Technology 1:1000 

anti-total-p65 Cell Signaling Technology 1:1000 

anti-αSMA Abcam 1:1000 

anti-α-tubulin Cell Signaling Technology 1:1000 

anti-β-actin Cell Signaling Technology 1:3000 

 

Secondary antibodies Company Dilution 

Anti-Rabbit HRP Cell Signaling Technology 1:5000 

Anti-Mouse HRP Cell Signaling Technology 1:5000 

IRDye 800CW Anti-Rabbit  LI-COR Biosciences 1:10000 

IRDye 680CW Anti-Mouse  LI-COR Biosciences 1:10000 

 

2.6 ELISA 

The following ELISA kits were used: TNFR1, TNFR2, IL-6Rα, HB-EGF, and Amphiregulin 

(R&D Systems); TNF-α (eBioscience); TGF-α (antibodies-online); TGF-β1, IL-6 and IL-1β 

(Invitrogen). All ELISAs were performed according to the manufacturers' instructions.   

2.7 Serum biochemistry 

Aspartate aminotransferase (AST, GOT), alanine aminotransferase (ALT, GPT), total 

bilirubin and LDH were measured using the automated biochemical analyser Spotchem EZ 

SP-4430 (Arkray, Amstelveen, Netherlands) and the Spotchem EZ Reagent Strips Liver-1.  

2.8 Bile acid analysis 

Bile acids and their glycine- and taurine derivatives were analyzed by UPLC-MS/MS (201). 

The system consists of an Acquity UPLC-I Class (Waters, UK) coupled to a Waters Xevo-

TQS tandem mass spectrometer equipped with an ESI source in the negative ion mode. Data 

were collected in the multiple reaction monitoring (MRM) mode. 
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2.9 Bacterial titer estimation 

Gut Bacterial translocation have been previously described in bile duct ligated animals (202, 

203). Briefly, mesenteric lymph nodes were harvested in sterile conditions from Rhbdf2
+/-

 

and Rhbdf2
-/-

 mice after BDL and was homogenized in PBS. The homogenized mesenteric 

lymph nodes were plated in Blood Agar Plates (containing 5% sheep blood) for total aerobic 

bacteria. The plates were incubated for 48-72 hrs at 37
o
C followed by the counting of colony-

forming units (CFUs) (204). 

2.10 HSC isolation 

Primary mouse HSCs isolation using sequential pronase-collagense digestion have been 

previously described (205). Briefly, livers were perfused in situ with HBSS buffer without 

Ca
2+

 and Mg
2+

 (Thermo-Fisher Scientific) supplemented with 0.5 mM EGTA for 5 min. 

Then, liver tissue was perfused with pronase E (0.7 mg/ml, Roche) for 5 min and collagenase 

P (0.25 mg/ml, Roche) for 6-8 min, respectively, at a flow rate of 5 ml/min in HBSS buffer 

containing Ca
2+

. After excision of the liver, the liver was digested in vitro for 15 min in 

HBSS containing 1% DNase I (Roche). HSCs were purified from the remainder of non-

parenchymal cells and hepatocyte-derived debris by floatation through 9% (w/v) Optiprep 

(Axis-Shield PoC AS, Oslo, Norway) in HBSS buffer. The isolated HSCs were cultured in 

DMEM/F-12 (Thermo Fisher Scientific) supplemented with 10% FCS. For TNF-α treatment, 

primary HSCs were isolated from Rhbdf2
+/- 

and
 
Rhbdf2

-/-
and the isolated HSCs were cultured 

in DMEM/F-12 supplemented with 10% FCS for three days, then the cells were starved in 

serum free DMEM/F-12 medium for overnight. Next day the cells were treated with and 

without 50ng/ml TNF-α in DMEM/F-12 supplemented with 10% FCS for 24 hours.  

2.11 Hepatocyte and Kupffer cell isolation 

Primary mouse hepatocyte and Kupffer cell isolation using collagenase digestion have been 

previously described (206, 207). Briefly, livers were perfused in situ with HBSS buffer 

without Ca
2+

 and Mg
2+

 (Thermo-Fisher Scientific) supplemented with 0.5 mM EGTA for 5 

min. Then, liver tissue was perfused with collagenase P (0.25 mg/ml, Roche) for 6-8 min, 

respectively, at a flow rate of 5 ml/min in HBSS buffer containing Ca
2+

. After excision of the 

liver, the liver was digested in vitro for 15 min in HBSS containing 1% DNase I (Roche). The 

digested liver was centrifuged for 3 min at a speed of 30×g. The supernatant was used for 

Kupffer cell isolation while hepatocytes were isolated from the pellet. After the first 
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centrifugation, the supernatant was slowly layered on the percoll gradient and centrifuged for 

30 min at 1200×g. The middle interphase was collected and stained for F4/80 and Kupffer 

cells were sorted (BD FACSAria). Primary hepatocytes isolated from Rhbdf2
+/- 

and
 
Rhbdf2

-/- 

animals
 
were treated with CHX (10μg/ml) and TNF-α (40ng/ml) for 8 hours in Williams 

medium. 

2.12 Statistical analyses 

Data are expressed as mean ± S.E.M. Statistically significant differences between two groups 

were determined with Mann-Whitney U test. Statistically significant differences between 

several groups were determined with a one-way analysis of variance (ANOVA). Statistically 

significant differences between groups in experiments involving more than one time-point 

were determined using a two-way ANOVA. 
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Aim of the study 

Tissue damage and regeneration has to be tightly regulated during infection or injury to 

maintain the body in homeostatic conditions. If dysregulated it can lead to chronic 

inflammation or cancer which can cause serious complications to the host. TNF-α is a 

pleiotropic cytokine mainly produced by macrophages which participates in many critical 

functions including host defense, cell proliferation and apoptosis. TNF-α has been shown to 

be essential for innate immune activation to clear pathogens (208) and its aberrant production 

can be associated with the pathogenesis of several diseases, including rheumatoid arthritis, 

Crohn’s disease, atherosclerosis, psoriasis, sepsis, diabetes, and obesity (209). So it is clear 

that the regulation of TNF-α is very crucial for the host survival during infection and injury. 

Recent studies had shown that the ADAM17 / iRhom2 signaling axis plays a crucial role for 

TNF-α biology (136, 137).  

Earlier studies showed TNF-α expression is upregulated in bile duct ligated and carbon 

tetrachloride treated animals compared to untreated mice (104, 210). Since, iRhom2 plays a 

pivotal role in TNF-α biology, we wanted to uncover the role of iRhom2 in bile duct ligated 

mice. In this study, we hypothesized that (i) iRhom2 might have pro-inflammatory functions 

in WT mice compared to iRhom2 deficient animals during bile duct ligation and drive severe 

complications such as liver fibrosis to the host. ADAM17 not only cleaves TNF-α, but also 

other ligands such as HB-EGF, TGF-α, amphiregulin (EGF ligands) and IL-6R. Previous 

studies have shown the importance of these ligands during liver regeneration. Mice lacking 

EGFR specifically in hepatocytes show decreased hepatocyte proliferation in the initial phase 

of liver regeneration (211). IL-6 trans-signaling can be activated by binding of IL-6 to soluble 

IL-6R (sIL-6R), and earlier studies have described the importance of IL-6 trans-signaling for 

the protection of the liver during acute damage to the organ (212, 213). Since, ADAM17 / 

iRhom2 is essential to cleave these ligands, our another hypothesis is that (ii) iRhom2 

deficient animals might show decreased liver regeneration and higher susceptibility towards 

BDL compared to WT animals.  

In the context of liver fibrosis, reduced TNF- shedding from macrophages should alleviate 

fibrosis, whereas reduced TNFR shedding from other liver cells would have opposite effects. 

In this study we therefore chose whole body Rhbdf2
-/-

 mice to determine which plays a 

dominant role in liver regeneration and liver fibrosis.   
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4. Results 

4.1 Increased expression of iRhom2 during liver fibrosis in bile duct ligated mice. 

Liver fibrosis can be induced in mice following BDL (195, 196) which results in increased 

production of α-SMA and expression of Col1a1, which encodes the α1 chain of collagen type 

1, in the liver. To check the activation of liver fibrosis, we did sham and BDL surgery in 

C57BL/6 WT mice and examined the production of α-SMA and expression of Col1a1 in the 

liver tissue harvested on day 14 and 20 post surgery. Consistent with previous studies (195, 

196), we also identified increased production of α-SMA and expression of Col1a1 in the 

BDL liver compared to sham operated animals (Figure 1A-B). Further, we wondered whether 

the activation of ADAM17 is affected during liver fibrosis in BDL animals. ADAM17 

undergoes post-translational modification by removal of the pro-domain in the trans-Golgi 

network which results in the mature form of the enzyme for its activation (110). Interestingly, 

we detected increased presence of the mature form in the BDL liver when we compared them 

to sham operated liver (Figure 1C-D). ADAM17 activation can be triggered by iRhom2 

which is encoded by Rhbdf2 (136, 137). Notably, hepatic Rhbdf2 expression increased during 

liver fibrosis following BDL in mice (Figure 1E).  

Taken together, these findings indicate that activation of ADAM17 and expression of 

iRhom2 is increased during liver fibrosis in the BDL liver compared to sham operated liver 

leading us to further investigate whether iRhom2 influenced the progression of liver fibrosis. 

 

 

 

 

 

 

 

 

 



 

Figure 1.  
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Figure 1. ADAM17 activity increases during liver fibrosis 

(A) Immunoblotting and quantification of α-SMA in total liver tissue of sham- and BDL-

operated WT mice at day 14 (D14) and day 20 (D20) after surgery. Right panel shows the 

quantification of α-SMA by densitometry. GAPDH is a loading control. (B) Quantification of 

Col1a1 mRNA in total liver tissue of sham- and BDL-operated mice at day 14 or day 20 after 

surgery. (C to D) Immunoblotting and quantification of ADAM17 in total liver tissue of 

sham-and BDL-operated mice at day 14 (D14) and day 20 (D20) after surgery. Pro and 

mature (mat) forms of ADAM17 are noted on the immunoblot (C). The mature (M) form of 

ADAM17 was quantified by densitometry (D). GAPDH is a loading control. (E) 

Quantification of Rhbdf2 mRNA in total liver tissue of sham- and BDL-operated mice at day 

14 or day 20 after surgery. ns, not significant. For all experiments, n = 5 mice per condition. 

Data are shown as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, two-way ANOVA 

with Bonferroni’s multiple comparisons test (A, B, D, and E).   
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4.2 Increased presence of circulating TNFRs in BDL mice and in cirrhotic patients 

Activation of ADAM17 can trigger increased shedding of its substrates from the cell 

surface. Previous studies have clearly demonstrated the activation of  ADAM17 and 

expression of iRhom2 can result in increased shedding of TNF-, L-selectin, heparin-binding 

epidermal growth factor (HB-EGF), TNFR1, TNFR2, Amphiregulin, Epiregulin, EphB4, 

KitL2, and Tie2 (137, 168, 214). Since, we identified increased mature form of ADAM17 

and iRhom2 expression in BDL animals; we speculated that shedding of ADAM17 substrates 

could also be increased during liver fibrosis in BDL operated animals. As we expected, we 

determined increased presence of ADAM17 ligands TNFR 1, TNFR 2 and IL-6R (Figure 2A-

C) in the sera of BDL mice when compared to sham operated mice. However, other 

ADAM17 substrates we tested were not detectable or increased in the sera of mice suffering 

from liver fibrosis (Figure 2D-F). Moreover, we determined TNFRs concentrations in plasma 

samples from various patients with or without liver cirrhosis and healthy volunteers (table 3, 

cohort A). The cirrhotic patient group consisted of patients with liver cirrhosis who were 

infected with hepatitis B virus (HBV), hepatitis C virus (HCV), or the HBV isolate HC-C2. 

The non-cirrhotic group included healthy volunteers as well as non-cirrhotic patients who 

were infected with HBV or who were infected with HBV or HCV and also suffered from 

non-alcoholic steatohepatitis (NASH). We detected increased serum concentrations of 

TNFRs in cirrhotic patients as compared to non-cirrhotic patients and healthy volunteers 

(Figure 2G). Furthermore, RHBDF2 mRNA was increased in human cirrhotic liver tissue 

compared to non-cirrhotic liver tissue (Figure 2H, table 3, cohort B).  

 

Taken together, these results again proving that the activation of ADAM17 is increased 

during liver fibrosis in BDL animals compare to sham operated animals. Consistent with our 

in vivo finding, serum from cirrhotic patients also shows increased circulating TNFRs and 

increased RHBDF2 mRNA expression in cirrhotic liver tissue compared to non-cirrhotic liver 

tissue confirming that ADAM17 is activated in cirrhotic patient’s liver tissue.  

 

 

 

 



 

Figure 2.  
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Figure 2. Increased shedding of ADAM17 substrates in BDL animals 

(A-C) Quantification of soluble (s) TNFR1 (A), TNFR2 (B), and IL-6R (C) in serum samples 

from C57BL/6 mice subjected to sham or BDL operation. Sera were taken at 14 or 20 days 

after surgery. n = 5 mice per condition (D-F) Quantification of soluble (s) TNF-α (D), HB-

EGF (E), and amphiregulin (F) in sera of sham- and BDL-operated C57BL/6 mice 14 or 20 

days after surgery. n = 3 mice per condition. (G) Quantification of soluble (s) TNFR1 and 

TNFR2 in cohorts of patients suffering from liver cirrhosis and in non-cirrhotic patients and 

healthy volunteers (table 3, Cohort A). n=32-35 patients. (H) Quantification of RHBDF2 

mRNA (in arbitrary units, AU) from human cirrhotic liver tissue and non-cirrhotic control 

tissue (table 3, Cohort B). n=4–17 patients. Data are shown as mean ± SEM. * P<0.05; 

**P<0.01; ***P<0.001; ****P<0.0001, 2-way ANOVA with Bonferroni’s multiple 

comparisons test (A-C) and Mann-Whitney U test (G-H). 
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Table 3. Clinical parameters of cirrhotic and non-cirrhotic patients and healthy 

volunteers. (A) Mean ± SEM of clinical parameters as well as p-value is presented from 

cohorts represented in Figure. 2G (cohort A, n=32-35). (B) Clinical diagnosis as well as 

Mean ± SEM of the age and p-value is presented for cohort B shown in Figure. 2H (n=4-17). 

(A) Cohort A Non-cirrhotic 

n=35 

Cirrhotic 

n=32 

P value 

Diseases Healthy volunteer (n=3) 

HBV (n=21) 

HBV+NASH (n=9) 

HCV+NASH (n=2) 

HBV+Cirrhosis (n=12) 

HCV+Cirrhosis (n=14) 

C2+Cirrhosis (n=6) 

 

 

Age (Years) 49.31 ± 1.729 59.19 ± 2.512 P= 0.0016 

ALT (U/L) 35.23 ± 3.140 41.75 ± 5.395 P= 0.2900 

AST (U/L) 27.94 ± 1.503 40.59 ± 3.820 P= 0.0022 

AP (U/L) 79.53 ± 5.692 96.25 ± 5.896 P= 0.0456 

Bilirubin (mg/dl) 0.5755 ± 0.05583 0.9591 ± 0.1661 P= 0.0302 

(B) Cohort B Non-cirrhotic 

n=4 

Cirrhotic 

n=17 

P value 

Diseases [Normal liver tissue 

distant of] 

Colorectal liver 

metastasis (n=2) 

Salivary gland cancer 

metastasis (n=1) 

Segmental ischemia 

(n=1) 

HBV+Cirrhosis (n=4) 

HCV+Cirrhosis (n=2) 

C2+Cirrhosis (n=3) 

AIH+Cirrhosis (n=2) 

Wilson+Cirrhosis (n=3) 

Kryptogen+Cirrhosis 

(n=2) 

PSC+Cirrhosis (n=1) 

 

Age (Years) 56.50 ± 6.614  44.00 ± 2.980  P=0.0865 
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4.3 Lack of iRhom2 results in increased liver fibrosis following bile duct ligation 

As expected, ADAM17 maturation was decreased in iRhom2-deficient (Rhbdf2
-/-

) mice 

during liver fibrosis following BDL compared to control mice subjected to BDL (Figure 3A), 

which is consistent with the reduced presence of circulating TNFRs in the sera of Rhbdf2
-/-

 

mice compared to control animals following BDL (Figure 3B-F). The abundance of soluble 

IL-6R, which is released by ADAM17-mediated processing of IL-6R, was also decreased in 

Rhbdf2
-/-

 mice compared to control animals following BDL, but EGFR ligands targeted by 

ADAM17 were not (Figure 3G-H and Figure 4A). The abundance of mRNAs encoding 

ADAM17 substrates were not significantly different between Rhbdf2
-/-

 and control mice 20 

days after BDL (Figure 4B). Liver tissue harvested from Rhbdf2
-/-

 mice following BDL, 

however, exhibited significantly increased areas of fibrosis, indicated by increased Picro 

Sirius red and Masson’s Trichrome staining compared to liver tissue harvested from control 

animals (Figure 4C). Moreover, Rhbdf2
-/-

 BDL mice showed increased abundance of hepatic 

fibrosis markers such as collagen and α-SMA when compared to wild-type BDL controls 

(Figure 4D).  

 

Taken together, these data indicate that the activity of ADAM17 increases during liver 

fibrosis and that the absence of iRhom2, despite reducing ADAM17 maturation, exacerbates 

liver fibrosis compared to control animals.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.  
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Figure 3. iRhom2 deficiency enhances liver fibrosis following BDL. 

(A) Representative immunoblot showing ADAM17 in total liver tissue from Rhbdf2
+/-

 and 

Rhbdf2
-/-

 mice at day 0 and day 20 after BDL. β-actin is a loading control. n = 6 animals per 

genotype for each time point. (B) Quantification of soluble (s) TNFR1 and TNFR2 in sera 

collected from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 0 and day 20 after BDL. n = 5-6 animals 

per genotype for each time point. (C-G) Quantification of soluble (s) TNFR1 (C, D), TNFR2 

(E, F), and IL-6R (G) in sera collected from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at early and later 

time points after BDL surgery. n = 4-9 animals per genotype for each time point. (H) 

Quantification of soluble (s) HB-EGF and amphiregulin in sera collected from Rhbdf2
+/-

 and 

Rhbdf2
-/-

 mice at later time points after BDL surgery. n = 5 animals per genotype for each 

time point. Data are shown as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001, 2-way ANOVA with Bonferroni’s multiple comparisons test (B-G). 
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Figure 4. Shedding of ADAM17 substrates in Rhbdf2
+/–

 and Rhbdf2
–/–

 BDL mice.  

 (A) Quantification of soluble (s) HB-EGF and TNF- α in sera collected from Rhbdf2
+/-

 and 

Rhbdf2
-/-

 mice at early time points after BDL surgery. n = 6-9 animals per genotype for each 

time point. (B) Quantification of Tnf, Tnfrsf1a, Tnfrsf1b, Il6r, Hbegf, Tgfa, and Areg mRNA 

expression in total liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at day 0 or day 20 

after BDL surgery. n = 4-6 mice per genotype for each time point. (C) Imaging and 

quantification of Picrosirius Red and Masson’s Trichrome staining in sections of liver tissue 

harvested from Rhbdf2
+/-

and Rhbdf2
-/- 

mice at day 14 after BDL. n = 4-6 mice per genotype. 

Scale bar, 50µm. (D) Distribution and quantification of Col1A1 and -SMA in sections of 

liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 20 after BDL. Nuclei are 

labelled with DAPI (blue). Scale bar, 100µm. Quantification of Col1A1 and α-SMA by mean 

fluorescence intensity (MFI) is shown in arbitrary units (AU). n=6 mice per genotype. Data 

are shown as mean ± SEM. *P<0.05; **P<0.01; Mann-Whitney U test (C and D). 
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4.4 Rhbdf2 expression is induced early in the liver following BDL 

In order to determine whether ADAM17 activation occurred after the initiation of liver 

fibrosis or was an early event prior to the occurrence of fibrosis, we assayed earlier time 

points after BDL. We observed increased expression of Rhbdf2 as early as 6 hours after the 

BDL operation (Figure 5A). Increased Rhbdf2 expression was observed specifically in liver 

tissue and not in other organs tested (Figure 5B). Because we observed increased Rhbdf2 

expression, we speculated that ADAM17 activation should also be increased at early time 

points after the BDL operation. We detected increased expression of mRNAs encoding 

ADAM17 substrates within 48 hours after BDL in liver tissue compared to sham-operated 

animals (Figure 5C) and increased abundance of ADAM17 substrates in the circulation, 

including soluble forms of TNFRs, IL-6R, and HB-EGF (Figure 5D-G). Other ADAM17 

substrates were not detected in the sera of BDL or sham-operated mice (Figure 6A). 

Activation of ADAM17 depended on the presence of iRhom2, because Rhbdf2
-/-

 animals 

showed reduced abundance of mature ADAM17 (Figure 6B-C). 

 

Taken together, these data indicate that early production of iRhom2 following BDL facilitates 

ADAM17 activation and shedding of its substrates.  
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Figure 5. Rhbdf2 expression and shedding of ADAM17 substrates increase early after 

BDL.  

(A) Quantification of Rhbdf2 mRNA in total liver tissue of sham and BDL wild-type mice at 

the indicated early time points after surgery. n = 4 animals per condition for each time point. 

(B) Quantification of Rhbdf2 mRNA in total lung, spleen, brain, kidney, and liver tissue of 

sham-operated and BDL operated wild-type mice 24 hours after surgery. n = 3-4 mice for 

each organ. (C) Quantification of Tnf, Tnfrsf1a, Tnfrsf1b, Hbegf, Areg, and Tgfa mRNAs in 

liver tissue of sham and BDL mice at the indicated time points following surgery was 

analysed by RT-PCR. The highest value for each transcript, relative to the amount of 

GAPDH, compared to their expression in sham mice is noted in the heatmap. n=4 animals 

per condition for each time point. (D-G) Quantification of soluble (s) TNFR1 (D), TNFR2 

(E), IL-6R (F), and HB-EGF (G) in serum from sham and BDL mice at the indicated time 

points following surgery. n=3-6 animals per condition for each time point. Data are shown 

as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. 2-way ANOVA with 

Bonferroni’s multiple comparisons test (A-B and D-G).  
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Figure 6. ADAM17 maturation is inhibited in the absence of iRhom2 following BDL.  

(A) Quantification of TNF-α, amphiregulin, and TGF-α in sera of sham and BDL wild-type 

mice at the indicated time points after surgery. n = 5-6 mice per condition for each time 

point. (B) Representative immunoblot showing ADAM17 in total liver tissue of Rhbdf2
+/-

 and 

Rhbdf2
-/-

 mice at early time points following BDL.  β-actin is a loading control. n = 6-9 

animals per genotype for each time point. (C) Quantification of mature (M), pro (P) and total 

(T) ADAM17 in total liver tissue of Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at the indicated time points 

after BDL surgery. n = 6-9 mice per genotype for each time point. Data are shown as mean ± 

SEM. *P<0.05; **P<0.01, 2-way ANOVA with Bonferroni’s multiple comparisons test (C).  
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4.5 Lack of iRhom2 triggers increased presence of activated HSCs after BDL 

BDL in mice is accompanied by liver damage, resulting in increased amounts of liver 

enzymes in the blood. However, when we analyzed hepatic tissue damage by measuring liver 

enzyme activity following BDL, we did not see significant differences during early or late 

time points between wild-type and iRhom2-deficient mice (Figure 7A-D). Consistent with 

this, we did not find a significant difference in the abundance of active caspase 3 between 

Rhbdf2
+/-

 and Rhbdf2
-/- 

liver tissue (Figure 7E and 7G). Additionally, when we treated 

Rhbdf2
+/-

 and Rhbdf2
-/-  

primary
 
hepatocytes with TNF-α plus Cyclohexamide (CHX), we 

detected no significant difference in cleaved caspase 8 between the two groups (Figure 7F 

and 7G). Altogether, this suggests that the phenotypes seen in Rhbdf2
-/- 

mice at later time 

points are not due to defects in hepatocytes but another cell population within the liver. 

Indeed, we found an increase in areas densely populated with cells, consistent in appearance 

with fibrotic lesions (215, 216), in Rhbdf2
-/- 

hematoxylin and eosin–stained liver tissue 

sections compared to Rhbdf2
+/-

 tissue (Figure 8A). Because stellate cells contribute to liver 

fibrosis by differentiating into myofibroblasts and producing collagens (195), we speculated 

that absence of iRhom2 could induce the proliferation of myofibroblasts derived from HSCs. 

Activated stellate cells and myofibroblasts can be visualized by staining for platelet-derived 

growth factor receptor β (PDGFRβ) and the intermediate filament protein Desmin (217-219). 

We found significant increases in PDGFRβ- and Desmin-producing cells in liver tissue 

harvested from Rhbdf2
-/-

 mice compared to control animals after BDL (Figure 8B-C). We 

also identified decreased abundance of glial fibrillary acidic protein (GFAP), an quiescent 

HSC marker that is absent in myofibroblasts (220) in Rhbdf2
-/-

 liver tissue when compared to 

control liver tissue (Figure 8D-E).  

 

Taken together, these data indicate that early production of iRhom2 following BDL facilitates 

ADAM17 activation and reduces the presence of activated hepatic stellate cells. 
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Figure 7. No difference in liver parameters or apoptosis between Rhbdf2
+/- 

and Rhbdf2
-/-

 

mice. 

 (A-C) Quantification of liver enzymes AST (A), ALT (B) and T-bilirubin (C) in serum 

samples from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at the indicated time points following BDL. n = 6-

9 animals per genotype for each time. (D) Concentration of AST, LDH, and T-bilirubin in 

sera of Rhbdf2
+/-

 and Rhbdf2
-/- 

mice 20 days after surgery. n = 6 mice per genotype. (E) 

Immunostaining and quantification of active caspase 3 in sections of liver tissue harvested 

from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 20 after BDL. Nuclei were stained with DAPI (blue).  

n=6 mice per genotype. Scale bar, 100µm. (F) Representative immunoblot showing cleaved 

caspase 8 in Rhbdf2
+/-

 and Rhbdf2
-/- 

primary hepatocytes treated with PBS (untreated, UT), 

cyclohexamide (C), or both cyclohexamide and TNF- (T+C). -tubulin is a loading control. 

n = 4 mice per genotype for each condition. (G) Quantification of active caspase 3 by mean 

fluorescence intensity (MFI) is shown in arbitrary units (AU) and cleaved caspase 8 was 

quantified by densitometry. Data are shown as mean ± SEM. 
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Figure 8. iRhom2 protects against liver fibrosis early after BDL 

(A) Sections of liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 0 or day 4 after 

BDL were stained with Hematoxylin and Eosin. White dashed lines indicate boundaries of 

fibrotic lesions. The areas of fibrotic lesions were measured and expressed as µm
2
.
 
n=6-9 

animals per genotype for each time point. Scale bar, 50µm. (B-C) Sections of liver tissue 

harvested from Rhbdf2
+/- 

and Rhbdf2
-/- 

mice at day 4 after BDL were stained for PDGFRβ (B) 

or Desmin (C). Boxes indicate the areas magnified in the images on the right. PDGFRβ- or 

Desmin-positive cells were quantified as a percentage of all cells. n=7-8 animals per 

genotype. Scale bars, (B): 100µm (left), 50µm (right); (C): 50µm (left), 20µm (right). (D) 

Immunostaining and quantification of the quiescent hepatic stellate cell marker GFAP in 

sections of liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 0 and day 20 after 

BDL. Nuclei were stained with DAPI (blue). n=4-6 animals per genotype for each time point. 

Scale bar, 50µm. (E) Quantification of GFAP by mean fluorescence intensity (MFI) is shown 

in arbitrary units (AU). Data are shown as mean ± SEM. *P<0.05; **P<0.01; 

****P<0.0001, Mann-Whitney U test (A-C), 2-way ANOVA with Bonferroni’s multiple 

comparisons test (E). 
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4.6 Lack of iRhom2 leads to decreased TNFR shedding and increased fibrotic markers 

in stellate cells 

Mouse primary HSCs express fibrotic markers when cultured in vitro (221) (Figure 9A). We 

confirmed the presence of both pro and mature forms of ADAM17 in primary hepatic stellate 

cells isolated from C57BL/6 mice (Figure 9B). We observed increased shedding of TNFRs, 

but not other ADAM17 substrates, in primary HSC cultures (Figure 9C-D). As expected, 

ADAM17 maturation was significantly reduced in stellate cells from Rhbdf2
-/-

 mice 

compared to those from control animals (Figure 9E-F and Figure 10A). Furthermore, we 

found increased abundance of mature ADAM17 when we exposed Rhbdf2
+/-

 but not Rhbdf2
-/-

 

stellate cells to TNF-α (Figure 9E-F and Figure 10A). Shedding of TNFR1 in Rhbdf2
+/- 

stellate cells was reduced following exposure to TNF-α, whereas shedding of TNFR2 was 

increased (Figure 10B). Moreover, shedding of both TNFR1 and TNFR2 depended on 

iRhom2, because Rhbdf2
-/-

 stellate cells showed reduced TNFRs in the culture supernatant 

(Figure 10B). Similar to the data from liver tissue (Figure 4D), we found an increase in 

fibrotic markers in primary HSCs from Rhbdf2
-/-

 animals compared to Rhbdf2
+/-

 control cells 

(Figure 10C-D).  

 

Taken together, these data further demonstrate that shedding of TNFRs depends on iRhom2 

and that the absence of iRhom2 can increase the expression of fibrotic markers in primary 

HSCs.   
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Figure 9. Increased activation of hepatic stellate cells in iRhom2-deficient mice. 

(A) Quantification of Col1a1, Col3a1, and Acta2 mRNAs in HSCs harvested from C57BL/6 

mice at the indicated time points. n=4 mice for each time point. (B) Immunblot showing pro 

and mature (mat) ADAM17 in primary HSCs harvested from C57BL/6 mice. α-tubulin is a 

loading control. n=4 mice each time point. (C) Quantification of soluble (s) TNFR1 and 

TNFR2 in supernatants from primary HSCs from C57BL/6 mice at the indicated time points 

after isolation. n = 4 mice for each time point. (D) Quantification of soluble (s) IL-6R, HB-

EGF and amphiregulin in culture supernatants collected from C57BL/6 primary HSCs at the 

indicated time points. n=8 mice for each time point. (E) Representative immunoblot showing 

pro- and mature (mat) forms of ADAM17 in primary HSCs isolated from Rhbdf2
+/-

 and 

Rhbdf2
-/-

 mice and left untreated (U) or treated with TNF-α (T) for 24 hours. α-tubulin is a 

loading control. n = 4 mice per genotype for each condition. (F) Densitometric 

quantification of mature (M) ADAM17 from (E). n = 4 mice per genotype for each condition. 

Data are shown as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001, Mann-

Whitney U test (A and C-D) and 2-way ANOVA with Bonferroni’s multiple comparisons test 

(F).  
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Figure 10. Primary hepatic stellate cells have increased expression of fibrotic markers 

(A) Quantification of Pro (P) and Total (T) ADAM17 in Rhbdf2
+/-

 and Rhbdf2
-/-

 primary 

hepatic stellate cells, which were treated with or without TNF-α for 24 hours. n=4 mice per 

genotype for each condition. (B) Quantification of soluble (s) TNFR1 and TNFR2 in 

supernatants from untreated and TNF-–treated primary HSCs from Rhbdf2
+/-

 and Rhbdf2
-/-

 

mice n = 4 mice per genotype for each condition. (C) Quantification of Col1a1, Col3a1, 

Acta2 transcripts in 3-day cultures of primary HSCs from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice.  n = 

4 mice per genotype. (D) Representative immunoblot and quantification of α-SMA in 3-day 

cultures of primary HSCs from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice. n = 4 mice per genotype. Data 

are shown as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001, 2-way 

ANOVA with Bonferroni’s multiple comparisons test (A-C) and Mann-Whitney U test (D).  
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4.7 Increased TNFR signaling in the absence of iRhom2 triggers stellate cell 

proliferation and liver fibrosis following BDL 

ADAM17 is involved in the shedding of TNF-α and its receptors, epidermal growth factor 

receptor (EGFR) ligands, and Interleukin-6 receptor (IL-6R). Ligand and receptor shedding 

affects NF-κB activation, mitogen-activated kinases (MAPKs), extracellular signaling kinase 

(ERK1/2), and signal transducer and activator of transcription 3 (STAT3) signaling pathways 

(110, 168, 222). Previous studies have clearly demonstrated the importance of these signaling 

pathways during liver damage and liver regeneration. Mice lacking the p65 (also called RelA) 

subunit of the transcription factor NF-κB show an embryonic lethal phenotype and massive 

liver degeneration due to cell death (223). Mice lacking EGFR specifically in hepatocytes 

show decreased hepatocyte proliferation in the initial phase of liver regeneration (211). IL-6 

trans-signaling can be activated by binding of IL-6 to soluble IL-6R (sIL-6R), and earlier 

studies have described the importance of IL-6 trans-signaling for the protection of the liver 

during acute damage to the organ (212, 213). 

We wanted to uncover which of these hepatic signaling pathways were affected by 

iRhom2. Although we found increased phosphorylation of ERK1/2 following BDL in both 

Rhbdf2
+/-

 and Rhbdf2
-/-

 liver tissue (Figure 11A), we did not observe a significant difference 

between Rhbdf2
+/-

 and Rhbdf2
-/-

 mice. This finding was expected in light of the lack of 

differences in EGFR ligand concentration between the sera of Rhbdf2
+/-

 and Rhbdf2
-/- 

mice. 

We detected a significant increase in phosphorylation of the transcription factor STAT3 in 

liver tissue from naive iRhom2-deficient mice compared to naive Rhbdf2
+/-

 animals (Figure 

11B). However, following BDL, there was no significant difference in phosphorylated 

STAT3 between Rhbdf2
-/-

 and Rhbdf2
+/-

 animals (Figure 11B).  The transcription factor NF-

κB is a heterodimeric protein that consists of two subunits, p50 and p65; the p65 domain 

contains the transcriptional activation domain (224). Phosphorylation of p65 was increased 

following BDL in liver tissue harvested from Rhbdf2
-/-

 mice when compared to Rhbdf2
+/- 

controls (Figure 11C), but we did not observe a difference in the abundance of inhibitor of κB 

α (IκBα) (Figure 11D). However, we observed increased nuclear p65 in Rhbdf2
-/- 

liver tissue
 

compared to controls following BDL at day 20 (Figure 12A). Additionally, we also detected 

increased expression of the proliferation markers Ki67 and Cyclin-A2 in liver tissue harvested 

from Rhbdf2
-/- 

mice compared to Rhbdf2
+/-

 controls at early time points after BDL (Figure 

12B-C) and more Ki67-positive cells were present in Rhbdf2
-/- 

liver tissue
 
compared to 

control liver tissue at day 20 after BDL (Figure 13A). Furthermore, we observed that most of 
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the Ki67-positive cells also stained for α-SMA in the absence of iRhom2, which suggests 

increased proliferation of HSCs in Rhbdf2
-/- 

compared to Rhbdf2
+/- 

(Figure 13B).  
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Figure 11. Abundance of phosphoylated ERK1/2, phosphorylated STAT3, 

phosphorylated p65 and IκBα in Rhbdf2
+/- 

and Rhbdf2
-/- 

mice following BDL 

(A) Immunoblotting and quantification of phosphorylated ERK1/2 (p-ERK1/2) and  total 

ERK1/2 in total liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at the indicated time 

points after BDL surgery. β-actin is a loading control. n=6-9 animals per genotype for each 

time point. (B)  Immunoblotting and quantification of phosphorylated STAT3 (p-STAT3) and 

total STAT3 in total liver tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at the indicated 

time points after BDL surgery. n = 6-9 animals per genotype for each time point. (C) 

Immunoblotting and quantification of phosphorylated p65 (p-p65) and total p65 in total liver 

tissue harvested from Rhbdf2
+/-

 and Rhbdf2
-/-

 mice at the indicated time points after BDL 

surgery. n = 6-8 animals per genotype for each time point. (D) Immunoblot showing total 

IκBα in total liver tissue of Rhbdf2
+/- 

and Rhbdf2
-/-

 mice at the indicated time points after 

BDL. n= 6-9 animals per genotype for each time point. Data are shown as mean ± SEM. 

**P<0.01; Mann-Whitney U test (C). 
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Figure 12. iRhom2 deficiency increases p65 translocation and proliferation markers in 

the liver. (A) Immunostaining and quantification of NF

harvested from Rhbdf2
+/-

 and 

DAPI (blue). Boxes indicate the areas magnified in the images on the right.

p65 is shown as both the percentage of cells that were positive for p65 and the mean 

fluorescence intensity (MFI) of p65

(left), 20µm (right). (B) Quantification of

Rhbdf2
+/- 

and Rhbdf2
-/-

 mice at the indicated time points after BDL surgery. 
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iRhom2 deficiency increases p65 translocation and proliferation markers in 

Immunostaining and quantification of NF-B p65 in sections of liver tissue 

and Rhbdf2
-/- 

mice at day 20 after BDL. Nuclei are labelled with 

DAPI (blue). Boxes indicate the areas magnified in the images on the right.

p65 is shown as both the percentage of cells that were positive for p65 and the mean 

MFI) of p65-positive cells. n = 6 mice per genotype. Scale bars, 50µm 

Quantification of MKI67 mRNA in total liver tissue harvested from 

mice at the indicated time points after BDL surgery. 

 

iRhom2 deficiency increases p65 translocation and proliferation markers in 

sections of liver tissue 

mice at day 20 after BDL. Nuclei are labelled with 

DAPI (blue). Boxes indicate the areas magnified in the images on the right. Quantification of 

p65 is shown as both the percentage of cells that were positive for p65 and the mean 

positive cells. n = 6 mice per genotype. Scale bars, 50µm 

mRNA in total liver tissue harvested from 

mice at the indicated time points after BDL surgery. n=7-11 animals 
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per genotype for each time point. (C) Quantification of Ccna2 mRNA in total liver tissue 

harvested from Rhbdf2
+/- 

and Rhbdf2
-/-

 mice at the indicated time points after BDL surgery. 

n= 7-11 animals per genotype for each time point.Data are shown as mean ± SEM. 

***P<0.001; ****P<0.0001, Mann-Whitney U test (A), 2-way ANOVA with Bonferroni’s 

multiple comparisons test (B and C). 
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Figure 13. iRhom2 deficiency increases K

 

(A) Immunostaining and quantification of the proliferation marker Ki67 in 

tissue harvested from Rhbdf2

were quantified as a percentage of all cells

(left), 50µm (right). (B) Immunostaining for Ki67 and 

harvested from Rhbdf2
+/-

 and 

were also Ki67 positive were quantified as 
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iRhom2 deficiency increases Ki67 staining near to fibrotic area.

Immunostaining and quantification of the proliferation marker Ki67 in 

Rhbdf2
+/-

 and Rhbdf2
-/- 

mice at day 20 after BDL. 

were quantified as a percentage of all cells. n = 6 animals per genotype. Scale bars, 100µm 

Immunostaining for Ki67 and α-SMA in sections of liver tissue 

and Rhbdf2
-/- 

mice at day 20 after BDL. α-SMA positive cells that 

were quantified as percentage and MFI. n=6 animals per genotype.

 

i67 staining near to fibrotic area. 

Immunostaining and quantification of the proliferation marker Ki67 in sections of liver 

mice at day 20 after BDL. Ki67-positive cells 

genotype. Scale bars, 100µm 

SMA in sections of liver tissue 

SMA positive cells that 

tage and MFI. n=6 animals per genotype. 
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Scale bars, 50µm (left), 20µm (right). Data are shown as mean ± SEM. *P<0.05; **P<0.01; 

***P<0.001; ****P<0.0001, Mann-Whitney U test (A and B). 
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4.8 Etanercept treatment rescues liver fibrosis in of Rhbdf2
-/-

 mice.  

It has been previously shown that TNFR2 knockout mice have no major phenotype with 

regards to BDL-induced fibrosis (225). However, in our setting soluble TNFR2 shed from 

ADAM17-positive cells could play a role in competitively inhibiting soluble TNF-, which 

would further explain the differences in BDL-induced fibrosis between Rhbdf2
+/- 

 and 

Rhbdf2
-/- 

mice. The unshed TNFRs on HSCs from Rhbdf2
-/- 

mice as well as the increases in 

nuclear translocation of p65 and proliferation markers in liver tissue of Rhbdf2
-/- 

mice 

subjected to BDL led us to hypothesize that increased TNFR signaling in HSCs of iRhom2-

deficient mice contributes to their increased proliferation and the subsequent progression of 

liver fibrosis. To test this hypothesis, we inhibited TNFR signaling by treating iRhom2-

deficient mice with recombinant TNFR2-Fc (Etanercept), which binds to TNF- and 

prevents TNF-–induced signaling (159), starting on the day before BDL surgery. We found 

reduced nuclear p65 translocation in Etanercept-treated Rhbdf2
-/- 

mice compared to PBS-

treated mice (Figure 14A) as well as reduced proliferation, as determined by Ki67 staining 

(Figure 14B). Etanercept-treated mice showed a significant reduction in Ki67 staining in 

areas positive for -SMA (Figure 14C) suggesting that blocking TNF- signaling in iRhom2-

deficient liver inhibited HSC proliferation within the fibrotic areas. We detected no changes 

in macrophage infiltration (Figure 15A) or in expression of genes encoding inflammatory 

cytokines (Figure 15B-C), with the exception of IL-10 , which is induced during 

inflammation and fibrosis (226, 227), but was reduced with Etanercept treatment (Figure 

15B). Furthermore, we found increased abundance of GFAP in the livers of Etanercept-

treated Rhbdf2
-/-

 BDL mice (Figure 16A) compared to PBS-treated BDL mice, indicating the 

presence of quiescent HSCs rather than myofibroblasts. This is consistent with the observed 

reduction in liver fibrotic lesions of Etanercept-treated Rhbdf2
-/- 

 BDL mice (Figure 16B). 

PDGFRβ-positive cells were also reduced in Etanercept-treated Rhbdf2
-/-

 BDL mice 

compared to PBS-treated controls (Figure 16B). These phenotypes were accompanied by 

reductions in α-SMA and collagen after Etanercept treatment compared to PBS treatment 

(Figure 16C).  

 

Taken together, these findings demonstrate that the absence of iRhom2 results in increased 

liver fibrosis, which can be alleviated through anti-TNF- therapy. 
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Figure 14. Etanercept treatment reduces cell proliferation in the livers of  Rhbdf2
-/-

 

mice.  

(A) Immunostaining and quantification of NF-κB p65 in sections of liver harvested from 

Rhbdf2
-/-

 PBS- or Etanercept-treated mice 14 days after BDL. Nuclei are labelled with DAPI 

(blue). Boxes indicate the areas magnified in the images on the right. Quantification of cells 

with nuclear p65 is shown as both the percentage of positive cells and the mean fluorescence 

intensity (MFI).  Scale bars, 50µm (left), 10µm (right). (B) Immunostaining and 

quantification of Ki67 in sections of liver tissue harvested from Rhbdf2
-/-

 PBS-
 
or

 
Etanercept-

treated mice 14 days after BDL. Ki67-positive cells were quantified as a percentage of all 

cells. Scale bar, 100µm (left), 50µm (right).  (C) Immunostaining and quantification of Ki67 

and α-SMA in sections of liver tissue harvested from Rhbdf2
-/-

 PBS-
 
or

 
Etanercept-treated 

mice 14 days after BDL. α-SMA–positive cells that were also Ki67 positive were quantified as 

% and MFI. Scale bars, 50µm (left), 20µm (right).. For all panels, n = 7 mice for each 

condition. Data are shown as mean ± SEM. *P<0.05; ****P<0.0001, Mann-Whitney U test 

(A-C).  
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Figure 15. Expression of Cytokines and chemokines in Etanercept-treated Rhbdf2
-/-

 

BDL mice.  

(A) Sections of liver tissue harvested from Rhbdf2
-/-

 PBS-
 
or

 
Etanercept- treated mice 14 days 

after BDL were stained for F4/80 or CD68 together with DAPI to label nuclei (blue). Scale 

bars, 100µm (F4/80), 50 µm (CD68). Right panel shows quantification of F4/80 and CD68 

cells as %. n = 7 animals for each condition. (B–C) Quantification of Il1b, IL6, Il10, Cd80, 

Cd86, Ccl2, Ccl3, Ccl4, Ccl5, Ccl8, Ccl9, Ccl12, Ccl17, Ccl20, Cxcl2, Cxcl9, Cxcl10, 

Cxcl11, and Cxcl13 mRNAs in total liver tissue harvested from PBS- and Etanercept-treated 

Rhbdf2
-/- 

mice after BDL surgery. n = 7 animals for each condition. Data are shown as mean 

± SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 16. 
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Figure 16. Etanercept treatment rescues liver fibrosis in Rhbdf2
-/-

 mice.  

(A) Immunostaining and quantification of GFAP, which marks HSCs that have not 

transdifferentiated into myofibroblasts, in sections of liver harvested from Rhbdf2
-/-

 PBS-
 
or

 

Etanercept-treated mice 14 days after BDL. Nuclei are stained with DAPI (blue). Boxes 

indicate the areas magnified in the images on the right. GFAP was quantified as mean 

fluorescence intensity (MFI). Scale bars, 50µm (left), 20µm (right). (B) Sections of liver 

tissue harvested from Rhbdf2
-/-

 PBS-
 
or Etanercept-treated mice 14 days after BDL were 

stained with Hematoxylin and Eosin or with antibodies recognizing PDGFRβ. White dashed 

lines indicate the boundaries of fibrotic lesions boundaries. The sizes of fibrotic lesions were 

quantified in µm
2
, and PDGFRβ-positive cells were quantified as a percentage of all cells in 

each section. Scale bar, 50µm. (C) Immunostaining and quantification of α-SMA and Col1A1 

in sections of liver tissue harvested from Rhbdf2
-/-

 PBS-
 
or

 
Etanercept-treated mice 14 days 

after BDL. Cells positive for α-SMA or Col1A1 were quantified as MFI. Scale bar, 100µm. 

For all panels, n = 7 mice for each condition. Data are shown as mean ± SEM. *P<0.05; 

**P<0.01; ***P<0.001, Mann-Whitney U test was used (A-C). 
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Chapter 5  

Discussion 
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In this study we found that iRhom2 protected against liver fibrosis following BDL by 

promoting ADAM17 maturation, leading to increased shedding of TNFRs, and therefore less 

TNF- signaling, in HSCs. The absence of iRhom2 caused an increase in the number of 

activated stellate cells along with increased expression of fibrotic markers after BDL, both of 

which were alleviated by anti-TNF- therapy.  

The release of TNF- into the circulation is triggered by ADAM17-mediated cleavage of 

membrane-bound TNF- from the cell surface (91, 92). Because iRhom2 stimulates 

ADAM17 maturation, it consequently promotes shedding of soluble TNF- (136, 137). Thus, 

iRhom2-deficient mice are protected against LPS-induced septic shock but susceptible to 

bacterial infection (137). Importantly, earlier studies have documented that cytokines such as 

TNF-α and IL-1β from Kupffer cells can contribute to the survival of hepatic stellate cells 

during liver damage (15). Similarly, other studies show that the sustained activation of 

hepatic NF-κB in macrophages could contribute to liver inflammation and fibrosis (99, 228) 

whereas depletion of hepatic macrophages significantly reduced NF-κB activity, 

inflammation and fibrosis in liver (229) . Interestingly, iRhom2 also has been shown to be 

expressed in myeloid cellular compartments such as macrophages (137, 159). From these 

observations, and considering that iRhom2 is produced in Kupffer cells, it might be logical to 

speculate that the absence of iRhom2 would alleviate liver fibrosis induced by BDL. 

However, our data indicate that the absence of iRhom2 aggravated liver fibrosis, leading us to 

speculate that iRhom2 negatively regulates liver fibrosis in bile duct ligated mice.   

ADAM17 cleaves not only membrane-bound TNF- (91, 92), but also TNFR1 and TNFR2 

(117). Indeed, compared to iRhom2-deficient animals, we found increased circulating TNFRs 

in wild-type mice after BDL, suggesting that there were more unshed TNFRs on the surface 

of liver cells in the mutant
 
mice. Consistent with our finding, a study with ADAM17 

hypomorphic mice (230) which has decreased or low residual ADAM17 activity show that 

atherosclerotic lesions are significantly increased in ADAM17 hypomorphic mice compared 

to WT controls (231). This study identified that ADAM17 hypomorphic mice had more 

macrophages and vascular smooth muscle cells compared to wild-type controls. 

Mechanically, the study shows that reduced ADAM17-mediated shedding led to significantly 

increased presence of membrane bound TNF-α and TNFR2, resulting in a constitutive 

activation of TNFR2 signaling (231). This study lead us to hypothesize that the phenotype we 

observed in iRhom2 deficient mice could be because of increased presence of unshed TNFRs 
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on the surface of liver cells which would result in a corresponding increase in TNF-–

induced signaling, which would eventually drive to liver fibrosis.  

Although iRhom2 triggers ADAM17 maturation, its absence does not completely abolish 

ADAM17 maturation or activity, and thus may not block all shedding of TNF-α after BDL 

(102). Additionally, unshed membrane-bound TNF-α can also bind to and activate both 

TNFR1 and 2, albeit with different efficiencies (232, 233), suggesting a potential iRhom2-

independent mechanism for initiating profibrotic TNF- signaling after BDL. We expect if 

the latter is the case it would be more likely to occur in HSCs than in hepatocytes given that 

our data show differences in NF-κB signaling, which is downstream of TNF-, and 

subsequent proliferation in HSCs with no difference in TNF-–induced apoptosis in primary 

hepatocytes. Consistent with this, we did not find a significant difference in circulating liver 

enzymes and cleaved caspase 3 between Rhbdf2
+/-

 and Rhbdf2
-/- 

mice after BDL, which led us 

to speculate that TNF-–TNFR signaling in hepatocytes of Rhbdf2
+/-

 and Rhbdf2
-/-

 mice is 

comparable during BDL. Notably, our experiments were performed in a whole-body 

iRhom2-deficient mouse model and although we analyzed the overall effects of iRhom2 

deficiency during BDL, we cannot make definitive conclusions regarding the function of 

iRhom2 in specific cell types. We can only conclude that iRhom2 reduces the numbers of 

stellate cells and alleviates liver fibrosis following BDL, but this phenotype might not be 

uniquely linked to a specific iRhom2-producing cell type and could result from the actions of 

iRhom2 in multiple cell types. HSC specific deletion of iRhom2 or ADAM17 would clarify 

the question that the protective effect of iRhom2 is mediated by its action in HSCs or whether 

other relevant cell types that also produce iRhom2 (such as hepatocytes, Kupffer cells, or 

monocyte-derived macrophages) are involved.  However, our in vitro experiments with 

primary HSCs clearly showed that ADAM17 maturation and TNFR shedding is significantly 

abolished in absence of iRhom2 along with increased expression of fibrotic markers 

suggesting that iRhom2 can affect HSC activation. 

Interestingly, during liver fibrosis we measured increased circulating TNFR2 in WT mice 

compared to iRhom2 deficient animals. To mimic the in vivo setting, we also isolated and 

stimulated primary HSCs from both Rhbdf2
+/-

 and Rhbdf2
-/-

 mice with TNF-α. We measured 

increased shedding of TNFR2 in WT HSCs upon TNF-α treatment whereas TNFR1 was 

decreased, while shedding of both receptors was abolished in iRhom2 deficient HSCs. Earlier 

studies have described that membrane TNF-α is a strong ligand for TNFR2 (171). Vascular 

smooth muscle cells also can contribute to cardiac fibrosis (234-236). Moreover ADAM17 
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hypomorphic mice showed more vascular smooth muscle cells through membrane bound 

TNF-α and membrane TNFR2 signaling (231) probably through NF-κB signalling which is 

consistent with our finding. Etanercept (Enbrel) is a recombinant TNFR2-Fc, which binds to 

TNF- and prevents TNF-–induced signalling (237-239). Moreover, Anti-TNF-α antibody 

have been used for various liver diseases such as Alcoholic Hepatitis (AH), Non-Alcoholic 

Fatty Liver Disease (NAFLD), Autoimmune Hepatitis (AIH), and Primary Biliary 

Cholangitis (PBC) to reduce liver inflammation and liver fibrosis by blocking TNF- 

signaling (48, 49, 52, 57, 240, 241). Because we hypothesize that iRhom2 deficient liver 

tissue has enhanced TNF- signalling, we treated iRhom2 deficient mice with Etanercept and 

checked for liver fibrosis. Consistent with previous studies, we also observed decreased liver 

fibrosis in Etanercept treated iRhom2 deficient mice which again supports our hypothesis that 

unshed TNFRs on HSCs from Rhbdf2
-/- 

mice could trigger increased TNF-TNFR signaling 

which eventually contributes to their increased proliferation and the subsequent progression 

of liver fibrosis. 

Sequence alterations in the cytoplasmic tail of iRhom2 can increase ADAM17 activity and 

consequently increase TNFR shedding (166, 168, 242). It is possible that posttranslational 

modifications of iRhom2 might trigger ADAM17 maturation and TNFR shedding following 

cholestasis and therefore have a protective effect against BDL-induced liver fibrosis. 

Notably, mutations that affect the cytoplasmic tail of iRhom2 are also associated with the 

establishment of esophageal cancer (166). Future studies could investigate whether 

inactivating mutations or reduced abundance of iRhom2 correlate with liver fibrosis or 

hepatocellular carcinoma in patients. iRhom2 has multiple biological functions apart from its 

role in ADAM17 maturation. Specifically, iRhom2 can bind to STING and prevent its 

degradation (156). Accordingly, iRhom2 promotes interferon regulatory factor 3 (IRF3) 

phosphorylation and translocation into the nucleus and consequently contributes to IFN-I 

production during viral infection (156, 157). Furthermore, STING and IRF3 are able to 

promote hepatocyte death and liver fibrosis during carbon tetrachloride treatment, albeit IFN-

I is beneficial following BDL (243-245). However, our data in iRhom2-deficient animals 

suggest that iRhom2 is rather beneficial during the establishment of liver fibrosis. Hence we 

speculate that in our study, the role of iRhom2 in liver fibrosis is independent from its 

stabilizing effect on STING. Furthermore, iRhom2 can regulate the cytoskeletal scaffolding 

protein Keratin 16 (169). In the liver, keratins protect hepatocytes from apoptosis and 

necrosis (246), and keratins such as K8 and K18 variants and K19 are associated with liver 
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disease (246-249). Accordingly, mice expressing variants of K18 exhibit an increase in Fas-

induced liver damage compared to TNF-–induced liver damage (250). Additionally, 

iRhom2 influences K16 abundance with effects extending to its binding partner K6 (169). 

One could speculate that iRhom2 affects the equilibrium of keratins in liver tissue, thereby 

affecting the establishment of liver fibrosis. However, when we analyzed tissue damage 

following BDL in iRhom2-deficient mice and controls, we did not observe any significant 

differences, making keratins unlikely contributors to liver fibrosis in our model system. We 

observed an increased presence of cells positive for CD68, a well-established marker for 

activated macrophages (163), in liver tissue from iRhom2-deficient mice, which could 

contribute to increased TNF-–TNFR signaling in stellate cells.  

Other ADAM17 substrates have also been reported to play roles in liver fibrosis. Ectodomain 

shedding of EGFR ligands and TNFR1 can critically regulate acute liver damage (129), and 

conditional deletion of HB-EGF results in increased liver injury following acute toxic 

hepatitis (251). Furthermore, overexpression of HB-EGF results in aggravated liver fibrosis 

following chronic liver injury (252), whereas another report has shown that treatment with 

the EGFR inhibitor erlotimib alleviated establishment of liver fibrosis (253). Our findings 

showed no significant difference in HB-EGF in the sera of control or iRhom2-deficient mice. 

Moreover, decreased HB-EGF concentrations, which would be expected in the absence of 

iRhom2, would rather alleviate liver fibrosis. Moreover, we observed no significant 

differences in EGFR signaling. Hence, we speculate that increased liver fibrosis in the 

absence of iRhom2 cannot be explained mechanistically by changes in EGFR signaling. The 

absence of gp130, a critical factor essential for IL-6R signaling, increases liver damage 

following BDL, which is associated with increased bacterial burden (254). It has also been 

shown that lack of IL-6, gp130, and STAT3 signaling in the liver promotes the establishment 

of steatohepatitis (255). Bacterial translocation following BDL triggers an IFN-I signature 

resulting in immunosuppression (203). In our investigation we also observed reduced soluble 

IL-6R in the sera of iRhom2-deficient animals after BDL. However, STAT3 phosphorylation 

following BDL was not affected by iRhom2. Additionally, we did not see any differences in 

bacterial titers or IFN-I–regulated genes in iRhom2-deficient mice compared to control 

animals. Although other signaling pathways might be affected by iRhom2 and contribute to 

the establishment of liver fibrosis, in our model TNF- blockade reduced the presence of 

stellate cells in the liver and alleviated fibrosis in iRhom2-deficient mice. 
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Since we identified more activated hepatic stellate cells and increased expression of 

extracellular matrix proteins in iRhom2 deficient liver, it would be interesting to study 

further, whether iRhom2 deficient mice develop hepatocellular carcinoma after BDL by 

keeping them for long time kinetics. Because most clinical studies describe that liver fibrosis 

is one key driving factor which can cause liver cirrhosis which eventually leads to 

hepatocellular carcinoma. Also, to strengthen the study, an anti-fibrotic function of iRhom2 

could be characterized in HSC specific iRhom2 knockout mice which would clearly 

demonstrate that hepatic cells participate in driving liver fibrosis in absence of iRhom2. 

Moreover, an anti-fibrotic role of iRhom2 can be characterized in other liver fibrosis models 

such as carbon tetrachloride-induced fibrosis, Thioacetamide-induced fibrosis and 

Dimethylnitrosamine-induced fibrosis. In summary, we identified iRhom2 to be protective 

against BDL induced liver fibrosis (Graphical figure 7).  
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Graphical figure 7: Schematic representation of anti-fibrotic function of iRhom2 in 

hepatic stellate cells  

 

 

 

Proposed model illustrating the anti-fibrotic function of iRhom2 in cholestasis induced 

liver fibrosis.  

Liver fibrosis is mainly driven by activation and proliferation of hepatic stellate cells (HSCs) 

during liver damage. iRhom2 expression activates ADAM17 and triggers increased shedding 

of TNFRs from the HSC plasma membrane. In the absence of iRhom2, the uncleaved TNFRs 

remain on the surface of the HSC plasma membrane consisting more TNF mediated 

activation and increased proliferation via NF-κB signalling (PM – Plasma membrane). 
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