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Summary

Motivation for this work was the question to what extent the Beauville–Bogomolov decom-

position, or parts and variants of it, holds true in positive characteristic. The statement

itself applies to compact Kähler manifolds and its proof uses differential geometry. It can

be transferred to smooth projective schemes X over the complex numbers by the Riemann

existence theorem. Under the assumption that the dualizing sheaf ωX is numerically triv-

ial, it states that X admits a finite étale covering X ′ → X such that the total space

X ′ satisfies ωX′ ' OX′ and decomposes in a special way as a product, uniquely up to

permutation.

During the first, preparatory part of this thesis, the notion of numerical triviality is

treated and characterized. The Albanese morphism serves as a central technical tool in

what follows, so its core properties are developed in a self-contained way, also verifying its

existence under more general assumptions than what seems to be recorded in literature.

The second, main part begins to answer the question whether ωX ∈ Pic(X) has finite

order as a consequence of its numerical triviality. More generally, this question can be

asked if ωX ' OX(KX) is not necessarily invertible, as long as the canonical divisor KX

is a Weil divisor. The main result is an affirmative answer for Q-Gorenstein surfaces with

the property that the pullback of KX along a resolution of singularities continues to be a

Weil divisor. The proof adapts ideas used by Sakai to extend the Enriques classification

of smooth surfaces to normal Gorenstein surfaces over the complex numbers. Without the

Q-Gorenstein assumption, the conclusion fails to hold true. Counterexamples of surfaces

are given such that KX is numerically trivial of infinite order.

Once it is known that ωX ∈ Pic(X) has finite order d, there always exists a finite flat

covering X ′ → X such that ωX′ ' OX′ . It is étale if the characteristic p of the ground

field is not dividing d. Here the main result is that for normal X, such an étale covering

conversely cannot exist if the latter condition is violated. If the value of d is known,

this especially gives a criterion for excluding the existence of a decomposition on an étale

covering of X. For smooth surfaces, the situation is analyzed in detail afterwards. A

softened variant of the decomposition, holding on a finite flat covering, is suggested. Such

a decomposition is in turn proved to be unique, using a result by Fujita, and it now exists

for all smooth surfaces in arbitrary characteristic.
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Zusammenfassung

Motivation für diese Arbeit war die Frage, inwiefern die Beauville-Bogomolov-Zerlegung,

oder Teile und Varianten von ihr, weiterhin in positiver Charakteristik gültig ist. Die

Aussage selbst gilt für kompakte Kähler-Mannigfaltigkeiten und ihr Beweis benutzt Dif-

ferentialgeometrie. Sie kann auf glatte projektive Schemata X über den komplexen Zahlen

mithilfe des Riemannschen Existenzsatzes übertragen werden. Unter der Annahme, dass

die dualisierende Garbe ωX numerisch trivial ist, sagt sie die Existenz einer endlichen

étalen Überlagerung X ′ → X mit ωX′ ' OX′ aus, sodass der Totalraum X ′ eine spezielle

Produktzerlegung erlaubt, welche eindeutig bis auf Permutation ist.

Im ersten, vorbereitenden Teil dieser Dissertation wird der Begriff der numerischen

Trivialität behandelt und charakterisiert. Der Albanese-Morphismus dient im Weiteren

als zentrales technisches Werkzeug, sodass seine Kerneigenschaften in eigenständiger Weise

entwickelt werden. Seine Existenz kann dabei auch unter allgemeineren Voraussetzungen,

als es anscheinend in der Literatur festgehalten ist, nachgewiesen werden.

Der Hauptteil dieser Arbeit beginnt die Frage zu beantworten, ob ωX ∈ Pic(X) stets

endliche Ordnung als Konsequenz ihrer numerischen Trivialität besitzt. Allgemeiner kann

diese Frage gestellt werden, falls ωX ' OX(KX) nicht notwendigerweise invertierbar ist,

solange der kanonische Divisor KX ein Weil-Divisor ist. Das Hauptresultat ist eine posi-

tive Antwort für Q-Gorenstein-Flächen mit der Eigenschaft, dass der Pullback von KX

entlang einer Auflösung der Singularitäten ein Weil-Divisor bleibt. Der Beweis verwendet

angepasste Ideen von Sakai, welche dieser zur Erweiterung der Enriques-Klassifikation auf

normale Gorenstein-Flächen über den komplexen Zahlen verwendet hat. Ohne die Q-

Gorenstein-Eigenschaft bleibt die Schlussfolgerung nicht gültig. Es werden Gegenbeispiele

von Flächen mit numerisch trivialem KX von unendlicher Ordnung gegeben.

Sobald bekannt ist, dass ωX ∈ Pic(X) endliche Ordnung d besitzt, existiert eine endliche

flache Überlagerung X ′ → X mit der Eigenschaft ωX′ ' OX′ . Diese ist étale, wenn die

Charakteristik p des Grundkörpers kein Teiler von d ist. Hier ist das Hauptresultat, dass

für normale X eine solche étale Überlagerung umgekehrt nicht existieren kann, falls letztere

Bedingung verletzt ist. Ist der Wert d bekannt, bildet dies ein Ausschlusskriterium für die

Existenz der Zerlegung nach einer étalen Überlagerung von X. Für glatte Flächen wird die

Situation anschließend detailliert analysiert. Es wird eine mildere Variante der Zerlegung

vorgeschlagen, welche nach einer endlichen flachen Überlagerung existiert. Eine derartige

Zerlegung wird wiederum als eindeutig bewiesen, unter Verwendung eines Resultates von

Fujita, und sie existiert nun für alle glatten Flächen in beliebiger Charakteristik.
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Introduction

Introduction

Algebraic geometry originated from the challenge to study the space of common zeros

X = V (f1, . . . , fr) of polynomials f1, . . . , fr in several indeterminates with coefficients in

a field k. Methods from commutative algebra and geometry are applied in synergy to make

progress, and also these single branches profit by this interplay. In the 1960s, Grothendieck

introduced the notion of a scheme X, which drastically enlarged the framework. The

additional datum of a structure sheaf OX on X associates in a compatible way to each open

subset U ⊂ X a ring H0(U,OX), reflecting this connection. One central object on proper

X is the dualizing sheaf ωX , which contains both algebraic and geometric information:

Assuming that X is sufficiently regular, then on the algebraic side, it yields a duality

H i(X, E∨⊗ωX) = Hn−i(X, E)∨ on the cohomology groups of locally free sheaves E on X.

Cohomology groups are substantial invariants of a scheme, for example their disparity on

two schemes already implicates that both schemes themselves must be different. Moreover,

ωX = det(Ω1
X) is the determinant of the cotangent sheaf Ω1

X , where the latter includes

essential geometric data.

The coincidence ωX ' OX of the dualizing sheaf and the structure sheaf is a special

situation with multilayer consequences for the scheme X. For instance, ωX can be omitted

from the duality above. In the case that the dualizing sheaf is different from the structure

sheaf, it is desirable to measure the discrepancy and also to slightly modify X in order to

move both sheaves closer together. A weaker variant is to ask if some power ω⊗dX ' OX
of the dualizing sheaf is trivial. Taking another step back, ωX can be numerically trivial,

meaning that its intersection number with every curve C ⊂ X is zero.

Figure 1: Real points around the origin of two smooth surfaces X with ωX ' OX .
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Introduction

Over the field k = C of complex numbers, the situation was clarified using methods

from differential geometry. Although the techniques available in this different branch of

mathematics cannot be directly applied in algebraic geometry, it is possible to transfer

the conclusion. First, consider the result itself.

The Beauville–Bogomolov decomposition states that every connected, compact Kähler

manifold Y with can
1 (ωY ) = 0 in H2(Y ;Q) admits a finite étale covering Y ′ → Y such that

the total space Y ′ =
∏r
i=1 Y

′
i decomposes as a product, where each factor is a complex

torus, a Calabi–Yau manifold or a Hyperkähler manifold. The last two kinds of factors

are unique up to permutation. It was established by Beauville [11], [12] who extends prior

results due to Bogomolov [16] and Calabi [23].

A complex manifold Y is Kähler if it admits an Hermitian metric whose associated

differential 2-form is closed. The quotient Cg /Λ by a lattice Λ of rank 2g is a complex

torus . The notion Calabi–Yau manifold means a connected, compact Kähler manifold C of

dimension at least 3 which is simply connected, satisfies ωC ' OC and has Hodge numbers

hr,0(C) = 0 for 0 < r < dim(C). A Hyperkähler manifold is a connected, compact Kähler

manifold H which is simply connected with H0(H,Ω2
H) = Cσ for a symplectic form σ.

The latter means σ induces a non-degenerate alternating pairing on the tangent spaces of

all points of H. Consequences are that ωH ' OH is trivial and dim(H) is even.

The Riemann existence theorem states that for a scheme X locally of finite type over C,

the functor which associates to every finite étale covering X ′ → X its analytification

X ′ an → Xan is an equivalence between the categories of finite étale coverings of X andXan,

respectively.

Given a smooth, connected, proper scheme X over C, its analytification Xan is a con-

nected, compact complex manifold. Moreover, if X is projective over C, then Xan is

Kähler. Thus if can
1 (ωXan) = 0 holds, the Beauville–Bogomolov decomposition exists for

the total space of an étale covering of Xan, and in turn transfers to a corresponding

decomposition of the total space of an étale covering of X.

A compact complex manifold Y is called algebraic if Y ' Xan for a smooth, proper

scheme X. It seems reasonable to transfer the definition of the three possible factors,

occurring in the decomposition, to the category of schemes over a field of arbitrary char-

acteristic. Algebraic complex tori are exactly the abelian varieties. The term Calabi–Yau

scheme means a smooth, connected, projective scheme C of dimension at least 3 which

admits no non-trivial finite étale coverings, satisfies ωC ' OC and has Hodge numbers

hr,0(C) = 0 for 0 < r < dim(C). To the author’s knowledge, there is no common agree-

ment on a definition for a scheme to be Hyperkähler, see [40], Sections 1.2 and 3.1. As

Hyperkähler surfaces over C are exactly the K3-surfaces, this at least suggests a natural

answer in dimension two.

The motivation for this work is to investigate the realm of the Beauville–Bogomolov

decomposition from an algebro-geometric point of view. Particular focus will be directed

towards phenomena in positive characteristic. Moreover, the ground field is assumed to
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be arbitrary whenever it is achievable. The approach can be subdivided into several steps.

To do so, note that both Calabi–Yau manifolds and Hyperkähler manifolds are simply

connected. Therefore they satisfy H1(Y ;C) = 0 and so especially H1(Y,OY ) = 0 by Hodge

theory. This yields a weak form of the decomposition into complex tori and manifolds with

trivial canonical sheaf and vanishing first sheaf cohomology of the structure sheaf. Let X

be an integral, proper scheme over a field k of characteristic p ≥ 0 with ωX invertible and

numerically trivial. The following questions reflect stages on the path to an analogue of

the Beauville–Bogomolov decomposition.

(Q1) Does the dualizing sheaf ωX have finite order in Pic(X)?

(Q2) Does there exist a finite étale covering X ′ → X such that ωX′ ' OX′?

(Q3) Does there exist a finite étale covering X ′ → X such that X ′ ' A × B, where A is

an abelian variety and B is integral with H1(B,OB) = 0 and ωB ' OB?

Each question answered in the affirmative implies the previous ones to be, too. The fact

that question (Q3) can be answered in the negative in positive characteristic is known,

for instance classical and supersingular Enriques surfaces are counterexamples. Hence the

following softened variant is suggested.

(Q4) Does there exist a finite flat covering X ′ → X such that X ′ ' A×B, where A is an

abelian variety and B is integral of Albanese dimension zero with ωB ' OB?

These four questions will be researched consecutively throughout this thesis. The guideline

is to cover the case of surfaces, both smooth and singular, as completely as possible.

Whenever the methods used allow it, results are of course extended to higher dimensions.

There are generalizations of the Beauville–Bogomolov decomposition over C into differ-

ent directions. On the one hand, for singular schemes, Höring and Peternell [66] completed

the decomposition for normal, irreducible, projective X with at most klt singularities.

They admit a quasi-étale covering such that the total space decomposes as a product of

an abelian variety, singular Calabi–Yau schemes and singular Hyperkähler schemes.

On the other hand, it is possible to lessen the assumption on ωY . Cao and Höring [24]

proved that the universal cover of a projective, connected, compact Kähler manifold Y

with ω∨Y nef decomposes as a product of Cn, Calabi–Yau manifolds, Hyperkähler manifolds

and a rationally connected manifold.

Question (Q1) is a special case of the abundance conjecture, which is an important

conjecture for the minimal model program. In a simple form, it states that on a klt,

projective scheme X, the canonical divisor KX is nef, if it is semi-ample.

In positive characteristic, Das and Waldron [32], Theorem 3.3, answered question (Q1)

in the affirmative for suitable threefolds in characteristic p > 5, using the minimal model

program. More precisely, they proved that on a non-uniruled, klt, projective threefold X

over an algebraically closed field of characteristic p > 5, if the Q-divisor KX is numerically

3
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trivial, then KX is semi-ample. For terminal threefolds, the assumption that X is non-

uniruled can be omitted by [133], Theorem 1.1.

The Cn,m-conjecture proposes that a fibration f : X → Y between smooth, integral,

projective schemes of dimensions n = dim(X) and m = dim(Y ) over an algebraically

closed field, such that the geometric generic fiber Xη is smooth and integral, satisfies

the inequality kod(X) ≥ kod(Xη) + kod(Y ) of Kodaira dimensions. Proposed by Iitaka

over C, the conjecture has been verified in several cases, initiated by results due to Viehweg

and Kawamata over C. See [26] for an overview and a proof of C2,m as well as [38] for

a proof of C3,m in the case that p > 5. In characteristic zero, the assumption on the

generic fiber is automatically fulfilled. As a corollary to his proof of a variant of the

Cn,m-conjecture, Kawamata used the Albanese morphism to answer question (Q1) over C,

in [73], Theorem 8.2, also allowing X to have canonical singularities. Indeed, if ωX is

numerically trivial, then so is ωXη , and induction on dim(X) can be applied. This approach

prompted the author to employ the Albanese morphism, which will play an important role

in different parts of this work.

The structure of this thesis is arranged as follows: It is subdivided into two parts,

each consisting of three chapters, and an appendix. Part I provides the background and

technical tools to treat questions (Q1) to (Q4) afterwards in Part II.

In Chapter 1, the condition can
1 (L an) = 0 in H2(Xan;Q) for an invertible sheaf L on a

scheme X over C is translated via `-adic cohomology to c1(L ) = 0 in H2(Xét,Q`), which

can now be expressed in arbitrary characteristic. Another equivalent description is that

L is numerically trivial, which means that its intersection number with every closed curve

on X is zero. Intersection numbers are introduced using the Grothendieck group C(X)

of coherent sheaves on X, or alternatively via the intersection product of the Chow ring

CH(X). Along the way, fundamentals for subsequent chapters are established.

The dualizing sheaf ωX is discussed in Chapter 2, first in the absolute case of Serre

duality for a scheme over a field and afterwards in the relative setting of Grothendieck

duality for a morphism of schemes.

Chapter 3 is dedicated to give a self-contained development of the Albanese morphism,

which is an essential tool in various parts of this work. An Albanese morphism means a

universal morphism into the category of abelian varieties if a k-rational point is fixed, and

otherwise into the category of principal homogeneous spaces under abelian varieties. Its

existence is known, there are several papers dealing with it along the way, but there seems

to be no thorough treatment over arbitrary fields. The core result in this context is the

following, which holds true for suitable families X → S. It also generalizes the existence

of the Albanese morphism beyond what seems to be recorded in literature.

Theorem (Theorem 3.35). Let X be a proper scheme over an arbitrary field k with

h0(OX) = 1. Then the Albanese morphism alb: X → Alb1
X/k exists and its formation

commutes with noetherian base change.
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Chapter 4 addresses question (Q1). The first main result in this chapter is a direct proof

that for a smooth, proper surface over an arbitrary field, the property of the dualizing sheaf

to be numerically trivial implies that it is of finite order. The Enriques classification of

surfaces, which is one of the fundamental achievements in algebraic geometry, implies

this statement, but a direct proof might be of interest by itself. This is the proof of

Theorem 4.17.

The conclusion that the invertible sheaf ωX has finite order can be extended to suitable

normal surfaces. In this situation, the dualizing sheaf is not necessarily invertible, but

it is the reflexive sheaf ωX ' OX(KX) of rank 1 associated to the canonical divisor KX

that is a Weil divisor. So the natural transfer of (Q1) is to ask if KX has finite order as a

Weil divisor. As the second main achievement in Chapter 4, the following theorem could

successfully be deduced.

Theorem (Theorem 4.22). Let X be a Q-Gorenstein, geometrically normal, proper surface

over an arbitrary field k with numerically trivial canonical divisor KX . In the case that X

is not Gorenstein, assume the existence of a perfect extension field k ⊂ L and a resolution

of singularities r : X̃L → XL such that the Q-divisor r∗(KXL) has integral coefficients.

Then KX has finite order.

The proof adapts arguments used by Sakai [106], [107] in his extension of the Enriques

classification to normal Gorenstein surfaces over C. Moreover, it provides upper bounds

for the order of KX , depending on the type of singularities on X. The chapter ends

with examples of non-smooth, normal, integral, projective surfaces which have numeri-

cally trivial canonical divisor. Depending on a certain parameter, these surfaces either

satisfy the assumptions imposed in the preceding theorem, or they turn out to be non-Q-

Gorenstein and their canonical divisor has infinite order. Thus (Q1) cannot be answered

in the affirmative for arbitrary normal surfaces.

In Chapter 5, question (Q2) is covered, under the necessary assumption that ωX has

finite order. This can be done for arbitrary invertible sheaves, asking whether to an

invertible sheaf L of finite order on X, there exists a finite étale covering X ′ → X such

that the pullback of L to X ′ is trivial. This in fact only depends on the divisibility of

ord(L ) by the characteristic p of the ground field k.

Theorem (Theorem 5.6). Let X be an integral, proper scheme over an algebraically closed

field k and let L ∈ Pic(X) be of finite order d. A finite étale covering g : X ′ → X with

g∗(L ) ' OX′ exists if and only if p - d.

Specializing to L = ωX and using g∗(ωX) = ωX′ , this completely answers question (Q2),

once the order of ωX is known. Moreover if X is only assumed to be Q-Gorenstein, this

characterizes when there exists an étale covering X ′ → X such that the index of KX′

equals its order.

At first in Chapter 6, the affirmative answer to the uniqueness of a decomposition as in

questions (Q3) and (Q4) can be presented.

5
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Theorem (Theorem 6.5). Let A,A′, B,B′ be schemes over an arbitrary field k such that

(i) A and A′ become abelian varieties after base change to k,

(ii) B and B′ are of Albanese dimension zero, geometrically integral and proper over k.

Suppose that A×B ' A′ ×B′. Then A ' A′ as well as Bk ' B
′
k
.

An essential ingredient to the proof is the work of Fujita [41], besides the properties de-

veloped previously for the Albanese morphism. Afterwards, a detailed analysis of smooth

surfaces with dualizing sheaf of finite order follows, with respect to questions (Q2) to

(Q4) from above. Whereas (Q3) must in general be answered in the negative in positive

characteristic, the weaker variant (Q4) now always has a positive answer.

The appendix covers various topics and technical tools, which were outsourced to im-

prove readability. Basic group schemes are introduced in Section A.1 and principal ho-

mogeneous spaces in Section A.2. An overview of the analytification of schemes locally of

finite type over C and GAGA is provided in Section A.3. Cohomology and base change is

the content of Section A.4 and properties of fibrations are contained in Section A.5. The

subsequent Section A.6 treats the connection between curves of fiber type on a surface

and fibrations from the surface onto a curve. The Picard scheme and a collection of its

core properties is covered in Section A.7. Finally, a possible approach using models to

deal with question (Q1) is included in Section A.8, being still at an early stage. Except

for Section A.8, the Appendix is self-contained and does logically not depend on other

chapters.

Conventions. The content of this thesis is addressed to be comprehensible for a reader

familiar with the material presented during a standard graduate course in algebraic geom-

etry, following for instance Hartshorne [64], Liu [88] or Görtz and Wedhorn [43]. For each

topic beyond, the author always tried to include a short outline, covering its key features

for its subsequent application, in order to be broadly accessible.

Let S be a scheme. For an S-scheme X and a morphism of schemes b : S′ → S, denote

the base change of X along b by XS′ = X ×S S′. In the case that S′ = Spec(A) is affine,

the notation XS′ = XA will be used interchangeably. For objects defined relatively to a

morphism f : X → S, like the sheaf of Kähler differentials, also use the notation Ω1
X/S ,

which suppresses the concrete underlying morphism. If the base scheme S is fixed, all

products without index are defined over S, and similarly Ω1
X = Ω1

X/S is abbreviated. The

function field of an integral scheme X with generic point η ∈ X is written as K(X) = OX,η.
If k is a ground field, its characteristic is always denoted by p = char(k). A curve

or surface over k means an equidimensional k-scheme of dimension 1 or 2, respectively.

Deviate from this, a curve C ⊂ X on a normal, proper surface X over k means a closed

subscheme which is a curve in the above sense, but without embedded points. Those

correspond to effective Weil divisors on X by [58], Proposition 21.7.2.
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A quasicoherent OX -module F is also simply called a quasicoherent sheaf on X. Every

locally free sheaf E on X is assumed to have finite rank. Especially, an invertible sheaf L

on X is a locally free sheaf of rank 1. The Picard group Pic(X) is the group of isomorphism

classes of invertible sheaves on X, with group law defined by the tensor product. The

subgroup Picτ (X) ⊂ Pic(X) is generated by isomorphism classes of invertible sheaves L

which are τ -equivalent to OX . For X proper over a field k, the latter exactly means that L

is numerically trivial. Moreover, Pic0(X) ⊂ Picτ (X) denotes the subgroup generated by

isomorphism classes of invertible sheaves L which are algebraically equivalent to OX .

Details are given in Section 1.7 and Section A.7. Also, if there is no ambiguity and it

simplifies the presentation, sometimes invertible sheaves L onX are notationally identified

with its isomorphism class, so L ∈ Pic(X) will be used instead of [L ] ∈ Pic(X). For

any OX -module F , set F∨ = HomOX (F ,OX). If F is a coherent sheaf on a proper k-

scheme X, abbreviate hi(F) = dimkH
i(X,F), which is a natural number by the finiteness

theorem. The Euler characteristic of F is the integer χ(F) =
∑

i≥0(−1)ihi(F).
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Chapter 1

Numerically Trivial Sheaves

In order to approach questions related to the Beauville–Bogomolov decomposition for

schemes directly, especially over a field of characteristic p > 0, the vanishing condition

can
1 (ωY ) = 0 of the first Chern class has to be transferred to an algebraic analog. On a

compact complex manifold Y , the first Chern class can
1 (ωY ) can either be considered as an

element of the abelian sheaf cohomology group H2(Y,QY ) with coefficients in the constant

sheaf QY or of the singular cohomology group H2(Y ;Q). Since Y is locally contractible,

both groups can be identified.

Recall that the singular cohomology of a topological space X with coefficients in an

abelian group G is the cohomology H i(X;G) = ker(δi)/ Im(δi−1) of the singular cochain

complex (C∨i , δ
i), where Ci is the free abelian group generated by the singular i-simplices,

C∨i = HomZ(Ci, G) and δi : C∨i → C∨i+1, ϕ 7→ (−1)i+1ϕ ◦ ∂i+1 for the boundary map

∂i : Ci → Ci−1, defined by σ 7→
∑

(−1)jσ(t1, . . . , t̂j , . . . , ti).

If X is the underlying topological space of an irreducible scheme, then its higher singular

cohomology groups are all zero. Indeed, let X be any topological space with a generic point,

that is {η} = X for some η ∈ X. Then X is contractible, a strong deformation retraction

X × [0, 1] → X of X onto {η} is given by (x, 0) 7→ x and (x, t) 7→ η for 0 < t ≤ 1, since

there are no proper closed subsets of X containing η. Singular cohomology is homotopy

invariant, so H i(X;G) = 0 for all i > 0. The vanishing also holds for the abelian sheaf

cohomology groups H i(X,GX), as every constant sheaf on X is flabby.

A replacement for the singular cohomology of a scheme X is the étale cohomology and

the induced `-adic cohomology. They comprise more information and the latter can be

identified with the abelian sheaf cohomology of Xan in the case that X is of finite type

over C.

This chapter begins with a review of different regularity conditions in Section 1.1, in or-

der to fix the notions, the connections between them and their basic properties, which will

be used frequently throughout the following. The next sections introduce étale cohomology

in Section 1.2 and `-adic cohomology in Section 1.3. Over the complex numbers, the com-

parison between `-adic, singular and abelian sheaf cohomology is discussed in Section 1.4.

Then in Section 1.5, the first `-adic Chern class c1(L ) ∈ H2(Xét,Q`(1)) is defined and

its vanishing is characterized. One equivalent description is that L is numerically trivial.

Therefore intersection numbers are treated in Section 1.6 using the Grothendieck group

of coherent sheaves, and afterwards numerical triviality is characterized in Section 1.7.
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Intersection numbers can also be defined via the Chow ring that is briefly introduced in

Section 1.8. The fact that both variants coincide is the content of Section 1.9, which more-

over discusses higher Chern classes with values in the Chow ring. This section also includes

some corollaries of the Grothendieck–Riemann–Roch theorem that will be needed in the

subsequent chapters. Finally in Section 1.10, higher `-adic Chern classes and Poincaré

duality are covered.

1.1 Regularity Conditions

Let R be a local noetherian ring with maximal ideal m and residue field κ = R/m. Re-

capitulate the following definitions from commutative algebra, see Bourbaki [20], [21] for

details.

• depth(R) = max{ l ≥ 0 | ∃R-regular sequence a1, . . . , al ∈ m } is the depth of R.

• dim(R) = max{ l ≥ 0 | ∃ prime ideals p0 ( · · · ( pl in R } is the dimension of R.

• edim(R) = dimκ(m/m2) is the embedding dimension of R.

The inequalities depth(R) ≤ dim(R) ≤ edim(R) always hold.

• R is regular if dim(R) = edim(R).

• R is Cohen–Macaulay if depth(R) = dim(R).

• R is Gorenstein if ExtiR(κ,R) = 0 for i < dim(R) and Ext
dim(R)
R (κ,R) ' κ.

• R is normal if R is an integrally closed domain.

• R is reduced if R contains no non-zero nilpotent elements.

If R is regular, then R is Gorenstein. Note for the appearance of being Gorenstein in

Grothendieck duality that R is Gorenstein if and only if R has finite injective dimension,

which is the minimal length of an injective resolution. This means that R is a dualizing

complex for itself, see [63], Chapter V, Theorem 9.1. An equivalent description of depth

is given by depth(R) = min{ l ≥ 0 | ExtlR(κ,R) 6= 0 }. Hence if R is Gorenstein, then R is

Cohen–Macaulay. If R is regular, then R is normal. It is immediate that if R is normal,

then R is reduced.

A locally noetherian scheme X is regular, Cohen–Macaulay, Gorenstein, normal or

reduced if all its local rings OX,x for x ∈ X have the corresponding property. For a more

detailed distinction, introduce for i ≥ 0 Serre’s conditions:

(Si) depth(OX,x) ≥ min{i, dim(OX,x)} for all x ∈ X.

(Ri) OX,x is regular for all x ∈ X with dim(OX,x) ≤ i.

(Gi) OX,x is Gorenstein for all x ∈ X with dim(OX,x) ≤ i.

12
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Condition (S1) means that X has no embedded points. The scheme X is reduced if

and only if it satisfies (S1) and (R0), and X is normal if and only if it satisfies (S2) and

(R1) by [56], Proposition 5.8.5 and Théorème 5.8.6. Let S be locally noetherian and let

f : X → S be a morphism locally of finite type.

• f is of relative dimension r if X is non-empty and dim(Xs) = r for all s ∈ S such

that Xs is non-empty.

• f is of relative equidimension r if f is of relative dimension r and all non-empty fibers

Xs are equidimensional, that is, each irreducible component of Xs has dimension r.

• f is flat if OX,x is a flat OS,f(x)-module for all x ∈ X.

• f is faithfully flat if f is flat and surjective.

• f is regular , Cohen–Macaulay , Gorenstein, normal , geometrically normal , reduced

or geometrically reduced if f is flat and all fibers Xs for s ∈ S have the corresponding

property.

• f is smooth if f is flat and all fibers Xs for s ∈ S are geometrically regular.

Here, a certain property P for a k-scheme T holds geometrically if for all field exten-

sions k ⊂ E, the E-scheme XE has property P. Note that this definition differs from

[56], Définition 6.8.1, where a regular, normal or reduced morphism is defined to have

geometrically regular, geometrically normal or geometrically reduced fibers, respectively.

If in contrast the fibers are Cohen–Macaulay or Gorenstein, then they are already geo-

metrically Cohen–Macaulay or geometrically Gorenstein, see [56], Corollaire 6.7.8 and [9],

Tag 0C03. Thus a Cohen–Macaulay or Gorenstein morphism is stable under base change,

whereas regular, normal or reduced morphisms are in general not.

Every flat morphism f : X → S locally of finite presentation is universally open due to

[56], Théorème 2.4.6. Particularly, if X is non-empty, S is connected and f is additionally

closed—for instance proper—then f is faithfully flat.

Proposition 1.1. Let S be locally noetherian and let f : X → S be a faithfully flat mor-

phism locally of finite type.

(i) X is Cohen–Macaulay or Gorenstein if and only if both f and S have the corre-

sponding property.

(ii) If X is regular, normal or reduced, then S has the corresponding property. Moreover,

if S and f are regular, normal or reduced, then X has the corresponding property.

References for the preceding proposition are [63], Chapter V, Proposition 9.6 and [9],

Tag 0C12, [56], Corollaire 6.3.5 and [43], Proposition 14.57.

The following diagram sums up the relations between the properties of f covered above.

If all fibers of f are of dimension at most r, then the dotted implications are valid.

13



Chapter 1

Gorenstein +3 Cohen–Macaulay

smooth +3 regular

4<

"*

normal +3

r≤ 2

9A

r≤ 1

RZ

reduced

r≤ 1

KS

For Cohen–Macaulay and normal schemes, the following proposition presents additional

properties. They refer to [43], Proposition 14.124 and Remark 6.37.

Proposition 1.2. Let X be a locally noetherian scheme.

(i) If X is Cohen–Macaulay, connected and locally of finite type over an arbitrary field k,

then X is equidimensional.

(ii) If X is normal and connected, then X is irreducible and thus integral.

Let S be locally noetherian and let f : X → S be a morphism locally of finite type.

• f is unramified if OXs,x = OX,x/msOX,x is a finite separable field extension of κ(s)

for all x ∈ X, where s = f(x).

• f is étale if f is flat and unramified.

• f is purely inseparable if f is injective and for every x ∈ X, the field extension

κ(f(x)) ⊂ κ(x) is purely inseparable.

A morphism f is unramified if and only if for every s ∈ S, the fiber Xs '
∐
i∈I Spec(Ei)

is a disjoint union for finite separable field extensions κ(s) ⊂ Ei. The reference for this

is [58], Corollaire 17.4.2. Especially, every unramified morphism f is locally quasi-finite.

Thus if f is additionally proper, then f is finite by [57], Théorème 8.11.1.

A morphism f is étale if and only if f is smooth of relative dimension 0, see [58],

Théorème 17.6.1. In the case that f is a morphism of schemes over a separably closed

field k, then f is étale if and only if the induced homomorphisms ÔS,f(x) → ÔX,x on formal

completions of the local rings are bijective for all x ∈ X due to [58], Proposition 17.6.3.

An étale morphism f : X → S satisfies dim(OX,x) = dim(OS,f(x)) for all x ∈ X, see [58],

Proposition 17.6.4. Particularly if f : X → S is an étale morphism of irreducible schemes

of finite type over an arbitrary field k, then f is dominant and dim(X) = dim(S). If f is

additionally proper, then f is finite and surjective.

For f to be purely inseparable, it is equivalent to demand that the base change XS′ → S′

is injective for every morphism S′ → S by [50], Proposition 3.5.8 and Remarque 3.5.11.

So a purely inseparable morphism is also called a universally injective morphism.
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1.2 Étale Cohomology

To define étale cohomology, it is necessary to extend the notion of a topology from a

topology on a space to a Grothendieck topology on a category. Note that a section of a

sheaf corresponds by definition to its compatible restrictions to an open covering. Thus

to define a sheaf, it is only necessary to know what open coverings are, instead of open

subsets themselves. This notion can be generalized in a meaningful way. For instance,

open subschemes U, V ⊂ X can be regarded as open embeddings U ↪→ X and V ↪→ X.

Then their intersection is the fiber product U ∩ V = U ×X V . Hence if instead of open

embeddings, a wider class of morphisms should be considered, the fiber product is a natural

candidate to replace the intersection.

The subsequent lines form a brief survey of the topic. For an elaboration, see Milne

[90], Chapter II, based on the fundamentals provided in SGA 4 [7]. Let X be a locally

noetherian scheme. A site (C/X) over X consists of a full subcategory (C/X) of (Sch/X)

and a Grothendieck topology T on (C/X). The latter is defined in [7] to be a collection of

sieves for objects of (C/X). A tangible way to obtain a topology is the use of a pretopology ,

which induces a Grothendieck topology. This is the notion used in the following. A

pretopology is a collection of families (gi : Ui → Y )i∈I of morphisms in (C/X) for objects

Y in (C/X) such that Y =
⋃
gi(Ui), called coverings , which satisfies suitable axioms

recreating the behavior of a usual topology.

To obtain the Zariski site (Zar/X), set (C/X) as the category of locally noetherian

X-schemes as well as the pretopology to be the collection of all open embeddings. In

the same manner, define the étale site (Ét/X) and the flat site (Fppf/X), where étale

morphisms and flat morphisms locally of finite type, respectively, are used instead of open

embeddings.

Remark 1.3. Those sites are called the big sites, whereas for the small sites, the same

condition imposed on the morphisms forming T is also used to define (C/X). The un-

derlying category (zar/X) of the small Zariski site is the category of X-schemes whose

structure morphism is an open embedding. In the case of the small étale site, the un-

derlying category (ét/X) is the category of X-schemes whose structure morphism is étale

and of finite type—now including quasicompactness—and the pretopology is also given by

étale morphisms of finite type.

The small and big sites defined above will both yield the same cohomology groups

according to [90], Chapter III, Proposition 3.1 and Proposition 3.3. Hence often the

small sites are chosen to work with, being less complicated. This usually happens if

one other reason is satisfied, namely if the morphisms between objects in (C/X) inherit

the condition imposed on their structure morphism to X. In the example of the small

étale site, a morphism between X-schemes with étale structure morphism of finite type is

automatically étale by [58], Proposition 17.3.4. The same holds true for open embeddings,

but in general not for flat morphisms. Nevertheless, to be consistent with the treatment

of the different Picard functors in Section A.7, the standard sites in the following are the
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big sites. Then the Picard functors can be defined on the same category, and they can

therefore be compared directly.

Remark 1.4. The term “fppf” abbreviates fidèlement plat de présentation finie. Since all

X-schemes considered above are locally noetherian, every morphism to one of them which

is locally of finite type is automatically locally of finite presentation. Thus a faithfully flat

morphism locally of finite presentation to a locally noetherian scheme will also be called

an fppf morphism. Every covering (Ui → Y )i∈I for the flat site yields actually an fppf

morphism
∐
Ui → Y .

A sheaf F on a site (C/X) is a presheaf, that is, a contravariant functor F : (C/X)→ A
to a category A, which additionally satisfies the sheaf axiom for all coverings in T . Usually

and if not mentioned otherwise, the category A will be the category (Ab) of abelian

groups. Most constructions and properties of sheaves in the usual sense can be transferred

analogously to sheaves on sites.

Example 1.5. Let F be a quasicoherent OX -module in the usual sense. Then assign to

any g : U → X in (C/X) the group Γ(U, g∗(F)). Together with the natural restrictions, this

defines sheaves F ét on the site (Ét/X) and F fppf on the site (Fppf/X) by [90], Chapter II,

Corollary 1.6. Those sheaves are again OX -modules, where OX also denotes the sheaf of

rings given by the definition in the case F = OX above.

Example 1.6. Let G be a commutative group scheme over X, which can be expressed in

saying that its functor of points hG : (Sch/X) → (Set) factorizes through (Ab). Thus to

any g : U → X in (C/X), assign the group hG(U) = HomX(U,G) = G(U). This naturally

yields an abelian sheaf G on (Ét/X) and (Fppf/X) due to [90], Chapter II, Corollary 1.7.

Remark 1.7. Following Grothendieck’s philosophy, [7], Exposé IV, the central object to

study is a topos , which is a category equivalent to the category of sheaves on a site. The

notion of topos can be seen as the suitable enlargement of the notion of topological space.

As for usual sheaves, write Γ(U,F) = F(U) for the sections of F over U → X. The

category S(C/X) of sheaves on a site (C/X) contains enough injectives by [90], Chapter III,

Proposition 1.1, and the functor S(C/X) → (Ab), F 7→ Γ(X,F) is left-exact, see [90],

Chapter II, Theorem 2.15. Its right derived functors S(C/X) → (Ab), F 7→ H i(X,F)

yield the i-th cohomology group H i(X,F) of (C/X) with values in F for i ≥ 0. In the case

of the étale or fppf site, use the notation H i(Xét,F) and H i(Xfppf ,F) for the i-th étale

cohomology group and i-th fppf cohomology group of X with values in F , respectively.

1.3 `-adic Cohomology

Let X be a locally noetherian scheme over an arbitrary field k of characteristic p ≥ 0

and ` a prime number different from p. For n ≥ 1, let Fn be the associated sheaf on

the étale site of X to the constant group scheme (Z /`n Z)X or to the group scheme
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µ`n,X . The cohomology groups H i(Xét,Fn), computed for the category of sheaves of

Z /`n Z-modules, are again Z /`n Z-modules and they coincide with the cohomology groups

computed for the category of sheaves of abelian groups. Indeed, a Godement resolution

by flabby sheaves of Z /`n Z-modules can be used to derive cohomology and the notion

of being flabby is independent of the module structure, so it also yields the cohomology

groups as abelian groups. For m ≥ n, the projections (Z /`m Z)X → (Z /`n Z)X and

multiplications µ`m,X → µ`n,X by `m−n produce an inverse system (Fn)n≥1. The induced

homomorphisms H i(Xét,Fm)→ H i(Xét,Fn) mount up to an inverse system and its limit

lim←−H
i(Xét,Fn) becomes a Z`-module. Here Z` = lim←−Z /`n Z denotes the `-adic integers

and Q` = Frac(Z`) the `-adic numbers.

Definition 1.8. The Z`-module H i(Xét,Z`(1)) := lim←−H
i(Xét, µ`n,X) is defined to be

the i-th `-adic cohomology group of X with integral coefficients. Similarly, the Q`-vector

space H i(Xét,Q`(1)) = H i(Xét,Z`(1)) ⊗Z` Q` is the i-th `-adic cohomology group of X

with rational coefficients. The i-th Betti number of X is bi(X) = rankZ` H
i(Xét,Z`(1)).

Also abbreviate bi = bi(X) if the dependence is obvious.

Furthermore, define the Z`-module H i(Xét,Z`) = lim←−H
i(Xét, (Z /`n Z)X) and the Q`-

vector space H i(Xét,Q`) = H i(Xét,Z`)⊗Z` Q`.

Remark 1.9. If k is separably closed, then the choice of a primitive `n-th root of unity

yields a non-canonical isomorphism (Z /`n Z)X ' µ`n,X . Hence there are induced bijec-

tions H i(Xét, µ`n,X) ' H i(Xét, (Z /`n Z)X). Inductively, primitive roots of unity can be

chosen such that

µ`n+1,X
' //

`

��

(Z /`n+1 Z)X

pr

��
µ`n,X '

// (Z /`n Z)X

commutes for all n ≥ 1. Then H i(Xét,Z`(1)) ' H i(Xét,Z`) non-canonically. One reason

to set the former to be the `-adic cohomology groups of X is that Chern classes can

naturally be defined to take values therein. This will be explicated in Section 1.5 and also

Section 1.10 below.

Remark 1.10. The notion of a sheaf of Z`-modules F = (Fn)n≥1 is a formalization of

the two cases above. See [90], page 163f. for details.

Recall that Z` is a principal ideal domain and its non-zero ideals are all generated by

some `n with quotient Z` /`n Z` = Z /`n Z. Thus if H i(Xét,Z`(1)) is a finitely generated

Z`-module, the classification of finitely generated modules over a principal ideal domain

yields H i(Xét,Z`(1)) ' Z⊕bi` ⊕T for some finite module T . Hence the Betti numbers can

alternatively be computed as bi = dimQ` H
i(Xét,Q`(1)).

For all H i(Xét,Z`(1)) to be finitely generated, it is sufficient that all H i(Xét, µ`n,X) are

finite groups due to [90], Chapter V, Lemma 1.11. This holds for instance if X is of finite

type over a separably closed field by [33], [Th. finitude], Corollaire 1.10, page 236. The

following finiteness theorem is [90], Chapter VI, Theorem 1.1.
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Proposition 1.11. Let X be of finite type over a separably closed field k and n = dim(X).

Then H i(Xét,Z`(1)) = 0 for i > 2n.

Under the assumptions above, the `-adic Euler characteristic of X is defined to be

the integer e(X) =
∑2n

i=0(−1)ibi(X). Reinterpretations of this term will be given in

Proposition 1.46 and Corollary 1.47 below.

Example 1.12. Observe that the `-adic cohomology groups in general differ from the

cohomology groups with coefficients in the constant sheaves (Z`)X or (Q`)X . For instance,

if X is normal, integral, noetherian and GX is the constant sheaf defined by a torsion-free

abelian group G, then H1(Xét, GX) = 0. This can be seen as follows:

Let η = Spec(K(X)) and set i : η → X for the canonical morphism. On the small étale

site (ét/X), there is a natural identification GX
'−→ i∗(Gη). Indeed, let U → X be étale

of finite type. The quasicompactness ensures that U is noetherian, so it has finitely many

connected components. Hence to show the identification of sheaves above, reduce to U

connected. Since U is normal, it is even integral. Then the generic fiber U ′ = Uη is again

integral, and the map on sections over U is the natural map H0(Uét, GU )→ H0(U ′ét, GU ′),

which is the identity G→ G.

Moreover, R1i∗(Gη) is zero: This sheaf is the sheafification of U 7→ H1(U ′ét, GU ′). Here

U ′ = Uη is a finite disjoint union of Spec(E), where K(X) ⊂ E is a finite separable field

extension. Thus again, to show that H1(U ′ét, GU ′) = 0, reduce to U ′ = Spec(E). Then,

as GU ′ is constant, H1(U ′ét, GU ′) is isomorphic to Homcont(H,G), where H is the absolute

Galois group of E. But this homomorphism group is trivial, since H is profinite and G is

discrete and torsion-free. So R1i∗(Gη) is the sheafification of the trivial presheaf, hence

trivial itself.

The Leray spectral sequence Ea,b2 = Ha(Xét, R
bi∗(Gη))⇒ Ha+b(ηét, Gη), see [90], Chap-

ter III, Theorem 1.18, eventually yields H1(Xét, GX) = H1(ηét, Gη). The right-hand side

is zero, using the same argument as before. This proves the claim.

The preceding reasoning also indicates that for G finite, the group H1(Xét, GX) will

comprise essentially more information. This motivates the use of `-adic cohomology and

the next section will exhibit that it is an expedient replacement for singular cohomology.

1.4 Comparison to Other Cohomology Theories

Let X be a scheme of finite type over C. Its closed points X(C) can naturally be equipped

with the classical topology and a sheaf of rings. This yields a complex analytic space Xan,

the analytification of X. See Section A.3 for an overview of this technique.

This section reviews that the `-adic cohomology of X coincides with the `-adic abelian

sheaf cohomology of Xan, and under suitable assumptions also with the singular cohomol-

ogy of Xan with coefficients in Z`. There is a natural choice ζ`n = exp(2πi
`n ) of a primitive

complex `n-th root of unity, so identify H i(Xét,Z`(1)) = H i(Xét,Z`) and consider the

latter groups in the following, as they can be defined in the same manner on Xan.
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Notationally, given a topological space Y and an abelian group G, its abelian sheaf

cohomology groups with coefficients in the constant sheaf GY are H i(Y,GY ). As in the

definition of H i(Xét,Z`), set H i(Y,Z`) = lim←−H
i(Y, (Z /`n Z)Y ). The singular cohomology

groups with coefficients in G are denoted by H i(Y ;G). The notation H i(Y ;Z`) will not

be used, but the next proposition shows that lim←−H
i(Y ;Z /`n Z) = H i(Y ; lim←−Z /`n Z) is

true quite generally.

Proposition 1.13. Let ` be a prime number and i ≥ 0.

(i) Let X be a scheme of finite type over C. There is a natural identification

H i(Xét,Z`) = H i(Xan,Z`).

If Xan is moreover locally contractible, then H i(Xan,Z`) = H i(Xan, (Z`)Xan).

(ii) Let Y be a locally contractible topological space and G an arbitrary abelian group.

Then

H i(Y,GY ) = H i(Y ;G).

(iii) Let Y be a topological space such that all singular homology groups H∗(Y ;Z) are

finitely generated. Then

lim←−H
i(Y ;Z /`n Z) = H i(Y ; lim←−Z /`n Z) = H i(Y ;Z)⊗Z Z`.

(iv) All assumptions above hold for a smooth, proper scheme X over C and Y = Xan.

The proof is conducted throughout the remainder of this section. Its crucial part is

clearly the first isomorphism: For a finite abelian group G, the étale cohomology groups

H i(Xét, GX) and abelian sheaf cohomology groups H i(Xan, GXan) can naturally be iden-

tified by [8], Exposé XVI, Théorème 4.1. For G = Z /`n Z, the functoriality of this

identification guarantees that the conclusion holds true in the limit. This shows the first

identification in (i).

On a locally contractible topological space Y , abelian sheaf cohomology and singular

cohomology coincide, see [115]. Thus (ii) is valid. To complete the proof of (i), con-

sider the case where Xan = Y is locally contractible. The assertion is an application

of [53], Chapitre 0, Proposition 13.3.1 and Remarques 13.3.2. Verify the assumptions

imposed there: First, note that on any contractible open subset U ⊂ Y , the identifica-

tion H i(U, (Z /`n Z)U ) = H i(U ;Z /`n Z) holds. For i > 0, this group is zero. Second,

as stated in Section 1.3, the groups H i(Xan, (Z /`n Z)Xan) = H i(Xét, (Z /`n Z)X) are all

finite, and so the inverse system (H i(Xan, (Z /`n Z)Xan)n≥1 satisfies the Mittag–Leffler

condition. Eventually, the proposition can be applied, which yields the identification

H i(Xan,Z`) = H i(Xan, (Z`)Xan).

Prior to the proof of (iii), observe that every compact topological manifold has the

homotopy type of a finite CW complex according to [75]. Hence its singular homology
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groups are finitely generated. Thus if X is a smooth, proper scheme over C, then Xan is a

compact complex manifold, so Xan is locally contractible with finitely generated singular

homology groups. Consequently, (iv) holds once (iii) does.

Finally to verify (iii), assume that all singular homology groups H∗(Y ;Z) are finitely

generated. This also implies that the singular cohomology groups are finitely generated

and the universal coefficient theorem, [128], Proposition 11.9.6, holds: For any abelian

group G, the sequence

(1.1) 0 −→ H i(Y ;Z)⊗Z G −→ H i(Y ;G) −→ TorZ1 (H i+1(Y ;Z), G) −→ 0

is exact, splits, and is natural in Y and G.

Thus H i(Y ;Z)⊗ZZ` → H i(Y ;Z`) is bijective if TorZ1 (H i+1(Y ;Z),Z`) = 0. This is true:

H i+1(Y ;Z) is a finitely generated abelian group and Tor commutes with direct sums, so

the assertion reduces to TorZ1 (Z,Z`) = 0 and TorZ1 (Z /mZ,Z`) = Z`[m] = 0 for all m ≥ 1.

Here G[m] = { g ∈ G | mg = 0 } is the m-torsion subgroup of an additively denoted

group G.

It remains to verify that H i(Y ;Z) ⊗Z Z`
'−→ lim←−H

i(Y ;Z /`n Z) naturally. The cases

G = Z /`n Z for n ≥ 1 in the universal coefficient theorem yield an exact sequence of

inverse systems. The transition maps in (H i(Y ;Z) ⊗Z Z /`n Z)n≥1 are surjective, so the

system satisfies the Mittag–Leffler condition. Hence the inverse limits form again an exact

sequence. To deduce the claimed bijection, two arguments are required. First,

lim←−TorZ1 (H i+1(Y ;Z),Z /`n Z) = lim←−H
i+1(Y ;Z)[`n]

has to be zero. The transition maps on the right-hand side are multiplication by `. In

fact, compute the Tor groups by tensoring the rows in

0 // Z `n+1
//

`

��

Z //

id

��

Z /`n+1 Z //

pr

��

0

0 // Z
`n
// Z // Z /`n Z // 0

with H i+1(Y ;Z). The subsequent lemma now finishes this first argument.

Lemma 1.14. Let G be a finite group, denoted additively, and ` a prime number. Then

lim←−G[`n] = 0, where the transition maps are multiplication by `.

Proof. Assume by contradiction that (gn) ∈ lim←−G[`n] is non-zero. Then fix an s ≥ 1

such that gs 6= 0. For all r > s also gr 6= 0 holds, and the relations `rgr = 0 as well

as `r−sgr = gs 6= 0 are valid. So ord(gr) divides `r, but does not divide `r−s. Hence

ord(gr) = `m for some m > r − s. This is not possible for all r > s, since G is finite.

Second, the identification H i(Y ;Z)⊗ZZ` = lim←−(H i(Y ;Z)⊗ZZ /`n Z) has to be verified.

This is the following lemma, which thereby concludes the proof of Proposition 1.13.
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Lemma 1.15. Let R be a ring, M a finitely presented R-module and (Ni) an inverse

system of R-modules, which satisfies the Mittag–Leffler condition. Then the canonical

map

M ⊗R
(
lim←−Ni

)
−→ lim←−(M ⊗R Ni), m⊗ (ni) 7−→ (m⊗ ni)

is bijective.

Proof. Choose a finite presentation R⊕r → R⊕s → M → 0. Tensoring with lim←−Ni yields

an exact sequence

(1.2) (lim←−Ni)
⊕r −→ (lim←−Ni)

⊕s −→M ⊗R (lim←−Ni) −→ 0.

On the other hand, the tensor product with each Ni gives the following exact sequence:

N⊕ri −→ N⊕si −→M ⊗R Ni −→ 0.

They form an exact sequence of inverse systems with the naturally induced transition

maps. The inverse system (N⊕ri ) and in turn also its image in (N⊕si ) continues to satisfy

the Mittag–Leffler condition. Hence the inverse limit is the exact sequence

(1.3) (lim←−Ni)
⊕r −→ (lim←−Ni)

⊕s −→ lim←−(M ⊗R Ni) −→ 0.

The five lemma applied to the natural commutative diagram formed by (1.2) and (1.3)

eventually yields the assertion.

1.5 First Chern Classes

Let X be a locally noetherian scheme over an arbitrary field k of characteristic p ≥ 0 and

` a prime number different from p. By [8], Exposé IX, Théorème 3.3, there are canonical

identifications

Pic(X) = H1(X,O×X) = H1(Xét,Gm,X).

For every integer n ≥ 1, the Kummer sequence

(1.4) 1 −→ µ`n,X −→ Gm,X
`n−−→ Gm,X −→ 1

is exact on the étale site of X. Indeed, exactness can be verified on stalks and for a strictly

henselian local ring R with residue field of characteristic p, multiplication R× → R× by `n

is surjective due to Hensel’s lemma. The following commutative diagram with exact rows

1 // µ`n+1,X
//

`

��

Gm,X

`

��

`n+1
// Gm,X

//

id

��

1

1 // µ`n,X // Gm,X
`n
// Gm,X

// 1
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shows that the boundary maps H1(Xét,Gm,X)
δ−→ H2(Xét, µ`n,X) are compatible with the

induced morphisms by µ`n+1,X → µ`n,X on the second cohomology. This yields a map

c1 : Pic(X) −→ H2(Xét,Z`(1)).

Definition 1.16. The first Chern class of an invertible sheaf L on X is defined as

c1(L ) ∈ H2(Xét,Z`(1)). The same name and notation is used for its canonical image

c1(L ) ∈ H i(Xét,Q`(1)).

A characterization of what it means for the first Chern class of an invertible sheaf to be

torsion or zero will be given below. Before, in the case that X is of finite type over k = C,

note that the target H2(Xét,Z`(1)) = H2(Xét,Z`) can be identified with H2(Xan,Z`) due

to Proposition 1.13. Here, c1 can be reinterpreted as follows: The long exact sequence of

cohomology groups to the exponential sequence

(1.5) 0 −→ ZXan
t 7→2πit−−−−→ OXan

exp−−→ O×Xan −→ 1

induces a map can
1 : H1(Xan,O×Xan)→ H2(Xan,ZXan), which associates to every invertible

sheaf a variant of the first Chern class in the analytic category. The canonical maps

H2(Xan,ZXan) → H2(Xan, (Z /`n Z)Xan) define pr : H2(Xan,ZXan) → H2(Xan,Z`). The

data above is connected through the commutative diagram

(1.6) H1(Xét,Gm,X)
c1 // H2(Xét,Z`)

Pic(X) H1(Xan,O×Xan)
can1

// H2(Xan,ZXan) pr
// H2(Xan,Z`)

due to [60], Exposé VII, Partie 3.8. Call an invertible sheaf L on a scheme `-divisible if

its class [L ] ∈ Pic(X) is `-divisible, that is, for every n ≥ 1, there exists an invertible

sheaf M such that M⊗`n' L .

Proposition 1.17. Let X be a scheme of finite type over an arbitrary field k of charac-

teristic p ≥ 0. Let ` 6= p be a prime number and L an invertible sheaf on X. Consider

the following statement:

(i) c1(L ) ∈ H2(Xét,Z`(1)) is torsion.

Each one of the subsequent assertions is equivalent to (i) under the additional assumption

imposed in the respective parenthesis.

(ii) There exists an m ≥ 1 such that L ⊗m is `-divisible.

(iii) L ∈ Picτ (X). (X is proper with h0(OX) = 1 over k algebraically closed).

(iv) c1(L ) ∈ H2(Xét,Q`(1)) is zero. (k is separably closed).

(v) can
1 (L ) ∈ H2(Xan,ZXan) is torsion. (k = C and H2(Xan,ZXan) is fin. gen.).
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Proof. The equivalence of (i) and (ii) is a consequence of the stronger statement c1(L ) = 0

if and only if L is `-divisible. This can be verified as follows: First, note that the choice

of an injective resolution of Gm,X shows that the map induced by `n : Gm,X → Gm,X

on H1(Xét,Gm,X) = Pic(X) is again the multiplication by `n. The kernel of c1 is the

intersection over all kernels of the boundary homomorphisms δ, defined by the exact

sequences

Pic(X)
`n−−→ Pic(X)

δ−−→ H2(Xét, µ`n,X).

Hence c1(L ) ∈ H2(Xét,Z`) is zero if and only if L is contained in the images of

`n : Pic(X)→ Pic(X) for all n ≥ 1, which means L is `-divisible.

Next, show—more precisely than stated—that (ii) implies (iii) if X is proper over k,

and that the converse holds if additionally h0(OX) = 1 and k is algebraically closed.

The properness of X ensures that its Néron–Severi group NS(X) = Pic(X)/Pic0(X)

is finitely generated, and thus it decomposes as NS(X) ' Z⊕ρ⊕T for the finite group

T = Picτ (X)/Pic0(X), see Section A.7. Assume (ii), so some multiple M = L ⊗m is

`-divisible. This divisibility remains true for the image of M in NS(X), so it has to be

contained in the torsion part T . Thus a multiple of M , and thereby of multiple of L , is

contained in the kernel Pic0(X) of the projection to NS(X). This means L ∈ Picτ (X).

Conversely, assume L ∈ Picτ (X). Then replace L by some multiple to reduce to the

case that L ∈ Pic0(X). By Theorem A.30, the identity component G = Pic0
X of the

Picard scheme of X is of finite type, hence an algebraic group, and Pic0(X)→ Pic0
X(k) is

bijective. The structure theory of algebraic groups, [101], Lemma 6.1, yields the existence

of subgroups 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that each Gi/Gi−1 for 1 ≤ i ≤ n is the

multiplicative group, the additive group, an abelian variety or a finite group. Since k is

algebraically closed and ` 6= p, the k-valued points of both Gm and Ga are `-divisible. The

same holds for abelian varieties by [95], Section 6, Application 2. Now let m be the least

common multiple of all orders of finite groups appearing as subquotients. Then L ⊗mn is

`-divisible. In fact by induction, for every x ∈ Gi(k), its multiple mix is `-divisible. Hence

(ii) holds.

Assertion (i) always implies (iv). For the converse, assume that k is separably closed.

As explained in Section 1.3, the group H2(Xét,Z`(1)) is a finitely generated Z`-module, so

H2(Xét,Z`(1)) ' Z⊕b2` ⊕T decomposes for some finite group T . Since Z` → Q` is injective

and H2(Xét,Q`(1)) ' Q⊕b2` , also (iv) implies (i).

Finally, prove that (i) and (v) are equivalent if k = C and H2(Xan,ZXan) ' Z⊕r ⊕S for

a finite abelian group S. Assume (v). Then (1.6) yields that some L ⊗m is contained in

the kernel of c1, and hence (i) follows. Conversely, assume that L ⊗m is `-divisible. Since

no non-zero element of Z⊕r is `-divisible, necessarily m ·can
1 (L ) ∈ S must hold. So can

1 (L )

is torsion.

Remark 1.18. The proof above has in fact shown that (i) implies (iii) whenever X is

proper over k. Moreover, the equivalence stated in subsequent proposition was already

proven.
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Proposition 1.19. In the situation of Proposition 1.17, the following two assertions are

equivalent:

(i) c1(L ) ∈ H2(Xét,Z`(1)) is zero.

(ii) L is `-divisible.

If X is normal, proper with h0(OX) = 1 over k algebraically closed, then L ∈ Pic0(X)

implies (i) and (ii).

Proof. Only the last statement remains to be verified. Under the additional assumptions,

let L ∈ Pic0(X). Since X is normal, Theorem A.30 ensures that Pic0
X is proper and

A = (Pic0
X)red is an abelian variety. The group A(k) is a divisible, as k is algebraically

closed. Because Pic0(X) = Pic0
X(k) = A(k), the invertible sheaf L is `-divisible. Thus

(ii) holds.

Example 1.20. The contrary conclusion that an invertible sheaf L with c1(L ) = 0 in

H2(Xét,Z`(1)) always satisfies L ∈ Pic0(X) is not true in general. For instance, let k

be algebraically closed and X a classical Enriques surface. Then PicτX = Z /2Z and so

Pic0
X = Spec(k) is trivial. The class of the dualizing sheaf ωX is the non-trivial element

of Picτ (X), that means ωX 6∈ Pic0(X). But for every odd prime ` 6= p, clearly ω⊗`X ' ωX .

Hence ωX is `-divisible and therefore c1(ωX) = 0.

Remark 1.21. In contrast, the condition can
1 (L ) = 0 for the analytic first Chern class

is equivalent to L ∈ Pic0(X). Indeed, let k = C and X a smooth, integral, projective

scheme over C. Note that by Proposition 1.13, singular and abelian sheaf cohomology

coincide on Xan. There exists a natural identification Pic0(X) = ker(can
1 ) as follows: Set

Y = Xan. The long exact sequence induced by the exponential sequence (1.5) yields

0 −→ H1(Y,OY )/H1(Y,ZY ) −→ H1(Y,O×Y )
can1−−→ H2(Y,ZY ).

There exists a natural identification Pic0(X) = H1(Y,OY )/H1(Y,ZY ) according to [14],

Proposition 11.11.3. Thus Pic0(X) = ker(can
1 ).

At this point, summarize what has been deduced during this section so far. If X is a

smooth, proper scheme over C, then can
1 maps to H2(Xan,ZXan). This group is finitely

generated and can be identified with the singular cohomology group H2(Xan;Z) due to

Proposition 1.13. For any field F , the universal coefficient theorem (1.1) implies that the

kernel of the natural map H2(Xan;Z)→ H2(Xan;F ) is the torsion part of H2(Xan;Z). So

the condition can
1 (L ) = 0 in H2(Xan;F ), which is imposed for the Beauville–Bogomolov

decomposition on L = ωX , means that can
1 (L ) ∈ H2(Xan,ZXan) is torsion.

Equivalent descriptions were given Proposition 1.17, which can be demanded from an

invertible sheaf L on a proper scheme X over an arbitrary field k. A consequence is

always that L ∈ Picτ (X), which exactly means that L is numerically trivial. This will

be discussed in Section 1.7 below, after some basic intersection theory has been introduced
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in Section 1.6. The numerical triviality of ωX will be the condition imposed on X to study

questions related to the Beauville–Bogomolov decomposition over an arbitrary field k. It

is the most tangible notion for practical applications.

This section is concluded with two well-known results about the Betti numbers b1(X)

and b2(X), which can be deduced from the methods used above.

Proposition 1.22. Let X be a normal, integral, proper scheme over an algebraically

closed field k and ` 6= p. Set g = dim(Pic0
X). Then

b1(X) = 2g and b2(X) ≥ ρ(X).

Proof. Since X is proper, the Néron–Severi group NS(X) is finitely generated, and thus

T = Picτ (X)/Pic0(X) is a finite group. Consider the abelian variety A = (Pic0
X)red. The

abelian group Pic0(X) = A(k) is a divisible, as k is algebraically closed. Divisible abelian

groups are exactly the injective Z-modules, thus Picτ (X) ' Pic0(X) ⊕ T . The Kummer

sequence (1.4) shows that H1(Xét, µ`n,X) = Pic(X)[`n] = Picτ (X)[`n], as k is separably

closed. Lemma 1.14 implies that lim←−T [`n] = 0. Moreover A(k)[`n] ' (Z /`n Z)⊕2g holds by

for instance [95], Section 6, Proposition on page 64. Consequently, H1(Xét,Z`(1)) ' Z⊕2g
`

and especially b1(X) = 2g.

For the inequality, consider now the part Pic(X)
`n−→ Pic(X)

δ−→ H2(Xét, µ`n,X) induced

by the Kummer sequence. The target of δ is a Z /`n Z-module, so the divisibility of

Pic0(X) implies Pic0(X) ⊂ ker(δ). Thus δ induces an injection from NS(X)/`n NS(X) into

H2(Xét, µ`n,X), which yields a morphism of inverse systems indexed over n ≥ 1. Since

NS(X) is finitely generated, NS(X)/`n NS(X) = NS(X) ⊗ Z /`n Z. Now Lemma 1.15

shows that the induced map on the limit is NS(X) ⊗ Z` ↪→ H2(Xét,Z`(1)). Eventually,

forming ranks yields ρ(X) ≤ b2(X).

1.6 Intersection Numbers

Fix an arbitrary ground field k and let X be a proper k-scheme. The purpose of this section

is to define and summarize basic properties of the intersection number (L 1 · · ·L r | F) ∈ Z
of invertible sheaves L 1, . . . ,L r and a coherent sheaf F on X. The subsequent outline

follows Kleiman [78], Appendix B, based upon work by Snapper. Proofs of the statements

in this section can be found in this source.

Let Coh(X) be the abelian category of coherent sheaves on X. Denote by Cohr(X)

its full subcategory, consisting of those coherent sheaves F with dim(Supp(F)) ≤ r. The

Grothendieck group C(X) of Coh(X) is the free abelian group on all F ∈ Coh(X), modulo

relations [F ] = [F ′] + [F ′′] for every short exact sequence 0 → F ′ → F → F ′′ → 0. Its

subgroup Cr(X) is generated by Cohr(X). The properness of X ensures that the Euler

characteristic χ(F) =
∑

i≥0(−1)ihi(F) is a finite sum by [53], Théorème 3.2.1. As it is

compatible with the relations in C(X), there is an induced homomorphism χ : C(X)→ Z.

If Y ⊂ X is a closed subscheme and F = OY , also write [Y ] = [OY ] in C(X).
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For every invertible sheaf L on X, the assignment [F ] 7→ [F ] − [L ∨⊗F ] yields an

endomorphism of C(X) denoted by c1(L ). To shed some light on this definition, consider

the case where F = OY for a closed subscheme Y ⊂ X, for instance Y = X. If D ⊂ Y is

an effective Cartier divisor such that OY (D) ' L |Y , then c1(L )[Y ] = [D]. This follows

immediately from the defining sequence 0 → OY (−D) → OY → OD → 0 noting that

OY (−D) ' L ∨|Y . The connection to Chern classes as elements of the Chow ring will

explain the notation c1 and is illustrated in Section 1.9. The fact that the image of Cr(X)

under c1(L ) is contained in Cr−1(X) is an immediate consequence of the following:

Lemma 1.23. Let Y1, . . . , Ys be the r-dimensional integral components of Supp(F) and

denote the multiplicity of F at the generic point ηj ∈ Yj by mj = length OX,ηj
Fηj . Then

[F ] ≡
∑s

j=1mj [Yj ] mod Cr−1(X).

Definition 1.24. The intersection number of invertible sheaves L 1, . . . ,L r on X with

Σ ∈ Cr(X) is the integer

(L 1 · · ·L r |Σ) = χ(c1(L 1) · · · c1(L r)(Σ)).

For a coherent sheaf F ∈ Cohr(X), the intersection number with [F ] ∈ Cr(X) is denoted

by (L 1 · · ·L r | F). In the case that F = OX , abbreviate (L 1 · · ·L r) = (L 1 · · ·L r | OX)

and if L i = OX(Di) for a Cartier divisor Di, also write (D1 · · ·Dr | F) = (L 1 · · ·L r | F).

Furthermore, if L := L 1 = · · · = L r, use the notation (L r | F) = (L 1 · · ·L r | F). If

k ⊂ E is a field extension, denote by (L ′
1 · · ·L ′

r |Σ′)E the intersection number of invertible

sheaves L ′
1, . . . ,L

′
r on the E-scheme XE with Σ′ ∈ Cr(XE).

Example 1.25. Let C ⊂ X be a closed curve, for instance if C = X is a curve itself.

Then for an invertible sheaf L on X, the intersection number

(L | OC) = χ(OC)− χ(L ∨|C) = − deg(L ∨|C) = deg(L |C)

is the degree of L restricted to C.

Example 1.26. Let S ⊂ X be a closed surface. Again the important case is when S = X

is a surface. Then the definition yields for invertible sheaves L ,N on X the formula

(L ·N | OS) = χ(OS)− χ(L ∨|S)− χ(N ∨|S) + χ(L ∨|S ⊗N ∨|S),

which is the common direct definition of the intersection number on surfaces.

Proposition 1.27. The intersection number satisfies the following properties:

(i) (L 1 · · ·L r | F) is symmetric and multilinear in L 1, . . . ,L r.

(ii) (L 1 · · ·L r | F) = 0 if F ∈ Cohr−1(X).

(iii) Let D1, . . . , Dr be effective Cartier divisors on X and denote their schematic inter-

section by Z = D1 ∩ · · · ∩Dr. If Z ∩ Supp(F) is finite and Fz is a Cohen–Macaulay

module over OX,z for every z ∈ Z, then (Dr · · ·Dr | F) = h0(F|Z).
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(iv) Let D be an effective Cartier divisor on X and C ⊂ X an integral, closed curve such

that C �⊂ D. Then (D | OC) = h0(OC∩D). (see Figure 2)

(v) Let Y1, . . . , Ys be the r-dimensional integral components of Supp(F) and denote the

multiplicity of F at the generic point ηj ∈ Yj by mj = length OX,ηj
Fηj . Then

(L 1 · · ·L r | F) =
∑s

j=1mj(L 1 · · ·L r | OYj ).

(vi) Let Y ⊂ X be a closed subscheme and D ⊂ Y an effective Cartier divisor with

associated sheaf OY (D) � L r|Y . Then (L 1 · · ·L r | OY ) = (L 1 · · ·L r−1 | OD).

(vii) Let k ⊂ E be a field extension. Then (L 1,E · · ·L r,E | FE)E = (L 1 · · ·L r | F).

(viii) Let g : X ′ → X be a morphism of proper k-schemes and let F ′ ∈ Cohr(X
′). Then

the equality (g∗(L 1) · · · g∗(L r) | F ′) = (L 1 · · ·L r | g∗(F ′)) holds.

(ix) Let g : X ′ → X be a morphism of proper k-schemes and Y ′ ⊂ X ′ an integral, closed

subscheme of dimension ≤ r. Let Y = g(Y ′) be its schematic image. Then the equal-

ity (g∗(L 1) · · · g∗(L r) | OY ′) = deg(g|Y ′) · (L 1 · · ·L r | OY ) holds, where deg(g|Y ′)

equals [K(Y ′) : K(Y )] if this value is finite and 0 otherwise.

(x) Let k ⊂ E be a finite field extension and Y ′ ⊂ XE an integral, closed subscheme of

dimension ≤ r. Let Y ⊂ X be the schematic image of Y ′ under the natural projection

XE → X. Then (L 1,E · · ·L r,E | OY ′)E = [K(Y ′):K(Y )]
[E:k] · (L 1 · · ·L r | OY ).

Proof. Only assertions (iv) and (x) are not stated directly in the source [78], Appendix B.

The former is a special case of (iii). For (x), note that χ(F ′) = [E : k] · χE(F ′) for every

coherent sheaf F ′ on XE . Thus (L 1,E · · ·L r,E | OY ′) = [E : k] · (L 1,E · · ·L r,E | OY ′)E

and (ix) yields the claim.

DD

C

Figure 2: Intersection of an effective Cartier divisor D with a curve C.
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Remark 1.28. The intersection number is uniquely determined by the properties above

according to [76], Chapter I, Section 2, Proposition 7. Furthermore, (L 1 · · ·L r | F) is the

coefficient in the numerical polynomial χ(L ⊗n1
1 ⊗ · · · ⊗L ⊗nr

r ⊗F) ∈ Q[n1, . . . , nr] of the

monomial n1 · · ·nr.

Proposition 1.29 (Riemann–Roch for Surfaces). Let X be a Cohen–Macaulay, reduced,

proper surface over k and K = [ωX ] − [OX ]. Then K ∈ C1(X) and for every invertible

sheaf L on X, the formula

χ(L ) =
(L 2)− (L | K)

2
+ χ(OX)

holds. Moreover, if X is additionally Gorenstein, then

χ(L ) =
(L 2)− (L ·ωX)

2
+ χ(OX).

Observe that the proof of this statement given in [78], Proposition B.26, works under the

lessened assumptions imposed above. Indeed, the dualizing sheaf exists for proper schemes

and Proposition 2.21 below will show that ωX is generically trivial, so Lemma 1.23 yields

that K ∈ C1(X).

Definition 1.30. Let L and N be invertible sheaves on X. They are numerically

equivalent if (L | OC) = (N | OC) for all integral, closed curves C ⊂ X. As seen in

Example 1.25, this equality means deg(L |C) = deg(N |C). The invertible sheaf L is

numerically trivial if L is numerically equivalent to OX , that is, deg(L |C) = 0 for all

integral, closed curves C ⊂ X.

Numerical equivalence actually defines an equivalence relation L ≡ N on the set of

invertible sheaves on X and on Pic(X). The linearity of the intersection number yields

that the equivalence relation is compatible with tensor products in the sense that L ≡ N

and L ′ ≡ N ′ imply L ⊗L ′ ≡ N ⊗N ′. Moreover, an invertible sheaf L is numerically

trivial if and only if a tensor power L ⊗d is numerically trivial for some non-zero integer d,

which then in turn also holds true for all non-zero integers d.

Although numerical equivalence is only defined using intersection numbers with curves,

a consequence is that numerically equivalent invertible sheaves always yield the same

intersection numbers in the following sense:

Proposition 1.31. Let L 1, . . . ,L r,N 1, . . . ,N r be invertible sheaves on X and let

Σ ∈ Cr(X). If L i and N i are numerically equivalent for each 1 ≤ i ≤ r, then also

(L 1 · · ·L r |Σ) = (N 1 · · ·N r |Σ).

Numerical equivalence and especially numerical triviality behave well with regard to

morphisms. This essential fact is the content of the next proposition, and it will be used

frequently in what follows.
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Proposition 1.32. Let g : X → Y be a morphism of proper k-schemes and let L ,N be

invertible sheaves on Y . The following statements hold:

(i) If L and N are numerically equivalent, then g∗(L ) and g∗(N ) are numerically

equivalent.

(ii) If g∗(L ) and g∗(N ) are numerically equivalent and g is surjective, then L and N

are numerically equivalent.

In particular, if L is numerically trivial, then g∗(L ) is also numerically trivial. The

converse is true if g is a surjection.

The Nakai–Moishezon criterion expresses how the ampleness of an invertible sheaf is

determined by its numerical behavior:

Proposition 1.33 (Nakai–Moishezon Criterion). Let X be a proper scheme over an arbi-

trary field k and L an invertible sheaf on X. The following two conditions are equivalent:

(i) L is ample.

(ii) (L dim(Y ) | OY ) > 0 for every integral, closed subscheme of Y ⊂ X.

Proof. Kleiman [76], Chapter III, Section 1, Theorem 1, proves the statement for integral

X over an algebraically closed field k. Denote F = k and reduce to this case in several

steps. First of all, recall that L is ample if and only if its restrictions to all integral com-

ponents Xi ⊂ X are ample. Moreover, L on X is ample if and only if its base change L F

on XF is ample. Also, every integral, closed subscheme Y ⊂ X of dimension d is contained

in some Xi and the equality (L d | OY ) = (L |dXi | OY ) holds due to Proposition 1.27 (ix).

Hence assume without loss of generality that X is integral.

Assume (i) and let Y ⊂ X be an integral, closed subscheme of dimension d and

YF,1, . . . , YF,r the integral components of YF ⊂ XF with multiplicities m1, . . . ,mr. Then

Proposition 1.27 yields (L d | OY ) = (L d
F | OYF )F =

∑r
i=1mi · (L d

F | OYF,i)F > 0. Hence

(ii) holds.

Conversely, now assume (ii) and show that L F is ample. Let Z ⊂ XF be an integral,

closed subscheme of dimension d. Its schematic image Y ⊂ X has also dimension d. By

[56], Corollaire 4.5.11, the relative separable closure of k in K(Y ) is a finite field extension

k ⊂ L and all irreducible components of YL are geometrically irreducible. So one integral

component Y ′ ⊂ YL satisfies (Y ′F )red = Z. Let m ≥ 1 be the multiplicity of OY ′F at the

generic point. Then Proposition 1.27 yields

(L d
F | OZ)F =

1

m
· (L d

F | OY ′F )F =
1

m
· (L d

L | OY ′)L =
[K(Y ′) : K(Y )]

m · [L : k]
· (L d | OY ) > 0.

Therefore L F is ample, and eventually also L .
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1.7 Characterization of Numerical Triviality

Let X be a proper scheme over an arbitrary field k and L an invertible sheaf on X. If

c1(L ) ∈ H2(Xét,Z`(1)) is torsion, then always L ∈ Picτ (X) holds, see Remark 1.18. The

latter means that L is numerically trivial:

Proposition 1.34. Let X be a proper scheme over an arbitrary field k and L an invertible

sheaf on X. Fix a field extension k ⊂ E. Then the following statements are equivalent:

(i) L E ∈ Picτ (XE).

(ii) L E is numerically trivial.

(iii) χE(F ⊗L E) = χE(F) for every coherent sheaf F on XE.

Moreover, if the statements above hold for the fixed field extension k ⊂ E, then they hold

true for every other field extension k ⊂ F .

Proof. The equivalence over an algebraically closed field is proven in [78], Theorem 6.3,

which holds for proper, not necessarily projective X according to op. cit., Remark 6.14.

Reduce to this case, using essentially the same reasoning as in the proof of Proposition 1.33.

First, show that if (i) holds for k ⊂ E, then it holds true for every field extension k ⊂ F .

Let λ ∈ PicX/k be the rational point coming from L . By Theorem A.30, forming Picτ

commutes with extending k, so λE ∈ PicτXE/E if and only if λ ∈ PicτX/k if and only if

λF ∈ PicτXF /F .

Second, verify similarly if (ii) holds, then it holds true for every k ⊂ F . So assume that

L E is numerically trivial. Let Y ⊂ X be an integral curve and YE,1, . . . , YE,r the integral

components of YE ⊂ XE with multiplicities m1, . . . ,mr. Then

(1.7) (L | OY ) =
∑

mi(L E | OYE,i)E = 0

shows that L is numerically trivial. To deduce that L F is numerically trivial, let Z ⊂ XF

be an integral, closed curve and Y ⊂ X its schematic image. The relative separable closure

of k in K(Y ) is a finite field extension k ⊂ L and all irreducible components of YL are

geometrically irreducible. So one integral component Y ′ ⊂ YL satisfies (Y ′F )red = Z. Let

m ≥ 1 be the multiplicity of OY ′F at the generic point, then as in the previous proof

(L F | OZ)F =
[K(Y ′) : K(Y )]

m · [L : k]
· (L | OY ) = 0.

Thus L F is numerically trivial.

Combined, the equivalence of (i) and (ii) follows, as it holds in the case F = k.

Assertion (iii) implies (ii), as it is the special case F = OY ′ for an integral curve

Y ′ ⊂ XE . Hence to complete the proof, it is sufficient to verify that if (ii) is valid,

then χF (F ⊗L F ) = χF (F) follows for any field extension k ⊂ F and coherent sheaf F
on XF . So assume (ii). Then, as seen above, also L F is numerically trivial. Thus over the
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algebraically closed field F , the equality χF (FF ⊗L F ) = χF (FF ) holds, which eventually

implicates that also χF (F ⊗L F ) = χF (F) is true.

Any invertible sheaf L on X with L ⊗d ' OX is numerically trivial by linearity of the

intersection number. The next lemma shows that conversely, if L is numerically trivial

and one of its powers L ⊗d has a non-zero global section, then this power is also trivial.

This is an important criterion to deduce that a numerically trivial invertible sheaf has

finite order in the Picard group.

Lemma 1.35. Let X be an integral scheme such that H0(X,OX) is a field and let L be

an invertible sheaf on X.

(i) If H0(X,L ) 6= 0 and H0(X,L ∨) 6= 0, then L ' OX .

(ii) If H0(X,L ) 6= 0 and L ⊗d ' OX for some d ≥ 1, then L ' OX .

(iii) If X is proper over an arbitrary field k and L is numerically trivial with h0(L ) 6= 0,

then L ' OX .

Note that for every reduced, connected, proper scheme over an arbitrary field k, the

global sections H0(X,OX) are a finite field extension of k.

Proof. A non-zero global section s ∈ H0(X,L ) defines an injection ϕ : OX → L . Indeed,

it is injective at the generic point of X, so its kernel is a torsion sheaf, but OX is torsion-

free on the integral scheme X. Under assumption (i), there also exists an injective map

L → OX . Their composition OX
ϕ−→ L → OX then is multiplication by a unit. The

induced maps on all stalks then show that ϕ is also surjective, thus an isomorphism.

For assertion (ii), tensoring OX → L with powers of L yields for every i ≥ 1 injections

L ⊗i−1 → L ⊗i. Altogether, there is an injective map from OX to L ⊗d−1 ' L ∨, that

means, there exists a non-zero global section of L ∨. Hence the first part implies the claim.

To prove (iii), assume by contradiction that L 6' OX . For a non-zero s ∈ H0(X,L ),

denote the corresponding effective Cartier divisor by D. There exists an integral curve

C ⊂ X which is not contained in D with C ∩ D 6= ∅, as explained in the following

paragraph. Then the intersection C ∩ D has to be zero-dimensional, so h0(OC∩D) ≥ 1.

Now the contradiction 0 = (L | OC) = h0(OC∩D) ≥ 1 follows.

In order to verify the existence of C, prove the following stronger claim: For every closed

subset D ( X and closed point x ∈ D, there exists an integral curve C ⊂ X such that

C 6⊂ D and x ∈ C. First, observe that the question is purely topological. Furthermore,

replace X by an affine open neighborhood U of x, which is possible because the closure

of a curve in U is again a curve in X. Write X = Spec(R) and prove the claim by

induction on n = dim(X). The case n = 0 is the empty statement, and in the case n = 1

take C = X. Now suppose n ≥ 2 and that the claim holds for n − 1. Let m ⊂ R be the

maximal ideal corresponding to x ∈ X. Denote by p1, . . . , pl ⊂ R for l ≥ 0 the prime ideals

which correspond to the generic points of the (n− 1)-dimensional irreducible components
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D1, . . . , Dl of D containing x. So then
⋃
pi ( m holds, and the inclusion is in fact proper

by prime avoidance, since m = pj for some j cannot hold as n ≥ 2. Hence there exists some

non-zero r ∈ m such that r 6∈ pi for all 1 ≤ i ≤ l. This means that the vanishing set V (r)

contains x but none of the Di. Choose an irreducible component Z ⊂ V (r) containing x.

Then Z is (n − 1)-dimensional by Krull’s principal ideal theorem. Moreover, Z 6⊂ D by

choice, so Z ∩D ( Z. Now the induction hypothesis applied to D′ = Z ∩D and X ′ = Z

gives the existence of an integral curve C ⊂ Z such that C 6⊂ Z ∩D and x ∈ C. So C 6⊂ D
must hold. This proves the claim, which in turn completes the entire proof.

Remark 1.36. The lemma above shows that a numerically trivial invertible sheaf L on

an integral, proper scheme over a field has infinite order if and only if h0(L ⊗t) = 0 for

all non-zero integers t. Those sheaves exist abundantly. For instance, let E be an elliptic

curve over C. Then L on E is numerically trivial if and only if deg(L ) = 0. But these

sheaves correspond to the closed points of E. Hence each point of E of infinite order

corresponds to a numerically trivial invertible sheaf of infinite order. Those sheaves also

exist in higher dimensions on schemes which are not necessarily abelian varieties: If X

is a normal, proper C-scheme with h0(OX) = 1 and h1(OX) = g non-zero, then Pic0
X/C

is a g-dimensional abelian variety by Theorem A.30. Each element of infinite order in

Pic0
X/C(C) ' Cg /Z2g yields a numerically trivial invertible sheaf on X of infinite order.

Over an arbitrary algebraically closed field k of characteristic p ≥ 0, it may happen in

the case dim(X) ≥ 2 and p > 0 that Pic0
X/k is non-reduced, so that dim(Pic0

X/k) = 0,

although g ≥ 1. Examples are ordinary or supersingular Enriques surfaces, which will

be discussed in Section 4.4. But under the direct assumption that dim(Pic0
X/k) ≥ 1, the

reduction A = (Pic0
X/k)red is again a non-trivial abelian variety. Then, there exist k-valued

points of infinite order on A if and only if k is not the algebraic closure of a finite field.

In fact, in Proposition 4.8 below, it will be deduced that if k = Fp, then A(k) is a torsion

group. For all other fields, it was shown in [39], Theorem 10.1, that the rank of A(k)

equals the cardinality of k, so there exist plenty of non-torsion points.

1.8 Chow Ring

Intersection numbers of invertible sheaves can also be defined using the Chow ring and

products of Chern classes inside of it. Let X be a smooth, integral scheme of finite type

over an arbitrary field k. In this section, the Chow ring CH(X) is introduced. This is

an extensive topic, the range of its subsequent treatment is geared towards its application

in the upcoming sections. References are Fulton [42], Eisenbud and Harris [37] as well as

Hartshorne [64], Appendix A.

Let Zi(X) be the free abelian group generated by the integral, closed subschemes of

codimension i in X. An element of Zi(X) is called a cycle of codimension i on X. The

graded group of cycles on X is Z(X) =
⊕n

i=0 Z
i(X), where n = dim(X). Given a

closed subscheme Y ⊂ X with integral components Y1, . . . , Ys, denote by ηj ∈ Yj the
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generic point, and the multiplicity of Yj in Y by mj = length OY,ηj
OY,ηj . Then set the

class [Y ] =
∑s

j=1mj [Yj ] in Z(X). The subgroup Rat(X) ⊂ Z(X) is generated by cycles

[Y0]− [Y∞]. Here, Y ⊂ X×P1 is an integral, closed subscheme which projects dominantly

to P1 and Yz denotes the fiber of Y → P1 over z ∈ P1. Two cycles α, β ∈ Z(X) are

rationally equivalent if α− β ∈ Rat(X).

The Chow group of X is defined to be CH(X) = Z(X)/Rat(X). It inherits a grading via

the projection Z(X) → CH(X). As X is integral, the class [X] generates CH0(X) = Z.

If the scheme X is proper, the degree homomorphism degn : CHn(X) → Z given by∑
nx[x] 7→

∑
nx[κ(x) : k] is well-defined, see [42], Theorem 1.4. Denote its extension by

zero by deg : CH(X) → Z. Since X is integral, Pic(X) can be identified with the group

of Cartier divisors on X modulo linear equivalence. Moreover, as X is locally factorial,

that is, all local rings OX,x are factorial, the group of Cartier divisors corresponds to

the group Z1(X) of Weil divisors on X. The induced natural group homomorphism

c1 : Pic(X) → CH1(X), OX(D) 7→ [D] is indeed bijective. This will be readopted and

generalized from invertible to locally free sheaves in the subsequent section on higher

Chern classes.

An intersection product CHi(X) × CHj(X) → CHi+j(X) induces a ring structure on

CH(X). In the case that V,W ⊂ X are smooth, integral, closed subschemes meeting

generically transversely, then [V ] · [W ] = [V ∩ W ], see [42], Example 8.1.11. Generic

transversality means that for all generic points η ∈ V ∩W , the tangent spaces TηV and

TηW inside TηX satisfy codim(TηV ∩ TηW ) = codim(TηV ) + codim(TηW ). Equivalently,

the equality TηX = TηV +TηW holds. The geometric idea behind the intersection product

for general cycles is to change their classes’ representatives to cycles intersecting generically

transversely, compare to the moving lemma [37], Theorem 1.6. Here the smoothness of X

is crucial.

The Chow ring CH(X) is commutative and defines a contravariant functor from the

category of smooth, integral schemes of finite type over k to the category of rings, see

[42], Proposition 8.3 (a). For proper morphisms ϕ : X → Y , there is a pushforward

homomorphism ϕ∗ : CH(X)→ CH(Y ), which satisfies the projection formula with respect

to the pullback homomorphism ϕ∗ : CH(Y ) → CH(X) given by functoriality due to [42],

Theorem 1.4 and Proposition 8.3 (c). For an extended list of properties which in turn

determine the intersection product, see [64], Appendix A, Theorem 1.1.

1.9 Higher Chern Classes

Let X be a smooth, integral scheme of finite type over an arbitrary field k. The def-

inition of intersection numbers by means of the Chow ring uses Chern classes, and the

latter will be covered during the first part of this section. They are also involved in the

Grothendieck–Riemann–Roch theorem which is discussed afterwards, as some of its corol-

laries are important for the subsequent chapters. At the end of this section, it will be

shown that both definitions of intersection numbers coincide.
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The following survey introduces Chern classes, based on Grothendieck [47], Section 3,

and follows Eisenbud and Harris [37], Chapters 5, 9, 14. A more general and in-depth

treatment is again Fulton [42], Chapter 3, and for a concise overview, see Hartshorne [64],

Appendix A.3.

Let E be a locally free sheaf of rank r on X. Denote P(E) = Proj(Sym E) following

Grothendieck’s convention. Consider the associated projective bundle π : P(E) → X and

the class ξ = [OP(E)(1)] in CH1(P(E)). The homomorphism π∗ : CH(X) → CH(P(E))

is injective and CH(P(E)) becomes a free CH(X)-module generated by 1, ξ, ξ2, . . . , ξr−1

according to [42], Example 8.3.4. The i-th Chern class ci(E) ∈ CHi(X) of E is defined by

c0(E) = 1, ci(E) = 0 for i > r, and the relation

r∑
i=0

(−1)iπ∗(ci(E))ξr−i = 0.

The equation has a unique solution, and hence it defines the higher Chern classes ci(E)

for 1 ≤ i ≤ r all at once. Denote by c(E) =
∑r

i=0 ci(E) ∈ CH(X)× the total Chern class

of E .

Proposition 1.37. Chern classes satisfy the following properties:

(i) Let L = OX(D) be an invertible sheaf. Then c(L ) = 1 + [D].

(ii) Let ϕ : X ′ → X be a morphism of smooth, integral schemes of finite type over k and

let E be a locally free sheaf on X. Then c(ϕ∗(E)) = ϕ∗(c(E)).

(iii) (Whitney Sum Formula). Let 0→ E ′ → E → E ′′ → 0 be an exact sequence of locally

free sheaves. Then c(E) = c(E ′) · c(E ′′).

(iv) Let E be a locally free sheaf of rank r on X. Then ci(E∨) = (−1)ici(E) for 0 ≤ i ≤ r.
Furthermore, the invertible sheaf det(E) = ∧r(E) satisfies c1(E) = c1(det(E)).

(v) Let σ0, . . . , σr−i ∈ H0(X, E) for some 1 ≤ i ≤ r such that V := V (σ0 ∧ · · · ∧ σr−i)
has codimension dim(X)− dim(V ) = i. Then ci(E) = [V ] in CHi(X).

In (v), the scheme structure on V is given by dualizing σ0∧· · ·∧σr−i : OX → ∧r−i+1(E).

Properties (i) to (iii) uniquely determine Chern classes by [47], Théorème 1. For properties

(iv) and (v), see [37], Section 5, with a proof of (v) given in [42], Example 14.4.2. The i-th

Chern class of the scheme X is defined to be ci(X) = ci(ΘX) = (−1)ici(Ω
1
X). Abbreviate

ci = ci(X) if the dependence is obvious.

To define certain expressions in Chern classes, the splitting construction, see [42], Sec-

tion 3.2, page 51ff., is helpful: For every locally free sheaf E of rank r on X, there exists a

smooth, integral k-scheme X ′ of finite type and a smooth morphism ϕ : X ′ → X such that

the map ϕ∗ : CH(X) → CH(X ′) is injective and the pullback ϕ∗(E) admits a filtration

0 = E0 ⊂ · · · ⊂ Er = ϕ∗(E) such that the subquotients L i = E i / E i−1 are all invertible.

The morphism ϕ arises as a sequence of projective bundles, and it also exists collectively
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for any finite set of locally free sheaves on X. The properties given in Proposition 1.37

yield c(L i) = 1 + αi for some αi ∈ CH1(X ′) and result in the equality

r∑
m=0

ϕ∗(cm(E)) = ϕ∗(c(E)) =
r∏
i=1

(1 + αi) =
r∑

m=0

em(α1, . . . , αr),

where em(T1, . . . , Tr) is the m-th elementary symmetric polynomial in r variables. Thus

to define an expression which is a symmetric polynomial in the Chern classes of E , it is

sufficient and often convenient to define the term in the Chern roots α1, . . . , αr of E . The

latter are regarded as formal symbols in the above sense.

Denote CH(X)Q = CH(X) ⊗Z Q. The Chern character of E is ch(E) =
∑r

i=1 exp(αi)

in CH(X)Q for the exponential exp(αi) =
∑

m≥0
αi
m

m! . Note that the power series aborts

at dim(X ′) for every splitting morphism ϕ : X ′ → X, and moreover, only the terms up

to degree r are relevant for the definition of ch(E). The Todd class of E is defined by

td(E) =
∏r
i=1Q(αi) in CH(X)Q, where Q(T ) =

∑
m≥0(−1)mB−m

m! T
m is the Taylor series

expansion of T 7→ T
1−exp(−T ) in 0 with Bernoulli numbers B−0 = 1, B−1 = −1

2 and so

forth. For explicit expressions in low degrees, see [42], Examples 3.2.3 and 3.2.4. With

the notation as in Proposition 1.37 (iii), the splitting construction yields relations

ch(E) = ch(E ′) + ch(E ′′),
ch(E ⊗ Ẽ) = ch(E) · ch(Ẽ),

td(E) = td(E ′) · td(E ′′).

Note that the Chern roots of E ⊗ Ẽ are given by αi + α̃j for 1 ≤ i ≤ r and 1 ≤ j ≤ r̃ with

the obvious notation.

Every coherent sheaf F on the smooth scheme X admits a finite resolution

(1.8) 0 −→ En −→ · · · −→ E1 −→ E0 −→ F −→ 0

by locally free sheaves E i, as conducted in [42], B.8.3. Chern classes, the Chern character

and the Todd class can, thereby, also be defined for F via

(1.9) c(F) =
n∏
i=0

c(E i)(−1)i and ch(F) =
n∑
i=0

(−1)i ch(E i),

and analogously for the Todd class. This is the only possible way to achieve that the

respective Whitney sum formulas hold true for coherent sheaves.

Remark 1.38. The well-definedness of (1.9) is a consequence of the fact that the defi-

nitions of Chern classes, the Chern character and the Todd class naturally extend to the

Grothendieck group L(X) of the abelian category of locally free sheaves on X. The as-

signments c(
∑
ai[E i]) =

∏
c(E i)ai and ch(

∑
ai[E i]) =

∑
ai ch(E i) respect the relations of

L(X), and similarly for the Todd class. Recall that the Grothendieck group of coherent

sheaves on X was denoted by C(X). The natural homomorphism L(X)→ C(X) defined

on generators by [E ] 7→ [E ] is bijective. Indeed, since X is smooth, the homomorphism
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C(X) → L(X) given by [F ] 7→
∑n

i=0(−1)i[E i] for any finite locally free resolution of F
as in (1.8) is well-defined and it is the inverse according to [42], B.8.3. Consequently, the

assignments (1.9) do not depend on the chosen resolution.

The connection between the Chow ring CH(X) and the Grothendieck groups C(X) and

L(X) will be covered in more detail at the end of this section. Prior to that, consider

the following fundamental result of Grothendieck, [42], Theorem 15.2, and some of its

corollaries.

Theorem 1.39 (Grothendieck–Riemann–Roch). Let ϕ : X → Y be a proper morphism of

smooth, integral schemes of finite type over an arbitrary field k. Then in CH(Y )Q, for all

coherent sheaves F on X, the subsequent equality holds:∑
i≥0

(−1)i ch(Riϕ∗F)

 · td(ΘY ) = ϕ∗(ch(F) · td(ΘX)).

The theorem exactly shows to what extent the Chern character ch: C(X) → CH(X)Q

does not commute with the pushforward maps for proper ϕ : X → Y . The pushforward

ϕ∗ : C(X) → C(Y ) is defined by ϕ∗[F ] =
∑

(−1)i[Riϕ∗F ] and the formula above then

states that ch(ϕ∗F) · td(ΘY ) = ϕ∗(ch(F) · td(ΘX)). In other words, the twisted Chern

character map C(X) → CH(X)Q defined by [F ] 7→ ch(F) · td(ΘX) commutes with push-

forwards.

In the case that ϕ : X → Spec(k) is the structure morphism, Grothendieck–Riemann–

Roch specializes to Hirzebruch–Riemann–Roch:

Corollary 1.40 (Hirzebruch–Riemann–Roch). Let X be a smooth, integral, proper scheme

over an arbitrary field k and F a coherent sheaf on X. Then

χ(F) = deg(ch(F) · td(ΘX)).

The usual Riemann–Roch theorem for smooth surfaces, Proposition 1.29, is a conse-

quence of the above, see [42], Example 15.2.2. Furthermore, Hirzebruch–Riemann–Roch

additionally provides the following formula. Note that it is common to identify n-cycles

with their degree, but this convention will not be used in this work.

Corollary 1.41 (Noether’s Formula). Let X be a smooth, integral, proper surface over

an arbitrary field k. Then

χ(OX) =
deg(c2

1 + c2)

12
.

The Hirzebruch–Riemann–Roch formula yields the following additional corollary, see

[42], Example 18.3.9.

Corollary 1.42. Let ϕ : X ′ → X be an étale morphism between smooth, integral, proper

schemes over an arbitrary field k. Then

χ(OX′) = deg(ϕ) · χ(OX).
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Proof. By Hirzebruch–Riemann–Roch, the equality deg(td(ΘX′)) = deg(ϕ) · deg(td(ΘX))

has to be shown. In fact, the relation td(ΘX′) = ϕ∗(td(ΘX)) holds and consequently

ϕ∗(td(ΘX′)) = deg(ϕ) · td(ΘX). Now compute the degree on both sides by pushing

forward to CH(Spec(k))Q = Q.

Return to Remark 1.38 and the connection between the Chow ring CH(X) and the

Grothendieck groups C(X) and L(X) for a smooth, integral, proper k-scheme X. Since

every short exact sequence of locally free sheaves 0→ E ′ → E → E ′′ → 0 splits, the relation

imposed on L(X) can be reformulated as [E ′⊕E ′′] = [E ′]+[E ′′]. Because locally free sheaves

are flat, the group L(X) becomes a ring with multiplication given by the tensor product

[E ]·[Ẽ ] = [E ⊗ Ẽ ]. The Chern character defines a ring homomorphism ch: L(X)→ CH(X)Q

resting upon the relations ch(E ′⊕E ′′) = ch(E ′) + ch(E ′′) and ch(E ⊗ Ẽ) = ch(E) · ch(Ẽ).

The induced map

ch: L(X)Q
'−−→ CH(X)Q

is an isomorphism of Q-algebras by [42], Example 15.2.16 (b). Eventually, the identification

C(X) = L(X) induces an isomorphism ch: C(X)Q
'−→ CH(X)Q.

In Section 1.6, on a proper k-scheme X, the intersection number of invertible sheaves

L 1, . . . ,L r with an integral, closed subscheme Y ⊂ X of dimension r was defined using

C(X). In the case that X is additionally smooth and integral, an intersection number

can also be defined using CH(X). To achieve this, consider Y as a cycle of codimension

n − r on X. Then c1(L 1) · . . . · c1(L r)[Y ] is contained in CHn(X), so compute its

degree. It can directly be seen how both definitions coincide, using the Chern character

ch: C(X)→ CH(X)Q. This relies on the subsequent lemma.

Lemma 1.43. Let X be a smooth, integral, proper scheme over an arbitrary field k.

Let L be an invertible sheaf on X, and F a coherent sheaf with r-dimensional support

Y = Supp(F). Denote by Y1, . . . , Ys the integral components of Y with multiplicities

m1, . . . ,ms. Then the images of [F ] ∈ Cr(X) under both compositions in the diagram

C(X)
ch //

c1(L )

��

CH(X)Q

c1(L )

��
C(X)

ch
// CH(X)Q

are contained in CH≥n−r+1(X). Their components in degree n− r + 1 coincide, and they

are equal to
∑s

j=rmjc1(L )[Yj ].

Proof. First, consider the special case F = OY for an integral, closed subscheme Y ⊂ X.

Note that ch([OY ]) = [Y ] + α is contained in CH≥n−r(X) for some α ∈ CH≥n−r+1(X) by

[42], Example 15.2.16 (a). Hence on the one hand,

(1.10) c1(L ) ch([OY ]) = c1(L )[Y ] + c1(L )α,
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where the first summand is an element of CHn−r+1(X) and the second one is contained in

CH≥n−r+2(X). On the other hand, the element c1(L )[OY ] = [OY ]− [L ∨⊗OY ] of C(X)

gets mapped under the Chern character to

ch([OY ])− ch([L ∨⊗OY ]) = ch([OY ]) · (1− ch([L ∨])).

Now ch(L ∨) = exp(c1(L ∨)) = 1− c1(L ) +β for some β ∈ CH≥2(X). As a consequence,

(1.11) ch(c1(L )[OY ]) = ([Y ] + α) · (c1(L )− β) = c1(L )[Y ] + c1(L )α+ ∆

for ∆ = −([Y ] +α)β contained in CH≥n−r+2(X). Comparison of (1.10) and (1.11) proves

the assertion in the special case.

In the general case, Lemma 1.23 yields that [F ] =
∑s

j=1mj [OYj ] + R holds for some

R ∈ Cr−1(X). Inductively, R =
∑
ni[OZi ] for integral, closed subschemes Zi of dimension

at most r−1. The special case applied to every summand finally completes the proof.

Proposition 1.44. Let X be a smooth, integral, proper scheme over an arbitrary field k

and L 1, . . . ,L r invertible sheaves on X. Then the diagram

Cr(X)
ch //

µ

��

CH(X)Q

µ

��
C0(X)

ch //

χ
""

CH(X)Q

deg{{
Q

commutes, where µ = c1(L 1) · · · c1(L r). Especially, let [F ] ∈ Cr(X) be the class of

a coherent sheaf F , and denote by Y1, . . . , Ys the integral components of Supp(F) with

multiplicities m1, . . . ,ms. Then the following equalities hold:

(L 1 · · ·L r | F) deg(c1(L r) · · · c1(L r) ch(F))

∑s
j=1mj(L 1 · · ·L r | OYj )

∑s
j=1mj deg(c1(L r) · · · c1(L r)[Yj ]).

Proof. Inductively apply the lemma to show that the upper square commutes. For the

commutativity of the lower triangle, let [G] ∈ C0(X) and denote Supp(G) = {z1, . . . , zt}
with multiplicities n1, . . . , nt. Thus [G] =

∑t
l=1 nl{zl}. Then χ([G]) =

∑t
l=1 nl[κ(zl) : k].

On the other hand, the degree of ch([G]) =
∑t

l=1 nl[zl] is by definition the same integer.

So the diagram commutes. The commutativity of the outer trapezoid exactly means

that (L 1 · · ·L r | F) = deg(c1(L r) · · · c1(L r) ch(F)) holds, as claimed. The additional

assertions are immediate consequences of Lemma 1.23 and Lemma 1.43.
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1.10 Cycle Map

The aim of this section is to embed the direct definition c1(L ) ∈ H2(Xét,Z`(1)) of the first

Chern class for an invertible sheaf L into the larger picture of the Chow ring illustrated

in the previous sections. Consequently, higher Chern classes ci(E) ∈ H2i(Xét,Z`(i)) for

locally free sheaves E can also be defined as elements of the `-adic cohomology groups,

and its formation is compatible with the Chern classes defined as elements in the Chow

ring. References are Jouanolou [60], Exposé VI, Partie 3 and Grothendieck [33], [Cycle],

page 129ff. as well as Milne [90], Chapter VI, Section 9.

Let X be a locally noetherian scheme over an arbitrary field k of characteristic p ≥ 0

and ` a prime number different from p. To start with, recall from Section 1.3 that µ`n,X

is a sheaf of Z /`n Z-modules on the étale site, and the inverse system Z`(1) = (µ`n,X)n≥1

is a sheaf of Z`-modules. The same holds true for the tensor powers Z`(j) := (µ⊗j`n,X)n≥1

for j ≥ 1. Their cohomology groups are defined as H i(Xét,Z`(j)) = lim←−H
i(Xét, µ

⊗j
`n,X).

In the case that X is a scheme over a separably closed field k, then as before, choices of

`n-th roots of unity yield bijections H i(Xét,Z`(j)) ' H i(Xét,Z`).
Let X be a smooth, integral, d-dimensional scheme of finite type over an algebraically

closed field k. For every cycle Y ∈ Zi(X) and n ≥ 1, there exists an associated class

cln(Y ) ∈ H2i(Xét, µ
⊗i
`n,X). In the case that Y is a smooth, integral subscheme of codi-

mension i, the class can be defined as the image of the fundamental class sY/X under

H2i
Y (Xét, µ

⊗i
`n,X) → H2i(Xét, µ

⊗i
`n,X). Here the source is the corresponding cohomology

group with support on Y , defined as the right derived functor of S(Ét/X) → (Ab), F 7→
ker(Γ(X,F) → Γ(X r Y,F)). See [90], Chapter VI, Section 6, for a survey of the funda-

mental class. Specializing further to codimension i = 1, identify H1
Y (Xét,Gm,X) ' Z so

that H1
Y (Xét,Gm,X) → H1(Xét,Gm,X) maps 1 to OX(Y ). Then sY/X ∈ H2

Y (Xét, µ`n,X)

arises from the Kummer sequence as the image of 1 ∈ H1
Y (Xét,Gm,X) under the bound-

ary map H1
Y (Xét,Gm,X) → H2

Y (Xét, µ`n,X), similar to the definition of c1(L ) given in

Section 1.5.

The graded group H(Xét, `
n) :=

⊕d
i=0H

2i(Xét, µ
⊗i
`n,X) becomes a ring using the cup

product

∪ : H2i(Xét, µ
⊗i
`n,X)×H2j(Xét, µ

⊗j
`n,X)→ H2(i+j)(Xét, µ

⊗i+j
`n,X ),

by [90], Chapter V, Proposition 1.16. The multiplication is commutative, since only

cohomology groups of even degree appear. The definition of the associated cycle extends

linearly to a map Z(X) → H(Xét, `
n). It is constant on rational equivalence classes and

induces the cycle map cln : CH(X)→ H(Xét, `
n). This cycle map is a homomorphism of

graded rings for the intersection product on CH(X) and the cup product on H(Xét, `
n).

The inverse limit process over n ≥ 1 is compatible with the constructions above. Denote

H(Xét) =
⊕d

i=0H
2i(Xét,Z`(i)) and for the induced cycle map:

cl : CH(X)→ H(Xét).
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Completely analogous to Chern classes c(E) ∈ CH(X) of locally free sheaves E on X, the

theory yields Chern classes c`(E) ∈ H(Xét) satisfying the properties of Proposition 1.37,

see [60], Exposé VII, Partie 3, for details. Due to the uniqueness of properties (i) to (iii),

the `-adic Chern classes factorize through CH(X), that is, the relation c`(E) = cl(c(E))

holds for every locally free sheaf E on X. In particular, the elementary definition of the

first Chern class c1(L ) ∈ H2(Xét,Z`(1)) given in Section 1.5 is regained. Chern classes

can also be defined for coherent sheaves using a locally free resolution as described in

Section 1.9. Furthermore, the tensor product with Q` yields Chern classes with values in⊕d
i=0H

2i(Xét,Q`(i)).

To conclude this chapter and prelude the subsequent one, the `-adic cohomology satisfies

Poincaré duality, which is the following statement:

Theorem 1.45 (Poincaré Duality). Let X be a smooth, proper d-dimensional scheme over

a separably closed field k. There is an isomorphism tr : H2d(Xét,Z`(d))
'−→ Z` such that

the pairing

H i(Xét,Z`(j))×H2d−i(Xét,Z`(d− j))
∪−−→ H2d(Xét,Z`(d))

tr−−→ Z`

is non-degenerate for all 0 ≤ i ≤ 2d and 0 ≤ j ≤ d.

A proof for Z /`n Z in place of Z` can be found in [90], Chapter VI, Theorem 11.1f. and

passing to the limit shows the proposition above. Especially, the Betti numbers fulfill the

symmetry bi = b2n−i for all 0 ≤ i ≤ 2n.

Proposition 1.46. Let X be a smooth, connected, proper d-dimensional scheme over a

separably closed field k. Then deg(cd) = e(X) is the `-adic Euler characteristic.

This proposition is [60], Exposé VII, Corollaire 4.9. In the case that k = C, Proposi-

tion 1.13 in turn shows that the topological Euler characteristic equals deg(cn). Poincaré

duality in combination with Noether’s formula leads to the following relation on surfaces,

which involves several numerical invariants. It appears in the course of the Enriques

classification of surfaces, and it will also be used in Section 4.5.

Corollary 1.47. Let X be a smooth, integral, proper surface over a separably closed field k.

Then

b2 − 2b1 + deg(c2
1) = 10− 12h1(OX) + 12h2(OX).

By Proposition 1.22, the estimate b2 ≥ ρ(X) and b1 = 2 dim(Pic0
X/k) hold. The latter

equality and this corollary show that the `-adic Betti numbers are independent of the

chosen prime ` 6= p for surfaces satisfying the assumptions above. This independence in

general is discussed in [69], Section 1.4. It is true for smooth, proper schemes of arbitrary

dimension as a consequence of the Weil conjectures, and it is an open question under

lessened assumptions.

Furthermore, the value deg(c2
1) = (K2

X) is the self-intersection number of the dualizing

sheaf ωX ' OX(KX), which is the central object in the next chapter.
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Chapter 2

Dualizing Sheaves

The purpose of this chapter is to introduce the dualizing sheaf, first, on a proper scheme

over a field, and afterwards for suitable proper morphisms of schemes. In the former case,

the associated duality is known as Serre duality, which dates back to the work of Serre

[116], [117]. Its generalization to the relative setting of morphisms, called Grothendieck

duality, has its origin in Grothendieck’s papers [48], [49].

2.1 Serre Duality

Fix an n-dimensional, proper scheme X over an arbitrary field k. A dualizing sheaf on X

is a coherent sheaf ωX together with a k-linear trace map tr : Hn(X,ωX) → k such that

the pairing

(2.1) Hom(F , ωX)×Hn(X,F) −→ Hn(X,ωX)
tr−−→ k

given by functoriality of cohomology and the trace is non-degenerate for all F ∈ Coh(X).

This means that the k-linear maps

(2.2) Hom(F , ωX) −→ Hn(X,F)∨

andHn(X,F)→ Hom(F , ωX)∨ given by the pairing are injective for all coherent sheaves F
on X. The finiteness theorem shows that the dimensions hi(F) are finite for all i ≥ 0, and

therefore both maps are bijective. In this case, the functor

(2.3) Coh(X) −→ (k-Vect), F 7−→ Hn(X,F)∨

is represented by ωX . Yoneda’s lemma now gives the uniqueness of (ωX , tr) up to unique

isomorphism.

Proposition 2.1. There exists a dualizing sheaf ωX on X.

The existence of ωX is stated in [64], Chapter III, Section 7, page 241f. with a proof given

for projective X in loc. cit., Proposition 7.5. For proper, not necessarily projective schemes,

the existence will result from the theory of Grothendieck duality, see Proposition 2.20

below.
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Morphisms or isomorphisms as in (2.2) can be obtained, under suitable assumptions,

for the derived functors of the appearing ones:

(2.4) Exti(F , ωX) −→ Hn−i(X,F)∨.

Here, F 7→ Exti(F , ωX) and F 7→ Hn−i(X,F)∨ form contravariant δ-functors. The first

one is universal, so the maps in (2.2) can be extended to maps in (2.4), see [64], Chapter III,

Theorem 7.6 (a). This general version of duality holds in the following situation according

to [28], Chapter 5.1 and particularly (5.1.11).

Proposition 2.2. If X is Cohen–Macaulay and equidimensional, then there are natural

identifications

Exti(F , ωX) = Hn−i(X,F)∨

for every coherent sheaf F on X and every 0 ≤ i ≤ n.

In the case of projective schemes over an algebraically closed field k, this generalized

version of duality holds if and only if X is Cohen–Macaulay and equidimensional, see [64],

Chapter III, Theorem 7.6. Observe that every connected, Cohen–Macaulay scheme locally

of finite type over a field is equidimensional by Proposition 1.2.

If F = E is locally free, the theory of universal δ-functors shows that the left-hand side

in (2.4) can be expressed more tangibly due to [64], Chapter III, Propositions 6.3 and 6.7.

Proposition 2.3. Let E be locally free sheaf and G a coherent sheaf on X. Then for i ≥ 0:

Exti(E ,G) = H i(X, E∨⊗ G).

Thus the general version of Serre duality for locally free sheaves E yields the equalities

hi(E∨⊗ωX) = hn−i(E).

Remark 2.4. Suppose that X has the resolution property , that is, every coherent sheaf

F on X admits a surjection E → F from some locally free sheaf E . Then it is sufficient to

demand that the maps in (2.2) or (2.4) are bijective for all locally free sheaves E . Indeed,

for F coherent, choose a partial resolution E1 → E0 → F → 0 of locally free sheaves, apply

both functors involved and use the five lemma. For instance, the resolution property is

known to hold if X is projective by [13], Exposé II, Proposition 2.2.3, or if X is a surface

according to [45], Theorem 5.2. For more general results, see [129].

Example 2.5. Let X be zero-dimensional, so X = Spec(A) for a finitely generated k-

algebra A. Then ωX = D̃ for the A-moduleD = Homk(A, k) and the trace is the evaluation

at 1 ∈ A. To see from the definition that

HomA(M,D)×M −→ D
tr−−→ k, (ϕ,m) 7−→ ϕm 7−→ ϕm(1)

42



Chapter 2

is non-degenerate for all finitely generated A-modules M , first let ϕ 6= 0. Choose x ∈ M
and a ∈ A such that ϕx(a) 6= 0. Then m := ax satisfies ϕm(1) = aϕx(1) = ϕx(a) 6= 0.

Now let M be a free A-module of finite rank, and m ∈ M non-zero. Choose projections

p : M → A and q : A → k such that q(p(m)) 6= 0. Define ϕ : M → D, x 7→ ϕx by

ϕx(a) = q(a · p(x)). Then ϕm(1) 6= 0. By Remark 2.4, this suffices to verify that ωX = D̃.

Example 2.6. On X = Pn, explicitly computing the cohomology groups of the invertible

sheaves OPn(d) using Čech cohomology for the open cover Pn =
⋃
D+(Ti) shows that

Hn(Pn,OPn(−n− 1)) = k T−1
0 · · ·T−1

n is the only one-dimensional top cohomology group.

In fact, ωPn = OPn(−n − 1) with tr : Hn(Pn, ωPn) → k, T−1
0 · · ·T−1

n 7→ 1 forms the

dualizing sheaf on Pn, see [64], Chapter III, Theorem 7.1.

This concrete example can be used to show the existence of a dualizing sheaf for pro-

jective schemes. More generally, let P be a Cohen–Macaulay, equidimensional, proper

k-scheme such that X ⊂ P is closed of codimension d = dim(P )− dim(X). Then

(2.5) ωX = ExtdOP (OX , ωP )

is a dualizing sheaf on X. The proof is essentially [64], Chapter III, Proposition 7.5, where

instead of loc. cit., Lemma 7.3, the more general version [89], Theorem 17.1, is used if there

exists no ample sheaf on P .

Proposition 2.7 (Adjunction Formula). Let X be a Cohen–Macaulay, equidimensional,

proper scheme over an arbitrary field k. Let D ⊂ X be an effective Cartier divisor. Then:

(i) The scheme D is Cohen–Macaulay and equidimensional.

(ii) The adjunction formula ωD = (OX(D)⊗ ωX)|D holds.

Proof. The closed subscheme D ⊂ X is regularly immersed of codimension 1, so the first

assertion follows from [21], AC X.27, Proposition 4. Consider the exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0.

An application of Hom( · , ωX) as well as the tensor product with OX(D) ⊗ ωX yield the

commutative diagram

Hom(OX , ωX) // Hom(OX(−D), ωX) // Ext1(OD, ωX) //

'
��

0

ωX // OX(D)⊗ ωX // (OX(D)⊗ ωX)|D // 0

using Ext1(OX , ωX) = 0. With ωD = Ext1
OX (OD, ωX), the five lemma guarantees that the

induced arrow ωD → (OX(D)⊗ ωX)|D is an isomorphism.

If X is additionally smooth over k and n-equidimensional, then the dualizing sheaf ωX

coincides with the canonical sheaf Ωn
X = det(Ω1

X), which is the determinant of the sheaf
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of Kähler differentials due to Proposition 2.13 below. The next section briefly overviews

this notion.

2.2 Kähler Differentials

Let f : X → S be a morphism of schemes. The diagonal morphism ∆: X → X×SX is an

immersion by [55], Errata 10. Thus ∆(X) is a closed subscheme of an open U ⊂ X ×S X.

Denote by I the corresponding ideal sheaf. The OX -module Ω1
X/S = ∆∗(I / I2) is the

sheaf of Kähler differentials to f .

Let F be an OX -module. A derivation of OX to F relative to f is a morphism of

sheaves of groups d : OX → F which satisfies the following two properties:

(i) For all sections σ1, σ2 ∈ H0(U,OU ) over an open subset U ⊂ X, the Leibniz rule

d(σ1σ2) = σ1d(σ2) + d(σ1)σ2 holds.

(ii) For all sections τ ∈ H0(V,OV ) and σ ∈ H0(U,OU ) over open subsets V ⊂ S and

U ⊂ f−1(V ), the equality d(τ |U ·σ) = τ |U · d(σ) holds.

Denote by DerS(OX ,F) the H0(X,OX)-module of derivations of OX to F relative to f .

The assignment U 7→ DerS(OU ,F|U ) yields an OX -module DerS(OX ,F). The sheaf of

Kähler differentials Ω1
X/S is equipped with a universal derivation d : OX → Ω1

X/S , which

means that

HomOX (Ω1
X/S ,F) −→ DerS(OX ,F), h 7−→ h ◦ d

is an isomorphism of OX -modules, see [58], Corollaire 16.5.5. In the special case F = OX ,

the identification shows that the dual to Ω1
X/S is the tangent sheaf

ΘX/S = HomOX (Ω1
X/S ,OX) = DerS(OX ,OX)

to f . Hence the sheaf of Kähler differentials is also called the cotangent sheaf to f . If

Ω1
X/S is quasicoherent and of finite type, x ∈ X and s = f(x) such that κ(s) → κ(x)

is bijective, then ΘX/S(x) = Homκ(s)(m
′
x/m

′2
x, κ(s)), where m′x is the maximal ideal of

OX,x/msOX,x by [58], (16.5.13). In the case that S = Spec(k) and x ∈ X(k), this yields

the usual definition ΘX(x) = Homk(mx/m
2
x, k) of the Zariski tangent space.

Proposition 2.8. The sheaf of Kähler differentials satisfies the following properties:

(i) If S′ → S is a morphism of schemes and X ′ = X ×S S′ the base change, then there

is a natural identification (Ω1
X/S)X′ = Ω1

X′/S′.

(ii) If ϕ : X → Y and ψ : Y → Z are morphisms of schemes, then there is a natural

exact sequence ϕ∗(Ω1
Y/Z) → Ω1

X/Z → Ω1
X/Y → 0. If ϕ is additionally smooth, then

0→ ϕ∗(Ω1
Y/Z)→ Ω1

X/Z → Ω1
X/Y → 0 is exact.

(iii) If g : Y → S is another morphism of schemes, then there is a natural identification

Ω1
(X×Y )/S = pr∗X(Ω1

X/S)⊕ pr∗Y (Ω1
Y/S).
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(iv) If f is locally of finite presentation, then Ω1
X/S is quasicoherent of finite presentation.

(v) If f is locally of finite presentation and x ∈ X, then f is smooth at x if and only if

f is flat at x and Ω1
X/S is locally free of rank n = dimx(Xf(x)) in a neighborhood of x.

(vi) If f is locally of finite presentation, then Ω1
X/S = 0 if and only if f is unramified.

The reference is [58] and specifically: (i) Proposition 16.4.5; (ii) Corollaire 16.4.19 and

[59], Exposé II, Théorème 4.3; (iii) Proposition 16.4.23; (iv) Corollaire 16.4.22; (v) Propo-

sition 17.15.15; (vi) Corollaire 17.4.2.

For n ≥ 0 the OX -module of n-differentials to f is defined to be Ωn
X/S = ∧n(Ω1

X/S).

Of particular importance is the case when f is a smooth morphism with equidimensional

fibers of dimension n, since then Ωn
X/S = det(Ω1

X/S) is invertible.

Definition 2.9. Let f : X → S be a smooth morphism with equidimensional fibers of

dimension n. The invertible sheaf Ωn
X/S is the canonical sheaf to f . In the case that the

base S = Spec(k) is a fixed ground field, call Ωn
X the canonical sheaf of X.

Example 2.10. Let G be a group scheme over an arbitrary field k with structure mor-

phism f : G→ Spec(k) and neutral element e : Spec(k)→ G. There is a natural identifi-

cation Ω1
G = f∗e∗(Ω1

G) by [9], Tag 047I, so Ω1
G is free. In the special case that A = G is a

g-dimensional abelian variety, the sheaf Ω1
A = O⊕gA has rank g and Ωg

A = OA is trivial.

2.3 Grothendieck Duality

Following the mindset of Grothendieck, it is desirable to generalize the notion of Serre

duality from the absolute setting of a scheme X over a ground field k to the relative setting

of a morphism f : X → Y of schemes, known as Grothendieck duality. This aim lead onto

a challenging journey and in this section, some important results are summarized. The

starting point was laid by Grothendieck [48], [49] and elaborated by Hartshorne [63] and

later Conrad [28]. Quite recently, a fresh approach to this topic by Neeman [98] appeared,

and also Lipman [87] published new material.

In the following outline, only noetherian schemes are considered for the sake of presen-

tation. A lot of results hold for locally noetherian or arbitrary schemes, and especially the

references given to [28] will reveal where assumptions can be lessened.

This section is based on Hartshorne [63] and Conrad [28], where the latter elaborates

several details in the former source, particularly concerning entire compatibility of the

dualizing sheaf and its trace with base change. The procedure is top-down in the sense that

Grothendieck duality is first established on the level of derived categories, and afterwards

results for quasicoherent sheaves are deduced. For Cohen–Macaulay, proper morphisms of

fixed relative equidimension, duality can then be expressed in terms of a dualizing sheaf,

rather than by an abstract functor.

Note also that there is a much more direct approach by Kleiman [77], which avoids

derived categories. Here, the approach is bottom-up and resembles more the absolute
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setting of Serre duality. First, duality in degree zero is treated, with the existence of

a dualizing sheaf for locally projective morphisms. Afterwards, full duality for Cohen–

Macaulay, locally projective morphisms of fixed relative equidimension is inferred.

Let X be a noetherian scheme and denote by D(X) the derived category of OX -modules.

The full subcategories of complexes F• ∈ D(X) which are bounded below, that is, Fn = 0

for n� 0, is denoted by D+(X). Similarly, define D−(X), Db(X) to be the full subcate-

gories of complexes F• ∈ D(X) which are bounded above, and bounded below and above,

respectively. For the full subcategories of complexes F• ∈ D(X) whose cohomologies are

quasicoherent or coherent, write Dqc(X) and Dc(X), respectively. For details on derived

categories, see for instance [63], Chapter I.

Let f : X → Y be a morphism of finite type between noetherian schemes. Under suitable

assumptions, the statement of Grothendieck duality is the existence of an isomorphism

(2.6) Rf∗RHom•OX (F•, f ! G•) ' //

��

RHom•OY (Rf∗F•,G•)

RHom•OY (Rf∗F•, Rf∗f ! G•)
trf
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for all F• ∈ D−qc(X) and G• ∈ D+
c (Y ). Here, f ! : D+

c (Y ) → D+
c (X) is a right adjoint

functor to Rf∗ and the trace trf : Rf∗f
! → idD+

c (Y ) is a morphism of δ-functors, see

[28], Sections 3.3 and 3.4, based on [63], Chapter VII, Corollary 3.4, for details and their

properties.

An essential ingredient is the existence of a dualizing complex Q• ∈ Db
c(Y ). By defini-

tion, this is a complex Q• which has finite injective dimension, that means, it is isomorphic

in D(Y ) to a bounded complex of injective sheaves, and the natural homomorphism

F• −→ RHom•OY (RHom•OY (F•,Q•),Q•)

defined in [63], Chapter V, Lemma 1.2, is an isomorphism for all F• ∈ Dc(Y ). It is

sufficient to check that it is an isomorphism for F• = OX [0] by [63], Chapter V, Proposi-

tion 2.1. The existence of a dualizing complex is ensured in the following cases, see [63],

Chapter V, Section 10.

(i) If Y is Gorenstein, then OY [0] is a dualizing complex.

(ii) If f : X → Y is of finite type and Y has a dualizing complex Q•, then f !(Q•) is a

dualizing complex for X.

Thus especially every scheme of finite type over a field has a dualizing complex. The

existence of a dualizing complex in turn yields a residual complex, see [28], Lemma 3.1.4

and the subsequent discussion based on [63], Chapter VI, Proposition 1.1. A residual

complex is used to define the functor f ! and, if f is additionally proper, also the trace trf .

Now the central result is the following, the reference is [63], Chapter VII, Theorem 3.3

and [28], Theorem 3.4.4.

46



Chapter 2

Theorem 2.11. Let f : X → Y be a proper morphism between noetherian schemes,

where Y admits a dualizing complex. Then Grothendieck duality holds.

The next step is to translate Grothendieck duality into a more tangible version similar

to Serre duality in the absolute case. The general approach is to simplify f ! and trf by

using a relative dualizing sheaf ωX/Y and a morphism Rrf∗(ωX/Y )→ OY of sheaves.

Let f : X → Y be a morphism of finite type between noetherian schemes where Y admits

a dualizing complex. The functor f ! can be defined differently in two cases, namely

when f is smooth and separated, or finite. In the situation that f is finite, denote by

f : (X,OX)→ (Y, f∗OX) the induced morphism of ringed spaces. Then naturally f ! = f [,

where f [ : D+(Y ) → D+(Y ) is defined as f [ G• = f
∗
RHomOY (f∗(OX),G•) according to

[28], (2.2.8) and (3.3.19).

If f is smooth and separated, then naturally f ! = f ], where f ] : D(Y ) → D(X) is

defined by f ] G• = Ωr
X/Y [r]⊗L f∗ G• due to [28], (2.2.7) and (3.3.21). Here r denotes the

possibly varying value of the locally constant function X → N, x 7→ dimx(Xf(x)). So the

functor f ! = f ] relies essentially only on the canonical sheaf Ωr
X/Y . If r is constant, that

is, f is of relative equidimension r, and f is additionally proper, then it is feasible to define

the duality isomorphism (2.6) only in terms of Ωr
X/Y and a trace Rrf∗(Ω

r
X/Y )→ OY , see

[28], Section 3.4, pages 150 to 152. In what follows, this will be generalized to the situation

where a relative dualizing sheaf ωX/Y exists.

Note that both f ] and f [ are defined without the assumption that a dualizing com-

plex exists. Now let f : X → Y be a morphism of noetherian schemes which admits a

factorization

(2.7) f = s ◦ i

for a closed embedding i and a smooth, separated morphism s of finite type. It is then

possible to define f ! : D+
qc(Y )→ D+

qc(X) by f ! = i[s] without assuming the existence of a

dualizing complex on Y , see [28], Section 2.8 and particularly Theorem 2.8.1. In the case

that a dualizing complex on Y exists, this definition can naturally be identified with the

previous one by [28], Section 3.5, page 153f.

If now f itself is a smooth and separated morphism of relative equidimension r, then

f !OY = f ]OY = Ωr
X/Y [r] is simply the canonical sheaf shifted down to degree −r.

Keeping this in mind, consider the following statement, which is [28], Theorem 3.5.1.

Proposition 2.12. Let f : X → Y be a flat morphism of noetherian schemes such that

f = s◦ i for a closed embedding i and a smooth, separated morphism s of finite type. Then

the following conditions are equivalent:

(i) f is Cohen–Macaulay of relative equidimension r.

(ii) Hj(f !OY ) = 0 for j 6= −r and H−r(f !OY ) is flat over Y .

When these conditions hold, then f is Gorenstein if and only if H−r(f !OY ) is invertible.
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The theorem suggests that f being Cohen–Macaulay of relative equidimension r is the

suitable framework to define a relative dualizing sheaf and obtain a theory similar to the

smooth case.

Any morphism f : X → Y of finite type between noetherian schemes can locally be

factorized as a closed embedding followed by a smooth, separated morphism of finite type:

Given x ∈ X, choose an affine open neighborhood U = Spec(A) such that f(U) ⊂ V for

an affine open subset V = Spec(R) of Y . Since the R-algebra A is finitely generated, there

exists a factorization A� R[T1, . . . , TN ]←↩ R, which induces U ↪→ ANV � V .

Let f : X → Y be a Cohen–Macaulay morphism of relative equidimension r between

noetherian schemes. The relative dualizing sheaf ωX/Y of f is the OX -module defined by

gluing the OU -modules H−r(f |!UOY ) for a cover X =
⋃
U where U are chosen as above,

see [28], Section 3.5, page 157. Summarize what has been explicated up to this point:

Proposition 2.13. Let f : X → Y be a Cohen–Macaulay morphism of relative equi-

dimension r between noetherian schemes. Then the following holds:

(i) ωX/Y is coherent and flat over Y .

(ii) ωX/Y is invertible if and only if f is Gorenstein.

(iii) ωX/Y = Ωr
X/Y if f is smooth.

(iv) ωX/Y = OX if f is étale.

(v) ωX/Y |U = ExtN−rOP (OU , ωP/Y ) whenever f |U = s ◦ i as in (2.7) with s : P → Y of

relative equidimension N .

Observe that (v) generalizes (2.5) and refers to [28], (3.5.3). By [28], Theorem 3.6.1,

the relative dualizing sheaf is compatible with base change in Y :

Proposition 2.14. Let f : X → Y be a Cohen–Macaulay morphism of relative equi-

dimension r between noetherian schemes. Let Y ′ → Y be a morphism of noetherian

schemes. Consider the cartesian square

X ′
b′ //

f ′

��

X

f

��
Y ′

b
// Y.

Then naturally b′∗(ωX/Y ) = ωX′/Y ′ and this identification is compatible with the natural

identifications stated in Proposition 2.13 (iii) to (v).

Add the assumption that f is proper. In this case, recreating the situation where f

is smooth, a trace morphism γf : Rrf∗(ωX/Y ) → OY is definable as explained in [28],

Corollary 3.6.6, which is compatible with base change. As a consequence, the functor

f ] : D+
qc(Y ) → D+

qc(X) given by f ] G• = ωX/Y [r] ⊗L f∗ G• can be used to define a trace
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trf : Rf∗f
] → idDbqc(Y ) according to [28], (4.3.1) and (4.3.4). This leads to a restatement

of the duality morphism

Rf∗RHom•OX (F•, f ] G•) −→ RHom•OY (Rf∗F•,G•)

for all F• ∈ Db
c(X) and G• ∈ Db

qc(Y ). It is an isomorphism by [28], Theorem 4.3.1.

The substantial difference compared to its former definition is that the role of a dualizing

complex and its existence have dissolved into the sheaf ωX/Y . The trace γf is always

surjective and it is an isomorphism if f has geometrically reduced and geometrically con-

nected fibers according to [28], Corollary 4.4.5. By [28], Theorem 4.3.3, the formation of

ωX/Y is compatible with compositions:

Proposition 2.15. Let f : X → Y and g : Y → Z be Cohen–Macaulay morphisms of

relative equidimension r and r′, respectively, between noetherian schemes. Then there is

a natural identification

ωX/Z = ωX/Y ⊗ f∗(ωY/Z).

The identification above itself is compatible with base change in Z due to [28], Theo-

rem 4.4.4. A consequence of Proposition 2.14 and Proposition 2.15 is the following:

Corollary 2.16. Let f : X → S and g : Y → S be Cohen–Macaulay morphisms of relative

equidimension r and r′, respectively, between noetherian schemes. Then

ωX×Y/S = pr∗X(ωX/S)⊗ pr∗Y (ωY/S).

For a discussion to what extent this identification satisfies several compatibilities, see

[28], Section 4.4, page 215f. The next theorem generalizes Proposition 2.2 to the rela-

tive situation, and can be found in [28], Theorem 5.1.2. Note that the formulation of

Theorem 5.1.2 contains a typing error, which has been corrected in [29].

Theorem 2.17. Let f : X → Y be a Cohen–Macaulay, proper morphism of relative equi-

dimension r between noetherian schemes. Let E be a locally free sheaf on X and m ≥ 0

such that Rjf∗(E) is locally free for all j > m. Then for every quasicoherent sheaf G on Y ,

there is a natural isomorphism

(2.8) Rr−jf∗(E∨⊗ωX/Y ⊗ f∗ G)
'−−→ HomOY (Rjf∗(E),G)

for every j ≥ m. For G = OY , this isomorphism becomes

(2.9) Rr−jf∗(E∨⊗ωX/Y )
'−−→ Rjf∗(E)∨.

If the locally free sheaf E is replaced by a coherent sheaf F which is flat over Y , then

the theorem continues to be valid in a more abstract version, see [28], (5.1.11).
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Remark 2.18. Rewrite the isomorphism (2.8) from A → HomOY (B, C) into A⊗B → C
and identify E∨⊗ωX/Y = HomOX (E , ωX/Y ) to obtain

Rr−jf∗(HomOX (E , ωX/Y )⊗ f∗ G)⊗Rjf∗(E) −→ G .

This morphism is induced by the trace γf , see [28], (5.1.7). In the special case that

Y = Spec(k) and G = k as well as j = r, this recovers the original definition (2.1) of the

dualizing sheaf, as it holds for all quasicoherent F in place of E by the preceding remark.

Remark 2.19. In the case that j = r, the identification (2.8) can also be rewritten to

f∗HomOX (F , ωX/Y ⊗ f∗ G)
'−−→ HomOY (Rrf∗(F),G),

which holds in addition for all quasicoherent F in place of E by [28], Corollary 5.1.3. Now

insert G = OY and take global sections to deduce a bijection

HomOX (F , ωX/Y )
'−−→ HomOY (Rrf∗(F),OY )

that is natural in all quasicoherent F and maps idωX/Y to the trace γf . Hence ωX/Y

represents the functor

QCoh(X) −→ (Γ(Y,OY )-Mod), F 7−→ HomOY (Rrf∗(F),OY ),

which in turn generalizes (2.3).

As an application of the abstract theory of Grothendieck duality, the existence of the

dualizing sheaf on a proper k-scheme is conducted in the following:

Proposition 2.20. Let X be an n-dimensional, proper scheme over an arbitrary field k.

Denote the structure morphism by f : X → Spec(k). Then ωX = H−n(f !k[0]) is the

dualizing sheaf.

Proof. The proof follows [9], Tag 0AWP. Since Spec(k) is Gorenstein, a dualizing complex

for Spec(k) is given by k, and hence f !(k[0]) is a dualizing complex for X. Let F be a

coherent sheaf on X and deduce an identification HomOX (F , ωX) = Homk(H
n(X,F), k)

which is functorial in F . Write W• = f !k[0], so

HomOX (F , ωX) = HomOX (H0(F [0]), H−n(W•))

by definition. Note that H i(W •) = 0 for i < −n due to [9], Tag 0AWN. Hence there is an

identification

HomOX (H0(F [0]), H−n(W•)) = Ext−nOX (F [0],W•)

by [9], Tag 06XS. The latter is defined as

Ext−nOX (F [0],W•) = HomOX (F [n],W•).
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Now f ! is a right adjoint functor to Rf∗, and thereby

HomOX (F [n],W•) = Homk(Rf∗(F [n]), k[0])

= Homk(Rf∗(F)[n], k[0])

= Homk(H
0(Rf∗(F)[n]), k),

where the last identification uses once again [9], Tag 06XS. Finally,

Homk(H
0(Rf∗(F)[n]), k) = Homk(H

n(Rf∗(F)), k)

= Homk(R
nf∗(F), k)

= Homk(H
n(X,F), k)

completes the identification HomOX (F , ωX) = Homk(H
n(X,F), k). Define the trace tr

as the image of idωX ∈ HomOX (ωX , ωX) in Hn(X,ωX)∨. Then the functoriality of the

identification yields the non-degenerate pairing (2.1).

For the next proposition, note that an OX -module F is called reflexive if the natural

morphism F → F∨∨ is an isomorphism. For more information about this notion, see [65].

Proposition 2.21. Let X be a reduced, proper scheme over an arbitrary field k. There

exists a dense open subset U ⊂ X such that ωX |U is invertible. If X is additionally normal,

then ωX is reflexive.

Proof. The regular locus of X is open according to [56], Corollaire 6.12.5. As X is reduced,

its regular locus contains all generic points, so it is dense. Since every regular local

noetherian ring is Gorenstein, the first claim follows. Moreover, if X is normal, then ωX

is reflexive due to [80], Lemma 3.7.5.

Let X be an n-dimensional, normal, proper scheme over an arbitrary field k. There

exists a correspondence between Weil divisors and reflexive sheaves which have rank 1

at every generic point of X by [65], Propositions 2.7 and 2.8. Thus there exists a Weil

divisor KX on X with associated sheaf OX(KX) ' ωX . Such a Weil divisor KX is called a

canonical divisor , as ωX is uniquely determined by its restriction ωX |U = Ωn
U to the regular

locus U ⊂ X, where it coincides with the canonical sheaf. This fact is a consequence of

[65], Theorem 1.12, which also states that for the inclusion i : U ↪→ X, the dualizing sheaf

is obtained as i∗(Ω
n
U ) = ωX .
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Chapter 3

Albanese Morphisms

The main aim of this chapter is to give a self-contained treatment of the Albanese scheme

and Albanese torsor. This will lead to existence results under quite general assumptions

for schemes X over an arbitrary ground field, and also for suitable X over a general

base scheme S. If X admits a section, then the Albanese morphism alb: X → Alb0
X/S is a

pointed morphism to a projective abelian scheme Alb0
X/S , called the Albanese scheme, such

that each pointed morphism X → A to some projective abelian scheme A has a unique

factorization through alb. In the case that no section exists, principal homogeneous spaces

under projective abelian schemes are considered instead, and the Albanese morphism

alb: X → Alb1
X/S maps to the Albanese torsor Alb1

X/S .

The construction of the Albanese morphism is based on the Picard scheme and a

Poincaré sheaf. The latter is introduced in Section 3.1. This approach yields good proper-

ties, for instance compatibility with base change and products. Afterwards in Section 3.2,

projective abelian schemes and their duality is outlined. Then the Albanese scheme is the

topic of Section 3.3, and the Albanese torsor is covered in Section 3.4.

The Albanese morphism provides a central technical tool for the subsequent chapters.

For instance, it occurs as the projection to the abelian factor in the Beauville–Bogomolov

decomposition. Under suitable assumptions, the pullback Pic0(Alb1
X/k) → Pic0(X) is

bijective. Thus a tensor power of every numerically trivial invertible sheaf on X arises as

a pullback from Alb1
X/k. Moreover, as the dimension of Alb1

X/k is less or equal to h1(OX),

its size is connected to the cohomology of ωX by Serre duality.

One primary literature reference for this topic is [54], Théorème 2.1, Corollaire 3.2,

Théorème 3.3 (iii), where Grothendieck establishes the existence of the Albanese torsor

for geometrically normal, proper schemes with h0(OX) = 1 over an arbitrary field k, and

also for families under suitable assumptions. The proof is rather short.

In Appendix A of [131] and the references given there, Wittenberg adapts the work of

Serre [120], [121], to extend the existence of the Albanese torsor to geometrically integral

schemes over an arbitrary ground field. Moreover, Brion [22], Chapter 4, shows the ex-

istence of the Albanese scheme for smooth connected algebraic groups over an arbitrary

ground field k.

The discussion [100] provided crucial insights to refine the treatment below. The idea

to use the maximal abelian subscheme of the Picard scheme is based on this source, and

the proofs of Proposition 3.9 and Proposition 3.10 are adopted from there.
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3.1 Poincaré Sheaves

Let f : X → S be a separated morphism of finite type to a locally noetherian scheme S. Fix

the base scheme S and suppress the dependence on S in most notations in the course of this

chapter, following the conventions determined in the introduction, to significantly improve

readability. In particular, all products without index are defined over S. Assume that the

Picard scheme PicX = PicX/S exists; see Section A.7 for basic properties of Picard schemes.

The relative Picard functor Pic(X) = Pic(X/S) is defined by Pic(X)(T ) = Pic(X×T )/Pic(T )

for locally noetherian S-schemes T . If PicX represents Pic(X), then the class [P] of a

Poincaré sheaf P ∈ Pic(X × PicX) is the universal object for this functor. This notion

will help to maintain an overview in explicit calculations in the subsequent sections.

Definition 3.1. A Poincaré sheaf is an invertible sheaf P ∈ Pic(X × PicX) with the

following universal property: For any S-scheme T and L ∈ Pic(X × T ), there exists a

unique morphism h : T → PicX such that

L ≡ (idX ×h)∗(P) mod Pic(T ).

Proposition 3.2. A Poincaré sheaf P ∈ Pic(X × PicX) exists if and only if PicX repre-

sents Pic(X). Moreover, the base change of a Poincaré sheaf along an arbitrary morphism

S′ → S of locally noetherian schemes yields a Poincaré sheaf for XS′.

Proof. The subsequent lines are based on [78], Exercise 4.3. First, assume that a Poincaré

sheaf P ∈ Pic(X × PicX) exists. Then the natural transformation PicX → Pic(X) given

by

PicX(T ) −→ Pic(X)(T ), h 7−→ [(idX ×h)∗(P)]

is a natural isomorphism by the universal property of P. The converse is true by Yoneda’s

lemma: If the Picard scheme PicX represents the functor Pic(X), choose a natural isomor-

phism Φ: PicX → Pic(X). Then any representative P ∈ Pic(X ×PicX) of the equivalence

class of the universal element ΦPicX (idPicX ) = [P] of Pic(X)(PicX) is a Poincaré sheaf. In

fact, given an invertible sheaf L ∈ Pic(X × T ), set h = Φ−1
T ([L ]). Then the morphism

h : T → PicX yields the commutative diagram

PicX(PicX)
ψ 7→ψ ◦h //

'ΦPicX

��

PicX(T )

ΦT'
��

Pic(X)(PicX)
(idX ×h)∗

// Pic(X)(T )

mapping idPicX as follows:

idPicX
� //

_

��

h
_

��
[P] � // [L ].
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This shows that P satisfies the universal property. Instead of idPicX , for any automor-

phism ϕ of PicX , it is also possible to choose a sheaf P ′ such that ΦPicX (ϕ) = [P ′]. Then

set h′ = ϕ−1 ◦ Φ−1
T ([L ]) in place of h to deduce that P ′ is a Poincaré sheaf.

Conversely, let P ′ be any Poincaré sheaf whose class [P ′] ∈ Pic(X)(PicX) corresponds

to some ϕ ∈ PicX(PicX). Then choose L = P ′ in the universal property of P to obtain

h = ϕ. Now reverse the roles of P and P ′ to get an endomorphism g. By the uniqueness

applied to both compositions, ϕ is an automorphism with ϕ−1 = g. So Poincaré sheaves

are representatives of classes corresponding to automorphisms ϕ of PicX .

This point of view shows the asserted compatibility with base change along : For every

morphism S′ → S, the pullback of a Poincaré sheaf P ∈ Pic(X×PicX) to XS′×S′PicXS′/S′

yields a Poincaré sheaf for XS′ , as the base change of an automorphism ϕ of PicX is an

automorphism ϕS′ of PicXS′/S′ .

3.2 Abelian Schemes

Let k be an arbitrary field. An abelian variety A over k is a geometrically reduced,

connected and proper k-group scheme. Then A is smooth and geometrically integral by

[78], Lemma 5.1. Furthermore, A is projective, see [95], Section 6, page 62.

This notion can be generalized to families. Now let S be a noetherian base scheme.

An abelian S-scheme is an S-group scheme f : A → S, where f is flat and proper with

geometrically reduced, connected fibers of dimension g for some g ≥ 0. So the fibers of f

are abelian varieties and in turn smooth, geometrically integral and projective. Hence f

itself is smooth.

Some further properties of abelian S-schemes A are the following: It is indeed valid

that A is a commutative group scheme, see [96], Corollary 6.5. In op.cit., Corollary 6.4,

it is shown that every S-morphism A → G to an S-group scheme G which maps the

identity to the identity is a homomorphism of S-group schemes. In turn, any morphism

A→ G can be decomposed into a homomorphism followed by a translation. If S′ → S is

any morphism of noetherian schemes, then the base change fS′ : AS′ → S′ is an abelian

S′-scheme.

The topic of the remainder of this section is the dual abelian S-scheme A∨ = Pic0
A.

This procedure of dualizing, combined with Poincaré sheaves, constitute the base for the

construction of the Albanese morphism in the subsequent sections. The fibers As of

f : A → S are abelian varieties, so the dual A∨s always exists and it is again an abelian

variety according to [95], Section 13. It satisfies As = A∨∨s naturally. Prior to the general

case, first clarify the following notion: Let G be a group scheme locally of finite type

over S. Its connected component of the identity G0 is defined as a subfunctor of G by

G0(T ) = { t ∈ G(T ) | ts : Ts → Gs factors through (Gs)
0 for all s ∈ S }

on S-schemes T . See also Section A.1 for some more details. If A is an abelian S-scheme,
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then A0 = A is immediate, since A has connected fibers. In the case that f : A→ S is ad-

ditionally projective, the existence of the Picard scheme PicA is ensured by Theorem A.26,

and furthermore Pic0
A is representable by a subscheme.

Remark 3.3. Observe that the projectivity is not automatically fulfilled, although all

fibers As are abelian varieties and consequently projective. A counterexample can be

found in [104], Chapitre XII. If S is normal, then it is always true that f is projective by

op. cit., Corollaire XIII 2.7.

Now assume that A is projective over S so that Pic0
A exists. Write A∨ = Pic0

A. The dual

A∨ is a projective S-scheme due to Theorem A.26, which is smooth by [96], Proposition 6.7.

Thus A∨ is in fact a projective abelian S-scheme. In what follows, it will be reviewed that

the natural duality A = A∨∨ continues to be valid over the general noetherian base S. In

doing so, some explicit computations are conducted, which will be useful later on.

First, note that according to Lemma A.11, the structure morphism f : A → S of a

projective abelian S-scheme is a fibration and cohomologically flat in degree 0. Also, f

has the identity section, so the Picard scheme PicA represents the relative Picard functor

Pic(A). As seen in the previous section, this means that a Poincaré sheaf for A exists.

Let ϕ : A′ → A be a morphism of projective abelian S-schemes. There is an induced one

ϕ∨ : A∨ → A′∨, which is the restriction of ϕ∨ : PicA → PicA′ given by pullback of invertible

sheaves. Namely, for any S-scheme T , the map PicA(T )→ PicA′(T ) corresponds to

(3.1) Pic(A× T )/Pic(T ) −→ Pic(A′ × T )/Pic(T ), [L ] 7−→ [(ϕ× idT )∗(L )]

as both PicA and PicA′ represent the relative Picard functor. In order to define this

morphism in terms of Poincaré sheaves PA ∈ Pic(A × PicA) and PA′ ∈ Pic(A′ × PicA′),

consider the class of (ϕ × idPicA)∗(PA) ∈ Pic(A′ × PicA) modulo Pic(PicA). Denote the

morphism corresponding to this class by ϕ∨ : PicA → PicA′ and verify that it actually

coincides with the previous definition: By the universal property of PA′ , it satisfies

(3.2) (ϕ× idPicA)∗(PA) ≡ (idA′ ×ϕ∨)∗(PA′) mod Pic(PicA).

Now let T be an S-scheme and h ∈ PicA(T ) correspond to the class of the invertible sheaf

L = (idA×h)∗(PA) ∈ Pic(A× T ). Its image ϕ∨ ◦ h in PicA′(T ) is given by the class of

(idA′ ×(ϕ∨ ◦ h))∗(PA′) ≡ (idA′ ×h)∗(ϕ× idPicA)∗(PA) [by (3.2)]

≡ (ϕ× idT )∗(idA×h)∗(PA)

≡ (ϕ× idT )∗(L )

modulo Pic(T ). So indeed, this coincides with the first definition (3.1) of ϕ∨.

In fact, ϕ∨ : PicA → PicA′ is a homomorphism, as ϕ∗(OA) = OA′ . Thus it can be

restricted to ϕ∨ : A∨ → A′∨. Because the definition (3.1) does not involve Poincaré sheaves,

the relation (3.2) holds for all choices of PA and PA′ .
Introduce some notation. Let R and T be S-schemes whose structure morphisms

fR : R → S and fT : T → S have sections eR : S → R and eT : S → T . Then define
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the two inclusions ιR = idR×(eT ◦ fR) : R→ R×T and ιT = (eR ◦ fT )× idT : T → R×T .

They are used to normalize invertible sheaves in this sense: For L ∈ Pic(R× T ), define

(3.3) L(R) = L ⊗ pr∗R ι
∗
R(L ∨)⊗ pr∗R ι

∗
R pr∗T ι

∗
T (L ).

Observe that (ιT ◦ prT ) ◦ (ιR ◦ prR) = (ιR ◦ prR) ◦ (ιT ◦ prT ) = eR×T ◦ fR×T holds for the

induced structure morphism fR×T and section eR×T of R× T . The invertible sheaf L(R)

satisfies [L(R)] = [L ] in Pic(R×T )/Pic(R) and [ι∗R(L(R))] = [OR] in Pic(R)/Pic(S). The

last tensor factor in (3.3) ensures that ι∗T (L(R)) = ι∗T (L ), so the pullback to T remains

unchanged. In the special case that already ι∗T (L ) ' OT is trivial, then also the pullback

ι∗R(L(R)) ' OR to R is trivial.

Now let R′ and T ′ be two further S-schemes, whose structure morphisms fR′ : R
′ → S

and fT ′ : T
′ → S have sections eR′ : S → R′ and eT ′ : S → T ′. Let ϕ : R′ → R and

ψ : T ′ → T be pointed morphisms of S-schemes, which means that they are compatible

with the sections, so precisely ϕ◦eR′ = eR and ψ ◦eT ′ = eT . In this situation, the equality

(ϕ×ψ)∗(L (R)) = (ϕ×ψ)∗(L )(R′) holds. This can be directly deduced from the equalities

ιR ◦ prR ◦ (ϕ× ψ) = (ϕ× ψ) ◦ ιR′ ◦ prR′ and ιT ◦ prT ◦ (ϕ× ψ) = (ϕ× ψ) ◦ ιT ′ ◦ prT ′ .

By means of symmetry, L(T ) is defined similarly and has the corresponding properties.

Proposition 3.4. Let A be a projective abelian S-scheme. Then there is an isomorphism

α : A
'−→ A∨∨ which is compatible with homomorphisms ϕ : A′ → A of projective abelian

S-schemes.

Proof. The normalized Poincaré sheaf Q := P(PicA) satisfies by its definition the identity

[ι∗PicA
(Q)] = [OPicA ] in Pic(PicA)/Pic(S). The class [Q|A×A∨ ] ∈ Pic(A×A∨)/Pic(A) yields

a morphism A→ PicA∨ . Since Q is normalized with respect to PicA, the composition with

eA : S → A is the identity section of PicA∨ , so a homomorphism has been defined. For

every s ∈ S, there is an induced homomorphism As → PicA∨s /κ(s). Moreover, since the

pullback of P ∈ Pic(A × PicA) to Pic(As ×κ(s) PicAs/κ(s)) yields a Poincaré sheaf for As,

this morphism is given in the same manner by a normalized Poincaré sheaf Qs for As.

Since As is connected, there is a factorization through A∨∨s .

As a consequence, also A → PicA∨ factorizes through A∨∨ = Pic0
A∨ . So the restriction

to its image yields a homomorphism α : A → A∨∨. Its base change to geometric fibers

αs : As → A∨∨s is the biduality morphism for abelian varieties over an algebraically closed

field, which is an isomorphism by [95], Section 13, Corollary on page 132. Faithfully flat

descent implies that αs : As → A∨∨s is an isomorphism, see [56], Proposition 2.7.1. Then

[53], Proposition 4.6.7 (ii) eventually shows that α itself is an isomorphism.

The fact that α is compatible with homomorphisms ϕ : A′ → A of projective abelian

S-schemes will be shown in the next lemma.

Moreover, the subsequent lemma implies that α is independent of the chosen Poincaré

sheaf P by using ϕ = idA and two different Poincaré sheaves to define two morphisms α.
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Lemma 3.5. Let ϕ : A′ → A be a homomorphism of projective abelian S-schemes. Let

PA ∈ Pic(A × PicA) and PA′ ∈ Pic(A′ × PicA′) be Poincaré sheaves, αA : A
'−→ A∨∨ and

αA′ : A
′ '−→ A′∨∨ the associated isomorphisms defined as in the preceding proof. Then the

diagram

A′
ϕ //

αA′ '
��

A

αA'
��

A′∨∨
ϕ∨∨

// A∨∨

is commutative.

Proof. The commutativity of the diagram is the statement that in Pic(A′ × A∨), the

equivalence (ϕ×idA∨)∗(QA|A×A∨) ≡ (idA′ ×ϕ∨)∗(QA′ |A′×A′∨) holds modulo Pic(A′). This

is a consequence of the equivalence in Pic(A′ × PicA) of

(3.4) (ϕ× idPicA)∗(QA) ≡ (idA′ ×ϕ∨)∗(QA′)

modulo Pic(A′). In fact, (3.4) is even an equality in Pic(A′ × PicA)/Pic(S). To see this,

look back at (3.2) and choose an invertible sheaf N on PicA such that

(ϕ× idPicA)∗(PA)⊗ pr∗PicA
(N ) = (idA′ ×ϕ∨)∗(PA′)

in Pic(A′ × PicA). Now finally compute

(idA′ ×ϕ∨)∗(QA′)
= (idA′ ×ϕ∨)∗(PA′ (PicA′ )

)

= (idA′ ×ϕ∨)∗(PA′)(PicA)

= (ϕ× idPicA)∗(PA)(PicA) ⊗ pr∗PicA
(N )(PicA)

= (ϕ× idPicA)∗(PA(PicA))⊗ f∗A′×PicA
e∗A′×PicA

pr∗PicA
(N )

= (ϕ× idPicA)∗(QA)⊗ f∗A′×PicA
e∗PicA

(N )

to see that (3.4) is valid, as claimed.

3.3 Albanese Schemes

Let S be a noetherian ground scheme. Given an S-scheme X, the construction of the

Albanese morphism alb: X → Alb0
X/S relies on the existence of the Picard scheme PicX/S

and its maximal abelian subscheme. The latter and its compatibility with base change

is the content of the first part in this section. Afterwards, the Albanese morphism can

be constructed. During the remainder of the section, properties of the Albanese will be

inferred.

Definition 3.6. Let G be a commutative group scheme locally of finite type over S.

A closed subgroup scheme M ⊂ G is called maximal abelian subscheme if M is an abelian

S-scheme and every homomorphism A→ G from an abelian S-scheme A has a factoriza-

tion A→M ↪→ G.
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Example 3.7. If G0 is representable and moreover an abelian S-scheme, then M = G0

is the maximal abelian subscheme of G. It is beyond that compatible with arbitrary

noetherian base change S′ → S.

In fact, let A → G be a homomorphism from an abelian S-scheme A. For every point

s ∈ S, the induced map As → Gs factorizes through (Gs)
0, because As is connected. So by

definition of G0, there exists a factorization A→ G0 → G. The base change compatibility

of M holds, as it is valid for G0 and an abelian S-scheme becomes an abelian S′-scheme.

If a maximal abelian subscheme exists, then it is unique by its defining property. In

particular, when the base S = Spec(k) is the spectrum of a field, its existence and base

change compatibility is valid in general. Prior to the verification of this technical state-

ment, consider the following preparatory lemma.

Lemma 3.8. Assume that G0 is quasi-projective over S, and that G0
red ⊂ G0 is a subgroup

scheme, which is in addition an abelian S-scheme. Then M = G0
red is the maximal abelian

subscheme, which is compatible with arbitrary noetherian base change in S.

Proof. Let S′ be noetherian, S′ → S a morphism, A′ an abelian S′-scheme and A′ → GS′

a homomorphism. The latter has a factorization A′ → G0
S′ ↪→ GS′ , as A′ has connected

fibers. The fppf quotient G0/G0
red is representable by a scheme, and its formation is

compatible with base change. This follows from [35], Exposé V, Théorème 7.1, and also

[103], Partie 5, Théorème 1. Here, the quasi-projectivity of G0 and the properness of G0
red

are used. Write Q = G0/G0
red and consider the composition

q : A′ −→ G0
S′ −→ QS′ .

Assume for the moment that q is the zero homomorphism, which will be verified in the

subsequent paragraph. Then, since 0→ (G0
red)S′ → G0

S′ → QS′ → 0 is an exact sequence of

commutative group schemes, the morphism A′ → G0
S′ has a factorization through (G0

red)S′ ,

as sought.

To deduce that q is the zero homomorphism, fix a point x ∈ S′ and base change along

Spec(κ(x))→ S′. This yields

qx : A′x −→ G0
x −→ Qx.

The fiber A′x is an abelian variety and so it is reduced. Hence A′x → G0
x has a factorization

through (G0
x)red. Since (G0

red)x ⊂ G0
x is a closed subscheme, the reduction (G0

x)red is a

closed subscheme of (G0
red)x. So A′x → G0

x also factorizes through (G0
red)x, which shows

that qx is the zero homomorphism. Now assume without loss of generality that S′ is

connected, and apply [96], Corollary 6.2, to the two morphisms q and r := eQS′ ◦ fA′
from A′ to QS′ . Since qx = rx, the conclusion of loc. cit. yields the existence of a section

s : S′ → QS′ such that q = (s ◦ fA′) · r = s ◦ fA′ . This means that q is constant, and thus

necessarily q = r is the zero homomorphism.
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Proposition 3.9. Let S = Spec(k). Then the maximal abelian subscheme M ⊂ G exists.

Proof. Replace G by G0 to assume without loss of generality that G is connected. Accord-

ing to [78], Lemma 5.1, the connected group scheme G locally of finite type over the field k

is geometrically irreducible separated and of finite type. The schematic image H ⊂ G of

a homomorphism A→ G from an abelian variety A is again an abelian variety:

Since S = Spec(k), the image H is a subgroup scheme of G by [35], Exposé VIB,

Partie 1, page 319. As A is proper over k, the map A → H is a proper surjection. This

implicates that H inherits irreducibility and universally closedness from A. Hence H is

proper over k. Because A is geometrically reduced, the schematic image H commutes with

field extensions. Thus H is also geometrically reduced, and thus an abelian variety.

In conclusion, it suffices to verify the existence of an abelian subvariety M ⊂ G which

contains all other abelian subvarieties of G. Choose an abelian subvariety A ⊂ G of

maximal dimension. To show that M = A is the maximal abelian subscheme, assume by

contradiction that there exists another abelian variety A′ ⊂ G such that A′ 6⊂ A.

As the base is a field, the fppf quotient G/A is representable by a scheme according to

[35], Exposé VIA, Théorème 3.2. Furthermore, as A is smooth and proper, the morphism

G→ G/A is smooth and proper. This is a consequence of the two facts that G→ G/A is

faithfully flat and that the base change along itself is G×A due to loc. cit.

Consider the homomorphism ϕ : A′ ↪→ G → G/A. The quotient Q := A′/ ker(ϕ) is

again an abelian variety: Since A′ → Q is faithfully flat and proper, and Q is of finite type

over k, the reasoning used at the beginning of this proof can be applied again.

The induced homomorphism Q → G/A is a monomorphism, and as G/A is separated,

it is proper. Thus it has to be a closed embedding according to [58], Corollaire 18.12.6. So

Q ⊂ G/A is a closed subgroup scheme. As before, the quotient (G/A)/Q is representable

by a scheme and G/A→ (G/A)/Q is smooth and proper.

Consider the composition G→ G/A→ (G/A)/Q and denote its kernel by C, so C ⊂ G
is a closed subgroup scheme. It is smooth and proper, since it is the fiber of morphism

satisfying the two properties. By construction, both A and A′ are contained in C, thus

also in C0. Altogether, C0 is smooth, proper and geometrically irreducible. So C0 is an

abelian variety that contains both A and A′, a contradiction to the maximality of A.

Proposition 3.10. Let S = Spec(k). The maximal abelian subscheme M ⊂ G is compati-

ble with arbitrary noetherian base change in S.

Proof. Without loss of generality let G be connected. Let S′ → S be a morphism from

a noetherian scheme S′, let A′ be an abelian S′-scheme and A′ → GS′ a homomorphism.

The fppf quotient G/M is representable by a scheme and compatible with base change, so

(G/M)S′ = GS′/MS′ . If the composition

A′ −→ GS′ −→ (G/M)S′

is zero, then A′ → GS′ factors through MS′ . This is the case if the maximal abelian
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subscheme of (G/M)S′ is trivial. Thus it is sufficient to prove the following: If M = 0 and

M ′ ⊂ GS′ is the maximal abelian subscheme, then M ′ = 0.

The first step is to show this statement in the special case that k is separably closed

and S′ = Spec(E) for an arbitrary field extension k ⊂ E. Let m ≥ 1 such that p - m.

Consider the m-torsion subgroup G[m] ⊂ G, which is the kernel of the multiplication

by m, denoted by [m] : G → G. By definition, G[m] is compatible with base change, and

hence G[m]E = GE [m]. The scheme G[m] is finite and étale over Spec(k).

To see that it is finite, consider the Lie algebra Lie(G) = ker(G(k[ε])→ G(k)) of G. The

induced map Lie([m]) : Lie(G)→ Lie(G) is the multiplication by m due to [35], Exposé II,

Partie 4, page 60, and its kernel is Lie(G[m]). Since p - m, the multiplication by m is

bijective, thus Lie(G[m]) = 0. As a vector space, Lie(G[m]) = (me/m
2
e)
∨ is the tangent

space at the neutral element. Hence me = 0 by Nakayama’s lemma. So dim(G[m]) = 0

and G[m] is finite over Spec(k).

Write H = G[m] and verify that H is étale over Spec(k). The cokernel of H0 → H is

étale and ord(H0) = cr is power of the characteristic exponent c of k by [125], Section 3.7,

(I) and (II). Hence on T -valued points, the elements of H0(T ) have order dividing cr,

whereas the elements of H(T ) have order dividing m. As a consequence, H0 = 0 and H

is étale.

Now since k is separably closed, the étale group scheme H = G[m] is constant. Thus also

G[m]E = GE [m] and M ′[m] ⊂ GE [m] have to be constant. Therefore the subgroup scheme

Am ⊂ G[m] corresponding to the same abstract group as M ′[m] satisfies (Am)E = M ′[m].

Consider the reduced subscheme A :=
⋃
Am of G, where the union is taken over all m > 1

not divisible by p. It satisfies M ′ = AE , which can be seen as follows: First of all, verify

in the subsequent paragraph that M ′ =
⋃
M ′[m] holds.

It is sufficient to show that the equality is already valid for the union over all m = `s

for a prime ` 6= p and s ≥ 1. Set U =
⋃
M ′[`s]. During this paragraph, assume without

loss of generality that k is algebraically closed, because U ( M ′ implies Uk ( M ′
k
. Note

that U ⊂ M ′ is a subgroup scheme, since the product of closed points in U lies again in

U . As U0 ⊂ M ′ is an abelian subvariety, now show that their dimensions coincide. By

definition of U , the order of U [`s](k) is `2s dim(M ′). On the other hand, if U consists of

d connected components, then this order is at most d`2s dim(U). The limit for s towards

infinity eventually yields dim(U) = dim(M ′), so indeed U = M ′ holds, as claimed.

Now write N =
⋃
Am, so the original claim M ′ = AE means that NE = NE . As

NE ⊂ NE , the inclusion NE ⊂ NE follows immediately. For the other inclusion, observe

that the schematic image of NE ↪→ NE → N contains N , and hence it has to equal N .

Since NE = M ′ is irreducible, also N has to be irreducible. As k is separably closed, N

is even geometrically irreducible, and thus NE remains to be irreducible. The equality

dim(NE) = dim(N) = dim(NE) now shows that the inclusion NE ⊂ NE of integral

schemes has to be an equality, that is, M ′ = AE .

Moreover, the closed subscheme A ⊂ G is a subgroup scheme. Taking this for granted

for the moment, then as A is irreducible, geometrically reduced and proper by faithfully
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flat descent, it is an abelian variety. To obtain the group structure on A, consider the

restriction A × A ↪→ G × G → G of the multiplication on G to the subscheme A. This

morphism is proper, since G is separated. Consequently, as A×A is reduced, its schematic

image I ⊂ G is its set-theoretic image with the reduced subscheme structure. Base

changing to E shows that IE = M ′ = AE , so already I = A and the multiplication

G ×G → G restricts to A × A → A. The same arguments show that the inverse G → G

restricts to A → A, and by definition of A, the identity section of G factors through A.

Hence A ⊂ G is actually a subgroup scheme, so it is an abelian variety. But the maximal

abelian subscheme M ⊂ G is trivial, so consequently A = 0. This implies M ′ = AE = 0,

which proves the special case S′ = Spec(E) and k separably closed.

In the second step, let k be an arbitrary field and S′ = Spec(E) for an arbitrary field

extension k ⊂ E. Clearly, the field E can be replaced by its separable closure, so assume

ksep ⊂ E. If it was known that the maximal abelian subscheme of Gksep is trivial, then

the first step would imply M ′ = 0. Thus it is sufficient to prove the case that E = ksep.

Consider ksep =
⋃
L as the union of all finite separable field extensions k ⊂ L. There exists

some L such that M ′ ⊂ Gksep descends to a subscheme A ⊂ GL by [57], Théorème 8.8.2. As

before, the scheme A is an abelian subvariety. Consequently, the situation can be further

reduced to the case that k ⊂ E is a finite separable extension, and then by possibly

enlarging E, to the case that k ⊂ E is finite Galois. Denote G = Gal(E/k). For every

σ ∈ G, the induced automorphism Φσ : GE → GE maps M ′ ⊂ GE to an abelian variety

Φσ(M ′) ⊂ GE of the same dimension as M ′. Hence by construction of the maximal abelian

subscheme, necessarily Φσ(M ′) = M ′. This means that the induced action of G on M ′

is compatible with the action of G on Spec(E). Since M ′ is projective, Galois descent is

effective. So there exists an abelian variety A ⊂ G such that AE = M ′. But A = 0 by

assumption, and hence M ′ = 0. In conclusion, the maximal abelian subscheme M ⊂ G is

compatible with arbitrary field extensions.

In the third and final step, it remains to show that M is compatible with arbitrary

noetherian base change S′ → Spec(k). Write Q = G/M for the fppf quotient and consider

the composition

q : M ′ −→ GS′ −→ QS′ .

As inferred in the proof of Lemma 3.8, it is sufficient to show that this is the zero homo-

morphism. Fix a point x ∈ S′ and base change along Spec(κ(x))→ S′. This yields

qx : M ′x −→ Gx −→ Qx.

The fiber M ′x is an abelian variety. Thus M ′x → Gx has a factorization through Mx

according to the result of the second step: M is compatible with base change along

arbitrary field extensions. Since M = 0 by assumption, this shows that qx is the zero

homomorphism. Now again [96], Corollary 6.2, implies that q is the zero homomorphism.

Eventually, it follows that M ′ ⊂MS′ = 0 is trivial, which completes the entire proof.
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Let f : X → S be a separated morphism of finite type between noetherian schemes. For

the following reasoning, it has to be ensured that a certain set of assumptions is fulfilled.

Start by defining the following properties:

(A1) f has a section e : S → X.

(A2) f has connected fibers.

(A2*) f has geometrically connected fibers.

(A2**) f has geometrically integral fibers.

(A3) PicX/S exists representing the relative Picard functor Pic(X/S).

(A4) There exists a projective maximal abelian subscheme M ⊂ PicX/S .

(A4*) There exists a projective maximal abelian subscheme M ⊂ PicX/S , which is com-

patible with arbitrary noetherian base change in S.

The morphism f is defined to satisfy property (A) if properties (A1), (A2), (A3), (A4)

are true. Similarly, f is said to satisfy property (A*) if additionally (A2*) and (A4*) are

valid, and f satisfies (A**) if (A*) and (A2**) hold.

Property (A) ensures the existence of the Albanese morphism, whereas (A*) will be nec-

essary to guarantee its compatibility with base change. If f is proper and fulfills (A**),

then the Albanese morphism is compatible with products. Apart from those rather tech-

nical properties, define another pair of more restrictive—but also more tangible—ones:

(AA) S = Spec(k) and X is proper with h0(OX) = 1 and X(k) 6= ∅.

(AR) f is smooth and projective with geometrically integral fibers, f has a section, all

Pic0
Xs/κ(s) for s ∈ S are smooth and proper of the same dimension.

Here (AA) abbreviates “Albanese Absolute” and (AR) stands for “Albanese Relative”.

The following implications hold: In the relative setting, (AR) implies (A**). In the

absolute one, (AA) yields (A*).

To see this, use Lemma A.11 to ensure that all necessary assumptions in Theorem A.26

are satisfied to show that (AR) implies (A3) and that Pic0
X/S is a projective abelian S-

scheme. Hence also (A4*) holds as seen in Example 3.7. In the absolute situation (AA), a

direct consequence is (A2*), and it results from Theorem A.30 and Proposition 3.10 that

(A3), (A4*) are also valid.

For the next definition, suppose that f satisfies (A1) and consider X as a pointed

S-scheme via the section e.

Definition 3.11. A pointed morphism alb: X → Alb0
X/S to a projective abelian S-scheme

Alb0
X/S is an Albanese morphism of X if it is universal among all pointed S-morphisms

X → A to a projective abelian S-scheme A. This means that each such X → A has a

factorization through alb and a unique homomorphism of abelian S-schemes Alb0
X/S → A.
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Here, abelian S-schemes are considered as pointed via their identity section. The uni-

versal property defining an Albanese morphism immediately implies that it is unique up to

a unique isomorphism. Thus, once its existence is proven, the expression “the” Albanese

morphism is used. The projective abelian S-scheme Alb0
X/S is called the Albanese scheme

of X. In the case that S = Spec(k), also the term Albanese variety is common. If the

base S is fixed, abbreviate Alb0
X = Alb0

X/S . Prior to the central existence result of the

Albanese scheme in this section, consider the following example:

Example 3.12 (Jacobian of a Smooth Curve). Let C be a smooth, proper curve over an

arbitrary ground field k with h0(OC) = 1, and let x ∈ C(k). Define ∆ ⊂ C × C to be

the diagonal and {x} × C ⊂ C × C to be the fiber of x ∈ C under the first projection.

Consider the invertible sheaf L = OC×C(∆−{x}×C) on C ×C. By Theorem A.30, the

Picard scheme PicC is smooth and represents the relative Picard functor. The sheaf L

defines a morphism C → PicC with the property that a closed point y ∈ C maps to the

point of PicC corresponding to the invertible sheaf (idC × y)∗(L ) = OC(y−x). Since C is

connected and the image of x ∈ C is the neutral element of PicC , there is a factorization

j : C → Pic0
C . Note that Pic0

C = PicτC by Example A.31, so the abelian variety J = Pic0
C is

actually the fine moduli space of invertible sheaves of degree zero on C. Hence j : C → J

is the classical morphism to the Jacobian variety J of C. This is the Albanese morphism

of C, which is a closed embedding, see [91], Propositions 6.1 and 2.3. Observe that here,

the maximal abelian subscheme of M ⊂ PicC is M = J . In general, the Albanese scheme

defined in the following will be its dual Alb0
C = M∨. Thus in this case, the well-known

result J∨
'−→ J follows. The isomorphism can be taken to be j∨∨ by Proposition 3.19

below. In general, M∨ and M can be non-isomorphic, see for instance [67], Theorem 1.1.

As in the previous sections, fix the base scheme S from now on and suppress the depen-

dence on S notationally to improve readability. In particular, all products without index

are given over S and all Picard schemes are defined relative to S unless stated otherwise.

Theorem 3.13. Assume f : X → S satisfies (A). Then there exists an Albanese morphism

alb: X → Alb0
X , where Alb0

X = M∨ and M ⊂ PicX is the maximal abelian subscheme.

Proof. The following arguments are based on [78], Remark 5.25. Let A be a projective

abelian S-scheme. Denote its dual by B = A∨. There is a natural correspondence between

homomorphisms B →M of abelian S-schemes and pointed morphisms X → A as follows:

At first, let B → M be a homomorphism of abelian S-schemes. Its composition with

the inclusion B →M ↪→ PicX corresponds to a class [L ] ∈ Pic(X ×B)/Pic(B) for some

L ∈ Pic(X × B) by assumption (A3). The fact that the morphism is a homomorphism

translates to [ι∗X(L )] = [OX ] in Pic(X)/Pic(S). Consider [L ] ∈ Pic(X × B)/Pic(X),

this time modulo Pic(X) instead. There is a corresponding morphism X → PicB. This

would be a pointed morphism if [ι∗B(L )] = [OB] in Pic(B)/Pic(S). In order to achieve

this, choose the normalized representative L(B) instead of L at the beginning. Now the

obtained pointed morphism X → PicB factors through X → Pic0
B = A by (A2). Here the

identification Pic0
B = B∨ = A∨∨ = A is the inverse to the natural biduality isomorphism.
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On the other hand, let X → A be a pointed morphism. Then the construction above can

be reversed analogously: Consider X → A = A∨∨ ↪→ PicB which corresponds to a class

[N ] ∈ Pic(X ×B)/Pic(X) and satisfies [ι∗B(N )] = [OB] in Pic(B)/Pic(S). If necessary,

choose N (X) instead of N to achieve that [ι∗X(N )] = [OX ] holds in Pic(X)/Pic(S). As

a consequence, the class [N ] ∈ Pic(X × B)/Pic(B) corresponds to a homomorphism

B → PicX . By definition of the maximal abelian subscheme M ⊂ PicX , which exists by

(A4), it factors through a homomorphism B →M .

The two constructions are inverse to each other, because if both constructions are exe-

cuted consecutively, it is possible to choose L = N .

Now let A′ be another projective abelian S-scheme and set B′ = A′∨ to be its dual. Then

the constructions above are compatible with homomorphisms of abelian S-schemes in the

following sense: If B → M has a factorization B
h−→ B′ → M for some homomorphism h,

then the corresponding morphism X → A has a factorization X → A′
h∨−→ A, and vice

versa. Here h∨ is the natural morphism B′∨ → B∨ induced by pullback on all T -valued

points, using the natural identifications of A′ and A with their bidual.

Indeed, let B → M have a factorization B
h−→ B′ → M ↪→ PicX . Then B′ → PicX

corresponds to some [L ′] ∈ Pic(X × B′)/Pic(B′) and thus B → PicX corresponds to

[(idX ×h)∗(L ′)] ∈ Pic(X × B)/Pic(B). Normalize L ′ if necessary and consider its class

[L ′] ∈ Pic(X × B′)/Pic(X) to obtain a morphism X → PicB′ as explained above. Its

composition with h∨ : PicB′ → PicB corresponds by definition of the dual morphism to

the class [(idX ×h)∗(L ′)] ∈ Pic(X ×B)/Pic(X). Now the commutative diagram

PicB′
h∨ // PicB

A′∨∨

OO

A∨∨

OO

X // A′

=

OO

h∨
// A

=

OO

shows that the restriction of this morphism X → PicB to X → A has a factorization

through h∨, as claimed. The other implication, starting with X → A′
j−→ A to obtain

B
j∨−→ B′ →M works analogously.

Once this is established, define Alb0
X = M∨. First, consider the special case B = M∨∨

and the natural identification B → M . The construction yields a pointed morphism

alb: X → Alb0
X . Return to a general A, then for any pointed morphism X → A, the

corresponding homomorphism B →M can be extended artificially to

B //

h

44M
= //M∨∨

= //M.

This yields the factorization X
alb−−→ Alb0

X
h∨−→ A. Its uniqueness is seen by applying the

construction once again, since the Albanese morphism corresponds to an isomorphism.
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Remark 3.14. The extension X
alb−−→ Alb0

X ↪→ PicM of the Albanese morphism is given

by the class [Q|X×M ] ∈ Pic(X×M)/Pic(X) for a normalized Poincaré sheaf Q = P(PicX),

where P ∈ Pic(X ×PicX) is a Poincaré sheaf corresponding to the identity PicX → PicX .

Proposition 3.15. Assume that f satisfies (A). Let S′ → S be a morphism of noetherian

schemes such that the base change fS′ : XS′ → S′ continues to satisfy (A). Then the

Albanese morphism alb: X → Alb0
X is compatible with base change along S′ → S. Hence

if f satisfies (A*), then the Albanese morphism is compatible with arbitrary noetherian

base change in S.

Proof. It has to be verified that the normalized Poincaré sheaf P(PicX) ∈ Pic(X × PicX)

is compatible with base change by Remark 3.14. This follows from Proposition 3.2. Fur-

thermore, property (A*) is preserved under base change.

Remark 3.16. In [22], Example 4.2.7, it is shown that the Albanese morphism of a

smooth, connected, commutative group scheme G of finite type over an imperfect field

can be incompatible with base change. Thus assumption (A3), the existence of the Picard

scheme representing the relative Picard functor, is necessary to ensure compatibility with

base change. Briefly outline the construction:

Start with an imperfect field k and a finite, purely inseparable field extension k ⊂ k′ of

degree d ≥ 2. Let A′ be an abelian variety over k′ of dimension g ≥ 1. Its Weil restriction

along k ⊂ k′ is the k-scheme G defined by the universal property G(T ) = A′(Tk′) for all k-

schemes T . The scheme G in fact exists, and it is a smooth, connected, commutative group

scheme of finite type over k. Furthermore, G is not proper over k and of dimension d·g. The

identity G→ G corresponds to a morphism Gk′ → A′, which is the Albanese morphism of

Gk′ and has non-trivial kernel H ′ ⊂ Gk′ . Also, the Albanese morphism albG : G → Alb0
G

exists, but it is not compatible with base change:

Assume by contradiction that this is true. Then its kernel H ⊂ G has to be non-trivial,

too. But the inclusion H ⊂ G corresponds to a some H ′ → A′. By functoriality in T of

the universal property defining G, the latter factorizes as H ′ → Gk′ → A′, and hence it is

constant by definition of H ′. It follows that H = 0, but then G is proper, a contradiction.

Proposition 3.17. Assume that f satisfies (A). Let ϕ : X → A be a morphism of S-

schemes, not necessarily pointed, to a projective abelian S-scheme A. Then ϕ has a unique

factorization through the Albanese morphism alb: X → Alb0
X . It is given by a homomor-

phism h : Alb0
X → A of abelian S-schemes and a translation τ : A→ A. Specifically, τ is

the translation by ϕ ◦ eX .

Proof. Define tA = ϕ ◦ eX and τ : A → A to be the translation by tA, so τ−1 : A → A is

the translation by the inverse of tA. Then τ−1 ◦ ϕ : X → A is a pointed morphism, and

66



Chapter 3

thus it has a unique factorization

X
alb //

ϕ

��

Alb0
X

h
��

A

τ−1

''
A

τ
gg

through the Albanese morphism. This yields the factorization ϕ = τ ◦ h ◦ alb. For its

uniqueness, suppose that there exists some g : Alb0
X → A such that ϕ = g ◦ alb. Then the

equality τ−1 ◦ϕ = τ−1 ◦ g ◦ alb of pointed morphisms follows. This results in τ−1 ◦ g = h,

which means that in fact g = τ ◦ h is unique.

Proposition 3.18. Assume that f satisfies (A). Let sX : S → X be a further section

of X. Considered as a pointed scheme via sX , the Albanese morphism of X is given by

σ−1 ◦ alb, where σ : Alb0
X → Alb0

X is the translation by alb ◦ sX .

Proof. Let ϕ : X → A be a morphism of S-schemes to a projective abelian S-scheme,

which maps sX to the identity eA. Consider the diagram

X
alb //

ϕ

��

Alb0
X

h
��

σ−1
// Alb0

X

h
��

A
τ−1

// A τ
// A,

where the square on the left-hand side is the same as in the preceding proof, hence com-

mutative. Since both h ◦ σ−1 and τ ◦ h map the point alb ◦ sX ∈ Alb0
X(S) to eA, also the

square on the right-hand side must be commutative. In conclusion, there is a factorization

ϕ = h◦σ−1◦alb, which shows that ϕ factorizes through σ−1◦alb. As h◦σ−1◦alb = τ◦h◦alb

holds, its uniqueness is a consequence of Proposition 3.17.

Let ϕ : X → Y be a morphism between S-schemes satisfying (A3). Consider the in-

duced homomorphism ϕ∨ : PicY → PicX given by pullback of invertible sheaves, which

restricts to ϕ∨ : Pic0
Y → Pic0

X . If X and Y additionally satisfy (A4), then it restricts

further to ϕ∨ : MY → MX . It fulfills the relation (3.2) stated in Section 3.2 for the dual

of a morphism between projective abelian S-schemes by exactly the same computation.

Similarly, Lemma 3.5 can be transferred to this more general situation as follows:

Proposition 3.19. Let ϕ : X → Y be a pointed morphism between two S-schemes satis-

fying (A). Then the diagram

X
ϕ //

albX
��

Y

albY
��

Alb0
X ϕ∨∨

// Alb0
Y
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is commutative. Furthermore, ϕ∨∨ is the only morphism Alb0
X → Alb0

Y rendering the

diagram commutative.

Proof. By Remark 3.14, the extension X
albX−−−→ Alb0

X ↪→ PicMX
is given by the class

[QX |X×MX
] ∈ Pic(X ×MX)/Pic(X) for QX = PX (PicX), where PX ∈ Pic(X × PicX) is a

Poincaré sheaf corresponding to the identity PicX → PicX . Similarly for Y instead of X.

Thus the proof of Lemma 3.5 also works here. The uniqueness in the statement is a direct

consequence of the universal property for albX applied to albY ◦ϕ.

Remark 3.20. Consider the special case ϕ = albX . The conclusion yields alb∨∨X = idAlb0
X

.

So already alb∨X : MAlb0
X
→ MX is the identity. Specialize further to S = Spec(k) for

an arbitrary field k and X geometrically normal and proper with h0(OX) = 1. Then

MX = (Pic0
X)red. Thus the pullback alb∨X(k) : Pic0(Alb0

X)→ Pic0(X) is bijective.

Proposition 3.21. Let ϕ : X → Y be a morphism, not necessarily pointed, between two

S-schemes satisfying (A). Then the diagram

X
ϕ //

albX
��

Y

albY
��

Alb0
X ϕ∨∨

// Alb0
Y σ

' // Alb0
Y

is commutative, where σ is the translation by albY ◦ϕ ◦ eX . Furthermore, σ ◦ ϕ∨∨ is the

unique morphism Alb0
X → Alb0

Y which can be inserted into the lower row of the diagram

to render it commutative.

Proof. Denote sY = ϕ◦eX . Then the morphism σ−1 ◦albY is an Albanese morphism of Y

considered as a pointed scheme via sY due to Proposition 3.18. Therefore Proposition 3.19

can be applied and it gives the commutativity of the diagram. The uniqueness in the

statement is a direct consequence of Proposition 3.17 applied to albY ◦ϕ.

Proposition 3.22. Let f : X → S and g : Y → S as well as f × g : X × Y → S be proper

morphisms satisfying (A**). Then a natural isomorphism MX×Y
'−→MX ×MY exists.

Proof. Define Φ: MX×Y → MX × MY first: To the inclusion ιX : X → X × Y , con-

sider ι∨X : PicX×Y → PicX and its restriction ι∨X : MX×Y → MX . Similarly, obtain

ι∨Y : MX×Y →MY . Denote the morphism into the product by Φ: MX×Y →MX ×MY .

Now define Ψ: MX ×MY → MX×Y so that it is the inverse. For any S-scheme T , the

group homomorphism (PicX ×PicY )(T )→ PicX×Y (T ) determined by

Pic(XT )/Pic(T )× Pic(YT )/Pic(T ) −→ Pic(XT × YT )/Pic(T ),

([L ], [N ]) 7−→ [pr∗XT (L )⊗ pr∗YT (N )]

gives rise to a homomorphism PicX ×PicY → PicX×Y . It can also be obtained by multi-

plication of pr∨X : PicX → PicX×Y and pr∨Y : PicY → PicX×Y , where the latter are induced
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by prX : X × Y → X and prY : X × Y → Y . Then set Ψ: MX ×MY → MX×Y as its

restriction.

By definition, the composition Φ◦Ψ is the identity on MX×MY . To show that Ψ◦Φ is the

identity on MX×Y , note that the definitions of Φ and Ψ are compatible with base change

in S by (A4*). Use this to reduce to the case that S = Spec(k) for an algebraically closed

field k. Actually, once this is established, faithfully flat descent, [56], Proposition 2.7.1,

yields the statement for arbitrary fields k. Then [53], Proposition 4.6.7 (ii), shows that

Ψ ◦ Φ is an isomorphism for general S. So let S = Spec(k) for an algebraically closed

field k. Then

(3.5) MX×Y
Ψ ◦Φ−−−→MX×Y ↪−→ PicX×Y

is given by some [L ] ∈ Pic(X × Y ×MX×Y )/Pic(MX×Y ). To show that the composition

Ψ ◦ Φ is the identity, it is sufficient to verify that [L ] = [P|X×Y×MX×Y ] for the Poincaré

sheaf P ∈ Pic(X × Y × PicX×Y ). To do so, use the theorem of the cube, [95], Section 10,

Theorem on page 91, and observe that at this point the additional assumption (A2**)

enters. Consequently, it is sufficient to ensure that both sheaves coincide after pullback to

the three closed subschemes {x}×Y ×MX×Y and X×{y}×MX×Y as well as X×Y ×{z}.
Here {x} = Spec(k) is the image of eX : Spec(k)→ X and similarly for {y} and {z}. The

pullback of L to {x} × Y ×MX×Y yields by (3.5) the morphism

MX×Y
Ψ ◦Φ−−−→MX×Y

ι∨Y−−→MY ↪−→ PicY .

Since the equality ι∨Y ◦ Ψ ◦ Φ = prMY
◦Φ = ι∨Y = ι∨Y ◦ idMX×Y holds, the pullbacks of

L and P|X×Y×MX×Y to {x} × Y ×MX×Y coincide. By means of symmetry, the same

conclusion is true for both pullbacks to X × {y} ×MX×Y . Finally, the pullback of L to

X × Y × {z} yields

Spec(k)
e−−→MX×Y

Ψ◦Φ−−−→MX×Y ↪−→ PicX×Y .

Being derived from a homomorphism of group scheme, this is the identity section of

PicX×Y . Clearly, the same holds for idMX×Y instead of Ψ ◦Φ, so eventually, the pullbacks

of L and P|X×Y×MX×Y to X × Y × {z} also coincide. This completes the proof.

Remark 3.23. If instead of (A4), the assumption is imposed that Pic0
X is a flat and

proper S-scheme, then there similarly is an isomorphism Pic0
X×Y

'−→ Pic0
X ×Pic0

Y . Here,

the assumption on Pic0
X is necessary to apply [53], Proposition 4.6.7 (ii).

Remark 3.24. The analogous statement for PicX×Y instead of MX×Y or Pic0
X×Y is not

valid in general. Suppose for instance that Pic0
X(k) = Pic0(X) is non-zero, and consider

Y = Pic0
X . Then PX |X×Pic0X

∈ Pic(X × Pic0
X) is not in the image of Ψ(k), which can be

seen as follows: Every invertible sheaf in the image is of the form pr∗X(N 1)⊗pr∗
Pic0X

(N 2),

and thereby its pullback along the morphism (idX ×h) for all h : Spec(k) → Pic0
X is
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isomorphic to N 1. But PX |X×Pic0X
∈ Pic(X × PicX) has by definition of a Poincaré sheaf

the property that for every invertible sheaf L ∈ Pic0(X), there exists some k-valued point

h : Spec(k)→ Pic0
X such that L ' (idX ×h)∗(PX |X×Pic0X

).

The cokernel of Ψ(k) was computed by Ischebeck [70], Satz 1.7. If S = Spec(k) for an

algebraically closed field k and the k-schemes X,Y are normal and connected, then there

is a natural exact sequence 0 → Pic(X) × Pic(Y ) → Pic(X × Y ) → Pic(K(X) ⊗K(Y )).

Note that if X or Y is rational, then Pic(K(X)⊗K(Y )) is trivial as mentioned in op. cit.,

Bemerkungen 1.8.

Proposition 3.25. Let f : X → S and g : Y → S as well as f × g : X × Y → S be proper

morphisms satisfying property (A**). Then albX × albY : X × Y → Alb0
X ×Alb0

Y is the

Albanese morphism of X × Y .

Proof. By Proposition 3.22, there are identifications ΨX,Y : MX × MY
'−→ MX×Y and

ΦMX ,MY
: (MX×MY )∨

'−→MX
∨×MY

∨ = Alb0
X ×Alb0

Y . Combining the two of them yields

the natural isomorphism ΦMX ,MY
◦Ψ∨X,Y : Alb0

X×Y
'−→ Alb0

X ×Alb0
Y . Its composition with

albX×Y : X×Y → Alb0
X×Y is consequently an Albanese morphism. By means of symmetry

in X and Y , it is now enough to show that the diagram

X × Y
albX×Y //

prX

��

Alb0
X×Y

Ψ∨X,Y // (MX ×MY )∨
ΦMX,MY // Alb0

X ×Alb0
Y

pr
Alb0

X
��

X
albX

// Alb0
X

is commutative. Observe that prAlb0
X
◦ΦMX ,MY

= ι∨MX
is valid by definition of ΦMX ,MY

,

which simplifies the diagram to

X × Y
albX×Y //

prX

��

Alb0
X×Y

Ψ∨X,Y // (MX ×MY )∨

ι∨MX

&&
X

albX
// Alb0

X .

Next, the composition ι∨MX
◦Ψ∨X,Y is the dual to ΨX,Y ◦ ιMX

= pr∨X : MX → MX×Y , and

thus the diagram reduces further to

X × Y
albX×Y //

prX

��

Alb0
X×Y

pr∨∨X

$$
X

albX
// Alb0

X .

The commutativity now is a consequence of Proposition 3.19.
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3.4 Albanese Torsors

Let S be a noetherian scheme. One of the assumptions imposed on f : X → S to admit an

Albanese morphism was (A1), the existence of a section. After omitting this requirement,

the Albanese morphism continues to exist if “projective abelian S-schemes” are replaced

by “principal homogeneous spaces under projective abelian S-schemes”. At least if the

base S is the spectrum of a field, this holds without restrictions. The first short part

of this section is a comment on morphisms between such principal homogeneous spaces.

Next, descent theory is covered, which will be utilized subsequently to derive the existence

of the Albanese torsor. Applications of the theory form the conclusion of this chapter,

which are oriented towards the pullback of numerically trivial invertible sheaves along the

Albanese morphism.

Let J be a principal homogeneous space under a projective abelian S-scheme A. A brief

introduction to principal homogeneous spaces is given in Section A.2. There is a canonical

isomorphism A∨
'−→ Pic0

J by [104], Proposition XIII 1.1 (ii). The following observation is

a consequence of this fact:

Let A and B be projective abelian S-schemes, let J be a principal homogeneous space

under A and let L be a principal homogeneous space under B. A morphism of S-schemes

ϕ : J → L is equivariant with respect to a homomorphism h : A→ B if the diagram

(3.6) J ×A ϕ×h //

��

L×B

��
J ϕ

// L

commutes, where the vertical arrows are the group actions.

Lemma 3.26. Given a morphism of S-schemes ϕ as above, there exists a unique homo-

morphism h : A→ B such that ϕ is equivariant with respect to h. Specifically, h = ϕ∨∨.

Proof. First of all, show that h is unique. By faithfully flat descent, assume without loss

of generality that J has a section e. Let T be an S-scheme and a ∈ A(T ). Consider

the T -valued point (e, a) of J × A. The commutativity of diagram (3.6) implies that the

equality ϕ(e) + h(a) = ϕ(e+ a) holds in L(T ). Hence h is uniquely determined by ϕ.

As stated above, the morphism ϕ∨ can canonically be identified with B∨ → A∨. Dualiz-

ing once again yields a homomorphism h : A→ B. Since Pic0 commutes with base change,

it is sufficient to show that (3.6) commutes after a faithfully flat base change. Thus assume

that J ' A and L ' B are both trivial as homogeneous spaces. Then, after identifying

both abelian schemes with their double dual, Proposition 3.21 shows that ϕ = τ ◦ h for a

translation τ . Now it is immediate that the diagram commutes.

Define the category of principal homogeneous spaces under projective abelian S-schemes .

An object in this category is a principal homogeneous space J under a projective abelian

S-scheme A. A morphism ϕ : J → L in this category is simply a morphism of S-schemes.
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By the preceding lemma, there exists a unique homomorphism h : A → B of projective

abelian S-schemes such that ϕ is equivariant with respect to h, where J is a principal

homogeneous space under A and L is a principal homogeneous space under B.

Descent Theory. Let b : S′ → S be a morphism of schemes and let X ′ be a S′-scheme.

Define S′′ = S′ × S′ and S′′′ = S′ × S′ × S′. Denote by πi : S
′′ → S′ and pri : S

′′′ → S′

the projection to the i-th factor and by prij : S′′′ → S′′ the projection to factors i and j

for i < j. For a morphism t : T ′ → S′ and a morphism ϕ : X ′ → Y ′ of S′-schemes, write

t∗(X ′) = X ′ ×S′,t T ′ for the base change of X ′ along t as well as t∗(ϕ) : t∗(X ′) → t∗(Y ′)

for morphism induced by ϕ. There are canonical identifications

pr∗12 π
∗
1(X ′) = pr∗1(X ′) = pr∗13 π

∗
1(X ′),

pr∗12 π
∗
2(X ′) = pr∗2(X ′) = pr∗23 π

∗
1(X ′),

pr∗13 π
∗
2(X ′) = pr∗3(X ′) = pr∗23 π

∗
2(X ′).

A descent datum on X ′ for b is an isomorphism of S′′-schemes

δ : π∗1(X ′) −→ π∗2(X ′)

such that the cocycle condition pr∗23(δ) ◦ pr∗12(δ) = pr∗13(δ) is satisfied. This means that

pr∗1(X ′)
pr∗12(δ)

//

pr∗13(δ)

55
pr∗2(X ′)

pr∗23(δ)
// pr∗3(X ′)

is commutative, using the identifications above. The pair (X ′, δ) is called a scheme with

descent datum for b. An open subscheme U ′ ⊂ X ′ is stable under δ if δ restricts to an

isomorphism π∗1(U ′)→ π∗2(U ′), in turn yielding a descent datum for b on U ′.

Let (Y ′, γ) be another scheme with descent datum for b. A morphism (X ′, δ)→ (Y ′, γ)

of schemes with descent data for b is a morphism ϕ : X ′ → Y ′ of S′-schemes such that

(3.7) π∗1(X ′)
π∗1(ϕ)

//

δ
��

π∗1(Y ′)

γ

��
π∗2(X ′)

π∗2(ϕ)
// π∗2(Y ′)

commutes. This yields the category (Sch/S′, b) of S′-schemes with descent data for b.

In the special case that X ′ = b∗(X) is the base change of an S-scheme X, the canonical

identification π∗1b
∗(X) = π∗2b

∗(X) yields the canonical descent datum δcan on X ′ for b.

Concretely, δcan = (prX , π2 ◦prS′′ , prS′′). The canonical descent datum is compatible with

morphisms X → Y of S-schemes and induces a functor b∗ : (Sch/S) → (Sch/S′, b) which

maps X to (b∗(X), δcan). A scheme with descent datum for b is effective if it is isomorphic

to a scheme with canonical descent datum for b. The central result in descent theory is the

following, referring to [59], Exposé VIII, Théorème 5.2, Proposition 7.2 and Corollaire 7.9.
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Proposition 3.27. Let b : S′ → S be a faithfully flat, quasicompact morphism of schemes.

Then the functor b∗ is fully faithful. A scheme with descent datum (X ′, δ) for b is effective

if and only if X ′ can be covered by quasi-affine open subschemes U ′ which are stable

under δ.

Consider the case of canonical descent data: Let X ′ = b∗(X) be the pullback of an

S-scheme X. Then for Si ⊂ S affine open, Ui ⊂ X and Vi ⊂ S′ both affine open mapping

to Si, the affine open subset Ui × Vi ⊂ X × S′ = X ′ is stable under δcan by its definition.

Remark 3.28 (Base Change of Descent Data). Let (X ′, δ) be a descent datum for b and

let z : Z → S be a morphism. Then there is an induced descent datum (X ′Z′ , δz) for the

base change bz of b along z, where Z ′ = Z ×S S′ and X ′Z′ = X ′ ×S′ Z ′. This defines a

functor z∗ : (Sch/S′, b) → (Sch/Z ′, bz). To obtain the induced descent datum, define the

base changes Z ′ and Z ′′ of S′ and S′′ by

(3.8) Z ′′ //

πi
��

S′′

πi
��

Z ′ //

bz
��

S′

b
��

Z z
// S

for 1 ≤ i ≤ 2. Here in fact Z ′′ = Z ′×Z Z ′ holds, and πi is the projection to the i-th factor.

Now base change δ along Z ′′ → S′′. Different paths in (3.8) yield the natural identification

π∗i (X
′)×S′′ Z ′′ = (X ′ ×S′,πi S′′)×S′′ Z ′′

= X ′ ×S′ Z ′ ×Z′,πi Z ′ = π∗i (X
′
Z′),

and δz : π∗1(X ′Z′)→ π∗2(X ′Z′) corresponds to δ× idZ′′ under these identifications. The same

reasoning shows that the cocycle condition is satisfied. Furthermore, the functor z∗ is

compatible with compositions in the sense that (z2 ◦ z1)∗ = z∗1 ◦ z∗2 .

Remark 3.29 (Products of Descent Data). Let (X ′, δ) and (Y ′, γ) be descent data for b.

In virtue of the natural identification π∗i (X
′)×S′′ π∗i (Y ′) = π∗i (X

′×S′ Y ′), the isomorphism

δ×γ is a descent datum on X ′×S′Y ′ for b. In the case that both descent data are canonical,

then δcan × γcan is the canonical descent datum on b∗(X)×S′ b∗(Y ′) = b∗(X × Y ).

Example 3.30 (Gluing Data). Let S be an arbitrary scheme and S =
⋃n
i=1 Ui an open

cover. Define the S-scheme S′ =
∐n
i=1 Ui with structure morphism b : S′ → S induced by

the inclusions. In this case, Proposition 3.27 recovers gluing of morphisms and schemes:

A morphism f : X → Y of S-schemes is uniquely determined by a collection of morphisms

fUi : XUi → YUi of Ui-schemes restricting to the same morphisms over the intersections

Ui ∩ Uj . An S-scheme X can be defined by affine Ui-schemes Xi being isomorphic over

the intersections Ui ∩ Uj such that the isomorphisms Xi ×Ui Ui ∩ Uj
'−→ Xj ×Uj Ui ∩ Uj

satisfy the cocycle condition.
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Example 3.31 (Galois Descent). For a finite Galois extension k ⊂ E, set S = Spec(k) and

S′ = Spec(E). Then the induced morphism b : S′ → S is a principal homogeneous space

under Gal(E/k), see Example A.1. This can be extended as follows: Let G be a finite

constant S-group scheme and let S′ be a principal homogeneous space under G. Then

b : S′ → S is called a Galois morphism . Let X ′ be an S′-scheme and δ : π∗1(X ′)→ π∗2(X ′)

a descent datum for b. This can be reinterpreted as follows:

The isomorphism S′×G '−→ S′′, (t, σ) 7→ (t, tσ) induces X ′×G '−→ π∗1(X ′). Composition

with prX′ gives a morphism Φ: X ′ × G → X ′, which defines a group action of G on

X ′. Denote by Φσ : X ′ → X ′ the automorphism induced by σ ∈ G. Similarly, write

ξ : S′ × G → S′ for the G-action and ξσ : S′ → S′ for the induced automorphism. Then

the action of G on X ′ is compatible with the action of G on S′, meaning that the diagram

X ′
Φσ //

��

X ′

��
S′

ξσ
// S′

is commutative. For detailed computations to the above, see [19], Section 6.2, Example B,

where it is also shown that conversely, a compatible G-action gives rise to a descent datum.

A morphism (X ′, δ)→ (Y ′, γ) of S′-schemes with descent data for b is a G-equivariant

morphism ϕ : X ′ → Y ′. Indeed, first denote by Ψ: Y ′ × G → Y ′ the group action of

G on Y ′, obtained from the descent datum γ. Now Diagram (3.7) translates—using the

identifications X ′ ×G '−→ π∗i (X
′) given at the beginning of this example—to

X ′ ×G ϕ×idG //

(Φ,idG)

��

Y ′ ×G
(Ψ,idG)

��
X ′ ×G

ϕ×idG
// Y ′ ×G.

The commutativity of this diagram exactly means that ϕ is G-equivariant.

Example 3.32. In the previous example, in the case that X ′ is quasi-projective over S′,

the descent datum δ is always effective by [59], Exposé VIII, Corollaire 7.6. According to

this source, the effectiveness of (X ′, δ) for quasi-projective X ′ holds more generally along

every surjection b : S′ → S which is finite locally free. For example, a finite field extension

k ⊂ E induces a finite locally free surjection Spec(E)→ Spec(k).

Example 3.33. Now let b : S′ → S be a purely inseparable, faithfully flat, quasicompact

morphism. For instance, b : Spec(E)→ Spec(k) is induced by an arbitrary purely insepa-

rable field extension k ⊂ E. According to [59], Exposé VIII, Corollaire 7.5, every scheme

with descent datum (X ′, δ) is effective in this case, too.

Let f : X → S be a separated morphism of finite type between noetherian schemes.

Recall that an Albanese morphism exists for f if properties (A1) to (A4) are fulfilled.
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Without assumption (A1), the existence of a section of f , a naturally altered definition of

the Albanese morphism is the following:

Definition 3.34. A morphism alb: X → Alb1
X/S to a principal homogeneous space

Alb1
X/S under a projective abelian S-scheme Alb0

X/S is an Albanese morphism of X if

it is universal among all S-morphisms X → J to a principal homogeneous space J under

a projective abelian S-scheme A. This means that each such X → J has a factorization

through alb and a unique S-morphism Alb1
X/S → J .

As for the usual Albanese morphism, the universal property implies its uniqueness up to

a unique isomorphism, and the expression “the” Albanese morphism will be used here, too.

The principal homogeneous space Alb1
X/S is the Albanese torsor of the S-scheme X. See

Remark A.3 for a comment on the notions “principal homogeneous space” and “torsor”,

where the latter is used here for entirely practical reasons. If the base S is fixed, abbreviate

Alb1
X = Alb1

X/S . The subsequent existence theorem is the central result in this chapter.

Theorem 3.35. Let f : X → S be a separated morphism of finite type between noetherian

schemes. Suppose that one of the following two assumptions is satisfied:

(i) X is proper over S = Spec(k) for an arbitrary field k, and h0(OX) = 1.

(ii) f is smooth and projective with geometrically integral fibers, all Pic0
Xs/κ(s) for s ∈ S

are smooth, proper and of the same dimension. There exists a morphism S′ → S

which decomposes as a finite locally free surjection followed by a purely inseparable,

faithfully flat morphism of finite type, such that the S′-scheme XS′ admits a section.

Then there exists an Albanese morphism alb: X → Alb1
X , where Alb1

X is a principal

homogeneous space under Alb0
X = M∨ and M ⊂ PicX is the maximal abelian subscheme.

The formation of Alb1
X commutes with arbitrary noetherian base change in S.

Remark 3.36. If there exists a section e : S → X, the principal homogeneous space Alb1
X

can be trivialized along the section alb ◦ e. Then alb: X → Alb1
X is a pointed morphism

and satisfies the universal property of the Albanese morphism in the original sense. In

particular, there is an isomorphism Alb0
X ' Alb1

X depending on the choice of e. Moreover,

note that conditions (i) and (ii) recreate (AA) and (AR).

Proof. Let X → J be a morphism of S-schemes to a principal homogeneous space J under

a projective abelian S-scheme A. Depending on the additional assumption (i) or (ii),

choose a suitable faithfully flat morphism b : S′ → S of finite type such that the base

change X ′ := b∗(X) = XS′ along b has a section eX′ = (ι, idS′). In situation (i), choose a

closed point x ∈ X, set S′ = Spec(κ(x)) and let b : S′ → S be the induced finite locally

free morphism. In situation (ii), let b : S′ → S be the one given by assumption.

Now both situations (i) and (ii) can be unified. The respective assumptions imply the

subsequent technical conditions, which follow from Lemma A.11, Theorem A.26, Theo-

rem A.30, Example 3.7 and Proposition 3.10.
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• PicX exists.

• (A2*): f has geometrically connected fibers.

• (A4*): There exists a projective maximal abelian subscheme M ⊂ PicX , which is

compatible with arbitrary noetherian base change in S.

• X ′ satisfies (A3): PicX′/S′ represents the relative Picard functor Pic(X′/S′).

Consequently, the S′-scheme X ′ satisfies property (A*). The section eX′ yields a section

of J ′ := b∗(J), and thus J ′ is the trivial principal homogeneous space, that is, a projective

abelian S′-scheme. Therefore the base change X ′ → J ′ has a unique factorization through

the Albanese morphism alb′ : X ′ → Alb0
X′/S′ . As stated in Proposition 3.15, the Albanese

morphism of X ′ commutes with noetherian base change.

Step 1: Define a descent datum on Alb0
X′/S′. Denote the canonical descent datum on X ′

by δ : π∗1(X ′)
'−→ π∗2(X ′). Observe that the morphism δ is not necessarily pointed, as it

maps eπ∗1(X′) = (ι◦π1, π1, idS′′) to (ι◦π1, π2, idS′′), which does in general not coincide with

eπ∗2(X′) = (ι ◦ π2, π2, idS′′). Consider the diagram

(3.9) π∗1(X ′)

δ

��

π∗1(alb′)
// π∗1(Alb0

X′/S′)

α

��
π∗2(X ′)

π∗2(alb′)
// π∗2(Alb0

X′/S′),

where α exists by Proposition 3.21. Switch the rows in the diagram and consider δ−1

instead of δ to obtain a morphism α−1 : π∗2(Alb0
X′/S′) → π∗1(Alb0

X′/S′). This is in fact

the inverse to α, as seen by combining both diagrams, because of the uniqueness in the

universal property of the Albanese morphisms π∗1(alb′) and π∗2(alb′), respectively.

A similar approach guarantees that α fulfills the cocycle condition. Indeed, in the

following diagram

pr∗1(X ′)

pr∗12(δ)

��
pr∗13(δ)

%%

// pr∗1(Alb0
X′/S′)

pr∗12(α)

��
pr∗13(α)

zz

pr∗2(X ′)

pr∗23(δ)

��

// pr∗2(Alb0
X′/S′)

pr∗23(α)

��
pr∗3(X ′) // pr∗3(Alb0

X′/S′) ,

the two rectangles in the center and the outer circle commute by definition of α. The

cocycle condition for δ is the commutativity of the triangle on the left-hand side. Now the

uniqueness in Proposition 3.21 applied to both pr∗23(δ) ◦pr∗12(δ) = pr∗13(δ) implies that the

triangle on the right-hand side is also commutative. This is the cocycle condition for α.

In conclusion, (Alb0
X′/S′ , α) is a scheme with descent datum for b.
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Step 2: The descent datum is effective. Distinguish cases (i) and (ii). In situation (i),

descent for quasi-projective schemes with descent data is already effective along the finite

locally free surjection b : S′ → S due to Example 3.32.

In situation (ii), there exists a decomposition S′ → S̃ → S where S′ → S̃ is a finite

locally free surjection, and S̃ → S is a purely inseparable, faithfully flat morphism of

finite type. The descent will take two stages. First, descent is effective along S′ → S̃,

since Alb0
X′/S′ is projective. The subsequent Step 3 and Step 4 will then yield the existence

of the Albanese morphism alb
S̃

: X̃ → Alb1
X̃/S̃

of X̃ := X
S̃

. It also commutes with base

change by Step 5.

Independent of the fact that X̃ may admit no section, alb
S̃

satisfies its universal prop-

erty. So with its base change compatibility, it is possible to proceed as in Step 1 and

define a descent datum for Alb1
X̃/S̃

along S̃ → S. Then in the second stage, use that every

scheme with descent datum is effective along a purely inseparable, faithfully flat morphism

of finite type by Example 3.33.

Step 3: The Albanese torsor exists. The fact that the descent datum (Alb0
X′/S′ , α)

is effective means that there exists and S-scheme Alb1
X and an isomorphism of descent

data (Alb0
X′/S′ , α) ' (Alb1

X ×S′, αcan) for the canonical descent datum αcan on Alb1
X ×S′.

Hence the morphism of canonical descent data

(X ′, δ) −→ (Alb0
X′/S′ , α)

'−−→ (Alb1
X ×S′, αcan)

originates from a morphism alb: X → Alb1
X by Proposition 3.27. To see that Alb1

X is a

principal homogeneous space under M∨, first note that there is a natural identification

(3.10) Alb0
X′/S′ = M ′∨ = M∨ × S′,

using the identification M ′ = M ×S′ and compatibility of Pic0 with base change. Second,

due to Proposition 3.21, the descent datum α on Alb0
X′/S′ can be decomposed as

π∗1(Alb0
X′/S′)

δ∨∨−−→ π∗2(Alb0
X′/S′)

σ−−→ π∗2(Alb0
X′/S′),

where σ is the translation by π∗2(alb′) ◦ δ ◦ eπ∗1(X′), see (3.9). The morphism δ∨∨ is the

canonical descent datum on Alb0
X′/S′ = M∨ × S′. In fact, as δ is the canonical descent

datum coming from the identification

X × S′ ×S′,π1 S′′ = X × S′ ×S′,π2 S′′,

the application of the Picard functor over S′′ is compatible with the base change S′′ → S,

and thus it yields

M × S′ ×S′,π1 S′′ = M × S′ ×S′,π2 S′′,

which is the canonical descent datum on M ×S′. The same procedure applied once again

now shows the claim about δ∨∨.
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To define an action of M∨ on Alb1
X , keep the decomposition α = σ ◦ δ∨∨ in mind and

consider

π∗1(Alb0
X′/S′)×S′′ π∗1(Alb0

X′/S′)
π∗1(m′)

//

α×δ∨∨
��

π∗1(Alb0
X′/S′)

α

��
π∗2(Alb0

X′/S′)×S′′ π∗2(Alb0
X′/S′) π∗2(m′)

// π∗2(Alb0
X′/S′),

where m′ is the group law on Alb0
X′/S′ = M∨ × S′ derived via base change from the

group law on M∨. The diagram is commutative, which can be directly verified on T ′′-

valued points: As the S′-scheme Alb0
X′/S′ is obtained via base change from an S-scheme,

a T ′′-valued point of π∗i (Alb0
X′/S′) corresponds to an element of M∨(T ′′). Now the com-

mutativity is simply the statement that the group law on M∨(T ′′) is associative.

Hence m′ : (Alb0
X′/S′ ×S′ Alb0

X′/S′ , α × δ∨∨) → (Alb0
X′/S′ , α) is a morphism of schemes

with descent data. It descends to some µ : Alb1
X ×M∨ → Alb1

X . This defines a group

action on Alb1
X . In fact, unitality and associativity are expressed in the commutativity

of two diagrams of S-schemes. As µS′ = m′, they become commutative after base change

to S′, and thus by descent, they had to be commutative before. The same argument

ensures that Alb1
X is a principal homogeneous space under M∨, since

Alb1
X ×M∨ −→ Alb1

X ×Alb1
X , (j, g) 7−→ (j, jg)

becomes an isomorphism after base change to S′.

Step 4: Verify the factorization through the Albanese torsor. The factorization of the

given morphism X ′ → J ′ as X ′
alb′−−→ Alb0

X′/S′
h′−→ J ′ now yields an extension of (3.9) to

π∗1(X ′)

δ

��

π∗1(alb′)
// π∗1(Alb0

X′/S′)

α

��

π∗1(h′)
// π∗1(J ′)

γ

��
π∗2(X ′)

π∗2(alb′)
// π∗2(Alb0

X′/S′) π∗2(h′)
// π∗2(J ′),

where γ denotes the canonical descent datum on J ′. Here the left square is (3.9) and thus

commutative. The outer square is commutative, as X ′ → J ′ is obtained by base change

from X → J . An application of Proposition 3.17 to the Albanese morphism π∗1(alb′)

guarantees that the right square is commutative, too.

Thus the canonical morphism of descent data (X ′, δ) → (J ′, γ) has a factorization

(X ′, δ) → (Alb0
X′/S′ , α) → (J ′, γ). The identification (Alb0

X′/S′ , α) ' (Alb1
X ×S′, αcan)

yields the factorization

(3.11) (X ′, δ) −→ (Alb1
X ×S′, αcan) −→ (J ′, γ),

where now all three descent data are canonical. Thus there is a morphism h : Alb1
X → J

such that its composition with alb: X → Alb1
X is the given morphism X → J .
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The factorization is indeed unique, since two different morphisms h1, h2 : Alb1
X → J

would yield two different factorizations as in (3.11). But this cannot happen by the

universal property of the Albanese morphism X ′ → Alb1
X ×S′.

Step 5: Compatibility with base change holds. Let z : Z → S be a morphism and define Z ′

by the cartesian square

Z ′ //

bz
��

S′

b
��

Z z
// S.

Denote the base changes of X along these morphisms by

(3.12) X ′Z′
//

��

X ′

��
XZ

// X.

Here X ′(S′) 6= ∅ and thus X ′Z′(Z
′) 6= ∅. The Albanese morphism of X ′Z′ is the base

change of that of X ′. An application of base change for descent data, see Remark 3.28,

to (3.9) gives an induced descent datum on Alb0
X′
Z′/Z

′ for bz, along with a morphism

(X ′Z′ , δz)→ (Alb0
X′
Z′/Z

′ , αz). Then descent yields albXZ : XZ → Alb1
XZ/Z

. But in Diagram

(3.12), another path to obtain X ′Z′ → Alb0
X′
Z′/Z

′ is to initially base change X → Alb1
X to

z∗(alb) : XZ → Alb1
X ×Z, then proceeding along Z ′ → Z. Hence albZ = z∗(alb) follows

from the faithfulness of the latter.

Example 3.37. Let X be as in Theorem 3.35 (i) and assume further that Xk is an abelian

variety. Then by faithfully flat descent, already alb: X → Alb1
X is an isomorphism and X

is a principal homogeneous space under Alb0
X = (Pic0

X)∨.

As a concrete example, consider the Selmer curve C = V (3u3 + 4v3 + 5w3) ⊂ P2
Q. It is

an irreducible curve, which is smooth by the Jacobi criterion. The genus formula yields

h1(OC) = (3−1)(3−2)
2 = 1. According to [25], Chapter 18, Theorem 1, there exists no

Q-rational point on C, so the abelian variety Alb0
C cannot be isomorphic to Alb1

C = C.

As mentioned in [27], Section 8, an explicit description as a vanishing set is given by

Alb0
C = V (u3 + v3 + 60w3) ⊂ P2

Q. This curve has only the single rational point (1 : −1 : 0)

due to [25], Chapter 18, Lemma 2.

Proposition 3.38. Let f : X → S and g : Y → S as well as f × g : X × Y → S be proper

morphisms satisfying the assumptions made in Theorem 3.35 and additionally (A2**).

Then albX × albY : X × Y → Alb1
X ×Alb1

Y is the Albanese morphism of X × Y .

Proof. Set S′ = X × Y to achieve that XS′ and YS′ each have a canonical section. Com-

bined, both yield the canonical section of (X × Y )S′ = XS′ ×S′ YS′ . Then

(albX × albY )S′ : XS′ ×S′ YS′ −→ Alb1
XS′
×S′ Alb1

YS′
= Alb0

XS′
×S′ Alb0

YS′
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is the product albXS′ × albYS′ of the usual Albanese morphisms. As a consequence of

Proposition 3.25, it coincides with albXS′×S′YS′ . But this morphism is also obtained by

base changing albX×Y to S′. Hence by descent, already albX × albY = albX×Y is true.

Proposition 3.39. Let X be a proper scheme over an arbitrary field k with h0(OX) = 1.

Denote by X → Y → Alb1
X the Stein factorization of the Albanese morphism. Then the

induced arrow Alb1
X → Alb1

Y is an isomorphism and pullback of invertible sheaves gives

further isomorphisms MAlb1
X
→MY and MY →MX .

If X is additionally geometrically normal and k ⊂ E is a field extension such that X(E)

is non-empty, then Pic0(Alb1
XE

)→ Pic0(YE) and Pic0(YE)→ Pic0(XE) are both bijective.

Proof. First, observe that Y is proper with h0(OY ) = 1. This shows that Y satisfies the

assumptions of Theorem 3.35, and thus the Albanese morphism albY : Y → Alb1
Y exists.

Consider the following commutative diagram

X

albX

&&
r //

albX
��

Y
s //

albY
��

Alb1
X

Alb1
X α

// Alb1
Y

β

;;

,

where α and β are obtained by the universal properties of albX and albY , respectively.

The uniqueness in the universal property of albX applied to albX = β ◦ α ◦ albX yields

β ◦ α = id. On the other hand, the diagram shows

α ◦ β ◦ albY ◦ r = α ◦ albX = albY ◦ r.

Since r is an epimorphism by [59], Exposé VIII, Proposition 5.1, the equation above now

gives α ◦ β ◦ albY = albY . As before, α ◦ β = id follows, so α and β are in fact inverse to

each other.

Consider s∨ : MAlb1
X
→MY and r∨ : MY →MX . To show that they are isomorphisms,

the diagram implicates that it is sufficient to verify that alb∨X and alb∨Y have inverses. The

reasoning is the same for each of them, so consider the former. By faithfully flat descent,

the bijectivity of alb∨X can be verified after base change to k. After fixing a k-rational

point of Xk, this means to show that the dual alb∨Xk
of the usual Albanese morphism

albXk : Xk → Alb0
Xk

is bijective. But this map is the identity according to Remark 3.20.

Thus s∨ and r∨ are indeed isomorphisms.

Now assume that X is geometrically normal. Then also Y is geometrically normal

by Proposition A.12. This shows that MX = (Pic0
X)red and MY = (Pic0

Y )red according

to Theorem A.30 and Lemma 3.8. For the principal homogeneous space Alb1
X under

Alb0
X = M∨X , there is a natural identification Pic0

Alb1
X

= M∨∨X = MX , as reviewed prior to

Lemma 3.26. This is an abelian variety, so MAlb1
X

= Pic0
Alb1

X
. Hence the identifications

from above become s∨ : Pic0
Alb1

X
→ (Pic0

Y )red and r∨ : (Pic0
Y )red → (Pic0

X)red.
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Consider a field extension k ⊂ E such that X has an E-rational point. Its images yield

E-rational points of Y and Alb1
X . So the Picard schemes of XE , YE , Alb1

XE
represent

their respective relative Picard functors. Thus the maps above, on E-valued points, give

bijections Pic0(Alb1
XE

)→ Pic0(YE) and Pic0(YE)→ Pic0(XE).

Note that on a proper k-scheme X, a sufficient condition for h0(OX) = 1 to hold is that

X is geometrically reduced and geometrically connected by Lemma A.10.

Definition 3.40. Let X be a proper scheme over an arbitrary field k with h0(OX) = 1.

The Albanese dimension of X is the dimension m of the image of the Albanese morphism

X → Alb1
X . The scheme X is of maximal Albanese dimension if m = dim(X).

Example 3.41. Let A be an abelian variety of dimension g over k. Then clearly A is

of maximal Albanese dimension m = g. The next proposition shows that the projective

space Pn for n ≥ 0 has Albanese dimension m = 0.

Proposition 3.42. Let X be a proper scheme over an arbitrary field k with h0(OX) = 1,

which is of Albanese dimension m ≥ 0. Then m ≤ h1(OX) holds. Also, the following two

conditions are equivalent:

(i) m = 0.

(ii) Alb1
X = Alb0

X = Spec(k).

Furthermore, h1(OX) = 0 implies the equivalent conditions above. The converse holds for

geometrically normal X under the additional assumption that h2(OX) = 0 or p = 0.

Proof. By definition, m ≤ dim(Alb1
X). The latter equals dim(Alb0

X), which in turn is the

dimension of the maximal abelian subscheme MX ⊂ PicX . As dim(PicX) ≤ h1(OX), this

proves the first claim m ≤ h1(OX). In particular if h1(OX) = 0, then (i) follows.

To deduce the equivalence of (i) and (ii), notice that (ii) clearly implies (i). Now as-

sume (i). The schematic image Im(alb) ⊂ Alb1
X is connected, zero-dimensional and proper

over k. Hence, Im(alb) = Spec(R) for an artinian local k-algebra R. Since h0(OX) = 1, the

morphismX → Spec(R) has a factorization through Spec(k). But then Im(alb) = Spec(k).

This is an abelian variety and X → Spec(k) consequently satisfies the universal property

of the Albanese morphism. Therefore already Alb1
X = Spec(k). Eventually, (ii) holds.

Finally, let X be geometrically normal. In this case, Alb0
X = (Pic0

X)∨red holds. So (ii)

implies dim(PicX) = 0. The additional assumption ensures that PicX is smooth, and

thereby h1(OX) = dim(PicX) = 0.

Both the geometric normality and the additional assumption imposed in the preceding

proposition are necessary for the converse of the statement to hold:

Example 3.43. A supersingular Enriques surface X in characteristic p = 2 has Pic0
X = α2.

Hence the reduction is Spec(k) and (ii) holds, but h1(OX) = 1.
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Example 3.44. If X is not geometrically normal, then X can be of Albanese dimension

m = 0 with h2(OX) = 0, but h1(OX) ≥ 1. A concrete example is the rational curve

with one cusp X = V+(v2w− u3) ⊂ P2. The adjunction formula shows that ωX ' OX , so

h1(OX) = h0(OX) = 1. Its normalization is P1 → X, which is a universal homeomorphism

by [43], Example 12.47. Since P1 has h1(OP1) = 0, its Albanese dimension is zero. The

surjectivity of P1 → X directly shows that the Albanese dimension of X has to be zero,

too. As h2(OX) = 0, the identity component Pic0
X of the Picard scheme is smooth of

dimension h1(OX) = 1. In fact if k is perfect, then this is a unipotent algebraic group

according to [19], Section 9.2, Proposition 9, so Pic0
X = Ga.

To conclude this chapter, consider the following proposition, which states that a k-

scheme naturally admits a—in general non-trivial—fibration to a projective scheme, once

the existence of the Albanese morphism is known.

Proposition 3.45. Let X be a proper scheme over an arbitrary field k with h0(OX) = 1,

which is of Albanese dimension m ≥ 0. Then there exists a fibration X → Y to a projective

k-scheme Y of dimension dim(Y ) = m.

Proof. Consider the Stein factorization X
r−→ Y

s−→ Alb1
X of the Albanese morphism. Being

an abelian variety, Alb0
X is projective. Then also Alb1

X is projective, because projectivity

descends along field extensions, see [43], Proposition 14.55. Since s is finite, Y is projective,

too. Eventually, dim(Y ) = m is a consequence of the fact that s is finite.
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Chapter 4

Dualizing Sheaves of Finite Order

The aim of this chapter is to address question (Q1) posed in the introduction: If ωX is

invertible and numerically trivial, does ωX ∈ Pic(X) have finite order? The aim is to

cover the case of surfaces X as completely as possible. Some introductory remarks start

Section 4.1, followed by several examples to initiate the topic. In essentially two special

situations, the question can be answered in the affirmative by a systematic approach.

Namely, Section 4.2 examines cases in which every numerically trivial invertible sheaf has

finite order, including the situation where X has Albanese dimension m = 0. Then Sec-

tion 4.3 treats the other extreme when the Albanese dimension m = dim(X) is maximal.

The cases in between are in general the more intricate ones.

The affirmative answer to question (Q1) for smooth surfaces is known as a consequence

of the Enriques classification of surfaces. An overview of this classification, which is a

fundamental result achieved by Mumford and Bombieri [94], [18], [17] in arbitrary charac-

teristic, is the content of Section 4.4. This also lays the foundation for the later Section 6.2,

where all smooth surfaces with numerically trivial dualizing sheaves are studied with re-

gard to questions (Q2) to (Q4). Then the first main result in Section 4.5 is a direct proof

that on smooth surfaces X, the numerical triviality of ωX implies its finite order. The

motivation for this is to gain a better understanding of what specifically forces the dualiz-

ing sheaf to be torsion. It turns out that in the intermediate case of Albanese dimension

m = 1, the existence of a certain curve is crucial. This leads to a criterion which might

be of independent interest, as it holds true in higher dimensions.

Afterwards in Section 4.6, singular surfaces are considered. If X is normal but not

necessarily Gorenstein, then ωX is at least a reflexive sheaf of rank 1, associated to the

Weil divisor KX . So the natural variant of question (Q1) is to ask if KX has finite order as

a Weil divisor. Here the arguments used by Sakai [106], [107] in his studies of Gorenstein

surfaces over C can be adapted to conclude that a suitable class of Q-Gorenstein surfaces

X in arbitrary characteristic has the property that KX is of finite order if it is numerically

trivial. This is the second main result in this chapter. The final Section 4.7 consists of

examples of Q-Gorenstein surfaces with KX of different finite orders. Also, the examples

can be altered slightly to produce non-Q-Gorenstein surfaces on which KX is numerically

trivial, but of infinite order.
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4.1 Introductory Examples

To begin with, the subsequent lemma ensures that in answering question (Q1), it is possible

to reduce the situation to the case of an algebraically closed ground field.

Lemma 4.1. Let X be a Gorenstein, proper scheme over an arbitrary field k. For every

algebraic field extension k ⊂ E and every integer d, the following assertions hold:

(i) (ωX)E = ωXE .

(ii) ωX is numerically trivial if and only if ωXE is numerically trivial.

(iii) ω⊗dX ' OX if and only if ω⊗dXE ' OXE .

Proof. The first assertion is a consequence of the compatibility of ωX with base change,

Proposition 2.14. Numerical triviality can be verified after base change due to Proposi-

tion 1.34, so the second part follows. Finally, the pullback induced on Picard groups by an

algebraic field extension is injective by Proposition A.25, showing the third statement.

Let X be a Gorenstein, integral, proper scheme of dimension n over an arbitrary field k.

Suppose that ωX is numerically trivial. In the course of the remainder of this page,

collect some immediate consequences of this assumption. Proposition 1.34 implies that

χ(F) = χ(F ⊗ωX) for all coherent sheaves F on X. For t ∈ Z and F = ω⊗tX , this yields

(4.1) χ(ω⊗tX ) = χ(OX).

Given a locally free sheaf E , Serre duality implicates χ(E ⊗ωX) = (−1)nχ(E∨). Conse-

quently, the relation χ(E) = (−1)nχ(E∨) follows. In the case that the dimension n of X

is odd, this especially shows that χ(OX) = 0.

Every other numerically trivial invertible sheaf N 6' ωX satisfies hn(N ) = 0. In fact,

otherwise h0(N ∨⊗ωX) ≥ 1 and Lemma 1.35 would imply N ' ωX . Now let M be any

invertible sheaf on X with h0(M ) ≥ 1. In the case that

(4.2) hn(M ⊗ω⊗mX ) = h0(M ∨⊗ω⊗1−m
X ) ≥ 1

for some integer m 6= 1, there is an injection M → ω⊗1−m
X showing that h0(ω⊗1−m

X ) ≥ 1,

so ωX has finite order.

Before giving some examples, recall the divergence between properness and projectivity

of k-schemes with increasing dimension. Any proper curve over a field k is projective by

for instance [9], Tag 09NZ. For surfaces, it is still true that regular, proper surfaces are

projective due to [76], Chapter IV, Section 2, Corollary 4, which traces back to Zariski–

Goodman. But there exist normal, non-projective, proper surfaces according to [111].

Smooth, proper threefolds can be non-projective as Hironaka’s example shows, see the

survey [127].
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Example 4.2 (Points). Let X be a Gorenstein, proper scheme over an arbitrary field k

of dimension n = 0. Then every connected component of X is Spec(A) for an artinian

local k-algebra A, and hence simply a point. Thereby Pic(X) is trivial, and in particular

ωX ' OX . It is immediate that if X is additionally integral, then all questions (Q1) to

(Q4) from the introduction can be answered in the affirmative.

Example 4.3 (Curves). Let X be a Gorenstein, integral, proper curve over an arbitrary

field k. For instance, the adjunction formula shows that every integral curve on a regular,

integral, proper surface is Gorenstein. Assume that ωX is numerically trivial. Since

the dimension of X is odd, the equation 0 = χ(OX) = h0(OX) − h1(OX) holds. Now

h0(OX) ≥ 1, so also h0(ωX) = h1(OX) ≥ 1. Therefore ωX ' OX .

In the case that h0(OX) = 1, the curve X has genus h1(OX) = 1. In fact, it is conversely

valid that every integral, proper curve X with h0(OX) = h1(OX) = 1 satisfies ωX ' OX .

Indeed, a non-zero global section of ωX gives an injection OX → ωX , since X is integral.

Its cokernel has to be trivial, as it is a torsion sheaf and χ(OX) = χ(ωX).

If X is additionally smooth, its base change Xk is an elliptic curve after the choice of

a rational point, thus an abelian variety. So for Xk, all questions (Q1) to (Q4) can be

answered in the affirmative. The same conclusion holds true for X if questions (Q3) and

(Q4) are altered to allow principal homogeneous spaces under abelian varieties as factors

in the decomposition of the total space, which appears to be reasonable if the ground field

is not algebraically closed. It is in effect true that X is a principal homogeneous space

under an abelian variety by Example 3.37.

Example 4.4 (Abelian Varieties). The sheaf of Kähler differentials on an abelian variety A

of dimension g is Ω1
A = O⊕gA by Example 2.10 and as a consequence, its determinant

ωA = OA is trivial.

Example 4.5 (Projective Spaces). The dualizing sheaf ωPn is not numerically trivial for

every n ≥ 1. This follows immediately from the fact that ω∨Pn = OPn(n+1) is ample, so its

restriction to an integral curve stays ample, and consequently it has positive degree by the

Nakai–Moishezon criterion. Also, Pic(Pn) = Z contains no non-trivial divisible elements

at all.

Example 4.6 (Hypersurfaces X ⊂ Pn of Degree n+ 1). Since OPn(X) = OPn(n+ 1), the

adjunction formula implies that ωX = OPn(n+ 1)⊗OPn(−n− 1)|X = OX is trivial. The

long exact sequence in cohomology to 0 → OPn(−n − 1) → OPn → OX → 0 yields that

hi(OX) = 0 for 1 ≤ i ≤ n− 2 and hn−1(OX) = 1 provided that n ≥ 2. In the case n = 3,

this gives a Gorenstein surface X ⊂ P3. If k is algebraically closed and X is smooth, it

turns out to be a K3-surface by the Enriques classification of surfaces described below in

Section 4.4.

A first concrete example is the Fermat surface V+(T 4
0 + T 4

1 + T 4
2 + T 4

3 ) ⊂ P3, which is

smooth by the Jacobi criterion if p 6= 2. In the case that p 6∈ {2, 3}, another example is the

surface X = V+(T 4
0 +T0T

3
1 +T 3

2 T3+T 4
3 ) ⊂ P3. Figure 1 on the first page of the introduction

87



Chapter 4

shows on its left-hand side the real image within a ball around the origin of the affine chart

X∩D+(T3) = V (f), where f = x4 +xy3 +z3 +1 and x = T0
T3
, y = T1

T3
, z = T2

T3
. Now suppose√

2 ∈ k and p = 0 for simplicity. For parameters b, c ∈ k, consider the polynomials

g = (1− z +
√

2x)(1− z −
√

2x)(1 + z +
√

2x)(1 + z −
√

2x),

f = (x2 + y2 + z2 − c)2 − 3c− 1

3− c
g − b.

The homogenization F ∈ k[T0, T1, T2, T3] of f defines a surface X = V+(F ) ⊂ P3. For

suitable choices of b and c, it is a Kummer surface, either singular or smoothed. Choosing

b = 1
2 and c = 4 gives the surface V (f) on the right-hand side in Figure 1, in the

introduction. For b = 1
12 and c = 4

3 , the smooth surface in the subsequent Figure 3 on the

left-hand side is obtained. If b = 0 and c = 4
3 , then the singular surface on the right-hand

side arises, which has 16 singular points.

Figure 3: Real points around the origin of a smooth and a singular surface.

Example 4.7 (Complete Intersection of Three Quadrics in P5). Suppose p 6= 2 and

that k is algebraically closed for simplicity. In order to give an example of a scheme

with numerically trivial but non-trivial dualizing sheaf, construct a K3-surface with an

involution first. Its quotient will then have the queried property. Define the three quadrics

in P5 by

Q1 = V+(T 2
0 + T 2

1 + T 2
2 + T 2

3 + T 2
4 + T 2

5 ),

Q2 = V+(T 2
0 − T 2

1 + T 2
4 − T 2

5 ),

Q3 = V+(T 2
0 − T 2

1 + T 2
2 − T 2

3 ),

and set X = Q1∩Q2∩Q3. To show that X is smooth, it is sufficient to verify smoothness

at all closed points, which will be checked via the projective Jacobi criterion. The formal

Jacobi matrix to the three equations defining X is
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J =

2T0 2T1 2T2 2T3 2T4 2T5

2T0 −2T1 0 0 2T4 −2T5

2T0 −2T1 2T2 −2T3 0 0

 .

Denote by d(j1, j2, j3) the determinant of the 3 × 3 minor which is obtained by selecting

columns 0 ≤ j1 < j2 < j3 ≤ 5. Then d(j1, j2, j3) = ±u · Tj1Tj2Tj3 where u is a power

of 2, and thereby u ∈ k×. Now if x = (λ0 : λ1 : λ2 : λ3 : λ4 : λ5) is a closed point of X,

then by its definition, it has to have at least three non-zero entries. The corresponding

determinant thus satisfies d(j1, j2, j3) 6= 0, which shows that the Jacobi matrix J(x) at x

has rank 3 = 5 − 2. Thus X is smooth of dimension 2 over k, which especially ensures

that X is a complete intersection.

As for the hypersurface in the previous example, consecutively using the defining exact

sequences for OQ1 ,OQ1∩Q2 ,OX shows that the complete intersection X has h1(OX) = 0.

The adjunction formula applied three times yields that ωX = OP5(3 · 2 − 6)|X = OX . In

conclusion, it turns out that X is a K3-surface by the Enriques classification of surfaces.

Define an involution ι : P5 → P5 by Ti 7→ (−1)iTi. Solving the equation

(λ0 : λ1 : λ2 : λ3 : λ4 : λ5) = (λ0 : −λ1 : λ2 : −λ3 : λ4 : −λ5)

shows that the closed fixed points are exactly of the form (0 : λ1 : 0 : λ3 : 0 : λ5) or

(λ0 : 0 : λ2 : 0 : λ4 : 0). Their closure is Z = Z1 ∪ Z2, where Z1 = V+(T0, T2, T4) and

Z2 = V+(T1, T3, T5).

The action of the constant group scheme G = Z /2Z via ι on P5 leaves all the quadrics

invariant, which in turn induces an action on their intersection X. The next step is to

show that X∩Z = ∅, which then implies that G acts freely on X. The intersection X∩Z1

is the vanishing set of the polynomials

T0, T2, T4, T 2
1 + T 2

3 + T 2
5 , T 2

1 + T 2
5 , T 2

1 + T 2
3 ,

which is empty. The same conclusion holds for the intersection X ∩ Z2, which is the

vanishing set of

T1, T3, T5, T 2
0 + T 2

2 + T 2
4 , T 2

0 + T 2
4 , T 2

0 + T 2
2 .

So G acts freely on X. Hence the quotient Y = X/G by the constant group scheme G exists

due to [95], Section 7, Theorem on page 66 and the subsequent remark. The canonical

morphism q : X → Y is finite and étale, since G acts freely on all closed points of X. Since

χ(OX) = deg(q) · χ(OY ) holds by Corollary 1.42, inserting deg(q) = 2 and χ(OX) = 2

yields χ(OY ) = 1. Therefore the Enriques classification implies that Y is actually an

Enriques surface, so ωY is numerically trivial with ωY 6' OY and ω⊗2
Y ' OY .
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4.2 Picτ(X) is a Torsion Group

Proposition 4.8. Let X be a proper scheme over an arbitrary field k. In each of the

following cases, the group Picτ (X) is torsion:

(i) h1(OX) = 0.

(ii) X is geometrically normal of Albanese dimension m = 0 with h0(OX) = 1.

(iii) X is geometrically normal and k is an algebraic extension of Fp.

Proof. Assume (i). By Theorem A.30, the scheme PicτX is an open and closed subgroup

scheme of PicX which is of finite type over k. Furthermore, dim(PicX) ≤ h1(OX) = 0, so

PicτX is finite and has the discrete topology. The injection Picτ (X) ↪→ PicτX(k) yields that

Picτ (X) is finite and particularly a torsion group.

Now assume (ii). Proposition 3.42 then shows that (Pic0
X)red = Spec(k). As above, the

injection Pic0(X) ↪→ Pic0
X(k) shows that Pic0(X) is trivial. Consequently, also Picτ (X)

is a torsion group.

Finally suppose (iii). Assume without loss of generality that k is algebraically closed,

since Pic(X) → Pic(Xk) is injective and preserves numerical triviality. Suppose for the

moment that the k-valued points of every abelian variety A over k form a torsion group,

which will be verified in the next paragraph. Then as the reduction A = (Pic0
X)red is an

abelian variety and A(k) = Pic0
X(k), the latter is a torsion group. Now as before, the

homomorphism Pic0(X) ↪→ Pic0
X(k) is injective, and so Picτ (X) is torsion.

To see that A(k) is torsion, choose some a ∈ A(k) and consider k =
⋃
Fpn as the

union of its finite subfields. According to [57], Théorème 8.8.2, the scheme A and the

morphism a : Spec(k) → A descend to some finite field. Furthermore, the data of the

group scheme A consists of morphisms satisfying certain compatibility conditions. Hence

it also descends, where faithfully flat descent, [56], Proposition 2.7.1, guarantees that the

compatibility conditions are already fulfilled over the smaller field. Thus there exists a

finite field k′ = Fpn , an abelian variety A′ over k′ and a k′-valued point a′ : Spec(k′)→ A′

such that after base change to k, this point becomes the given point a. So it is sufficient

to show that a′ has finite order. To achieve this, choose a closed embedding A′ → Pnk′
into some projective space. Then Pnk′(k′) is a finite set, which contains a′ as well as all its

multiples. So a′ indeed has to have finite order.

4.3 Maximal Albanese Dimension

In the preceding section, it was deduced that on a sufficient regular scheme X of minimal

Albanese dimension m = 0, every numerically trivial invertible sheaf has finite order. In

higher Albanese dimensions, this clearly fails to be valid for every invertible sheaf, as

already discussed in Remark 1.36. But in the other extreme case that X has maximal

Albanese dimension m = dim(X), the result still holds true for the dualizing sheaf ωX .
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This situation has been studied intensively in recent years with remarkable results, and an

overview of what is known will be given in the following. For smooth surfaces, the result

will be deduced directly with the techniques introduced previously.

Lemma 4.9. Let f : X → Z be a morphism of integral, proper schemes over an arbitrary

field k, where X is geometrically normal and Z is smooth. Decompose f as X
g−→ Y ↪→ Z

such that Y ⊂ Z is the schematic image of f . Denote by U ⊂ X the smooth locus of X

and n = dim(X), m = dim(Y ). Assume that K(Y ) ⊂ K(X) is separable. Then:

(i) h0(ωX) = h0(Ωn
U ).

(ii) If f∗(Ω1
Z) is free, then the estimates h0(Ω1

U ) ≥ m and h0(Ωm
U ) ≥ 1 hold.

(iii) If f is surjective, then the natural morphism f∗(Ω1
Z)|U → Ω1

U is injective, and espe-

cially H0(U, f∗(Ω1
Z))→ H0(U,Ω1

U ) is an injection.

Remark 4.10. The separability assumption on K(Y ) ⊂ K(X) means that g is generi-

cally smooth on the source in the sense that there exists a non-empty open subset U ⊂ X
such that the restriction of g to U is smooth. Indeed, as it will also be used in the proof,

then Ω1
X/Y is generically free of rank n − m. Thus Proposition 2.8 can be applied to

show generic smoothness on the source, since generic flatness holds in any case by [56],

Théorème 6.9.1. Another equivalent description is that the generic fiber Xη is geometri-

cally reduced, see [56], Proposition 4.6.1. This separability assumption is automatically

fulfilled in characteristic p = 0, or in the case that k is perfect and g is a fibration to a

curve, see Remark A.13.

Proof. Since U and Z are smooth, their sheaves of Kähler differentials are locally free

of rank n = dim(X) and d = dim(Z), respectively. By assumption, X is geometrically

normal, so the complement of the smooth locus of Xk has codimension at least 2. Con-

sequently, the same conclusion holds for the complement of U ⊂ X. The dualizing sheaf

ωX is reflexive by Proposition 2.21, so according to [65], Proposition 1.11, the restriction

map H0(X,ωX)→ H0(U, ωX) is bijective. As ωX |U = Ωn
U holds, assertion (i) follows.

Consider the natural exact sequence f∗(Ω1
Z) → Ω1

X → Ω1
X/Z → 0. Let ξ ∈ X and

η ∈ Y be the generic points and write R = OZ,η for the local ring with residue field

K(Y ). Then Ω1
X/Z,ξ = Ω1

K(X)/R holds. The maps R → K(Y ) → K(X) induce the exact

sequence Ω1
K(Y )/R ⊗K(Y ) K(X) → Ω1

K(X)/R → Ω1
K(X)/K(Y ) → 0. Since R → K(Y ) is

surjective, every y ∈ K(Y ) has a preimage r ∈ R, and thereby d(y) = d(r) = rd(1) = 0

in Ω1
K(Y )/R. Hence Ω1

K(Y )/R = 0, and eventually Ω1
K(X)/R = Ω1

K(X)/K(Y ). The separable

field extension K(Y ) ⊂ K(X) decomposes as a transcendental extension of transcendence

degree dim(Xη) = n−m, followed by a finite separable extension. Thus [88], Chapter 6,

Proposition 1.15 yields dimK(X)(Ω
1
X/Z,ξ) = n−m. Consider the commutative diagram
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(4.3) H0(U, f∗(Ω1
Z))

ϕ //

��

H0(U,Ω1
U )

ψ //

��

H0(U,Ω1
X/Z)

��

// 0

K(X)⊕d ϕξ
// K(X)⊕n

ψξ
// K(X)⊕n−m // 0,

where the vertical arrows are the maps to the stalk at ξ ∈ X.

For assertion (ii), assume that f∗(Ω1
Z) is free. Then the vertical arrow on the left-hand

side maps bases to bases. Choose a basis of H0(U, f∗(Ω1
Z)) and denote their images under

ϕ by s1, . . . , sg ∈ H0(U,Ω1
U ). Because Im(ϕξ) has dimension m, assume without loss of

generality that s1,ξ, . . . , sm,ξ form a basis of Im(ϕξ). Observe that since X is integral,

the map H0(U, E) → Eξ ' K(X)⊕ rank(E) is injective for every locally free sheaf E on X.

Therefore the sections s1, . . . , sm ∈ H0(U,Ω1
U ) are linearly independent.

Now consider the section s1 ∧ . . . ∧ sm ∈ H0(U,Ωm
U ), which is defined locally by the

non-zero compatible elements s1|V ∧ . . . ∧ sm|V ∈ H0(V,Ωm
V ) for V ⊂ U affine open such

that Ω1
U |V ' O

⊕n
V . Then s1 ∧ . . . ∧ sm 6= 0, since locally s1|V ∧ . . . ∧ sm|V 6= 0. This

completes the proof of (ii).

Finally, consider assertion (iii), in which case Y = Z and so d = m. Thus ϕξ has to be

an injection. Hence the morphism f∗(Ω1
Z)|U → Ω1

U of locally free sheaves on the integral

scheme is injective, because it is generically injective.

Now let k be an arbitrary field of characteristic p = 0, and X a Gorenstein, geometrically

normal, proper k-scheme of maximal Albanese dimension m = dim(X) with h0(OX) = 1.

The lemma can be applied to the Albanese morphism alb: X → A of X, since Ω1
A is free.

Parts (i) and (ii) yield h0(ωX) ≥ 1. So if ωX is numerically trivial, it is trivial. This yields

the following:

Proposition 4.11. Let k be a field of characteristic p = 0. Let X be a Gorenstein,

geometrically normal, proper k-scheme with h0(OX) = 1. If ωX is numerically trivial and

X is of maximal Albanese dimension, then ωX ' OX .

Lemma 4.9 fails in general in characteristic p > 0. Take for example the relative

Frobenius F : E → E(p) of an elliptic curve E, given by an affine Weierstraß equation

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6. Then E(p) is given by the induced equation, where

all coefficients are raised to the power of p. On this affine chart V ⊂ E(p), the invariant

differential ω = dx
2y+ap1x+ap3

∈ H0(V,Ω1
E(p)) is a generator. For more details to this, see

for instance Section 6.2 below, where the invariant differential will be used to determine

the order of the dualizing sheaf on bielliptic surfaces. Now F ∗(ω) = pdxp−1

2yp+ap1x
p+ap3

= 0, so

the induced map Ω1
E(p) → F∗(Ω

1
E) restricted to V is zero. Thus it has to be zero every-

where, since Ω1
E(p) is locally free. Hence the corresponding morphism F ∗(Ω1

E(p))→ Ω1
E by

adjointness is also zero, and in particular zero on global sections.

But in the case of the Albanese morphism alb: X → A, it is nevertheless still true

that H0(X, alb∗(Ω1
A)) → H0(X,Ω1

X) is injective. This was proved by Igusa [68] and also

Serre [119], Section 6. As a consequence, Proposition 4.11 also holds in characteristic
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p > 0 for smooth X. In this situation, denote g = dim(A). Then the injection above gives

moreover the estimate h0(Ω1
X) ≥ g. It implies that if ωX is numerically trivial, then n ≥ g.

Otherwise, h0(Ω1
X) ≥ n + 1 would yield h0(Ωn

X) ≥
(
n+1
n

)
= n + 1, but this is impossible

when Ωn
X = ωX is numerically trivial and n ≥ 1. So in the case that X is additionally of

maximal Albanese dimension, the Albanese morphism has to be surjective.

Despite the conclusion in the preceding paragraph, even if X → A is surjective, it is

for general X not true that K(A) ⊂ K(X) is separable. Counterexamples are certain

surfaces of general type, see [84], Theorem 8.7. But if ωX is numerically trivial and X

is of maximal Albanese dimension, then this is again the case by [62], Proposition 1.4.

Moreover, op. cit., Theorem 3.2, shows that under the additional assumption that X is

smooth, the Albanese morphism is even birational. Note that the last two results continue

to hold under lessened assumptions imposed on X, and statements in the non-smooth case

are deduced in [61] and also [32], Appendix A.

Proposition 4.12. Let X be a smooth, proper surface over a separably closed field k with

h0(OX) = 1. Assume that (ω2
X) = 0 and h0(ωX) = 0. Then the Albanese dimension m of

X satisfies m = h1(OX) ≤ 1.

Proof. Corollary 1.47 yields the equality b2− 2b1 + deg(c2
1) = 10− 12h1(OX) + 12h2(OX).

First, Serre duality gives h2(OX) = h0(ωX) = 0. This also ensures that Pic0
X is smooth

and of dimension g = h1(OX). Second, deg(c2
1) = (ω2

X) = 0 by assumption. Third, the

identification b1 = 2g holds due to Proposition 1.22. Altogether, the original equality

above simplifies to b2 = 10 − 8g. This value is non-negative, and hence only the cases

g = 0 and g = 1 are possible. The case g = 0 is equivalent to m = 0 by Proposition 3.42.

Otherwise if g = 1, then dim(Alb1
X) = 1 holds, so m ≤ 1. But the equivalence in the case

g = 0 shows that then in fact m = 1 must be true.

Corollary 4.13. Let X be a smooth, proper surface over a separably closed field k with

h0(OX) = 1. If X is of maximal Albanese dimension and ωX is numerically trivial, then

ωX ' OX .

4.4 Kodaira Dimension and the Enriques Classification

Let X be an integral, proper scheme of dimension n over an arbitrary field k. Every

invertible sheaf L on X yields a number kod(L ) ∈ {−∞, 0, 1, . . . , n}, called Kodaira

dimension of L . Synonyms are Kodaira-Iitaka dimension, `-dimension or D-dimension.

It can be defined in various equivalent ways, which will briefly be described in the following,

based on Cutkosky [31].

Let Bs(L ⊗t) = {x ∈ X | s(x) = 0 for all s ∈ H0(X,L ⊗t) } be the base locus of L ⊗t,

and Φt : X r Bs(L ⊗t) → Pnt the induced natural morphism, where nt = h0(L ⊗t) − 1.

Denote by Zt the closure of the image of Φt. Then define

kod(L ) = sup
t≥1
{dim(Zt)}.
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The base locus is invariant under base change of X along field extensions k ⊂ E. As a

consequence, also kod(L ) = kod(L E) holds.

Lemma 4.14. In the situation above, assume that X is geometrically integral. Then:

(i) kod(L ) = −∞ ⇐⇒ h0(L ⊗t) = 0 for all t ≥ 1.

(ii) kod(L ) = 0 ⇐⇒ h0(L ⊗t) ≤ 1 for all t ≥ 1 and h0(L ⊗t0) = 1 for some t0 ≥ 1.

(iii) kod(L ) ≥ 1 ⇐⇒ h0(L ⊗t0) ≥ 2 for some t0 ≥ 1.

Proof. Clearly, (i) is immediate by definition. Then (iii) follows once (ii) is also proven.

Since both kod(L ) and h0(L ⊗t) are invariant under field extensions, assume without loss

of generality that k is algebraically closed. To prove (ii), first assume that h0(L ⊗t) ≤ 1

for all t ≥ 1 and h0(L ⊗t0) = 1 for some t0 ≥ 1. Whenever h0(L ⊗t) = 1, then nt = 0

holds. This directly yields dim(Zt) = 0. Hence kod(L ) = 0 follows. Now for the other

implication, suppose kod(L ) = 0 and assume by contradiction that h0(L ⊗t) ≥ 2 for some

t ≥ 1. Choose σ0, σ1 ∈ H0(X,L ⊗t) linearly independent over k, extend them to a basis

and denote by Ψt : X r Bs(L ⊗t) → Zt the restriction of the induced morphism Φt. As

the zero-dimensional scheme Zt is integral and k is algebraically closed, this necessarily

yields Zt = Spec(k). Hence Pic(Zt) = 0 and the sections T0, T1 ∈ H0(Pnt ,OPnt (1)) given

by the first two indeterminates must become linearly dependent after restriction to Zt.

Thus σ0 = Ψ∗t (T0|Zt) and σ1 = Ψ∗t (T1|Zt) are also linearly dependent, a contradiction.

Consider the graded ring R(L ) =
⊕

t≥0H
0(X,L ⊗t) and define the D-model of L to

be P (L ) = Proj (R(L )). Following [52], Partie 3.7, the open subset

UL = {x ∈ X | s(x) 6= 0 for some s ∈ H0(X,L ⊗t) and t ≥ 1 } ⊂ X

is the source of a canonical morphism ϕL : UL → P (L ). It satisfies ϕ∗(OUL
) = OP (L ).

Indeed, this is a local problem, solved by [53], Proposition 1.4.5. Another interpretation

of the Kodaira dimension is

kod(L ) = dim(P (L ))

according to [31], Theorem 7.2. This also yields that kod(L ) = kod(L ⊗t) for all t ≥ 1,

since dim(P (L )) = dim(P (L ⊗t)) holds by [52], Proposition 3.1.8. Finally, the value

kod(L ) equals the natural number κ such that the function t 7→ h0(L ⊗t), if it is not zero,

is bounded by two polynomials of degree κ for t sufficiently divisible, see [31], Lemma 6.1

and Theorem 9.2. In fact, moreover the limit

lim
t→∞

h0(L ⊗t0t)

tκ

exists and is non-zero for some t0 ≥ 1, again due to [31], Theorem 7.2. Thereby kod(L )

is equal to the number κ such that the limit above exists and is non-zero for some t0 ≥ 1.

In the special case that X is regular over k and L = ωX , define the Kodaira dimension

of X as kod(X) = kod(ωX). Note that it is common in the singular case to define
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the Kodaira dimension of X as kod(X̃) for a resolution of singularities X̃ → X, its

existence presumed. This value may differ from kod(ωX) if X is Gorenstein, see [83],

Example 2.1.6, as well as Section 4.6 and Section 4.7 below. The Kodaira dimension is a

birational invariant of smooth, integral, proper k-schemes by the proof of [64], Chapter II,

Theorem 8.19.

The value kod(X) ∈ {−∞, 0, 1, . . . , n} thus naturally sorts X in one of n+ 2 classes. If

kod(X) = n is maximal, then X is called of general type, otherwise of special type. In the

case that ωX is numerically trivial, then either kod(X) = −∞ or kod(X) = 0 holds by

Lemma 1.35, and the problem to solve in this chapter is to exclude the former case.

Classification of Curves. Before turning towards surfaces, briefly survey curves. So

let X be a regular, integral, proper curve over an algebraically closed field k. Then:

kod(X) = −∞ ⇐⇒ h1(OX) = 0.

kod(X) = 0 ⇐⇒ h1(OX) = 1.

kod(X) = 1 ⇐⇒ h1(OX) ≥ 2.

This follows directly from the following facts, see for instance [88], Section 7.4, as a refer-

ence. If h1(OX) = 0, then X ' P1 and so kod(X) = −∞. In the case that h1(OX) = 1,

the choice of a point x ∈ X(k) turns X into an elliptic curve, so kod(X) = 0. Finally, the

assumption h1(OX) ≥ 2 results in the estimate deg(ωX) = 2 · h1(OX) − 2 > 0, and thus

ωX is ample, showing kod(X) = 1. The isomorphism classes of elliptic curves are parame-

terized by elements of k = A1(k) via the j-invariant, and their coarse moduli scheme is A1.

In the case of curves of general type, the classification problem becomes more difficult,

which can be summarized in saying that their “moduli space has dimension 3g − 3”, see

[96], Chapter 5. An overview of coarse moduli schemes of curves is given in Abramovich

and Oort [2], Part II, whereas a treatment in the larger category of algebraic stacks is [9],

Tag 0DZY, which traces back to the fundamental work of Deligne and Mumford [34].

Classification of Surfaces. Now let X be a regular, integral, proper surface over a

fixed algebraically closed ground field k. Then X is Gorenstein and ωX ' OX(KX) is

the invertible sheaf associated to a canonical divisor KX , which is a Cartier divisor. The

classification of surfaces can be divided into two steps. An integral curve C on X is called

a (−1)-curve, if C ' P1 and (C2) = −1. Since k is algebraically closed, this is equivalent

to (C2) < 0 and (KX · C) < 0 by the adjunction formula. Similarly, a (−2)-curve is a

curve C such that C ' P1 and (C2) = −2. This means that (C2) < 0 and (KX · C) = 0.

The surface X is called minimal if there are no (−1)-curves on X. The first step is to pass

from X to a minimal surface and the second step is the classification of minimal surfaces.

A reference with a concise overview of the subject is Liedtke [84].

This paragraph outlining the first step refers to Hartshorne [64], Chapter V, Section 5.

The exceptional divisor of the blowup at a closed point on a regular, integral, proper surface

is a (−1)-curve, and it is conversely valid that every (−1)-curve C on X is contractible

to a regular point. This means that there exists a surface X1 and a morphism X → X1
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which is the blowup at a closed point x1 ∈ X1 such that its exceptional divisor is C.

Successively contracting (−1)-curves on X will terminate after a finite number of steps,

since the Picard numbers fulfill ρ(X1) = ρ(X) − 1. This leads to a birational morphism

X → Xn onto a minimal surface Xmin = Xn. It is actually also true that every birational

morphism between regular, integral, proper surfaces is a finite sequence of contractions of

(−1)-curves. The minimal surface Xmin is unique if kod(X) ≥ 0 and in general not unique

if kod(X) = −∞. For instance, P2 and the Hirzebruch surfaces Fe = P(OP1 ⊕OP1(e))

for e ≥ 0 and e 6= 1 are minimal and birational to P2, but non-isomorphic. Observe that

the surface F1 is not minimal, since the section P(OP1) ⊂ F1 is a (−1)-curve. Also, those

surfaces listed above cover all minimal models of P2, see [10], Theorem 12.8.

The second step is the Enriques classification of minimal surfaces, which was accom-

plished by Mumford and Bombieri [94], [18], [17] in arbitrary characteristic p ≥ 0. From

now on, suppose additionally that X is minimal. The following list characterizes X with

regard to kod(X), and equivalent descriptions of each of the four possible cases are given:

(a1) kod(X) = −∞.

(a2) There exists an integral curve C on X such that (KX · C) < 0.

(a3) X is either P2 or a ruled surface.

(a4) h0(ω⊗12
X ) = 0.

(b1) kod(X) = 0.

(b2) ωX is numerically trivial.

(b3) X is either a K3-surface, Enriques surface, abelian surface or bielliptic surface.

(b4) ω⊗4
X ' OX or ω⊗6

X ' OX .

(c1) kod(X) = 1.

(c2) KX is nef with (K2
X) = 0 and (KX ·H) > 0 for all ample H.

(c3) For some n ≥ 1, the sheaf ω⊗nX yields a genus-one fibration.

(c4) (K2
X) = 0 and 4KX or 6KX is linear equivalent to a curve.

(d1) kod(X) = 2.

(d2) KX is nef with (K2
X) > 0 and (KX ·H) > 0 for all ample H.

(d3) ωX is semi-ample and the canonical morphism ϕωX : X → P (ωX) is a birational

morphism onto a normal surface, which is the contraction of all (−2)-curves on X.
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For (d3), see [84], Theorem 8.1. A ruled surface is isomorphic to P(E) for some locally

free sheaf E of rank(E) = 2 on a regular, integral, proper curve C. A genus-one fibration

is a fibration X → Y onto a curve Y such that the generic fiber satisfies h1(OXη) = 1.

Note that Xη is regular and geometrically integral by Remark A.13. So the generic fiber

is either smooth and as a consequence Xη := (Xη)K(Y )
becomes an elliptic curve after

the choice of a rational point, or Xη is a rational curve with one cusp. The latter means

it is isomorphic to V+(v2w − u3) ⊂ P2, see for instance [10], Theorem 7.18. This can

only happen if p ∈ {2, 3}. In fact, since h1(OXη) = 1, there is only one singular point of

multiplicity 1 by [88], Chapter 7, Proposition 5.4. For the normalization X ′η of Xη, there

is the condition that 1 = h1(OXη)− h1(OX′η) is an integral multiple of (p− 1)/2, yielding

only the possibilities p ∈ {2, 3}. This divisibility relation dates back to a result of Tate

[124] in terms of function fields, whereas a proof in the language of schemes was given by

Schröer [113].

If the generic fiber Xη is smooth, the fibration is called elliptic, otherwise quasielliptic.

Given an elliptic fibration, the smoothness of the generic fiber passes on to almost all closed

fibers Xy by Proposition A.12. Similarly, almost all fibers of a quasielliptic fibration are

rational with one cusp, again due to [10], Theorem 7.18.

Surfaces in class (b) with numerically trivial dualizing sheaf are divided into four sub-

classes, according to their second Betti number, as displayed in the table below:

b2 b1 deg(c2) h1 h2 χ

K3 22 0 24 0 1 2

Enriques 10 0 12
0 0 1
1 1 1

abelian 6 4 0 2 1 0

bielliptic 2 2 0
1 0 0
2 1 0

Table 1
Invariants of the four classes of surfaces in kod(X) = 0.

The order of ωX is always dividing 4 or 6, and all possibilities actually occur. Details

will be given in Section 6.2. The four classes are related to each other by essentially two

constructions, which will be outlined in the following, in the course of presenting some of

their basic properties. Consider the chart outlining the connections (I), (II), (III), which

will be described afterwards:

abelian
(II)

(III)

K3

(I)

bielliptic Enriques.
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Beforehand, note that every finite commutative group scheme G over k has a Cartier

dual GD, defined by the group valued point functor GD(T ) = Hom(Grp-Sch)(GT ,Gm,T ).

Details are given in Section A.1. There is a natural isomorphism

(4.4) H1(Xfppf , GX)
'−−→ Hom(Grp-Sch)(G

D,PicX)

according to Raynaud [105], Proposition 6.2.1. The left-hand side classifies isomorphism

classes of principal homogeneous spaces under GX , as reviewed in Remark A.3. If GX is

smooth, every principal homogeneous space already becomes trivial on an étale covering

ofX. An explicit construction in the case of GX = µm,X will be studied later in Section 5.1.

(I) Let X be an Enriques surface. The following explanations are based on [17] as well

as Cossec and Dolgachev [30], Chapters 0 and I. The group scheme PicτX is isomorphic to

Z /2Z, µ2 or α2. In characteristic p 6= 2 only PicτX = Z /2Z is possible, in which case there

is an isomorphism Z /2Z ' µ2. For G = Z /2Z, µ2, α2 its dual is GD = µ2, Z /2Z, α2

and the corresponding principal homogeneous space X̃ → X to the inclusion PicτX ⊂ PicX

is called the K3-cover of X. The subsequent table contains basic properties in the three

different cases. Here F : H1(X,OX) → H1(X,OX) is the k-linear map induced by the

absolute Frobenius.

PicτX h1(OX) h2(OX) F p X̃ → X

classical Z /2Z 0 0
6= 2 étale
2 inseparable

ordinary µ2 1 1 bijective 2 étale

supersingular α2 1 1 zero 2 inseparable

Table 2
Invariants of Enriques surfaces.

The integral surface X̃ is always Gorenstein with ω
X̃

= O
X̃

and satisfies h1(O
X̃

) = 0

as well as h2(O
X̃

) = 1 like a K3-surface. But X̃ is only a K3-surface in the case that

PicτX ' µ2, that is, if X is classical and p 6= 2 or if X is ordinary and p = 2. In those two

cases, the covering X̃ → X is étale since G = Z /2Z is smooth over k. In general, X̃ is

only birational to a K3-surface or a rational surface, and can be non-normal.

(II) Abelian surfaces are exactly the two-dimensional abelian varieties. The Kummer

construction is a method to pass from an abelian surface to a K3-surface. Take the minimal

resolution of singularities of the quotient of an abelian surface by the sign involution to

obtain a K3-surface, see [10], Theorem 10.6. In characteristic p = 2, the method yields a

K3-surface if and only if the abelian surface is not supersingular, see [71] for a detailed

treatment. An abelian variety is called supersingular if it is isogenous to a product of

elliptic curves, where each of them does not have a point of order p > 0. For supersingular

abelian surfaces, the Kummer construction yields a rational surface.
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(III) Bielliptic surfaces always possess two genus-one fibrations. One is the Albanese

morphism onto the Albanese scheme, which is an elliptic curve. The other one maps

onto P1 and is transversal to the first one. Bielliptic surfaces are also known as hyper-

elliptic or quasi-hyperelliptic surfaces, depending on the shape of the Albanese fibration.

Bielliptic surfaces are always quotients of a product of two curves, precisely: Every biel-

liptic surface X is isomorphic to (E × C)/G, where E is an elliptic curve, the curve C

is either elliptic or rational with one cusp, and G ⊂ E is a finite subgroup scheme. The

group scheme G acts faithfully on both factors, whereat it acts by translations on E. The

action on E×C is the diagonal action, which is free as already the action of G on the first

factor E is free. Furthermore, the two genus-one fibrations are induced by the projections

on the two factors:

(E × C)/G ' X //

alb
��

C/G ' P1

E/G ' Alb1
X .

The detailed list of all possible cases was established in [18], [17]. The canonical morphism

A = E×C → (E×C)/G = X is finite and flat, see [95], Section 12, Theorem 1 on page 111.

In the case thatG is a constant group scheme, it is even étale by op. cit., Section 7, Theorem

on page 66. Similar to K3-covers of Enriques surfaces, this yields a connection between

abelian surfaces and bielliptic surfaces if C = E′ is elliptic. It may happen that the order

of ωX equals the degree of A→ X. Then, if this value is not divisible by p, the subsequent

Corollary 5.8 will show that this is the étale covering canonically attached to ωX . But

this is not always the case. Especially in the quasielliptic case, it is even possible that

ωX ' OX . This will be investigated further in Section 6.2.

4.5 Smooth Surfaces with Numerically Trivial Dualizing Sheaf

Let X be a regular, integral, proper surface over an algebraically closed field k with ωX

numerically trivial. So X contains no (−1)-curves, that is, it is a minimal surface. The

Enriques classification then shows that ωX ∈ Pic(X) must have finite order: The numerical

triviality of ωX is equivalent to kod(X) = 0, which exactly means that some power ω⊗dX
admits a non-zero global section. So this power is trivial due to Lemma 1.35.

Independent of this conclusion using the classification, a direct proof of this fact will be

given below in order to get a more accurate understanding of what specifically causes the

dualizing sheaf to have finite order. This is one of the two main results in this chapter.

One central task in the proof will be to show that the following criterion is applicable. It

can be formulated in arbitrary dimensions, and might be of independent interest.

Lemma 4.15. Let X be a Gorenstein, integral, proper scheme over an arbitrary field k

such that ωX is numerically trivial. Let D ⊂ X be an integral effective Cartier divisor.

Suppose that there exists a proper surjection f : X → Y of k-schemes and natural numbers

m1,m2,m3 ≥ 1 satisfying the following conditions:
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(i) ω⊗m1
D ' OD and h0(OD(m2D)) ≥ 1.

(ii) ω⊗m3
X ' f∗(N ) for some N ∈ Pic(Y ).

(iii) If D
α−→ Z

β−→ Y denotes the Stein factorization of f |D, then β is flat.

Then ωX ∈ Pic(X) has finite order, which divides rank(β∗(OZ)) · lcm(m1,m2,m2).

Remark 4.16. (1) Observe that in (i), a sufficient condition for h0(OD(m2D)) ≥ 1 to

hold is that OX(D) is semi-ample.

(2) In the case that f is the fibration obtained from the Albanese morphism, and addi-

tionally k is algebraically closed and X is normal, then condition (ii) is automatically

satisfied according to Proposition 3.39.

(3) Condition (iii) forces the restriction f |D to be surjective. Indeed, the finite and flat

part β has to be finite locally free, which means that β∗(OZ) is a locally free sheaf

by the structure theorem of finitely generated projective modules over a ring.

If on the other hand f |D is surjective and Y is a normal curve, then condition (iii) is

automatically fulfilled: Here β is a surjection from an integral scheme to a Dedekind

scheme, and thus flat, see for instance [43], Proposition 14.14.

Proof. Set m = lcm(m1,m2,m2) so that (i) and (ii) are valid for m in place of m1,m2,m3,

respectively. The adjunction formula and (i) yield OD ' ω⊗mX ⊗ OX(mD)|D. Then it

follows from (ii) that f∗(N ∨)|D ' OD(mD). Therefore h0(f∗(N ∨)|D) ≥ 1 is true by

assumption (i). The projection formula applied to the fibration α yields

h0(β∗(N ∨)) = h0(α∗β∗(N ∨)) = h0(f∗(N ∨)|D) ≥ 1.

Because ωX is numerically trivial and f is surjective, also N must be numerically trivial.

Thus this conclusion holds true for β∗(N ∨). Now D is integral by assumption, so also

Z is integral. Consequently, it follows that β∗(N ∨) ' OZ is trivial, as a non-zero global

section exists.

Now the projection formula yields β∗(OZ) ' β∗β
∗(N ∨) = β∗(OZ) ⊗N ∨. Denote the

rank of the locally free sheaf β∗(OZ) by r, and set L = det(β∗(OZ)). Taking determinants

gives L ' L ⊗N ⊗−r. Hence N ⊗r ' OY follows, so ω⊗mrX ' OX is trivial.

In the proof below, this criterion will be applied to the Albanese morphism of X. The

proof is structured as follows: Except for the case of Albanese dimension 1, the other two

cases can directly be completed by previous results in this chapter. In the former case, the

aforementioned criterion is applied, and the challenge is to verify that its assumptions are

fulfilled. Having the Enriques classification in mind, this case will in the course of the proof

turn out to mean that the surface has the cohomological invariants of a bielliptic surface.

Here the proof uses arguments from the analysis of bielliptic surfaces, [18], Theorem 3,

and in doing so, some details will be added to a certain argument which was only briefly

addressed in the source.
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Theorem 4.17. Let X be a smooth, proper surface over an arbitrary field k with numer-

ically trivial dualizing sheaf ωX . Then ωX ∈ Pic(X) has finite order.

Proof. First of all, by Lemma 4.1, it is sufficient to consider the case of an algebraically

closed ground field k. Furthermore, reduce to a connected component and assume without

loss of generality that X is connected. Then X is integral as a consequence of its normality.

The Albanese dimension of X has the three possibilities m = 0, 1, 2. The case m = 0 was

treated in Proposition 4.8: Then Picτ (X) is a torsion group, so in particular ωX has

finite order. If X is of maximal Albanese dimension m = 2, then Corollary 4.13 implies

that ωX � OX is trivial. Thereby it remains to consider the case that X is of Albanese

dimension m = 1.

If h0(ωX) = 1, then ωX � OX . Thus suppose h0(ωX) = 0 from now on. In this

situation, Proposition 4.12 yields that h1(OX) = m = 1. Denote the Stein factorization

of the Albanese morphism by X
f−→ Y → Alb1X . Since f is a fibration, the properties

of fibrations collected in Proposition A.12 show that the curve Y is normal, integral,

and hence regular. As already mentioned in Remark 4.16 above, the morphism f to the

Dedekind scheme Y is flat. Thus all its fibers are equidimensional of dimension 1. Because

X is normal, Proposition 3.39 yields that dim(PicX) = dim(PicY ) and ω⊗l
X � f∗(N ) for

some N ∈ Pic0(Y ) and l ≥ 1. Actually, l = 1 is achievable:

X

f

Y

f

Figure 4: A visualization of the fibration f .

Step 1: The dualizing sheaf ωX = f∗(N ) is the pullback of an invertible sheaf. The

vanishing h0(ωX) = 0 means h2(OX) = 0 by Serre duality. Hence both PicX and PicY

are smooth due to Theorem A.30, and of the same dimension h1(OY ) = h1(OX) = 1.

This implicates that Y becomes an elliptic curve after the choice of a k-rational point.

Particularly, it follows that ωY = OY and already Y = Alb1X .
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Because f is a fibration and all sheaf cohomology groups on the curve Y are zero in

degrees at least 2, the Leray spectral sequence Ea,b2 = Ha(Y,Rbf∗(OX))⇒ Ha+b(X,OX),

see [46], Théorème 3.7.3, yields the exact sequence in low degrees

(4.5) 0 −→ H1(Y,OY )
'−−→ H1(X,OX) −→ H0(Y,R1f∗(OX)) −→ 0.

Consequently, the coherent sheaf F = R1f∗(OX) satisfies h0(F) = 0. Consider the torsion

subsheaf T ⊂ F , defined by the sections whose image in the stalk at the generic point

η ∈ Y is zero. Thus also h0(T ) = 0 holds. As T η = 0 and Y is a curve, the support of the

coherent sheaf T is a closed subset of Y and at most zero-dimensional. It thus consists

of finitely many closed points and therefore T =
⊕
T x is the sum of its non-zero stalks.

But h0(T ) = 0, so T = 0. Hence F is torsion-free. As every torsion-free finitely generated

module over a Dedekind ring is free, F is locally free.

NowXη → Spec(K(Y )) is a flat base change of f , and hence h0(OXη) = 1. The dualizing

sheaves satisfy the relation ωX = ωX/Y ⊗ f∗(ωY ) = ωX/Y and the compatibility of ωX/Y

with base change implies that ωX |Xη = ωXη holds. As a consequence, the dualizing sheaf

ωXη of the integral curve Xη is numerically trivial. By Example 4.3, then ωXη ' OXη .

Thereby h1(OXη) = 1, which shows that f is a genus-one fibration. Since the fibers of f

are one-dimensional, cohomology and base change ensures that OX is cohomologically flat

in degree 1. Now F = R1f∗(OX) is locally free, so its rank can be computed at the generic

point. This shows that rank(F) = h1(OXη) = 1, and hence F is invertible.

The latter means that f has no wild fibers. Using this fact together with h1(OY ) = 1

and χ(OX) = 0, the canonical bundle formula, [18], Theorem 2, implies that deg(F∨) = 0,

that is, F∨ is numerically trivial. Furthermore, it gives that ωX = f∗(F∨) ⊗ OX(D),

where either D = 0 and f has no multiple fibers, or D is a curve supported on all multiple

fibers of f . Recall that a fiber F is multiple if F = rF ′ for an indecomposable curve of

canonical type F ′ and a natural number r ≥ 2. For the terminology and basic properties

of curves of fiber type and of canonical type, which will be used throughout the proof, see

Section A.6. As both ωX and f∗(F∨) are numerically trivial, also D is numerically trivial.

So D = 0 must hold. Eventually, set N = F∨ so that ωX = f∗(N ), as claimed.

Step 2: All fibers of f are integral. As seen in Step 1, the fibration f has no multiple

fibers. Thus to verify that all fibers of f are integral, it suffices to deduce that all fibers

are irreducible. Note that the regularity of X implies that X is locally factorial, meaning

that all local rings OX,x are factorial. This implies that Cartier divisors and Weil divisors

on X coincide, so every curve on X is Cartier. Let C ⊂ X be an arbitrary integral curve.

The adjunction formula and the numerical triviality of ωX yield

(4.6)
(
C2
)

= deg(OC(C)) = deg(ωC) = 2 · h1(OC)− 2.

This value is an even integer ≥ −2. If (C2) = −2, then C ' P1 and so C is a (−2)-curve.

Actually, there exist no (−2)-curves on X. The subsequent reasoning to show this fact
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follows the proof of [10], Lemma 8.7. The estimate

ρ(X) ≤ b2 = 4 dim(Pic0
X)− (K2

X) + 10− 12h1(OX) + 12h2(OX) = 2

is obtained from Proposition 1.22 and Corollary 1.47. Here the smoothness of X enters,

and for all remaining arguments in this proof, it is sufficient for X to be locally factorial.

To see that the estimate is an equality, consider the classes H,F ∈ Num(X) of an ample

invertible sheaf and a fiber of f . Their classes in Num(X)⊗Q are non-zero, and they are

linearly independent since (H2) > 0 and (F 2) = 0. So necessarily ρ(X) = 2.

Suppose there exists a (−2)-curve C on X. If C is contained in a fiber F of f , decompose

F =
∑r

i=1miCi into its integral components Ci for some r ≥ 2 such that C1 = C. Then

F and C1 are also linearly independent in Num(X)⊗Q. Since ρ(X) = 2, they thus have

to form a basis, which gives a linear combination H = αF + βC1. But then (H · F ) = 0

follows, since F is a curve of fiber type, contradicting the Nakai–Moishezon criterion. So

C is not contained in a fiber of f , and hence f(C) = Y . This means that the Albanese

dimension of C is one. But C ' P1, so this is a contradiction. Consequently, there are no

(−2)-curves on X.

The implies that every curve of fiber type on X has to be irreducible. Indeed, each

integral component of a reducible curve of fiber type would have negative self-intersection

by Proposition A.21. In conclusion, all fibers of f are integral curves.

Step 3: There exists an integral curve C ⊂ X of canonical type surjecting onto Y . In

order to apply Lemma 4.15 to the fibration f , the following properties will show that

its assumptions are verified: There exists an integral curve C on X with ωC ' OC such

that f(C) = Y and OX(C) is semi-ample. Except for the semi-ampleness of OX(C), the

existence will be shown in this step. Afterwards, the curve C can be altered slightly to

see that OX(C) is actually semi-ample. As there are no integral curves with negative

self-intersection on X, every connected curve with (C2) = 0 has to be irreducible. Then

C is of fiber type, and as ωX is numerically trivial, this means that C is of canonical type.

Hence ωC ' OC and h1(OC) = 1 hold by Proposition A.24. Thus the task in this step is

to find an integral curve C on X with (C2) = 0 such that f(C) = Y .

The argumentation is following the proof of [18], Theorem 3. Also, details will be

added to a certain argument which was only briefly addressed in the source. Let H be

an ample curve on X. Denote by Xy = f−1(y) the fiber over a closed point y ∈ Y .

Observe that all Xy are numerically equivalent, since all closed points y ∈ Y have degree

one, so they are numerically equivalent. Also, fix a point e ∈ Y . Consider the divisor

D = 2(H ·Xe)H − (H2)Xe. By construction, (D2) = 0.

The intersection number (D ·Xy) = 2(H ·Xy)
2 > 0 is positive. Define Dy = D+Xy−Xe

for y ∈ Y closed. If for some y the global sections H0(X,OX(Dy)) are non-zero, there then

exists a curve C ∼ Dy, and thus C ≡ Dy ≡ D satisfies (C2) = 0, as desired. Assume by

contradiction that h0(OX(Dy)) = 0 for all y ∈ Y closed. Note that h2(OX(Dy)) = 0 for all

y ∈ Y closed, since otherwise there would be an effective divisor D′ ∼ −Dy +KX , which
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in turn implies the contradiction (D′ ·Xy) = −(D ·Xy) < 0. Riemann–Roch consequently

yields h1(OX(Dy)) = 0, because χ(OX) = 0 and (D2
y) = 0. Using that OXe(Xy) = OXe is

trivial, the exact sequence 0 → OX(−Xe)→ OX → OXe → 0 induces the exact sequence

0 → OX(Dy) → OX(D + Xy) → OXe(D) → 0. Now as h0(OX(Dy)) = 0 = h1(OX(Dy)),

there is an induced bijection

(4.7) ry : H0(X,OX(D +Xy))
'−−→ H0(Xe,OXe(D)).

The target is non-zero, as χ(OXe(D)) = (D · Xe) > 0 holds on the curve Xe. Choose a

non-zero section σ ∈ H0(Xe,OXe(D)) to obtain sy = r−1
y (σ) as well as curves Cy = V (sy)

on X. Consider Y
j−→ Pic0

Y
f∗−→ Pic0

X , y 7→ OX(Xy − Xe) and compose it with the

translation by OX(D +Xe) to obtain

Y −→ PicX , y 7−→ OX(D +Xy).

Since PicX represents the relative Picard functor, this morphism corresponds to the class

of some L ∈ Pic(X × Y ) modulo Pic(Y ). By construction, L |X×{y} = OX(D + Xy)

holds for y ∈ Y closed. The restriction of L |Xe×Y induces Y → PicXe which maps every

closed point y ∈ Y to L |Xe×{y} = OXe(D +Xy) = OXe(D), so it is constant. Hence this

morphism is also given by pr∗Xe(OXe(D)), where prXe : Xe × Y → Xe. This means that

L |Xe×Y = pr∗Xe(OXe(D)) ⊗ pr∗Y (M ) for some invertible sheaf M on Y . Replace L by

L ⊗ pr∗Y (M ) to achieve that L |Xe×Y = pr∗Xe(OXe(D)). The fact that prXe is a fibration,

see Example A.17, gives a bijection

pr∗Xe : H0(Xe,OXe(D))
'−−→ H0(Xe × Y,L |Xe×Y ).

Set τ = pr∗Xe(σ). The pullback of τ to any closed fiber Xe × {y} of the projection to Y is

again σ.

Now the next aim is to extend τ ∈ H0(Xe × Y,L |Xe×Y ) to some t ∈ H0(X × Y,L ),

similar to (4.7). This will be shown by proving that (prY )∗(L )→ (prY )∗(L |Xe×Y ) is an

isomorphism. To do so, first observe that the restriction

(4.8) H0(X × {y},L |X×{y}) // H0(Xe × {y},L |Xe×{y})

regains the map ry from (4.7) for all y ∈ Y closed. Thereby it is bijective and both sides’

dimensions are constant in y ∈ Y closed. This value then also has to apply to y = η

as cohomological dimensions are upper-semicontinuous for flat sheaves. Now cohomology

and base change gives the extension of (4.8) to the diagram

(prY )∗(L )⊗ κ(y) //

'
��

(prY )∗(L |Xe×Y )⊗ κ(y)

'
��

H0(X × {y},L |X×{y}) '
// H0(Xe × {y},L |Xe×{y})

104



Chapter 4

for all y ∈ Y , and ensures that both (prY )∗(L ) and (prY )∗(L |Xe×Y ) are locally free.

Therefore the top arrow in the diagram is bijective for all closed points y ∈ Y . Nakayama’s

lemma implies that then (prY )∗(L )y → (prY )∗(L |Xe×Y )y is still surjective. As both

sheaves are free of the same rank, it has to be a bijection. But the points y ∈ Y with this

property are constructible by [57], Proposition 9.4.4, so also η ∈ Y is one of them. Hence

(prY )∗(L )→ (prY )∗(L |Xe×Y ) is an isomorphism, as claimed.

So there exists t ∈ H0(X × Y,L ) which restricts to sy ∈ H0(X × {y},OX(D + Xy))

as well as to τ ∈ H0(Xe × Y,L |Xe×Y ) and further to σ ∈ H0(Xe × {y},OXe(D)). Notice

that t is in fact independent of y ∈ Y , because the assignments t 7→ sy 7→ σ are induced by

bijections and σ does not depend on y. This argument also yields that all those sections

above are non-zero. Geometrically speaking, the vanishing set V (t) ⊂ X × Y corresponds

to a morphism

Y −→ HilbX/k,

where a closed point y ∈ Y maps to the subset Cy = V (sy), regarded as a point in

the Hilbert scheme. Furthermore, the induced morphism Y → HilbXe/k is given by the

vanishing set V (τ) ⊂ Xe × Y , and it maps all closed points y ∈ Y to V (σ). Now consider

the commutative diagram

V (τ)

pr
V (τ)
Y

##
//

pr
V (τ)
Xe
��

V (t)
pr
V (t)
Y //

pr
V (t)
X

��

Y

Xe
// X .

Since (pr
V (t)
Y )−1(y) = Cy×{y} for all closed points y ∈ Y , the image of pr

V (t)
X contains the

union Z =
⋃
Cy over all closed points y ∈ Y . The projection to X is proper, so also Z has

to be a subset of its image. Now show that Z = X. Assume by contradiction that this is

not the case. Then dim(Z) = 1, and thus only finitely many integral curves can appear in

all Cy. Recall that Cy ∼ D +Xy and it can be assumed that there is no fiber Xy′ among

the integral components of any Cy. Indeed, otherwise C := Cy−Xy′ is a curve numerically

equivalent to D, which completes the task in this step. Hence Cy ∩Xe = V (σ) shows that

the multiplicity of Cy at each of its integral components is bounded by the degree of V (σ).

Thus there can only be finitely many different curves Cy. But then Cy = Cy′ has to hold

for two points y 6= y′. Consequently, Xy ∼ Xy′ follows, which cannot be true because

y 6∼ y′ on the genus-one curve Y and f∗ is injective.

Thus pr
V (t)
X is surjective, and thus its base change pr

V (τ)
Xe

has to be, too. But on the

other hand, V (τ) is a curve on Xe × Y , and each of its closed points has to be contained

in some (pr
V (τ)
Y )−1(y) = V (σ) × {y}. So the image of the set of all closed points maps

via pr
V (τ)
Xe

to the finite set V (σ) ⊂ Xe. Therefore pr
V (τ)
Xe

cannot be surjective. This finally

contradicts the assumption that h0(OX(Dy)) = 0.
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Choose a curve C linear equivalent to Dy = D+Xy−Xe. Then C is numerically equiv-

alent to D, so (C2) = 0 and (C ·Xy) > 0 for all closed fibers Xy. As seen in Step 2, there

are no integral curves with negative self-intersection number on X, so every connected

component of C has to be irreducible. Replace C by one of its integral components which

surjects onto Y . Then still (C2) = 0 holds, as required.

Step 4: The sheaf OX(C) is semi-ample. This step’s arguments are based on [94],

page 333ff. Use that OC(2KX + 2C) = ω⊗2
C is trivial and consider the exact sequence

0 −→ OX(2KX + C) −→ OX(2KX + 2C) −→ OC −→ 0.

Recall from (4.2) at the beginning of this section for the following reasoning that every

curve M on X satisfies h2(OX(2KX +M)) = 0, as a consequence of h0(OX(−KX)) = 0.

So especially h2(OX(2KX + C)) = 0. The long exact cohomology sequence derived from

the short exact sequence above, and h1(OC) = 1, show that h1(OX(2KX + 2C)) ≥ 1.

Since the self-intersection number of 2KX + 2C is zero and χ(OX) = 0, Riemann–Roch

then gives that h0(OX(2KX + 2C)) ≥ 1.

Choose a curve A ∼ 2KX + 2C. This curve is of canonical type: As (A · C) = 0 and C

is integral, decompose A = αC +
∑
βiBi for integral curves Bi disjoint to C. Thus also

(A·Bi) = 2(KX ·Bi)+2(C ·Bi) = 0. Some coefficient βi has to be non-zero, since otherwise

2KX ∼ γC for some γ ∈ Z, but then (C ·Xy) > 0 could not be true. In conclusion, there

exists an indecomposable curve C ′ = 1
gcd(βj)

∑
βjBj of canonical type which is disjoint

to C, where
∑
βjBj denotes some connected component of

∑
βiBi.

The subsequent arguments will be similar to the previous ones in this step, now for

C + C ′ instead of C. Consider the exact sequence

0 −→ OX(2KX + C + C ′) −→ OX(2KX + 2C + 2C ′) −→ OC ⊕OC′ −→ 0.

This time, h1(OC ⊕OC′) = 2 implies h1(OX(2KX + 2C + 2C ′)) ≥ 2 and Riemann–Roch

yields h0(OX(2KX + 2C + 2C ′)) ≥ 2. Choose a curve D′ ∼ 2KX + 2C + 2C ′. Then by

Proposition A.23, there is a fibration g : X → Y ′ onto a curve Y ′ such that each connected

component of D′ is a rational multiple of a fiber of g. Since (C · D′) = 0, the curve C

has to be contained in a fiber of g. So Proposition A.21 shows that a multiple of C is a

multiple of fiber. In conclusion, OX(C) is semi-ample. Therefore, all assumptions for the

application of Lemma 4.15 were verified to be fulfilled. Eventually, the criterion yields

that ωX ∈ Pic(X) has finite order.

The first step in the preceding proof can always be bypassed in characteristic p = 0 by the

following lemma, which also holds true for higher-dimensional X. Let X be a Gorenstein,

normal, integral, proper scheme over an algebraically closed field k of characteristic p ≥ 0.

The normality of X implies according to Proposition 3.39 that Pic0(Alb1
X)→ Pic0(X) is

bijective. Suppose that ωX is numerically trivial. Then ω⊗lX ' alb∗X(M ) is valid for an

invertible sheaf M on Alb1
X and some l ≥ 1.
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Lemma 4.18. In the situation above, assume that p - l. Then there exists an integral

scheme X ′, a finite étale morphism g : X ′ → X and an invertible sheaf M ′ on Alb1
X′ such

that ωX′ ' alb∗X′(M
′). Furthermore, ωX′ ∈ Pic(X ′) is numerically trivial and has the

same order as ωX ∈ Pic(X).

Proof. The group Pic0(Alb1
X) = Pic0

X(k) is divisible, since (Pic0
X)red is an abelian variety

and k is algebraically closed. Choose some N satisfying N ⊗l ' M and consider the

invertible sheaf L = ωX ⊗ alb∗X(N )∨ of order l.

There exists a canonical covering g : X ′ → X associated to L with the property that

g∗(L ) ' OX′ . Those coverings will be studied in detail in the next chapter, see specifically

Proposition 5.3. Here X ′ is integral and g is finite étale, since p - l by assumption. Consider

the following commutative diagram:

X ′
g //

albX′
��

X

albX
��

Alb1
X′ h

// Alb1
X .

The étaleness of g implies that ωX′ = g∗(ωX) holds, so the invertible sheaf M ′ = h∗(N )

now satisfies ωX′ = alb∗X′(M
′), as claimed. Because g is finite locally free, its pullback

induced on Picard groups is injective. This proves the assertion.

4.6 Q-Gorenstein Surfaces with Numerically Trivial Canonical

Divisor

The aim of this section is to generalize Theorem 4.17 to singular surfaces. This will be

accomplished in Theorem 4.22 below, which is the second main result in this chapter.

Its proof relies on arguments used by Sakai [106], [107] in his extension of the Enriques

classification to normal Gorenstein surfaces over C. They can be adapted to the situation

of suitable Q-Gorenstein surfaces over a ground field of arbitrary characteristic, showing

that KX has finite order if it is numerically trivial. Specifically, the ideas of [106], Section 2,

and [107], Section 1, are utilized.

Fix an arbitrary ground field k. Let X be a normal, proper k-scheme. Every x ∈ X of

codimension dim(OX,x) = 1 is a discrete valuation ring. Hence the group homomorphism

Div(X) → Z1(X), D 7→
∑

valx(D){x} from the group of Cartier divisors to the group

of Weil divisors on X is injective. It induces an injection DivCl(X) → Cl(X) between

both groups modulo linear equivalence. Furthermore, X is locally factorial, that means

all OX,x are factorial rings, if and only if Div(X) → Z1(X) is bijective. The bijectivity

then holds true for DivCl(X) → Cl(X). Since X is reduced and noetherian, the natu-

ral group homomorphism Div(X) → Pic(X), D 7→ OX(D) is surjective and induces a

bijection DivCl(X) → Pic(X). For details to the above, see [58], Théorème 21.6.9 and

Proposition 21.3.4.
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On the other hand, the group Cl(X) of Weil divisors modulo linear equivalence is iso-

morphic to the group of isomorphism classes of reflexive sheaves which have rank 1 at

every generic point of X, according to [65], Section 2. Denote by OX(D) the reflexive

sheaf associated to a Weil divisor D. This gives an extension of the map D 7→ OX(D)

from above to Weil divisors. Two Weil divisors D1 and D2 satisfy

OX(D1 +D2) = (OX(D1)⊗OX(D2))∨∨,

and the right-hand side defines the composition law of two reflexive sheaves OX(D1)

and OX(D2) of rank 1. Linear equivalence of Weil divisors D1 ∼ D2 exactly means that

OX(D1) ' OX(D2). Moreover, OX(D) is uniquely determined by its restriction OX(D)|V
to the regular locus V ⊂ X due to [65], Theorem 1.12.

A Q-divisor is an element of the group Z1(X)Q := Z1(X)⊗ZQ. Thus there are inclusions

Div(X) ⊂ Z1(X) ⊂ Z1(X)Q and Weil divisors are exactly the Q-divisors with integral

coefficients. A Q-divisor D is called Q-Cartier if mD is a Cartier divisor for some natural

number m ≥ 1. The smallest m ≥ 1 with this property is the index of D. Furthermore,

D =
∑
qiDi is effective if qi ≥ 0 holds for all coefficients. The integral curves Di form the

integral components of D. The support of D is Supp(D) =
⋃

Supp(Di), where Supp(Di)

is the underlying topological space of Di.

The definition of integer-valued intersection numbers (D1 · . . . ·Dn) for Cartier divisors

can be extended to Q-Cartier divisors, with values in the rational numbers: Choose mi

such that miDi is Cartier and set (D1 · . . . · Dn) = 1
m1·...·mn · (m1D1 · . . . · mnDn). As

discussed at the end of Section 2.3, the dualizing sheaf ωX is reflexive of rank 1. A Weil

divisor KX with ωX ' OX(KX) is a canonical divisor on X. Keeping in mind that such

a divisor is only unique up to linear equivalence, also call KX “the” canonical divisor.

A proper k-scheme is Q-Gorenstein if it is normal and its canonical divisor is Q-Cartier.

Now suppose that X is a normal, proper surface over k. Its singular locus is closed

in X of codimension at least 2, so there are only finitely many singular points, each one

of them closed in X. Thus X has only isolated singularities. A resolution of singularities

is a proper morphism

r : X̃ → X

where X̃ is a regular surface and r is an isomorphism over the regular locus of X. By

Zariski’s main theorem, r is a fibration. The existence of resolutions for surfaces was proved

by Lipman [85], [86] for excellent, reduced, noetherian surfaces, generalizing previous

results due to Zariski [132], Abhyankar [1] and others. A resolution can be obtained by

iterating blow-ups and normalizations. Its fibers are at most one-dimensional and the

exceptional locus E ⊂ X̃, that is, the preimage of the singular locus, is a curve. Denote

the integral components of E by Ei. Then the intersection matrix ((Ei ·Ej))i,j is negative

definite. There exists a unique minimal resolution, meaning that all the others factor

through it. Its exceptional locus contains no (−1)-curves. Over an arbitrary ground field,

a (−1)-curve is a curve C ' P1
L for a finite field extension k ⊂ L such that (C2) = −[L : k].
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A singular point x ∈ X is called rational if R1r∗(OX̃)x = 0 for a resolution of singular-

ities r : X̃ → X. This condition is independent of the choice of r, which relies on the fact

that for a blow-up at a regular point, the higher direct images of the structure sheaf are

zero, and a birational morphism of regular, proper surfaces is composed of those.

On the normal surface X, intersection numbers with rational coefficients can actually

be defined for all Weil divisors, as introduced in [93], Section II (b). For a generalization

to higher dimensions, see [114]. Let r : X̃ → X be a resolution of singularities. Given an

integral curve C ⊂ X with generic point ξ ∈ C, its strict transform under r is the integral

curve C ′ = r−1(ξ). Extend this linearly to define the strict transform D′ of an arbitrary

Weil divisor D on X. The negative definite intersection matrix ((Ei · Ej))i,j is invertible

over Q. So there exist unique numbers qi ∈ Q such that r∗(D) = D′ +
∑
qiEi satisfies

(r∗(D) · Ej) = 0 for all Ej . This defines a pullback map

r∗ : Z1(X)→ Z1(X̃)Q,

which respects the group structures as well as linear equivalence. In the case that D

is Cartier, the definition of r∗(D) coincides with the usual one for Cartier divisors. The

intersection number of two Weil divisors on X is then set to be (D1·D2) = (r∗(D1)·r∗(D2)).

Since the morphism r is of degree 1, this definition is also in accordance with the given one

for Cartier divisors. Thereby it moreover extends the definition of intersection numbers

for Q-Cartier Weil divisors, discussed above. The intersection number (D1 · D2) of two

Weil divisors on X is bilinear and independent of the chosen resolution r. If D1 and D2

are effective without common integral components, then (D1 ·D2) = 0 holds if and only if

D1 and D2 are disjoint.

A Weil divisor D on X is numerically trivial if (D · C) = 0 for all integral curves C

on X. The demand that D has finite order means that dD ∼ 0 as Weil divisors for some

d ≥ 1, or equivalently, that the d-fold composition OX(dD) of the reflexive sheaf OX(D)

is isomorphic to OX . If this holds for D = KX , notice that then X necessarily has to

be Q-Gorenstein. The following lemma is the version of Lemma 4.1 for Q-Gorenstein X

about the compatibility of the relevant terms with algebraic field extensions.

Lemma 4.19. Let X be a Q-Gorenstein, geometrically normal, proper k-scheme. For

every algebraic field extension k ⊂ L and every integer d, the following assertions hold:

(i) The natural map π : XL → X satisfies π∗(OX(dKX)) = OXL(dKXL).

(ii) KX is numerically trivial if and only if KXL is numerically trivial.

(iii) dKX ∼ 0 if and only if dKXL ∼ 0.

Proof. Since π is flat, every OX -module F of finite presentation satisfies π∗(F∨) = π∗(F)∨.

Thus π∗ is compatible with the composition law of rank 1 reflexive sheaves, as π∗ al-

ways commutes with tensor products. Now π∗(ωX) = ωXL holds, so this results in

π∗(OX(dKX)) = OXL(dKXL).
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Let m ≥ 1 be an integer such that mKX is Cartier. By definition, KX is numerically

trivial if and only if mKX has this property. Hence by Proposition 1.34 and (i), the

invertible sheaf OX(mKX) is numerically trivial if and only if its pullback OXL(mKXL)

has this property. This verifies the second assertion.

For the third claim, first suppose that dKX ∼ 0. This means that OX(dKX) ' OX , and

then applying π∗ yields OXL(dKXL) ' OXL . Thus also dKXL ∼ 0. On the other hand, if

the latter is assumed, then π∗(OX(dKX)) ' OXL follows. The faithful flatness of π implies

that already OX(dKX) has to be invertible. Because the pullback Pic(X) → Pic(XL) is

injective due to Proposition A.25, this gives that OX(dKX) ' OX , thus dKX ∼ 0.

Lemma 4.20. Let X be a Q-Gorenstein, proper surface over an algebraically closed field k,

r : X̃ → X its minimal resolution of singularities. Then r∗(KX) = K
X̃

+C for an effective

Q-divisor C. Each closed point x ∈ X satisfies one of the following two properties:

(i) Supp(C) ∩ Supp(r−1(x)) = ∅.

(ii) Supp(C) ∩ Supp(r−1(x)) = Supp(r−1(x)).

Moreover, (i) holds if and only if x ∈ X is regular or a rational Gorenstein singularity.

Proof. Denote by E the exceptional locus of r. As the restriction of r to X̃ r E is an

isomorphism onto the regular locus of X, there exists some Q-divisor C supported on E

such that r∗(KX) = K
X̃

+ C. Decompose C = C ′ − C ′′ into effective Q-divisors C ′ and

C ′′ without common integral components.

Assume by contradiction that C ′′ is non-zero and let D be an integral component of C ′′.

Then D sits in the exceptional locus and so (D2) < 0. Thus (K
X̃
· D) ≥ 0, since there

are no (−1)-curves in E. Let m ≥ 1 be the index of the Q-Cartier divisor KX . Thus

OX(mKX) is invertible. Every singular point x ∈ X has an open neighborhood W such

that OX(mKX)|W ' OW . Consider the open neighborhood U = r−1(W ) of the fiber

r−1(x). Then r∗(OX(mKX))|U ' OU is trivial, and varying the singular point x ∈ X

implicates r∗(OX(mKX))|E ' OE . Hence especially (r∗(mKX) · D) = 0 holds. Use

this to compute (mC ′′ ·D) = (mK
X̃
·D) + (mC ′ ·D) ≥ 0, as C ′ and D have no common

component. So (mC ′′ ·D) ≥ 0 for all integral components D of mC ′′, and thus (mC ′′)2 ≥ 0.

This is a contradiction, as the curve mC ′′ is supported on E. Eventually, this shows that

C ′′ = 0 and, in turn, the effectiveness of C follows.

Next, let x ∈ X be a closed point. Suppose that Supp(C) ∩ Supp(r−1(x)) is not empty

and verify that then (ii) has to be valid. If the latter would be false, then due to the

connectedness of r−1(x), this curve must contain an integral component D such that

(C · D) > 0. Now (r∗(KX) · D) = 0 results in (K
X̃
· D) < 0, which in turn implicates

that D is a (−1)-curve, a contradiction. Hence (ii) is true.

For the final part of the assertion, let again x ∈ X be a closed point. First, assume

that (i) holds. Without loss of generality, let X r {x} be regular: The claim is a local

property and X has only isolated singularities. So factorize r = r1 ◦ r2 where r1 is the

minimal resolution of the singular points in X r {x} and r2 is the minimal resolution of
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the point r−1
1 (x). Now replace r by r2. If x ∈ X is not regular, then r−1(x) is a curve.

Let D be one of its integral components. Then assumption (i) yields (C ·D) = 0. As the

intersection number of K
X̃

+ C = r∗(KX) with D is trivial, this implies (K
X̃
· D) = 0.

So each integral component D of r−1(x) is a (−2)-curve. Now [4], Theorem 2.7, shows

that x ∈ X is Gorenstein and χ(O
X̃

) = χ(OX). Because H0(X,R2r∗(OX̃)) = 0, the

Leray spectral sequence Ea,b2 = Ha(X,Rbr∗(OX̃))⇒ Ha+b(X̃,O
X̃

) gives the exactness of

0 → H1(X,OX) → H1(X̃,O
X̃

) → H0(X,R1r∗(OX̃)) → H2(X,OX) → H2(X̃,O
X̃

) → 0.

Hence h0(R1r∗(OX̃)) = χ(OX) − χ(O
X̃

) = 0 holds. As R1r∗(OX̃) is a skyscraper sheaf,

it in turn has to be zero. So x ∈ X is a rational Gorenstein singularity.

Conversely, let x ∈ X be regular or a rational Gorenstein singularity. In both cases, the

local ring A = R1r∗(OX̃)x is zero, so especially Â = 0. The theorem on formal functions

yields Â = lim←−H
1(E,OnE). All curves Z supported on E index another inverse system,

and the multiples nE of E are cofinal therein. Consequently, also Â = lim←−H
1(E,OZ) is

true. All transition maps in this system are surjective: If Z1 ≤ Z2, then the surjection

OZ2 → OZ1 shows that the induced map H1(E,OZ2)→ H1(E,OZ1) is onto. Thus Â = 0

implies that all H1(E,OZ) are zero.

Now assume by contradiction that (ii) holds and decompose C = Z +Z ′ such that Z is

supported on r−1(x) and Z ′ is disjoint to r−1(x). Let W be an open neighborhood of x

containing no singular point of X r {x} such that OX(KX)|W ' OW . Then on the open

neighborhood U := r−1(W ) of r−1(x), also the sheaf O
X̃

(K
X̃

+ Z)|U = r∗(OX(KX))|U
is trivial. In particular, Z is Cartier and the adjunction formula implies ωZ ' OZ . So

h1(OZ) = h0(OZ) ≥ 1 contradicts Â = 0. Eventually, (i) follows, as claimed.

Remark 4.21. Let X be a normal, proper surface over an algebraically closed field k.

Rational Gorenstein singularities on X are also known as rational double points or Du Val

singularities and they were studied by Artin [4], [5], [6] in arbitrary characteristic p ≥ 0.

The reduction Ered of the exceptional divisor E on the minimal resolution of a rational

double point is an ADE-curve, which is a reduced curve with only (−2)-curves as integral

components Ei ⊂ E and negative definite intersection matrix ((Ei · Ej))i,j . Their dual

graphs are exactly the simply laced Dynkin diagrams An, Dn, E6, E7, E8 appearing in

the ADE classification. See [10], Theorem 3.32, for an explicit computation. Conversely,

every ADE-curve on a regular, proper surface over k is contractible to a rational Gorenstein

singularity, which was already used in the preceding proof.

Let g : X̃ → Y be a birational morphism between smooth, integral, proper surfaces

over an algebraically closed field k. So g is a sequence of contractions of (−1)-curves.

Consider a Q-divisor D =
∑
δiDi on X̃ with distinct integral components Di. Since g is

closed, the schematic image g(Di) is the set-theoretic image with its reduced subscheme

structure. Hence g(Di) is either an integral curve or a closed point. Define the image of D

under g to be the Q-divisor g(D) =
∑
δig(Di) on Y , where the sum is taken only over all

curves g(Di).
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Now the core achievement of this section follows, which is one of the central results in

this thesis. An essential ingredient to the proof is that every non-rational minimal surface

in Kodaira dimension −∞ is a ruled surface. Moreover, the Enriques classification can

be applied to obtain upper bounds for the order of KX in the cases in which X has only

rational Gorenstein singularities. For this purpose, note that the classification yields that

the order of ωX on a smooth, integral, proper surface X is always dividing 4 or 6. All

different values occurring here will be pictured in detail later in the course of Section 6.2.

For the sake of completeness, the smooth case is included in the table below.

Theorem 4.22. Let X be a Q-Gorenstein, geometrically normal, proper surface over an

arbitrary field k with numerically trivial canonical divisor KX . In the case that X is not

Gorenstein, assume the existence of a perfect extension field k ⊂ L and a resolution of

singularities r : X̃L → XL such that the Q-divisor r∗(KXL) has integral coefficients. Then

KX has finite order. Furthermore, suppose that h0(OX) = 1 and let m ≥ 1 be the index

of KX . Then dKX ∼ 0 holds for the values of d displayed in the subsequent table.

X d

smooth 4 or 6
not smooth, but Gorenstein 2

not Gorenstein m(m− 1)

Table 3
Upper bounds for the order of KX .

See Remark 4.27 below for a comment on when the additional assumption in the non-

Gorenstein case over k = C is fulfilled, and when it can be violated.

Remark 4.23. Moreover, the proof will show the following: In the case that the ground

field k is algebraically closed, X satisfies h0(OX) = 1 and is not Gorenstein, and r is the

minimal resolution of singularities, then r∗(KX) = K
X̃

+C for a curve C by Lemma 4.20.

If C is integral, then dKX ∼ 0 holds for d = lcm(2,m). This gives a sharper bound than

m(m− 1) = lcm(m− 1,m).

Proof. Conduct several steps of reduction to begin with. First, reduce by Lemma 4.19

to the case that k = L is perfect. Second, it is moreover possible to assume that k

is algebraically closed. For this purpose, show that r∗
k
(KXk

) continues to have integral

coefficients: As k is perfect, the regular scheme X̃ is smooth, so the base change rk is a

resolution of singularities for Xk, which sits in the following natural commutative diagram:

X̃k

rk //

��

Xk

��
X̃ r

// X.

112



Chapter 4

Let m ≥ 1 be the index of KX . The Cartier divisor mKX pulls back to mKXk
, since their

associated invertible sheaves do likewise. By assumption, D := r∗(KX) is Cartier. Then

r∗(mKX) = mD is the usual pullback of Cartier divisors. The diagram’s commutativity

yields that on X̃k, the equality r∗
k
(mKXk

) = mDk of Cartier divisors holds. Considered

as an equality in Z1(X̃k)Q, use m ·r∗
k
(KXk

) = r∗
k
(mKXk

) to deduce that r∗
k
(KXk

) = Dk

has integral coefficients. Hence assume without loss of generality that k is algebraically

closed.

Next, if r∗(KX) has integral coefficients for a given resolution of singularities, then this

conclusion holds true for any other resolution, in particular for the minimal resolution

s : M → X. To verify this, it is sufficient to show that r∗(KX) has integral coefficients if

and only if s∗(KX) does. Consider the factorizations

X̃
b //

r

66M
s // X and Z1(X̃)Q Z1(M)Q

b∗oo Z1(X).
s∗oo

r∗

ll

Here b∗ is induced by the usual pullback Z1(M)→ Z1(X̃) of divisors between the locally

factorial schemes X̃ and M . Decompose the Q-divisor s∗(KX) =
∑
qiCi into its integral

components. Apply b∗ to obtain r∗(KX) =
∑
qiC
′
i + F , where C ′i denotes the strict

transform of Ci and F is a Q-divisor supported on the exceptional locus of b. Both

summands
∑
qiC
′
i and F have no common integral components. If r∗(KX) has only

integral coefficients, then all qi are integers, which means that s∗(KX) has only integral

coefficients. Conversely, if the latter is assumed, then also r∗(KX) = b∗s∗(KX) has integral

coefficients. So assume from now on that r is the minimal resolution of singularities.

Moreover, to verify that KX has finite order, it is sufficient to consider one connected

component of X. Note that the assumption h0(OX) = 1, imposed for the additional

part of the assertion, guarantees from the outset that X is connected. As X is normal,

each connected component is irreducible, so assume further that X is integral. According

to Lemma 4.20, there exists an effective Q-divisor C such that r∗(KX) = K
X̃

+ C. By

assumption, r∗(KX) is numerically trivial and Cartier. As K
X̃

is Cartier in any case, also

C is Cartier. To deduce that dKX ∼ 0 for some multiple d = nm ≥ 1 of the index m, the

task is to find a non-zero global section of the invertible sheaf

O
X̃

(dK
X̃

+ dC) = r∗(OX(mKX)⊗n)

or of its dual. Then, since r is a fibration by Zariski’s main theorem, the projection formula

yields that also OX(mKX)⊗n or its dual has a non-zero global section, so this numerically

trivial invertible sheaf must be trivial.

Distinguish the following three cases: C = 0 or C is a curve with either m = 1 or

m ≥ 2. The first case C = 0 means that X has only rational Gorenstein singularities.

In the second case, in which m = 1 and C is a curve, now X is Gorenstein but at least

one non-rational singularity exists. The third case, where C is a curve and m ≥ 2, is the

situation in which X is not Gorenstein.
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In the first case, the divisor K
X̃

= r∗(KX) is numerically trivial. Due to Theorem 4.17,

there exists some d ≥ 1 such that h0(O
X̃

(dK
X̃

)) = 1. If X is not smooth, then d = 2

can be chosen: In fact, the Enriques classification yields that the order of K
X̃

can only

be higher in the case that X̃ is bielliptic. But the arguments of Step 2 in the proof of

Theorem 4.17 have shown that then, if K
X̃

is not trivial, X̃ does not contain any (−2)-

curve. This is not possible, since then X̃ = X would be smooth, a contradiction. So here

if X̃ is bielliptic, then its canonical divisor is necessarily trivial.

To treat the second and third case in which C is a curve, consider the following common

preparatory arguments: Every singular point x ∈ X has an open neighborhood W such

that OX(mKX)|W ' OW . So on the open neighborhood U = r−1(W ) of the fiber r−1(x),

the invertible sheaf r∗(OX(mKX))|U is trivial. Vary the singular point x ∈ X to see

that O
X̃

(mK
X̃

+ mC)|Z = r∗(OX(mKX))|Z is trivial for all curves Z supported on the

exceptional locus.

In order to deduce that h0(O
X̃

(dK
X̃

+ dC)) ≥ 1 for some multiple d = nm ≥ 1 of m,

consider a curve C ′ supported on C. This curve will be chosen adequately in the different

cases later on, so that C ′ satisfies properties (I) and (II) discussed below, which will

thereby prove the assertion. Since O
X̃

(dK
X̃

+ dC)|C′ = OC′ is trivial, the exact sequence

0 → O
X̃

(dK
X̃

+ dC − C ′) → O
X̃

(dK
X̃

+ dC) → OC′ → 0 follows. Suppose that the

following vanishing holds:

(I) h2(O
X̃

(dK
X̃

+ dC − C ′)) = h0(O
X̃

((1− d)K
X̃
− dC + C ′)) = 0.

Then the long exact sequence of cohomology groups yields h1(O
X̃

(dK
X̃

+dC)) ≥ h1(OC′)
and moreover h2(O

X̃
(dK

X̃
+ dC)) = 0. The numerical triviality of O

X̃
(dK

X̃
+ dC) gives

the equality χ(O
X̃

(dK
X̃

+dC)) = χ(O
X̃

). Inserting the information obtained before yields

the estimate h0(O
X̃

(dK
X̃

+ dC)) ≥ χ(O
X̃

) + h1(OC′). Therefore it is sufficient to show

that χ(O
X̃

) + h1(OC′) ≥ 1.

Observe that h2(O
X̃

) = h0(O
X̃

(K
X̃

)) = 0 holds, and furthermore h0(O
X̃

(rK
X̃

)) = 0

for all r ≥ 1. Otherwise h0(O
X̃

(rK
X̃

+ rC)) ≥ 1 is valid, so rK
X̃

+ rC ∼ 0 follows. But

then rK
X̃
∼ −rC contradicts h0(O

X̃
(−rC)) = 0, which holds for the curve C. Especially,

this shows that kod(X̃) = −∞.

So it suffices to verify that h1(OC′) ≥ h1(O
X̃

). If the right-hand side is zero, the

conclusion is trivial, so assume that h1(O
X̃

) ≥ 1. Let g : X̃ → Y be a sequence of

contractions of (−1)-curves, until Y is minimal. Each contraction can be seen as the

blow-up at a regular point, so h1(OY ) = h1(O
X̃

) is non-zero. Thus Y is not isomorphic

to P2. Hence Y must be a ruled surface, equipped with a fibration f : Y → B to a regular

curve B such that all fibers of f are isomorphic to P1. Now it remains to show:

(II) There exists an integral component C ′i ⊂ C ′ such that C ′i → B is finite.

Indeed, then the subsequent Lemma 4.24 implies h1(OC′) ≥ h1(OB) = h1(OY ) = h1(O
X̃

),

as sought. To summarize, the task is to find for some d = nm a suitable curve C ′ which

satisfies (I) and (II).
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Now consider the second case, that is, m = 1. Here choose d = 2 and C ′ = C. Then

condition (I) means that h0(O
X̃
(−K

X̃
− C)) = 0. If this was not the case, then already

KX ∼ 0 follows, so assume that (I) holds. To verify (II), it is by induction sufficient to

ensure that the image D1 = g1(C) of C under one contraction g1 : X̃ → Y1 of a (−1)-curve

is again a curve with OY1(KY1+D1) numerically trivial. This will be shown in Lemma 4.25

below. Taking this for granted for the moment, consider the image D = g(C) under the

sequence g : X̃ → Y of contractions onto the minimal surface Y . No connected component

D′ ⊂ D can purely be supported on a single fiber of the ruled fibration f : Y → B. To see

this, let F be such a fiber. Then, since F � P1 and (F 2) = 0, necessarily (KY · F ) = −2

follows. But the numerical triviality of OY (KY +D) implies (D′2) = (D ·D′) = −(KY ·D′),

so D′ cannot be a multiple of a fiber. So at least one integral component of D must map

surjectively onto B, which then in turn also holds for C. This completes the second case,

modulo both lemmas used above.

C2 P
r

C1 x

g
X̃ X

D2

f
Y

B

C2C2C P
r

C1 x

g
X̃ XX X

D2

f
Y

B

D1

Figure 5: An example with one
(−1)-curve P on X̃ and
Sing(X) = {x}.

Notice that these arguments also apply if C ′ = C is integral and m ≥ 2. In fact,

then ω⊗m
C = O

X̃
(mK

X̃
+ mC)|C = OC is trivial, which particularly implies that ωC is

numerically trivial. Thus already ωC � OC . So d = 2 can be chosen, although d is not

necessarily a multiple of m. Then the preceding reasoning yields h0(O
X̃
(2K

X̃
+2C)) = 1.

For d = lcm(2,m), consequently O
X̃
(dK

X̃
+ dC) = r∗(OX(mKX)⊗

d
m ) has a non-zero

global section, which gives dKX ∼ 0.

115



Chapter 4

In the remaining third case, C is a curve and m ≥ 2. Choose C ′ = C again, but now

d = m. If (I) was not satisfied, then h0(O
X̃

((1 −m)K
X̃

+ (1 −m)C)) ≥ 1, which means

that O
X̃

(K
X̃

+ C)⊗1−m has a non-zero global section. This conclusion in turn holds true

for O
X̃

(K
X̃

+ C)⊗m(1−m) = r∗(OX(mKX))⊗1−m. Thereby m(m − 1)KX ∼ 0 follows. So

assume that (I) is valid. To verify (II), the arguments in the second step can be adopted

directly. Eventually, mKX ∼ 0 is true.

Lemma 4.24. Let C → B be a morphism of connected, proper curves over an algebraically

closed field k. Suppose that B is regular and that there exists an integral component Ci ⊂ C
such that the induced morphism Ci → B is finite. Then h1(OC) ≥ h1(OCi) ≥ h1(OB).

Proof. The proof consists of three steps. To see the first estimate, note that the closed

embedding Ci ↪→ C gives the exact sequence 0 → I → OC → OCi → 0. Since h2( I ) = 0

on the curve C, the assertion h1(OC) ≥ h1(OCi) follows. Hence, replace C by Ci and

assume without loss of generality that C is integral.

Second, consider the normalization ϕ : C̃ → C, which is a finite surjection. The induced

sequence 0 → OC → ϕ∗(OC̃) → S → 0 is exact and S is supported on the at most zero-

dimensional singular locus of C. Thereby h1(OC) ≥ h1(ϕ∗(OC̃)), and since ϕ is affine, the

right-hand side equals h1(O
C̃

). So moreover replace C by C̃ and assume without loss of

generality that C is regular.

Third, decompose the finite field extension K(B) ⊂ K(C) into a separable K(B) ⊂ L

and a purely inseparable L ⊂ K(C) subextension. The category of finitely generated

field extensions k ⊂ F of transcendence degree 1 is equivalent to the category of regular,

integral, proper curves over k with non-constant morphisms. Hence there exists such a

curve D with function field K(D) = L and finite morphisms C → D and D → B. Then

by [64], Chapter IV, Example 2.5.4, the claim h1(OC) ≥ h1(OB) follows. In fact, as

D ' C(pr) is a Frobenius twist in the case p > 0, the equality h1(OC) = h1(OD) holds.

The Riemann–Hurwitz formula implies h1(OD) ≥ h1(OB). This proves the assertion.

Lemma 4.25. Let X be a smooth, integral, proper surface over an algebraically closed

field k. Suppose there exists a (−1)-curve E ⊂ X and let g : X → Y be its contraction.

Let C ⊂ X be a curve such that OX(rKX + C) is numerically trivial for some r ≥ 1.

Then the image D = g(C) is a curve and OY (rKY +D) is again numerically trivial.

Proof. To see that D is a curve, note that each connected component C ′ ⊂ C satisfies

(C ′2) = (C · C ′) = −r(KX · C ′), and therefore C ′ cannot be a multiple of a (−1)-curve.

Hence no connected component of C gets contracted by g to a point.

Observe that E must intersect C, since (C ·E) = −r(KX ·E) = r. For some integer n, the

equality g∗(D) = C+nE is true, because g restricts to an isomorphism on XrE. Compute

0 = (g∗(D) · E) = (C · E) − n to deduce that n = r. This means that g∗(D) = C + rE.

As g∗(KY ) = KX − E holds, this results in g∗(rKY + D) = rKX + C. So the pullback

g∗(OY (rKY +D)) = OX(rKX +C) is numerically trivial. The surjectivity of g guarantees

that also OY (rKY +D) is numerically trivial, which completes the proof.
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Remark 4.26. Without the assumption that r∗(KX) or rather C has integral coefficients,

the method used in the proof breaks down at the following point: Suppose for instance

that C ′ = rC is a curve for some r ≥ 2 and d is a multiple of m. The vanishing in (I) then

says that h0(O
X̃

((1−d)K
X̃

+(r−d)C)) = 0. Denote L = O
X̃

((r−d)K
X̃

+(r−d)C). Then

the vanishing means that ω⊗1−r
X̃

⊗L has only trivial global sections. But there seems to be

no a priori reason for this to happen, as L is numerically trivial and (1−r)K
X̃
≡ (r−1)C

tends to behave numerically like an effective Cartier divisor. Also, it may be possible to

proceed by choosing C ′ as a suitable integral curve supported on C.

Remark 4.27. Over the complex numbers, Sakai [110], Theorem 4.1, proved the con-

clusion that KX has finite order on a Q-Gorenstein surface X without the additional

assumption on r∗(KX). It seems to be an interesting question for further investigation to

what extent this holds true over arbitrary fields. The approach roughly goes as follows,

using the notation from the preceding proof. First, Sakai studies and classifies all ruled

surfaces Y according to their anti-Kodaira dimension kod(ω∨Y ) in [108]. On this basis, he

classifies all possible pairs (Y,D), where D = g(C) is the image of C = r∗(KX) − K
X̃

under the sequence g of contractions of (−1)-curves, in [109], Theorem 5.3. Then a refined

lemma in the spirit of Lemma 4.25 shows that in all cases where KX would have infinite

order, a contradiction to the classification of those pairs would follow.

This classification also highlights that over k = C, the assumption in Theorem 4.22 that

r∗(KX) has integral coefficients is always fulfilled if kod(ω∨Y ) ∈ {−∞, 0, 1} and can only

fail to be valid in the case that kod(ω∨Y ) = 2.

4.7 Examples and Counterexamples of Singular Surfaces

Let k be an algebraically closed field of arbitrary characteristic p ≥ 0. Consider a normal,

integral, proper surface over k with numerically trivial canonical divisor KX . In the case

that X is smooth, the order of KX divides 4 or 6 by the Enriques classification. The

subsequent Section 6.2 will provide more details in this situation. Here in this section,

consider non-smooth X.

In the situation of Theorem 4.22, the canonical divisor KX has order dividing 2 if

X is not smooth, but Gorenstein. Both cases occur by Example 4.28 below. If X is

not Gorenstein and KX has index m, then its order divides m(m − 1). The subsequent

Example 4.29 shows that for every m ≥ 2, there exists such X with ord(KX) = m.

Moreover, these examples can be modified slightly to yield non-Q-Gorenstein X with

ord(KX) =∞.

Example 4.28. Let X̃ be a smooth, integral, proper surface over k with numerically triv-

ial ω
X̃

such that there exists an ADE-curve C on X. Consider the contraction r : X̃ → X

of C. Then X is a non-smooth Gorenstein surface with only rational double points as sin-

gularities. Thus r∗(KX) = K
X̃

and the orders of KX and K
X̃

coincide. By Theorem 4.22,

the order can be either 1 or 2. There are examples for both cases:
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Note that the surface X̃ cannot be abelian, since P1 has Albanese dimension m = 0 and

so there especially cannot exist (−2)-curves on abelian surfaces. Also, observe that each

curve on X̃ which is isomorphic to P1 is automatically a (−2)-curve, as the dualizing sheaf

is numerically trivial. The arguments of Step 2 in the proof of Theorem 4.17 have shown

that bielliptic surfaces also do not contain any (−2)-curve. There exist Enriques surfaces

X̃ with (−2)-curves on them in every characteristic p ≥ 0, although this is not the generic

case according to [36], Section 5, and [72], Table 1. If then X̃ is classical, this gives an

example with KX of order 2. The Kummer construction mentioned in Section 4.4 yields

a K3-surface X̃ containing (−2)-curves. Here KX has order 1.

Now construct further non-smooth, normal, integral, projective surfaces X over k with

KX numerically trivial. The construction depends on a chosen invertible sheaf A. If A
has finite order m ≥ 1, then X will turn out to be Q-Gorenstein of index m and KX has

order m. On the other hand, if A is numerically trivial of infinite order, then also KX has

infinite order. In this case, X is not Q-Gorenstein.

Example 4.29. To construct X, start with a smooth, integral, proper curve B of genus

g ≥ 2 over k. Suppose that there exists a numerically trivial invertible sheaf A on B.

The existence of such an A of infinite order is equivalent to the assumption that k is not

the algebraic closure of a finite field, as discussed in Remark 1.36. For each m ≥ 1 not

divisible by p, the abelian variety J = Pic0
B has m-torsion J [m](k) ' (Z /mZ)⊕2g, and

each point of order m yields an invertible sheaf A of order m on B. If p divides m, then

there may be no k-rational points of order m. Nevertheless, over every algebraically closed

field k, there exist for instance hyperelliptic curves B with J [p](k) ' (Z /pZ)⊕i for each

1 ≤ i ≤ g according to [3]. Then also J [pr](k) ' (Z /pr Z)⊕i is non-zero for all r ≥ 1 by

[95], Section 6, Proposition on page 64. So for every natural number m ≥ 1, there exists

at least one curve B as above which admits an invertible sheaf A of order m.

Let L = OB and N = ωB ⊗A∨. Define E = N ⊕L and consider the resulting split

short exact sequence

0 −→ N −→ E −→ L −→ 0.

Define the ruled surface X̃ = P(E) with structure morphism f : X̃ → B. For general

properties of ruled surfaces see [64], Chapter V, Section 2. The dualizing sheaf on X̃ is

given by

ω
X̃

= O
X̃

(−2)⊗ f∗(ωB ⊗ det(E)) = O
X̃

(−2)⊗ f∗(ω⊗2
B ⊗A

∨).

The homomorphism

Pic(B)⊕ Z −→ Pic(X̃), (M , n) 7−→ f∗(M )⊗O
X̃

(n)

is bijective and Num(X̃) ' Z⊕Z is generated by the classes of a closed fiber F and the

section E = P(L ) ⊂ P(E) = X̃. To keep the notation simple, identify an invertible sheaf

M on B with its pullback f∗(M )|E to E ' B. Consider B = ω
X̃
⊗O

X̃
(2E) and compute
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(B ·F ) = (O
X̃
(−2) · F ) + 2(E · F ) = −2 + 2 = 0.

Since O
X̃
(E) = O

X̃
(1)⊗f∗(N ∨) and O

X̃
(1)|E = L = OE , the adjunction formula yields

B|E = ωE ⊗ O
X̃
(E)|E = A .

These two computations show that B = f∗(A), and hence ω
X̃

= f∗(A) ⊗ O
X̃
(−2E).

Also, B inherits the property of being numerically trivial from A, so K
X̃

≡ −2E. The

splitting of E = N ⊕L gives a second section E′ = P(N ), which is disjoint to E. The

self-intersection number

(E2) = deg(L )− deg(N ) = − deg(ωB) = −2g + 2

is negative and in turn (E′2) = deg(N )− deg(L ) = −(E2) is positive. In this situation,

O
X̃
(E′) is semi-ample and a globally generated power defines a contraction of the curve

E ⊂ X̃, see [112], Section 3. Let r : X̃ → X be the contraction to a normal, projective

surface X and x = r(E) the singular point. Denote by U = X̃ � E the complement of

the exceptional locus and by V = X � {x} the regular locus. Then r|U : U → V is an

isomorphism.

E
x

r

E′

f
X̃ X

B

E
x

r

E′

f
X̃ XX X

B

Figure 6: Contraction of the section E ⊂ X̃.

As explained in the preceding section, the dualizing sheaf ωX � OX(KX) is reflexive of

rank 1 and uniquely determined by its restriction ωX |V = ω
X̃
|U . The previous computa-

tion ω
X̃

= f∗(A)⊗O
X̃
(−2E) shows that K

X̃
= f∗(A)−2E for a divisor A on B such that

OB(A) � A. Thus KV = KU = f∗(A)|U . Since E is not contained in any fiber of f , both

f∗(A) and its restriction f∗(A)|U have the same integral components and multiplicities.

This implies that the strict transform of KX under r is the divisor D := f∗(A). As D is

numerically trivial, consequently r∗(KX) = D holds by definition of the pullback. In turn,

this also yields that KX is numerically trivial.
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Now show that the order of A ∈ Pic(B) coincides with the order of KX . Consider

the case in which A has finite order m ≥ 1 first. This means that mA ∼ 0 and so

also r∗(mKX) = mD = f∗(mA) is linearly equivalent to zero. So r∗(OX(mKX)) ' O
X̃

is trivial, and then its restriction to U shows that mKV ∼ 0 must hold, and thus also

mKX ∼ 0. To determine that KX is in fact of order m, assume that dKX ∼ 0 for

some d ≥ 1. Hence dKX is in particular Cartier. Then r∗(dKX) = dD is the usual

pullback of Cartier divisors, so f∗(A⊗d) ' O
X̃

(dD) is trivial. Now the injectivity of

f∗ : Pic(B)→ Pic(X̃) implies that d is a multiple of m. Therefore indeed ord(KX) = m.

The same reasoning shows in the case that A has infinite order, then also KX must have

infinite order.

This argument can be extended slightly to deduce in the case that A has finite order

m ≥ 1, then m is actually the index of KX , and that X is not Q-Gorenstein if A has

infinite order. Indeed, suppose that dKX is Cartier for some d ≥ 1. Then r∗(dKX) = dD

and K
X̃

= D − 2E show r∗(dKX) = dK
X̃

+ 2dE. The restriction r∗(OX(dKX))|E = OE
is trivial, since E = r−1(x) is a fiber. This means that O

X̃
(dK

X̃
)|E = O

X̃
(−2dE)|E holds,

and the adjunction formula yields

ω⊗dE = O
X̃

(dK
X̃

+ dE)|E = O
X̃

(−dE)|E = N ⊗d = ω⊗dE ⊗A
⊗−d .

So A⊗d ' OE follows. As a result, d is a multiple of the order m of A. Because the latter

equals the order of KX , also m must be the index of KX . If A has infinite order, this is a

contradiction.
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Chapter 5

Invertible Sheaves and Coverings

Once it is known that the dualizing sheaf ωX has finite order, the next problem to address

is (Q2), the question concerning the existence of a finite étale covering f : X ′ → X with

ωX′ ' OX′ . The answer to this question forms the content of this chapter.

The assumption that the dualizing sheaf ωX has finite order is a necessary condition

for f to exist by Corollary 5.2 below. Note that an étale covering f always satisfies

ωX′ = f∗(ωX), so it is equivalent to demand whether ωX′ ' OX′ or f∗(ωX) ' OX′ . The

former condition is the one which appears for the total space of the Beauville–Bogomolov

decomposition, but the latter can be asked for arbitrary invertible sheaves L in place

of ωX . Given an invertible sheaf L of order d, there is a well-known natural way to obtain

a finite flat covering g : X̃ → X with g∗(L ) = O
X̃

. Its construction and the calculation

of some relevant properties is executed in Section 5.1. The covering g is étale if and only

if the characteristic p of the ground field is not dividing d.

If this divisiblity is valid, there might in the first instance still exist some finite étale

covering f with ωX′ = f∗(ωX). For normal X, this possibility is excluded in Section 5.2,

constituting the main result in this chapter. At the end, the results obtained before are

applied specifically to L = ωX , and also to the situation in which X is only Q-Gorenstein.

5.1 Canonical Coverings Associated to Invertible Sheaves

Let X be a connected, locally noetherian scheme. A finite flat morphism f : X ′ → X

where X ′ is connected is called a finite flat covering of X. The total space of f is X ′. If

f is moreover étale, then it is called a finite étale covering of X. The structure theorem

of finitely generated projective modules over a ring implies that a finite flat covering f is

finite locally free, which means that f is affine and f∗(OX′) is a locally free sheaf. The

degree of f is deg(f) = rank(f∗(OX′)).
Notice that f has to be surjective, because otherwise, as f is proper, the complement

of its image is open. So it contains an affine open subset on which the locally free sheaf

f∗(OX′) has trivial local sections, which is a contradiction.

Proposition 5.1. Let f : X ′ → X be a finite flat covering of connected, locally noetherian

schemes and L an invertible sheaf on X such that f∗(L ) ' OX′. Then L ∈ Pic(X) has

finite order, which is dividing the degree of f .
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Proof. By assumption, E = f∗(OX′) is a locally free sheaf on X. On the one hand, the fact

that f∗(L ) ' OX′ implies f∗f
∗(L ) ' E . On the other hand, the projection formula gives

the equality E ⊗L = f∗f
∗(L ). Combined, both show that E ' E ⊗L . The determinant

then yields N ' N ⊗L ⊗r, where N = det(E) and r = rank(E). Hence L ⊗r ' OX is

true.

In particular, the following corollary can be drawn:

Corollary 5.2. Let f : X ′ → X be a finite étale covering between Gorenstein, connected,

proper schemes over an arbitrary field k such that ωX′ ' OX′. Then ωX has finite order,

which is dividing the degree of f .

Back to the case of an arbitrary invertible sheaf L . Proposition 5.1 shows that if L has

order d in Pic(X), the degree of each finite étale covering f : X ′ → X with f∗(L ) ' OX′
has to be a multiple of d. Associated to L , there is a natural way to obtain a finite flat

covering of degree d, which will be discussed in the following. It is étale if and only if the

characteristic p of X is not dividing d.

Let X be a scheme. Given an invertible sheaf L onX and for some d ≥ 1 a global section

s ∈ H0(X,L ⊗d), there exists an associated branched covering g : X̃ → X, constructed as

follows: Define the locally free OX -algebra

A = OX ⊕L ⊗−1⊕L ⊗−2⊕ · · · ⊕L ⊗−d+1,

with multiplication A⊗A → A induced by

L ⊗−i⊗L ⊗−j can−−→ L ⊗−(i+j) if i+ j ≤ d− 1,

L ⊗−i⊗L ⊗−j can−−→ L ⊗−(i+j) s−−→ L ⊗d−(i+j) if i+ j ≥ d,

for 0 ≤ i, j ≤ d − 1. There is an equivalence between the category of quasicoherent

OX -algebras and the category of affine X-schemes, given by B 7→ (Spec(B) → X) with

inverse (g : X̃ → X) 7→ g∗(OX̃), see [52], Proposition 1.3.1. Denote X̃ = Spec(A) and

define the branched covering to be the canonical morphism g : X̃ → X.

Proposition 5.3. Let X be an integral, noetherian scheme such that H0(X,OX) is a field

of characteristic p ≥ 0 and characteristic exponent e ≥ 1. Let L ∈ Pic(X) be of finite

order d, and s ∈ H0(X,L ⊗d) a global section defining an isomorphism OX → L ⊗d. The

following statements hold for g : X̃ → X constructed as above:

(i) g is a finite flat covering of degree d, and H0(X̃,O
X̃

) = H0(X,OX).

(ii) If every element of H0(X,O×X) has a d-th root, then the X-scheme X̃ depends on s

only up to isomorphism.

(iii) g∗(L ⊗d−1) = ω
X̃/X

and g∗(L ) = O
X̃

, so combined also ω
X̃/X

= O
X̃

.

(iv) g is étale if and only if p - d.
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(v) g is purely inseparable if and only if d is an e-power.

(vi) Let X ′ be a scheme such that every element of H0(X ′,O×X′) has a d-th root. Then

every morphism f : X ′ → X satisfying f∗(L ) ' OX′ factorizes through g.

(vii) The X-scheme X̃ is a principal homogeneous space under µd,X .

Proof. By definition, g is affine. Since also g∗(OX̃) = A is locally free, the structure

theorem of finitely generated projective modules over a ring implies that g is finite and

flat. The ring H0(X̃,O
X̃

) = H0(X,A) is canonically isomorphic to the field H0(X,OX),

since H0(X,L ⊗−i) = 0 for 1 ≤ i ≤ d − 1 by Lemma 1.35. Hence it contains only the

trivial idempotents, which means that X ′ is connected. This shows (i).

Now verify (ii). Each other isomorphism OX → L ⊗d is given by vs ∈ H0(X,L ⊗d) for

a unit v ∈ H0(X,O×X). Choose a d-th root w of v. Let A′ be A as an OX -module, but

with multiplication induced by vs instead of s. The isomorphism of OX -modules A′ → A,

defined by L ⊗−i wi−→ L ⊗−i for 0 ≤ i ≤ d − 1, is actually a morphism of OX -algebras.

Hence Spec(A) and Spec(A′) are isomorphic X-schemes.

For assertion (iii), note that the finite morphism g induces an equivalence between the

category of locally free sheaves E on X̃ and the category of locally free A-modules, given by

E 7→ g∗(E) and preserving ranks. To show that g∗(L ⊗d−1) = ω
X̃/X

, it is therefore sufficient

to verify that their pushforwards under g are isomorphic A-modules. Now Theorem 2.17

implicates that g∗(ωX̃/X) = A∨ = OX ⊕L ⊕L ⊗2⊕ · · · ⊕ L ⊗d−1. The OX -submodule

L ⊗d−1 generates this A-module, because L ⊗−i⊗L ⊗d−1 '−→ L ⊗d−i−1 for 0 ≤ i ≤ d− 1.

On the other hand, g∗g
∗(L ⊗d−1) = A⊗L ⊗d−1 = L ⊗d−1⊕L ⊗d−2⊕ · · · ⊕ OX follows

from the projection formula, and this A-module is canonically isomorphic to the former.

Similarly, g∗g
∗(L ⊗−1) = L ⊗−1⊕L ⊗−2⊕ · · · ⊕ L ⊗−d. At this point, the isomorphism

OX → L ⊗d enters, which yields L ⊗−d '−→ OX . The global section s′ ∈ H0(X,L ⊗−d)

corresponding to 1 ∈ H0(X,OX) defines an identification A → g∗g
∗(L ⊗−1), 1 7→ s′. So

also O
X̃

= g∗(L ⊗−1) holds naturally, and thereby as well g∗(L ) = O
X̃

.

To show the equivalence in (iv), note that the formation of the relative spectrum

Spec(A) → X is compatible with base change in X. So the fiber X̃x over a point x ∈ X
with residue field E = κ(x) is the spectrum of E[S]/(Sd − u)

'−→ A(x). The bijection is

defined by mapping [S] to a generator l ∈ L ⊗−1(x) and u = s(x) · ld. The polynomial

Sd − u is separable—which means that A(x) is an étale E-algebra—if and only if p - d.

Similarly reason for (v). First, assume that d = er is an e-power. Then Sd−u is purely

inseparable and thus it is a power of an irreducible purely inseparable polynomial Se
r′−u′.

So (X̃x)red = Spec(E[S]/(Se
r′ −u′)) is the spectrum of a purely inseparable field extension

of E. As g is consequently especially injective, it is a purely inseparable morphism. On

the other hand, now assume that d = erm for m ≥ 2 not divisible by p. Then over the

algebraic closure of E, there is a factorization Sd − u = (Se
r − u1) · . . . · (Ser − um) for

distinct m-th roots u1, . . . , um ∈ E of u. The Chinese remainder theorem implies that the

geometric fiber (X̃x)E consists of m points, and thus g is not universally injective.
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Next, treat assertion (vi). Let f : X ′ → X be a morphism satisfying f∗(L ) ' OX′ .
Consider the fiber product

Spec(f∗A) X ′ ×X X̃
pr2 //

pr1
��

X̃

g

��

Spec(A)

X ′

h

DD

f
// X

and observe that factorizations of f through g correspond to sections h of pr1. Those are

given by the set

HomX′(X
′, Spec(f∗A)) = Hom(OX′ - Alg)(f

∗A,OX′),

as Spec(f∗A) represents the contravariant functor (Sch /X ′) → (Set) given on objects by

(ϕ : T ′ → X ′) 7→ Hom(OX′ - Alg)(f
∗A, ϕ∗(OT ′)). Let the isomorphism OX′ → f∗(L )⊗−1 be

given by l ∈ H0(X ′, f∗(L )⊗−1). Then there is an induced isomorphism of OX′-algebras

OX′ [S]/(Sd − u)
'−→ f∗(A), [S] 7→ l, where u = f∗(s) · ld ∈ H0(X ′,OX′). The choice of

a d-th root w of u finally yields a homomorphism OX′ [S]/(Sd − u) → OX′ , [S] 7→ w of

OX′-algebras, and thus a section of pr1 as claimed.

Finally, cover the last statement (vii). Fix X as a base scheme and abbreviate µd = µd,X .

To define the action X̃×µd → X̃ of µd on X̃, note that it is sufficient to define compatible

actions on an open cover of X̃. Let U ⊂ X be open such that there exists a trivialization

OU
'−→ L ⊗−1|U given by some section l ∈ H0(U,L ⊗−1). It induces an identification

OU [S]/(Sd−u)
'−→ A|U , [S] 7→ l, where u = sU · ld ∈ H0(U,OU ), as seen before. To define

the action on X̃U , use the description X̃U (T ) = Hom(OU - Alg)(A|U , ϕ∗(OT )) for every

U -scheme T with structure morphism ϕ : T → U . Combined, there is an identification

X̃U (T ) ' Hom(OU - Alg)(OU [S]/(Sd − u), ϕ∗(OT )) = {x ∈ H0(T,OT ) | xd = u },

where u ∈ H0(T,OT ) also denotes its image induced by OU → ϕ∗(OT ) on global sections.

On this set, the group µd(T ) = µd(H
0(T,OT )) acts by multiplication. This action is

independent of the chosen trivialization OU
'−→ L ⊗−1|U . To see this, let there be another

one given by a · l ∈ H0(U,L ⊗−1) for a unit a ∈ H0(U,O×U ). Then OU [S]/(Sd−v)
'−→ A|U ,

where now v = sU · ad · ld = ad · u, and X̃U (T ) ' { y ∈ H0(T,OT ) | yd = ad · u }. So

x 7→ a·x = y is a natural bijection between the two descriptions of X̃U (T ), compatible with

the action of µd(T ). Eventually, the action of µd on X̃U is compatible with restriction, as

claimed. It is evident that the action on T -valued points is simply transitive, and thus X̃

is in fact a principal homogeneous space.

Let X be an integral, proper scheme over an algebraically closed field k. The assumption

in statement (ii) above is satisfied because H0(X,OX) = k. So the X-scheme X̃ does up

to isomorphism not depend on the chosen trivialization L ⊗d ' OX . Consequently, call

g : X̃ → X the canonical covering associated to the invertible sheaf L of finite order.
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Remark 5.4. Let X be as in Proposition 5.3 and additionally proper over an arbitrary

field k. Then X̃ is also proper, so the dualizing sheaves on both schemes exist. By

statement (iii), the covering g satisfies ω
X̃

= g∗(ωX), even in the case that g is not étale.

If X is also Gorenstein and L = ωX has finite order in Pic(X), then X̃ is Gorenstein with

g∗(ωX) = O
X̃

and in turn also ω
X̃

= O
X̃

.

Back to the general situation of Proposition 5.3. Consider a factorization d = qm. Then

L ⊗q has order m in Pic(X). Let g1 : X̃1 → X be the finite flat covering of degree m, given

by the locally free OX -algebra B = OX ⊕L ⊗−q ⊕L ⊗−2q ⊕ · · · ⊕L ⊗−(m−1)q associated

to L ⊗q and the same isomorphism OX → L ⊗mq as for A. There exists a natural factor-

ization g = g1 ◦ g2. Indeed, each X-morphism g2 : Spec(A) → Spec(B) corresponds to a

homomorphism B → A of OX -algebras, and there is a natural inclusion B ⊂ A. More con-

cretely, consider the O
X̃1

-algebra C̃ = O
X̃1
⊕ g∗1(L )⊗−1⊕ g∗1(L )⊗−2⊕ · · ·⊕ g∗1(L )⊗−q+1,

defined by the invertible sheaf g∗1(L ) and the natural identification g∗1(L ⊗q) = O
X̃1

. The

associated finite flat covering can naturally be identified with g2 : X̃ → X̃1 defined above.

To see this, recall that (g1)∗(OX̃1
) = B. Now use the equivalence between the category of

locally free sheaves E on X̃1 and the category of locally free B-modules, which is given by

E 7→ (g1)∗(E). Thus to deduce at first that C̃ and A are isomorphic as OX1-modules, it

has to be verified that the finite locally free B-algebras (g1)∗(C̃) and A coincide. Now the

projection formula yields

(g1)∗(C̃) = B⊕(L ⊗−1⊗B)⊕ (L ⊗−2⊗B)⊕ · · · ⊕ (L ⊗−q+1⊗B),

and this B-algebra canonically identifies with A. The same reasoning shows that the

OX1-algebra structures of C̃ and A are the same. In particular, this shows the following:

Proposition 5.5. In the situation of Proposition 5.3, let d = erm for m ≥ 1 not divisible

by p. Then g : X̃ → X naturally decomposes into a finite étale covering g1 : X̃1 → X of

degree m associated to L ⊗er and a purely inseparable finite flat covering g2 : X̃ → X̃1 of

degree er associated to g∗1(L ).

Consider the case where g : X̃ → X is étale. Let X ′ be a scheme such that every

element of H0(X ′,O×X′) has a d-th root. Then every finite flat covering f : X ′ → X with

the property f∗(L ) ' OX′ satisfies the property that deg(g) divides deg(f). Moreover, if

the degrees coincide, then X̃ and X ′ are isomorphic as X-schemes. So g is in this sense

the minimal finite flat covering which trivializes L .

In fact, consider a factorization f = g ◦ g′. As g is unramified and separated, the

morphism g′ is also a finite flat covering. If f is étale, then g′ is also étale. In any case,

deg(f) = deg(g) · deg(g′) holds. The equality deg(f) = deg(g) means deg(g′) = 1, in

which case g′ is an isomorphism: Any locally free O
X̃

-algebra Ã of rank 1 is isomorphic

to O
X̃

, since the canonical morphism O
X̃
→ Ã maps 1 to 1, and therefore it is locally an

isomorphism.
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5.2 Non-Existence of Étale Coverings

In contrast to the situation described at the end of the previous section, in the case that the

order of L is divisible by p, then a finite étale covering f : X ′ → X with f∗(L ) ' OX′
cannot exist at all if X is additionally normal. This is the following theorem, which

constitutes this chapter’s main result.

Theorem 5.6. Let X and L be as in Proposition 5.3. Suppose additionally that X is

normal and assume that p | d. Let X ′ be a scheme such that every element of H0(X ′,O×X′)
has a p-th root. Then there does not exist a finite étale covering f : X ′ → X satisfying

f∗(L ) ' OX′.

Proof. Assume by contradiction that such an f exists. Observe that the assumption that

p divides d ≥ 1 necessarily implicates p > 0. Furthermore, X is normal and integral, so the

étaleness of f yields that the same holds for X ′. Write d = qm for q = pr and r ≥ 1 such

that p - m. The sheaf L ⊗m has order q and also satisfies f∗(L ⊗m) ' OX′ . Replacing L

by L ⊗m makes it possible to assume that d = q is a p-power.

Let g : X̃ → X be a purely inseparable finite flat covering associated to L , as con-

structed in Section 5.1. By Proposition 5.3, there exists a factorization of f through g.

Extend it as

X ′ −→ Y −→ X̃ −→ X,

where Y is the schematic image of X ′ in X̃. Let U = Spec(R) be an affine open subset

of X over which L is trivial. Over U ⊂ X, the morphisms above are given by ring

homomorphisms

A′ ←− A←− R[S]/(Sq − u)←− R

for some u ∈ R×, where R → R[S]/(Sq − u), a 7→ [a]. Write E = K(X), L = K(Y ) and

L′ = K(X ′). The sequence above induces a commutative diagram

A′

��

Aoo

��

R[S]/(Sq − u)oo Roo

��
L′ Loo oo E,oo

where the vertical maps are the inclusions into the corresponding fields of fractions. The

field extension E ⊂ L′ is finite and separable, since f is étale. Hence E ⊂ L is also finite

and separable.

Now let x be the class of S in R[S]/(Sq − u). Then xq is a unit, so x is a unit. Write x

and u also for their images in L, as well as in E in the case of u. The separable minimal

polynomial µ(T ) of x ∈ L over E divides T q−u ∈ E[T ]. Over E, there is the decomposition

T q −u = (T −w)q for the q-th root w ∈ E of u. As µ(T ) is a separable polynomial, it has

to equal T −w over E, so also µ(T ) = T −w in E[T ]. Therefore x = w is contained in E.

Consider w ∈ E as a zero of T q − u ∈ R[T ]. Since X is normal and integral, the ring R is

an integrally closed domain, thus already w ∈ R.
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Consequently, R[S]/(Sq − u) = R[S]/((S −w)q). Since (S −w)/((S −w)q) is contained

in the nilradical of R[S]/((S − w)q) and the quotient R[S]/(S − w) is isomorphic to the

reduced ring R, it has to be equal to the nilradical. So the reduction of R[S]/(Sq − u) is

isomorphic to R. Varying U ⊂ X in an open cover of X in turn shows that X̃red ↪→ X̃
g−→ X

is an isomorphism. Thus the pullback of L to X̃red is not trivial, contradicting the fact

that already g∗(L ) is trivial.

Example 5.7. In general, it is possible that an étale morphism f : X ′ → X has a factor-

ization through a purely inseparable finite flat covering g : X̃ → X of degree d ≥ 2. For

instance, let X be a reduced scheme and consider the OX -algebra A = OX [T ]/(Tn).

Denote X̃ = Spec(A) and write g : X̃ → X for the natural morphism. Then every

fiber X̃x = Spec(κ(x)[T ]/(Tn)) is a singleton. So g is purely inseparable, since also

κ(g(x̃)) = κ(x̃) holds for every x̃ ∈ X̃. Because X̃red = X, there exists a canonical section

of g, and thus every morphism f : X ′ → X factorizes through g.

In the special case L = ωX on a Gorenstein, proper k-scheme X, the subsequent

corollary summarizes the results obtained in the course of this chapter.

Corollary 5.8. Let X be a Gorenstein, integral, proper scheme over an algebraically

closed field k of characteristic p ≥ 0 such that ωX has finite order d in Pic(X).

(i) The canonical covering g : X̃ → X is a finite flat covering of degree d, whose total

space X̃ is Gorenstein with h0(O
X̃

) = 1. The equalities g∗(ωX) = ω
X̃

= O
X̃

hold.

Every finite flat covering f : X ′ → X satisfying f∗(ωX) ' OX′ and h0(OX′) = 1

factorizes through g.

(ii) If p - d, then g is étale. Among all finite étale coverings f : X ′ → X with ωX′ ' OX′,
g is up to isomorphism the unique one of minimal degree d.

(iii) If p | d, then g is not étale, and decomposes as a purely inseparable finite flat covering

followed by a finite étale covering. If X is additionally normal, then there does not

exist a finite étale covering f : X ′ → X with ωX′ ' OX′.

Example 5.9. Let k be of characteristic p = 2 and X a classical Enriques surface. Since

PicτX = Z /2Z and h0(ωX) = h2(OX) = 0, the dualizing sheaf ωX has order d = 2 in

Pic(X). By the result above, since p = d, there does not exist a finite étale covering

trivializing the dualizing sheaf.

Remark 5.10. Now letX be a Q-Gorenstein, integral, proper scheme over an algebraically

closed field k of characteristic p ≥ 0 such that KX has index m ≥ 2 and order d. Then it

is impossible that there exists a finite flat covering f : X ′ → X with KX′ ∼ 0. Otherwise

X ′ is Gorenstein and the faithful flatness of f implies that X has to be Gorenstein, too.

Decompose d = lm. Nevertheless, it is possible to remove the factor l after a finite flat

covering. To achieve this, consider the invertible sheaf L = OX(mKX) of order l and the

associated canonical covering g : X̃ → X. Note that the flatness of g implies that every
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OX -module F of finite presentation satisfies g∗(F∨) = g∗(F)∨. So g∗ is compatible with

the composition law OX(D1 +D2) = (OX(D1)⊗OX(D2))∨∨ of rank 1 reflexive sheaves.

This results in g∗(OX(tKX)) = O
X̃

(tK
X̃

) for all t ≥ 1, since ω
X̃/X

= O
X̃

is trivial and

thereby g∗(OX(KX)) = O
X̃

(K
X̃

) holds. For t = m, this gives O
X̃

= O
X̃

(mK
X̃

) and so

mK
X̃
∼ 0. Especially, the total space X̃ is Q-Gorenstein of index at most m. In the case

that p - l, the covering g is étale. On the other hand, if p | l, there does not exist a finite

étale covering f : X ′ → X with OX′ ' f∗(OX(mKX)) = OX′(mKX′). Hence mKX′ 6∼ 0

must hold on the total space X ′ of every finite étale covering X ′ → X.

One particular consequence of Corollary 5.8 is that the Beauville–Bogomolov decompo-

sition happens to fail in positive characteristic. In Section 6.2, the order of the dualizing

sheaf for all classes of smooth, integral, proper surfaces with ωX of finite order will be

specified. Therefore question (Q2) will be answered in detail. This is postponed to the

upcoming chapter, so that in the course of working through the classification of those sur-

faces, their behavior with regard to questions (Q3) and (Q4) can be investigated likewise.
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Chapter 6

Total Spaces of Coverings

The content of this chapter is twofold: During the first Section 6.1, the uniqueness of a

decomposition, as stated in questions (Q3) and (Q4) for the total space of a covering, is

proved. Its verification comprises two essential ingredients, namely the results of Fujita [41]

and compatibility properties of the Albanese morphism.

In Section 6.2, a detailed analysis of smooth surfaces with dualizing sheaf of finite order

follows. Here the focus lies on the interplay between the fact whether ωX is already

trivial, question (Q2), which can now be answered by the result of the previous chapter,

and question (Q3). For instance, in characteristic p = 0, a smooth surface with ωX ' OX
is already in Beauville–Bogomolov decomposition, but this does not hold true in positive

characteristic. Question (Q4) in return is always answered in the affirmative. Although

the Enriques classification has already clarified the situation to a large extent, there remain

some details which appear to be worth investigating.

6.1 Uniqueness of a Decomposition

The starting point of this section is to prove over an algebraically closed field that if

X = A × B is the product of an abelian variety A and an integral, proper scheme B

with h1(OB) = 0, then the decomposition as a product of this kind is unique up to

isomorphism of the individual factors. The result below will actually hold under more

general assumptions. Roughly speaking, the point is that B has to be in some sense “far

away” from being an abelian variety. The crucial tool for its proof is the subsequent result,

which refers to [41], Theorem 6.

Proposition 6.1. Let X,Y, Z be integral, proper schemes over an algebraically closed

field k, where Z is projective. Assume that X × Z ' Y × Z. If X and Z are Picard

independent, then X ' Y .

The notion of Picard independency can be defined in the following, more general situa-

tion. Let fX : X → S and fY : Y → S be separated morphisms of finite type to a locally

noetherian scheme S such that PicX/S and PicY/S exist and represent the relative Picard

functor. Then it is true that every S-morphism Y → PicX/S has a factorization through S

if and only if every invertible sheaf L on X ×S Y is of the form L = pr∗X(A) ⊗ pr∗Y (B)

for invertible sheaves A on X and B on Y . This can be deduced as follows:
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For the first implication, let L be an invertible sheaf on X ×S Y , and assume that the

induced morphism Y → PicX/S admits a factorization Y
fY−−→ S

g−→ PicX/S . This means

that

L ≡ (idX × fY )∗(A) = pr∗X(A)

holds modulo Pic(Y ) for an invertible sheaf A on X = X×S S, whose class modulo Pic(S)

corresponds to g. Hence L = pr∗X(A)⊗ pr∗Y (B) for an invertible sheaf B on Y .

Conversely, let Y → PicX/S be an S-morphism corresponding to the class modulo Pic(Y )

of an invertible sheaf L = pr∗X(A) ⊗ pr∗Y (B) on X ×S Y . But another representative of

this class is simply pr∗X(A), which corresponds to the morphism Y
fY−−→ S

g−→ PicX/S , where

g is the morphism obtained by A. Thereby the factorization through S exists.

The second statement in the equivalence above is symmetric in X and Y , so the first

one has to be, too. This leads to the next definition.

Definition 6.2. Two S-schemes X and Y as above are called Picard independent if the

following equivalent conditions are satisfied:

(i) Every S-morphism Y → PicX/S has a factorization through S.

(ii) Every S-morphism X → PicY/S has a factorization through S.

(iii) Every invertible sheaf L on X ×S Y is of the form L = pr∗X(A) ⊗ pr∗Y (B) for

invertible sheaves A on X and B on Y .

In order to apply the above to the decomposition occurring both in (Q3) and (Q4), fix

S = Spec(k) for an arbitrary field k and consider the subsequent two lemmata.

Lemma 6.3. Let J be a k-scheme such that Jk is an abelian variety and B a proper k-

scheme of Albanese dimension m = 0 with h0(OB) = 1. Then every morphism B → PicJ

has a factorization through Spec(k).

Proof. Let B → PicJ be a morphism of k-schemes. To show that it factorizes through

Spec(k), it is sufficient to verify that it is constant: If the latter was the case, then

its schematic image in PicJ equals Spec(R) for an artinian local k-algebra R. Since

h0(OB) = 1, the morphism X → Spec(R) has a factorization through Spec(k). But

then necessarily R = k.

Now to prove that B → PicJ is constant, assume without loss of generality that k

is algebraically closed. Choose a k-rational point of B and compose with a translation

PicJ → PicJ to achieve that the neutral element of PicJ is contained in the image of

B → PicJ . As B is connected, this morphism admits a factorization through the abelian

variety Pic0
J . But B has Albanese dimension m = 0, and hence the image has to be a

point.

Lemma 6.4. Let J be a k-scheme such that Jk is an abelian variety, and B a geometrically

integral, proper k-scheme of Albanese dimension m = 0. Then prJ : J × B → J is the

Albanese morphism of J ×B.
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Proof. The Albanese morphism exists for J , B and also for J ×B by assumption. More-

over, Proposition 3.38 shows that albJ × albB is the Albanese morphism of J × B. As

explained in Example 3.37, J is a principal homogeneous space under an abelian variety

and albJ = idJ . Proposition 3.42 yields that albB is the structure morphism of B.

Now the main result of this section can be derived directly. Beforehand, recall that

a proper k-scheme X with h0(OX) = 1 is of Albanese dimension m = 0 if h1(OX) = 0,

according to Proposition 3.42. Hence the conclusion indeed applies to both (Q3) and (Q4).

Theorem 6.5. Let J, J ′, B,B′ be schemes over an arbitrary field k such that

(i) J and J ′ become abelian varieties after base change to k,

(ii) B and B′ are of Albanese dimension m = 0, geometrically integral and proper over k.

Suppose that J ×B ' J ′ ×B′. Then J ' J ′ as well as Bk ' B
′
k
.

Proof. First, Lemma 6.4 shows that J = Alb1
J×B and J ′ = Alb1

J ′×B′ are isomorphic. So

Jk ×Bk ' Jk ×B
′
k

holds. Over k, the Picard schemes of Jk and Bk represent the relative

Picard functor. Then Jk and Bk are Picard independent by Lemma 6.3, so eventually

Proposition 6.1 yields that Bk ' B
′
k
.

Remark 6.6. In general, it is not valid that the existence of an isomorphism X×Z ' Y×Z
implies that X ' Y . Counterexamples, where all occurring schemes are elliptic curves,

were given by Shioda [122].

6.2 Surfaces and the Beauville–Bogomolov Decomposition

There are four classes of smooth surfaces in Kodaira dimension zero: K3-surfaces, Enriques

surfaces, abelian surfaces and bielliptic surfaces. As seen for classical Enriques surfaces

in Example 5.9, it actually happens in characteristic p > 0 that ωX has finite order, but

there does not exist a finite étale covering X ′ → X such that ωX′ is trivial. Moreover,

there are Enriques and bielliptic surfaces with ωX ' OX such that X does not decompose

into a product as in the Beauville–Bogomolov decomposition.

Let X be a smooth, integral, proper surface over a fixed algebraically closed field k of

characteristic p ≥ 0 with ωX numerically trivial. To examine the differences in character-

istic p > 0 to the situation in characteristic p = 0, define the following four properties:

(P1) The dualizing sheaf ωX ' OX is trivial.

(P2) There exists a finite étale covering X ′ → X such that ωX′ ' OX′ .

(P3) There exists a finite étale covering X ′ → X such that X ′ ' A × B, where A is an

abelian variety and B is integral with h1(OB) = 0 and ωB ' OB.

(P4) There exists a finite flat covering X ′ → X such that X ′ ' A × B, where A is an

abelian variety and B is integral of Albanese dimension m = 0 with ωB ' OB.
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Here properties (P2) to (P4) directly echo questions (Q2) to (Q4) from the introduction,

now formulated as statements. As question (Q1) is always answered in the affirmative for

smooth surfaces, it is replaced by the stronger property (P1).

Clearly, the implications (P1) ⇒ (P2) and (P3) ⇒ (P2) as well as (P3) ⇒ (P4) hold.

Property (P4) is always fulfilled, which will be discussed during the course of this section.

Taking this for granted for the time being, there remain five possible combinations: Let

“y” abbreviate “yes” and “n” abbreviate “no”. The first two patterns are (n, y, y, y) and

(y, y, y, y), which are the only ones possible when p = 0. The three additional possibilities

are (y, y, n, y) and (n, y, n, y) as well as (n, n, n, y). It turns out that all combinations

occur in positive characteristic.

In characteristic p = 0, recall that if B is normal, it has Albanese dimension m = 0

if and only if h1(OB) = 0 by Proposition 3.42. So another variant for (P3) in positive

characteristic is to only demand that the Albanese dimension of B is zero, as imposed

in (P4). But the effect of this change is minor and it is discussed below, too.

Now suppose that X ′ → X is finite étale and X ′ decomposes as in (P3). Then it is not

possible to have a decomposition X ′ ' A × B as a product of two curves, where A is an

abelian variety and B satisfies h1(OB) = 0. Indeed as X ′ is smooth, this would imply

that A is an elliptic curve and B ' P1. But then X ′ = P(OA⊕OA) is a ruled surface, and

thereby kod(X ′) = −∞. Observe that as B is a smooth curve, the condition h1(OB) = 0

is again equivalent to the demand that B is of Albanese dimension m = 0.

So whenever a surface X ′ ' A × B appears in (P3), it is either abelian or it satisfies

h1(OX′) = 0 and ωX′ ' OX′ , in which case it is a K3-surface. In this sense, the term

“decomposition” appears to be improper for surfaces, but no different notion is introduced

as it is in alignment with the general situation. The two classes of abelian surfaces and

K3-surfaces have pattern (y, y, y, y). If p 6∈ {2, 3}, then the converse is also true, but in

the case p ∈ {2, 3}, there also exist Enriques and bielliptic surfaces with this pattern.

Note in this context that the total space of a finite étale covering of an abelian variety

is an abelian variety itself due to Serre–Lang, [95], Section 18, Theorem on page 167. All

K3-surfaces are simply connected, that is, they admit no non-trivial finite étale coverings,

which follows from the Enriques classification and Corollary 1.42.

Enriques Surfaces. Let p = 2, since this is the only case where new phenomena in

comparison to the classical situation appear for Enriques surfaces. First, let X be an

ordinary or supersingular Enriques surface, that means PicτX = µ2 or PicτX = α2. Both

finite group schemes consist of a single point and are non-reduced, which yields ωX ' OX .

This also follows from the fact that h0(ωX) = h2(OX) = 1 and ωX is numerically trivial.

Here X = X ′ as in (P3) in not valid, as h1(OX) = 1 is positive.

If X is an ordinary Enriques surface, the K3-cover X̃ → X is étale and X̃ is a K3-

surface. In the case that X is classical or supersingular, there exists no non-trivial étale

covering of X. In fact, by Corollary 1.42, a non-trivial étale morphism f : X ′ → X would

satisfy the inequality

132



Chapter 6

(6.1) χ(OX′) = deg(f) · χ(OX) = deg(f) ≥ 2.

The Enriques classification shows that only χ(OX′) = 2 = deg(f) is possible. This would

mean that X ′ has to be a K3-surface. But a non-trivial étale covering of degree 2 cor-

responds to a principal homogeneous space under (Z /2Z)X , see [30], page 20. Then

Raynaud’s correspondence (4.4) implies that there exists an associated non-trivial ho-

momorphism µ2 → PicτX . But for PicτX = Z /2Z, it has to be constant as already the

underlying map of topological spaces has to be constant. For PicτX = α2, Cartier duality

yields α2 → Z /2Z and the same reasoning works. So if X is classical or supersingular,

then X is actually simply connected.

As mentioned in Section 4.4, the K3-cover X ′ → X of an Enriques surface is always an

integral surface X ′ with ωX′ ' OX′ and h1(OX′) = 0. The latter condition implies that

X ′ is of Albanese dimension m = 0, and hence (P4) holds. All possible property patterns

for Enriques surfaces in arbitrary characteristic p ≥ 0 are displayed below.

p (P1) (P2) (P3) (P4)

classical 6= 2 n y y y
classical 2 n n n y
ordinary 2 y y y y

supersingular 2 y y n y

Table 4
Property patterns of Enriques surfaces.

To conclude the discussion of Enriques surfaces, consider the variant of (P3) where B

is only demanded to have Albanese dimension m = 0, instead of h1(OB) = 0. The effect

of this change is the following: The factor B is additionally allowed to be an ordinary

or supersingular Enriques surface, apart from being a K3-surface. Hence it improves the

situation for supersingular Enriques surfaces, which now satisfy (P3). But it does not

affect classical Enriques surfaces in characteristic p = 2. So the impact of this variant is

rather minor and it does not solve the problem that property (P3) may fail to be fulfilled.

This variant does not at all affect the situation for bielliptic surfaces, which is discussed

now.

Bielliptic Surfaces. The identification of bielliptic surfaces X ' (E × C)/G as quo-

tients described in Section 4.4 makes it possible to derive the order of ωX ∈ Pic(X) from

the concrete shape of the G-action.

To do so, start by outlining the general approach as it was executed in [18], [17] in

the elliptic and quasielliptic case, respectively. Denote A = E × C and q : A → X for

the induced finite flat covering. Note that C is always Gorenstein with ωC ' OC by

Example 4.4 and Example 4.6. Hence also A is Gorenstein with ωA ' OA, and q is

Gorenstein.
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Proposition 6.7. The relative dualizing sheaf ωA/X ' OA is trivial, so q∗(ωX) ' OA.

Moreover, q : A→ X is étale if and only if G is a constant group scheme.

Proof. Write P = G × A and ρ : P → A for the group action. The image of the closed

embedding (ρ, prA) : P → A×A is A×A/G A by [95], Section 12, Theorem 1 on page 111.

Let ι : A→ P be the inclusion at the neutral element. Consider the commutative diagram

A
ι //

idA

&&
P

ρ //

prA
��

A

q

��
A q

// X.

Proposition 1.1 shows that every scheme and every morphism, forming the cartesian square

in the diagram above, is Gorenstein. This in turn yields that G is Gorenstein. Because

G is zero-dimensional, its dualizing sheaf has to be trivial. Hence also ωprA ' OP . Since

ρ∗(ωA/X) = ωprA and ρ◦ι = idA, eventually ωA/X is trivial. Thus the natural identification

ωA = q∗(ωX)⊗ ωA/X becomes ωA ' q∗(ωX). As ωA ' OA, the first statement is proved.

For the second assertion, observe that G is constant if and only if G→ Spec(k) is étale,

as k is separably closed. If this is the case, then [95], Section 7, Theorem on page 66, yields

that q is étale. Now assume that q is étale. Then prA is étale by base change. Faithfully

flat descent [58], Corollaire 17.7.3, finally shows that G→ Spec(k) is étale.

For all i ≥ 1 there is a natural isomorphism ω⊗iX ' q∗(q
∗(ω⊗iX ))G ' q∗(ω

⊗i
A )G by [95],

Section 12, page 114. Here FG denotes the sheaf of G-invariant sections of a G-linearized

sheaf F on a scheme X with G-action. See [15], Chapter 3, for a detailed elaboration of

this notion. The G-invariant sections are defined as follows: The G-linearization on F is

a collection of isomorphisms γ∗g (FT )
'−→ FT indexed by g ∈ G(T ), where γg : XT → XT

is the automorphism corresponding to g. Those isomorphisms satisfy certain natural

compatibility conditions, see [15], Proposition 3.29. A global section σ ∈ H0(X,F) is

called G-invariant if for all g ∈ G(T ), the pullback σT ∈ H0(XT ,FT ) gets mapped to

itself under the bijection H0(XT ,FT )→ H0(XT , γ
∗
g (FT ))→ H0(XT ,FT ). In the special

situation of the induced G-linearization on F = q∗(ω
⊗i
A ), this map is simply

(6.2) ν∗g : H0(AT , ω
⊗i
AT

) −→ H0(AT , ω
⊗i
AT

),

where νg : AT → AT is the automorphism corresponding to g. The reason is that the G-

linearization on ωA is the natural identification given by uniqueness of the dualizing sheaf,

because of its universal property. When G is a constant group scheme, it is sufficient to

consider only T = Spec(k).

As ωX is numerically trivial, one of its powers is isomorphic to OX if and only if this

power has a non-zero global section. Thus
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ord(ωX) = min{ i ≥ 1 | ω⊗iA has a G-invariant non-zero global section }.

Since ωA ' OA and h0(ωA) = 1, it is by k-linearity sufficient to choose a non-zero global

section σ ∈ H0(A,ωA) and determine the minimal i ≥ 1 such that σ⊗i is G-invariant.

To do the computation, first only look at the elliptic curve E. Let it be given in variables

u, v, w by the Weierstraß equation

v2w + a1uvw + a3vw
2 = u3 + a2u

2w + a4uw
2 + a6w

3

with neutral element (0 : 1 : 0). On the affine open subset W = E ∩ D+(w) of E,

the section ω = dx
2y+a1x+a3

∈ H0(W,ωE) is a generator, and lifts to a non-zero global

section ω ∈ H0(E,ωE), called the invariant differential , as computed in [88], Chapter 6,

Proposition 1.26. Here the elements x = u
w and y = v

w of H0(W,OW ) ⊂ K(E) are the

variables on W where E is given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

It is indeed true that ω is invariant under all translations, see [123], Chapter III, Propo-

sition 5.1. Every group automorphism of E is given by

x 7−→ a2x+ r, y 7−→ a3y + a2sx+ t

for some a ∈ k× and r, s, t ∈ k, see [81], Appendix 1, (1.13). A direct computation reveals

that ω 7→ a−1ω and thus ω⊗i 7→ a−iω⊗i for the section ω⊗i ∈ H0(E,ω⊗iE ). In conclusion,

a group automorphism leaves ω⊗i invariant as soon as ai = 1.

Back to bielliptic surfaces X ' A/G as quotients of surfaces A = E ×C. The dualizing

sheaf of A is ωA = pr∗E(ωE) ⊗ pr∗C(ωC). An application of the Künneth formula, [74],

Theorem 14, yields H0(A,ω⊗iA ) = H0(E,ω⊗iE )⊗k H0(C,ω⊗iC ) for all i ≥ 0. Now the group

scheme G acts via the diagonal action on A for distinct actions on E an C. Note that

the automorphisms of an abelian variety consist of group automorphisms and translations.

The action on E is always given by translations, which fix the invariant differential on E.

In turn, the order of ωX is only determined by the action on the second factor C, so

ord(ωX) = min{ i ≥ 1 | ω⊗iC has a G-invariant non-zero global section }.

In the elliptic case, the curve C = E′ is an elliptic curve, too. All possible group schemes

G and their actions on A = E × E′ such that X = (E × E′)/G is a bielliptic surface are

given in [18], page 37. The procedure to compute the order of ωX in each case is the

following: Identify by which group automorphisms G acts on E′ and match them with the

classification in [81], Appendix 1, Section 2. Then ord(ωX) is the least common multiple

of all orders of a ∈ k× appearing in those automorphisms. This was already stated in [18]

for their different classes (a), (b), (c), (d) of G-actions, and leads to the following table:
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ord(ωX)

p (a) (b) (c) (d)

6= 2, 3 2 3 4 6
3 2 1 4 2
2 1 3 1 3

Table 5
Values of ord(ωX) for bielliptic surfaces, elliptic cases.

In the quasielliptic case, the curve C is rational with one cusp. Here the additional

possibility that p | ord(ωX) appears. The approach to determine ord(ωX) in [17] is similar:

A computation of the automorphism scheme of C leads to a list of all possible group

schemes G acting on C and on A = E × C such that X = A/G is quasielliptic. Then the

order of ωX is derived by looking at the action of G on some non-zero global section of

H0(C,ω⊗iC ), as before. This was done in [17], Proposition 8, albeit the explicit values of

ord(ωX) were not written down. Some more details on how to treat this case, in which G

is never constant, will be given in the following.

Write C = V+(v2w − u3) ⊂ P2 in variables u, v, w. The cusp is the point c = (0 : 0 : 1).

Set V = C ∩ D+(v) and W = C ∩ D+(w), so that C = V ∪W and C r V = {c}. The

affine open set V is the spectrum of k[s, t]/(s− t3) = k[ t ], where s = w
v and t = u

v . As V

is smooth, and thereby ωC |V = Ω1
V is the canonical sheaf, it is generated by ω = dt in

H0(V, ωC |V ). Now ω lifts to a generator ω ∈ H0(C,ωC) of the invertible sheaf ωC ' OC ,

because every non-zero global section has to map to some generator of H0(V, ωC |V ) as

a k[ t ]-module, and hence to some a · dt for a ∈ k×. The above is compatible with base

change along T → Spec(k) for T = Spec(R) affine, and thus also for general T . So the

induced global section ω ∈ H0(CT , ωCT ) continues to be determined by its restriction

dt ∈ H0(VT , ωCT ).

Consider the automorphism scheme H = AutC/k of C. Every ϕ ∈ H(T ) leaves VT ⊂ CT
invariant. This holds for T = Spec(k), since V ⊂ C is the smooth locus, and therefore

it is true over all closed points of T , so that VT and its image have the same closed

points. Nevertheless, it is possible that ϕ is not contained in the stabilizer subgroup

scheme Hc ⊂ H of the singular point c. Actually, those automorphisms have to exist in

G ⊂ H to render it possible that X = (E×C)/G becomes smooth, see [17], Proposition 7.

The restriction of an automorphism νg : CT → CT for g ∈ G(T ), thereby, induces an

automorphism of H0(VT , ω
⊗i
CT

) for i ≥ 1 as in (6.2). Consequently, it is equivalent to

determine whether ω⊗i ∈ H0(CT , ω
⊗i
CT

) is invariant under νg or dt⊗i ∈ H0(VT , ω
⊗i
CT

) is

invariant under νg|VT .

The list of possible group schemes G acting on C such that X becomes bielliptic was

computed in [17], preceding to Proposition 8. The group action on C is determined by its

effect on t ∈ H0(VT ,OVT ), so the effect on dt⊗i ∈ H0(VT , ω
⊗i
CT

) can be inferred as a result.

Using the notation of [17], this yields the subsequent tables:
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(a) (b) (c) (d) (e)

3 6 3 1 2

Table 6
Values of ord(ωX) for bielliptic surfaces, quasielliptic cases, in characteristic p = 3.

The values above in characteristic p = 3 were also derived using a different approach by

Lang [82], Section 3.B, where he points out that case (f) in [17] cannot exist.

(a) (b) (c) (d) (e) (f) (g) (h)

2 6 2 4 4 1 3 1

Table 7
Values of ord(ωX) for bielliptic surfaces, quasielliptic cases, in characteristic p = 2.

Once the order d of ωX is known, property (P2) can be determined by Corollary 5.8:

If d ≥ 2, there is a finite étale covering X̃ → X such that ω
X̃
' O

X̃
if and only if p - d.

In the cases p 6∈ {2, 3}, the curve C = E′ is always elliptic and d ≥ 2 is never divisible

by p. So there always exists such a finite étale covering g : X̃ → X, where X̃ has to be

an abelian surface. In fact, as p 6∈ {2, 3}, only abelian surfaces satisfy ω
X̃
' O

X̃
and

χ(O
X̃

) = deg(g) · χ(OX) = 0.

Staying in the elliptic case, the situation becomes more versatile if p ∈ {2, 3}. It

remains to be true that d is never divisible by p. But it is additionally possible that d = 1.

Nevertheless, the natural morphism A = E × E′ → (E × E′)/G = X is almost always

étale, with an exceptional case in characteristic p = 2, when the group scheme G is not

constant. But also in this case, treated in the subsequent paragraph, there still exists a

finite étale covering X̃ → X such that ω
X̃
' O

X̃
, where X̃ is an abelian surface.

The exceptional case is (a3) in [18], page 37, where G = Z /2Z×µ2 is non-reduced in

characteristic p = 2. Here A → A/G is not étale, since G → Spec(k) is not constant by

Proposition 6.7. However, the subgroup scheme H = µ2 of G acts by translation on A,

so it can be identified with a subgroup H ⊂ A. Thus A/H is an abelian variety, as

explained in the proof of Proposition 3.9. There is a factorization A→ A/H → A/G = X

where A/H → X is étale as a quotient by the constant group scheme G/H = Z /2Z.

In summary, all bielliptic surfaces in the elliptic case satisfy properties (P2) and (P3).

Property (P1) is never fulfilled if p 6∈ {2, 3}, but can hold otherwise, see the table above.

In the quasielliptic case, the curve C is rational with one cusp and necessarily p ∈ {2, 3}.
Here there never exists an étale morphism ϕ : A→ X from an abelian surface A. Assume

by contradiction that this was the case. Let X → B be the Albanese morphism of X.

Choose a closed point b ∈ B such that the fiber Xb is isomorphic to C. Then choose a

second closed point x ∈ Xb and a third one e ∈ A mapping to x. Now regard A and B as

abelian varieties with neutral element e ∈ A and b ∈ B. Consider the diagram
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D //

étale
��

A

étale
��

C //

��

X

��
Spec(κ(b)) // B,

where D := Ab is the fiber over b ∈ B. The composition A → B is by choice a ho-

momorphism. Thus the curve D = ker(A → B) is of canonical type and a subgroup

scheme of A. If some connected component of D was reducible, then each of its integral

components would be a (−2)-curve and in turn isomorphic to P1. But this is impossible,

as Alb1
P1 = Spec(k). Hence the identity component D0 is irreducible. As both C and

D → C are reduced, also D0 is reduced. So D0 is an integral, proper group scheme over

the algebraically closed field k, and thus an elliptic curve. But as D0 → C is faithfully

flat, also C is regular, a contradiction. This has shown that no étale morphism A → X

from an abelian surface A can exist if X is quasielliptic.

On the other hand, there always exists the finite flat covering E × C → X to the

quotient X = (E × C)/G. Here E is an elliptic curve and C is integral of Albanese

dimension m = 0 with ωC ' OC due to Example 3.44. Hence property (P4) is fulfilled.

The next table summarizes all possible patterns, where d = ord(ωX). Here (n, y, n, y),

which cannot occur for an Enriques surface, appears. If p 6∈ {2, 3}, the pattern is always

(n, y, y, y) and for each p ∈ {2, 3}, every possibility listed in the table actually occurs.

(P1) (P2) (P3) (P4)

elliptic d ≥ 2 n y y y
elliptic d = 1 y y y y

quasielliptic d ≥ 2 and p | d n n n y
quasielliptic d ≥ 2 and p - d n y n y
quasielliptic d = 1 y y n y

Table 8
Property patterns of bielliptic surfaces.

Remark 6.8. For a bielliptic surface X, the dualizing sheaf ωX ∈ Picτ (X) already has the

property ωX ∈ Pic0(X). Indeed, the first step in the proof of Theorem 4.17 can be applied

just as well here and shows that ωX ' f∗(N ) for some invertible sheaf N on Y , where

f : X → Y is the Albanese morphism of X. Now N ∈ Picτ (Y ) is numerically trivial and

the equality Pic0(Y ) = Picτ (Y ) holds according to Example A.31. Hence Proposition 3.39

implies f∗(N ) ∈ Pic0(X), as claimed.

It appears to be an interesting question to what extent property (P4) holds true for

singular surfaces or in higher dimensions.
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Appendix A

A.1 Basic Group Schemes

Settle the notation: Let GZ be a group scheme over Z. Denote its base change to a

scheme S by GS . In the case that the ground scheme S is fixed, also abbreviate G = GS .

(i) Let Γ be an abstract group and ΓZ =
∐
γ∈Γ Spec(Z). Given a connected scheme T ,

a morphism T → ΓZ corresponds to the choice of a connected component of ΓZ, and

thus to an element γ ∈ Γ. Hence Γ induces a group structure on ΓZ(T ). It extends

to T -valued points for not necessarily connected schemes T by decomposing T into

its connected components. This defines the constant group scheme ΓZ.

(ii) Set Gm,Z = Spec(Z[x, x−1]). The identification Gm,Z(T ) = H0(T,O×T ) for every

scheme T induces a group structure on Gm,Z(T ) by multiplication. This yields the

multiplicative group scheme Gm,Z.

(iii) Define Ga,Z = Spec(Z[x]). For any scheme T , a group structure on Ga,Z(T ) is given

by the identification Ga,Z(T ) = H0(T,OT ) and addition. This yields the additive

group scheme Ga,Z.

(iv) For n ≥ 1, set µn,Z = Spec(Z[x]/(xn − 1)). Given an arbitrary scheme T , the

identification µn,Z(T ) = { r ∈ H0(T,OT ) | rn = 1 } induces a group structure on

µn,Z(T ) by multiplication. This yields the group scheme µn,Z of n-th roots of unity.

It can also be seen as the kernel of the multiplication [n] : Gm → Gm.

(v) Let S be a scheme of characteristic p > 0, that is, H0(S,OS) is a ring of characteris-

tic p. Define the group scheme αp,S as the kernel of the homomorphism Ga,S → Ga,S

induced by the Frobenius. Thus αp,S(T ) = { r ∈ H0(T,OT ) | rp = 0 } for all S-

schemes T . If S = Spec(R) is affine, then αp,S = Spec(R[x]/(xp)).

Let G be a group scheme over a base scheme S. If G→ S is finite locally free of constant

degree d, then the order of G is defined to be ord(G) = d. If G is commutative, then

multiplication by d is constant according to [126], Theorem on page 4.

Group Schemes of Prime Order. Now let k be an algebraically closed ground field.

Each finite group scheme G over k of order ` = dimkH
0(G,OG) for a prime number ` is

isomorphic to the constant group scheme Z /`Z, to µ` or to α` by [126], Lemma 1. Here

α` only exists in the case that ` equals the characteristic p of k.
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Cartier Duality. Every finite commutative group scheme G over a field k of character-

istic p has a Cartier dual GD, see [125], Section 3.8, for details. It is defined by the group

valued point functor GD(T ) = Hom(Grp-Sch)(GT ,Gm,T ), which is actually representable

by a scheme. Evaluation induces a natural isomorphism G
'−→ GDD and the assignment

G 7→ GD defines a contravariant auto-equivalence of the category of finite commutative

group schemes over k. For any prime `, duality yields (Z /`Z)D ' µ` and αDp ' αp.
The first isomorphism is a direct consequence of the definition. For the self-duality

of αp, observe that for a given k-algebra R, a morphism of R-schemes αp,R → Gm,R

corresponds to a homomorphism of R-algebras R[x, x−1] → R[x]/(xp), and hence to a

unit ϕ(x) in the latter ring. If αp,R → Gm,R is additionally a homomorphism of group

schemes, then moreover ϕ(x1 + x2) = ϕ(x1)ϕ(x2) has to hold in R[x1, x2]/(xp1, x
p
2). Write

ϕ(x) =
∑p−1

i=0 λix
i and equate coefficients at 1, x0

1x2, x
1
1x2, x

2
1x2, . . . , x

p−1
1 x2. It follows

that ϕ(x) = exp(λ1x), where λp1 = 0 and exp(λ1x) =
∑p−1

i=0
(λ1x)i

i ! . This defines an

isomorphism αp
'−→ αDp , which is given on R-valued points by λ 7→ exp(λx). Due to the

functional equation of the exponential function, this isomorphism is in fact compatible

with the group scheme structure.

If ` differs from the characteristic p of k, a choice of a primitive root of unity in k yields

a non-canonical isomorphism Z /`Z '−→ µ`. Although µp ' αp as k-schemes, given by

x 7→ x− 1, they are not isomorphic as group schemes over k, as their duals already have

different underlying topological spaces.

Connected Component G0 and Torsion Component Gτ of the Identity. Let G

be a commutative group scheme locally of finite type over a scheme S. If S is the spectrum

of a field, then G0 denotes the connected component of the identity . It is an open and closed

subgroup scheme of G according to [78], Lemma 5.1, which is geometrically irreducible, of

finite type over k, and its formation commutes with field extensions k ⊂ E. Also, define

the torsion component of the identity Gτ ⊂ G to be the union of the preimages of G0

under multiplication by all n ≥ 1. Due to op. cit., Lemma 6.9, this set is open in G, so

it inherits a scheme structure, and it is moreover a subgroup scheme of G. The formation

of Gτ also commutes with field extensions k ⊂ E.

In the general situation of a noetherian ground scheme S, the definitions of G0 and Gτ

can be deviated as follows, based on [35], Exposé VIB, Partie 3, where details are provided.

Consider the subfunctor G0 of G defined on T -valued points for S-schemes T by

G0(T ) = { t ∈ G(T ) | ts : Ts → Gs factors through (Gs)
0 for all s ∈ S }.

Without further assumptions, there is no reason that this functor is representable by a

subgroup scheme of G. At least in the case that the set-theoretic union
⋃

(Gs)
0 is open

in G, then the union is naturally a subscheme of G and, indeed, represents the functor G0.

In the same manner, define the subfunctor Gτ of G. Again, if the set-theoretic union⋃
(Gs)

τ ⊂ G is open, then this is the subscheme of G representing the functor Gτ . Both

G0 and Gτ are compatible with base change in S.
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A.2 Principal Homogeneous Spaces

Let S be a locally noetherian ground scheme, and G an S-group scheme whose structure

morphism is fppf. A principal homogeneous space under G is an fppf S-scheme J with a

right G-action ρ : J ×G→ J such that Φ = (prJ , ρ) is an isomorphism. This means that

Φ: J ×G −→ J × J, (j, g) 7−→ (j, jg),

described by its induced maps on T -valued points for all S-schemes T , is a collection of

bijections. So the action on T -valued points is simply transitive.

In the case that J(S) 6= ∅, every section e : S → J induces an isomorphism ψ : G
'−→ J

of G-schemes, given on T -valued points by g 7→ eg. Here e also denotes the composition

of the structure morphism T → S and e : S → J . The simple transitivity of the action ρ

implicates that ψ is an isomorphism.

Example A.1. Let k ⊂ E be a finite Galois extension of degree d. Write S = Spec(k),

S′ = Spec(E) and b : S′ → S for the natural morphism. Denote by G the constant S-group

scheme Gal(E/k) = {σ1, . . . , σd}, which acts by S′(T )×G(T )→ S′(T ), (t, σ) 7→ Spec(σ)◦t
on S′ for connected S-schemes T . Then S′ is a principal homogeneous space under G,

because the map S′(T ) × G(T ) → S′(T ) × S′(T ), (t, σ) 7→ (t, tσ) corresponds to the

homomorphism ϕ : E ⊗k E →
∏d
i=1E, x⊗ y 7→ (x · σi(y)), which is bijective:

Choose a basis y1, . . . , yd ∈ E as a vector space over k. Denote by V =
∏d
i=1E the

target of ϕ, considered as a vector space over E. The family (σi(yj))i ∈ V of the im-

ages of 1 ⊗ yj under ϕ, indexed by 1 ≤ j ≤ d, is linearly independent over E. Indeed,

otherwise the resulting quadratic matrix (σi(yj))i,j had linearly dependent columns, and

therefore also linearly dependent rows. The latter yields non-trivial linear combinations∑d
i=1 λiσi(yj) = 0 for all 1 ≤ j ≤ d. But then

∑d
i=1 λiσi = 0 follows, which contradicts

the linear independence of characters.

Remark A.2. A principal homogeneous space J under G becomes isomorphic to G after a

faithfully flat base change, by definition. Therefore J inherits every property of G for which

faithfully flat descent is valid, see [56], Proposition 2.7.1, and also [58], Proposition 17.7.4.

If J is quasicompact over S, this includes being proper, finite, flat, smooth or étale.

Remark A.3. The set of isomorphism classes of principal homogeneous spaces under a

fixed S-group scheme G can be embedded into the first cohomology group H1(Sfppf , G) if G

is commutative. In the case that G is not commutative, the non-abelian Čech cohomology

group Ȟ1(Sfppf , G) can be used instead of H1(Sfppf , G). The in general non-trivial cokernel

of the embedding arises as there are potentially sheaf principal homogeneous spaces, also

called torsors , which are not representable by a scheme. There are several cases in which

every torsor is representable by a scheme, for instance if G is affine or a regular abelian

S-scheme. For details, see [90], Chapter III, Section 4.
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A.3 Analytification and GAGA

There exists a functor X 7→ Xan from the category of schemes locally of finite type over C
to the category of analytic spaces over C, the analytification. Given X or f : X → Y ,

also Xan and fan : Xan → Y an are called the analytification of X and f , respectively. An

analytic space is a locally ringed space which is locally isomorphic to the vanishing set of

finitely many analytic functions, that is, holomorphic functions on an open subset in Cr.
For a treatment of complex analytic spaces, see Grauert and Remmert [44].

This section presents some essential properties of the analytification. The foundation

was laid by Serre in his article “Géométrie algébrique et géométrie analytique” [118],

abbreviated as GAGA. This summary mainly follows Grothendieck and Raynaud [59],

Exposé XII. A down-to-earth approach to this topic is Neeman [97], and for an overview,

see also Hartshorne [64], Appendix B.

Let X be a scheme locally of finite type over C. It is covered by affine open subsets

U where each of them is the spectrum of a C-algebra C[T1, . . . , Tr]/(f1, . . . , fs). The

polynomials f1, . . . , fs define analytic functions on D = Cr, equipped with the classical

topology as a metric space, and their vanishing set is the closed subset Uan = V (f1, . . . , fs).

Its structure sheaf is the quotient OUan = OD /(f1, . . . , fs) of the sheaf OD of analytic

functions on D, analogous to OU . For an affine open cover (Ui)i∈I of X, the enclosed

gluing datum provides a gluing datum for the family (Uan
i )i∈I , which in turn yields Xan.

In the same manner, a morphism f : X → Y is locally given by polynomials, which define

the analytification fan : Xan → Y an, and this construction is functorial.

For every scheme X locally of finite type over C, the natural morphism α : Xan → X of

locally ringed spaces over C is flat. The underlying continuous map is the inclusion of the

closed points into X, that means Xan = X(C). It is compatible with fiber products and

for every x ∈ Xan, the induced map on completions α̂x : ÔX,α(x) → ÔXan,x is bijective.

Various topological and regularity properties hold for X if and only if they hold for Xan.

For instance, this is true for Serre’s conditions (Si) and (Ri), connectedness, irreducibility,

and dim(X) = dim(Xan). Similarly, a morphism f of finite type is an open or closed

embedding, an isomorphism, separated, proper, finite, flat, smooth or étale if and only if

its analytification fan has the corresponding property.

Remark A.4. The underlying topological space of the fiber product Xan × Xan in the

category of analytic spaces is the usual product of sets. As Xan is separated over C if the

diagonal ∆ ⊂ Xan×Xan is closed, this is equivalent to Xan being Hausdorff. Furthermore,

Xan is proper over C if and only if Xan is compact, and Xan is smooth over C if and only

if Xan is a complex manifold.

Étaleness of a morphism between complex analytic spaces means that the induced ho-

momorphisms on the formal completions of all local rings are bijective. Recall that this

characterizes étaleness for a morphism of schemes over a separably closed field. In the

category of analytic spaces, this property exactly means that it is a local isomorphism due

to [51], Proposition 1.9. For schemes, because of the coarser topology, étale morphisms are
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in general not local isomorphisms, since a local isomorphism is often a global isomorphism.

Indeed, a separated morphism f : X → Y of irreducible schemes is a local isomorphism if

and only if it is an open embedding, by [50], Proposition 8.2.8. Thus if f is additionally

closed, it is an isomorphism.

Let F be an OX -module. Then Fan := α∗(F) is an OXan-module, and the induced

functor between the categories of modules under the structure sheaf is exact and faithful.

If f is proper, then there exist natural morphisms (Rif∗F)an → Rifan
∗ (Fan) for all i ≥ 0,

which are bijective if F is coherent. Applied to the structure morphism, this yields the

first part of the following central theorem:

Theorem A.5 (Serre). Let F be a coherent sheaf on a proper C-scheme X. Then naturally

H i(X,F)
'−→ H i(Xan,Fan) for all i ≥ 0. Moreover, the functor induced by F 7→ Fan

between the categories of coherent sheaves on X and Xan is an equivalence of categories.

Furthermore, F is locally free of rank r if and only if Fan is locally free of rank r, by [97],

Lemma A1.5.1. Hence especially Pic(X) = Pic(Xan). A consequence of Serre’s theorem

is that X 7→ Xan defines a faithfully flat functor from the category of proper C-schemes

to the category of compact complex analytic spaces.

Analytification behaves well with respect to coverings. If X is a proper C-scheme, then

the category of finite X-schemes is equivalent to the category of analytic spaces finite

over Xan, and analogously for finite étale morphisms. In the latter case, the Riemann

existence theorem states that the same conclusion holds under more general assumptions.

Concerning the terminology, a finite covering of analytic spaces is a finite morphism such

that every irreducible component of the total space maps onto an irreducible component

of the base.

Theorem A.6 (Riemann Existence Theorem). Let X be a scheme locally of finite type

over C. Analytification induces an equivalence between the category of finite étale mor-

phisms X ′ → X and the category of finite étale coverings X ′ an → Xan.

A corollary of this theorem is that for a connected scheme X locally of finite type

over C, the profinite completion of its topological fundamental group π̂top
1 (Xan, x) at a

point x ∈ Xan can be canonically identified with the étale fundamental group π1(X,α(x)).

The latter, introduced by Grothendieck [59], is the automorphism group Aut(F ) of the

fiber functor F : (Fin Ét /X) → (Fin Set), U 7→ U(Ω) from the Galois category of finite

étale X-schemes to the category of finite sets, where Spec(Ω) → X is a geometric point.

This section is concluded with some brief remarks on the essential image of the ana-

lytification, based on the survey [64], Appendix B, Section 3f. and the references given

there. A compact complex analytic space Y is called algebraic if Y ' Xan for a proper

C-scheme X. If Y is a manifold of dimension 1, that is, a Riemann surface, then Y is alge-

braic. In higher dimensions, there always exist compact manifolds which are not algebraic.

Closed subspaces of an algebraic Y are again algebraic. This relies on Oka’s coherence

theorem, [44], Chapter 2, Section 5, which ensures that OY is coherent. A closed subspace
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is consequently given by coherent ideal sheaf, so Serre’s theorem can be applied. In partic-

ular, projective complex analytic spaces are algebraic. Moreover, a compact manifold Y

is projective if and only if it is Kähler and Moishezon. The latter means that the field of

meromorphic functions M(Y ) has transcendence degree over C equal to n = dim(Y ). This

value is always at most n. The Moishezon condition is necessary for Y to be algebraic,

since K(X) = M(Xan) has transcendence degree dim(X) = dim(Xan).

A.4 Cohomology and Base Change

Let f : X → S be a proper morphism of locally noetherian schemes, F a quasicoherent

sheaf on X and d ≥ 0. Given a morphism b : S′ → S, consider the cartesian square

X ′

g
��

c // X

f
��

S′
b

// S.

There is a natural morphism ϕdb : b∗Rdf∗(F) → Rdg∗(c
∗F) due to [53], (1.4.15.4). For

flat b, it is always true that ϕdb is an isomorphism by [53], Proposition 1.4.15. If this holds

for all b, then the sheaf F is called cohomologically flat in degree d over S. Define f to be

cohomologically flat in degree d if OX is cohomologically flat in degree d over S.

Criteria for cohomological flatness were elaborated in vast generality by Grothendieck

in [55], specifically Section 7.7f. Mumford made simplifications in [95], Section 5, which

were included by Hartshorne in [64], Chapter III, Section 12. Moreover, Osserman [102]

assembled an overview with extended results, which served as the basis for what follows.

Given a point s ∈ S, denote by ιs : Spec(κ(s)) → S the natural morphism and by Fs
the pullback of F to the fiber Xs. For convenience, define every F to be cohomologically

flat in degree −1 over S.

Theorem A.7 (Cohomology and Base Change). Let f : X → S be a proper morphism

of locally noetherian schemes. Let F be a coherent sheaf on X which is flat over S. The

subsequent two statements are equivalent for each fixed d ≥ 0.

• The sheaf F is cohomologically flat in degree d over S.

• For every point s ∈ S, the map ϕdιs : Rdf∗(F)(s)→ Hd(Xs,Fs) is surjective.

Furthermore, consider the following statements for a fixed d ≥ 0.

(i) The sheaf F is cohomologically flat in degrees d− 1 and d over S.

(ii) The map S → N, s 7→ hd(Fs) is constant of value v.

(iii) The sheaf Rdf∗(F) is locally free of rank r.

Then (i) implies both (ii) and (iii) as well as v = r. If S is additionally reduced, then

conversely (ii) implies (i), and in turn also (iii) with v = r.
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Observe that if (iii) holds and additionally ϕdιs is surjective for all s ∈ S, then it is an

isomorphism by the first equivalence, and thus (ii) holds.

In the situation of the theorem, the Euler characteristic S → Z, s 7→ χ(Fs) is lo-

cally constant, whereas the map S → N, s 7→ hd(Fs) is always upper semi-continuous.

The latter means that for every s0 ∈ S, there exists an open neighborhood U such that

hd(Fs0) ≥ hd(Fs) for all s ∈ U . It is possible to set limits to what happens if this is not

an equality:

Proposition A.8. Let S be an irreducible, noetherian scheme and η its generic point.

Let f : X → S be a proper morphism and F a coherent sheaf on X which is flat over S.

Suppose s0 ∈ S and d ≥ 0 such that hd(Fs0) > hd(Fη). Then also hd−1(Fs0) > hd−1(Fη)
or hd+1(Fs0) > hd+1(Fη).

If S is additionally regular and dim(S) = 1, then Rd+1f∗(F) has torsion if and only if

there exists an s0 ∈ S such that hd(Fs0) > hd(Fη) and hd+1(Fs0) > hd+1(Fη).

A.5 Fibrations and Zariski’s Main Theorem

Definition A.9. A morphism f : X → Y of schemes is called a fibration if the associated

homomorphism OY → f∗(OX) is an isomorphism. If X and Y are schemes over some base

scheme S, also demand f to be a morphism of S-schemes.

The additional request that a fibration f is compatible with base change in S, that is,

for every morphism Y ′ → Y , the base change fY ′ : XY ′ → Y ′ continues to be a fibration,

exactly means that f is additionally cohomologically flat in degree 0 over S. Notice in

this context that every proper morphism f : X → Spec(k) is cohomologically flat in all

degrees d ≥ 0.

Lemma A.10. Let X be a proper scheme over an arbitrary field k, which is geometrically

reduced and geometrically connected. Then the structure morphism f : X → Spec(k) is a

fibration, that is, h0(OX) = 1.

Proof. As X is proper over k, the ring A = H0(X,OX) is a finite-dimensional k-algebra.

Hence A is a product of artinian local k-algebras, where each factor corresponds to a

connected component of X. By assumption, there is only one factor. Furthermore, as

X is geometrically reduced, the ring A is a finite separable field extension of k. Thus

A⊗k k ' k[T ]/(q) for a separable polynomial q of degree [A : k]. Since X is geometrically

connected, the Chinese remainder theorem implies [A : k] = 1. So h0(OX) = 1 holds.

The following lemma shows that the property of being a fibration can often be verified

fiberwise, which is valid according to [55], Proposition 7.8.6 and Corollaire 7.8.8.

Lemma A.11. Let f : X → S be a flat, proper morphism of locally noetherian schemes

such that all fibers fs : Xs → Spec(κ(s)) for s ∈ S are fibrations. Then f is a fibration

and cohomologically flat in degree 0.
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Given any proper morphism h : X → Z, its Stein factorization, [53], Théorème 4.3.1,

naturally yields an associated fibration: There exists a decomposition X
f−→ Y

g−→ Z of h

into a fibration f and a finite morphism g, where Y = Spec(h∗(OX)). The next proposition

summarizes some fundamental properties of fibrations.

X Xη

f

Y

X XηX XηX X

f

η

Figure 7: A fibration f from a surface X to a curve Y .

Proposition A.12. Let f : X → Y be a fibration between proper schemes over an arbitrary

field k. The following statements hold:

(i) f is surjective and for all y ∈ Y , the fiber Xy is connected.

(ii) If X is integral, then Y is integral and f is generically flat.

(iii) If X is normal, geometrically normal or geometrically integral, then Y has the same

property.

(iv) The map Pic(Y ) → Pic(X), N 
→ f∗(N ) is injective.

(v) There exists a natural injection H1(Y,OY ) ↪→ H1(X,OX).

(vi) Assume that X is irreducible. Then Y is irreducible, and the generic fiber Xη is

irreducible, geometrically connected and of dimension dim(X) − dim(Y ). If addi-

tionally X is reduced, normal, Cohen–Macaulay, Gorenstein or regular, then Xη has

the same property.

(vii) Assume that Y is irreducible. If Xη is geometrically irreducible, geometrically in-

tegral, geometrically reduced, geometrically normal or smooth, then there exists a

non-empty open subset V ⊂ Y such that Xy has the same property for all y ∈ V .
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Proof. To see that f is surjective, note that Im(f) ⊂ Y is closed as a consequence of the

properness of f . Consider U ⊂ Y open and observe that H0(U,OY ) = H0(f−1(U),OX).

Now suppose that V = Y r Im(f) is non-empty. Then choose U ⊂ V affine, open and

non-empty. Hence H0(U,OY ) = H0(∅,OX) = 0, which implies U = ∅, a contradiction.

Thus f is surjective. Its fibers are connected according to [53], Corollaire 4.3.2.

To deduce (ii), let X be integral. Then H0(U,OY ) = H0(f−1(U),OX) is an integral

domain for every non-empty open U ⊂ Y , so Y is integral. Eventually, [56], Théorème 6.9.1

shows that f is generically flat.

For assertion (iii), note that normality passes on from X to Y by the same reasoning

as for the integrality. The base change fk : Xk → Yk continues to be a fibration, because

Yk → Y is flat. So this shows that Yk is integral or normal, whenever Xk has this property.

Therefore in such cases, Y is geometrically integral or geometrically normal, respectively.

As OY = f∗(OX), the projection formula f∗f
∗(N ) = f∗(OX)⊗N yields assertion (iv).

In statement (v), the injection is given by the exact sequence of low-degree terms in the

Leray spectral sequence Ea,b2 = Ha(Y,Rbf∗(OX))⇒ Ha+b(X,OX) using OY = f∗(OX).

Next, cover (vi). The surjectivity of f implies that also Y is irreducible. The generic

fiber of f is irreducible by [50], Chapitre 0, (2.1.8). The assertion about its dimension is a

consequence of [56], Corollaire 5.6.6. To see its geometric connectedness, consider the flat

base change fη : Xη → Spec(K(Y )) of f , which is again a fibration, so h0(OXη) = 1. As

a result, Xη is geometrically connected.

The property of being reduced, normal, Cohen–Macaulay, Gorenstein or regular is sta-

ble under localization, and consequently transfers to Xη. Indeed, the generic fiber can be

covered by Spec(A⊗R Frac(R)) = Spec(T−1A) for affine open subsets Spec(A) ⊂ X map-

ping to Spec(R) ⊂ Y , where T is the image of the multiplicative system S = Rr{0} under

R→ A. Finally, assertion (vii) follows from [57], Théorème 9.7.7 and Théorème 12.2.4.

Remark A.13. In the case that k is a perfect field, X is integral and dim(Y ) = 1,

it is always true that the generic fiber Xη is geometrically integral according to [56],

Corollaire 4.6.3, [10], Lemma 7.2, and the proof of Proposition A.16 (i) below. If the

base Y is higher-dimensional, this is no longer ensured. For instance, wild hypersurface

bundles of degree p are counterexamples over a field of characteristic p > 0. Those are

morphisms f : X → Y of smooth, integral, proper k-schemes with an embedding of X into

some projective bundle P(E)→ Y such that each geometric fiber Xy = X ×Y Spec(κ(y))

is defined by xp for some non-zero x ∈ Ey. For a treatment of wild conic bundles on Fano

threefolds X, namely wild hypersurface bundles f : X → Y of degree p = 2 and relative

dimension 1, see [92].

The next statement, one variant of Zariski’s main theorem , follows from the proof of

[64], Chapter III, Corollary 11.4, together with [53], Corollaire 4.4.9.

Proposition A.14 (Zariski’s Main Theorem). Let f : X → Y be a birational, proper

morphism of integral, noetherian schemes, where Y is normal. Then f is a fibration. If

additionally f is quasi-finite, then f is an isomorphism.
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Before deducing a partial converse of this theorem and a stronger criterion for f to be

a fibration if f is a morphism of k-schemes, first consider the following remark.

Remark A.15 (Resolution of Indeterminacy). Let f : X 99K Y be a rational map between

integral, proper schemes over an arbitrary field k. The graph Γf of f is defined as follows:

For any representative fU : U → Y of f , let ΓfU ⊂ U × Y be the usual graph of the

morphism fU , that is, the image of the closed embedding (idU , fU ) : U → U × Y . Define

Γf to be the reduced closure of ΓfU inside X×Y . Since X is integral, this is a well-defined,

integral, proper k-scheme. The projection prX : Γf → X restricted to U = ΓfU yields the

inclusion U ↪→ X, so prX is birational, and the diagram

Γf
prX

��

prY

��
X

f
// Y

is commutative. This means that restricting to ΓfU yields the same morphism to Y on

both paths. Also if X is normal, then Zariski’s main theorem shows that prX is a fibration.

In conclusion, after passing from X to Γf via the birational morphism prX , now the map

to Y is defined everywhere.

Proposition A.16. Let f : X → Y be a surjection between integral, proper schemes over

an arbitrary field k, where Y is normal. Then the following statements hold:

(i) f is a fibration if and only if K(Y ) is algebraically closed in K(X).

(ii) Suppose dim(X) = dim(Y ). Then f is a fibration if and only if f is birational.

Note that the equality K(Xη) = K(X) and (i) show that f is a fibration if and only if

its flat base change fη is a fibration. The latter holds for instance if Xη is geometrically

reduced and geometrically connected according to Lemma A.10.

Proof. Let X
ϕ−→ Y ′

ψ−→ Y be the Stein factorization of f . Consider assertion (i). First,

assume that K(Y ) is algebraically closed in K(X). The finite morphism ψ yields a finite

field extension K(Y ) ⊂ K(Y ′) inside K(X). Since every element of K(Y ′) is algebraic over

K(Y ), the assumption implies that K(Y ) = K(Y ′). Hence ψ is birational and Zariski’s

main theorem shows that ψ∗(OY ′) = OY , and therefore f∗(OX) = OY .

Conversely, assume that f∗(OX) = OY , and by contradiction that K(Y ) is not al-

gebraically closed in K(X). Then there exists a finite field extension K(Y ) ⊂ E of

degree ≥ 2 inside K(X). The generic fiber fη : Xη → Spec(K(Y )) is again a fibration

as a flat base change of f , that means H0(Xη,OXη) = K(Y ). The inclusion of fields

E ⊂ K(X) = K(Xη) gives rise to a dominant rational map g : Xη 99K Spec(E). Resolu-

tion of indeterminacy yields the commutative diagram
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X ′

pr1

��

pr2

$$

f ′

&&
Xη

g //

fη

77
Spec(E)

h // Spec(K(Y )),

where X ′ = Γg with K(X ′) = K(Xη) and (pr1)∗(OX′) = OXη . By the commutativity of

the diagram, also f ′ is a fibration, so K(Y )→ H0(X ′,OX′) is bijective. But on the other

hand, this map has a factorization through the field extension K(Y ) ⊂ E of degree ≥ 2,

which is a contradiction. Hence K(Y ) is algebraically closed in K(X). This completes the

proof of (i).

To show assertion (ii), assume that dim(X) = dim(Y ). If f is birational, that means

K(Y ) = K(X), then f is a fibration by (i). Conversely, suppose that f is a fibration. As

the value of trdeg(K(X)/k) = dim(X) equals trdeg(K(Y )/k) = dim(Y ), the additivity of

transcendence degrees implies that the field extension K(Y ) ⊂ K(X) is finite, in particular

algebraic. Now since K(Y ) is algebraically closed in K(X), this gives K(X) = K(Y ), so

f is birational.

Example A.17. Let X and X ′ be proper schemes over an arbitrary field k. If h0(OX) = 1,

then prX′ : X × X ′ → X ′ is a fibration: Every fiber of this projection is a base change

of X to an extension field of k, so it remains to be a fibration by flat base change. Thus

Lemma A.11 can be applied.

Remark A.18. Let X be a proper scheme over an arbitrary field k. Suppose that X is

reduced and connected. In general for h0(OX) = 1 to hold, it is with regard to Lemma A.10

necessary that X is both geometrically reduced and geometrically connected.

First, the purely topological connectedness of X is not sufficient: Consider X = Spec(C)

in the natural way as a scheme over R. Then h0(OX) = 2, although X is geometrically

reduced and connected. Here, as computed in Example A.1, the base change to the

algebraic closure XC = Spec(C)q Spec(C) is not connected, but reduced.

Similarly, let k now be an imperfect, separably closed field of characteristic p > 0, for

instance the separable closure of Fp(T ). Choose α ∈ k without p-th root, and consider the

purely inseparable field extension E = k[T ]/(T p − α). Then the k-scheme X = Spec(E)

satisfies h0(OX) = p, although X is reduced and geometrically connected. In this case,

XE is the spectrum of E⊗kE, which is non-reduced. Indeed, let β ∈ E be a p-th root of α,

so that 1, β, ..., βp−1 form a k-basis of E. Then 1⊗β−β⊗1 ∈ E⊗kE is non-zero, since it

is a non-trivial linear combination of two basis vectors. But its p-th power is zero, so XE

is non-reduced. But as k is separably closed, the connected k-scheme X is geometrically

connected.
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A.6 Curves of Fiber Type

Fix a normal, integral, proper surface X over an arbitrary field k. In this section, curves

of fiber type on X are introduced, as a tool to obtain a fibration from X to a curve. Recall

that a curve on X means an effective Weil divisor, that is, a closed subscheme without

embedded points which is equidimensional of dimension one.

Definition A.19. A curve C =
∑d

i=1miCi on X with integral components Ci and mul-

tiplicities mi ≥ 1 as well as d ≥ 1 is called of fiber type if (C ·Ci) = 0 for every 1 ≤ i ≤ d.

It is called of canonical type if additionally (KX · Ci) = 0 for every 1 ≤ i ≤ d. The curve

C is indecomposable if C is connected and gcd(mi) = 1.

Clearly, a curve is of fiber type if and only if each of its connected components is of

fiber type. If KX is numerically trivial, then all curves of fiber type are automatically of

canonical type.

Example A.20. Let f : X → Y be a surjection onto a regular curve Y , for instance a

fibration. Then for every closed points y ∈ Y , the fiber Xy ⊂ X is a curve of fiber type:

In fact, deg(OY (y)) > 0 and the Nakai–Moishezon criterion show that the invertible sheaf

OY (y) is ample. Thereby OX(Xy) = f∗(OY (y)) is still semi-ample and especially nef.

Furthermore,

(X2
y ) = deg(f∗(OY (y))|Xy) = deg(OXy) = 0.

So Xy is nef and has trivial self-intersection number, which exactly means that Xy is of

fiber type.

The intersection matrix ((Ci · Cj))1≤i,j≤d of a curve of fiber type is always negative

semi-definite. This is the core of the subsequent statement, which refers to [18], Lemma

on page 28.

Proposition A.21. Let C =
∑d

i=1miCi be a connected curve of fiber type on X. Consider

a Weil divisor D =
∑d

i=1 niCi for ni ∈ Z. Then (D2) ≤ 0 holds, with equality if and only

if D is a rational multiple of C.

Let C =
∑d

i=1miCi be a curve on X. Decompose each curve C ′ =
∑d

i=1m
′
iCi + C ′′

which is linear equivalent to C such that no Ci appears as an integral component of C ′′.

Set ni = min{m′i}, where the minimum is taken over all such C ′. Define the fixed part

of C to be F =
∑d

i=1 niCi. Its movable part is M = C−F . The subsequent lemma follows

directly from this definition.

Lemma A.22. The canonical inclusion H0(X,OX(M)) ↪→ H0(X,OX(C)) is bijective

and either M = 0 or M is a nef curve without fixed part.

Now the following proposition characterizes how curves of fiber type on X are connected

with fibrations from X to a curve. Set k′ = H0(X,OX) for the field of global sections.
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Proposition A.23. Let C ⊂ X be a curve of fiber type. The following are equivalent:

(i) There exists some n ≥ 1 such that dimk′ H
0(X,OX(nC)) ≥ 2.

(ii) There exists a fibration f : X → Y onto a curve Y such that each connected compo-

nent of C is a rational multiple of a closed fiber of f .

Proof. The preceding example shows that (ii) implies (i). Now for the other implication,

assume that dimk′ H
0(X,OX(nC)) ≥ 2 holds for some n ≥ 1. Let M = nC − F be the

movable part of nC. Apply Proposition A.21 to the nef curve M to see that M inherits

to be a curve of fiber type. As a consequence, the at most zero-dimensional base locus

of M must be empty, so M is actually base-point-free. Since the points where M is not

Cartier are contained in the base locus, M is Cartier. So OX(M) is a globally generated

invertible sheaf.

Let f : X → Y be the fibration obtained from the Stein factorization of the induced

morphism to some Pn. Then OX(M) = f∗(M ) holds for an ample invertible sheaf M

on Y . Because M is a curve, necessarily dim(Y ) ≥ 1 is valid. In order to exclude the

possibility dim(Y ) = 2, compute

0 = (M2) = deg(f) · (M 2).

This shows that deg(f) = 0. So f is a fibration to a regular, integral curve Y . Now M

must be a rational multiple of the pullback of some effective divisor on Y . Hence each

connected component of M has to be a rational multiple of a closed fiber. This property

then also has to hold true for the original curve C.

The dualizing sheaf and cohomology groups of an indecomposable curve of canonical

type are described in the next proposition, see [94], page 332f., for a proof.

Proposition A.24. Assume that k is algebraically closed and X is additionally Goren-

stein. Let C be an indecomposable curve of canonical type on X. Then ωC ' OC and

h0(OC) = h1(OC) = 1.

Observe that indecomposable curves of canonical type C on regular surfaces over an

algebraically closed field k are classified, see for instance [30], Proposition 3.1.1. If C is

integral, then C is either an elliptic curve, a rational curve with one cusp or a rational curve

with one node. In the case that C =
∑r

j=1mjCj is reducible, each integral component

Ci ⊂ C is a (−2)-curve. To compute all possible dual graphs of C, it is useful to note

that by Proposition A.21 for all 1 ≤ i ≤ d, the reduced curve
∑

j 6=iCj is an ADE-curve.

Those are exactly the possible exceptional divisors of the minimal resolution of a rational

double point, see Remark 4.21. The complete classification of indecomposable curves of

canonical type dates back to Kodaira [79] and Néron [99].
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A.7 Picard Schemes

Proposition A.25. Let X be a proper scheme over an arbitrary field k and k ⊂ E an

algebraic field extension. Then the natural map Pic(X)→ Pic(XE) is injective.

Proof. The concerning map can be extended further to Pic(X) → Pic(Xk), which is

injective by [130], Proposition 2.2, whose proof works for proper schemes.

The subsequent treatment of the Picard scheme refers to Kleiman [78]. Let f : X → S

be a separated morphism of finite type between locally noetherian schemes. Denote by

(C/S) the category of locally noetherian S-schemes. The relative Picard functor is the

contravariant functor defined by Pic(X/S) : (C/S)→ (Ab), T 7→ Pic(XT )/Pic(T ) with the

natural extension of this assignment, given by pullback, to morphisms. It is a presheaf

on (Zar/S), (Ét/S) and (Fppf/S). Denote its sheafifications on the respective sites by

Pic(X/S)(zar), Pic(X/S)(ét) and Pic(X/S)(fppf). If any of the four functors

Pic(X/S) −→ Pic(X/S)(zar) −→ Pic(X/S)(ét) −→ Pic(X/S)(fppf)

is representable by a scheme PicX/S , then call it the Picard scheme of X over S. As

discussed in [78], Section 4, there is at most one Picard scheme: If any of the four functors

is representable by PicX/S , then it also represents the other functors on its right-hand side

in the chain above. Observe that in [78], the different notation PicX/S for the relative

Picard functor and PicX/S for the Picard scheme is used.

In what follows, two theorems summarize core properties of the Picard scheme PicX/S .

As defined in Section A.1, if the group scheme PicX/S exists and it is locally of finite type

over S, then there are natural ways to define two subfunctors Pic0
X/S and PicτX/S . Their

representability as a subgroup scheme is a priori unclear, and the two theorems below give

affirmative answers under suitable assumptions. The first one treats the general situation

over a noetherian base scheme S, and the second one covers the special case S = Spec(k)

for a field k, where sharper statements can be derived.

Theorem A.26. Let f : X → S be a separated morphism of finite type between noetherian

schemes.

(i) If S is integral and f is proper, then there exists a non-empty open subscheme V ⊂ S
such that PicXV /V exists. It is a disjoint union of open subschemes which are quasi-

projective over V .

(ii) If f is projective, flat and has geometrically integral fibers, then PicX/S exists repre-

senting Pic(X/S)(ét). It is separated and locally of finite type over S.

(iii) If f is a fibration and cohomologically flat in degree 0, then the four Picard functors

are related as follows: Pic(X/S) ↪→ Pic(X/S)(zar) ↪→ Pic(X/S)(ét)
'−→ Pic(X/S)(fppf).

(iv) If f is a fibration, cohomologically flat in degree 0 and admits a section, then fur-

thermore the first three coincide: Pic(X/S)
'−→ Pic(X/S)(zar)

'−→ Pic(X/S)(ét).
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(v) Assume that PicX/S exists and that Pic0
Xs/κ(s) is smooth of the same dimension for all

s ∈ S. Then Pic0
X/S ⊂ PicX/S is an open subgroup scheme of finite type over S. If in

addition all Pic0
Xs/κ(s) are proper and PicX/S is separated, then Pic0

X/S ⊂ PicX/S is

closed and proper over S. Moreover, if f is smooth and projective with geometrically

irreducible fibers, then Pic0
X/S is projective over S.

(vi) Assume that f is proper and that PicX/S exists. Then PicτX/S ⊂ PicX/S is an open

subgroup scheme of finite type over S. If f is projective and flat with geometrically

integral fibers, then PicτX/S ⊂ PicX/S is also closed and quasi-projective over S. If

in this case f is additionally smooth, then PicτX/S is projective over S.

(vii) Forming PicX/S, PicτX/S and Pic0
X/S commutes with base change in S.

(viii) If PicX/S exists representing Pic(X/S)(ét) and h2(OXs) = 0 for some s ∈ S, then

PicX/S is smooth over an open neighborhood of s.

All statements refer to [78] and specifically: (i) Theorem 4.18.2; (ii) Theorem 4.8;

(iii) Theorem 2.5 and the bottom of page 21; (iv) Theorem 2.5; (v) Proposition 5.20

and Answer 5.7; (vi) Remark 6.19, Theorem 6.16 and Answer 5.7; (vii) Answer 4.4 and

the proof of Theorem 6.16; (viii) Proposition 5.19.

Introduce some notation for the next definition. Let S = Spec(k) and k ⊂ E be a field

extension, let s : Spec(E) → T be a morphism to some k-scheme T and M an invertible

sheaf on XT . Denote by M s the pullback of M along (idX × s) : XE → XT .

Definition A.27. Two invertible sheaves L and N on X are algebraically equivalent if

there is an n ≥ 1 and for every 1 ≤ i ≤ n there exist

(i) a field extension k ⊂ Ei,

(ii) a connected k-scheme Ti,

(iii) morphisms si, ti : Spec(Ei)→ Ti,

(iv) an invertible sheaf Mi on XTi ,

such that LE1 'M1,s1 and Mi,ti 'Mi+1,si+1 for 1 ≤ i ≤ n− 1, as well as Mn,tn ' NEn .

Two invertible sheaves L and N on X are τ -equivalent if there exists some m ≥ 1 such

that L ⊗m and N ⊗m are algebraically equivalent.

It follows directly from the definition that algebraic equivalence actually defines an

equivalence relation L ∼alg N on the set of invertible sheaves and on Pic(X). Further-

more, it is compatible with tensor products in the sense that L ∼alg N and L ′ ∼alg N ′

imply L ⊗L ′ ∼alg N ⊗N ′. To see the latter, note that replacing all M i by M i⊗L ′
Ti

in the definition above shows that L ⊗L ′ ∼alg N ⊗L ′, so by the same reasoning also

N ⊗L ′ ∼alg N ⊗N ′. Consequently, also τ -equivalence is an equivalence relation and

compatible with tensor products.

153



Appendix

Definition A.28. Let Picτ (X) ⊂ Pic(X) be the subgroup of isomorphism classes of

invertible sheaves which are τ -equivalent to OX . Define Pic0(X) ⊂ Picτ (X) to be the

subgroup of classes of invertible sheaves which are algebraically equivalent to OX .

Remark A.29. Note that according to Proposition 1.34, an invertible sheaf L on a

proper k-scheme X is τ -equivalent to OX if and only if it is numerically trivial, which

means deg(L |C) = 0 for every integral curve C ⊂ X.

The following theorem covers the special situation of Theorem A.26 in which the base

scheme S is the spectrum of a field. In this case, more results can be obtained.

Theorem A.30. Let X be a separated scheme of finite type over an arbitrary field k.

(i) If X is proper, then PicX/k exists, and is separated and locally of finite type over k.

It is a disjoint union of open subschemes which are quasi-projective over k.

(ii) If h0(OX) = 1, then Pic(X/k) ↪→ Pic(X/k)(zar) ↪→ Pic(X/k)(ét)
'−→ Pic(X/k)(fppf).

(iii) If h0(OX) = 1 and X(k) 6= ∅, then also Pic(X/k)
'−→ Pic(X/k)(zar)

'−→ Pic(X/k)(ét). In

particular if PicX/k additionally exists, then Pic(X) = PicX/k(k).

(iv) Assume that PicX/k exists. Then Pic0
X/k ⊂ PicX/k is an open and closed subgroup

scheme of finite type over k, which is geometrically irreducible.

(v) Assume that PicX/k exists. Then PicτX/k ⊂ PicX/k is an open subgroup scheme. If

X is proper, then it is also closed and of finite type over k.

(vi) Forming PicX/k, PicτX/k and Pic0
X/k commutes with extending k.

(vii) If X is proper with h0(OX) = 1, then dim(PicX/k) ≤ h1(OX). Equality holds if

and only if PicX/k is smooth at the neutral element. In this case, PicX/k is smooth

everywhere.

(viii) Let X be proper with h0(OX) = 1. If h2(OX) = 0 or p = 0, then PicX/k is smooth.

(ix) Assume that PicX/k exists. Let λ ∈ PicX/k be a rational point coming from an

invertible sheaf L on X. Then λ ∈ Pic0
X/k if and only if L is algebraically equivalent

to OX .

(x) Assume that PicX/k exists. Let λ ∈ PicX/k be a rational point coming from an

invertible sheaf L on X. Then λ ∈ PicτX/k if and only if L is τ -equivalent to OX .

(xi) If X is geometrically normal and proper, then Pic0
X/k is proper and (Pic0

X/k)red is

an abelian variety.

Unless mentioned otherwise, the statements all refer to [78]. Specifically: (i) Corol-

lary 4.18.3 and Proposition 4.17; (ii) Theorem 2.5 and the bottom of page 21; (iii) The-

orem 2.5; (iv) Proposition 5.3; (v) Proposition 6.12 and Remark 6.14; (vi) Answer 4.4,
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Proposition 6.12 and Proposition 5.3; (vii) Corollary 5.13 and (ii); (viii) Corollary 5.14,

Proposition 5.19 and (ii); (ix) Proposition 5.10; (x) Answer 6.11. Assertion (xi) refers to

[54], Théorème 2.1 and Corollaire 3.2.

Let X be a proper scheme over an arbitrary field k. Then Pic(X) = Pic(X/k)(k).

Consider the group homomorphism ι : Pic(X) → PicX/k(k). By Theorem A.30, the map

ι is injective if h0(OX) = 1, and an isomorphism if additionally X(k) 6= ∅. Furthermore,

Pic0(X) = ι−1(Pic0
X/k(k)) and Picτ (X) = ι−1(PicτX/k(k)).

The Néron–Severi group NS(X) = Pic(X)/Pic0(X) of X is a finitely generated abelian

group. If k is algebraically closed, this holds due to [13], Exposé XIII, Théorème 5.1. The

case of an arbitrary field follows, since Pic(X) → Pic(Xk) is injective and the preimage

of Pic0(Xk) is Pic0(X). The Picard number of X is the rank ρ(X) = rank(NS(X)) of

its Néron–Severi group. Hence, NS(X) ' Z⊕ρ(X)⊕T holds for the finite torsion group

T = Picτ (X)/Pic0(X). Finally, Num(X) = Pic(X)/Picτ (X) is the group of invertible

sheaves modulo numerical equivalence, so Num(X) = NS(X)/T ' Z⊕ρ(X).

Example A.31. Let C be a smooth, proper curve over an arbitrary field k, which satisfies

h0(OC) = 1. Then Pic0
C = PicτC and hence NS(C) is torsion-free.

To verify that Pic0
C ⊂ PicτC is an equality, assume without loss of generality that k is

algebraically closed, by faithfully flat descent. Also, it is sufficient to deduce that the

inclusion is bijective on closed points, since then PicτC has to be connected. Hence let L

be a numerically trivial invertible sheaf on C, and show that L is algebraically equivalent

to OC . As C is locally factorial, the class of L in Pic(C) corresponds to a Weil divisor

D =
∑
nixi with ni ∈ Z, up to linear equivalence. So L '

⊗
OC(xi)

⊗ni , where 0 =
∑
ni.

This shows that it is sufficient to deduce that OC(x) andOC(y) are algebraically equivalent

for every two closed points x, y ∈ C.

Consider the diagonal ∆ ⊂ C × C and the associated invertible sheaf M = OC×C(∆).

Let x ∈ C be a closed point. The induced morphism x : Spec(k) → C defines another

copy C ′ ⊂ C ×C of the curve C as the image of (idC ×x) : C → C ×C. The intersection

∆∩C ′ = ∆×C×C C ′ is the point x : Spec(k)→ C ′. The associated invertible sheaf to the

divisor x on C ′ = C is therefore OC(x) = Mx. Indeed, this equality means by definition

that OC′(∆∩C ′) = OC×C(∆)|C′ , which is a consequence of the fact that C ′ is integral and

not contained in ∆. Hence OC(x) = Mx and My = OC(y) for all closed points x, y ∈ C,

so OC(x) and OC(y) are in fact algebraically equivalent.

More generally, given any proper curve C over an algebraically closed field k, its Néron–

Severi group NS(C) ' Z⊕r is torsion-free of rank equal to the number r of irreducible

components of C according to [19], Section 9.2, Corollary 14.

For abelian varieties, the following proposition yields the same result. The reference is

[95], Section 19, Corollary 2 on page 178.

Proposition A.32. Let k be an arbitrary field and let A be an abelian variety over k.

Then Pic0
A = PicτA.

155



Appendix

A.8 Approach Using Models

In this section, the aim is to show how a model of a scheme can be used to approach

question (Q1) from a different perspective. To do so, fix a natural number n ≥ 0 and a

prime number p > 0. Consider the following statement:

(†) If X is a Gorenstein, geometrically normal, proper n-equidimensional scheme over a

field k of characteristic p such that ωX is numerically trivial, then ωX ∈ Pic(X) has

finite order.

Alternatively, X can additionally assumed to be smooth or projective. The statement

is true for all finite fields, since in those cases, every numerically trivial invertible sheaf

has finite order due to Proposition 4.8. The idea is to use this special case to progress

in proving (†) for all fields. Roughly speaking, the approach is the following: Choose

a suitable model of X, that is, a morphism X0 → S0 to an irreducible scheme S0 with

generic fiber X. The subsequent diagram illustrates the situation.

(A.1) Xs

πs
��

// X0

π

��

X

πη

��

oo

Spec(κ(s)) // S0

��

Spec(k)oo

Spec(L) .

If (†) holds for all fibers Xs for s ∈ S0 closed, then the idea is that this implies (†) for

the generic fiber X = X0,η. In this setting, cohomology and base change and Grothendieck

duality are new available tools which might help to achieve this goal.

Start with a series of reduction steps and deduce the existence of a model X0. In

the first step, reduce to the case that X is additionally geometrically integral and k is

finitely generated over its prime field F ⊂ k. Note that it is possible to enlarge k to k

by Lemma 4.1. Then decompose X into its connected components. As X is normal,

each component is irreducible and hence integral. Thus is it sufficient to prove (†) for an

algebraically closed field k, where X is additionally integral. Now consider:

Proposition A.33. Let X be a scheme of finite type over an arbitrary field k and let F

be the prime field of k. Then there exists an intermediate field F ⊂ L ⊂ k which is finitely

generated over F and a scheme Y of finite type over L such that X ' Yk as k-schemes.

Proof. Consider k as the union of its subfields which are finitely generated over F . Then

apply [57], Théorème 8.8.2 (ii).

If X is geometrically normal, geometrically integral, Gorenstein and proper over k, then

the same holds for Y over L by faithfully flat descent. Furthermore, if ωX = (ωY )k is

numerically trivial, then this is also true for ωY and both sheaves have the same order in
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their respective Picard groups. Hence to prove (†), it is possible to replace X by Y , so

reduce to:

• The field k is finitely generated over its prime field F .

• The scheme X is geometrically integral.

As a second step of reduction, use induction on d = trdeg(k/F ). If d = 0, then F ⊂ k

is an algebraic extension and Proposition 4.8 shows the validity of (†). So the induction

step remains to be shown. Thus the following additional assumption can be imposed.

• For all fields F ⊂ E ⊂ k with trdeg(E/F ) < trdeg(k/F ), statement (†) is true.

Choose some intermediate field F ⊂ L ⊂ k of trdeg(k/L) = 1. Then trdeg(L/F ) = d− 1

holds. Hence every algebraic extension L ⊂ E has transcendence degree d − 1 over F ,

so (†) is valid for schemes over E. Write k = L(t1, . . . , tm) and consider the L-algebra

A = L[t1, . . . , tm]. Let S0 ⊂ Spec(A) be the regular locus, which contains the generic point

and is open by [56], Proposition 7.8.6 (iii). Thus S0 is a regular, integral, one-dimensional

scheme of finite type over L such that K(S0) = k.

There exists a non-empty affine open subset Sλ ⊂ S0 and a scheme Xλ of finite type

over Sλ such that X is the generic fiber of Xλ → Sλ by [57], Théorème 8.8.2 (ii). Replace

S0 by Sλ and X0 by Xλ to keep the notation, and consider Diagram (A.1) again. For all

closed points s ∈ S0, the field extension L ⊂ κ(s) is finite. Hence by the reduction in

the previous paragraph, (†) is true for all closed fibers Xs which satisfy the assumptions

imposed in (†).
To achieve that this is the case for all fibers, conduct a series of steps, each shrinking S0

to some non-empty affine open subset Sλ ⊂ S0, and replacing X0 by its base change to Sλ.

In doing so, it is possible to achieve that π : X0 → S0 satisfies the following properties:

• π is proper, of relative dimension n ([57], Théorème 8.10.5 and Corollaire 13.1.5).

• π is flat ([56], Théorème 6.9.1).

• π is geom. integral, geom. normal, Cohen–Macaulay ([57], Théorème 12.2.4).

• π is a fibration and cohomologically flat in degree 0 (Lemma A.11).

• X0 is integral.

In fact, X0 is integral, since π is flat and its generic fiber X as well as S0 are integral.

To see that π can also assumed to be Gorenstein, note that the dualizing sheaf ωXλ/Sλ
exists for every open subscheme Sλ ⊂ S0. It is coherent and for every open Sµ ⊂ Sλ, the

pullback of ωXλ/Sλ to Xµ is ωXµ/Sµ . The pullback of ωXλ/Sλ to the generic fiber X is the

invertible sheaf ωX . Thus by [57], Proposition 8.5.5, there exists some non-empty affine

open subset Sλ such that ωXλ/Sλ is invertible, which means that Xλ → Sλ is Gorenstein.

So assume further without loss of generality:
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• π is Gorenstein.

After possibly shrinking S0 once again, the Picard scheme PicX0/S0
exists and represents

the functor Pic(X/S)(fppf) by Theorem A.26. Furthermore, PicτX0/S0
is an open subgroup

scheme, whose formation commutes with base change in S0. The next step is to deduce:

• [ωX0/S0
] ∈ PicτX0/S0

(S0) and ωXs is numerically trivial for all s ∈ S0.

Clearly, the former part of the statement implies the latter, as the formation of Picτ

commutes with base change. Consider α0 : S0 → PicX0/S0
coming from ωX0/S0

. The

assumption ωX ∈ Picτ (X) means that the base change α : Spec(k) → PicX/k factorizes

through PicτX/k. An application of [57], Théorème 8.8.2 (i), shows that there exists a dense

open subscheme Sλ ⊂ S0 such that the base change αλ : Sλ → PicXλ/Sλ factorizes through

PicτXλ/Sλ , that is, [ωXλ/Sλ ] ∈ PicτXλ/Sλ(Sλ). So replace S0 by Sλ one final time.

This completes the setup of the model π : X0 → S0. Recall from Section A.4 that for

all integers t and i ≥ 0, the function S0 → N, s 7→ hi(ω⊗tXs) is upper semi-continuous, and

S0 → Z, s 7→ χ(ω⊗tXs) is constant. Now ω⊗tX ' OX means that h0(ω⊗tX ) = 1, which is in

turn equivalent to h0(ω⊗tXs) = 1 for all closed points s on the curve S0. So in order to

show (†), it has to be verified that the natural numbers ord(ωXs) for closed s ∈ S0 are

bounded by some common value. For instance, it would be sufficient to prove that if X

is as in (†) with ωX of finite order dX , then dX ≤ cn for a constant cn only depending on

the dimension n.

Clearly, up to this point, the crucial idea to progress is still missing, since the setup works

similarly for any numerically trivial invertible sheaf L in place of ωX , and there exist such

L of infinite order. In the case of the dualizing sheaf, there is a possible interplay between

the use of cohomology and base change, and Grothendieck duality, Theorem 2.17. For

example, since s 7→ hn(ωXs) is constant of value 1, the sheaf Rnπ∗(ωX0/S0
) is invertible.

Then Grothendieck duality implies that R1π∗(OX0) = Rn−1π∗(ωX0/S0
)∨ is torsion-free,

and hence locally free.

As mentioned above, the assertion that ωX has finite order means that s 7→ h0(ω⊗tXs) is

constant of value 1 for some non-zero integer t. This is by Proposition A.8 equivalent to

R1π∗(ω
⊗t
X0/S0

) or Rnπ∗(ω
⊗−t+1
X0/S0

) being torsion-free. If this could be done for an integer t

which is a multiple of some ord(ωXs), then (†) would follow. Nevertheless, there still needs

to be a source of additional information to proceed in this direction.
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[10] L. Bădescu: Algebraic surfaces. Universitext. Springer, New York (2010).

[11] A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle.

J. Differential Geom. 18 No. 4 (1983), 755–782.

[12] A. Beauville: Some remarks on Kähler manifolds with c1 = 0. Classification of

algebraic and analytic manifolds. Progr. Math. 39. Birkhäuser, Boston (1983).
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(1989).

[31] S. Cutkosky: Multiplicities of graded families of linear series and ideals. ArXiv e-

prints (2013), arXiv:1301.5613v2.

[32] O. Das, J. Waldron: On the Abundance Problem for 3-folds in characteristic p > 5.

ArXiv e-prints (2018), arXiv:1610.03403v3.
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Inst. Hautes Études Sci. Publ. Math. 21 (1964).

[100] nfdc23 (https://mathoverflow.net/users/81332/nfdc23): Albanese variety over

non-perfect fields (answer). MathOverflow. https://mathoverflow.net/q/261032

(version: 2017-01-31, accessed: 2019-12-01).

[101] F. Oort: Commutative group schemes. Lecture Notes in Mathematics 15. Springer,

Berlin–New York (1966).

[102] B. Osserman: Notes on Cohomology and Base Change. Original URL:

https://www.math.ucdavis.edu/~osserman/math/cohom-base-change.pdf.

Currently unavailable, accessible under URL: https://web.archive.org/

web/20180927125633/https://www.math.ucdavis.edu/~osserman/math/

cohom-base-change.pdf (accessed 2019-12-01).

[103] M. Raynaud: Passage au quotient par une relation d’équivalence plate. Proc. Conf.

Local Fields. Springer, Berlin (1967), 78–85.

[104] M. Raynaud: Faisceaux amples sur les schémas en groupes et les espaces homogènes.
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