
Multivariate generalized Ornstein-Uhlenbeck processes
and connections to semiselfsimilarity properties

Inauguraldissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Christian Müller
aus Düsseldorf

Düsseldorf, November 2019



aus dem Mathematischen Institut
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Peter Kern

2. Prof. Dr. Axel Bücher

Tag der mündlichen Prüfung: 28.02.2020



Contents

Contents
Abstract 4

Zusammenfassung 5

1 Introduction 6

2 Stochastic Calculus 13
2.1 One-dimensional stochastic integration . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Multi-dimensional stochastic integration . . . . . . . . . . . . . . . . . . . . . 20

3 Stochastic Exponential 26
3.1 Definition and general properties . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Closed form expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Multivariate generalized Ornstein-Uhlenbeck processes 47
4.1 Left MGOU processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Right MGOU processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Connection between MGOU and semiselfsimilar processes 82
5.1 Left MGOU and left semiselfsimilar processes . . . . . . . . . . . . . . . . . . 82
5.2 Right MGOU and right semiselfsimilar processes . . . . . . . . . . . . . . . . 87

6 Connection between MGOU and semistable hemigroups 94
6.1 Left MGOU and left semistable hemigroups . . . . . . . . . . . . . . . . . . . 94
6.2 Right MGOU and right semistable hemigroups . . . . . . . . . . . . . . . . . 100

References 107

3



Abstract

Abstract
This thesis investigates the multivariate generalized Ornstein-Uhlenbeck (MGOU) pro-
cess introduced by Behme and Lindner and connections to stochastic objects that can
model semiselfsimilarity such as semiselfsimilar processes and semistable hemigroups. The
first part focuses on stochastic exponentials and MGOU processes both of which occur in a
left and right version due to the non-commutativity of matrix multiplication. Under numer-
ous commutativity assumptions it is proven that the left and right stochastic exponential of
a semimartingale are equal and a closed form expression for both is obtained that in the case
of a continuous semimartingale simplifies to a formula proven by Yan. Extending the work
of Behme and Lindner left MGOU processes driven by semi-Lévy processes are studied
and right MGOU processes are defined and studied when driven by either Lévy processes or
semi-Lévy processes. Conditions for periodic stationarity are given and MGOU processes
with real time parameter are defined. The second part introduces the notions of random
semiselfsimilar processes and random semistable hemigroups which are able to model ran-
dom space-time scaling properties and by their usage of stochastic exponentials allow for
connections to MGOU processes. A random Lamperti transform creates a one-to-one cor-
respondence between random semiselfsimilar processes and periodically stationary processes
and is used to construct MGOU processes out of random semiselfsimilar processes. A one-
to-one correspondence between random semistable hemigroups and random semiselfsimilar
processes with independent increments as well as a random integral representation of random
semistable hemigroups are proven and used to construct MGOU processes out of random
semistable hemigroups.
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Zusammenfassung

Zusammenfassung
Diese Doktorarbeit untersucht den von Behme und Lindner eingeführten multivariaten
verallgemeinerten Ornstein-Uhlenbeck-Prozess (MGOU-Prozess) und Verbindungen zu
stochastischen Objekten, die Semiselbstähnlichkeit modellieren können, wie beispielswei-
se semiselbstähnliche Prozesse und semistabile Hemigruppen. Der erste Teil konzentriert
sich auf stochastische Exponentiale und MGOU-Prozesse, die beide aufgrund der Nicht-
Kommutativität der Matrizenmultiplikation in einer linken und rechten Version auftreten.
Unter zahlreichen Kommutativitätsvoraussetzungen wird bewiesen, dass das linke und rech-
te stochastische Exponential eines Semimartingals übereinstimmen, und für beide wird eine
geschlossene Darstellung hergeleitet, die sich für stetige Semimartingale zu einer von Yan
bewiesenen Formel vereinfacht. Als Erweiterung der Arbeit von Behme und Lindner wer-
den linke MGOU-Prozesse untersucht, die von semi-Lévy-Prozessen angetrieben werden,
und es werden rechte MGOU-Prozesse definiert und untersucht, die von Lévy- oder semi-
Lévy-Prozessen angetrieben werden. Bedingungen für periodische Stationarität werden an-
gegeben und MGOU-Prozesse mit reellem Zeitparameter werden definiert. Der zweite Teil
führt zufällig semiselbstähnliche Prozesse und zufällig semistabile Hemigruppen ein, welche
zufällige Raum-Zeit-Skalierungen modellieren können und durch die Verwendung von sto-
chastischen Exponentialen Verbindungen zu MGOU-Prozessen ermöglichen. Eine zufällige
Lamperti-Transformation stellt eine eins-zu-eins Beziehung zwischen zufällig semiselbst-
ähnlichen Prozessen und periodisch stationären Prozessen her und wird dazu verwendet,
MGOU-Prozesse aus zufällig semiselbstähnlichen Prozessen zu konstruieren. Eine eins-zu-
eins Beziehung zwischen zufällig semistabilen Hemigruppen und zufällig semiselbstähnlichen
Prozessen sowie eine Darstellung zufällig semistabiler Hemigruppen durch ein Zufallsintegral
werden bewiesen und dazu verwendet, MGOU-Prozesse aus zufällig semistabilen Hemigrup-
pen zu konstruieren.
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1 Introduction

1 Introduction
The Ornstein-Uhlenbeck process originated from the physical problem of modelling the
velocity of a free particle that underlies brownian motion with friction, and was first studied
in [30]. From a mathematical perspective various generalizations of this process have been
developed and found to be connected to semiselfsimilar processes and semistable hemigroups.
For the multivariate generalized Ornstein-Uhlenbeck process introduced in [4], however,
connections of this kind have not been established yet which will be the main aim of this
thesis. In order to get familiar with the set of problems and our notation we first illustrate
the simple setting of the Ornstein-Uhlenbeck process.

The Ornstein-Uhlenbeck (OU) process V = (Vt)t≥0 is the unique strong solution of the
stochastic differential equation

dVt = −HVt dt+ dBt , (1.1)

where B = (Bt)t≥0 is a one-dimensional brownian motion, the initial value V0 is a random
variable independent of B, and H is a positive real constant that is interpreted as the friction
coefficient in the physical model of particle movement. In closed form the OU process is given
by the stochastic integral

Vt = e−Ht
(
V0 +

tˆ

0

eHu dBu

)
. (1.2)

Because of H > 0 the limit

V∞ :=
∞̂

0

e−Hu dBu =
0ˆ

−∞

eHu dB−u (1.3)

is almost surely a finite random variable and choosing the initial value V0 so that it has the
same distribution as V∞ results in the OU process being stationary ([26]). By extending
brownian motion to real time parameters (1.2) can then be written in the form

Vt = e−Ht
tˆ

−∞

eHu dBu . (1.4)

The stationary OU process can also be constructed in a second way. In fact, the Lamperti
transform V = Lam(B) of brownian motion given by

Vt = Lam(Bt) = e−t/2Bet (1.5)

is stationary because by the 1
2 -selfsimilarity of brownian motion we have for all c > 1

Vt+log(c) = c−1/2e−t/2Bcet
D= e−t/2Bet = Vt,

and V solves the stochastic differential equation (1.1) with H = 1
2 because by the integration

by parts formula

V0 +Bt −
1
2

tˆ

0

Vu du = B1 +Bt −
1
2

tˆ

0

e−u/2Beu du

= B1 +Bt +
tˆ

0

Beu d(e−u/2)
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1 Introduction

= B1 +Bt + e−t/2Bet −B1 −
tˆ

0

e−u/2 dBeu −
[
e−t/2, Bet

]

= Bt + Vt −
etˆ

1

u−1/2 dBu = Vt.

Here the last step follows from an application of the Dambis-Dubins-Schwarz theorem
(Theorem II.42 in [31]) with the continuous local martingale M = (Mt)t≥0 defined by

Mt :=
etˆ

1

u−1/2 dBu

which yields Mt = B[M,M ]t where

[M,M ]t =
[ etˆ

1

u−1/2 dBu ,
etˆ

1

u−1/2 dBu

]
=

etˆ

1

(
u−1/2)2 d[B,B]u

=
etˆ

1

u−1 du =
[

log(|u|)
]et

u=1

= t.

On the other hand, if V is the stationary OU process in (1.4) then its inverse Lamperti
transform Z = Lam−1(V ) given by

Zt = Lam−1(Vt) = tHVlog(t) (1.6)

is H-selfsimilar because by the stationary increments of B we have for all c > 1

Zct = (ct)HVlog(ct) = (ct)He−H log(ct)
log(ct)ˆ

−∞

eHu dBu

=
log(t)ˆ

−∞

eH(u+log(c)) d
(
Bu+log(c) −Blog(c)

)

D= cH
log(t)ˆ

−∞

eHu dBu = cHtHVlog(t) = cHZt.

Using (1.4) the increments of Z = Lam−1(V ) can be written as the stochastic integral

Zs,t := Zt − Zs = tHVlog(t) − sHVlog(s) =
log(t)ˆ

log(s)

eHu dBu . (1.7)

Because of the properties of brownian motion and the stochastic integral the random vari-
ables Zq,r and Zs,t are independent whenever q ≤ r ≤ s ≤ t, it holds Zr,s + Zs,t = Zr,t
for all r ≤ s ≤ t, and the map (s, t) 7−→ Zs,t is continuous with respect to convergence in
distribution. The family (Zs,t)0≤s≤t is then called hemigroup, a notion that was introduced
in [16]. This hemigroup is H-stable which means that for all c > 1 it holds

Zcs,ct =
log(ct)ˆ

log(cs)

eHu dBu =
log(t)ˆ

log(s)

eH(u+log(c)) d
(
Bu+log(c) −Blog(c)

)

7



1 Introduction

D= cH
log(t)ˆ

log(s)

eHu dBu = cHZs,t. (1.8)

On the other hand, if (Zs,t)0≤s≤t is an H-stable hemigroup then Z = (Zt)t≥0 defined by
Zt := Z0,t is H-selfsimilar because

Zct = Z0,ct
D= cHZ0,t = cHZt.

If additionally each Zs,t has the integral representation (1.7) then V = Lam(Z) is the sta-
tionary OU process in (1.4) because

Vt = Lam(Z0,t) = e−HtZ0,et = e−Ht
tˆ

−∞

eHu dBu .

Various generalizations of the OU process have been developed and many of the connections
to selfsimilar processes and stable hemigroups that were exemplified above have been proven
to hold true in a more general setting as well.

The first step to generalize the OU process is to replace the driving brownian motion B in
(1.2) with a more general stochastic process Y . Various choices for Y have been discussed
in the literature. The fractional Ornstein-Uhlenbeck (FOU) process replaces B with a
fractional brownian motion ([9], [20]), the Ornstein-Uhlenbeck type process or Lévy-
Ornstein-Uhlenbeck (LOU) process replaces B with a Lévy process ([33], [29], [18]), and
the fractional OU type process or fractional Lévy-Ornstein-Uhlenbeck (FLOU) process
replaces B with a fractional Lévy process ([14], [27], [28]).

The second step to generalize the OU process is to also replace the deterministic exponent
H in (1.2) with a stochastic process X so that the OU process is driven by a bivariate back-
ground driving process (X,Y ). If X is a Lévy process and Y is fractional brownian motion
then V is called generalized fractional Ornstein-Uhlenbeck (GFOU) process ([12]). If
(X,Y ) is a bivariate Lévy process then V is called generalized Ornstein-Uhlenbeck
(GOU) process. It is given by

Vt = exp(Xt)−1
(
V0 +

tˆ

0

exp(Xu−) dYu

)
(1.9)

and solves the stochastic differential equation dVt = Vt− dUt+dLt where (U,L) is a bivariate
Lévy process that can be calculated from the background driving process (X,Y ) with the
formulas

Ut = −Xt + [X,X]ct +
∑

0<s≤t

(
(1 + ∆Xs)−1 − 1 + ∆Xs

)
, (1.10a)

Lt = Yt − [X,Y ]ct +
∑

0<s≤t

(
(1 + ∆Xs)−1 − 1

)
∆Ys. (1.10b)

Here [X,X]c is the continuous part of the quadratic variation of X and ∆Xt = Xt −Xt− is
the jump of X at time t of which there are at most countably many in any given finite time
interval. The GOU process emerged in [10] as the solution of the continuous-time stochastic
difference equation Vt = As,tVs+Bs,t where (As,t, Bs,t)0≤s≤t is a family of real-valued random
variables that satisfy the equations

Ar,t = As,tAr,s and Br,t = As,tBr,s +Bs,t (1.11)
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1 Introduction

for 0 ≤ r ≤ s ≤ t alongside other independence, stationarity, and continuity assumptions.
As,t and Bs,t can be expressed in terms of the background driving process (X,Y ) with the
formulas

As,t = exp(Xt)−1 exp(Xs), (1.12a)

Bs,t = exp(Xt)−1
tˆ
s

exp(Xu−) dYu . (1.12b)

As outlined in [23], [11], and [5] the stationarity of the GOU process is equivalent to the
existence of the limit

V∞ =
∞̂

0

exp(Xu−)−1 dLu .

Necessary and sufficient conditions for the existence of this limit are discussed in [13] in the
case of Lévy processes and in [6] in the case of Markov additive processes. GOU processes
have found application in option pricing, insurance and perpetuities, and risk theory. We
point to the survey [26] and the introduction of [23] for references regarding these topics.

The multivariate generalized Ornstein-Uhlenbeck (MGOU) process is a multivariate ex-
tension of the GOU process in which X and Y are both matrix-valued Lévy processes and
the deterministic exponential function in (1.3) is replaced with its stochastic analog, the
stochastic exponential. The stochastic exponential Exp(X) of a real-valued semimartingale
X is defined as the unique strong solution of the stochastic differential equation

dExp(Xt) = Exp(Xt−) dXt (1.13a)

with initial value Exp(X0) = 1. Due to the non-commutativity of matrix multiplication
there is a left stochastic exponential

←−−
Exp(X) and a right stochastic exponential

−−→
Exp(X) in

dimension n ≥ 2 which correspond to the stochastic differential equations

d
←−−
Exp(Xt) =

←−−
Exp(Xt−) dXt and d

−−→
Exp(Xt) = dXt

−−→
Exp(Xt−) (1.13b)

with initial value
←−−
Exp(X0) =

−−→
Exp(X0) = I. This allows for two different versions of the

MGOU process. The left version is given by

Vt =
←−−
Exp(Xt)−1

(
V0 +

tˆ

0

←−−
Exp(Xu−) dYu

)
(1.14)

and solves the stochastic differential equation dVt = Vt− dUt+dLt where (U,L) is a bivariate
Lévy process that can be calculated from the background driving process (X,Y ) with the
formulas

Ut = −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
, (1.15a)

Lt = Yt − [X,Y ]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I

)
∆Ys. (1.15b)

The left MGOU process (1.14) was first considered in [2] and [4] as the solution of the
continuous-time stochastic difference equation Vt = As,tVs +Bs,t where (As,t, Bs,t)0≤s≤t is a
family of matrix-valued random variables that satisfy (1.11) alongside other independence,

9



1 Introduction

stationarity, and continuity assumptions. As,t and Bs,t can be expressed in terms of the
background driving process (X,Y ) with the formulas

As,t =
←−−
Exp(Xt)−1←−−Exp(Xs), (1.16a)

Bs,t =
←−−
Exp(Xt)−1

tˆ
s

←−−
Exp(Xu−) dYu . (1.16b)

Stationarity conditions for the left MGOU process are also given in [2] and [4] and formulas
for the first and second moments of stationary left MGOU processes are derived in [3]. Left
MGOU processes appear as the state vector process of COGARCH processes (Example 3.6
in [4]) and RC-CARMA processes ([8]). So far the right MGOU process

Vt =
(
V0 +

tˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xt)−1 (1.17)

has not been studied in the literature although its treatment is similar to the left counterpart.

The relationships between the stationary OU process V , the 1
2 -selfsimilar brownian motion

B, and the stable hemigroup (Zs,t)0≤s≤t formed by the increments of Z = Lam−1(V ) that
were exemplified at the beginning extend to a more general setting in the following way.

A matrix-valued process Z = (Zt)t≥0 is called selfsimilar with exponent H ∈ Rn×n or simply
H-selfsimilar if for all c > 1

(Zct)t≥0
D=
(
cHZt

)
t≥0 (1.18)

with cH = exp
(
H log(c)

)
. If (1.18) only holds for some c > 1 then Z is calledH-semiselfsimilar.

If Z = (Zt)t>0 is H-selfsimilar then its Lamperti transform V = (Vt)t∈R given by

Vt = Lam(Zt) = e−tHZet (1.19a)

is stationary. Conversely, if V = (Vt)t∈R is stationary then its inverse Lamperti transform
Z = (Zt)t>0 given by

Zt = Lam−1(Vt) = tHVlog(t) (1.19b)

isH-selfsimilar. This one-to-one correspondence between selfsimilar and stationary processes
was proven in [22] and it has been shown in [24] that it also holds true for semiselfsimilar and
periodically stationary processes. If Z = (Zt)t>0 is an H-selfsimilar process then Y = (Yt)t∈R
given by

Yt =



etˆ

1

u−H dZu , t ≥ 0

−
1ˆ

et

u−H dZu , t < 0

(1.20)

is a Lévy process and Lam(Z) is a stationary Ornstein-Uhlenbeck type process with
background driving process Y ([17]). Analogously, if Z = (Zt)t≥0 is an H-semiselfsimilar
process then Y = (Yt)t∈R given by (1.20) is a semi-Lévy process, that is a Lévy process
except that the increments are only periodically stationary, and Lam(Z) is a periodically
stationary Ornstein-Uhlenbeck type process with background driving process Y . This
was proven in [1], where the stochastic integral in (1.20) is defined as a random integral in
the sense of [19], and independently in [25], where the stochastic integral in (1.20) is defined

10



1 Introduction

using a semimartingale approach in the sense of [32].

A family (Zs,t)0≤s≤t of matrix-valued random variables is called stable hemigroup with ex-
ponent H ∈ Rn×n or simply H-stable hemigroup if Zq,r and Zs,t are independent whenever
q ≤ r ≤ s ≤ t, it holds Zr,s + Zs,t = Zr,t for all 0 ≤ r ≤ s ≤ t, the map (s, t) 7−→ Zs,t is
continuous with respect to convergence in distribution and for all c > 1 and all 0 ≤ s ≤ t it
holds

Zcs,ct
D= cHZs,t. (1.21)

If (1.21) only holds for some c > 1 then (Zs,t)0≤s≤t is called H-semistable hemigroup. It
has been proven in [1] that the increments Zs,t = Zt − Zs of an H-semiselfsimilar process
Z = (Zt)t≥0 with independent increments form an H-semistable hemigroup from which
the semiselfsimilar process can be reobtained by Zt = Z0,t. Also, given an H-semistable
hemigroup (Zs,t)0≤s≤t such that tH −→ 0 for t ↓ 0, each Zs,t has the random integral
representation

Zs,t =
log(t)ˆ

log(s)

eHu dYu , (1.22)

where Y is defined as in (1.20) with the H-semiselfsimilar process Z = (Z0,t)t≥0 as the in-
tegrator. Conversely, (1.22) defines an H-semistable hemigroup if Y is a semi-Lévy process
that satisfies a logarithmic moment condition and tH −→ 0 for t ↓ 0.

So far connections of this kind have not been established in the context of GOU or MGOU
processes in neither the stationary nor the periodically stationary case.

In this thesis we extend results about MGOU processes originally obtained in [4] to the
case that the background driving process is a semi-Lévy instead of a Lévy process, includ-
ing conditions for periodic stationarity, and build connections between MGOU processes,
semiselfsimilar processes, and semistable hemigroups by introducing the concept of random
semiselfsimilarity and random semistability. These generalizations of semiselfsimilarity and
semistability are able to model random scaling rather than just deterministic scaling and
work nicely in conjunction with MGOU processes.

The basic idea for incorporating random scaling is to replace the deterministic exponent H
in (1.18) and (1.21) with a Lévy process X, as in the transition from OU to GOU processes,
and then also replace deterministic exponentials with stochastic exponentials, as in the tran-
sition from GOU to MGOU processes. More precisely, for random left semiselfsimilarity we
write (1.18) in the form

(Zct)t≥0
D=
(
cHZt

)
t≥0 ⇐⇒

((
eH log(c))−1

Zct
)
t≥0

D= (Zt)t≥0, (1.23a)

replace the deterministic term eH log(c) with the stochastic term
←−−
Exp(Xlog(c)) and obtain the

random scaling property (←−−
Exp(Xlog(c))−1Zct

)
t≥0

D= (Zt)t≥0. (1.23b)

For random left semistability we write (1.21) in the form

Zcs,ct
D= cHZs,t ⇐⇒

(
eH log(c))−1

Zcs,ct
D= Zs,t, (1.24a)

replace the deterministic term eH log(c) with the stochastic term
←−−
Exp(Xlog(c)) and obtain the

random scaling property
←−−
Exp(Xlog(c))−1Zcs,ct

D= Zs,t. (1.24b)

11



1 Introduction

Right versions of (1.23b) and (1.24b) are defined similarly by utilizing right stochastic expo-
nentials and respecting the inverted order of multiplication. Since in general no independence
between X and Z is given it turns out that the random semiselfsimilarity in (1.23b) and the
random semistability in (1.24b) need to be simultaneous with the periodic stationarity of the
increments of X. This then necessitates a further distinction of the time parameter because
our definition of periodically stationary increments differentiates between a positive period
for positive time parameter and a negative period for negative time parameter in order to
be compatible with Lévy processes with real time parameter.

The structure of this thesis is as follows. In chapter 2 we provide the necessary background
for Lévy processes, quadratic covariations of semimartingales, and stochastic integrals. In
chapter 3 we discuss properties of the left and right stochastic exponential of a matrix-valued
semimartingale and prove a closed form expression that extends a corresponding result in
[34] but under even more commutativity conditions since we do not assume the semimartin-
gale to be continuous. These two chapters are mostly of preparative nature. In chapter
4 we take on the results about left MGOU processes in [4], prove corresponding results in
the case that the background driving process is a semi-Lévy instead of a Lévy process,
and construct left MGOU processes with real time parameter. We also study right MGOU
processes, which are not considered in [4], and transfer all results from left MGOU processes
in both the stationary and periodically stationary case. In the last two chapters we connect
MGOU processes to random semiselfsimilar processes and random semistable hemigroups.
In chapter 5 we prove that a generalization of the Lamperti transform creates a one-to-one
correspondence between random semiselfsimilar processes and periodically stationary pro-
cesses and show that this random Lamperti transform allows the construction of an MGOU
process out of a random semiselfsimilar process and vice versa. In chapter 6 we prove a one-
to-one correspondence between random semistable hemigroups and random semiselfsimilar
processes with independent increments, derive a random integral representation of a random
semistable hemigroup and show that this integral representation allows the construction of a
periodically stationary process and an MGOU process out of a random semistable hemigroup
and vice versa.

12



2 Stochastic Calculus

2 Stochastic Calculus

A matrix-valued stochastic process either takes values in the group Rn×m of n×m-matrices,
with the group action being addition, or in the group GLn(R) of invertible n×n-matrices, with
the group action being multiplication. In the first case the process has additive increments
and in the second case the process has multiplicative increments. In each of these two cases
a stochastic process and its increments may have the following properties.

Definition 2.1. Let either I = [0,∞) or I = R. Let X = (Xt)t∈I be a stochastic process
where each random variable Xt takes values in the group

(
Rn×m,+

)
for some n,m ∈ N.

For s < t the additive increment of X on the time interval (s, t] is the random variable
Xt −Xs.

(a) X has independent increments if Xt0 , Xt1 −Xt0 , . . . , Xtk −Xtk−1 are independent
for all t0 < . . . < tk, k ∈ N.

(b) X has stationary increments if Xt −Xs
D= Xt−s −X0 for all s < t.

(c) X has periodically stationary increments with period p > 0 or simply p-station-
ary increments if

(Xt+p −Xp)t≥0
D= (Xt −X0)t≥0 and (Xt−p −X−p)t≤0

D= (Xt −X0)t≤0. (2.1)

(d) X is stationary if Xt+h
D= Xt for all t ∈ I and h > 0.

(e) X is periodically stationary with period p > 0 or simply p-stationary if

(Xt+p)t≥0
D= (Xt)t≥0 and (Xt−p)t≤0

D= (Xt)t≤0. (2.2)

(f) X is continuous in probability if P
(
‖Xt −Xs‖ ≥ ε

) s→t−−→ 0 for all ε > 0.

(g) X is càdlàg/càglàd if its paths are almost surely right/left continuous with limits
from the left/right.

(h) X is called semi-Lévy process with period p > 0 or simply p-semi-Lévy process
if X0 = 0 and X is càdlàg and continuous in probability and has independent and
p-stationary increments.

(i) X is called Lévy process if X is a p-semi-Lévy process for all p > 0.

Definition 2.2. Let either I = [0,∞) or I = R. Let X = (Xt)t∈I be a stochastic process
where each random variable Xt takes values in the group

(
GLn(R), ·

)
for some n ∈ N. For

s < t the multiplicative left/right increment of X on the time interval (s, t] is the
random variable XtX

−1
s respectively X−1

s Xt.

(a) X has independent left/right increments if Xt0 , Xt1X
−1
t0 , . . . , XtkX

−1
tk−1

respec-
tively Xt0 , X

−1
t0 Xt1 , . . . , X

−1
tk−1

Xtk are independent for all t0 < . . . < tk, k ∈ N.

(b) X has stationary left/right increments if XtX
−1
s

D= Xt−sX
−1
0 for all s < t respec-

tively X−1
s Xt

D= X−1
0 Xt−s for all s < t.

13
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(c) X has periodically stationary left/right increments with period p > 0 or simply
p-stationary left/right increments if

(Xt+pX
−1
p )t≥0

D= (XtX
−1
0 )t≥0 and (Xt−pX

−1
−p )t≤0

D= (XtX
−1
0 )t≤0 (2.3a)

respectively

(X−1
p Xt+p)t≥0

D= (X−1
0 Xt)t≥0 and (X−1

−pXt−p)t≤0
D= (X−1

0 Xt)t≤0. (2.3b)

(d) X is stationary if Xt+h
D= Xt for all t ∈ I and h > 0.

(e) X is periodically stationary with period p > 0 or simply p-stationary if

(Xt+p)t≥0
D= (Xt)t≥0 and (Xt−p)t≤0

D= (Xt)t≤0. (2.4)

(f) X is continuous in probability if P
(
‖XtX

−1
s ‖ ≥ ε

) s→t−−→ 0 for all ε > 0.

(g) X is càdlàg/càglàd if its paths are almost surely right/left continuous with limits
from the left/right.

(h) X is called left/right semi-Lévy process with period p > 0 or simply left/right
p-semi-Lévy process if X0 = I and X is càdlàg and continuous in probability and
has independent and p-stationary right/left increments.

(i) X is called left/right Lévy process if X is a left/right p-semi-Lévy process for all
p > 0.

To clarify the group action we could speak of “additive Lévy processes” and “multiplicative
Lévy processes” as Lévy processes with additive respectively multiplicative increments but
this would lead to confusion with the term “additive process” used by Sato for a process
that is continuous in probability and càdlàg and has independent increments but does not
specify the group action. Instead we use the term “semi-Lévy process”, which is an additive
process that has periodically stationary increments, and have the group action be clear from
the context.

In the definition of periodically stationary increments in (2.1), (2.3a), (2.3b) and periodic
stationarity in (2.2), (2.4) we need to differentiate between negative and positive time pa-
rameter in order to be able to construct a Lévy process respectively semi-Lévy process with
time parameter t ∈ R from two independent copies of the same Lévy process respectively
semi-Lévy process with time parameter t ≥ 0. This construction is needed in chapter 4 for
the definition of MGOU processes with real time parameter.

Theorem 2.3. Let (X,Y ) = (Xt, Yt)t≥0 be a stochastic process in Rn×n × Rn×n and let
(X ′, Y ′) be an independent copy of (X,Y ). Let X̃ = (X̃t)t∈R and Ỹ = (Ỹt)t∈R be defined by

X̃t :=
{

Xt for t ≥ 0
−X ′(−t)− for t < 0 and Ỹt :=

{
Yt for t ≥ 0

−Y ′(−t)− for t < 0 . (2.5)

(a) If (X,Y ) is a Lévy process then X̃, Ỹ , and (X̃, Ỹ ) are also Lévy processes.

(b) If (X,Y ) is a p-semi-Lévy process for some p > 0 then X̃, Ỹ , and (X̃, Ỹ ) are also
p-semi-Lévy processes.

14
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Proof. We only prove that X̃ is a Lévy process respectively p-semi-Lévy process because
the argumentation is the same for Ỹ and (X̃, Ỹ ). The càdlàg property of X and X ′ and
the left limit X ′(−t)− in (2.5) ensure that X̃ is càdlàg as well. (The left limit only ensures
the càdlàg property of X̃ but is not needed for distributional properties since at fixed times
Lévy processes almost surely do not have jumps.) X̃0 = X0 = 0 holds by definition. X̃ has
independent increments because for t1 < t2 < 0 ≤ t3 < t4 the random variables

(X̃t4 − X̃t3 , X̃t3 − X̃t2 , X̃t2 − X̃t1) = (Xt4 −Xt3 , Xt3 −X0 +X ′−t2 −X
′
0, X

′
−t1 −X

′
−t2)

are independent. If X has stationary increments then X̃ also has stationary increments
because in the case 0 ≤ s < t the stationary increments of X yield

X̃t − X̃s = Xt −Xs
D= Xt−s = X̃t−s

and in the case s < t < 0 the stationary increments of X ′ yield

X̃t − X̃s = −(X ′−t −X ′−s)
D= −X ′−(t−s) = X̃t−s.

In the mixed case s < 0 ≤ t it holds

X̃t−s − X̃t = Xt−s −Xt
D= X−s

D= X ′−s = −X̃s

and because X̃t is independent of both X̃t−s − X̃t and X̃s this yields X̃t−s
D= X̃t − X̃s. If X

has p-stationary increments then X̃ also has p-stationary increments because for t ≥ 0 the
p-stationary increments of X yield

X̃t+p − X̃p = Xt+p −Xp
D= Xt = X̃t

and for t < 0 the p-stationary increments of X ′ yield

X̃t−p − X̃−p = −(X ′−t+p −X ′p)
D= −X ′−t = X̃t.

2.1 One-dimensional stochastic integration

Our construction of a stochastic integral for one-dimensional stochastic processes follows
chapter II in the book [31] of Protter. Given a filtered and complete probability space
(Ω,A,F , P ) such that F = (Ft)t≥0 is right-continuous and F0 is complete, the first step is
to define a stochastic integral for simple predictable processes.

Definition 2.4. A process H = (Ht)t≥0 is called simple predictable if each Ht is of the
form

Ht = K01{0}(t) +
n∑
i=1

Ki1(Ti,Ti+1](t) (2.6)

where 0 = T1 ≤ . . . ≤ Tn+1 are a.s. finite stopping times and K0, . . . ,Kn are a.s. finite
random variables such that σ(Ki) ⊆ FTi for all i = 0, . . . , n.

Let S be the set of all simple predictable processes and Su the space S endowed with the
topology of uniform convergence. Let L be the set of bounded random variables and L0

the space L endowed with the topology of convergence in probability. For a given process
X = (Xt)t≥0 a linear mapping IX : Su −→ L0 is defined by

IX(H) := K0X0 +
n∑
i=1

Ki(XTi+1 −XTi) (2.7)

15
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for H ∈ S with representation (2.6). The definition of a stochastic integral for more general
integrands H than simple predictable processes requires the integrator X to be a semimartin-
gale.
Definition 2.5. Let X = (Xt)t≥0 be a stochastic process.
(a) X is called total semimartingale ifX is càdlàg, adapted, and the mapping IX defined

in (2.7) is continuous.

(b) X is called semimartingale if for each constant T > 0 the process XT = (Xt∧T )t≥0
is a total semimartingale.

(c) X is called classical semimartingale if X is càdlàg, adapted, and there exist a local
martingale N and a finite variation process B such that N0 = B0 = 0 and

Xt = X0 +Nt +Bt.

Theorem 2.6 gives basic properties of semimartingales. Notably finite sums of semimartin-
gales are also semimartingales.
Theorem 2.6. [31, Theorem II.1, III.30, III.47]
(a) The set of all semimartingales is a vector space.

(b) An adapted càdlàg process X is a semimartingale if and only if X is a classical semi-
martingale.

Now let D be the set of adapted processes with càdlàg paths and let L be the set of adapted
processes with càglàd paths. S, D, and L are endowed with the topology induced by the
following type of convergence.
Definition 2.7. A sequence (Hn)n∈N of processes Hn = (Hn

t )t≥0 in S, D, or L converges
uniformly on compacts in probability to a process H = (Ht)t≥0, written Hn ucp−→ H, if

sup
0≤s≤t

|Hn
s −Hs|

P−→ 0 for all t > 0. (2.8)

The spaces S, D and L endowed with this ucp-topology are denoted Sucp, Ducp and Lucp
respectively. Sucp is dense in Lucp and Ducp is a complete metric space with respect to the
metric

d(X,Y ) =
∞∑
n=1

1
2nE

[
min

(
1, sup

0≤s≤n
|Xs − Ys|

)]
. (2.9)

Definition 2.8. For a simple predictable process H ∈ S with representation (2.6) and an
adapted càdlàg process X ∈ D the stochastic integral of H with respect to X is defined
as

H ·X :=
ˆ
Hs dXs := JX(H) := K0X0 +

n∑
i=1

Ki

(
XTi+1 −XTi

)
. (2.10)

Evaluating (2.10) at time t gives
tˆ

0

Hs dXs := JX(H)t = K0X0 +
n∑
i=1

Ki

(
Xt∧Ti+1 −Xt∧Ti

)

= K0X0 +
n∑
i=1

Ki

(
Xt
Ti+1 −X

t
Ti

)
= IXt(H).

(2.10) induces a linear mapping JX : S −→ D. In the case that X is a semimartingale the
mapping JX : Sucp −→ Ducp is continuous by Theorem II.11 in [31]. Since Sucp is dense in
Lucp and Ducp is a complete metric space, there exists a unique extension of JX to Lucp.
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Definition 2.9. For a semimartingale X the unique continuous and linear extension JX :
Lucp −→ Ducp is called stochastic integral with respect to X.

The above steps in the construction of the stochastic integral show that it is a pathwise
construction.

Another important object in stochastic calculus is the quadratic covariation of two semi-
martingales.

Definition 2.10. Let X,Y be semimartingales in R.

(a) The quadratic covariation of X and Y is the process [X,Y ] = ([X,Y ]t)t≥0 defined
by

[X,Y ]t := XtYt −X0Y0 −
tˆ

0

Xu− dYu −
tˆ

0

Yu− dXu . (2.11a)

(b) The path-by-path continuous part or simply continuous part of the quadratic
covariation [X,Y ] is the process [X,Y ]c = ([X,Y ]ct)t≥0 defined by

[X,Y ]ct := [X,Y ]t −
∑

0<s≤t
∆Xs∆Ys. (2.11b)

Theorem 2.11 gives properties of the one-dimensional quadratic covariation and its continu-
ous part.

Theorem 2.11. Let X,Y, Z be semimartingales in R.

(a) The quadratic covariation [X,Y ] is a semimartingale and has paths of finite variation
on compacts. It satisfies [X,Y ]0 = 0 and ∆[X,Y ] = ∆X∆Y .

(b) If X is adapted, càdlàg and has paths of finite variation on compacts, then [X,Z]c = 0.

(c) X,Y, Z satisfy the identities[
[X,Y ], Z

]c
=
[
[X,Y ]c, Z

]c
=
[
[X,Y ]c, Z

]
= 0, (2.12a)[

[X,Y ], Z
]
t

=
∑

0<s≤t
∆Xs∆Ys∆Zs. (2.12b)

Proof. (a) These statements are Corollary II.6.1 and Theorem II.23(i) in [31]. Note that
in [31] the quadratic covariation is defined without the term −X0Y0 and thus Theorem
II.23(i) in [31] states that [X,Y ]0 = X0Y0 instead of [X,Y ]0 = 0.

(b) By Theorem II.26 in [31] it holds [X,X]c = 0 and then by Theorem II.28 in [31] it also
holds [X,Z]c = 0.

(c) By (a) both [X,Y ] and [X,Y ]c satisfy the assumptions of (b) which implies that[
[X,Y ], Z

]c
= 0 and

[
[X,Y ]c, Z

]c
= 0. Furthermore we have[

[X,Y ]c, Z
]
t

=
[
[X,Y ]c, Z

]c
t

+
∑

0<s≤t
∆[X,Y ]cs∆Zs = 0

and by using ∆[X,Y ] = ∆X∆Y we have[
[X,Y ], Z

]
t

=
[
[X,Y ], Z

]c
t

+
∑

0<s≤t
∆[X,Y ]s∆Zs =

∑
0<s≤t

∆Xs∆Ys∆Zs.
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Theorem 2.12 gives calculation rules for one-dimensional stochastic integrals and quadratic
covariations of integral processes.

Theorem 2.12. [31, Corollary II.6.2, Theorem II.19, II.29] Let X,Y be semimartingales in
R and let G,H ∈ L.

(a) XY is a semimartingale and XY = X0Y0 +X− · Y + Y− ·X + [X,Y ] which in integral
notation becomes the integration by parts formula

XtYt = X0Y0 +
tˆ

0

Xu− dYu +
tˆ

0

Yu− dXu + [X,Y ]t. (2.13a)

(b) G·X is a semimartingale and H ·(G·X) = (HG)·X which in integral notation becomes

tˆ

0

Hu d
( uˆ

0

Gv dXv

)
=

tˆ

0

HuGu dXu . (2.13b)

(c) G ·X and H ·Y are semimartingales and [G ·X,H ·Y ] = (GH) · [X,Y ] which in integral
notation becomes [ tˆ

0

Gu dXu ,

tˆ

0

Hu dYu

]
=

tˆ

0

GuHu d[X,Y ]u . (2.13c)

Again note that the integration by parts formula in [31] slightly differs from our integration
by parts formula (2.13a) because the quadratic covariation in [31] is defined without the
term −X0Y0.

Before we move on to the matrix-valued case we prove that for H,H ′ ∈ Lucp and two
semimartingales X,X ′ such that the bivariate processes (H,X) and (H ′, X ′) are equal in
distribution also the stochastic integrals JX(H) and JX′(H ′) are equal in distribution. This
result is implicitly used many times in chapters 4, 5, and 6 when we need the equality in
distribution of stochastic integrals and we know that the pairs of integrand and integrator
are equal in distribution. For the proof we need the following technical lemma.

Lemma 2.13. Let (Y n)n∈N be a sequence of stochastic processes with càdlàg paths that
converges in ucp to a stochastic process Y with càdlàg paths. Then (Y n)n∈N also converges
in distribution to Y .

Proof. We apply Theorem 13.1 in [7] with Pn := PY n and prove that the family (Pn)n∈N of
probability measures is tight and that the vector

(
Y n
t1 , . . . , Y

n
tk

)
converges in distribution to

(Yt1 , . . . , Ytk) for all t1 < . . . < tk, k ∈ N. For the tightness of (Pn)n∈N we verify the two
conditions (13.4) and (13.5) in Theorem 13.2 in [7]. First, by the triangle inequality we have
for all T > 0

lim
a→∞

lim sup
n→∞

Pn(‖x‖∞ ≥ a) = lim
a→∞

lim sup
n→∞

P
(

sup
0≤t≤T

|Y n
t | ≥ a

)
≤ lim

a→∞
lim sup
n→∞

P
(

sup
0≤t≤T

|Y n
t − Yt|+ sup

0≤t≤T
|Yt| ≥ a

)
≤ lim

a→∞
lim sup
n→∞

P

(
sup

0≤t≤T
|Y n
t − Yt| ≥

a

2

)
︸ ︷︷ ︸

=0

+ lim
a→∞

P

(
sup

0≤t≤T
|Yt| ≥

a

2

)
︸ ︷︷ ︸

=0

= 0,
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because Y n ucp−→ Y , which shows (13.4) in [7]. Second, using the notation in (12.2),(12.6)
and the inequality (12.7) in [7] we have

w′Y n(δ) ≤ wY n(2δ)
= sup

0≤t≤T−2δ
sup

r,s∈[t,t+2δ]
|Y n
r − Y n

s |

≤ sup
0≤t≤T−2δ

sup
r,s∈[t,t+2δ]

(
|Y n
r − Yr|+ |Yr − Yt|+ |Yt − Ys|+ |Ys − Y n

s |
)

≤ 2 sup
0≤s≤T

|Y n
s − Ys|+ 2 sup

0≤t≤T−2δ
sup

s∈[t,t+2δ]
|Ys − Yt|

and thus for all ε > 0

lim
δ↓0

lim sup
n→∞

Pn
(
w′x(δ) ≥ ε

)
= lim

δ↓0
lim sup
n→∞

P
(
w′Y n(δ) ≥ ε

)
≤ lim

δ↓0
lim sup
n→∞

P
(
2 sup

0≤s≤T
|Y n
s − Ys|+ 2 sup

0≤t≤T−2δ
sup

s∈[t,t+2δ]
|Ys − Yt| ≥ ε

)
≤ lim

δ↓0
lim sup
n→∞

P

(
sup

0≤s≤T
|Y n
s − Ys| ≥

ε

4

)
︸ ︷︷ ︸

=0

+ lim
δ↓0

P

(
sup

0≤t≤T−2δ
sup

s∈[t,t+2δ]
|Ys − Yt| ≥

ε

4

)
︸ ︷︷ ︸

=0

because Y n ucp−→ Y and Y has càdlàg paths, which shows (13.5) in [7]. Finally, for all ε > 0

P
(
‖(Y n

t1 , . . . , Y
n
tk

)− (Yt1 , . . . , Ytk)‖∞ ≥ ε
)

= P
(
‖(Y n

t1 − Yt1 , . . . , Y
n
tk
− Ytk)‖∞ ≥ ε

)
= P

(
max
i=1,...,k

|Y n
ti − Yti | ≥ ε

)
≤ P

(
sup

0≤s≤tk
|Y n
s − Ys| ≥ ε

)
n→∞−−−→ 0,

because Y n ucp−→ Y . Thus (Y n
t1 , . . . , Y

n
tk

) P−→ (Yt1 , . . . , Ytk) which implies (Y n
t1 , . . . , Y

n
tk

) D−→
(Yt1 , . . . , Ytk).

Theorem 2.14. Let H,H ′ ∈ Lucp and let X,X ′ be semimartingales such that (H,X) D=
(H ′, X ′). Then JX(H) D= JX′(H ′).

Proof. Since Sucp is dense in Lucp there exist sequences (Hn)n∈N, (H ′n)n∈N of simple pre-
dictable processes with Hn ucp−→ H and H ′n ucp−→ H ′. From the proof of Theorem II.10 in [31]
it can be seen that the Hn and H ′n can be constructed directly from H and H ′ respectively.
Thus (Hn, X) D= (H ′n, X ′) for all n and by (2.10) also JX(Hn) D= JX′(H ′n) for all n. On the
other hand, since JX , JX′ : Lucp −→ Ducp are continuous, we have

JX(Hn) ucp−→ JX(H) and JX′(H ′
n) ucp−→ JX′(H ′).

JX(Hn), JX(H) and JX′(H ′n), JX′(H ′) have càdlàg paths which by Lemma 2.13 implies

JX(Hn) D−→ JX(H) and JX′(H ′
n) D−→ JX′(H ′)

Since JX(Hn) D= JX′(H ′n) for all n it follows that JX(H) D= JX′(H ′).
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2.2 Multi-dimensional stochastic integration

Stochastic integrals for and quadratic covariations of matrix-valued processes are reduced to
the one-dimensional case by means of the matrix product. As in the one-dimensional case
we denote by D the set of adapted processes in Rn×n with càdlàg paths and by L the set of
adapted processes in Rn×n with càglàd paths.

Definition 2.15. A process X in Rn×n is called semimartingale if each component X(i,j)

is a semimartingale in the sense of Definition 2.5(b).

If X and Y are semimartingales in Rn×n then the product XY is also a semimartingale
because each component (XY )(i,j) is by definition of the matrix product and Theorem 2.12(a)
the sum of one-dimensional semimartingales and thus a semimartingale by Theorem 2.6(a).

Definition 2.16. Let X be a semimartingale in Rn×n and let G,H ∈ L.

(a) The left stochastic integral is the process G · X =
( tˆ

0

Gu dXu

)
t≥0

whose (i, j)-

component is defined by

( tˆ

0

Gu dXu

)(i,j)

:=
n∑
k=1

tˆ

0

G(i,k)
u dX(k,j)

u . (2.14a)

(b) The right stochastic integral is the process X : H =
( tˆ

0

dXuHu

)
t≥0

whose (i, j)-

component is defined by

( tˆ

0

dXuHu

)(i,j)

:=
n∑
l=1

tˆ

0

H(l,j)
u dX(i,l)

u . (2.14b)

(c) The two-sided stochastic integral is the process G ·X : H =
( tˆ

0

Gu dXuHu

)
t≥0

whose (i, j)-component is defined by

( tˆ

0

Gu dXuHu

)(i,j)

:=
n∑

k,l=1

tˆ

0

G(i,k)
u H(l,j)

u dX(k,l)
u . (2.14c)

G · X and X : H and G · X : H are semimartingales because each of their components is
by definition and Theorem 2.12(b) the sum of one-dimensional semimartingales and thus a
semimartingale by Theorem 2.6(a).

Definition 2.17. Let X,Y be semimartingales in Rn×n.

(a) The quadratic covariation of X and Y is the process [X,Y ] = ([X,Y ]t)t≥0 whose
(i, j)-component is defined by

[X,Y ](i,j)t :=
n∑
k=1

[
X(i,k), Y (k,j)

]
t
. (2.15a)
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(b) The path-by-path continuous part or simply continuous part of the quadratic co-
variation [X,Y ] is the process [X,Y ]c = ([X,Y ]ct)t≥0 whose (i, j)-component is defined
by

[X,Y ]c,(i,j)t :=
n∑
k=1

[
X(i,k), Y (k,j)

]c
t
. (2.15b)

Theorem 2.18 and Theorem 2.19 show that the defining formulas (2.11a) and (2.11b) for the
one-dimensional quadratic covariation and its continuous part as well as the properties in
Theorem 2.11 also hold true in the multi-dimensional case.

Theorem 2.18. Let X,Y be semimartingales in Rn×n.

(a) The quadratic covariation of X and Y is for all t ≥ 0 given by

[X,Y ]t = XtYt −X0Y0 −
tˆ

0

Xu− dYu −
tˆ

0

dXu Yu−. (2.16a)

(b) The continuous part of the quadratic covariation [X,Y ] is for all t ≥ 0 given by

[X,Y ]ct = [X,Y ]t −
∑

0<s≤t
∆Xs∆Ys. (2.16b)

Proof. (a) By (2.15a), (2.11a), (2.14a) and (2.14b) we have for all i, j = 1, . . . , n

[X,Y ](i,j)t =
n∑
k=1

[
X(i,k), Y (k,j)

]
t

=
n∑
k=1

(
X

(i,k)
t Y

(k,j)
t −X(i,k)

0 Y
(k,j)

0 −
tˆ

0

X
(i,k)
u− dY (k,j)

u −
tˆ

0

Y
(k,j)
u− dX(i,k)

u

)

= (XtYt)(i,j) − (X0Y0)(i,j) −
( tˆ

0

Xu− dYu

)(i,j)

−
( tˆ

0

dXu Yu−

)(i,j)

=
(
XtYt −X0Y0 −

tˆ

0

Xu− dYu −
tˆ

0

dXu Yu−

)(i,j)

.

(b) By (2.15b) and (2.11b) we have for all i, j = 1, . . . , n

[X,Y ]c,(i,j)t =
n∑
k=1

[
X(i,k), Y (k,j)

]c
t

=
n∑
k=1

([
X(i,k), Y (k,j)

]
t
−

∑
0<s≤t

∆X(i,k)
s ∆Y (k,j)

s

)

=
n∑
k=1

[
X(i,k), Y (k,j)

]
t
−

∑
0<s≤t

n∑
k=1

(∆Xs)(i,k)(∆Ys)(k,j)

= [X,Y ](i,j)t −
∑

0<s≤t
(∆Xs∆Ys)(i,j)

=
(

[X,Y ]t −
∑

0<s≤t
∆Xs∆Ys

)(i,j)

.
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2 Stochastic Calculus

Theorem 2.19. Let X,Y, Z be semimartingales in Rn×n.

(a) The quadratic covariation [X,Y ] is a semimartingale and has paths of finite variation
on compacts. It satisfies [X,Y ]0 = 0 and ∆[X,Y ] = ∆X∆Y .

(b) If X is adapted, càdlàg and has paths of finite variation on compacts, then [X,Z]c = 0.

(c) X,Y, Z satisfy the identities[
[X,Y ], Z

]c
=
[
[X,Y ]c, Z

]c
=
[
[X,Y ]c, Z

]
= 0, (2.17a)[

[X,Y ], Z
]
t

=
∑

0<s≤t
∆Xs∆Ys∆Zs. (2.17b)

Proof. (a) [X,Y ] is a semimartingale because each component [X,Y ](i,j) is by definition
and Theorem 2.11(a) the sum of one-dimensional semimartingales and thus a semi-
martingale by Theorem 2.6(a). For i, j = 1, . . . , n we clearly have [X,Y ](i,j)0 = 0 and

(∆[X,Y ])(i,j) = ∆[X,Y ](i,j) = ∆
n∑
k=1

[
X(i,k), Y (k,j)

]
=

n∑
k=1

∆
[
X(i,k), Y (k,j)

]
=

n∑
k=1

∆X(i,k)∆Y (k,j) =
n∑
k=1

(∆X)(i,k)(∆Y )(k,j) = (∆X∆Y )(i,j).

(b) Each component X(i,k) of X is adapted, càdlàg and has paths of finite variation on
compacts and each component Z(k,j) of Z is by definition a semimartingale. Then by
Theorem 2.11(b) we have

[
X(i,k), Z(k,j)

]c
= 0 which implies that

[X,Z]c,(i,j) =
n∑
k=1

[
X(i,k), Z(k,j)

]c
= 0.

(c) By (a) both [X,Y ] and [X,Y ]c satisfy the assumptions of (b) which implies that[
[X,Y ], Z

]c
= 0 and

[
[X,Y ]c, Z

]c
= 0. Furthermore we have[

[X,Y ]c, Z
]
t

=
[
[X,Y ]c, Z

]c
t

+
∑

0<s≤t
∆[X,Y ]cs∆Zs = 0

and by using ∆[X,Y ] = ∆X∆Y we have[
[X,Y ], Z

]
t

=
[
[X,Y ], Z

]c
t

+
∑

0<s≤t
∆[X,Y ]s∆Zs =

∑
0<s≤t

∆Xs∆Ys∆Zs.

Theorem 2.20 shows that the calculation rules for one-dimensional stochastic integrals and
quadratic covariations of integral processes in Theorem 2.12 also hold true in the multi-
dimensional case but the distinction between left and right stochastic integrals becomes
important.

Theorem 2.20. Let X,Y be semimartingales in Rn×n and let G,H ∈ L.

(a) XY = X0Y0 + X− · Y + X : Y− + [X,Y ] which in integral notation becomes the
integration by parts formula

XtYt = X0Y0 +
tˆ

0

Xu− dYu +
tˆ

0

dXu Yu− + [X,Y ]t. (2.18a)
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2 Stochastic Calculus

(b) H · (G ·X) = (HG) ·X and (Y : H) : G = Y : (HG) which in integral notation become

tˆ

0

Hu d
( uˆ

0

Gv dXv

)
=

tˆ

0

HuGu dXu , (2.18b)

tˆ

0

d
( uˆ

0

dYvHv

)
Gu =

tˆ

0

dYuHuGu. (2.18c)

(c) [G ·X,Y : H] = G · [X,Y ] : H which in integral notation becomes[ tˆ

0

Gu dXu ,

tˆ

0

dYuHu

]
=

tˆ

0

Gu d[X,Y ]uHu. (2.18d)

(d) [X : G,H · Y ] = [X : (GH), Y ] = [X, (GH) · Y ] which in integral notation becomes[ tˆ

0

dXuGu,

tˆ

0

Hu dYu

]
=
[ tˆ

0

dXuGuHu, Yt

]
=
[
Xt,

tˆ

0

GuHu dYu

]
. (2.18e)

Proof. (a) (2.18a) is equivalent to (2.16a).

(b) By (2.14a) and (2.13b) we have for all i, j = 1 . . . , n( tˆ

0

Gu d
( uˆ

0

Hv dXv

))(i,j)

=
n∑
k=1

tˆ

0

G(i,k)
u d

( uˆ

0

Hv dXv

)(k,j)

=
n∑
k=1

n∑
l=1

tˆ

0

G(i,k)
u d

( uˆ

0

H(k,l)
v dX(l,j)

v

)

=
n∑
l=1

n∑
k=1

tˆ

0

G(i,k)
u H(k,l)

u dX(l,j)
u

=
n∑
l=1

tˆ

0

(GuHu)(i,l) dX(l,j)
u

=
( tˆ

0

GuHu dXu

)(i,j)

and by (2.14b) and (2.13b) we have for all i, j = 1, . . . , n( tˆ

0

d
( uˆ

0

dYvHv

)
Gu

)(i,j)

=
n∑
k=1

tˆ

0

G(k,j)
u d

( uˆ

0

dYvHv

)(i,k)

=
n∑
k=1

n∑
l=1

tˆ

0

G(k,j)
u d

( uˆ

0

H(l,k)
v dY (i,l)

v

)

=
n∑
l=1

n∑
k=1

tˆ

0

H(l,k)
u G(k,j)

u dY (i,l)
u
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=
n∑
l=1

tˆ

0

(HuGu)(l,j) dY (i,l)
u

=
( tˆ

0

dYuHuGu

)(i,j)

.

(c) By (2.15a), (2.14a), (2.14b), (2.13c), and (2.14c) we have for all i, j = 1, . . . , n

[ tˆ

0

Gu dXu ,

tˆ

0

dYuHu

](i,j)

=
n∑
k=1

[( tˆ

0

Gu dXu

)(i,k)

,

( tˆ

0

dYuHu

)(k,j)]

=
n∑
k=1

n∑
l,m=1

[ tˆ

0

G(i,l)
u dX(l,k)

u ,

tˆ

0

H(m,j)
u dY (k,m)

u

]

=
n∑

l,m=1

n∑
k=1

tˆ

0

G(i,l)
u H(m,j)

u d
[
X(l,k), Y (k,m)

]
u

=
n∑

l,m=1

tˆ

0

G(i,l)
u H(m,j)

u d[X,Y ](l,m)
u

=
( tˆ

0

Gu d[X,Y ]uHu

)(i,j)

.

(d) By (2.15a), (2.14a), (2.14b), and (2.13c) we have for all i, j = 1, . . . , n

[ tˆ

0

dXuGu,

tˆ

0

Hu dYu

](i,j)

=
n∑
k=1

[( tˆ

0

dXuGu

)(i,k)

,

( tˆ

0

Hu dYu

)(k,j)]

=
n∑
k=1

n∑
l,m=1

[ tˆ

0

G(l,k)
u dX(i,l)

u ,

tˆ

0

H(k,m)
u dY (m,j)

u

]

=
n∑

l,m=1

n∑
k=1

tˆ

0

G(l,k)
u H(k,m)

u d
[
X(i,l), Y (m,j)

]
u

=
n∑

l,m=1

tˆ

0

(GuHu)(l,m) d
[
X(i,l), Y (m,j)

]
u

=
n∑

l,m=1

[ tˆ

0

(GuHu)(l,m) dX(i,l)
u ,

tˆ

0

dY (m,j)
u

]

=
n∑

m=1

[( tˆ

0

dXuGuHu

)(i,m)

, Y
(m,j)
t

]

=
[ tˆ

0

dXuGuHu, Yt

](i,j)
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and analogously

[ tˆ

0

dXuGu,

tˆ

0

Hu dYu

](i,j)

=
n∑
k=1

[( tˆ

0

dXuGu

)(i,k)

,

( tˆ

0

Hu dYu

)(k,j)]

=
n∑
k=1

n∑
l,m=1

[ tˆ

0

G(l,k)
u dX(i,l)

u ,

tˆ

0

H(k,m)
u dY (m,j)

u

]

=
n∑

l,m=1

n∑
k=1

tˆ

0

G(l,k)
u H(k,m)

u d
[
X(i,l), Y (m,j)

]
u

=
n∑

l,m=1

tˆ

0

(GuHu)(l,m) d
[
X(i,l), Y (m,j)

]
u

=
n∑

l,m=1

[ tˆ

0

dX(i,l)
u ,

tˆ

0

(GuHu)(l,m) dY (m,j)
u

]

=
n∑
l=1

[
X

(i,l)
t ,

( tˆ

0

GuHu dYu

)(l,j)]

=
[
Xt,

tˆ

0

GuHu dYu

](i,j)

.
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3 Stochastic Exponential

3 Stochastic Exponential
Chapter 3 deals with the stochastic exponential of a semimartingale which will be utilized
throughout the entire thesis. It is a building block of the integral representation of MGOU
processes, it describes the scaling of random selfsimilar processes and random stable hemi-
groups, and it converts random selfsimilar processes into stationary processes and vice versa
by means of the Lamperti transform. In chapter 3.1 we give the definition and basic proper-
ties of the stochastic exponential and in chapter 3.2 we prove a closed form expression for the
stochastic exponential of a matrix-valued semimartingale under commutativity conditions.

3.1 Definition and general properties

The stochastic exponential of a real-valued semimartingale X is motivated by the fact that
the deterministic exponential function exp : R −→ R solves the deterministic differential
equation dy(t) = y(t) dt with initial condition y(0) = 1. Replacing the real-valued function
y(t) with a real-valued stochastic process Y and the deterministic differential dt with the
stochastic differential dXt leads to the stochastic differential equation dYt = Yt dXt with
initial condition Y0 = 1. The unique strong solution is the stochastic exponential Exp(X).

Due to the non-commutativity of matrix multiplication there are two types of stochastic
exponentials in dimension n ≥ 2 as one can consider the two stochastic differential equations
dYt = Yt dXt and dYt = dXt Yt.

Definition 3.1. Let (Ω,A,F , P ) be a filtered and complete probability space such that
F = (Ft)t≥0 is right-continuous and F0 contains all null sets of A. Let X = (Xt)t≥0 be an
F -adapted semimartingale in Rn×n.

(a) The left stochastic exponential ←−−Exp(X) of X is the F -adapted càdlàg process that
solves the stochastic differential equation

d
←−−
Exp(Xt) =

←−−
Exp(Xt−) dXt ,

←−−
Exp(X0) = I ⇐⇒

←−−
Exp(Xt) = I +

tˆ

0

←−−
Exp(Xu−) dXu .

(3.1a)

(b) The right stochastic exponential −−→Exp(X) of X is the F -adapted càdlàg process that
solves the stochastic differential equation

d
−−→
Exp(Xt) = dXt

−−→
Exp(Xt−) ,

−−→
Exp(X0) = I ⇐⇒

−−→
Exp(Xt) = I +

tˆ

0

dXu
−−→
Exp(Xu−).

(3.1b)

By Theorem V.7 in [31] the solutions of (3.1a) and (3.1b) are unique in the strong sense
and are F -semimartingales. Thus

←−−
Exp(X) and

−−→
Exp(X) are semimartingales whenever X is a

semimartingale.

Similar to a stochastic exponential one can define a stochastic logarithm although stochastic
logarithms will not be as prevalent in this thesis as stochastic exponentials. Because of the
non-commutativity of matrix multiplication there are also two types of stochastic logarithms
in dimension n ≥ 2.

Definition 3.2. Let (Ω,A,F , P ) be a filtered and complete probability space such that
F = (Ft)t≥0 is right-continuous and F0 contains all null sets of A. Let X = (Xt)t≥0 be an
F -adapted semimartingale in GLn(R).
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3 Stochastic Exponential

(a) The left stochastic logarithm ←−Log(X) of X is defined by

←−
Log(Xt) :=

tˆ

0

X−1
u− dXu ⇐⇒ d

←−
Log(Xt) = X−1

t− dXt ,
←−
Log(X0) = 0. (3.2a)

(b) The right stochastic logarithm −→Log(X) of X is defined by

−→
Log(Xt) :=

tˆ

0

dXuX
−1
u− ⇐⇒ d

−→
Log(Xt) = dXtX

−1
t− ,

−→
Log(X0) = 0. (3.2b)

By Theorem II.19 in [31] the integral processes X−1
− ·X and X : X−1

− are F -semimartingales.
Thus

←−
Log(X) and

−→
Log(X) are semimartingales whenever X is a semimartingale.

Oftentimes a stochastic exponential needs to be inverted which means that
←−−
Exp(X) and

−−→
Exp(X) need to be processes in GLn(R). By Theorem 1 in [21] this holds true if and only if

det(I + ∆Xt) 6= 0 for all t. (3.3)

In this case the processes
←−−
Exp(X)−1 and

−−→
Exp(X)−1 as well as

←−
Log

(←−−
Exp(X)

)
and
−→
Log

(−−→
Exp(X)

)
are well-defined and the stochastic exponential and stochastic logarithm show properties that
are known from the deterministic exponential and logarithm functions.

Lemma 3.3. (a) Let X = (Xt)t≥0 be a semimartingale in Rn×n with X0 = 0 which
satisfies (3.3). Then for all 0 ≤ s ≤ t

←−−
Exp(Xt −Xs) =

←−−
Exp(Xs)−1←−−Exp(Xt), (3.4a)

−−→
Exp(Xt −Xs) =

−−→
Exp(Xt)

−−→
Exp(Xs)−1, (3.4b)

←−
Log

(←−−
Exp(Xt)

)
= Xt, (3.4c)

−→
Log

(−−→
Exp(Xt)

)
= Xt. (3.4d)

(b) Let X = (Xt)t≥0 be a semimartingale in GLn(R) with X0 = I. Then for all 0 ≤ s ≤ t
←−
Log

(
X−1
s Xt

)
=
←−
Log(Xt)−

←−
Log(Xs), (3.5a)

−→
Log

(
XtX

−1
s

)
=
−→
Log(Xt)−

−→
Log(Xs), (3.5b)

←−−
Exp

(←−
Log(Xt)

)
= Xt, (3.5c)

−−→
Exp

(−→
Log(Xt)

)
= Xt. (3.5d)

Proof. (a) To prove (3.4a) we write Z :=
←−−
Exp(X), Zs,t := Z−1

s Zt =
←−−
Exp(Xs)−1←−−Exp(Xt) and

t = s+ h with h ≥ 0. Then

Zs,s+h =
(
I +

sˆ

0

Zu− dXu

)−1(
I +

sˆ

0

Zu− dXu +
s+hˆ
s

Zu− dXu

)

= I + Z−1
s

s+hˆ
s

Zu− dXu = I +
hˆ

0

Z−1
s Z(s+u)− dXs+u
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= I +
hˆ

0

Zs,(s+u)− d(Xs+u −Xs) .

Since Zs,s+0 = I and the left stochastic exponential is the unique solution of (3.1a) it
follows that

←−−
Exp(Xs)−1←−−Exp(Xt) = Zs,t = Zs,s+h =

←−−
Exp(Xs+h −Xs) =

←−−
Exp(Xt −Xs).

To prove (3.4b) we write Z :=
−−→
Exp(X), Zs,t := ZtZ

−1
s =

−−→
Exp(Xt)

−−→
Exp(Xs)−1 and

t = s+ h with h ≥ 0. Then

Zs,s+h =
(
I +

sˆ

0

dXu Zu− +
s+hˆ
s

dXu Zu−

)(
I +

sˆ

0

dXu Zu−

)−1

= I +
s+hˆ
s

dXu Zu−Z
−1
s = I +

hˆ

0

dXs+u Z(s+u)−Z
−1
s

= I +
hˆ

0

d(Xs+u −Xs)Zs,(s+u)−.

Since Zs,s+0 = I and the right stochastic exponential is the unique solution of (3.1b)
it follows that

−−→
Exp(Xt)

−−→
Exp(Xs)−1 = Zs,t = Zs,s+h =

−−→
Exp(Xs+h −Xs) =

−−→
Exp(Xt −Xs).

For the proof of (3.4c) the integral form of (3.2a) and the differential form of (3.1a)
together yield

←−
Log

(←−−
Exp(Xt)

)
=

tˆ

0

←−−
Exp(Xu−)−1 d

←−−
Exp(Xu) =

tˆ

0

←−−
Exp(Xu−)−1←−−Exp(Xu−) dXu

=
tˆ

0

dXu = Xt −X0 = Xt.

For the proof of (3.4d) the integral form of (3.2b) and the differential form of (3.1b)
together yield

−→
Log

(−−→
Exp(Xt)

)
=

tˆ

0

d
−−→
Exp(Xu)

−−→
Exp(Xu−)−1 =

tˆ

0

dXu
−−→
Exp(Xu−)

−−→
Exp(Xu−)−1

=
tˆ

0

dXu = Xt −X0 = Xt.

(b) For the proof of (3.5a) the integral from of (3.2a) yields

←−
Log(Xt)−

←−
Log(Xs) =

tˆ
s

X−1
u− dXu =

t−sˆ

0

X−1
(s+u)− dXs+u
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=
t−sˆ

0

(
X−1
s X(s+u)−

)−1 d
(
X−1
s Xs+u

)
=
←−
Log

(
X−1
s Xs+t−s

)
=
←−
Log

(
X−1
s Xt

)
.

For the proof of (3.5b) the integral form of (3.2b) yields

−→
Log(Xt)−

−→
Log(Xs) =

tˆ
s

dXuX
−1
u− =

t−sˆ

0

dXs+uX
−1
(s+u)−

=
t−sˆ

0

d
(
Xs+uX

−1
s

) (
X(s+u)−X

−1
s

)−1

=
−→
Log

(
Xs+t−sX

−1
s

)
=
−→
Log

(
XtX

−1
s

)
.

For the proof of (3.5c) the differential form of (3.2a) and the integral form of (3.1a)
respectively yield

Xt = I +Xt −X0 = I +
tˆ

0

dXu = I +
tˆ

0

Xu−X
−1
u− dXu = I +

tˆ

0

Xu− d
←−
Log(Xu)

and
←−−
Exp

(←−
Log(Xt)

)
= I +

tˆ

0

←−−
Exp

(←−
Log(Xu−)

)
d
←−
Log(Xu) .

Since X0 = I and
←−−
Exp

(←−
Log(X0)

)
= I it follows from the uniqueness of the solution of

(3.1a) that Xt =
←−−
Exp

(←−
Log(Xt)

)
for all t ≥ 0.

For the proof of (3.5d) the differential form of (3.2b) and the integral form of (3.1b)
respectively yield

Xt = I +Xt −X0 = I +
tˆ

0

dXu = I +
tˆ

0

dXuX
−1
u−Xu− = I +

tˆ

0

d
−→
Log(Xu)Xu−

and
−−→
Exp

(−→
Log(Xt)

)
= I +

tˆ

0

d
−→
Log(Xu)

−−→
Exp

(−→
Log(Xu−)

)
.

Since X0 = I and
−−→
Exp

(−→
Log(X0)

)
= I it follows from the uniqueness of the solution of

(3.1b) that Xt =
−−→
Exp

(−→
Log(Xt)

)
for all t ≥ 0.

The inverse of the left respectively right stochastic exponential of a semimartingale X is the
right respectively left stochastic exponential of a semimartingale U which can be directly
calculated from X.

Lemma 3.4. Let X = (Xt)t≥0 be a semimartingale in Rn×n which satisfies (3.3) and let
U = (Ut)t≥0 be defined by

Ut = −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
. (3.6)
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Then for all t ≥ 0
←−−
Exp(Xt)−1 =

−−→
Exp(Ut), (3.7a)

−−→
Exp(Xt)−1 =

←−−
Exp(Ut), (3.7b)

det(I + ∆Ut) = 1
det(I + ∆Xt)

. (3.7c)

Proof. (3.7a) has already been proven in Theorem 1 in [21]. (3.7b) can be proven similarly:
By definition of U we first have [U,X]ct = −[X,X]ct and

∆Ut = −∆Xt + (I + ∆Xt)−1 − I + ∆Xt = (I + ∆Xt)−1 − I. (3.8)

From this it follows

Xt + Ut + [U,X]t = Xt −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
+ [U,X]ct +

∑
0<s≤t

(∆Us)(∆Xs)

= Xt −Xt + [X,X]ct − [X,X]ct
+

∑
0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs + (I + ∆Xs)−1∆Xs −∆Xs

)
=

∑
0<s≤t

(
(I + ∆Xs)−1(I + ∆Xs)− I + ∆Xs −∆Xs

)
= 0.

The integration by parts formula (2.18a) together with (3.1a), (3.1b), and (2.18d) now yield

←−−
Exp(Ut)

−−→
Exp(Xt) =

←−−
Exp(U0)

−−→
Exp(X0) +

tˆ

0

←−−
Exp(Uu−) d

−−→
Exp(Xu) +

tˆ

0

d
←−−
Exp(Uu)

−−→
Exp(Xu−)

+
[←−−
Exp(U),

−−→
Exp(X)

]
t

= I +
tˆ

0

←−−
Exp(Uu−) dXu

−−→
Exp(Xu−) +

tˆ

0

←−−
Exp(Uu−) dUu

−−→
Exp(Xu−)

+
[
I +

tˆ

0

←−−
Exp(Uu−) dUu , I +

tˆ

0

dXu
−−→
Exp(Xu−)

]

= I +
tˆ

0

←−−
Exp(Uu−) dXu

−−→
Exp(Xu−) +

tˆ

0

←−−
Exp(Uu−) dUu

−−→
Exp(Xu−)

+
tˆ

0

←−−
Exp(Uu−) d[U,X]u

−−→
Exp(Xu−)

= I +
tˆ

0

←−−
Exp(Uu−) d (Xu + Uu + [U,X]u)︸ ︷︷ ︸

=0

−−→
Exp(Xu−) = I

which shows that
−−→
Exp(Xt)−1 =

←−−
Exp(Ut). (3.7c) follows from (3.8) because

det(I + ∆Ut) = det
(
(I + ∆Xt)−1

)
= 1

det(I + ∆Xt)
.
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3 Stochastic Exponential

Behme and Lindner have shown that the stochastic exponential and stochastic logarithm
preserve the properties of Lévy processes.

Proposition 3.5. [4, Proposition 2.4]

(a) Let X = (Xt)t≥0 be a Lévy process in Rn×n which satisfies (3.3). Then
←−−
Exp(X) and

−−→
Exp(X) are left respectively right Lévy processes in GLn(R).

(b) Let X = (Xt)t≥0 be a left or right Lévy process in GLn(R). Then
←−
Log(X) and

−→
Log(X)

are Lévy processes in Rn×n which satisfy (3.3).

The stochastic exponential and stochastic logarithm also preserve the properties of semi-
Lévy processes in that stationary increments of X can be weakened to periodically sta-
tionary increments and

←−−
Exp(X),

−−→
Exp(X),

←−
Log(X),

−→
Log(X) still have periodically stationary

increments. This enables the study of semiselfsimilarity and semistable hemigroups in con-
junction with semi-Lévy processes in chapters 5 and 6.

Theorem 3.6. (a) Let X = (Xt)t≥0 be a p-semi-Lévy process in Rn×n for some p > 0
which satisfies (3.3). Then

←−−
Exp(X) and

−−→
Exp(X) are right respectively left p-semi-Lévy

processes in GLn(R).

(b) Let X = (Xt)t≥0 be a right or left p-semi-Lévy process in GLn(R) for some p > 0.
Then

←−
Log(X) and

−→
Log(X) are p-semi-Lévy processes in Rn×n which satisfy (3.3).

Proof. In the proof of Proposition 2.4 in [4], which goes back to the proof of Proposition
5.5 in [2], the stationarity of the increments of X is only needed in order to show that
←−−
Exp(X),

−−→
Exp(X),

←−
Log(X),

−→
Log(X) also have stationary increments, but not for the proof of

the remaining properties of a Lévy process. Thus we only need to prove that p-stationary
increments of X result in p-stationary increments of

←−−
Exp(X),

−−→
Exp(X),

←−
Log(X),

−→
Log(X) while

the remaining properties of a p-semi-Lévy process can be shown similarly to Proposition 5.5
in [2].

(a) (3.4a) and (3.4b) yield for all t ≥ 0

←−−
Exp(Xp)−1←−−Exp(Xt+p) =

←−−
Exp(Xt+p −Xp)

D=
←−−
Exp(Xt −X0) =

←−−
Exp(Xt),

−−→
Exp(Xt+p)

−−→
Exp(Xp)−1 =

−−→
Exp(Xt+p −Xp)

D=
−−→
Exp(Xt −X0) =

−−→
Exp(Xt).

(b) (3.5a) and (3.5b) yield for all t ≥ 0

←−
Log(Xt+p)−

←−
Log(Xp) =

←−
Log

(
X−1
p Xt+p

) D=
←−
Log(X−1

0 Xt) =
←−
Log(Xt),

−→
Log(Xt+p)−

−→
Log(Xp) =

−→
Log

(
Xt+pX

−1
p

) D=
−→
Log(XtX

−1
0 ) =

−→
Log(Xt).

3.2 Closed form expression

In dimension n = 1 there is no need to specify the order of multiplication and the stochastic
exponential Exp(X) of a semimartingale X can be written in the closed form

Exp(Xt) = exp
(
Xt −

1
2[X,X]t

) ∏
0<s≤t

(1 + ∆Xs) exp
(
−∆Xs + 1

2(∆Xs)2
)
.
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3 Stochastic Exponential

See Theorem II.37 in [31] for a proof of this formula. Behme and Lindner mention in their
paper [4] that for dimension n ≥ 2 no such closed form expression is known. Yan however
proved in [34] that the stochastic exponential of a continuous semimartingale in dimension
n ≥ 2, under the assumption that various processes commute in the sense that their left and
right stochastic integral with respect to each other are equal, can be written in the closed
form

←−−
Exp(Xt) =

−−→
Exp(Xt) = exp

(
Xt −

1
2[X,X]t

)
.

We now prove a closed form expression for the stochastic exponential of a semimartingale
in dimension n ≥ 2 which generalizes both of the above mentioned results. We follow the
proof of Yan but allow the semimartingale to also have jump parts which requires additional
commutativity assumptions involving the jump parts of X.

Definition 3.7. [34, Definition 1.1] Let H = (Ht)t≥0 and Z = (Zt)t≥0 be semimartingales
in Rn×n. Then the pair (H,Z) is called commutative if for all t ≥ 0

tˆ

0

Hu− dZu =
tˆ

0

dZuHu− (3.9)

which can also be written as (H− · Z)t = (Z : H−)t or as Ht− dZt = dZtHt−.

Note that since in [34] only continuous semimartingales are considered we have to integrate
Hu− rather than Hu to ensure that we integrate a process with càglàd paths.

Definition 3.8. [34, Definition 6.1] Let r ∈ (0,∞) ∪ {∞}, let f : Br(z0) −→ C be analytic

with Taylor series f(z) =
∞∑
k=0

ak(z − z0)k in Br(z0) and let A ∈ Rn×n with ‖A− z0I‖ < r.

Then the matrix

f(A) :=
∞∑
k=0

ak(A− z0I)k (3.10)

is well-defined because the series converges absolutely.

The following proposition is a collection of the results in [34] that lead to the closed form
expression for the stochastic exponential of a continuous semimartingale in dimension n ≥ 2.

Proposition 3.9. [34, Theorem 4.1,4.2,6.1] Let X = (Xt)t≥0 be a continuous semimartingale
in Rn×n such that (X,X) and (X, [X,X]) are commutative.

(a) For all k > 1

dXk
t = kXk−1

t dXt + k(k − 1)
2 Xk−2

t d[X,X]t , (3.11a)

dXk
t = k dXtX

k−1
t + k(k − 1)

2 d[X,X]tXk−2
t . (3.11b)

(b) For any analytic function f : Br(z0) −→ C

df(Xt) = f ′(Xt) dXt + 1
2f
′′(Xt) d[X,X]t , (3.12a)

df(Xt) = dXt f
′(Xt) + 1

2 d[X,X]t f ′′(Xt). (3.12b)
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3 Stochastic Exponential

(c) If additionally X0 = 0 and V := X + 1
2 [X,X], then Y = exp(X) is the unique solution

to both the stochastic integral equations

Yt = I +
tˆ

0

Yu dVu and Yt = I +
tˆ

0

dVu Yu. (3.13)

(d) If additionally ([X,X], X) and ([X,X], [X,X]) are commutative as well, then

←−−
Exp(X) =

−−→
Exp(X) = exp

(
X − 1

2[X,X]
)
. (3.14)

The next four theorems generalize Proposition 3.9(a)-(d) and lead to a closed form expression
for the stochastic exponential of a semimartingale in dimension n ≥ 2.

Theorem 3.10. Let X = (Xt)t≥0 be a semimartingale in Rn×n such that (X,X) and
(X, [X,X]c) are commutative, X0 = 0, and XtXt− = Xt−Xt for all t ≥ 0. Then for all
k > 1

Xk
t = k

tˆ

0

Xk−1
u− dXu + k(k − 1)

2

tˆ

0

Xk−2
u− d[X,X]cu +

∑
0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
, (3.15a)

Xk
t = k

tˆ

0

dXuX
k−1
u− + k(k − 1)

2

tˆ

0

d[X,X]cuXk−2
u− +

∑
0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
. (3.15b)

Proof. We first prove (3.15a) by induction over k. For k = 2, since (X−, X) is commutative,
the integration by parts formula yields

X2
t =

tˆ

0

Xu− dXu +
tˆ

0

dXuXu− + [X,X]t

=
tˆ

0

Xu− dXu +
tˆ

0

Xu− dXu + [X,X]ct +
∑

0<s≤t
(∆Xs)2

= 2
tˆ

0

Xu− dXu +
tˆ

0

d[X,X]cu +
∑

0<s≤t

(
∆X2

s − 2Xs−∆Xs

)
.

In the last step we used the additional assumption XsXs− = Xs−Xs for all s ≥ 0 to obtain

(∆Xs)2 = (Xs −Xs−)2 = X2
s −XsXs− −Xs−Xs +X2

s−

= X2
s −X2

s− + 2X2
s− − 2XsXs− = ∆X2

s − 2Xs−∆Xs. (3.16)

For the induction step we assume that (3.15a) holds for some k > 1. Then

[Xk, X]ct =
[
k

tˆ

0

Xk−1
u− dXu + k(k − 1)

2

tˆ

0

Xk−2
u− d[X,X]cu , Xt

]c

+
[ ∑

0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
, Xt

]c
︸ ︷︷ ︸

=0
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3 Stochastic Exponential

= k

tˆ

0

Xk−1
u− d[X,X]cu + k(k − 1)

2

tˆ

0

Xk−2
u− d

[
[X,X]c, X

]c
u︸ ︷︷ ︸

=0

= k

tˆ

0

Xk−1
u− d[X,X]cu

and the integration by parts formula yields

Xk+1
t = Xk

t Xt =
tˆ

0

Xk
u− dXu +

tˆ

0

dXk
u Xu− + [Xk, X]t

=
tˆ

0

Xk
u− dXu +

tˆ

0

(
kXk−1

u− dXu + k(k − 1)
2 Xk−2

u− d[X,X]cu
)
Xu−

+
tˆ

0

d
( ∑

0<s≤u

(
∆Xk

s − kXk−1
s− ∆Xs

))
Xu− + [Xk, X]ct +

∑
0<s≤t

(∆Xk
s )(∆Xs)

=
tˆ

0

Xk
u− dXu + k

tˆ

0

Xk
u− dXu + k(k − 1)

2

tˆ

0

Xk−1
u− d[X,X]cu

+
∑

0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
Xs− + k

tˆ

0

Xk−1
u− d[X,X]cu +

∑
0<s≤t

(∆Xk
s )(∆Xs)

= (k + 1)
tˆ

0

Xk
u− dXu + k(k + 1)

2

tˆ

0

Xk−1
u− d[X,X]cu

+
∑

0<s≤t

(
(∆Xk

s − kXk−1
s− ∆Xs)Xs− + (∆Xk

s )(∆Xs)
)

= (k + 1)
tˆ

0

Xk
u− dXu + k(k + 1)

2

tˆ

0

Xk−1
u− d[X,X]cu

+
∑

0<s≤t

(
∆Xk+1

s − (k + 1)Xk
s−∆Xs

)
.

Here the last step follows from

(∆Xk
s − kXk−1

s− ∆Xs)Xs− + (∆Xk
s )(∆Xs)

=
(
Xk
s −Xk

s− − kXk−1
s− (Xs −Xs−)

)
Xs− + (Xk

s −Xk
s−)(Xs −Xs−)

= Xk
sXs− −Xk+1

s− − kXk−1
s− XsXs− + kXk+1

s− +Xk+1
s −Xk

sXs− −Xk
s−Xs +Xk+1

s−

= −kXk−1
s− XsXs− + kXk+1

s− +Xk+1
s −Xk

s−Xs

= Xk+1
s −Xk+1

s− + (k + 1)Xk+1
s− − kXk−1

s− XsXs− −Xk
s−Xs

= Xk+1
s −Xk+1

s− + (k + 1)Xk+1
s− − (k + 1)Xk

s−Xs

= Xk+1
s −Xk+1

s− − (k + 1)Xk
s−(Xs −Xs−)

= ∆Xk+1
s − (k + 1)Xk

s−∆Xs. (3.17)

We now prove (3.15b) in a similar way. For k = 2 the integration by parts formula together
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with (3.16) yields

X2
t =

tˆ

0

Xu− dXu +
tˆ

0

dXuXu− + [X,X]t

=
tˆ

0

dXuXu− +
tˆ

0

dXuXu− + [X,X]ct +
∑

0<s≤t
(∆Xs)2

= 2
tˆ

0

dXuXu− +
tˆ

0

d[X,X]cu +
∑

0<s≤t

(
∆X2

s − 2Xs−∆Xs

)
.

For the induction step we assume that (3.15b) holds for some k > 1. Then

[Xk, X]ct =
[
k

tˆ

0

dXuX
k−1
u− + k(k − 1)

2

tˆ

0

d[X,X]cuXk−2
u− , Xt

]c

+
[ ∑

0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
, Xt

]c
︸ ︷︷ ︸

=0

= k

tˆ

0

d[X,X]cuXk−1
u− + k(k − 1)

2

tˆ

0

d
[
[X,X]c, X

]c
u︸ ︷︷ ︸

=0

Xk−2
u−

= k

tˆ

0

d[X,X]cuXk−1
u−

and the integration by parts formula together with (3.17) yields

Xk+1
t = Xk

t Xt =
tˆ

0

Xk
u− dXu +

tˆ

0

dXk
u Xu− + [Xk, X]t

=
tˆ

0

dXuX
k
u− +

tˆ

0

(
k dXuX

k−1
u− + k(k − 1)

2 d[X,X]cuXk−2
u−

)
Xu−

+
tˆ

0

d
( ∑

0<s≤u

(
∆Xk

s − kXk−1
s− ∆Xs

))
Xu− + [Xk, X]ct +

∑
0<s≤t

(∆Xk
s )(∆Xs)

=
tˆ

0

dXuX
k
u− + k

tˆ

0

dXuX
k
u− + k(k − 1)

2

tˆ

0

d[X,X]cuXk−1
u−

+
∑

0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

)
Xs− + k

tˆ

0

d[X,X]cuXk−1
u− +

∑
0<s≤t

(∆Xk
s )(∆Xs)

= (k + 1)
tˆ

0

dXuX
k
u− + k(k + 1)

2

tˆ

0

d[X,X]cuXk−1
u−

+
∑

0<s≤t

(
(∆Xk

s − kXk−1
s− ∆Xs)Xs− + (∆Xk

s )(∆Xs)
)
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= (k + 1)
tˆ

0

dXuX
k
u− + k(k + 1)

2

tˆ

0

d[X,X]cuXk−1
u−

+
∑

0<s≤t

(
∆Xk+1

s − (k + 1)Xk
s−∆Xs

)
.

Theorem 3.11. Let f : C −→ C be analytic and let Z = (Zt)t≥0 be a semimartingale in
Rn×n such that (Z,Z) and (Z, [Z,Z]c) are commutative, Z0 = z0I, and ZtZt− = Zt−Zt for
all t ≥ 0. Then

f(Zt) = f(Z0) +
tˆ

0

f ′(Zu−) dZu + 1
2

tˆ

0

f ′′(Zu−) d[Z,Z]cu +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)
,

(3.18a)

f(Zt) = f(Z0) +
tˆ

0

dZu f ′(Zu−) + 1
2

tˆ

0

d[Z,Z]cu f ′′(Zu−) +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)
.

(3.18b)

Proof. Let f(z) =
∞∑
k=0

ak(z − z0)k be the Taylor series of f and let Xt := Zt − z0I. Then

dXt = dZt , d[X,X]ct = d[Z,Z]ct , ∆Xt = ∆Zt.

X satisfies the assumptions of Theorem 3.10 because

X0 = Z0 − z0I = z0I − z0I = 0,

XtXt− = ZtZt− − z0Zt − z0Zt− + z2
0I

= Zt−Zt − z0Zt− − z0Zt + z2
0I = Xt−Xt,

Xt− dXt = Zt− dZt − z0I dZt
= dZt Zt− − dZt z0I = dXtXt−,

Xt− d[X,X]ct = Zt− d[Z,Z]ct − z0I d[Z,Z]ct
= d[Z,Z]ct Zt− − d[Z,Z]ct z0I = d[X,X]ct Xt−.

We can therefore apply (3.15a), which obviously also holds true for k ∈ {0, 1}, to every power
(Zt − z0I)k = Xk

t in the Taylor series of f(Zt). This results in

f(Zt) =
∞∑
k=0

ak(Zt − z0I)k =
∞∑
k=0

akX
k
t

=
∞∑
k=0

ak

(
k

tˆ

0

Xk−1
u− dXu + k(k − 1)

2

tˆ

0

Xk−2
u− d[X,X]cu +

∑
0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

))

=
tˆ

0

( ∞∑
k=1

kakX
k−1
u−

)
dXu + 1

2

tˆ

0

( ∞∑
k=2

k(k − 1)akXk−2
u−

)
d[X,X]cu

+
∑

0<s≤t

( ∞∑
k=0

akX
k
s −

∞∑
k=0

akX
k
s− −

( ∞∑
k=1

kakX
k−1
s−

)
∆Xs

)
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=
tˆ

0

( ∞∑
k=1

kak(Zu− − z0I)k−1
)

dZu + 1
2

tˆ

0

( ∞∑
k=2

k(k − 1)ak(Zu− − z0I)k−2
)

d[Z,Z]cu

+
∑

0<s≤t

( ∞∑
k=0

ak(Zs − z0I)k −
∞∑
k=0

ak(Zs− − z0I)k −
( ∞∑
k=1

kak(Zs− − z0I)k−1
)

∆Zs

)

=
tˆ

0

f ′(Zu−) dZu + 1
2

tˆ

0

f ′′(Zu−) d[Z,Z]cu +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)

which is (3.18a). Similarly we can instead apply (3.15b), which obviously holds for all k ∈ N0
as well, and obtain

f(Zt) =
∞∑
k=0

ak(Zt − z0I)k =
∞∑
k=0

akX
k
t

=
∞∑
k=0

ak

(
k

tˆ

0

dXuX
k−1
u− + k(k − 1)

2

tˆ

0

d[X,X]cuXk−2
u− +

∑
0<s≤t

(
∆Xk

s − kXk−1
s− ∆Xs

))

=
tˆ

0

dXu

( ∞∑
k=1

kakX
k−1
u−

)
+ 1

2

tˆ

0

d[X,X]cu

( ∞∑
k=2

k(k − 1)akXk−2
u−

)

+
∑

0<s≤t

( ∞∑
k=0

akX
k
s −

∞∑
k=0

akX
k
s− −

( ∞∑
k=1

kakX
k−1
s−

)
∆Xs

)

=
tˆ

0

dZu

( ∞∑
k=1

kak(Zu− − z0I)k−1
)

+ 1
2

tˆ

0

d[Z,Z]cu

( ∞∑
k=2

k(k − 1)ak(Zu− − z0I)k−2
)

+
∑

0<s≤t

( ∞∑
k=0

ak(Zs − z0I)k −
∞∑
k=0

ak(Zs− − z0I)k −
( ∞∑
k=1

kak(Zs− − z0I)k−1
)

∆Zs

)

=
tˆ

0

dZu f ′(Zu−) + 1
2

tˆ

0

d[Z,Z]cu f ′′(Zu−) +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)

which is (3.18b).

Theorem 3.12. Let Z = (Zt)t≥0 be a semimartingale in Rn×n such that (Z,Z), (Z, [Z,Z]c)
are commutative, Z0 = 0, and ZtZt− = Zt−Zt for all t ≥ 0. Let

Vt := Zt + 1
2[Z,Z]ct +

∑
0<s≤t

(
exp(∆Zs)− (I + ∆Zs)

)
. (3.19)

Then Y = exp(Z) is the unique solution to both of the stochastic integral equations

Yt = I +
tˆ

0

Yu− dVu and Yt = I +
tˆ

0

dVu Yu−. (3.20)

Proof. We use Theorem 3.11 with the analytic function f : C −→ C defined by f(z) := exp(z)
to show that Y = exp(Z) = f(Z) is a solution to both equations in (3.20). First, an
application of (3.18a) to f(Zt) yields

exp(Zt) = f(Zt)
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= f(Z0) +
tˆ

0

f ′(Zu−) dZu + 1
2

tˆ

0

f ′′(Zu−) d[Z,Z]cu +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)

= I +
tˆ

0

exp(Zu−) dZu + 1
2

tˆ

0

exp(Zu−) d[Z,Z]cu +
∑

0<s≤t

(
∆ exp(Zs)− exp(Zs−)∆Zs

)

= I +
tˆ

0

exp(Zu−) d
(
Zu + 1

2[Z,Z]cu
)

+
∑

0<s≤t

(
exp(Zs)− exp(Zs−)(I + ∆Zs)

)
.

We now rewrite the remaining sum as a right stochastic integral of exp(Zu−) with respect to∑
0<s≤u

Ms where Ms := exp(∆Zs)− (I + ∆Zs). (3.21)

Note that Ms = 0 if ∆Zs = 0. Since ∆
∑

0<s≤u
Ms = Mu we have

∑
0<s≤t

(
exp(Zs)− exp(Zs−)(I + ∆Zs)

)
=

∑
0<s≤t

exp(Zs−) exp(Zs−)−1
(

exp(Zs)− exp(Zs−)(I + ∆Zs)
)

=
∑

0<s≤t
exp(Zs−)

(
exp(Zs−)−1 exp(Zs)− (I + ∆Zs)

)
=

∑
0<s≤t

exp(Zs−)
(

exp(∆Zs)− (I + ∆Zs)
)

=
∑

0<s≤t
exp(Zs−)Ms

=
∑

0<s≤t
exp(Zs−)∆

( ∑
0<r≤s

Mr

)

=
tˆ

0

exp(Zu−) d
( ∑

0<s≤u
Ms

)
.

Combining both terms into one integral then results in

exp(Zt) = I +
tˆ

0

exp(Zu−) d
(
Zu + 1

2[Z,Z]cu
)

+
∑

0<s≤t

(
exp(Zs)− exp(Zs−)(I + ∆Zs)

)

= I +
tˆ

0

exp(Zu−) d
(
Zu + 1

2[Z,Z]cu
)

+
tˆ

0

exp(Zu−) d
( ∑

0<s≤u
Ms

)

= I +
tˆ

0

exp(Zu−) d
(
Zu + 1

2[Z,Z]cu +
∑

0<s≤u
Ms

)
= I +

tˆ

0

exp(Zu−) dVu

which is the first equation in (3.20). Similarly, an application of (3.18b) to f(Zt) yields

exp(Zt) = f(Zt)
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= f(Z0) +
tˆ

0

dZu f ′(Zu−) + 1
2

tˆ

0

d[Z,Z]cu f ′′(Zu−) +
∑

0<s≤t

(
∆f(Zs)− f ′(Zs−)∆Zs

)

= I +
tˆ

0

dZu exp(Zu−) + 1
2

tˆ

0

d[Z,Z]cu exp(Zu−) +
∑

0<s≤t

(
∆ exp(Zs)− exp(Zs−)∆Zs

)

= I +
tˆ

0

d
(
Zu + 1

2[Z,Z]cu
)

exp(Zu−) +
∑

0<s≤t

(
exp(Zs)− (I + ∆Zs) exp(Zs−)

)
.

Again we rewrite the remaining sum as a left stochastic integral of exp(Zu−) with respect to∑
0<s≤u

Ms with Ms defined as in (3.21). We now have

∑
0<s≤t

(
exp(Zs)− (I + ∆Zs) exp(Zs−)

)
=

∑
0<s≤t

(
exp(Zs)− (I + ∆Zs) exp(Zs−)

)
exp(Zs−)−1 exp(Zs−)

=
∑

0<s≤t

(
exp(Zs) exp(Zs−)−1 − (I + ∆Zs)

)
exp(Zs−)

=
∑

0<s≤t

(
exp(∆Zs)− (I + ∆Zs)

)
exp(Zs−)

=
∑

0<s≤t
Ms exp(Zs−)

=
∑

0<s≤t
∆
( ∑

0<r≤s
Mr

)
exp(Zs−)

=
tˆ

0

d
( ∑

0<s≤u
Ms

)
exp(Zu−)

and combining both terms into one integral with respect to Vs results in

exp(Zt) = I +
tˆ

0

d
(
Zu + 1

2[Z,Z]cu
)

exp(Zu−) +
∑

0<s≤t

(
exp(Zs)− (I + ∆Zs) exp(Zs−)

)

= I +
tˆ

0

d
(
Zu + 1

2[Z,Z]cu
)

exp(Zu−) +
tˆ

0

d
( ∑

0<s≤u
Ms

)
exp(Zu−)

= I +
tˆ

0

d
(
Zu + 1

2[Z,Z]cu +
∑

0<s≤u
Ms

)
exp(Zu−) = I +

tˆ

0

dVu exp(Zu−)

which is the second equation in (3.20).

Theorem 3.13. Let X = (Xt)t≥0 be a semimartingale in Rn×n such that X0 = 0 and for
all s, t ≥ 0

‖∆Xt‖ < 1 , XtXt− = Xt−Xt , ∆Xt∆Xs = ∆Xs∆Xt , [X,X]ct∆Xt = ∆Xt[X,X]ct .

Additionally assume that (X,X), (X, [X,X]c), ([X,X]c, X), ([X,X]c, [X,X]c) as well as( ∑
0<s≤·−

(
log(I + ∆Xs)−∆Xs

)
, X

)
and

( ∑
0<s≤·−

(
log(I + ∆Xs)−∆Xs

)
, [X,X]c

)
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are commutative. Then the left and right stochastic exponential of X are equal and given by

←−−
Exp(Xt) =

−−→
Exp(Xt) = exp

(
Xt −

1
2[X,X]ct +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

))
. (3.22)

Proof. Since ‖∆Xt‖ < 1 for all t ≥ 0 the matrix logarithm log(I + ∆Xt) is defined for all
t ≥ 0 by Theorem 2.8 in [15] and we can define

Zt := Xt −
1
2[X,X]ct +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

)
= Z

(1)
t −

1
2Z

(2)
t + Z

(3)
t

where Z(1)
t = Xt, Z(2)

t = [X,X]ct and

Z
(3)
t =

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

)
=

∑
0<s≤t

∞∑
k=2

(−1)k+1

k
(∆Xs)k

with increments ∆Z(1)
t = ∆Xt, ∆Z(2)

t = 0 and

∆Z(3)
t = log(I + ∆Xt)−∆Xt =

∞∑
k=2

(−1)k+1

k
(∆Xt)k.

We verify that Z = (Zt)t≥0 fulfills the assumptions of Theorem 3.12. First, Z0 = 0 is clear
by definition. Second, the pair (Z,Z) is commutative because

(
Z

(1)
− · Z(1))

t
=

tˆ

0

Xu− dXu =
tˆ

0

dXuXu− =
(
Z(1) : Z(1)

−
)
t
,

(
Z

(1)
− · Z(2))

t
=

tˆ

0

Xu− d[X,X]cu =
tˆ

0

d[X,X]cuXu− =
(
Z(2) : Z(1)

−
)
t
,

(
Z

(1)
− · Z(3))

t
=

∑
0<s≤t

Xs−
(

log(I + ∆Xs)−∆Xs

)

=
∑

0<s≤t

∞∑
k=2

(−1)k+1

k
Xs−(∆Xs)k

=
∑

0<s≤t

∞∑
k=2

(−1)k+1

k
(∆Xs)kXs−

=
∑

0<s≤t

(
log(I + ∆Xs)−∆Xs

)
Xs− =

(
Z(3) : Z(1)

−
)
t
,

(
Z

(2)
− · Z(1))

t
=

tˆ

0

[X,X]cu dXu =
tˆ

0

dXu [X,X]cu =
(
Z(1) : Z(2)

−
)
t
,

(
Z

(2)
− · Z(2))

t
=

tˆ

0

[X,X]cu d[X,X]cu =
tˆ

0

d[X,X]cu [X,X]cu =
(
Z(2) : Z(2)

−
)
t
,

(
Z

(2)
− · Z(3))

t
=

∑
0<s≤t

[X,X]cs
(

log(I + ∆Xs)−∆Xs

)

=
∑

0<s≤t

∞∑
k=2

(−1)k+1

k
[X,X]cs(∆Xs)k
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=
∑

0<s≤t

∞∑
k=2

(−1)k+1

k
(∆Xs)k[X,X]cs

=
∑

0<s≤t

(
log(I + ∆Xs)−∆Xs

)
[X,X]cs =

(
Z(3) : Z(2)

−
)
t
,

(
Z

(3)
− · Z(1))

t
=

tˆ

0

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
dXu

=
tˆ

0

dXu

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
=
(
Z(1) : Z(3)

−
)
t
,

(
Z

(3)
− · Z(2))

t
=

tˆ

0

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
d[X,X]cu

=
tˆ

0

d[X,X]cu
∑

0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
=
(
Z(2) : Z(3)

−
)
t
,

(
Z

(3)
− · Z(3))

t
=

∑
0<s≤t

∑
0<r≤s−

(
log(I + ∆Xr)−∆Xr

)(
log(I + ∆Xs)−∆Xs

)

=
∑

0<s≤t

∑
0<r≤s−

∞∑
k,l=2

(−1)k+l+2

kl
(∆Xr)k(∆Xs)l

=
∑

0<s≤t

∑
0<r≤s−

∞∑
l,k=2

(−1)l+k+2

lk
(∆Xs)l(∆Xr)k

=
∑

0<s≤t

(
log(I + ∆Xs)−∆Xs

) ∑
0<r≤s−

(
log(I + ∆Xr)−∆Xr

)
=
(
Z(3) : Z(3)

−
)
t
,

and thus

(Z− · Z)t =
(
Z

(1)
− · Z(1))

t
+ 1

4
(
Z

(2)
− · Z(2))

t
+
(
Z

(3)
− · Z(3))

t
+
(
Z

(1)
− · Z(3))

t
+
(
Z

(3)
− · Z(1))

t

− 1
2
((
Z

(1)
− · Z(2))

t
+
(
Z

(2)
− · Z(1))

t
+
(
Z

(2)
− · Z(3))

t
+
(
Z

(3)
− · Z(2))

t

)
=
(
Z(1) : Z(1)

−
)
t
+ 1

4
(
Z(2) : Z(2)

−
)
t
+
(
Z(3) : Z(3)

−
)
t
+
(
Z(3) : Z(1)

−
)
t
+
(
Z(1) : Z(3)

−
)
t

− 1
2
((
Z(2) : Z(1)

−
)
t
+
(
Z(1) : Z(2)

−
)
t
+
(
Z(3) : Z(2)

−
)
t
+
(
Z(2) : Z(3)

−
)
t

)
= (Z : Z−)t.

Third, the pair (Z, [Z,Z]c) is commutative because [Z,Z]ct = [X,X]ct = Z
(2)
t for all t ≥ 0 and

thus

(Z− · [Z,Z]c)t =
(
Z

(1)
− · Z(2))

t
− 1

2
(
Z

(2)
− · Z(2))

t
+
(
Z

(3)
− · Z(2))

t

=
(
Z(2) : Z(1)

−
)
t
− 1

2
(
Z(2) : Z(2)

−
)
t
+
(
Z(2) : Z(3)

−
)
t

= ([Z,Z]c : Z−)t.

Fourth, ZtZt− = Zt−Zt for all t ≥ 0 because

Z
(1)
t Z

(1)
t− = XtXt− = Xt−Xt = Z

(1)
t− Z

(1)
t ,
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Z
(2)
t Z

(2)
t− = [X,X]ct [X,X]ct− = [X,X]ct [X,X]ct = [X,X]ct−[X,X]ct = Z

(2)
t− Z

(2)
t ,

Z
(3)
t Z

(3)
t− =

∑
0<s≤t

∑
0<r≤t−

(
log(I + ∆Xs)−∆Xs

)(
log(I + ∆Xr)−∆Xr

)

=
∑

0<s≤t

∑
0<r≤t−

∞∑
k,l=2

(−1)k+l+2

kl
(∆Xs)k(∆Xr)l

=
∑

0<r≤t−

∑
0<s≤t

∞∑
l,k=2

(−1)l+k+2

lk
(∆Xr)l(∆Xs)k

=
∑

0<r≤t−

∑
0<s≤t

(
log(I + ∆Xr)−∆Xr

)(
log(I + ∆Xs)−∆Xs

)
= Z

(3)
t− Z

(3)
t ,

and for the mixed terms we have

Z
(1)
t Z

(2)
t− + Z

(2)
t Z

(1)
t−

= Z
(2)
t− Z

(1)
t + Z

(1)
t− Z

(2)
t + ∆Z(1)

t Z
(2)
t− − Z

(2)
t−∆Z(1)

t + ∆Z(2)
t Z

(1)
t− − Z

(1)
t−∆Z(2)

t

= Z
(2)
t− Z

(1)
t + Z

(1)
t− Z

(2)
t +

(
∆Xt[X,X]ct − [X,X]ct∆Xt

)
︸ ︷︷ ︸

=0

+ ∆[X,X]ctZ
(1)
t−︸ ︷︷ ︸

=0

−Z(1)
t−∆[X,X]ct︸ ︷︷ ︸

=0

= Z
(2)
t− Z

(1)
t + Z

(1)
t− Z

(2)
t

and

Z
(1)
t Z

(3)
t− + Z

(3)
t Z

(1)
t−

= Z
(3)
t− Z

(1)
t + Z

(1)
t− Z

(3)
t + ∆Z(1)

t Z
(3)
t− − Z

(3)
t−∆Z(1)

t + ∆Z(3)
t Z

(1)
t− − Z

(1)
t−∆Z(3)

t

= Z
(3)
t− Z

(1)
t + Z

(1)
t− Z

(3)
t +

∑
0<s≤t−

∞∑
k=2

(−1)k+1

k

(
(∆Xt)(∆Xs)k − (∆Xs)k(∆Xt)

)
︸ ︷︷ ︸

=0

+
∞∑
k=2

(−1)k+1

k

(
(∆Xt)kXt− −Xt−(∆Xt)k

)
︸ ︷︷ ︸

=0

= Z
(3)
t− Z

(1)
t + Z

(1)
t− Z

(3)
t

and

Z
(2)
t Z

(3)
t− + Z

(3)
t Z

(2)
t−

= Z
(3)
t− Z

(2)
t + Z

(2)
t− Z

(3)
t + ∆Z(2)

t Z
(3)
t− − Z

(3)
t−∆Z(2)

t + ∆Z(3)
t Z

(2)
t− − Z

(2)
t−∆Z(3)

t

= Z
(3)
t− Z

(2)
t + Z

(2)
t− Z

(3)
t + ∆[X,X]ctZ

(3)
t−︸ ︷︷ ︸

=0

−Z(3)
t−∆[X,X]ct︸ ︷︷ ︸

=0

+
∞∑
k=2

(−1)k+1

k

(
(∆Xt)k[X,X]ct − [X,X]ct(∆Xt)k

)
︸ ︷︷ ︸

=0

= Z
(3)
t− Z

(2)
t + Z

(2)
t− Z

(3)
t .

and thus

ZtZt− = Z
(1)
t Z

(1)
t− + 1

4Z
(2)
t Z

(2)
t− + Z

(3)
t Z

(3)
t− +

(
Z

(1)
t Z

(3)
t− + Z

(3)
t Z

(1)
t−

)
− 1

2
(
Z

(1)
t Z

(2)
t− + Z

(2)
t Z

(1)
t−

)
− 1

2
(
Z

(2)
t Z

(3)
t− + Z

(3)
t Z

(2)
t−

)
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= Z
(1)
t− Z

(1)
t + 1

4Z
(2)
t− Z

(2)
t + Z

(3)
t− Z

(3)
t +

(
Z

(3)
t− Z

(1)
t + Z

(1)
t− Z

(3)
t

)
− 1

2
(
Z

(2)
t− Z

(1)
t + Z

(1)
t− Z

(2)
t

)
− 1

2
(
Z

(3)
t− Z

(2)
t + Z

(2)
t− Z

(3)
t

)
= Zt−Zt.

Therefore Z fulfills all the assumptions of Theorem 3.12 and Y = exp(Z) is the unique
solution to both of the stochastic integral equations in (3.20) with V given by (3.19). The
equations [Z,Z]ct = [X,X]ct and

∆Zt = ∆Z(1)
t + ∆Z(2)

t + ∆Z(3)
t = ∆Xt + log(I + ∆Xt)−∆Xt = log(I + ∆Xt)

show that

Vt = Zt + 1
2[Z,Z]ct +

∑
0<s≤t

(
exp(∆Zs)− (I + ∆Zs)

)
= Xt −

1
2[X,X]ct +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

)
+ 1

2[X,X]ct +
∑

0<s≤t

(
exp

(
log(I + ∆Xs)

)
−
(
I + log(I + ∆Xs)

))
= Xt +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs + I + ∆Xs − I − log(I + ∆Xs)

)
= Xt

and we conclude that
←−−
Exp(Xt) =

←−−
Exp(Vt) = Yt = exp(Zt) and

−−→
Exp(Xt) =

−−→
Exp(Vt) = Yt =

exp(Zt). Plugging in the definition of Z yields (3.22).

Remark 3.14. Since [X,X]ct = [X,X]t −
∑

0<s≤t
(∆Xs)2 we may also write (3.22) as

←−−
Exp(Xt) =

−−→
Exp(Xt) = exp

(
Xt −

1
2[X,X]t +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs + 1

2(∆Xs)2
))

.

In the special case n = 1 this simplifies to
←−−
Exp(Xt) =

−−→
Exp(Xt) = exp

(
Xt −

1
2[X,X]t

) ∏
0<s≤t

exp
(

log(1 + ∆Xs)−∆Xs + 1
2(∆Xs)2

)

= exp
(
Xt −

1
2[X,X]t

) ∏
0<s≤t

(1 + ∆Xs) exp
(
−∆Xs + 1

2(∆Xs)2
)

which is the well-known formula for the one-dimensional stochastic exponential as in Theorem
II.37 in [31].

To conclude this chapter we give an example of a semimartingale X for which the assumptions
of Theorem 3.13 are fulfilled and the stochastic exponential can be computed with (3.22).

Example 3.15. Let B = (Bt)t≥0 be a one-dimensional brownian motion and N = (Nt)t≥0
a one-dimensional Poisson process with almost surely increasing jump times (Tk)k∈N and
increments

ct := ∆Nt =
∞∑
k=1

1{Tk=t}.

We verify that X = (Xt)t≥0 defined by

Xt :=
(

1
2Nt Bt
−Bt 1

2Nt

)
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fulfills the assumptions of Theorem 3.13 and compute
←−−
Exp(X) and

−−→
Exp(X) with (3.22). For

this purpose we need the identities

∆Xt =
(

1
2∆Nt ∆Bt
−∆Bt 1

2∆Nt

)
=
(
ct
2 0
0 ct

2

)
= ct

2 I

and

[X,X]ct =
[(

1
2N B
−B 1

2N

)
,

(
1
2N B
−B 1

2N

)]c
t

=

 1
4 [N,N ]ct − [B,B]ct 1

2 [N,B]ct + 1
2 [B,N ]ct

−1
2 [B,N ]ct − 1

2 [N,B]ct −[B,B]ct + 1
4 [N,N ]ct


=
(
−t 0
0 −t

)
= −tI.

and ∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

)
=

∑
0<s≤t

(
log

(
I + cs

2 I
)
− cs

2 I
)

=
Nt∑
k=1

(
log

(3
2

)
− 1

2

)
I

=
(

log
(3

2

)
− 1

2

)
NtI.

Then X0 = 0 by definition, ‖∆Xt‖ = |ct|2 < 1, and

XtXt− = Xt(Xt −∆Xt) = Xt

(
Xt −

ct
2 I
)

=
(
Xt −

ct
2 I
)
Xt = (Xt −∆Xt)Xt = Xt−Xt,

∆Xt∆Xs =
(
ct
2 I
)(

cs
2 I
)

=
(
cs
2 I
)(

ct
2 I
)

= ∆Xs∆Xt,

[X,X]ct∆Xt = (−tI)
(
ct
2 I
)

=
(
ct
2 I
)

(−tI) = ∆Xt[X,X]ct .

For the various commutativity conditions we have

X− ·X =
(

1
2N− B
−B 1

2N−

)
·
(

1
2N B
−B 1

2N

)

=

 1
4N− ·N −B ·B

1
2N− ·B + 1

2B ·N

−1
2B ·N −

1
2N− ·B −B ·B + 1

4N− ·N


=

 1
4N : N− −B : B 1

2B : N− + 1
2N : B

−1
2N : B − 1

2B : N− −B : B + 1
4N : N−


=
(

1
2N B
−B 1

2N

)
:
(

1
2N− B
−B 1

2N−

)
= X : X−,

(X− · [X,X]c)t =
tˆ

0

Xu− d[X,X]cu =
tˆ

0

Xu− d(−uI) =
tˆ

0

d(−uI)Xu−
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=
tˆ

0

d[X,X]cuXu− = ([X,X]c : X−)t,

([X,X]c ·X)t =
tˆ

0

[X,X]cu dXu =
tˆ

0

(−uI) dXu =
tˆ

0

dXu (−uI)

=
tˆ

0

dXu [X,X]cu = (X : [X,X]c)t,

([X,X]c · [X,X]c)t =
tˆ

0

[X,X]cu d[X,X]cu =
tˆ

0

u du I = t2

2 I =
tˆ

0

duuI

=
tˆ

0

d[X,X]cu [X,X]cu = ([X,X]c : [X,X]c)t

as well as

( ∑
0<s≤·−

(
log(I + ∆Xs)−∆Xs

)
·X
)
t

=
tˆ

0

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
dXu

=
tˆ

0

(
log

(3
2

)
− 1

2

)
Nu−I dXu

=
tˆ

0

dXu

(
log

(3
2

)
− 1

2

)
Nu−I

=
tˆ

0

dXu

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)

=
(
X :

∑
0<s≤·−

(
log(I + ∆Xs)−∆Xs

))
t

,

( ∑
0<s≤·−

(
log(I + ∆Xs)−∆Xs

)
· [X,X]c

)
t

=
tˆ

0

∑
0<s≤u−

(
log(I + ∆Xs)−∆Xs

)
d[X,X]cu

=
tˆ

0

(
log

(3
2

)
− 1

2

)
Nu−I d(−uI)

=
tˆ

0

d(−uI)
(

log
(3

2

)
− 1

2

)
Nu−I

=
tˆ

0

d[X,X]cu
∑

0<s≤u−

(
log(I + ∆Xs)−∆Xs

)

=
(

[X,X]c :
∑

0<s≤·−

(
log(I + ∆Xs)−∆Xs

))
t

.
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Thus X fulfills the assumption of Theorem 3.13 and by (3.22)

←−−
Exp(Xt) =

−−→
Exp(Xt) = exp

(
Xt −

1
2[X,X]ct +

∑
0<s≤t

(
log(I + ∆Xs)−∆Xs

))

= exp
(
Xt + t

2I +
(

log
(3

2

)
− 1

2

)
NtI

)

= et/2
(3

2

)Nt

exp
(

0 Bt
−Bt 0

)

= et/2
(3

2

)Nt
(

cos(Bt) sin(Bt)
− sin(Bt) cos(Bt)

)
.
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4 Multivariate generalized Ornstein-Uhlenbeck processes
Chapter 4 outlines the theory of MGOU processes based on the work of Behme and Lind-
ner and extends some of their results. We recap the motivation behind and the definition
of MGOU processes and quote the characterization of MGOU processes as solutions of a
random recurrence equation and of a stochastic differential equation as well as conditions
under which MGOU processes are stationary. We prove that these results hold true in the
periodically stationary case and construct MGOU processes with real time parameter.

Due to the non-commutativity of matrix multiplication there are two types of MGOU pro-
cesses in dimension n ≥ 2. Behme and Lindner only discussed left MGOU processes, which
are covered in chapter 4.1, but they did not consider right MGOU processes, which are the
topic of chapter 4.2. The theories of left and right MGOU processes closely resemble each
other but key distinctions are the different order of multiplication and the prevalence of
either left or right stochastic exponentials.

4.1 Left MGOU processes

In their paper [4] Behme and Lindner motivate the definition of a multivariate gener-
alized Ornstein-Uhlenbeck process V = (Vt)t≥0 by a family of GLn(R) × Rn×n-valued
random variables (As,t, Bs,t)0≤s≤t, which they call random functional, such that V satisfies
the random recurrence equation

Vt = As,tVs +Bs,t (4.1)

almost surely for all 0 ≤ s ≤ t. They impose the following assumptions on (As,t, Bs,t)0≤s≤t.

(L0) At,t = I and Bt,t = 0 for all t ≥ 0.

(L1) Ar,t = As,tAr,s and Br,t = As,tBr,s +Bs,t almost surely for all 0 ≤ r ≤ s ≤ t.

(L2) (As,t, Bs,t)a≤s≤t≤b and (As,t, Bs,t)c≤s≤t≤d are independent for all 0 ≤ a ≤ b ≤ c ≤ d.

(L3) (As,t, Bs,t)0≤s≤t
D= (A0,t−s, B0,t−s)0≤s≤t for all t ≥ 0.

(L4) A0,t
P−→ I and B0,t

P−→ 0 for t ↓ 0.

We refer to (L0),(L1),(L2),(L3),(L4) as the L-assumptions. There is a one-to-one cor-
respondence between a family (As,t, Bs,t)0≤s≤t of GLn(R) × Rn×n-valued random variables
which satisfies the L-assumptions and a bivariate Lévy process (X,Y ) such that X satisfies
(3.3).

Theorem 4.1. [4, Theorem 3.1]

(a) Let (As,t, Bs,t)0≤s≤t satisfy the L-assumptions and let (At := A0,t)t≥0, (Bt := B0,t)t≥0
be càdlàg. Then the process (X,Y ) = (Xt, Yt)t≥0 defined by

Xt :=
tˆ

0

Au− dA−1
u =

←−
Log

(
A−1
t

)
, (4.2a)

Yt :=
tˆ

0

Au− d(A−1
u Bu) (4.2b)

is the unique Lévy process such that X satisfies (3.3) and

As,t =
←−−
Exp(Xt)−1←−−Exp(Xs), (4.3a)
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4 Multivariate generalized Ornstein-Uhlenbeck processes

Bs,t =
←−−
Exp(Xt)−1

tˆ
s

←−−
Exp(Xu−) dYu (4.3b)

almost surely for all 0 ≤ s ≤ t.

(b) Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3). Then the family
(As,t, Bs,t)0≤s≤t defined as in (4.3) satisfies the L-assumptions.

The definition of a multivariate generalized Ornstein-Uhlenbeck process is motivated by
the formulas for As,t and Bs,t in (4.3) and the random recurrence equation (4.1) as they
together yield

Vt = A0,tV0 +B0,t =
←−−
Exp(Xt)−1V0 +

←−−
Exp(Xt)−1

tˆ

0

←−−
Exp(Xu−) dYu

=
←−−
Exp(Xt)−1

(
V0 +

tˆ

0

←−−
Exp(Xu−) dYu

)
.

Definition 4.2. [4, Definition 3.2] Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X
satisfies (3.3) and let V0 be an Rn×n-valued random variable. Then the process V = (Vt)t≥0
defined by

Vt :=
←−−
Exp(Xt)−1

(
V0 +

tˆ

0

←−−
Exp(Xu−) dYu

)
(4.4)

is called left multivariate generalized Ornstein-Uhlenbeck process or simply left
MGOU process. The process (X,Y ) is called background driving process.

Example 4.3. Let B = (Bt)t≥0 be a one-dimensional brownian motion and N = (Nt)t≥0
a one-dimensional Poisson process with almost surely increasing jump times (Tk)k∈N. We
compute the left MGOU process V = (Vt)t≥0 with V0 = 0 and background driving process
(X,Y ) = (Xt, Yt)t≥0 defined by

Xt :=
(

1
2Nt Bt
−Bt 1

2Nt

)
and Yt :=

(
Bt 0
0 Bt

)
.

In Example 3.15 we already computed that

←−−
Exp(Xt) = et/2

(3
2

)Nt
(

cos(Bt) sin(Bt)
− sin(Bt) cos(Bt)

)

and thus by (4.4)

Vt =
←−−
Exp(Xt)−1

tˆ

0

←−−
Exp(Xu−) dYu

= e−t/2
(2

3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

) tˆ

0

eu/2
(3

2

)Nu−
(

cos(Bu) dBu sin(Bu) dBu
− sin(Bu) dBu cos(Bu) dBu

)
.

In order to compute the stochastic integrals
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu and
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu
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we apply the multi-dimensional Ito formula (see Theorem II.33 in [31]) with the functions
f : R3 −→ R and g : R3 −→ R defined by

f(x, y, z) := ex/2
(3

2

)y
sin(z) and g(x, y, z) := ex/2

(3
2

)y
cos(z).

An application of the multi-dimensional Ito formula with f yields

et/2
(3

2

)Nt

sin(Bt)

= f(t,Nt, Bt)− f(0, N0, B0)

= 1
2

tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) du+ log
(3

2

) tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dNu

+
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu −
1
2

tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) d[B,B]cu

+
∑

0<s≤t
∆
(
es/2

(3
2

)Ns

sin(Bs)
)
− log

(3
2

)
es/2

(3
2

)Ns−

sin(Bs)∆Ns

= log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
sin(BTk

) +
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu

+
Nt∑
k=1

eTk/2
((3

2

)k
−
(3

2

)k−1
)

sin(BTk
)− log

(3
2

)
eTk/2

(3
2

)k−1
sin(BTk

)

= log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
sin(BTk

) +
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu

+ 1
3

Nt∑
k=1

eTk/2
(3

2

)k
sin(BTk

)− log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
sin(BTk

)

=
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu + 1
3

Nt∑
k=1

eTk/2
(3

2

)k
sin(BTk

)

so that
tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu = et/2
(3

2

)Nt

sin(Bt)−
1
3

Nt∑
k=1

eTk/2
(3

2

)k
sin(BTk

).

An application of the multi-dimensional Ito formula with g yields

et/2
(3

2

)Nt

cos(Bt)− 1

= g(t,Nt, Bt)− g(0, N0, B0)

= 1
2

tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) du+ log
(3

2

) tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dNu

−
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu −
1
2

tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) d[B,B]cu
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+
∑

0<s≤t
∆
(
es/2

(3
2

)Ns

cos(Bs)
)
− log

(3
2

)
es/2

(3
2

)Ns−

cos(Bs)∆Ns

= log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
cos(BTk

)−
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu

+
Nt∑
k=1

eTk/2
((3

2

)k
−
(3

2

)k−1
)

cos(BTk
)− log

(3
2

)
eTk/2

(3
2

)k−1
cos(BTk

)

= log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
cos(BTk

)−
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu

+ 1
3

Nt∑
k=1

eTk/2
(3

2

)k
cos(BTk

)− log
(3

2

) Nt∑
k=1

eTk/2
(3

2

)k−1
cos(BTk

)

= −
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu + 1
3

Nt∑
k=1

eTk/2
(3

2

)k
cos(BTk

)

so that
tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu = 1− et/2
(3

2

)Nt

cos(Bt) + 1
3

Nt∑
k=1

eTk/2
(3

2

)k
cos(BTk

).

Inserting both stochastic integrals yields
tˆ

0

←−−
Exp(Xu−) dYu =

(
0 1
−1 0

)
+ et/2

(3
2

)Nt
(

sin(Bt) − cos(Bt)
cos(Bt) sin(Bt)

)

− 1
3

Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
) − cos(BTk

)
cos(BTk

) sin(BTk
)

)
and thus the left MGOU process is given by

Vt =
←−−
Exp(Xt)−1

tˆ

0

←−−
Exp(Xu−) dYu

= e−t/2
(2

3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)(
0 1
−1 0

)

+ e−t/2
(2

3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)
· et/2

(3
2

)Nt
(

sin(Bt) − cos(Bt)
cos(Bt) sin(Bt)

)

− e−t/2
(2

3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)
· 1

3

Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
) − cos(BTk

)
cos(BTk

) sin(BTk
)

)

=
(

0 −1
1 0

)
+ e−t/2

(2
3

)Nt
(

sin(Bt) cos(Bt)
− cos(Bt) sin(Bt)

)

− 1
3e
−t/2

(2
3

)Nt Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
−Bt) − cos(BTk

−Bt)
cos(BTk

−Bt) sin(BTk
−Bt)

)
.

The left MGOU process is described by a stochastic differential equation driven by a bivariate
Lévy process (U,L) which is constructed from the background driving process (X,Y ). The
process U already appeared in (3.6) when computing the inverse of a stochastic exponential.
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Theorem 4.4. [4, Theorem 3.4]

(a) Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3) and let the
process (U,L) = (Ut, Lt)t≥0 be defined by

Ut = −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
, (4.5a)

Lt = Yt − [X,Y ]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I

)
∆Ys. (4.5b)

Then (U,L) is a Lévy process such that U satisfies (3.3) and the left MGOU process
V defined as in (4.4) solves the stochastic differential equation

dVt = dUt Vt− + dLt . (4.6)

(b) Let (U,L) = (Ut, Lt)t≥0 be a Lévy process such that U satisfies (3.3) and let V0 be
an Rn×n-valued random variable. Then the solution V = (Vt)t≥0 of the stochastic
differential equation (4.6) is a left MGOU process and its background driving process
(X,Y ) = (Xt, Yt)t≥0 is the Lévy process given by

Xt =
←−
Log

(−−→
Exp(Ut)−1

)
, (4.7a)

Yt = Lt +
[←−
Log

(−−→
Exp(U)−1

)
, L
]
t
. (4.7b)

Furthermore X satisfies (3.3).

The following relations between (X,Y ) and (U,L) will be used in future proofs.

Proposition 4.5. [4, Proposition 3.5] Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that
X satisfies (3.3) and let the process (U,L) = (Ut, Lt)t≥0 be defined as in (4.5). Then for all
t ≥ 0

Lt = Yt + [U, Y ]t, (4.8a)
Yt = Lt + [X,L]t. (4.8b)

We now prove that Theorem 4.1 and Theorem 4.4 also hold true when the stationarity
property (L3) is weakened to a property (L3*) requiring only periodic stationarity and the
stationary increments of the background driving process of the left MGOU process are weak-
ened to periodically stationary increments. We thus replace (L3) by

(L3*) (Ap,p+t, Bp,p+t)t≥0
D= (A0,t, B0,t)t≥0 for some p > 0

and refer to (L0),(L1),(L2),(L3*),(L4) as the L*-assumptions.

Theorem 4.6 and Theorem 4.7 show that there still is a one-to-one-correspondence between
(As,t, Bs,t)0≤s≤t and (X,Y ) but imposing the L*-assumptions on the random functional
results in a semi-Lévy process as the background driving process.

Theorem 4.6. Let (As,t, Bs,t)0≤s≤t satisfy the L*-assumptions for some p > 0 and let
(At := A0,t)t≥0, (Bt := B0,t)t≥0 be càdlàg. Then the process (X,Y ) = (Xt, Yt)t≥0 defined as
in (4.2) is the unique p-semi-Lévy process such that X satisfies (3.3) and (4.3) holds almost
surely.
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Proof. The proof is similar to the proofs of Theorem 3.1(a) and Proposition 6.1 in [4]. (X,Y )
is càdlàg since (At)t≥0 and (Bt)t≥0 are càdlàg, and (X0, Y0) = (0, 0) holds by definition. By
(L1) we have for all 0 ≤ s ≤ t

Xt −Xs =
tˆ
s

Au− dA−1
u =

tˆ
s

As,u−As d(As,uAs)−1

=
tˆ
s

As,u−As d(A−1
s A−1

s,u) =
tˆ
s

As,u− dA−1
s,u

Yt − Ys =
tˆ
s

Au− d(A−1
u Bu)

=
tˆ
s

As,u−As d
(
(As,uAs)−1(As,uBs +Bs,u)

)

=
tˆ
s

As,u−As d(A−1
s A−1

s,uAs,uBs +A−1
s A−1

s,uBs,u)

=
tˆ
s

As,u− d(A−1
s,uBs,u)

so that (X,Y ) has independent increments because by (L2) the random variables

(Xti+1 −Xti , Yti+1 − Yti) =
( ti+1ˆ

ti

Ati,u− dA−1
ti,u ,

ti+1ˆ

ti

Ati,u− d
(
A−1
ti,uBti,u)

)

are independent for all t0 < . . . < tk, k ∈ N. (X,Y ) has p-stationary increments because by
(L2),(L3*)

(Xt+p −Xp, Yt+p − Yp)t≥0 =
( t+pˆ

p

Ap,u− dA−1
p,u ,

t+pˆ
p

Ap,u− d
(
A−1
p,uBp,u)

)
t≥0

=
( tˆ

0

Ap,(p+u)− dA−1
p,p+u ,

tˆ

0

Ap,(p+u)− d
(
A−1
p,p+uBp,p+u

))
t≥0

D=
( tˆ

0

Au− dA−1
u ,

tˆ

0

Au− d
(
A−1
u Bu

))
t≥0

= (Xt, Yt)t≥0.

Thus (X,Y ) is a p-semi-Lévy process. X =
←−
Log(A−1) satisfies (3.3) by Theorem 3.6(b) and

(4.3) is derived in exactly the same way as in the proof of Theorem 3.1 in [4].

Theorem 4.7. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3). Then the family (As,t, Bs,t)0≤s≤t defined as in (4.3) satisfies the L*-
assumptions.

Proof. (L0), (L1), and (L4) are obtained in the same way as in the proof of Theorem 3.1(b)
in [4]. (L2) can also be shown in the same way as in [4] since by Theorem 3.6(a)

←−−
Exp(X) is
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a p-semi-Lévy process and therefore still has independent increments. (L3*) follows from

(Ap,p+t, Bp,p+t)t≥0

=
(
←−−
Exp(Xt+p)−1←−−Exp(Xp),

←−−
Exp(Xt+p)−1←−−Exp(Xp)

t+pˆ
p

←−−
Exp(Xp)−1←−−Exp(Xu−) dYu

)
t≥0

=
(
←−−
Exp(Xt+p −Xp)−1,

←−−
Exp(Xt+p −Xp)−1

t+pˆ
p

←−−
Exp(Xu− −Xp) dYu

)
t≥0

=
(
←−−
Exp(Xt+p −Xp)−1,

←−−
Exp(Xt+p −Xp)−1

tˆ

0

←−−
Exp(X(u+p)− −Xp) d(Yu+p − Yp)

)
t≥0

D=
(
←−−
Exp(Xt)−1,

←−−
Exp(Xt)−1

tˆ

0

←−−
Exp(Xu−) dYu

)
t≥0

= (A0,t, B0,t)t≥0.

Theorem 4.8 and Theorem 4.9 show that the left MGOU process driven by a semi-Lévy
process is still described by the stochastic differential equation (4.6) but the process (U,L)
driving this equation now also is a semi-Lévy process.

Theorem 4.8. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such that
X satisfies (3.3) and let the process (U,L) = (Ut, Lt)t≥0 be defined as in (4.5). Then (U,L)
is a p-semi-Lévy process such that U satisfies (3.3) and the left MGOU process V defined
as in (4.4) solves the stochastic differential equation (4.6).

Proof. (U,L) is càdlàg and has independent increments because (X,Y ) is càdlàg and has
independent increments. (U0, L0) = (0, 0) holds by definition. Therefore we only need
to prove that (U,L) has p-stationary increments. As both U and L consist of summands
depending only on X or Y , ∆X or ∆Y , respectively [X,X] or [X,Y ], we first look at these
three summands separately. Since (X,Y ) has p-stationary increments we have

∆Xs+p = Xs+p −X(s+p)− = (Xs+p −Xp)− (X(s+p)− −Xp)
D= Xs −Xs− = ∆Xs,

∆Ys+p = Ys+p − Y(s+p)− = (Ys+p − Yp)− (Y(s+p)− − Yp)
D= Ys − Ys− = ∆Ys.

For the second summand of L we have

[X,Y ]t+p − [X,Y ]p

= Xt+pYt+p −
t+pˆ

0

Xu− dYu −
t+pˆ

0

dXu Yu− −XpYp +
pˆ

0

Xu− dYu +
pˆ

0

dXu Yu−

= Xt+pYt+p −XpYp −
t+pˆ
p

Xu− dYu −
t+pˆ
p

dXu Yu−

= Xt+pYt+p −XpYp −
tˆ

0

X(u+p)− dYu+p −
tˆ

0

dXu+p Y(u+p)−

= Xt+pYt+p −XpYp −
tˆ

0

(X(u+p)− −Xp) dYu+p −
tˆ

0

Xp dYu+p
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−
tˆ

0

dXu+p (Y(u+p)− − Yp)−
tˆ

0

dXu+p Yp

= Xt+pYt+p −XpYp −
tˆ

0

(X(u+p)− −Xp) dYu+p −Xp(Yt+p − Yp)

−
tˆ

0

dXu+p (Y(u+p)− − Yp)− (Xt+p −Xp)Yp

= (Xt+p −Xp)(Yt+p − Yp)−
tˆ

0

(X(u+p)− −Xp) d(Yu+p − Yp)

−
tˆ

0

d(Xu+p −Xp) (Y(u+p)− − Yp)

D= XtYt −
tˆ

0

Xu− dYu −
tˆ

0

dXu Yu− = [X,Y ]t

and therefore

[X,Y ]ct+p − [X,Y ]cp = [X,Y ]t+p −
∑

0<s≤t+p
∆Xs∆Ys − [X,Y ]p +

∑
0<s≤p

∆Xs∆Ys

= [X,Y ]t+p − [X,Y ]p −
∑

p<s≤t+p
∆Xs∆Ys

= [X,Y ]t+p − [X,Y ]p −
∑

0<s≤t
∆Xs+p∆Ys+p

D= [X,Y ]t −
∑

0<s≤t
∆Xs∆Ys = [X,Y ]ct .

In the special case Y = X we also have [X,X]ct+p − [X,X]cp
D= [X,X]ct . Together this yields

Ut+p − Up = −(Xt+p −Xp) + [X,X]ct+p − [X,X]cp +
∑

p<s≤t+p

(
(I + ∆Xs)−1 − I + ∆Xs

)
= −(Xt+p −Xp) + [X,X]ct+p − [X,X]cp +

∑
0<s≤t

(
(I + ∆Xs+p)−1 − I + ∆Xs+p

)
D= −Xt + [X,X]ct +

∑
0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
= Ut,

Lt+p − Lp = Yt+p − Yp −
(
[X,Y ]ct+p − [X,Y ]cp

)
+

∑
p<s≤t+p

(
(I + ∆Xs)−1 − I

)
∆Ys

= Yt+p − Yp −
(
[X,Y ]ct+p − [X,Y ]cp

)
+

∑
0<s≤t

(
(I + ∆Xs+p)−1 − I

)
∆Ys+p

D= Yt − [X,Y ]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I

)
∆Ys = Lt.

Combining this we get (Ut+p−Up, Lt+p−Lp)t≥0
D= (Ut, Lt)t≥0. Thus (U,L) is a p-semi-Lévy

process. (3.3) is clear from (3.7c) and the stochastic differential equation (4.6) is derived in
exactly the same way as in the proof of Theorem 3.4(a) in [4].
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Theorem 4.9. Let (U,L) = (Ut, Lt)t≥0 be a p-semi-Lévy process for some p > 0 such
that U satisfies (3.3) and let V0 be an Rn×n-valued random variable. Then the solution
V = (Vt)t≥0 of the stochastic differential equation (4.6) is a left MGOU process and its
background driving process (X,Y ) = (Xt, Yt)t≥0 is the p-semi-Lévy process given by (4.7).
Furthermore X satisfies (3.3).

Proof. (X,Y ) is càdlàg and has independent increments because (U,L) is càdlàg and has
independent increments. (X0, Y0) = (0, 0) holds by definition. X has p-stationary increments
because by (3.5a), (3.4b), and the p-stationary increments of U we have for all t ≥ 0

(Xt+p −Xp)t≥0 =
(←−
Log

(−−→
Exp(Ut+p)−1

)
−
←−
Log

(−−→
Exp(Up)−1

))
t≥0

=
(←−
Log

(−−→
Exp(Up)

−−→
Exp(Ut+p)−1

))
t≥0

=
(←−
Log

(−−→
Exp(Ut+p − Up)−1

))
t≥0

D=
(←−
Log

(−−→
Exp(Ut)−1

))
t≥0

= (Xt)t≥0.

Inserting (4.7a) in (4.7b) yields Yt = Lt + [X,L]t and since X and L have p-stationary
increments it can be shown as in the proof of Theorem 4.8 that [X,L] has p-stationary
increments as well. Therefore Y has p-stationary increments because

(Yt+p − Yp)t≥0 = (Lt+p − Lp + [X,L]t+p − [X,L]p)t≥0
D= (Lt − [X,L]t)t≥0 = (Yt)t≥0.

The fact that the solution of (4.6) is a left MGOU process driven by (X,Y ) is proven in
exactly the same way as in the proof of Theorem 3.4(b) in [4]. Furthermore, by (3.7b) and
(3.4c)

Xt =
←−
Log

(−−→
Exp(Ut)−1

)
=
←−
Log

(←−−
Exp(Ũt)

)
= Ũt

where Ũ = (Ũt)t≥0 is constructed from U by (3.6), and then by (3.7c) we have for all t ≥ 0

det(I + ∆Xt) = det
(
I + ∆Ũt

)
= 1

det(I + ∆Ut)
6= 0.

Behme and Lindner also give conditions under which the left MGOU process is stationary.

Theorem 4.10. [4, Theorem 5.2] Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that
X satisfies (3.3) and let V = (Vt)t≥0 be the left MGOU process driven by (X,Y ). Let
(U,L) = (Ut, Lt)t≥0 be defined as in (4.5).

(a) Let P- lim
t→∞

←−−
Exp(Ut) = 0. Then a finite random variable V0 can be chosen such that V

is stationary if and only if the integral
tˆ

0

←−−
Exp(Uu−) dLu converges in distribution to a

finite random variable. In this case V0 can be chosen independently of (X,Y ) with

V0
D= D- lim

t→∞

tˆ

0

←−−
Exp(Uu−) dLu . (4.9a)
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(b) Let P- lim
t→∞

←−−
Exp(Xt) = 0. Then a finite random variable V0 can be chosen such that V

is stationary if and only if the integral
tˆ

0

←−−
Exp(Xu−) dYu converges in probability to a

finite random variable. In this case V0 can be chosen as

V0 = −P- lim
t→∞

tˆ

0

←−−
Exp(Xu−) dYu . (4.9b)

For the proof they need the following distributional equality of left stochastic integrals of
stochastic exponentials.

Theorem 4.11. [4, Proposition 8.3] Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that
X satisfies (3.3) and let (U,L) = (Ut, Lt)t≥0 be defined as in (4.5). Then for all t > 0

−−→
Exp(Ut)

tˆ

0

−−→
Exp(Uu−)−1 dYu

D=
tˆ

0

←−−
Exp(Uu−) dLu . (4.10)

In the situation of Theorem 4.11 the left side of (4.10) can also be written in the form

−−→
Exp(Ut)

tˆ

0

−−→
Exp(Uu−)−1 dYu = −

tˆ

0

−−→
Exp(Ut − Uu−) d(Yt − Yu) D= −

tˆ

0

−−→
Exp(U(t−u)−) dYt−u

= −
0ˆ

t

−−→
Exp(Uu−) dYu =

tˆ

0

−−→
Exp(Uu−) dYu

and (4.10) then becomes

tˆ

0

−−→
Exp(Uu−) dYu

D=
tˆ

0

←−−
Exp(Uu−) dLu .

We now prove an analogous result in the case of periodically stationary increments and use
it to derive conditions under which the left MGOU process is periodically stationary.

Theorem 4.12. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3) and let (U,L) = (Ut, Lt)t≥0 be defined as in (4.5). Then for all n ∈ N

npˆ

0

−−→
Exp(Uu−) dYu

D=
npˆ

0

←−−
Exp(Uu−) dLu . (4.11)

Proof. The proof is similar to the proof of Proposition 8.3 in [4]. Let (U ′, Y ′) be an indepen-
dent copy of (U, Y ). Then (U,L) and (U ′, L′) are p-semi-Lévy processes by Theorem 4.8.
For fixed n ∈ N and 0 ≤ s ≤ np now let

Ûs := Unp − Unp−s,
Ŷs := Ynp − Ynp−s

and for s ≥ 0 let

Û ′s := U ′(s+np)− − U
′
np−,
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Ŷ ′s := Y ′(s+np)− − Y
′
np−.

Then

(Ûs, Ŷs)0≤s≤np = (Unp − Unp−s, Ynp − Ynp−s)0≤s≤np
D= (Us, Ys)0≤s≤np
D= (U ′s, Y ′s )0≤s≤np
D= (U ′(s+np)− − U

′
np−, Y

′
(s+np)− − Y

′
np−)0≤s≤np

= (Û ′s, Ŷ ′s )0≤s≤np.

For partitions σ−m =
(
. . . , −2np

m , −npm , 0
)
of the negative real line and σ+

m =
(
0, npm ,

2np
m , . . .

)
of

the positive real line let

Aσ
−
m :=

m−1∑
i=0

←−−
Exp

(
Û ′np(i+1)/m

) (
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)
,

Bσ+
m :=

m−1∑
i=0

←−−
Exp

(
Ûnp(i+1)/m−

) (
Ŷnp(i+1)/m− − Ŷnpi/m−

)
.

Then as |σ−m|
m→∞−−−−→ 0 we have by Theorems II.21 and II.23 in [31]

Aσ
−
m =

m−1∑
i=0

←−−
Exp

(
Û ′np(i+1)/m

) (
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)

=
m−1∑
i=0

←−−
Exp

(
Û ′npi/m

) (
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)

+
m−1∑
i=0

(←−−
Exp

(
Û ′np(i+1)/m

)
−
←−−
Exp

(
Û ′npi/m

)) (
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)
P−→

npˆ

0

←−−
Exp(Û ′u−) dŶ ′u +

[←−−
Exp(Û ′), Ŷ ′

]
np

D=
npˆ

0

←−−
Exp(Uu−) dYu +

[←−−
Exp(U), Y

]
np
.

This equals the right side in (4.11) because from (4.8a), (2.18d), and (3.1a) we obtain
npˆ

0

←−−
Exp(Uu−) dLu =

npˆ

0

←−−
Exp(Uu−) d(Yu + [U, Y ]u)

=
npˆ

0

←−−
Exp(Uu−) dYu +

npˆ

0

←−−
Exp(Uu−) d[U, Y ]u

=
npˆ

0

←−−
Exp(Uu−) dYu +

[ npˆ

0

←−−
Exp(Uu−) dUu ,

npˆ

0

dYu

]

=
npˆ

0

←−−
Exp(Uu−) dYu +

[←−−
Exp(U), Y

]
np
.
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As |σ+
m|

m→∞−−−−→ 0 we have by Lemma 8.2 in [4] and Theorem II.21 in [31]

Bσ+
m =

m−1∑
i=0

←−−
Exp

(
Ûnp(i+1)/m−

) (
Ŷnp(i+1)/m− − Ŷnpi/m−

)

=
m−1∑
i=0

←−−
Exp

(
Unp − Unp(m−i−1)/m

) (
Ynp(m−i)/m − Ynp(m−i−1)/m

)

=
m−1∑
i=0

−−→
Exp(Unp)

−−→
Exp

(
Unp(m−i−1)/m

)−1 (
Ynp(m−i)/m − Ynp(m−i−1)/m

)
=
−−→
Exp(Unp)

m∑
i=1

−−→
Exp

(
Unp(i−1)/m

)−1 (
Ynpi/m − Ynp(i−1)/m

)
P−→
−−→
Exp(Unp)

npˆ

0

−−→
Exp(Uu−)−1 dYu .

Using the p-stationary increments of (U, Y ) we can also write this in the form

−−→
Exp(Unp)

npˆ

0

−−→
Exp(Uu−)−1 dYu =

−−→
Exp(Unp)

0ˆ

−np

−−→
Exp(U(np+u)−)−1 dYnp+u

= −
0ˆ

−np

−−→
Exp(Unp − U(np+u)−) d(Ynp − Ynp+u)

D= −
0ˆ

−np

−−→
Exp(U(−u)−) dY−u =

npˆ

0

−−→
Exp(Uu−) dYu

which is the left side in (4.11). The equality in distribution now follows from the fact that

Bσ+
m =

m−1∑
i=0

←−−
Exp

(
Ûnp(i+1)/m−

) (
Ŷnp(i+1)/m− − Ŷnpi/m−

)

=
m−1∑
i=0

(←−−
Exp

(
Ûnp(i+1)/m

)
−∆
←−−
Exp

(
Ûnp(i+1)/m

))

·
((
Ŷnp(i+1)/m −∆Ŷnp(i+1)/m

)
−
(
Ŷnpi/m −∆Ŷnpi/m

))

=
m−1∑
i=0

←−−
Exp

(
Ûnp(i+1)/m

) (
Ŷnp(i+1)/m − Ŷnpi/m

)
D=
m−1∑
i=0

←−−
Exp

(
Û ′np(i+1)/m

) (
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)
= Aσ

−
m

because at fixed times both
←−−
Exp(Û) and Ŷ almost surely do not have jumps.

Theorem 4.13. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3) and let V = (Vt)t≥0 be the left MGOU process driven by (X,Y ). Let
(U,L) = (Ut, Lt)t≥0 be defined as in (4.5).
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(a) Let P- lim
n→∞

−−→
Exp(Unp) = 0. Then a finite random variable V0 can be chosen such that V

is p-stationary if and only if the integral
npˆ

0

←−−
Exp(Uu−) dLu converges in distribution to

a finite random variable. In this case V0 can be chosen independently of (X,Y ) with

V0
D= D- lim

n→∞

npˆ

0

←−−
Exp(Uu−) dLu . (4.12a)

(b) Let P- lim
n→∞

←−−
Exp(Xnp) = 0. Then a finite random variable V0 can be chosen such that

V is p-stationary if and only if the integral
npˆ

0

←−−
Exp(Xu−) dYu converges in probability

to a finite random variable. In this case V0 can be chosen as

V0 = −P- lim
n→∞

npˆ

0

←−−
Exp(Xu−) dYu . (4.12b)

Proof. The proof is similar to the proof of Theorem 5.2 in [4].

(a) Assume that V is p-stationary. Then Vnp
D= V0 for all n ∈ N and thus

V0
D= D- lim

n→∞
Vnp

= D- lim
n→∞

−−→
Exp(Unp)

(
V0 +

npˆ

0

−−→
Exp(Uu−)−1 dYu

)

D= D- lim
n→∞

−−→
Exp(Unp)V0 +

npˆ

0

←−−
Exp(Uu−) dLu

= D- lim
n→∞

npˆ

0

←−−
Exp(Uu−) dLu .

Now assume that (4.12a) holds. Then for fixed t ≥ 0 and all n ∈ N

Vt+np =
−−→
Exp(Ut+np)

(
V0 +

npˆ

0

−−→
Exp(Uu−)−1 dYu +

t+npˆ
np

−−→
Exp(Uu−)−1 dYu

)

=
−−→
Exp(Ut+np)

−−→
Exp(Unp)−1

(
−−→
Exp(Unp)V0 +

−−→
Exp(Unp)

npˆ

0

−−→
Exp(Uu−)−1 dYu

+
−−→
Exp(Unp)

tˆ

0

−−→
Exp(U(u+np)−)−1 dYu+np

)

=
−−→
Exp(Ut+np − Unp)

(
−−→
Exp(Unp)V0 +

−−→
Exp(Unp)

npˆ

0

−−→
Exp(Uu−)−1 dYu
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+
tˆ

0

−−→
Exp(U(u+np)− − Unp)−1 d(Yu+np − Ynp)

)

D=
−−→
Exp(Ut)

(
−−→
Exp(Unp)V0 +

npˆ

0

←−−
Exp(Uu−) dLu +

tˆ

0

−−→
Exp(Uu−)−1 dYu

)

D−→
−−→
Exp(Ut)

(
V0 +

tˆ

0

−−→
Exp(Uu−)−1 dYu

)
= Vt

as n→∞, where we have used (4.11) in the second to last step. Thus

Vt+p
D= D- lim

n→∞
Vt+p+np = D- lim

n→∞
Vt+(n+1)p

D= Vt.

(b) Assume that V is p-stationary. Then Vnp
D= V0 for all n ∈ N0 and thus

V0 +
npˆ

0

←−−
Exp(Xu−) dYu =

←−−
Exp(Xnp)Vnp

P−→ 0 ⇐⇒ V0 = −P- lim
n→∞

npˆ

0

←−−
Exp(Xu−) dYu .

Now assume that (4.12b) holds. Then for all n ∈ N

Vnp =
←−−
Exp(Xnp)−1

(
V0 +

npˆ

0

←−−
Exp(Xu−) dYu

)

=
←−−
Exp(Xnp)−1

(
−
∞̂

0

←−−
Exp(Xu−) dYu +

npˆ

0

←−−
Exp(Xu−) dYu

)

= −
←−−
Exp(Xnp)−1

∞̂

np

←−−
Exp(Xu−) dYu

= −
←−−
Exp(Xnp)−1

∞̂

0

←−−
Exp(X(u+np)−) dYu+np

= −
∞̂

0

←−−
Exp(X(u+np)− −Xnp) d(Yu+np − Ynp)

D= −
∞̂

0

←−−
Exp(Xu−) dYu = V0

and thus for all t ≥ 0 by the independence of Vp and (Ap,p+t, Bp,p+t)

Vt+p = Ap,p+tVp +Bp,p+t
D= A0,tV0 +B0,t = Vt.

When studying the connection between left MGOU processes, left semiselfsimilar processes,
and left semistable hemigroups in chapters 5.1 and 6.1 we need the notion of a left MGOU
process with time parameter t ∈ R rather than just t ≥ 0. In order to define a left MGOU
process with real time parameter we make use of the construction of a Lévy process with
real time parameter in Theorem 2.3.
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Theorem 4.14. Let (X,Y ) = (Xt, Yt)t≥0 be a semimartingale such that X satisfies (3.3)
and let (X ′, Y ′) be an independent copy of (X,Y ). Let (X̃, Ỹ ) be defined as in (2.5). Assume
that

V0 :=
0ˆ

−∞

←−−
Exp

(
−X ′(−u)−

)
d(−Y ′−u) := P- lim

t→∞

0ˆ

−t

←−−
Exp

(
−X ′(−u)−

)
d(−Y ′−u) (4.13a)

exists and let the process V = (Vt)t∈R be defined by

Vt :=
←−−
Exp(X̃t)−1

tˆ

−∞

←−−
Exp(X̃u−) dỸu . (4.13b)

(a) If (X,Y ) is a Lévy process then V is stationary.

(b) If (X,Y ) is a p-semi-Lévy process for some p > 0 then V is p-stationary.

Proof. First assume that (X,Y ) is a Lévy process. Then (X̃, Ỹ ) is a Lévy process by
Theorem 2.3(a) and therefore has stationary increments. By (3.4a) we have for all t ∈ R and
h > 0

Vt+h =
←−−
Exp(X̃t+h)−1

t+hˆ

−∞

←−−
Exp(X̃u−) dỸu

=
←−−
Exp(X̃t+h − X̃h)−1←−−Exp(X̃h)−1

tˆ

−∞

←−−
Exp(X̃(u+h)−) dỸu+h

=
←−−
Exp(X̃t+h − X̃h)−1

tˆ

−∞

←−−
Exp(X̃(u+h)− − X̃h) d(Ỹu+h − Ỹh)

D=
←−−
Exp(X̃t)−1

tˆ

−∞

←−−
Exp(X̃u−) dỸu = Vt.

Now assume that (X,Y ) is a p-semi-Lévy process. Then (X̃, Ỹ ) is a p-semi-Lévy process
by Theorem 2.3(b) and therefore has p-stationary increments. By (3.4a) we have for all t ≥ 0

Vt+p =
←−−
Exp(X̃t+p)−1

t+pˆ

−∞

←−−
Exp(X̃u−) dỸu

=
←−−
Exp(X̃t+p − X̃p)−1←−−Exp(X̃p)−1

tˆ

−∞

←−−
Exp(X̃(u+p)−) dỸu+p

=
←−−
Exp(X̃t+p − X̃p)−1

tˆ

−∞

←−−
Exp(X̃(u+p)− − X̃p) d(Ỹu+p − Ỹp)

D=
←−−
Exp(X̃t)−1

tˆ

−∞

←−−
Exp(X̃u−) dỸu = Vt
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and for t < 0

Vt−p =
←−−
Exp(X̃t−p)−1

t−pˆ

−∞

←−−
Exp(X̃u−) dỸu

=
←−−
Exp(X̃t−p − X̃−p)−1←−−Exp(X̃−p)−1

tˆ

−∞

←−−
Exp(X̃(u−p)−) dỸu−p

=
←−−
Exp(X̃t−p − X̃−p)−1

tˆ

−∞

←−−
Exp(X̃(u−p)− − X̃−p) d(Ỹu−p − Ỹ−p)

D=
←−−
Exp(X̃t)−1

tˆ

−∞

←−−
Exp(X̃u−) dỸu = Vt.

For t > 0 the process in (4.13b) can be written as

Vt =
←−−
Exp(X̃t)−1

tˆ

−∞

←−−
Exp(X̃u−) dỸu

=
←−−
Exp(Xt)−1

( 0ˆ

−∞

←−−
Exp

(
−X ′(−u)−

)
d(−Y ′−u) +

tˆ

0

←−−
Exp(Xu−) dYu

)

=
←−−
Exp(Xt)−1

(
V0 +

tˆ

0

←−−
Exp(Xu−) dYu

)

which is the usual integral form of a left MGOU process as in (4.4) but by (4.13a) V0 can
be chosen independently of the background driving process (X,Y ). This fact together with
Theorem 4.14 now motivates the following definition.

Definition 4.15. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy respectively semi-Lévy process such
that X satisfies (3.3) and let (X ′, Y ′) be an independent copy of (X,Y ). Let (X̃, Ỹ ) be
defined as in (2.5) and assume that V0 as in (4.13a) exists. Then V = (Vt)t∈R defined as in
(4.13b) is called stationary left MGOU process respectively periodically stationary
left MGOU process. The process (X̃, Ỹ ) is called background driving process.

4.2 Right MGOU processes

Given a family of GLn(R)×Rn×n-valued random variables (As,t, Bs,t)0≤s≤t we now study the
random recurrence equation

Vt = VsAs,t +Bs,t (4.14)

which differs from (4.1) in that Vs is now multiplicated by As,t from the right instead of from
the left. In order to obtain a similar characterization of the solutions V = (Vt)t≥0 of (4.14)
as in the left case we need to impose the following assumptions on (As,t, Bs,t)0≤s≤t.

(R0) At,t = I and Bt,t = 0 for all t ≥ 0.

(R1) Ar,t = Ar,sAs,t and Br,t = Br,sAs,t +Bs,t almost surely for all 0 ≤ r ≤ s ≤ t.
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(R2) (As,t, Bs,t)a≤s≤t≤b and (As,t, Bs,t)c≤s≤t≤d are independent for all 0 ≤ a ≤ b ≤ c ≤ d.

(R3) (As,t, Bs,t)0≤s≤t
D= (A0,t−s, B0,t−s)0≤s≤t for all t ≥ 0.

(R4) A0,t
P−→ I and B0,t

P−→ 0 for t ↓ 0.

We refer to (R0),(R1),(R2),(R3),(R4) as the R-assumptions. In fact, the only difference
between the R- and L-assumptions is (R1) which reflects the change in the order of multi-
plication in (4.14).

In Theorem 4.16 and Theorem 4.17 we prove a one-to-one correspondence between a family
(As,t, Bs,t)0≤s≤t of GLn(R)×Rn×n-valued random variables which satisfies the R-assumptions
and a bivariate Lévy process (X,Y ) such that X satisfies (3.3). This result is similar to the
left case in Theorem 4.1 which was proven by Behme and Lindner.

Theorem 4.16. Let (As,t, Bs,t)0≤s≤t satisfy the R-assumptions and let (At := A0,t)t≥0,
(Bt := B0,t)t≥0 be càdlàg. Then the process (X,Y ) = (Xt, Yt)t≥0 defined by

Xt :=
tˆ

0

dA−1
u Au− =

−→
Log

(
A−1
t

)
, (4.15a)

Yt :=
tˆ

0

d(BuA−1
u )Au− (4.15b)

is the unique Lévy process such that X satisfies (3.3) and

As,t =
−−→
Exp(Xs)

−−→
Exp(Xt)−1, (4.16a)

Bs,t =
tˆ
s

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1 (4.16b)

almost surely for all 0 ≤ s ≤ t.

Proof. (X,Y ) is càdlàg since (At)t≥0 and (Bt)t≥0 are càdlàg, and (X0, Y0) = (0, 0) holds by
definition. By (R1) we have for all 0 ≤ s ≤ t

Xt −Xs =
tˆ
s

dA−1
u Au− =

tˆ
s

d(AsAs,u)−1AsAs,u−

=
tˆ
s

d(A−1
s,uA

−1
s )AsAs,u− =

tˆ
s

dA−1
s,uAs,u−

Yt − Ys =
tˆ
s

d(BuA−1
u )Au−

=
tˆ
s

d
(
(AsAs,u)−1(BsAs,u +Bs,u)

)
AsAs,u−

=
tˆ
s

d(BsAs,uA−1
s,uA

−1
s +Bs,uA

−1
s,uA

−1
s )AsAs,u−
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=
tˆ
s

d(Bs,uA−1
s,u)As,u−

so that (X,Y ) has independent increments because by (R2) the random variables

(Xti+1 −Xti , Yti+1 − Yti) =
( ti+1ˆ

ti

dA−1
ti,uAti,u−,

ti+1ˆ

ti

d
(
Bti,uA

−1
ti,u)Ati,u−

)

are independent for all t0 < . . . < tk, k ∈ N. (X,Y ) has stationary increments because by
(R2),(R3)

(Xt −Xs, Yt − Ys) =
( tˆ
s

As,u− dA−1
s,u ,

tˆ
s

As,u− d
(
A−1
s,uBs,u)

)

=
( t−sˆ

0

As,(s+u)− dA−1
s,s+u ,

t−sˆ

0

As,(s+u)− d
(
A−1
s,s+uBs,s+u

))

D=
( t−sˆ

0

Au− dA−1
u ,

t−sˆ

0

Au− d
(
A−1
u Bu

))
= (Xt−s, Yt−s).

Thus (X,Y ) is a Lévy process. X =
−→
Log(A−1) satisfies (3.3) by Proposition 3.5(b) and the

calculations to derive (4.16) are similar to the proof of Theorem 3.1(a) in [4]. In fact, from
the definition of Xt we get

Xt =
−→
Log(A−1

t ) ⇐⇒
−−→
Exp(Xt) = A−1

t ⇐⇒ At =
−−→
Exp(Xt)−1

and (R1) then yields

As,t = A−1
s At =

(−−→
Exp(Xs)−1

)−1−−→
Exp(Xt)−1 =

−−→
Exp(Xs)

−−→
Exp(Xt)−1

for 0 ≤ s ≤ t. Analogously, from the definition of Yt we get

Yt =
tˆ

0

d(BuA−1
u )Au− ⇐⇒ dYtA−1

t− = d(BtA−1
t ) ⇐⇒ Bt =

tˆ

0

dYuA−1
u−At

and again (R1) yields

Bs,t = Bt −BsAs,t =
tˆ

0

dYuA−1
u−At −

sˆ

0

dYuA−1
u−AsA

−1
s At

=
tˆ
s

dYuA−1
u−At =

tˆ
s

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

for 0 ≤ s ≤ t.

Theorem 4.17. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3).
Then the family (As,t, Bs,t)0≤s≤t defined as in (4.16) satisfies the R-assumptions.
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Proof. The proof is similar to the proof of Theorem 3.1(b) in [4]. (R0) is clear from the
definition of As,t and Bs,t in (4.16). (R1) is obtained by direct calculation since for all
0 ≤ r ≤ s ≤ t

Ar,sAs,t =
−−→
Exp(Xr)

−−→
Exp(Xs)−1−−→Exp(Xs)

−−→
Exp(Xt)−1 =

−−→
Exp(Xr)

−−→
Exp(Xt)−1 = Ar,t

and

Br,sAs,t +Bs,t

=
sˆ
r

dYu
−−→
Exp(Xu−)

−−→
Exp(Xs)−1−−→Exp(Xs)

−−→
Exp(Xt)−1 +

tˆ
s

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

=
tˆ
r

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1 = Br,t.

(R2) is a result of the independent increments of (X,Y ) and the fact that (As,t, Bs,t) can be
written as

(As,t, Bs,t) =
(
−−→
Exp(Xs)

−−→
Exp(Xt)−1,

tˆ
s

dYu
−−→
Exp(Xu−)

−−→
Exp(Xs)−1−−→Exp(Xs)

−−→
Exp(Xt)−1

)

=
(
−−→
Exp(Xt −Xs)−1,

tˆ
s

dYu
−−→
Exp(Xu− −Xs)

−−→
Exp(Xt −Xs)−1

)
.

(R3) follows from the same calculation since for fixed t ≥ 0 by the stationarity of the
increments of (X,Y )

(As,t, Bs,t)0≤s≤t

=
(
−−→
Exp(Xt −Xs)−1,

tˆ
s

dYu
−−→
Exp(Xu− −Xs)

−−→
Exp(Xt −Xs)−1

)
0≤s≤t

=
(
−−→
Exp(Xt −Xs)−1,

t−sˆ

0

d(Yu+s − Ys)
−−→
Exp(X(u+s)− −Xs)

−−→
Exp(Xt −Xs)−1

)
0≤s≤t

D=
(
−−→
Exp(Xt−s)−1,

t−sˆ

0

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt−s)−1

)
0≤s≤t

= (A0,t−s, B0,t−s)0≤s≤t.

(R4) follows from the fact that by Proposition 3.5(a)
−−→
Exp(X)−1 is a Lévy process and

therefore continuous in probability at 0 so that A0,t =
−−→
Exp(Xt)−1 P−→

−−→
Exp(X0)−1 = I for

t ↓ 0, as well as from the continuity of the stochastic integral which gives

B0,t =
tˆ

0

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1 P−→ 0 for t ↓ 0.
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Theorem 4.17 motivates the definition of a right MGOU process as a counterpart to the left
MGOU process in Definition 4.2 as the formulas for As,t and Bs,t in (4.16) and the random
recurrence equation (4.14) together yield

Vt = V0A0,t +B0,t = V0
←−−
Exp(Xt)−1 +

tˆ

0

dYu
←−−
Exp(Xu−)

←−−
Exp(Xt)−1

=
(
V0 +

tˆ

0

dYu
←−−
Exp(Xu−)

)
←−−
Exp(Xt)−1.

Definition 4.18. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3)
and let V0 be an Rn×n-valued random variable. Then the process V = (Vt)t≥0 defined by

Vt :=
(
V0 +

tˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xt)−1 (4.17)

is called right multivariate generalized Ornstein-Uhlenbeck process or simply right
MGOU process. The process (X,Y ) is called background driving process.

Example 4.19. Let B = (Bt)t≥0 be a one-dimensional brownian motion and N = (Nt)t≥0
a one-dimensional Poisson process with almost surely increasing jump times (Tk)k∈N. We
compute the right MGOU process V = (Vt)t≥0 with V0 = 0 and background driving process
(X,Y ) = (Xt, Yt)t≥0 defined by

Xt :=
(

1
2Nt Bt
−Bt 1

2Nt

)
and Yt :=

(
Bt 0
0 Bt

)
.

In Example 3.15 we already computed that

−−→
Exp(Xt) = et/2

(3
2

)Nt
(

cos(Bt) sin(Bt)
− sin(Bt) cos(Bt)

)

and thus by (4.17)

Vt =
tˆ

0

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

=
tˆ

0

eu/2
(3

2

)Nu−
(

cos(Bu) dBu sin(Bu) dBu
− sin(Bu) dBu cos(Bu) dBu

)
· e−t/2

(2
3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)
.

In Example 4.3 we already computed that

tˆ

0

eu/2
(3

2

)Nu−

cos(Bu) dBu = et/2
(3

2

)Nt

sin(Bt)−
1
3

Nt∑
k=1

eTk/2
(3

2

)k
sin(BTk

),

tˆ

0

eu/2
(3

2

)Nu−

sin(Bu) dBu = 1− et/2
(3

2

)Nt

cos(Bt) + 1
3

Nt∑
k=1

eTk/2
(3

2

)k
cos(BTk

).
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Inserting both stochastic integrals yields

tˆ

0

dYu
−−→
Exp(Xu−) =

(
0 1
−1 0

)
+ et/2

(3
2

)Nt
(

sin(Bt) − cos(Bt)
cos(Bt) sin(Bt)

)

− 1
3

Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
) − cos(BTk

)
cos(BTk

) sin(BTk
)

)

and thus the right MGOU process is given by

Vt =
tˆ

0

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

=
(

0 1
−1 0

)
· e−t/2

(2
3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)

+ et/2
(3

2

)Nt
(

sin(Bt) − cos(Bt)
cos(Bt) sin(Bt)

)
· e−t/2

(2
3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)

− 1
3

Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
) − cos(BTk

)
cos(BTk

) sin(BTk
)

)
· e−t/2

(2
3

)Nt
(

cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)

=
(

0 −1
1 0

)
+ e−t/2

(2
3

)Nt
(

sin(Bt) cos(Bt)
− cos(Bt) sin(Bt)

)

− 1
3e
−t/2

(2
3

)Nt Nt∑
k=1

eTk/2
(3

2

)k (sin(BTk
−Bt) − cos(BTk

−Bt)
cos(BTk

−Bt) sin(BTk
−Bt)

)
.

This result coincides with the left MGOU process in Example 4.3 which comes to no surprise
since

←−−
Exp(Xt) =

−−→
Exp(Xt) by Example 3.15 and all matrices appearing in the calculations are

either diagonal or belong to the commutative matrix group SO(2).

In Theorem 4.20 and Theorem 4.21 we prove that the right MGOU process is described
by a stochastic differential equation driven by a bivariate Lévy process (U,L) which is
constructed from the background driving process (X,Y ). This result is similar to the left
case in Theorem 4.4 which was proven by Behme and Lindner.

Theorem 4.20. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3) and
let the process (U,L) = (Ut, Lt)t≥0 be defined by

Ut = −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
, (4.18a)

Lt = Yt − [Y,X]ct +
∑

0<s≤t
∆Ys

(
(I + ∆Xs)−1 − I

)
. (4.18b)

Then (U,L) is a Lévy process such that U satisfies (3.3) and the right MGOU process V
defined as in (4.17) solves the stochastic differential equation

dVt = Vt− dUt + dLt . (4.19)

Proof. (U,L) is càdlàg and has independent increments because (X,Y ) is càdlàg and has
independent increments. (U0, L0) = (0, 0) holds by definition. Therefore we only need
to prove that (U,L) has stationary increments. As both U and L consist of summands
depending only on X or Y , ∆X or ∆Y , respectively [X,X] or [X,Y ], we first look at these
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three summands separately. Since (X,Y ) has stationary increments we have Xt−Xs
D= Xt−s

and Yt − Ys
D= Yt−s and therefore

∆Xr+s = Xr+s −X(r+s)− = (Xr+s −Xs)− (X(r+s)− −Xs)
D= Xr −Xr− = ∆Xr,

∆Yr+s = Yr+s − Y(r+s)− = (Yr+s − Ys)− (Y(r+s)− − Ys)
D= Yr − Yr− = ∆Yr.

For the second summand of L we have

[Y,X]t − [Y,X]s = YtXt −
tˆ

0

Yu− dXu −
tˆ

0

dYuXu− − YsXs +
sˆ

0

Yu− dXu +
sˆ

0

dYuXu−

= YtXt − YsXs −
tˆ
s

Yu− dXu −
tˆ
s

dYuXu−

= YtXt − YsXs −
t−sˆ

0

Y(u+s)− dXu+s −
t−sˆ

0

dYu+sX(u+s)−

= YtXt − YsXs −
t−sˆ

0

(Y(u+s)− − Ys) dXu+s −
t−sˆ

0

Ys dXu+s

−
t−sˆ

0

dYu+s (X(u+s)− −Xs)−
t−sˆ

0

dYu+sXs

= YtXt − YsXs −
t−sˆ

0

(Y(u+s)− − Ys) dXu+s − Ys(Xt −Xs)

−
t−sˆ

0

dYu+s (X(u+s)− −Xs)− (Yt − Ys)Xs

= (Yt − Ys)(Xt −Xs)−
t−sˆ

0

(Y(u+s)− − Ys) d(Xu+s −Xs)

−
t−sˆ

0

d(Yu+s − Ys) (X(u+s)− −Xs)

D= Yt−sXt−s −
t−sˆ

0

Yu− dXu −
tˆ

0

dYuXu− = [Y,X]t−s

and therefore

[Y,X]ct − [Y,X]cs = [Y,X]t −
∑

0<r≤t
∆Yr∆Xr − [Y,X]s +

∑
0<r≤s

∆Yr∆Xr

= [Y,X]t − [Y,X]s −
∑
s<r≤t

∆Yr∆Xr

= [Y,X]t − [Y,X]s −
∑

0<r≤t−s
∆Yr+s∆Xr+s

D= [Y,X]t−s −
∑

0<r≤t−s
∆Yr∆Xr = [Y,X]ct−s.
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In the special case Y = X we also have [X,X]ct − [X,X]cs
D= [X,X]ct−s. Together this yields

Ut − Us = −(Xt −Xs) + [X,X]ct − [X,X]cs +
∑
s<r≤t

(
(I + ∆Xr)−1 − I + ∆Xr

)
= −(Xt −Xs) + [X,X]ct − [X,X]cs +

∑
0<r≤t−s

(
(I + ∆Xr+s)−1 − I + ∆Xr+s

)
D= −Xt−s + [X,X]ct−s +

∑
0<r≤t−s

(
(I + ∆Xr)−1 − I + ∆Xr

)
= Ut−s,

Lt − Ls = Yt − Ys −
(
[Y,X]ct − [Y,X]cs

)
+

∑
s<r≤t

∆Yr
(
(I + ∆Xr)−1 − I

)
= Yt − Ys −

(
[Y,X]ct − [Y,X]cs

)
+

∑
0<r≤t−s

∆Yr+s
(
(I + ∆Xr+s)−1 − I

)
D= Yt−s − [Y,X]ct−s +

∑
0<r≤t−s

∆Yr
(
(I + ∆Xr)−1 − I

)
= Lt−s.

Combining this we get (Ut−Us, Lt−Ls)
D= (Ut−s, Lt−s). Thus (U,L) is a Lévy process. (3.3)

is clear from (3.7c). In order to derive the stochastic differential equation (4.19) let At = A0,t

and Bt = B0,t be defined as in (4.16). By (3.7b) we have At =
−−→
Exp(Xt)−1 =

←−−
Exp(Ut) and

thus
dAt = d

←−−
Exp(Ut) =

←−−
Exp(Ut−) dUt = At− dUt ⇐⇒ A−1

t− dAt = dUt .

Equation (4.14) with s = 0 becomes Vt = V0At +Bt and taking differentials yields

dVt = V0 dAt + dBt = V0At− dUt + dBt = (V0At− +Bt−) dUt + dBt −Bt− dUt
= Vt− dUt + dBt −Bt−A−1

t− dAt = Vt− dUt + dL′t

where L′t := Bt −
tˆ

0

Bu−A
−1
u− dAu. In order to show that L′t = Lt we use the integration by

parts formula (2.18a) and (2.18e) to obtain

L′t = Bt −
tˆ

0

Bu−A
−1
u− dAu

= Bt −
(
BtA

−1
t At −B0A

−1
0 A0 −

tˆ

0

d(BuA−1
u )Au− − [BA−1, A]t

)

=
tˆ

0

d(BuA−1
u )Au− + [BA−1, A]t

=
tˆ

0

dYuA−1
u−Au− +

[ tˆ

0

dYu
−−→
Exp(Xu−),

−−→
Exp(Xt)−1

]

= Yt +
[
Yt,

tˆ

0

−−→
Exp(Xu−) d

−−→
Exp(Xu)−1

]

= Yt +
[
Yt,

tˆ

0

A−1
u− dAu

]
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= Yt +
[
Yt,

tˆ

0

dUu

]

= Yt + [Y, U ]t.

Finally, using (2.17a) and (2.17b) the covariation of Y and U can be calculated as

[Y,U ]t = −[Y,X]t +
[
Y, [X,X]c

]
t
+
[
Yt,

∑
0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)]

= −[Y,X]ct −
∑

0<s≤t
∆Ys∆Xs +

∑
0<s≤t

∆Ys∆
( ∑

0<r≤s

(
(I + ∆Xr)−1 − I + ∆Xr

))

= −[Y,X]ct −
∑

0<s≤t
∆Ys∆Xs +

∑
0<s≤t

∆Ys
(
(I + ∆Xs)−1 − I + ∆Xs

)
= −[Y,X]ct +

∑
0<s≤t

∆Ys
(
(I + ∆Xt)−1 − I

)
= Lt − Yt

so that L′t = Yt + [Y, U ]t = Yt + Lt − Yt = Lt.

Theorem 4.21. Let (U,L) = (Ut, Lt)t≥0 be a Lévy process such that U satisfies (3.3) and
let V0 be an Rn×n-valued random variable. Then the solution V = (Vt)t≥0 of the stochastic
differential equation (4.19) is a right MGOU process and its background driving process is
the Lévy process (X,Y ) = (Xt, Yt)t≥0 given by

Xt =
−→
Log

(←−−
Exp(Ut)−1

)
, (4.20a)

Yt = Lt +
[
L,
−→
Log

(←−−
Exp(U)−1

)]
t
. (4.20b)

Furthermore X satisfies (3.3).

Proof. (X,Y ) is càdlàg and has independent increments because (U,L) is càdlàg and has
independent increments. (X0, Y0) = (0, 0) holds by definition. X has stationary increments
because by (3.5b), (3.4a), and the stationary increments of U we have for all 0 ≤ s ≤ t

Xt −Xs =
−→
Log

(←−−
Exp(Ut)−1

)
−
−→
Log

(←−−
Exp(Us)−1

)
=
−→
Log

(←−−
Exp(Ut)−1←−−Exp(Us)

)
=
−→
Log

(←−−
Exp(Ut − Us)−1

)
D=
−→
Log

(←−−
Exp(Ut−s)−1

)
= Xt−s.

Inserting (4.20a) in (4.20b) yields Yt = Lt + [L,X]t and since X and L have stationary
increments it can be shown as in the proof of Theorem 4.20 that [L,X] has stationary
increments as well. Therefore Y has stationary increments because

Yt − Ys = Lt − Ls + [L,X]t − [L,X]s
D= Lt−s − [L,X]t−s = Yt−s.

The calculations to derive (4.15) are similar to the proof of Theorem 3.4(b) in [4]. In fact,
(4.20a) is equivalent to

−−→
Exp(Xt) =

←−−
Exp(Ut)−1 which is (3.7b). (4.20b) can be written as

Yt = Lt + [L,X]t

70



4 Multivariate generalized Ornstein-Uhlenbeck processes

= Lt + [L,X]ct +
∑

0<s≤t
∆Ls∆Xs

= Lt + [L,X]ct −
∑

0<s≤t
∆Ls(I + ∆Xs)

(
(I + ∆Xs)−1 − I

)
from which we deduce that [Y,X]ct = [L,X]ct and

∆Yt = ∆Lt −∆Lt(I + ∆Xt)
(
(I + ∆Xt)−1 − I

)
= ∆Lt(I + ∆Xt).

Inserting this yields

Yt = Lt + [Y,X]ct −
∑

0<s≤t
∆Ys

(
(I + ∆Xs)−1 − I

)
which is equivalent to (4.18b). By Theorem 4.20 the right MGOU process V driven by
(X,Y ) is the unique solution of the stochastic differential equation (4.19). Furthermore, by
(3.7a) and (3.4d)

Xt =
−→
Log

(←−−
Exp(Ut)−1

)
=
−→
Log

(−−→
Exp(Ũt)

)
= Ũt

where Ũ = (Ũt)t≥0 is constructed from U by (3.6), and then by (3.7c) we have for all t ≥ 0

det(I + ∆Xt) = det
(
I + ∆Ũt

)
= 1

det(I + ∆Ut)
6= 0.

The following relations between (X,Y ) and (U,L) will be used in future proofs.

Proposition 4.22. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy-process such that X satisfies (3.3)
and let the process (U,L) = (Ut, Lt)t≥0 be defined as in (4.18). Then for all t ≥ 0

Lt = Yt + [Y, U ]t, (4.21a)
Yt = Lt + [L,X]t. (4.21b)

Proof. The proof is similar to the proof of Proposition 3.5 in [4]. In fact, (4.21a) has already
been shown in the last part of the proof of Theorem 4.20. For (4.21b), the definition of L in
(4.18b) yields [L,X]ct = [Y,X]ct and

∆Lt = ∆Yt + ∆Yt
(
(I + ∆Xt)−1 − I

)
= ∆Yt(I + ∆Xt)−1

so that

[L,X]t = [L,X]ct +
∑

0<s≤t
∆Ls∆Xs

= [Y,X]ct +
∑

0<s≤t
∆Ys(I + ∆Xs)−1∆Xs

= [Y,X]ct +
∑

0<s≤t
∆Ys(I + ∆Xs)−1(I + ∆Xs − I)

= [Y,X]ct −
∑

0<s≤t
∆Ys

(
(I + ∆Xs)−1 − I

)
= Yt − Lt.
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We now procede similarly to the left case and prove that Theorem 4.16, Theorem 4.17, Theo-
rem 4.20, and Theorem 4.21 also hold true when the stationarity property (R3) is weakened
to a property (R3*) requiring only periodic stationarity and the stationary increments of
the background driving process of the right MGOU process are weakened to periodically
stationary increments. We thus replace (R3) by

(R3*) (Ap,p+t, Bp,p+t)t≥0
D= (A0,t, B0,t)t≥0 for some p > 0

and refer to (R0),(R1),(R2),(R3*),(R4) as the R*-assumptions. In fact, (R3*) is the same
as (L3*).

Theorem 4.23 and Theorem 4.24 show that there still is a one-to-one-correspondence between
(As,t, Bs,t)0≤s≤t and (X,Y ) but as in the left case imposing the R*-assumptions on the
random functional results in a semi-Lévy process as the background driving process.

Theorem 4.23. Let (As,t, Bs,t)0≤s≤t satisfy the R*-assumptions for some p > 0 and let
(At := A0,t)t≥0, (Bt := B0,t)t≥0 be càdlàg. Then the process (X,Y ) = (Xt, Yt)t≥0 defined
as in (4.15) is the unique p-semi-Lévy process such that X satisfies (3.3) and (4.16) holds
almost surely.

Proof. The proof is similar to the proof of Theorem 4.16. (X,Y ) is càdlàg since (At)t≥0
and (Bt)t≥0 are càdlàg, and (X0, Y0) = (0, 0) holds by definition. (X,Y ) has independent
increments because as in the proof of Theorem 4.16 the random variables

(Xti+1 −Xti , Yti+1 − Yti) =
( ti+1ˆ

ti

dA−1
ti,uAti,u−,

ti+1ˆ

ti

d
(
Bti,uA

−1
ti,u)Ati,u−

)

are independent for all t0 < . . . < tk, k ∈ N. (X,Y ) has p-stationary increments because by
(R2),(R3*)

(Xt+p −Xp, Yt+p − Yp)t≥0 =
( t+pˆ

p

dA−1
p,uAp,u−,

t+pˆ
p

d
(
Bp,uA

−1
p,u)Ap,u−

)
t≥0

=
( tˆ

0

dA−1
p,p+uAp,(p+u)−,

tˆ

0

d
(
Bp,p+uA

−1
p,p+u

)
Ap,(p+u)−

)
t≥0

D=
( tˆ

0

dA−1
u Au−,

tˆ

0

d
(
BuA

−1
u

)
Au−

)
t≥0

= (Xt, Yt)t≥0.

Thus (X,Y ) is a p-semi-Lévy process. X =
−→
Log(A−1) satisfies (3.3) by Theorem 3.6(b) and

(4.16) is derived in exactly the same way as in the proof of Theorem 4.16.

Theorem 4.24. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3). Then the family (As,t, Bs,t)0≤s≤t defined as in (4.16) satisfies the
R*-assumptions.

Proof. (R0), (R1), (R2), and (R4) are obtained in the same way as in the proof of Theo-
rem 4.17. (R3*) follows from

(Ap,p+t, Bp,p+t)t≥0
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=
(
−−→
Exp(Xp)

−−→
Exp(Xt+p)−1,

t+pˆ
p

dYu
−−→
Exp(Xu−)

−−→
Exp(Xp)−1−−→Exp(Xp)

−−→
Exp(Xt+p)−1

)
t≥0

=
(
−−→
Exp(Xt+p −Xp)−1,

t+pˆ
p

dYu
−−→
Exp(Xu− −Xp)

−−→
Exp(Xt+p −Xp)−1

)
t≥0

=
(
−−→
Exp(Xt+p −Xp)−1,

tˆ

0

d(Yu+p − Yp)
−−→
Exp(X(u+p)− −Xp)

−−→
Exp(Xt+p −Xp)−1

)
t≥0

D=
(
−−→
Exp(Xt)−1,

tˆ

0

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

)
t≥0

= (A0,t, B0,t)t≥0.

Theorem 4.25 and Theorem 4.26 show that the right MGOU process driven by a semi-Lévy
process is still described by the stochastic differential equation (4.19) but as in the left case
the process (U,L) driving this equation now also is a semi-Lévy process.

Theorem 4.25. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process such that X satisfies
(3.3) and let the process (U,L) = (Ut, Lt)t≥0 be defined as in (4.18). Then (U,L) is a p-
semi-Lévy process such that U satisfies (3.3) and the right MGOU process V defined as in
(4.17) solves the stochastic differential equation (4.19).

Proof. Since (4.18a) is the same as (4.5a) and (4.18b) is similar to (4.5b), the proof of
Theorem 4.8 carries over in almost the exact same way. Notably we again only need to prove
that (U,L) has p-stationary increments. First, the p-stationary increments of (X,Y ) yield
∆Xs+p

D= ∆Xs and ∆Ys+p
D= ∆Ys. We then have

[Y,X]t+p − [Y,X]p
D= [Y,X]t , [Y,X]ct+p − [Y,X]cp

D= [Y,X]ct

with the special case [X,X]ct+p − [X,X]cp
D= [X,X]ct . This yields Ut+p − Up

D= Ut and

Lt+p − Lp = Yt+p − Yp −
(
[Y,X]ct+p − [Y,X]cp

)
+

∑
p<s≤t+p

∆Ys
(
(I + ∆Xs)−1 − I

)
= Yt+p − Yp −

(
[Y,X]ct+p − [Y,X]cp

)
+

∑
0<s≤t

∆Ys+p
(
(I + ∆Xs+p)−1 − I

)
D= Yt − [Y,X]ct +

∑
0<s≤t

∆Ys
(
(I + ∆Xs)−1 − I

)
= Lt.

Combining this we get (Ut+p−Up, Lt+p−Lp)t≥0
D= (Ut, Lt)t≥0. Thus (U,L) is a p-semi-Lévy

process. (3.3) is clear from (3.7c) and the stochastic differential equation (4.19) is derived
in exactly the same way as in the proof of Theorem 4.20.

Theorem 4.26. Let (U,L) = (Ut, Lt)t≥0 be a p-semi-Lévy process for some p > 0 such
that U satisfies (3.3) and let V0 be an Rn×n-valued random variable. Then the solution
V = (Vt)t≥0 of the stochastic differential equation (4.19) is a right MGOU process and its
background driving process (X,Y ) = (Xt, Yt)t≥0 is the p-semi-Lévy process given by (4.15).
Furthermore X satisfies (3.3).
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Proof. (X,Y ) is càdlàg and has independent increments because (U,L) is càdlàg and has
independent increments. (X0, Y0) = (0, 0) holds by definition. X has p-stationary increments
because by (3.5b), (3.4a), and the p-stationary increments of U we have for all t ≥ 0

(Xt+p −Xp)t≥0 =
(−→
Log

(←−−
Exp(Ut+p)−1

)
−
−→
Log

(←−−
Exp(Up)−1

))
t≥0

=
(−→
Log

(←−−
Exp(Ut+p)−1←−−Exp(Up)

))
t≥0

=
(−→
Log

(←−−
Exp(Ut+p − Up)−1

))
t≥0

D=
(−→
Log

(←−−
Exp(Ut)−1

))
t≥0

= (Xt)t≥0.

Inserting (4.20a) in (4.20b) yields Yt = Lt + [L,X]t and since X and L have p-stationary
increments it can be shown as in the proof of Theorem 4.25 that [L,X] has p-stationary
increments as well. Therefore Y has p-stationary increments because

(Yt+p − Yp)t≥0 = (Lt+p − Lp + [L,X]t+p − [L,X]p)t≥0
D= (Lt − [L,X]t)t≥0 = (Yt)t≥0.

The facts that the solution of (4.19) is a right MGOU process driven by (X,Y ) and that X
satisfies (3.3) is proven in exactly the same way as in the proof of Theorem 4.21.

We now give conditions under which the right MGOU process is stationary and state a
distributional equality of right stochastic integrals of stochastic exponentials that is needed
for the proof. These results are similar to the left case in Theorem 4.10 and Theorem 4.11
which were proven by Behme and Lindner. In fact, the proofs are analogous to the proofs
of Theorem 5.2 and Proposition 8.3 in [4] and we just state the corresponding results.

Theorem 4.27. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3) and
let V = (Vt)t≥0 be the right MGOU process driven by (X,Y ). Let (U,L) = (Ut, Lt)t≥0 be
defined as in (4.18).

(a) Let P- lim
t→∞

−−→
Exp(Ut) = 0. Then a finite random variable V0 can be chosen such that V

is stationary if and only if the integral
tˆ

0

dLu
−−→
Exp(Uu−) converges in distribution to a

finite random variable. In this case V0 can be chosen independently of (X,Y ) with

V0
D= D- lim

t→∞

tˆ

0

dLu
−−→
Exp(Uu−). (4.22a)

(b) Let P- lim
t→∞

−−→
Exp(Xt) = 0. Then a finite random variable V0 can be chosen such that V

is stationary if and only if the integral
tˆ

0

dYu
−−→
Exp(Xu−) converges in probability to a

finite random variable. In this case V0 can be chosen as

V0 = −P- lim
t→∞

tˆ

0

dYu
−−→
Exp(Xu−). (4.22b)
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Theorem 4.28. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3) and
let (U,L) = (Ut, Lt)t≥0 be defined as in (4.18). Then for all t > 0

tˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Ut)

D=
tˆ

0

dLu
−−→
Exp(Uu−). (4.23)

In the situation of Theorem 4.28 the left side of (4.23) can also be written in the form

tˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Ut) = −

tˆ

0

d(Yt − Yu)
←−−
Exp(Ut − Uu−) D= −

tˆ

0

dYt−u
←−−
Exp(U(t−u)−)

= −
0ˆ

t

dYu
←−−
Exp(Uu−) =

tˆ

0

dYu
←−−
Exp(Uu−)

and (4.23) then becomes

tˆ

0

dYu
←−−
Exp(Uu−) D=

tˆ

0

dLu
−−→
Exp(Uu−).

We now prove an analogous result in the case of periodically stationary increments and use
it to derive conditions under which the right MGOU process is periodically stationary.

Theorem 4.29. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3) and let (U,L) = (Ut, Lt)t≥0 be defined as in (4.18). Then for all n ∈ N

npˆ

0

dYu
←−−
Exp(Uu−) D=

npˆ

0

dLu
−−→
Exp(Uu−). (4.24)

Proof. The proof is similar to the proof of Theorem 4.12. Let (U ′, Y ′) be an independent
copy of (U, Y ). Then (U,L) and (U ′, L′) are p-semi-Lévy processes by Theorem 4.25. For
fixed n ∈ N and 0 ≤ s ≤ np now let

Ûs := Unp − Unp−s,
Ŷs := Ynp − Ynp−s

and for s ≥ 0 let

Û ′s := U ′(s+np)− − U
′
np−,

Ŷ ′s := Y ′(s+np)− − Y
′
np−.

Then

(Ûs, Ŷs)0≤s≤np = (Unp − Unp−s, Ynp − Ynp−s)0≤s≤np
D= (Us, Ys)0≤s≤np
D= (U ′s, Y ′s )0≤s≤np
D= (U ′(s+np)− − U

′
np−, Y

′
(s+np)− − Y

′
np−)0≤s≤np

= (Û ′s, Ŷ ′s )0≤s≤np.
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For partitions σ−m =
(
. . . , −2np

m , −npm , 0
)
of the negative real line and σ+

m =
(
0, npm ,

2np
m , . . .

)
of

the positive real line let

Aσ
−
m :=

m−1∑
i=0

(
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)−−→
Exp

(
Û ′np(i+1)/m

)
,

Bσ+
m :=

m−1∑
i=0

(
Ŷnp(i+1)/m− − Ŷnpi/m−

)−−→
Exp

(
Ûnp(i+1)/m−

)
.

Then as |σ−m|
m→∞−−−−→ 0 we have by Theorems II.21 and II.23 in [31]

Aσ
−
m =

m−1∑
i=0

(
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)−−→
Exp

(
Û ′np(i+1)/m

)

=
m−1∑
i=0

(
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)−−→
Exp

(
Û ′npi/m

)

+
m−1∑
i=0

(
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

) (−−→
Exp

(
Û ′np(i+1)/m

)
−
−−→
Exp

(
Û ′npi/m

))
P−→

npˆ

0

dŶ ′u
−−→
Exp(Û ′u−) +

[
Ŷ ′,
−−→
Exp(Û ′)

]
np

D=
npˆ

0

dYu
−−→
Exp(Uu−) +

[
Y,
←−−
Exp(U)

]
np
.

This equals the right side in (4.24) because from (4.21a), (2.18d), and (3.1b) we obtain
npˆ

0

dLu
−−→
Exp(Uu−) =

npˆ

0

d(Yu + [Y,U ]u)
−−→
Exp(Uu−)

=
npˆ

0

dYu
−−→
Exp(Uu−) +

npˆ

0

d[Y,U ]u
−−→
Exp(Uu−)

=
npˆ

0

dYu
−−→
Exp(Uu−) +

[ npˆ

0

dYu ,
npˆ

0

dUu
−−→
Exp(Uu−)

]

=
npˆ

0

dYu
−−→
Exp(Uu−) +

[
Y,
−−→
Exp(U)

]
np
.

As |σ+
m|

m→∞−−−−→ 0 we have by Lemma 8.2 in [4] and Theorem II.21 in [31]

Bσ+
m =

m−1∑
i=0

(
Ŷnp(i+1)/m− − Ŷnpi/m−

)−−→
Exp

(
Ûnp(i+1)/m−

)

=
m−1∑
i=0

(
Ynp(m−i)/m − Ynp(m−i−1)/m

)−−→
Exp

(
Unp − Unp(m−i−1)/m

)

=
m−1∑
i=0

(
Ynp(m−i)/m − Ynp(m−i−1)/m

)←−−
Exp

(
Unp(m−i−1)/m

)−1←−−
Exp(Unp)

=
m∑
i=1

(
Ynpi/m − Ynp(i−1)/m

)←−−
Exp

(
Unp(i−1)/m

)−1←−−
Exp(Unp)

76



4 Multivariate generalized Ornstein-Uhlenbeck processes

P−→
npˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Unp).

Using the p-stationary increments of (U, Y ) we can also write this in the form

npˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Unp) =

0ˆ

−np

dYnp+u
←−−
Exp(U(np+u)−)−1←−−Exp(Unp)

= −
0ˆ

−np

d(Ynp − Ynp+u)
←−−
Exp(Unp − U(np+u)−)

D= −
0ˆ

−np

dY−u
←−−
Exp(U(−u)−) =

npˆ

0

dYu
←−−
Exp(Uu−)

which is the left side in (4.24). The equality in distribution now follows from the fact that

Bσ+
m =

m−1∑
i=0

(
Ŷnp(i+1)/m− − Ŷnpi/m−

)−−→
Exp

(
Ûnp(i+1)/m−

)

=
m−1∑
i=0

((
Ŷnp(i+1)/m −∆Ŷnp(i+1)/m

)
−
(
Ŷnpi/m −∆Ŷnpi/m

))

·
(−−→
Exp

(
Ûnp(i+1)/m

)
−∆
−−→
Exp

(
Ûnp(i+1)/m

))

=
m−1∑
i=0

(
Ŷnp(i+1)/m − Ŷnpi/m

)−−→
Exp

(
Ûnp(i+1)/m

)
D=
m−1∑
i=0

(
Ŷ ′np(i+1)/m − Ŷ

′
npi/m

)−−→
Exp

(
Û ′np(i+1)/m

)
= Aσ

−
m

because at fixed times both
−−→
Exp(Û) and Ŷ almost surely do not have jumps.

Theorem 4.30. Let (X,Y ) = (Xt, Yt)t≥0 be a p-semi-Lévy process for some p > 0 such
that X satisfies (3.3) and let V = (Vt)t≥0 be the right MGOU process driven by (X,Y ). Let
(U,L) = (Ut, Lt)t≥0 be defined as in (4.18).

(a) Let P- lim
n→∞

←−−
Exp(Unp) = 0. Then a finite random variable V0 can be chosen such that V

is p-stationary if and only if the integral
npˆ

0

dLu
−−→
Exp(Uu−) converges in distribution to

a finite random variable. In this case V0 can be chosen independently of (X,Y ) with

V0
D= D- lim

n→∞

npˆ

0

dLu
−−→
Exp(Uu−). (4.25a)

(b) Let P- lim
n→∞

−−→
Exp(Xnp) = 0. Then a finite random variable V0 can be chosen such that

V is p-stationary if and only if the integral
npˆ

0

dYu
−−→
Exp(Xu−) converges in probability
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to a finite random variable. In this case V0 can be chosen as

V0 = −P- lim
n→∞

npˆ

0

dYu
−−→
Exp(Xu−). (4.25b)

Proof. The proof is similar to the proof of Theorem 4.13.

(a) Assume that V is p-stationary. Then Vnp
D= V0 for all n ∈ N and thus

V0
D= D- lim

n→∞
Vnp

= D- lim
n→∞

(
V0 +

npˆ

0

dYu
←−−
Exp(Uu−)−1

)
←−−
Exp(Unp)

D= D- lim
n→∞

V0
←−−
Exp(Unp) +

npˆ

0

dLu
−−→
Exp(Uu−)

= D- lim
n→∞

npˆ

0

dLu
−−→
Exp(Uu−).

Now assume that (4.25a) holds. Then for fixed t ≥ 0 and all n ∈ N

Vt+np =
(
V0 +

npˆ

0

dYu
←−−
Exp(Uu−)−1 +

t+npˆ
np

dYu
←−−
Exp(Uu−)−1

)
←−−
Exp(Ut+np)

=
(
V0
←−−
Exp(Unp) +

npˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Unp)

+
tˆ

0

dYnp+u
←−−
Exp(Unp+u−)−1←−−Exp(Unp)

)
←−−
Exp(Unp)−1←−−Exp(Ut+np)

=
(
V0
←−−
Exp(Unp) +

npˆ

0

dYu
←−−
Exp(Uu−)−1←−−Exp(Unp)

+
tˆ

0

d(Ynp+u − Ynp)
←−−
Exp(Unp+u− − Unp)−1

)
←−−
Exp(Ut+np − Unp)

D=
(
V0
←−−
Exp(Unp) +

npˆ

0

dLu
−−→
Exp(Uu−) +

tˆ

0

dYu
←−−
Exp(Uu−)−1

)
←−−
Exp(Ut)

D−→
(
V0 +

tˆ

0

dYu
←−−
Exp(Uu−)−1

)
←−−
Exp(Ut) = Vt

as n→∞, where we have used (4.24) in the second to last step. Thus

Vt+p
D= D- lim

n→∞
Vt+p+np = D- lim

n→∞
Vt+(n+1)p

D= Vt.
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(b) Assume that V is p-stationary. Then Vnp
D= V0 for all n ∈ N0 and thus

V0 +
npˆ

0

dYu
−−→
Exp(Xu−) = Vnp

−−→
Exp(Xnp)

P−→ 0 ⇐⇒ V0 = −P- lim
n→∞

npˆ

0

dYu
−−→
Exp(Xu−).

Now assume that (4.25b) holds. Then for all n ∈ N

Vnp =
(
V0 +

npˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xnp)−1

=
(
−
∞̂

0

dYu
−−→
Exp(Xu−) +

npˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xnp)−1

= −
∞̂

np

dYu
−−→
Exp(Xu−)

−−→
Exp(Xnp)−1

= −
∞̂

0

dYnp+u
−−→
Exp(Xnp+u−)

−−→
Exp(Xnp)−1

= −
∞̂

0

d(Ynp+u − Ynp)
−−→
Exp(Xnp+u− −Xnp)

D= −
∞̂

0

dYu
−−→
Exp(Xu−) = V0

and thus for all t ≥ 0 by the independence of Vp and (Ap,p+t, Bp,p+t)

Vt+p = VpAp,p+t +Bp,p+t
D= V0A0,t +B0,t = Vt.

When studying the connection between right MGOU processes, right semiselfsimilar pro-
cesses, and right semistable hemigroups in chapters 5.2 and 6.2 we need the notion of a right
MGOU process with time parameter t ∈ R rather than just t ≥ 0. In order to define a right
MGOU process with real time parameter we make use of the construction of a Lévy process
with real time parameter in Theorem 2.3.

Theorem 4.31. Let (X,Y ) = (Xt, Yt)t≥0 be a semimartingale such that X satisfies (3.3)
and let (X ′, Y ′) be an independent copy of (X,Y ). Let (X̃, Ỹ ) be defined as in (2.5). Assume
that

V0 :=
0ˆ

−∞

d(−Y ′−u)
−−→
Exp

(
−X ′(−u)−

)
:= P- lim

t→∞

0ˆ

−t

d(−Y ′−u)
−−→
Exp

(
−X ′(−u)−

)
(4.26a)

exists and let the process V = (Vt)t∈R be defined by

Vt :=
tˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t)−1. (4.26b)
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(a) If (X,Y ) is a Lévy process then V is stationary.

(b) If (X,Y ) is a p-semi-Lévy process for some p > 0 then V is p-stationary.
Proof. First assume that (X,Y ) is a Lévy process. Then (X̃, Ỹ ) is a Lévy process by
Theorem 2.3(a) and therefore has stationary increments. By (3.4b) we have for all t ∈ R
and h > 0

Vt+h =
t+hˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t+h)−1

=
tˆ

−∞

dỸu+h
−−→
Exp(X̃(u+h)−)

−−→
Exp(X̃h)−1−−→Exp(X̃t+h − X̃h)−1

=
tˆ

−∞

d(Ỹu+h − Ỹh)
−−→
Exp(X̃(u+h)− − X̃h)

−−→
Exp(X̃t+h − X̃h)−1

D=
tˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t)−1 = Vt.

Now assume that (X,Y ) is a p-semi-Lévy process. Then (X̃, Ỹ ) is a p-semi-Lévy process
by Theorem 2.3(b) and therefore has p-stationary increments. By (3.4b) we have for all t ≥ 0

Vt+p =
t+pˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t+p)−1

=
tˆ

−∞

dỸu+p
−−→
Exp(X̃(u+p)−)

−−→
Exp(X̃p)−1−−→Exp(X̃t+p − X̃p)−1

=
tˆ

−∞

d(Ỹu+p − Ỹp)
−−→
Exp(X̃(u+p)− − X̃p)

−−→
Exp(X̃t+p − X̃p)−1

D=
tˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t)−1 = Vt

and for t < 0

Vt−p =
t−pˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t−p)−1

=
tˆ

−∞

dỸu−p
−−→
Exp(X̃(u−p)−)

−−→
Exp(X̃−p)−1−−→Exp(X̃t−p − X̃−p)−1

=
tˆ

−∞

d(Ỹu−p − Ỹ−p)
−−→
Exp(X̃(u−p)− − X̃−p)

−−→
Exp(X̃t−p − X̃−p)−1

D=
tˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t)−1 = Vt.
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For t > 0 the process in (4.26b) can be written as

Vt =
tˆ

−∞

dỸu
−−→
Exp(X̃u−)

−−→
Exp(X̃t)−1

=
( 0ˆ

−∞

d(−Y ′−u)
−−→
Exp

(
−X ′(−u)−

)
+

tˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xt)−1

=
(
V0 +

tˆ

0

dYu
−−→
Exp(Xu−)

)
−−→
Exp(Xt)−1

which is the usual integral form of a right MGOU process as in (4.17) but by (4.26a) V0 can
be chosen independently of the background driving process (X,Y ). This fact together with
Theorem 4.31 now motivates the following definition.

Definition 4.32. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy respectively semi-Lévy process such
that X satisfies (3.3) and let (X ′, Y ′) be an independent copy of (X,Y ). Let (X̃, Ỹ ) be
defined as in (2.5) and assume that V0 as in (4.26a) exists. Then V = (Vt)t∈R defined as in
(4.26b) is called stationary right MGOU process respectively periodically stationary
right MGOU process. The process (X̃, Ỹ ) is called background driving process.
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5 Connection between MGOU and semiselfsimilar processes
Chapter 5 introduces random semiselfsimilarity as a generalization of semiselfsimilarity that
incorporates random scaling, and the random Lamperti transform as a generalization of
the Lamperti transform that is compatible with random semiselfsimilarity and MGOU
processes. We show how random semiselfsimilar processes are connected to periodically
stationary processes and MGOU processes by means of the random Lamperti transform.
These connections extend to the random selfsimilar and stationary case.

Due to the non-commutativity of matrix multiplication there are two types of random Lam-
perti transforms and two types of random semiselfsimilarity in dimension n ≥ 2. Chapter
5.1 discusses the left random Lamperti transform, random left semiselfsimilarity, and the
connection to left MGOU processes while chapter 5.2 discusses the right random Lamperti
transform, random right semiselfsimilarity, and the connection to right MGOU processes.

5.1 Left MGOU and left semiselfsimilar processes

In the left case the generalization of the Lamperti transform and its inverse transform is
defined as follows.

Definition 5.1. Let X = (Xt)t∈R be a semimartingale which satisfies (3.3).

(a) The left X-random Lamperti transform of a process Z = (Zt)t>0 is the process
←−−
Lam(Z) = V = (Vt)t∈R defined by

←−−
Lam(Zt) = Vt :=

←−−
Exp(Xt)−1Zet . (5.1a)

(b) The left X-random inverse Lamperti transform of a process V = (Vt)t∈R is the
process

←−−
Lam−1(V ) = Z = (Zt)t>0 defined by

←−−
Lam−1(Vt) = Zt :=

←−−
Exp(Xlog(t))Vlog(t). (5.1b)

In the left case the generalization of selfsimilarity and semiselfsimilarity is defined as follows.

Definition 5.2. Let X = (Xt)t∈R be a semimartingale with X0 = 0 which satisfies (3.3).

(a) A process Z = (Zt)t>0 is called random left selfsimilar with exponent X or simply
left X-selfsimilar if for all c > 1(

Xlog(t)+log(c) −Xlog(c),
←−−
Exp(Xlog(c))−1Zct

)
t≥1

D= (Xlog(t), Zt)t≥1, (5.2a)(
Xlog(t)−log(c) −X− log(c),

←−−
Exp(Xlog(c−1))−1Zc−1t

)
0<t≤1

D= (Xlog(t), Zt)0<t≤1. (5.2b)

(b) A process Z = (Zt)t>0 is called random left semiselfsimilar with exponent Xlog(c)
or simply left Xlog(c)-semiselfsimilar if (5.2a) and (5.2b) hold for some c > 1.

In the definition of left semiselfsimilarity we can without loss of generality assume c > 1
because for c = 1 (5.2a) and (5.2b) are automatically fulfilled and for 0 < c < 1 swapping
(5.2a) and (5.2b) and rescaling the time parameter of Z leads to left semiselfsimilarity with
c−1 > 1. In particular, left Xlog(c)-semiselfsimilarity for all c > 1 implies left X-selfsimilarity.

If the exponent X is a semi-Lévy process the left random Lamperti transform and its
inverse transform establish a one-to-one correspondence between left semiselfsimilar processes
and periodically stationary processes. If the exponent X is a Lévy process the one-to-one
correspondence extends to left selfsimilar processes and stationary processes.
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Theorem 5.3. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3).

(a) If Z = (Zt)t>0 is left Xlog(c)-semiselfsimilar, then its left X-random Lamperti trans-
form V = (Vt)t∈R is log(c)-stationary.

(b) If V = (Vt)t∈R is log(c)-stationary and independent of X, then its left X-random
inverse Lamperti transform Z = (Zt)t>0 is left Xlog(c)-semiselfsimilar.

Proof. (a) Because Z is left Xlog(c)-semiselfsimilar and X has log(c)-stationary increments,
we have

(Vt+log(c))t≥0 =
(←−−
Exp(Xt+log(c))−1Zet+log(c)

)
t≥0

=
(←−−
Exp(Xlog(et)+log(c))−1←−−Exp(Xlog(c))

←−−
Exp(Xlog(c))−1Zcet

)
t≥0

=
(←−−
Exp(Xlog(et)+log(c) −Xlog(c))−1←−−Exp(Xlog(c))−1Zcet

)
t≥0

D=
(←−−
Exp(Xt)−1Zet

)
t≥0

= (Vt)t≥0

and

(Vt−log(c))t≤0 =
(←−−
Exp(Xt−log(c))−1Zet−log(c)

)
t≤0

=
(←−−
Exp(Xlog(et)−log(c))−1←−−Exp(X− log(c))

←−−
Exp(X− log(c))−1Zc−1et

)
t≤0

=
(←−−
Exp(Xlog(et)−log(c) −X− log(c))−1←−−Exp(Xlog(c−1))−1Zc−1et

)
t≤0

D=
(←−−
Exp(Xt)−1Zet

)
t≤0

= (Vt)t≤0.

Thus V is log(c)-stationary.

(b) Because V is log(c)-stationary and X has log(c)-stationary increments, we have for
t ≥ 1

←−−
Exp(Xlog(c))−1Zct =

←−−
Exp(Xlog(c))−1←−−Exp(Xlog(ct))Vlog(ct)

=
←−−
Exp(Xlog(t)+log(c) −Xlog(c))Vlog(t)+log(c)

D=
←−−
Exp(Xlog(t))Vlog(t) = Zt

and similarly for 0 < t ≤ 1
←−−
Exp(Xlog(c−1))−1Zc−1t =

←−−
Exp(X− log(c))−1←−−Exp(Xlog(c−1t))Vlog(c−1t)

=
←−−
Exp(Xlog(t)−log(c) −X− log(c))Vlog(t)−log(c)

D=
←−−
Exp(Xlog(t))Vlog(t) = Zt.

Together with the log(c)-stationary increments of X this yields (5.2a) and (5.2b) and
thus Z is left Xlog(c)-semiselfsimilar.

Corollary 5.4. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3).

(a) If Z = (Zt)t>0 is left X-selfsimilar, then its left X-random Lamperti transform V =
(Vt)t∈R is stationary.
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(b) If V = (Vt)t∈R is stationary and independent of X, then its left X-random inverse
Lamperti transform Z = (Zt)t>0 is left X-selfsimilar.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and we can apply Theorem 5.3.

(a) Since Z is left Xlog(c)-semiselfsimilar for all c > 1, V is log(c)-stationary for all c > 1
by Theorem 5.3(a) and thus stationary.

(b) Since V is log(c)-stationary for all c > 1, Z is left Xlog(c)-semiselfsimilar for all c > 1
by Theorem 5.3(b) and thus left X-selfsimilar.

Given a semi-Lévy process X and a left semiselfsimilar process Z we now construct a new
semi-Lévy process Y by integrating the left stochastic exponential of X with respect to Z.
The bivariate process (X,Y ) will be the background driving process of a left MGOU process
that can be constructed from Z. The subsequent corollary shows that Y is a Lévy process
if X is a Lévy process and Z is left selfsimilar.

Lemma 5.5. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which sat-
isfies (3.3) and let Z = (Zt)t>0 be a left Xlog(c)-semiselfsimilar process with independent
increments. Then the stochastic process Y = (Yt)t∈R defined by

Yt :=



etˆ

1

←−−
Exp(Xlog(u)−)−1 dZu , t ≥ 0

−
1ˆ

et

←−−
Exp(Xlog(u)−)−1 dZu , t < 0

(5.3)

is a log(c)-semi-Lévy process.

Proof. By definition of the stochastic integral Y is continuous in probability, càdlàg, and
satisfies Y0 = 0. Because X and Z have independent increments, Y also has independent
increments. Because Z is left semiselfsimilar and X has log(c)-stationary increments, we
have for t ≥ 0

Yt+log(c) − Ylog(c) =
cetˆ

1

←−−
Exp(Xlog(u)−)−1 dZu −

cˆ

1

←−−
Exp(Xlog(u)−)−1 dZu

=
cetˆ
c

←−−
Exp(Xlog(u)−)−1 dZu

=
etˆ

1

←−−
Exp(Xlog(cu)−)−1 dZcu

=
etˆ

1

←−−
Exp(X(log(u)+log(c))−)−1←−−Exp(Xlog(c))

←−−
Exp(Xlog(c))−1 dZcu

=
etˆ

1

←−−
Exp(X(log(u)+log(c))− −Xlog(c))−1 d

(←−−
Exp(Xlog(c))−1Zcu

)

84



5 Connection between MGOU and semiselfsimilar processes

D=
etˆ

1

←−−
Exp(Xlog(u)−)−1 dZu = Yt

and for t ≤ 0

Yt−log(c) − Y− log(c) = −
1ˆ

c−1et

←−−
Exp(Xlog(u)−)−1 dZu +

1ˆ

c−1

←−−
Exp(Xlog(u)−)−1 dZu

= −
c−1ˆ

c−1et

←−−
Exp(Xlog(u)−)−1 dZu

= −
1ˆ

et

←−−
Exp(Xlog(c−1u)−)−1 dZc−1u

= −
1ˆ

et

←−−
Exp(X(log(u)−log(c))−)−1←−−Exp(X− log(c))

←−−
Exp(X− log(c))−1 dZc−1u

= −
1ˆ

et

←−−
Exp(X(log(u)−log(c))− −X− log(c))−1 d

(←−−
Exp(Xlog(c−1))−1Zc−1u

)

D= −
1ˆ

et

←−−
Exp(Xlog(u)−)−1 dZu = Yt.

Together with the independent increments Y therefore has log(c)-stationary increments.
Thus Y is a log(c)-semi-Lévy process.

Corollary 5.6. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let Z = (Zt)t>0
be a left X-selfsimilar process with independent increments. Then the stochastic process
Y = (Yt)t∈R defined as in (5.3) is a Lévy process.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and Z is left Xlog(c)-semiselfsimilar for
all c > 1. Then Y is a log(c)-semi-Lévy process for all c > 1 by Lemma 5.5 and thus a
Lévy process.

Theorem 5.7 and its subsequent corollary show how a left MGOU process can be constructed
out of a left semiselfsimilar respectively left selfsimilar process by means of the left random
Lamperti transform. Conversely, Theorem 5.9 and its subsequent corollary show how a left
semiselfsimilar respectively left selfsimilar process can be constructed out of a left MGOU
process by means of the left random inverse Lamperti transform.

Theorem 5.7. Let X = (Xt)t≥0 be a log(c)-semi-Lévy process for some c > 1 which satisfies
(3.3) and let Z = (Zt)t≥1 be left Xlog(c)-semiselfsimilar. By Lemma 5.5 Y = (Yt)t≥0 defined
as in (5.3) is a log(c)-semi-Lévy process. Then the left X-random Lamperti transform
←−−
Lam(Z) = V = (Vt)t≥0 is a log(c)-stationary left MGOU process driven by (X,Y ).

Proof. By Theorem 5.3(a)
←−−
Lam(Z) is log(c)-stationary. We prove that

←−−
Lam(Z) solves the

stochastic integral equation

Vt = V0 + Lt +
tˆ

0

dUu Vu−,
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with (U,L) = (Ut, Lt)t≥0 defined as in (4.5), which is equivalent to the stochastic differential
equation (4.6). By (3.7a)

←−−
Exp(Xt)−1 =

−−→
Exp(Ut) for all t ≥ 0 and thus the left X-random

Lamperti transform of Z can be written as Vt =
←−−
Lam(Zt) =

←−−
Exp(Xt)−1Zet =

−−→
Exp(Ut)Zet .

By (3.1b) and the integration by parts formula we have for all t ≥ 0

V0 + Lt +
tˆ

0

dUu Vu− = Z1 + Lt +
tˆ

0

dUu
−−→
Exp(Uu−)Zeu−

= Z1 + Lt +
tˆ

0

d
−−→
Exp(Uu)Zeu−

= Z1 + Lt +
−−→
Exp(Ut)Zet − Z1 −

tˆ

0

−−→
Exp(Uu−) dZeu −

[−−→
Exp(Ut), Zet

]

= Lt +
←−−
Exp(Xt)−1Zet −

etˆ

1

←−−
Exp(Xlog(u)−)−1 dZu −

[−−→
Exp(Ut), Zet

]
= Lt + Vt − Yt −

[−−→
Exp(Ut), Zet

]
= Vt + [Ut, Yt]−

[−−→
Exp(Ut), Zet

]
= Vt

since Lt = Yt + [Ut, Yt] by (4.8a), and (2.18e) together with (3.1b) yields

[Ut, Yt] =
[
Ut,

etˆ

1

−−→
Exp

(
Ulog(u)−

)
dZu

]
=
[
Ut,

tˆ

0

−−→
Exp(Uu−) dZeu

]

=
[ tˆ

0

dUu
−−→
Exp(Uu−), Zet

]
=
[ tˆ

0

d
−−→
Exp(Uu) , Zet

]
=
[−−→
Exp(Ut), Zet

]
.

By Theorem 4.9
←−−
Lam(Z) is a left MGOU process driven by (X,Y ).

Corollary 5.8. Let X = (Xt)t≥0 be a Lévy process which satisfies (3.3) and let Z = (Zt)t≥1
be left X-selfsimilar. By Corollary 5.6 Y = (Yt)t≥0 defined as in (5.3) is a Lévy process.
Then the left X-random Lamperti transform

←−−
Lam(Z) = V = (Vt)t≥0 is a stationary left

MGOU process driven by (X,Y ).

Proof. X is a log(c)-semi-Lévy process for all c > 1 and Z is left Xlog(c)-semiselfsimilar
for all c > 1. By Theorem 5.7

←−−
Lam(Z) is a log(c)-stationary left MGOU process driven by

(X,Y ) for all c > 1 and thus a stationary left MGOU process.

Theorem 5.9. Let (X,Y ) = (Xt, Yt)t∈R be a log(c)-semi-Lévy process for some c > 1 such
that X satisfies (3.3) and let V = (Vt)t∈R be the log(c)-stationary left MGOU process driven
by (X,Y ) as in (4.13b). Then the left X-random inverse Lamperti transform

←−−
Lam−1(V ) is

left Xlog(c)-semiselfsimilar.

Proof. Because (X,Y ) has log(c)-stationary increments we have for t ≥ 1
←−−
Exp(Xlog(c))−1←−−Lam−1(Vct) =

←−−
Exp(Xlog(c))−1←−−Exp(Xlog(ct))Vlog(ct)

=
←−−
Exp(Xlog(c))−1

log(ct)ˆ

−∞

←−−
Exp(Xu−) dYu
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=
←−−
Exp(Xlog(c))−1

log(t)ˆ

−∞

←−−
Exp(X(u+log(c))−) dYu+log(c)

=
log(t)ˆ

−∞

←−−
Exp(X(u+log(c))− −Xlog(c)) d(Yu+log(c) − Ylog(c))

D=
log(t)ˆ

−∞

←−−
Exp(Xu−) dYu =

←−−
Exp(Xlog(t))Vlog(t) =

←−−
Lam−1(Vt)

and for 0 < t ≤ 1
←−−
Exp(Xlog(c−1))−1←−−Lam−1(Vc−1t) =

←−−
Exp(X− log(c))−1←−−Exp(Xlog(c−1t))Vlog(c−1t)

=
←−−
Exp(X− log(c))−1

log(c−1t)ˆ

−∞

←−−
Exp(Xu−) dYu

=
←−−
Exp(X− log(c))−1

log(t)ˆ

−∞

←−−
Exp(X(u−log(c))−) dYu−log(c)

=
log(t)ˆ

−∞

←−−
Exp(X(u−log(c))− −X− log(c)) d(Yu−log(c) − Y− log(c))

D=
log(t)ˆ

−∞

←−−
Exp(Xu−) dYu =

←−−
Exp(Xlog(t))Vlog(t) =

←−−
Lam−1(Vt).

Together with the log(c)-stationary increments of X this yields (5.2a) and (5.2b) and thus
←−−
Lam−1(V ) is left Xlog(c)-semiselfsimilar.

Corollary 5.10. Let (X,Y ) = (Xt, Yt)t∈R be a Lévy process such that X satisfies (3.3) and
let V = (Vt)t∈R be the stationary left MGOU process driven by (X,Y ) as in (4.13b). Then
the left X-random inverse Lamperti transform

←−−
Lam−1(V ) is left X-selfsimilar.

Proof. (X,Y ) is a log(c)-semi-Lévy process for all c > 1. Then
←−−
Lam−1(V ) is left Xlog(c)-

semiselfsimilar for all c > 1 by Theorem 5.9 and thus left X-selfsimilar.

5.2 Right MGOU and right semiselfsimilar processes

In the right case the generalization of the Lamperti transform and its inverse transform is
defined as follows.

Definition 5.11. Let X = (Xt)t∈R be a semimartingale with X0 = 0 which satisfies (3.3).

(a) The right X-random Lamperti transform of a process Z = (Zt)t>0 is the process
−−→
Lam(Z) = V = (Vt)t∈R defined by

−−→
Lam(Zt) = Vt := Zet

−−→
Exp(Xt)−1. (5.4a)

(b) The right X-random inverse Lamperti transform of a process V = (Vt)t∈R is the
process

−−→
Lam−1(V ) = Z = (Zt)t>0 defined by

−−→
Lam−1(Vt) = Zt := Vlog(t)

−−→
Exp(Xlog(t)). (5.4b)
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5 Connection between MGOU and semiselfsimilar processes

In the right case the generalization of selfsimilarity and semiselfsimilarity is defined as follows.

Definition 5.12. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3).

(a) A process Z = (Zt)t>0 is called random right selfsimilar with exponent X or
simply right X-selfsimilar if for all c > 1(

Xlog(t)+log(c) −Xlog(c), Zct
−−→
Exp(Xlog(c))−1

)
t≥1

D= (Xlog(t), Zt)t≥1, (5.5a)(
Xlog(t)−log(c) −X− log(c), Zc−1t

−−→
Exp(Xlog(c−1))−1

)
0<t≤1

D= (Xlog(t), Zt)0<t≤1. (5.5b)

(b) A process Z = (Zt)t>0 is called random right semiselfsimilar with exponentXlog(c)
or simply right Xlog(c)-semiselfsimilar if (5.5a) and (5.5b) hold for some c > 1.

In the definition of right semiselfsimilarity we can without loss of generality assume c > 1
because for c = 1 (5.5a) and (5.5b) are automatically fulfilled and for 0 < c < 1 swapping
(5.5a) and (5.5b) and rescaling the time parameter of Z leads to right semiselfsimilarity
with c−1 > 1. In particular, right Xlog(c)-semiselfsimilarity for all c > 1 implies right X-
selfsimilarity.

If the exponent X is a semi-Lévy process the right random Lamperti transform and its in-
verse transform establish a one-to-one correspondence between right semiselfsimilar processes
and periodically stationary processes. If the exponent X is a Lévy process the one-to-one
correspondence extends to right selfsimilar processes and stationary processes.

Theorem 5.13. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3).

(a) If Z = (Zt)t>0 is right Xlog(c)-semiselfsimilar, then its right X-random Lamperti
transform V = (Vt)t∈R is log(c)-stationary.

(b) If V = (Vt)t∈R is log(c)-stationary and independent of X, then its right X-random
inverse Lamperti transform Z = (Zt)t>0 is right Xlog(c)-semiselfsimilar.

Proof. (a) Because Z is right Xlog(c)-semiselfsimilar and X has log(c)-stationary incre-
ments, we have

(Vt+log(c))t≥0 =
(
Zet+log(c)

−−→
Exp(Xt+log(c))−1

)
t≥0

=
(
Zcet

−−→
Exp(Xlog(c))−1−−→Exp(Xlog(c))

−−→
Exp(Xlog(et)+log(c))−1

)
t≥0

=
(
Zcet

−−→
Exp(Xlog(c))−1−−→Exp(Xlog(et)+log(c) −Xlog(c))−1

)
t≥0

D=
(
Zet

−−→
Exp(Xt)−1

)
t≥0

= (Vt)t≥0

and

(Vt−log(c))t≤0 =
(
Zet−log(c)

−−→
Exp(Xt−log(c))−1

)
t≤0

=
(
Zc−1et

−−→
Exp(X− log(c))−1−−→Exp(X− log(c))

−−→
Exp(Xlog(et)−log(c))−1

)
t≤0

=
(
Zc−1et

−−→
Exp(Xlog(c−1))−1−−→Exp(Xlog(et)−log(c) −X− log(c))−1

)
t≤0

D=
(
Zet

−−→
Exp(Xt)−1

)
t≤0

= (Vt)t≤0.

Thus V is log(c)-stationary.
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5 Connection between MGOU and semiselfsimilar processes

(b) Because V is log(c)-stationary and X has log(c)-stationary increments, we have for
t ≥ 1

Zct
−−→
Exp(Xlog(c))−1 = Vlog(ct)

−−→
Exp(Xlog(ct))

−−→
Exp(Xlog(c))−1

= Vlog(t)+log(c)
−−→
Exp(Xlog(t)+log(c) −Xlog(c))

D= Vlog(t)
−−→
Exp(Xlog(t)) = Zt

and similarly for 0 < t ≤ 1

Zc−1t
−−→
Exp(Xlog(c−1))−1 = Vlog(c−1t)

−−→
Exp(Xlog(c−1t))

−−→
Exp(X− log(c))−1

= Vlog(t)−log(c)
−−→
Exp(Xlog(t)−log(c) −X− log(c))

D= Vlog(t)
−−→
Exp(Xlog(t)) = Zt.

Together with the log(c)-stationary increments of X this yields (5.5a) and (5.5b) and
thus Z is right Xlog(c)-semiselfsimilar.

Corollary 5.14. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3).

(a) If Z = (Zt)t>0 is right X-selfsimilar, then its right X-random Lamperti transform
V = (Vt)t∈R is stationary.

(b) If V = (Vt)t∈R is stationary and independent of X, then its right X-random inverse
Lamperti transform Z = (Zt)t>0 is right X-selfsimilar.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and we can apply Theorem 5.13.

(a) Since Z is right Xlog(c)-semiselfsimilar for all c > 1, V is log(c)-stationary for all c > 1
by Theorem 5.13(a) and thus stationary.

(b) Since V is log(c)-stationary for all c > 1, Z is right Xlog(c)-semiselfsimilar for all c > 1
by Theorem 5.13(b) and thus right X-selfsimilar.

Given a semi-Lévy process X and a right semiselfsimilar process Z we now construct a new
semi-Lévy process Y by integrating the right stochastic exponential of X with respect to
Z. The bivariate process (X,Y ) will be the background driving process of a right MGOU
process that can be constructed from Z. The subsequent corollary shows that Y is a Lévy
process if X is a Lévy process and Z is right selfsimilar.

Lemma 5.15. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let Z = (Zt)t>0 be a right Xlog(c)-semiselfsimilar process with independent
increments. Then the stochastic process Y = (Yt)t∈R defined by

Yt :=



etˆ

1

dZu
−−→
Exp(Xlog(u)−)−1 , t ≥ 0

−
1ˆ

et

dZu
−−→
Exp(Xlog(u)−)−1 , t < 0

(5.6)

is a log(c)-semi-Lévy process.
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5 Connection between MGOU and semiselfsimilar processes

Proof. By definition of the stochastic integral Y is continuous in probability, càdlàg, and
satisfies Y0 = 0. Because X and Z have independent increments, Y also has independent
increments. Because Z is right semiselfsimilar and X has log(c)-stationary increments, we
have for t ≥ 0

Yt+log(c) − Ylog(c) =
cetˆ

1

dZu
−−→
Exp(Xlog(u)−)−1 −

cˆ

1

dZu
−−→
Exp(Xlog(u)−)−1

=
cetˆ
c

dZu
−−→
Exp(Xlog(u)−)−1

=
etˆ

1

dZcu
−−→
Exp(Xlog(cu)−)−1

=
etˆ

1

dZcu
−−→
Exp(Xlog(c))−1−−→Exp(Xlog(c))

−−→
Exp(X(log(u)+log(c))−)−1

=
etˆ

1

d
(
Zcu
−−→
Exp(Xlog(c))−1

)−−→
Exp(X(log(u)+log(c))− −Xlog(c))−1

D=
etˆ

1

dZu
−−→
Exp(Xlog(u)−)−1 = Yt

and for t ≤ 0

Yt−log(c) − Y− log(c) = −
1ˆ

c−1et

dZu
−−→
Exp(Xlog(u)−)−1 +

1ˆ

c−1

dZu
−−→
Exp(Xlog(u)−)−1

= −
c−1ˆ

c−1et

dZu
−−→
Exp(Xlog(u)−)−1

= −
1ˆ

et

dZc−1u
−−→
Exp(Xlog(c−1u)−)−1

= −
1ˆ

et

dZc−1u
−−→
Exp(X− log(c))−1−−→Exp(X− log(c))

−−→
Exp(X(log(u)−log(c))−)−1

= −
1ˆ

et

d
(
Zc−1u

−−→
Exp(Xlog(c−1))−1

)−−→
Exp(X(log(u)−log(c))− −X− log(c))−1

D= −
1ˆ

et

dZu
−−→
Exp(Xlog(u)−)−1 = Yt.

Together with the independent increments Y therefore has log(c)-stationary increments.
Thus Y is a log(c)-semi-Lévy process.
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Corollary 5.16. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let Z =
(Zt)t>0 be a right X-selfsimilar process with independent increments. Then the stochastic
process Y = (Yt)t∈R defined as in (5.6) is a Lévy process.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and Z is right Xlog(c)-semiselfsimilar
for all c > 1. Then Y is a log(c)-semi-Lévy process for all c > 1 by Lemma 5.15 and thus a
Lévy process.

Theorem 5.17 and its subsequent corollary show how a right MGOU process can be con-
structed out of a right semiselfsimilar respectively right selfsimilar process by means of the
right random Lamperti transform. Conversely, Theorem 5.19 and its subsequent corollary
show how a right semiselfsimilar respectively right selfsimilar process can be constructed out
of a right MGOU process by means of the right random inverse Lamperti transform.

Theorem 5.17. Let X = (Xt)t≥0 be a log(c)-semi-Lévy process for some c > 1 which sat-
isfies (3.3) and let Z = (Zt)t≥1 be right Xlog(c)-semiselfsimilar. By Lemma 5.15 Y = (Yt)t≥0
defined as in (5.6) is a log(c)-semi-Lévy process. Then the right X-random Lamperti
transform

−−→
Lam(Z) = V = (Vt)t≥0 is a log(c)-stationary right MGOU process driven by

(X,Y ).

Proof. By Theorem 5.13(a)
−−→
Lam(Z) is log(c)-stationary. We prove that

−−→
Lam(Z) solves the

stochastic integral equation

Vt = V0 + Lt +
tˆ

0

Vu− dUu ,

with (U,L) = (Ut, Lt)t≥0 defined as in (4.18), which is equivalent to the stochastic differential
equation (4.19). By (3.7b)

−−→
Exp(Xt)−1 =

←−−
Exp(Ut) for all t ≥ 0 and thus the right X-random

Lamperti transform of Z can be written as Vt =
−−→
Lam(Zt) = Zet

−−→
Exp(Xt)−1 = Zet

←−−
Exp(Ut).

By (3.1a) and the integration by parts formula we have for all t ≥ 0

V0 + Lt +
tˆ

0

Vu− dUu = Z1 + Lt +
tˆ

0

Zeu−
←−−
Exp(Uu−) dUu

= Z1 + Lt +
tˆ

0

Zeu− d
←−−
Exp(Uu)

= Z1 + Lt + Zet

←−−
Exp(Ut)− Z1 −

tˆ

0

dZeu
←−−
Exp(Uu−)−

[
Zet ,
←−−
Exp(Ut)

]

= Lt + Zet

−−→
Exp(Xt)−1 −

etˆ

1

dZu
−−→
Exp(Xlog(u)−)−1 −

[
Zet ,
←−−
Exp(Ut)

]
= Lt + Vt − Yt −

[
Zet ,
←−−
Exp(Ut)

]
= Vt + [Yt, Ut]−

[
Zet ,
←−−
Exp(Ut)

]
= Vt

since Lt = Yt + [Yt, Ut] by (4.21a), and (2.18e) together with (3.1a) yields

[Ut, Yt] =
[ etˆ

1

dZu
←−−
Exp

(
Ulog(u)−

)
, Ut

]
=
[ tˆ

0

dZeu
←−−
Exp(Uu−), Ut

]
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=
[
Zet ,

tˆ

0

←−−
Exp(Uu−) dUu

]
=
[
Zet ,

tˆ

0

d
←−−
Exp(Uu)

]
=
[
Zet ,
←−−
Exp(Ut)

]
.

By Theorem 4.9
−−→
Lam(Z) is a right MGOU process driven by (X,Y ).

Corollary 5.18. Let X = (Xt)t≥0 be a Lévy process which satisfies (3.3) and let Z =
(Zt)t≥1 be right X-selfsimilar. By Corollary 5.16 Y = (Yt)t≥0 defined as in (5.6) is a
Lévy process. Then the right X-random Lamperti transform

−−→
Lam(Z) = V = (Vt)t≥0 is a

stationary right MGOU process driven by (X,Y ).

Proof. X is a log(c)-semi-Lévy process for all c > 1 and Z is right Xlog(c)-semiselfsimilar
for all c > 1. By Theorem 5.17

−−→
Lam(Z) is a log(c)-stationary right MGOU process driven

by (X,Y ) for all c > 1 and thus a stationary right MGOU process.

Theorem 5.19. Let (X,Y ) = (Xt, Yt)t∈R be a log(c)-semi-Lévy process for some c > 1 such
that X satisfies (3.3) and let V = (Vt)t∈R be the log(c)-stationary right MGOU process driven
by (X,Y ) as in (4.26b). Then the right X-random inverse Lamperti transform

−−→
Lam−1(V )

is right Xlog(c)-semiselfsimilar.

Proof. Because (X,Y ) has log(c)-stationary increments we have for t ≥ 1

−−→
Lam−1(Vct)

−−→
Exp(Xlog(c))−1 = Vlog(ct)

−−→
Exp(Xlog(ct))

−−→
Exp(Xlog(c))−1

=
log(ct)ˆ

−∞

dYu
−−→
Exp(Xu−)

−−→
Exp(Xlog(c))−1

=
log(t)ˆ

−∞

dYu+log(c)
−−→
Exp(X(u+log(c))−)

−−→
Exp(Xlog(c))−1

=
log(t)ˆ

−∞

d(Yu+log(c) − Ylog(c))
−−→
Exp(X(u+log(c))− −Xlog(c))

D=
log(t)ˆ

−∞

dYu
−−→
Exp(Xu−) = Vlog(t)

−−→
Exp(Xlog(t)) =

−−→
Lam−1(Vt)

and for 0 < t ≤ 1
−−→
Lam−1(Vc−1t)

−−→
Exp(Xlog(c−1))−1 = Vlog(c−1t)

−−→
Exp(Xlog(c−1t))

−−→
Exp(X− log(c))−1

=

log(c−1t)ˆ

−∞

dYu
−−→
Exp(Xu−)

−−→
Exp(X− log(c))−1

=
log(t)ˆ

−∞

dYu−log(c)
−−→
Exp(X(u−log(c))−)

−−→
Exp(X− log(c))−1

=
log(t)ˆ

−∞

d(Yu−log(c) − Y− log(c))
−−→
Exp(X(u−log(c))− −X− log(c))
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D=
log(t)ˆ

−∞

dYu
−−→
Exp(Xu−) = Vlog(t)

−−→
Exp(Xlog(t)) =

−−→
Lam−1(Vt).

Together with the log(c)-stationary increments of X this yields (5.5a) and (5.5b) and thus
−−→
Lam−1(V ) is right Xlog(c)-semiselfsimilar.

Corollary 5.20. Let (X,Y ) = (Xt, Yt)t∈R be a Lévy process such that X satisfies (3.3) and
let V = (Vt)t∈R be the stationary right MGOU process driven by (X,Y ) as in (4.26b). Then
the right X-random inverse Lamperti transform

−−→
Lam−1(V ) is right X-selfsimilar.

Proof. (X,Y ) is a log(c)-semi-Lévy process for all c > 1. Then
−−→
Lam−1(V ) is right Xlog(c)-

semiselfsimilar for all c > 1 by Theorem 5.19 and thus right X-selfsimilar.
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6 Connection between MGOU and semistable hemigroups

Chapter 6 introduces random semistable hemigroups as a generalization of semistable hemi-
groups that incorporates random scaling. We prove that a random semistable hemigroup
admits an integral representation and show how random semistable hemigroups are con-
nected to random semiselfsimilar processes, periodically stationary processes, and MGOU
processes. These connections extend to the random stable, random selfsimilar, and station-
ary case.

Due to the non-commutativity of matrix multiplication there are two types of random
semistable hemigroups in dimension n ≥ 2. Chapter 6.1 discusses random left semistable
hemigroups and the connection to random left semiselfsimilarity and left MGOU processes
while chapter 6.2 discusses random right semistable hemigroups and the connection to ran-
dom right semiselfsimilarity and right MGOU processes.

6.1 Left MGOU and left semistable hemigroups

In the left case the generalization of a stable and semistable hemigroup is defined as follows.

Definition 6.1. Let X = (Xt)t∈R be a semimartingale with X0 = 0 which satisfies (3.3).

(a) A family (Zs,t)0≤s≤t of random variables is called random left stable hemigroup
with exponent X or simply left X-stable hemigroup if it satisfies the following
four conditions.

(L1) Zq,r and Zs,t are independent for all 0 ≤ q ≤ r ≤ s ≤ t.

(L2) Zr,s + Zs,t = Zr,t for all 0 ≤ r ≤ s ≤ t.

(L3) For all c > 1(
Xlog(t)+log(c) −Xlog(c),

←−−
Exp(Xlog(c))−1Zcs,ct

)
1≤s≤t

D= (Xlog(t), Zs,t)1≤s≤t,

(6.1a)(
Xlog(t)−log(c) −X− log(c),

←−−
Exp(Xlog(c−1))−1Zc−1s,c−1t

)
0<s≤t≤1

D= (Xlog(t), Zs,t)0<s≤t≤1.

(6.1b)

(L4) The map (s, t) 7−→ Zs,t is continuous with respect to convergence in distribution.

(b) A family (Zs,t)0≤s≤t of random variables is called random left semistable hemi-
group with exponent Xlog(c) or simply left Xlog(c)-semistable hemigroup if it
satisfies (L1), (L2), (L4), and (L3) holds true for some c > 1.

In the definition of a left semistable hemigroup we can without loss of generality assume
c > 1 because for c = 1 (6.1a) and (6.1b) are automatically fulfilled and for 0 < c < 1
swapping (6.1a) and (6.1b) and rescaling the time parameters of (Zs,t)0≤s≤t leads to a left
semistable hemigroup with c−1 > 1. In particular, if (Zs,t)0≤s≤t is a left Xlog(c)-semistable
hemigroup for all c > 1 then it is a left X-stable hemigroup.

If the exponent X is a semi-Lévy process there is a one-to-one correspondence between
left semistable hemigroups and left semiselfsimilar processes. If the exponent X is a Lévy
process the one-to-one correspondence extends to left stable hemigroups and left selfsimilar
processes.
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Theorem 6.2. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3).

(a) If (Zs,t)0≤s≤t is a left Xlog(c)-semistable hemigroup, then the process Z = (Zt)0<t≤1
defined by Zt := Z0,t has independent increments and is left Xlog(c)-semiselfsimilar.

(b) If Z = (Zt)t≥0 is a left Xlog(c)-semiselfsimilar process that is continuous in probability
and has independent increments, then the family (Zs,t)0≤s≤t defined by Zs,t := Zt −Zs
is a left Xlog(c)-semistable hemigroup.

Proof. (a) By (L1) and (L2) Z has independent increments. By (L3) we have for 0 < t ≤ 1

←−−
Exp(Xlog(c−1))−1Zc−1t =

←−−
Exp(Xlog(c−1))−1Z0,c−1t

D= Z0,t.

Together with the log(c)-stationary increments of X this yields (5.2b) and thus Z is
left Xlog(c)-semiselfsimilar.

(b) (L1) is clear from the independent increments of Z. (L2) follows by direct calculation
since for all 0 ≤ r ≤ s ≤ t

Zr,s + Zs,t = Zs − Zr + Zt − Zs = Zt − Zr = Zr,t.

(L3) holds true because for 1 ≤ s ≤ t

←−−
Exp(Xlog(c))−1Zcs,ct =

←−−
Exp(Xlog(c))−1(Zct − Zcs)

D= Zt − Zs = Zs,t

and for 0 ≤ s ≤ t ≤ 1

←−−
Exp(Xlog(c−1))−1Zc−1s,c−1t =

←−−
Exp(Xlog(c−1))−1(Zc−1t − Zc−1s)

D= Zt − Zs = Zs,t.

Together with the log(c)-stationary increments of X this yields (6.1a) and (6.1b). (L4)
is a consequence of the continuity in probability of Z and the fact that convergence in
probability implies convergence in distribution.

Corollary 6.3. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3).

(a) If (Zs,t)0≤s≤t is a left X-stable hemigroup, then the process Z = (Zt)0<t≤1 defined by
Zt := Z0,t has independent increments and is left X-selfsimilar.

(b) If Z = (Zt)t≥0 is a left X-selfsimilar process that is continuous in probability and has
independent increments, then the family (Zs,t)0≤s≤t defined by Zs,t := Zt −Zs is a left
X-stable hemigroup.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and we can apply Theorem 6.2.

(a) Since (Zs,t)0≤s≤t is a left Xlog(c)-semistable hemigroup for all c > 1, Z is left Xlog(c)-
semiselfsimilar for all c > 1 by Theorem 6.2(a) and thus left X-selfsimilar. The inde-
pendent increments of Z also follow from Theorem 6.2(a).

(b) Since Z is Xlog(c)-semiselfsimilar for all c > 1, (Zs,t)0≤s≤t is a left Xlog(c)-semistable
hemigroup for all c > 1 by Theorem 6.2(b) and thus a left X-stable hemigroup.
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Theorem 6.4 and its subsequent corollary show that a left semistable respectively left stable
hemigroup admits the integral representation (6.2). Conversely, Theorem 6.6 and its subse-
quent corollary show that the stochastic integral in (6.2) defines a left semistable respectively
left stable hemigroup.

Theorem 6.4. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a left Xlog(c)-semistable hemigroup. By Theorem 6.2(a)
Z = (Zt)0<t≤1 defined by Zt := Z0,t is a left Xlog(c)-semiselfsimilar process with independent
increments and by Lemma 5.5 Y = (Yt)t≤0 defined as in (5.3) is a log(c)-semi-Lévy process.
Then for all 0 < s ≤ t ≤ 1 the random variable Zs,t has the integral representation

Zs,t =
log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu . (6.2)

Proof. For 0 < s ≤ t ≤ 1 we have

log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu =

log(t)ˆ

log(s)

←−−
Exp(Xu−) d

(
−

1ˆ

eu

←−−
Exp(Xlog(v)−)−1 dZv

)

=
log(t)ˆ

log(s)

←−−
Exp(Xu−) d

( euˆ

1

←−−
Exp(Xlog(v)−)−1 dZv

)

=
log(t)ˆ

log(s)

←−−
Exp(Xu−)

←−−
Exp(Xlog(eu)−)−1 dZeu

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t.

Corollary 6.5. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a left X-stable hemigroup. By Corollary 6.3(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is
a left X-selfsimilar process with independent increments and by Corollary 5.6 Y = (Yt)t≤0
defined as in (5.3) is a Lévy process. Then for all 0 < s ≤ t ≤ 1 the random variable Zs,t
has the integral representation (6.2).

Proof. The calculation to derive (6.2) is the same as in the proof of Theorem 6.4.

Theorem 6.6. Let (X,Y ) = (Xt, Yt)t∈R be a log(c)-semi-Lévy process for some c > 1
such that X satisfies (3.3). Then (Zs,t)0<s≤t defined as in (6.2) is a left Xlog(c)-semistable
hemigroup.

Proof. (L1) is clear from the independent increments of (X,Y ). (L2) follows by direct
calculation since for all 0 < r ≤ s ≤ t

Zr,s + Zs,t =
log(s)ˆ

log(r)

←−−
Exp(Xu−) dYu +

log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu =

log(t)ˆ

log(r)

←−−
Exp(Xu−) dYu = Zr,t.
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(L3) holds true because for 1 ≤ s ≤ t

←−−
Exp(Xlog(c))−1Zcs,ct =

←−−
Exp(Xlog(c))−1

log(ct)ˆ

log(cs)

←−−
Exp(Xu−) dYu

=
log(t)+log(c)ˆ

log(s)+log(c)

←−−
Exp(Xu− −Xlog(c)) d(Yu − Ylog(c))

=
log(t)ˆ

log(s)

←−−
Exp(X(u+log(c))− −Xlog(c)) d(Yu+log(c) − Ylog(c))

D=
log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu = Zs,t

and for 0 < s ≤ t ≤ 1

←−−
Exp(Xlog(c−1))−1Zc−1s,c−1t =

←−−
Exp(Xlog(c−1))−1

log(c−1t)ˆ

log(c−1s)

←−−
Exp(Xu−) dYu

=
log(t)−log(c)ˆ

log(s)−log(c)

←−−
Exp(Xu− −X− log(c)) d(Yu − Y− log(c))

=
log(t)ˆ

log(s)

←−−
Exp(X(u−log(c))− −X− log(c)) d(Yu−log(c) − Y− log(c))

D=
log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu = Zs,t.

Together with the log(c)-stationary increments of X this yields (6.1a) and (6.1b). (L4) is a
consequence of the continuity in probability of (X,Y ) and the stochastic integral and of the
fact that convergence in probability implies convergence in distribution.

Corollary 6.7. Let (X,Y ) = (Xt, Yt)t∈R be a Lévy process such that X satisfies (3.3).
Then (Zs,t)0<s≤t defined as in (6.2) is a left X-stable hemigroup.

Proof. Since (X,Y ) is a log(c)-semi-Lévy process for all c > 1, (Zs,t)0≤s≤t is a left Xlog(c)-
semistable hemigroup for all c > 1 by Theorem 6.6 and thus a left X-stable hemigroup.

Theorem 6.8 and its subsequent corollary show how a left semistable respectively left stable
hemigroup can be constructed out of a periodically stationary respectively stationary process.
Conversely, Theorem 6.10 and its subsequent corollary show how a periodically stationary
respectively stationary process can be constructed out of a left semistable respectively left
stable hemigroup.

Theorem 6.8. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let V = (Vt)t∈R be log(c)-stationary and independent of X. By Theo-
rem 5.3(b) the left X-random inverse Lamperti transform Z = (Zt)t>0 of V is left Xlog(c)-
semiselfsimilar and by Lemma 5.5 Y = (Yt)t∈R defined as in (5.3) is a log(c)-semi-Lévy
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process. Then (Zs,t)0<s≤t defined by

Zs,t :=
←−−
Exp(Xlog(t))Vlog(t) −

←−−
Exp(Xlog(s))Vlog(s) (6.3a)

is a left Xlog(c)-semistable hemigroup and Zs,t has the integral representation

Zs,t =
log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu . (6.3b)

Proof. By Theorem 6.2(b) the family (Zs,t)0<s≤t defined by Zs,t := Zt − Zs is a left Xlog(c)-
semistable hemigroup and by definition of the left X-random inverse Lamperti transform
we have

Zs,t = Zt − Zs =
←−−
Exp(Xlog(t))Vlog(t) −

←−−
Exp(Xlog(s))Vlog(s)

which is (6.3a). The integral representation in (6.3b) for 0 < s ≤ t ≤ 1 follows with the same
calculation as in the proof of Theorem 6.4. For 1 ≤ s ≤ t we have

log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu =

log(t)ˆ

log(s)

←−−
Exp(Xu−) d

( euˆ

1

←−−
Exp(Xlog(v)−)−1 dZv

)

=
log(t)ˆ

log(s)

←−−
Exp(Xu−)

←−−
Exp(Xlog(eu)−)−1 dZeu

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t

and for 0 < s ≤ 1 ≤ t we have

log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu =

0ˆ

log(s)

←−−
Exp(Xu−) d

(
−

1ˆ

eu

←−−
Exp(Xlog(v)−)−1 dZv

)

+
log(t)ˆ

0

←−−
Exp(Xu−) d

( euˆ

1

←−−
Exp(Xlog(v)−)−1 dZv

)

=
0ˆ

log(s)

←−−
Exp(Xu−)

←−−
Exp(Xlog(eu)−)−1 dZeu

+
log(t)ˆ

0

←−−
Exp(Xu−)

←−−
Exp(Xlog(eu)−)−1 dZeu

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t.

Corollary 6.9. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let V =
(Vt)t∈R be stationary and independent of X. By Corollary 5.4(b) the left X-random inverse
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Lamperti transform Z = (Zt)t>0 of V is left X-selfsimilar and by Corollary 5.6 Y = (Yt)t∈R
defined as in (5.3) is a Lévy process. Then (Zs,t)0<s≤t defined as in (6.3a) is a left X-stable
hemigroup and Zs,t has the integral representation (6.3b).

Proof. By Corollary 6.3(b) the family (Zs,t)0<s≤t defined by Zs,t := Zt−Zs is a left X-stable
hemigroup. (6.3a) is derived in the same way as in the proof of Theorem 6.8 and the integral
representation (6.3b) follows with the same calculations as in the proofs of Theorem 6.4 and
Theorem 6.8.

Theorem 6.10. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a left Xlog(c)-semistable hemigroup. Then the process
V = (Vt)t≤0 defined by

Vt :=
←−−
Exp(Xt)−1Z0,et (6.4)

is log(c)-stationary.

Proof. By Theorem 6.2(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is left Xlog(c)-semiselfsimilar
and then by Theorem 5.3(a) V =

←−−
Lam(Z) is log(c)-stationary.

Corollary 6.11. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a left X-stable hemigroup. Then the process V = (Vt)t≤0 defined as in (6.4) is stationary.

Proof. By Corollary 6.3(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is left X-selfsimilar and then
by Corollary 5.4(a) V =

←−−
Lam(Z) is stationary.

Theorem 6.12 and its subsequent corollary show how a left semistable respectively left stable
hemigroup can be constructed out of the random functional (As,t, Bs,t)0≤s≤t that defines a
left MGOU process via the random recurrence equation (4.1). Conversely, Theorem 6.14
and its subsequent corollary show how a periodically stationary respectively stationary left
MGOU process can be constructed out of a left semistable respectively left stable hemigroup.

Theorem 6.12. Let (X,Y ) = (Xt, Yt)t≥0 be a log(c)-semi-Lévy process for some c > 1
such that X satisfies (3.3) and let (As,t, Bs,t)0≤s≤t be defined as in (4.3). Then the family(

A−1
log(t)Blog(t) −A−1

log(s)Blog(s)
)

1≤s≤t
(6.5)

is a left Xlog(c)-semistable hemigroup.

Proof. Inserting the formulas in (4.3) we have for all 1 ≤ s ≤ t

A−1
log(t)Blog(t) −A−1

log(s)Blog(s) =
←−−
Exp(Xlog(t))

←−−
Exp(Xlog(t))−1

log(t)ˆ

0

←−−
Exp(Xu−) dYu

−
←−−
Exp(Xlog(s))

←−−
Exp(Xlog(s))−1

log(s)ˆ

0

←−−
Exp(Xu−) dYu

=
log(t)ˆ

log(s)

←−−
Exp(Xu−) dYu

which is (6.2) and by Theorem 6.6 this defines a left Xlog(c)-semistable hemigroup.
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Corollary 6.13. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3)
and let (As,t, Bs,t)0≤s≤t be defined as in (4.3). Then the family in (6.5) is a left X-stable
hemigroup.

Proof. With the same calculation as in the proof of Theorem 6.12 we get the integral repre-
sentation (6.2) which defines a left X-stable hemigroup by Corollary 6.7.

Theorem 6.14. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a left Xlog(c)-semistable hemigroup. By Theorem 6.2(a)
Z = (Zt)0<t≤1 defined by Zt := Z0,t is a left Xlog(c)-semiselfsimilar process with independent
increments and by Lemma 5.5 Y = (Yt)t≤0 defined as in (5.3) is a log(c)-semi-Lévy process.
If the improper stochastic integral in (4.13a) exists then V = (Vt)t≤0 defined by

Vt :=
←−−
Exp(Xt)−1Z0,et (6.6)

is a log(c)-stationary left MGOU process driven by (X,Y ).

Proof. From the integral representation of Zs,t in (6.3b) we obtain by (L2)

Vt =
←−−
Exp(Xt)−1Z0,et =

←−−
Exp(Xt)−1

tˆ

−∞

←−−
Exp(Xu−) dYu

which by (4.13b) shows that V is a log(c)-stationary left MGOU process driven by (X,Y ).

Corollary 6.15. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a left X-stable hemigroup. By Corollary 6.3(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is
a left X-selfsimilar process with independent increments and by Corollary 5.6 Y = (Yt)t≤0
defined as in (5.3) is a Lévy process. Then V = (Vt)t≤0 defined as in (6.6) is a stationary
left MGOU process driven by (X,Y ).

Proof. The calculation to derive (4.13b) is the same as in the proof of Theorem 6.14.

6.2 Right MGOU and right semistable hemigroups

In the right case the generalization of a stable and semistable hemigroup is defined as follows.

Definition 6.16. Let X = (Xt)t∈R be a semimartingale with X0 = 0 which satisfies (3.3).

(a) A family (Zs,t)0≤s≤t of random variables is called random right stable hemigroup
with exponent X or simply right X-stable hemigroup if it satisfies the following
four conditions.

(R1) Zq,r and Zs,t are independent for all 0 ≤ q ≤ r ≤ s ≤ t.

(R2) Zr,s + Zs,t = Zr,t for all 0 ≤ r ≤ s ≤ t.

(R3) For all c > 1(
Xlog(t)+log(c) −Xlog(c), Zcs,ct

−−→
Exp(Xlog(c))−1

)
1≤s≤t

D= (Xlog(t), Zs,t)1≤s≤t,

(6.7a)(
Xlog(t)−log(c) −X− log(c), Zc−1s,c−1t

−−→
Exp(Xlog(c−1))−1

)
0<s≤t≤1

D= (Xlog(t), Zs,t)0<s≤t≤1.

(6.7b)
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(R4) The map (s, t) 7−→ Zs,t is continuous with respect to convergence in distribution.

(b) A family (Zs,t)0≤s≤t of random variables is called random right semistable hemi-
group with exponent Xlog(c) or simply right Xlog(c)-semistable hemigroup if it
satisfies (R1), (R2), (R4) and (R3) holds true for some c > 1.

In the definition of a right semistable hemigroup we can without loss of generality assume
c > 1 because for c = 1 (6.7a) and (6.7b) are automatically fulfilled and for 0 < c < 1
swapping (6.7a) and (6.7b) and rescaling the time parameters of (Zs,t)0≤s≤t leads to a right
semistable hemigroup with c−1 > 1. In particular, if (Zs,t)0≤s≤t is a right Xlog(c)-semistable
hemigroup for all c > 1 then it is a right X-stable hemigroup.

If the exponent X is a semi-Lévy process there is a one-to-one correspondence between
right semistable hemigroups and right semiselfsimilar processes. If the exponent X is a
Lévy process the one-to-one correspondence extends to right stable hemigroups and right
selfsimilar processes.

Theorem 6.17. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3).

(a) If (Zs,t)0≤s≤t is a right Xlog(c)-semistable hemigroup, then the process Z = (Zt)0<t≤1
defined by Zt := Z0,t has independent increments and is right Xlog(c)-semiselfsimilar.

(b) If Z = (Zt)t≥0 is a right Xlog(c)-semiselfsimilar process that is continuous in probability
and has independent increments, then the family (Zs,t)0≤s≤t defined by Zs,t := Zt −Zs
is a right Xlog(c)-semistable hemigroup.

Proof. (a) By (R1) and (R2) Z has independent increments. By (R3) we have for 0 < t ≤ 1

Zc−1t
−−→
Exp(Xlog(c−1))−1 = Z0,c−1t

−−→
Exp(Xlog(c−1))−1 D= Z0,t.

Together with the log(c)-stationary increments of X this yields (5.5a) and (5.5b) and
thus Z is right Xlog(c)-semiselfsimilar.

(b) (R1) is clear from the independent increments of Z. (R2) follows by direct calculation
since for all 0 ≤ r ≤ s ≤ t

Zr,s + Zs,t = Zs − Zr + Zt − Zs = Zt − Zr = Zr,t.

(R3) holds true because for 1 ≤ s ≤ t

Zcs,ct
−−→
Exp(Xlog(c))−1 = (Zct − Zcs)

−−→
Exp(Xlog(c))−1 D= Zt − Zs = Zs,t

and for 0 ≤ s ≤ t ≤ 1

Zc−1s,c−1t
−−→
Exp(Xlog(c−1))−1 = (Zc−1t − Zc−1s)

−−→
Exp(Xlog(c−1))−1 D= Zt − Zs = Zs,t.

Together with the log(c)-stationary increments of X this yields (6.7a) and (6.7b). (R4)
is a consequence of the continuity in probability of Z and the fact that convergence in
probability implies convergence in distribution.

Corollary 6.18. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3).

(a) If (Zs,t)0≤s≤t is a right X-stable hemigroup, then the process Z = (Zt)0<t≤1 defined by
Zt := Z0,t has independent increments and is right X-selfsimilar.
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(b) If Z = (Zt)t≥0 is a right X-selfsimilar process that is continuous in probability and has
independent increments, then the family (Zs,t)0≤s≤t defined by Zs,t := Zt−Zs is a right
X-stable hemigroup.

Proof. X is a log(c)-semi-Lévy process for all c > 1 and we can apply Theorem 6.17.

(a) Since (Zs,t)0≤s≤t is a right Xlog(c)-semistable hemigroup for all c > 1, Z is right Xlog(c)-
semiselfsimilar for all c > 1 by Theorem 6.17(a) and thus right X-selfsimilar. The
independent increments of Z also follow from Theorem 6.17(a).

(b) Since Z is Xlog(c)-semiselfsimilar for all c > 1, (Zs,t)0≤s≤t is a right Xlog(c)-semistable
hemigroup for all c > 1 by Theorem 6.17(b) and thus a right X-stable hemigroup.

Theorem 6.19 and its subsequent corollary show that a right semistable respectively right
stable hemigroup admits the integral representation (6.8). Conversely, Theorem 6.21 and
its subsequent corollary show that the stochastic integral in (6.8) defines a right semistable
respectively right stable hemigroup.

Theorem 6.19. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a right Xlog(c)-semistable hemigroup. By Theorem 6.17(a)
Z = (Zt)0<t≤1 defined by Zt := Z0,t is a right Xlog(c)-semiselfsimilar process with independent
increments and by Lemma 5.15 Y = (Yt)t≤0 defined as in (5.6) is a log(c)-semi-Lévy process.
Then for all 0 < s ≤ t ≤ 1 the random variable Zs,t has the integral representation

Zs,t =
log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−). (6.8)

Proof. For 0 < s ≤ t ≤ 1 we have

log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) =

log(t)ˆ

log(s)

d
(
−

1ˆ

eu

dZv
−−→
Exp(Xlog(v)−)−1

)
−−→
Exp(Xu−)

=
log(t)ˆ

log(s)

d
( euˆ

1

dZv
−−→
Exp(Xlog(v)−)−1

)
−−→
Exp(Xu−)

=
log(t)ˆ

log(s)

dZeu
−−→
Exp(Xlog(eu)−)−1−−→Exp(Xu−)

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t.

Corollary 6.20. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a right X-stable hemigroup. By Corollary 6.18(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is a
right X-selfsimilar process with independent increments and by Corollary 5.16 Y = (Yt)t≤0
defined as in (5.6) is a Lévy process. Then for all 0 < s ≤ t ≤ 1 the random variable Zs,t
has the integral representation (6.8).
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Proof. The calculation to derive (6.8) is the same as in the proof of Theorem 6.19.

Theorem 6.21. Let (X,Y ) = (Xt, Yt)t∈R be a log(c)-semi-Lévy process for some c > 1
such that X satisfies (3.3). Then (Zs,t)0<s≤t defined as in (6.8) is a right Xlog(c)-semistable
hemigroup.

Proof. (R1) is clear from the independent increments of (X,Y ). (R2) follows by direct
calculation since for all 0 < r ≤ s ≤ t

Zr,s + Zs,t =
log(s)ˆ

log(r)

dYu
−−→
Exp(Xu−) +

log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) =

log(t)ˆ

log(r)

dYu
−−→
Exp(Xu−) = Zr,t.

(R3) holds true because for 1 ≤ s ≤ t

Zcs,ct
−−→
Exp(Xlog(c))−1 =

log(ct)ˆ

log(cs)

dYu
−−→
Exp(Xu−)

−−→
Exp(Xlog(c))−1

=
log(t)+log(c)ˆ

log(s)+log(c)

d(Yu − Ylog(c))
−−→
Exp(Xu− −Xlog(c))

=
log(t)ˆ

log(s)

d(Yu+log(c) − Ylog(c))
−−→
Exp(X(u+log(c))− −Xlog(c))

D=
log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) = Zs,t

and for 0 < s ≤ t ≤ 1

Zc−1s,c−1t
−−→
Exp(Xlog(c−1))−1 =

log(c−1t)ˆ

log(c−1s)

dYu
−−→
Exp(Xu−)

−−→
Exp(Xlog(c−1))−1

=
log(t)−log(c)ˆ

log(s)−log(c)

d(Yu − Y− log(c))
−−→
Exp(Xu− −X− log(c))

=
log(t)ˆ

log(s)

d(Yu−log(c) − Y− log(c))
−−→
Exp(X(u−log(c))− −X− log(c))

D=
log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) = Zs,t.

Together with the log(c)-stationary increments of X this yields (6.7a) and (6.7b). (R4) is a
consequence of the continuity in probability of (X,Y ) and the stochastic integral and of the
fact that convergence in probability implies convergence in distribution.

Corollary 6.22. Let (X,Y ) = (Xt, Yt)t∈R be a Lévy process such that X satisfies (3.3).
Then (Zs,t)0<s≤t defined as in (6.8) is a right X-stable hemigroup.
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Proof. Since (X,Y ) is a log(c)-semi-Lévy process for all c > 1, (Zs,t)0≤s≤t is a right Xlog(c)-
semistable hemigroup for all c > 1 by Theorem 6.21 and thus a right X-stable hemigroup.

Theorem 6.23 and its subsequent corollary show how a right semistable respectively right
stable hemigroup can be constructed out of a periodically stationary respectively stationary
process. Conversely, Theorem 6.25 and its subsequent corollary show how a periodically
stationary respectively stationary process can be constructed out of a right semistable re-
spectively right stable hemigroup.

Theorem 6.23. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let V = (Vt)t∈R be log(c)-stationary and independent of X. By Theo-
rem 5.13(b) the right X-random inverse Lamperti transform Z = (Zt)t>0 of V is right
Xlog(c)-semiselfsimilar and by Lemma 5.15 Y = (Yt)t∈R defined as in (5.6) is a log(c)-semi-
Lévy process. Then (Zs,t)0<s≤t defined by

Zs,t := Vlog(t)
−−→
Exp(Xlog(t))− Vlog(s)

−−→
Exp(Xlog(s)) (6.9a)

is a right Xlog(c)-semistable hemigroup and Zs,t has the integral representation

Zs,t =
log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−). (6.9b)

Proof. By Theorem 6.17(b) the family (Zs,t)0<s≤t defined by Zs,t := Zt−Zs is a right Xlog(c)-
semistable hemigroup and by definition of the right X-random inverse Lamperti transform
we have

Zs,t = Zt − Zs = Vlog(t)
−−→
Exp(Xlog(t))− Vlog(s)

−−→
Exp(Xlog(s))

which is (6.9a). The integral representation in (6.9b) for 0 < s ≤ t ≤ 1 follows with the same
calculation as in the proof of Theorem 6.21. For 1 ≤ s ≤ t we have

log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) =

log(t)ˆ

log(s)

d
( euˆ

1

dZv
−−→
Exp(Xlog(v)−)−1

)
−−→
Exp(Xu−)

=
log(t)ˆ

log(s)

dZeu
−−→
Exp(Xlog(eu)−)−1−−→Exp(Xu−)

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t

and for 0 < s ≤ 1 ≤ t we have
log(t)ˆ

log(s)

dYu
−−→
Exp(Xu−) =

0ˆ

log(s)

d
(
−

1ˆ

eu

dZv
−−→
Exp(Xlog(v)−)−1

)
−−→
Exp(Xu−)

+
log(t)ˆ

0

d
( euˆ

1

dZv
−−→
Exp(Xlog(v)−)−1

)
−−→
Exp(Xu−)

=
0ˆ

log(s)

dZeu
−−→
Exp(Xlog(eu)−)−1−−→Exp(Xu−)
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+
log(t)ˆ

0

dZeu
−−→
Exp(Xlog(eu)−)−1−−→Exp(Xu−)

=
log(t)ˆ

log(s)

dZeu = Zelog(t) − Zelog(s) = Zt − Zs = Zs,t.

Corollary 6.24. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let V =
(Vt)t∈R be stationary and independent of X. By Corollary 5.14(b) the right X-random inverse
Lamperti transform Z = (Zt)t>0 of V is right X-selfsimilar and by Corollary 5.16 Y =
(Yt)t∈R defined as in (5.6) is a Lévy process. Then (Zs,t)0<s≤t defined as in (6.9a) is a right
X-stable hemigroup and Zs,t has the integral representation (6.9b).

Proof. By Corollary 6.18(b) the family (Zs,t)0<s≤t defined by Zs,t := Zt − Zs is a right
X-stable hemigroup. (6.9a) is derived in the same way as in the proof of Theorem 6.23
and the integral representation (6.9b) follows with the same calculations as in the proofs of
Theorem 6.19 and Theorem 6.23.

Theorem 6.25. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a right Xlog(c)-semistable hemigroup. Then the process
V = (Vt)t≤0 defined by

Vt := Z0,et

−−→
Exp(Xt)−1 (6.10)

is log(c)-stationary.

Proof. By Theorem 6.17(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is rightXlog(c)-semiselfsimilar
and then by Theorem 5.13(a) V =

−−→
Lam(Z) is log(c)-stationary.

Corollary 6.26. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a right X-stable hemigroup. Then the process V = (Vt)t≤0 defined as in (6.10) is station-
ary.

Proof. By Corollary 6.18(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is right X-selfsimilar and
then by Corollary 5.14(a) V =

−−→
Lam(Z) is stationary.

Theorem 6.27 and its subsequent corollary show how a right semistable respectively right sta-
ble hemigroup can be constructed out of the random functional (As,t, Bs,t)0≤s≤t that defines
a right MGOU process via the random recurrence equation (4.14). Conversely, Theorem 6.29
and its subsequent corollary show how a periodically stationary respectively stationary right
MGOU process can be constructed out of a right semistable respectively right stable hemi-
group.

Theorem 6.27. Let (X,Y ) = (Xt, Yt)t≥0 be a log(c)-semi-Lévy process for some c > 1
such that X satisfies (3.3) and let (As,t, Bs,t)0≤s≤t be defined as in (4.16). Then the family(

Blog(t)A
−1
log(t) −Blog(s)A

−1
log(s)

)
1≤s≤t

(6.11)

is a right Xlog(c)-semistable hemigroup.
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Proof. Inserting the formulas in (4.16) we have for all 1 ≤ s ≤ t

Blog(t)A
−1
log(t) −Blog(s)A

−1
log(s) =

log(t)ˆ

0

dYu
←−−
Exp(Xu−)

←−−
Exp(Xlog(t))−1←−−Exp(Xlog(t))

−
log(s)ˆ

0

dYu
←−−
Exp(Xu−)

←−−
Exp(Xlog(s))−1←−−Exp(Xlog(s))

=
log(t)ˆ

log(s)

dYu
←−−
Exp(Xu−)

which is (6.8) and by Theorem 6.21 this defines a right Xlog(c)-semistable hemigroup.

Corollary 6.28. Let (X,Y ) = (Xt, Yt)t≥0 be a Lévy process such that X satisfies (3.3) and
let (As,t, Bs,t)0≤s≤t be defined as in (4.16). Then the family in (6.11) is a right X-stable
hemigroup.

Proof. With the same calculation as in the proof of Theorem 6.27 we get the integral repre-
sentation (6.8) which defines a right X-stable hemigroup by Corollary 6.22.

Theorem 6.29. Let X = (Xt)t∈R be a log(c)-semi-Lévy process for some c > 1 which
satisfies (3.3) and let (Zs,t)0≤s≤t be a right Xlog(c)-semistable hemigroup. By Theorem 6.17(a)
Z = (Zt)0<t≤1 defined by Zt := Z0,t is a right Xlog(c)-semiselfsimilar process with independent
increments and by Lemma 5.15 Y = (Yt)t≤0 defined as in (5.6) is a log(c)-semi-Lévy process.
If the improper stochastic integral in (4.26a) exists then V = (Vt)t≤0 defined by

Vt := Z0,et

−−→
Exp(Xt)−1 (6.12)

is a log(c)-stationary right MGOU process driven by (X,Y ).

Proof. From the integral representation of Zs,t in (6.9b) we obtain by (R2)

Vt = Z0,et

−−→
Exp(Xt)−1 =

tˆ

−∞

dYu
−−→
Exp(Xu−)

−−→
Exp(Xt)−1

which by (4.26b) shows that V is a log(c)-stationary right MGOU process driven by (X,Y ).

Corollary 6.30. Let X = (Xt)t∈R be a Lévy process which satisfies (3.3) and let (Zs,t)0≤s≤t
be a right X-stable hemigroup. By Corollary 6.18(a) Z = (Zt)0<t≤1 defined by Zt := Z0,t is a
right X-selfsimilar process with independent increments and by Corollary 5.16 Y = (Yt)t≤0
defined as in (5.6) is a Lévy process. Then V = (Vt)t≤0 defined as in (6.12) is a stationary
right MGOU process driven by (X,Y ).

Proof. The calculation to derive (4.26b) is the same as in the proof of Theorem 6.29.
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