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Abstract

Large scale highly interactive online or batch processing offline graph applications require either
low latency or high throughput for processing huge graphs with trillions of edges and billions of
vertices. To keep data-access times low, systems designed for this type of big data application
typically keep all data in-memory and aggregate hundreds or thousands of servers in cluster
or cloud environments to create an extensive storage backend. However, highly parallel graph
applications typically store and process large graphs consisting mostly of small objects less
than 128 bytes. These requirements are challenging for the backend storage, the distributed
processing platform, the local memory management and the network subsystem.

This thesis addresses three primary research questions in the context of a Java-based distributed
in-memory key-value storage: (1) highly concurrent and distributed (graph) processing on a
Java-based in-memory key-value storage; (2) a memory management in Java providing low-
latency data-access and low-overhead synchronization for large graph datasets consisting of many
small objects; (3) a network subsystem for highly concurrent sending and receiving of messages
leveraging low latency and high-throughput network-interconnects in Java applications.

First, this thesis proposes a general compute platform and a graph processing framework
for a Java-based distributed in-memory key-value storage. The compute platform builds on
top of the key-value storage executing concurrent and distributed computations on storage
nodes to benefit from data locality. The platform offers services to either dispatch light-
weight SIMD-based computations or heavy-weight and coordination-based computations to
multiple servers. The framework was evaluated with the breadth-first search algorithm (part of
the Graph500 benchmark) to compare the proposed concepts to other state-of-the-art graph
processing systems.

The second contribution addresses low-latency local data-access in an in-memory key-value
storage in Java. It proposes a low memory- and access-overhead memory management designed
for an in-memory key-value storage but also applicable in any highly parallel Java application. A
custom key-value translation mechanism was extended to support low-overhead concurrent data
access using a custom per-object read-write lock without considerably increasing the per-object
memory overhead. The latter is kept low by a custom fixed-block allocator optimized for small
objects in typical graph data-sets. The evaluation shows that our proposed solution provides an
at least five-times lower memory-overhead compared to two other memory managers of other
state-of-the-art Java-based key-value systems and outperforms them up to 28-fold with 128
threads on read-heavy workloads.

With InfiniBand interconnects available in HPC and cloud environments, distributed applications
can highly benefit from single-digit microseconds latency and gigabytes per second throughput.
The third and last contribution addresses the network with a focus on InfiniBand hardware and
proposes a Java-based transport agnostic network subsystem for highly concurrent synchronous
and asynchronous messaging in Java applications. This subsystem is complemented by an
InfiniBand transport implementation to leverage the performance of such high-speed hardware.
The evaluation shows that our solution provides high throughput and scalability on local and
distributed concurrency even on worst-case all-to-all communication patterns compared to two
state-of-the-art InfiniBand-based MPI implementations.
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Chapter 1

Introduction

1.1 Context and Motivation

Today, networked digital devices are part of our everyday private and working life. In-
dividuals use smartphones to connect to family, friends and the world, health accessories to
track health data during workouts, or control their homes using networked light switches, light
bulbs, and temperature controls. Digitization has been and is still present and ongoing in
many areas of our lives. This digital transition also includes converting information of physical
objects, e.g., documents, books or historical films/photography, for preservation purpose or
adding sensors to devices in industrial facilities for monitoring and optimization production.

All these real-world hardware and software applications, which are continuing to increase every
year, generate vast amounts of data. A study by the International Data Corporation (IDC)
describes this as the global datasphere and shows that all devices on the world generated
a total estimate of 33 Zettabytes of data in 2018 [107]. It is estimated, that this increases
to 175 Zettabytes by 2025. Analyzing this enormous volume of data is highly relevant to
companies and even individuals in many applications, for example: Predicting traffic, outbreaks
of epidemics or interests of an audience; Analyzing customer statistics in the banking sector or
student data in the education sector [1].

Applications with “large amounts of data” are typically categorized as big data applications.
Today, the term big data is well known among the industry, the media, and even the general
public to describe applications with “a lot of data”. However, characterizing big data just by
data volume is too vague. Additionally, one has to consider that the data volume can be too
large and too complex to be processed by commodity software and hardware [117]. Hence, big
data (processing) has to consider the properties of the data-set, and the actual task of processing
which can be characterized by the “3 Vs” : volume refers to the amount of data stored
or generated, velocity defines the speed of new data getting generated and variety describes
the type of data (structured, semi-structured or unstructured). A fourth V named veracity
extends the initial definition and describes the “uncertainty of data” regarding quality and
unpredictability (e.g. weather data) [112].

1



Chapter 1 Introduction

Large companies or individuals have to consider these characteristics regarding their use-
case when either choosing from various existing and often open-source software or developing
custom solutions. One of the most well-known processing frameworks (and programming
paradigms) is MapReduce [26] and the open-source implementation Hadoop [27] for scalable
and straightforward big data processing (further examples follow in Chapter 2).

Powerful hardware with high storage capacity is a must for big data processing. Often,
a single commodity server is not sufficient for this task, especially on large applications with
up to terabytes of data to process (examples to follow). In the past, only big companies or
High-Performance-Computing centers had the financial resources to afford large clusters or
supercomputers [120]. Today, cloud data centers by Amazon [2], Microsoft [7] or Google
[46], for example, are providing very large public hardware resource pools. Hence, buying
and maintaining expensive hardware is not necessary anymore. Cloud providers established a
rent-based business model to provide access to elastic resources for companies and individuals
[47].

The field of big data includes many applications, such as the social networks Facebook [129]
and Twitter [66], search engines like Google [22], simulations in bioinformatics [105] and state
management in cell phone networks [110]. The social network Facebook served about 2.27
billion active users monthly in 2018 [36], the search engine Google had 50-60 billion web pages
indexed in January of 2019 [125] and “The Human Connectome Project” [124] aims at studying
the human brain by providing a compilation of neural data (approx. 100 trillion vertices).
Further fields of applications include collecting data of customers for advertising [78], health
data [58], spatial [138] and sensor data [99]. This collecting of data and its analysis has become
an essential task for many companies and researchers introducing new challenges regarding
hardware and software. Many of them already reached the limits of disk-based storages and
started using in-memory caching-techniques [89, 137].

1.2 Requirements and Challenges

Often, a graph-based data model fits naturally and is applied to structure the data with
vertices describing chunks of data (e.g. profiles, postings or images in a social network)
and edges used to describe the relationship between one or multiple chunks (e.g. friend
status or “likes” in a social network) [129, 116]. The graph-based data model can be further
abstracted and implemented using a general key-value data model which is the foundation of
key-value storages. Typically, these storages are based on hash tables for object lookup and
providing basic create, read, update and delete (CRUD) operations for data access and
modification. It is also possible to store data of a graph-based model in tables implemented by
traditional and also modern databases with a relational database management system (RDBMS)
data model and a structured query language (SQL) [115]. However, the benefit of natural object
representation is lost by having to convert the graph-data to fit the table-based structure (see
Section 2.2 for further discussion of storages).
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Chapter 1 Introduction

Depending on the type of graph [116, 28], e.g. (non) directed graph or weighted/unweighted
graph, various fundamental graph algorithms classes such as statistics (PageRank [101]), local
clustering coefficient), traversal (breadth-first search [10]), components (e.g. weakly connected
components), community detection using label propagation [133], path finding (single-source
shortest paths [133]) or partitioning [128, 60] are typically used in graph applications [55, 84].
Refined versions are based on these algorithms targeting specific tasks such as (random) graph
walks (e.g. forest fire [69]) or graph coloring [109]. Many of these algorithms process either
larger portions of the graph or even the full graph. This leads to many challenges regarding
computation and storage which are elaborated on further below.

With graph-structured data, different types of data processing can be applied. Offline processing
requires the graph data to be loaded before a batch processing system applies one or multiple
processing steps to analyze it and extract information (e.g., snapshots of social networks [129,
116] or bioinformatics [124]). A temporal analysis involves having multiple snapshots of the
graph or parts of it. These are compared and analyzed with a focus on how the graph and its
relationships evolved [70], e.g., to determine rising and falling trends in a social network. These
types are typically batch-processed-based and require high throughput to keep the overall
processing times low. In contrast, online processing refers to a system serving interactive
user requests (e.g. social networks [89], search engines [22], state management in cell phone
networks [110]) and often guarantees contracted service level agreements (SLAs) to customers.
Typically, such SLAs specify that a certain percentage of requests must be processed and
replied to in a defined timeframe (e.g., the user has to receive a response to 95% of all issued
requests in 100 ms or less). Thus, fast response times requiring low latency data access
is mandatory to fulfill these agreements.

Depending on the application and the number of entities (e.g., sensors, users) involved in
generating data, the data volumes can be huge and even grow exponentially over
time on live systems. On high entity/user interaction, such systems generate even billions of
vertices and trillions of edges [23, 89, 6].

However, the magnitude of objects stored are small and read access dominates the
request distribution. This essential requirement is verified by a series of workload analyses
at Facebook giving valuable insight on operation distribution and object size on a large scale
real-world system. A production workload shows that 70% of all objects are less than 64 bytes
in size and 99% still less than 1 kB [89]. A request analysis of TAO, Facebook’s geographical
cache, shows that 45% of all edges had no attributes or labels attached. The remaining 65%
of all edges have an average size of less than 97.8 bytes [18]. Read-operations dominate the
request distribution with 99.8%. More than 50% of all vertices were less than 256 bytes in size
but are still larger than edges. Another analysis of Facebook’s memcachd deployment with 284
billion recorded requests further emphasizes the small request size, as well as reads, being the
dominating request type [6].

The analysis of a web graph containing 3.5 billion web pages with 128.7 billion links shows that
it fits into the machine with one terabyte of random access memory (RAM) further emphasizing
the small average vertex and edge sizes [82].

Traditional hard drive disk-based (HDD) systems or today’s flash storage technology, e.g., solid
state disk (SSD), can store these vast volumes of data but are not optimized for reading and
writing of small objects. However, RAM is faster and provides a 1000-times lower latency than
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disk access [50]. Furthermore, traditional disks and SDDs are not optimized for highly random
access compared to RAM which is crucial to many algorithms that are based on graph traversal,
e.g., breadth-first search (BFS) [84] (also see paragraph further above). Thus, keeping all
data in-memory is an essential requirement. However, this also requires aggregation of
resources of multiple machines as the amount of RAM per machine is more limited and more
expensive than HDD/SSD space.

Merely storing data without considering efficiency increases the per-object overhead especially
with the majority of objects being tiny in size. This additional overhead increases the total
amount of memory required to store all data which needs to be distributed across more machines.
If a server stores fewer objects, data locality decreases per server. Storing all data requires
more hardware and increases inter-server communication due to a higher degree of distribution.
Thus, efficient memory management for small objects is crucial to provide high per
server data locality, cost efficiency and lower inter-server communication.

By benefiting from data locality on single servers, algorithms can avoid having to request data
stored on a remote server. With all data in-memory, temporal as well as spatial locality benefit
from low access times, too. However, with increasing data volumes the degree of distribution
increases as well. Naturally, the likelihood of requesting data from remote servers increases with
fewer data stored locally. Instead of requesting many individual objects or a large volume of data
from the remote machine, one might consider moving the more lightweight computation
to the remote and execute on the majority of data locally. However, this solution cannot
always be applied and does not guarantee to solve the problem of inter-server traffic entirely.
Especially on large graphs with highly complex data dependencies, optimal data distribution
and partitioning are considered NP-hard problems [38].

Relying on high locality is not feasible in general especially with algorithms randomly access-
ing great portions or even the whole graph (e.g., traversal) resulting in complex all-to-all
communication patterns. This situation applies to batch processing tasks and especially to
interactive applications with many users (see Facebook example above). When focusing on
the inter-server communication aspects, the workload analysis above concludes that due to the
majority of objects being rather small the overall average network package size is also
small on inter-server communication. However, the application can also use batching for
specific types of requests to lower the overall network message overhead [89]. Still, due to the
high degree of input-freedom (e.g., by human users), a general random access pattern remains.
Thus, the network must provide high throughput on batch based processing tasks
as well as/or low latency on highly interactive online applications.

Todays still commonly used Gigabit Ethernet hardware cannot provide single-digit microsecond
remote access latencies. Further evolutions of Ethernet (10, 40 and 100 Gbit/s) offer higher
bandwidth with backward compatibility but are still CPU bound due to the majority of the
networking stack implemented in software. However, network interconnects like InfiniBand [81]
provide sub-microseconds best case latency with remote direct memory access (RDMA) capable
hardware and require less CPU power by implementing the lower four layers (physical, data
link, network, and transport) of the OSI (Open Systems Interconnection) stack in hardware. A
particular interface called “verbs” is used to bypass the kernel and communicate directly with
the hardware compared to traditional socket communication. Today, the hardware is not only
available in high-performance computing (HPC) centers [120] but becomes available in cloud
data centers [52].
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With current multi-core hardware, a single server is already capable of running computation
tasks in parallel or serving multiple interactive user requests concurrently. However, a high level
of concurrency and low-latency requirement in applications requires sophisticated management
of threads and hardware resources [106]. The application or system must be designed for
concurrency awareness to utilize this hardware accordingly. Combined with distributed
computing, leveraging the power of multi-core and distributed computing together
is a very challenging task. Additionally, scalability of the system is further complicated with
increasing server count.

1.3 Research Questions and Contributions

This section outlines the primary research questions for this thesis as well as summarizes its key
contributions. Based on the previous Section 1.2, the following requirements of graph-based
big data Java applications, which also resemble the primary objectives, are addressed in
this thesis:

• Efficient big data processing in Java

• Storing and processing of large graphs consisting of many small objects

• Running concurrent and distributed computations with a focus on graph algorithms in a
Java environment

• Low latency and scalable local data access for many small objects

• Low latency and scalable remote data access for small messages using low-latency networks

The author uses the DXRAM storage system, initially proposed by Dr. Florian Klein in his thesis
[61] and presented in Section 2.5, as a foundation to address the following primary research
questions regarding the presented requirements in this thesis. The requirements and
research questions are further refined and elaborated on in the dedicated Chapters 3, 4 and 5.

1. Can an in-memory key-value storage be used as a scalable compute platform especially
for graph data-sets with concurrent and distributed algorithms? (Chapter 3)

2. Can the local storage provide low-latency data access and scalability on highly concurrent
local computations benefitting from data locality? (Chapter 4)

3. Can the network support graph-based applications efficiently regarding low latency and
handling of many small messages even on highly concurrent random remote access?
(Chapter 5)

4. Is Java a suitable environment for the questions 1.-3. stated above? (Chapters 3, 4, 5)

5





Chapter 1 Introduction

1.4 Publications

International Conferences
The following publications are full papers of 10 pages each.

• Stefan Nothaas, Kevin Beineke and Michael Schöttner. Leveraging InfiniBand for Highly
Concurrent Messaging in Java Applications. In Proceedings of the 18th International
Symposium on Parallel and Distributed Computing (ISPDC). 2019. Copyright 2019 IEEE.
https://ieeexplore.ieee.org/document/8790899

• Kevin Beineke, Stefan Nothaas, and Michael Schöttner. Scalable Messaging for Java-
based Cloud Applications. In Proceedings of the Fourteenth International Conference on
Networking and Services (ICNS). 2018. Acceptance Rate: 29%.

• Kevin Beineke, Stefan Nothaas, and Michael Schöttner. Fast Parallel Recovery of Many
Small In-memory Objects. In Proceedings of the 23rd IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2017. Acceptance Rate: 32.8%.

• Kevin Beineke, Stefan Nothaas, and Michael Schöttner. High Throughput Log-based
Replication for Many Small In-Memory Objects. In Proceedings of the 22nd IEEE
International Conference on Parallel and Distributed Systems (ICPADS), 2016. Acceptance
Rate: 29.9%.

Workshops at International Conferences

• Stefan Nothaas, Kevin Beineke and Michael Schöttner. Optimized Memory Management
for a Java-Based Distributed In-Memory System. In Proceedings of the 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019. 10
pages. Copyright 2019 IEEE. https://ieeexplore.ieee.org/document/8752955

• Stefan Nothaas, Kevin Beineke, and Michael Schöttner. Distributed Multithreaded
Breadth-First Search on Large Graphs using DXGraph. In Proceedings of the 1st High
Performance Graph Data Management and Processing workshop (HPGDMP). 2016. 8
pages. Copyright 2016 IEEE. https://ieeexplore.ieee.org/document/7830441

• Kevin Beineke, Stefan Nothaas and Michael Schöttner. Efficient Messaging for Java
Applications running in Data Centers. In Proceedings of the 18th International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). 2018. 10 pages. Copyright 2018
IEEE. https://ieeexplore.ieee.org/document/8411076
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Technical Reports

• Stefan Nothaas, Fabian Ruhland and Michael Schöttner. A Benchmark Suite to Evaluate
InfiniBand Solutions for Java Applications. Published on arXiv e-prints. October 2019.
arXiv:1910.02245. 10 pages.

• Stefan Nothaas, Kevin Beineke, Michael Schoettner. Ibdxnet: Leveraging InfiniBand
in Highly Concurrent Java Applications. Published on arXiv e-prints. December 2018.
arXiv:1812.01963. 31 pages.

• Kevin Beineke, Stefan Nothaas, Michael Schoettner. DXRAM’s Fault-Tolerance
Mechanisms Meet High Speed I/O Devices. Published on arXiv e-prints. July 2018.
arXiv:1807.03562. 21 pages.

Journal Articles

• Kevin Beineke, Stefan Nothaas, Michael Schoettner. DXNet: Scalable Messaging
for Multi-Threaded Java-Applications Processing Big Data in Clouds. Published in the
International Journal on Advances in Internet Technology, Vol. 11, No. 3&4, 2018. 19
pages.
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1.5 Software

In the course of this thesis, the author worked on the following major software packages. With
multiple contributors of software relevant to this thesis, a detailed breakdown is given in the
dedicated Sections 3.4, 4.4 and 5.4.

DXRAM is a distributed in-memory key-value storage and compute platform written in Java.
It is optimized for storing many small objects (< 128 bytes) efficiently with low-latency local
and remote data access. For persistence, data is replicated asynchronously to logs on SSD on
remote servers. A crash-recovery failure-model is implemented to ensure data availability on
hard- or software failures. The system can be used as an in-memory backend storage or an
interactive compute platform. The project is open source and available at GitHub [32].
Contributors (in chronological order): Dr. Florian Klein, Michael Schoettner, Dr. Kevin
Beineke, Stefan Nothaas, Michael Birkhoff, Philipp Rehs, Filip Krakowski, Burak Akguel,
Christian Gesse.
Size and language(s): ∼ 37k lines of code; Java and C.

DXNet is an event-driven high performance messaging library for highly concurrent and
distributed Java applications. It implements asynchronous and synchronous messaging primitives
with a custom transparent and highly efficient serialization. An interface abstracts the underlying
network and is implemented by an Ethernet-based transport (Java NIO) and InfiniBand-based
transport (Ibdxnet). DXRAM uses DXNet as its network subsystem. The project is open
source and available at GitHub [31].
Contributors (in chronological order): Marc Ewert, Dr. Florian Klein, Dr. Kevin Beineke,
Stefan Nothaas, Filip Krakowski, Christian Gesse.
Size and language(s): ∼ 11k lines of code; Java.

Ibdxnet is a transport implementation for DXNet using the native C-verbs library to allow
communication using InfiniBand hardware. It abstracts the verbs application programming
interface (API) by implementing a dedicated subsystem with connection management and
a scalable and highly optimized pipeline for low-latency and zero-copy processing of buffers
(from DXNet) and provides communication either over reliable connected (RC) or unreliable
datagram (UD) queue pairs (QPs). The project is open source and available at GitHub [42].
Contributors (in chronological order): Stefan Nothaas, Fabian Ruhland.
Size and language(s): ∼ 7k lines of code; C++.
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DXMem is a memory manager for Java applications optimized for storing billions of small
objects (< 128 bytes) efficiently. A custom serialization of Java objects ensures fast and low-
overhead de-/serialization. Data access is optimized for high concurrency with a low-overhead
read-write locking mechanism. DXRAM uses DXMem for local memory management and
the implementation of the key-value-based backend storage. The project is open source and
available at GitHub [30].
Contributors (in chronological order): Dr. Florian Klein, Dr. Kevin Beineke, Stefan Nothaas,
Florian Hucke.
Size and language(s): ∼ 12k lines of code; Java.

DXGraph is a framework built on top of DXRAM providing data structures, algorithms, and
utilities for graph processing on DXRAM. It utilizes DXRAM’s API to implement re-usable
tasks for loading and processing of graphs including an implementation of the BFS algorithm
according to the specifications of the Graph500 benchmark. The project is open source and
available at GitHub [41]. Contributors (in chronological order): Stefan Nothaas, Philipp Rehs.
Size and language(s): ∼ 5k lines of code; Java.

cdepl is a Bash-script-based framework to simplify the deployment of distributed applications
to different types of cluster environments. It abstracts the underlying cluster environment for
the applications to allow transparent deployment to different cluster setups and applications
abstract tasks like configuration or starting of instances. cdepl supports DXRAM, a collection
of other systems and different kinds of benchmarks which were used for the evaluations in the
course of this thesis. The project is open source and available at GitHub [20].
Contributors (in chronological order): Stefan Nothaas, Kevin Beineke, Fabian Ruhland, Filip
Krakowski.
Size and language(s): ∼ 1k lines of code; Bash.

1.6 Organization of the Thesis

The introductory Chapter 1 presents the context and motiviation for this thesis (Section 1.1),
the requirements and challenges (Section 1.2), the research questions and contributions of this
thesis (Section 1.3) and the publications (Section 1.4) as well as published software (Section
1.5) the author of this thesis contributed to. Afterwards, background information is given in
Chapter 2 with a focus on the Java environment (Section 2.1), relevant systems and technologies
regarding in-memory key-value storages (Section 2.2), graph processing systems (Section 2.3)
and high speed interconnects (Section 2.4). Section 2.5 introduces the DXRAM storage system
which is used for development in this thesis.

Dedicated chapters address the three primary research question (stated in Section 1.3) with each
chapter discussing one or multiple components depicted in the big picture presented in Figure
1.1. Each chapter further refines one primary research question and presents the respective
contributions in detail. Chapter 3 addresses the computation requirements by presenting an
additional computation component added to the core of DXRAM. DXGraph adds a layer for
graph-based applications to DXRAM. Chapter 4 presents the redesign of DXMem, DXRAM’s
memory management, with a focus on highly concurrent Java applications. Chapter 5 is
dedicated towards the network subsystem DXNet, used by DXRAM, for highly concurrent
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messaging in Java applications. This chapter also includes the evaluation of available solutions
to leverage InfiniBand in Java applications and the native library Ibdxnet to support InfiniBand
hardware with DXNet.

Chapter 6 lists further contributions of this thesis which are not directly addressing the primary
research questions. Conclusions are presented in Chapter 7 including the achievements of this
thesis (Section 7.1), lessons learned (Section 7.2) and future directions (Section 7.3).

11



Chapter 2

Background and Overview

This chapter presents relevant background information regarding the Java environment (Section
2.1) and communication using high-speed interconnects (Section 2.4), as well as an overview of
existing and to this thesis relevant storage systems (Section 2.2) and graph processing systems
(Section 2.3). A detailed discussion and evaluation of selected systems is given in dedicated
publications in this thesis (see Chapters 3, 4 and 5). Section 2.5 presents an overview of the
DXRAM storage system with its key features. As part of the contributions of this thesis,
separate chapters with dedicated publications describe selected features in detail. Systems or
fields of research that are related but not relevant to this thesis are just mentioned briefly.

2.1 The Java Environment

This thesis focuses on dedicated graph processing systems as well as in-memory key-value based
storages/caches for, but not limited to, graph-based applications. Java-based systems are of
particular interest as Java is widely used in the field of big data for batch processing
[27, 135], stream processing [131, 135], key-value caches [48, 53, 96] data grids [39] and graph
processing [132].

Today, the Java language and environment can be considered very mature and offers beneficial
features such as automatic garbage collection, static type-safety, robust exception handling and
a rich standard library including concurrency support. Especially classes and interfaces like
Unsafe [80], the Java Native Interface (JNI) [72] or the “New IO” library with ByteBuffers and
NIO networking [98] provide means for low-latency I/O operations (e.g., memory, network).
However, some of these advantages are often considered performance disadvantages which lead
to the common misconception that Java applications are always slower than applications written
in traditional native-compiled languages such as C and C++ [119]. These languages are also
used when developing large big data systems [100, 115, 118, 19, 21, 86, 76].

However, with many optimizations over the years, e.g., run-time compilation, garbage collection,
Java can no longer be considered a slow language/environment in general anymore [102]. This
thesis shows in different publications that Java is indeed a suitable language for developing such
systems, also when compared to systems implemented in C and C++ (see Chapters 4 and 5).
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2.2 Key-Value Cache/Storage Systems

With RDBMSs being developed and used since the 70’s [24], these systems or their original
design are often used, even today, in big data applications [115, 130, 22] for storing or caching
data but are not the focus of this thesis. Such traditional data stores often implement a
column/table-based or document-based design which is not always optimal for this thesis’s
target applications and data-sets.

The key-value datamodel allows storing data as tuples consisting of a unique key identifying
a value (e.g., binary data) [136]. More complex data models (e.g., graphs) are typically built on
top of this basic model which is implemented by key-value stores and caches. The main
difference of a storage and a cache lies in the method of how data is persisted and recovered
in case of storage server failure. Often, caches require external sources to re-fill them after a
crash while storages provide built-in solutions, e.g., crash-recovery. However, this particular
feature is not the main focus of this thesis. Hence, the author does not explicitly differ caches
from storages and vice versa after this section. Further features offered by these systems are
available on a variety of implementations (both caches and storages).

Pure key-value stores often limit the set of available operations to create, read, update
and delete (CRUD) [79] instead of implementing SQL based query language [68]. Some
backend stores implement transactions instead of a BASE consistency model (basic availability,
soft-state, and eventual consistency). The latter is more commonly implemented as it favors
scalability over consistency [104]. This super-set of systems is typically described as NoSQL
systems which also includes key-value stores and caches [75]. The design of the back-end storage
of these systems is still relevant to this thesis, but particular features like the query language
are not.

This thesis focuses on systems keeping all data in-memory to ensure low-latency data access
for highly interactive applications. With commodity servers having limited RAM and CPU
resources, distributed systems typically provide scalability by aggregating many servers.
Additional backup mechanisms storing data and modifications on disk for consistency and the
recovery to handle server failures are often implemented on such storage systems but not further
discussed in this thesis.

In-memory caches are typically used to cache hot data from slow disk or disk-based systems
(e.g. databases), running in the same data-center, in RAM and provide lower-access latency,
especially on read-intensive workloads [129]. Multiple cache instances are aggregated to form
a cluster offering large amounts of fast memory for data intensive applications. Often, these
systems also support running computations on their instances lowering access times to locally
already available data and utilizing often unused CPU resources. Selected and relevant systems
for this thesis are memcachd [37] and TxCache [103] which are implemented in C, and Ehcache
[33], Hazelcast [48], Ignite [96] and Infinispan [53] which are implemented in Java. All these
systems are limited to Ethernet-based networks and do not support newer fast networks like
InfiniBand (see Section 2.4).

In-memory storages extend the concept of caches by adding mechanisms for data persistence
to handle server failures and to avoid data loss (see the previous paragraph). Selected and
relevant systems for this thesis are Alluxio [71] and Redis [19] which supported Ethernet
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networks. However, when scaling the storage to hundreds or even thousands of servers, large
data-sets are unavoidably scattered. This process increases the inter-server communication
overhead in volume (number of requests) and range (number of connections to
remote servers) resulting in increased overall latency. Systems have been proposed that are
specifically designed to address this network bottleneck using, often exclusively, high-speed
networks such as InfiniBand. This includes systems such as Apache Crail (Incubating) [3],
FaRM [29], FASTER [21], HERD [59], MICA [74] and RAMCloud [100].

In-memory NoSQL databases extend the concept of in-memory storages by adding features
such as, but not limited to, a query language (often similar to or partially based on SQL), an
advanced consistency model or message queues for change notifications. This includes systems
such as Aerospike (formely known as Citrusleaf) [118], Apache Geode [39] and Megastore [8]
(according to the authors a mix of RDBMS and NoSQL).

2.3 Graph Processing Systems

Graph processing systems are either built on top of a backend key-value storage, implement
their own or rely on remote servers providing storage. For processing graph-based data-sets,
the backend storage must be capable and optimized for handling such structured
data-sets which is one of the key-objectives regarding local and also remote performance. Thus,
the design of various existing key-value storages/caches, especially their memory management,
is of high interest to this thesis. Systems offering features beyond a basic backend storage, such
as NoSQL stores (see Section 2.2), are also of interest to this thesis but mainly regarding their
backend storage design.

Graph databases like InfiniteGraph [54], Neo4j [87] or Titan [127] are optimized for storing
graph-structured data on dedicated database instances and allow queries to the stored data by
external applications. These are of partial interest to this thesis regarding their data model and
storage implementation, but not their typical database features such as the query language.

Graph processing platforms are either implemented on top of a backend-storage or as
external applications connecting to dedicated graph databases [28]. Typically, these distributed
platforms either implement an offline analytics platform (e.g. based on batch processing) or
an endpoint to serve interactive requests for processing queries of web applications. Systems
implementing a key-value data model often provide a vertex-centric programming model for
implementing graph algorithms. Selected examples include Giraph [4] which is based on Pregel
and implemented on top of Hadoop’s MapReduce framework [27], Google’s Pregel [77], GraphX
[132] built on top of Spark ’s data parallel framework [135], Microsoft’s Graph Engine [114]
(formerly known as Trinity) and Turi (formerly known as GraphLab) [76]. A more generic
computational approach is taken by the shared memory system Grappa [86] which does not
enforce a specific programming model for graph processing by default.

Graph processing libraries providing efficient and optimized implementations of commonly used
graph algorithms are not of interest to this thesis because they do not address concurrency,
synchronization, consistency and distribution aspects. This also applies to temporal graph
analysis focusing on the evolution of a graph over time by analyzing time-based snapshots.
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2.4 Communication using High-Speed Interconnects

On a large scale with data distributed to many servers, data locality degrades and network
latency becomes the dominating factor for overall application access latency. With high-
speed interconnects such as InfiniBand, Intel Omnipath or High-Speed Ethernet, this next
generation of network technology is already well known for years in the field of HPC [120] but also
becoming available in public clouds today [52]. This technology offers significant advantages for
large batch processing tasks as well as highly interactive always online applications. Applications
can utilize RDMA operations to read/write data from/to remote machines without involving
the remote’s CPU. For messaging/signal/event-driven applications, a more traditional form
of data exchange by using messaging verbs is also available and often preferred. The protocol
includes a full kernel bypass on the local system directly communicating with the host channel
adapter (HCA) from userspace.

This thesis addresses high-speed communication concerns using InfiniBand with a particular
focus on Java applications.

InfiniBand in Java. The available solutions to leverage InfiniBand in Java applications are
limited at the time of writing this thesis. Existing systems can utilize IP over InfiniBand
(IPoIB) [56], JSOR [126], libvma [73] or the Sockets Direct Protocol (SDP) [45] to transparently
redirect socket-based traffic over InfiniBand (which is not just limited to Java applications). To
program the RDMA-capable hardware directly, an implementation of the “verbs” API must be
used which is implemented by the native C-verbs [97] and Java jVerbs [121] libraries. With these
solutions, existing applications with socket-based networks stacks can be accelerated or new
software stacks can be designed to further benefit from InfiniBand hardware, e.g. accelerating
Redis [123], memcached [57], Spark [5] or Apache Kafka [49] with InfiniBand.

MPI (Java) and HPC. Special InfiniBand implementations or wrappers of the traditional,
and in HPC well known, Message Passing Standard (MPI) are used for big data processing
providing a network stack with abstracted communication primitives, e.g. FastMPJ [35],
mpiJava [83], MVAPICH2 [85], Open MPI [95]. But, this thesis is not focusing on message
passing or HPC and does not further discuss general HPC frameworks/libraries like UCX [113]
which also abstract high-speed networks stacks for distributed computing.

Systems designed for high-speed networks. To leverage the true potential of InfiniBand
hardware, new systems have been proposed by the industry and the science community. Focusing
on key-value storage and graph processing system in this thesis, systems like RAMCloud, [100],
FaRM [29], MICA [74], HERD [59] or Apache Crail [3] were designed and developed with a
focus on high-speed networking hardware. All systems are implemented in C or C++ except
Apache Crail which is implemented in Java.
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Every server in DXRAM is identified by a unique 16-bit node ID (NID) assigned on startup.
Superpeers are arranged in a Chord-like structure adapted to the data-center environment.
General inter-server network traffic between nodes is not routed using the overlay. Instead, all
nodes (server role independent) keep a list of available servers to allow direct connections to
remotes on demand. The overlay is used for assigning metadata management responsibilities,
to detect failures and recovery coordination. For reliability, superpeers replicate their data to a
configurable number of succeeding superpeers in the overlay (default three).

The system identifies chunks and their location by a 64-bit globally unique ID split into a 16-bit
NID of the creator node and 48-bit locally unique sequential number (LID). Thus, the initial
location of every chunk is known apriori. The sequential LID allows storing the location of
multiple chunks as space efficient ranges instead of single IDs. As the location might change,
e.g., recovery of a failed storage server or migration of hot data, superpeers store the locations
in a modified B-Tree for fast lookup which is optimized for storing CIDs ranges efficiently.

Memory management for billions of small objects with low latency on highly con-
current access [63, 61, 93]. DXMem provides local memory management enabling highly
efficient storage for many small objects and low-latency data access with low-overhead synchro-
nization mechanisms for concurrent Java applications. DXMem’s tailored allocator stores the
binary serialized data of chunks outside of the Java heap with marginal per-object memory
footprint. A custom paging-like address translation ensures fast and memory efficient translation
of CIDs to the corresponding native memory address for local chunk lookup.

Low latency and high throughput network subsystem for highly concurrent appli-
cations [12, 17, 90, 92, 108, 94]. DXRAM uses DXNet as its network subsystem. DXNet
provides low-latency and high-throughput messaging with a modular transport layer. It im-
plements higher-level messaging primitives abstracting typical asynchronous and synchronous
messaging patterns. With lock-free data structures, fast concurrent serialization, zero-copy,
and zero-allocation, it is optimized for highly-concurrent Java applications. DXNet currently
supports InfiniBand networks using Ibdxnet and Ethernet networks using Java NIO.

Fast Asynchronous logging to SSD and crash-recovery failure-model [14, 15, 13, 16].
To ensure reliability and avoid data loss, DXRAM scatters chunks of one storage server (backup
source) to one or multiple remote servers (backup destination). The type of distribution,
e.g., random, disjunctive or location-aware, is configurable. A backup source can also be a
backup destination for remote storage servers at the same time. The system stores all incoming
backup-data in a log on disk (SSD or HDD) on the destination. This log is optimized for high
throughput for many small objects. A two-level logging mechanism ensures fast persistency
and speeds up recovery in case of server failure.

Storage monitoring and data migrations to handle hot spots [65]. Superpeers are
monitoring their corresponding peers by gathering common metrics such as CPU, memory
or network load periodically. This monitoring facility enables detection of different types of
hotspots regarding storage (low memory), computing resources (high CPU load) or network
requests (high traffic). The superpeer can detect such hotspots by analyzing the data and
executing measures, e.g., data migration of (subsets of) hot data. Thus, a hotspot can either
be moved entirely to another peer or split to multiple peers to distribute the overall load.
Computations or Applications running on DXRAM can use its data migration mechanism to
execute a more contextual based and precise load balancing.
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Computations on storage servers benefiting from data locality and multi-core hard-
ware [91]. DXRAM provides multiple services to execute parallel and distributed computations
on storage servers. The Job Service enables running lightweight and short computation methods
on peers using a work-stealing approach with a fixed size worker pool. Jobs can be delegated to
remote servers to enhance data locality improving the overall performance. The Master-Slave
Service provides an infrastructure to run tasks distributed to multiple servers. A compute group,
which consists of multiple servers (configurable) and is managed by the service, executes each
task. A task script chains multiple tasks with implicit synchronization (super-step) between
tasks. To avoid data races and provide synchronization mechanisms for computations, DXMem
implements a per chunk read-write lock for data synchronization and locking. Furthermore,
DXRAM implements a distributed barrier to enable super-step synchronization for distributed
computations on peers.

An interface allows developers to create custom applications packed as jar-packages called
DXApps and execute them on DXRAM peers. Compared to the built-in computational
infrastructure, this gives developers a higher degree of freedom to develop and run custom
distributed and concurrent applications on DXRAM. Applications have full access to the
DXRAM API just like deployed tasks and jobs.

DXGraph - Graph Processing on DXRAM [91]. DXGraph is a framework building on
top of DXRAM providing several utilities such as data structures or algorithms implemented
as tasks, jobs or applications to enable graph processing with DXRAM. It also includes a
distributed and concurrent implementation of the Graph500 benchmark [84] implemented using
DXRAM tasks.

Benchmarks. Several built-in and external benchmarks allow testing and analyzing the
performance of DXRAM or its subsystems. DXNet [31] with its built-in benchmark can be
executed independently of DXRAM to evaluate the pure network performance of a selected
transport using a variety of configurable parameters. DXMem [30] also provides a built-in and
DXRAM independent benchmark, similar to the Yahoo! Cloud Serving Benchmark, which can
be used to determine the performance of the memory management using different workloads.

The Yahoo! Cloud Serving Benchmark (YCSB) [25] is a benchmark to evaluate different
(in-memory) storage systems using workloads of common cloud/online services with a DXRAM
client available. The BG Benchmark [9] evaluates data storages with a focus on social networking
actions and sessions and a DXRAM client available for evaluation. The LDBC graphalytics
benchmark [55] is designed specifically for benchmarking systems with graph analytics and
processing workloads. At the time of writing this thesis, Ruslan Curbanov is working on
supporting DXRAM with this benchmark.
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3.1 Requirements

Two categories of requirements regarding graph processing on an in-memory key-value storage
must be considered: First and foremost, running distributed and parallel computations on
the storage in general. Second, providing an extra layer that extends the system and its key-
value data-model beyond the basic key-value foundation for graph-based applications. These
requirements have to be considered in a Java environment.

Presented in Chapter 1, graph-applications process and store huge graphs consisting of many
small objects. Many algorithms create worst-case access patterns resulting in highly random
access to the data. Thus, the computations should run as close as possible to the stored data to
benefit from locality and to lower expensive communication with remote servers. The system
must support this by running parallel computations locally on storage servers. Furthermore,
with multi-core resources common today, concurrency must be considered to be able to exploit
these resources. The Java environment already provides utilities for synchronization of data
races on a single server. However, with the vast amounts of data, a distributed approach
becomes inevitable making concurrency control across multiple servers necessary. To avoid
data races and synchronize between computation steps, the system has to provide utilities for
managing distributed concurrency as well.

Graph-based applications have to store their data using the back-end storage of the system.
Storing the data requires appropriate data structures that go along well with the natural graph
representation. For offline processing systems, the data is typically loaded from files stored on
disk, first. Loading real-world modeled workloads [116] and pre-generated synthetic data is
essential as well for testing and benchmarking. The latter can be generated by graph-generators,
e.g., the Kronecker generator of the Graph500 [84] reference implementation. These graphs allow
testing of arbitrary small and large scales which are not covered by the real-world data-sets,
e.g., to evaluate the system’s limits regarding storage capabilities.

Graph algorithms, especially traversal-based, generate highly random access patterns resulting
in complex inter-server all-to-all communication patterns. Thus, keeping as much locality
as possible and lowering remote communication overhead for such algorithms is essential
for performance. The Graph500 [84] is an established graph benchmark to evaluate this
worst-case and fundamental system requirement by implementing a breadth-first search. This
algorithm is one of the commonly used foundations for traversal-based algorithms [55] and can
be implemented with local and distributed concurrency.
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3.2 Stage of Work

To address the requirements proposed in Section 3.1, the author conducts his research with the
Java-based DXRAM in-memory key-value storage system. Initially, Dr. Florian Klein designed
DXRAM as a pure backend key-value storage [61]. This section addresses only the relevant
aspects of the DXRAM storage for this chapter. Features such as monitoring, backup and
recovery are omitted here.

The DXRAM system already implemented an overlay structure forming a cluster of servers for
a distributed storage. A per storage server local memory manager implemented the in-memory
key-value-based storage optimized for storing many small objects efficiently. However, the
memory management was lacking de-/serialization of Java objects and could handle raw binary
data (Java byte-arrays), only. Distributed exchange of data between servers was possible using
the Ethernet-based network subsystem supporting asynchronous and synchronous messaging
primitives. The DXRAM client and API supported basic CRUD operations to access and
modify binary data stored on remote storage servers. Multi-CRUD operations allowed batching
of multiple chunks per operation, e.g., multi-get to get multiple chunks by invoking a single
get-operation.

3.3 Research Questions

With the DXRAM storage providing general very low per-object metadata overhead, it was
already optimized for storing many small objects found in typical graph data-sets. However,
with data access exclusively using a remote client API, various benefits of the system and the
hardware have not been exploited thus far. Batching creates some locality but does not fully
exploit locality on random access patterns of graph algorithms. This state of work leads to some
crucial questions that have to be considered when developing a suitable solution for graph-based
applications: How can the DXRAM storage system be extended to support local computations
on storage servers? However, considering the various fundamental graph-based algorithms,
what’s the impact on the system? Is this impact limited to the storage, only or does it affect
other subsystems as well? How to leverage the power of the available multi-core hardware
regarding local and especially distributed concurrency? What requirements are imposed by
these algorithms and how can the system address these in general and not just for one specific
algorithm?

Further questions arise when switching to the point-of-view of the graph application: How to
represent graph-data adequately for the application and allow efficient processing by the system?
With tasks required by many graph-applications such as loading/generating data or executing
commonly used graph algorithms, is it possible to create a high-level abstraction that can be
re-used by many applications without impacting the system’s performance significantly?
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3.4 Contributions

Our publication proposes a design of two core modules extending DXRAM to run computations
on storage servers as well as the graph processing framework DXGraph including graph data
loading, and a distributed and multi-threaded breadth-first-search reference implementation
according to the Graph500 specification [84]. The contributions stated below which are not
explicitly assigned to any author/contributor are by the author of this thesis.

The JobService compute module allows applications to submit and run lightweight jobs with
a fixed size thread pool on DXRAM storage servers. This approach is suitable for rather
short computations that run single threads on multiple data subsets (SIMD principle). For
more complex computations that have to run the algorithm concurrently on a single server
and distributed across multiple servers, the application can submit tasks to the TaskService.
It provides mechanisms for coordination and synchronization of concurrent and distributed
compute tasks running on one or multiple DXRAM storage servers and are suitable for massively
parallel computations spanning large datasets.

DXGraph provides data structures for storing graphs using a natural representation with vertices
and edges on DXRAM storage servers. It uses the new compute modules to implement typical
tools required for graph processing, e.g. (distributed) loading of datasets or generating synthetic
data for benchmarks, and algorithms which are commonly used in graph applications.

The evaluation shows that our implementation of the BFS algorithm with DXRAM and
DXGraph is up to five times faster compared to GraphLab’s and Grappa’s, two state-of-the-art
C++-based systems.

With DXRAM storing tiny objects efficiently, further research in the graph application domain
was initiated by Dr. Florian Klein who created the initial implementation of the DXRAM
storage system. To bring DXRAM to this next stage, the author of this thesis started analyzing
the graph-processing application domain to determine the requirements by the applications of
this field.

The author of this thesis implemented the two core services JobService and TaskService to
enable running computations on DXRAM storage servers. Furthermore, this was preceded by a
large and complex refactoring phase of the whole DXRAM system, as DXRAM was designed
as a pure backend storage, initially. The refactoring was a close collaboration between Dr.
Kevin Beineke and Stefan Nothaas. Dr. Kevin Beineke refactored DXRAM’s bootstrapping
with ZooKeeper, the DXRAM overlay, logging, and network subsystem to integrate into the
new foundation. Stefan Nothaas created a new core for the DXRAM system to meet the
requirements of the target application domain and provide future extensibility of the system.
Furthermore, he was involved with adapting the local memory management as well as the
network subsystem to use DXRAM’s custom de-/serialization interface for chunk objects (see
Chapters 4 and 5).
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Initially, the author started developing DXGraph including the highly optimized BFS imple-
mentation, loading of graph data from an ordered edge list file format and basic graph data
structures. In October 2016, the project lead on DXGraph was passed to Philipp Helo Rehs
starting work on his Ph.D. thesis with a focus on graph applications. Philipp Helo Rehs added
further tasks for loading different graph file formats, new data structures and implement the
Bron-Kerbosch algorithm.

Dr. Kevin Beineke, Prof. Dr. Michael Schöttner, and Philipp Helo Rehs took part in many
discussions about the design and performance analysis of DXGraph and DXRAM.

Stefan Nothaas wrote the paper and evaluated all the systems presented in it. Dr. Kevin
Beineke and Prof. Dr. Michael Schöttner reviewed the paper several times and helped improve
it.

With the ongoing development of DXGraph, DXRAM showed significant deficits in various
graph-based workloads regarding concurrency in local memory management access and remote
data access latency. Thus, the research focus was shifted to local memory management and
InfiniBand development to address these challenges (see Chapters 4 and 5).
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Abstract—Interactive graph applications are often generating
irregular access patterns on very large graphs with trillions
of edges and billions of vertices. In order to provide short
response times for interactive queries, all these small data objects
need to be stored in memory. DXRAM is a distributed in-
memory system optimized to efficiently manage large amounts
of small data objects. In this paper, we present DXGraph, an
extension to allow graph processing on DXRAM storage nodes.
For a natural graph representation, each vertex is stored as an
object. We describe DXGraph’s implementation of a breadth-
first search (BFS) algorithm, as specified by the Graph500
benchmark. The preliminary evaluation of the BFS algorithm
shows that DXGraph’s implementation is up to five times faster
than Grappa’s and GraphLab’s with a peak throughput of over
323 million traversed edges per second.
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I. INTRODUCTION

Offline and online graph analytics need to process very large

graphs with up to billions of vertices connected by trillions of

edges. Interactive applications like social networks demand

high performance and low-latency storage solutions to ensure

fast response times for queries of potentially many interactive

users. Facebook is already storing billions of small, less than

64 byte, objects resulting in a graph with trillions of edges

[1]. Other graph examples are brain simulations with billions

of neurons and thousands of connections each [2] or search

engines for billions of indexed web pages [3].

Typically, databases and in-memory storages cannot handle

small data objects efficiently and introduce a considerable

large meta-data overhead on a per object basis. Therefore,

it is often recommended to aggregate vertices and edges

for queries which is impacting latency and burdening the

developer. Holding all objects always in RAM reduces access

latency dramatically but the huge amounts of small objects

require an efficient memory management and fault tolerance

to mask node failures.

DXRAM is a distributed in-memory storage system de-

signed to efficiently store and handle many small data ob-

jects. This is achieved by a minimal meta-data overhead,

scalability regarding number of storage nodes and high

throughput for remote and local client requests. DXRAM

is designed to run within a single data center, currently

supporting Gigabit Ethernet (Infiniband planned).

The main contributions of this paper are:

• DXGraph and DXCompute: Data structures and tasks

for loading, generation and processing of graphs with

either lightweight jobs or master-slave coordinated tasks

as computations on DXRAM.

• Direction optimized BFS implementation defined by the

second Graph500 [2] kernel with highly efficient data

structures.

The structure of the paper is as follows. Related work is

discussed in section II, followed by an architectural overview

of the DXRAM core in section III. Section IV describes the

typical steps involved with graph processing using the breadth-

first search as an example. Section V describes the imple-

mentation in DXGraph. Section VI presents the experimental

results followed by conclusions and an outlook on future work

in the last section VII.

II. RELATED WORK

Many systems have been proposed to provide low-latency

data access for online graph queries and offline graph ana-

lytics. Google’s Pregel [4] introduced a new vertex centric

computation model based on message passing for distributed

offline graph processing. Each vertex receives messages and

executes modifications on its own data with fault tolerance

achieved through a checkpointing mechanism. DXGraph and

other graph systems share some characteristics with Pregel,

especially the vertex centric approach. However, DXGraph

is not sending computations to vertices compared to Pregel.

Furthermore, Pregel is not a key-value store and is targeting

offline processing. DXRAM provides fault tolerance through

a logging based approach instead of checkpointing. As an

open source counterpart to Pregel, Giraph [1] uses Hadoop

as a foundation for graph processing building on its existing

MapReduce framework.

GraphLab [5] is an offline distributed in-memory process-

ing framework for graphs. Also based on a vertex centric

execution model and fault tolerance through a checkpointing

mechanism, data is represented in a vertex centric manner. It

is designed for machine learning and graph based applications

with an API based on a three phase gather-apply-scatter

approach. Input graph data is represented as user modifiableHPGDMP16; Salt Lake City, Utah, USA; November 2016
978-1-5090-3880-0/16/$31.00 c© 2016 IEEE



program state for each vertex. An update function executes

the user’s stateless computations on the data by transforming

it within the scope of a a single vertex. The sync operation

aggregates the results per vertex. Again, DXGraph shares the

natural data representation and an execution phase provides a

similar approach to the update function of GraphLab. However,

a separate sync operation to aggregate results is not forced

on the programmer. Depending on his application, he is

free to choose the paradigm fitting his use case. For fault

tolerance and persistence, logging is used for DXRAM and

checkpointing for GraphLab.

With GraphX [6] utilizing Spark’s data parallel framework

for distributed graph computations, graphs are stored as tabular

data instead of objects in a key-value store. Operations on the

data are defined as transformations on the immutable graph

yielding a new graph. Online graph analytics are enabled

with interactive queries like load, transform and compute.

Moreover, instead of creating backups of the altered data,

fault tolerance is achieved by maintaining the operations to

transform the base data. This approach is very different from

DXGraph’s and also many other systems of this category.

Microsoft’s graph engine Trinity [7] introduces its Trininty

Specification Language to define data schemata and to use the

message passing protocol of its distributed in-memory key-

value store and object management. Fault tolerance is provided

by backing up the data to a shared distributed file system.

Trinity provides a platform for online queries as well as offline

graph analytics with a vertex centric approach. In contrast to

Trinity, DXGraph does not provide a special language to define

data structures or using any of its services included. DXRAM’s

logging approach for fault tolerance is also very different to

the backup solution of Trinity. However, Trinity and DXGraph

share similar goals as well as the basic architecture for the

application programmer with a vertex centric approach and a

natural graph representation.

Also using a vertex centric approach for its graph ap-

plications, Grappa [8] is a shared memory runtime system

for clusters and multicore computers not limited to offline

and online graph processing, only. It abstracts hardware by

creating a single address space for the application as well

as executing code in the form of tasks. Tasks are scheduled

by Grappa’s tasking system using a work stealing approach

when mapping to threads. Moreover, Grappa’s scheduling

ensures low context switch times for worker threads when

executing tasks. Though sharing similar goals by not limiting

the system exclusively to graph processing, the shared memory

architecture is the key difference to DXRAM’s distributed

key-value store. Furthermore, DXCompute provides different

methods for executing code. Either the programmer creates his

own solution to execute custom application code or, he uses

the job system or tasking system (refer to III-B) provided by

DXCompute to delegate scheduling and execution. Currently,

Grappa does not provide any mechanisms for fault tolerance,

though the authors are considering this for their future work.

III. ARCHITECTURE OVERVIEW

A. DXRAM Core

DXRAM is a distributed in-memory system for data centers

and is optimized for large amounts of small data objects. Such

objects are common in interactive applications like search en-

gines or social media networks which are based on enormous

data graphs. DXRAM keeps all data always in RAM providing

low-latency access even for irregular access patterns. Node

failures are masked by transparent logging and recovery [9].

Figure 1 shows the layered architecture of DXRAM including

the new extensions DXCompute (see section III-B) and DX-

Graph (see section III-C). Several components implement the

backend whereas services provide the API for the programmer.

Every DXRAM node is either a peer or a superpeer. Peers store

data objects, may run computations and exchange data directly

with other peers, and also serve client requests when DXRAM

is used as a back-end storage. Superpeers store global meta-

data like the locations of data objects, implement a monitoring

facility, detect failures and coordinate the recovery of failed

nodes, and also provide a naming service. Objects stored in

DXRAM’s key-value store are called chunks. Every chunk has

a 64-bit globally unique ID called a chunk ID (CID). This

ID consists of two separate parts: A 16-bit node ID of the

object creator and a 48-bit locally unique sequential number.

Thereby, 65,536 nodes with around 280 trillion chunks per

node are addressable. The sequential generated CIDs allow the

use of compact global metadata management by using range-

based B-trees on superpeers and compact paging-like address

translation tables on peers. The address translation yields O(1)
performance as well as overall low memory consumption.

A custom memory allocator for small objects ensures low

memory overhead per object. A chunk can have an arbitrary

size of up 2 GB (Java byte array maximum size) and is stored

in dynamic sized and chained blocks of up to 8 MB.

B. DXCompute

DXCompute is a new layer built on top of the DXRAM ar-

chitecture adding services to execute computations locally and

also remotely on storage nodes. Interactive queries on graph

data are supported by providing lightweight Jobs managed by

the JobService which uses a per node configurable fixed size

thread pool. A work stealing approach implements implicit

load balancing between threads of one JobService [10]. If a

job needs to access data located on a remote node, the job can

be delegated to the data-owning node. This will improve data

locality when executing the job and increase performance.

If a computation involves more than one node, multiple

nodes have to be coordinated. The MasterSlaveService (see

figure 2) implements compute groups within the DXRAM

network topology consisting of one coordinator (master) and

an arbitrary number of compute nodes (slaves). The master

node controls the slave nodes of its group by managing

joining/leaving of slaves to the compute group, accepting

compute tasks, scheduling compute tasks to all slaves and

synchronizing slaves between compute tasks. When writing





Online conversion constructs the graph from any (sup-

ported) input data format by executing the necessary steps

during loading on the target system. However, the conversion

steps might require additional memory and can lower the

amount available for storing the final graph data. Furthermore,

if the graph data is loaded over and over again, the online

conversion will generate the same data but will always extend

execution time of the loading phase.

Running an offline conversion step on the desired data set

once and storing data in a fitting intermediate representation

is the preferred approach to speed up the loading process

which can take minutes or up to hours. When applying

partitioning algorithms (see section IV-B), a preprocessing

step is necessary anyway. Dynamic graphs like managed by

Facebook grow and evolve over time and do not need the pre-

processing steps.

D. The Breadth-First Search Algorithm

BFS is a building block for many graph processing al-

gorithms. It traverses all reachable vertices from one source

vertex determining their distance/depth. Algorithm 1 shows

a common abstract implementation of the level synchronous

top-down BFS algorithm.

The input graph is defined by G(V,E) with the number of

vertices n = |V | and the number of edges m = |E|. BFS uses

lists, also called frontiers, to keep track of vertices that have

to be processed on the current iteration level (current frontier)

and vertices that will be processed on the next iteration level

(next frontier). Level synchronous BFS processes the graph in

steps which we call iteration levels.

Performance for best-case and worst-case are equal because

the search has to traverse all connected edges from the root.

There are different ways to generate output data in this

algorithm. Algorithm 1 stores the determined depth with each

vertex, thus altering the input graph which might not be desired

for some applications. Alternatively, one can store a list of

parents for each vertex creating a spanning tree rooted at the

input root r.

Algorithm 1: Sequential top-down BFS algorithm

Input: G(V, E), with dist for each neighbor nb of v ∈ V ,

nb.dist = -1; root vertex r

Output: G(V, E) with depth for each v ∈ V

1 r.dist = 0;

2 curfrontier ← r, nextfrontier ← ∅;
3 while curfrontier 6= ∅ do

4 foreach v in curfrontier do

5 foreach neighbor nb of v do

6 if nb.dist = -1 then

7 nextfrontier ← nextfrontier ∪ n;

8 n.dist = v.dist+ 1;

9 curfrontier ← nextfrontier;

10 nextfrontier ← ∅;

Beamer et al. [14] are proposing the “direction-optimizing

BFS” algorithm, a hybrid approach for level synchronous BFS

combining the classic top-down with a novel bottom-up ap-

proach to speed up BFS execution. When traversing the graph

in top-down manner, the algorithm tries to visit every neighbor

of every vertex of the current frontier on each iteration level.

As the algorithm progresses and the depth level is increasing,

many vertices are already visited resulting in many failed

“not visited” checks. When the current frontier is large, most

neighbors of the vertices in the frontier have already been

visited but the top-down approach is still processing them.

The bottom-up approach is more suitable in this situation. For

every unvisited vertex of the graph, it checks if its list of

neighbors contains one of the vertices in the current frontier

i.e. is there a connection from any unvisited child to a parent

of the current frontier. This requires keeping a list of already

visited and unvisited vertices (see section V-A). By checking

all unvisited vertices of the graph, the bottom up approach

is only suitable if the current frontier contains a significant

fraction of the graph. For a hybrid and high performant BFS

implementation, one combines both approaches with top-down

at the first and last iteration levels and bottom-up in the middle

when the frontier is at its largest. Further details are explained

in our implementation in section V-C2.

V. GRAPH PROCESSING WITH DXGRAPH

The DXGraph layer contains an implementation of a dis-

tributed multithreaded direction-optimizing BFS algorithm

with the DXRAM core and DXCompute layer. Furthermore,

the layer contains data structures for the algorithm as well

as tasks for generating and loading data. The DXRAM core

provides the distributed key-value storage as well as message

passing. Moreover, we used the MasterSlaveService from

DXCompute to easily distribute and execute computation tasks

on an arbitrary number of slave nodes.

A. Data Representation

Before execution, the graph data needs to be loaded. For

storing the vertex data, we are using the natural 1D data

representation (see section IV-A). The vertex IDs are refered

to as CIDs and vice versa (depending on the context). For the

implementation, both terminologies refer to the same number.

Every vertex has a neighbor list of CIDs referencing other

vertices stored as chunks and a field to assign the depth of the

vertex.

B. Data Generation, Conversion and Loading

Input data is generated by the edge list generator of

the Graph500 reference implementation [2]. The kronecker

generator creates a random graph with low locality based

on the scale and edge factor input parameters. A simple

converter loads different graph input formats, such as the

edge list format from the kronecker generator and creates an

intermediate output graph suitable for DXRAM’s key-value

store allowing concurrent loading of the data on multiple nodes

with low memory overhead. Furthermore, additional metadata





Algorithm 3: Simplified version of a single worker thread

of the BFS implementation (top-down only)

/* Each thread has shared access */

Input: Frontier curfront, nextfront, visited; bfslevel

1 run = true ; // loop, termination by main task

2 Vertex[] vertexBuffer ; // Thread local buffer

3 while run do

4 if curfrontier.empty then

5 yield ; // Wait for vertex IDs, hot standby

6 else
/* Get vertex objects from storage */

7 fillVertexBuffer(curfront, vertexBuffer);

/* Vertices in curfront are always local */

8 foreach vertex in vertexBuffer do

9 foreach neighbor in vertex.neighbors do
/* Processing local neighbors only,

delegating remote ones */

10 if IsStoredCurNode(neighbor) and

visited.contains(neighbor) then

11 neighbor.markVisited(bfslevel);

12 visited.insert(neighbor);

13 nextfront.insert(neighbor);

14 else
/* Remote node adds non visited

vertices to nextfront */

15 sendVertexToNodeOwner(neighbor);

flow. The bottom-up code is further explained below, but was

removed in the pseudo-code for better readability.

A fixed but configurable number of worker threads is used

on each node. The threads are kept on hot standby to avoid

startup latencies and are stopped after the algorithm has

terminated. Each worker thread has its own local vertex buffer

for buffering a configurable number of vertices to enhance data

locality and improve throughput. Another buffer for sending

non-local vertex IDs to remote nodes is explained below. The

current, next and visited BitVectors are allocated per node and

shared among the threads on a single node.

For a prior loaded graph, a single vertex ID or list of vertex

IDs is provided as root(s) to the task as input parameters. The

algorithm is started on the slave owning the root vertex. The

node marks it as visited and adds it to the current frontier.

The worker threads are accessing the frontiers concurrently

and “stealing” vertices from the current frontier resulting in

implicit load balancing among them. For each locally buffered

vertex, a thread checks its neighbors and determines if each

neighbor is stored on the current node. If the neighbor is

locally stored, it marks it as visited and adds it to the next

frontier. Otherwise, it sends the vertex ID to the remote node

owning the vertex by adding it to the vertex message buffer.

The remote node receives a message with the vertex ID, checks

if the vertex is already visited, marks it as visited and adds

it to his next frontier. Additional steps to retrieve the actual

vertex chunks from the storage are necessary before iterating

the vertex’s neighbor list. Delegate messages with vertex IDs

are sent in batches to better utilize network bandwidth and

batch processing on the remote node.

When the main task thread detects that his local current

frontier is empty, it finishes the iteration by synchronizing

with the other nodes (see section V-C4). With the exchanged

information on this step, every node can determine if it has to

terminate the breadth-first search and stop the worker threads

or continue with the next level and swapping their current and

next frontiers.

3) Top-Down with Bottom-Up, a Hybrid Approach: Our

initial top-down only implementation was already performing

very well, but in combination with a bottom-up approach,

we were able to improve execution time even further (see

section VI). Before each level iteration, every node checks

if it has to run the upcoming iteration top-down or bottom-up.

Provided by Beamer et.al [14], mf > m
10

determines if we

switch from top-down to bottom-up and nf < n
14k

determines

if we switch from bottom-up to top-down with mf being

the number of edges and nf the number of vertices in the

current frontier of all nodes. k specifies the graph’s degree.

All necessary information is exchanged on the multicast level

synchronization with all other nodes ensuring that every node

runs the same approach for the current level.

4) Synchronization: Level synchronous BFS requires syn-

chronizing all participating threads of all nodes after each

iteration level. We decided to implement an all-to-all bar-

rier [18] using our efficient network subsystem and atomic

counters to keep the latency between BFS iteration levels

low. Furthermore, we combine this synchronization step with

exchanging data for local calculation of top-down/bottom-

up switching and BFS termination to avoid adding more

messaging overhead. When reaching the barrier, each node

sends his next frontier vertex count as well as edge count to

all other nodes and waits on hot standby. Each node waits until

it received this data from all other nodes. The last incoming

message releases the barrier and the waiting thread is released

immediately ensuring low delays.

VI. EVALUATION

We evaluated DXGraph’s BFS and compared it to equivalent

implementations of the two state-of-the-art systems Grappa

[8] and GraphLab [5]. We analyze memory consumption and

overhead of the loaded graph data as well as execution time

of the algorithm. In this paper, we did not evaluate loading

times. All systems are loading and processing the graph

with mechanisms for persistency and fault-tolerance disabled.

Because of the preprocessing step, our loading phase is much

faster than Grappa’s or GraphLab’s which are lacking this

extra step. Furthermore, this aspect is not important as we

are aiming for online processing and analysis with graph data

generated and evolving by interactive user input.

The input graph data was generated by the Graph500’s

reference implementation of a Kronecker generator. The

graph’s scale is the logarithm base two of the number
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4.1 Requirements

Disk-based solutions are not an option when considering highly interactive applications and
their requirements presented in Section 1.2. Thus, all data must be kept in memory. This
approach ensures a fundamentally low access-latency for all data which is mandatory, especially
for typical graph algorithms with highly random access patterns.

To fulfill the proposed application requirements, the memory management must be optimized
for the commonly used object size (< 128 bytes) commonly found in graph data-sets. The more
objects stored per server, the higher the data locality for local computations. This increased
per-server density lowers the likelihood of requesting data from remote servers and, thus, lowers
overall and more expensive inter-server communication. Furthermore, the whole system requires
overall less memory for storage which also lowers hardware costs.

However, concurrent access to local data needs to be synchronized to avoid user data and
also metadata (e.g. of the allocator) corruption. With a focus on read-heavy workloads,
get-operations dominate. The design of concurrency control, e.g., using locks, has to consider
this to avoid performance penalties for the dominating operation type.

In the object-oriented language Java, data is naturally modeled using classes. With data stored
as binary serialized data blobs in-memory, the memory management has to support fast, and
memory efficient serialization of complex and even nested Java objects to memory.

On long-running applications (e.g., 24/7 services), memory fragmentation caused by rather
seldom allocations and deletions cannot be avoided in the long term. With the majority of
objects being rather small, external fragmentation is not critical and can be minimized by
periodically compacting the memory, for example during low-load phases.

4.2 Stage of Work

To address the requirements presented in Section 4.1, the research regarding the memory
management of this thesis was conducted on the Java-based DXRAM in-memory key-value
storage system. Initially proposed by Dr. Florian Klein [63, 61], DXRAM’s memory management
already implemented a low-overhead allocator using Java’s Unsafe class for managing many
small objects in RAM efficiently. The allocator managed a large pre-allocated block of memory
by splitting it into a configurable number of logical fixed-size segments.
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The arena manager implemented concurrency management on a segment-basis by assigning
application threads, creating new chunks, to different segments. Naturally, access to existing
chunks (get, put and remove) had to access the segment the chunk was located in. A segment
was locked before thread access and unlocked after the operation completed. The memory
manager implemented support for CRUD operations, only.

CIDs were translated to native memory addresses using a paging-like address translation named
CIDTable. By re-using CIDs, the tables were kept densely packed minimizing storage costs.
The tables were stored using the allocator of the memory management.

Locking of chunks was optional and implemented as an external service. Chunks had to be
locked/unlocked explicitly and could still be accessed or even modified without using the service.
This design could lead to data races if the application developer did not use this service properly.
The service supported per chunk read-write locks stored on-heap using a standard Java Map.
This method is not very memory efficient and limits the total number of storable locks to 231

(signed integer).

A chunk was implemented as a simple tuple consisting of a CID and a binary data blob. An
external serialization had to be used to serialize chunks to binary data to allow storing them to
the back-end storage.

4.3 Research Questions

The initial DXRAM implementation was already storing all data always in-memory to keep
local data access latency low. Furthermore, it was already optimized for storing tiny objects
efficiently making it suitable for storing large graph data-sets.

With a natural representation of data using Java objects, efficient de-/serialization is mandatory
to store the objects as binary data outside of the Java heap. This off-heap storage also
avoids performance penalties imposed by the Java garbage collection (e.g., expensive collection-
phases). However, how can the memory management guarantee low-latency local data-access
for applications/algorithms running on the storage? This requirement proposes a challenging
task for supporting highly concurrent applications.

With applications using multiple threads to run algorithms in parallel, concurrency is the
rule. However, this introduces data races which have to be considered. The initial DXRAM
implementation addressed this by managing access to multiple segments using the arena manager.
However, profiling has shown that this management introduced significant locking overhead and
did not favor commonly used get-operations which are typical for most graph-based applications
and algorithms (see Section 4.1).

Furthermore, this mechanism only protected the memory manager’s metadata and did not
avoid races on user data. The application programmer had to provide his/her solution for
synchronizing concurrent access. However, this is a general issue which applies to any concurrent
application and, thus, should be addressed by the memory management instead. With the
current solution not addressing this adequately, how can the memory management provide
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(local) data consistency guarantees for user data without sacrificing performance and the low
per-object memory overhead? What is the best granularity of the synchronization/locking
mechanism? How does the granularity affect the performance of the application and memory
management when relying on less fine-granular locking or a per-object synchronization? Is it
essential to distinguish these cases regarding performance?

4.4 Contributions

Our publication addresses these questions by an optimized and extended memory management
[93]. It fulfills the requirements of concurrent (graph-based) applications while still providing a
very low per-object memory overhead for many small objects. The contributions stated below
which are not explicitly assigned to any author/contributor are by the author of this thesis.

First, a custom serialization was implemented to allow fast and efficient de-/serialization of
complex and even nested Java objects. It enables the memory management to de-/serialize
the objects directly from/to the native memory area without additional buffering (zero-copy).
Later, this serialization framework was also used in DXNet (see Chapter 5) to provide a
consistent interface for serializing data, chunks, and messages to send them to remote servers.
This serialization was further extended by Dr. Kevin Beineke to support interrupting the
de-/serialization process at any byte position as well as handling of over- and underflows on a
ring buffer data structure (see Section 5.4.2).

Extensive benchmarking and profiling of the memory management revealed that the arena
manager with its multi-level locking limited the performance on typical read-heavy workloads.
First, we proposed a new design that replaced the arena manager with a less expensive and
straightforward read-write lock mechanism. Furthermore, memory segmentation was removed
as it did not provide any benefits to our typical parallel workloads but increased the overall
complexity of the system. The new approach improved the overall performance significantly
and was the first step towards developing an appropriate solution.

This solution included a new design for a low-overhead fine-granular per-chunk read-write
lock. It ensures that the per-chunk memory overhead is not increased significantly but allows
low-overhead fine granular locking for synchronizing concurrent access and modification of data.
Furthermore, a chunk can also be used just like a lock, with or without storing user data, to
allow coarse granular locking on the application level, e.g., a single lock on the root of a linked
list.

Further proposals for concurrency optimizations were analyzed and confirmed to be less optimal
by the bachelor thesis of Florian Hucke [51]. The evaluation in our publication shows, that
our solution is significantly faster compared to Hazelcast and InfiniSpan, two state-of-the-art
Java-based in-memory caches, and provides single-digit microseconds access latency even on
highly concurrent workloads.

The API of the memory management was further adapted to the application domain to support
batch allocations to speed up uploading of large data-sets. The set of operations was extended
by a resize-operation to allow resizing of existing chunks (e.g., required for expanding/shrinking
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arrays), a reserve-operation to reserve CIDs without allocating memory (e.g. required for
loading phases when assigning/mapping CIDs to data to load), direct memory access-operations
(to modify single fields/values without having to read an entire chunk) and a pinning-operation.
The latter is mandatory to enable proper chunk management on future RDMA hardware access
(see Section 7.3.2).

An interface for a concurrent defragmentation thread allows implementing and evaluating
different defragmentation strategies (see Section 7.3.1).

The memory management of DXRAM was moved to and published as the separate open-
source library DXMem which can now be used by any (concurrent) Java application requiring
an efficient memory manager for storing many small objects with low-overhead concurrency
management. Additionally, DXMem provides a built-in YCSB-like benchmark to quickly
evaluate it with configurable workloads and an interactive command line tool for testing and
debugging (loading and analyzing of heap dumps).

Stefan Nothaas wrote the paper and evaluated all systems presented in it. Prof. Dr. Michael
Schöttner reviewed the paper several times and helped improve it. Dr. Kevin Beineke, Prof.
Dr. Michael Schöttner, and Florian Hucke took part in many discussions about the design and
performance analysis of DXMem.
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Abstract—Several Java-based distributed in-memory systems
have been proposed in the literature, but most are not aiming at
graph applications having highly concurrent and irregular access
patterns to many small data objects. DXRAM is addressing these
challenges and relies on DXMem for memory management and
concurrency control on each server. DXMem is published as an
open-source library, which can be used by any other system, too.

In this paper, we briefly describe our previously published but
relevant design aspects of the memory management. However,
the main contributions of this paper are the new extensions,
optimizations, and evaluations. These contributions include an
improved address translation which is now faster compared to
the old solution with a translation cache. The coarse-grained
concurrency control of our first approach has been replaced by
a very efficient per-object read-write lock which allows a much
better throughput, especially under high concurrency. Finally, we
compared DXRAM for the first time to Hazelcast and Infinispan,
two state-of-the-art Java-based distributed cache systems using
real-world application-workloads and the Yahoo! Cloud Serving
Benchmark in a distributed environment. The results of the
experiments show that DXRAM outperforms both systems while
having a much lower metadata overhead for many small data
objects.

Index Terms—Memory management, Cache storage, Dis-
tributed computing

I. INTRODUCTION

The ever-growing amounts of data, for example in big data

applications, are addressed by aggregating resources in com-

modity clusters or the cloud [20]. This concerns applications

like social networks [13], [23], [24], search engines [19], [29],

simulations [30] or online data analytics [18], [33], [34]. To

reduce local data access times, especially for graph-based

applications processing billions of tiny data objects (< 128

bytes) [16], [27], [32], backend systems like caches and key-

value storages keep all data in-memory.

Many systems for big data applications, such as frameworks

[22], [26], databases [3], [4], or backend storages/caches [5],

[7], [8], [28], are written in Java. However, many of them

cannot handle small data objects (32 - 128 byte) efficiently

and introduce a considerable large metadata overhead on a per-

object basis. Compared to traditional disk storage solutions,

RAM is more expensive and requires sophisticated memory

management. High concurrency in big data applications is the

rule but adds additional challenges to ensure low access-times

for local and remote access and to provide mechanisms for

synchronizing concurrent access. Combined with today’s low-

latency networks, providing single-digit microseconds remote

access times on a distributed scale, local access times must be

kept low to ensure high performance which is challenging in

general but especially in Java.

DXMem is the extended and optimized memory manage-

ment of DXRAM. It provides low metadata overhead and

low-latency memory management for highly concurrent data

access. Data is stored in native memory to avoid memory

and garbage collection overhead imposed by the standard Java

heap. DXMem uses a fast and low-overhead 64-bit key to raw

memory address mapping. Java objects are serialized to native

memory using a custom lightweight and fast serialization

implementation.

Furthermore, DXMem offers a low-overhead per-object

read-write locking mechanism for concurrency management

as well as memory defragmentation for long-running appli-

cations. On an average object size of 32 bytes, DXMem can

store 100 million objects with just 22% additional overhead

(§VI-A). On a typical big data workload with 32 byte objects,

95% get and 5% put operations, DXMem achieves a local

aggregated throughput of 78 million operations per second

(mops) with 128 threads which is an up to 28-fold increase

compared to Hazelcast [7] and Infinispan [8], two Java-based

state-of-the-art in-memory caches (§VI-B). Using the Yahoo!

Cloud Service Benchmark [17], we compared DXRAM with

DXMem to Hazelcast and Infinispan (§VI-C), too. The results

show that DXRAM scales well with up to 16 storage servers

and 16 benchmark clients on real-world read-heavy workloads

with tiny objects outperforming the other two systems.

Our previous publication [21] has addressed the follow-

ing contributions:

• The initial design of the low-overhead memory allocator

• The address translation (CIDTable) without per-chunk

locks

• An arena-based memory segmentation for coarse-grained

concurrency control and defragmentation

The contributions of this paper are:

• Reduced metadata overhead while supporting more stor-

age per server (up to 8 TB, before 1 TB)



• Low-overhead Java object to binary data serialization (the

old design supported binary data only)

• Optimized address translation (faster than the old design

with translation cache)

• Efficient fine-grained locking for each stored object

• New experiments and comparisons with Infinispan, and

Hazelcast

To evaluate the local memory manager performance of

storage instances, we created a microbenchmark based on the

design and workloads of the YCSB and implemented clients

for the systems evaluated in this paper (§VI-B). DXMem is

also published as a separate Java library that can be used by

any Java application. DXRAM and DXMem are open-source

and available at Github [6].

The remaining paper is structured as follows: Section II

presents the target application domains and their requirements.

Section III presents related work. We give a brief top-down

overview of DXMem and its components in Section IV

before explaining them in detail in a bottom-up approach

in the following sections. Starting with Section V, we ex-

plain important details about memory management in Java

before elaborating on DXMem’s allocator in Section V-A.

This section is followed by Section V-B which describes the

CIDTable translating chunk ID to native memory addresses.

The design of the fine-granular locks is presented in Section

V-C The evaluation and comparison of DXMem to Hazelcast

and Infinispan is presented in Section VI. Conclusions are

located in Section VII.

II. CHALLENGES AND REQUIREMENTS

This section briefly presents the target application domains

which were already introduced in Section I. Often, Big data

applications use batch-processing frameworks (e.g. Hadoop

[26], Kafka, [22]) or are live systems (e.g. social networks

[13], [23], [24] or search engines [19], [29]) serving many

concurrent requests of interactive users. Many systems and

applications are written in Java, which is popular because

of its strong typing, sophisticated language features, platform

independence, and rich libraries and have to address the

following challenges and requirements.

Fast local response times. In-memory caches are used to

mask slow disk access times for stored data. Some applications

take this approach one step further by storing all data always

in-memory.

Data distribution. Often, one commodity cluster node is

not sufficient to store and process vast amounts of data.

Fast remote response times. Low remote latency on inter-

node communication is ensured by low-latency network

interconnects, e.g., InfiniBand should be considered which in

turn demand low local latency not to become the bottleneck

instead. However, with many applications and frameworks in

Java, access to such low-level hardware is very challenging.

Fast and efficient (remote) object lookup. With billions

of objects distributed across multiple nodes, object lookup

becomes a challenge, too. Often, a key-value design combined

with hashing is used to address this issue [3], [7], [8], and

the standard API provides CRUD operations (create, read,

update, delete).

Very small objects. Typical data models for big data

applications include tables, sets, lists, and graph-structured

data [31]. For the latter, storing billions of objects becomes

a challenge because the per-object overhead must be kept

low. With the limited amount of main memory, storing more

objects per node does not only require fewer nodes to store

all data but also increases locality and performance.

High concurrency. Simultaneously serving many concur-

rent interactive user requests or using many threads to

lower execution times of algorithms, e.g., graph traversal, high

concurrency is a must. On today’s multi-core hardware, con-

currency support and optimizations are inevitable. However,

with concurrency data races must be considered and require

mechanisms to synchronize data access on concurrent modi-

fication without limiting concurrency and increasing access

latency too much.

III. RELATED WORK

Common purpose memory management, algorithms, and

allocators are widely studied in literature and are beyond the

scope of this paper but have been discussed and evaluated

in our previous publication [21]. This paper extends this

foundation and focuses on a variety of changes to address the

requirements and challenges imposed by our target application

domain (§II). Thus and due to limited space, we focus only

on relevant Java-based in-memory caches and storages which

are designed for the same application domain.

Hazelcast [7] is a distributed in-memory cache and com-

puting platform implemented in Java. It organizes data using

implementations of standard Java collection interfaces, e.g.,

List, Queue, Map or Set. Hazelcast offers three storage options

for objects: As serialized binary data in native memory (High-

Density Memory Store) using a custom serialization similar

to DXMem’s, as Java objects on the Java heap or stored as

both. It implements a peer-to-peer protocol to form a cluster

of storage nodes. Ethernet using Java NIO is supported for

remote node communication. Objects are stored to one of the

271 partitions distributed to storage nodes using hashing [12].

Infinispan [8] is a distributed in-memory key-value storage

implemented in Java. Based on a peer-to-peer architecture,

objects are hashed and stored using a cache interface extending

the Java Map interface. It supports networking over TCP

using Ethernet-based transport implementations, e.g., Netty.

Objects are stored either on the Java heap or in native memory.

For binary de/-serialization to/from native memory, InfiniSpan

provides Externalizers which use the JBoss Marshalling frame-

work. By default, objects are distributed to storage nodes using

consistent hashing. The application has the option to distribute

objects manually to optimize data access times.

Ignite [3] is a distributed in-memory data grid and pro-

cessing platform implemented in Java. Objects are stored

as key-values either to the Java heap or off-heap using a

tiered storage model. Ignite supports ACID transactions for

consistency and built-in distributed data structures. Clients





required for storing all objects is relatively high (e.g. 12

byte header on a 64-bit Hotspot-JVM with compressed object

pointers and a heap less than 4 GB [10]). Furthermore, garbage

collection runs concurrently to the application, and its activity

phases cannot be controlled. Thus, it can impose unintended

performance penalties due to high latencies during collection

phases. A higher degree of control is necessary to support high

loads efficiently.

We address these requirements with our custom allocator

(§V-A) which keeps the per-object memory-overhead low and

(by default) does not impose any garbage collection. Data

can be stored off-heap using Java’s DirectByteBuffers (2 GB

buffer limit), Apache DirectMemory [1] (retired) or the Unsafe

[25] class. The latter uses intrinsics for memory access and is

widely used for fast data exchange with native libraries or

buffers of native I/O. Furthermore, the size of the allocated

area is not limited by the maximum value of a positive Java

integer (231).

Using Unsafe, we created a Virtual Memory Block (VMB)

allocating a single continuous memory area (starting with

address 0) which is used by our allocator (§V-A). All meta-

data and application object-data is stored in the VMB and

written/read using the methods provided by the Unsafe class.

Chunks are read/written using a custom de/-serialization inter-

face (§V-A).

A. Efficient Memory Allocator for Many Small Objects

To maximize the number of objects to store per node,

we address the challenges from the previous Section V with

a custom allocator. This allocator is designed explicitly for

low-metadata overhead and handling small objects with

average sizes of 16-128 bytes efficiently.

On initialization, our allocator uses the VMB (§V) to create

one large free block which occupies nearly the entire VMB

(size configurable). We now use 43 bit pointers which allows

addressing a total of 8 TB of main memory which is sufficient

for commodity servers. At the end of the VMB, additional

space is reserved for root pointers of the doubly-linked free-

block lists.

There are two types of free blocks: Untracked free blocks

are less than 14 bytes in size and are not tracked using a free

block list. Tracked free blocks are managed by one of the free

block lists. Each entry of this list describes the size of the

free block in bytes up to the size of the next entry of the free

block list. The lists track specific small free blocks of 14, 24,

36 and 48 bytes as well as all power of two sizes starting with

64 bytes and up to the max size of the VMB. Blocks are not

aligned to 64-bit bounds or multiples of a cache line size

to avoid fragmentation.

Every block is separated by a single byte called a marker

byte. Each half of a marker byte (4 bits) describes the type

(allocated, free tracked or untracked block) of the adjacent

block to the left or the right of it. Allocated blocks may contain

an additional compacted length field that stores a part of the

payload’s size following it. Free untracked blocks of at least

2 bytes contain a length field describing the block size. Free

untracked blocks of at least 14 bytes contain two length fields

(one at the front and one at the end of the block) and a pointer

to the previous and next element of the free block list it is

managed by. This design allows us to keep the average

per-object memory-overhead very low compared to other

memory allocators [21] and systems (§VI-A).

On allocation, the allocator selects a free block using a

best-fit strategy. The block is cut to size required to store

the length field and the requested payload size to avoid

internal fragmentation. The remaining part of the free block

(if available) is converted to a free block and, if a tracked

block, added back to one of the free block lists accordingly.

On deallocation, the allocator checks the blocks adjacent to

the current one to free and merges it with every non-allocated

block to lower external fragmentation. If resulting in a tracked

free block, it is added to the appropriate free block list.

Often, applications can issue a single allocation request

for multiple blocks of a single size or different sizes, e.g.,

when loading datasets. The new allocator supports batch

allocations reducing overall memory allocation times. On

a batch allocation, the allocator calculates the total amount

of memory required and tries to allocate all blocks for the

requested sizes in a single continuous area with a fallback

option to single block allocation. The search for free blocks is

reduced to a minimum (one) which also lowers fragmentation.

Java objects have to implement a custom serialization inter-

face for reading from (Importable) and writing to (Exportable)

an allocated native memory block. The object to im-/export

specifies the primitive fields or im-/exportable objects to

de-/serialize which enables efficient binary representations.

Nested im-/exportable objects are also supported. Our custom

serialization allows DXMem to execute fast, transparent

and low-overhead reading from and writing to native mem-

ory compared to generic serialization, e.g., Java Serializable.

B. Low-Latency Address Translation

In distributed applications, dealing with bare memory ad-

dresses becomes uncomfortable once the stored data is moved

either locally (e.g., defragmentation) or to another remote node

(e.g., migration due to hotspots). Thus, hashing is used on

many systems (§III) to create an indirection and assign unique

IDs to objects. However, this commonly used approach comes

with many drawbacks such as high memory overhead [21]

or requiring additional processing time for re-hashing entries.

We address these issues with a custom low-latency and low

memory-overhead address translation.

In DXMem each chunk is referenced using a 64-bit chunk

ID (CID). The upper 16-bits are the node ID (NID) of the

creator node. The NID is assigned on node startup and allows

identification of chunk origins in a distributed setup. The lower

48-bits are a per node creator locally unique value, called

a local ID (LID). This value is incremented independently

between nodes with each chunk creation.

The CIDTable, provides a fast and efficient CID to

memory address translation for chunk lookup and retrieval

of allocated memory blocks in the allocator. The CIDTable is













Using the YCSB in a distributed environment, DXRAM scales

well on workloads with small objects and up to 16 server and

16 benchmark clients outperforming Hazelcast (1.6 fold) and

Infinispan (5.4 fold). On a read-heavy workload with 32-byte

objects, DXRAM achieves an aggregated throughput of 4.6

mops.
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5.1 Requirements

By benefiting from data locality on single servers, algorithms can avoid having to request data
stored on a remote server. However, keeping high data locality in a distributed environment is
a difficult task. For example, temporal locality could be achieved by caching or replication of
remote objects to the current server but is difficult to implement efficiently due to the highly
random access in our application domain. Spatial locality can be exploited on the application
level, e.g., for neighbors of a vertex of a graph, either by pre-fetching, migrating or keeping
neighboured data stored on the same server. However, exploiting locality on the network level
efficiently without any application context is not possible.

Huge data volumes require a distributed approach aggregating many servers. Naturally, this
results in slower remote data exchange. More servers offer more compute resources but require
fast and efficient communication to run and coordinate distributed computations.

The efficiency of a distributed approach depends on the network subsystem for communication
with remote servers. Considering the requirements of our application domain (see Section 1.2),
most data transferred is rather small due to the majority of objects being small. Such small
transfers can be avoided with batching of data or operations, but in general, are limited to the
possibilities offered by the algorithm. The highly random access patterns on graph algorithms
result in random access to many remote servers. Data locality can limit but not avoid this
entirely. Naturally, remote access increases with the degree of data distribution (number of
servers).

As batching improves the overall throughput of offline analytics, it increases latency. To the
contrary, online applications with user interactions demand low latency and instead neglect
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throughput. Thus, from a networking perspective, the network subsystem has to provide, both,
low latency and high throughput to support different application focuses.

Many threads can run on a single server for concurrent processing, but potentially have to
exchange data with remote servers. The more a concurrent algorithm has to coordinate, the more
communication with remote servers is required. Thus, the network subsystem must be capable
of handling high concurrency with many threads sending and receiving data simultaneously.
Naturally, this requirement does not account for embarrassingly parallel applications (e.g.,
MapReduce) with limited to none remote communication.

Often, the data transferred consists of objects of the stored data-set. Thus, serialization is
required to convert the objects to a binary format for inter-server transfer. Furthermore, higher-
level primitives for request-response patterns aid in implementing coordination of multiple
servers.

To provide very low-latency remote data access, modern hardware such as InfiniBand offering
single-digit microseconds latency is mandatory. All requirements mentioned thus far have
to be considered in the context of low-latency hardware usage to leverage InfiniBand for
highly concurrent messaging in Java. Furthermore, additional constraints imposed by the
Java environment (e.g., interaction with native code and memory) have to be considered when
programming such low-level hardware.

5.2 Stage of Work

To address the requirements presented in Section 5.1, the research regarding low-latency remote
communication in Java applications in this thesis was conducted in the context of the Java-based
DXRAM storage system. Initially designed and developed by Dr. Florian Klein, DXRAM’s
network subsystem was limited to Ethernet networks, only. It already implemented an API with
higher-level communication primitives for asynchronous and synchronous messaging. Messaging
objects were de-/serialized using a built-in and simple field-by-field to ByteBuffer serialization.
Marc Ewert designed and implemented the initial concurrent back-end in his master thesis [34]
and the network subsystem was deeply integrated into DXRAM.

5.3 Research Questions

With InfiniBand available in HPC and even in cloud environments, Java applications, like
DXRAM, would benefit highly from low remote access-latency. However, how to utilize this
hardware in Java, especially in the context of a key-value storage? Which solutions are
already available to use InfiniBand hardware in Java applications? With such low latency on
the hardware level, designing software that can truly leverage the power of the hardware is
very challenging and raises the question if existing Java solutions are sufficient to exploit the
performance of the hardware.
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DXRAM, as well as most other Java-based in-memory systems, already provide a network
subsystem based on Ethernet networks (see Section 2.2). With various socket-based wrappers
available, we first analyzed transparent solutions and if they can provide adequate performance
(see Section 5.4.1).

Our results show that these solutions are far from optimal compared to using custom verbs-
based implementations. Furthermore, evaluations of DXRAM and the network subsystem
pointed out significant weaknesses regarding the handling of small messages, serialization
and buffer management, concurrency management and scalability. Naturally, this is not an
optimal foundation to build support for low-latency hardware on. The API of the network
submodule was already well designed and fitting our target application domain. However,
the back-end required a re-design to be capable of leveraging the performance of InfiniBand
hardware. However, we do not want to replace Ethernet with InfiniBand, but instead, support
both interconnects (see Section 5.4.2).

By supporting two fundamentally different programming models, sockets and verbs, this raised
many fundamental questions regarding the network subsystem: How to design the processing
pipeline and data structures of the back-end to support these two fundamentally different
programming models without negative impact on performance? How to design a shared
abstraction layer that allows both models to achieve maximum performance? How to adapt the
existing higher-level primitives?

Because InfiniBand hardware cannot be accessed directly in Java, these requirements are very
challenging (see Section 5.4.1). When using the native verbs API, the Java-based network
subsystem has to utilize a native C-library to communicate directly with InfiniBand hardware.
This approach raises further questions regarding the performance as the design of the pipeline
is very latency sensitive: How to design a low-latency processing pipeline for InfiniBand
communication spanning from Java to native space and vice versa, and utilizing the native
verbs API? This pipeline has to consider scalability on a local thread level as well as regarding
many remote connections.

5.4 Contributions

This section presents the contributions addressing the previously stated research questions and
how they were implemented with DXRAM’s network subsystems DXNet. The contributions are
published in several publications and described in the following sections. Section 5.4.1 presents
the “Java InfiniBand Benchmark” suite to evaluate existing solutions to leverage InfiniBand
in Java applications. Section 5.4.2 presents DXRAM’s re-designed network subsystem DXNet.
Section 5.4.3 presents the design of Ibdxnet, the InfiniBand transport for DXNet. Copies of the
publications are attached after each section. The contributions stated in the following sections
which are not explicitly assigned to any author/contributor are by the author of this thesis.
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5.4.1 JIB-Benchmark: A Benchmark Suite to Evaluate Existing
InfiniBand Solutions for Java Applications

The proposed publication [94] in this section presents the Java InfiniBand Benchmark (JIB)
suite to evaluate existing solutions to use InfiniBand hardware in Java applications. This suite
is the result of prolonged work of this thesis. Before InfiniBand development started, Michael
Schlapa analyzed available libraries and solutions to use InfiniBand in Java applications in his
master thesis [111]. His results served as a foundation for the decision that DXRAM required a
custom solution for using InfiniBand because none of the existing solutions achieved satisfying
performance. This decision was followed by further research, microbenchmarks, and prototypes
by the author of this thesis and resulted in the mandatory re-design of DXRAM’s network
subsystem for InfiniBand use (see Section 5.4.2).

In general, the benchmarks and results are useful to any Java application that wants to use
InfiniBand and, first, has to consider the numerous pros and cons of the available solutions. In
his master thesis [108], Fabian Ruhland created the JIB-Benchmark suite which revises the
initially proposed benchmarks by Michael Schlapa [111]. Additional knowledge obtained by
Stefan Nothaas when developing Ibdxnet (see Section 5.4.3) allowed improving the benchmarks
to provide more optimal results. Fabian Ruhland implemented a scripting framework with a
fully automated pipeline to run the benchmark suite with all currently implemented benchmarks
(overhead, uni-directional throughput, bi-directional throughput, and one-sided latency) and
libraries (C-verbs, jVerbs, IPoIB, libvma, JSOR) followed by an evaluation of the data and
generating of plots. Stefan Nothaas contributed various bugfixes and optimized Fabian Ruhland’s
code, refactored the one-sided latency benchmark and implemented an additional ping-pong
benchmark.

Fabian Ruhland and Prof. Dr. Michael Schöttner took part in many discussions about the
performance analysis of the benchmark results.

Stefan Nothaas wrote the paper and used the benchmark suite to re-evaluate all currently
available solutions on 56 Gbit/s and 100 Gbit/s hardware provided by the “Centre for Information
and Media Technology” (ZIM) at the University of Düsseldorf. Prof. Dr. Michael Schöttner
and Fabian Ruhland reviewed the paper several times. The JIB-Benchmark suite is open source
and available at Github [43].
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Abstract—Low-latency network interconnects, such as Infini-
Band, are commonly used in HPC centers and are even accessible
with todays cloud providers offering equipped instances for rent.
Most big data applications and frameworks are written in Java.
But, the JVM environment alone does not provide interfaces to
directly utilize InfiniBand networks.

In this paper, we present the “Java InfiniBand Benchmark”
to evaluate the currently available (and supported) “low-level”
solutions to utilize InfiniBand in Java. It evaluates socket- and
verbs-based libraries using typical network microbenchmarks
regarding throughput and latency. Furthermore, we present
evaluation results of the solutions on two hardware configu-
rations with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. With
transparency often traded for performance and vice versa, the
benchmark helps developers with studying the pros and cons of
each solution and support them in their decision which solution
is more suitable for their existing or new use-case.

Index Terms—High-speed networks, Distributed computing

I. INTRODUCTION

RDMA capable devices have been providing high through-

put and low-latency to HPC applications for several years [18].

With todays cloud providers offering instances equipped with

InfiniBand for rent, such hardware is available to a wider range

of users without the high costs of buying and maintaining

it [25]. Many application domains such as social networks

[20], [29], [31], search engines [24], [36], simulations [37] or

online data analytics [21], [41], [42] require large processing

frameworks and backend storages. Many of these are written

in Java, e.g. big data batch processing frameworks [28], [33],

databases [1], [2] or backend storages/caches [3], [4], [7], [35].
These applications benefit from the rich environment Java

offers including automatic garbage collection and multi-

threading utilities. But, the choices for inter-node commu-

nication on distributed applications are limited to Ethernet-

based socket-interfaces (standard ServerSocket or NIO) on

the commonly used JVMs OpenJDK and Oracle. They do

not provide support for low-latency InfiniBand hardware. But,

there are external solutions available each with pros and cons.
This raises questions if a developer wants to chose a

suitable solution for a new use-case or an existing application:

What’s the throughput/latency on small/large payload sizes?

Is the performance sufficient when trading it for transparency

requiring less to no changes to the existing code? Is it worth

considering developing a custom solution based on the native

API to gain maximum control with chances to harvest the

performance available by the hardware?

In this paper, we address these questions by presenting a

“Java InfiniBand (JIB) benchmark” to evaluate existing solu-

tions to leverage the performance of InfiniBand hardware in

Java applications. The modular benchmark currently provides

implementations to evaluate three socket-based libraries and

implementations, IP over InfiniBand, libvma and JSOR, as

well as two verbs-based implementations, native C-verbs and

jVerbs. This paper focuses on the fundamental performance

metrics of low-level interfaces and not on higher-level network

subsystems with connection management, complex pipelines

and messaging primitives, e.g. MPI. We discuss and evaluate

these in a separate publication [34]. We used our benchmark

to evaluate the listed solutions on two hardware configurations

with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. The contribu-

tions of this paper are:

• An overview of existing Java InfiniBand solutions

• An extensible and open source benchmark to easily

evaluate solutions to use InfiniBand in Java applications

• Extensive evaluation of existing Java libraries with 56

Gbit/s and 100 Gbit/s hardware

The remaining paper is structured as follows: Section II

discusses related work with socket-based (§II-A) and verbs-

based (§II-B) libraries. Section III presents the JIB Benchmark

Suite which is used to evaluate two verbs-based solutions

and three socket-based solutions in the following Section IV

regarding overhead (§IV-A), uni-directional (§IV-B) and bi-

directional (§IV-C) throughput, as well as one-sided latency

(§IV-D) and full round-trip-time using a ping-pong benchmark

(§IV-E). Conclusions are presented in Section V.

II. RELATED WORK

This section elaborates on existing “low-level” solu-

tions/libraries that can be used to leverage the performance

of InfiniBand hardware in Java applications. This does not in-

clude network or messaging stacks/subsystems implementing

higher-level primitives such as the Massage Passing Interface,

e.g. Java-based FastMPJ [22] providing a special transport to

use InfiniBand hardware. To the best of our knowledge, there

is no benchmark available to evaluate InfiniBand solutions in

Java.



A. Socket-based Libraries

The socket-based libraries redirect the send and receive traf-

fic of socket-based applications transparently over InfiniBand

host channel adapters (HCAs) with or without kernel bypass

depending on the implementation. Thus, existing applications

do not have to be altered to benefit from improved performance

due to the lower latency hardware compared to commonly

used Gigabit Ethernet. The following three libraries are still

supported to date and evaluated in Section IV.

IP over InfiniBand (IPoIB) [27] is not a library but actually

a kernel driver that exposes the InfiniBand device as a standard

network interface (e.g. ib0) to the user space. Socket-based

applications do not have to be modified but use the specific

interface. However, the driver uses the kernel’s network stack

which requires context switching (kernel to user space) and

CPU resources when handling data. Naturally, this solution

trades performance for transparency.

libvma [10] is a library developed by Mellanox and in-

cluded in their OFED software package [11]. It is pre-loaded

to any socket-based application (using LD PRELOAD). It

enables full bypass of the kernel network-stack by redirecting

all socket-traffic over InfiniBand using unreliable datagram

with native C-verbs. Again, the existing application code does

not have to be modified to benefit from increased performance.

Java Sockets over RDMA (JSOR) [40] redirects all socket-

based data traffic in Java applications using native verbs, sim-

ilar to libvma. It uses two paths for implementing transparent

socket streams over RDMA devices. The ”fast data path” uses

native verbs to send and receive data and the ”slow control

path” manages RDMA connections. JSOR is developed by

IBM on only available in their proprietary J9 JVM.

The following libraries are also known in literature but are

not supported or maintained anymore.

The Sockets Direct Protocol (SDP) [23] redirects all

socket-based traffic of Java applications over RDMA with

kernel-bypass. It supported all available JDKs since Java 7

and was part of the OFED package until it was removed with

OFED version 3.5 [12].

Java Fast Sockets (JFS) [39] is an optimized Java socket

implementation for high speed interconnects. It avoids seri-

alization of primitive data arrays and reduces buffering and

buffer copying with shared memory communication as its main

focus. However, JFS relies on SDP (deprecated) for using

InfiniBand hardware.

Speedus [17] is a native library that optimizes data transfers

for applications especially on intra-host and inter-container

communication by bypassing the kernel’s network stack. It

is also advertised to support low-latency networking hardware

for inter-node communication. But, the latest available version

to date (2016-09-08) does not include such support.

B. Verb-based Libraries

Verbs are an abstract and low-level description of function-

ality for RDMA devices (e.g. InfiniBand) and how to program

them. Verbs define the control and data paths including RDMA

operations (write/read) as well as messaging (send/receive).

RDMA operations allow reading or writing directly from/to

the memory of the remote host without involving the CPU of

the remote. Messaging follows a more traditional approach by

providing a buffer with data to send and the remote providing

a buffer to receive the data to.

The programming model differs heavily from traditional

socket-based programming. Using different types of asyn-

chronous queues (send, receive, completion) as communica-

tion endpoints. The application uses different types of work-

requests for sending and receiving data. When handling data

to transfer, all communication with the HCA is executed

using these queues. The following libraries are verbs im-

plementations that allow the user to program the RDMA

capable hardware directly. The first two libraries presented are

evaluated in Section IV.

C-verbs are the native verbs implementation included in

the OFED package [13]. Using the Java Native Interface (JNI)

[30], this library can be utilized in Java applications as well in

order to create a custom network subsystem [22] [34]. Using

the Unsafe class [32] or Java DirectByteBuffers, memory can

be allocated off-heap to use it for sending and receiving data

with InfiniBand hardware (buffers must be registered with a

protection domain which pins the physical memory).

jVerbs [38] are a proprietary verbs implementation for Java

developed by IBM for their J9 JVM. Using a JNI layer,

the OFED C-verbs implementation is accessed. “Stateful verb

methods” (StatefulVerbsMethod Java objects) encapsulate the

verb to call including all parameters with parameter serializa-

tion to native space. Once the object is prepared, it can be

executed which actually calls the native verb. These objects

can be re-used for further calls with the same parameters to

avoid repeated serialization to native space and creating new

objects which would burden garbage collection.

Jdib [26] is a library wrapping native C-verbs function calls

and exposing them to Java using a JNI layer. According to the

authors, various methods, e.g. queue pair data exchange on

connection setup, are abstracted to create an easier to use API

for Java programmers. The fundamental operations to create

protection domains, create and setup queue pairs, as well as

posting data-to-send to queues and polling the completion

queue seem to wrap the native verbs and do not introduce

additional mechanisms like jVerbs’s stateful verb calls. We

were not able to obtain a copy of the library for evaluation.

III. A BENCHMARK FOR EVALUATING INFINIBAND

LIBRARIES FOR JAVA

To evaluate and compare the different libraries available, a

common set of benchmarks had to be implemented for two

programming languages (C and Java) and two programming

models (sockets and verbs). Existing solutions like the iperf [8]

tools for TCP/UDP or the ibperf tools included in the OFED

package [13] do not cover all libraries we want to evaluate

and do not implement all necessary benchmark types.

In this paper, we want to evaluate most of the available and

still maintained libraries (§II) in a fundamental point-to-point

setup regarding throughput and latency. Like other benchmarks



(e.g. OSU [14]), we want to determine the maximum through-

put on uni-directional and bi-directional communication (e.g.

application pattern asynchronous “messaging”), as well as one-

sided latency and full round-trip-time (RTT) with a ping-

pong communication pattern (e.g. application pattern “request-

response”). These benchmarks allow us to determine the

fundamental performance of the presented solutions and are

commonly used to evaluate network hardware or applications

[8], [13], [14]. The evaluation of higher-level primitives, e.g.

collectives, and all-to-all communication is not possible with

fundamental low-level interfaces. These require a higher-level

networking stack with connection management and a complex

pipeline which is not the focus of this paper.

The Java InfiniBand Benchmark (JIB) provides implemen-

tations of the listed benchmarks for two verbs-based solutions

(C-verbs, jVerbs) and three socket-based solutions (IPoIB, lib-

vma, JSOR). It is open source and available at Github [9]. Each

benchmark run is configurable using command line parameters

such as the benchmark type (uni-/ bi-directional, one-sided

latency or ping-pong), the message size to send/receive and

the number of messages to send/receive. For convenience,

we refer to the payload size sent as messages independent

of how it is transferred (e.g. sockets, verbs RDMA or verbs

messaging). The context and all buffers are initialized before

the benchmark is started. Afterwards, the current instance

connects to the remote specified via command line parameters.

Once the connection is established, a dedicated thread is

started for sending data and another thread for receiving.

Today, we can expect this to run on a multicore system

with at least two physical cores to ensure that the send and

receive thread can be run simultaneously to avoid blocking one

another. The benchmark instance sends the specified number

of messages to the remote and measures the time it takes to

send the messages. Furthermore, we utilize the performance

counters of the InfiniBand HCA to determine the overhead

added by any software defined protocol which is especially

relevant for the socket-based libraries (§IV-A).

For socket-based libraries, the benchmark is implemented

in Java using TCP sockets with the ServerSocket, DataInput-

Stream and DataOutputStream classes. Sending and receiving

data is executed synchronously in a single loop on each thread.

No further adjustments are required because all libraries redi-

rect the normal send and receive calls of the socket libraries.

With IPoIB, we use the address of the exposed ib0 device.

The libvma library is pre-loaded to the benchmark using

LD PRELOAD. In order to use JSOR, we run the benchmark

in the J9-JVM and provide a configuration file specifying IP-

addresses whose traffic is redirected over the RDMA device.

The verbs-based benchmarks are implemented in C and

Java. Both implementations use RC queue pairs for RDMA

and message operations. UD queue pairs can also be used

for message operations but this option is currently not imple-

mented. On RDMA operations, we did not include immediate

data with a work request which would require a work comple-

tion on the remote (optional for signalling incoming RDMA

operations on the remote). When sending RDMA operations

to the HCA to determine the maximum throughput, we do not

repeatedly add one work request to the send queue, then poll

the completion queue waiting for that single work request to

complete. This pattern is commonly used in examples [16]

and even larger applications [15] but does not yield optimal

throughput because the queue of the HCA runs empty very

frequently. To keep the HCA busy, the send queue must be

kept filled at all times. Thus, we fill up the send queue

to the maximum size configured, first. Then, we poll the

completion queue and once at least one completion is available

and processed, we immediately fill the send queue again.

Naturally, this pattern cannot be applied to the ping-pong

latency benchmark executing a request-response pattern.

This data path is implemented in both, the C-verbs and

jVerbs implementation. The C implementation uses the verbs

implementation included in the OFED package and serves as a

reference for comparing the maximum possible performance.

To establish a remote connection, queue pair information is

exchanged using a TCP socket. The jVerbs implementation

has to implement the operations of the data path using the

previously described stateful verbs methods. Thus, the sending

of data on the throughput benchmark had to be altered slightly.

A single stateful verb call for posting work requests to the send

queue always posts 10 elements. Hence, new work requests are

added to the send queue once at least 10 work completions

were polled from the completion queue. We create all stateful

verbs calls before the benchmark and re-use them to avoid

performance penalties. On connection creation, queue pair

information is exchanged with the API provided by jVerbs

which is using the RDMA connection manager.

IV. EVALUATION

In this Section, we present the results of the evaluation

of the socket-based libraries/implementations IPoIB, libvma

and JSOR and the verbs-based libraries C-verbs and jVerbs

using our benchmark suite (§III). We analyze and discuss basic

performance metrics regarding throughput and latency using

typical benchmarks with a two node setup with 56 Gbit/s

and 100 Gbit/s interconnects. A summary of the benchmarks

executed with each library/implementation is given in Table I.

Due to space constraints, we limit the discussion of the results

to selected conspicuities of the plotted data.

Library/Benchmark OV Uni-dir Bi-dir Lat PingPong

C-verbs rdmaw x x x
C-verbs rdmar x x x
C-verbs msg x x x x x
jVerbs rdmaw x x x
jVerbs rdmar x x x
jVerbs msg x x x x x

IPoIB x x x x x
JSOR x x error x x
libvma x x x x x

TABLE I
OVERVIEW OF LIBRARIES EVALUATED WITH BENCHMARKS AVAILABLE.

ABBREVIATIONS: OV = OVERHEAD, RDMAW = RDMA WRITE, RDMAR =
RDMA READ, MSG = MESSAGING VERBS















braries. We evaluate the available solutions on two hardware

configurations with 56 Gbit/s and 100 Gbit/s InfiniBand NICs.

As expected, the socket-based solutions provide a transparent

solution requiring low effort to get additional performance

from InfiniBand hardware for existing socket-based software

without requiring any changes. But, this comes at the price

that the full potential of the hardware cannot be exploited,

especially on bi-directional communication. Compared to the

performance of Gigabit Ethernet, latency is at least halved on

56 Gbit/s hardware and can even be as low as 2-5 µs for

small messages. Regarding throughput, one can get an at least

ten-fold increase and it is even possible to saturate 56 Gbit/s

hardware on uni-directional communication.

To leverage the true potential of the hardware, the verbs-

based solutions are a must. Overall, jVerbs is performing

very well and brings nearly native performance on RDMA

operations to the Java space with a few minor performance dif-

ferences. But, the inexplicable limited performance of jVerbs

messaging verbs does not allow any meaningful usage in

applications. With C-verbs, the full potential of the hardware

can be exploited on all communication methods. Thus, one has

to decide whether to stay entirely in Java space but having to

rely on the proprietary JV9 JVM or having the freedom to

write a custom network subsystem using C-verbs with JNI

which is more time consuming and challenging.

Our personal recommendations regarding the evaluation: we

consider libvma a good solution to benefit from some of the

performance of InfiniBand hardware without having to invest

a significant amount of time and work and not depending on

a proprietary JVM. But, we think that it is worth spending

additional work and time on implementing a custom network

subsystem based on C-verbs to leverage the true performance

of InfiniBand hardware if required for a target application.
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Chapter 5 Leveraging High-Speed and Low-Latency Networks in Java Applications

5.4.2 DXNet: A Transport Agnostic Network Subsystem for Highly
Concurrent Java Applications

This section presents the contributions of the proposed publication of DXNet [12]. DXNet is
a network stack that implements event-based messaging with asynchronous and synchronous
messaging primitives and is optimized for highly concurrent Java applications. DXNet focuses
on sending and receiving of small messages with a fast and efficient serialization of Java objects.
DXNet’s transport interface allows implementing transports for different network interconnects.
Currently, DXNet supports socket-based Ethernet [17] as well as verbs-based InfiniBand (see
Section 5.4.3). This publication presents the results of a close collaboration of Dr. Kevin
Beineke and Stefan Nothaas who worked on DXNet.

DXNet is based on DXRAM’s initial network subsystem. The architecture was revised by
Dr. Kevin Beineke and Stefan Nothaas to address the requirements of the target application
domain. Dr. Kevin Beineke replaced inefficient data structures, optimized thread handling, and
buffer processing to improve overall throughput and latency. Stefan Nothaas further refactored
DXNet to a hardware agnostic network stack, introduced a modular transport layer, extended
the built-in benchmark for multi-server communication and optimized DXNet’s flow control
mechanism for the InfiniBand transport. Optimizations of the latter were adapted on the
Ethernet transport by Dr. Kevin Beineke. With the new transport interface, DXNet was
optimized for the InfiniBand transport implementation (see Section 5.4.3).

The Ethernet transport was refactored and maintained by Dr. Kevin Beineke and is not
further discussed in this thesis. The InfiniBand transport was developed and maintained by
Stefan Nothaas. To ensure low-latency and high throughput, especially for small messages, on
high-speed networks like 10 GBit/s Ethernet and 56 Gbit/s InfiniBand, Dr. Kevin Beineke and
Stefan Nothaas worked in close collaboration to continuously improve DXNet making it one of
the fastest messaging systems for concurrent Java applications.

The following paragraphs describe the specific apportionment of work for this publication to the
best of the knowledge of both authors and is an excerpt from Dr. Kevin Beineke’s thesis [11].

“Dr. Kevin Beineke designed and implemented the concurrent de-/serialization including work-
flow optimizations and thread communication, the data structure pooling, the loopback, and
Java.nio transports and the basic DXNet benchmark. Furthermore, most of the ORB and CUB
were designed by Dr. Kevin Beineke, with contributions by Stefan Nothaas. Other lock-free
data structures were inspired by the ORB and implemented by both authors as well as the
parking strategy which emerged in an incremental process.”

”Stefan Nothaas initiated many optimizations by designing Ibdxnet and discovering bottlenecks
in DXNet’s core shared by all transports which were hardly detectable with slower networks.
Furthermore, Stefan Nothaas introduced the idea of using lock-free data structures to improve
the performance of DXNet. Despite contributing performance optimizations and debugging,
Stefan Nothaas also implemented interfaces for the serialization and accessing direct ByteBuffers
with Java’s Unsafe class. Additionally, Stefan Nothaas invested much time in structuring the
code and a statistics module to aid in investigating DXNet’s performance.”
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”Prof. Dr. Michael Schöttner took part in many discussions about the design and evaluation of
DXNet.“

”Dr. Kevin Beineke structured and wrote most of the paper, including all figures but Figures 2
and 3 whose initial design was contributed by Prof. Dr. Michael Schöttner. Prof. Dr. Michael
Schöttner also helped in improving comprehensibility and reviewed the paper several times.
Stefan Nothaas contributed in writing the initial versions of section I and II and designing a
figure of DXNet’s architecture which was used for Figure 1 and 5. Stefan Nothaas reviewed the
paper several times as well and helped improve it.”
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Abstract—Big data and large-scale Java applications often
aggregate the resources of many servers. Low-latency and high-
throughput network communication is important, if the appli-
cations have to process many concurrent interactive queries.
We designed DXNet to address these challenges providing fast
object de-/serialization, automatic connection management and
zero-copy messaging. The latter includes sending of asynchronous
messages as well as synchronous requests/responses and an event-
driven message receiving approach. DXNet is optimized for small
messages (< 64 bytes) in order to support highly interactive web
applications, e.g., graph-based information retrieval, but works
well with larger messages (e.g., 8 MB) as well. DXNet is available
as standalone component on Github and its modular design is
open for different transports currently supporting Ethernet and
InfiniBand. The evaluation with micro benchmarks and YCSB
using Ethernet and InfiniBand shows request-response latencies
sub 10 µs (round-trip) including object de-/serialization, as well
as a maximum throughput of more than 9 GByte/s.

Keywords—Message passing; Ethernet networks; InfiniBand;
Java; Data centers; Cloud computing;

I. INTRODUCTION

Today, many interactive applications are built upon very
large graphs, e.g., social networks [1], comparing molecu-
lar structures in bioinformatics [2] or mobile network state
management systems [3]. These graphs consist of billions of
small data objects which are typically held in memory to
provide low latency access. But, as data volumes grow fast
it becomes necessary to aggregate many servers or move to
expensive super computers. Usually, big data applications are
executed in cloud data centers or on high performance clusters
which provide fast networking with 10 GBit/s and beyond.
Distributed and parallel processing of in memory data based on
very fast networks requires the software stack to be designed
carefully, especially if latency is important.

Many big data applications are written in Java and benefit
from platform independence and a rich selection of libraries
supporting the programmer in designing distributed and paral-
lel applications [1], [4]–[8]. This includes many possibilities
to exchange data between Java servers, ranging from high-
level Remote Method Invocation (RMI) [9] to low-level byte
stream processing using Java sockets [10] or the Message
Passing Interface (MPI) for HPC applications [11]. DXNet
does not aim at replacing any of those solutions but to rather
complement the spectrum.

DXNet is a network library for Java-based applications
which has originally been designed for DXRAM a distributed
in-memory key-value store and DXGraph a graph processing

framework built on top of DXRAM. We provide DXNet as a
standalone library through GitHub [12] as we think it could
be useful for many other Java-based big data applications.

The contributions of this paper are:

• the DXNet architecture (highly concurrent and trans-
port agnostic);

• zero-copy, parallel de-/serialization of Java objects;
• lock-free, event-driven message handling;
• evaluations with 5 GBit/s Ethernet (Microsoft Azure)

and 56 GBit/s Infiniband networks.

The evaluation shows that DXNet efficiently handles high
loads with dozens of application threads concurrently sending
and receiving messages. Synchronous request/response pat-
terns can be processed in sub 10 µs RTT (Round-Trip Time)
with Infiniband transport (including object de-/serialization).
And, high throughput is achieved even with smaller payloads,
e.g., bandwidth saturation with 1-2 KB payload on InfiniBand
and 256 byte payload on Ethernet.

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section III.
In Section IV, we describe the lock-free Outgoing Ring Buffer
followed by the concurrent serialization in Section V. The
next section explains the event-driven processing of incoming
data. Sections VII and VIII present thread parking strategies
and transport implementation aspects. Evaluation results are
discussed in Section IX, followed by the conclusions.

II. RELATED WORK

DXNet combines high-level thread and connection man-
agement and a concurrent object de-/serialization with lock-
free, event-driven message handling and zero-copy data trans-
fer over Ethernet and InfiniBand (extensible). To the best of
our knowledge, no other Java-based network library provides
these communication semantics. Because of space constraints,
we compare DXNet with the most relevant related work, only.

Distributed shared memory (DSM) is re-gaining attraction
due to networks supporting RDMA but is not an option for
most existing Java applications as DSM requires a different
application architecture and an integration in the heap man-
agement of the Java Virtual Machine (JVM) [13].

Java’s RMI [9] provides a high level mechanism to
transparently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized and references result in a serialization
of the object itself and all reachable objects (transitive closure)
which can be costly [14]. Missing classes can be loaded from



remote servers during RMI calls which is very flexible but
introduces even more complexity and overhead. The built-in
serialization is known to be slow and not very space efficient
[14], [15]. Furthermore, method calls are always blocking.

Manta [16] improves runtime costs of RMI by using a
native static compiler. KaRMI [17], a drop-in replacement
for Java RMI, is implemented in Java without any native
code supporting standard Ethernet. KaRMI also replaces Java’s
built-in serialization reducing overhead and improving overall
performance. DXNet does not provide transparent remote
method calls but an efficient parallel serialization which avoids
copying memory. DXNet is primarily designed for parallel
applications and high concurrency, RMI for Web applications
and services.

MPI is the state-of-the-art message passing standard for par-
allel high performance computing and provides very efficient
message passing for primitive, derived, vector and indexed data
types [18]. As MPI’s official support is limited to C, C++ and
Fortran, Java object serialization is not provided. Nevertheless,
MPI is available for Java applications through implementations
of the MPI standard in Java [19] or wrappers of a native library
[20].

MPI-2 introduced multi-threading for MPI processes [18]
enabling well-known advantages of threads. Prior to MPI-2,
intra-node parallelization demanded the execution of multiple
MPI processes (and the use of more expensive IPC). To enable
multi-threading, the process has to call MPI_init_thread
(instead of MPI_init) and to define the level of thread
support ranging from single-threaded execution over funneled
and serialized multi-threading to complete multi-threaded ex-
ecution (every thread may call MPI methods at any time). A
lot of effort has been put into the last mode to provide a high
concurrent performance [21], [22]. Still, the performance is
limited compared to a message passing service designed for
multi-threading [21].

One of DXNet’s main application domains are on-
going applications with dynamic node addition and re-
moval (not limited to), e.g., distributed key-value stores
or graph storages. The MPI standard defines the re-
quired functionality for adding and removing processes (over
Berkeley Sockets with MPI_Comm_join or by calling
MPI_Open_port and MPI_Comm_accept on the server
and MPI_Comm_connect on the client). Unfortunately, most
recent MPI implementations are still not supporting these
features entirely [23], [24]. Furthermore, job shutdown and
crash handling is also limited [24]. MPI is particularly suitable
for spawning jobs with finite runtime in a static environment.
DXNet, on the other hand, was designed for up- and down-
scaling and handling node failures. In [25], DXNet was used
in the in-memory key-value store DXRAM to examine crash
behavior and scalability.

High level mechanisms for typical socket-like interfaces
supporting Gigabit Ethernet (and higher) are provided by
Java.nio [26], [27], Java Fast Sockets (JFS) [28] or High Per-
formance Java Sockets [29]. DXNet uses Java.nio to implement
a transport for commonly used Ethernet networks.

III. OVERVIEW

DXNet relieves programmers from connection manage-
ment, provides transferring Java objects (beyond plain Java.nio
stream sockets) and allows the integration of different under-

Figure 1. Simplified DXNet Architecture

lying network transports, currently supporting reliable verbs
over InfiniBand and TCP/IP over Ethernet. In this section, we
give a brief overview of the interfaces and functionality of
DXNet (see Fig. 1). Further details can be found in the GitHub
repository [12].

A. Basic Functionality

Automatic connection management. DXNet abstracts
physical network addresses, e.g., IP/Port for Ethernet or GUID
for InfiniBand, by using nodeIDs. The aforementioned node
address mappings are registered in the library and are mutable
for server up- and downscaling. A new connection is opened
automatically when a message needs to be sent to another
server which is not connected thus far. In case of errors, the
library will throw exceptions to be handled by the application.
Connections are closed based on a recently used strategy, if
the configurable connection limit is exceeded, or in case of
network errors which may be reported by the transport layer
or detected using timeouts, e.g., absent responses.

Sending messages. DXNet sends messages asynchronously
to one or multiple receivers but also provides blocking re-
quests (to one receiver) which return when the corresponding
response is received (association of response and requests
is transparently managed by DXNet). Messages are Java
objects and serialized by using DXNet’s fast and concur-
rent serialization (providing default implementations for most
commonly used objects, see Section V). The serialization
writes directly into the Outgoing Ring Buffer (ORB) which
aggregates messages for high throughput (see Section IV) and
is allocated outside of the Java heap. Sending data is performed
by a decoupled transport thread based on event signaling.
DXNet also includes a flow control mechanism, which is not
further described here.

Receiving messages. When incoming data is detected by the
network transport, it requests a pooled native memory buffer
(avoiding to burden the Java garbage collector) and copies the
data into the buffer (see Section VI and Fig. 1). The buffer con-
taining the received data is then pushed to the Incoming Buffer
Queue (IBQ), a ring buffer storing references on buffers which
are ready to be deserialized (see Section VI). The buffer pool
and the IBQ are shared among all connections. The buffers of
the IBQ are pulled and processed asynchronously by dedicated
threads. Message processing includes parsing message headers,
creating the message objects and deserializing the payload
data. Finally, the received message is passed back to the
application (as a Java object) using a pre-registered callback
method.

A brief overview of DXNet’s API is shown in Table I.



TABLE I. DXNET’S APPLICATION INTERFACE

new DXNet(config,nodeMap) initialize/configure (max. connections, server address mappings etc.)

MyMessage extends Message/Request/Response define message (serializable Java object) by implementing three methods

exportObject(exporter) serialize message with predefined methods from exporter

importObject(importer) deserialize message with predefined methods from importer

sizeOfObject() return payload length

sendMessage(message) send message asynchronously (receivers defined in message instance)

sendSync(request,timeout) send request/response synchronously

MyReceiver implements MessageReceiver receive messages/requests as Java objects

onIncomingMessage(message) pre-registered callback handler function

B. High Throughput and Low Latency

A key objective of DXNet is to provide high throughput
and low latency messaging even for small messages found in
many graph applications, for instance. We achieve this with
a thread-based and event-driven architecture using lock-free
synchronization, zero-copy, and zero-allocation.

Multithreading. All processing steps like serialization,
deserialization, message transfer and processing are handled by
multiple threads which are decoupled through events allowing
high parallelism.

Lock-free event signaling. Dispatching processing events
between threads is implemented using lock-free synchroniza-
tion allowing low-latency signaling. CPU load is managed
without impairing latency by parking currently idling threads.

Fast serialization. DXNet implements fast serialization of
complex data structures and writes data directly into an ORB.
The ORB can be accessed by many threads in parallel and
ORBs are not shared between different connections increasing
concurrency even more. The processing of incoming messages
is also highly scalable because of the event-driven architecture.

Zero copy. DXNet does not copy data for messaging
(except de-/serialization). For TCP/IP, we rely on Java’s Direct-
ByteBuffers and for InfiniBand on verbs pinning the buffers
used by DXNet.

Zero allocation. DXNet uses object pooling wherever
possible avoiding time-consuming instance creation and, even
more important, not burdening the Java garbage collector
which may block an application in case of low memory for
multiple seconds.

C. Network Transport Interface

DXNet supports different underlying reliable network
transports. The integration of a new transport protocol requires
implementing just five methods:

• signal data availability on connection (callback);

• pull data from ORB and send it;

• push received data to IBQ;

• setup a connection;

• close a connection.

IV. LOCK-FREE OUTGOING RING BUFFER

The Outgoing Ring Buffer (ORB) is a key component for
outgoing messages and essential for providing high throughput
and low latency. The latter is achieved by a highly concurrent
approach based on lock-free synchronization.

Each connection has one dedicated ORB allowing concur-
rent processing of different connections. The ORB itself allows

Figure 2. ORB for parallel serialization and aggregating out-
going messages.

many application threads serializing their outgoing objects
concurrently and directly into the ORB. The ORBs are allo-
cated outside of the Java heap in native memory allowing zero-
copy sending by the network transport. Directly serializing
Java objects into the ORB is more efficient than serializing
each object in a separate buffer and combining them later by
copying these buffers. The ORB preserves message ordering
as given by the application threads and aggregates smaller
messages in order to achieve high throughput. We decided to
use lock-free synchronization for concurrency control which
is more complex but more efficient with respect to latency
compared to locks.

A. Basic Lock-Free Approach

The ORB has a configurable but fixed size and is accessed
concurrently by several producers (application threads) and one
consumer (dedicated transport thread for sending messages).
The configurable buffer size limits the maximum number of
messages/bytes to be aggregated. For our experiments (see
Section IX), we used 1 MB and 4 MB ORBs.

Fig. 2 shows the ORB with three application threads
producing data (serialization cores). All pointers move forward
from left to right with a wrap around at the end. The white
area between FP and BP is free memory.

Messages available for sending (fully serialized) are found
by the consumer (sending core) between BP and FC . The
consumer sends aggregated messages and moves BP forward
accordingly but not beyond FC . All messages between FC and
FP are not yet ready for sending as parallel serialization is still
in progress.

FP is moved forward concurrently (if the buffer has enough
space left) by the producers using a Compare-and-Set (CAS)
operation, available in Java through Unsafe (see Section
IV-C). Therewith, each producer can concurrently and safely
store the position of FP in a local variable F ′

P and adjust FP

by its message size. All F ′

P pointers (thread-local variables)
are used by the associated producer for writing its serialization
data concurrently at the correct position in the ORB. The
light-colored arrows in Fig. 2 show the starting point of
each serialization core (producer) whereas the solid-colored



Figure 3. Catch-Up Buffer (CUB). Allowing faster producers
returning early and not wasting CPU cycles for waiting.

ones show the current position. In the example, the purple
producer finished its serialization first and the green and orange
producers are still working.

FC is moved forward by producers when messages are fully
serialized. In Fig. 2, the purple producer finishes before the
orange and green ones but cannot set FC to FP because the
two preceding messages (from the other producers) have not
been completely serialized yet. Each producer can easily detect
unfinished preceding messages by comparing its starting point
(light-colored arrow) with FC . Obviously, the purple starting
point is not equal to FC . A naive solution lets fast producers
wait for slower ones. As we do not want to impact latency
we cannot use locks/conditions here. An alternative solution is
to busy-poll until all preceding messages have been serialized.
Finally, FC can be set forward and the thread can return.

B. Optimized Lock-Free Solution

The basic solution already avoids the overhead of locks, but
with increasing number of parallel serializations the probability
of threads having to wait for slower ones increases. The busy-
polling can easily overload the CPU. Reducing the polling
frequency of producers by sleeping (> 1 ms) or parking (> 10
µs) increases latency too much. Instead, we propose a solution
which avoids having fast producers waiting for slower ones
by leaving a notice and returning early to the application. This
notice includes the message size so that slower producers can
move FP forward for the faster ones. But, message ordering
must be preserved.

Our solution is based on another configurable fixed-size
ring buffer called Catch-Up Buffer (CUB). As mentioned
before, we allocate one ORB for each connection which is
now complemented by one associated CUB (e.g., with 1000
entries) for every ORB. The CUB is implemented using an
integer array, each entry for one potential left-back notice from
faster producers. An entry will be 0 if there is no notice or
> 0 representing the message size if a producer finished faster
than its predecessors. In the latter case, a slower producer will
move forward FP by the left-back message size.

Fig. 3 shows a CUB corresponding to the ORB shown in
Fig. 2. The front pointer F is moved concurrently using a CAS
operation (similar to FP in the ORB). The colored F ′ are the
thread-local copies needed by the producers to leave back a
potential notice at the correct position in the CUB. The 64 is a
notice from the purple producer (its message size, filled purple
box in Fig. 2.) who finished fastest and returned already to the
application. The green and orange producers are still working
(0 = no notice). If the green producer would now finish before
the orange one it would also fill in its message size and return
immediately.

If the orange producer finishes next, it moves forward FC

in the ORB as well as B in the CUB (leaving no notice). The
green one will do the same, but twice as it will detect the notice

(64) after committing its serialization and thus move forward
FC in the ORB by 64 bytes and also B (now pointing to F
in the CUB, indicating we are done).

It is important that the order of entries in the ORB and
the CUB is consistent, meaning, we need to move forward F
and FP , as well as B and FC synchronously. We do this, by
storing each of those two indexes in one 64-bit long variable
in Java and, as the CAS operation is working atomically on
64-bit longs, we can avoid locks.

Two more challenges remain, namely large messages which
cannot be serialized at once and a potential ORB overflow
during the serialization (both discussed in Section V).

C. Native Memory

The ORB is allocated in native memory (off Java heap)
allowing the underlying network transports to send messages
without copying them. The class Unsafe provides basic meth-
ods for memory allocation, memory copy and reading/writing
primitives from/into native memory. Furthermore, Unsafe is
very fast because of extensive optimizations and is widely used
in third-party libraries [30].

We favor Unsafe over DirectByteBuffers [27] for two
reasons. First, access is faster (e.g., missing boundary checks
we already handle on higher level). Second, Unsafe is more
versatile because it allows accessing memory which was
allocated in C/C++ code (e.g., used for InfiniBand).

V. SERIALIZATION

DXNet is designed to send and receive Java objects which
need to be de-/serialized from/into a byte stream of messages.
The built-in serialization of Java (interface Serializable)
as well as file-based solutions are too slow and have a large
memory footprint [31] (because of automatic un-/marshaling
and the use of separators). Other binary serializer like Kyro
[32], for instance, either do not support writing directly into
native memory or interruptible processing which is needed
by DXNet (see Section V-A and V-B). We propose a new
serializer addressing all these limitations while still being
intuitive to use. The programmer has to implement two in-
terfaces Importable and Exportable. The former re-
quires implementing the method importObject(), the
latter exportObject() and both sizeOfObject().

A. Export

Exporter. The serialization (or export) of Java objects re-
quires an exporter which is passed to exportObject().
The exporter class provides default method implementations
for the serialization of all primitives, compact numbers and
Strings and can be extended for supporting custom types (all
types can also be arranged in arrays). Compact numbers are
coded integers using a variable number of bytes as needed to
reduce space overhead.

The exporter writes directly into the ORB by using Unsafe
(see Section IV). It stores the start position within the ORB, the
size of the ORB and the current position within the message.

Exporting an object involves two steps: exporting the mes-
sage header (see Fig. 4) which has a fixed size and exporting
the variable-sized payload by calling exportObject().

DXNet uses its default exporter for serialization
which is optimized for performance. It is complemented by





A. Parallel Message Deserialization

Filled buffers are pushed by the transport thread into the
IBQ. The IBQ is a basic ring buffer for one consumer and one
producer and is synchronized using memory fences. The IBQ
may be full and require the transport thread to park for a short
moment and retry (see Section VII).

High throughput requires a parallel deserialization. As the
received messages of the incoming stream can be split over
several incoming buffers (see Section V-B), the buffer pro-
cessing must be in-order and we need a two-staged approach
to enable concurrency. The MCC thread pulls the buffer entries
from the IBQ, deserializes all containing message headers
(using relevant state information stored in the corresponding
connection object) and pushes them into the message header
store. Message payload deserialization based on the message
headers can then be done in parallel by the message handler
threads. This approach is efficient as the time-consuming pay-
load deserialization and message object creation is parallelized.

The deserialization of split messages’ payload (last message
in buffer, which is not complete) must be in-order as well
because all preceding parts of a message must be available
to continue the deserialization of a split message. We address
this situation by the MCC detecting and deserializing not only
the header but the payload fraction within the current buffer,
as well, for the split message. The rest of the message in the
next buffer can be read by a message handler, again.

Split message headers are not a problem as deserialization of
message headers is always done by the MCC which can store
incomplete message headers within the connection object and
continue with the next buffer.

Message header store. As mentioned before, the MCC
pushes complete message headers to the message header store.
The latter is implemented as a lock-free ring buffer for N
consumers and one producer. Synchronization overhead is
reduced by the MCC buffering the small message headers and
pushing them in batches into the message header store. The
batch size is limited but configurable, e.g., 25 headers.

Message header pool. Message headers are pooled, as well,
in another single consumer, multiple producers lock-free ring
buffer. Furthermore, message headers are pushed and pulled in
batches. To reduce the probability of multiple message handler
threads returning message headers at the same time, the batch
sizes differ for every message handler.

Returning of buffers. A pooled buffer must not be returned
before all its messages haven been deserialized. Because of
the concurrent deserialization and split messages, we use
the MCC incrementing an atomic counter for every message
header pushed to the message header store (more precisely, the
counter is increased once for every batch of message headers).
Accordingly, the message handlers decrement the counter for
every deserialized message. When all messages have been
deserialized, the buffer can be safely returned to the pool.

We could run out of buffers during high throughput, if
the MCC deserializes headers faster than the message handler
threads can handle. Although we can scale up the number
of incoming buffers, we prefer to throttle the MCC when a
predefined number of used buffers is exceeded to reduce the
memory consumption. Another benefit of limiting the amount
of incoming buffers is that all buffer states like the message
counters, the buffers’ addresses or the unfinished operations
which are filled for incomplete messages can be allocated once

and reused for every incoming buffer to be processed.
Message Ordering. DXNet allows applications to mark

messages and thus ensure message ordering on a stream/con-
nection. All marked messages are guaranteed to be processed
by the same message handler. All other steps preserve mes-
sage ordering by default. For achieving maximum throughput,
marking all messages is not advisable.

VII. THREAD PARKING STRATEGIES

Lock-free programming allows low-latency synchroniza-
tion but can easily overload a CPU by uncontrolled polling
using CAS operations. DXNet implements a multi-level flow
control with explicit message flow regulation and implicit
throttling if memory pools drain and queues fill-up. We address
three thread situations: blocked (the thread waits for another
thread/server finishing its work because a pool is empty or
queue full), colliding (failing CAS operation because another
thread entered a critical section faster) and idling (the thread
has nothing to do and waits for another thread/server commit-
ting new work).

Blocked thread. When blocked, the thread can park to
reduce the CPU load because it is too fast compared to other
threads/servers. However, the thread should not park for a long
period to avoid restraining other threads/servers. Experiments
showed that a sane park period is between 10 and 100 µs.
Java allows minimum parking times of around 10 to 30 µs
for a thread with LockSupport.parkNanos() for Linux
servers with x86 CPUs.

Colliding thread. When colliding, the thread will repeat the
CAS operation with updated values until successful because
the thread is about to commit something and this should
be done as fast as possible. However, reducing the collision
probability (e.g., the ORB optimization described in IV-B)
reliefs the CPU significantly.

Idling thread. This situation occurs, if a thread has nothing
to do at the moment, e.g., a transport thread polls an empty
ORB, the MCC polls an empty IBQ or a message handler polls
an empty message header store. However, new work events
can arrive within nanoseconds. Latency is minimized when
threads do not park or yield, but only as long as the CPU is
not overloaded. In case of CPU overload situations, parking
threads can reduce latency.

We address this with an overprovisioning detection com-
bined with an adaptive parking approach (10 to 30 µs), if
the number of active threads (application threads and network
threads) reaches a threshold, e.g., four times the number of
cores, see also Section IX-A for the evaluation.

Idling for longer periods, e.g., applications not exchanging
messages for a longer period of time, must be addressed,
too. DXNet detects this, e.g., a network thread idling for one
second (configurable time), and starts parking threads, if idling,
reducing CPU load to a minimum.

VIII. TRANSPORT IMPLEMENTATIONS

DXNet has an open architecture supporting different net-
work transport technologies. Currently, we have transport
implementations for TCP/IP over Ethernet (using Java.nio),
reliable verbs over Infiniband (based on JNI), and Loopback
(for evaluation). Because of space constraints, we will only
sketch some important aspects of these transports.









DXNet provides fast parallel serialization for Java objects,
automatic connection management, automatic message ag-
gregation and an event-driven message receiving approach
including a concurrent deserialization. DXNet offers high-
throughput asynchronous messaging as well as synchronous
request/response communication with very low latency. Fi-
nally, its architecture is open for supporting different transport
protocols. It already supports TCP with Java.nio and reliable
verbs for Infiniband. DXNet achieves high performance and
low latency by using lock-free data structures, zero-copy and
zero-allocation. The proposed ring buffer and queue structures
are complemented by different thread parking strategies guar-
anteeing low latency by avoiding CPU overload.

Evaluations on a private cluster and in the Microsoft Azure
cloud show message processing times of sub 300 ns resulting
in throughputs of up to 16 GByte/s which saturate the memory
bandwidth of a typical cloud instance. For the request/response
pattern, DXNet is able to provide sub 10 µs RTT latency using
the InfiniBand transport (sub 4 µs over Loopback). Finally,
DXNet is also able to efficiently handle highly concurrent
processing of many small messages resulting in throughput
saturations for Ethernet with 256 bytes payload and InfiniBand
with 1-2 KB payload.

The InfiniBand transport IBDXNet is work in progress and
final results will be published separately (throughput: >10.4
GByte/s). Future work also includes more experiments at larger
scales including comparisons with other network middlewares,
as well as evaluations using a 100 GBit/s InfiniBand network.
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5.4.3 Ibdxnet: An InfiniBand Network Subsystem for DXNet

This section presents two publications, one paper [92] and an extended report [90], proposing
the design of Ibdxnet. Ibdxnet is a transport for the DXNet messaging system to allow highly
concurrent Java applications to leverage the performance of low-latency InfiniBand hardware.
Ibdxnet consists of a native library with a dedicated subsystem to drive InfiniBand hardware
using the C-verbs library.

Our publications present a scalable pipeline for low-latency and high-throughput sending and
receiving of data using a ring-buffer data-structure. The author had to design and develop
InfiniBand support for DXRAM’s network subsystem from scratch using the C-verbs library to
ensure the highest degree of control over the hardware possible.

With documentation regarding efficient InfiniBand development being sparse and many (toy-)
examples available, which explain basic concepts only, development and optimization to reach
optimal performance were very challenging. Context switching from Java to native space
and vice versa imposes further latency considerations impacting performance (e.g., garbage
collection). Several key concepts which are essential for performance were, to the best of our
knowledge, either unknown or previously unpublished.

This thesis addressed all these challenges. Thus, DXNet with the IB transport using Ibdxnet
provides low-latency and high throughput for highly concurrent Java applications. In a
concurrent environment and on worst-case all-to-all communication, DXNet with the IB
transport even outperforms the well established MPI implementation MVAPICH2 (written in
C). With DXNet and Ibdxnet being open-source and published as separate libraries, any Java
application can benefit from this high degree of abstraction with single-digit latency and high
throughput.

In his master thesis [111], Michael Schlapa contributed initial research and evaluation of available
libraries to use InfiniBand hardware from Java applications. His thesis provided the foundation
for further prototypes and discussions on how to design and implement InfiniBand support for
DXRAM’s network subsystem.

The results lead to the design and implementation of a custom networking subsystem aiming at
providing low latency and high throughput when using InfiniBand in Java applications. Michael
Schlapa developed small prototype applications using the C-verbs library which served as a
reference for Stefan Nothaas to start his research.

Stefan Nothaas designed and implemented the native C++ library Ibdxnet which involved
several redesigns and refactoring iterations during the development process as documentation
and programming examples for InfiniBand hardware were sparse. To create a transparent and
abstract API for the application using Ibdxnet, DXNet had to undergo major refactoring phases
to support multiple types of transport (Ethernet and InfiniBand) sharing a common core with
data structures and parts of the processing pipeline as well as the DXNet API (see Section
5.4.2).
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Dr. Kevin Beineke and Prof. Dr. Michael Schöttner took part in many discussions about the
design and evaluation of DXNet with Ibdxnet. As already described in detail in Section 5.4.2,
the core of DXNet was a close collaboration of Dr. Kevin Beineke and Stefan Nothaas.

Stefan Nothaas wrote the paper and report and evaluated the systems presented. Stefan
Nothaas created all figures of the report excluding Figures 1 and 10 which were contributed by
Dr. Kevin Beineke. Prof. Dr. Michael Schöttner and Dr. Kevin Beineke helped in improving
comprehensibility and reviewed the report and paper several times.
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Abstract—In this paper, we describe the design and implemen-
tation of Ibdxnet, an InfiniBand transport to enable high through-
put and low-latency messaging for concurrent Java applications
with transparent serialization of Java objects using DXNet.
Ibdxnet applies best practices by implementing a dynamic and
scalable pipeline with RC QPs and messaging verbs using the
ibverbs library. A carefully designed JNI layer ensures minimal
overhead to connect the native Ibdxnet library to the Java
counterpart without impacting performance. Existing as well as
new multi-threaded Java applications can use DXNet’s event-
based architecture concurrently to send and receive messages
and requests transparently over InfiniBand with the Ibdxnet
transport. We compared DXNet with Ibdxnet to the InfiniBand
supporting MPI implementations FastMPJ and MVAPICH2.
DXNet’s performance for middle sized and large messages keeps
up with FastMPJ’s and MVAPICH2’s. For small messages,
DXNet clearly outperforms both systems especially in a multi-
threaded environment. Furthermore, we compared the two key-
value storages DXRAM, which uses DXNet with Ibdxnet, and
RAMCloud, which uses a custom network subsystem based on
ibverbs, using the YCSB with two workloads. On a graph data
workload, DXRAM outperforms RAMCloud with a five times
higher throughput of 7.96 mops on 40 nodes.

Index Terms—High-speed networks, Big data applications,
Distributed computing

I. INTRODUCTION

The ever growing amounts of data, for example in big

data applications, are addressed by aggregating resources in

commodity clusters or the cloud [23]. This concerns appli-

cations like social networks [9], [27], search engines [35],

simulations [36] or online data analytics [17], [44], [46].

Storing all data in-memory or caching major parts reduces

local data access times significantly especially for graph-based

applications processing billions of very small data objects

(< 64 bytes) [13], [32], [42].

A lot of big data applications are written in Java or rely on

Java-based frameworks, e.g. Hadoop [30], Apache Kafka [25],

Hazelcast [19] or InfiniSpan [1]. Typically, these applications

use many threads to fully utilize all available cores on each

server. There are embarrassingly parallel algorithms working

well on batch processing frameworks, e.g. based on MapRe-

duce. However, many algorithms have data dependencies and

require low-latency remote data access in order to allow

scalability with the number of nodes. Examples are machine

learning algorithms (e.g. neural networks, deep learning) [43],

data-mining programs (e.g. PageRank [35], random walk,

graph coloring) as well as graph-based bioinformatics applica-

tions. As mentioned above, graphs are composed of potentially

trillions of small data objects. Thus, the algorithm exchanges

many small network packets with remote nodes often resulting

in challenging all-to-all communication patterns.

Java applications as well Java-based big-data frameworks

use mainly TCP sockets over Ethernet provided by Java NIO.

Java NIO sockets are fast but cannot exploit the potential

of high-speed networks like InfiniBand. One transparent ap-

proach is to use IP over InfiniBand (IPoIB) [24] which is

known to bring some benefits but far from the full potential

of InfiniBand [45]. This can only be achieved by using native

InfiniBand verbs. We analyzed the few available solutions,

such as a built in verbs implementation in the JVM or

libraries redirecting socket traffic over InfiniBand but none can

provide optimal performance especially for high concurrency

and many small network packets (§II).

In this paper, we present Ibdxnet, an InfiniBand-based

transport implementation for the Java-based network subsys-

tem DXNet [12]. DXNet provides high throughput and low-

latency asynchronous and synchronous messaging for many

concurrent threads accessing the network [13], [16], [18].

DXNet offers sending and receiving of messages with trans-

parent serialization of messaging objects, automatic connec-

tion management, is optimized for high concurrency on all

operations by implementing lock-free synchronization and is

implemented in Java. Ibdxnet implements a native subsystem

to interface with the ibverbs library for sending and receiving

data over InfiniBand hardware. A carefully designed JNI layer

is used to efficiently connect it to the transport implementation

of DXNet in Java.

We compared DXNet with Ibdxnet to MVAPICH2 and

FastMPJ, two MPI implementations supporting InfiniBand

(§VI). We used typical uni- and bi-directional network bench-

marks to evaluate throughput and latency with messages sizes

up to 1 MB. DXNet outperforms FastMPJ already in single-

threaded mode, especially on small messages and is on par

with the performance of MVAPICH2. Using multiple applica-

tion threads and message handlers, DXNet’s throughput can

be further increased outperforming MVAPICH2 up to twofold.

Furthermore, we compared the Java-based in-memory key-



value storage DXRAM, which uses DXNet as its network

subsystem, to the in-memory key-value storage RAMCloud.

We used the Yahoo! Cloud Service Benchmark (YCSB) with

two workloads to evaluate the pure network performance of

both systems (§VII). DXRAM outperforms RAMCloud on

both workloads and shows scalability with up to 40 nodes.

The contributions of this paper are:

• The design and implementation of a fast InfiniBand

transport for distributed and parallel Java applications not

requiring any modification to the JVM

• Automatic, scalable and concurrent connection manage-

ment allowing transparent dynamic up- and downscaling

• Extensive experiments and comparisons to MVAPICH2,

FastMPJ and within key-value stores (DXRAM and

RAMCloud) showing the benefits of the proposed solu-

tion

With DXNet and the transport Ibdxnet being open source

and available at Github, we provide a network subsystem with

InfiniBand for simple and fast data exchange using messages

and requests for new and existing Java applications.

The remaining paper is structured as follows: Section II

presents related work followed by Section III giving a brief

introduction to DXNet with its key-features. Section IV gives

an overview of the architecture and describes the details of

the ibverbs-based transport Ibdxnet in further sub-sections.

Section V describes briefly how the native Ibdxnet library

connects to the Java transport interface in DXNet. Section VI

presents the results of the experiments with MVAPICH2 and

FastMPJ. Section VII presents the results of the YCSB com-

paring DXRAM (using DXNet) to RAMCloud. Conclusions

are located in Section VIII.

II. RELATED WORK

We consider two categories for related work: low(er)-level

network stacks and networking middleware with higher-level

primitives and programming models. Because of limited space,

we focus only on solutions which support InfiniBand.

Before developing Ibdxnet and the InfiniBand transport for

DXNet, we evaluated available (low-level) solutions for lever-

aging InfiniBand hardware in Java applications. This includes

using NIO sockets with IP over InfiniBand (IPoIB) [24], the

Socket Direct Protocol (SDP) [22], IBM’s implementation of

the verbs API in Java called jVerbs [39], IBM’s Java sockets

over RDMA (JSOR) [41], Mallanox’s libvma [2] library for

sockets and native C-verbs with ibverbs. All solutions were

evaluated with uni- and bi-directional microbenchmarks on a

56 GBit/s InfiniBand network. The results show that socket-

based solutions and jVerbs cannot provide an adequate base

performance in throughput and latency compared to native C-

verbs implementations, especially on small message sizes and

on bi-directional communication. Furthermore, every solution

requires some compromises like a proprietary environment

(jVerbs, JSOR) or is not maintained anymore (SDP since

OFED 3.5). These reasons motivated a custom implementation

using the ibverbs library. Due to limited space, the results are

published in a separate publication.

MVAPICH2 [31] is an MPI implementation built onto

the MPICH source supporting various network interconnects,

such as Ethernet, iWARP, Omni-Path, RoCE and InfiniBand.

MVAPICH2 includes features like RDMA fast path or RDMA

operations for small message transfers and is widely used on

many clusters over the world [3]. Open MPI [4] is an open

source implementation of the MPI standard (currently full 3.1

compliance) also supporting interconnects, such as Ethernet

using TCP sockets, RoCE, iWARP and InfiniBand.

mpiJava [10] implements the MPI standard by a collection

of wrapper classes that call native MPI implementations, such

as MVAPICH2 or OpenMPI, through JNI. The wrapper-based

approach provides efficient communication relying on native

libraries. However, it is not thread-safe and, thus, is not able

to take advantage of multi-core systems using multi-threading.

FastMPJ [20] uses Java Fast Sockets and ibvdev to pro-

vide an MPI implementation for parallel systems using Java.

Initially, ibvdev [21] was implemented as a low-level commu-

nication device for MPJ Express [38], a Java MPI implemen-

tation of the mpiJava 1.2 API specification. ibvdev implements

InfiniBand support using the low-level verbs API and can

be integrated into any parallel and distributed Java applica-

tion. FastMPJ optimizes MPJ Express collective primitives

and provides efficient non-blocking communication. Currently,

FastMPJ supports issuing MPI calls using a single thread, only.

We also considered using an MPI implementation like

MVAPICH2 as a DXNet transport implementation. However,

we encountered limitations that currently make this approach

unfeasible: dynamic scaling, e.g. adding and removing ad-

ditional nodes during runtime, is not supported by current

implementations. Bootstrapping a process which uses MPI as

a network subsystem without an MPI communicator creates

isolated MPI worlds which cannot be connected afterwards

with the currently available implementations. Support for

multi-threading in the same process is only supported by

MVAPICH2, but not implemented efficiently (§VI).

III. DXNET: CONCURRENT MESSAGING FOR JAVA

APPLICATIONS

DXNet [12] is a network library for Java targeting, but not

limited to, highly concurrent big data applications. DXNet im-

plements asynchronous event-driven messaging with a sim-

ple to use application interface. Messaging describes trans-

parent sending and receiving of complex (even nested) data

structures with implicit serialization and de-serialization. Fur-

thermore, DXNet provides a built-in primitive for concurrent

and transparent request-response communication.

DXNet is optimized for supporting highly multithreaded

sending and receiving of small messages by using lock-

free data structures, fast concurrent serialization, zero

copy and zero allocation. It implements a custom lock-free

Outgoing Ring Buffer (ORB to efficiently handle outgoing

data and its own flow control (FC) mechanism to avoid

overburdening remote nodes if they cannot keep up with

processing incoming messages which increases latency and

decreases throughput. The core of DXNet provides automatic







(excluding ibverbs; these are already thread safe).

Asynchronous and interleaved control flow. Listing 1

depicts a simplified version of the send thread’s asynchronous

control flow main loop with the relevant aspects. The send

thread pulls the data available to send asynchronously from the

ring buffer with the call GetNextDataToSend. The workPack-

age holds all relevant information of a data package pulled

from the ring buffer (pointer positions and target remote).

The prevWorkResults data describes the amount of data that

was successfully posted or not posted because there was no

space left in the send queue. The completionList is filled,

once sending of posted data is confirmed (completion polled).

This data is used to move the pointers in the ring buffer.

The prevWorkResults and completionList are cleared at the

beginning of the current iteration. If the workPackage is valid,

i.e. outgoing data is available, the corresponding connection

is requested according to the target workPackage.nodeId. With

this call, the connection is automatically established by the

connection manager if it does not exist, yet (§IV-A). The

workPackage is processed in SendData by setting the buffer

area to send in a WR to the area enclosed by the ORB pointers

of the workPackage. We avoid allocating a temporary buffer

and copying because the ring buffer is allocated and registered

with the protection domain on startup and setting arbitrary

positions within that pinned area is valid. Once the data is

posted, the acquired connection is returned to the manager.

Concluding the control flow, the send thread always polls

for completions on the shared completion queue (CQ), once.

Further details are described in the next paragraphs.

Immediate data field for out-of-band data A WR offers

a field for sending immediate data (a 4 byte value) that

is not part of the registered memory area of the buffer

to the remote. We use this feature to include the NID of

the source node sending the data (2 bytes) and FC data if

available (1 byte). This avoids adding that data to the payload

stored in the buffer which requires a temporary buffer and

copying or an additional side channel like another QP which

requires additional processing time on posting and polling.

This benefits overall performance, especially with many

simultaneous connections. By including the source NID with

every WR posted, we can identify incoming completions on

the remote. Otherwise, the only information provided is the

sender’s unique physical QP ID. In our case, this ID must be

mapped to the corresponding NID of the sender. However, this

introduces an indirection every time a package arrives which

impacts performance.

Scatter gather elements (SGEs) for improved buffer

management. For sending data, we use SGEs to enable flexi-

ble buffer management for the receiver as well as benefit from

sending large messages or many small aggregated messages.

Figure 2 depicts an example with three (aggregated) ready to

send messages in the ORB. We create a WR for the outgoing

data and provide a single SGE which takes the pointers of

the enclosed memory area. In the example, the total size

received on the remote exceeds the size of a single receive

buffer. However, as we also post a corresponding receive WR

with a SGE list of 8 elements on the remote, all data can

be processed with a single WR and is transparently scattered

to 5 receive buffers of equal size. The 5 buffers with data are

forwarded for processing and the 3 unused ones go back to the

buffer pool (§IV-C). This avoids high fragmentation degrees

when sending many small messages because empty buffers

can be cut off and re-used immediately. The number of SGEs

of a WR is set to 0 to send FC data with the immediate data

field but without any payload data.

Chaining of work requests. We create and chain multiple

WRs within a single call to ibv post send to reduce call

overhead. Multiple WRs are used if the outgoing data exceeds

the maximum configurable size (num sges × recv buffer size)

that can be received by the remote. The outgoing data is split

into multiple WRs which are chained and posted to the SQ.

Shared completion queue. All SQs share the same CQ.

When data is posted to multiple connections and completions

are polled, we avoid having to iterate a per SQ/connection

dedicated CQ. The PollCompletions call has to poll only a

single CQ which avoids overhead and further complexity.

Asynchronous completion polling. The PollCompletions

function calls ibv poll cq, once, to poll for any completions

available on the SCQ. The send thread tracks the number

of posted WRs and knows how many WCs are outstanding

on the SCQ. If none are being expected, polling is skipped.

ibv poll cq is called only once per PollCompletion call and

every call tries to poll WCs in batches to keep the call

overhead minimal. Experiments have shown that most calls to

ibv poll cq, even on high loads, will return empty, i.e. no WRs

have completed. Thus, ”synchronous” polling after posting a

WR and until at least one completion is received is the wrong

approach. It wastes CPU time that can be spent on other tasks

of the pipeline, e.g. further filling up the SQ of the same

or another connection increasing overall utilization. Using

completion events instead of polling does not solve this and

instead increases latency. This performance impact increases

with the number of simultaneous connections being served.

Furthermore, this increases the chance of SQs running empty

because time is wasted on waiting for completions instead of

keeping all SQs filled. Full SQs ensure that the HCA is kept

busy which is the key to performance. However, we have

seen that ”synchronous” polling is commonly used in many

examples as well as larger projects [5], [7].

C. Receiving of Data Using RC QPs

Analogous to Section IV-B, this section describes the con-

cepts for receiving data that are the key to performance. Most

concepts overlap with the ones that were already presented

in Section IV-B but have a slightly different implementation.

Thus, we keep them brief and just mention the relevant

differences. Again, we include well known concepts to show

their importance regarding performance.

Challenges. Receiving data adds additional challenges to

the ones imposed by sending data with some overlapping.

Managing buffers used for receiving data: allocations, regis-

tering with the protection domain and data copying is harmful



to performance in the data path. To ensure low latency, the

CQ must be polled at a high frequency depending on the time

required to process any incoming buffers which increases the

time the CQ is not polled. Furthermore, fast refilling of the RQ

to avoid HCA stalls on receiving new data is important, too.

Like on sending data, full asynchronous processing is the key

to avoid waiting for completions and waste processing time.

1 workCompletions = PollCompletions();

2 if (recvQueuePending < ibqSize) {

3 Refill();

4 }

5 if (workCompletions > 0) {

6 ProcessCompletions(workCompletions);

7 }

8 if (!RingBufferIsEmpty()) {

9 PushReceivedBuffers();

10 }

Listing 2. Receive thread main flow (simplified)

Decoupled pipeline stages and synchronization. Similar

to Section IV-B, a dedicated receive thread executes the receive

control flow. The received data is passed to application threads

in the next stage via a data structure, e.g. a queue. This

introduces a single point of synchronization which can be

implemented using lock-free techniques for low overhead and

avoids additional synchronization in the receive control flow.

Asynchronous and interleaved control flow. Listing 2

depicts a simplified version of the receive control flow ex-

ecuted in a loop by the dedicated receive thread. The loop

starts by calling PollCompletions to poll the SCQ for WCs.

Before processing the WCs returned, the SRQ is refilled with

buffers from a pool by calling Refill, if the SRQ is currently

not completely filled. Next, if any WCs were polled previously,

they are evaluated in the ProcessCompletions call. Afterwards,

the buffers with the data received are pushed to a lock-free

ring buffer. Separate handler threads remove and continue

processing them, e.g. de-serialization and dispatching. None

of these calls are blocking, e.g. the thread polls the CQ

once instead of busy polling until a completion is available.

Keeping the SRQ filled is important to avoid HCA stalls

which impact performance.

Buffer pool and fast RQ refill. For buffer management, we

use a buffer pool of configurable total and buffer size. A single

large memory area (total pool size) is allocated and registered

with the protection domain on startup. This area is sliced into

multiple equally sized buffers of the configured buffer size for

the pool. The buffers are used to refill the SRQ. Every WR

consists of a configurable number of SGEs which make up

the maximum receive size. This is also the limiting size the

send thread can post with a single WR (sum of sizes of SGE

list). Using this method, the receive thread does not have to

take care of any software slicing of received data because

the HCA scatters one big chunk of send data transparently

to multiple (smaller) receive buffers on the receiver side. At

last, Refill chains the WRs to a linked list which is posted on

a single call to ibv post srq recv for minimal overhead.

Shared receive and completion queue. We use a SRQ

and SCQ for receiving incoming data from all connections.

This avoids the overhead of iterating and polling on multiple

queues for incoming data. If the SRQ is not completely filled,

we refill it using the buffer pool mentioned previously.

Asynchronous completion polling. The same concept as

explained for the send thread in Section IV-B is also applied

for receiving data.

V. IB TRANSPORT IMPLEMENTATION IN DXNET (JAVA)

This section describes the most important aspects of the

transport implementation for DXNet in Java which utilizes the

low-level transport engines, e.g. msgrc provided by Ibdxnet

(§IV). We describe how the data from Java is forwarded to

Ibdxnet for sending as well as incoming data is forwarded to

Java from Ibdxnet.

Connection handling. All tasks related to connection han-

dling are implemented in Ibdxnet (see IV-A). The Java trans-

port implementation is just forwarding connection creation

requests to the native subsystem. Callbacks received from

Ibdxnet (e.g. node discovered, connection created, connection

closed) are connected to their Java counterparts.

Asynchronous pulling of data from the ORB. The send

thread calls the JNI function GetNextDataToSend to switch

to the Java space. There, the Write-Interest-Manager (WIM)

manages interest tokens using atomic counters and a FIFO

queue to keep track of the ORBs of all connections that

have ready-to-send (RTS) data available. The send thread

periodically enters the Java space to poll the WIM for the next

ORB to process. If RTS data is available, it reads the current

pointer positions of the ORB storing the data and returns to

the native space for sending (see control flow in §IV-B). On

the next switch to Java space, the thread reports back about

the previously posted data and also about any completions that

confirm that posted data was actually sent. The pointers of the

ORB of the associated connections are moved according to

the amount of data confirmed sent.

Asynchronous processing of received buffers. When the

receive thread receives incoming buffers, it switches to the Java

space by calling the JNI call PushReceivedBuffers (§IV-C),

pushes the buffers to the lock-free FIFO-based Incoming

Buffer Queue (IBQ) and returns back to the native space.

The buffers in the IBQ are processed by dedicated threads

in Java which de-serialize and dispatch them to application

pre-registered handler methods (§III).

VI. NETWORK MICROBENCHMARKS

For better readability, we refer to DXNet with the transport

Ibdxnet and msgrc engine as DXNet from here onwards.

We implemented commonly used network microbench-

marks to compare DXNet to two MPI implementations sup-

porting InfiniBand: MVAPICH2 and FastMPJ. We decided

to compare to MPI implementations for the following reasons:

To the best of our knowledge, there is no other library/system

available that offers similar messaging features like DXNet.
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Abstract

Todays big data applications generate hundreds or even thou-

sands of terabytes of data. Commonly, Java based applica-

tions are used for further analysis. A single commodity ma-

chine, for example in a data center or typical cloud environ-

ment, cannot store and process the vast amounts of data mak-

ing distribution mandatory. Thus, the machines have to use

interconnects to exchange data or coordinate data analysis.

However, commodity interconnects used in such environ-

ments, e.g. Gigabit Ethernet, cannot provide high throughput

and low latency compared to alternatives like InfiniBand to

speed up data analysis of the target applications. In this re-

port, we describe the design and implementation of Ibdxnet,

a low-latency and high-throughput transport providing the

benefits of InfiniBand networks to Java applications. Ibdxnet

is part of the Java-based DXNet library, a highly concurrent

and simple to use messaging stack with transparent serializa-

tion of messaging objects and focus on very small messages

(< 64 bytes). Ibdxnet implements the transport interface of

DXNet in Java and a custom C++ library in native space us-

ing JNI. Several optimizations in both spaces minimize con-

text switching overhead between Java and C++ and are not

burdening message latency or throughput. Communication

is implemented using the messaging verbs of the ibverbs li-

brary complemented by an automatic connection manage-

ment in the native library. We compared DXNet with the

Ibdxnet transport to the MPI implementations FastMPJ and

MVAPICH2. For small messages up to 64 bytes using mul-

tiple threads, DXNet with the Ibdxnet transport achieves a

bi-directional message rate of 10 million messages per sec-

ond and surpasses FastMPJ by a factor of 4 and MVAPICH

by a factor of 2. Furthermore, DXNet scales well on a high

load all-to-all communication with up to 8 nodes achieving

a total aggregated message rate of 43.4 million messages per

second for small messages and a throughput saturation of

33.6 GB/s with only 2 kb message size.

1 Introduction

Interactive applications, especially on the web [6, 28], simu-

lations [34] or online data analysis [14, 41, 43] have to pro-

cess terabytes of data often consisting of small objects. For

example, social networks are storing graphs with trillions of

edges resulting in a per object size of less than 64 bytes for

the majority of objects [10]. Other graph examples are brain

simulations with billions of neurons and thousands of con-

nections each [31] or search engines for billions of indexed

web pages [20]. To provide high interactivity to the user,

low latency is a must in many of these application domains.

Furthermore, it is also important in the domain of mobile

networks moving state management into the cloud [23].

Big data applications are processing vast amounts of data

which require either an expensive supercomputer or dis-

tributed platforms, like clusters or cloud environments [21].

High performance interconnects, such as InfiniBand, are

playing a key role to keep processing and response times low,

especially for highly interactive and always online applica-

tions. Today, many cloud providers, e.g. Microsoft, Amazon

or Google, offer instances equipped with InfiniBand.

InfiniBand offers messaging verbs and RDMA, both pro-

viding one way single digit microsecond latencies. It de-

pends on the application requirements whether messaging

verbs or RDMA is the better choice to ensure optimal per-

formance [38].

In this report, we focus on Java-based parallel and dis-

tributed applications, especially big data applications, which

commonly communicate with remote nodes using asyn-

chronous and synchronous messages [10, 16, 13, 42]. Un-

fortunately, accessing InfiniBand verbs from Java is not a

built-in feature of the commonly used JVMs. There are sev-

eral external libraries, wrappers or JVMs with built-in sup-

port available but all trade performance for transparency or

require proprietary environments (§3.1). To use InfiniBand

from Java, one can rely on available (Java) MPI implemen-

tations. But, these are not providing features such as serial-

ization for messaging objects and no automatic connection
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management (§3.2).

We developed the network subsystem DXNet (§2) which

provides transparent and simple to use sending and event

based receiving of synchronous and asynchronous messages

with transparent serialization of messaging objects [8]. It is

optimized for high concurrency on all operations by imple-

menting lock-free synchronization. DXNet is implemented

in Java and open source and available at Github [1].

In this report, we propose Ibdxnet, a transport for the

DXNet network subsystem. The transport uses reliable mes-

saging verbs to implement InfiniBand support for DXNet

and provides low latency and high throughput messaging for

Java.

Ibdxnet implements scalable and automatic connection

and queue pair management, the msgrc transport engine,

which uses InfiniBand messaging verbs, and a JNI interface.

We present best practices applied to ensure scalability across

multiple threads and nodes when working with InfiniBand

verbs by elaborating on the implementation details of Ib-

dxnet. We carefully designing an efficient and low latency

JNI layer to connect the native Ibdxnet subsystem to the

Java based IB transport in DXNet. The IB transport uses the

JNI layer to interface with Ibdxnet, extends DXNet’s outgo-

ing ring buffer for InfiniBand usage and implements scalable

scheduling of outgoing data for many simultaneous connec-

tions. We evaluated DXNet with the IB transport and Ib-

dxnet, and compared then to two MPI implementations sup-

porting InfiniBand: the well known MVAPICH2 and the Java

based FastMPJ implementations.

Though, MPI is discussed in related work (§3.2) and two

implementations are evaluated and compared to DXNet (§9),

DXNet, the IB transport nor Ibdxnet are implementing the

MPI standard. The term messaging is used by DXNet to

simply refer to exchanging data in the form of messages (i.e.

additional metadata identifies message on receive). DXNet

does not implement any by the standard defined MPI prim-

itives. Various low-level libraries to use InfiniBand in Java

are not compared in this report, but in a separate one.

The report is structured in the following way: In Section 2,

we present a summary of DXNet and its aspects important to

this report. In Section 3, we discuss related work which in-

cludes a brief summary of available libraries and middleware

for interfacing InfiniBand in Java applications. MPI and se-

lected implementations supporting InfiniBand are presented

as available middleware solutions and compared to DXNet.

Lastly, we discuss target applications in the field of Big-Data

which benefit from InfiniBand usage. Section 4 covers In-

finiBand basics which are of concern for this report. Section

5 discusses JNI usage and presents best practices for low la-

tency interfacing with native code from Java using JNI. Sec-

tion 6 gives a brief overview of DXNet’s multi layered stack

when using InfiniBand. Implementation details of the native

part Ibdxnet are given in Section 7 and the IB transport in

Java are presented in Section 8. Section 9 presents and com-

Figure 1: Simplified DXNet Architecture

pares the experimental results of MVAPICH2, FastMPJ and

DXNet. Conclusions are presented in Section 10.

2 DXNet

DXNet is a network library for Java targeting, but not limited

to, highly concurrent big data applications. DXNet imple-

ments an asynchronous event driven messaging approach

with a simple and easy to use application interface. Messag-

ing describes transparent sending and receiving of com-

plex (even nested) data structures with implicit serializa-

tion and de-serialzation. Furthermore, DXNet provides a

built in primitive for transparent request-response commu-

nication.

DXNet is optimized for highly multi-threaded sending and

receiving of small messages by using lock-free data struc-

tures, fast concurrent serialization, zero copy and zero

allocation. The core of DXNet provides automatic connec-

tion and buffer management, serialization of message ob-

jects and an interface for implementing different transports.

Currently, an Ethernet transport using Java NIO sockets and

an InifiniBand transport using ibverbs (§7) is implemented.

The following subsections describe the most important as-

pects of DXNet and its core which are depicted in Figure 1

and relevant for further sections of this report. A more de-

tailed insight is given in a dedicated paper [8]. The source

code is available at Github [1].

2.1 Automatic Connection Management

To relieve the programmer from explicit connection cre-

ation, handling and cleanup, DXNet implements automatic

and transparent connection creation, handling and cleanup.

Nodes are addressed using an abstract and unique 16-bit

nodeID. Address mappings must be registered to allow asso-

ciating the nodeIDs of each remote node with a correspond-

ing implementation dependent endpoint (e.g. socket, queue

pair). To provide scalability with up to hundreds of simul-

taneous connections, our event driven system does not cre-

ate one thread per connection. A new connection is cre-
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ated automatically once the first message is either sent to

a destination or received from one. Connections are closed

once a configurable connection limit is reached using a re-

cently used strategy. Faulty connections (e.g. remote node

not reachable anymore) are handled and cleaned up by the

manager. Error handling on connection errors or timeouts is

propagated to the application using exceptions.

2.2 Sending of Messages

Messages are serialized Java objects and sent asyn-

chronously without waiting for a completion. A message

can be targeted towards one or multiple receivers. Using

the message type Request, it is sent to one receiver, only.

When sending a request, the sender waits until receiving a

corresponding response message (transparently handled by

DXNet) or skips waiting and collects the response later.

We expect applications calling DXNet concurrently with

multiple threads to send messages. Every message is au-

tomatically and concurrently serialized into the Outgoing

Ring Buffer (ORB), a natively allocated and lock-free ring

buffer. Messages are automatically aggregated which in-

creases send throughput. The ORB, one per connection, is

allocated in native memory to allow direct and zero-copy

access by the low-level transport. A transport runs a decou-

pled dedicated thread which removes the serialized and ready

to send data from the ORB and forwards it to the hardware.

2.3 Receiving of Messages

The network transport handles incoming data by writing it to

pooled native buffers to avoid burdening the Java garbage

collection. Depending on how a transport writes and reads

data, the buffers might contain fully serialized messages

or just fragments. Every received buffer is pushed to the

ring buffer based Incoming Buffer Queue (IBQ). Both, the

buffer pool as well as the IBQ are shared among all connec-

tions. Dedicated handler threads pull buffers from the IBQ

and process them asynchronously by de-serializing them and

creating Java message objects. The messages are passed to

pre-registered callback methods of the application.

2.4 Flow Control

DXNet implements its own flow control (FC) mechanism to

avoid flooding a remote node with many (very small) mes-

sages. This would result in an increased overall latency and

lower throughput if the receiving node cannot keep up with

processing incoming messages. On sending a message, the

per connection dedicated FC checks if a configurable thresh-

old is exceeded. This threshold describes the number of

bytes sent by the current node but not fully processed

by the receiving node. Once the configurable threshold

is exceeded, the receiving node slices the number of bytes

received into equally sized windows (window size config-

urable) and sends the number of windows confirmed back

to the source node. Once the sender receives this confirma-

tion, the number of bytes sent but not processed is reduced

by the number of received windows multiplied with the

configured window size. If an application send thread was

previously blocked due to exceeding this threshold, it can

now continue with processing.

2.5 Transport Interface

DXNet provides a transport interface allowing implementa-

tions of different transport types. On initialization of DXNet,

one of the implemented transports can be selected. After-

wards when using DXNet, the transport is transparent for the

application. The following tasks must be handled by every

transport implementation:

• Connection: Create, close and cleanup

• Get ready to send data from ORB and send it (ORB

triggers callback once data is available)

• Handle received data by pushing it to the IBQ

• Manage flow control when sending/receiving data

Every other task that is not exposed directly by one of the

following methods must be handled internally by the trans-

port. The core of DXNet relies on the following methods of

abstract Java classes/interfaces which must be implemented

by every transport:

• Connection: open, close, dataPosted

• ConnectionManager: createConnection, closeConnec-

tion

• FlowControl: sendFlowControlData, getAndReset-

FlowControlData

We elaborate on further details about the transport inter-

face in Section 8 where we describe the transport implemen-

tation for Ibdxnet.

3 Related Work

Related work discusses different topics which are of inter-

est to DXNet with the IB transport and Ibdxnet. First, we

present a summary of our evaluation results of existing so-

lutions to use InfiniBand in Java applications (§3.1). These

results were important before developing Ibdxnet. Next, we

compare DXNet and the MPI standard (§3.2) followed by

MPI implementations supporting InfiniBand (§3.3) and UPX

(§3.4). To our knowledge, this concludes the list of available

middleware offering higher level networking primitives com-

parable to DXNet’s. In the last Subsection 3.5, we discuss

big-data systems and applications supporting InfiniBand for

target applications of interest to DXNet.
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3.1 Java and InfiniBand

Before developing Ibdxnet and the InfiniBand transport for

DXNet, we evaluated available (low-level) solutions for

leveraging InfiniBand hardware in Java applications. This in-

cludes using NIO sockets with IP over InfiniBand (IPoIB)

[25], jVerbs [37], JSOR [40], libvma [2] and native c-verbs

with ibverbs. Extensive experiments analyzing throughput

and latency of both messaging verbs and RDMA were con-

ducted to determine a suitable candidate for using InfiniBand

with Java applications and are published in a separate report.

Summerized, the results show that transparent solutions

like IPoIB, libvma or JSOR, which allow existing socket-

based applications to send and receive data transparently

over InfiniBand hardware, are not able to deliver an over-

all adequate throughput and latency. For the verbs-based li-

braries, jVerbs gets close to the native ibverbs performance

but, like JSOR, requires a proprietary JVM to run. Over-

all, none of the analyzed solutions, other than ibverbs, are

delivering an adequate performance. Furthermore, we want

DXNet to stay independent of the JVM when using Infini-

Band hardware. Thus, we decided to use the native ibverbs

library with the Java Native Interface to avoid the known per-

formance issues of the evaluated solutions.

3.2 MPI

The message passing interface [19] defines a standard for

high level networking primitives to send and receive data be-

tween local and remote processes, typically used for HPC

applications.

An application can send and receive primitive data types,

arrays, derived or vectors of primitive data types, and in-

dexed data types using MPI. The synchronous primitives

MPI_Send and MPI_Recv perform these operations in block-

ing mode. The asynchronous operations MPI_Isend and

MPI_Irecv allow non blocking communication. A status

handle is returned with each started asynchronous operation.

This can be used to check the completion of the operation

or to actively wait for one or multiple completions using

MPI_Wait or MPI_Waitall. Furthermore, there are various

collective primitives which implement more advanced oper-

ations such as scatter, gather or reduce.

Sending and receiving of data with MPI requires the ap-

plication to issue a receive for every send with a target buffer

that can hold at least the amount of data sent by the remote.

DXNet relieves the application from this responsibility. Ap-

plication threads can send messages with variable size and-

DXNet manages the buffers used for sending and receiving.

The application does not have to issue any receive operations

and wait for data to arrive actively. Incoming messages are

dispatched to pre-registered callback handlers by dedicated

handler threads of DXNet.

DXNet supports transparent serialization and de-

serialization of complex (even nested) data types (Java

objects) for messages. MPI primitives for sending and

receiving data require the application to use one of the avail-

able data types supported and doesn’t offer serialization for

more complex datatypes such as objects. However, the MPI

implementation can benefit from the lack of serialization by

avoiding any copying of data, entirely. Due to the nature of

serialization, DXNet has to create a (serialized) "copy" of

the message when serializing it into the ORB. Analogously,

data is copied when a message is created from incoming

data during de-serialization.

Messages in DXNet are sent asynchronously while re-

quests offer active waiting or probing for the corresponding

response. These communication patterns can also be applied

by applications using MPI. The communication primitives

currently provided by DXNet are limited to messages and

request-response. Nevertheless, using these two primitives,

other MPI primitives, such as scatter, gather or reduce, can

be implemented by the application if required.

DXNet does not implement multiple protocols for differ-

ent buffer sizes like MPI with eager and rendezvous. A trans-

port for DXNet might implement such a protocol but our

current implementations for Ethernet and InfiniBand do not.

The aggregated data available in the ORB is either sent as a

whole or sliced and sent as multiple buffers. The transport

on the receiving side passes the stream of buffers to DXNet

and puts them into the IBQ. Afterwards, the buffers are re-

connected to a stream of data by the MCC before extracting

and processing the messages.

An instance using DXNet runs within one process of a Big

Data application with one or multiple application threads.

Typically, one DXNet instance runs per cluster node. This

allows the application to dynamically scale the number of

threads up or down within the same DXNet instance as

needed. Furthermore, fast communication between multiple

threads within the same process is possible, too.

Commonly, an MPI application runs a single thread per

process. Multiple processes are spawned according to the

number of cores per node with IPC fully based on MPI.

MPI does offer different thread modes which includes issu-

ing MPI calls using different threads in a process. Typically,

this mode is used in combination with OpenMP [4]. How-

ever, it is not supported by all MPI implementations which

also offer InfiniBand support (§3.3). Furthermore, DXNet

supports dynamic up and down scaling of instances. MPI

implementations support up-scaling (for non singletons) but

down scaling is considered an issue for many implementa-

tions. Processes cannot be removed entirely and might cause

other processes to get stuck or crash.

Connection management and identifying remote nodes are

similar with DXNet and MPI. However, DXNet does not

come with deployment tools such as mpirun which assigns

the ids/ranks to identify the instances. This intentional de-

sign decision allows existing applications to integrate DXNet
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without restrictions to the bootstrapping process of the appli-

cation. Furthermore, DXNet supports dynamically adding

and removing instances. With MPI, an application must be

created by using the MPI environment. MPI applications

must be run using a special coordinator such as mpirun. If

executed without a communicator, an MPI world is limited to

the current process it is created in which doesn’t allow com-

munication with any other instances. Separate MPI worlds

can be connected but the implementation must support this

feature. To our knowledge, there is no implementation (with

InfiniBand support) that currently supports this.

3.3 MPI Implementations Supporting Infini-

Band

This section only considers MPI implementations support-

ing InfiniBand directly. Naturally, IPoIB can be used to run

any MPI implementation supporting Ethernet networks over

InfiniBand. But, as previously discussed (§3.1), the network

performance is very limited when using IPoIB.

MVAPICH2 is a MPI library [32] supporting various net-

work interconnects, such as Ethernet, iWARP, Omni-Path,

RoCE and InfiniBand. MVAPICH2 includes features like

RDMA fast path or RDMA operations for small message

transfers and is widely used on many clusters over the world.

Open MPI [3] is an open source implementation of the MPI

standard (currently full 3.1 conformance) supporting a va-

riety of interconnects, such as Ethernet using TCP sockets,

RoCE, iWARP and InfiniBand.

mpiJava [7] implements the MPI standard by a collec-

tion of wrapper classes that call native MPI implementations,

such as MVAPICH2 or OpenMPI, through JNI. The wrapper

based approach provides efficient communication relying on

native libraries. However, it is not threadsafe and, thus, is

not able to take advantage of multi-core systems using mul-

tithreading.

FastMPJ [17] uses Java Fast Sockets [39] and ibvdev to

provide a MPI implementation for parallel systems using

Java. Initially, ibvdev [18] was implemented as a low-level

communication device for MPJ Express [35], a Java MPI

implementation of the mpiJava 1.2 API specification. ibvdev

implements InfiniBand support using the low-level verbs

API and can be integrated into any parallel and distributed

Java application. FastMPJ optimizes MPJ Express collective

primitives and provides efficient non-blocking communica-

tion. Currently, FastMPJ supports issuing MPI calls using a

single thread, only.

3.4 Other Middleware

UCX [36] is a network stack designed for next generation

systems for applications with an highly multi-threaded en-

vironment. It provides three independent layers: UCS is a

service layer with different cross platform utilities, such as

atomic operations, thread safety, memory management and

data structures. The transport layer UCT abstracts differ-

ent hardware architectures and their low-level APIs, and pro-

vides an API to implement communication primitives. UCP

implements high level protocols such as MPI or PGAS pro-

gramming models by using UCT.

UCX aims to be a common computing platform for multi-

threaded applications. However, DXNet does not and, thus,

does not include its own atomic operations, thread safety or

memory management for data structures. Instead, it relies

on the multi-threading utilities provided by the Java envi-

ronment. DXNet does abstract different hardware like UCX

but only network interconnects and not GPUs or other co-

processors. Furthermore, DXNet is a simple networking li-

brary for Java applications and does not implement MPI or

PGAS models. Instead, it provides simple asynchronous

messaging and synchronous request-response communica-

tion, only.

3.5 Target Applications using InfiniBand

Providing high throughput and low latency, InfiniBand is a

technology which is widely used in various big-data applica-

tions.

Apache Hadoop [22] is a well known Java big-data pro-

cessing framework for large scale data processing using the

MapReduce programming model. It uses the Hadoop Dis-

tributed File System for storing and accessing application

data which supports InfiniBand interconnects using RDMA.

Also implemented in Java, Apache Spark is a framework for

big-data processing offering the domain-specific-language

Spark SQL, a stream processing and machine learning ex-

tension and the graph processing framework GraphX. It sup-

ports InfiniBand hardware using an additional RDMA plugin

[5].

Numerous key-value storages for big-data applications

have been proposed that use InfiniBand and RDMA to pro-

vide low latency data access for highly interactive applica-

tions.

RAMCloud [33] is a distributed key-value storage op-

timized for low latency data access using InfiniBand with

messaging verbs. Multiple transports are implemented for

network communication, e.g. using reliable and unreliable

connections with InfiniBand and Ethernet with unreliable

connections. FaRM [15] implements a key-value and graph

storage using a shared memory architecture with RDMA. It

performs well with a throughput of 167 million key-value

lookups and 31 us latency using 20 machines. Pilaf [30]

also implements a key-value storage using RDMA for get

operations and messaging verbs for put operations. MICA

[27] implements a key-value storage with a focus on NUMA

architectures. It maps each CPU core to a partition of data

and communicates using a request-response approach using

unreliable connections. HERD [24] borrows the design of
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MICA and implements networking using RDMA writes for

the request to the server and messaging verbs for the re-

sponse back to the client.

4 InfiniBand and ibverbs Basics

This section covers the most important aspects of the Infini-

Band hardware and the native ibverbs library which are rel-

evant for this report. Abbreviations introduced here (most

of them commonly used in the InfiniBand context) are used

throughout the report from this point on.

The host channel adapter (HCA) connected to the PCI

bus of the host system is the network device for communi-

cating with other nodes. The offloading engine of the HCA

processes outgoing and incoming data asynchronously and

is connected to other nodes using copper or optical cables

via one or multiple switches. The ibverbs API provides the

interface to communicate with the HCA either by exchang-

ing data using Remote Direct Memory Access (RDMA) or

messaging verbs.

A queue pair (QP) identifies a physical connection to a

remote node when using reliable connected (RC) commu-

nication. Using non connected unreliable datagram (UD)

communication, a single QP is sufficient to send data to mul-

tiple remotes. A QP consists of one send queue (SQ) and

one receive queue (RQ). On RC communication, a QP’s SQ

and RQ are always cross connected with a target’s QP, e.g.

node 0 SQ connects to node 1 RQ and node 0 RQ to node 1

SQ.

If an application wants to send data, it posts a work re-

quest (WR) containing a pointer to the buffer to send and

the length to the SQ. A corresponding WR must be posted

on the RQ of the connected QP on the target node to receive

the data. This WR also contains a pointer to a buffer and its

size to receive any incoming data to.

Once the data is sent, a work completion (WC) is gen-

erated and added to a completion queue (CQ) associated

with the SQ. A WC is also generated for the corresponding

WCQ of the remote’s RQ receiving the data, once the data ar-

rived. The WC of the send task tells the application that the

data was successfully sent to the remote (or provides error

information otherwise). On the remote receiving the data,

the WC indicates that the buffer attached to the previously

posted WR is now filled with the remote’s data.

When serving multiple connections, every single SQ and

RQ does not need a dedicated CQ. A single CQ can be used

as a shared completion queue (SCQ) with multiple SQs

or RQs. Furthermore, when receiving data from multiple

sources, instead of managing many RQs to provide buffers

for incoming data, a shared receive queue (SRQ) can be

used on multiple QPs instead of single RQs.

When attaching a buffer to a WR, it is attached as a scatter

gather element (SGE) of a scatter gather list (SGL). For

sending, the SGL allows the offloading engine to gather the

data from many scattered buffers and send it as one WR. For

receiving, the received data is scattered to one or multiple

buffers by the offloading engine.

5 Low Latency Data Exchange Between Java

and C

In this section, we describe our experiences with and best

practices for the Java Native Interface (JNI) to avoid perfor-

mance penalties for latency sensitive applications. These are

applied to various implementation aspects of the IB transport

which are further explained in their dedicated sections.

Using JNI is mandatory if the Java space has to interface

with native code, e.g. for IO operations or when using native

libraries. As we decided to use the low-level ibverbs library

to benefit from full control, high flexibility and low latency

(§3.1), we had to ensure that interfacing with native code

from Java does not introduce too much overhead compared

to the already existing and evaluated solutions.

The Java Native Interface (JNI) allows Java programmers

to call native code from C/C++ libraries. It is a well known

method to interface with native libraries that are not avail-

able in Java or access IO using system calls or other native

libraries. When calling code of a native library, the library

has to expose and implement a predefined interface which

allows the JVM to connect the native functions to native de-

clared Java methods in a Java class. With every call from

Java to the native space and vice versa, a context switch is

required to be executed by the JVM environment. This in-

volves tasks related to thread and cache management adding

latency to every native call. This increases the duration of

such a call and is crucial, especially regarding the low la-

tency of IB.

Exchanging data with a native library without adding

considerable overhead is challenging. For single primi-

tive values, passing parameters to functions is convenient

and does not add any considerable overhead. However, ac-

cess to Java classes or arrays from native space requires

synchronization with the JVM (and its garbage collector)

which is very expensive and must be avoided. Alterna-

tively, one can use ByteBuffers allocated as DirectByte-

Buffers which allocates memory in native memory. Java

can access the memory through the ByteBuffer and the

native library can get the native address of the array and

the size with the functions GetDirectBufferAddress and

GetDirectBufferCapacity. However, these two calls in-

crease the latency by tenth to even hundreds of microseconds

(with high variation).

This problem can be solved by allocating a native buffer

in the native space, passing its address and size to the Java

space and access it using the Unsafe API or wrap it as a

newly allocated (Direct) ByteBuffer. The latter requires re-

flection to access the constructor of the DirectByteBuffer and
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accessing the connection manager either to create a new con-

nection or getting an existing one. It introduced a very com-

plex architecture with high synchronization overhead and la-

tency especially when many threads are concurrently access-

ing the connection manager. Furthermore, it was error prone

and difficult to debug. We encountered severe performance

issues when creating connections with one hundred nodes in

a very short time range (e.g. all-to-all communication). This

resulted in connection creation times of up to half a minute.

Even with a small setup of 4 to 8 nodes, creating a connec-

tion could take up to a few seconds if multiple threads tried

to create the same or different connections simultaneously.

7.2 msgrc: Transport Engine for Messaging

using RC QPs

This section describes the msgrc transport engine. It uses

reliable QPs to implement messaging using a dedicated send

and receive thread. The engine’s interface allows a trans-

port to provide a stream of data (to send) in form of variable

sized buffers and provides a stream of data (received) to a

registered callback handler.

This interface is rather low-level and the backend does

not implement any means of serialization/deserialization for

sending/receiving of complex data structures. In combina-

tion with DXNet (§2), the logic for these tasks resides in the

Java space with DXNet and is shared with other transports

such as the NIO Ethernet transport [9]. However, there are

no restrictions to implement these higher level components

for the msgrc engine natively, if required. Further details on

how the msgrc engine is connected with the Java transport

counterpart are given in Section 8.

The following subsections explain the general architecture

and interface of the transport, sending and receiving of data

using dedicated threads and how various features of Infini-

Band were used for optimal hardware utilization.

7.2.1 Architecture

This section explains the basic architecture as well as the

low-level interface of the engine. Figure 4 includes the ms-

grc transport and can be referred to for an abstract represen-

tation of the most important components. The engine relies

on our dedicated connection manager (§7.1) for connection

handling. We decided to use one dedicated thread for send-

ing (§7.2.3) and one for receiving (§7.2.4) to benefit from

the following advantages: a clear separation of responsibil-

ities resulting in a less complex architecture, no scheduling

of send/receive jobs when using a single thread for both and

higher concurrency because we can run both threads on dif-

ferent CPU cores concurrently. The architecture allows us

to create decoupled pipeline stages using lock-free queues

and ring buffers. Thereby, we avoid complex and slow syn-

chronization between the two threads and with hundreds of

threads concurrently accessing shared resources.

7.2.2 Engine interface

1 struct NextWorkPackage {

2 uint32_t posBackRel;

3 uint32_t posFrontRel;

4 uint8_t flowControlData;

5 uint16_t nodeId;

6 };

7

8 struct PrevWorkPackageResults {

9 uint16_t nodeId;

10 uint32_t numBytesPosted;

11 uint32_t numBytesNotPosted;

12 uint8_t fcDataPosted;

13 uint8_t fcDataNotPosted;

14 };

15

16 struct CompletedWorkList {

17 uint16_t numNodes;

18 uint32_t

bytesWritten[NODE_ID_MAX_NUM_NODES];

19 uint8_t

fcDataWritten[NODE_ID_MAX_NUM_NODES];

20 uint16_t nodeIds[];

21 };

22

23 NextWorkPackage*

GetNextDataToSend(PrevWorkPackageResults*

prevResults, CompletedWorkList*

completionList);

Listing 1: Structures and callback of the msgrc engine’s send

interface

The low-level interface allows fine-grained control for the

target transport over the engine. The interface for sending

data is depicted in Listing 1 and receiving is depicted in

Listing 2. Both interfaces create an abstraction hiding con-

nection and QP management as well as how the hardware is

driven with the ibverbs library. For sending data, the inter-

face provides the callback GetNextDataToSend. This func-

tion is called by the send thread to pull new data to send from

the transport (e.g. from the ORB, see 8.2). When called, an

instance of each of the two structures PrevWorkPackageRe-

sults and CompletedWorkList are passed to the implementa-

tion of the callback as parameters: the first contains infor-

mation about the previous call to the function and how much

data was actually sent. If the SQ is full, no further data can be

sent. Instead of introducing an additional callback, we com-

bine getting the next data with returning information about

the previous send call to reduce call overhead (important for

JNI access). The second parameter contains data about com-

pleted work requests, i.e. data sent for the transport. This

must be used in the transport to mark data processed (e.g.
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many connections for a task. The loop iteration ends and

the thread starts from the beginning by calling GetNext-

DataToSend and provides the work results of our previous

iteration. Data about polled WCs from the SCQ are stored

in the completionList and forwarded via the interface (to the

transport).

If no data is available (line 5), lines 6-8 are skipped and the

thread executes a completion poll, only. This is important to

ensure that any outstanding WCs are processed and passed

to the transport (via the completionList and calling GetNext-

DataToSend). Otherwise, if no data is sent for a while, the

transport will not receive any information about previously

processed data. This leads to false assumptions about the

available buffer space for sending data, e.g. assuming that

data fits into the buffer but actually does not because the pro-

cessed buffer space is not free’d, yet.

In the following paragraphs, we further explain how the

functions SendData and PollCompletions make optimal use

of the ibverbs library and how this cooperates with the inter-

leaved control flow of the main thread loop explained above.

The SendData function is responsible for preparing and

posting of FC data and normal data (payload). FC data,

which determines the number of flow control windows to

confirm, is a small number (< 128) and, thus, does not re-

quire a lot of space. We post it as part of the immediate

data, which can hold up to 4 bytes of data, with the WR

instead of using a separate side channel, e.g. another QP.

This avoids overhead of posting and polling of another QP

which benefits overall performance, especially with many

simultaneous connections. With FC data using 1 byte of

the immediate data field, we use further 2 bytes to include

the NID of the source node. This allows us to identify the

source of the incoming WC on the remote. Otherwise, iden-

tifying the source would be very inconvenient. The only in-

formation provided with the incoming WC is the sender’s

unique physical QP id. In our case, this id must be mapped

to the corresponding NID of the sender. However, this in-

troduces an indirection every time a package arrives which

hurts performance.

For sending normal data (payload), the provided work-

Package holds two pointers, front and back, which enclose

a memory area of data to send. This memory area belongs

to a buffer (e.g. the ORB) which was registered with the

protection domain on start to allow access by the HCA. Fig-

ure 7 depicts an example with three (aggregated) ready to

send messages in the ORB. We create a WR for the data

to send and provide a single SGE which takes the point-

ers of the enclosed memory area. The HCA will directly

read from that area without further copying of the data (zero

copy). For buffer wrap arounds, two SGEs are created and

attached to one WR: one SGE for the data from the front

pointer to the end of the buffer, another SGE for the data

from the start of the buffer to the back pointer. If the size

of the area to send (sum of all SGEs) exceeds the maximum

configurable receive size, the data to send must be sliced into

multiple WRs. Multiple WRs are chained to a link list to

minimize call overhead when posting them to the SQ us-

ing ibv_post_send. This greatly increases performance com-

pared to posting multiple standalone WRs with single calls.

The number of SGEs of a WR can be 0, if no normal data

is available to send but FC data is available. To send FC data

only, we write it to the immediate data field of a WR along

with our source NID and post it without any SGEs attached

which results in a 0 length data WR.

The PollCompletions function calls ibv_poll_cq, once, to

poll for any completions available on the SCQ. A SCQ is

used instead of per connection CQs to avoid iterating the

CQs of all connections which impacts performance. The

send thread keeps track of the number of posted WRs and,

thus, knows how many WCs are outstanding and expected

to arrive on the SCQ. If none are being expected, polling is

skipped. ibv_poll_cq is called once per PollCompletion call,

only, and every call tries to poll WCs in batches to keep the

call overhead minimal.

Experiments have shown that most calls to ibv_poll_cq,

even on high loads, will return empty, i.e. no WRs have com-

pleted. Thus, polling the SCQ until at least one completion

is received is the wrong approach and greatly impacts over-

all performance. If the SQ of another connection is not full

and there is data available to send, this method wastes CPU

resources on busy polling instead of processing further data

to send. The performance impact (resulting in low through-

put) increases with the number of simultaneous connections

being served. Furthermore, this increases the chance of SQs

running empty because time is wasted on waiting for com-

pletions instead of keeping all SQs filled. Full SQs ensure

that the HCA is kept busy which is the key to optimal

performance.

7.2.4 Receiving of Data

1 workCompletions = PollCompletions();

2

3 if (recvQueuePending < ibqSize) {

4 Refill();

5 }

6

7 if (workCompletions > 0) {

8 ProcessCompletions(workCompletions);

9 }

10

11 if (!IncomingRingBufferIsEmpty()) {

12 DispatchReceived();

13 }

Listing 4: Receive thread main flow (simplified)

Analogous to Section 7.2.3, this section explains the data

and control flow of the dedicated receive thread which

12



asynchronously drives the engine for receiving data. List-

ing 4 depicts a simplified version of its main loop with the

relevant aspects for this section. Details of the functions in-

volved in the main flow are explained further below.

Data is received using a SRQ and SCQ instead of multiple

receive and completions queues. This avoids iterating over

all open connections and checking for data availability which

introduces overhead with increasing number of simultaneous

connections. Equally sized buffers for receiving data (con-

figurable size and amount) are pooled and returned for re-use

by the transport, once processed (§7.2.2).

The loop starts by calling PollCompletions (line 1) to poll

the SCQ for WCs. Before processing the WCs returned, the

SRQ is refilled by calling Refill (line 4), if the SRQ is not

filled, yet. Next, if any WCs were polled previously, they are

processed by calling ProcessCompletions (line 8). This step

pushes them to the Incoming Ring Buffer (IRB), a tempo-

rary ring buffer, before dispatching them. Finally, if the IRB

is not empty (line 11), the thread tries to forward the contents

of the IRB by calling DispatchReceived via the interface to

the transport (§7.2.2).

The following paragraphs are further elaborating on

how PollCompletions, Refill, ProcessCompletions and Dis-

patchReceived make optimal use of the ibverbs library and

how this cooperates with the interleaved control flow of the

main thread loop explained above.

The PollCompletions function is very similar to the one

explained in Section 7.2.3 already. WCs are polled in batches

of max. currently available IRB space and buffered before

being processed.

The Refill function adds new receive WRs to the SRQ, if

the SRQ is not completely filled and receive buffers from the

receive buffer pool are available. Every WR consists of a

configurable number of SGEs which make up the maximum

receive size. This is also the limiting size the send thread

can post with a single WR (sum of sizes of SGE list). Using

this method, the receive thread does not have to take care

of any software slicing of received data because the HCA

scatters one big chunk of send data transparently to multiple

(smaller) receive buffers on the receiver side. At last, Refill

chains the WRs to a linked list which is posted on a single

call to ibv_post_srq_recv for minimal overhead.

If WCs are buffered from the previous call to PollCom-

pletions, the ProcessReceived function iterates this list of

WCs. For each WC of the list, it gets the source NID and FC

data from the immediate data field. If the recv length of this

WC is non zero, the attached SGEs contain the received data

scattered to the receive buffers of the SGE list.

As the receive thread does not know or have any means

of determining the size of the next incoming data, the chal-

lenge is optimal receive buffer usage with minimal internal

fragmentation. Here, fragmentation describes the amount of

receive buffers provided with a WR as SGEs in relation to

the amount of received data written to that block of buffers.

The less data written to the buffers, the higher the fragmenta-

tion. In the example shown in figure 7, the three aggregated

and serialized messages are received in five buffers but the

last buffer is not completely used.

This fragmentation cannot be avoided but handled to avoid

negative results like empty buffer pools or low per buffer uti-

lization. Receive buffers/SGEs of a WR that do not contain

any received data, because the amount of received data is

less than the total size of the list of buffers of the SGE list,

are pushed back to the buffer pool. All receive buffers of the

SGE list that contain valid received data are pushed to the

IRB (in the order they were received).

Depending on the target application, the fragmentation

degree can be lowered if one configures the receive buffer

and pool sizes accordingly. Applications typically send-

ing small messages are performing well with small receive

buffer sizes. However, throughput might decrease slightly

for applications sending mainly big messages on small re-

ceive buffer sizes requiring more WRs per send data send

(data sliced into multiple WRs).

If the IRB contains any elements, the DispatchReceived

function tries to forward them to the transport via the Re-

ceived callback (§7.2.2). The callback returns the number

of elements it consumed from the IRB and, thus, is allowed

to consume none or up to what’s available. The consumed

buffers are returned asynchronously to the receive buffer

pool by transport, once it finished processing them.

7.2.5 Load Adaptive Thread Parking

The send and receive threads must be kept busy running their

loops to send and receive data as fast as possible to ensure

low latency. However, pure busy polling without any sleep-

ing or yielding introduces high CPU load and occupying two

cores of the CPU permanently. This is unnecessary during

periods when the network is not used frequently. We do not

want the send and receive threads to waste CPU resources

and, therewith, decrease the overall node performance. Ex-

periments have shown that simply adding sleep or yield op-

erations highly impacts network latency and throughput and

introduces high fluctuations [8].

To solve this, we used a simple but efficient wait pattern

we call load adaptive thread parking. After a defined amount

of time (e.g. 100 ms) of polling and no data available, the

thread enters a yield phase and calls yield on every loop iter-

ation if no data is available. After another timeframe passed

(e.g. 1 sec), the thread enters a parking phase calling sleep-

/park with a minimum value of 1 ns on every loop iteration

reducing CPU load significantly. The lowest value possible

(1 ns) ensure that the scheduler of the operating system sends

the thread sleeping for the shortest period of time possible.

Once data is available, the current phase is interrupted and

the timer is reset. This ensures busy looping for the next iter-

ations keeping latency for successive messages and on high
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cover entire area of RTS data). For data provided with the

parameter completionList, the front pointer is updated ac-

cording to the number of bytes now confirmed to be sent.

A similar but less complex approach is applied to updating

FC.

8.3 Process Incoming Buffers

The dedicated receive thread of msgrc is pushing received

data to the low-level interface. Analogous to how RTS data is

pulled from the IB transport via the JNI binding, the receive

thread uses a received function provided by the binding to

push the received buffers to the IB transport into Java space.

All received buffers are stored as a batch in the recvPackage

data structure (§7.2.2) to minimize context switching over-

head. For performance reasons, this data resides in native

memory as structs and is mapped and accessed using Direct-

ByteBuffers (§5).

The receive thread iterates the package in Java space, dis-

patches received FC data to each connection and pushes

the received buffers (including the connection of the source

node) to the IBQ (§2.3). The buffers are handled and pro-

cessed asynchronously by the MessageCreationCoordinator

and one or multiple MessageHandlers of the DXNet core

(all of them are Java threads). Once the buffers are pro-

cessed (de-serializing its contents), the Java threads return

them asynchronously to the transport engines receive buffer

pool (§7.2.4).

9 Evaluation

For better readability, we refer to DXNet with the IB trans-

port Ibdxnet and msgrc engine as DXNet from here onwards.

We implemented commonly used microbenchmarks to

compare DXNet to two MPI implementations supporting In-

finiBand: MVAPICH2 and FastMPJ. We decided to compare

against two MPI implementations for the following reasons:

To the best of our knowledge, there is no other system avail-

able that offers all features of DXNet and big data applica-

tions implementing their dedicated network stack do not of-

fer it as a separate application/library like DXNet does. MPI

can be used to partially cover some features of DXNet but

not all (§3). We are aware that MPI is targeting a different

application domain, mainly HPC, whereas DXNet is target-

ing big data. However, MPI was already used in big data ap-

plications as well and several aspects related to the network

stack and the technologies are overlapping in both applica-

tion domains.

Bandwidth with two nodes is compared using typical uni-

and bi-directional benchmarks. We also compared scala-

bility using an all-to-all benchmark (worst-case scenario)

with up to 8 nodes. Latency is compared by measuring

the RTT with a request-response communication pattern.

FastMPJ MVAPICH2 DXNet

Uni-dir. TP ST x x x

Bi-dir. TP ST x x x

Latency ST x x x

All-to-all TP ST x x x

Uni-dir. TP MT x

Bi-dir. TP MT x x

Latency MT x

All-to-all MT x

Table 1: Summary of benchmarks and systems. TP =

throughput, ST = single threaded, MT = multi-threaded

These benchmarks are executed single threaded to compare

all three systems.

Furthermore, we compared how DXNet and MVAPICH2

perform in a multi-threaded environment which is typical for

Big Data but not HPC applications. However, we can only

compare it using three benchmarks. Latency multi-threaded

is not possible since it would require MVAPICH2 to im-

plement additional infrastructure to store and map requests

with responses and dynamic dispatching callbacks to han-

dlers of incoming data to multiple receive threads (similar

to DXNet). MVAPICH2 does not provide such a processing

pipeline. FastMPJ cannot be compared at all here because

it only supports single threaded environments. Table 1 sum-

merizes the systems and benchmarks executed.

All benchmarks were executed on up to 8 nodes of our pri-

vate cluster, each with a single socket Intel Xeon CPU E5-

1650 v3, 6 cores running at 3.50 GHz per core clock speed

and 64 GB RAM. The nodes are running Ubuntu 16.04 with

kernel version 4.4.0-57. All nodes are equipped with a Mel-

lanox MT27500 HCA, connected with 56 Gbps links to a

single Mellanox SX6015 18 port switch. For Java applica-

tions, we used the Oracle JVM version 1.8.0_151.

9.1 Benchmarks

The osu benchmarks included with MVAPICH2 implement

typical micro benchmarks to measure uni- and bi-directional

bandwidth and uni-directional latency which reflect basic

usage of any network stack for point-to-point communica-

tion. osu_latency is used as a foundation and extended with

recording of all RTTs to determine the 95th, 99th and 99.9th

percentile after execution. The latency measured is the full

RTT when the source is sending a request to the destination

up to when the corresponding response is received by the

source. For evaluating throughput, the benchmarks osu_bw

and osu_bibw were combined to a single benchmark and ex-

tended to enable all-to-all bi-directional execution with more

than two nodes. We consider this a relevant benchmark to

show if the system is capable of handling multiple connec-

tions under high load. This is a common situation found in
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for WS 16. A message rate of 0.78 to 1.19 mmps is reached

for for up to 64 byte messages for WS 32.

We tried varying the configuration values (e.g. queue

sizes, buffer sizes, buffer counts) but could not find con-

figuration parameters that yielded significantly better, espe-

cially less fluctuating, results. Furthermore, the benchmarks

could not be finished with sending 100,000,000 messages.

When using MPI_THREAD_MULTIPLE, the memory con-

sumption increases continuously and exhausts the total mem-

ory available on our machine (64 GB). We reduced the num-

ber of messages to 1,000,000 which still consumes approx.

20% of the total main memory but at least executes and fin-

ishes within a reasonable time. This does not happen with

the widely used MPI_THREAD_SINGLE mode.

MVAPICH2 implements multi-threading support using a

single global lock for various MPI calls which includes

MPI_Isend and MPI_Irecv used in the benchmark. This

fulfils the requirements described in the MPI standard and

avoids a complex architecture with lock-free data structures.

However, a single global lock reduces concurrency signifi-

cantly and does not scale well with increasing thread count

[12]. This effect impacts performance less on applications

with short bursts and low thread count. However, for multi-

threaded applications under high load, a single-threaded ap-

proach with one dedicated thread driving the network decou-

pled from the application threads, might be a better solution.

Data between application threads and the network thread can

be exchanged using data structures such as buffers, queues or

pools like provided by DXNet.

MVAPICH2’s implementation of multi-threading does not

allow to improve performance by increasing the send or re-

ceive thread counts. Thus, further multi-threaded experi-

ments using MVAPICH2 are not reasonable.

9.4.6 Summary Results

This section briefly summerizes the most important results

and numbers of the previous benchmarks. All values are con-

sidered “up to” and show the possible peak performance in

the given benchmark. Single-threaded:

• Uni-directional throughput Saturation with 64 kb to

128 kb message size, peak at 5.9 GB/s; Message rate of

4.0 mmps for up 64 byte messages

• Bi-directional throughput Saturation at 512 kb mes-

sage size, peak at 11.1 GB/s; Message rate of 4.7 mmps

for up to 64 byte messages

• Uni-directional latency For up to 64 byte message

size: 2.1 to 2.4 µs average latency and 2.4 to 5.0 µs

for 99.9th percentile; 0.43 to 0.47 mmps message rate

• All-to-all nodes For 8 nodes: peak at 33.3 GB/s with

64 kb message size on WS 64, WS matters for large

messages; Message rate of 16.5 to 17.8 mmps for up to

64 byte messages

• Bi-directional throughput multi-threaded: High

fluctuations with low throughputs caused by global

locking, 8.8 GB/s peak throughput at 512 kb message

size; Message rate of 0.78 to 1.19 mmps for up to 64

byte messages

Compared to DXNet, the uni-directional results are sim-

ilar but DXNet does not require explicit message aggrega-

tion to deliver high throughput. On bi-directional commu-

nication, MVAPICH2 achieves a slightly higher aggregated

peak throughput than DXNet but DXNet performs better by

approx 0.9 GB/s on medium sized messages. DXNet out-

performs MVAPICH2 on small messages with a up to 1.8

times higher message rate. But, MVAPICH2 clearly out-

performs DXNet on the uni-directional latency benchmark

with an overall lower average, 95th, 99th and 99.9th per-

centile latency. On all-to-all communication with up to 8

nodes, MVAPICH2 reaches slightly higher peak throughputs

for large messages but DXNet reaches its saturation earlier

and performs significantly better on small message sizes up

to 64 bytes.

The low multi-threading performance of MVAPICH2 can-

not be compared to DXNet’s due to the following rea-

sons: First, MVAPICH2 implements synchronization using

a global lock which is the most simplest but very often least

performant method to ensure thread safety. Second, MVA-

PICH2, like many other MPI implementations, typically cre-

ate multiple processes (one process per core) to enable con-

currency on a single processor socket. However, as already

discussed in related work (§3), this programming model is

not suitable for all application domains, especially in big data

applications.

DXNet is better for small messages and multi-threaded

access like required in big-data applications.

10 Conclusions

We presented Ibdxnet, a transport for the Java messaging

library DXNet which allows multi-threaded Java applica-

tions to benefit from low latency and high-throughput using

InfiniBand hardware. DXnet provides transparent connec-

tion management, concurrency handling, message serializa-

tion and hides the transport which allows the application to

switch from Ethernet to InfiniBand hardware transparently,

if the hardware is available. Ibdxnet’s native subsystem pro-

vides dynamic, scalable, concurrent and automatic connec-

tion management and the msgrc messaging engine imple-

mentation. The msgrc engine uses a dedicated send and

receive thread and to drive RC QPs asynchronously which

ensures scalability with many nodes. Load adaptive park-

ing avoids high loads on idle but ensures low latency when
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busy. SGEs are used to simplify buffer handling and increase

buffer utilization when sending data provided by the higher

level DXNet core. A carefully crafted architecture mini-

mizes context switching between Java and the native space as

well us exchanging data using shared memory buffers. The

evaluation shows that DXNet with the Ibdxnet transport can

keep up with FastMPJ and MVAPICH2 on single threaded

applications and even exceed them in multi-threaded appli-

cations on high load applications. DXNet with Ibdxnet is

capable of handling concurrent connections and data streams

with up to 8 nodes. Furthermore, multi-threaded applications

benefit significantly from the multi-threaded aware architec-

ture.

The following topics are of interest for future research

with DXnet and Ibdxnet:

• Experiments with more than 100 nodes on our univer-

sity’s cluster

• Evaluate DXNet with the key-value store DXRAM us-

ing the YCSB and compare it to RAMCloud

• Implementation and evaluation of a UD QP based trans-

port engine

• Hybrid mode for DXNet: Analyze if applications bene-

fit from using Ethernet and InfiniBand if both are avail-

able

• RDMA path: Boost performance for applications like

key-value storages
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Chapter 6

Further Benchmarks and Applications

This chapter depicts further contributions that are not the main focus of this thesis or part of
DXRAM itself but the application and development environment.

6.1 Cluster Deployment Tool

With the development of a distributed system as well as evaluation of other (distributed)
systems, fast and straightforward deployment becomes an important matter. However, many
applications do not provide tools for automated deployment to aid in debugging and evaluation.
Such a situation is further complicated when the environment to deploy to is not always the
same, e.g., hardware requirements change for an evaluation. Typically, this is approached by
creating small Bash or Python scripts to start and coordinate the desired distributed application
on multiple servers. Often, however, these scripts are not reusable for other applications let
alone different cluster environments (e.g., private cluster, HPC cluster with a job system, cloud
environment). This results in very repetitive and time-consuming tasks of creating similar
scripts with changes to adapt to the different application or environment. Thus, the author
of this thesis put considerable effort into designing and implementing a solution to streamline
these tedious and time-consuming deployment tasks.

The cluster deployment tool cdepl solves these issues by simplifying deployment of distributed
applications while considering different types of cluster environments. cdepl is written entirely
in Bash and in its core only uses commonly available and often by default installed Linux
utilities making it easily extensible and portable to different cluster installments. cdepl is open
source and available at GitHub [20]. Figure 6.1 depicts an overview of cdepl’s architecture.

A cluster abstraction layer allows implementing support for different cluster types, currently
supporting localhost, “simple” clusters (SSH with public-key auth), Microsoft Azure, the
private cluster of the Operating Systems workgroup at the University of Düsseldorf and the
HILBERT HPC environment of the “Centre for Information and Media Technology” (ZIM) at
the University of Düsseldorf. This layer abstracts not only implementations sending simple
SSH commands to remote nodes (e.g., simple cluster) but also cluster job management systems
(e.g., PBS of HILBERT) to allow transparent interaction with the target cluster environment
(e.g., server/environment setup and allocation).
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6.2 Yahoo! Cloud Serving Benchmark Client

The Yahoo! Cloud Serving Benchmark [25] is a framework to evaluate the performance
of different key-value storages/databases/caches. The benchmark provides a flexible and
configurable workload interface which allows specifying workloads with different application
focuses, e.g., read-heavy workloads or workloads with small objects. Clients have to provide
implementations of the basic CRUD operations and an optional scan-operation.

The author put considerable effort into optimizing the DXRAM client implementation because
this benchmark is widely used by the industry and academia for evaluating the various key-value
storages supported. The DXRAM client implements a custom and optimized YCSBObject data
structure based on DXRAM’s chunk model to allow fast de-/serialization of the YCSB data
to/from the DXRAM backend. The client uses a thread local object pool of YCSBObjects to
avoid burdening the garbage collection. When benchmarking with many threads, concurrency
is handled transparently by the DXRAM backend. The DXRAM YCSB client implementation
uses the DXRAM client to connect to a DXRAM cluster to access the key-value back-end
storage.

Dr. Kevin Beineke implemented the initial client, and Stefan Nothaas refactored and optimized
it multiple times. Significant optimizations of the YCSB DXRAM client implementation, the
DXRAM storage backend and API were necessary to allow exploiting the performance when
running over InfiniBand hardware by using Ibdxnet. The client was published as a contribution
to the official repository by Stefan Nothaas [44].

6.3 DXRAM Build System and Pipeline

While working on this thesis, the DXRAM project grew in size and complexity. Several parts
of DXRAM were off-loaded into separate external and re-usable libraries. This separation
increased the overhead of managing the project with its dependencies and exceeded the limits
of the initially proposed ant-based build system. The latter was created by Dr. Florian Klein,
maintained and extended by Dr. Kevin Beineke and Stefan Nothaas as development on DXRAM
continued. Filip Krakowski replaced this with a custom Gradle-based build pipeline that lowered
overall build times as well as maintenance efforts, improved modularity, and extensibility. Stefan
Nothaas helped in designing the new build pipeline as well as fixing various bugs during the
refactoring phase.

As testing and maintaining a distributed system is a very time-consuming task, unit tests
are testing several smaller submodules. However, testing the fundamental functionality of the
entire system is not possible with the standard unit testing framework. Thus, Stefan Nothaas
developed a dedicated testing framework that allows bootstrapping and running multiple
DXRAM instances locally using a custom JUnit runner with test code running on one or
multiple instances.
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6.4 DXRAM API and DXApplications

The API of DXRAM underwent significant changes in the course of this thesis. Dr. Florian
Klein proposed the initial API and implemented CRUD operations as well as an operation
to migrate chunks. With the extensive refactoring of DXRAM (see Chapter 3) and major
components of it (see Chapters 4 and 5), the API was adapted and altered often.

At the time of writing this thesis, DXRAM implements two interfaces to access and use the now
extensive DXRAM API: by using DXRAM as a client library (e.g., see Section 6.2) or writing
a DXApp which implements the application interface. The latter is compiled as a separate
jar-package and deployed along with DXRAM instances. DXRAM manages the installed
applications and runs them either once when the DXRAM instance is started successfully or
when the user used the DXTerm command line tool to trigger a manual start. DXApps can
access various exposed core services of the DXRAM instance (see Figure 2.3) not only limited
to the CRUD operations of the back-end storage but also the network subsystem, migration
manager, monitoring and statistics information, task service and job service.

This containerized approach is very flexible allowing different types of applications to implement
concurrent and distributed computations or algorithms to run on DXRAM storage servers.

The initial design of the DXApp API was developed and implemented by Stefan Nothaas with
various contributions and ongoing development by Filip Krakowski.
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Chapter 7

Conclusions and Perspectives

With more and more networked digital devices generating data today and in the future, the
global data sphere is continuing to grow further. Storing and processing the resulting large data
volumes is already a challenging task for companies and researchers today and becomes even
more challenging in the future. With new technology arising and existing technology evolving
towards this trend, new concepts must be developed to create new systems or enhance existing
ones to prepare them for these highly demanding tasks.

In this thesis, the author addressed three primary research questions regarding low-latency
data access in a Java-based distributed in-memory key-value storage. With the first question,
the author addressed the concerns of distributed computations on an in-memory distributed
key-value storage with a focus on graph-data processing in Java. The second major question
discussed a memory management suitable for efficiently storing many small objects with low-
latency data access for highly concurrent Java applications. Lastly, remote latency concerns
were addressed by the author by using low-latency InfiniBand hardware in Java applications.

In the following sections of this concluding chapter, the author presents the achievements of
this thesis (see Section 7.1), the lessons learned from his work on the thesis and its projects
(see Section 7.2) and provides a perspective for future work and research (see Section 7.3).

7.1 Achievements

This section summarizes the achievements related to the three primary research challenges
addressing different and essential fields in the big data application domain. The fourth challenge
applies to the first three by addressing them in the Java environment which is the typical
environment in the field of big data.
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7.1.1 An In-Memory Key-Value Store as a Compute Platform for
Parallel Java Applications

Chapter 3 elaborated on the first challenge and discussed the question if an in-memory key-
value storage can be used as a scalable compute platform especially for graph data-sets with
concurrent and distributed algorithms. We used the DXRAM storage system to build a flexible
and scalable compute platform on top of a Java-based in-memory key-value storage to enable
running distributed and concurrent computations with low-latency data access. Two additional
services, the JobService and MasterSlaveService, allow developing distributed applications by
providing tools for distributing and coordinating thread and inter-server concurrency. Our
graph framework DXGraph is built on top of the computation layer and provides graph data
structures as well as tasks for loading and processing graph data-sets.

An implementation of the BFS algorithm serves as a benchmark to compare our platform
to Grappa and GraphLab, two graph processing frameworks implemented in C++. The
evaluation shows that DXRAM is capable of storing graph data without introducing considerable
overhead compared to a five times increase in memory consumption by GraphLab. Our BFS
implementation with DXRAM and the compute framework is at least 2.5 times faster than
Grappa’s and GraphLab’s and can be even up to five times faster when using the direction-
optimized mode.

These results show that our proposed concepts and implementation in DXRAM create a
robust platform for Java-based distributed and highly concurrent computations which can even
outperform state-of-the-art C++-based systems.

7.1.2 Concurrent Low-Latency Data Access for Parallel Java
Applications

In Chapter 4, we discussed the second question, if the local storage can provide low-latency data
access and scalability on highly concurrent local computations benefitting from data locality.
We presented the revised design of DXRAM’s memory manager, now named DXMem, which is
optimized for storing many small objects, found in graph data-sets, with a very low memory
overhead as well as handling over one hundred concurrent threads efficiently. The latter is
achieved by an efficient low-overhead and scalable per chunk lock implementation as well as
careful optimizations to the overall memory management regarding target application workloads.
The CRUD core operation-set was extended to support a variety of locking combinations. This
extension allows the application to either utilize highly optimized fine-grained synchronization
on a per-object basis or build more coarse-grained concurrency control mechanisms for more
complex data structures. DXMem was separated from DXRAM and is now distributed as a
standalone library. Using DXMem, other Java applications can benefit from its low-overhead
allocator as well as low-latency memory management.

Our evaluation and comparison to the two Java-based key-value caches Hazelcast (commercially
supported) and InfiniSpan show that DXMem can provide an at least eleven-times lower
overhead on an average object size of 32 bytes. When comparing the local performance of
the memory management, DXMem achieves single-digit microseconds latencies on read-heavy
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benchmarks with 128 threads outperforming Hazelcast and InfiniSpan up to 28-fold with up to
78 mops. In a distributed setup, DXRAM using DXMem outperforms the two systems on the
YCSB with an aggregated throughput of 4.6 mops on a high load read-heavy benchmark with
16 storage servers and 16 benchmark clients running over Ethernet network.

These results show that our proposed concepts applied to DXMem, a local storage, optimized
for many small objects of graph data-sets, can provide low-latency data access and scalability
for highly concurrent local computations in a Java environment.

7.1.3 Leveraging High-Speed and Low-Latency Networks in Java
Applications

In Chapter 5, we discussed the third question, if the network can support graph-based applica-
tions efficiently regarding overall latency and handling of many small messages caused by highly
concurrent random remote access. We presented several achievements regarding low-latency
remote communication in Java applications.

The first is the JIB benchmark suite to evaluate existing InfiniBand solutions for Java applications
providing benchmarks for comparing the verbs-based libraries jVerbs and C-verbs as well as
socket-based solutions IPoIB, libvma, and JSOR. All benchmarks implemented compare the
uni-directional and bi-directional throughput as well as one-sided latency and latency of a
ping-pong communication pattern. Furthermore, the verbs-based implementations implement
variants for using RDMA write, RDMA read and messaging operations. We used the benchmark
to determine which solution is optimal for our use-case. However, other developers can also use
the benchmark suite to analyze the solutions on their hardware of choice regarding their target
application. Our results concluded that only a custom network subsystem that is optimized for
the verbs API is capable of leveraging the potential of InfiniBand hardware in Java.

These essential conclusions were influencing our second primary achievement which is DXnet,
a standalone network subsystem for highly concurrent Java applications. DXNet implements
event-based messaging with high-level asynchronous and synchronous communication primitives
using Java objects. DXNet’s core is optimized for sending and receiving messages using a fast
and efficient serialization, lock-free and zero-copy data structures. A transport interface was
created to allow implementing different network interconnects. The core was designed with
great attention to low overhead and low latency. Our evaluation shows that DXNet is capable of
handling over one hundred threads sending messages concurrently, delivering high throughputs
and low overhead to benefit from high-speed network interconnects such as InfiniBand.

The third and last primary achievement is Ibdxnet, a custom InfiniBand transport imple-
mentation for DXNet. Ibdxnet’s architecture implements a scalable pipeline for low-latency
and high-throughput sending and receiving of data using a ring buffer data structure. With
the entire pipeline stretching from Java to native space and vice versa, a careful design that
considers context switching as well as low-overhead sharing of data between spaces is crucial
to optimal performance. With Ibdxnet as a transport back-end, any Java application can use
DXNet over InfiniBand hardware transparently.
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We evaluated DXNet with the Ibdxnet transport and compared it to the Java-based MPI
implementation FastMPJ as well as the C-based MPI implementation MVAPICH2, both
supporting InfiniBand. DXNet’s throughput with Ibdxnet is on par with FastMPJ’s and
MVAPICH2’s on middle and large-sized messages (up to 1 MB). On small messages (up to
512 bytes), DXNet outperforms both systems especially in a multi-threaded environment at
least two-fold with an aggregated message throughput of 8.6 to 10.2 mmps. In an all-to-all
benchmark with 8 servers, DXNet shows overall robust scalability on a worst-case situation.
DXNet outperforms FastMPJ and MVAPICH2 by up to two-fold with approx. 33.2 to 43.4
mmps for up to 64-byte messages. Naturally, with DXNet’s core providing concurrency control,
transparent message object serialization and event-based dispatching, the overall latency with
the InfiniBand transport (best-case RTT of 8 µs) is higher compared to the more bare-metal
MPI implementation MVAPICH2 (base-case RTT of 2 to 4 µs).

Another comparison of DXRAM using DXNet with the Ibdxnet transport to the InfiniBand-based
RAMCloud storage system shows that DXRAM can leverage the performance of InfiniBand
hardware using DXNet. We used the YCSB benchmark with 20 storage and 20 benchmark
servers to evaluate the two systems. DXRAM outperforms RAMCloud on a reference workload
two-fold and a graph-based application workload even five-fold.

These results show that our proposed concepts and implementation in DXNet and Ibdxnet can
provide high performance messaging for concurrent Java applications which even outperforms
MVAPICH2, a well established and mature C-based MPI implementation.

7.1.4 Java as a Suitable Language for High Performance and
Low-Latency Applications

In the previous Sections 7.1.1, 7.1.2 and 7.1.3, we summarized the achievements of the three
primary research questions of this thesis. All three were discussed in the context of the DXRAM
storage system implemented in Java. Naturally, some parts had to be implemented as native
modules in C or C++ when having to rely on low-level OS functionality (optimized access
to SSDs for DXRAM’s logging) or libraries (C-verbs with Ibdxnet for DXNet) that were
not available in the Java environment and also performance critical. The evaluations and
comparisons show that DXRAM or subsystems of it can outperform systems implemented in C
and C++. Type safety, garbage collection, and object orientation can be used and applied to
benefit from enhanced code safety and maintainability without sacrificing performance. This
thesis and the DXRAM project shows that the Java language can be used for high performance
and big data applications.
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7.2 Lessons Learned

7.2.1 The DXRAM Project

With two generations of Ph.D. students have completed their research and work on DXRAM
and the third generation already working on new and challenging research questions, the code
base has grown a lot since 2012. More than 1,000 source files contain over 100,000 lines of
code (the majority in Java with portions in C and C++) and 50,000 lines of comments and
documentation. A maintainable project structure was implemented from the beginning that
ensured a good evolution and re-usability of the system over the last years and for future
research and contributions.

Many parts of DXRAM are optimized for low overhead and low latency typically regarding
memory (also including the Java garbage collection) and CPU resources. A lot of time and effort
was spent on extensive profiling and debugging the system. These tasks became increasingly
difficult with performance issues or bugs that cannot be approached with commonly used
techniques, such as debuggers or print-debugging. These methods introduce additional latency
causing disadvantageous timing shifting. In such situations, especially in a (large) distributed
setup, bugs could not be debugged because either different errors occurred due to the shift in
timing or the bug did not appear anymore. Such a problematic situation required clever and
context-sensitive tricks by using simple counters, flags and in-memory logging of data, only.
These tricks ensured a correct reproduction of the bug to solve and allowed getting additional
information from the system for solving it.

In the course of this thesis, the author was also challenged by various issues that did not originate
from the software he developed. Though this thesis has shown that Java is a suitable language for
high-performance and low-latency applications, the Java environment was repeatedly responsible
for unexpected performance issues. For example, the Java garbage collection was often halting
the JVM due to previously unknown and unexpected allocations caused by used packages of
the standard Java library.

Another unexpected issue arose with the Linux kernel’s dedicated worker threads (kworker) for
dispatching kernel related tasks like the handling of interrupts, timers or I/O. We encountered
situations, even on recent kernel versions, that these threads start running on high load and
not stopping anymore after the server was running for an extended period. Often, this was
not detected immediately and lead to a lowered performance or even inexplicable results on
benchmarks or when debugging DXRAM. Even this issue has been known for years [67], we
could not find a solution that fixed this for us other than rebooting the machine. Thus, we
always restarted all servers before a more complex debugging session or evaluation to ensure
this issue is not present.
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7.2.2 InfiniBand

Working with low-latency hardware was an exciting but also challenging experience. With
single-digit microseconds latency, there is no room for subpar solutions or code. Small mistakes
either increase latency ten- or hundred-fold, or even render the system unusable. One of the
most frustrating experiences of the author of this thesis was researching a performance issue
related to sending small messages using messaging verbs over a reliable connection. On high
loads, often, the throughput was as expected but could randomly drop down to sending less than
ten messages per second. It was not possible to reproduce this issue consistently. Researching
and debugging of this required over one month as it was unclear for a very long time if this
was a software or hardware issue, or even both. During this period, the author significantly
extended his knowledge and understanding of InfiniBand down to the hardware protocol level.
As a result, the author of this thesis found out that the RC protocol randomly introduced
inappropriate long sleep times (up to 500 ms) when the receiver was not ready to receive the
data. In general, this mechanism is implemented to avoid polling on the protocol level when
the remote cannot provide resources for receiving data at that moment. However, determining
the wait time to slow down the sender was buggy and randomly created a practically blocked
pipeline instead. This issue was reported to and discussed with Mellanox engineers who also
confirmed it on older versions of the OFED software package. Since OFED version 4.2, this
issue is resolved, and DXNet can always deliver high throughput using InfiniBand.

While issues with software are typically more common, hardware issues must always be
considered as well. The author used the HPC cluster of the ZIM of the University of Düsseldorf
in several experiments during this thesis. In experiments with InfiniBand, the author detected
that the fundamental latency of their Ivybridge-based cluster with 56 Gbit/s InfiniBand is
significantly higher (about 7 µs) compared to their newer Skylake-based cluster with 100 Gbit/s.
A comparison to the private cluster of the operation systems workgroup yielded results identical
to the Skylake-based cluster. All tests to determine this issue were limited to a single chassis for
a single hop on the HPC cluster. The Ivybridge-based cluster uses chassis by Bull with 18 blades
each and a built-in 56 Gbit/s InfiniBand switch. The cluster of the operation systems workgroup
connects its “pizza box” sized servers to a typical Mellanox 56 Gbit/s switch. The results
of the experiments with different hardware configurations concluded that this fundamentally
higher latency on the Ivybridge-based cluster is caused by the 56 Gbit/s switch built into the
chassis. We also ruled out the possibility of slow CPUs by evaluating the switch built into
the Bull chassis and the standalone 56 Gbit/s Mellanox switch with the same CPU. For some
inexplicable reason, InfiniBand packages using the RC protocol were more often NACK’d on the
switch built into the Bull chassis resulting in more re-transmissions increasing overall latency.

7.3 Future Work and Perspectives

This last section presents open questions and opportunities regarding big data processing in
Java as well as the DXRAM system that were revealed by this thesis. Many good results were
obtained through extensive evaluation and serve as a foundation for future research regarding
the general perspective of a Java-based compute platform for graph applications, efficient and
highly concurrent memory management and exploiting low-latency networks in Java.
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7.3.1 Memory Management

Parallel create operations. The initial design by Dr. Florian Klein favored the less frequently
used create operations over more typically used get/put operations when considering common
big data, and especially graph processing workloads. This design decision resulted in significant
performance issues in especially highly concurrent benchmarks leading to the revised design
proposed in Chapter 4. However, as we started experimenting with huge graph data sets (up
to 8 TB), these had to be loaded from disk before executing the benchmark or computation.
Even when distributed to multiple servers, loading times for the data were significantly higher
compared to the old design. Naturally, the loading phase consisted of create-operations only,
and the memory management could not exploit local parallelism well. However, when proposing
and implementing the revised design, we could not come up with a solution to alter the arena
manager and segmentation to work with the new design. Now, with the new design and many
optimizations implemented, the memory management achieves sub-microseconds overhead
outperforming other state-of-the-art systems many times over. These results would allow
bringing back the initial arena management by introducing another lock level and segmentation
to allow concurrent create operations. With the new lock design providing very low overhead,
this should not impact the latency of get and put-operations significantly anymore.

Defragmentation. Offline graph analytics typically load the data once, process it, output the
results, and the task ends. The analysis does not generate a lot of new data or even none at
all but reads and writes the loaded data mostly. Long-running applications also issue create
and remove operations over time, e.g., when a user posts text, uploads or deletes assets. Thus,
the memory management cannot avoid introducing external fragmentation over time. Our new
design allows running a concurrent defragmentation thread that can work on a per chunk level
by using the new locking mechanism implemented. This change allows higher concurrency for
the application because the blocking overhead is reduced compared to a more coarse-grained
approach. However, intensive research by Florian Hucke, one of our students, has shown that
designing and implementing an appropriate defragmentation strategy is a complex topic in
itself. Due to time constraints, this field could not be researched any further in the course of
this thesis.

Evaluation on high core count CPUs. With multi-threaded programming and applications
utilizing many-core CPUs common today, the per CPU socket core count has further increased
over the years. This trend also spawned CPUs with up to 48 cores (e.g., the Cavium ThunderX
with 2x 48 core ARMv8 CPUs) which allow high concurrency on the hardware level. It would
be interesting to see how the low-overhead memory management performs when exposed to an
even higher level of software and hardware concurrency.

7.3.2 Network

Scalability with one hundred servers and more. We have already experimented with
DXNet and the InfiniBand transport on the HILBERT cluster with one hundred nodes, but
the results were not showing optimal scalability with fluctuations. Naturally, debugging and
optimizing at that scalability level is a very challenging task and allocating the required resources
is not always possible on a shared cluster. We could determine that remote scalability was
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limited by improper thread management suppressing the higher priority back-end threads
driving the InfiniBand transport (see also the last paragraph of Section 7.3.4). This situation is
further worsened by more active connections on an increasing scale of a worst-case all-to-all
communication pattern. We suggest that this thread management issue has to be resolved first
before we can adequately re-evaluate the scalability of DXNet with InfiniBand.

Scalability on next-generation InfiniBand hardware. The core design of DXNet is
already well prepared for handling many small messages on a large scale. We have also shown,
that its overall latency overhead is low and independent of the transport used, and it can provide
throughputs exceeding the capabilities of our currently used hardware (56 Gbit/s). Thus, the
core is already well prepared at least for the next generation of hardware (100 Gbit/s). Further
experiments should be conducted to verify this as well as evaluate the scalability regarding
increasing server count.

UD transport and scalability. UD QPs are typically used on scalability concerns regarding
an increasing count of remote servers. Fabian Ruhland already implemented a UD-based backend
for Ibdxnet to analyze this and compare the performance to Ibdxnet’s RC-based implementation.
We reckon that our future evaluation might unveil insights on possible scalability issues that
allows us to improve Ibdxnet’s current design further for increased scalability.

Leveraging RDMA operations for even faster remote access. Utilizing RDMA op-
erations for low-latency remote data access is already a popular field of research when the
storage is developed in native languages such as C or C++ (see Section 2.2). Naturally, it
is more challenging to bring this technology to the Java space and allow Java applications,
in particular, in-memory storage systems, to leverage the performance of the hardware using
RDMA operations. However, this performance cannot be exploited if the application is not
suitable. When the application and its algorithms rely on messaging based communication,
typically used for implicit remote synchronization in an algorithm, RDMA operations accessing
remote data without involving the CPU might not improve the performance or cannot even be
implemented at all. In general, it is not guaranteed that RDMA operations should always be
favored over messaging verbs [122]. Such a design decision requires further time and effort but
is an exciting research topic especially in the context Java big data processing, and not just
limited to in-memory key value storages.

Experiments with 40/100 Gbit/s Ethernet hardware. With 10 Gbit/s already common
today and 40/100 Gbit/s Ethernet becoming available, especially in the field of HPC [120], an
evaluation of the NIO transport of DXNet with such modern Ethernet hardware and comparison
to the InfiniBand transport might yield interesting results regarding the overall performance
of DXNet and the performance of the transports. As standard Ethernet-based HCAs do
not implement a full offload engine like InfiniBand HCAs, CPU might limit scalability. This
limitation could be further evaluated and compared to additional TCP offload engine hardware
to analyze the various benefits and drawbacks of the solutions in the context of highly concurrent
Java applications with DXNet.
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7.3.3 Fast and Scalable Deployment for Development of Distributed
Applications

In the course of this thesis, the author spent much time with deploying applications to multiple
servers on a remote cluster either for development or evaluation. Thus, the author spent
additional effort on reducing the time and work involved in writing and maintaining scripts
by creating cdepl (see Section 6.1). However, cdepl and its design reached its limits regarding
scalability when deploying to more than one hundred servers. The scripting language Bash
has noticeable deficits in processing speed on such a larger scale. The cdepl project grew more
extensive than expected which makes it more difficult to maintain in a scripting language.
A revised design of cdepl, called jdepl, uses the Java environment instead and implements a
scalable deployment approach. Daemons running on the servers to deploy to are forming a
tree-based topology that is controlled by a master instance. Thus, deployment to many servers
can be routed using the tree-based structure reducing deployment time and increasing scalability
compared to the SSH-based approach with cdepl. Due to time constraints, the author could
not complete the implementation of jdepl which was started in the course of this thesis. The
project is handed to Filip Krakowski who continues with development.

7.3.4 DXRAM as a Compute Platform

DXRAM started as an in-memory key-value storage with minimal API and evolved over the
years to a Java-based compute platform for low-latency and highly concurrent and distributed
applications. This approach fits the general trend of convergence of big data and HPC which
describes a “new type of distributed service platform” combining “computing communication,
and buffer/storage resources in a data processing network” [134].

Distributed data structures. With DXRAM having evolved into an already stable system,
various application driven projects have been implemented and tested with the system. These
projects provided valuable insights on the future research and development of DXRAM. Cur-
rently, different implementations of distributed data structures (e.g., list, tree, hash map) are
being worked on and evaluated to create a basic re-usable toolbox for distributed applications.

Thread mangement. With the optimizations and re-design of DXMem and DXNet, DXRAM’s
back-end is optimized well for high concurrency applications. However, evaluations with high-
load workloads and the InfiniBand transport have shown a significant increase of the overall
remote operation latency when utilizing hundreds of threads overprovisioning commodity
cluster hardware. This latency increase is caused by improper thread management suppressing
important and higher priority back-end threads (e.g., network) required for driving important
core processing pipelines. This issue could be addressed by a custom thread management
that allows prioritizing these back-end threads over application threads. Core-aware thread
management implemented by Arachne [106] has shown to improve the overall performance of
systems significantly and should be considered when developing a solution for this issue.
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Acronyms

API Application Programming Interface

BASE Basically Available, Soft state, Eventual consistenty

BFS Breadth-First Search

CID Chunk ID

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

CUB Catch-Up Buffer

HCA Host Channel Adapter

HDD Hard Disk Drive

HPC High Performance Computing

I/O Input/Output

IPoIB IP over InfiniBand

JNI Java Native Interface

JVM Java Virtual Machine

LID Local ID

mmps million messages per second

NID Node ID

ORB Outgoing Ring Buffer

QP Queue Pair

RAM Random Access Memory
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RC Reliable Connected

RDBMS Relational DataBase Management System

RDMA Remote Direct Memory Access

SDP Sockets Direct Protocol

SIMD Single Instruction, Multiple Data

SLA Service-Level-Agreement

SQL Structured Query Language

SSD Solid State Disk

SSH Secure SHell

UD Unreliable Datagram

YCSB Yahoo! Cloud Serving Benchmark
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