HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Low-Latency Data Access in a
Java-based Distributed In-Memory
Key-Value Storage

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultét
der Heinrich-Heine-Universitat Diisseldorf

vorgelegt von

Stefan Nothaas

geboren in

Cham

Diisseldorf, November 2019

aus dem Institut fiir Informatik
der Heinrich-Heine-Universitat Diisseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultat der
Heinrich-Heine-Universitat Diisseldorf

Berichterstatter:

1. Prof. Dr. Michael Schottner

2. Prof. Dr. Stefan Conrad

Tag der miindlichen Priifung: 30. Januar 2020

Abstract

Large scale highly interactive online or batch processing offline graph applications require either
low latency or high throughput for processing huge graphs with trillions of edges and billions of
vertices. To keep data-access times low, systems designed for this type of big data application
typically keep all data in-memory and aggregate hundreds or thousands of servers in cluster
or cloud environments to create an extensive storage backend. However, highly parallel graph
applications typically store and process large graphs consisting mostly of small objects less
than 128 bytes. These requirements are challenging for the backend storage, the distributed
processing platform, the local memory management and the network subsystem.

This thesis addresses three primary research questions in the context of a Java-based distributed
in-memory key-value storage: (1) highly concurrent and distributed (graph) processing on a
Java-based in-memory key-value storage; (2) a memory management in Java providing low-
latency data-access and low-overhead synchronization for large graph datasets consisting of many
small objects; (3) a network subsystem for highly concurrent sending and receiving of messages
leveraging low latency and high-throughput network-interconnects in Java applications.

First, this thesis proposes a general compute platform and a graph processing framework
for a Java-based distributed in-memory key-value storage. The compute platform builds on
top of the key-value storage executing concurrent and distributed computations on storage
nodes to benefit from data locality. The platform offers services to either dispatch light-
weight SIMD-based computations or heavy-weight and coordination-based computations to
multiple servers. The framework was evaluated with the breadth-first search algorithm (part of
the Graph500 benchmark) to compare the proposed concepts to other state-of-the-art graph
processing systems.

The second contribution addresses low-latency local data-access in an in-memory key-value
storage in Java. It proposes a low memory- and access-overhead memory management designed
for an in-memory key-value storage but also applicable in any highly parallel Java application. A
custom key-value translation mechanism was extended to support low-overhead concurrent data
access using a custom per-object read-write lock without considerably increasing the per-object
memory overhead. The latter is kept low by a custom fixed-block allocator optimized for small
objects in typical graph data-sets. The evaluation shows that our proposed solution provides an
at least five-times lower memory-overhead compared to two other memory managers of other
state-of-the-art Java-based key-value systems and outperforms them up to 28-fold with 128
threads on read-heavy workloads.

With InfiniBand interconnects available in HPC and cloud environments, distributed applications
can highly benefit from single-digit microseconds latency and gigabytes per second throughput.
The third and last contribution addresses the network with a focus on InfiniBand hardware and
proposes a Java-based transport agnostic network subsystem for highly concurrent synchronous
and asynchronous messaging in Java applications. This subsystem is complemented by an
InfiniBand transport implementation to leverage the performance of such high-speed hardware.
The evaluation shows that our solution provides high throughput and scalability on local and
distributed concurrency even on worst-case all-to-all communication patterns compared to two
state-of-the-art InfiniBand-based MPI implementations.

Contents

Introduction

1.1 Context and Motivation o
1.2 Requirements and Challenges
1.3 Research Questions and Contributions
1.4 Publications
1.5 Software e e
1.6 Organization of the Thesis

Background and Overview

2.1 The Java Environment L0
2.2 Key-Value Cache/Storage Systems,
2.3 Graph Processing Systems
2.4 Communication using High-Speed Interconnects
2.5 The DXRAM Storage System

Using an In-Memory Key-Value Store as a Compute Platform for Java Graph
Applications

3.1 Requirements L
3.2 Stageof Work
3.3 Research Questions L
3.4 Contributions

Concurrent Low-Latency Data Access for Parallel Java Applications

4.1 Requirements L
4.2 Stageof Work
4.3 Research Questions
4.4 Contributions e e e e

Leveraging High-Speed and Low-Latency Networks in Java Applications
5.1 Requirements L L
5.2 Stageof Worko
5.3 Research Questions L L
5.4 Contributionso
5.4.1 JIB-Benchmark: A Benchmark Suite to Evaluate Existing InfiniBand
Solutions for Java Applications,
5.4.2 DXNet: A Transport Agnostic Network Subsystem for Highly Concurrent
Java Applications
5.4.3 Ibdxnet: An InfiniBand Network Subsystem for DXNet

iv

Contents

6 Further Benchmarks and Applications 118
6.1 Cluster Deployment Tool 118
6.2 Yahoo! Cloud Serving Benchmark Client 120
6.3 DXRAM Build System and Pipeline 120
6.4 DXRAM API and DXApplications 121

7 Conclusions and Perspectives 122
7.1 Achievements 122

7.1.1 An In-Memory Key-Value Store as a Compute Platform for Parallel Java
Applications 123

7.1.2 Concurrent Low-Latency Data Access for Parallel Java Applications . . 123

7.1.3 Leveraging High-Speed and Low-Latency Networks in Java Applications 124

7.2

7.3

7.1.4 Java as a Suitable Language for High Performance and Low-Latency
Applications Lo 125
Lessons Learned 126
7.2.1 The DXRAM Project 126
7.2.2 InfiniBand 127
Future Work and Perspectives oo 127
7.3.1 Memory Management L o 128
7.3.2 Network e 128
7.3.3 Fast and Scalable Deployment for Development of Distributed Applications130
7.3.4 DXRAM as a Compute Platform 130

Chapter 1
Introduction

1.1 Context and Motivation

Today, networked digital devices are part of our everyday private and working life. In-
dividuals use smartphones to connect to family, friends and the world, health accessories to
track health data during workouts, or control their homes using networked light switches, light
bulbs, and temperature controls. Digitization has been and is still present and ongoing in
many areas of our lives. This digital transition also includes converting information of physical
objects, e.g., documents, books or historical films/photography, for preservation purpose or
adding sensors to devices in industrial facilities for monitoring and optimization production.

All these real-world hardware and software applications, which are continuing to increase every
year, generate vast amounts of data. A study by the International Data Corporation (IDC)
describes this as the global datasphere and shows that all devices on the world generated
a total estimate of 33 Zettabytes of data in 2018 [107]. It is estimated, that this increases
to 175 Zettabytes by 2025. Analyzing this enormous volume of data is highly relevant to
companies and even individuals in many applications, for example: Predicting traffic, outbreaks
of epidemics or interests of an audience; Analyzing customer statistics in the banking sector or
student data in the education sector [1].

Applications with “large amounts of data” are typically categorized as big data applications.
Today, the term big data is well known among the industry, the media, and even the general
public to describe applications with “a lot of data”. However, characterizing big data just by
data volume is too vague. Additionally, one has to consider that the data volume can be too
large and too complex to be processed by commodity software and hardware [117]. Hence, big
data (processing) has to consider the properties of the data-set, and the actual task of processing
which can be characterized by the “3 Vs”: wvolume refers to the amount of data stored
or generated, velocity defines the speed of new data getting generated and wvariety describes
the type of data (structured, semi-structured or unstructured). A fourth V named veracity
extends the initial definition and describes the “uncertainty of data” regarding quality and
unpredictability (e.g. weather data) [112].

Chapter 1 Introduction

Large companies or individuals have to consider these characteristics regarding their use-
case when either choosing from various existing and often open-source software or developing
custom solutions. One of the most well-known processing frameworks (and programming
paradigms) is MapReduce [26] and the open-source implementation Hadoop [27] for scalable
and straightforward big data processing (further examples follow in Chapter 2).

Powerful hardware with high storage capacity is a must for big data processing. Often,
a single commodity server is not sufficient for this task, especially on large applications with
up to terabytes of data to process (examples to follow). In the past, only big companies or
High-Performance-Computing centers had the financial resources to afford large clusters or
supercomputers [120]. Today, cloud data centers by Amazon [2]|, Microsoft [7] or Google
[46], for example, are providing very large public hardware resource pools. Hence, buying
and maintaining expensive hardware is not necessary anymore. Cloud providers established a
rent-based business model to provide access to elastic resources for companies and individuals
[47].

The field of big data includes many applications, such as the social networks Facebook [129]
and Twitter [66], search engines like Google [22], simulations in bioinformatics [105] and state
management in cell phone networks [110]. The social network Facebook served about 2.27
billion active users monthly in 2018 [36], the search engine Google had 50-60 billion web pages
indexed in January of 2019 [125] and “The Human Connectome Project” [124] aims at studying
the human brain by providing a compilation of neural data (approx. 100 trillion vertices).
Further fields of applications include collecting data of customers for advertising 78], health
data [58], spatial [138] and sensor data [99]. This collecting of data and its analysis has become
an essential task for many companies and researchers introducing new challenges regarding
hardware and software. Many of them already reached the limits of disk-based storages and
started using in-memory caching-techniques [89, 137].

1.2 Requirements and Challenges

Often, a graph-based data model fits naturally and is applied to structure the data with
vertices describing chunks of data (e.g. profiles, postings or images in a social network)
and edges used to describe the relationship between one or multiple chunks (e.g. friend
status or “likes” in a social network) [129, 116]. The graph-based data model can be further
abstracted and implemented using a general key-value data model which is the foundation of
key-value storages. Typically, these storages are based on hash tables for object lookup and
providing basic create, read, update and delete (CRUD) operations for data access and
modification. It is also possible to store data of a graph-based model in tables implemented by
traditional and also modern databases with a relational database management system (RDBMS)
data model and a structured query language (SQL) [115]. However, the benefit of natural object
representation is lost by having to convert the graph-data to fit the table-based structure (see
Section 2.2 for further discussion of storages).

Chapter 1 Introduction

Depending on the type of graph [116, 28], e.g. (non) directed graph or weighted /unweighted
graph, various fundamental graph algorithms classes such as statistics (PageRank [101]), local
clustering coefficient), traversal (breadth-first search [10]), components (e.g. weakly connected
compounents), community detection using label propagation [133], path finding (single-source
shortest paths [133]) or partitioning [128, 60] are typically used in graph applications [55, 84].
Refined versions are based on these algorithms targeting specific tasks such as (random) graph
walks (e.g. forest fire [69]) or graph coloring [109]. Many of these algorithms process either
larger portions of the graph or even the full graph. This leads to many challenges regarding
computation and storage which are elaborated on further below.

With graph-structured data, different types of data processing can be applied. Offline processing
requires the graph data to be loaded before a batch processing system applies one or multiple
processing steps to analyze it and extract information (e.g., snapshots of social networks [129,
116] or bioinformatics [124]). A temporal analysis involves having multiple snapshots of the
graph or parts of it. These are compared and analyzed with a focus on how the graph and its
relationships evolved [70], e.g., to determine rising and falling trends in a social network. These
types are typically batch-processed-based and require high throughput to keep the overall
processing times low. In contrast, online processing refers to a system serving interactive
user requests (e.g. social networks [89], search engines [22], state management in cell phone
networks [110]) and often guarantees contracted service level agreements (SLAs) to customers.
Typically, such SLAs specify that a certain percentage of requests must be processed and
replied to in a defined timeframe (e.g., the user has to receive a response to 95% of all issued
requests in 100 ms or less). Thus, fast response times requiring low latency data access
is mandatory to fulfill these agreements.

Depending on the application and the number of entities (e.g., sensors, users) involved in
generating data, the data volumes can be huge and even grow exponentially over
time on live systems. On high entity/user interaction, such systems generate even billions of
vertices and trillions of edges [23, 89, 6].

However, the magnitude of objects stored are small and read access dominates the
request distribution. This essential requirement is verified by a series of workload analyses
at Facebook giving valuable insight on operation distribution and object size on a large scale
real-world system. A production workload shows that 70% of all objects are less than 64 bytes
in size and 99% still less than 1 kB [89]. A request analysis of TAO, Facebook’s geographical
cache, shows that 45% of all edges had no attributes or labels attached. The remaining 65%
of all edges have an average size of less than 97.8 bytes [18]. Read-operations dominate the
request distribution with 99.8%. More than 50% of all vertices were less than 256 bytes in size
but are still larger than edges. Another analysis of Facebook’s memcachd deployment with 284
billion recorded requests further emphasizes the small request size, as well as reads, being the
dominating request type [6].

The analysis of a web graph containing 3.5 billion web pages with 128.7 billion links shows that
it fits into the machine with one terabyte of random access memory (RAM) further emphasizing
the small average vertex and edge sizes [82].

Traditional hard drive disk-based (HDD) systems or today’s flash storage technology, e.g., solid
state disk (SSD), can store these vast volumes of data but are not optimized for reading and
writing of small objects. However, RAM is faster and provides a 1000-times lower latency than

Chapter 1 Introduction

disk access [50]. Furthermore, traditional disks and SDDs are not optimized for highly random
access compared to RAM which is crucial to many algorithms that are based on graph traversal,
e.g., breadth-first search (BFS) [84] (also see paragraph further above). Thus, keeping all
data in-memory is an essential requirement. However, this also requires aggregation of
resources of multiple machines as the amount of RAM per machine is more limited and more
expensive than HDD/SSD space.

Merely storing data without considering efficiency increases the per-object overhead especially
with the majority of objects being tiny in size. This additional overhead increases the total
amount of memory required to store all data which needs to be distributed across more machines.
If a server stores fewer objects, data locality decreases per server. Storing all data requires
more hardware and increases inter-server communication due to a higher degree of distribution.
Thus, efficient memory management for small objects is crucial to provide high per
server data locality, cost efficiency and lower inter-server communication.

By benefiting from data locality on single servers, algorithms can avoid having to request data
stored on a remote server. With all data in-memory, temporal as well as spatial locality benefit
from low access times, too. However, with increasing data volumes the degree of distribution
increases as well. Naturally, the likelihood of requesting data from remote servers increases with
fewer data stored locally. Instead of requesting many individual objects or a large volume of data
from the remote machine, one might consider moving the more lightweight computation
to the remote and execute on the majority of data locally. However, this solution cannot
always be applied and does not guarantee to solve the problem of inter-server traffic entirely.
Especially on large graphs with highly complex data dependencies, optimal data distribution
and partitioning are considered NP-hard problems [38].

Relying on high locality is not feasible in general especially with algorithms randomly access-
ing great portions or even the whole graph (e.g., traversal) resulting in complex all-to-all
communication patterns. This situation applies to batch processing tasks and especially to
interactive applications with many users (see Facebook example above). When focusing on
the inter-server communication aspects, the workload analysis above concludes that due to the
majority of objects being rather small the overall average network package size is also
small on inter-server communication. However, the application can also use batching for
specific types of requests to lower the overall network message overhead [89]. Still, due to the
high degree of input-freedom (e.g., by human users), a general random access pattern remains.
Thus, the network must provide high throughput on batch based processing tasks
as well as/or low latency on highly interactive online applications.

Todays still commonly used Gigabit Ethernet hardware cannot provide single-digit microsecond
remote access latencies. Further evolutions of Ethernet (10, 40 and 100 Gbit/s) offer higher
bandwidth with backward compatibility but are still CPU bound due to the majority of the
networking stack implemented in software. However, network interconnects like InfiniBand [81]
provide sub-microseconds best case latency with remote direct memory access (RDMA) capable
hardware and require less CPU power by implementing the lower four layers (physical, data
link, network, and transport) of the OSI (Open Systems Interconnection) stack in hardware. A
particular interface called “verbs” is used to bypass the kernel and communicate directly with
the hardware compared to traditional socket communication. Today, the hardware is not only
available in high-performance computing (HPC) centers [120] but becomes available in cloud
data centers [52].

Chapter 1 Introduction

With current multi-core hardware, a single server is already capable of running computation
tasks in parallel or serving multiple interactive user requests concurrently. However, a high level
of concurrency and low-latency requirement in applications requires sophisticated management
of threads and hardware resources [106]. The application or system must be designed for
concurrency awareness to utilize this hardware accordingly. Combined with distributed
computing, leveraging the power of multi-core and distributed computing together
is a very challenging task. Additionally, scalability of the system is further complicated with
increasing server count.

1.3 Research Questions and Contributions

This section outlines the primary research questions for this thesis as well as summarizes its key
contributions. Based on the previous Section 1.2, the following requirements of graph-based
big data Java applications, which also resemble the primary objectives, are addressed in
this thesis:

e Efficient big data processing in Java
e Storing and processing of large graphs consisting of many small objects

e Running concurrent and distributed computations with a focus on graph algorithms in a
Java environment

e Low latency and scalable local data access for many small objects

e Low latency and scalable remote data access for small messages using low-latency networks

The author uses the DXRAM storage system, initially proposed by Dr. Florian Klein in his thesis
[61] and presented in Section 2.5, as a foundation to address the following primary research
questions regarding the presented requirements in this thesis. The requirements and
research questions are further refined and elaborated on in the dedicated Chapters 3, 4 and 5.

1. Can an in-memory key-value storage be used as a scalable compute platform especially
for graph data-sets with concurrent and distributed algorithms? (Chapter 3)

2. Can the local storage provide low-latency data access and scalability on highly concurrent
local computations benefitting from data locality? (Chapter 4)

3. Can the network support graph-based applications efficiently regarding low latency and
handling of many small messages even on highly concurrent random remote access?

(Chapter 5)

4. Is Java a suitable environment for the questions 1.-3. stated above? (Chapters 3, 4, 5)

Chapter 1 Introduction

Application

Graph Processing
Framework

eAep

Key-Value Store
Compute Jobs & Tasks

?

InﬁmBand

oAlEN

Figure 1.1: The “big picture” showing the major components relevant for the research questions
of this thesis. Each of the following Chapters 3, 4 and 5 discusses one or multiple
components in detail.

The fourth research question is a shared question concerning the first three. Hence, all research
questions are addressed in the context of Java big data applications. The main system
categories relevant in this context are key-value backend storages and graph processing systems.
Figure 1.1 depicts the big picture outlining the architecture of the storage system with the
relevant components for this thesis which are addressed by the research questions 1. to 3. in
dedicated chapters.

The major contributions of this thesis are:
1. Analyzing and evaluating existing solutions to leverage InfiniBand in Java applications.

2. Developing and evaluating an intuitive to use network subsystem which abstracts commu-
nication primitives typically used in concurrent Java applications using currently available
low-latency networking technology.

3. Development and evaluation of a highly efficient storage for many small objects providing
low-latency data access for highly parallel Java applications.

4. When combining items 2. and 3., these two major building blocks greatly enhance the
performance of the DXRAM system and also extend it beyond a simple storage system
creating a flexible, scalable and low-latency compute-platform in Java. The results were
used to build a general compute platform as well as the foundation of the graph processing
platform DXGraph on top DXRAM.

Chapter 1 Introduction

1.4 Publications

International Conferences
The following publications are full papers of 10 pages each.

e Stefan Nothaas, Kevin Beineke and Michael Schottner. Leveraging InfiniBand for Highly
Concurrent Messaging in Java Applications. In Proceedings of the 18th International
Symposium on Parallel and Distributed Computing (ISPDC). 2019. Copyright 2019 IEEE.
https://ieeexplore.ieee.org/document/8790899

e Kevin Beineke, Stefan Nothaas, and Michael Schéttner. Scalable Messaging for Java-
based Cloud Applications. In Proceedings of the Fourteenth International Conference on
Networking and Services (ICNS). 2018. Acceptance Rate: 29%.

e Kevin Beineke, Stefan Nothaas, and Michael Schéttner. Fast Parallel Recovery of Many
Small In-memory Objects. In Proceedings of the 23rd IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2017. Acceptance Rate: 32.8%.

e Kevin Beineke, Stefan Nothaas, and Michael Schéttner. High Throughput Log-based
Replication for Many Small In-Memory Objects. In Proceedings of the 22nd IEEE
International Conference on Parallel and Distributed Systems (ICPADS), 2016. Acceptance
Rate: 29.9%.

Workshops at International Conferences

e Stefan Nothaas, Kevin Beineke and Michael Schéttner. Optimized Memory Management
for a Java-Based Distributed In-Memory System. In Proceedings of the 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019. 10
pages. Copyright 2019 IEEE. https://ieeexplore.ieee.org/document/8752955

e Stefan Nothaas, Kevin Beineke, and Michael Schottner. Distributed Multithreaded
Breadth-First Search on Large Graphs using DXGraph. In Proceedings of the 1st High
Performance Graph Data Management and Processing workshop (HPGDMP). 2016. 8
pages. Copyright 2016 IEEE. https://ieeexplore.ieee.org/document/7830441

e Kevin Beineke, Stefan Nothaas and Michael Schéttner. Efficient Messaging for Java
Applications running in Data Centers. In Proceedings of the 18th International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). 2018. 10 pages. Copyright 2018
IEEE. https://ieeexplore.ieee.org/document/8411076

Chapter 1 Introduction

Technical Reports

e Stefan Nothaas, Fabian Ruhland and Michael Schéttner. A Benchmark Suite to Fvaluate
InfiniBand Solutions for Java Applications. Published on arXiv e-prints. October 2019.
arXiv:1910.02245. 10 pages.

e Stefan Nothaas, Kevin Beineke, Michael Schoettner. Ibdzxnet: Leveraging InfiniBand
in Highly Concurrent Java Applications. Published on arXiv e-prints. December 2018.
arXiv:1812.01963. 31 pages.

e Kevin Beineke, Stefan Nothaas, Michael Schoettner. DXRAM’s Fault-Tolerance
Mechanisms Meet High Speed I1/0O Devices. Published on arXiv e-prints. July 2018.
arXiv:1807.03562. 21 pages.

Journal Articles

e Kevin Beineke, Stefan Nothaas, Michael Schoettner. DXNet: Scalable Messaging
for Multi-Threaded Java-Applications Processing Big Data in Clouds. Published in the
International Journal on Advances in Internet Technology, Vol. 11, No. 3&4, 2018. 19

pages.

Chapter 1 Introduction

1.5 Software

In the course of this thesis, the author worked on the following major software packages. With
multiple contributors of software relevant to this thesis, a detailed breakdown is given in the
dedicated Sections 3.4, 4.4 and 5.4.

DXRAM is a distributed in-memory key-value storage and compute platform written in Java.
It is optimized for storing many small objects (< 128 bytes) efficiently with low-latency local
and remote data access. For persistence, data is replicated asynchronously to logs on SSD on
remote servers. A crash-recovery failure-model is implemented to ensure data availability on
hard- or software failures. The system can be used as an in-memory backend storage or an
interactive compute platform. The project is open source and available at GitHub [32].
Contributors (in chronological order): Dr. Florian Klein, Michael Schoettner, Dr. Kevin
Beineke, Stefan Nothaas, Michael Birkhoff, Philipp Rehs, Filip Krakowski, Burak Akguel,
Christian Gesse.

Size and language(s): ~ 37k lines of code; Java and C.

DXNet is an event-driven high performance messaging library for highly concurrent and
distributed Java applications. It implements asynchronous and synchronous messaging primitives
with a custom transparent and highly efficient serialization. An interface abstracts the underlying
network and is implemented by an Ethernet-based transport (Java NIO) and InfiniBand-based
transport (Ibdxnet). DXRAM uses DXNet as its network subsystem. The project is open
source and available at GitHub [31].

Contributors (in chronological order): Marc Ewert, Dr. Florian Klein, Dr. Kevin Beineke,
Stefan Nothaas, Filip Krakowski, Christian Gesse.

Size and language(s): ~ 11k lines of code; Java.

Ibdxnet is a transport implementation for DXNet using the native C-verbs library to allow
communication using InfiniBand hardware. It abstracts the verbs application programming
interface (API) by implementing a dedicated subsystem with connection management and
a scalable and highly optimized pipeline for low-latency and zero-copy processing of buffers
(from DXNet) and provides communication either over reliable connected (RC) or unreliable
datagram (UD) queue pairs (QPs). The project is open source and available at GitHub [42].
Contributors (in chronological order): Stefan Nothaas, Fabian Ruhland.

Size and language(s): ~ 7k lines of code; C++.

Chapter 1 Introduction

DXMem is a memory manager for Java applications optimized for storing billions of small
objects (< 128 bytes) efficiently. A custom serialization of Java objects ensures fast and low-
overhead de-/serialization. Data access is optimized for high concurrency with a low-overhead
read-write locking mechanism. DXRAM uses DXMem for local memory management and
the implementation of the key-value-based backend storage. The project is open source and
available at GitHub [30].

Contributors (in chronological order): Dr. Florian Klein, Dr. Kevin Beineke, Stefan Nothaas,
Florian Hucke.

Size and language(s): ~ 12k lines of code; Java.

DXGraph is a framework built on top of DXRAM providing data structures, algorithms, and
utilities for graph processing on DXRAM. It utilizes DXRAM’s API to implement re-usable
tasks for loading and processing of graphs including an implementation of the BFS algorithm
according to the specifications of the Graph500 benchmark. The project is open source and
available at GitHub [41]. Contributors (in chronological order): Stefan Nothaas, Philipp Rehs.
Size and language(s): ~ 5k lines of code; Java.

cdepl is a Bash-script-based framework to simplify the deployment of distributed applications
to different types of cluster environments. It abstracts the underlying cluster environment for
the applications to allow transparent deployment to different cluster setups and applications
abstract tasks like configuration or starting of instances. cdepl supports DXRAM, a collection
of other systems and different kinds of benchmarks which were used for the evaluations in the
course of this thesis. The project is open source and available at GitHub [20].

Contributors (in chronological order): Stefan Nothaas, Kevin Beineke, Fabian Ruhland, Filip
Krakowski.

Size and language(s): ~ 1k lines of code; Bash.

1.6 Organization of the Thesis

The introductory Chapter 1 presents the context and motiviation for this thesis (Section 1.1),
the requirements and challenges (Section 1.2), the research questions and contributions of this
thesis (Section 1.3) and the publications (Section 1.4) as well as published software (Section
1.5) the author of this thesis contributed to. Afterwards, background information is given in
Chapter 2 with a focus on the Java environment (Section 2.1), relevant systems and technologies
regarding in-memory key-value storages (Section 2.2), graph processing systems (Section 2.3)
and high speed interconnects (Section 2.4). Section 2.5 introduces the DXRAM storage system
which is used for development in this thesis.

Dedicated chapters address the three primary research question (stated in Section 1.3) with each
chapter discussing one or multiple components depicted in the big picture presented in Figure
1.1. Each chapter further refines one primary research question and presents the respective
contributions in detail. Chapter 3 addresses the computation requirements by presenting an
additional computation component added to the core of DXRAM. DXGraph adds a layer for
graph-based applications to DXRAM. Chapter 4 presents the redesign of DXMem, DXRAM’s
memory management, with a focus on highly concurrent Java applications. Chapter 5 is
dedicated towards the network subsystem DXNet, used by DXRAM, for highly concurrent

10

Chapter 1 Introduction

messaging in Java applications. This chapter also includes the evaluation of available solutions
to leverage InfiniBand in Java applications and the native library Ibdxnet to support InfiniBand
hardware with DXNet.

Chapter 6 lists further contributions of this thesis which are not directly addressing the primary
research questions. Conclusions are presented in Chapter 7 including the achievements of this
thesis (Section 7.1), lessons learned (Section 7.2) and future directions (Section 7.3).

11

Chapter 2

Background and Overview

This chapter presents relevant background information regarding the Java environment (Section
2.1) and communication using high-speed interconnects (Section 2.4), as well as an overview of
existing and to this thesis relevant storage systems (Section 2.2) and graph processing systems
(Section 2.3). A detailed discussion and evaluation of selected systems is given in dedicated
publications in this thesis (see Chapters 3, 4 and 5). Section 2.5 presents an overview of the
DXRAM storage system with its key features. As part of the contributions of this thesis,
separate chapters with dedicated publications describe selected features in detail. Systems or
fields of research that are related but not relevant to this thesis are just mentioned briefly.

2.1 The Java Environment

This thesis focuses on dedicated graph processing systems as well as in-memory key-value based
storages/caches for, but not limited to, graph-based applications. Java-based systems are of
particular interest as Java is widely used in the field of big data for batch processing
[27, 135], stream processing [131, 135], key-value caches [48, 53, 96] data grids [39] and graph
processing [132].

Today, the Java language and environment can be considered very mature and offers beneficial
features such as automatic garbage collection, static type-safety, robust exception handling and
a rich standard library including concurrency support. Especially classes and interfaces like
Unsafe [80], the Java Native Interface (JNI) [72] or the “New 10” library with ByteBuffers and
NIO networking [98] provide means for low-latency I/O operations (e.g., memory, network).
However, some of these advantages are often considered performance disadvantages which lead
to the common misconception that Java applications are always slower than applications written
in traditional native-compiled languages such as C and C++ [119]. These languages are also
used when developing large big data systems [100, 115, 118, 19, 21, 86, 76].

However, with many optimizations over the years, e.g., run-time compilation, garbage collection,
Java can no longer be considered a slow language/environment in general anymore [102]. This
thesis shows in different publications that Java is indeed a suitable language for developing such
systems, also when compared to systems implemented in C and C++ (see Chapters 4 and 5).

12

Chapter 2 Background and Overview

2.2 Key-Value Cache/Storage Systems

With RDBMSs being developed and used since the 70’s [24], these systems or their original
design are often used, even today, in big data applications [115, 130, 22] for storing or caching
data but are not the focus of this thesis. Such traditional data stores often implement a
column /table-based or document-based design which is not always optimal for this thesis’s
target applications and data-sets.

The key-value datamodel allows storing data as tuples consisting of a unique key identifying
a value (e.g., binary data) [136]. More complex data models (e.g., graphs) are typically built on
top of this basic model which is implemented by key-value stores and caches. The main
difference of a storage and a cache lies in the method of how data is persisted and recovered
in case of storage server failure. Often, caches require external sources to re-fill them after a
crash while storages provide built-in solutions, e.g., crash-recovery. However, this particular
feature is not the main focus of this thesis. Hence, the author does not explicitly differ caches
from storages and vice versa after this section. Further features offered by these systems are
available on a variety of implementations (both caches and storages).

Pure key-value stores often limit the set of available operations to create, read, update
and delete (CRUD) [79] instead of implementing SQL based query language [68]. Some
backend stores implement transactions instead of a BASE consistency model (basic availability,
soft-state, and eventual consistency). The latter is more commonly implemented as it favors
scalability over consistency [104]. This super-set of systems is typically described as NoSQL
systems which also includes key-value stores and caches [75]. The design of the back-end storage
of these systems is still relevant to this thesis, but particular features like the query language
are not.

This thesis focuses on systems keeping all data in-memory to ensure low-latency data access
for highly interactive applications. With commodity servers having limited RAM and CPU
resources, distributed systems typically provide scalability by aggregating many servers.
Additional backup mechanisms storing data and modifications on disk for consistency and the
recovery to handle server failures are often implemented on such storage systems but not further
discussed in this thesis.

In-memory caches are typically used to cache hot data from slow disk or disk-based systems
(e.g. databases), running in the same data-center, in RAM and provide lower-access latency,
especially on read-intensive workloads [129]. Multiple cache instances are aggregated to form
a cluster offering large amounts of fast memory for data intensive applications. Often, these
systems also support running computations on their instances lowering access times to locally
already available data and utilizing often unused CPU resources. Selected and relevant systems
for this thesis are memcachd [37] and TzCache [103] which are implemented in C, and Fhcache
[33], Hazelcast [48], Ignite [96] and Infinispan [53] which are implemented in Java. All these
systems are limited to Ethernet-based networks and do not support newer fast networks like
InfiniBand (see Section 2.4).

In-memory storages extend the concept of caches by adding mechanisms for data persistence

to handle server failures and to avoid data loss (see the previous paragraph). Selected and
relevant systems for this thesis are Alluzio [71] and Redis [19] which supported Ethernet

13

Chapter 2 Background and Overview

networks. However, when scaling the storage to hundreds or even thousands of servers, large
data-sets are unavoidably scattered. This process increases the inter-server communication
overhead in volume (number of requests) and range (number of connections to
remote servers) resulting in increased overall latency. Systems have been proposed that are
specifically designed to address this network bottleneck using, often exclusively, high-speed
networks such as InfiniBand. This includes systems such as Apache Crail (Incubating) [3],
FaRM [29], FASTER [21], HERD [59], MICA [74] and RAMCloud [100].

In-memory NoSQL databases extend the concept of in-memory storages by adding features
such as, but not limited to, a query language (often similar to or partially based on SQL), an
advanced consistency model or message queues for change notifications. This includes systems
such as Aerospike (formely known as Citrusleaf) [118], Apache Geode [39] and Megastore (8]
(according to the authors a mix of RDBMS and NoSQL).

2.3 Graph Processing Systems

Graph processing systems are either built on top of a backend key-value storage, implement
their own or rely on remote servers providing storage. For processing graph-based data-sets,
the backend storage must be capable and optimized for handling such structured
data-sets which is one of the key-objectives regarding local and also remote performance. Thus,
the design of various existing key-value storages/caches, especially their memory management,
is of high interest to this thesis. Systems offering features beyond a basic backend storage, such
as NoSQL stores (see Section 2.2), are also of interest to this thesis but mainly regarding their
backend storage design.

Graph databases like InfiniteGraph [54], Neo/j [87] or Titan [127] are optimized for storing
graph-structured data on dedicated database instances and allow queries to the stored data by
external applications. These are of partial interest to this thesis regarding their data model and
storage implementation, but not their typical database features such as the query language.

Graph processing platforms are either implemented on top of a backend-storage or as
external applications connecting to dedicated graph databases [28]. Typically, these distributed
platforms either implement an offline analytics platform (e.g. based on batch processing) or
an endpoint to serve interactive requests for processing queries of web applications. Systems
implementing a key-value data model often provide a vertex-centric programming model for
implementing graph algorithms. Selected examples include Giraph [4] which is based on Pregel
and implemented on top of Hadoop’s MapReduce framework [27], Google’s Pregel [77], GraphX
[132] built on top of Spark’s data parallel framework [135], Microsoft’s Graph Engine [114]
(formerly known as Trinity) and Turi (formerly known as GraphLab) [76]. A more generic
computational approach is taken by the shared memory system Grappa [86] which does not
enforce a specific programming model for graph processing by default.

Graph processing libraries providing efficient and optimized implementations of commonly used
graph algorithms are not of interest to this thesis because they do not address concurrency,
synchronization, consistency and distribution aspects. This also applies to temporal graph
analysis focusing on the evolution of a graph over time by analyzing time-based snapshots.

14

Chapter 2 Background and Overview

2.4 Communication using High-Speed Interconnects

On a large scale with data distributed to many servers, data locality degrades and network
latency becomes the dominating factor for overall application access latency. With high-
speed interconnects such as InfiniBand, Intel Omnipath or High-Speed Ethernet, this next
generation of network technology is already well known for years in the field of HPC [120] but also
becoming available in public clouds today [52]. This technology offers significant advantages for
large batch processing tasks as well as highly interactive always online applications. Applications
can utilize RDMA operations to read/write data from/to remote machines without involving
the remote’s CPU. For messaging/signal /event-driven applications, a more traditional form
of data exchange by using messaging verbs is also available and often preferred. The protocol
includes a full kernel bypass on the local system directly communicating with the host channel
adapter (HCA) from userspace.

This thesis addresses high-speed communication concerns using InfiniBand with a particular
focus on Java applications.

InfiniBand in Java. The available solutions to leverage InfiniBand in Java applications are
limited at the time of writing this thesis. Existing systems can utilize IP over InfiniBand
(IPoIB) [56], JSOR [126], libuma [73] or the Sockets Direct Protocol (SDP) [45] to transparently
redirect socket-based traffic over InfiniBand (which is not just limited to Java applications). To
program the RDMA-capable hardware directly, an implementation of the “verbs” API must be
used which is implemented by the native C-verbs [97] and Java jVerbs [121] libraries. With these
solutions, existing applications with socket-based networks stacks can be accelerated or new
software stacks can be designed to further benefit from InfiniBand hardware, e.g. accelerating
Redis [123|, memcached [57], Spark [5] or Apache Kafka [49] with InfiniBand.

MPI (Java) and HPC. Special InfiniBand implementations or wrappers of the traditional,
and in HPC well known, Message Passing Standard (MPI) are used for big data processing
providing a network stack with abstracted communication primitives, e.g. FastMPJ [35],
mpiJava [83], MVAPICH2 [85], Open MPI [95]. But, this thesis is not focusing on message
passing or HPC and does not further discuss general HPC frameworks/libraries like UCX [113]
which also abstract high-speed networks stacks for distributed computing.

Systems designed for high-speed networks. To leverage the true potential of InfiniBand
hardware, new systems have been proposed by the industry and the science community. Focusing
on key-value storage and graph processing system in this thesis, systems like RAMCloud, [100],
FaRM [29], MICA [74], HERD [59] or Apache Crail [3] were designed and developed with a
focus on high-speed networking hardware. All systems are implemented in C or C++ except
Apache Crail which is implemented in Java.

15

Chapter 2 Background and Overview

2.5 The DXRAM Storage System

This section presents an overview of the current state of the DXRAM storage system with its
major key features and achievements.

(Data Center)
Application 10 - 1,000
Servers DXRAM Servers

Internet

5 —200ms latency

o

Figure 2.1: Application use-case when using DXRAM as a pure backend storage.

/ Data Center \
Terminal /P
/Client |

K 100 — 1,000 Servers /

Figure 2.2: Application use-case when using DXRAM as a compute platform.

it

Task Task
Store Store
Eackup Backu_g nn

Store Store
Eac_ku—e Eac_ku_B mmm

DXRAM is a Java-based distributed in-memory key-value store and compute platform for
low-latency data-center/cloud (graph-based) applications such as, but not limited to, social
networks, search engines or general I/O-bound long-running scientific computations. Figure 2.1
depicts a typical application use-case where DXRAM is used as pure backend storage in a data
center. A low-latency network connects the storage servers of DXRAM within the data-center
with web applications on dedicated servers issuing requests to the backend storage. Figure 2.2
depicts another use-case scenario where DXRAM is used as a compute platform. Compute

16

Chapter 2 Background and Overview

Application

~
Extended Services

(ox6raph | oxerm | caepl
-

4 Core N
/ Services \
N)

Submodules

DXNet DXLog DXMonitor DXUtils
N -

Figure 2.3: Overview of DXRAM’s layered architecture [11].

tasks, submitted by the user(s), are running on DXRAM servers with access to the backend
storage in the data center. The user can submit these tasks to the system, using a terminal
or client application. Afterward, the system deploys the submitted tasks to one or multiple
servers. DXRAM is open source and available at Github [32].

The following paragraphs present the primary features and contributions of the DXRAM storage
system which are part of its layered architecture depicted in Figure 2.3.

Flexible data model and data structures [64, 61]. DXRAM stores data as key-value tuples
called chunks. The key is a 64-bit unique ID, named chunkID (CID), and the value is
the binary serialized data of a Java object. DXRAM'’s custom de-/serialization allows fast
de- /serialization of complex and nested objects to the backend storage or network buffers for
remote transfers. More complex data structures, e.g., dynamic lists, tables or graph data
(vertices, edges), can be implemented as DXRAM chunks. In his master thesis, Kai Neyenhuys
[88] implemented a distributed index based on a B-Tree structure. In the course of a project,
Ruslan Curbanov developed DXDdI, a data-description language for blueprinting DXRAM data
structures [40]. At the time of writing this thesis, further implementations of data structures
like a dynamic list or hash map are currently being worked on by students.

Distributed and transparent object lookup, and scalable meta-data manamage-
ment [64, 62, 61]. DXRAM assigns different tasks to two different server roles: Peer and
Superpeer. Peers, in general, are storage and compute instances with different capabilities like
local key-value chunk storage, running computations on peers (e.g., jobs, tasks or applications)
or chunk backup to SSD. A peer without any of these capabilities is a client with remote access
to the DXRAM infrastructure. Superpeers store global metadata like chunk locations, provide
a monitoring facility, detect server failures and coordinate the recovery of failed storage peers,
and provide a naming service.

17

Chapter 2 Background and Overview

Every server in DXRAM is identified by a unique 16-bit node ID (NID) assigned on startup.
Superpeers are arranged in a Chord-like structure adapted to the data-center environment.
General inter-server network traffic between nodes is not routed using the overlay. Instead, all
nodes (server role independent) keep a list of available servers to allow direct connections to
remotes on demand. The overlay is used for assigning metadata management responsibilities,
to detect failures and recovery coordination. For reliability, superpeers replicate their data to a
configurable number of succeeding superpeers in the overlay (default three).

The system identifies chunks and their location by a 64-bit globally unique ID split into a 16-bit
NID of the creator node and 48-bit locally unique sequential number (LID). Thus, the initial
location of every chunk is known apriori. The sequential LID allows storing the location of
multiple chunks as space efficient ranges instead of single IDs. As the location might change,
e.g., recovery of a failed storage server or migration of hot data, superpeers store the locations
in a modified B-Tree for fast lookup which is optimized for storing CIDs ranges efficiently.

Memory management for billions of small objects with low latency on highly con-
current access [63, 61, 93]. DXMem provides local memory management enabling highly
efficient storage for many small objects and low-latency data access with low-overhead synchro-
nization mechanisms for concurrent Java applications. DXMem’s tailored allocator stores the
binary serialized data of chunks outside of the Java heap with marginal per-object memory
footprint. A custom paging-like address translation ensures fast and memory efficient translation
of CIDs to the corresponding native memory address for local chunk lookup.

Low latency and high throughput network subsystem for highly concurrent appli-
cations [12, 17, 90, 92, 108, 94]. DXRAM uses DXNet as its network subsystem. DXNet
provides low-latency and high-throughput messaging with a modular transport layer. It im-
plements higher-level messaging primitives abstracting typical asynchronous and synchronous
messaging patterns. With lock-free data structures, fast concurrent serialization, zero-copy,
and zero-allocation, it is optimized for highly-concurrent Java applications. DXNet currently
supports InfiniBand networks using Ibdxnet and Ethernet networks using Java NIO.

Fast Asynchronous logging to SSD and crash-recovery failure-model [14, 15, 13, 16].
To ensure reliability and avoid data loss, DXRAM scatters chunks of one storage server (backup
source) to one or multiple remote servers (backup destination). The type of distribution,
e.g., random, disjunctive or location-aware, is configurable. A backup source can also be a
backup destination for remote storage servers at the same time. The system stores all incoming
backup-data in a log on disk (SSD or HDD) on the destination. This log is optimized for high
throughput for many small objects. A two-level logging mechanism ensures fast persistency
and speeds up recovery in case of server failure.

Storage monitoring and data migrations to handle hot spots [65]. Superpeers are
monitoring their corresponding peers by gathering common metrics such as CPU, memory
or network load periodically. This monitoring facility enables detection of different types of
hotspots regarding storage (low memory), computing resources (high CPU load) or network
requests (high traffic). The superpeer can detect such hotspots by analyzing the data and
executing measures, e.g., data migration of (subsets of) hot data. Thus, a hotspot can either
be moved entirely to another peer or split to multiple peers to distribute the overall load.
Computations or Applications running on DXRAM can use its data migration mechanism to
execute a more contextual based and precise load balancing.

18

Chapter 2 Background and Overview

Computations on storage servers benefiting from data locality and multi-core hard-
ware [91]. DXRAM provides multiple services to execute parallel and distributed computations
on storage servers. The Job Service enables running lightweight and short computation methods
on peers using a work-stealing approach with a fixed size worker pool. Jobs can be delegated to
remote servers to enhance data locality improving the overall performance. The Master-Slave
Service provides an infrastructure to run tasks distributed to multiple servers. A compute group,
which consists of multiple servers (configurable) and is managed by the service, executes each
task. A task script chains multiple tasks with implicit synchronization (super-step) between
tasks. To avoid data races and provide synchronization mechanisms for computations, DXMem
implements a per chunk read-write lock for data synchronization and locking. Furthermore,
DXRAM implements a distributed barrier to enable super-step synchronization for distributed
computations on peers.

An interface allows developers to create custom applications packed as jar-packages called
DXApps and execute them on DXRAM peers. Compared to the built-in computational
infrastructure, this gives developers a higher degree of freedom to develop and run custom
distributed and concurrent applications on DXRAM. Applications have full access to the
DXRAM API just like deployed tasks and jobs.

DXGraph - Graph Processing on DXRAM [91]. DXGraph is a framework building on
top of DXRAM providing several utilities such as data structures or algorithms implemented
as tasks, jobs or applications to enable graph processing with DXRAM. It also includes a
distributed and concurrent implementation of the Graph500 benchmark [84] implemented using
DXRAM tasks.

Benchmarks. Several built-in and external benchmarks allow testing and analyzing the
performance of DXRAM or its subsystems. DXNet [31] with its built-in benchmark can be
executed independently of DXRAM to evaluate the pure network performance of a selected
transport using a variety of configurable parameters. DXMem [30] also provides a built-in and
DXRAM independent benchmark, similar to the Yahoo! Cloud Serving Benchmark, which can
be used to determine the performance of the memory management using different workloads.

The Yahoo! Cloud Serving Benchmark (YCSB) [25] is a benchmark to evaluate different
(in-memory) storage systems using workloads of common cloud/online services with a DXRAM
client available. The BG Benchmark [9] evaluates data storages with a focus on social networking
actions and sessions and a DXRAM client available for evaluation. The LDBC graphalytics
benchmark [55] is designed specifically for benchmarking systems with graph analytics and
processing workloads. At the time of writing this thesis, Ruslan Curbanov is working on
supporting DXRAM with this benchmark.

19

Chapter 3

Using an In-Memory Key-Value Store as
a Compute Platform for Java Graph
Applications

|)
*

/ Key-Value Store

Compute: Jobs & Tasks

eAep

Figure 3.1: The “big picture” of this thesis with the relevant components for this chapter
highlighted (“Application” layer and interface, “Graph Processing”, “Compute”, and
interfaces).

This chapter discusses the first research question “Can an in-memory key-value storage be used
as a scalable compute platform especially for graph data-sets with concurrent and distributed
algorithms?” in a Java environment (see Section 1.3).

First, in Section 3.1, the author presents the addressed requirements concerning an in-memory
key-value storage that result from this major question based on the previously introduced
context (see Section 1.1) and its challenges (see Section 1.2). Based on the stage of work of the
DXRAM storage system presented in Section 3.2, Section 3.3 elaborates on the major research
question in detail. Section 3.4 presents the resulting contributions of this work followed by a
copy of the publication:

20

Chapter 3 Using an In-Memory Key-Value Store as a Compute Platform for Java Graph Applications

Stefan Nothaas, Kevin Beineke, and Michael Schottner. “Distributed Multithreaded
Breadth-First Search on Large Graphs using DXGraph”. In Proceedings of the 1st High
Performance Graph Data Management and Processing workshop (HPGDMP). 2016. 8 pages.
Copyright 2016 IEEE. https://ieeexplore.ieee.org/document/7830441

3.1 Requirements

Two categories of requirements regarding graph processing on an in-memory key-value storage
must be considered: First and foremost, running distributed and parallel computations on
the storage in general. Second, providing an extra layer that extends the system and its key-
value data-model beyond the basic key-value foundation for graph-based applications. These
requirements have to be considered in a Java environment.

Presented in Chapter 1, graph-applications process and store huge graphs consisting of many
small objects. Many algorithms create worst-case access patterns resulting in highly random
access to the data. Thus, the computations should run as close as possible to the stored data to
benefit from locality and to lower expensive communication with remote servers. The system
must support this by running parallel computations locally on storage servers. Furthermore,
with multi-core resources common today, concurrency must be considered to be able to exploit
these resources. The Java environment already provides utilities for synchronization of data
races on a single server. However, with the vast amounts of data, a distributed approach
becomes inevitable making concurrency control across multiple servers necessary. To avoid
data races and synchronize between computation steps, the system has to provide utilities for
managing distributed concurrency as well.

Graph-based applications have to store their data using the back-end storage of the system.
Storing the data requires appropriate data structures that go along well with the natural graph
representation. For offline processing systems, the data is typically loaded from files stored on
disk, first. Loading real-world modeled workloads [116] and pre-generated synthetic data is
essential as well for testing and benchmarking. The latter can be generated by graph-generators,
e.g., the Kronecker generator of the Graph500 [84] reference implementation. These graphs allow
testing of arbitrary small and large scales which are not covered by the real-world data-sets,
e.g., to evaluate the system’s limits regarding storage capabilities.

Graph algorithms, especially traversal-based, generate highly random access patterns resulting
in complex inter-server all-to-all communication patterns. Thus, keeping as much locality
as possible and lowering remote communication overhead for such algorithms is essential
for performance. The Graph500 [84] is an established graph benchmark to evaluate this
worst-case and fundamental system requirement by implementing a breadth-first search. This
algorithm is one of the commonly used foundations for traversal-based algorithms [55] and can
be implemented with local and distributed concurrency.

21

Chapter 3 Using an In-Memory Key-Value Store as a Compute Platform for Java Graph Applications

3.2 Stage of Work

To address the requirements proposed in Section 3.1, the author conducts his research with the
Java-based DXRAM in-memory key-value storage system. Initially, Dr. Florian Klein designed
DXRAM as a pure backend key-value storage [61]. This section addresses only the relevant
aspects of the DXRAM storage for this chapter. Features such as monitoring, backup and
recovery are omitted here.

The DXRAM system already implemented an overlay structure forming a cluster of servers for
a distributed storage. A per storage server local memory manager implemented the in-memory
key-value-based storage optimized for storing many small objects efficiently. However, the
memory management was lacking de-/serialization of Java objects and could handle raw binary
data (Java byte-arrays), only. Distributed exchange of data between servers was possible using
the Ethernet-based network subsystem supporting asynchronous and synchronous messaging
primitives. The DXRAM client and API supported basic CRUD operations to access and
modify binary data stored on remote storage servers. Multi-CRUD operations allowed batching
of multiple chunks per operation, e.g., multi-get to get multiple chunks by invoking a single
get-operation.

3.3 Research Questions

With the DXRAM storage providing general very low per-object metadata overhead, it was
already optimized for storing many small objects found in typical graph data-sets. However,
with data access exclusively using a remote client API, various benefits of the system and the
hardware have not been exploited thus far. Batching creates some locality but does not fully
exploit locality on random access patterns of graph algorithms. This state of work leads to some
crucial questions that have to be considered when developing a suitable solution for graph-based
applications: How can the DXRAM storage system be extended to support local computations
on storage servers? However, considering the various fundamental graph-based algorithms,
what’s the impact on the system? Is this impact limited to the storage, only or does it affect
other subsystems as well? How to leverage the power of the available multi-core hardware
regarding local and especially distributed concurrency? What requirements are imposed by
these algorithms and how can the system address these in general and not just for one specific
algorithm?

Further questions arise when switching to the point-of-view of the graph application: How to
represent graph-data adequately for the application and allow efficient processing by the system?
With tasks required by many graph-applications such as loading/generating data or executing
commonly used graph algorithms, is it possible to create a high-level abstraction that can be
re-used by many applications without impacting the system’s performance significantly?

22

Chapter 3 Using an In-Memory Key-Value Store as a Compute Platform for Java Graph Applications

3.4 Contributions

Our publication proposes a design of two core modules extending DXRAM to run computations
on storage servers as well as the graph processing framework DXGraph including graph data
loading, and a distributed and multi-threaded breadth-first-search reference implementation
according to the Graph500 specification [84]. The contributions stated below which are not
explicitly assigned to any author/contributor are by the author of this thesis.

The JobService compute module allows applications to submit and run lightweight jobs with
a fixed size thread pool on DXRAM storage servers. This approach is suitable for rather
short computations that run single threads on multiple data subsets (SIMD principle). For
more complex computations that have to run the algorithm concurrently on a single server
and distributed across multiple servers, the application can submit tasks to the TaskService.
It provides mechanisms for coordination and synchronization of concurrent and distributed
compute tasks running on one or multiple DXRAM storage servers and are suitable for massively
parallel computations spanning large datasets.

DXGraph provides data structures for storing graphs using a natural representation with vertices
and edges on DXRAM storage servers. It uses the new compute modules to implement typical
tools required for graph processing, e.g. (distributed) loading of datasets or generating synthetic
data for benchmarks, and algorithms which are commonly used in graph applications.

The evaluation shows that our implementation of the BFS algorithm with DXRAM and
DXGraph is up to five times faster compared to GraphLab’s and Grappa’s, two state-of-the-art
C++-based systems.

With DXRAM storing tiny objects efficiently, further research in the graph application domain
was initiated by Dr. Florian Klein who created the initial implementation of the DXRAM
storage system. To bring DXRAM to this next stage, the author of this thesis started analyzing
the graph-processing application domain to determine the requirements by the applications of
this field.

The author of this thesis implemented the two core services JobService and TaskService to
enable running computations on DXRAM storage servers. Furthermore, this was preceded by a
large and complex refactoring phase of the whole DXRAM system, as DXRAM was designed
as a pure backend storage, initially. The refactoring was a close collaboration between Dr.
Kevin Beineke and Stefan Nothaas. Dr. Kevin Beineke refactored DXRAM’s bootstrapping
with ZooKeeper, the DXRAM overlay, logging, and network subsystem to integrate into the
new foundation. Stefan Nothaas created a new core for the DXRAM system to meet the
requirements of the target application domain and provide future extensibility of the system.
Furthermore, he was involved with adapting the local memory management as well as the
network subsystem to use DXRAM’s custom de-/serialization interface for chunk objects (see
Chapters 4 and 5).

23

Chapter 3 Using an In-Memory Key-Value Store as a Compute Platform for Java Graph Applications

Initially, the author started developing DXGraph including the highly optimized BF'S imple-
mentation, loading of graph data from an ordered edge list file format and basic graph data
structures. In October 2016, the project lead on DXGraph was passed to Philipp Helo Rehs
starting work on his Ph.D. thesis with a focus on graph applications. Philipp Helo Rehs added
further tasks for loading different graph file formats, new data structures and implement the
Bron-Kerbosch algorithm.

Dr. Kevin Beineke, Prof. Dr. Michael Schéttner, and Philipp Helo Rehs took part in many
discussions about the design and performance analysis of DXGraph and DXRAM.

Stefan Nothaas wrote the paper and evaluated all the systems presented in it. Dr. Kevin
Beineke and Prof. Dr. Michael Schéttner reviewed the paper several times and helped improve
it.

With the ongoing development of DXGraph, DXRAM showed significant deficits in various
graph-based workloads regarding concurrency in local memory management access and remote
data access latency. Thus, the research focus was shifted to local memory management and
InfiniBand development to address these challenges (see Chapters 4 and 5).

24

Distributed Multithreaded Breadth-First Search on
Large Graphs using DXGraph

Stefan Nothaas, Kevin Beineke and Michael Schottner

Institut fiir Informatik, Heinrich-Heine-Universitit Diisseldorf,
Universititsstr. 1, 40225 Diisseldorf, Germany
E-Mail: stefan.nothaas @uni-duesseldorf.de

Abstract—Interactive graph applications are often generating
irregular access patterns on very large graphs with trillions
of edges and billions of vertices. In order to provide short
response times for interactive queries, all these small data objects
need to be stored in memory. DXRAM is a distributed in-
memory system optimized to efficiently manage large amounts
of small data objects. In this paper, we present DXGraph, an
extension to allow graph processing on DXRAM storage nodes.
For a natural graph representation, each vertex is stored as an
object. We describe DXGraph’s implementation of a breadth-
first search (BFS) algorithm, as specified by the Graph500
benchmark. The preliminary evaluation of the BFS algorithm
shows that DXGraph’s implementation is up to five times faster
than Grappa’s and GraphLab’s with a peak throughput of over
323 million traversed edges per second.

Index Terms—Graph processing; Breadth-first search; Big
data; Cluster computing; In-memory storage

I. INTRODUCTION

Offline and online graph analytics need to process very large
graphs with up to billions of vertices connected by trillions of
edges. Interactive applications like social networks demand
high performance and low-latency storage solutions to ensure
fast response times for queries of potentially many interactive
users. Facebook is already storing billions of small, less than
64 byte, objects resulting in a graph with trillions of edges
[1]. Other graph examples are brain simulations with billions
of neurons and thousands of connections each [2] or search
engines for billions of indexed web pages [3].

Typically, databases and in-memory storages cannot handle
small data objects efficiently and introduce a considerable
large meta-data overhead on a per object basis. Therefore,
it is often recommended to aggregate vertices and edges
for queries which is impacting latency and burdening the
developer. Holding all objects always in RAM reduces access
latency dramatically but the huge amounts of small objects
require an efficient memory management and fault tolerance
to mask node failures.

DXRAM is a distributed in-memory storage system de-
signed to efficiently store and handle many small data ob-
jects. This is achieved by a minimal meta-data overhead,
scalability regarding number of storage nodes and high
throughput for remote and local client requests. DXRAM

HPGDMP16; Salt Lake City, Utah, USA; November 2016
978-1-5090-3880-0/16/$31.00 © 2016 IEEE

is designed to run within a single data center, currently
supporting Gigabit Ethernet (Infiniband planned).

The main contributions of this paper are:

¢ DXGraph and DXCompute: Data structures and tasks
for loading, generation and processing of graphs with
either lightweight jobs or master-slave coordinated tasks
as computations on DXRAM.

o Direction optimized BFS implementation defined by the
second Graph500 [2] kernel with highly efficient data
structures.

The structure of the paper is as follows. Related work is
discussed in section II, followed by an architectural overview
of the DXRAM core in section III. Section IV describes the
typical steps involved with graph processing using the breadth-
first search as an example. Section V describes the imple-
mentation in DXGraph. Section VI presents the experimental
results followed by conclusions and an outlook on future work
in the last section VIIL.

II. RELATED WORK

Many systems have been proposed to provide low-latency
data access for online graph queries and offline graph ana-
Iytics. Google’s Pregel [4] introduced a new vertex centric
computation model based on message passing for distributed
offline graph processing. Each vertex receives messages and
executes modifications on its own data with fault tolerance
achieved through a checkpointing mechanism. DXGraph and
other graph systems share some characteristics with Pregel,
especially the vertex centric approach. However, DXGraph
is not sending computations to vertices compared to Pregel.
Furthermore, Pregel is not a key-value store and is targeting
offline processing. DXRAM provides fault tolerance through
a logging based approach instead of checkpointing. As an
open source counterpart to Pregel, Giraph [1] uses Hadoop
as a foundation for graph processing building on its existing
MapReduce framework.

GraphLab [5] is an offline distributed in-memory process-
ing framework for graphs. Also based on a vertex centric
execution model and fault tolerance through a checkpointing
mechanism, data is represented in a vertex centric manner. It
is designed for machine learning and graph based applications
with an API based on a three phase gather-apply-scatter
approach. Input graph data is represented as user modifiable

program state for each vertex. An update function executes
the user’s stateless computations on the data by transforming
it within the scope of a a single vertex. The sync operation
aggregates the results per vertex. Again, DXGraph shares the
natural data representation and an execution phase provides a
similar approach to the update function of GraphLab. However,
a separate sync operation to aggregate results is not forced
on the programmer. Depending on his application, he is
free to choose the paradigm fitting his use case. For fault
tolerance and persistence, logging is used for DXRAM and
checkpointing for GraphLab.

With GraphX [6] utilizing Spark’s data parallel framework
for distributed graph computations, graphs are stored as tabular
data instead of objects in a key-value store. Operations on the
data are defined as transformations on the immutable graph
yielding a new graph. Online graph analytics are enabled
with interactive queries like load, transform and compute.
Moreover, instead of creating backups of the altered data,
fault tolerance is achieved by maintaining the operations to
transform the base data. This approach is very different from
DXGraph’s and also many other systems of this category.

Microsoft’s graph engine Trinity [7] introduces its Trininty
Specification Language to define data schemata and to use the
message passing protocol of its distributed in-memory key-
value store and object management. Fault tolerance is provided
by backing up the data to a shared distributed file system.
Trinity provides a platform for online queries as well as offline
graph analytics with a vertex centric approach. In contrast to
Trinity, DXGraph does not provide a special language to define
data structures or using any of its services included. DXRAM’s
logging approach for fault tolerance is also very different to
the backup solution of Trinity. However, Trinity and DXGraph
share similar goals as well as the basic architecture for the
application programmer with a vertex centric approach and a
natural graph representation.

Also using a vertex centric approach for its graph ap-
plications, Grappa [8] is a shared memory runtime system
for clusters and multicore computers not limited to offline
and online graph processing, only. It abstracts hardware by
creating a single address space for the application as well
as executing code in the form of tasks. Tasks are scheduled
by Grappa’s tasking system using a work stealing approach
when mapping to threads. Moreover, Grappa’s scheduling
ensures low context switch times for worker threads when
executing tasks. Though sharing similar goals by not limiting
the system exclusively to graph processing, the shared memory
architecture is the key difference to DXRAM’s distributed
key-value store. Furthermore, DXCompute provides different
methods for executing code. Either the programmer creates his
own solution to execute custom application code or, he uses
the job system or tasking system (refer to III-B) provided by
DXCompute to delegate scheduling and execution. Currently,
Grappa does not provide any mechanisms for fault tolerance,
though the authors are considering this for their future work.

III. ARCHITECTURE OVERVIEW
A. DXRAM Core

DXRAM is a distributed in-memory system for data centers
and is optimized for large amounts of small data objects. Such
objects are common in interactive applications like search en-
gines or social media networks which are based on enormous
data graphs. DXRAM keeps all data always in RAM providing
low-latency access even for irregular access patterns. Node
failures are masked by transparent logging and recovery [9].
Figure 1 shows the layered architecture of DXRAM including
the new extensions DXCompute (see section III-B) and DX-
Graph (see section III-C). Several components implement the
backend whereas services provide the API for the programmer.
Every DXRAM node is either a peer or a superpeer. Peers store
data objects, may run computations and exchange data directly
with other peers, and also serve client requests when DXRAM
is used as a back-end storage. Superpeers store global meta-
data like the locations of data objects, implement a monitoring
facility, detect failures and coordinate the recovery of failed
nodes, and also provide a naming service. Objects stored in
DXRAM’s key-value store are called chunks. Every chunk has
a 64-bit globally unique ID called a chunk ID (CID). This
ID consists of two separate parts: A 16-bit node ID of the
object creator and a 48-bit locally unique sequential number.
Thereby, 65,536 nodes with around 280 trillion chunks per
node are addressable. The sequential generated CIDs allow the
use of compact global metadata management by using range-
based B-trees on superpeers and compact paging-like address
translation tables on peers. The address translation yields O(1)
performance as well as overall low memory consumption.
A custom memory allocator for small objects ensures low
memory overhead per object. A chunk can have an arbitrary
size of up 2 GB (Java byte array maximum size) and is stored
in dynamic sized and chained blocks of up to 8 MB.

B. DXCompute

DXCompute is a new layer built on top of the DXRAM ar-
chitecture adding services to execute computations locally and
also remotely on storage nodes. Interactive queries on graph
data are supported by providing lightweight Jobs managed by
the JobService which uses a per node configurable fixed size
thread pool. A work stealing approach implements implicit
load balancing between threads of one JobService [10]. If a
job needs to access data located on a remote node, the job can
be delegated to the data-owning node. This will improve data
locality when executing the job and increase performance.

If a computation involves more than one node, multiple
nodes have to be coordinated. The MasterSlaveService (see
figure 2) implements compute groups within the DXRAM
network topology consisting of one coordinator (master) and
an arbitrary number of compute nodes (slaves). The master
node controls the slave nodes of its group by managing
joining/leaving of slaves to the compute group, accepting
compute tasks, scheduling compute tasks to all slaves and
synchronizing slaves between compute tasks. When writing

DXGraph

MasterSlaveService
DXCompute

Chunk | Migration

Nameservice | Synchronization

Core Components

Engine
DXRAM Core
Figure 1: The DXRAM layered architecture. The engine and
a collection of core services and components form the core
of DXRAM. DXCompute is built on top of the core adding
services for computations. DXGraph requires DXCompute and
adds features for graph processing.

Master (Peer) Slave (Peer)

CGID 3
Peer IE@ @ CGID 3
ueue Task Tas
Task Thread
Peer _
m . Colrdrier;?e Slave (Peer)
Peer * Sync CGID 3

@ Task Thread

Figure 2: MasterSlaveService architecture implemented in
DXCompute. The example shows three peers sending tasks
to the master of the compute group (CGID) 3 with two slaves
connected. Green indicates data flow over the network. Thread
activity is colored red.

e Schedule

a compute task, the programmer has access to the current
compute group’s unique ID, the slave ID assigned to the
node as well as node IDs of all other slaves of the current
compute group and all of the core DXRAM services. The
programmer can use the IDs as indices for partitioning his
data or controlling the computation flow (see section V-B).

C. DXGraph

DXGraph extends DXCompute (see section III-B) by
adding data structures and algorithms for graph generation,
loading and processing. Currently, it contains compute tasks
for the MasterSlaveService to load graph data from disk to
DXRAM’s key-value store and execute a multithreaded dis-
tributed BFS on a loaded graph. Vertices of the graph are rep-
resented naturally as Vertex objects and stored in DXRAM’s
key-value store (see IV-A). Details about the loading task
are provided in section V-B and the BFS implementation is
discussed in section V-C.

IV. TypPICAL GRAPH PROCESSING STEPS

Data operations like online queries as well as offline graph
processing are often based on a traversal of subgraphs. Ac-

cessing the neighborhoods of many vertices often results in
irregular access patterns. Very large graphs do not fit into the
main memory of a single machine and need to be partitioned,
stored and processed on many machines (refer to IV-B). The
combination of irregular access patterns on graphs stored on
many machines typically results in a high network traffic.
The Graph500 benchmark [2] executes a breadth-first search
on a huge graph to measure random access performance of
clusters and shared memory machines. With BFS being one
of the important building blocks for many graph algorithms
and queries, it is a very good candidate to measure the overall
performance of a graph processing system. This stress test is
challenging for the network subsystem, the data lookup and the
memory management. Many small data objects demand high
efficiency and low overhead towards memory management.

A. Common Graph Representations

There are two ways to represent the graph and its com-
ponents. The first method is a 2D representation as an edge
matrix. A N x N sparse matrix, with N being the number of
vertices of the graph, is created with entries (m, n) specifying
that vertex m has an outgoing edge to vertex n. This is a
typical format for shared memory [11] systems. The second
method is a 1D representation as a collection of vertex objects.
Each vertex object can contain further attributes but only a list
of adjacent vertices is required. This representation fits GPUs
[12], NUMA machines [13] or distributed memory systems
[14]. This natural representation blends well with our key-
value store by creating one object for each vertex and storing it
with a unique CID. Furthermore, the graph is split into separate
vertex objects allowing us to distribute them to different nodes
easily as needed.

B. Graph Partitioning

As mentioned in section IV, if a graph does not fit into the
memory of a single machine it needs to be split into multiple
partitions. Partitioning a graph using FENNEL [15] or METIS
[16] creates graph partitions with minimized edge cut reduc-
ing network communication on graph traversals compared to
random partitioning. This can be part of the loading and graph
construction step (see section IV-C) or a separate offline pre-
processing step. However, computing an optimal partition is
not a trivial task because the algorithms are in the category of
NP-hard problems.

C. Data Loading and Graph Construction

Formats of existing graph data [17] might not fit the in-
memory representation and require a conversion step for
loading the data. This includes identifying vertices with IDs or
hashes that are usable to the system or the actual in memory
representation as objects or a sparse matrix. Basically, there
are two approaches for converting graphs. Offline conversion
is very flexible as we introduce a separate preprocessing step
which does not have to involve the target graph processing
system. This step converts the input data to an appropriate
representation the target system can handle easily.

Online conversion constructs the graph from any (sup-
ported) input data format by executing the necessary steps
during loading on the target system. However, the conversion
steps might require additional memory and can lower the
amount available for storing the final graph data. Furthermore,
if the graph data is loaded over and over again, the online
conversion will generate the same data but will always extend
execution time of the loading phase.

Running an offline conversion step on the desired data set
once and storing data in a fitting intermediate representation
is the preferred approach to speed up the loading process
which can take minutes or up to hours. When applying
partitioning algorithms (see section IV-B), a preprocessing
step is necessary anyway. Dynamic graphs like managed by
Facebook grow and evolve over time and do not need the pre-
processing steps.

D. The Breadth-First Search Algorithm

BFS is a building block for many graph processing al-
gorithms. It traverses all reachable vertices from one source
vertex determining their distance/depth. Algorithm 1 shows
a common abstract implementation of the level synchronous
top-down BFS algorithm.

The input graph is defined by G(V, E) with the number of
vertices n = |V| and the number of edges m = |E|. BFS uses
lists, also called frontiers, to keep track of vertices that have
to be processed on the current iteration level (current frontier)
and vertices that will be processed on the next iteration level
(next frontier). Level synchronous BFS processes the graph in
steps which we call iteration levels.

Performance for best-case and worst-case are equal because
the search has to traverse all connected edges from the root.
There are different ways to generate output data in this
algorithm. Algorithm 1 stores the determined depth with each
vertex, thus altering the input graph which might not be desired
for some applications. Alternatively, one can store a list of
parents for each vertex creating a spanning tree rooted at the
input root r.

Algorithm 1: Sequential top-down BFS algorithm

Input: G(V, E), with dist for each neighbor nb of v € V,
nb.dist = -1; root vertex r

Output: G(V, E) with depth for each v € V

r.dist = 0;

cur frontier < r, next frontier < (;

while cur frontier # () do

foreach v in curfrontier do

foreach neighbor nb of v do
if nb.dist = -1 then
next frontier < nextfrontier Un;

L n.dist = v.dist + 1;

[B LY I R S

9 cur frontier < next frontier;
10 next frontier < 0;

Beamer et al. [14] are proposing the “direction-optimizing
BFS” algorithm, a hybrid approach for level synchronous BFS
combining the classic top-down with a novel bottom-up ap-
proach to speed up BFS execution. When traversing the graph
in top-down manner, the algorithm tries to visit every neighbor
of every vertex of the current frontier on each iteration level.
As the algorithm progresses and the depth level is increasing,
many vertices are already visited resulting in many failed
“not visited” checks. When the current frontier is large, most
neighbors of the vertices in the frontier have already been
visited but the top-down approach is still processing them.
The bottom-up approach is more suitable in this situation. For
every unvisited vertex of the graph, it checks if its list of
neighbors contains one of the vertices in the current frontier
i.e. is there a connection from any unvisited child to a parent
of the current frontier. This requires keeping a list of already
visited and unvisited vertices (see section V-A). By checking
all unvisited vertices of the graph, the bottom up approach
is only suitable if the current frontier contains a significant
fraction of the graph. For a hybrid and high performant BFS
implementation, one combines both approaches with top-down
at the first and last iteration levels and bottom-up in the middle
when the frontier is at its largest. Further details are explained
in our implementation in section V-C2.

V. GRAPH PROCESSING WITH DXGRAPH

The DXGraph layer contains an implementation of a dis-
tributed multithreaded direction-optimizing BFS algorithm
with the DXRAM core and DXCompute layer. Furthermore,
the layer contains data structures for the algorithm as well
as tasks for generating and loading data. The DXRAM core
provides the distributed key-value storage as well as message
passing. Moreover, we used the MasterSlaveService from
DXCompute to easily distribute and execute computation tasks
on an arbitrary number of slave nodes.

A. Data Representation

Before execution, the graph data needs to be loaded. For
storing the vertex data, we are using the natural 1D data
representation (see section IV-A). The vertex IDs are refered
to as CIDs and vice versa (depending on the context). For the
implementation, both terminologies refer to the same number.
Every vertex has a neighbor list of CIDs referencing other
vertices stored as chunks and a field to assign the depth of the
vertex.

B. Data Generation, Conversion and Loading

Input data is generated by the edge list generator of
the Graph500 reference implementation [2]. The kronecker
generator creates a random graph with low locality based
on the scale and edge factor input parameters. A simple
converter loads different graph input formats, such as the
edge list format from the kronecker generator and creates an
intermediate output graph suitable for DXRAM’s key-value
store allowing concurrent loading of the data on multiple nodes
with low memory overhead. Furthermore, additional metadata

is generated to allow distribution of the data to an arbitrary
number of nodes (random distribution). The metadata provides
information on slicing the graph into almost equally sized
partitions according to the number of nodes.

One thread on each DXRAM node is reading vertices of its
assigned partition from the input graph file into an intermediate
buffer. A second thread is removing vertices from the buffer,
allocating memory in the key-value storage and storing the
Vertex. Sequential loading of the vertices ensures that the
sequentially generated CIDs are correctly assigned to match
the order of the vertex IDs. However, the vertex IDs of the
neighbor lists need to be re-based to match the node’s local
IDs starting with ID 1 on each node. This is a simple and
inexpensive task because we can easily calculate a fixed offset
for the IDs using the partition index for every vertex.

C. Optimized BFS Implementation

1) Data Structure BitVector: Efficiency of the algorithm is
not only determined by the implementation of the algorithm
itself but also by high performant and low overhead concurrent
data structures. BFS requires an implementation of a frontier
data structure storing the vertices to be processed in the current
iteration and for all vertices to be processed in the next
iteration. Common dynamic data structures like lists or queues
are not very suitable for large graphs. Storing a 4 byte vertex
ID, using an array to implement the data structure, the frontier
requires 4GB for a graph with one billion vertices. Moreover,
to avoid duplicates that increase memory consumption, the
list needs to be iterated and checked if a vertex is already in
the list. This operation is very expensive (O(n) runtime) and
slows down overall execution time of the algorithm.

Hence, a data structure providing O(1) lookup time for
entries, a low per vertex memory overhead, no duplicate
entries and efficient concurrent access is required.

We address these challenges with a static bit vector based
data structure called BitVector similar to Berrendorf’s bitmap
implementation [13]. Each bit represents the vertex ID (vid) by
its index in the continuous array of bits where 1 indicates the
list “contains” the vertex and O “not in the list”. This allows
highly efficient lookup, insert and remove operations using a
primitive long array (64 bit per array entry) in O(1) providing
the following operations:

// Entry check

(array[vid / 64] & (1 << (vid % 64))) > O
// Entry set

array([vid / 64] |= (1 << (vid % 64))

// Entry clear

array([vid / 64] &= ~(1 << (vid % 64))

The BitVector avoids inserting duplicates implicitly and yields
constant time performance when adding entries. Implementing
low overhead synchronization using compare and swap (CAS)
operations is simple and allows highly concurrent access.

2) Algorithm: The algorithm is implemented as a task
to be executed with our MasterSlaveService. Algorithms 2
and 3 show simplified versions of the control flow of the
implementation. Furthermore, figure 3 shows the vertex data

Algorithm 2: Simplified version of our main task thread
of the BFS implementation

Input: G(V.E), RootVertexList rootlist
Output: G(V, E) with depth for each v € V
1 bfslevel = 0;
2 BitVector curfront, nextfront, visited;
3 startWorkerThreads();
4 foreach root in rootlist do
5 curfront.clear(); visited.clear();
if IsStoredCurNode(root) then
root.mark Visited(bfslevel);
visited.insert(root);
curfront.insert(root);

R)

10 loop = true;

11 while loop do

12 while curfrontier.notEmpty do

13 |_ yield ; // Wait for workers, hot standby

/+ BFS level sync with remote workers,
exchange nextfront state */

14 allRemoteNextFrontsEmpty =
bfsLevelBarrierSync();

15 if nextfront.empty and allRemoteNextFrontsEmpty
then

16 | loop = false ; // BFS finished

17 else

18 swapFrontiers(curfront, nextfront);

19 nextfront.clear();

20 bfslevel++ ; // next iteration level

21 stopWorkerThreads() ; // Workers: run=false

DXGraph: BFS Compute Task

. in Task Thr
Message Receiver: . Te'\rllrilina?;n Thread Other
Remote vertex data : : o slaves
eSSl * Direction switching
P 9 e [evel synchronization

(@)

8

Concurrent shared buffers 3

FrontierCurrent FrontierNext FrontierVisited 3

%’.

o}

Worker Threads
BFS Thread

VertexBuffer
MessageBuffer

BFS Thread

VertexBuffer
MessageBuffer

BFS Thread

VertexBuffer
MessageBuffer

[71 M Ne iwwivl
Vertex
Message Queue Out * delegation
Message Queue In * e

slaves
Figure 3: Architectural overview of DXGraph’s BFS im-
plementation Red indicates threading, green network (vertex)
data flow and blue local (vertex) data flow

Algorithm 3: Simplified version of a single worker thread
of the BFS implementation (top-down only)

/+ Each thread has shared access */
Input: Frontier curfront, nextfront, visited; bfslevel

1 run = true ; // loop, termination by main task
2 Vertex[] vertexBuffer ; // Thread local buffer
3 while run do
4 if curfrontier.empty then
5 ‘ yield; // Wait for vertex IDs, hot standby
6 else
/* Get vertex objects from storage */
7 fillVertexBuffer(curfront, vertexBuffer);
/* Vertices in curfront are always local */
8 foreach vertex in vertexBuffer do
9 foreach neighbor in vertex.neighbors do
/* Processing local neighbors only,
delegating remote ones */
10 if IsStoredCurNode(neighbor) and
visited.contains(neighbor) then
11 neighbor.mark Visited(bfslevel);
12 visited.insert(neighbor);
13 nextfront.insert(neighbor);
14 else
/+ Remote node adds non visited
vertices to nextfront */
15 send VertexToNodeOwner(neighbor);

flow. The bottom-up code is further explained below, but was
removed in the pseudo-code for better readability.

A fixed but configurable number of worker threads is used
on each node. The threads are kept on hot standby to avoid
startup latencies and are stopped after the algorithm has
terminated. Each worker thread has its own local vertex buffer
for buffering a configurable number of vertices to enhance data
locality and improve throughput. Another buffer for sending
non-local vertex IDs to remote nodes is explained below. The
current, next and visited BitVectors are allocated per node and
shared among the threads on a single node.

For a prior loaded graph, a single vertex ID or list of vertex
IDs is provided as root(s) to the task as input parameters. The
algorithm is started on the slave owning the root vertex. The
node marks it as visited and adds it to the current frontier.
The worker threads are accessing the frontiers concurrently
and “stealing” vertices from the current frontier resulting in
implicit load balancing among them. For each locally buffered
vertex, a thread checks its neighbors and determines if each
neighbor is stored on the current node. If the neighbor is
locally stored, it marks it as visited and adds it to the next
frontier. Otherwise, it sends the vertex ID to the remote node
owning the vertex by adding it to the vertex message buffer.
The remote node receives a message with the vertex ID, checks
if the vertex is already visited, marks it as visited and adds
it to his next frontier. Additional steps to retrieve the actual

vertex chunks from the storage are necessary before iterating
the vertex’s neighbor list. Delegate messages with vertex IDs
are sent in batches to better utilize network bandwidth and
batch processing on the remote node.

When the main task thread detects that his local current
frontier is empty, it finishes the iteration by synchronizing
with the other nodes (see section V-C4). With the exchanged
information on this step, every node can determine if it has to
terminate the breadth-first search and stop the worker threads
or continue with the next level and swapping their current and
next frontiers.

3) Top-Down with Bottom-Up, a Hybrid Approach: Our
initial top-down only implementation was already performing
very well, but in combination with a bottom-up approach,
we were able to improve execution time even further (see
section VI). Before each level iteration, every node checks
if it has to run the upcoming iteration top-down or bottom-up.
Provided by Beamer et.al [14], m; > % determines if we
switch from top-down to bottom-up and ny < 1y determines
if we switch from bottom-up to top-down with my being
the number of edges and ny the number of vertices in the
current frontier of all nodes. k specifies the graph’s degree.
All necessary information is exchanged on the multicast level
synchronization with all other nodes ensuring that every node
runs the same approach for the current level.

4) Synchronization: Level synchronous BFS requires syn-
chronizing all participating threads of all nodes after each
iteration level. We decided to implement an all-to-all bar-
rier [18] using our efficient network subsystem and atomic
counters to keep the latency between BFS iteration levels
low. Furthermore, we combine this synchronization step with
exchanging data for local calculation of top-down/bottom-
up switching and BFS termination to avoid adding more
messaging overhead. When reaching the barrier, each node
sends his next frontier vertex count as well as edge count to
all other nodes and waits on hot standby. Each node waits until
it received this data from all other nodes. The last incoming
message releases the barrier and the waiting thread is released
immediately ensuring low delays.

VI. EVALUATION

We evaluated DXGraph’s BFS and compared it to equivalent
implementations of the two state-of-the-art systems Grappa
[8] and GraphLab [5]. We analyze memory consumption and
overhead of the loaded graph data as well as execution time
of the algorithm. In this paper, we did not evaluate loading
times. All systems are loading and processing the graph
with mechanisms for persistency and fault-tolerance disabled.
Because of the preprocessing step, our loading phase is much
faster than Grappa’s or GraphLab’s which are lacking this
extra step. Furthermore, this aspect is not important as we
are aiming for online processing and analysis with graph data
generated and evolving by interactive user input.

The input graph data was generated by the Graph500’s
reference implementation of a Kronecker generator. The
graph’s scale is the logarithm base two of the number

30,000

22,500

15,000

7,500

Total graph size in MB

0

DXGraph
B Graph data input

Grappa GraphlLab
M Additional overhead

Figure 4: Memory usage of loaded/constructed graph split
into input graph size and additional overhead.

of vertices, i.e. numverts = 2%°%¢ The edgefactor de-
scribes the ratio of the graph’s edge count to its vertex
count and delivers the total edge count of the graph with
numedges = 25¢%¢ . edge factor. The total size is calculated
by numedges - 16 with a vertex ID size of 8 bytes resulting in
an edge size of 16 bytes. The generated graph contains emp-
ty/isolated vertices, self-loops and duplicate edges. According
to the specification, these are stored with the generated data but
can be filtered when constructing the graph. All three systems
do not execute any filtering on the input data. Furthermore,
graph data is randomly distributed for all systems without
using partitioning algorithms as desribed in section I'V-B.

We created a scale 24 and 27 graph using the genera-
tor. The largest connected subgraph for the scale 24 graph
has 8,864,904 vertices and 536,865,232 non duplicate edges.
For the scale 27 graph, it spans 63,035,883 vertices and
4,293,897,563 non duplicate edges. For both subgraphs, the
non duplicate edge count covers over 99.99% of all edges
for each input graph. The subgraph sizes were determined by
counting vertices and edges using DXGraph’s BFS implemen-
tation. Currently, we are limited to the scale 27 graph because
the generator must be executed on a single node and requires
the same amount of memory as the generated output data.
However, we already started to switch to a UV2000 shared
memory machine with 16 TB RAM provided by the computing
center of our university which will allow us creating much
larger graphs.

We used the scale 24 graph for comparing the systems
because we were not able to load anything bigger on our
cluster with Grappa. We are in contact with the developers
and hope to resolve this to allow future evaluations with even
bigger graphs. All tests were executed on four nodes of our
cluster with Intel Xeon E5-1660 CPUs (6 cores with hyper-
threading) and 64GB RAM connected by Gigabit Ethernet
running Debian 8.4. For DXGraph, we used OpenJDK’s Java
1.8 runtime.

A. Memory Overhead

Low memory overhead per vertex is crucial to utilize
the available amount of memory efficiently. Thus, we are
comparing the amount of memory used by the loaded and
constructed graph on each system. Figure 4 shows the amount

30
9]
(0]
w
c 225
(0]
€
= 15
C
Qo
3 75
(0]
x
ul 0
0
DXGraph Grappa GraphLab
B Top-Down M Direction Optimized

Figure 5: Lowest execution times of the standard top-down
and direction optimized BFS.

of memory on each system occupied by the constructed
scale 24 graph before BFS execution. GraphLab’s demand
for space is approximately five times the size of the input
graph (4096 MB) where Grappa and DXGraph add far less
overhead. DXGraph’s results are based on a compact vertex
data representation as well as its highly efficient and low
footprint memory management and custom allocator suited for
many small objects [9].

B. Execution Time and MTEPS

Following the specification of the second kernel of the
Graph500 benchmark, we have evaluated the execution time
of the algorithm. Execution speed is classified in million
traversed edges per second (MTEPS).

For Grappa and GraphLab, we executed the algorithm on
each system multiple times with different random root vertices.
DXGraph used the root vertex list generated by the kronecker
generator with 64 random root vertices. Performance of the
algorithm is influenced by the root vertex determining the
spanned subgraph which might also lead to best or worst case
performance. This effect can be observed especially with the
direction optimized algorithm [14].

Figure 5 compares each system’s peak performance (lowest
execution times). We compared the top-down only implemen-
tations of all three systems as well as the direction optimized
versions of DXGraph and Grappa (no implementation was
available for GraphLab). For the standard top-down algorithm,
DXGraph’s implementation is about 2.5 times faster than
Grappa’s and GraphLab’s. Furthermore, DXGraph’s top-down
implementation can even keep up with Grappa’s direction
optimized implementation. Comparing the lowest execution
time of the direction optimized versions, DXGraph’s Java
implementation is 5 times faster than Grappa’s C++ imple-
mentation.

Figure 6 shows all 64 execution times of DXGraph’s BFS
implementation. The blue data points are the runs of the
standard top-down with an average execution time of 9.0
seconds and the green data points are the runs of the direction
optimized approach with an average of 5.9 seconds. Both
average times are still outperforming Grappa’s and GraphLab’s
lowest execution times. For the top-down version, the first
data point reflects the JVM’s runtime optimization of the

9] +
8 ‘
)
£
()
E
c
ke]
>S5
O p
3 + ++ 4+ ++
X H# + + T T T+
0
+ Direction Optimized + Top-Down

Figure 6: Execution times of 64 top-down (green) and
direction optimized (blue) BFS runs on DXGraph. The
black line marks the avarage execution time for all top-down
runs and the red line for all direction optimized runs.

generated byte code. The performance of any run of the
direction optimized variant depends on the root vertex but
many show optimal or close to optimal execution times. Even
for runs not performing well, only a few are exceeding the
average execution time of the top-down only approach.

With a total number of 536,865,232 non duplicate and
non self-loop traversed edges (as described in VI), an overall
peak performance of 24.740 MTEPS is reached for GraphLab,
60.594 MTEPS for Grappa and 325.373 MTEPS for DXGraph.
Furthermore, running the scale 27 graph with a total number of
4,293,897,563 non duplicate and non self-loop traversed edges,
DXGraph’s peak performance hits 323.579 MTEPS with a
lowest iteration time of 13.27 seconds.

VII. CONCLUSIONS

In this paper, we proposed DXGraph, an extensible graph
framework implemented on top of the in-memory key-value
store DXRAM, as well as the additional layer DXCompute
for executing computations on storage nodes. Furthermore,
we implemented a standard top-down as well as direction
optimized BFS algorithm as specified by the second kernel
of the Graph500 benchmark using DXRAM with its key-
value store and networking subsystem and the master-slave
service of DXCompute. Our low memory footprint data
structure BitVector allows highly parallel execution of the
BFS algorithm with multiple threads on each node and low
synchronization overhead. Efficient communication and low
overhead synchronization during BFS runs are achieved using
straight forward message passing with DXRAM’s network
subsystem. The comparison of equivalent BFS implementa-
tions executed on Grappa and GraphLab, two state-of-the-art
graph processing systems, shows that DXGraph outperforms
both systems with a peak throughput of over 323 million
traversed edges per second, which is about five times the
throughput of Grappa and thirteen times the throughput of
GraphLab, on a graph with over 4 billion edges. In the future,
we want to extend the evaluation of the BFS algorithm to
further systems, such as Trinity and GraphX. We also want to
scale out to more nodes with the goal to move to the cloud,
also with Infiniband. Moreover, we want to increase the graph
size to the terabyte scale which is also a good opportunity

utilizing the vast cloud resources. Other essential algorithms
like page rank will enhance DXGraph and allow us to compare
not only to Grappa and GraphLab, but also to further systems
as well. Moreover, we want to switch to online analytics on
dynamic graphs.

REFERENCES

[11 A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, no. 12, pp. 1804-1815, 2015.

[2] R.C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” 2010.

[3] A. Gulli and A. Signorini, “The indexable web is more than 11.5 billion
pages,” in Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, 2005, pp. 902-903.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2010, pp. 135-146.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, pp. 716-727,
2012.

[6] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on spark,” in First International

Workshop on Graph Data Management Experiences and Systems, New

York, NY, USA, 2013, pp. 2:1-2:6.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a

memory cloud,” in Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, New York, NY, USA, 2013, pp.

505-516.

[8] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and

M. Oskin, “Grappa: A latency-tolerant runtime for large-scale irregular

applications,” University of Washington, Tech. Rep., 2014.

F. Klein, K. Beineke, and M. Schoettner, “Distributed range-based

meta-data management for an in-memory storage,” in LNCS Europar

Workshop Proceedings, 4th Big Workshop on Big Data Managements in

Clouds, 2015.

[10] C.E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in Proceedings of the Twenty-second Annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2010, pp. 303-314.

[11] D. A. Bader and K. Madduri, “Designing multithreaded algorithms for

breadth-first search and st-connectivity on the cray mta-2,” in Proceed-

ings of the 2006 International Conference on Parallel Processing, 2000,

pp. 523-530.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda

graph algorithms at maximum warp,” in Proceedings of the 16th ACM

Symposium on Principles and Practice of Parallel Programming, 2011,

pp. 267-276.

[13] R. Berrendorf and M. Makulla, “Level-synchronous parallel breadth-

first search algorithms for multicore and multiprocessor systems,” in

Proc. Sixth Intl. Conference on Future Computational Technologies and

Applications (FUTURE COMPUTING 2014), 2014, pp. 26-31.

S. Beamer, A. Buluc, K. Asanovic, and D. A. Patterson, “Distributed

memory breadth-first search revisited: Enabling bottom-up search,”

EECS Department, University of California, Berkeley, Tech. Rep., 2013.

[15] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM International Conference on Web Search and Data
Mining, 2014, pp. 333-342.

[16] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, pp.
359-392, 1998.

[17] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[18] O. Villa, G. Palermo, and C. Silvano, “Efficiency and scalability of bar-
rier synchronization on noc based many-core architectures,” in Proceed-
ings of the 2008 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, 2008, pp. 81-90.

[7

—

[9

—

[12]

[14]

Chapter 4

Concurrent Low-Latency Data Access
for Parallel Java Applications

|]
<

/ Key-Value Store
[mpute DS & | askK]

E}.-

Figure 4.1: The “big picture” of this thesis with the relevant components for this chapter high-
lighted (“Application” layer and interface, “Memory” Java, and “Memory” Native).

eAep

This chapter discusses the second research question “Can the local storage provide low latency
data access and scalability on highly concurrent local computations benefitting from data
locality?” in a Java environment (see Section 1.3).

First, Section 4.1 presents the addressed requirements concerning a Java-based in-memory
key-value storage that result from this major question based on the previously introduced
context (see Section 1.1) and its challenges (see Section 1.2). The stage of work of the DXRAM
storage system is presented in Section 4.2, with Section 4.3 elaborating on the major research
question in detail. The resulting contributions of this work are presented in Section 4.4 followed
by a copy of the publication:

33

Chapter 4 Concurrent Low-Latency Data Access for Parallel Java Applications

Stefan Nothaas, Kevin Beineke and Michael Schéttner. "Optimized Memory Management for a
Java-Based Distributed In-Memory System". In Proceedings of the 19th TEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 2019. 10 pages.
Copyright 2019 IEEE. https://ieeexplore.ieee.org/document/8752955

4.1 Requirements

Disk-based solutions are not an option when considering highly interactive applications and
their requirements presented in Section 1.2. Thus, all data must be kept in memory. This
approach ensures a fundamentally low access-latency for all data which is mandatory, especially
for typical graph algorithms with highly random access patterns.

To fulfill the proposed application requirements, the memory management must be optimized
for the commonly used object size (< 128 bytes) commonly found in graph data-sets. The more
objects stored per server, the higher the data locality for local computations. This increased
per-server density lowers the likelihood of requesting data from remote servers and, thus, lowers
overall and more expensive inter-server communication. Furthermore, the whole system requires
overall less memory for storage which also lowers hardware costs.

However, concurrent access to local data needs to be synchronized to avoid user data and
also metadata (e.g. of the allocator) corruption. With a focus on read-heavy workloads,
get-operations dominate. The design of concurrency control, e.g., using locks, has to consider
this to avoid performance penalties for the dominating operation type.

In the object-oriented language Java, data is naturally modeled using classes. With data stored
as binary serialized data blobs in-memory, the memory management has to support fast, and
memory efficient serialization of complex and even nested Java objects to memory.

On long-running applications (e.g., 24/7 services), memory fragmentation caused by rather
seldom allocations and deletions cannot be avoided in the long term. With the majority of
objects being rather small, external fragmentation is not critical and can be minimized by
periodically compacting the memory, for example during low-load phases.

4.2 Stage of Work

To address the requirements presented in Section 4.1, the research regarding the memory
management of this thesis was conducted on the Java-based DXRAM in-memory key-value
storage system. Initially proposed by Dr. Florian Klein [63, 61], DXRAM’s memory management
already implemented a low-overhead allocator using Java’s Unsafe class for managing many
small objects in RAM efficiently. The allocator managed a large pre-allocated block of memory
by splitting it into a configurable number of logical fixed-size segments.

34

Chapter 4 Concurrent Low-Latency Data Access for Parallel Java Applications

The arena manager implemented concurrency management on a segment-basis by assigning
application threads, creating new chunks, to different segments. Naturally, access to existing
chunks (get, put and remove) had to access the segment the chunk was located in. A segment
was locked before thread access and unlocked after the operation completed. The memory
manager implemented support for CRUD operations, only.

CIDs were translated to native memory addresses using a paging-like address translation named
CIDTable. By re-using CIDs, the tables were kept densely packed minimizing storage costs.
The tables were stored using the allocator of the memory management.

Locking of chunks was optional and implemented as an external service. Chunks had to be
locked /unlocked explicitly and could still be accessed or even modified without using the service.
This design could lead to data races if the application developer did not use this service properly.
The service supported per chunk read-write locks stored on-heap using a standard Java Map.
This method is not very memory efficient and limits the total number of storable locks to 23!
(signed integer).

A chunk was implemented as a simple tuple consisting of a CID and a binary data blob. An
external serialization had to be used to serialize chunks to binary data to allow storing them to
the back-end storage.

4.3 Research Questions

The initial DXRAM implementation was already storing all data always in-memory to keep
local data access latency low. Furthermore, it was already optimized for storing tiny objects
efficiently making it suitable for storing large graph data-sets.

With a natural representation of data using Java objects, efficient de-/serialization is mandatory
to store the objects as binary data outside of the Java heap. This off-heap storage also
avoids performance penalties imposed by the Java garbage collection (e.g., expensive collection-
phases). However, how can the memory management guarantee low-latency local data-access
for applications/algorithms running on the storage? This requirement proposes a challenging
task for supporting highly concurrent applications.

With applications using multiple threads to run algorithms in parallel, concurrency is the
rule. However, this introduces data races which have to be considered. The initial DXRAM
implementation addressed this by managing access to multiple segments using the arena manager.
However, profiling has shown that this management introduced significant locking overhead and
did not favor commonly used get-operations which are typical for most graph-based applications
and algorithms (see Section 4.1).

Furthermore, this mechanism only protected the memory manager’s metadata and did not
avoid races on user data. The application programmer had to provide his/her solution for
synchronizing concurrent access. However, this is a general issue which applies to any concurrent
application and, thus, should be addressed by the memory management instead. With the
current solution not addressing this adequately, how can the memory management provide

35

Chapter 4 Concurrent Low-Latency Data Access for Parallel Java Applications

(local) data consistency guarantees for user data without sacrificing performance and the low
per-object memory overhead? What is the best granularity of the synchronization/locking
mechanism? How does the granularity affect the performance of the application and memory
management when relying on less fine-granular locking or a per-object synchronization? Is it
essential to distinguish these cases regarding performance?

4.4 Contributions

Our publication addresses these questions by an optimized and extended memory management
[93]. Tt fulfills the requirements of concurrent (graph-based) applications while still providing a
very low per-object memory overhead for many small objects. The contributions stated below
which are not explicitly assigned to any author/contributor are by the author of this thesis.

First, a custom serialization was implemented to allow fast and efficient de-/serialization of
complex and even nested Java objects. It enables the memory management to de-/serialize
the objects directly from/to the native memory area without additional buffering (zero-copy).
Later, this serialization framework was also used in DXNet (see Chapter 5) to provide a
consistent interface for serializing data, chunks, and messages to send them to remote servers.
This serialization was further extended by Dr. Kevin Beineke to support interrupting the
de-/serialization process at any byte position as well as handling of over- and underflows on a
ring buffer data structure (see Section 5.4.2).

Extensive benchmarking and profiling of the memory management revealed that the arena
manager with its multi-level locking limited the performance on typical read-heavy workloads.
First, we proposed a new design that replaced the arena manager with a less expensive and
straightforward read-write lock mechanism. Furthermore, memory segmentation was removed
as it did not provide any benefits to our typical parallel workloads but increased the overall
complexity of the system. The new approach improved the overall performance significantly
and was the first step towards developing an appropriate solution.

This solution included a new design for a low-overhead fine-granular per-chunk read-write
lock. It ensures that the per-chunk memory overhead is not increased significantly but allows
low-overhead fine granular locking for synchronizing concurrent access and modification of data.
Furthermore, a chunk can also be used just like a lock, with or without storing user data, to
allow coarse granular locking on the application level, e.g., a single lock on the root of a linked
list.

Further proposals for concurrency optimizations were analyzed and confirmed to be less optimal
by the bachelor thesis of Florian Hucke [51]. The evaluation in our publication shows, that
our solution is significantly faster compared to Hazelcast and InfiniSpan, two state-of-the-art
Java-based in-memory caches, and provides single-digit microseconds access latency even on
highly concurrent workloads.

The API of the memory management was further adapted to the application domain to support

batch allocations to speed up uploading of large data-sets. The set of operations was extended
by a resize-operation to allow resizing of existing chunks (e.g., required for expanding/shrinking

36

Chapter 4 Concurrent Low-Latency Data Access for Parallel Java Applications

arrays), a reserve-operation to reserve CIDs without allocating memory (e.g. required for
loading phases when assigning/mapping CIDs to data to load), direct memory access-operations
(to modify single fields/values without having to read an entire chunk) and a pinning-operation.
The latter is mandatory to enable proper chunk management on future RDMA hardware access
(see Section 7.3.2).

An interface for a concurrent defragmentation thread allows implementing and evaluating
different defragmentation strategies (see Section 7.3.1).

The memory management of DXRAM was moved to and published as the separate open-
source library DXMem which can now be used by any (concurrent) Java application requiring
an efficient memory manager for storing many small objects with low-overhead concurrency
management. Additionally, DXMem provides a built-in YCSB-like benchmark to quickly
evaluate it with configurable workloads and an interactive command line tool for testing and
debugging (loading and analyzing of heap dumps).

Stefan Nothaas wrote the paper and evaluated all systems presented in it. Prof. Dr. Michael
Schottner reviewed the paper several times and helped improve it. Dr. Kevin Beineke, Prof.
Dr. Michael Schéttner, and Florian Hucke took part in many discussions about the design and
performance analysis of DXMem.

37

Optimized Memory Management for a Java-Based
Distributed In-Memory System

Stefan Nothaas
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
stefan.nothaas @hhu.de

Abstract—Several Java-based distributed in-memory systems
have been proposed in the literature, but most are not aiming at
graph applications having highly concurrent and irregular access
patterns to many small data objects. DXRAM is addressing these
challenges and relies on DXMem for memory management and
concurrency control on each server. DXMem is published as an
open-source library, which can be used by any other system, too.

In this paper, we briefly describe our previously published but
relevant design aspects of the memory management. However,
the main contributions of this paper are the new extensions,
optimizations, and evaluations. These contributions include an
improved address translation which is now faster compared to
the old solution with a translation cache. The coarse-grained
concurrency control of our first approach has been replaced by
a very efficient per-object read-write lock which allows a much
better throughput, especially under high concurrency. Finally, we
compared DXRAM for the first time to Hazelcast and Infinispan,
two state-of-the-art Java-based distributed cache systems using
real-world application-workloads and the Yahoo! Cloud Serving
Benchmark in a distributed environment. The results of the
experiments show that DXRAM outperforms both systems while
having a much lower metadata overhead for many small data
objects.

Index Terms—Memory management, Cache storage, Dis-
tributed computing

I. INTRODUCTION

The ever-growing amounts of data, for example in big data
applications, are addressed by aggregating resources in com-
modity clusters or the cloud [20]. This concerns applications
like social networks [13], [23], [24], search engines [19], [29],
simulations [30] or online data analytics [18], [33], [34]. To
reduce local data access times, especially for graph-based
applications processing billions of tiny data objects (< 128
bytes) [16], [27], [32], backend systems like caches and key-
value storages keep all data in-memory.

Many systems for big data applications, such as frameworks
[22], [26], databases [3], [4], or backend storages/caches [5],
[71, [8], [28], are written in Java. However, many of them
cannot handle small data objects (32 - 128 byte) efficiently
and introduce a considerable large metadata overhead on a per-
object basis. Compared to traditional disk storage solutions,
RAM is more expensive and requires sophisticated memory
management. High concurrency in big data applications is the
rule but adds additional challenges to ensure low access-times
for local and remote access and to provide mechanisms for

Kevin Beineke
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
kevin.beineke @hhu.de

Michael Schoettner
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
michael.schoettner @hhu.de

synchronizing concurrent access. Combined with today’s low-
latency networks, providing single-digit microseconds remote
access times on a distributed scale, local access times must be
kept low to ensure high performance which is challenging in
general but especially in Java.

DXMem is the extended and optimized memory manage-
ment of DXRAM. It provides low metadata overhead and
low-latency memory management for highly concurrent data
access. Data is stored in native memory to avoid memory
and garbage collection overhead imposed by the standard Java
heap. DXMem uses a fast and low-overhead 64-bit key to raw
memory address mapping. Java objects are serialized to native
memory using a custom lightweight and fast serialization
implementation.

Furthermore, DXMem offers a low-overhead per-object
read-write locking mechanism for concurrency management
as well as memory defragmentation for long-running appli-
cations. On an average object size of 32 bytes, DXMem can
store 100 million objects with just 22% additional overhead
(§VI-A). On a typical big data workload with 32 byte objects,
95% get and 5% put operations, DXMem achieves a local
aggregated throughput of 78 million operations per second
(mops) with 128 threads which is an up to 28-fold increase
compared to Hazelcast [7] and Infinispan [8], two Java-based
state-of-the-art in-memory caches (§VI-B). Using the Yahoo!
Cloud Service Benchmark [17], we compared DXRAM with
DXMem to Hazelcast and Infinispan (§ VI-C), too. The results
show that DXRAM scales well with up to 16 storage servers
and 16 benchmark clients on real-world read-heavy workloads
with tiny objects outperforming the other two systems.

Our previous publication [21] has addressed the follow-
ing contributions:

o The initial design of the low-overhead memory allocator

o The address translation (CIDTable) without per-chunk
locks

o An arena-based memory segmentation for coarse-grained
concurrency control and defragmentation

The contributions of this paper are:

« Reduced metadata overhead while supporting more stor-
age per server (up to 8 TB, before 1 TB)

o Low-overhead Java object to binary data serialization (the
old design supported binary data only)

o Optimized address translation (faster than the old design
with translation cache)

« Efficient fine-grained locking for each stored object

o New experiments and comparisons with Infinispan, and
Hazelcast

To evaluate the local memory manager performance of
storage instances, we created a microbenchmark based on the
design and workloads of the YCSB and implemented clients
for the systems evaluated in this paper (§VI-B). DXMem is
also published as a separate Java library that can be used by
any Java application. DXRAM and DXMem are open-source
and available at Github [6].

The remaining paper is structured as follows: Section II
presents the target application domains and their requirements.
Section III presents related work. We give a brief top-down
overview of DXMem and its components in Section IV
before explaining them in detail in a bottom-up approach
in the following sections. Starting with Section V, we ex-
plain important details about memory management in Java
before elaborating on DXMem’s allocator in Section V-A.
This section is followed by Section V-B which describes the
CIDTable translating chunk ID to native memory addresses.
The design of the fine-granular locks is presented in Section
V-C The evaluation and comparison of DXMem to Hazelcast
and Infinispan is presented in Section VI. Conclusions are
located in Section VII.

II. CHALLENGES AND REQUIREMENTS

This section briefly presents the target application domains
which were already introduced in Section I. Often, Big data
applications use batch-processing frameworks (e.g. Hadoop
[26], Kafka, [22]) or are live systems (e.g. social networks
[13], [23], [24] or search engines [19], [29]) serving many
concurrent requests of interactive users. Many systems and
applications are written in Java, which is popular because
of its strong typing, sophisticated language features, platform
independence, and rich libraries and have to address the
following challenges and requirements.

Fast local response times. In-memory caches are used to
mask slow disk access times for stored data. Some applications
take this approach one step further by storing all data always
in-memory.

Data distribution. Often, one commodity cluster node is
not sufficient to store and process vast amounts of data.

Fast remote response times. Low remote latency on inter-
node communication is ensured by low-latency network
interconnects, e.g., InfiniBand should be considered which in
turn demand low local latency not to become the bottleneck
instead. However, with many applications and frameworks in
Java, access to such low-level hardware is very challenging.

Fast and efficient (remote) object lookup. With billions
of objects distributed across multiple nodes, object lookup
becomes a challenge, too. Often, a key-value design combined
with hashing is used to address this issue [3], [7], [8], and

the standard API provides CRUD operations (create, read,
update, delete).

Very small objects. Typical data models for big data
applications include tables, sets, lists, and graph-structured
data [31]. For the latter, storing billions of objects becomes
a challenge because the per-object overhead must be kept
low. With the limited amount of main memory, storing more
objects per node does not only require fewer nodes to store
all data but also increases locality and performance.

High concurrency. Simultaneously serving many concur-
rent interactive user requests or using many threads to
lower execution times of algorithms, e.g., graph traversal, high
concurrency is a must. On today’s multi-core hardware, con-
currency support and optimizations are inevitable. However,
with concurrency data races must be considered and require
mechanisms to synchronize data access on concurrent modi-
fication without limiting concurrency and increasing access
latency too much.

III. RELATED WORK

Common purpose memory management, algorithms, and
allocators are widely studied in literature and are beyond the
scope of this paper but have been discussed and evaluated
in our previous publication [21]. This paper extends this
foundation and focuses on a variety of changes to address the
requirements and challenges imposed by our target application
domain (§II). Thus and due to limited space, we focus only
on relevant Java-based in-memory caches and storages which
are designed for the same application domain.

Hazelcast [7] is a distributed in-memory cache and com-
puting platform implemented in Java. It organizes data using
implementations of standard Java collection interfaces, e.g.,
List, Queue, Map or Set. Hazelcast offers three storage options
for objects: As serialized binary data in native memory (High-
Density Memory Store) using a custom serialization similar
to DXMem’s, as Java objects on the Java heap or stored as
both. It implements a peer-to-peer protocol to form a cluster
of storage nodes. Ethernet using Java NIO is supported for
remote node communication. Objects are stored to one of the
271 partitions distributed to storage nodes using hashing [12].

Infinispan [8] is a distributed in-memory key-value storage
implemented in Java. Based on a peer-to-peer architecture,
objects are hashed and stored using a cache interface extending
the Java Map interface. It supports networking over TCP
using Ethernet-based transport implementations, e.g., Netty.
Objects are stored either on the Java heap or in native memory.
For binary de/-serialization to/from native memory, InfiniSpan
provides Externalizers which use the JBoss Marshalling frame-
work. By default, objects are distributed to storage nodes using
consistent hashing. The application has the option to distribute
objects manually to optimize data access times.

Ignite [3] is a distributed in-memory data grid and pro-
cessing platform implemented in Java. Objects are stored
as key-values either to the Java heap or off-heap using a
tiered storage model. Ignite supports ACID transactions for
consistency and built-in distributed data structures. Clients

determine the location of objects by hashing them explicitly
without involving additional servers of the system. Network
communication is implemented using TCP sockets.

Apache Geode [5] (commercially GemFire) is a Java-based
distributed cache. It offers a key-value interface by storing a
distributed implementation of the Java Map in regions. Data
such as metadata, keys, indices or values are stored on-heap,
but values can also be stored off-heap in regions and are
managed in slabs. A region, depending on the type, is stored
on a single node locally (not distributed), divided into buckets
for distribution (partitioned) and also replicated. A custom
serialization is provided for storing data off-heap for improved
performance over Java’s Serializable. Data is exchanged peer-
to-peer using TCP or UDP sockets over Ethernet.

Ehcache [11] is a Java-based cache implementation. A
cache manager manages one or multiple caches consisting of
one or multiple storage tiers. A storage tier defines where the
data is stored: on-Java-heap, off-heap, on disk or clustered on
a remote cache server. This tier-based storage allows applica-
tions to leverage different storage types by storing the hottest
data closer to the application to ensure low access times.
Data stored off-heap is serialized using a custom serialization.
Ehcache supports eventual and strong consistency and also
transactions for operations. On a multi-server setup, data can
be distributed to multiple servers using a distributed hash table.
The data is split into stripes and stored on the remote servers.
Network communication is implemented using Java RML.

DXRAM [14] is a Java-based distributed in-memory key-
value storage using DXMem for managing objects stored
locally on nodes. DXRAM shares many concepts with the
other systems presented but also implements different and new
ideas. For a distributed object-lookup, DXRAM implements
a chord-like overlay with dedicated nodes for storing and
providing the metadata which is a unique approach compared
to the other systems not using dedicated servers for storing
metadata for object lookup. DXMem stores all objects in
native memory, like the other systems presented, to avoid the
drawbacks of the Java garbage collection. However, DXRAM
nor DXMem offer multiple storage types like additional on-
heap or explicit disk storage. A custom object serialization
allows efficient and fast serialization of primitive data-types
and nested complex objects. When storing data off-heap, this
is mandatory and also implemented by all systems presented
in this Section. DXMem does not use hashing but instead
implements a custom paging-like address translation. Thus,
DXMem does not automatically distribute data to servers, but
an application decides where to store the data which, of course,
can be determined using a hashing algorithm as well. Using
DXNet [15], DXRAM supports Ethernet over TCP using Java
NIO and low-latency InfiniBand networks using native verbs
which is not available on the other systems presented.

IV. DXMEM: ARCHITECTURE OVERVIEW

This section presents DXMem, the extended and optimized
memory manager specifically designed to address the require-
ments and challenges presented in Section II. Figure 1 depicts

Java Application
(©piolie]
DXMem °B° B°

‘Operation Chunk Chunk ..

Translate/Create

‘CiDTable’

2 Serialization
]
S P: ‘a d
5 ayloa

"VMB (native)

r
'ocatol o

Fig. 1. Simplified DXMem Architecture

a simplified view of its architecture. DXMem implements a
key-value store data model with a value stored as binary data
of serialized Java objects, referred to as chunks, and a 64-
bit key called chunk ID (CID) (§V-B). A custom allocator
(§V-A) stores data outside of the Java heap to avoid the
drawbacks explained in Section V. Instead of hashing, a
custom paging-like address translation (CIDTable, §V-B) is
implemented to provide fast and low memory overhead CID
to memory address translation with a per-object read-write
lock for strong consistency on multi-threaded applications
(§V-B). Batch processing of multiple chunks per operation
is supported to increase overall throughput. A concurrent
memory defragmentation is addressing external fragmentation
relevant for long-running applications.

DXMem provides a modular interface implementing dif-
ferent types of operations. It implements CRUD operations
(create, read (get), update (put) and delete (remove)) which
are typically used in key-value store APIs. All operations can
be executed with batches of data to reduce processing times
further. DXMem also implements operations to lock and resize
existing objects, and to allow pinning of chunks for direct
local access and RDMA operations with InfiniBand. DXMem
is used with DXRAM but also published as a separate library
at Github [6].

Our previous publication [21] presented the initial imple-
mentation for a low-overhead memory allocator and fast local
object lookup (CIDTable). However, the initial proposal with
its arena management using coarse-grained locks was unsuit-
able for highly concurrent applications. Neither it provided
a Java object serialization interface nor locking of individual
chunks and only implemented the basic CRUD operations.
Batching of operations as well as an optimized CID translation
algorithm was not available in the initial design.

V. MANUAL MEMORY MANAGEMENT IN JAVA

In Java, memory management becomes a considerable issue
when storing millions of small objects. By default, all objects
are subject to Java’s runtime garbage collection. It cleans up
allocated but unreferenced objects automatically which has
valuable benefits in most standard Java applications. However,
when storing billions of small 32-byte objects, which are
typical in our target application domain (§II), object instan-
tiation becomes time-consuming, and the per-object metadata

required for storing all objects is relatively high (e.g. 12
byte header on a 64-bit Hotspot-JVM with compressed object
pointers and a heap less than 4 GB [10]). Furthermore, garbage
collection runs concurrently to the application, and its activity
phases cannot be controlled. Thus, it can impose unintended
performance penalties due to high latencies during collection
phases. A higher degree of control is necessary to support high
loads efficiently.

We address these requirements with our custom allocator
(§V-A) which keeps the per-object memory-overhead low and
(by default) does not impose any garbage collection. Data
can be stored off-heap using Java’s DirectByteBuffers (2 GB
buffer limit), Apache DirectMemory [1] (retired) or the Unsafe
[25] class. The latter uses intrinsics for memory access and is
widely used for fast data exchange with native libraries or
buffers of native I/O. Furthermore, the size of the allocated
area is not limited by the maximum value of a positive Java
integer (231).

Using Unsafe, we created a Virtual Memory Block (VMB)
allocating a single continuous memory area (starting with
address 0) which is used by our allocator (§V-A). All meta-
data and application object-data is stored in the VMB and
written/read using the methods provided by the Unsafe class.
Chunks are read/written using a custom de/-serialization inter-
face (§V-A).

A. Efficient Memory Allocator for Many Small Objects

To maximize the number of objects to store per node,
we address the challenges from the previous Section V with
a custom allocator. This allocator is designed explicitly for
low-metadata overhead and handling small objects with
average sizes of 16-128 bytes efficiently.

On initialization, our allocator uses the VMB (§V) to create
one large free block which occupies nearly the entire VMB
(size configurable). We now use 43 bit pointers which allows
addressing a total of 8 TB of main memory which is sufficient
for commodity servers. At the end of the VMB, additional
space is reserved for root pointers of the doubly-linked free-
block lists.

There are two types of free blocks: Untracked free blocks
are less than 14 bytes in size and are not tracked using a free
block list. Tracked free blocks are managed by one of the free
block lists. Each entry of this list describes the size of the
free block in bytes up to the size of the next entry of the free
block list. The lists track specific small free blocks of 14, 24,
36 and 48 bytes as well as all power of two sizes starting with
64 bytes and up to the max size of the VMB. Blocks are not
aligned to 64-bit bounds or multiples of a cache line size
to avoid fragmentation.

Every block is separated by a single byte called a marker
byte. Each half of a marker byte (4 bits) describes the type
(allocated, free tracked or untracked block) of the adjacent
block to the left or the right of it. Allocated blocks may contain
an additional compacted length field that stores a part of the
payload’s size following it. Free untracked blocks of at least
2 bytes contain a length field describing the block size. Free

untracked blocks of at least 14 bytes contain two length fields
(one at the front and one at the end of the block) and a pointer
to the previous and next element of the free block list it is
managed by. This design allows us to keep the average
per-object memory-overhead very low compared to other
memory allocators [21] and systems (§VI-A).

On allocation, the allocator selects a free block using a
best-fit strategy. The block is cut to size required to store
the length field and the requested payload size to avoid
internal fragmentation. The remaining part of the free block
(if available) is converted to a free block and, if a tracked
block, added back to one of the free block lists accordingly.
On deallocation, the allocator checks the blocks adjacent to
the current one to free and merges it with every non-allocated
block to lower external fragmentation. If resulting in a tracked
free block, it is added to the appropriate free block list.

Often, applications can issue a single allocation request
for multiple blocks of a single size or different sizes, e.g.,
when loading datasets. The new allocator supports batch
allocations reducing overall memory allocation times. On
a batch allocation, the allocator calculates the total amount
of memory required and tries to allocate all blocks for the
requested sizes in a single continuous area with a fallback
option to single block allocation. The search for free blocks is
reduced to a minimum (one) which also lowers fragmentation.

Java objects have to implement a custom serialization inter-
face for reading from (Importable) and writing to (Exportable)
an allocated native memory block. The object to im-/export
specifies the primitive fields or im-/exportable objects to
de-/serialize which enables efficient binary representations.
Nested im-/exportable objects are also supported. Our custom
serialization allows DXMem to execute fast, transparent
and low-overhead reading from and writing to native mem-
ory compared to generic serialization, e.g., Java Serializable.

B. Low-Latency Address Translation

In distributed applications, dealing with bare memory ad-
dresses becomes uncomfortable once the stored data is moved
either locally (e.g., defragmentation) or to another remote node
(e.g., migration due to hotspots). Thus, hashing is used on
many systems (§III) to create an indirection and assign unique
IDs to objects. However, this commonly used approach comes
with many drawbacks such as high memory overhead [21]
or requiring additional processing time for re-hashing entries.
We address these issues with a custom low-latency and low
memory-overhead address translation.

In DXMem each chunk is referenced using a 64-bit chunk
ID (CID). The upper 16-bits are the node ID (NID) of the
creator node. The NID is assigned on node startup and allows
identification of chunk origins in a distributed setup. The lower
48-bits are a per node creator locally unique value, called
a local ID (LID). This value is incremented independently
between nodes with each chunk creation.

The CIDTable, provides a fast and efficient CID to
memory address translation for chunk lookup and retrieval
of allocated memory blocks in the allocator. The CIDTable is

Table
Level O

Fig. 2. Breakdown of CIDTable level O entry with embedded length field and
RW lock.

stored in memory blocks managed by the allocator (§V-A)
and consists of multiple sub-tables/pages. On chunk creation,
a new CID is generated by using the current node’s NID and
incrementing an atomic local LID counter. After allocating
a memory block for the chunk, the CID to (native) memory
address mapping is inserted into the paging-like translation
tables. On chunk access operations like get or put, the CID is
translated to the stored memory address.

The CID is split into 5 fragments: a 16-bit NID fragment,
and four 12-bit LID fragments. The translation steps are
executed identically to memory paging on operating systems.
The 43-bit memory address referencing the chunk data in
the VMB is stored as part of the 8-byte entry in the level
0 table. Each table for a 12-bit LID fragment contains 4096
entries, and the table for the NID fragment contains 65,536
entries. When storing millions of objects, the average per-
object overhead added by the CIDTable is about 8 bytes.
Tables are not pre-allocated but created on demand to save
memory. Once created, the tables are never deleted and profit
from re-using LIDs (of deleted chunks) on create operations
to keep all tables densely packed.

Furthermore, all tables are aligned to 64-bit bounds
to avoid multiple memory reads on misalignment. This
alignment becomes a very critical performance issue especially
on CAS operations used for lock implementations (see next
paragraph). The alignment does not increase the overall meta-
data overhead significantly when considering the overall large
size of a table (8 bytes per entry x 4096 entries = 32 kB).

For this section, this concludes the fundamental design
of the CIDTable which has already been published in our
previous publication [21]. The following Section V-C presents
the extensions and optimizations which, like the fundamental
design, are not just limited to the Java environment.

C. Fine-Granular Locks

Figure 2 shows the breakdown of a single CIDTable level 0
entry. 8 bits of the table level O entries are used to implement
a custom per chunk read-write lock based on CAS oper-
ations. The level 0 table must be memory aligned to ensure
low-latency on lock operations. This lock allows applications
to lock single chunks on concurrent reads/writes to protect
the payload from data races. By default, the CIDTable does
not enforce any locking that prevents payload race conditions
on the chunk data. For create-once read-only data (e.g., static
index or entry point to sub-structures), special read-only
chunks can be created which do not use any locking

mechanism further decreasing access times. Furthermore, it
is possible to pin chunks which returns a pointer to the
memory address of the payload stored in the VMB. Locally,
a pinned chunk can be accessed directly, or it can be registered
with an InfiniBand HCA to allow RDMA reads from and
writes to the payload.

To lower the overall memory overhead, we use up to 12
bits to directly embed the length field of allocated blocks
in table level 0 entries. This embedded length field enables
storing chunks with a maximum size of 2048 bytes without
requiring an additional length field in the allocated blocks. If
this size is exceeded, a split length field is stored in both the
entry of the CIDTable and the allocated block. This design
reduces the overall metadata overhead, especially for small
chunks but also speeds up chunk-data access because no
additional length field must be read from the allocated block
area.

Often, batches of chunks, especially on graph-based appli-
cations with typical access patterns to adjacent vertices/edges
with likely close-by chunk IDs, are requested and require
multiple translations of nearby CIDs (e.g., on multi-get op-
erations). To benefit from these access patterns, initially, we
implemented an additional small thread local cache storing
the 10 most recently translated level O table addresses using a
simple list. This cache allowed subsequent translations to skip
four translation steps if it was part of the same table level 0.
This cache was speeding up translation by up to 20% on large
batches with nearby CIDs, initially. However, after introducing
various optimizations to the translation algorithm and the table
alignment, the costs for the cache lookup outweighed the
costs of a full translation. We determined that the translation
cache added an average latency of approx. 5 ps not benefiting
the overall low access times of the other components involved
(see the breakdown in Section §VI-B). Thus, the translation
cache was dropped.

VI. EVALUATION

The following sections present the results of the following
evaluations: the local metadata overhead of the memory
management, the local multi-threading performance and
distributed performance. We compare DXMem, used by
DXRAM, to Hazelcast Enterprise with HD memory and
Infinispan, two open-source Java-based in-memory caching
systems. All systems share fundamental concepts, like pro-
viding a local native memory backend using Unsafe, but are
suitable candidates because they differ regarding the allocator,
address translation and handling of data in a distributed setup.
These differences also apply to the other systems presented in
Section III which we consider for future evaluations.

Our previous publication [21] already evaluated the memory
allocator regarding memory overhead, the CIDTable regarding
performance and in a distributed setup DXRAM regarding
memory overhead. Due to significant changes in the design
of the allocator and CIDTable, this publication re-evaluates
DXMem’s memory overhead and performance. DXRAM and

the Yahoo! Cloud Serving Benchmark (YCSB) is used to
demonstrate DXMem’s application in a distributed setup.

The benchmarks in Sections VI-A and VI-B were executed
on one machine running Arch-Linux with Kernel version
4.18.10 with 64 GB RAM and an Intel Core 17-6900K CPU
with 8 cores (HT) clocked at 3.2 GHz. For the benchmarks
in Section VI-C, we used up to 32 servers of our university’s
cluster, each equipped with 128 GB RAM and two Intel Xeon
Gold 6136 (3.0 GHz) 12 core CPUs connected with Gigabit
Ethernet. For all benchmark runs, we limited the applications
to run on the main CPU socket (with a total of 12 cores),
only. The nodes run CentOS 7.4 with the Linux Kernel version
3.10.0-693. All benchmarks are executed with Java 1.8.

We used the YCSB [17] and its workload models for
Sections VI-B and VI-C with the following workloads based
on real-world applications:

1) YCSB-A: Objects with 10x 100 byte fields, 50% get
50% put access-distribution [17]

2) Facebook-B: Objects with 1x 32 byte field, 95% get 5%
put access-distribution [27]

3) Facebook-D: Objects with 24x 32 byte fields, 95% get
5% put access-distribution [27]

4) Facebook-F: Objects with 1x 64 byte fields, 100% get
access-distribution [16]

A. Local Metadata Overhead

In this section, we evaluate the local memory overhead
of the memory managers of the three systems. The overhead
describes the additional amount of metadata added by
the allocators as well as the lookup mechanisms (e.g.,
hash table) to store the objects on a single server instance.
Our previous publication [21] compared only the memory
overhead of our allocator to other commonly used memory
allocators available. Hazelcast Enterprise with HD memory
and Infinispan are configured to use the off-heap backend
storage. Any type of local data replication or eviction (if
available) is disabled on all systems. All systems store all data
in RAM loaded once. For each benchmark run, we started a
single server storage instance and a YCSB loading client. After
the load phase is finished, we used Hazelcast’s health monitor,
Infinispan’s exposed bean objects on the JMX interface and
DXRAM’s storage monitoring data to determine the total
amount of data stored in each system. All three systems were
loaded with 100 million objects per benchmark run. Each run
used one of the power-of-two sizes of 8 to 256 bytes. Larger
object sizes were also tested but required a decreased object
count to fit into the limited main memory. On some systems,
this leads to inconsistent results diverting from the results of 8
to 256-byte objects and could not be extrapolated. Thus, these
results were omitted from the evaluation.

The results are depicted in Figure 3 grouping the systems
per object size (x-axis) as stacked bars indicating memory
consumption (left y-axis). Each group consists of the three
systems distinguished by markings (none or diagonal stripes).
The line plot is colored accordingly for each system and shows
the memory overhead in percent (right y-axis). The results

[=)]
o

100

*:
54 - - oo _
K., 8
48 o 80 =
= DXRAM Tty g
. 424 ®mzm Infinispan - WM Overhead Q 70 g
8 NN Hazelcast B Objects - =
©
‘v 361 = /N F60 2
= x.. =
b x N \ p 6
230 R A -tso S
2 g
g 241 - - 40 £
g . :
. S
18 & & =<5 r30 s
©
el
8
Q
=

8 16 32 48 64 128 256
Object Size

Fig. 3. Memory usage (object payload + metadata) and overhead of
DXRAM/DXMem, Hazelcast and Infinispan with increasing object size.

show that DXRAM achieves an overall very low metadata
overhead on small object sizes. Considering 32-byte objects
(total object memory of 2.98 GB), DXRAM adds about 0.84
GB (22% overhead of total used memory), Infinispan about
16.4 GB (85% overhead of total used memory) and Hazelcast
about 29.8 GB (91% overhead of total used memory) of
memory for metadata. In comparison to DXRAM, Infinispan
requires four-times and Hazelcast even 7.5-times more mem-
ory to store the same amount of data. Furthermore, Infinispan,
as well as DXRAM, provide constant overhead independent
of the object size for the evaluated object sizes compared to
Hazelcast’s which seems to be tied to object size ranges as it
varies highly.

For DXMem, every object with a size up to 2048 bytes
stored adds 8 bytes (omitting table alignment) for a CIDTable
entry and one byte in the allocator for the marker byte, only.
For objects larger than 2048 bytes, additional bytes with in-
creasing object size (up to 3) are required to extend the length
field to store larger objects (§V-B). Infinispan stores the data in
an off-heap bucket of linked-list pointers similar to a standard
Java HashMap. A server adds a fixed overhead which depends
on the number of objects to store and adds another 8 bytes for
a pointer per-object. Furthermore, variable per allocated object
overhead of 25 bytes for header information and a linked-list
pointer is added as well as another 36 bytes for additional
housekeeping for the LRU list nodes [9]. Hazelcast’s off-
heap storage uses either a standard or pooled allocator. The
standard allocator uses the OS’s memory manager (malloc/free
from glibc) and is less suitable for many small objects.
The pooled allocator (used here) is Hazelcast’s recommended
custom allocator and uses a buddy allocation policy and 4
MB (default) page size. Block sizes for allocations are always
rounded up to the nearest power-of-2 size. Additional metadata
space is reserved for map components such as indices or
offsets. According to the authors, it takes about 12.5% of the
total native memory configured by default [2].

B. Multi-threaded Local Memory Access

This section presents the results of our custom benchmark
to determine the local multi-threading performance of the
memory management under high loads on one server.
It adapts the design of the YCSB and its workload model
and provides a similar database-layer interface to implement
benchmark clients for different systems. It allows execution of
an arbitrary amount of phases (common loading and bench-
mark phases) using create, read, update and delete operations.

For this evaluation, we execute a single load phase followed
by one benchmark phase like the original YCSB. All three
systems support local code execution on storage nodes and
implement the client interface of the benchmark. Again, all
systems store the loaded data in native memory and use a
mechanism (e.g., hash table) to translate the key to an address
for retrieving the value-data from native memory. The CRUD-
operations of DXRAM are directly mapped to the benchmark
client interface. For Hazelcast and Infinispan, the clients use a
single (default) map for the operations (identical to their YCSB
clients). To implement object serialization, we used DXRAM’s
Importable/Exportable interface, Hazelcast’s DataSerializable
and Infinispan’s AdvancedExternalizer. The load phase creates
and stores 10 million objects on each storage instance. The run
phase executes 100 million operations for each workload.

The results for the different workloads are depicted in
multiple figures: YCSB-A in Figure 4, Facebook-B in Figure
5, Facebook-D in Figure 6 and Facebook-F in Figure 7. The
results for all systems are grouped per thread count (x-axis).
Each group for each system (DXRAM, Infinispan, Hazelcast)
for a specific thread count consists of two bars (left bar for
get and right bar put operations) on all workloads except the
Facebook-F (one bar with get operations, only). The bars of
each group have identical markings (none or diagonal stripes).
Each stacked bar depicts the operation’s average latency as
well as the 95th, 99th and 99.9th percentiles (color coded)
on a logarithmic scale (y-axis on the left). The aggregated
throughput (y-axis on the right) of each system (color coded)
is presented as a line plot on the right next to each bar group.

Due to space constraints and the similarity of the results,
we depict only the results of the Facebook-B workload for
a detailed analysis. The results of the Facebook-B workload
show that DXRAM achieves very low single-digit microsec-
ond average latencies with up to 32 threads on local storage
access. As to be expected, once over-provisioning the 8 core
(HT) CPU, the average latency approx. doubles for both gets
and puts when doubling the number of threads.

However, the 95th and 99th percentiles are lower (not
visible in the figure) than the average latency, and the 99.9th
percentiles are increasing significantly when highly over-
provisioning the CPU (e.g., 64 and 128 threads). Thus, most
operations (99.9%) are executed in less than the average
latency, but a small amount (0.1%) have significantly higher
latency. With 10 million objects and only 5% write distribution
on 100 million operations, the likelihood of lock contention
due to a thread write-locking a chunk and getting evicted while

10 4 16
LatAvg BN DXRAM

|

B LatPerc95 @ Infinispan
BN LatPerc99 NN Hazelcast
B LatPerc999

r14

1034 = S AN ,,,,,,,,, F12 'E_

o

- £
S Fr10 v
= c
> o
=]

c ©
I} 2 8 +
E 1007088 e BN aay A AN BN o e
" o
8 -6 3
§ 5
=

1014 AN AR AN .- RN BERZON BREUAN BN BN ré g

[

100 {EE :

8 16
Threads

Fig. 4. Local memory multi-threading benchmark using workload YCSB-A
with increasing thread count.

. LatAvg mEN DXRAM . 80
mem LatPerc95 @ Infinispan e
103 WEE LatPerc99 NN Hazelcast i r70
B LatPerc999 -
F60 &
—_ £
g ‘a
29024 e e X L
~ 10 50 £
g ©
[-
E r 40 2
K (o]
m ‘.' -
4 107 - o 7N B R e - - - R F30 2
(v} L
< g
F20 2
=
S

100 - EESHC = PSS

Threads

Fig. 5. Local memory multi-threading benchmark using workload Facebook-
B with increasing thread count.

B LatAvg

w LatPerc95
B LatPerc99
BN |atPerc999

Em DXRAM
@7m Infinispan
NN Hazelcast

104 4

=
e g-
= E
3 1034 K N L L SO U .
210 L5 &
> S
g ©
E r4g
- o
w
2 102 4R R - R - - - R - R 135
Qo
g =
= 3
L2 2
=
=

10t - S

Threads

Fig. 6. Local memory multi-threading benchmark using workload Facebook-
D with increasing thread count.

m LatAvg mmm DXRAM Rl BRad
107 = LatPerc95 mwm Infinispan 3 L 80

B LatPerc99 NN Hazelcast

|

LatPerc999 Kees

T
(o)}
o

102 5 e~

T
N
o

10! 4 N TAL N\ ,,,,,

Access Latency [us]

N
o
Throughput Operations [mops]

100 4

Threads

Fig. 7. Local memory multi-threading benchmark using workload Facebook-F
with increasing thread count.

Get (16 kB data), 1 thread, avg. total 1.71 ys

API, CID Lock

Data read and de-serialize Lock API,
(16 kB) Release misc
1.57 s 0.02us

misc Translation
0.01 s 0.04 ys

Acquire

0.03 us 0.01ps

Get (16 kB data), 128 threads, avg. total 38.76 us

CID Lock
Translation | Acquire
0.55 s 0.23us

Data read and de-serialize Lock
(16 kB)
36.16 s

API, misc
0.80 s

API, misc
0.85 s

0.20 s

Fig. 8. Breakdown of get-operation (16 kB data) with 1 thread (low load)
and 128 threads (high load) in DXRAM

other threads trying to read/write the same object is rather low.
For verification, we executed the same workload with 100%
read distribution and received similar results eliminating lock
contention. We assume that there is another state when a thread
is evicted that either increases its own or the latency of other
threads which requires further analysis.

With increasing thread count, DXRAM achieves a
throughput saturating at 78 mops with 32 threads. Com-
pared to Infinispan, peaking at approx. 4.6 mops, and Hazel-
cast peaking at approx. 2.7 mops, this is a 17-fold and 28-fold
increase. With just a single thread, DXRAM already achieves
11 mops which are more than twice the peak throughput
Infinispan and four times the peak throughput of Hazelcast.

For additional reference, Figure 8 depicts a breakdown of
a get-operation with average times of the sub-components
involved (16 kB of data and running with 1 and 128 threads).
The breakdown shows that the majority of time is spent on
reading and de-serializing data. The CID translation and
locks require just tenth’s of nanoseconds with a single
thread and are still far below one microsecond even when
over-provisioning the CPU with 128 threads.

C. Key-Value Storages

In this section, we present the results of the full systems
evaluated in a distributed environment with up to 32 nodes

1.0

B LatAvg mm DXRAM X

m LatPerc95 w2 Infinispan
B LatPerc99 @™\ Hazelcast

Operation Latency [us]
Throughput Operations [mops]

4 8
Benchmark Nodes

Fig. 9. Workload YCSB-A with increasing benchmark node count accessing
an equal amount of storage nodes with 128 threads per node

using the YCSB with the defined workloads (§VI). The key
to overall good performance is the combination of a low-
latency and multi-threading capable local memory and network
subsystem. All network subsystems are limited to Ethernet-
based transports to provide equal conditions. Every workload
on every system loads 1 million objects per node during the
load phase. The run phase executes 100 million operations
per node with Zipfian distribution on each workload. On long-
running benchmark runs, we reduced to the number of opera-
tions to limit runtime to about 10 minutes to avoid unnecessary
long-running benchmark runs. The Hazelcast Enterprise trial
license (required for HD memory) we received limited our
benchmarks to up to 8 servers nodes.

Half of the nodes on each benchmark are used for storage,
and the other half runs remote clients. When referring to a
specific number of nodes, we always consider that number of
nodes for both servers and clients each, e.g., 4 nodes: 4 servers
+ 4 benchmark clients = 8 nodes total. The results for the
different workloads are depicted in multiple figures: YCSB-A
in Figure 9, Facebook-B in Figure 10, Facebook-D in Figure
11 and Facebook-F in Figure 12. The structure of the charts
is similar to the ones presented in the previous Section VI-B.
The results for all systems are grouped per node count (x-axis).
The x-axis depicts the number of benchmark nodes and server
nodes each used for a benchmark run (e.g., 4 benchmark nodes
on the x-axis ran against 4 server nodes which equal 8 nodes
in total). Each group for each system (DXRAM, Infinispan,
Hazelcast) for a specific benchmark node count consists of
two bars (left bar for get and right bar put operations) with
identical markings (none or diagonal stripes). Each stacked bar
depicts the operation’s average latency as well as the 95th and
99th percentiles (color coded) on a logarithmic scale (y-axis
on the left). The aggregated throughput (y-axis on the right)
of each system (color coded) is presented as a line plot on the
right next to each bar group.

Due to space constraints, we focus on the most notable
aspects of the results. The results of the Facebook-B workload

B LatAvg Em DXRAM X
m LatPerc95 iz Infinispan 3
B LatPerc99 @& Hazelcast
104 r4
I
Q
o o
S Il s s O o E
(U]
9 3 5
G b=
2 e
3 g
s S
8 72
[<
g 2
1001 ED B A0 R o 0w e
=
rl
Benchmark Nodes
Fig. 10. Workload Facebook-B with increasing benchmark node count

accessing an equal amount of storage nodes with 128 threads per node

B LatAvg Emm DXRAM x

mm LatPerc95 wm Infinispan i Los
@\ Hazelcast :

B LatPerc99

T
o o o
o] o ~

o
iS
Throughput Operations [mops]

Operation Latency [us]

T
o o
N (]

T
o
-

Benchmark Nodes

Fig. 11. Workload Facebook-D with increasing benchmark node count
accessing an equal amount of storage nodes with 128 threads per node

mm latAvg EEE DXRAM x[35
mmm LatPerc95 w2 Infinispan -

B LatPerc99 @\ Hazelcast 3.0
i
1044 &
g F2.5 E
w
g s
5 =1
2 F2.0%®
5 g
c o
o o
E r1.5 2
[} =
a o
o 3
1034 r10 e
=

X F0.5

Benchmark Nodes

Fig. 12. Workload Facebook-F with increasing benchmark node count

accessing an equal amount of storage nodes with 128 threads per node

(Figure 10) show that DXRAM is capable of efficiently
handling tiny objects and scales well with up to 16 nodes
with a total aggregated throughput of 4.6 mops. DXRAM’s
latencies are higher, especially the 99th percentiles, when
using only 1-2 nodes compared to the other systems, but
improve on larger scales and drop considerably starting with
4 nodes. Overall, Hazelcast scales well with up to 8 nodes,
but its aggregated throughput (1.9 mops) is up to a factor
of 1.6 lower compared to DXRAM’s (3.1 mops). Infinispan’s
overall scalability is very limited with an aggregated peak
performance of 0.57 mops reached at 8 nodes without further
increasing with up to 16 nodes. The results of the YCSB-A
reference workload (Figure 9) further support the assumption
that Infinispan does not perform and scale well on workloads
with tiny objects. Overall similar results for all systems are
achieved on the Facebook-F workload (Figure 12).

However, DXRAM shows deficits on the Facebook-D work-
load (Figure 11). With 1-2 nodes, DXRAM is outperformed
by the other systems. However, overall, DXRAM aims for
scalability instead of high single node performance and con-
tinues to scale with up to 16 nodes, compared to Infinispan
whose performance degrades starting with 4 nodes. Hazelcast
shows great performance and scalability with up to 8 nodes
peaking at an aggregated throughput of 0.85 mops compared
to DXRAM with 0.38 mops and Infinispan with 0.21 mops. As
the Facebook-D workload uses objects with 24 fields compared
to the single field workloads Facebook-B, Facebook-F and
the 10 field workload YCSB-A, we conclude that DXRAM
requires additional optimizations to handle such a large num-
ber of fields better. The YCSB-A workload (Figure 9) shows
that DXRAM can already handle 10 fields well. Furthermore,
certain results (e.g., 1-2 nodes) across multiple workloads
indicate that DXRAM’s handling of concurrency on high loads
still requires additional optimizations which we are planning
to address by improving local thread management.

VII. CONCLUSIONS

We presented the extension and optimization of DXMem, a
low-latency, and low metadata-overhead memory management
for DXRAM, a highly concurrent Java-based distributed in-
memory system. DXMem’s allocator is designed for storing
many small (32 - 128 byte) objects efficiently. The address
translation table is extended by a per chunk low-latency read-
write lock giving applications a fine-grained synchronization
mechanism to control data races. Additionally, chunks can
be pinned for direct memory access either locally or for
RDMA operations using InfiniBand hardware. We compared
DXRAM with DXMem, for the first time, to the two state-of-
the-art Java-based key-value caches Hazelcast and Infinispan.
Regarding memory overhead, DXMem achieves an at least
four-times lower memory overhead on an average object size
of 32 bytes compared to the other systems. Using real-world-
based workloads to evaluate the local storage performance,
DXRAM provides single-digit microsecond latency when not
over-provisioning the CPU and outperforms Hazelcast and
Infinispan with 78 mops on 128 threads 17-fold and 28-fold.

Using the YCSB in a distributed environment, DXRAM scales
well on workloads with small objects and up to 16 server and
16 benchmark clients outperforming Hazelcast (1.6 fold) and
Infinispan (5.4 fold). On a read-heavy workload with 32-byte
objects, DXRAM achieves an aggregated throughput of 4.6
mops.

(1]
(2]

(3]
(4]
(3]

[6]

(7]
(8]
(91

[10]

[11]
(12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

REFERENCES

Apache DirectMemory. https://directmemory.apache.org/.

Introduction to Hazelcast HD Memory. https://blog.hazelcast.com/
introduction-hazelcast-hd-memory/.

Apache ignite - database and caching platform. https://ignite.apache.org/.
Cassandra. https://cassandra.apache.org/.

Gemfire - in-memory data grid powered by apache geode. https://pivotal.
io/pivotal- gemfire.

Github operating systems research group heinrich-heine-university
diisseldorf. https://github.com/hhu-bsinfo/.

Hazelcast - an in-memory data grid. https://hazelcast.com.

Infinispan. http://infinispan.org/.

Infinispan - data container changes part 2. https://blog.infinispan.org/
2017/01/data-container-changes- part-2.html.

The java hotspot performance engine architecture. https://www.oracle.
com/technetwork/java/whitepaper-135217.html.

Official ehcache website. http://www.ehcache.org/.

Sharding in hazelcast. https://docs.hazelcast.org/docs/latest-dev/manual/
html-single/#sharding-in-hazelcast.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 12,
pages 53-64, 2012.

K. Beineke, S. Nothaas, and M. Schoettner. High throughput log-
based replication for many small in-memory objects. In IEEE 22nd
International Conference on Parallel and Distributed Systems, pages
535-544, 2016.

K. Beineke, S. Nothaas, and M. Schéttner. Efficient messaging for java
applications running in data centers. In International Workshop on Ad-
vances in High-Performance Algorithms Middleware and Applications
(in proceedings of CCGridl8), 2018.

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proc. VLDB
Endow., 8:1804-1815, Aug. 2015.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proc. of the 1st ACM
symposium on Cloud computing, pages 143-154, 2010.

P. Desikan, N. Pathak, J. Srivastava, and V. Kumar. Incremental page
rank computation on evolving graphs. In Special Interest Tracks and
Posters of the 14th International Conference on World Wide Web, WWW
’05, pages 1094-1095, 2005.

A. Gulli and A. Signorini. The indexable web is more than 11.5 billion
pages. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, WWW ’05, pages 902-903, 2005.

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan. The rise of “big data” on cloud computing: Review and
open research issues. Information Systems, 47:98 — 115, 2015.

F. Klein, K. Beineke, and M. Schoettner. Memory management for
billions of small objects in a distributed in-memory storage. In /EEE
Cluster 2014, September 2014.

J. Kreps, N. Narkhede, and J. Rao. Kafka: a distributed messaging
system for log processing. In NetDB 2011: 6th Workshop on Networking
meetsDatabases, 2011.

H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In Proceedings of the 19th International
Conference on World Wide Web, WWW 10, pages 591-600, 2010.

X. Liu. Entity centric information retrieval. SIGIR Forum, 50:92-92,
June 2016.

L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom. Use at your own risk: The java unsafe api in the wild.
SIGPLAN Not., 50:695-710, Oct. 2015.

S. Mehta and V. Mehta. Hadoop ecosystem: An introduction. In
International Journal of Science and Research (IJSR), volume 5, June
2016.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling memcache at facebook. In Presented as
part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 385-398, Lombard, IL, 2013.
USENIX.

Oracle. Oracle coherence. https://www.oracle.com/technetwork/
middleware/coherence/overview/index.html.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-
66, November 1999. Previous number = SIDL-WP-1999-0120.

S. Pronk, S. Péll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. sson, D. van der Spoel, B. Hess, and
E. Lindahl. Gromacs 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics, 29:845-854, 2013.
A. Ribeiro, A. Silva, and A. R. da Silva. Data modeling and data
analytics: A survey from a big data perspective. Journal of Software
Engineering and Applications, 8:617-634, 2015.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of
the facebook social graph. CoRR, abs/1111.4503, 2011.

X. Wu, X. Zhu, G. Q. Wu, and W. Ding. Data mining with big data.
IEEE Transactions on Knowledge and Data Engineering, 26:97-107,
Jan. 2014.

P. Zhao, Y. Li, H. Xie, Z. Wu, Y. Xu, and J. C. Lui. Measuring and
maximizing influence via random walk in social activity networks. pages
323-338, Mar. 2017.

Chapter 5

Leveraging High-Speed and
Low-Latency Networks in Java
Applications

<

e)
/ Key-Value Store o
[mpute DS & '),o,]
ey
&
g

Figure 5.1: The “big picture” of this thesis with the relevant components for this chapter
highlighted (“Application” layer and interface, “Network” Java, and “InfiniBand”
Native).

This chapter discusses the third and final research question “Can the network support graph-
based applications efficiently regarding low latency and handling of many small messages even
on highly concurrent random remote access?” in a Java environment (see Section 1.3).

First, Section 5.1 presents the addressed requirements concerning Java applications and low-
latency remote communication that result from the above research question based on the
previously introduced context (see Section 1.1) and its challenges (see Section 1.2). The stage
of work of the DXRAM storage system is presented in Section 5.2, with Section 5.3 elaborating
on the major research question in detail. The resulting contributions of this work are presented
in Section 5.4 followed by copies of the publications:

48

Chapter 5 Leveraging High-Speed and Low-Latency Networks in Java Applications

Stefan Nothaas, Fabian Ruhland and Michael Schéttner. "A Benchmark Suite to Evaluate
InfiniBand Solutions for Java Applications". Published on arXiv e-prints. October 2019.
arXiv:1910.02245. 10 pages.

Kevin Beineke, Stefan Nothaas and Michael Schéttner. "Efficient Messaging for Java
Applications running in Data Centers". In Proceedings of the 18th International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). 2018. 10 pages. Copyright 2018 IEEE.
https://ieeexplore.ieee.org/document/8411076

Stefan Nothaas, Kevin Beineke and Michael Schottner. "Leveraging InfiniBand for Highly
Concurrent Messaging in Java Applications". In Proceedings of the 18th International
Symposium on Parallel and Distributed Computing (ISPDC). 2019. Copyright 2019 IEEE.
https://ieeexplore.ieee.org/document/8790899

Stefan Nothaas, Kevin Beineke, Michael Schoettner. "Ibdxnet: Leveraging InfiniBand in
Highly Concurrent Java Applications". Published on arXiv e-prints. December 2018.
arXiv:1812.01963. 31 pages.

5.1 Requirements

By benefiting from data locality on single servers, algorithms can avoid having to request data
stored on a remote server. However, keeping high data locality in a distributed environment is
a difficult task. For example, temporal locality could be achieved by caching or replication of
remote objects to the current server but is difficult to implement efficiently due to the highly
random access in our application domain. Spatial locality can be exploited on the application
level, e.g., for neighbors of a vertex of a graph, either by pre-fetching, migrating or keeping
neighboured data stored on the same server. However, exploiting locality on the network level
efficiently without any application context is not possible.

Huge data volumes require a distributed approach aggregating many servers. Naturally, this
results in slower remote data exchange. More servers offer more compute resources but require
fast and efficient communication to run and coordinate distributed computations.

The efficiency of a distributed approach depends on the network subsystem for communication
with remote servers. Considering the requirements of our application domain (see Section 1.2),
most data transferred is rather small due to the majority of objects being small. Such small
transfers can be avoided with batching of data or operations, but in general, are limited to the
possibilities offered by the algorithm. The highly random access patterns on graph algorithms
result in random access to many remote servers. Data locality can limit but not avoid this
entirely. Naturally, remote access increases with the degree of data distribution (number of
servers).

As batching improves the overall throughput of offline analytics, it increases latency. To the
contrary, online applications with user interactions demand low latency and instead neglect

49

Chapter 5 Leveraging High-Speed and Low-Latency Networks in Java Applications

throughput. Thus, from a networking perspective, the network subsystem has to provide, both,
low latency and high throughput to support different application focuses.

Many threads can run on a single server for concurrent processing, but potentially have to
exchange data with remote servers. The more a concurrent algorithm has to coordinate, the more
communication with remote servers is required. Thus, the network subsystem must be capable
of handling high concurrency with many threads sending and receiving data simultaneously.
Naturally, this requirement does not account for embarrassingly parallel applications (e.g.,
MapReduce) with limited to none remote communication.

Often, the data transferred consists of objects of the stored data-set. Thus, serialization is
required to convert the objects to a binary format for inter-server transfer. Furthermore, higher-
level primitives for request-response patterns aid in implementing coordination of multiple
servers.

To provide very low-latency remote data access, modern hardware such as InfiniBand offering
single-digit microseconds latency is mandatory. All requirements mentioned thus far have
to be considered in the context of low-latency hardware usage to leverage InfiniBand for
highly concurrent messaging in Java. Furthermore, additional constraints imposed by the
Java environment (e.g., interaction with native code and memory) have to be considered when
programming such low-level hardware.

5.2 Stage of Work

To address the requirements presented in Section 5.1, the research regarding low-latency remote
communication in Java applications in this thesis was conducted in the context of the Java-based
DXRAM storage system. Initially designed and developed by Dr. Florian Klein, DXRAM’s
network subsystem was limited to Ethernet networks, only. It already implemented an API with
higher-level communication primitives for asynchronous and synchronous messaging. Messaging
objects were de-/serialized using a built-in and simple field-by-field to ByteBuffer serialization.
Marc Ewert designed and implemented the initial concurrent back-end in his master thesis [34]
and the network subsystem was deeply integrated into DXRAM.

5.3 Research Questions

With InfiniBand available in HPC and even in cloud environments, Java applications, like
DXRAM, would benefit highly from low remote access-latency. However, how to utilize this
hardware in Java, especially in the context of a key-value storage? Which solutions are
already available to use InfiniBand hardware in Java applications? With such low latency on
the hardware level, designing software that can truly leverage the power of the hardware is
very challenging and raises the question if existing Java solutions are sufficient to exploit the
performance of the hardware.

50

Chapter 5 Leveraging High-Speed and Low-Latency Networks in Java Applications

DXRAM, as well as most other Java-based in-memory systems, already provide a network
subsystem based on Ethernet networks (see Section 2.2). With various socket-based wrappers
available, we first analyzed transparent solutions and if they can provide adequate performance
(see Section 5.4.1).

Our results show that these solutions are far from optimal compared to using custom verbs-
based implementations. Furthermore, evaluations of DXRAM and the network subsystem
pointed out significant weaknesses regarding the handling of small messages, serialization
and buffer management, concurrency management and scalability. Naturally, this is not an
optimal foundation to build support for low-latency hardware on. The API of the network
submodule was already well designed and fitting our target application domain. However,
the back-end required a re-design to be capable of leveraging the performance of InfiniBand
hardware. However, we do not want to replace Ethernet with InfiniBand, but instead, support
both interconnects (see Section 5.4.2).

By supporting two fundamentally different programming models, sockets and verbs, this raised
many fundamental questions regarding the network subsystem: How to design the processing
pipeline and data structures of the back-end to support these two fundamentally different
programming models without negative impact on performance? How to design a shared
abstraction layer that allows both models to achieve maximum performance? How to adapt the
existing higher-level primitives?

Because InfiniBand hardware cannot be accessed directly in Java, these requirements are very
challenging (see Section 5.4.1). When using the native verbs API, the Java-based network
subsystem has to utilize a native C-library to communicate directly with InfiniBand hardware.
This approach raises further questions regarding the performance as the design of the pipeline
is very latency sensitive: How to design a low-latency processing pipeline for InfiniBand
communication spanning from Java to native space and vice versa, and utilizing the native
verbs API? This pipeline has to consider scalability on a local thread level as well as regarding
many remote connections.

5.4 Contributions

This section presents the contributions addressing the previously stated research questions and
how they were implemented with DXRAM'’s network subsystems DXNet. The contributions are
published in several publications and described in the following sections. Section 5.4.1 presents
the “Java InfiniBand Benchmark” suite to evaluate existing solutions to leverage InfiniBand
in Java applications. Section 5.4.2 presents DXRAM’s re-designed network subsystem DXNet.
Section 5.4.3 presents the design of Ibdxnet, the InfiniBand transport for DXNet. Copies of the
publications are attached after each section. The contributions stated in the following sections
which are not explicitly assigned to any author/contributor are by the author of this thesis.

o1

Chapter 5 Leveraging High-Speed and Low-Latency Networks in Java Applications

5.4.1 JIB-Benchmark: A Benchmark Suite to Evaluate Existing
InfiniBand Solutions for Java Applications

The proposed publication [94] in this section presents the Java InfiniBand Benchmark (JIB)
suite to evaluate existing solutions to use InfiniBand hardware in Java applications. This suite
is the result of prolonged work of this thesis. Before InfiniBand development started, Michael
Schlapa analyzed available libraries and solutions to use InfiniBand in Java applications in his
master thesis [111]. His results served as a foundation for the decision that DXRAM required a
custom solution for using InfiniBand because none of the existing solutions achieved satisfying
performance. This decision was followed by further research, microbenchmarks, and prototypes
by the author of this thesis and resulted in the mandatory re-design of DXRAM’s network
subsystem for InfiniBand use (see Section 5.4.2).

In general, the benchmarks and results are useful to any Java application that wants to use
InfiniBand and, first, has to consider the numerous pros and cons of the available solutions. In
his master thesis [108]|, Fabian Ruhland created the JIB-Benchmark suite which revises the
initially proposed benchmarks by Michael Schlapa [111]. Additional knowledge obtained by
Stefan Nothaas when developing Ibdxnet (see Section 5.4.3) allowed improving the benchmarks
to provide more optimal results. Fabian Ruhland implemented a scripting framework with a
fully automated pipeline to run the benchmark suite with all currently implemented benchmarks
(overhead, uni-directional throughput, bi-directional throughput, and one-sided latency) and
libraries (C-verbs, jVerbs, IPoIB, libvima, JSOR) followed by an evaluation of the data and
generating of plots. Stefan Nothaas contributed various bugfixes and optimized Fabian Ruhland’s
code, refactored the one-sided latency benchmark and implemented an additional ping-pong
benchmark.

Fabian Ruhland and Prof. Dr. Michael Schéttner took part in many discussions about the
performance analysis of the benchmark results.

Stefan Nothaas wrote the paper and used the benchmark suite to re-evaluate all currently
available solutions on 56 Gbit/s and 100 Gbit/s hardware provided by the “Centre for Information
and Media Technology” (ZIM) at the University of Diisseldorf. Prof. Dr. Michael Schéttner
and Fabian Ruhland reviewed the paper several times. The JIB-Benchmark suite is open source
and available at Github [43].

52

A Benchmark to Evaluate InfiniBand Solutions for
Java Applications

Stefan Nothaas
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
stefan.nothaas @hhu.de

Abstract—Low-latency network interconnects, such as Infini-
Band, are commonly used in HPC centers and are even accessible
with todays cloud providers offering equipped instances for rent.
Most big data applications and frameworks are written in Java.
But, the JVM environment alone does not provide interfaces to
directly utilize InfiniBand networks.

In this paper, we present the ‘“Java InfiniBand Benchmark”
to evaluate the currently available (and supported) “low-level”
solutions to utilize InfiniBand in Java. It evaluates socket- and
verbs-based libraries using typical network microbenchmarks
regarding throughput and latency. Furthermore, we present
evaluation results of the solutions on two hardware configu-
rations with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. With
transparency often traded for performance and vice versa, the
benchmark helps developers with studying the pros and cons of
each solution and support them in their decision which solution
is more suitable for their existing or new use-case.

Index Terms—High-speed networks, Distributed computing

I. INTRODUCTION

RDMA capable devices have been providing high through-
put and low-latency to HPC applications for several years [18].
With todays cloud providers offering instances equipped with
InfiniBand for rent, such hardware is available to a wider range
of users without the high costs of buying and maintaining
it [25]. Many application domains such as social networks
[20], [29], [31], search engines [24], [36], simulations [37] or
online data analytics [21], [41], [42] require large processing
frameworks and backend storages. Many of these are written
in Java, e.g. big data batch processing frameworks [28], [33],
databases [1], [2] or backend storages/caches [3], [4], [7], [35].

These applications benefit from the rich environment Java
offers including automatic garbage collection and multi-
threading utilities. But, the choices for inter-node commu-
nication on distributed applications are limited to Ethernet-
based socket-interfaces (standard ServerSocket or NIO) on
the commonly used JVMs OpenJDK and Oracle. They do
not provide support for low-latency InfiniBand hardware. But,
there are external solutions available each with pros and cons.

This raises questions if a developer wants to chose a
suitable solution for a new use-case or an existing application:
What’s the throughput/latency on small/large payload sizes?
Is the performance sufficient when trading it for transparency
requiring less to no changes to the existing code? Is it worth
considering developing a custom solution based on the native

Fabian Ruhland
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
fabian.ruhland @hhu.de

Michael Schoettner
Department of CS Operating Systems
Heinrich-Heine-Universitdit
Duesseldorf, Germany
michael.schoettner @hhu.de

API to gain maximum control with chances to harvest the
performance available by the hardware?

In this paper, we address these questions by presenting a
“Java InfiniBand (JIB) benchmark” to evaluate existing solu-
tions to leverage the performance of InfiniBand hardware in
Java applications. The modular benchmark currently provides
implementations to evaluate three socket-based libraries and
implementations, IP over InfiniBand, libvma and JSOR, as
well as two verbs-based implementations, native C-verbs and
jVerbs. This paper focuses on the fundamental performance
metrics of low-level interfaces and not on higher-level network
subsystems with connection management, complex pipelines
and messaging primitives, e.g. MPI. We discuss and evaluate
these in a separate publication [34]. We used our benchmark
to evaluate the listed solutions on two hardware configurations
with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. The contribu-
tions of this paper are:

¢ An overview of existing Java InfiniBand solutions

o An extensible and open source benchmark to easily

evaluate solutions to use InfiniBand in Java applications

« Extensive evaluation of existing Java libraries with 56

Gbit/s and 100 Gbit/s hardware

The remaining paper is structured as follows: Section II
discusses related work with socket-based (§II-A) and verbs-
based (§1I-B) libraries. Section III presents the JIB Benchmark
Suite which is used to evaluate two verbs-based solutions
and three socket-based solutions in the following Section IV
regarding overhead (§IV-A), uni-directional (§IV-B) and bi-
directional (§I1V-C) throughput, as well as one-sided latency
(§IV-D) and full round-trip-time using a ping-pong benchmark
(§IV-E). Conclusions are presented in Section V.

II. RELATED WORK

This section elaborates on existing “low-level” solu-
tions/libraries that can be used to leverage the performance
of InfiniBand hardware in Java applications. This does not in-
clude network or messaging stacks/subsystems implementing
higher-level primitives such as the Massage Passing Interface,
e.g. Java-based FastMPJ [22] providing a special transport to
use InfiniBand hardware. To the best of our knowledge, there
is no benchmark available to evaluate InfiniBand solutions in
Java.

A. Socket-based Libraries

The socket-based libraries redirect the send and receive traf-
fic of socket-based applications transparently over InfiniBand
host channel adapters (HCAs) with or without kernel bypass
depending on the implementation. Thus, existing applications
do not have to be altered to benefit from improved performance
due to the lower latency hardware compared to commonly
used Gigabit Ethernet. The following three libraries are still
supported to date and evaluated in Section IV.

IP over InfiniBand (IPoIB) [27] is not a library but actually
a kernel driver that exposes the InfiniBand device as a standard
network interface (e.g. ib0) to the user space. Socket-based
applications do not have to be modified but use the specific
interface. However, the driver uses the kernel’s network stack
which requires context switching (kernel to user space) and
CPU resources when handling data. Naturally, this solution
trades performance for transparency.

libvma [10] is a library developed by Mellanox and in-
cluded in their OFED software package [11]. It is pre-loaded
to any socket-based application (using LD_PRELOAD). It
enables full bypass of the kernel network-stack by redirecting
all socket-traffic over InfiniBand using unreliable datagram
with native C-verbs. Again, the existing application code does
not have to be modified to benefit from increased performance.

Java Sockets over RDMA (JSOR) [40] redirects all socket-
based data traffic in Java applications using native verbs, sim-
ilar to libvma. It uses two paths for implementing transparent
socket streams over RDMA devices. The “fast data path” uses
native verbs to send and receive data and the “’slow control
path” manages RDMA connections. JSOR is developed by
IBM on only available in their proprietary J9 JVM.

The following libraries are also known in literature but are
not supported or maintained anymore.

The Sockets Direct Protocol (SDP) [23] redirects all
socket-based traffic of Java applications over RDMA with
kernel-bypass. It supported all available JDKs since Java 7
and was part of the OFED package until it was removed with
OFED version 3.5 [12].

Java Fast Sockets (JFS) [39] is an optimized Java socket
implementation for high speed interconnects. It avoids seri-
alization of primitive data arrays and reduces buffering and
buffer copying with shared memory communication as its main
focus. However, JES relies on SDP (deprecated) for using
InfiniBand hardware.

Speedus [17] is a native library that optimizes data transfers
for applications especially on intra-host and inter-container
communication by bypassing the kernel’s network stack. It
is also advertised to support low-latency networking hardware
for inter-node communication. But, the latest available version
to date (2016-09-08) does not include such support.

B. Verb-based Libraries

Verbs are an abstract and low-level description of function-
ality for RDMA devices (e.g. InfiniBand) and how to program
them. Verbs define the control and data paths including RDMA
operations (write/read) as well as messaging (send/receive).

RDMA operations allow reading or writing directly from/to
the memory of the remote host without involving the CPU of
the remote. Messaging follows a more traditional approach by
providing a buffer with data to send and the remote providing
a buffer to receive the data to.

The programming model differs heavily from traditional
socket-based programming. Using different types of asyn-
chronous queues (send, receive, completion) as communica-
tion endpoints. The application uses different types of work-
requests for sending and receiving data. When handling data
to transfer, all communication with the HCA is executed
using these queues. The following libraries are verbs im-
plementations that allow the user to program the RDMA
capable hardware directly. The first two libraries presented are
evaluated in Section IV.

C-verbs are the native verbs implementation included in
the OFED package [13]. Using the Java Native Interface (JNI)
[30], this library can be utilized in Java applications as well in
order to create a custom network subsystem [22] [34]. Using
the Unsafe class [32] or Java DirectByteBuffers, memory can
be allocated off-heap to use it for sending and receiving data
with InfiniBand hardware (buffers must be registered with a
protection domain which pins the physical memory).

jVerbs [38] are a proprietary verbs implementation for Java
developed by IBM for their J9 JVM. Using a INI layer,
the OFED C-verbs implementation is accessed. “Stateful verb
methods” (StatefulVerbsMethod Java objects) encapsulate the
verb to call including all parameters with parameter serializa-
tion to native space. Once the object is prepared, it can be
executed which actually calls the native verb. These objects
can be re-used for further calls with the same parameters to
avoid repeated serialization to native space and creating new
objects which would burden garbage collection.

Jdib [26] is a library wrapping native C-verbs function calls
and exposing them to Java using a JNI layer. According to the
authors, various methods, e.g. queue pair data exchange on
connection setup, are abstracted to create an easier to use API
for Java programmers. The fundamental operations to create
protection domains, create and setup queue pairs, as well as
posting data-to-send to queues and polling the completion
queue seem to wrap the native verbs and do not introduce
additional mechanisms like jVerbs’s stateful verb calls. We
were not able to obtain a copy of the library for evaluation.

III. A BENCHMARK FOR EVALUATING INFINIBAND
LIBRARIES FOR JAVA

To evaluate and compare the different libraries available, a
common set of benchmarks had to be implemented for two
programming languages (C and Java) and two programming
models (sockets and verbs). Existing solutions like the iperf [§]
tools for TCP/UDP or the ibperf tools included in the OFED
package [13] do not cover all libraries we want to evaluate
and do not implement all necessary benchmark types.

In this paper, we want to evaluate most of the available and
still maintained libraries (§II) in a fundamental point-to-point
setup regarding throughput and latency. Like other benchmarks

(e.g. OSU [14]), we want to determine the maximum through-
put on uni-directional and bi-directional communication (e.g.
application pattern asynchronous “messaging’), as well as one-
sided latency and full round-trip-time (RTT) with a ping-
pong communication pattern (e.g. application pattern “request-
response”). These benchmarks allow us to determine the
fundamental performance of the presented solutions and are
commonly used to evaluate network hardware or applications
[8], [13], [14]. The evaluation of higher-level primitives, e.g.
collectives, and all-to-all communication is not possible with
fundamental low-level interfaces. These require a higher-level
networking stack with connection management and a complex
pipeline which is not the focus of this paper.

The Java InfiniBand Benchmark (JIB) provides implemen-
tations of the listed benchmarks for two verbs-based solutions
(C-verbs, jVerbs) and three socket-based solutions (IPoIB, lib-
vma, JSOR). It is open source and available at Github [9]. Each
benchmark run is configurable using command line parameters
such as the benchmark type (uni-/ bi-directional, one-sided
latency or ping-pong), the message size to send/receive and
the number of messages to send/receive. For convenience,
we refer to the payload size sent as messages independent
of how it is transferred (e.g. sockets, verbs RDMA or verbs
messaging). The context and all buffers are initialized before
the benchmark is started. Afterwards, the current instance
connects to the remote specified via command line parameters.
Once the connection is established, a dedicated thread is
started for sending data and another thread for receiving.
Today, we can expect this to run on a multicore system
with at least two physical cores to ensure that the send and
receive thread can be run simultaneously to avoid blocking one
another. The benchmark instance sends the specified number
of messages to the remote and measures the time it takes to
send the messages. Furthermore, we utilize the performance
counters of the InfiniBand HCA to determine the overhead
added by any software defined protocol which is especially
relevant for the socket-based libraries (§IV-A).

For socket-based libraries, the benchmark is implemented
in Java using TCP sockets with the ServerSocket, Datalnput-
Stream and DataOutputStream classes. Sending and receiving
data is executed synchronously in a single loop on each thread.
No further adjustments are required because all libraries redi-
rect the normal send and receive calls of the socket libraries.
With IPoIB, we use the address of the exposed ib0 device.
The libvma library is pre-loaded to the benchmark using
LD _PRELOAD. In order to use JSOR, we run the benchmark
in the J9-JVM and provide a configuration file specifying IP-
addresses whose traffic is redirected over the RDMA device.

The verbs-based benchmarks are implemented in C and
Java. Both implementations use RC queue pairs for RDMA
and message operations. UD queue pairs can also be used
for message operations but this option is currently not imple-
mented. On RDMA operations, we did not include immediate
data with a work request which would require a work comple-
tion on the remote (optional for signalling incoming RDMA
operations on the remote). When sending RDMA operations

to the HCA to determine the maximum throughput, we do not
repeatedly add one work request to the send queue, then poll
the completion queue waiting for that single work request to
complete. This pattern is commonly used in examples [16]
and even larger applications [15] but does not yield optimal
throughput because the queue of the HCA runs empty very
frequently. To keep the HCA busy, the send queue must be
kept filled at all times. Thus, we fill up the send queue
to the maximum size configured, first. Then, we poll the
completion queue and once at least one completion is available
and processed, we immediately fill the send queue again.
Naturally, this pattern cannot be applied to the ping-pong
latency benchmark executing a request-response pattern.

This data path is implemented in both, the C-verbs and
jVerbs implementation. The C implementation uses the verbs
implementation included in the OFED package and serves as a
reference for comparing the maximum possible performance.
To establish a remote connection, queue pair information is
exchanged using a TCP socket. The jVerbs implementation
has to implement the operations of the data path using the
previously described stateful verbs methods. Thus, the sending
of data on the throughput benchmark had to be altered slightly.
A single stateful verb call for posting work requests to the send
queue always posts 10 elements. Hence, new work requests are
added to the send queue once at least 10 work completions
were polled from the completion queue. We create all stateful
verbs calls before the benchmark and re-use them to avoid
performance penalties. On connection creation, queue pair
information is exchanged with the API provided by jVerbs
which is using the RDMA connection manager.

IV. EVALUATION

In this Section, we present the results of the evaluation
of the socket-based libraries/implementations IPoIB, libvma
and JSOR and the verbs-based libraries C-verbs and jVerbs
using our benchmark suite (§11I). We analyze and discuss basic
performance metrics regarding throughput and latency using
typical benchmarks with a two node setup with 56 Gbit/s
and 100 Gbit/s interconnects. A summary of the benchmarks
executed with each library/implementation is given in Table 1.
Due to space constraints, we limit the discussion of the results
to selected conspicuities of the plotted data.

Library/Benchmark | OV | Uni-dir | Bi-dir | Lat
C-verbs rdmaw X X
C-verbs rdmar
C-verbs msg X
jVerbs rdmaw
jVerbs rdmar
jVerbs msg
IPoIB

JSOR

libvma

PingPong

DA |

X
error
X

ek R I e e A R R R
Ll I L L R R e R

PR]
PR

TABLE T
OVERVIEW OF LIBRARIES EVALUATED WITH BENCHMARKS AVAILABLE.
ABBREVIATIONS: OV = OVERHEAD, RDMAW = RDMA WRITE, RDMAR =
RDMA READ, MSG = MESSAGING VERBS

We use the term “message” (msg) to refer to the unit of
transfer which is equivalent to the data payload. The size of
a message does refer to the payload size only and does not
include any additional protocol or network layer overhead.
Each throughput focused benchmark run transfers 100 million
messages and each latency focused benchmark run transfers 10
million messages. Starting with 8 kB message size, the amount
of messages is incrementally halved to avoid unnecessary long
running benchmark runs. We evaluated payload sizes of 1 byte
to 1 MB in power-of-two-increments. When discussing the
results, we focus on the message rate on small messages with
payload sizes less than 1 kB and on the throughput on middle
sized and large messages starting at 1 kB.

The throughput results are depicted as line plots with the
left y-axis describing the throughput in million messages per
second (mmps) and the right y-axis describing the throughput
in MB/s. For the latency results, the left y-axis describes the
latency in ps and the right y-axis the throughput in mmps. The
dotted lines always represent the message throughput while
the solid lines represent either the throughput in MB/s or the
latency in ps, depending on the benchmark. For the overhead
results, a single y-axis describes the overhead in percentage in
relation to the amount of payload transferred on a logarithmic
scale. On all plot types, the x-axis depicts the size of the
payload in power-of-two increments from 1 byte to 1 MB.
Each benchmark run was executed three times and the min
and max as well as average of the three runs are visualized
using error bars.

The following releases of software were used for compil-
ing and running the benchmarks: Java 1.8, OFED 4.4-2.0.7,
libvma 8.7.5, IBM J9 VM version 2.9, gcc 8.1.0. We ran our
experiments on the following two setups with two nodes each:

1) Mellanox ConnectX-3 HCA, 56 Gbit/s InfiniBand, MTU
size 4096, Bullx blade with Dual socket Intel Xeon E5-
2697v2 (2.7 GHz) 12 core CPUs, 128 GB RAM, CentOS
7.4 with the Linux Kernel version 3.10.0-693, SBE-820C
with built-in switch

2) Mellanox ConnectX-5 HCA, 100 Gbit/s InfiniBand, MTU
size 4096, Supermicro blade with Dual socket Intel Xeon
Gold 6136 (3.0 GHz) 12 core CPUs, 128 GB RAM,
CentOS 7.4 with the Linux Kernel version 3.10.0-693,
Super Micro EDR-36 Chassis with built-in switch

Flow steering must be activated for libvma to redi-
rect all traffic over InfiniBand by setting the parameter
log_num_mgm_entry_size to -1 in the configuration file
/etc/modprobe.d/minx.conf for the InfiniBand kernel module.
Otherwise, libvma falls back to sockets over Ethernet.

In the following subsections, we focus the analysis and
discussion on the results with 100 Gbit/s hardware. Selected
Figures depicting the results with 56 Gbit/s hardware are
also included if they provide additional insights and value for
discussion and comparision. Due to automated execution of
the benchmarks, the naming in the figures differs slightly, e.g.
”JSocketBench(msg)*“ refers to IPoIB. The other names are
self-explanatory.

CVerbsBench(msg) —+—
JSocketBench(msg) —>¢—

JSOR(msg) —X—

10000 ¢ T T T T T T T T T

JVerbsBench(msg) —H—
libvma(msg) —&—

1000

100

10

Avg. Per Message Overhead [%]

1 4 16 64 256 1K 4K 16K

Message size [Bytes]

64K 256K 1MB

Fig. 1. Average per message overhead in percentage in relation to the payload
size transferred.

A. Overhead

In this Section, we present the results of the overhead
measurements of the described libraries/implementations. As
overhead, we consider the additional amount of data that is
sent along with the payload data of the user. This includes
any data of any network layer down to the HCA. We measured
the amount of data emitted by the port using the performance
counter port_xmit_data of the HCA.

[PoIB and libvma are implementing buffer/message aggre-
gation when sending data. Applications on high load sending
many small messages benefit highly from increased throughput
and the overall per message overhead is lowered. However, in
order to determine the general per message overhead, we used
the pingpong benchmark which does not allow aggregation
due to its nature. The results of both types (sockets/verbs) are
depicted in a single figure (see Figure 1).

We try to give a rough breakdown of the overhead involved
with each method evaluated. A precise breakdown is rather
difficult with just the raw amount of data captured from the
ports as re-transmission of packages are also captured (e.g. RC
queue pairs or custom protocols based on UD queue pairs).

The results in Figure 1 show that the overhead for msg
operations of C-verbs and jVerbs are identical. For a single
byte of payload, an additional 54 bytes are required which
corresponds to two 27 byte headers which are part of the low-
level InfiniBand protocol. Required by the RC protocol, one
package is used for sending the ping and the other package
to receive the pong. The metadata consists of a local routing
header (8 bytes), base transport header (12 bytes), invariant
CRC (4 bytes) and variant CRC (2 bytes) [19]. This makes
a total of 26 bytes which is close to the measured 27 bytes
(errors due to port_xmit_data yielding values in octets). For
RDMA operations, an additional RDMA extended transport
header (16 bytes) is added which makes a total of 42 bytes of
“metadata® for such a packet. Naturally, this overhead cannot
be avoided. As expected with jVerbs using the native verbs
directly without adding another software protocol layer, the
overhead added is identical to C-verbs’s. The overhead stays
constant which leads to an overall decreasing per message

CVerbsBench(msg) —+—
CVerbsBench(rdma) ——>¢—
CVerbsBench(rdmar) —%—

JVerbsBench(msg) —H—
JVerbsBench(rdma) —&—
JVerbsBench(rdmar)

Messages [mmps]
Throughput [MB/s]

4

16 64 256 1K 4K 16K 64K 256K 1MB

Message size [Bytes]

Fig. 2. Uni-directional throughput, verbs-based libraries with different
transfer methods, increasing message size, 100 Gbit/s.

overhead with increasing payload size. Starting with 8 kB
payload size, the overhead ratio drops below 1%.

The overhead of the socket-based solutions is overall
slightly higher. Again, considering 1 byte messages, JSOR
adds an additional 7500 %, libvma 7900 % and IPoIB 9100
% overhead to each pingpong transfer. libvma and IPolIB
rely on UD messaging verbs which add a datagram extended
transport header (8 bytes) to the InfiniBand header and include
additional information to allow IP-address based routing of
the packages. The IPolIB specification describes an additional
header of 4 octets (4 bytes) and IP header (e.g. IPv4 20
bytes + 40 bytes optional) which are added alongside the
message payload [27]. libvma adds an IP-address (4 bytes)
and Ethernet frame header (14 bytes) [10]. Remaining data
is likely committed towards a software signalling protocol.
Regarding JSOR, we could not find any information about the
protocol implemented (closed source).

B. Uni-directional Throughput

This section presents the throughput results of the uni-
directional benchmark. Starting with the verbs-based results
depicted in Figure 2, jVerbs RDMA write message throughput
(4.3 - 4.6 mmps) is about half of C-verbs’s RDMA write
throughput (7.9 - 9.3 mmps) for small payload sizes up to
512 byte. The RDMA write performance of C-verbs is nearly
double the throughput of C-verbs messaging but with high
jitter. Starting at 1 kB payload size, jVerbs’s RDMA write
throughput stays clearly below both C-verbs’s RDMA write
and message send throughput. Interesting to note that C-
verbs’s messaging is significantly better, though highly jittery,
on small messages up to 512 bytes and middle sized messages
up to 4 kB. Both C-verbs operations saturate throughput with 8
kB payload size and low jitter at around 11.7 GB/s. We could
not determine the reason for the very poor performance of
jVerbs’s msg verbs on both 56 Gbit/s and 100 Gbit/s hardware.

The results of socket-based libraries are depicted in Figure
3. On small payload sizes up to 256 bytes, [PoIB achieves a
throughput of approx. 1 - 1.2 mmps. With increasing payload
size, the throughput starts saturating at 32 kB message size and
peaks at 64 kB with 3.1 GB/s throughput. The results of libvma

JSocketBench(msg) —+—

JSOR(msg) —%—

7 T T T T T T T T T

-k K% %
6 |

libvma(msg) —%—

12000

y

%
X 4 10000
5L
% - 8000
KX CXREG
S 4 6000
3+ WX

4 4000

% &
2000

Messages [mmps]
Throughput [MB/s]

2+

e S S

z \X\
£

M ¥ e ko

1 4 16 64 256 1K 4K 16K 64K 256K 1MB

Message size [Bytes]

Fig. 3. Uni-directional throughput, socket-based libraries, increasing mes-
sage size, 100 Gbit/s.

CVerbsBench(msg) +—+—
CVerbsBench(rdma) —>¢—
CVerbsBench(rdmar) —%—

25 T T T T T

JVerbsBench(msg) —H—
JVerbsBench(rdma) +—&—
JVerbsBench(rdmar)

0t %
f% R

10 Poggririongf 10000

1

v

Messages [mmps]
Throughput [MB/s]

16K 64K 256K 1M

1 4 16 64 256 1K 4K
Message size [Bytes]

Fig. 4. Bi-directional throughput, verbs-based libraries with different
transfer methods, increasing message size, 100 Gbit/s.

show an highly increased throughput of 6.0 to 6.5 mmps for
up to 64 byte messages. Overall throughput for middle and
large sized messages surpasses IPoIB’s peaking at 3.5 GB/s
with 8 kB messages but also starting to decrease down to 3.0
GB/s when increasing the message size up to 1 MB. JSOR
achieves a significantly lower throughput of 3.8 - 3.9 mmps
for up to 128 byte messages. However, JSOR provides a much
higher throughput starting at 1 kB message size compared
to IPoIB and libvma. Throughput peaks at 64 kB message
size with 11 GB/s but drops down to approx 6.5 GB/s with
512 kB messages afterwards. As described in Section IV, we
determined that JSOR’s performance degrades considerable
on payload sizes of 128 kB and greater which required us
to increase the RDMA buffer size (to 1 MB). However, this
problem could not be resolved entirely.

The results on 56 Gbit/s hardware for both, verbs and
sockets, show an overall and expected lower throughput but not
any notable differences. Thus and due to space constraints, the
figures are omitted. But, results for libvma were not available
because the benchmarks failed repeatedly with a non fixable
“connection reset” error by libvma.

CVerbsBench(msg) —+—
CVerbsBench(rdma) ——>¢—
CVerbsBench(rdmar) —%—

JVerbsBench(msg) —H—
JVerbsBench(rdma) —&—
JVerbsBench(rdmar)

10000
n 0 w
g 8000 @
£ =3
" =]
g 6000 3
2 K
a 4000 2
2 £
2000
i 0
1 4 16 64 256 1K 4K 16K 64K 256K 1M
Message size [Bytes]
Fig. 5. Bi-directional throughput, verbs-based libraries with different

transfer methods, increasing message size, 56 Gbit/s.

C. Bi-directional Throughput

This section presents the throughput results of the bi-
directional benchmark. With full-duplex communication sup-
ported, we expect roughly double the throughput of the uni-
directional results in general. Figure 4 depicts the results
of the verbs-based implementations and, as expected, all
implementations show roughly double the message rate on
small messages and roughly double the throughput on large
messages compared to the uni-directional results (§IV-B).

C-verbs RDMA writes are still jittery but yield the best
performance with 15.8 - 19.7 mmps for 1 - 128 byte payload
size, 23.1 GB/s peak performance at 32 kB payload size. This
is followed by C-verbs messages with 11.5 - 18.6 mmps for 1
- 512 bytes, 23.3 GB/s peak performance at 8 kB payload size.
jVerbs RDMA writes perform worse on payload sizes up to 1
kB (8.3 - 9.3 mmps) but with less jitter than C-verbs RDMA
writes. Saturation on large messages starts at around around 16
kB with 23.7 GB/s with a peak performance of 24.0 GB/s at
128 kB message size. RDMA reads of both verbs interfaces
are nearly on par. The incomprehensible poor performance
of jVerbs msg verbs, as already seen on the uni-directional
benchmark results (§IV-B), is also present here.

The 56 Gbit/s results are depicted in Figure 5 and show an
overall similar but as expected lower performance regarding
throughput. On small messages, the RDMA write performance
of C-verbs is less jittery and jVerb’s not significantly lower
compared to the 100 Gbit/s results. The RDMA write per-
formance of C-verbs clearly outperforms jVerb’s sometimes
slight jittery performance on 128 byte to 1 kB messages.

Figure 6 depicts the socket-based res<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>