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Summary

π άντα ρ̀ϵι̃ (pantha rhei, Heraclitus 535 - 475 BC) – “everything flows”

So too do colloidal spheres. But how do they flow? This work investigates their
behavior under shear intending to establish a link between the macroscopic (i.e.,
bulk) rheological response and the microscopic (i.e., single-particle level) structure
and dynamics. Suspensions of colloidal spheres, that is, micrometer size particles
dispersed in a liquid are a fascinating model system on their own, but can also
mimic paints, pastes, or blood cells in our bodies.

In this work, I study single and multi-component systems of colloidal hard spheres.
Shear, in the form of large-amplitude oscillatory shear (LAOS) experiments and
start-up tests, is imposed by a rheometer or a shear cell. At the same time, thousands
of small fluorescent spheres are imaged with high-resolution confocal microscopy.
The particle motions are either analyzed with image velocimetry or tracked using
customized computer algorithms.

Samples in the vicinity of the colloidal glass transition are known to yield at
strain amplitudes of roughly 12%. This study confirms that their macroscopic elastic
and viscous response is microscopically related to reversible and irreversible particle
motions, respectively. Besides, it is found that some particles occasionally display
different behavior than expected. For instance, transient nonlinear velocity profiles
are observed during start-up shear at low shear rates. On a single-particle level,
this is expressed in time-dependent dynamical quantities, such as local nonaffine
motions and mean squared displacements. This work suggests that there is a link
between the microscopic properties and the mesoscopic velocity profiles. Caution is
required here since the phenomena are history-dependent, and not directly visible
in the macroscopic rheological response. Another observation is that, given a suffi-
ciently small polydispersity and a suitable external shear protocol, one can switch
from amorphous to crystalline states of matter. For instance, binary mixtures can
crystallize under oscillatory shear unless the size difference between particle species
exceeds about 15%.

Altogether, the combination of confocal microscopy and rheology is found to be
advantageous in revealing the links between microscopic and macroscopic properties.
As implied in the very last section, the techniques and methods developed in this
thesis can be readily applied to other soft systems.
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Part I

Fundamentals





1
Rheology: Get the Juices Flowing

Rheology is used to measure, model, and predict material properties of deformable
and flowing systems. It answers the question: “What happens when I poke it?[1,
p.207]” The term “rheology” was coined in the 1920s and is said to be invented by
Professor Bingham of Lafayette College [2]. It can be derived from the Greek word
ρϵ́ωλoγία, where ρϵ́ω means “flow” and −λoγία “the study of.”

We will start with a generic description of the concepts of stress, strain, and
simple shear in section 1.1. Afterward, we will introduce models that describe
linear (section 1.2) and nonlinear (section 1.3) relations between stress and strain.
Special emphasis is put on oscillatory shear (section 1.4), as well as the instrumental
constraints that experimentalists have to bear in mind (section 1.5).
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1 Rheology: Get the Juices Flowing

Fig. 1.1 Illustration of stress elements σij acting on an infinitesimal cubic element.
Stresses σij act on the surface i in the direction j.

1.1 Basic Concepts
1.1.1 Stress Tensor
Considering the deformation of a small cubic element, as illustrated in figure 1.1, is
a typical introduction to rheology. In order to “poke” the cube, external forces have
to act on the surfaces of this element. The force per area is called stress.

In the general case, the stress is a 3 × 3 tensor

σ =

⎛⎜⎜⎝
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

scientific

=

⎛⎜⎜⎝
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

engineering

(1.1)

with elements σij. Here, i indicates the orientation of the surface, and j refers to
the direction of the stress. This convention is regularly used (e.g., [2–6]), but one
should be cautious as, for example, in “Colloidal suspension rheology” by Mewis
and Wagner [7], the reverse notation is used. The number of independent elements
in equation (1.1) can be reduced from 9 to 6 using the relation σij = σji, which is
equivalent to the statement that no angular momentum is present inside the cube.
The elements σii are called normal stresses and the remaining ones shear stresses.
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1.1 Basic Concepts

Fig. 1.2 Schematic deformation of a material element (gray cloud). At time t = t0, two
points P and Q of the material element are separated by the vector dX. At a later time
t = t′, the two points P and Q have changed their absolute positions to P ′ and Q′ and
are connected by the vector dx.

1.1.2 Strain Tensor
How can one describe a deformation that is caused by the stress σ? As with the
stress tensor, different authors use different notations. This section will follow the
notation and definitions from reference [6].

A small piece of material could be deformed in a way, as depicted in figure 1.2.
Let there be two points P and Q inside the small element at time t0. The points
P and Q live in a three-dimensional space and can be defined by their coordinates
in x-, y- and z-direction. For the description to follow, only their relative positions
are important. Thus, let the vector that starts at P and ends at Q be denoted by
dX = (dXx, dXy, dXz). At a later time t′, the two points are now at P ′ andQ′ instead
of P and Q, and the vector connecting both points is now dx = (dxx, dxy, dxz).

The fundamental equation of deformation that relates dX and dx is

dx = F · dX , (1.2)

where F is the material deformation gradient tensor. Typically, F is assumed to be
given. If dX and F are known, then dx can be calculated for any time according to
equation (1.2). In experiments with particle tracking (cf., section 3.4 and chapter 6),
rather the particle positions at different times (and thus dx and dX) are known.
Finding an affine transformation F for a given set of vectors dx and dX (in R

n)
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1 Rheology: Get the Juices Flowing

can be solved by a least-squares minimization [8, 9]

e(F ) =
n∑︂

i=1
∥dxi − FdXi∥2 , (1.3)

where ∥. . .∥ is the Euclidean distance. Given F , the material displacement gradient
tensor

J = F − 1 (1.4)
is calculated by subtracting the identity matrix 1. Then, the infinitesimal strain
tensor reads

ϵ = 1
2
(︂
J + J⊤

)︂
(1.5)

with its components

ϵ =

⎛⎜⎜⎝
ϵxx ϵxy ϵxz

ϵyx ϵyy ϵyz

ϵzx ϵzy ϵzz

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

scientific

=

⎛⎜⎜⎝
ϵx γxy/2 γxz/2

γyx/2 ϵy γyz/2
γzx/2 γzy/2 ϵz

⎞⎟⎟⎠
⏞ ⏟⏟ ⏞

engineering

, (1.6)

written in both the scientific and engineering notation [6]. Here, J⊤ is the transpose.
The entries in the main diagonal of ϵ are unit elongations, and the off-diagonal entries
contain information about the decrements of angles in the ij-planes. Furthermore,
ϵij = ϵji (and γij = γji). The interpretation of the off-diagonal entries will become
clearer in the next section using a specific example.

1.1.3 Simple Shear
From now on we will focus on the zx-component of the shear stress and shear strain
and use the shorthand notations 1

σ ≡ σzx (1.7)

and
γ ≡ γzx . (1.8)

Let us consider again a cube. Now let there be a force F acting on the top surface A
in the x-direction, as illustrated in figure 1.3. Hence, we will have a non-zero shear
stress

σ = F

A
. (1.9)

1This shorthand notation is strictly speaking a mixture between the scientific (σzx) and engineering
(γzx) notation, but this combination is frequently used.
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1.2 Linear Viscoelasticity

Fig. 1.3 Illustration of simple shear. The force F acts on the top surface with area A.
As a consequence, the top part of the cube is displaced by ∆x.

The affine deformation of this cube is measured by the shear strain

γ = ∆x
h
. (1.10)

where ∆x is the displacement in the x-direction and h the height of the cube. The
scenario from figure 1.3 is called simple shear, but it is not that simple after all
since it can be decomposed into a combination of a pure rotation and pure strain as
shown in figure 1.4.

This can also be described analytically involving full tensor analysis. The tensor
S, which describes simple shear, can be decomposed into a rotation (Q) plus
stretching (U and V ). Both decompositions (S = QU and S = V Q) are visualized
in figure 1.5. As can be seen in figure 1.5, the angle θ between the x-axis and the
extension axis is, in fact, close to but not identical to 45◦ and becomes smaller for
larger strains.

1.2 Linear Viscoelasticity
Having introduced the shear stress σ and shear strain γ now raises the question
of whether and what exactly is their relation. Within linear viscoelasticity (LVE),
stress and strain are connected via linear differential equations, where the general
differential equation has the form(︄

1 + c1
∂

∂t
+ . . .+ cn

∂n

∂tn

)︄
σ =

(︄
c′

0 + c′
1
∂

∂t
+ . . .+ c′

m
∂m

∂tm

)︄
γ (1.11)

with coefficients cn and c′
m and n ≤ m. The symbols ∂n

∂tn denote the nth partial
derivative with respect to time.
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=1/2

=1/2

+1/2

+1/2

ex
t.

com
pr.

a) c)b)

d) e)

Fig. 1.4 Simple shear (a) can be decomposed into a linear combination of a pure rotation
(d) and pure strain (e) as can be seen either directly or with the help of an intermediate
step involving (b) and (c). Redrawn with permission of J. Bergenholtz [10].

45°

Fig. 1.5 Decomposition of simple shear S (middle) into a combination of rotation Q
and pure stretching V (top), and into a combination of pure stretching U and rotation Q
(bottom). The angle θ between the extension axis and the x-axis slightly deviates from
45◦.
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1.2 Linear Viscoelasticity

Fig. 1.6 Illustration of simple shear flow of a Newtonian fluid. When a stress σzx is
applied, the velocity vx inside the Newtonian fluid increases linearly with height z.

1.2.1 Common Models
A general equation like equation (1.11) might be difficult to solve and to use in
everyday life. And since rheology is applied to materials like mayonnaise, plastics,
paints, and oils, it is tempting to use rather simplified models. The simplest model is
probably Hooks law. Hooks law is obtained, if the coefficient c′

0 from equation (1.11)
is the only non-zero coefficient. Setting c′

0 ≡ G we get

σ = Gγ , (1.12)

where we introduced the rigidity modulus G. The rigidity modulus is measured in
units of Pascal ( Pa) and typical values range from 5 Pa for salad dressing to 80 GPa
for steel [11]. The corresponding picture for Hooks law is the one from figure 1.3.
Hooks law is the equation for an ideal solid, whose stress is proportional to the
applied strain. However, this simplified model is not valid for all solid materials.

Similar to ideal solids, there is a model describing an idealized fluid. If c′
1 ≡ η is

the only non-zero coefficient, we get

σ = ηγ̇ (1.13)

with the shear viscosity η. The shear rate

γ̇ = ∂γ

∂t
= vx

z
(1.14)

is constant across the gap as illustrated in figure 1.6. A material following this
model is called Newtonian fluid. The shear viscosity is measured in units of Pa s
(pascal-second) and typical values are η = 10 Pa s for liquid honey and η = 1 mPa s

9



1 Rheology: Get the Juices Flowing

for water at room temperature. Here it is worth noting that equation (1.13) is used
as the definition of the shear viscosity

η = σ

γ̇
, (1.15)

that is, the shear viscosity is the shear stress divided by the shear rate (and not
∂σ/∂γ̇). The shear viscosity η, often just called viscosity, is not necessarily a material
constant but depends, for example, on temperature. It will be seen in the following
that the viscosity will also be, amongst others, a function of the strain, shear rate
or stress.

Another model is the so-called Maxwell model. The non-zero parameters are now
c1 ≡ τM and c′

1 ≡ η, hence the equation for the Maxwell model reads

σ + τM σ̇ = ηγ̇ , (1.16)

where η is again denoted viscosity. Essentially, the coefficient c′
1 ≡ η is only

equivalent to the shear viscosity as introduced in equation (1.15) once the shear
stress reached a steady-state value (σ̇ = 0), which is the case for longer times. The
equation σ = ηγ̇[1 − exp(−t/τM)] is a solution for σ(t = 0) = 0. The parameter τM

has the dimension of time and hence can be referred to as a characteristic time.
For times t >> τM the Maxwell model describes a Newtonian fluid. Although just
a special case, the Maxwell model is often used to describe colloidal suspension
rheology [7, p.12].

1.3 Nonlinear Viscoelasticity
Fortunately, many real materials can be modeled under certain circumstances (e.g.,
within a specific range of γ, γ̇ or σ) using the models of linear viscoelasticity.
Unfortunately, most materials will also show nonlinear responses. Be aware that
this section will still not cover all possible material responses but it will go one step
further towards the description of more complex materials.

A typical approach is to start with one of the linear models and to add a
nonlinear term. The description of the Newtonian fluid (equation (1.13)) can be
easily extended to a group of generalized Newtonian fluids. One model out of the
generalized Newtonian fluids is the Bingham model

σ = σy + ηpγ̇ , (1.17)

where the constant σy was added. Here ηp is called plastic viscosity in order to avoid
confusion with the shear viscosity (cf., equation (1.15)). As long as σ < σy, there is
no flow (γ̇ = 0). Only, if σ > σy, flow sets in, and the material yields. Therefore, σy

is called yield stress.
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1.4 Oscillatory Shear

Another regularly used model out of the generalized Newtonian fluids is the
Herschel-Bulkley law

σ = σy + κγ̇υ (1.18)
with the consistency index κ and the flow index υ. It is υ < 1 for shear thinning and
υ > 1 for shear thickening behavior [11]. For colloidal suspensions, a typical value is
υ = 0.47 − 0.59 [12]. Shear thinning and thickening will be treated separately in
section 2.5.4.1.

1.4 Oscillatory Shear
Oscillatory measurements are a powerful technique within rheology. Either an
oscillating strain or stress is applied. Then, the response to the strain (stress) is
recorded and can be used to distinguish between elastic, viscous and viscoelastic
behavior. Using different angular frequencies ω = 2πf , with period time tp = 1/f ,
oscillatory shear offers the ability to probe the response at different time scales. Many
rheological instruments use rotating measurement systems and typical configurations
are for instance a cone-plate or a Couette system.

1.4.1 Linear Oscillatory Shear
The basic idea of oscillatory shear is to apply an oscillating deformation γ(t) of the
form

γ(t) = γ0 sin(ωt) (1.19)
with the strain amplitude γ0 and the angular frequency ω. Here, the sine is used
without loss of generality. The same could also be expressed with a cosine or as a
complex quantity. Taking the time derivative of equation (1.19) we get

γ̇(t) = γ̇0 cos(ωt) , (1.20)

where we identified γ̇0 = γ0ω. Within the linear regime, the stress response is of the
form

σ(t) = σ0 sin(ωt+ ϑ) (1.21)
with the phase angle shift ϑ (also called mechanical loss angle [13]). A phase shift
angle ϑ = 0◦ corresponds to a perfectly elastic solid and ϑ = 90◦ to a perfectly
viscous liquid. A sample with a phase shift 0◦ < ϑ < 90◦ is a viscoelastic sample.

In analogy to Hooks law (cf., equation (1.12)), a complex shear modulus |G∗| is
defined by

|G∗| = σ0

γ0
, (1.22)
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1 Rheology: Get the Juices Flowing

where σ0 and γ0 are the maximum stress and strain, respectively [14]. The modulus
might also be denoted as dynamic modulus [13]. It is common to separate |G∗| into
a storage modulus (also called elastic modulus)

G
′ = σ0

γ0
cos(ϑ) (1.23)

and loss modulus (also called viscous modulus)

G
′′ = σ0

γ0
sin(ϑ) . (1.24)

The two moduli G′
, G

′′ and the phase angle shift ϑ or loss factor tan(ϑ) are related
via tan(ϑ) = G

′′
/G

′ . The mechanical dissipation (lost work per cycle) is given by
the circular integral of the stress with respect to strain

WL =
∮︂
σdγ (1.25)

and corresponds to the area of the ellipse in a stress-versus-strain plot.

1.4.1.1 Lissajous-Bowditch Curves

Often just called Lissajous curves, Lissajous-Bowditch curves are a classic way
of visualizing and analyzing oscillatory shear measurements. They should better
be called Lissajous-Bowditch curves since these kinds of diagrams have already
been used by Bowditch in 1815 to study orbital trajectories [15]. Within oscillatory
rheology, two typical ways of using them exist: The most common way is to plot,
for a given strain amplitude γ0, the stress σ(t) as a function of the strain γ(t).
This will, for a linear response, result in an ellipse. The enclosed surface of the
σ(γ)-ellipse corresponds to the dissipated energy per cycle as already stated above.
For a pure elastic behavior, the Lissajous-Bowditch curve is a line (cf., Hooks law)
and for pure viscous behavior, it is a circle (maximum energy dissipation) in the
σ(γ)-plot. From Lissajous-Bowditch curves, the phase angle shift ϑ can be obtained
using ϑ = arcsin(γ|σ=0

γ0
) , where γ|σ=0 is the strain at zero stress and γ0 is the strain

amplitude [16]. Additionally, σ(γ̇)-curves (stress vs. shear rate) can be used, where
pure viscous behavior is represented by a straight line through the origin.

1.4.2 Nonlinear Oscillatory shear
Within linear oscillatory shear, the stress as a function of time is well described by a
sine (with the same frequency as the input signal) and a phase shift. But materials
also show nonlinear responses. One example is the Xanthan Gum (XG) solution
from reference [17] whose stress response σ(t) clearly deviates from a linear response
for large strain amplitudes γ0. The deviation from pure sinusoidal stress/strain is
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1.4 Oscillatory Shear

what distinguishes the nonlinear oscillatory shear from the linear oscillatory shear.
Corresponding Lissajous-Bowditch figures will deviate from elliptical shapes and
may become, for instance, rectangular or exhibit humps.

Several ways exist to describe, analyze and interpret the nonlinear response to
large amplitude oscillatory shear (LAOS) [16, 18]: From a mathematical point of
view, the nonlinear response can be described by a series of sines and cosines,
similar to a Fourier series. Wilhelm and co-workers started using Fourier rheology
in order to classify the nonlinear response with higher harmonics [19–21]. This is a
widespread method and used frequently in rheology, but it originates from a purely
mathematical approach. To this end, several notations exist, for example,

σ(t) =
∑︂

n=1,odd
σn(ω, γ0) sin(nωt+ ϑn(ω, γ0)) , (1.26)

which is referred to as Fourier series [13] and another notation is

σ(t) = γ0
∑︂

n=1,odd

[︂
G

′

n(ω, γ0) sin(nωt) +G
′′

n(ω, γ0) cos(nωt)
]︂
. (1.27)

If not stated otherwise, the commonly used storage G′ and loss G′′ moduli refer to
the first-harmonic contributions of equation (1.27), that is, G′ ≡ G

′
1 and G

′′ ≡ G
′′
1

[18].
The moduli G′ and G

′′ can be used to classify the nonlinear behavior into four
classes as depicted in figure 1.7. In Type I (strain thinning, (a)), both G

′ and G
′′

are decreasing with increasing strain amplitude, which is often observed in polymer
solutions [18]. In Type II (strain hardening, (b)) instead, both G

′ and G
′′ are

increasing, which is typical for biological gels like collagen [22]. In Type III (weak
strain overshoot, (c)), G′ is decreasing and G′′ first exhibits a peak and is decreasing
afterward. Finally, there is Type IV (strong strain overshoot, (d)), where both G

′

and G
′′ first increase and then decrease as a function of strain.

Klein et al. proposed a superposition of basic function [23]. This is towards a more
physical interpretation but they use basic functions that do not form an orthonormal
basis and any superposition is not unique [18].

Cho et al. tried to classify the LAOS behavior from a purely physical approach
in that they decompose the stress into a purely elastic and a purely viscous part
[24]. The elastic stress σ′ and the viscous stress σ′′ are obtained by the unique
decomposition

σ
′(x, y) = σ(x, y) − σ(−x, y)

2 (1.28)

σ
′′(x, y) = σ(x, y) − σ(x,−y)

2 (1.29)

with x = γ and y = γ̇/ω [24]. The area in the stress vs. strain plot is a measure of
the mechanical dissipation and always zero if the elastic stress σ′ is plotted versus
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1 Rheology: Get the Juices Flowing

Fig. 1.7 Illustration of four different types of nonlinear behavior in oscillatory shear. (a)
Type I (strain thinning): Both G′ and G′′ are decreasing as a function of strain. (b) Type
II (strain hardening): G′ and G′′ are increasing. (c) Type III (weak strain overshoot): G′ is
decreasing and G′′ has a local maximum. (d) Type IV (strong strain overshoot): Both G′

and G′′ first increase and then decrease as a function of strain. Reprinted from Journal of
Non-Newtonian Fluid Mechanics, 107, K. Hyun et al., “Large amplitude oscillatory shear
as a way to classify the complex fluids”, pp. 51-65, Copyright (2002), with permission
from Elsevier.
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strain. We realize that equation (1.26) to equation (1.29) only allow odd harmonics.
In other words, the stress response obeys the symmetry

σ(−γ(t),−γ̇(t)) = −σ(γ(t), γ̇(t)) , (1.30)

which means that the stress response is independent of the shear direction. In terms
of Lissajous-Bowditch curves, this implies a rotational symmetry with respect to the
origin [25]. This is reasonable for isotropic materials. Nevertheless, even harmonics
have also been observed and attributed to wall slip or shear banding [18, 26, 27].

Ewoldt et al. [25] introduced new measures for nonlinearity, namely the minimum-
strain modulus

G
′

M = dσ

dγ

⃓⃓⃓⃓
γ=0

(1.31)

and the large-strain modulus

G
′

L = σ

γ

⃓⃓⃓⃓
γ=±γ0

, (1.32)

which reduce to the common storage and loss moduli in the LVE-regime. The
corresponding two dynamic viscosities are the minimum-rate dynamic viscosity

η
′

M = dσ

dγ̇

⃓⃓⃓⃓
γ̇=0

(1.33)

and the large-rate dynamic viscosity

η
′

L = σ

γ̇

⃓⃓⃓⃓
γ̇=±γ̇0

. (1.34)

All four quantities can be best visualized in a Lissajous-Bowditch plot as shown in
figure 1.8. These new measures can be combined to yield two dimensionless indices
of nonlinearity, namely, the strain-stiffening ratio

˜︁S = G
′
L −G

′
M

G
′
L

(1.35)

and the shear-thickening ratio

˜︁T = η
′
L − η

′
M

η
′
L

. (1.36)

Vanishing indices (i.e., ˜︁S = 0, ˜︁T = 0) correspond to a linear response. A positive
index ˜︁S > 0 ( ˜︁T > 0) stands for intra-cycle strain stiffening (shear thickening) while a
negative index ˜︁S < 0 ( ˜︁T < 0) describes intra-cycle strain softening (shear thinning)
[25].
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Fig. 1.8 Definitions of new measures of nonlinearity according to reference [25]. They
are illustrated in Lissajous-Bowditch curves in σ-γ- (left) and σ-γ̇-representation (right).
The measure G′

M corresponds to the slope at γ(t) = 0, and G
′
L corresponds to the ratio

of σ(t) and γ(t) at the maximum strain. Analogous for the viscous moduli η′
M and η′

L. In
(c) and (d), the moduli of the first harmonics are shown for comparison. Reprinted with
permission from reference [25]. Copyright 2008, The Society of Rheology.
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(a) (b)

Fig. 1.9 Illustration of two measuring geometries: (a) the parallel plate geometry and
(b) the cone and plate geometry.

1.5 Rheological Measurements
This section will focus on “practical rheology,” that is, how to perform rheological
measurements. Here, we will deal with the fundamentals of rotational rheometry
that are relevant for one of the experimental setups (section 4.2) of this work.

Rotational rheometers can be grouped into the separate motor transducer (SMT)
and combined motor transducer (CMT) design and both types can be equipped
with a bunch of different so-called geometries. In the SMT design – historically
called strain-controlled design – the motor drives one part of the geometry while a
transducer measures the torque needed to keep the other part of the geometry in
a fixed position. Instead, in the CMT design – historically called stress-controlled
design – one part of the geometry is mechanically fixed and the torque is measured
at the moving part of the geometry [28]. The detailed operating mode of stress- and
strain-controlled rheometers is beyond the scope of this thesis and can be found
elsewhere [29].

1.5.1 Geometries
Two commonly used measuring geometries for rotational rheometers are the parallel
plate and the cone and plate geometry. A detailed description of further types
of geometries can be found, for example, in a handbook of rheology [11]. The
parallel and cone-plate geometries are both illustrated in figure 1.9. The parallel
plate geometry (figure 1.9a) consists of two circular plates with radius R that are
separated by a distance h. This distance h, called gap height, can be varied. Thus,
the amount of sample needed for an experiment can be tuned by changing the
gap height. This distance should be at least ten times larger than the particle size
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[11]. One (or both) plates can be rotated in order to shear the sample. The main
drawback of the parallel plate measuring system is that shear strain and stress are
functions of the radial position and hence are not constant within the sample.

The cone and plate geometry overcomes this by the use of a cone with angle β,
as shown in figure 1.9b. The cone angle needs to be smaller than a maximum angle
of βmax = 4◦ [11]. Cones are truncated to prevent friction between cone and plate,
which otherwise would distort the measurement. The cone truncation should be ten
times larger than the particle size [11].

Geometries are usually made from stainless steel. The movement of the measuring
geometries should be transferred to adjacent sample layers immediately and without
slip. Therefore, the surface of the geometries might not be smooth as sketched in
figure 1.9 but instead serrated or sandblasted [30–33].

The torque M that the motor can measure or apply is converted to the stress
using

σ = FσM (1.37)
with the conversion factor Fσ. Similarly, the strain is obtained from the motor
angular displacement Θ via

γ = FγΘ (1.38)
with the conversion factor Fγ [1]. The conversion factors depend on the specifications
of the geometry and are listed for selected types of geometries in table 1.1.

1.5.2 Experimental Challenges
What is the accuracy of an instrument? For instance, a typical ruler can be used to
measure accurate to the millimeter and a bright-field microscope can be used to
visualize objects with a minimum extent of several hundred nanometers. A rheometer
can be used to measure . . . ? Good question! So what actually are the limitations
of commercial rotational rheometers? This section is inspired by reference [1] and
shall shed some light on what can be reasonably measured and where experimental
challenges arise.

As introduced in section 1.1 and section 1.2, relevant rheological variables are
the shear strain, shear stress, and shear rate. A rheometer does not measure these
quantities directly. Instead, it measures, for instance, the displacement Θ and torque
M of the motor.

Values of shear strain, shear rate, and shear stress are obtained by the equations

σ = FσM , (1.39)
γ = FγΘ , (1.40)
γ̇ = Fγω , (1.41)

where the exact form of the stress and strain constants Fσ and Fγ depends on the
specifications of the geometry (cf., table 1.1). The accuracy of the shear stress and
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Geometry Fγ Fσ

Parallel plates r/h 2/(πr3)
Cone-plate 1/β 3/(2πR3)

Tab. 1.1 Conversion factors for the stress Fσ and strain constants Fγ . They depend on
the total radius R, the radial distance with respect to the center r, the gap height h and
the cone angle β, respectively. For parallel plate measuring systems, the shear stress and
strain depend on the radial position (i.e., σ = σ(r), γ = γ(r)). Either the values at the
total radius R are taken or a weighted average is used [11].

strain thus depends on the accuracy of the measured torque or displacement. This
gives rise to the first restriction:

1.5.2.1 Minimum Torque

The torque needs to be larger than the minimum resolvable torque Mmin, leading to
a minimum measurable stress

σmin > FσMmin (1.42)

or modulus
Gmin >

FσMmin

γ0
= FσMmin

FγΘmax
. (1.43)

This can help in choosing the most suitable measuring geometry. For example, in
order to measure small moduli G′ or G′′, the factor Fσ/Fγ should be as small as
possible, which can, among other parameters, be obtained by a large cone or plate
radius.

1.5.2.2 Inertia Effects

Another criterion for obtaining reliable data is that the sample’s torque Msample
should be dominant with respect to the instrument inertia torque Minstrument [1].
Hence,

Msample > Minstrument , (1.44)
Gγ0

Fσ

> IΘ0ω
2 , (1.45)

G >
IFσ

Fγ

ω2 , (1.46)

where I is the instrument inertia and γ0 and Θ0 are the amplitude of the strain
and motor displacement, respectively. Once more, the factor Fσ/Fγ is an important
limitation. Additionally, these inertia effects scale with the square of the angular
frequency, that is, with ω2.
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1.5.2.3 Secondary Flows

Irrespectively of the instrument inertia, the sample inertia can lead to non-laminar
flow at larger velocities. The idea is that due to inertia, sample material close to the
(fast) rotating part of the geometry will have a non-zero movement in the radial
direction. This outward movement is counterbalanced by an inwards movement close
to the stationary plate [34]. To evaluate the flow behavior, Sdougos et al. [34] used
a single parameter ˜︁R = r2Θ̇β2

12ν , (1.47)

which depends on the local radius r, the angular velocity of the cone Θ̇, the cone
angle β and the fluid kinematic viscosity ν = η/ρ, where η is the viscosity and ρ the
density of the fluid sample. They concluded that laminar theory is valid for ˜︁R < 0.5
and turbulence sets in for ˜︁R ≳ 4 [34].

1.5.2.4 Slip

Wall slip affects rheological measurements. Recall for example the simple shear of
a Newtonian liquid (cf., figure 1.6). It is assumed that the uppermost layer of the
fluid has the same velocity as the top plate while the lowest layer of the fluid has
the same velocity as the bottom plate. The underlying assumption is the no-slip
condition. Only then, rheological variables like shear strain or shear rate do describe
the sample’s behavior correctly. If there is slip, then the sample does not experience
the full deformation that is applied by the geometry. Then, the overall shear rate,
and thus the measured stress, is smaller than in the case of no-slip. A possible way
to reduce slip are roughened walls [35]. Wall slip of colloidal suspension has been
studied by Ballesta et al. [36] and further information can be found, for instance, in
a review on yield stress materials [33].

1.5.3 Measurement Protocols
Commercial rheometers can apply a sequential list of “jobs.” Each job has its
own measurement specifications. The two most important jobs of this work are a
start-up test and a dynamic strain sweep (DSS): In the former, the shear rate is
instantaneously increased from zero to a finite value. In the latter, an oscillatory
strain signal with an increasing amplitude is applied. In both cases, the stress
response is recorded. More details can be found, for example, in reference [11].
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2
Colloidal Suspensions: Life in the

Middle

1 nm 1 µm 1 mm

The term “colloid” is attributed to Thomas Graham, who first used it in 1861
[37]. Graham studied the diffusion of hydrates, phosphates, sugars, alcohols, acids,
starch, gelatine, albumen, and many others through letter paper or animal skin.
He called this method “dialysis,” and he analyzed the velocity with which the
materials “dialyze.” Back in 1861, Graham said that colloids, such as gelatine, do
not dialyze, whereas “crystalloids,” such as dissolved salts, do dialyze. From today’s
point of view, Graham then wrongly linked the ability to dialyze with the ability to
crystallize, but both of his terms (“colloid” and “dialyze”) are still in use [38].

The definition of colloids was improved by Ostwald in 1913 [39]. According to
Ostwald, a colloid is a dispersed system with typical dimensions between 1 nm and
100 nm, which is pretty close to today’s definition, as shown in table 2.1.

During a series of lectures in 1913, Ostwald claimed that it is impossible to cover
the full topic of colloidal chemistry within a few talks or even a one-year lecture
[39]. It is still difficult to give a simple, compact summary. The following sections
can, therefore, only contain a selection of relevant information without claiming
completeness.

Colloids can exist in different states of matter as shown in table 2.2. They all
have in common that the dimension of the dispersed phase is roughly between 1 nm
and 1 µm, similar to the definition of Ostwald. The upper and lower boundaries
might be historically linked to technical restrictions of filters or microscopes, but
they can also be motivated physically. The lower boundary of 1 nm distinguishes
colloids from atoms and small molecules. Colloids have – in contrast to atoms – a
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disperse systems
coarse

dispersions colloids molecular
dispersions

−→
decreasing size of particles

> 0.1 µm 0.1 µm - 1 nm < 1 nm
can be resolved

with a
microscope

✓

pass paper filter ✓ ✓

diffuse and
dialyze ✓

Tab. 2.1 Definition of colloids according to Ostwald [39, p.20]. Although giving numbers,
Ostwald emphasizes that the transition between the systems is not sharp but continuous.
Note that Ostwald’s definition is from 1913.

dispersion
medium

dispersed
phase denomination appearance

gaseous gaseous - -
liquid liquid aerosol fog
solid solid aerosol smoke

liquid gaseous foam foam
liquid emulsion natural & synthetic emulsions, e.g., milk
solid suspension most colloidal systems, e.g., paint

solid gaseous solid foam minerals with gaseous . . .
liquid solid emulsion . . . liquid . . .

solid solid suspension . . . solid inclusions

Tab. 2.2 Possible appearances of colloids – grouped by the state of the dispersion
medium and the dispersed phase. Adapted from reference [38, p.26].
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2.1 Brownian Motion

well defined surface and can usually be treated classically (i.e., without quantum
mechanics). We will focus, from now on, only on the most common occurrence of
colloids: Colloidal suspensions. In a colloidal suspension, solid particles are dispersed
in a liquid.

Typical examples of colloidal suspensions are paints, inks, pharmaceuticals, cos-
metics, and food products. The upper boundary of 1-10 µm ensures that fluctuations
and Brownian motion play an important role [40]. The bonding energy between
individual colloids is of the order of the thermal energy kBT . Thus, there is a
permanent reorganization of particle positions, which can lead to self-assembly [41].
The equilibrium state may not be reached in very concentrated suspensions or under
external constraints. The size range of colloids also implies that colloids have a high
surface area. If two units of the dispersed phase get in close contact, they tend to
aggregate. This is often not desired and colloidal suspensions need to be stabilized.
The following sections will first introduce Brownian motion (section 2.1) as well
as relevant forces and interactions (section 2.2). Afterward, we will introduce our
colloidal model system that will be used throughout this thesis (section 2.3) and
discuss basic equilibrium (section 2.4) and nonequilibrium properties (section 2.5)
thereof.

2.1 Brownian Motion
Colloidal suspensions undergo Brownian motion. Brownian motion is named after
Robert Brown, a botanist, who investigated the motion of living and dead pollen
in water in 1827 [42]. In his work, he states that the motion of the pollen particles
has already been observed before. It may be claimed that Ingen-Housz was the
first who discovered the random motion, 40 years before Robert Brown [43]. Albert
Einstein succeeded in the theoretical description of the Brownian motion in 1905
[44]. In 1926, almost 100 years after Brown’s experiments, Jean Baptist Perrin was
awarded the Nobel Prize in Physics. He experimentally verified Einstein’s theory
using colloids.

Brownian motion of colloids is caused by random collisions with the solvent
molecules. For illustration purposes, the zig-zag motion of a colloidal sphere in
water is sketched in figure 2.1. The probability for collisions between colloids and
surrounding molecules is the same in each direction, hence the averaged mean
motion is zero. But at any time there will be some more collisions from one side,
leading to a non-zero mean squared displacement. The mean squared displacement
(MSD) is most generally defined as⟨︂

∆r2(τ)
⟩︂

=
⟨︂
(rn(t+ τ) − rn(t))2

⟩︂
t,n
, (2.1)

where the vector rn points to the position of particle n. Here, the average is taken
over all times t and all particles n, and the MSD only depends on the lag time τ .
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H2O
H2O

H2O

H2O
H2O

H2O

H2O

H2O H2O

Fig. 2.1 Illustration of Brownian motion. A colloidal particle is constantly “bombarded”
by water molecules. This leads to a zig-zag trajectory of the particle.

Einstein’s equation for the MSD in one dimension reads⟨︂
∆x2

⟩︂
t,n

= 2Dτ (2.2)

with the diffusion coefficient D [44]. For a three-dimensional description, the prefactor
in front of the diffusion coefficient is 6 instead of 2. The abovementioned equation
for the MSD is valid only for dilute suspensions. Einstein also showed that one can
link the diffusion coefficient D to the gas constant and Avogadro’s number, making
it possible to determine Avogadro’s number experimentally [44]. The diffusion
coefficient can also be linked to the particles radius R and the viscosity of the
dispersion medium η0 via the Stokes-Einstein relation

D = kBT

6πη0R
(2.3)

with Boltzmann constant kB and absolute temperature T . Equation (2.3) is an
example of a fluctuation-dissipation theorem, which becomes more obvious if written
like

D = kBT

ξ
, (2.4)

where the diffusion coefficient accounts for fluctuations (cf., equation (2.2)) and the
friction coefficient ξ describes dissipation. For a sphere in a fluid with viscosity η0
the friction coefficient is ξ = 6πη0R. This is Stokes’ law.

A characteristic time of Brownian motion is

τB = R2

D
= 6πη0R

3

kBT
, (2.5)

which is about the time it takes a particle to diffuse a distance corresponding to its
own size (cf., equation (2.2)). Brownian motion has also been theoretically described
by Langevin (cf., e.g., [45]). Nowadays, Brownian motion is studied using optical
microscopy [46] or dynamic light scattering [47].
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2.2 Forces and Interactions
The dynamics of colloids are not only affected by random collisions with their
surrounding molecules of the dispersion medium, but there are a number of forces
acting on the colloids and some of them will be described below.

2.2.1 Gravity
Since colloids have a mass, they are affected by gravity. They may sediment or
cream depending on the difference between their density and that of the dispersion
medium, ∆ρ. The gravitational force on a single colloid with radius R is

Fg = 4
3πR

3∆ρg . (2.6)

Gravity is competing with the fluctuations of colloids with thermal energy kBT .
Thus, the effect of gravity is observable in a container with height L if kBT ≪ |Fg|L.
A single colloidal sphere in a dispersion medium with viscosity η0 sediments with a
terminal velocity

vs0 = 2R2∆ρg
9η0

. (2.7)

The sedimentation velocity from equation (2.7) is valid in the very dilute regime.
The concentration is measured by the volume fraction ϕ = Vspheres/Vtotal , where
Vspheres is the volume occupied by the colloidal particles and Vtotal is the total volume,
including particles and dispersion medium. For 0.01 < ϕ < 0.2, the sedimentation
velocity is reduced due to hydrodynamic interactions [14] and for even higher
particle concentrations an even more complex situation occurs. For instance, the
sedimentation velocity vs of a polystyrene suspension could be fitted by

vs = vs0

(︄
1 − ϕ

ϕp

)︄kpϕp

(2.8)

using ϕp = 0.58 and kp = 5.4 (cf., [14, p.154])

2.2.2 Hard-Core Repulsion
If more than one colloidal particle is present, then they can interact with each other.
One of the few things that rigid particles cannot do is to overlap or to interpenetrate
each other. This hard-core repulsion is, in contrast to the following interactions,
independent of the dispersion medium.
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2.2.3 van der Waals Attraction
Another type of interaction, which in fact depends on the dispersion medium, is the
van der Waals force (also named dispersion forces or London forces). The van der
Waals interaction originates from quantum fluctuations. The simple picture is that
there are fluctuating dipoles in each atom giving rise to an attractive interaction
between colloids, which in fact consists of many atoms. The exact equation of the
van der Waals attraction depends, among others, on the spatial distribution and
distance between the interacting dipoles. In the limit of small separations r ≪ R,
the equation for two (colloidal) spheres with radius R is

Uvdw(r) = −HR

12r (2.9)

with the Hamaker constant H (cf., [48]). The Hamaker constant has the dimension
of an energy and is typically of the order of 10 kBT . The Hamaker constant can be
calculated using the physical properties of the involved materials. For non-polar
systems, the Hamaker constant depends essentially on the refractive indices of the
colloids and the dispersion medium. If the refractive index of colloidal spheres and
of the dispersion medium is matched, then the van der Waals attraction becomes
minimal [49].

2.2.4 Electrostatic Double Layer
A relevant interaction for charged colloidal suspensions arises from electrostatic
double layer forces. For instance, colloids can have charged surfaces by synthesis
or adsorption of ions. There can also be free ions within the dispersion medium
that screen the surface charges. The result is an electrostatic double layer. For small
potentials, the electrostatic double layer potential at a distance r is modeled by the
Debye-Hückel approximation

Uedl(r) = U0e
−r/lDH , (2.10)

where U0 is the potential for r = 0 and lDH is known as the Debye screening length.
It is lDH ∝ l−0.5

B , where

lB = e2

4πϵ0ϵrkBT
(2.11)

is the Bjerrum length with the elementary charge e, the vacuum permittivity ϵ0
and the relative dielectric constant ϵr [50, p.172]. Typical values of the relative
dielectric constant are ϵr = 5 − 6 for a mixture of the organic solvents cycloheptyl
bromide and cis-decalin [51] and ϵr = 78.6 for water at 25 ◦C [14]. The Bjerrum
length is a characteristic length at which the electrostatic interaction between two
point charges is equal to the thermal energy. In organic solvents, the electrostatic
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0

 
 
 

Fig. 2.2 Sketch of the DLVO potential (solid line), the electrostatic double layer potential
(dashed line) and the van der Waals potential (dotted line) as a function of the interparticle
distance r.

interactions are long-ranged with values of lB = 28 nm as compared to lB < 1 nm in
water [52].

If the colloidal surface is – say – positively charged, then there will be a layer of
negatively charged counterions from the dispersion medium close to the colloidal
surface. Tightly bound counterions make up the so-called Stern layer. The remaining
co- and counter-ions are diffusive. Upon particle approach, the repulsive interaction
of the electric double layer will change and adjust to the new conditions. If two
particles approach each other on a timescale faster than the relaxation time of the
charges, the charges cannot rearrange to a new equilibrium. This leads to stronger
repulsion [14].

2.2.5 DLVO Theory
The Deryaguin-Landau-Verwey-Overbeek (DLVO) theory [53, 54] is often used to
describe the total interaction of colloids. It sums up the contributions of the van
der Waals attraction and the electric double layer repulsion, assuming that they
are additive. The DLVO theory describes the interaction between colloids with
two energy minima at small and intermediate distances that are separated by an
energy maximum. Depending on the relative contribution of either the van der
Waals attraction or the electrostatic double layer repulsion, absolute heights and
positions of the energy minima and the maximum change. The DLVO potential is
sketched in figure 2.2. Particles may flocculate reversibly into the second minimum.
Flocculation into the second minimum can also be observed as shear thinning or
thixotropy. Under shear, the flocculation can be reversed, reducing the viscosity of
the suspension with time and or shear rate. If particles get into close contact, such
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Fig. 2.3 Illustration of colloids with steric stabilization. The hairs are not drawn to
scale. In practice, the length of the hairs is only a few percents of the particle size and
would not be visible on the sketch.

that they enter the first minimum, they aggregate. The suspension is kinetically
stable if the energy barrier for entering the first minimum exceeds 25 kBT [14]
and unstable for values below 5 kBT . Temperature also has an important impact
on flocculation since it changes the solvency of stabilizing “hairs,” which will be
introduced below.

2.2.6 Steric Stabilization
In order to prevent flocculation of the colloidal system, two kinds of stabilizations
are familiar. One is charge stabilization, where like-charged colloids repel each other.
The other is steric stabilization. In the latter, polymer hairs are grafted onto the
surface of the colloids as sketched in figure 2.3. This slightly increases the effective
size of a colloid. Once two colloids approach each other, such that their stabilizing
polymer hairs interpenetrate, the local density of polymer hairs increases leading to
entropic repulsion. Depending on the exact way the hairs are arranged, they might
also bend in a partially elastic way, also leading to a repulsion. The chances for a
successful steric stabilization are increased under the following conditions [14]: The
hairs should completely cover the whole surface of the particle. Also, the polymers
should be chemically attached and strongly anchored. The hairs should be soluble
in the dispersion medium or, in other words, the dispersion medium should be a
good solvent for the hairs. The mixing of polymers and solvent is described by the
Flory-Huggins theory [14, 55, 56]. Finally, the hairs should be larger than 75 nm
to prevent flocculation [14, 57]. Further details including electrostatic stabilization
may be found in a technical review [58].
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Fig. 2.4 Electron microscopy image of PMMA spheres as used in this work. The image
has been recorded at CAi (HHU).

2.3 Model System: Spherical PMMA Particles
This section deals with the synthesis and specifications of one class of colloidal
spheres, namely PMMA-PHS-spheres [59]. An electron microscopy image of PMMA
spheres can be seen in figure 2.4.

In 1986, Antl published a recipe for monodisperse poly(methyl methacrylate)
(PMMA) spheres stabilized by poly(12-hydroxy-stearic acid) (PHS) [60]. If the
stabilizer is covalently bound to the particle’s surface then the particles are “locked.”
If instead the stabilizer is adsorbed to the surface, the particles are referred to as
“unlocked” [61]. Particle radii between 40 nm and 1.3 µm can be achieved by Antl’s
protocol. In contrast to atoms, colloids always have a size distribution, that is, they
are polydisperse (cf., section 2.4.3). The polydispersity might be tuned by changing
the relative amount of stabilizer [60]. The particles need to be washed after synthesis,
that is, reaction products have to be replaced by a fresh solvent.

The PMMA-PHS particles can be density and refractive index matched if used,
for example, in a mixture of cycloheptyl or cyclohexyl bromide (both abbreviated
by CHB) and cis-decalin [51]. This minimizes gravity and van der Waals effects
(cf., section 2.2.1 and section 2.2.3). This organic solvent mixture has a dielectric
constant of ϵ = 5 − 6 [51]. PMMA particles in CHB will acquire a charge [51, 52]
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Fig. 2.5 Schematic of (a) an ideal hard-sphere potential and (b) a potential for sterically
stabilized PMMA particles as a function of the center-to-center distance r. The particle
diameter is 2R.

where the amount of charging depends on whether the particles are locked or not.
Locked particles have a higher charge [61]. Repulsive interactions due to charges can
be reduced by adding the salt tetrabutylammonium chloride (TBAC) [51]. Care has
to be taken since very high concentrations of TBAC can reverse the PMMA-PHS
surface charge from positive to negative [61]. For confocal microscopy, the PMMA-
PHS particles can be labeled with fluorescent dyes such as nitrobenzoxadiazole
(NBD) or rhodamine, where rhodamine is known to also charge the particles [62].
In general, the behavior of PMMA particles may depend on particle size, solvent,
stabilizer and fluorescent dye [52]. The charging due to CHB seems to be independent
of the particle size [61], but it may be problematic to use CHB for bigger particles
in confocal microscopy [63]. Density and refractive index matching can also be
obtained without CHB, avoiding potential problems due to charging. But the use
of, for example, tetrachloroethylene (TCE) can lead to particle swelling of up to
20-40% [63, 64]. The process of swelling can take weeks but may be reduced to a few
hours by thermal heat shocks [64]. In the 1980s and 1990s, Pusey and van Megen
used PMMA spheres in a mixture of cis-decalin and carbon disulfide [65–67], but
the latter component is highly toxic. Quite recently, hard-sphere model systems
have been used with a different stabilizer [68] or different monomers [69].

The interaction potential can have various contributions (cf., section 2.2). Never-
theless, sterically stabilized PMMA particles act essentially as hard spheres (HS)
[70]. They can be thought of as tiny billiard balls, which only interact on contact.
The interaction potential of ideal hard spheres is sketched in figure 2.5a. Sterically
stabilized PMMA particles are nearly hard spheres [63] and their pairwise interac-
tion potential is sketched in figure 2.5b. PMMA spheres show a liquid-solid phase
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Fig. 2.6 Schematic equilibrium phase diagram of ideal hard spheres with fluid (F)
and crystal (C) phases. A pure fluid phase exists between ϕ = 0 and the freezing point
ϕfp = 0.494, followed by a fluid-crystal coexistence region between ϕfp and the melting
point ϕmp = 0.545, followed by a crystalline phase between ϕmp and the maximum packing
for spheres at ϕmax = 0.74.

transition (section 2.4.1) and can be regarded as a model system for atoms and
molecules.

2.4 Equilibrium Properties of Hard Spheres
2.4.1 Phase Diagram of One-Component Systems
The phase diagram of colloids depends on their interaction potential and geometrical
shape. This section will focus on the phase diagram of colloidal hard spheres. The
only control parameter is the packing fraction

ϕ = Vspheres

Vtotal
, (2.12)

which relates the volume of all spheres Vspheres to the total volume Vtotal.
Figure 2.6 shows the phase behavior of ideal hard spheres in three dimensions.

The following is observed: Between ϕ = 0 and the freezing point ϕfp = 0.494, the
equilibrium phase is a fluid. Between ϕfp and the melting point ϕmp = 0.545, the
colloids separate into a fluid and a crystal phase according to the lever rule. Above
ϕmp, a crystalline structure is the thermodynamic stable phase. Hard spheres also
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show a glass transition [70–72] (cf., section 2.5.2). Freezing and melting points
have been first studied with Monte-Carlo simulations [73] in agreement with later
density functional theory [74]. The phase behavior has been studied experimentally
by Pusey and van Megan [70]. Actually, numerical values of ϕmp and ϕfp are from
the Monte-Carlo simulations [73] and the experiments by Pusey and van Megen
[70] were scaled to get the same freezing point. The maximum packing fraction of
hard spheres is at ϕmax = 0.74, corresponding to hexagonal close packing. Crystal
structures are covered in section 2.4.2.

The abovementioned details on the phase diagram are valid only for monodisperse
hard spheres. The phase diagram changes for polydisperse samples (cf., section 2.4.3)
and binary mixtures (cf., section 2.4.4).

Even though hard spheres are non-attractive, they show a liquid-solid transition. In
this context, Frenkel’s commentary on “Order through entropy” is worth reading [75].
Ideal hard spheres are incompressible and have a constant volume. The interaction
between two hard spheres is infinite at contact and zero else. Temperature does
not change the shape of the interaction potential. The relevant thermodynamic
quantity is the Helmholtz free energy FH = E − TS , and in the equilibrium state
FH is minimal [50, p.31]. Here, E is the internal energy of the system and constant
for hard spheres [76]. Thus, the phase behavior of hard spheres is solely driven by
entropy S (!) [75]. This means that an ordered state (i.e., a crystal) is entropically
more favorable than a disordered structure.

The transition can be qualitatively understood with the help of a packing argument
[77] as illustrated in figure 2.7. The same number of particles are arranged in boxes
of equal size – in a disordered and in an ordered way. The disordered particles are
lacking vibrational degrees of freedom. In contrast, the ordered particles share the
total available volume such that they can all rattle around their lattice positions. In
this respect, entropy does not maximize disorder but rather maximizes freedom.

2.4.2 Crystal Structures
For 0.545 < ϕ < 0.74 the phase diagram reveals that a crystalline state is the
equilibrium state. Crystal structures are also found in colloidal systems [78–81].

Common crystal structures are the body-centered cubic (bcc), the face-centered
cubic (fcc) and the hexagonal close-packed (hcp) structure. The unit cells of the
fcc and bcc structures are visualized in figure 2.8. In the fcc structure, the particles
are located both in the corners of a cube and in the centers of its surfaces. In the
bcc structure, there are particles at each corner plus one additional particle in the
center of the cube. The maximum packing fraction of a bcc crystal is ϕmax = 0.68.

The hcp structure is very similar to the fcc structure and differs only in the stacking
sequence (cf., figure 2.9): ABCABC... for fcc and ABABAB... for hcp. Any random
stacking sequence (e.g., ABABCBCACB...) is referred to as a random hexagonal
close packing (rhcp). The maximum packing fraction of the fcc, the hcp, and all

32



2.4 Equilibrium Properties of Hard Spheres

(a) (b)

Fig. 2.7 Comparison of (a) a disordered and (b) an ordered state of spheres at identical
volume fraction. The disordered particles obstruct each other and have little freedom to
change their positions. Instead, the ordered particles share the available space equally
and can wiggle around. Thus, the ordered particles have higher freedom of movement.
Adapted from reference [76].

(a) (b)

Fig. 2.8 Renderings of particles placed in (a) an fcc crystal and (b) a bcc crystal. For
the fcc unit cell, there are 8 particles placed at the vertices of the cube and 6 in the center
of each face. The cube has volume a′3. A particle in an fcc crystal has 12 nearest neighbors
at a distance of a′/

√
2. For the bcc unit cell, there are 8 particles placed at the vertices of

the cube and 1 is in the center of the cube. The cube has volume a′′3. A particle in a bcc
crystal has 8 nearest neighbors at a distance of (

√
3 a′′)/2 and 6 next-nearest neighbors at

a distance of a′′.
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(a) (b)

Fig. 2.9 Comparison of the stacking sequence of (a) fcc and (b) hcp structures. Both
structures differ only in their stacking order. The stacking sequence is ABCABC... for fcc
and ABABAB... for hcp. Here, three layers of particles are labeled in blue, gray and red,
respectively. In hcp, the third layer is arranged exactly in the same way as the first one.
Accordingly, the blue particles are hidden below the red ones.

rhcp structures is ϕmax = π/
√

18 ≈ 0.74. The proof of Kepler’s conjecture that this
is the maximum packing was given relatively recently by Hales [82]. Interestingly,
small entropy differences have been found between fcc and hcp structures, which
suggest that the fcc structure has slightly higher entropy than the hcp structure [81,
p.216]. Therefore, the equilibrium crystal structures should be of fcc type.

Colloidal dispersions in the fluid-crystal coexisting region have been studied
experimentally with confocal laser scanning microscopy (CLSM) [62] and light
scattering experiments [70], and the structure of the nuclei, as well as the bulk
structure, was found to be random hexagonal close-packed. An rhcp structure has
also been found with simulations for polydisperse [83] and monodisperse hard spheres
[84]. Although found in the early stages of nucleation, the rhcp structure is suggested
to be metastable and expected to transform into an fcc structure at a later stage
[84]. This goes in line with experimental observations: While the probabilities for fcc
or hcp structures are equal at high nucleation ratios, slow nucleation rates favor fcc
structures [85]. The bcc structure is uncommon for hard spheres but can be found
in charged systems [78, p.793].

2.4.3 The Role of Polydispersity
Experimental hard spheres always have a distribution of particle sizes, which is
quantified by the polydispersity. The polydispersity δ is typically defined as the
standard deviation of the size distribution divided by the mean R = (1/N)∑︁N

i=1 Ri.
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Fig. 2.10 Schematic equilibrium phase diagram for hard spheres including polydispersity
δ as a function of the volume fractions ϕ, according to Fasolo and Sollich [90, 93]. For
δ = 0, the phase diagram reduces to the equilibrium phase diagram for monodisperse
hard spheres as discussed in section 2.4.1. Crystals (C) are only stable below a terminal
polydispersity δt. Fractionation includes combinations of multiple crystals with different
daughter size distributions as well as multiple crystals coexisting with a fluid (F).

For a distribution of N particles with radii Ri, the polydispersity reads

δ = 1
R

⌜⃓⃓⎷ 1
N − 1

N∑︂
i=1

(Ri −R)2 . (2.13)

The polydispersity does not contain full information about the size distribution of
the particles. The size distribution might be Gaussian, triangular, flat or binary –
just to name a few examples. Samples with small polydispersities are expected to
behave essentially as hard spheres. For example, the PMMA particles that were
used by Pusey and van Megen to study the equilibrium phase behavior of (nearly)
hard spheres (cf., section 2.4.1) have a polydispersity of δ = 5%. Rules to map
polydisperse hard sphere mixtures to a monocomponent hard sphere system work
well in the fluid and reasonably good in the glass regime [86].

The equilibrium phase diagram changes for polydisperse samples [87–92]. A possi-
ble equilibrium phase diagram for polydisperse hard spheres that also incorporates
for fractionation [90, 93] is sketched in figure 2.10. For polydispersities δ > 0, the
freezing and melting points shift to higher volume fractions. A single crystal is
only stable below a terminal polydispersity δt. Reported values of the terminal
polydispersity include δt ≈ 5% [94], δt = 5.7% [95, 96], δt ≈ 6% [93] and δt ≈ 7%

35



2 Colloidal Suspensions: Life in the Middle

Fig. 2.11 Illustration of two spheres with radii Rs and Rb ≥ Rs.

[90]. Crystallization is observed with PMMA spheres having polydispersities of, for
example, δ = 5% [97] and δ ≈ 8% [98].

In 1987, Pusey formulated a criterion for the terminal polydispersity [99], namely

δt =
(︄

0.74
ϕ

)︄1/3

− 1 . (2.14)

His idea is that a crystal becomes unstable once the particle size distribution contains
particles whose diameters are bigger than the average particle-particle distance.
This idea is similar to Lindemann’s melting criterion and generalized Lindemann
measures have been studied with Monte Carlo simulations [100]. As indicated in
the schematic phase diagram (figure 2.10) and Pusey’s criterion (equation (2.14)),
the terminal polydispersity depends on the volume fraction.

2.4.4 Binary Mixtures
Polydisperse systems can, within some restrictions, be mapped to an equivalent
binary mixture [86, 101, 102]. Binaries are the simplest multi-component system.
For the description to follow, the smaller particles will be denoted with subscript
the s and the bigger ones with subscript b. Their radii are Rs ≤ Rb as illustrated
in figure 2.11. Like one-component hard spheres are used to model atoms, binaries
can be seen as a model system for molecules or metallic alloys. Depending on
the properties of the individual components, binaries can develop very different
structures.

Three independent parameters are necessary to describe binary mixtures, but the
set of parameters is not unique. We will choose dimensionless parameters that are
bound between zero and one.

The first parameter is the (total) volume fraction

ϕ = Vspheres

Vtotal
= Vs + Vb

Vtotal
. (2.15)
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Here, the total volume Vtotal in the denominator is the sum of the volume of all
small (Vs) and big spheres (Vb) plus the volume of the dispersion medium. Two
additional parameters are the size ratio

α = Rs

Rb

(2.16)

with the radii of the smaller and bigger spheres and the relative volume fraction of
big spheres

X = Vb

Vs + Vb

. (2.17)

Having introduced the three independent variables ϕ, α, and X, we now end up
with the question: What is the equilibrium phase behavior of binary hard spheres?
According to Gibb’s phase rule, a maximum of three coexisting phases is allowed in
a two-component system. Let us now have a look at some limiting values of ϕ, α,
and X:

For small volume fractions, that is, for 0 < ϕ ≲ 0.40 [103] or 0 < ϕ ≲ 0.50 [104],
the equilibrium state is a fluid. For very high volume fractions (i.e., ϕ ≳ 0.74),
calculations predict the densest packings for almost any combinations of α and X
[105, 106]. For α > 0.66, the densest packing is achieved by a phase separation of
small and big spheres [106]. In principle, binaries can always phase separate into a
pure fcc crystal of small and a pure fcc crystal of big spheres, which leads to a total
volume fraction of 0.74 (if boundary effects are neglected). A higher packing can
be achieved for a suitable combination of α and X. Hopkins et al. found that the
highest possible packing fraction is ϕmax ≈ 0.91 for α ≈ 0.22 and large X.

Let us now examine some special cases in terms of the size ratio α: We start with
a hexagonal close-packed structure of big spheres and ask ourselves: How small need
some smaller spheres be in order to fit into the holes of the bigger ones? First, we
need to anticipate that there are holes of different sizes. Smaller spheres fit into
the biggest holes if the size ratio obeys the inequality α <

√
2 − 1 ≈ 0.414. For

α <
√

6/2 − 1 ≈ 0.225, instead, even smaller holes in the closed packed structure
could be filled [107], which leads to the high-density packing as described in the
previous paragraph. Experiments have explored the region 0.1 < α < 0.3 at ϕ ≈ 0.60
[108], as well as α = 0.58 for various compositions X and volume fractions ϕ [80,
p.216]. Results for metallic alloys are available in the range 0.85 ≲ α ≤ 1 [104, 109–
112]. Binary mixtures with larger size differences have been studied in experiments
[113] and theory [114, 115] but are beyond the scope of this thesis.

Finally, we turn to some limiting values in terms of the relative volume fraction
of big spheres. In terms of X, the one-component phase diagram is recovered for
X = 0 (only small spheres) and X = 1 (only big spheres). Explicitly, there is no
difference between X = 0 and X = 1 for colloidal hard spheres. Results from cell
theory suggest that a fluid is most stable for X ≈ 0.5 [115]. Further reading is found
in reference [80, p.210-231] and [78, p.828].
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2.4.4.1 Comparison to Metallic Alloys

Equivalent to (binary) mixtures in colloids are (binary) alloys in metals. An alloy is
a mixture of chemical elements, where at least one element is a metal. Possible size
ratios α between the elements of the periodic table range from α = 0.43 to α = 1
[116].

Depending on the composition of the alloy, there are three possible scenarios as
sketched in figure 2.12. They can be separated into transformational, interstitial,
and substitutional alloys. The transformational alloy has a completely different
structure than the structure of the individual components. It may even be amorphous.
Elements forming an interstitial alloy have to have very different sizes. If the sizes are
quite similar, a substitutional alloy can be formed. The substitutional alloy can itself
be separated into random, clustered or ordered alloys, depending on whether the
(two) components are arranged in a random, clustered or regular order, respectively.
In the case of the random ordered substitutional alloy, an empirical rule, the first
Hume-Rothery rule, says that size differences up to 14% are allowed before the
substitutional alloy becomes unstable [117]. In contrast to atomic or molecular
systems, colloidal hard spheres do not consider electron valency or ionic charges,
thus having fewer restrictions on crystal formation.

Barrat et al. [104] established three different phase diagrams for binary alloys
with size ratios 0.85 ≲ α ≤ 1, visualized in figure 2.13. Starting from α = 1, the first
phase diagram that is observed is the spindle phase diagram: Big and small spheres
are miscible in both the fluid and the solid state. With increasing temperature,
the system goes from a solid phase to a fluid phase and vice versa. At fluid-solid
coexistence, the solid phase has a higher amount of big spheres than the fluid
phase. The azeotropic phase is found for 0.92 < α < 0.94. Details of the fluid-solid
transition now depend on X. For some intermediate X, the fluid-solid transition
is now at lower temperatures than for X = 0 or X = 1. In regions with fluid-solid
coexistence, the solid phase may have a higher amount of smaller/bigger spheres
for smaller/larger values of X, respectively. In the eutectic phase, big and small
constituents are still miscible at the highest temperatures in the fluid but not in
the solid. A solid now either consists of mainly small or big particles. Note here
that the solid at larger X can still contain some small particles, while the solid at
small X can only include a few large ones. All three phases are typically found in
the range 0.85 < α < 1 [104, 109–112]. Barrat et al. state that below α = 0.85, it is
impossible to obtain a mechanically stable crystal [104]. Denton and Ashcroft found
similar values for the eutectic phase but also studied smaller values of α and predict
a disordered fcc to be the most stable phase in the region 0.76 < α < 1 [110].

In order to “translate” the findings on metallic alloys to colloidal suspensions, one
could think of the mapping temperature to volume fraction by (−T ) → ϕ. In terms
of terminology, one could furthermore replace metallic solids to colloidal crystals.
One should note here that there is a potential pitfall in the suggested translation:
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(a) (b)

(c) (d)

Fig. 2.12 Schematic showing (a) a pure metal, (b) a substitutional alloy, (c) an interstitial
alloy and (d) a transformational alloy.
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Fig. 2.13 Schematic phase diagrams of binary metallic alloys according to Barrat et al.
[104]. These phase diagrams are given as a function of temperature T and relative volume
fraction of big spheres X, and found for size ratios 0.85 < α < 1. For metallic alloys, the
phase diagram shows regions of fluid (F) and solid (S) states. Adapted from reference
[104]. More information in the text.

In the case of binary colloidal suspensions, the freezing point has to be the same for
a system of only small (i.e., X = 0) or only big particles (i.e., X = 1). The freezing
points in metallic alloys differ by a factor of α3 between systems of only small and
systems of only large spheres (cf., figure 2.13). This apparent discrepancy between
metallic alloys and colloidal suspensions is due to units of pressure that are used to
describe metallic alloys as pointed out by Denton at al. [110].

2.5 Nonequilibrium Properties of Hard Spheres
2.5.1 Digression: Nucleation Theory and Crystallization Kinetics
Nucleation is ubiquitous in daily life and directly connected to phase transitions.
Examples are freezing of water, the formation of raindrops in the atmosphere or the
condensation of a gas. Nucleation is an activated process [118]. While nucleation
can occur in the bulk as homogeneous nucleation, the formation of a nucleus is often
much likelier to occur at a surface – called heterogeneous nucleation. Within classical
nucleation theory (CNT), the rate of forming a nucleus

RCNT ∝ exp(−∆G/kBT ) (2.18)

is proportional to an exponential factor, where ∆G is the free energy cost of creating
the nucleus. A prefactor (not shown here) in front of the exponential itself consists of
three factors, namely, the number density of molecules, the rate of molecules entering
or attaching to the nucleus and the so-called Zeldovich factor [118]. Nucleation
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rates have been studied experimentally [62]. The energy barrier ∆G depends on
two terms: A bulk term and a surface term. In order to form a nucleus, a surface is
formed between the nucleus and the rest, which is energetically unfavorable. The
nucleus is only stable once it reaches a critical size. In the case of homogeneous
nucleation and a spherical nucleus, the equation for the Gibbs free energy cost reads

∆Ghom = 4πR2
nγlc − 4π

3 R3
nρn∆µ (2.19)

with the radius of the nucleus Rn, the number density of the bulk phase ρn, the
difference in chemical potential between the bulk phase (liquid) and the phase of
the nucleus (crystal) ∆µ, and the tension of the crystal-liquid interface γlc. Instead
of being spherical, the nucleus of a colloidal crystal might rather be ellipsoidal and
contains about 20 particles [62]. The energy barrier for heterogeneous nucleation
∆Ghet at a flat surface reads

∆Ghet = Ghomf(θ′) . (2.20)

A flat surface is a reasonable and relevant assumption for heterogeneous crystalliza-
tion of colloids since they are typically confined between two plates in a rheometer
or in contact with a microscope coverslip. The function f(θ′) is a monotonically
increasing function of the contact angle θ′ . The limiting cases of the function f(θ′)
are f(θ′ = 0◦) = 0 and f(θ′ = 180◦) = 1. The former is called wetting and the latter
case is called drying.

2.5.2 The Colloidal Glass Transition
In contrast to the equilibrium phase behavior (cf., section 2.4.1), experiments on
colloidal PMMA spheres [70] did not show crystals for some values of the volume
fraction ϕ above the melting point ϕmp = 0.545. Instead, a metastable long-lived
colloidal glass is found above ϕg ≈ 0.58, where ϕg is the glass transition volume
fraction. In very simple words, a colloidal glass has a disordered structure similar to
that of a fluid but behaves more like a solid.

A phase diagram for hard spheres including the glass transition is shown in
figure 2.14. Reported values of ϕg include 0.56, 0.57, 0.59, and more values are
listed, for example, in a book of Mewis and Wagner [7, p.96]. Computer simulations
from Woodcock indicate a value ϕg ≈ 0.57 − 0.58 [71]. Differences in the values can
originate, among other reasons, from uncertainties in determining absolute volume
fractions [7, p.96] or effects from polydispersity [78, p.912-913]. The glass state does
not continue up to the maximum packing for monodisperse spheres at ϕmax = 0.74
but stops at ϕrcp ≈ 0.64.

The random close packing ϕrcp is the maximum packing that a random config-
uration of spheres can reach. The random close packing is found as an empirical
quantity and one might argue that a quantity whose name contains both the words
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Fig. 2.14 Schematic nonequilibrium phase diagram of hard spheres incorporating the
glass transition, which was first observed by Pusey and van Megen [65, 70]. In addition to
the equilibrium phase diagram (section 2.4), an amorphous glassy state (G) is observed
above the glass transition at ϕg ≈ 0.56 − 0.59, reaching up to the random close packing at
ϕrcp ≈ 0.64.

“random” and “packing” is an ill defined quantity [119, p.90]. It is very difficult or
even impossible to define random close packing [50, p.198]. In fact, ϕrcp depends
on the preparation protocol [120] and polydispersity [87, 91, 121]. Estimates for
ϕrcp until the year 1983 range between ϕ = 0.61 and ϕ = 0.665 [122]. An empirical
equation for ϕrcp depending on polydispersity was given by Desmond and Weeks
[123]. Glasses can be considered as jammed systems [124]. Interestingly, a maximum
jammed system can be defined rigorously and the maximum jamming sphere packing
is at ϕJ = 0.636 [125, 126].

It has been argued that the glass transition is an effect of gravity. In fact, samples
were able to crystallize in microgravity with volume fractions above ϕg and these
crystals survived even when put back to normal gravity [127, 128]. A glass transition
is often viewed as a dynamical transition [72] where particles are kinetically arrested
(and therefore cannot reach equilibrium). Glasses also exist outside the colloidal
world. Window glass is ubiquitous and molecular or metallic glasses are obtained by
cooling a liquid below its freezing temperature with a very high cooling rate. While
molecular glasses can be considered as supercooled liquids, colloidal glasses could be
regarded as “supercompressed” [129]. Up to now, the physics of the colloidal glass
transition and its link to molecular glasses remain to be fully understood [129, 130].

Glasses are out-of-equilibrium systems and their properties depend on the prepa-
ration (i.e., how fast they were “supercompressed”). The physics of glasses are
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time-dependent, a phenomenon called aging. Their state depends on history and
thus glasses “know their age.”

Colloidal glasses can be observed easier than molecular counterparts and, therefore,
serve as a convenient model for studying glasses. For this purpose, polydisperse
samples are used to avoid crystallization [131]. The spread of polydispersities is
relatively large. Researchers used, for example, polydispersities of 6% [132], 7%
[133], 10% [134], 12% [12], 20% [135] and 23% [136]. Above a terminal polydispersity
(cf., section 2.4.3, δt ≳ 8%) the glassy state can be the equilibrium state [137].
Besides polydisperse systems also binary mixtures are used to study glasses (e.g.,
[97, 138–140]).

Experimental methods to elucidate the physics of the glass transition include
rheology (section 2.5.4) and confocal microscopy (section 2.5.3). Further reading in
[7, 129, 130, 141, 142].

2.5.3 Microscopic Observations
Brownian motion, as characterized by ⟨∆x2⟩t,n = 6Dτ (equation (2.2)) is only
observed for dilute suspensions. For concentrated colloidal suspensions, the MSD
exhibits different trends depending on the lag time. This is illustrated in the right
part of figure 2.15.

For very short and very large lag times τ , the MSD is still linear (i.e., ⟨∆x2⟩ ∝
Dl,sτ), but the long-time diffusion coefficient Dl is considerably smaller than the
short-time diffusion Ds, that is, Dl ≪ Ds. At intermediate times, the MSD exhibits
a plateau (cf., e.g., [143]). The inflection point inside the plateau has been used
to define a characteristic time [144]. Confocal microscopy studies reveal that for
ϕ ≳ ϕg, particles are “trapped in cages” formed by their neighbors [145, 146], as
illustrated in the middle part of figure 2.15. Particles might only rearrange due to
collective motion [147], which has been proposed by Adam and Gibbs [148]. The
size of the collectively moving group of particles increases as the glass transition
ϕ ≈ ϕg is approached [149]. Only for long times, particles are able to exit their
cages, leading to a slow diffusive behavior.

Hence, timescales play an important role. Characteristic times can also be observed,
for example, by mode-coupling theory (MCT) [150] or light scattering [66, 67, 72]
by analyzing the decay times of the intermediate scattering function (ISF). Without
going further into detail, the ISF develops a plateau, similar to the one in the MSD
(cf., figure 2.15, middle right). There is always a relaxation for short times, the
so-called β relaxation process with characteristic time τβ. The second decay is the
so-called α process, characterized by τα, and interpreted as particles leaving their
cages [7, p.110].

Generally speaking, the dynamics of (colloidal) glasses are found to be non-ergodic
and heterogeneous, giving rise to the term dynamical heterogeneities. Dynamical
heterogeneities are found in quiescent samples and are manifested in a non-Gaussian
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Fig. 2.15 Comparison of (from top to bottom) a fluid, a glass, and a crystal. Shown
are sketches of particle arrangements (central column) together with corresponding pair
correlation functions g(r) (left column) and mean squared displacements (right column).
The distance r is indicated inside the central box in the bottom. The pair correlation
function measures how likely it is to find a particle at a distance r.
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probability distribution of particle displacements [132]. They are observed in confocal
microscopy experiments with PMMA particles [132, 145, 147], including binary
mixtures [97], as well as in (molecular dynamics) simulations [151, 152] and (mode-
coupling) theory [153]. Dynamical heterogeneities are also observed in colloidal gels
[154–156] and other soft materials as well as under shear. Under shear, a measure
for local (heterogeneous) dynamics are deviations from locally affine motion [157,
158].

2.5.4 Rheological Observations
The very basic rheological observation is that the viscosity of colloidal suspensions
increases monotonically with increasing volume fraction ϕ and diverges for high ϕ.

For very dilute suspensions an equation has been given by Einstein, namely,
ηr = 1 + 2.5ϕ. Here, ηr = η/η0 is the relative viscosity where η is the viscosity of
the suspension and η0 the viscosity of the dispersion medium. Improvements for
semi-dilute suspensions have been made by Batchelor and Green, adding a term
that is quadratic in ϕ. One out of many (phenomenological) models for concentrated
suspensions is the Krieger-Dougherty model [159]

ηr =
(︄

1 − ϕ

p

)︄−[η]p

(2.21)

with parameters [η] and p. Other models are, for instance, the Doolittle-, Quemada-
or mode-coupling model [160, 161]. Depending on the model used, the viscosity
is usually expected to diverge at ϕg or ϕRCP [161]. Differences possibly depend on
friction between particles [162, 163].

It has been shown by Krieger [159] that concentrated suspensions of differently
sized colloidal spheres can be collapsed onto a master curve if plotted against
dimensionless quantities [2, p.126]. In essence, to compare suspensions of different
sizes, the shear stress σ, as well as the shear modulus G′ and G

′′ , is given in units
of (kBT )/R3.

Similarly, the shear rate γ̇ should be rescaled. A size-independent variable is the
Péclet number Pe. Explicitly,

Pe = γ̇τB = 6πη0γ̇R
3

kBT
∝ γ̇R3 (2.22)

with R being the particle radius, η0 the viscosity of the dispersion medium under
the condition of γ̇ → 0, the Boltzmann constant kB and the absolute temperature
T . The Péclet number is a measure of whether shear (Pe > 1) or Brownian motion
(Pe < 1) dominates. For oscillatory experiments, the shear rate γ̇ is replaced by the
angular frequency ω giving rise to the Péclet number for oscillatory shear

Peω = ωτB = 6πη0ωR
3

kBT
∝ ωR3 . (2.23)
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Fig. 2.16 Flow curves of liquid (open symbols) and glassy (filled symbols) colloidal
suspensions. Volume fractions are given in the legend. Note that the ordinate is scaled
with the diameter and not the radius. Figure reproduced from [164]. DOI: 10.1088/0953-
8984/16/38/013 © IOP Publishing. Reproduced with permission. All rights reserved.

Colloidal suspensions do not only show a diverging viscosity above the glass
transition but also a finite yield stress. This may, for instance, be seen from a set of
flow curves of various volume fractions as shown in figure 2.16. Similarly, once shear
on colloidal suspensions ceases, history-dependent residual stresses are left behind
[165].

There are further characteristic signatures in other rheological variables close to
the glass transition: Decay times can be deduced from rheology, typically from a
dynamic frequency sweep (DFS). The response of colloidal suspensions to a DFS is
shown in figure 2.17. The frequency where the viscous modulus G′′ has a minimum
corresponds to τ−1

β , and the frequency where G′′ has a peak (sometimes outside the
experimental window) corresponds to τ−1

α [7, p.111]. The frequency dependence of
the elastic moduli G′ is less pronounced close to the glass transition [135]. Relevant
DFSs are also given in reference [166, fig. 5].

A DFS is performed at small strain amplitudes in the linear regime. The linear
regime can be inferred from a dynamic strain sweep (DSS) as the region in which
both G

′ and G
′′ are independent of strain amplitude γ0. This is schematically

shown in figure 2.18a. In a DSS, local rearrangements become irreversible above a

46

https://doi.org/10.1088/0953-8984/16/38/013
https://doi.org/10.1088/0953-8984/16/38/013


2.5 Nonequilibrium Properties of Hard Spheres

Fig. 2.17 Storage G′ and loss modulus G′′ as a function of frequency for different volume
fractions. Reprinted figure with permission from T. G. Mason and D. A. Weitz, Physical
review letters, 75, 2770-2773, 2010. Copyright (1995) by the American Physical Society.
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linear

(a) (b)

Fig. 2.18 Schematic response of colloidal glasses to (a) a DSS and (b) a start-up
experiment. In the linear regime of the DSS, both G′ and G′′ are independent of the strain
amplitude γ0.

certain yield strain, roughly located where G′ and G′′ are crossing. Similar behavior
is observed in steady shear flow. A schematic start-up experiment, depicted in
figure 2.18b, shows a linear regime, followed by a stress overshoot and a regime with
constant stress. In the linear regime, the stress σ increases linearly with strain γ.
The height and position of the stress overshoot depend on the applied shear rate
and volume fraction [167–169]. At the peak of the stress overshoot the microscopic
cage – in which particles are trapped – is maximally distorted [169].

The next sections shall give a glimpse of some selected rheological topics, which
are of special interest and to introduce relevant nomenclature. A better and broader
overview of colloidal suspension rheology can be found, for instance, in reviews on
yield stress materials [33] or amorphous systems [170].

2.5.4.1 Shear Thinning and Shear Thickening

Shear thinning (shear thickening) refers to a decrease (increase) of the viscosity η
with increasing shear rate γ̇, as illustrated in figure 2.19. Depending on whether
the viscosity increases continuously or discontinuously, shear thickening is termed
either continuous shear thickening (CST) or discontinuous shear thickening (DST).
The (oversimplified) picture is the following: In the quiescent state, the colloids
are arranged randomly but homogeneously. In the shear shinning regime, medium-
concentrated dispersions are able to align in the direction of shear. Particles can
be thought of moving in straight lanes, leading to fewer collisions and a reduced
viscosity. At high shear rates, the lanes can no longer be maintained and the sample
shear thickens. Particles are pushed into close contact and, due to hydrodynamic
interactions, form so-called hydroclusters [171]. The critical shear rate, above which
shear thickening sets in, decreases as a function of ϕ [7].
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Fig. 2.19 Schematic diagram showing the viscosity as a function of shear rate for
colloidal dispersion, together with the corresponding microstructure of the sample. In the
shear thinning regime, particles align in layers. At higher shear stresses/rates, particles
form “hydroclusters” (red) and shear thicken. Reproduced from Physics Today 62, 10, 27
(2009), with the permission of the American Institute of Physics.

But shear thickening can also be evaluated as a function of the shear stress instead
of shear rate. Interestingly, the critical shear stress σ∗ (also termed “onset stress”),
above which shear thickening sets in, is found to be independent of the volume
fraction [7]. Instead, it depends on the particle diameter. For instance, the critical
shear stress is found to be σ∗ ≈ 200 Pa for colloidal particles of size 2R = 404 nm
and σ∗ ≈ 0.5 Pa for 2R = 4500 nm [163].

Dynamic shear thickening is thought to be related to particle friction and sets
in above ϕ ≈ 0.55 [162]. While contacts are lubricated at small strain rates, they
get frictional for high shear rates or stresses. Therefore, the roughness of the
particle surface plays a role [172]. Using numerical simulations, a diagram has been
constructed, showing regions of shear thinning and thickening as a function of ϕ
and σ for soft particles [139, 173]. Shear thinning and thickening can also be seen
in oscillatory experiments. For instance, in a dynamic strain sweep, the region of
shear thinning corresponds to the regime where the slope of G′ (in a log-log plot)
is twice as big as the slope of G′′ . Shear thinning and thickening is reversible and
should not to be mixed with thixotropy, which refers to a change of viscosity with
time. Shear thickening was originally known as “dilatancy” but this term should
also be avoided since it relates to an increase in volume, which is not needed for
shear thickening [174].
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Fig. 2.20 (Left) Possible flow curve for a shear banding sample, where the same stress
(in this case σc) corresponds to at least two shear rates γ̇1 and γ̇2. The dotted part of
the flow curve is unstable [175] and would in practice be replaced by a horizontal line.
Explicitly, the fraction of the dotted line with a negative slope is unstable, whereas the
part with a positive slope is metastable. (Right) Illustration of a corresponding velocity
profile.

2.5.4.2 Shear Banding and Flow Inhomogeneities

In order to describe shear banding, it may be helpful to recall the picture of simple
shear (cf., figure 1.6). Complex materials like colloidal suspensions do not necessarily
flow with simple shear but show flow inhomogeneities, that is, deviations from the
simple linear shear profile. During shear banding, parts of the sample undergo larger
strain deformations than other parts of the sample. Shear banding can be rather
easily explained if two shear rates γ̇ correspond to the same (critical) shear stress σc,
as depicted in figure 2.20. Then, if the stress σ = σc is applied, the sample can split
into two regions, one with γ̇ = γ̇1 and a second one with γ̇ = γ̇2 (cf., figure 2.20). For
the special case, where the applied stress is equal to the yield stress (i.e., σc = σy),
one region with vanishing shear rate (i.e., γ̇ = 0) is expected [176].

Shear banding should refer to the nonlinear rheology of the sample and not be
mixed with an inhomogeneous stress field that could be imposed by the geometry.
Shear banding is observed in many systems including surfactant and polymer
solutions, foams, biological gels, and granular media [177]. Inhomogeneous flow
has also been seen in metallic glasses [178, 179], with enhanced diffusion [180] and
density fluctuations [181] inside the shear bands. Inhomogeneous flow is not always
denoted by the term shear banding. Related terms are layers, stripes and fractures
[177]. The shear bands in metals typically have sharp borders, whereas, in colloids,
the transition between shear bands might be rather continuous [182].

One might distinguish between transient and steady-state shear banding. Steady-
state shear banding is usually attributed to a non-monotonic flow curve (cf., fig-
ure 2.20). On the other hand, there are experiments showing transient but no
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Fig. 2.21 The line shows the critical flow rate that separates the stable from the unstable
regime according to reference [186]. Here, Φ = ϕ/ϕm , with ϕm ≈ 0.67 being the volume
fraction after sedimentation. Colors indicate values of the parameter F (cf., [186], Eq. 7)
and instability sets in for F > 1. Symbols are experimental values from [186]. Reprinted
figure with permission from R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and
W. C. K. Poon, Phys. Rev. Lett., 105, 268301, 2010. Copyright (2010) by the American
Physical Society.

steady-state shear banding [183–185].
The remaining part of this subsection will deal with flow inhomogeneities on

glassy colloidal suspensions, with a special focus on low shear rates or low Péclet
numbers.

In 2007, Besseling et al. reported that discrepancies between the global rheology
and the measured local shear rate could be due to shear banding [182]. In their
case, shear banding occurs at shear rates lower than γ̇ = 0.01 s−1 and is reflected in
a nonlinear but smooth velocity profile. Three years later, Besseling et al. explain
shear banding by flow-concentration coupling [186]. Their results are summarized in
figure 2.21, where the stable and unstable flow regimes are shown as a function of
volume fraction and Péclet number. Thus, flow gets unstable for volume fractions
ϕ ≳ 0.6 and low Péclets, that is, Pe ≲ 1 [186]. Additionally, the unsteady flow
observed by Besseling et al. can be time-dependent and typically stays unsteady
even at long times.

Experiments on a carbopol gel, which is a yield stress fluid made of polymer, show
transient shear banding that eventually becomes stable after a long time [183]. Shear
banding at low rates has also been observed in simulations [187], where the sheared
system splits into a static and a fluidized region if the corresponding shear stress
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is below the static yield stress (i.e., σ(γ̇) < σy). In the abovementioned studies,
inhomogeneous flow or shear banding sets in for low rates. Interestingly, also the
opposite has been observed. Chikkadi et al. report that in a colloidal PMMA glass
(ϕ ≈ 0.60), shear banding sets in above a critical shear rate γ̇∗ = γ̇τ , where τ is
the structural relaxation time of the glass [188]. Below γ̇∗, homogeneous flow is
observed. Their results are for strains larger than 1, corresponding to the steady
state. Strain heterogeneities for higher rates have also been observed with neutron
scattering [140]. Similarly, molecular dynamics simulations on a non-aging glassy
Lennard-Jones fluid also observe shear banding at high rates [189].

Additionally, Fuereder et al. showed that transient shear banding in a start-up
experiment can be seen at strain values around the stress overshoot, and bigger
overshoots are related to more pronounced shear banding. For very small as well
as larger strains, a linear profile is observed [189]. In their simulations, they find
structural differences in different shear bands [189]. Shear banding, in this case,
might be due to spatial heterogeneities. Shear banding depends on the properties of
the studied system. Experiments on core-shell particles, for example, have not shown
shear banding [190], which is possibly attributed to the softness of the interaction
potential [187]. Recent results suggest that also inertia and aging, often neglected
in theoretical studies, can play an important role [191].

52



3
Confocal Laser Scanning Microscopy:

Now You See Me

Microscopy is used to visualize objects that are too small to be observed by the
naked eye. Optical microscopes based on the knowledge of diffraction were founded
by Abbe in 1873 [192]. A specific arrangement of lenses ensures proper illumination
of the sample and produces a magnified image of the object. Nevertheless, light
microscopy also has fundamental resolution limits. The very basic limit originates
from the diffraction of light, which only allows objects to resolved whose size is of
the order of the wavelength of light.
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This chapter deals with a specific class of optical microscopes, namely, confocal
laser scanning microscopes (CLSM). As can be inferred from the name itself, the
invention of the confocal principle, laser sources, fast scanning devices, and video
acquisition were necessary for today’s success of CLSMs. The confocal principle was
patented by Minsky in 1957 [193], but the idea supposedly has been there before
[194]. The first laser-scanning confocal microscope was used by Davidovitz and
Egger in 1969, and corresponding microscopes became commercially available in
1982 [194]. The following sections will describe the basic principle (section 3.1) and
experimental setup (section 3.2) of a CLSM. After a discussion on the achievable
optical resolution (section 3.3), we will provide a brief survey of particle tracking
(section 3.4), an important application of CLSM.

3.1 Confocal Principle
In short, a CLSM illuminates the sample point-wise with a laser, rejects out-of-
focus light with a pinhole, collects the signal with a detector, and post-renders
the image with the help of computational power. The biggest difference between
confocal laser scanning microscopy (CLSM) and conventional optical microscopy
is an additional pinhole that rejects out-of-focus light. The confocal principle is
illustrated in figure 3.1. Only photons originating from the focal point pass the
pinhole, while light from outside the focal point cannot pass the pinhole. There
are ways to move the focal point in the x-, y-direction. An image of the sample is
then reconstructed pixel by pixel. It is also possible to move the focal point in the
z-direction. Many 2D images can thus be grouped to form a z-stack, which enables
a 3D-reconstruction of the sample. This is illustrated in figure 3.2. Scanning always
takes a finite time, and therefore, the sample should ideally not move during the
scanning process.

3.2 CLSM Setup
The schematic setup of a CLSM is shown in figure 3.3. The sample shall be fluorescent,
and from now on, CLSM will refer to fluorescent confocal laser scanning microscopy.

A laser acts as a light source. Laser power in the range of a few milliwatts ( mW)
is sufficient, else the florescent dye might easily bleach. The laser beam is expanded
to use the full width of the objective. A filter after the laser, as sketched in figure 3.3,
might remove tails of the beam. The laser beam is then reflected by a dichroic mirror
and passes the rotating mirrors. There are several realizations of scanning the beam
in the x- and y-direction (three possibilities are presented in reference [194]) and
the scanning part of the CLSM is here schematically represented by two rotating
mirrors. Then, the light passes through the microscope, where the objective focuses
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Fig. 3.1 Illustration of the confocal principle. Light from different vertical positions
(gray, red, green) is imaged by an optical system (indicated by two blue lenses). Light
from outside the focal plane (dotted line) is rejected by the pinhole (solid line at the
bottom). Only light originating from the focal point (red) can pass through the pinhole.
Reprinted from reference [195].

Fig. 3.2 Illustration of the scanning process and image formation. The left-hand side
shows how pixels are scanned in the x- and y-direction to form a 2D image. On the right-
hand side, many images from different z-heights are combined into a three-dimensional
z-stack.
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3 Confocal Laser Scanning Microscopy: Now You See Me

Fig. 3.3 Schematic setup of a CLSM. The sample is illuminated with a laser. A filter
after the laser can change the profile or intensity of the beam. Scanning is done by means
of two rotating mirrors. Fluorescent light is collected with the objective and guided to the
detector. The dichroic mirror (below the rotating mirrors) reflects laser light (blue) and
lets fluorescent light (red) pass through. Only light originating from the focal point inside
the sample can pass the pinhole.
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the light into the sample. Once the light reaches the focus spot inside the sample,
fluorescent molecules are excited. Fluorescence is non-directional. For an objective,
with a numerical aperture of NA = 1.4, only 30% of fluorescent photons can be
collected by the objective [196, p.22]. Fluorescent photons collected by the objective
then travel back along the same path the illumination photons took until they reach
the dichroic mirror. The dichroic mirror is chosen such that it now transmits the
fluorescent light. Afterward, the pinhole rejects out-of-focus light, therefore only
photons originating from the focus spot in the sample (as well as some stray-light
after the pinhole) are collected by the detector and translated to an electronic signal.

The scan-rate can be increased if one scanning-mirror is replaced by an acousto-
optic deflector (AOD). In an AOD, a standing sound wave creates density patterns
that act analogous to line gratings. By changing the frequency of the sound wave,
the angle of the first diffraction order can be varied. The drawback of an AOD is that
the diffraction angle also depends on the wavelength of the optical light. Thus, the
implementation of the AOD has to be handled with care: For fluorescent samples,
the wavelength of the light illuminating the sample λi and the wavelength of the
fluorescent light λf originating from the sample are different, that is, λi ̸= λf . Thus,
they would be diffracted by the AOD with different angles. The fluorescent light,
therefore, cannot move back completely along the same path that the illumination
light took. If, for example, the AOD provides the fast scanning in the x-direction,
then the fluorescent light from the sample is therefore only de-scanned in the y-
direction, and the confocal pinhole is substituted by a confocal slit. This principle
is shown in figure 3.4.

Besides the setup shown here, there exist several further variants like the Nipkow-
scanning disk or systems with different illumination or detection components [194,
196].

3.3 Optical Resolution
If chromatic and spherical aberrations are eliminated, then the resolution of an
optical system is ultimately limited by diffraction. The image of an ideal point-source,
created by an ideal optical system, is not a point but corresponds to an Airy pattern.
The intensity distribution of the Airy pattern can be seen in figure 3.5a,d. Two
point-sources can be distinguished if one can distinguish their Airy discs (figure 3.5b).
For two point-sources, there are different criteria for the diffraction limit, including
the Rayleigh-, Abbe-, and Sparrow-criterion. They are also visualized in figure 3.5c,
and more information can be found in reference [197]. Depending on the criterion,
the equations for the optical resolution only differ in a numerical prefactor.

The lateral resolution is given by

dxy = O(1) λ

NA (3.1)
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Fig. 3.4 Schematic of the confocal slit system as used with an AOD (x-scanning, 1) and
a galvo-mirror (y-scanning, 2). Light from the laser with wavelength λi (blue) is scanned
in the x- (AOD, 1) and y-direction (galvo, 2) on its way to the sample (to the top, not
shown here). The solid and dashed lines correspond to two different points inside the
focal plane of the sample. Fluorescent light originating from the sample with λf ̸= λi

(red) is not de-scanned by the AOD (since the diffraction angle of the AOD depends on
the wavelength) but passes through the dichroic mirror (3) and the confocal slit onto the
detector.

Fig. 3.5 Diffraction limits: (a) The image of a point-source has an intensity distribution
that follows an Airy pattern with a central maximum and several minima. (b) In order to
distinguish two point-sources one needs to be able to distinguish their images. Several
criteria exist: shown are the (c) Rayleigh, Abbe, and Sparrow criterion. (d) Resolution is
related to the width of the central Airy disk. The figure is reprinted from “Super-resolution
optical microscopy for studying membrane structure and dynamics” by Erdinc Sezgin and
is licensed under CC BY 3.0 [197].
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3.3 Optical Resolution

Fig. 3.6 Schematic of an objective close to a sample to illustrate the angle θ as well
as the refractive index nr that is used in the definition of the numerical aperture (cf.,
equation (3.3)). Here, the sample is placed on a coverslip and imaged from below. Objectives
with high numerical apertures usually require oil-immersion but in principle, the medium
between objective and coverslip can also be air. The working distance (WD) of the objective
is the distance between its front lens and surface of the coverslip.

with the numerical aperture NA (cf., equation (3.3)) and a numerical prefactor of the
order one. It can be shown that the lateral resolution in confocal microscopy using
a pinhole is improved by a factor of 1.4 as compared to conventional microscopy
[194]. In the literature on confocal microscopy, prefactor values like 0.32 can be
found [198].

The axial resolution is given by

dz = O(1) nrλ

NA2 (3.2)

with the refractive index nr of the sample medium and a numerical prefactor of
order one that is somewhere around 1.26 [198] or 2 [199]. For λ = 500 nm, nr = 1.51,
NA = 1.40, and using the smallest prefactors given above, typical optical resolutions
are dxy ≈ 115 nm and dz ≈ 485 nm. Note that the axial resolution inversely depends
on the squared numerical aperture.

The numerical aperture of an optical system is defined as

NA = nr sin(θ) , (3.3)

where nr is the refractive index of the medium between the optical system and the
sample, and the angle θ can be inferred from figure 3.6. It is worth noting that an
objective suitable for the refractive index of the sample should be used. Typical
configurations include air (nr = 1), water (nr = 1.33), and oil (nr = 1.51). Using
samples or objectives with “wrong” refractive indices leads to incorrect measured
axial distances [200].
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3.4 Particle Tracking
Confocal laser scanning microscopy in modern laboratories is not only used to
obtain high-quality images of fluorescent samples such as fluorescent particles or
fluorescent cells but also to analyze the structure and or dynamics of the samples
quantitatively [46, 201]. In the following, some relevant and representative particle
tracking algorithms will be introduced. This section will not claim to have a complete
list but it is aimed to classify and categorize tracking algorithms. In principle,
particles of arbitrary shape can be tracked, but the focus of this section will be on
the tracking of spherical objects.

Particle tracking generally involves the localization of particles (i.e., determination
of the particle centers) as well as linking particle positions over time to form particle
trajectories. The two steps are in most cases treated independently.

There are at least four different methods to locate the center of a spherical object:
The centroid, Gaussian fit, cross-correlation, and sum-absolute difference method.
All four are described in reference [202]. These methods can be further split into
two subgroups since the centroid and Gaussian fit can be applied to each image
independently, whereas the cross-correlation and sum-absolute difference method
compare two images or at least one image and some kind of template.

The centroid method is maybe one of the simplest and computationally most
efficient tracking algorithm [202]. It determines the center of a particle by calculating
the centroid of its intensity distribution. Hence, particles should be dyed uniformly.
In 1996, the centroid algorithm of Crocker and Grier was published [203], and
corresponding software, written in the Interactive Data Language (IDL), can be
found online [204]. It may be considered as the workhorse of colloidal science. More
recent algorithms are modifications or extensions to this pioneering work [205–208],
but also conceptually different algorithms exist [209, 210]. Worth mentioning is also
“trackpy,” a tracking algorithm written in Python and available on github [211].

The standard algorithm of Crocker and Grier [203] consists of five steps, namely,
image restoration, particle location, location refinement, noise discrimination, and
linking. In the first step, the image background, as well as noise, is removed by
an appropriate convolution of the image with a Gaussian kernel. Second, local
intensity maxima are found and act as candidates for the particle locations. Third,
the neighborhood of these local intensity maxima is evaluated and the centroid
(which then is assumed to be the particles’ center) is calculated. The localization
is refined by rejecting possible feature candidates, which are too small or too dim.
Finally, the remaining centroid positions are linked by minimizing ∑︁N

i=1 δ
2
i , where δi

is the displacement of particle i between two frames. This is a reasonable assumption
for non-interacting, diffusive particles [203].

Certainly, this linking step fails if the movement of the particles is affected by any
kind of additional flow or shear. For small perturbations from Brownian diffusion,
the standard linking process can be iterated [207]. Another option is to allow the
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displacement of a particle δi to be directional. In reference [208], possible candidates
are not searched for within a sphere, but within so-called Y bins. Also, a very recent
adaptive linking algorithm exists, which estimates the particle movements from
their previous steps [210].

A general idea is to subtract any convective motion, such that the remaining
displacements are close to Brownian motion. This can be done by image velocimetry
[207] and provides a robust way to handle many kinds of flow. No assumptions on
the direction or magnitude of the flow are necessary since this information can be
obtained by correlating the raw images. By correlating segments of the images, even
non-uniform flow can be first measured and then subtracted from the coordinates
[207]. Then again, in most of the cases, the standard linking process, which minimizes∑︁N

i=1 δ
2
i , is used.

Effort has been made to improve the feature location prior to the linking process.
The standard code claims to be accurate up to 10 nm. Coordinates are refined
making use of the point-spread function [206] or by improving the accuracy in the
axial direction [205]. During this work, a method has been published in order to
reduce the localization error down to 1 nm for light microscopy [212].

The concept of particle tracking is more powerful than just determining the center
of spherical features. For instance, it is also possible to determine the orientation
and shape of rod-like objects [200]. Even spherical objects have more parameters
than just their center coordinates. An important parameter of spherical objects is
their radius. The Crocker/Grier routine already determines radii from the intensity
distribution of the features, but this is better used to discriminate features from
noise and not for quantitative analysis. Actually, the size of all features should be
similar, since the same convolution kernel is used for all features. Strictly speaking,
the standard algorithm may fail in the case of very polydisperse systems [209],
even though there are some clever extensions [213]. A multiscale tracking algorithm
overcoming this issue has been developed quite recently [209] and is available in
c++ and Python. Its underlying principle is the scale invariant feature transform.
In other words, the images are convoluted with Gaussian kernels of – in this case –
logarithmically increasing widths. Each convolution is related to a different size and
thus spheres with different sizes can be tracked. The advantage of this scheme is
that it acts on the image itself.

Last but not least, while instantaneous tracking during an experiment is in
principle possible, all of the described particle tracking algorithms extract and link
features after the experiment has finished.
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4
Instruments: Play It by Ear

This section describes the main instruments and experimental setups used in
this work. The setups are mainly based on commercially available devices and only
the most important features will be briefly described in the following. Section 4.1
deals with the shear cell. Some details of the confocal-rheometer will be given in
section 4.2 and both setups will be compared in section 4.3. Not all instruments are
presented in this chapter. For example, pure rheology experiments are also carried
out on a strain-controlled rheometer (TA, ARES G2), which can be equipped with
standard tools and has a solvent trap to prevent evaporation.
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4.1 Shear Cell
The shear cell is an improved version of shear cells that have previously been used
in light scattering [214] and microscopy experiments [168, 215]. An early version is
also discussed in a PhD thesis by Smith [216].

Figure 4.1 shows a model of the current version of the shear cell. The shear cell
is a parallel plate device that can apply steady and oscillatory shear up to strains
of the order one. A piezo (PI Instruments, model P-841.6B) drives the cell, more
precisely, the bottom part of the cell (cf., figure 4.1a). In this configuration, the
piezo only pushes. Two springs make sure that the movement can be reversed. They
are located on the same side as the piezo but connected to the top part of the cell.
The top and bottom parts of the cell are connected by means of a lever and move
in opposite directions. The lever (and with that the zero velocity plane inside the
sample) is adjustable in height.

The sample sits between a top and a bottom coverslip that act as top and bottom
plate, respectively. Coverslips are glued (Norland, NBA 107) inside the shear cell.
Furthermore, both coverslips are serrated to avoid slip. Scratching is done with the
help of sandpaper, mounted onto a rotatory tool (Dremel, 400 digital). The top
plate is adjustable with three micrometer heads (Mitutoyo, 148-152). Once aligned,
it is fixed with three springs from the top.

For easy access, the top and bottom plate can be removed without dissembling the
rest of the shear cell (cf., figure 4.1b). The transparent top plate has, furthermore,
the advantage that the sample can be inspected by eye from the top (cf., figure 4.1c).
This makes it easy to detect air bubbles inside the sample that may occur during
loading. The gap height can theoretically be set between h = 0-13 mm. Since the
piezo has a maximum travel range of ∆x = 90 µm, the gap height directly influences
the maximum strain γ = ∆x/h. Typically, a gap height of h = 100-150 µm is used.

For clarity, a few pieces are missing in the figure. For instance, the top and bottom
parts of the shear cell have ball bearings. Furthermore, the whole cell is mounted
in a frame. The frame has mounting devices such that it can be attached on an
inverted microscope (Nikon, Eclipse Ti-E). A confocal head (Nikon, A1) converts
the microscope to a confocal laser scanning microscope (CLSM). The CLSM is
equipped with two lasers (Coherent, SapphireTM) with a wavelength of λ1 = 488 nm
and λ2 = 561 nm, respectively. Light is collected with a photomultiplier tube. Two
galvanometer scanners allow for frame rates up to 30fps for standard-sized images
with 512 × 512 pixels.

Any objective suitable for the microscope can be used. Two are shown in figure 4.2.
In principle, the shear cell may also be mounted on another (confocal) microscope
and could also be used for scattering experiments.
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4.1 Shear Cell

(a)

(b)

(c)

Fig. 4.1 CAD-drawing of the shear cell. (a) Side view with labeling. (b) Disassembled
condition (e.g., for cleaning). (c) Top view, from which one can have a direct look into
the sample chamber. Details in the text.
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Fig. 4.2 Picture of two oil-immersion objectives that are frequently used. For the
objective on the right-hand side, specifications of the magnification (A), numerical aperture
(B), thickness of the coverslip (C), and the working distance (D) are highlighted. A scale
bar is shown on the left. The image background has been removed.

4.2 Confocal Rheometer
The current setup of the confocal rheometer (sometimes also referred to as rheo-
confocal) is shown in figure 4.3. It is mounted on an optical table (Standa, dimensions:
1.8 m × 1.2 m), which has a Pneumatic Vibration Isolation System. The confocal
microscope consists of a confocal unit (Visitech, VT-Eye) attached to an inverted
microscope (Nikon, Eclipse Ti). Illumination of the sample is done with a laser
(Melles Griot, 85-BCD-050-230, λ1 = 488 nm). (Fluorescent) light is collected with a
PMT, which is located inside the confocal head. A piezo (PI, P-721, range: 100 µm)
drives the objective in the vertical direction to allow for the acquisition of 3D image
stacks.

Shear is applied with a stress-controlled rheometer (Anton Paar, MCR302 WESP)
with plate-plate or cone-plate geometries. The term “stress-controlled” implies that
torque and displacement are applied and measured at the same mobile part of the
rheometer. Here, the bottom plate is stationary and the top plate/cone is moving.

Two cones are frequently used: A smaller one (Anton Paar, CP25-2/S, d =
24.9826 mm, β = 2.001◦, Itool = 0.0011336 mN m s2) and bigger one (HHU, d =
40.1 mm, β = 3.03◦, Itool = 0.0069421 mN m s2). Both cones have a roughened
surface to reduce slip. The corresponding total inertia of the instrument I =
Itool + Idrive is the sum of the inertia of the tool Itool plus the drive inertia of the
rheometer (Idrive = 0.0925 mN m s2). Minimum and maximum torque values that
can be measured with the rheometer are Mmin = 0.01 µN m and Mmax = 200 mN m,
respectively. The rheometer itself is mounted on a home-build x-y-z-stage (cf.,
reference [217]), where the latter consists of two translational stages (Edmund
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4.2 Confocal Rheometer

Fig. 4.3 Experimental setup of the confocal rheometer. (Major) components are labeled.
Some (minor) control units are hidden beneath the optical table. The confocal microscope
and the rheometer are controlled with two computers (not shown in the figure). The inset
in the lower part of the figure shows the sample cell. A small hole below the coverslip
allows for confocal imaging. Macroscopic deformation is applied and measured with various
geometries. Here, the bottom part of a cone (d = 40 mm) is visible. More information in
the text.
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Optics, 38-180) for alignment in x-y direction. A special feature of this MCR302
WESP rheometer is that the support plate is exposed – hence the name “With
Exposed Support Plate (WESP).” This offers the opportunity to image the sample
from below.

The measuring cell (visible in the magnified region at the bottom of figure 4.3)
is based on an optical device (Anton Paar, P-PTD 200/GL) with a few additional
home-build modifications: A coverslip (Menzel, #1.5, d = 50 mm) acts as the bottom
plate. To reduce slip, the coverslip is scratched with the help of sandpaper and
a rotatory tool (Dremel, 400 digital) and then glued (Norland, NBA 107) to its
stainless steel support. The supporting plate has a hole (d = 11 mm) that enables
optical access from below. Up to six screws (not present in the figure) keep the
support plate – and thus the coverslip – in place.

The microscope and rheometer are mechanically connected with two aluminum
plates [217]. Both instruments are also connected electronically with a BNC cable.
In general, many details concerning the (original) design and the construction of
the rheo-confocal setup as well as basic triggering settings can be found elsewhere
[217]. Additional accessories that may be used in future experiments are part of the
next section.

4.3 Comparison and Discussion
The two previous sections introduced the two main setups: the shear cell and the
rheo-confocal. One might pose the question: “Why should one use the shear cell if a
confocal rheometer is available?”

In principle, any shear cell experiment can be done with the rheo-confocal (al-
though one can argue that the control of the shear cell offers more flexibility). The
opposite is not necessarily the case, as shear stresses or other rheological quantities
cannot be measured with the shear cell.

There are a few more subtle differences. The shear cell truly consists of two
parallel plates and shear strains are limited to strains of about 100%. In contrast,
the rheometer uses rotating cones or plates that allow for arbitrary strains. Tailored
tools can be chosen depending on the properties of the sample. To this end, sample
availability comes in: A typical rheo-confocal experiment needs ten times more
sample volume than a typical shear cell experiment.

Also, the properties of the confocal unit matter. Currently, the shear cell is used
in conjunction with the Nikon A1, and the rheo-confocal setup with the Visitech
VT-Eye. The former has its strength in image quality and the latter in speed. If
particle tracking has to meet specific demands, then the setup might be chosen on
grounds of the confocal properties. Independent of the confocal unit is the optical
degradation due to scratching of the coverslips. Both set-ups use #1.5 coverslips
(borosilicate glass, thickness: 0.16-0.19 mm), which are very close to the requirements
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of the objectives (cf., figure 4.2). The flat surface of the coverslip promotes wall
slip. To prevent slip, surfaces have been coated with particles [31, 182] or roughened
with sandpaper [218]. Coatings of dried particles may suck solvent and are usually
nonpermanent. Coated particles might dissolve during measurement and propagate
into the sample. Here, we sacrifice optical conditions due to scratching in favor
of a permanent roughness. This also opens the opportunity to reuse and prepare
particles for more than one experiment.

In both setups, the objective can be driven in the z-direction with a piezo to scan
through the sample. Ideally, the movement of the piezo is not transmitted (e.g., via
the immersion oil) into the sample. The rheo-confocal setup can monitor this by, for
example, measuring normal forces. Signatures from z-scans are visible but can be
weakened if abrupt z-movements are avoided. A good solution is to scan in upwards
and downwards direction at the same speed [207]. In this respect, we also find that
some immersion oils are more suitable than others. From a set of three different oils
(Nikon Type N, Cargille Type 37, Cargille Type NF) we typically choose the third
one.

Issues from z-scanning would be irrelevant if air objectives are used. Unfortunately,
their magnification and numerical aperture are often too low to resolve colloids on
a single-particle level. An elegant solution is to stick to oil-immersion objectives
but to perform the scanning without any mechanical movements. This can be
done with additional lenses that can change their focal point without mechanical
movement. Preliminary experiments with such a lens (PhaseView, SmartScan) are
promising, with the restriction that the focusing range is inverse proportional to the
squared magnification of the objective. Another promising accessory is a home-build
temperature controller. Temperatures are in general not relevant for PMMA particles
but could be important for temperature-sensitive systems.
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5
Sample Preparation: To Be Head

Chef and Bottle Washer

PMMA spheres are used as a model system for hard spheres (cf., section 2.3). In
order to obtain this model system, several steps of sample preparation are needed.
Individual steps, including the washing-process and the preparation of volume
fractions, will be described below (section 5.1). In particular, this chapter draws
attention to the role of the dispersion medium. We will compare possible candidates
with respect to their refractive index, density, and evaporation rate. This chapter
ends with an overview of the prepared samples.
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solvent ρ [g/ml] nr

cis-decalin 0.896102 1.48084
tetralin 0.967754 1.54105
CHB6 1.329860 1.49464
CHB7 1.300975 1.50434
TCE 1.620927 1.50590
squalene 0.854566 1.49593
octadecene 0.788563 1.44491

Tab. 5.1 Density ρ and refractive index nr of possible dispersion media at T = 21 ◦C.
The densities are measured with an Anton Paar DMA 5000 density meter, and refractive
indices with an Abbe refractometer model 60/LR at a wavelength of λ = 589.3 nm. For
abbreviations see text or the list of acronyms.

5.1 Experimental Details
Stock solutions of PMMA-spheres (cf., section 2.3) are obtained externally from
A. B. Schofield [219] or internally from M. A. Escobedo Sánchez and J. P. Segovia
Gutiérrez. These stock solutions contain the “correct” colloidal spheres but the
“wrong” dispersion medium. In order to remove reaction components and to change
the dispersion medium, the samples are washed with cis-decahydronaphthalene
(cis-decalin). A single cycle of washing incorporates centrifuging the dispersion,
removing the supernatant liquid and adding pure cis-decalin. This procedure is
repeated several times such that the final solvent consists of at least 98% of cis-
decalin.

The density mismatch between PMMA-spheres ρPMMA ≂ 1.19 g/ml and cis-
decalin ρdec. ≂ 0.89 g/ml is quite big with the consequence that particles sediment
to the bottom (cf., section 2.2.1). Sedimentation can be avoided by adding a second
solvent with a higher density.

For confocal microscopy, another constraint emerges: A transparent sample (which
allows good imaging) can only be achieved if the refractive index of the dispersion
medium closely matches the one of the PMMA-spheres. The refractive index of
PMMA-spheres is nr,PMMA ≂ 1.49. Exact numbers for the refractive index and
density of PMMA-spheres depend on the synthesis and vary from batch to batch.

We now turn from the colloidal spheres to the dispersion medium. Frequently used
organic solvents are cis-decahydronaphthalene (cis-decalin), tetrahydronaphthalene
(tetralin), cyclohexyl bromide (CHB6), cycloheptyl bromide (CHB7), tetrachloroethy-
lene (TCE), squalene (squalene), and octadecene (octadecene). The densities and
refractive indices of these liquids are listed in table 5.1. The given solvents can
be combined into a mixture that closely matches both the density as well as the
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Fig. 5.1 Normalized solvent volumes V/V (t = 0) as a function of time t. Lines are
linear fits to the data. Samples with an initial solvent volume of V (t = 0) = 1 ml are left
undisturbed in open vials. Ambient conditions correspond to the ones of the confocal
laboratory, which has an average temperature of 21 ◦C and a humidity between 60 − 70%.

refractive index of the particles. Density matching typically involves centrifugation
of the sample at a relative centrifugal force (rcf) of about 2000g. Density matching
is completed if the sample does not show any sedimentation or creaming during one
day. Else, either a low-density of a high-density solvent is added and the process is
repeated.

Another aspect is important. While for pure (confocal) microscopy experiments
the sample can be measured in a closed sample cell, it is typically exposed to its
surroundings in rheology experiments. For combined rheo-confocal experiments,
where the sample is not closed and sealed in a vial but rather in an open system,
the solvent stability (especially its evaporation rate) plays a crucial role.

Information about evaporation rates is rarely available and furthermore depends
on the temperature and humidity of the laboratory. Therefore, a small measurement
series is performed to elucidate the evaporation rates of the solvents listed in table 5.1
under typical experimental conditions.

From each solvent, 1 ml is put into an open 5 ml-vial and left undisturbed. The
mass of each vial is logged over time. Corresponding sample volumes are calculated
under the assumption that densities of the solvents stay constant. Figure 5.1 shows
the relative solvent volume V (t)/V (t = 0) as a function of time t. All solvents
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show a nearly linear behavior and linear fits are included to guide the eye. The
solvent with the highest evaporation rate is TCE. After 13 days, the TCE-vial is
found empty – everything has evaporated. For comparison, water (H2O) evaporates
within 30 days at ambient conditions of the lab. The next four solvents are – sorted
from fast to slow evaporation rates – CHB6, cis-decalin, CHB7, and tetralin. Note
here that while CHB6 and CHB7 have similar chemical structures, densities, and
refractive indices, their evaporation rates are strikingly different. CHB6 evaporates
4 times faster than CHB7. Hence, with respect to evaporation, measurements with
CHB7 can last 4 times longer than with CHB6.

In terms of evaporation, an ideal candidate would be octadecene. Within one
year, essentially no change in volume is detected. Thus, rheology experiments can
even be performed without a solvent trap. Density matching may be achieved by
combining octadecene with bromonaphthalene [166, 220, 221].

Another candidate is squalene. Squalene has the advantage that it directly matches
the refractive index of PMMA as a one-component system. The disadvantage is
that the density is low and particles will sediment. Apparently, squalene also gains
volume with time (i.e., it absorbs humidity). Furthermore, squalene changes its
color from transparent to yellowish if exposed to the environment. Similarly, CHB6
and CHB7 can have a yellowish color when bought. This effect has been reported
previously [51]. After a filtering process incorporating aluminum oxide (Supelco,
06300), both CHB6 and CHB7 are transparent. The yellowish appearance may
return if samples are exposed to light. Therefore, vials are usually covered with
aluminum foil.

In terms of confocal microscopy experiments, the most commonly used mixture
is perhaps the combination of cis-decalin with either cyclohexyl bromide (e.g.,
[222–227]) or cycloheptyl bromide (e.g., [168, 182, 188, 215, 221, 228–233]).

For some of the upcoming experiments, a solvent mixture of cis-decalin (TCI,
D0009) and cycloheptyl bromide (Alfa Aesar, B23110 or Acros Organics, 111081000)
is chosen for two reasons: On the one hand, this ensures consistency with previous
work. On the other hand, this mixture minimizes evaporation (with respect to CHB6
and TCE) while at the same time being close to the density and refractive index of
the PMMA-particles. In this case, the salt TBAC is added to screen charges. The
amount of TBAC is under debate. Literature values range from molar concentrations
of c = 300 nmol/l [234], c = 1 µmol/l [235], c = 10-240 µmol/l [51], c = 260 µmol/l
[222, 236], c = 1 mmol/l [237], c = 4 mmol/l [169, 182, 207, 238] to saturated
solutions [239]. In some cases, no value is given at all. In another study, the addition
of salt shows no effect [163]. In this work, a concentration of c = 4 mmol/l TBAC
(Fluka, 86852) is added, simply following the apparent majority of previous work.

The addition of salt can be avoided if particles are dispersed, for example, in
cis-decalin or a combination of cis-decalin and tetralin [240]. This comes along with
a density mismatch and, therefore, the chosen dispersion medium depends on the
specific experimental details.
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Fig. 5.2 Screenshot of an excel sheet that is used to prepare volume fractions. Desired
volume fractions are prepared by successive dilution of concentrated samples.

Volume fractions are set by sedimentation and subsequent dilution of samples.
This is based on the assumption that the volume fraction of the sediment is equal to a
random close packing as calculated by simulations [91]. In order to sediment density
matched samples, we moderately increase the temperature inside the centrifuge (to
20 ◦C ≲ T ≲ 35 ◦C). For consistency, as well as to minimize human errors, individual
steps are done with the help of a home-written excel sheet (cf., figure 5.2). Actually,
volumes are added by mass. For example, if 20 µl of cis-decalin shall be added, then
the sample will be placed onto a balance and cis-decalin is added until an excess
mass of m = V ρ = 0.02 ml × 0.896102 g/ml = 0.017922 g is reached.

With the balance (Sartorius, CP225D), a mass of 50 g can be measured within a
permissible tolerance of 20 µg. Samples were weighted using gloves since a single
fingerprint can lead to an absorption of up to 400 µg [241]. Furthermore, samples
are weighted after adapting to room temperature. A sample colder than room
temperature would appear heavier, and a sample hotter than room temperature
would appear lighter than it is due to convection of air [241].

Densities are measured with a density meter (Anton Paar, DMA5000), which has
a standard deviation of 10−6 g/ml. Accordingly, relative volume fractions, obtained
by subsequent dilution, are very accurate thanks to the accuracy of the density meter
and the balance. The biggest uncertainty in the preparation of absolute volume
fraction stems from the assumption of the random close packing ϕRCP. Indeed, it is
experimentally difficult to prepare and measure volume fractions. A corresponding
review “On measuring colloidal volume fractions” is given by Poon et al. [64].

A few samples are shown in figure 5.3. The two vials on the left contain polystyrene
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Fig. 5.3 Seven representative vials with samples, solvents, and leftovers, respectively.
Shown are from left to right: (#1) Green and (#2) red polystyrene beads in water
(externally procured from Thermo ScientificTM). Vial #3 contains a mixture of cis-decalin
and CHB7 and vial #4 has dried leftovers from a shear cell experiment. Vial #5 contains
non-dyed PMMA particles at approximately random close packing. Vial #6 contains
PMMA spheres labeled with rhodamine-B in cis-decalin. In vial #7, NBD-dyed PMMA
spheres are dispersed in a density matching mixture of cis-decalin and CHB7. The image
background has been removed, and contrast has been enhanced.

beads in water and are used for preliminary experiments in section 11.3. The other
five vials are representatives for a large number of samples that are prepared during
this thesis. They are selected for two reasons. First, the vials have different sizes
ranging from 1.5 ml to 40 ml. Different types of experiments need different amounts
of sample volumes. For instance, a single shear cell experiment consumes about
0.1 ml, while an experiment with the (confocal-)rheometer requires about 1 ml of
sample. Second, the vials in figure 5.3 contain samples that are labeled with different
fluorescent dyes. The polystyrene beads are dyed with FirefliTM Fluorescent Green
(468/508 nm, vial #1) and FirefliTM Fluorescent Red (542/612 nm, vial #2). PMMA
spheres are dyed, for example, with rhodamine-B (543/565 nm, vial #4 and #6) or 4-
methylaminoethylmethacrylate-7-nitro-benzo-2-oxal,3-diazol (NBD) (vial #7). Vial
#5 contains non-dyed spheres. Only dyed particles can be tracked with fluorescent
laser scanning confocal microscopy.
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6
Modified Particle Tracking: Catch

Me If You Can

General concepts of particle tracking have been introduced in the fundamentals
section (cf., section 3.4). Since many physically relevant quantities obtained from
confocal laser scanning experiments depend directly or indirectly on the particle
coordinates, accurate tracking is of great importance. In other words, the quantities
obtained from those coordinates should be handled with care. It is tempting to
assume that the coordinates obtained with particle tracking algorithms are true,
real coordinates. It has been shown that the quality of the tracking methods is not
always the same but depends on the specific set of measurements [202].

One may regard particle tracking as an annoying duty. The algorithms are in
general described in the corresponding papers and often also in online tutorials. Yet,
there is a need to explain, at least in some detail, how particle tracking is used in
this work, such that it is possible to retrace the results.

The specific conditions of the instruments, in this case, the Visitech VTEye and
the Nikon A1, plus the need to track particles under shear made it necessary to
modify existing routines. Generally speaking, some routines are powerful in tracking
particles with drift, while others are stronger in tracking particles from noisy images,
while still others can determine the particle size directly. Depending on the system
(one-component vs. binary), the microscope (Visitech VTEye vs. Nikon A1) and the
amount of shear (with or without), different requirements need to be fulfilled by
the tracking algorithm. Since, apparently, none of the existing algorithms fulfills
all requirements, a workaround is to combine, modify or extend existing codes.
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;PURPOSE:
; Finds and measures roughly spheroidal 'features' within
; a 3d image. Works best with dilute or separate feature,
; i.e. non close-packed structures.

Listing 1 Excerpt from feature3d.pro

Explicitly, algorithms by Grocker and Grier [203, 204] and by Leocmach and Tanaka
[209, 242] are used in this work.

The flowchart in figure 6.1 gives an overview of all major steps during particle
tracking and shows a typical workflow. The combination of the steps always depends
on the exact experimental protocol. Major steps during particle tracking are treated
below in more detail: Image preprocessing and feature location will be described in
section 6.1, and linking will be covered in section 6.2. Then, section 6.3 will explain
how the location and linking results are checked. This chapter furthermore contains
a critical discussion of particle tracking under shear in section 6.4 and ends with
concluding remarks in section 6.5.

6.1 Particle Localization
The routines that will be addressed in the following make use of the a priori
knowledge that the features, which shall be detected, are spherical. Depending on
the image quality and the size distribution of the particles, different approaches are
successful.

6.1.1 Small Polydispersity and Uneven Background
For fairly monodisperse samples, the feature localization routines from Grocker and
Grier do a good job. Feature localization, in this case, involves two main steps:
Filtering the image with bpass3d.pro and finding features with feature3d.pro.
Both routines are available online [204]. Feature3d.pro works best with dilute or
separate features, as can be inferred from the documentation. The relevant excerpt
is shown in listing 1. Nevertheless, the Grocker/Grier algorithms are frequently used
on colloidal glasses (i.e., concentrated, non-dilute samples).

In the following, we will get an impression of how images with uneven intensity
distribution can be analyzed. Ideally, homogeneous illumination should be adjusted
with the instrumental setup. Alternatively, the background could be calibrated once
in order to correct for all upcoming measurements. With the current status of the
Visitech VTEye confocal microscope, the illumination conditions can – unfortunately
– change on a daily basis. Uneven illumination also occurs with other confocal setups
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Raw data

Multiscale
bpass3d.pro

Data analysis

Check linking
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Fig. 6.1 Roadmap of particle tracking. There are many ways to get from raw data (at
the very top) to particle positions that can be used for data analysis (at the very bottom).
Particle tracking involves to main processes: The top half (green background) shows steps
of feature localization (cf., section 6.1) and the bottom half (blue background) shows steps
of the linking process (cf., section 6.2). Names having the suffix “.pro” represent major
IDL-routines from reference [204].
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(a) (b) (c)

Fig. 6.2 (a) A raw image araw with inhomogeneous intensity distribution as obtained
with the Visitech VTEye. (b) Image background abackg as obtained by averaging many
raw-images with essentially random particle positions plus an additional image smoothing.
(c) Corrected image aproc with homogeneous intensity distribution.

(cf., [142, fig. 12]). A brute force method turns out to be useful: The idea is to get an
estimate of the background by averaging a big bunch of images. Typically, confocal
images are acquired over time and at different positions. The brute force method
to determine the background is to average all of these images. The underlying
assumption is that every position in space is occupied by a particle with the
same probability. For a system under shear, this assumption seems justifiable. Any
residuals of individual particles are smeared out if the averaged background is
smoothed with a boxcar average with a width of about a particle diameter. With
this, a single “corrected” image aproc is obtained by calculating

aproc = (araw − abackg)/abackg , (6.1)

where araw is a single raw image and abackg is the background as described above.
A raw image with uneven illumination, an estimated background, and a corrected
image are shown in figure 6.2.

The corrected image is then further processed by standard routines [203, 204],
namely, bpass and feature or bpass3d and feature3d [204]. An output from
bpass3d.pro, as well as a two-dimensional and a three-dimensional rendering of
particle coordinates, are shown in figure 6.3.

The codes are written and executed in IDL (Interactive Data Language). A small
but representative piece of code to locate particles is shown in listing 2. There,
particle coordinates are also converted from pixel units to micrometers according to
the experimental settings and saved for usage in later steps. In between, a refinement
step can be added, which is explained in detail in reference [206].

Once all particle locations from all images (or image stacks) are saved, one can
continue with the linking process (cf., section 6.2).
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6.1 Particle Localization

image_preprocessing_2, 'step*_1.tif'

for j=1,nf do begin
l=STRING(j,FORMAT='(I4.4)')
a=read_vteyetiff_pm('step'+[l]+'_1_preprocessed.tif')
b=bpass3d(a,[1,1,1],[11,11,3])
f=feature3d(b,[13,13,3],sep=[5,5,3],thresh=0.5)
ref=ssf_refine_pm(a,f,[13,13,3])
ref[0,*]*=0.0613
ref[1,*]*=0.0617
ref[2,*]*=0.18
refd=remove_duplicates_pm(ref,min_distance)
write_gdf,refd[0:6,*],'step'+[l]+'features.gdf'
pretrack_to_ovito,ref,'step'+[l],3

endfor

pretrack_data=catptdata('step'+'*features.gdf')
write_gdf,pretrack_data,'all_features_'+'step'+'.gdf'

Listing 2 Simplified excerpt from a home-written analysis script written in IDL. Vari-
ables are written in black, numbers in gray, strings in red, build-in routines in light blue
and home-written routines in dark blue. In the first line of code, the inhomogeneous
background of the raw images is removed. The subsequent for-loop runs over nf image
stacks. Each z-stack (suffix “.tif”) is processed with bpass3d and feature3d [203, 204]
and additionally, coordinates are refined with ssf_refine_pm (cf., [206]). Then, x-, y-,
and z-coordinates are converted from pixel units to microns. Sometimes, one particle is
detected multiple times and those duplicates are removed. At the end of the for-loop, data
is saved for later usage as well as for visualization with the tool Ovito [243]. After the
for-loop, individual files are merged to get one master-file for the whole experiment.
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(a) (b) (c)

Fig. 6.3 Intermediate results after (a) application of bpass3d.pro and (b) feature3d.pro.
These intermediate results belong to the same slice inside a z-stack. Small blobs in (a)
correspond to particles outside the focal plane and are not visible in (b). (c) Reconstruction
of particle coordinates as obtained from the full z-stack.

6.1.2 High Polydispersity and Good Image Quality
This subsection gives a brief overview, how (very) polydisperse particles, especially
binaries with moderate size ratios, can be located.

The Grocker and Grier algorithm as described before is also used for polydisperse
samples [238]. How is this possible? The idea is the following: One typically only
takes the centers and not the radii as determined from the Grocker and Grier
algorithm. To estimate the particle radii, one then uses a smart idea that is based
solely on the knowledge of the particle positions [213]. The accuracy of this procedure
has been tested for polydispersities up to 7% as well as a binary mixture with a size
ratio of 1:1.3 [213].

Some experiments of this thesis will work on binaries with a higher size ratio
(i.e., up to 1:1.55). Therefore, a different approach was searched for. The method of
choice turns out to be the “Novel particle tracking method with individual particle
size measurement” that was established by Leocmach and Tanaka [209] and is
available online [209, 242]. In this case, particle sizes are determined directly from
the images and not retroactively from measured particle coordinates. The core idea
is to convolute the raw images not only with one kernel but with kernels of different
width, to account for the different particle sizes. A typical raw image from a binary
sample, measured with the Nikon A1, together with a two- and three-dimensional
reconstruction based on the multiscale algorithm of Leocmach and Tanaka, is shown
in figure 6.4. The workflow for locating particles with the multiscale approach of
Leocmach and Tanaka is similar the one of Grocker and Grier. A shortened but
representative piece of code can be seen in listing 3. The reader might notice that
this code segment is written in Python instead of IDL. This is simply because the
multiscale code is only available in either c++ or Python. For further processing
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from pims import ND2_Reader
import pandas as pd
from colloids import track

im = ND2_Reader('/mnt/Mixture_001_002/001.nd2')
filename = '/mnt/Mixture_001_002/001_features.txt'
ffile=open(filename,'a')
f = []
fmax = im.sizes['t']
for i in range(0,fmax):

imagei = im[i][:]
finder = track.MultiscaleBlobFinder(imagei.shape, Octave0=False,

nbOctaves=6)↪→

centers = finder(imagei,k=1.6, removeOverlap=False)
x = centers[:,0]*0.124
y = centers[:,1]*0.124
z = centers[:,2]*0.124
r = centers[:,-2]*0.124
time = x*0+i
d={'x':x, 'y':y, 'z':z, 'r':r, 'time':time}
df=pd.DataFrame(d, columns=['x', 'y', 'z', 'r', 'time'])
df.to_csv(ffile, sep = '\t', index = False, header = False, mode

= 'a')↪→

ffile.close()

Listing 3 Simplified excerpt from a home-written analysis script written in Python 2.7
to analyze .nd2-files as obtained with the Nikon A1. One .nd2-file contains all images
of a single experiment (i.e., all z-stacks are stored in a single file). A couple of external
modules need to be loaded in the preamble. Then, the following is done: The .nd2-file is
opened, and a .txt-file – which will contain the tracking results – is created. Inside the
for-loop, particle centers at times i are located with the track routine from the external
colloids module. Obtained particle coordinates and radii are then converted from pixel
units to microns and – together with a timestamp – successively appended to the .txt-file.
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(a) (b) (c)

Fig. 6.4 (a) Raw image, recorded with the Nikon A1, showing a binary mixture of
colloidal spheres. The raw image is part of a three-dimensional z-stack. (b) Corresponding
reconstruction of particles after tracking. The multiscale algorithm is able to track and
identify particles with different sizes. In the rendering, a size threshold is used to color
bigger particles in gray and smaller ones in white. (c) Three-dimensional rendering of
particle coordinates.

and data analysis, the individual particle positions and sizes are saved and then
imported into IDL since most of the necessary codes were already written in IDL.

6.2 Linking of Trajectories
Once the localization process has finished, the particle positions can be linked
to particle trajectories. The standard code is most likely track.pro, which finds
trajectories by minimizing ∑︁N

i=1 δ
2
i , where δi is the displacement of particle i between

two images [203, 204]. This comes with the restriction that a particle should move
less than its distance to a neighboring particle. Otherwise, the trajectories cannot
be determined unambiguously. Thus, track.pro works well with Brownian motion
but performs poorly for particles that experience large, directed movements, as in
the case of colloids under shear.

A workaround is to subtract the shear-induced motion by means of particle
velocimetry before running track.pro. A brief introduction to particle velocimetry
may be found in reference [244, p.11]. This approach has been used, for example,
by Besseling et al. for imaging of colloidal flows [207]. Particles are thus tracked in
the “co-shearing” reference frame [245]. Computer codes along these lines were also
written by K. J. Mutch. His codes (i.e., affine_3d.pro and catsheardata.pro)
provided a helpful basis for this work. As stated before, every set of experiments
may have different requirements on tracking. Accordingly, also the codes of K. J. M.
were modified, extended and new code was written from scratch.

The linking process for a sheared system is divided into four individual steps:
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displacements=affine_3d_pm('step'+'*_1.tif')
f_shifted=feature_reshear_pm(pretrack_data,displacements)
tr_shifted=track(f_shifted)
tr=backward_shift_tracks(tr_shifted)
tracking_efficiency,tr
write_gdf,tr,'tr_'+'step'+'.gdf'

Listing 4 Simplified excerpt of a home-written analysis file showing the workflow for
tracking under shear. A few of the routines (colored in dark or light blue) can take more
parameters but they are omitted for better readability. The variable “pretrack_data” is
the same as in listing 2. More details in the text.

First, the collective motion is determined. This is done by image correlation with
the help of a fast Fourier transform (cf., section 7.1). The home-written routine
affine_3D_pm takes roughly 40 ms to determine the displacement between two
images (512×512 pixels) with one core of an Intel i7 computer. So, the typical amount
of images per measurement can be analyzed in a few minutes. As a second major
linking step, the collective motion is subtracted from the previously determined
particle positions. Third, the trajectories are calculated with track.pro. Fourth,
the collective motion is added to the particle positions. Depending on what you
want, you can then continue with the trajectories (either with or without subtraction
of collective motion). Note here that any subtraction is somewhat arbitrary, and it
is not guaranteed that “ideal” Brownian motion is retained after the subtraction.
A representative piece of code incorporating all the four abovementioned steps is
shown in listing 4.

6.3 Checking Results
Tracking algorithms will always return results as long as the syntax is correct. The
user has to take care that the results are reliable. Especially for the localization
process, methods to test the accuracy are well described in reference [237, p.111].
Just to name one method, a first crude estimate is to cross-check the determined
particle positions by comparing particle renderings with raw data. Visualization can,
for instance, be done with Ovito [243]. In the case of three-dimensional data, this
is done for the full stack, as well as for small z-slices of about one to two particle
diameters. More sophisticated measures – mainly for the localization process – are
described elsewhere [204, 237].

How to check the linking process? If the localization process was correct, then one
can be sure that particle positions (and not noise) were linked to trajectories. Still,
one should check whether a trajectory belongs to one and the same particle. A quick
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(a) (b)

Fig. 6.5 (a) Rendering of particle coordinates. Seven particles that are close together
are highlighted in red. (b) Rendering of the same sample 12 time steps (i.e., 21.5 s) later.
Data is taken from a rheo-confocal experiment where the sample is subjected to shear.

check is an inspection by eye. For example, it is convenient to visualize all particles,
or a subgroup of particles, with a visualization program and then highlight one
particle. In Ovito, a particle can be selected according to its ID-number, which is
uniquely assigned by track.pro. Then one can check by eye if the selected particle
appears to be the same for different time steps. A visualization of this procedure is
given in figure 6.5.

Another way to check the result of the linking process is to look at the length of
trajectories. By rule of thumb, longer trajectories are more reliable than shorter
ones. In the simplest case, one calculates a histogram of trajectory lengths. Ideally, a
particle is tracked during its total “lifetime”. The trackable lifetime can be reduced
due to bleaching of the fluorescent dye in long measurements, or if particles are
leaving the FOV due to diffusion or external shear. Hence, the histogram should
be somewhat peaked around typical lifetimes. They can certainly be smaller than
the total duration of the experiment, but if the histogram is peaked around zero
and decays rapidly, then tracking is certainly at its limits. Two histograms of
trajectory length are given in figure 6.6. The first histogram is for a system under
shear (ϕ1 = 0.57, γ̇1 = 0.0025 s−1), where all particles are fluorescently labeled and
tracked. The second one is for a quiescent system, where only a few tracer particles
are fluorescently labeled (ϕ2 = 0.57, γ̇2 = 0 s−1). The FOV is 31 × 31 × 10 µm in the
first and 51 × 54 × 75 µm in the second case. In both cases, the fluorescently labeled
particles have a radius of about R ≈ 800 nm. A relative tracking length of 100%
is achieved if a particle is tracked during the total duration of the measurement.
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Fig. 6.6 Histograms with the length of particle trajectories. In both cases, the underlying
raw data is taken from a series of z-stacks, measured with the rheo-confocal setup. A
particle has a trajectory with a length of n steps if it is uniquely identified within n+ 1
z-stacks. The number of particles that are tracked for a given length is given on the right
axis. For a better comparison, the left and bottom axis contain relative quantities that are
normalized with the total number of all tracked particles and the longest trajectory length,
respectively. Data in (a) belongs to fluorescently labeled, concentrated (i.e., ϕ1 = 0.57)
and polydisperse colloidal spheres under shear. About 2500 particles are located within
one z-stack. Due to shear, particles enter end leave the FOV. Here, the maximum possible
lifetime of a particle within the FOV is around 140 time steps (see text). But trajectories
are much shorter. Thus, only a fraction of particles is correctly tracked. (b) Tracking of
tracer particles (ϕ2,tracer ≲ 0.01) within a concentrated sample (ϕ2 = 0.57). No shear is
applied. Essentially, all tracer particles are tracked successfully.
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While essentially all of the tracer particles reach a relative tracking length of 100%,
this only applies to 1% in the case of shear, where all particles are labeled. For
the system under shear (figure 6.6a), the average particle displacement between
two images in the direction of shear is ⟨δi⟩x = 220 nm. The FOV in the direction of
shear has a width of 31 µm, so on average, after 140 time steps, all particles have
left the FOV. A way to circumvent this issue is to image and track particles in a
plane of zero velocity, which can be achieved with suitable setups [168, 222].

6.4 A Discussion on Tracking under Shear
The previous section pointed out that linking particle positions to trajectories can
be difficult under shear. In fact, also the localization process is a bit more involved
than in the quiescent state. Recall that one gets three-dimensional reconstructions
from confocal laser scanning microscopy. Thus, not all pixels are captured at the
same time. If a particle does not move considerably during the acquisition time of a
3D-stack, everything is fine.

If shear is imposed, this assumption is not necessarily true. Then instead, there is
a preferred direction of movement and all coordinates can be biased in a specific
direction. This systematic error has to be considered. Figure 6.7 visualizes the
described situation: Say, two people – Alice and Bob (i.e., B1 and B2 in the figure)
– are taking a photograph of a boat (A1). The boat is moving to the right with a
fixed velocity vx > 0. Say, Alice is taking – essentially instantaneous – a picture of
the full boat. Instead, Bob is taking a photo piecewise from bottom to top. Imagine
that Bob has an aperture, which only allows him to image a small fraction at a
time. If Alice would afterward look at her picture, she would see something like
shown in (C1) and Bob would see something similar to what is shown in (C2). In
the case of Bob, the boat almost looks as if it has been sheared. We can define an
apparent shear strain

γdist = tan(θ) = ∆x
hz

, (6.2)

which quantifies the distortion of the boat in Bob’s picture. Here, hz is the height
of the boat and ∆x is the translation of the top slice of the boat with respect to
the bottom slice (cf., figure 6.7).

The same idea applies to CLSM when imaging moving objects. The important
question is: “How far does an object move while being imaged?” To answer this,
we will assume that a confocal laser scanning microscope takes two-dimensional
images (in the xy-plane) with a constant frame rate fxy. Thus, the time to capture
one 2d-image is

∆t2D = 1
fxy

. (6.3)
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Fig. 6.7 Illustration of a potential problem of feature location under shear. Imagine that
an object (A1) is moving to the right. If Alice (B1) takes a picture with essentially zero
exposure time, she will get a picture showing the “true” object (C1). If Bob (B2) takes a
picture of the same object by scanning it from bottom to top with a finite time t > 0 , he
will get a different result (C2). Any object with height hz that is moving in the x-direction
with a constant speed will be displaced by a distance ∆x during a finite time t > 0. This
leads to a distorted image with an apparent shear deformation γdist = tan(θ) = ∆x/hz.
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Fig. 6.8 Visualization of variables used in equation (6.3) to equation (6.5). It takes a
finite time ∆t3D to capture a confocal z-stack of height hz consisting of ns slices separated
by zstep. The time to capture a single slice ∆t2D > 0 is short but finite.

If all slices are separated by zstep then the total height of the 3D-stack will be

hz = nszstep . (6.4)

The 3D-stack is captured in a time interval

∆t3D = ns∆t2D = ns

fxy

, (6.5)

if we neglect any additional delay due to the z-movement. The relevant quantities
are visualized in figure 6.8. What is now the distance ∆x that an object has traveled
during the time ∆t3D? In the case of a directed motion with constant velocity vx,
we can write ∆x = vx∆t3D. Thus,

tan(θ) = ∆x
hz

= vx∆t3D

nszstep
= vx

zstepfxy

. (6.6)

For any measurement, the frame rate fxy and the distance between two slices zstep is
given. From the definition of the shear rate (cf., equation (1.14)), we have vx = zγ̇,
where z is the vertical distance with respect to the bottom plate. For a small
3D-volume in the vicinity of z, we may thus write

tan(θ) = zγ̇

zstepfxy

. (6.7)
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Inserting typical values (i.e., z = 20 µm, zstep = 0.1 µm, fxy = 50 s−1), we get

tan(θ) = 4γ̇ . (6.8)

For γ̇ = 0.1 s−1 this is already θ ≈ 22◦! To keep the apparent shear strain γdist =
tan(θ) below 1%, the shear rate needs to be small (i.e., γ̇ ≲ 0.0025 s−1).

In chapter 7, methods to extract local strain values or other quantities based on
particle trajectories will be presented. Will they necessarily be wrong? The answer
is the following: While “static quantities” based on one 3D-stack can be biased as
discussed in this section, “dynamic quantities” are less affected. Dynamic quantities
are based on pairs of 3D-stacks. In the latter case, relative particle positions are
used with the consequence that the static error is already subtracted.

6.5 Conclusion
Particle tracking is a powerful technique, which provides real-space information on
the structure and dynamics of small objects – here: colloidal particles. Particles
are first located (cf., section 6.1) and then linked to trajectories (cf., section 6.2).
Methods to check the tracking results have been established in section 6.3. For dilute
samples, the localization accuracy of the Crocker and Grier algorithm is 10 nm [203].
Effort has been made, to improve the localization accuracy. Refinement techniques
are especially suited for quiescent systems. Care has to be taken under shear since
particles might move considerably during the acquisition time of a 3D-image-stack
(cf., section 6.4). This does not only affect the dynamics but primarily the structure
of the imaged objects. A system might appear to be sheared even though it was
only moving as a block. Always consider that images can show something different
from reality (cf., figure 6.7).
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Data Analysis: Crunching the

Numbers
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This chapter contains methods that are used to analyze the experimental data
from confocal microscopy. We will address image correlations (section 7.1) that play
an important role in the analysis of images in one of the experiments as well as
for the modified particle tracking algorithm (chapter 6). Afterward, we will discuss
single-particle properties and focus on local affine and nonaffine motions (section 7.2),
the determination of neighbors (section 7.3) and local volumes (section 7.4) as well
as the characterization of local structures. The mean-squared displacement (MSD)
(equation (2.1)) was briefly introduced in section 2.1 and section 2.5.3 and is not
covered here, but it is worth noting that noisy particle coordinates can lead to an
apparent sub-diffusion for short lag times [246]. The pair correlation function g(r)
is described elsewhere [204].
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(a) (b)

dy
dx

(c)

Fig. 7.1 Images in (a) and (b) have a relative offset (dx, dy) as indicated in (c).

7.1 Image Correlations
This thesis deals with colloids under shear. Routinely, images of moving particles are
recorded and particle displacements between image pairs have to be determined. One
way is to use particle tracking (cf., chapter 6). However, if particle displacements are
large compared to their size, particle tracking reaches its limits. Image correlation
can then be used to facilitate particle tracking (section 6.2).

A simplified example to determine the displacements (dx, dy) between two images
is given in figure 7.1. One can easily see that from figure 7.1a to figure 7.1b all polar
bears, sitting on floating ice sheets, have moved by two boxes to the right and by
one box down, as can be inferred by superimposing both images (figure 7.1c). With
experimental raw data from confocal microscopy, the situation is not that clear.

This section shall establish the basics of image correlation and explain what kind
of image correlation is applied in some of the following experiments. Section 7.1.1
will introduce the cross- and phase correlation. They will be further discussed in
section 7.1.2, with special attention to relevant images from confocal microscopy.
Finally, section 7.1.3 introduces the Pearson correlation coefficient.

7.1.1 Cross- and Phase Correlation
The displacements (dx, dy) that map two two-dimensional images a = a(x, y) and
b = b(x, y) can be found by minimizing [247]

e(dx, dy) =
n∑︂

x=1

n∑︂
y=1

[a(x, y) − b(x− dx, y − dy)]2 , (7.1)

where the sum runs over all n2 pixels. We assume n to be even. If one expands the
expression in the sum, one identifies the cross term

cc(dx, dy) =
n∑︂

x=1

n∑︂
y=1

a(x, y)b(x− dx, y − dy) . (7.2)
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The cross-correlation cc(dx, dy) is a scalar quantity and a measure for the similarity
between the two images [248].

Equation (7.2) can be evaluated for all possible combinations of (dx, dy) to
find the displacement that maximizes cc(dx, dy). This is computationally intensive.
Therefore, it is helpful to do the calculation in Fourier space: First, we need the
discrete two-dimensional Fourier transforms

A = F(a) , (7.3)
B = F(b) (7.4)

of the images a and b. The cross-correlation matrix is then given by

cc = F−1 (A ⊙ B∗) , (7.5)

where ⊙ denotes the entrywise product, and B∗ is the complex conjugate of B. The
sought after displacements are encoded in the coefficients

(ccij) =

⎛⎜⎜⎜⎜⎜⎜⎝
cc11 cc12 . . . cc1n

cc21
. . . c2n

... . . . ...
ccn1 ccn2 . . . ccnn

⎞⎟⎟⎟⎟⎟⎟⎠ (7.6)

that contain information on all displacements (dx, dy) for the range (−n/2 + 1) <
dx < (n/2) and (−n/2 + 1) < dy < (n/2). The exact mapping (i, j) → (dx, dx)
depends on the utilized Fourier transform and programming language.

Fourier transforms are, for instance, implemented in IDL and Matlab, and reason-
ably fast. Another benefit of a Fourier transform is that it separates amplitude and
phase information. Simply put: “The basic notion is that the phase bears topological
information about image edges whereas amplitude encodes image intensity” [249].
Thus, for an image containing many colloidal particles, the phase tells us, where the
particles are located and the amplitude tells us, how bright they appear.

The expression A ⊙ B∗ in equation (7.5) contains both amplitude and phase
information. By dividing the term with its absolute value |A ⊙ B∗|, one eliminates
the amplitude information. This is exactly what is done in the case of the phase
correlation. The phase correlation matrix is given by

pc = F−1
(︄

A ⊙ B∗

|A ⊙ B∗|

)︄
, (7.7)

where the expression inside the inverse Fourier transform is also called normalized
cross-power spectrum [247]. Again, the information about the displacements (dx, dy)
is encoded in the coefficients – this time in the coefficients of pc.
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7.1.2 Application to Confocal Images
Since homogeneous illumination can be an issue (cf., section 6.1.1), as well as
particles moving in- and out-of-focus and thus appearing brighter or darker in
different images, amplitude information can readily be rejected. In fact, for a set
of images acquired during this thesis, phase correlation is more robust than cross-
correlation. This can be seen in figure 7.2, where two raw images are shown together
with the cross-correlation cc and the phase correlation matrix pc. In the case of the
phase correlation, the peak is clear and unique – independent of the illumination
conditions. Sub-pixel accuracy can be obtained by fitting the peak location by means
of a polynomial, a Gaussian or other model function.

Thus, the displacements (dx, dy) between both images can properly be determined
with the phase correlation. The cross-correlation is reliable only in the case of
homogeneous intensity distribution. Note that we were only interested in the position
of the peak and not its value.

7.1.3 Pearson Correlation Coefficient
Sometimes, image correlation is not intended to only find the offset between image
pairs, but also to quantify the similarity between two images. In this case, a
proper normalization is required. Given two variables a = (a1, a2, . . . , aN) and
b = (b1, b2, . . . , bN), the Pearson correlation coefficient (PCC) is defined as

PCCab =
∑︁N

i=1 (ai − ā)(bi − b̄)√︂∑︁N
i=1 (ai − ā)2

√︂∑︁N
i=1 (bi − b̄)2

, (7.8)

where ā and b̄ are mean values of a and b, respectively. The Pearson correlation
coefficient is bound to the interval [−1, 1], with PCCab = 1 indicating a perfect pos-
itive correlation and PCCab = −1 indicating a perfect anti- or negative correlation.
In the case of PCCab = 0, no linear correlation between the two variables a and b
exists – they are uncorrelated. The Pearson correlation coefficient can be applied to
images in which case the sum runs over all pixel-positions of each image. Thus, for
two identical images, the PCC is equal to one, that is, PCCaa = 1.

The Pearson correlation coefficient is a normalized cross-correlation as inferred
from a comparison of equation (7.2) and equation (7.8). The PCC is also a nor-
malized form of the covariance [250] and used in colloidal science [207, 245]. It has
been compared with other image correlation criteria and is “highly recommended
for practical use” [251].
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Fig. 7.3 Illustration of local nonaffine motion. A central particle (green) is surrounded
by four particles (gray). The left drawing shows a state at time t− δt. Vectors ∆ri (solid
black arrows) connect the central particle with its i surrounding particles. The right
drawing shows a state of the same system at a later time t. The four surrounding particles
have moved from their previous positions (dashed gray circles) to their current positions
(filled gray discs). Their displacements (dashed black arrows) can be split into an affine
(dashed blue arrows) and a nonaffine (red line) part. The sum of all nonaffine distances is
a measure of the local nonaffine motion.

7.2 Measures of Local Deformation
Rheo-confocal experiments of colloidal particles under shear allow insight into local
dynamics. This section will show how this information can be used to quantify the
deformation on a single-particle level. Both affine and nonaffine measures will be
introduced. Since a nonaffine quantity measures the deviation from affine motion,
both quantities are directly linked. First, section 7.2.1 will explain the nonaffine
measure D2

min and concurrently establish the basis for the calculation of local shear
strains and local shear rates, which are the topic of section 7.2.2.

7.2.1 Local Nonaffine Motion: D2min
Falk and Langer have introduced the quantity D2

min as a measure to quantify local
nonaffine deformation [157]. This measure was introduced for amorphous materials
and is nowadays used, for instance, in granular flow [252], colloidal glasses [158] or
the motion of biological cells [253].

The idea is depicted in figure 7.3: The displacements of the Nb local neighboring
particles (gray) around a reference particle (green) are analyzed. The neighboring
particles typically do not move in a purely affine way. Nevertheless, the best fit for
an affine transformation A can be done. Accordingly, the distances (red) between
the real positions and the best-fit positions are calculated. The (squared) sum of
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these distances is then the quantity D2∗
min. Explicitly, the equation reads

D2∗
min(t, δt) =

Nb∑︂
n=1

∥∆rn(t) − A · ∆rn(t− δt)∥2 (7.9)

with the length (Euclidean norm) of a vector ∥r∥ =
√
rxrx + ryry + rzrz. The best

fit for the affine transformation A is the fit that minimizes D2
min, hence the subscript

“min.” If the particles would move purely affine, D2
min would be zero. Rotation,

stretching, mirroring or rigid body motion are affine transformations. Any combi-
nation of affine transformations is again an affine transformation. Remember that
simple shear is a combination of rotation and stretching (figure 1.4). Furthermore,
recall the definition of the material deformation gradient tensor F from section 1.1.2.
By comparing equation (7.9) with equation (1.3) one can readily identify A ≡ F and
the quantity D2∗

min ≡ e(F ) is simply the sum of squared residuals in a least-squares
fit.

In practice, D2∗
min is obtained from a list of experimental particle coordinates in

the following way: First, one finds the coordinates of a reference particle

r0(t) =

⎛⎜⎜⎝
rx

0(t)
ry

0(t)
rz

0(t)

⎞⎟⎟⎠ (7.10)

as well as the coordinates of its neighbors

rn(t) =

⎛⎜⎜⎝
rx

n(t)
ry

n(t)
rz

n(t)

⎞⎟⎟⎠ , (7.11)

where n is used as an index for the Nb neighboring particles and takes values between
1 and Nb.

Next, one needs the set of displacement vectors

∆rn(t) = rn(t) − r0(t) , (7.12)
∆rn(t− δt) = rn(t− δt) − r0(t− δt) (7.13)

between the reference particle and its neighbors. This is equivalent to putting
the reference particle into the origin of the coordinate system. Thus, the affine
transformation reduces to a linear transformation – no translation is involved
anymore. This is consistent with the original work, which states to describe the
displacements “by a linear strain field” [157].

The next step is to calculate the two matrices

X =
N∑︂

n=1
∆rn(t) · ∆r⊤

n (t− δt) (7.14)
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and
Y =

N∑︂
n=1

∆rn(t− δt) · ∆r⊤
n (t− δt) , (7.15)

where ⊤ denotes a transposed vector. Thus, X and Y are 3 by 3 matrices. The
affine transformation A that minimizes D2∗

min is then obtained by [157]

A = X · Y −1 . (7.16)

Finally, D2∗
min can be calculated according to equation (7.9). Although not stated

in the original paper, it is reasonable to normalize the D2∗
min-value for each particle

by the number of its neighbors, that is,

D2
min(t, δt) = 1

Nb

Nb∑︂
n=1

∥∆rn(t) − A · ∆rn(t− δt)∥2 . (7.17)

This normalization has also been done in other work [253]. The quantity might not
need to be normalized if always the same number of neighbors is used. For example,
some authors using D2

min took a fixed number of 10 [245] or 12 [254] neighbors. One
could also use Dmin =

√︂
D2

min, but this is avoided for the sake of consistency with
the literature.

7.2.2 Local Strains and Shear Rates
A useful way to determine local strains is to use the affine transformation A from
the D2

min calculation (cf., section 7.2.1). In fact, the symmetric part of A has been
used to evaluate the local strain tensor or elements thereof [245, 254, 255]. If we
take a closer look at the original definition of D2

min, that is, at equation (7.9) and
compare it with equation (1.3) to equation (1.5) from the chapter about the strain
tensor, then we identify that the local strain tensor ϵ is actually not the symmetric
part of A but the symmetric part of the term (A − 1), hence

ϵ = 1
2((A − 1) + (A − 1)⊤) = 1

2(A + A⊤) − 1 . (7.18)

The local shear strain is thus obtained from the xz-component of the strain tensor
(cf., equation (1.10)) as

γ ≡ γxz = 2ϵxz . (7.19)
Local strains are obtained from the best fit to a linear strain field based on particle
positions at t and t− δt. Accordingly, local shear rates are simply given by

γ̇ = γ

δt
. (7.20)
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Fig. 7.4 Illustration of neighbors using the cutoff-definition. Neighbors are located in
a circle (sphere in 3D) with radius rcutoff, taken from the first minimum of g(r). Small
changes in rcutoff can lead to different sets of neighbors.

7.3 Determination of Local Neighbors
Local quantities depend on the local surroundings of a particle. As seen in the
previous section (section 7.2), calculations involve the coordinates of neighboring
particles. So it is entitled to pose the question: “What is a neighbor?” The remainder
of this section is organized as follows: In section 7.3.1, three different ways to
determine neighbors will be given. Additionally, these definitions are briefly discussed
in section 7.3.2. This discussion also includes possibilities to extend the definition of
neighbors to binaries and polydisperse systems.

7.3.1 How to Define Neighbors
Intuitively, neighboring particles should be somewhat close to a particle under
consideration. This leads to the first definition of a neighbor: A neighboring particle
is a particle that is within a given cutoff-distance. If one draws a circle (or a sphere
in three-dimensions) with radius rcutoff around the center of a reference particle
then all particles within this circle are “neighbors.” This is illustrated in figure 7.4.
Typically, particles are treated as if they were points, thus the center of a particle
has to lie inside the circle. As it is suggested by the dotted line in figure 7.4, the
cutoff-radius rcutoff is typically chosen from the position of the first minimum of the
pair correlation function g(r).

If particles sit on a perfect lattice, as it is, for instance, the case in a hexagonal
crystal, then the number of particles inside a given radius is known a priori. For
example, in the case of a close-packed fcc crystal, the smallest distance between
pairs of particles is d = 2R, where R is the particles’ radius. Within that distance,
there are 12 particles. Thus, another definition is that a neighbor belongs to the Nb

particles that are closer to a reference particle than the rest. Typically, Nb = 12.
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(a) (b)

Fig. 7.5 Illustration of neighbors using the Voronoi criterion. The cells are part of a
Voronoi diagram. Particle centers (black dots) are located in cells that are constructed
with a Voronoi tessellation. Particles are neighbors if their cells have a shared edge (in 3D:
if they share a face). (a) A particle (in the red cell) has three neighbors (in blue cells). The
particle in the magenta cell is not a neighbor. (b) A small displacement of two particles
has changed the Voronoi diagram and so the neighbors. Another particle (in the yellow
cell) has become a neighbor, although it is relatively far away. This leads to a total of 4
neighbors (3x blue, 1x yellow).

Third, a parameter-free definition of neighbors is based on a Voronoi diagram:
Given a set of points in space of arbitrary dimension, the Voronoi diagram divides
the space without gap into so-called Voronoi cells. Every Voronoi cell contains one
point. The space in the Voronoi cell is closer to the point inside the cell than to
any other point. By construction, the cells are polygons in 2D and polyhedra in
3D. Two Voronoi diagrams for random sets of points (in 2D) are given in figure 7.5.
Under the prevailing circumstances, the points will be particles, and neighboring
particles will be particles whose Voronoi cells (in 2D) share an edge (a face in 3D).
The number of edges (2D) or faces (3D) of a Voronoi cell is equivalent to the number
of neighbors of the particle inside this cell. Thus, in figure 7.5a, the particle in the
cell that is highlighted in red has three neighboring particles. Two particles that
only share a corner (in 2D) or a vertex (in 3D) are not neighbors. Therefore, the
particle in the magenta cell (figure 7.5a) is not considered a neighbor. A marginal
change in position (figure 7.5b) can change the neighbors, since, for example, the
particle in the yellow cell would now also be considered a neighbor.

7.3.2 Discussion of the Neighbor Definitions
All of the abovementioned definitions are used in colloidal science: The cutoff
definition (e.g., [158, 255]), a fixed number of neighbors (e.g., [234, 254]) or neighbors
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based on the Voronoi diagram (e.g., [256, 257]) or a combination of more than one
definition in the same work (e.g., [245]).

By comparing different work, one should always consider the underlying definition
of neighbors. It has been found (for example for the study of bond orientational
order parameters) that the definition matters [258]. Difficulties and shortcomings
for the case of Voronoi neighbors have been discussed in reference [259].

There are ways to improve the Voronoi definition: One possibility is to consider
not only the faces but also the position of the faces with respect to the neighboring
particles [260]. Another possibility is to weight the contribution of Voronoi neighbors
[258, 259, 261]. In the latter case, one defines and weights neighbors based on the
position and size of the corresponding faces. Others distinguish between direct,
indirect, degenerate or quasi-direct neighbors [262].

The definitions have advantages and shortcomings: Does a sharp separation by
a cutoff-distance do justice to the underlying physics? Do colloidal glasses always
have a fixed number of neighbors? Even in the case of a bcc crystal, one might argue
that the number of neighbors is either 8 or 14. A fixed number of neighbors can
avoid normalization issues (cf., section 7.2.1) while neighbors defined via a cutoff-
distance are at least close (which is not necessarily true in the case of the two other
definitions). Refinement of the cutoff-definition could involve a weighting-factor:
One suggestion is to weight neighbors according to their distance in a way that
nearer particles contribute more, while particles farther away add less.

Furthermore, combinations of definitions are possible. For example, one could first
select neighbors from the Voronoi diagram and then add the additional restriction
of a cutoff radius. This combination of two criteria, as well as the three individual
neighbor definitions, are implemented in IDL-routines. If not stated otherwise, the
cutoff-criterion is used.

To examine the impact of the neighbor definitions, they need to be compared on
the same set of data. To compare them, data from reference [263] is re-analyzed using
the cutoff, fixed number and Voronoi method and the obtained results are shown in
figure 7.6. In the figure, the ensemble-averaged nonaffine motion ⟨D2

min⟩ of colloidal
spheres with diameter 2R during a start-up experiment is shown as a function
of strain γ. Depending on the underlying definition of a neighbor, quantitatively
different results are observed. Luckily, the qualitative trend stays the same and the
difference is basically just an offset.

Other quantities can show a stronger dependence on the underlying definition
of neighbors. Bond order parameters are a relevant case. Definitions of bond order
parameters will be given in section 7.5.2. At the moment, it is sufficient to know
that they are used to characterize local structures. Figure 7.7 shows results based
on the same set of data but with different definitions of neighbors, to illustrate
the impact of neighbors on bond order parameters. Clearly, not only quantitative
but also qualitative differences are observed. Using cutoff-neighbors, one finds two
main clouds in the q4 − w4-plane. One is located around (q4 = 0.15, w4 = 0.13)
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Fig. 7.6 Ensemble-averaged nonaffine motion ⟨D2
min⟩/(2R)2 as a function of strain for

a colloidal glass during start-up of shear. Particle trajectories used for the analysis are
identical with those from reference [263]. The quantity ⟨D2

min⟩/(2R)2 (equation (7.17))
implicitly depends on the underlying definition of neighboring particles. Shown are results
based on cutoff neighbors (red squares), a fixed number of 12 neighbors (green circles)
and Voronoi neighbors (blue triangles). Further details of the neighbor definitions are
given in the text.

Fig. 7.7 Comparison between the q4-w4-plane for the same binary system using three
different definitions of neighboring particles. The order parameters q4 and w4 are calculated
with (a) cutoff neighbors, (b) a fixed number of 12 neighbors and (c) Voronoi neighbors.
Each point corresponds to one particle. The data is part of a measurement from chapter 8.
Definitions of the order parameters qi and wi will be given in section 7.5.2.
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(a) (b) (c) (d)

Fig. 7.8 Comparison of different ways to define the local volume (blue) of a central
particle. (a) Particles are point objects and each point inside the local (Voronoi) volume is
closer to the central particle than to any other one. (b) If all particles have the same finite
size, one can use their centers and continue with (a). (c) The use of particle centers can
lead to strange results if particles have unequal sizes. (d) The radical Voronoi tessellation
splits the space into cells, such that each point inside a cell is closer to the surface of the
interior particle than to any other particles’ surface.

and another one around (0.19, -0.11). Without going into further detail, the two
clouds indicate the existence of hcp and fcc structures. Relatively similar results
are obtained using a fixed number of 12 neighbors. Instead, with Voronoi neighbors,
only one cloud, centered around (0.08, 0.05), is found. It is, therefore, crucial to
state the underlying definition of neighbors used in any calculation.

7.4 Measuring Local Volumes
This section will explain, how local volumes can be determined. While all particles
in a perfect mono-crystal occupy the same amount of space, this typically does not
hold for heterogeneous systems like colloidal glasses. By preparing a sample of given
volume fraction ϕ, one fixes the global number of particles and the overall volume.
Using particle coordinates and corresponding particle radii, one can determine a
local volume for each individual particle. A natural way to do this is to divide the
global volume into small volumes – named cells – that contain only one particle.
This can be done by a Voronoi tessellation. The principle of a Voronoi tessellation is
illustrated in figure 7.8a and figure 7.8b. In a two-dimensional hexagonal crystal, the
Voronoi volume is a hexagon (light blue in the figure). Each edge of the hexagon has
the same distance to its interior particle as it has to the corresponding neighboring
particle. To be precise, in the “simple” Voronoi construction, the distance is measured
from the edge to the center of the circle. In this respect, particles are treated as
points.

If particles have very different sizes, a possible consequence is that the local
Voronoi volume for a very big particle is smaller than its own volume (i.e., smaller
than 4πR3/3 in 3D). This is unphysical (cf., figure 7.8c). Thus, an improved way is
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that the edge of a cell is exactly halfway between the surfaces of two neighboring
particles – this is the radical Voronoi tessellation. This definition is suitable for
binary or polydisperse systems and reduces to the “simple” Voronoi construction in
the case of a monodisperse system. A radical Voronoi cell for a big particle inside
symmetrically arranged small particles is shown in figure 7.8d. How to use the
“simple” Voronoi construction to find local volumes per particle has been described
in a PhD theses by M. C. Jenkins [237, p.158]. Local volumes based on the radical
Voronoi tessellation are obtained using voro++ [264].

Regardless of which definition is used to calculate local volumes, the result will
always depend on the quality of particle tracking. So, determining local volumes
does only make sense if the vast majority of particles are correctly detected. As for
any other local measure, extrapolating the information from local volumes to the
global system needs the assumption that the local particles are representative of
the total system.

7.5 Characterization of Local Structures
This section will describe how to analyze the topology of local structures. From a
qualitative point of view, one is, for example, interested in whether particles arrange
in an amorphous or an ordered way. Furthermore, one may quantify the degree of
order and also distinguish between different crystal structures, like fcc, hcp or bcc
structures (cf., section 2.4.2).

In the previous section, it was explained how one can measure local volumes.
Since cells from the Voronoi tessellation are convex polyhedra, they can be classified
by their number of faces, edges, and vertices. This will be part of section 7.5.1.

The probably most common way to characterize structures invokes the bond order
parameters from Steinhardt et al. [265]. Many people quantify the degree of order
by a global (i.e., ensemble-averaged) bond order parameter. The necessary equations
will be given in section 7.5.2 together with an improved version by Lechner and
Dellago [266]. For further reading, references [260, 267, 268] are recommended.

7.5.1 Identification of Local Polyhedra
As introduced in section 7.4, the Voronoi tessellation divides the total space into
convex polyhedra. The surface of a convex polyhedron is classified via Euler’s
polyhedron formula, namely,

Nv −Ne +Nf = 2 , (7.21)

where Nv, Ne, and Nf are the numbers of vertices, edges, and faces, respectively.
Some possible combinations are given in table 7.1. In the last column of the

table, the name of the corresponding dual or reciprocal polyhedron is given. If a
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Polyhedron Nf Ne Nv Dual
Cube (sc) 6 12 8 Octahedron
Regular dodecahedron∗ 12 30 20 Regular Icosahedron
Rhombic dodecahedron (fcc) 12 24 14 Cuboctahedron
Trapezo-rhombic dodecahedron (hcp) 12 24 14 Triangular orthobicupola
Truncated octahedron (bcc) 14 36 24 Tetrakis Hexahedron
Tetrakis Hexahedron 24 36 14 Truncated octahedron
Triangular orthobicupola 14 24 12 Trapezo-rhombic dodecahedron
Cuboctahedron 14 24 12 Rhombic dodecahedron
Regular Icosahedron 20 30 12 Regular dodecahedron
Octahedron 8 12 6 Cube

Tab. 7.1 Some relevant polyhedra with their number of faces Nf , edges Ne, and vertices
Nv. Faces, edges, and vertices are interrelated by equation (7.21). If a polyhedron has Nf

faces and Nv vertices, its dual (or reciprocal polyhedron) has Nv faces and Nf vertices.
∗Interestingly, a polyhedron with the tuple (Nf = 12, Ne = 30, Nv = 20) is sometimes
referred to as an icosahedron (e.g., [269, tab. 1]). In fact, a (Nf = 12, Ne = 30, Nv = 20)-
polyhedron is not an icosahedron but a regular dodecahedron. The icosahedron is the dual
polyhedron of the regular dodecahedron.

polyhedron has Nf faces and Nv vertices, its dual has Nv faces and Nf vertices
(cf., [270, p.157]). The relation between a polyhedron and its dual is illustrated in
figure 7.9 for the case of a single cubic (sc) lattice. In this case, the cube corresponds
to the Voronoi cell of one particle. The cube contains one and only one particle.
Instead, the octahedron is essentially obtained by connecting all (Voronoi) neighbors
of a given particle. Thus, the number of vertices of the cuboctahedron is equal to
the number of (Voronoi) neighbors. In general, if a Voronoi polyhedron has Nf faces,
Ne edges, and Nv vertices, its dual has Nv faces, Ne edges, and Nf vertices.

The remaining polyhedra from table 7.1 are visualized in figure 7.10. The polyhedra
that belong to crystal structures are all space-filling. Instead, the regular icosahedron
does not fill space. Nevertheless, all these polyhedra have high symmetry.

What happens in the case of a thermal system, where the particle centers are
fluctuating? Are the polyhedra robust against thermal noise? The answer is no [259,
260]. This is exemplified in figure 7.11. In an ideal fcc crystal (figure 7.11a), all
particles are exactly on their lattice positions (cf., figure 7.11c), and the polyhedron
analysis finds rhombic dodecahedra with 100% accuracy. In a thermal fcc crystal
(figure 7.11b), where noise is added to the particle position (cf., figure 7.11d), no
(!) polyhedron with 12 faces, 24 edges and 14 vertices is found. Simply speaking,
polyhedra of a thermal system are dented and have additional edges and faces.
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(a)
(b)

Fig. 7.9 (a) A cube (Nf = 6, Ne = 12, Nv = 8) and (b) its dual, an octahedron (8, 12, 6).

This is nicely illustrated in figure 1 of reference [259] for corresponding sc and fcc
polyhedra.

Nevertheless, not all structures are prone to noise. A bcc structure is way more
robust, as shown in figure 7.12.

7.5.2 Local Order Parameters
The structure (and hence also degree of crystallization) is typically quantified using
local bond parameters, also known as Steinhardt order parameters [265]. Since
the characterization of local structures is based on the position of neighboring
particles, it will depend on the underlying definition of a neighbor (as can be seen
in figure 7.7 or in reference [258]). Often, bond order parameters are calculated with
cutoff-neighbors (cf., [265, 266]). In the following, it will be implicitly assumed that
“appropriate” neighbors are used.

The local order parameters are based on the complex vectors

qlm(k) = 1
Nb(k)

Nb(k)∑︂
j=1

Ylm(r⃗kj) (7.22)

with the spherical harmonics Ylm, where l is a free integer parameter and m is
running in steps of one from −l to +l. The vector r⃗kj points from particle k to
particle j. The summation runs over all Nb neighbors of particle k. The averaged
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(a) Regular dodecahedron (12,30,20) (b) Regular icosahedron (20,30,12)

(c) Rhombic dodecahedron (12,24,14) (d) Cuboctahedron (14,24,12)

(e) Trapezo-rhombic dodecahedron (12,24,14) (f) Triangular orthobicupola (14,24,12)

(g) Truncated octahedron (14,36,24) (h) Tetrakis hexahedron (24,36,14)

Fig. 7.10 Illustration of polyhedra. Names, as well as the number of faces, edges, and
vertices, are given in the respective captions.
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(a) (b)
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(f)

Fig. 7.11 Comparison of (a) an ideal fcc crystal and (b) an fcc crystal in which uniform
noise is added to the particle positions. (The difference is not visible by eye.) Each cube is
cut in the (111)-direction in order to show the six-fold symmetry. Histograms are intended
to indicate that the particles are located (c) exactly or (d) close to their grid points.
Results based on a Voronoi calculation are shown for (e) the ideal fcc crystal and (f) the
“Brownian” fcc crystal. A small distortion of particle positions has dramatic effects on
the shape of the individual Voronoi cells. The numbers in brackets are faces, edges, and
vertices. “Other” refers to polyhedra not listed in table 7.1.
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(a) ideal bcc crystal
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(b) bcc crystal with noise

Fig. 7.12 Impact of small lattice distortions on a bcc crystal. In contrast to the fcc-
crystal shown before (figure 7.11), the Voronoi polyhedra for the bcc structure are much
more robust against small distortions.

(local) bond order parameter according to Lechner and Dellago [266] is1

ql(i) =

⌜⃓⃓⎷ 4π
2l + 1

l∑︂
m=−l

|qlm(i)|2 , (7.23)

where

qlm(i) = 1
Nb(i)

Nb(i)∑︂
k=0

qlm(k) . (7.24)

The sum in equation (7.24) runs over all Nb(i) neighbors of particle i and additionally
includes particle i itself. One can calculate a global order parameter

⟨ql⟩ ≡ ⟨ql(i)⟩i (7.25)
as an ensemble average of all local order parameters. Important values of l are 4
and 6. A value of ⟨q6⟩ ≈ 0.3 − 0.33 can be regarded as a threshold to separate liquid
and crystal structures [266]. Crystal structures themselves can be distinguished, for
instance, by the combination of q6(i) and q4(i).

Lechner and Dellago also use the averaged order parameter wl. The equation for
this averaged version reads

wl(i) =

∑︂
m1+m2+m3=0

⎛⎝ l l l

m1 m2 m3

⎞⎠ qlm1(i)qlm2(i)qlm3(i)
⎛⎝ l∑︂

m=−l

|qlm(i)|2
⎞⎠3/2 , (7.26)

1The classical Steinhardt order parameter ql is recovered by setting qlm(i) = qlm(i) in the
right-hand side of equation (7.23).
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q2 q4 q6 q7 q8 w4 w6 w8 w10

sc 0 0.764 0.354 0 0.718 0.159 0.013 0.058 0.090
bcc1 0 0.509 0.629 0 0.213
bcc2 0 0.036 0.511 0 0.429 0.159 0.013 -0.058 -0.080
fcc 0 0.190 0.575 0 0.404 -0.159 -0.013 0.058 -0.090
hcp 0 0.097 0.484 0.311 0.317 0.134 -0.012 0.051 -0.080
icos 0 0 0.663 0 0 0 -0.170 0 -0.094

Tab. 7.2 Selected values of (non-averaged) order parameters ql and wl, taken from
references [258, 265]. In the case of the bcc crystal, values are given for the closest eight
(bcc1) and fourteen neighbors (bcc2), respectively. Note that while all ql are positive, the
wl can be positive or negative.

where ⎛⎝ l l l

m1 m2 m3

⎞⎠ (7.27)

are Wigner 3j symbols. They are calculated using a lengthy expression, first derived
by Racah [271, 272] and shown in an explicit form in the book by Landau and
Lifshitz [273, p.405]. Again, the non-averaged order parameter wl is recovered if one
replaces the qlm by qlm in equation (7.26). Selected values for ql and wl are listed
in table 7.2. Perfectly symmetric structures have a vanishing q2 value. This can
also be used to distinguish ordered from disordered structures [258]. The parameter
q6, which is often used to quantify order, has its highest value for an icosahedral
structure. As can be seen in the case of the bcc crystal, it makes a difference, whether
the closest eight or the closest fourteen neighbors are used. Generally speaking, the
underlying neighbor definition can affect the numbers. Still, a suitable set of bond
order parameters is relatively robust in distinguishing different structures.
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8
Structure of Binary Mixtures under

Shear: Hand in Hand or
Topsy-Turvy?

8.1 Abstract
Colloidal hard spheres are expected to crystallize at high volume fractions (i.e., ϕ >
0.545). However, if the system is polydisperse, then crystallization can be suppressed.
In this work, we study crystallization under shear. To mimic polydispersity, we
investigate binary suspensions of various size ratios (i.e., 0.65 ≤ α ≤ 0.94). Confocal
microscopy is used to obtain structures on a single-particle level. In the quiescent
state, we observe ordering for large size ratios (i.e., α ≳ 0.91). Under oscillatory
shear, this regime extends to α ≳ 0.85, corresponding to a critical polydispersity
of δc ≂ 9%. For samples with liquid-crystal-coexistence, we separately study the
amorphous and the ordered part and find a larger number of bigger spheres in the
crystalline regions. We link the crystallization ability to local packing constraints
in terms of nearest neighbors. The results are consistent with previous findings on
colloidal crystallization and in agreement with the empirical Hume-Rothery size
factor for metallic alloys.
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8.2 Introduction
Colloidal hard spheres are a widely used model system with a simple interaction
potential and can mimic atoms, rare gasses, and metallic alloys. The pairwise
interaction between two hard spheres is infinite at contact and zero else. Due to
the hard-sphere interaction, the temperature does not play a role, and in terms
of the free energy FH = E − TS, the phase behavior is solely driven by entropy.
The only control parameter in single-component systems is the packing fraction
ϕ = Vspheres/Vtotal, which relates the volume of all spheres to the total volume.

The phase behavior of colloidal single-component hard spheres has been studied
by Pusey and van Megen [70]. They find a fluid phase for low volume fractions (i.e.,
0 ≤ ϕ < 0.454), a liquid-solid coexistence region at intermediate volume fractions
(i.e., 0.454 ≤ ϕ < 0.545) and a crystalline region for moderately high volume
fractions (i.e., ϕ ≥ 0.545). As the glass transition (i.e., ϕg ≈ 0.58) is approached,
particle motion gets frustrated and the system forms a nonequilibrium glass.

Colloidal spheres with a nominal radius R typically have a finite size distribution
P (R). This is quantified in terms of the polydispersity δ = SD/R, which is the
standard deviation of the size distribution divided by its mean value. Polydispersity
has an important impact on the phase behavior of hard spheres [88–93]. Especially,
polydispersity impedes crystallization. Geometrical arguments based on a Lindemann
melting criterion estimate a critical polydispersity between 6-12% [99]. Previous
work on equilibrium hard spheres states a terminal polydispersity (above which
crystallization is suppressed) to be around 5%, 5.7% or 7%, respectively [90, 94,
96, 274]. If fractionation is allowed then samples with polydispersities of 12%, 14%
and more can form coexisting liquids and crystals [87, 90]. We will make use of the
fact that the equilibrium phase behavior of polydisperse colloids can be mapped to
an equivalent binary mixture based on the first moments of the size distribution
[102]. Therefore, we investigate binary mixtures of different size ratios to reveal the
impact of polydispersity on crystallization.

Binary materials are the simplest multi-component systems. Compared to one-
component systems, the introduction of a second species increases the number of free
parameters. Accordingly, additional parameters are the size ratio α = Rs/Rb, and
the relative volume fraction of big spheres X = Vb/(Vs + Vb), where the subscripts s
and b refer to the smaller and bigger species, respectively.

Binary materials with industrial relevance are, for example, metallic alloys. For
binary metallic alloys, Barrat et al. [104] used density-functional theory to establish
three different phase-diagrams for size ratios close to unity: The first one is the
spindle phase diagram, where the two components are miscible in both the fluid
and crystal phase. In this case, both components are fully miscible, but the crystal
phase has a higher fraction of large spheres. The second one is the azeotropic phase
diagram. There, the two components are not miscible in all proportions and details
depend on the composition X. In the third phase diagram, the eutectic one, a stable
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crystal is only formed by fractionation. These three phases are typically found in
the range 0.85 < α < 1 [104, 109–112]. Barrat et al. state that it is impossible
to obtain a mechanically stable crystal below α = 0.85 [104]. This is consistent
with experimental results [275]. Denton and Ashcroft find similar values for the
eutectic phase using a density-functional theory and predict a disordered fcc crystal
to be the most stable phase in the region 0.76 < α < 1 [110]. A crystal that is
composed of two species can have various internal structures. In the case of the
random ordered substitutional alloy, there exists an empirical rule in terms of the
size difference: According to the first Hume-Rothery rule, metallic alloys can form
crystalline structures, as long as the difference in diameter between the two atoms
is less than 14% [117].

This empirical finding is supported by various techniques. For instance, vapor
quenching of binary metallic alloys (e.g., Co-Cu, Cu-Ag, Co-Ag, Cu-Mg, Au-Mg,
Cu-Au) creates an amorphous structure for size differences larger than 10% [276].
Millimeter-sized hard spheres have been used to model 2D alloys [277], where
amorphous structures over a wide range of compositions are found for size differences
around 25%. Numerical simulations typically use systems with α = 0.71 to prevent
crystallization [138, 139, 278]. The latter is in agreement with an experimental study
on binary mixtures of PMMA spheres, where no crystalline structure was found for
α = 0.72, except for scenarios where the mixture consisted of mainly large or small
spheres [98]. Metastable single cubic structures were observed for α = 0.736 [279].
Further relevant literature including binary mixtures with similar amounts of large
and small spheres and size ratios in the range 0.5 < α < 1 and below can be found
elsewhere [105, 107]. Binary mixtures with still larger difference in the radii between
the two components have been studied in experiments [113] and theory [114], but
are beyond the scope of this letter. In two dimensions, numerical studies analyzed
disorder as a function of size ratio [280], or mapped the jamming transition as a
function of size and number ratio [281].

Structural ordering is also studied under external constraints: For instance, struc-
tural ordering of hard and soft spheres is observed by experiments and simulations
under steady [239, 282–284] and oscillatory shear [228, 282, 285–287]. Strain ampli-
tudes around 40% are useful for (macroscopic) crystal formation of soft spherical
micelles [286]. With PMMA-spheres, strain amplitudes around 100% are found to
crystallize previously fluid-like samples [282]. Experiments on a two-dimensional
system of soft colloids with intermediate volume fraction find that small oscillatory
strains lead to large defect-free crystals [257]. Oscillation frequencies should be in
the order of one [282, 286]. As an application, flow can be used to align photonic
crystals of colloids [288]. While flow can be used to form structures, also the opposite
is possible, that is, shear above a critical stress can melt crystals [289].

The ability to design crystalline or amorphous solids is crucial for material
scientists since their mechanical properties differ. For example, hitting a golf ball
with a golf club from amorphous metal yields higher distances than with a crystalline
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metal because the amorphous club deforms less and hence transfers the momentum
with fewer losses.

In this work, we investigate the structure of binary mixtures of hard-sphere-like
colloidal particles under shear. Due to their sizes, colloids can be observed by light
microscopy and their dynamics are slow enough to be followed in experiments.
Structural ordering has previously been inferred experimentally by light [282], x-ray
[286, 290] or neutron scattering [286, 291, 292] as well as using microscopic techniques
[239, 289]. Using confocal microscopy, three-dimensional images can be obtained
on a single-particle level. One advantage of confocal microscopy as compared to
scattering techniques is that local inhomogeneities can be observed more easily.

The goal is to experimentally find the transition between crystallizing and non-
crystallizing samples under nonequilibrium conditions, that is, under shear. This
shall shed light on the role of the size ratio (or equivalently, the polydispersity) in
order to be able to design materials with a priori knowledge about their ability to
crystallize.

8.3 Materials and Methods
The colloidal model system consists of poly(methyl methacrylate) (PMMA) spheres
stabilized by poly(12-hydroxy-stearic acid) (PHS) [60], dispersed in a solvent of
cis-decahydronaphthalene (cis-decalin) and cycloheptyl bromide (CHB7), which
almost matches both the density and the refractive index of PMMA. In CHB7,
PMMA particles acquire a charge [51, 52], especially, if they are locked [61]. Our
particles are locked and labeled with rhodamine-B, where also rhodamine is known
to slightly charge particles [62]. In order to screen charges, we add a concentration
of c = 4 mmol of the salt tetrabutylammonium chloride (TBAC) [51].

Particle radii of the single components are obtained from electron microscopy
images (SEM) in the dry state and averaged over at least 50 particles. As an example,
one SEM-image is given in figure 8.1. In order to obtain “true” sizes, the sizes from
SEM may be increased by up to 25% to incorporate for swelling [209]. We anticipate
uncertainties in the determination of absolute sizes but stick to the estimates from
SEM since we are currently interested in size ratios. Corresponding sizes and size
ratios of the studied samples are listed in table 8.1.

The volume fractions of the one-component batches are set by centrifuging the
samples and assuming a random close packing, ϕRCP = 0.65 [91]. Binary mixtures
are prepared by mixing two one-component batches at intermediate volume fractions
of ϕ = 0.4. If not stated otherwise, the binary mixtures contain the same volume
of bigger and smaller spheres (i.e., X = 0.5). A total volume fraction of ϕ = 0.58
for each binary-mixture is then set by subsequent centrifugation and dilution from
random close packing. The random close packing of the binaries is estimated from
jamming packing fractions of binary hard-sphere mixtures [86, 293]. For size ratios
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Fig. 8.1 SEM-image of a one-component batch of particles with a mean radius of
R = 902 nm. The image is taken at the Center of Advanced Imaging (CAi) at HHU
Düsseldorf.

Rs/ nm 786 1104 786 902 835 902 786 835 786
Rb/ nm 835 1215 902 1104 1104 1215 1104 1215 1215
α 0.94 0.91 0.87 0.82 0.76 0.74 0.71 0.69 0.65
δα 0.03 0.05 0.07 0.10 0.13 0.14 0.16 0.18 0.20
δconf. 0.06 0.06 0.09 0.15 0.18 0.19 0.23 0.21 0.28

Tab. 8.1 Summary of the prepared samples with X = 0.5. Shown are radii Ri, size
ratios α = Ra/Rb and polydispersities δi. Here, δα is a theoretical polydispersity that is
calculated for an ideal binary system with size ratio α, whose size distribution consists
of two delta peaks (cf., [123]). The experimentally obtained polydispersity δconf. is based
on size distributions of the binary mixtures as obtained from feature localization with
confocal microscopy.
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0.71 ≤ α ≤ 1, the jamming packing fractions are almost identical [86, 293], and we
thus use ϕRCP = 0.65 for all our mixtures.

Shear is applied by means of a home-build shear cell (cf., section 4.1). Our gap
height is h = 131 nm. Scratched coverslips act as the top and bottom plates, and
the surface roughness prevents wall slip, as verified with confocal microscopy.

We divide the shear protocol into four steps: After loading, the sample is left
undisturbed to equilibrate for 10 minutes (step 1). The first application of shear
is then performed by means of a dynamic strain sweep (DSS), at a frequency of
f = 0.7 Hz, and covers strains from γ0 = 10% to γ0 = 84% (step 2). We then fix the
strain amplitude γ0 = 84% and shear the system at f = 0.2 Hz for 200 oscillations
(step 3). A subsequent inverse DSS (γ0 = 84% to γ0 = 10% at f = 0.7 Hz) is used
to anneal the structure (step 4). After each step, shear is stopped for a short time
(i.e., ∼ 3 min) to record 3D-images. With that, we are able to follow the structural
evolution of the system.

Image stacks from z = 0 µm to z = 30 µm inside the sample are recorded with a
Nikon A1 confocal, which is equipped with an oil-immersion objective (Nikon, Plan
Apo 100x NA = 1.4) and a solid-state laser (λ = 561 nm). Individual images contain
512 × 512 pixels corresponding to 64 µm × 64 µm for α = 0.91 and 42 µm × 42 µm
for all other mixtures.

Particle tracking is performed using the size-sensitive algorithm by Leomach
and Tanaka [209]. Structural analysis includes the order parameter q6 ≡ q6(i)
(equation (7.23),[266]), calculated for each particle i, as well as the ensemble-
averaged version ⟨ql⟩ ≡ ⟨ql(i)⟩i (cf., section 7.5.2). Both quantities are based on the
Steinhardt order parameters [265], and the calculation incorporates the positions
of neighboring particles. We follow previous approaches and define neighbors with
a distance threshold (cf., [265, 266]). For each mixture, thresholds are taken from
the first major minimum of the respective pair correlation function. Results are
cross-checked with Voronoi neighbors as well as a fixed number of twelve neighbors
(cf., section 7.3). While the numbers of the q6-values, in fact, shift to smaller or
larger values, qualitative trends (on which we will mainly focus in section 8.4)
are not affected. By analyzing only particles that are located at least 3 µm away
from the boundaries of the confocal z-stack, we reduce possible edge and wall
effects. The averaged third-order bond order parameter w4 (equation (7.26)) is
also calculated [266]. A radical Voronoi tessellation, for the calculation of contact
numbers, is performed with voro++ [264]. The radical Voronoi tessellation calculates
a polyhedron for every particle, where the space inside the polyhedron is closer to
the surface of the interior particle than to any other particle’s surface. Renderings
are prepared using Ovito [243].
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Fig. 8.2 (a) Full distributions of q6 before any application of shear (i.e., step 1). (b)
Evolution of the ensemble-averaged structural order parameter ⟨q6⟩ for the four steps
of shear. Dashed lines are guides to the eye. Horizontal solid lines indicate qualitative
findings as obtained by inspection of raw images. (c) Full distributions of q6 at the end of
the experiment (i.e., step 4). The four steps of shear are defined in the text. Sizes ratios α
are given in the legend. All mixtures have a symmetric composition with X = 0.5.

8.4 Results
We first check whether samples crystallize without shear. After a time period of
three weeks, the α = 0.94 sample shows full and the α = 0.91 sample partial
crystallization. During the same amount of time, the α = 0.87 sample shows some
wetting at the surface but does not exhibit any crystalline regions in the bulk.
Accordingly, samples with α < 0.87 are not expected to crystallize either.

We now include shear: Figure 8.2 shows the main findings that can be grouped
as follows: All mixtures are amorphous after loading and before the application
of shear (i.e., step 1), as can be inferred, for example, from the evolution of the
ensemble-averaged structure order parameter as well as the initial distributions of
individual q6-values. For samples with small size ratios, that is, for 0.65 ≤ α ≤ 0.82,
nothing changes upon shear. They stay amorphous during all four steps of our
protocol. In contrast, samples with size ratios α ≥ 0.87 (partially) crystallize, as
quantified by an increase of the ⟨q6⟩-values under shear (cf., figure 8.2b).

For the sake of clarity, we will now focus on the four samples with size ratios
0.71, 0.82, 0.87 and 0.94. We choose these four representative samples because they
include the one with the most dominant ordering (i.e., α = 0.94), the one with the
smallest size ratio that still shows ordering under shear (i.e., α = 0.87), the sample
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with the highest size ratio that stays amorphous under shear (i.e., α = 0.82), as well
as a sample that is far away from any crystallization (i.e., α = 0.71).

We can take a direct look at the corresponding structures. Renderings of these
four mixtures before (i.e., step 1) and after shear (i.e., step 4) are shown in figure 8.3.
As can be seen, the α = 0.71 and α = 0.82-mixtures are amorphous in both cases.

In contrast, the α = 0.94 sample is amorphous before shear, but crystalline
afterward. In the latter, the stacking is a random mixture of hcp (ABABAB) and
fcc (ABCABCABC). Both stacking orders are distinguished using the second-order
bond orientational order parameter w4, where the hcp structure has positive and
the fcc structure has negative values, respectively [266] (data not shown here). As
can be seen in the rendering, the crystalline structure is interrupted by point- and
line-defects. Significant signatures of single cubic and body-centered crystals, as well
as icosahedral structures, are not found.

Interestingly, the α = 0.87 mixture has coexisting amorphous and crystalline
regions after shear. This enables us to investigate these structural differences in
more detail. To do so, we focus on extremely amorphous (i.e., q6 < 0.23) and highly
crystalline (i.e., q6 > 0.45) regions of this sample. Threshold values are chosen such
that each subpopulation corresponds to 10% of the total population. To account for
possible inhomogeneities in the distribution of bigger and smaller particles, we plot
histograms of particle sizes in figure 8.4. Clearly, crystalline regions have a larger
amount of bigger particles as compared to both the total and the amorphous part
of the sample.

In order to further reveal the impact of the particle size distribution on the global
structure, we analyze the local topology on a single-particle level by considering
the total number of nearest neighbors around each particle. Here, neighboring
particles are defined from the radical Voronoi tessellation (where the total number
of neighbors corresponds to the total number of faces of a given polyhedron). The
histograms of radical Voronoi contact numbers Nc are shown in figure 8.5.

For the two binary mixtures that show (partial) crystallization (i.e., α = 0.94 and
α = 0.87), the total radical Voronoi contact distribution is unimodal and symmetric.
The histograms are further subdivided into big and small spheres. In both cases,
bigger spheres have a higher number of contacts than the smaller spheres. The mean
values are ⟨Nc⟩small = 13.6 and ⟨Nc⟩big = 14.5 for α = 0.94, and ⟨Nc⟩small = 13.6
and ⟨Nc⟩big = 14.8 for α = 0.87. In the case of the α = 0.82 sample, the individual
histograms for small and big particles are now well distinct with mean values of
⟨Nc⟩small = 13.2 and ⟨Nc⟩big = 15.7, respectively. Additionally, the total distribution
is broader and asymmetric. For α = 0.71, the contact histogram is bimodal and the
mean values of the big and small species are well separated.

For samples close to the crystal-amorphous transition (i.e., α ≈ 0.87), we also
study different compositions, that is, we repeat the experiments with X = 0.2 and
X = 0.8. The results after shear (i.e., step 4) are shown in figure 8.6. Asymmetric
mixtures with a more dominant amount of small spheres (i.e., X = 0.2) or big
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8.4 Results

Fig. 8.3 Renderings of the samples with (from top to bottom) α = 0.94, α = 0.87,
α = 0.82, α = 0.71 before (left) and after shear (right). Particles are drawn according
to their size and marked blue for a liquid state (q6 < 0.33) and red for a crystal state
(q6 > 0.33). Directions of shear as indicated.
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Fig. 8.4 Histogram of particle sizes for the α = 0.87 sample after shear (i.e., step 4) for
very crystalline particles q6 > 0.45 (red), very amorphous particles q6 < 0.23 (blue), and
the total population (black).

spheres (i.e., X = 0.8) yield a higher ⟨q6⟩-values, indicating a more ordered sample.
For the given set of data, the change of ⟨q6⟩ is relatively small, that it, the overall
structure is not changed a lot. Samples that show (partial) crystallization at X = 0.5,
still show (partial) crystallization at the other compositions. The only difference is
that crystallization is more pronounced in the asymmetric mixtures. For X = 0.2
and X = 0.8, we find large areas that consist of essentially one component. In the
mono-component case (i.e., X = 0 or X = 1), a full crystal is expected for all
particle sizes.

As with different compositions, we also check a couple of different volume fractions
and we have indications that the ability to crystallize is affected by ϕ. For instance,
the α = 0.87 sample, which shows (partial) ordering at ϕ = 0.58, stays amorphous
at ϕ = 0.61.

8.5 Discussion
For studies of noncrystallizing systems, binaries with a size ratio of 1:1.4 (i.e.,
α = 0.71) are frequently used [138, 187, 294]. This is supported by our experiments:
We find that the limiting size ratio, which separates binary mixtures that can
crystallize from those that cannot, is in the range 0.82 < α < 0.87. Our critical size
ratio thus corresponds to a critical polydispersity of 8% ≲ δ ≲ 10% and is, therefore,
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Fig. 8.5 Radical Voronoi contact number per species for (from top to bottom) α = 0.94,
α = 0.87, α = 0.82, α = 0.71 after shear (step 4). Data are shown for smaller spheres
(orange), larger spheres (green), and all spheres (black).
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Fig. 8.6 Ensemble-averaged order parameter ⟨q6⟩ as a function of composition X for
ϕ = 0.58. Size ratios α are indicated in the legend.

in good agreement with previous theoretical work on equilibrium systems [90].
In mixtures that show crystallization, we observe randomly close-packed structures,

in perfect agreement with previous work [83, 285]. The orientation of the crystals
is expected to depend on the strain amplitude [228, 285]. We do not observe any
preferred orientation for all of our crystallizing samples. This might be related
to our shear protocol, which incorporated both high (γ0 > 50%) and low strains
(γ0 < 50%).

In terms of composition, we observe that symmetric mixtures are best suited
to prevent crystallization (cf., figure 8.6). This is in qualitative agreement with
simulations on binary colloids [295], theory [296, 297], and results from metallic
alloys [276].

Fractionation (or demixing) is predicted for polydisperse samples at equilibrium
[93, 298, 299]. We do not observe fractionation in our experimental time window.
Also, the formation of more complex crystal structures, like AmBn with m and
n > 1, is not found in our experiments. Nevertheless, the mixtures could fractionate
on much longer time scales.

We observe a liquid-crystal coexistence for α = 0.87. The crystalline part contains
a larger number of bigger spheres than the liquid, in agreement with previous
results [83, 90, 295]. Williams et al. state that crystallites in an α = 0.90 mixture
form in places where the composition is favorable, and that crystallization should
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be considerable slower below α = 0.90 [295]. Similarly, it has been found that
small particles are expelled from crystallites [209] and that crystals consist of
predominantly big spheres [95]. This is also in agreement with the spindle type
phase diagram for size ratios close to unity [104, 110].

In previous work, it has been found that larger impurities, that is, bigger particles,
have a more disruptive influence on a lattice than smaller ones [104, 277]. Along
these lines, Martin et al. find that a size distribution that is skewed to smaller sizes
decreases crystallization by an order of magnitude [275]. This can be understood with
the help of a Gedankenexperiment: Let us assume a close-packed crystal consisting
of identical spheres. Replacing a spherical particle of the crystal with a smaller one
is certainly less destructive than replacing it with a bigger particle, especially, if the
diameter of the bigger particle is larger than the lattice spacing. From our findings,
we conclude that few big particles can indeed destroy a mono-crystal, but a few
crystallites of small spheres may persist.

Similarly to inhomogeneities in the distribution of particle sizes, there are possibly
density inhomogeneities. For instance, it has been reported that shear-induced
crystal structures within a glass create additional free volume [300]. The general
agreement is that the crystalline phases have a higher volume fraction than the liquid
phase of the same sample [90, 95, 104, 296, 301]. Uncertainties in the experimental
determination of particle sizes [64] do not allow us to further contribute to this
issue.

Exploitable results are instead obtained by counting the number of neighboring
particles. The distribution of radical Voronoi contact numbers for the mixture with
α = 0.94 exhibits a peak around Nc = 14, which is in good agreement with Voronoi
contact numbers of a concentrated one-component glass [256]. Note, that we would
find a maximum of 12 instead of 14 nearest neighbors if we would consider neighbors
from a cutoff distance that is taken from the first minimum of the pair correlation
function (data not shown). Using the terminology of Bernal, Voronoi contacts are
geometrical neighbors, while the particles within the first shell of the pair correlation
function are physical neighbors [302]. Our results of the number of neighbors are also
consistent with the picture described by Egami for the stability of metallic alloys
[303] as well as theoretical considerations on parking numbers [304]. A higher contact
number for larger as compared to smaller spheres is also reported in reference [293].

To correlate the number of neighbors with the ability to crystallize, we propose
a qualitative picture that has already been noted by Smithline and Haymet [305].
Their idea is that for a size ratio far enough from unity, it becomes geometrically
more and more difficult packing the same number of neighbors around each sphere.
This qualitative difference between bigger and smaller particles is reasonable since
bigger particles have a larger surface area than smaller ones and thus have, on
average, more contacts.

Finally, crystallization depends on the volume fraction. For instance, increasing
the volume fraction avoids crystallization [275] (cf., section 2.4.3). Preliminary
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results on the α = 0.87 mixture support this: While it shows (partial) ordering
under shear at ϕ = 0.58, it does not show ordering at ϕ = 0.61. A kinetic argument is
that particle rearrangements get more tricky above the glass transition. Additionally,
the maximum packing fraction for ordered structures decreases as a function of
polydispersity [87]. For δ ≈ 12%, the maximum packing fraction is the same for
ordered and disordered systems [87]. Thus, for a given volume fraction and size
ratio, it may no longer be desirable to form crystals.

8.6 Conclusion
We investigated binary mixtures in the vicinity of the colloidal glass transition under
oscillatory shear and determined the microscopic structure of the mixtures with
confocal microscopy. For ϕ = 0.58, we have identified three different regimes in the
size ratio range 0.65 ≤ α ≤ 0.94. For size ratios close to unity (i.e., 0.91 ≲ α ≲ 1),
the mixtures form random close-packed crystals in the quiescent state as well as
under shear. For 0.83 ≲ α ≲ 0.91, crystal nuclei are only observed under shear and
details depend on the size ratio and composition. Asymmetric compositions show
higher ⟨q6⟩-values than symmetric mixtures. For size ratios α ≲ 0.83, no crystalline
regions are observed at any instant. We believe that mixtures can form substitutional
crystals if the individual particles are similar enough such that both bigger and
smaller spheres can have an equal number of contacts. In a random hexagonal close
packing, the nominal number of neighbors is 12. For size ratios α ≲ 0.91, the surface
area of the small particles is too small to keep contact with 12 neighbors, while
bigger particles can have many more contacts. As a consequence, any formation of
simple hexagonal structures is suppressed. Future studies could extend the range of
volume fractions or vary the shape of the size distribution of the particles.
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9
Colloids under Large Amplitude
Oscillatory Shear: You Spin Me

Round

9.1 Abstract
Yielding and flow of colloidal hard spheres (0.57 ≤ ϕ ≤ 0.65) is studied under large
amplitude oscillatory shear (LAOS). Rheologically, the transition from elastic to
viscous behavior is investigated in terms of Fourier rheology, Lissajous–Bowditch
figures, and an elastic-viscous stress decomposition. Microscopically, the response
of the system is analyzed in the framework of reversible and irreversible particle
motions, based on stroboscopic and continuous imaging. In the linear viscoelastic
regime, particle motions are found to be almost fully reversible. For strain amplitudes
above the yield strain, particle motions get increasingly decorrelated with both an
increasing number of shear cycles and an increasing strain amplitude. Furthermore,
the system is found to shear thicken around the yield strain, which is located between
γ0 ≈ 2% (for ϕ = 0.65) and γ0 ≲ 20% (for ϕ = 0.57).
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9.2 Introduction
Large amplitude oscillatory shear (LAOS) has attracted interest in colloidal rheology
since it probes the nonlinear response and is supposed to give a deeper understanding
of the material properties. In oscillatory measurements, both strain amplitude and
oscillation frequency can be varied independently. Regimes of linear viscoelastic-
ity (cf., section 1.2) and nonlinear viscoelasticity (cf., section 1.3) are accessible
depending on the choice of amplitude and frequency. One advantage of LAOS is
that it disentangles strain and frequency dependence, which otherwise are typically
coupled under nonequilibrium conditions. LAOS experiments, including dynamic
strain sweeps (DSS), are standard tests in almost any rheological study and there is
a need for a deeper understanding, particularly with regard to complex viscoelastic
materials [16].

Colloidal glasses are an important example of viscoelastic materials and have
similarities to other industrially relevant systems such as, for instance, metallic
glasses. General microscopic and macroscopic properties of colloidal glasses have
been studied in detail (cf., section 2.5.3 and section 2.5.4). Due to their size, colloidal
glasses can be observed with a microscope and their dynamics are slow enough to
be followed with time. The equilibrium phase behavior of colloidal hard spheres
is driven purely by entropy (cf., section 2.4.1), where the relevant quantity is the
volume fraction ϕ = (N 4

3πR
3)/Vtotal, which relates the volume occupied by all N

spheres to the total volume. Around ϕg ≈ 0.58, colloids exhibit a glass transition (cf.,
section 2.5.2). The glass transition and the random close packing both depend on the
polydispersity (cf., section 2.4.3). The maximum packing fraction for monodisperse
hard spheres is reached at ϕmax = 0.74. Above the glass transition, particles are
kinetically arrested. They are trapped in cages formed by their neighbors (cf.,
section 2.5.3). Shear can break these cages. Accordingly, colloidal glasses show
viscoelastic behavior when subjected to shear. Colloidal glasses behave solid-like
at small strains and are liquefied at high strains, giving rise to a solid-to-liquid
transition. Similarly, a transition from reversible to irreversible particle motion is
observed. Shear can also induce order, which can be avoided with high enough
polydispersities (cf., chapter 8). Experiments have been performed at various volume
fractions, including ϕ = 0.1 − 0.4 [306], ϕ = 0.17 − 0.44 [307], ϕ = 0.51 − 0.57 [245]
and ϕ = 0.58 − 0.67 [30, 214, 308]. Glasses under oscillatory shear are also studied
by simulations including relatively low [307] and high volume fractions [309].

Many experiments involve shear cells [30, 214, 218, 245, 307, 308, 310] in combi-
nation with microscopy [218, 245, 307] or scattering techniques [30, 214, 308, 310].
In these experiments, shear is applied by two parallel plates and strain amplitudes
are typically restricted to strains below 100%. Couette cells are also used as well as
oscillatory channel flow [311]. Complementary to microscopic techniques, also pure
rheology experiments are conducted with glasses under LAOS [16, 166]. Previous
work has suggested combining rheology and confocal microscopy to shed light on
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the flow of colloidal glasses under shear [30]. If both microscopic and rheological
data is presented in one study, then they are usually measured individually (cf., e.g.,
[30, 218]).

The typical number of oscillation cycles is relatively small in experiments. Micro-
scopic analysis is based on dynamics after one [218], up to three [245], sixteen [310],
or at least 21 cycles [308]. Higher numbers of oscillations are studied by simulations,
reaching up to 100 [307] or more than 1000 cycles [309].

We can extract the following landmark observations from previous studies: Diffu-
sion increases with increasing shear rates [311]. While dilute samples follow reversible
motions for small shear strains, there is a “transition to chaos” for larger strains
as confirmed by experiments and theory [306, 309]. In this respect, chaos refers to
irreversible particle motions. While details depend on the initial configuration of
the system, averaged values are independent of the initial state [309].

Reversibility is understood in the view of “cage elasticity” [30]: Cages, formed by
surrounding particles, can deform elastically until a finite yield strain (sometimes
also called characteristic or critical strain). Only above the yield strain, cages break
up and the local neighborhood of a particle changes. Shear-induced rearrangements
under oscillatory shear are localized and spatially heterogeneous [218, 245, 310],
consistent with findings under steady shear [182]. While Hébraud et al. state that
the fractions of mobile and immobile particles stays constant [310], Knowlton et al.
argue that they change with time [218]. Nevertheless, even for strain amplitudes
of γ0 = 12%, a small fraction of particles shows essentially reversible motion after
one cycle of shear [310]. Along these lines, cage elasticity is found to exist even in
the fluidized regime. Under large shear, cages break up and reform continuously,
leading to a finite elasticity – even for large strains [16, 312].

It is attempted to quantify the transition from elastic/solid/reversible to vis-
cous/liquid/chaotic behavior by a characteristic shear strain γc. From a rheological
perspective, a static yield strain can be extracted from start-up experiments. Under
oscillatory shear, a dynamical yield strain is typically defined as the cross-over strain,
where the elastic and viscous moduli are equal (G′ = G

′′). From a microscopic point
of view, definitions of yield strains are based on decays of correlation functions or
the nature of individual particle motions. Characteristic values from macroscopic
(rheology) and microscopic (e.g., scattering) techniques for concentrated samples
(ϕ ≈ 60%) yield values that are somewhere between γc = 6−20% [30, 218, 309]. The
yield strain depends explicitly [218, 307] or implicitly [310] on the volume fraction.
For instance, yield strains for dilute samples (ϕ = 10%) are found to be much
higher (≳ 1000%) [306]. The microscopic yield strain is smaller than the rheological
cross-over strain [218]. Finally, the yielding transition is found to be smooth in
rheology but sharp with respect to microscopic mobility [218].

This study will focus on colloidal glasses around and above the colloidal glass
transition. As a special feature, the sample will be probed simultaneously by rheology
and confocal microscopy. Therefore, observations from rheology and microscopy
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Fig. 9.1 (a) Image of dried “ASM 126”-particles as obtained with electron microscopy in
the Center for Advanced Imaging (CAi) at HHU Düsseldorf. (b) Corresponding histogram
of particle radii. The mean value is R = 108 nm, and the polydispersity is δASM126 = 23.6%.
It is expected that particles are bigger if dispersed in a liquid than in the dried state.
Dynamic light scattering experiments on particles from the same batch yield an average
radius of 157 nm. The value R = 157 nm is later on used for scaling purposes.

actually are based on the same sample under the same conditions. Fundamental
assumptions based on velocity profiles or wall slip are checked directly. Furthermore,
by using Fourier series, phase shift angles, shear thinning and thickening parameters,
as well as confocal particle motions, we try to provide a comprehensive rheological
and microscopic picture.

9.3 Materials and Methods
Experiments are performed with spherical PMMA-particles (cf., section 2.3). Parti-
cles are taken from the batch “ASM 126,” synthesized by A. B. Schofield. Figure 9.1a
shows a scanning electron microscopy image (SEM-image) taken at CAi (HHU Düs-
seldorf), together with the size distribution of particles as determined from that
image. The SEM-image shows dry particles. During experiments, particles are
dispersed in a refractive index matching mixture of cis-decahydronaphthalene (cis-
decalin) and tetrahydronaphthalene (tetralin). This solvent mixture has been used
before [31, 107, 127, 282, 313, 314] and is expected to provide the hard-sphere
behavior of PMMA spheres [128, 240]. The mean radius of the “ASM 126”-particles,
dispersed in Octadecene, is R = 157 nm, as determined by A. Pamvouxoglou using
static light scattering (SLS). The “ASM 126”-particles are not fluorescent. “Bigger”
particles – dyed with rhodamine B – are added (i.e., 1% (V/V)) and act as tracers.
The tracer particles are taken from the batch “Rhodamine 47.1%,” synthesized by
M. A. Escobedo Sánchez and J. P. Segovia Gutiérrez. The radius of the tracers is
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ϕ/ϕm 0.83 0.86 0.89 0.92 0.95
ϕ 0.57 0.59 0.61 0.63 0.65

Tab. 9.1 Relative ϕ/ϕm and absolute volume fractions ϕ of the samples. Samples are
prepared using relative volume fractions. Absolute volume fractions are obtained by
multiplication with the volume fraction after sedimentation, that is, with ϕm = 0.687.
More details in the text.

Rtracer = 795 nm, as determined by confocal microscopy.
Five different volume fractions of the combined system are achieved by diluting

a sediment of particles after centrifugation at 1490 g. A priori, it is not trivial to
know the volume fraction ϕm of the sediment. Thus, reduced volume fractions ϕ/ϕm

are reported to handle the uncertainty of absolute volume fractions. It is typically
assumed that the volume fraction of the sediment ϕm is equal to the random close
packing, that is, ϕm = ϕRCP . From the polydispersity δ = 23.6% (cf., figure 9.1), a
random close packing close to ϕ = 0.68 or ϕ = 0.69 is expected [91]. It will turn
out that a packing of ϕm = 0.687 fits the rheological data quite well (cf., figure 9.4),
in perfect agreement with the assumption based on the polydispersity. The high
polydispersity furthermore ensures that results are not affected by any shear-induced
ordering. Relative and absolute volume fractions of the probed samples are given in
table 9.1.

Measurements are performed with the rheo-confocal setup (cf., section 4.2). The
rheometer and confocal microscope are synchronized electronically, and image
acquisition is triggered depending on the rheological tests. The stress-controlled
rheometer (Anton Paar 302, WESP) is equipped with a cone-plate geometry (Anton
Paar, CP25-2/S, SN36375). The cone is sandblasted and has a diameter of d =
24.9826 mm, an angle of β = 2.001◦ and a truncation gap of h = 106 µm. A coverslip
(diameter: 50 mm, nominal thickness: 0.17 mm) acts as a bottom plate. The coverslip
is scratched with sandpaper to reduce wall slip. Measurements are performed at
T = 20.5 ◦C and a solvent trap filled with cis-decalin is used to prevent solvent
evaporation.

In the case of oscillatory shear, a sinusoidal strain γ(t) = γ0 sin(ωt) is applied
and the full waveform of the stress signal is recorded. For measurements with
simultaneous stroboscopic confocal imaging, an oscillation cycle is discretized by
128 points and the tests are designed such that an electronic trigger signal is sent
to the confocal unit at predefined points of the shear cycle. In either case, a strain
range from 0.5% up to 500% is covered.

The oscillation frequency is chosen according to the following constraints: The
frequency should be high to minimize the overall duration of the experiment due to
sedimentation and evaporation issues. On the other hand, it should be reasonably
small, such that any uncertainties from the triggering only result in small uncer-
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job name γ0 or γ ω/f or γ̇ duration confocal
sample at rest 0% 0 s−1 483 s ✓

RJ (first part) 200% 1 Hz 60 s
RJ (second part) 2% 1 Hz 120 s
DFS 1% 1% 100-0.01 rad/s 3416 s
DFS 2% 2% 100-0.03 rad/s 1108 s
DSS 0.1 Hz 0.5-500% 0.1 Hz 1240 s ✓

DSS 1 rad/s 0.5-500% 1 rad/s 1953 s
waveform various 0.1 Hz 15 · 100 s ✓

start-up 1 s−1 0-50000% 1 s−1 500 s ✓

start-up 0.2 s−1 0-10000% 0.2 s−1 500 s ✓

flowcurve 10-0.002 s−1 1574 s

Tab. 9.2 Details of the utilized rheological tests. The first column contains the code-
name of each test. Column two, three, and four contain the applied strain range or strain
amplitude, the oscillation frequency or shear rate, and the total duration of each test. No
shear is applied during the test “sample at rest.” The rejuvenation procedure (“RJ”) is
a combination of two tests and, therefore, split into two parts. Further tests include a
dynamic frequency sweep (DFS), a dynamic strain sweeps (DSS), start-up experiments
(start-up), and a flowcurve (flowcurve). The “waveform” stands for the application of a
discretized sinusoidal strain. This test is performed at various strain amplitudes, explicitly
at γ0 = 0.632%, 1%, 1.59%, 2.52%, 3.99%, 6.32%, 10%, 15.9%, 25.2%, 39.9%, 63.2%, 100%,
159%, 252%, and 399%. The actual running sequence of the tests is given in table 9.4.

tainties in units of strain. Similar to diffusing wave spectroscopy (DWS) – where
the width of the echos scale with the inverse shear rate [310] – the time window to
capture the same point of strain during a cycle decreases with increasing oscillation
frequency. Also, it takes a finite time to capture one image as well as to wait for
and process the trigger signal. Finally, for continuous image acquisition, the strain
rate amplitude γ̇0 = ωγ0 needs to be small enough to allow for particle tracking. For
oscillatory shear with simultaneous confocal microscopy, a relatively low frequency of
f = ω/2π = 0.1 Hz is chosen, resulting in a Péclet number of Peω = ωτB = 0.034. If
not stated otherwise, rheological values are obtained directly from the RheoCompass
Software (Anton Paar GmbH). More details of the rheological tests are given in
table 9.2.

Simultaneous confocal data is recorded with a confocal scan head (Visitech,
VTEye) mounted on an inverted microscope (Nikon, Eclipse Ti) equipped with an
oil-immersion objective (Nikon, Plan Fluor, NA=1.3, 100x; immersion oil: type HF,
viscosity: 700cSt, Cat. No. 16245). The objective is focused on an area located in a
radial distance of r = 10 mm away from the center of the cone to avoid edge effects.
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At this radial distance, the gap height is h = r tan(β) = 350 µm, such that there
are around 1100 (small) particles are filling the gap. Z-Stacks can be acquired until
a height of 100 µm. The height is limited by the range of the piezo as well as the
working distance of the objective. If not stated otherwise, images are recorded in a
height of 50 µm above the bottom plate to avoid boundary affects while at the same
time maintaining good image quality. Two-dimensional image series are recorded,
where a single image contains 512 × 512 pixels and covers an area of 51 × 54 µm2.

For specific oscillatory tests, the confocal image acquisition is triggered to capture
images at predefined points during an oscillation cycle (as stated before). In that case,
several stroboscopic movies are recorded with one frame per cycle. One predefined
point is, for instance, at the maximum positive strain. Having a total of 10 cycles
then yields a movie with 10 frames, where each frame images the sample at γ = +γ0.
The images of these stroboscopic echo-style experiments are analyzed using the
Pearson correlation coefficient (PCC) (cf., section 7.1.3). We define

PCC(τ) ≡ ⟨PCC(a(t), a(t+ τ))⟩t , (9.1)

where the images a are taken at times t and t + τ , respectively. The average is
taken over all times (i.e., over all available images), and lag times τ will later be
given in multiples of the oscillation period tp. The use of the Pearson correlation
coefficient is motivated by the following consideration: If particles move in or out of
focus, their apparent intensity will change. Thus, a normalized cross-correlation –
as it is the case for PCC – is used instead of a phase correlation, where knowledge
of the intensity would be lost (cf., section 7.1.2). To allow for uncertainties in the
triggering process, equation (9.1) is not performed directly on the raw images. An
additional step is inserted before: Raw images are first preprocessed to remove
any global offset between them. This is done in conjunction with the IDL routine
correl_images.pro, which is available online [315]. Only then, these preprocessed
images are correlated using equation (9.1).

Apart from stroboscopic imaging, images are sometimes also recorded continuously
with a frame rate of 10 or 50 frames per second (fps). Details are given in table 9.3.

Before starting a series of measurements, the following actions are taken: The
rheometer is calibrated by means of a motor adjustment and instrument inertia
calibration using the RheoCompass software. Samples are put in a vortex mixer for
15 minutes to homogenize the sample. Since the mixer produces heat, the samples
are afterward cooled down in a fridge at T = 10 ◦C for 10 minutes and subsequently
placed next to the rheo-confocal setup for one hour at T = 20.5 ◦C to equilibrate.
Samples with ϕ/ϕm = 0.95, ϕ/ϕm = 0.92, and ϕ/ϕm = 0.89 are loaded with a
spatula, while samples with ϕ/ϕm = 0.86 and ϕ/ϕm = 0.83 can be poured directly
from the vial. After loading, samples are sealed and stored in a fridge at T = 10 ◦C.

The full sequence of executed tests is given in table 9.4. Sometimes, images have
to be exported and consequently deleted from the memory before another set of
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job name z/ µm images fps trigger τw/ s iteration
sample at rest 0-75 15x418 50 ✓ 60 1
DSS 0.1 Hz 50 1950 per γ0 50 ✓ 0 1 per γ0

waveform 50 2 per cycle ✓ 0 10 per γ0

start-up 1 s−1 0-100 500 50 ✓ 60 2
start-up 0.2 s−1 0-100 100 10 ✓ 60 2

Tab. 9.3 Summary of the confocal parameters for tests with simultaneous confocal
imaging. All images are recorded in a radial distance of 10 mm with respect to the center
of the cone. The first column contains the code names of the tests. Identical code names
with table 9.2 indicate that these tests are simultaneously measured with rheology and
confocal microscopy. Column two reveals the height z, in which the images are taken. For
the start-up experiments, images are acquired between z = 0 µm and z = 100 µm in steps
of zstep = 10 µm. A waiting time of five seconds is inserted after each piezo move. Column
three and four show the number of recorded images and the frame rate, respectively. In all
cases, image acquisition is triggered externally by the RheoCompass Software as indicated
in column five. Images are either taken directly at the start of the test (τw = 0 s) or with
a delay (τw = 60 s). Finally, the last column shows how many loops are executed during
the same test.

images can be captured. This constraint results from the VoxCell software that
controls the confocal microscope. The sequence of tests accounts for this. Confocal
images are only taken during “high-priority” tests so that confocal images can be
exported while “low-priority” points are measured with the rheometer alone. The
total experiment (full job list) lasts about four hours. All tests are repeated once
and results are found to be reproducible. For the sake of clarity, sometimes only
data of one experiment will be presented.

9.4 Results
This section is organized as follows: First, standard rheological tests characterizing
the sample will be shown. In this context, confocal microscopy will reveal velocity
profiles under steady shear. Afterward, the focus will be largely on oscillatory tests,
especially on a dynamic strain sweep (DSS) at f = 0.1 Hz. The results will be first
analyzed using different rheological methods. Insights from stroboscopic confocal
imaging then add to the rheological findings. Individual results are discussed directly
in this section. A general comparison of the results from this work with previous
literature will be part of the discussion in section 9.5.

Let us first have a look at the sample before any application of shear. Figure 9.2
shows a 3D-reconstruction as obtained from confocal microscopy. Only the tracer
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number job name
1 sample at rest
2 RJ (“Rejuvenation”)
3 DFS 2%
4 RJ
5 DSS 0.1 Hz
6 RJ
7 DSS 1 rad/s
8 RJ

9-23 waveform(s)
24 RJ
25 flowcurve
26 RJ
27 DFS 1%
28 RJ
29 sample at rest
30 RJ
31 start-up 1 s−1

32 RJ
33 start-up 0.2 s−1

Tab. 9.4 Running sequence of all executed tests. Details of the tests are given in table 9.2
and table 9.3, respectively. The duration of the entire job list is roughly four hours. The
test with number 33 has been added later and is not included in the measurements of the
ϕ/ϕm = 0.95 sample.
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Fig. 9.2 Reconstruction of 664 tracer particles. The volume has a dimension of 51 µm ×
54 µm × 74 µm. Particles are drawn with half of their real size. Data is obtained from the
ϕ/ϕm = 0.86 sample during job #1.

particles are visible. The rest of the sample is not fluorescent and, therefore, not
detected. Nevertheless, three observations can be made: First, the distribution of
tracers is homogeneous. This is reassuring. It confirms that mixing the sample
with the vortex mixer creates homogeneous samples. Second, the number of tracer
particles gives a relative volume fraction of the tracer particles of approximately
1%. This is consistent with sample preparation. Third, no sedimentation of tracer
particles is observed over time. These three observations are also confirmed by
confocal imaging at the very end of a measurement (data not shown here).

From a rheological point of view, the sample is first characterized by means of
a dynamic strain sweep (DFS), given in figure 9.3: The viscous moduli show a
minimum around Pe ≲ 0.01, which corresponds to a characteristic time of τβ ≳ 30 s
(cf., section 2.5.4). A potential peak at smaller frequencies is outside the experimental
window. The elastic moduli are almost independent of the oscillation frequency and
always larger than their viscous counterparts. Samples of all volume fractions thus
behave solid-like in the applied range of frequencies. A relation between the elastic
moduli and the volume fraction for hard spheres has been established by Koumakis
et al. [220]. Their empirical model can be compared with data from this work. This
is done in figure 9.4. Reasonable agreement is obtained, if one sets ϕm = 0.687 for
all scaled volume fractions ϕ/ϕm. This is consistent with the estimate of the random
close packing based on the polydispersity of the samples [91].

Further characterization of the sample is done by means of a flowcurve. Scaled
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Fig. 9.3 DFS at γ0 = 1%. The dashed line is at Peω = 0.34 (cf., figure 9.4). The gray
area shows the region, where the instrument inertia equals the inertia of the sample (cf.,
equation (1.46)).
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Fig. 9.4 Scaled elastic moduli G′
R3/kBT at Peω = 0.34 as a function of absolute volume

fraction ϕ. For each volume fraction data points from two independent experiments are
plotted. They overlap almost completely. Symbol colors and shapes correspond to those
in figure 9.3. The absolute volume fractions ϕ are obtained from relative volume fractions
ϕ/ϕm by setting ϕm = 0.687. The solid line is taken from reference [220].
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Fig. 9.5 Flowcurves with scaled stresses as a function of Péclet number for all vol-
ume fractions as indicated in the legend. Lines are fits to the Herschel-Bulkley law
(equation (1.18)). Vertical dashed lines are located at Pe = 0.011 and Pe = 0.054.

shear stresses over a wide Péclet range are shown in figure 9.5, together with fits
according to the Herschel-Bulkley law (cf., equation (1.18)). The Herschel-Bulkley
law fits the data well, indicating hard-sphere-like behavior. The fits give yield
stress values of σyR

3/(kBT ) ∈ [0.50, 1.4, 3.5, 8.5, 39]. The flow index is υ = 0.50
for both ϕ/ϕm = 0.83 and ϕ/ϕm = 0.86, in agreement with previous work [12].
For the higher volume fractions, the flow index deviates from the value 0.5 (i.e.,
υ(ϕ/ϕm = 0.89) = 0.44, υ(0.92) = 0.36, υ(0.95) = 0.28).

To investigate the flow in greater detail, transient start-up tests are performed at
γ̇ = 0.2 s−1 and 1 s−1, corresponding to Pe = 0.011 and Pe = 0.054. The results are
given in figure 9.6. The data for short times (t ≲ 0.5 s) is very scattered and, for the
sake of clarity, only shown for one volume fraction. Remember that the rheometer is
stress-controlled and the application of a constant shear rate works via an iterative
process. This may make it difficult to determine a yield strain from this steady shear
experiments. If we consider the ϕ/ϕm = 0.92 sample at γ̇ = 0.2 s−1, the peak of the
stress overshoot could be located around γ ≈ 15%. The position of the peak of the
stress overshoot is expected to increase with increasing Péclet [220]. Figure 9.6a
and figure 9.6b include a time axis to show the time window where confocal images
are taken. The time windows are in both cases well in the rheological steady-state
regime where the shear stress does not change with time.

Confocal images are taken in different heights (cf., table 9.3) and the corre-
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Fig. 9.6 Start-up tests at (a) γ̇ = 0.2 s−1 and (b) 1 s−1. Data at small times (t ≲ 1 s)
is scattered and not shown for clarity. The gray shaded areas indicate regions with
simultaneous image acquisition.
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sponding shear-profiles are shown in figure 9.7. In all cases, a linear shear profile
is observed, with considerable slip for higher volume fractions. The agreement of
the ϕ/ϕm = 0.83 sample with the “ideal” Newtonian velocity profile is astonishing.
These velocity profiles contain valuable information that should be kept in mind for
the interpretation of the previous and upcoming rheological and confocal data.

Is there a link between the shear profiles under steady and the behavior under
oscillatory shear? To test this, tracer motions in a height of z = 50 µm are analyzed
during the dynamic strain sweep at f = 0.1 Hz. For simplicity, we will first focus on a
fixed macroscopically applied strain amplitude, namely, γ0 = 159%. This macroscopic
strain amplitude is chosen on purpose: The macroscopic amplitude of the shear rate
under these conditions is γ̇0 = 2πfγ0 = 1 s−1, and, therefore, comparable one of
to the conditions under steady shear (cf., figure 9.7b). The motion of particles is
obtained from particle tracking. At these relatively high strains, particles leave the
field of view (FOV) but there is always a finite number of particles inside the FOV
that can be tracked. From all particle trajectories, ensemble-averaged displacements
and velocities are calculated. Selected results are shown in figure 9.8 for volume
fractions ϕ/ϕm = 0.83 and ϕ/ϕm = 0.92. First of all, the confocal motions are well
fitted by the sine function

∆xconf = o0 + ∆xconf
0 sin(2πf conft+ ψ) . (9.2)

The amplitude of the “confocal displacements” ∆xconf
0 can be compared with the

maximum displacement ∆x0 = γ0z
conf that is expected in the case of a linear velocity

profile without slip. Here, γ0 is the applied macroscopic strain amplitude and zconf

the height, where the tracers are tracked. For ϕ/ϕm = 0.83, the agreement between
the measured and “ideal” motion is again astonishing. The confocal displacement
amplitude ∆xconf

0 = 78.8 µm is very close to the expected displacement amplitude
of ∆x0 = 79.5 µm. For the same externally applied stain, particle displacements
in the case of ϕ/ϕm = 0.92 are larger than expected. A fit to the data yields a
displacement amplitude of ∆xconf

0 = 104 µm, being 1.3 times larger than expected.
This deviation is reasonably close to the corresponding case under steady shear (cf.,
figure 9.7b), where the tracer velocity in a height of z = 50 µm is 1.4 times higher
than expected for a linear profile without slip. Accordingly, fitting the motion of
tracer particles under oscillatory shear can elucidate wall slip. Let us examine in
more detail the deviation between the observed displacement amplitude ∆xconf

0 and
expected displacement amplitude ∆x0. We define the relative error

Err(∆xconf
0 ) = ∆xconf

0 − ∆x0

∆x0
. (9.3)

Results over a wide range of strain amplitudes are summarized in figure 9.9, where
we show deviations of displacements Err(∆xconf

0 ) and frequencies

Err(f conf) = (f conf − f)/f . (9.4)
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Fig. 9.7 Velocity profiles at (a) γ̇ = 0.2 s−1 and (b) γ̇ = 1 s−1. Corresponding images
are acquired in the rheological steady state (cf., figure 9.6). The right axis shows heights
with respect to the gap height h. Volume fractions as indicated in the legend. Solid gray
lines represent a Newtonian velocity profile with vx = γ̇z.
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Fig. 9.8 Time-dependent local displacements ∆xconf(t) as obtained from confocal mi-
croscopy in a height of zconf = 50 µm for (a) ϕ/ϕm = 0.83 and (b) ϕ/ϕm = 0.92. In both
cases, macroscopic shear is applied at a strain amplitude of γ0 = 159%. Thus, the “ideal”
displacement amplitude is expected to be at ∆x0 = γ0z

conf = 79.5 µm, as indicated by the
dotted lines. Fitting the data with a sine function (∆xconf = o0 + ∆xconf

0 sin(2πf conft+ψ))
yields amplitudes of ∆xconf

0 = 78.8 µm and ∆xconf
0 = 104 µm for ϕ/ϕm = 0.83 and

ϕ/ϕm = 0.92, respectively. In both cases, the fitted frequency is identical with the applied
frequency (i.e., f conf = f = 0.1 Hz).
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Fig. 9.9 Maps with (a) local deviations of displacement amplitudes Err(∆xconf
0 ) and (b)

local deviations of oscillation frequencies Err(f conf) for all volume fractions. Definitions
of the quantities are given in the text. Stain amplitudes γ0 on the x-axis are macroscopic
values as applied by the rheometer. The macroscopic applied frequency is f = 0.1 Hz. The
figures contain interpolated results, and points inside the figure mark the underlying data
points from confocal microscopy. Positive values are colored red and negative ones blue.
Values close to zero are drawn in white. The top right area (dark gray) does not contain
data due to the limitations of particle tracking.

147



9 Colloids under Large Amplitude Oscillatory Shear: You Spin Me Round

1 1 0 1 0 0 1 0 0 0
0 . 0 1

0 . 1

1

1 0

1 0 0

1 0 0 0          
 
 
 
 
 
 
 
 
 
 

Fig. 9.10 DSS at f = 0.1 Hz. The gray area corresponds to the region below minimum
torque (cf., equation (1.43)). Lines show apparent slopes of -0.65 and -1.4, respectively.

From the discussion before, strain deviations can be interpreted as indications for wall
slip. Displacement deviations are negligible (i.e., Err(∆xconf

0 ≈ 0) for ϕ/ϕm ≈ 0.83
or γ ≲ 2%. They seem to increase around γ = 10% but definitely grow enormously
for ϕ/ϕm ≳ 0.92. The latter is consistent with the observation of wall slip under
steady shear (cf., figure 9.7).

We can now turn to the fitted oscillation frequencies f conf. It seems far-fetched
that wall slip will affect the oscillation frequency. This assumption is consistent
with figure 9.9b, where the frequency deviations Err(f conf) are shown as a func-
tion of volume fraction and strain amplitude. The deviations are relatively small
(Err(f conf) < 4%). Notable deviations are only observed for very small strains
(γ ≲ 1%). At vanishing strain amplitudes, the motions of the tracers are so small
that they can hardly be detected with particle tracking. Thus, the deviations at small
strains are – at least to some extent – limited by the resolution of the microscope
and the accuracy of particle tracking.

Now that we have examined the motion of tracer particles under oscillatory shear,
we will once more take a look at the rheological data. The response to a DSS at
f = 0.1 Hz is shown in figure 9.10 for all probed volume fractions. All samples show
the characteristics of a weak strain overshoot (cf., figure 1.7). Interestingly, the
macroscopic rheological response seems not to be affected by slip. The following is
observed: For small strains, both the elastic and viscous moduli are independent
of strain. This is the linear regime (LVE). In the LVE, all storage moduli G′ are
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Fig. 9.11 Phase angle ϑ = arctan(G′′
/G

′) for the same data as in figure 9.10. Inset
shows a magnified area around ϑ = 45◦ (i.e., where G′ = G

′′). Volume fractions are
indicated in the legend.

greater than their viscous counterparts. Above γ0 ≈ 2%, the LVE ends and G′ starts
to decrease. At the same time the viscous moduli G′′ increase. They develop a peak
at around γ0 ≈ 10% and decrease afterward. The elastic and viscous moduli roughly
cross at the peak of G′′ . For high strains, the ratio of the slopes of G′ and G′′ in the
log-log representation is close to 2, as expected [316].

Elastic and viscous moduli are related via G′ = G
′′ tan(ϑ). The phase angle shift

ϑ is plotted as a function of strain in figure 9.11. Almost pure elastic (ϑ = 0◦) and
viscous behavior (ϑ = 90◦) is observed for small and large strains, respectively. A
closer look reveals that there is some viscous dissipation (i.e., ϑ > 0) also in the
above defined linear regime, especially for ϕ/ϕm = 0.83. In terms of the phase angle
shift ϑ, the transition from the solid-like to liquid-like behavior is smooth. A phase
shift angle of ϑ = 45◦ corresponds to the crossing of moduli. From the inset of
figure 9.11, the crossings can be read off at γ0 = [10%, 12%, 13%, 14%, 10%] for
ϕ/ϕm = [0.83, 0.86, 0.89, 0.92, 0.95], respectively.

Another way to interpret the dynamic strain sweep from figure 9.10 is to use
Fourier rheology (cf., section 1.4.2). The normalized 3rd and 5th harmonics of the
stress response are presented in figure 9.12. One can make the following observations:
The 3rd and 5th harmonic increase with increasing strain. At γ0 = 15%, the
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Fig. 9.12 Dependence of the 3rd (filled symbols) and 5th (open symbols) stress harmonic
as a function of strain amplitude for the same data as in figure 9.10. Stress harmonics
are normalized by the fundamental component σ1. Data for different volume fractions are
color-coded as indicated in the legend.

ratio σ3/σ1 is already equal to 0.1 and reaches up to 0.20 or 0.25 for high strains
(γ0 ≈ 200%). The higher harmonics σ5/σ1 show the same trend, but smaller in
magnitude and shifted to higher strains. It is remarkable that the ϕ/ϕm = 0.95
sample has significantly higher values for the 3rd harmonic for strains between 2%
and 20%. Generally speaking, significant contributions of higher harmonics indicate
that the stress response deviates from a simple sinusoidal response.

This can also be inferred from the full (normalized) waveform of the stress response.
Lissajous-Bowditch curves are shown in figure 9.13 for γ0 ∈ [1%, 10%, 20%, 100%]
and for all volume fractions. All curves have been normalized by the maximum stress
value, such that the values of the curves are constrained to the interval [−1, 1]. Let us
first take a look at the curves of the total stress (left column) with ascending strain
amplitudes. The curves should be traced clockwise. At γ0 = 1%, the curves are close
to a straight line through the origin. The enclosed area in the σ-γ-representation is
small, corresponding to almost no mechanical dissipation (cf., equation (1.25)). The
dissipation seems to be largest for the smallest volume fraction. With increasing
strain, the enclosed area and the mechanical dissipation increases for all volume
fractions. By further increasing γ0, the curves develop a more and more rectangular
shape but stay smooth. Only for ϕ/ϕm = 0.83 and γ0 = 100%, there might be a
small stress overshoot after strain reversal. Apart from that, all volume fractions
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Fig. 9.13 Normalized (elastic) Lissajous-Bowditch curves (stress vs. strain) for selected
strain amplitudes (i.e., γ0 ∈ [1%, 10%, 20%, 100%]) as indicated in the legend. Each row
corresponds to one volume fraction. The left column shows the total stress response
(to be read clockwise), and the right column the elastic stress component according to
equation (1.28). Normalization is done with respect to the maximum value per cycle.
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have very similar Lissajous-Bowditch curves for a given γ0.
This similarity is also reflected in the elastic stress component, which is shown

in the right column of figure 9.13. The elastic stresses are calculated according to
equation (1.28) and normalized in the same way as the total stress, that is, by the
maximum total stress value per cycle. In the σ-γ-representation, the elastic stresses
are represented by lines and the enclosed area is zero. This is expected because the
elastic stresses are lines by definition (cf., section 1.4.2). At γ0 = 1%, the lines are
straight and pass through the origin. This corresponds to an ideal solid, fulfilling
hooks law. The situation changes when we increase the strain amplitude γ0: First of
all, the lines do not reach σnorm = ±1. Thus, there has to be a considerable viscous
contribution and the samples behave only partially elastic. Furthermore, the lines
are not straight anymore, and one can make an interesting observation with respect
to the curvature of the lines: Let us take a look at the first quadrant (positive
values of γ and σelastic). While for γ0 = 10%, the second derivative d2σelastic/dγ

2 is
negative, it is positive for γ0 = 20% and γ0 = 100%. Thus, the intra-cycle elastic
stress response is reminiscent of strain softening for γ0 = 10% and of strain stiffening
for γ0 = 20% and γ0 = 100%. For γ0 = 100%, there is a considerable elastic stress
contribution only at γ = ±γ0, where the shear rate is lowest.

A complementary way to analyze the LAOS response is to look at the stress as
a function of shear rate. Corresponding curves are given in figure 9.14. As before,
the total stress is presented in the left column and the viscous stress is now shown
in the right column. In neither case is there a dependence on the studied volume
fractions for a given γ0. For γ0 = 1%, the curves of the (normalized) total stresses in
the σ-γ̇-representation are essentially equal to a circle, corresponding to a perfectly
elastic response. With increasing strain amplitude, the curves get more and more
asymmetric. One may think of grabbing the curves at their top-right and bottom-left
position and pulling them to [−1,−1] and [1, 1]. A straight line from [−1,−1] to
[1, 1] would correspond to an ideal fluid. This is not observed here. Instead, the
curves (to be read counterclockwise) show hysteresis.

In the right column of figure 9.14, the total stress is decomposed into viscous
stress according to equation (1.29). Viscous stresses are normalized in the same
way as the total stress, that is, by the maximum total stress value per cycle. One
can observe the following: All lines cross in the origin. For γ0 = 1%, the line is
very close to zero for all values of γ̇norm, meaning that there is a vanishing viscous
contribution during one oscillation cycle. This is consistent with figure 9.13, where
an almost ideal elastic behavior is observed at this small strain amplitude. Higher
strain amplitudes, instead, lead to higher (normalized) viscous stresses. Furthermore,
the viscous stresses are not linear anymore. The lines are curved and their curvature
depends on strain. Let us examine again the first quadrant: While the second
derivative d2σelastic/dγ̇

2 is positive in the case of γ0 = 10% and γ0 = 20%, it is
negative for γ0 = 100%. This can be interpreted as intra-cycle shear thickening and
thinning, respectively.
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Fig. 9.14 Normalized (viscous) Lissajous-Bowditch curves (stress vs. shear rate) for
selected strain amplitudes γ0 ∈ [1%, 10%, 20%, 100%] as indicated in the legend. Each row
corresponds to one volume fraction. The left column shows the total stress response (to
be read counterclockwise), and the right column the viscous stress component according
to equation (1.29). Normalization is done with respect to the maximum value per cycle.
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One can quantify the amount of shear thickening following Ewoldt at al.[25] (cf.,
section 1.4.2). The dimensionless strain-stiffening ratio ˜︁S (equation (1.35)) and the
shear-thickening ratio ˜︁T (equation (1.36)) are shown in figure 9.15. Recall that˜︁S > 0 ( ˜︁T > 0) resembles strain stiffening (shear thickening) and ˜︁S < 0 ( ˜︁T < 0)
describes intra-cycle strain softening (shear thinning). The color scale is chosen such
that red is positive and blue is negative. Let us first examine the strain-stiffening
ratio ˜︁S, shown in figure 9.15a: We may follow the evolution of ˜︁S from small to large
strains. Starting with a linear elastic response (i.e., ˜︁S ≈ 0), the system undergoes
strain softening in a small range around γ0 ≈ 7%, which is followed by a strain
stiffening regime above γ0 ≳ 20%. The three regimes (initial elastic response, strain
softening, strain stiffening) show only little dependence on the volume fraction.

Three regimes can also be identified with respect to the shear-thickening ratio ˜︁T ,
shown in figure 9.15b: For small strains (γ0 ≲ 2 − 3%), there is an (approximately)
ideal viscous behavior with a tendency to shear thinning ( ˜︁T ≲ 0) . Shear thickening
is observed around γ0 = 15% and the extent of this region depends on the volume
fraction. The shear thickening regime is more pronounced for the highest volume
fraction. Above γ0 ≳ 100%, shear thinning is observed again. The amount of
shear thinning then increases with increasing strain for all volume fractions. Shear
thinning at high strains is consistent with shear thinning at high Péclets in the
previously shown flowcurves. The thickening/thinning regimes are also consistent
with experimental results on hard spheres under oscillatory shear [317].

We may now switch from the analysis based on rheology to the analysis of the
confocal data. To this end, results from the “echo-style”-analysis will be presented.
During oscillation cycles, images (“echos”) are taken at γ = ±γ0. These points
are particularly suitable since the instantaneous shear rate is zero. The process of
the system under shear is quantified by image correlation as described earlier (cf.,
section 9.3 and equation (9.1)). Pearson correlation coefficients PCC(τ) for different
delay times τ are given in figure 9.16 for positions at maximum strain per cycle (i.e.,
γ = +γ0) and minimum strain per cycle (i.e., γ = −γ0). In the figure, the volume
fractions are increasing from bottom to top. At first sight, the correlation functions
decay faster with increasing γ0. For high strain amplitudes, the correlation functions
decrease to zero after two to three cycles. This suggests that at these high strains,
the sample is fully liquefied and has lost its memory.

An inspection of the raw images reveals that the decay of the (image) correlations
does not only result from particle rearrangements but also from offsets between
images. This is illustrated with a rather extreme example in figure 9.17, where
raw images are shown for ϕ/ϕm = 0.86 and γ0 ∈ [1%, 250%]. The contrast of the
images is enhanced and the gray levels are inverted such that tracer particles appear
dark on a bright background. Successive images are arranged from bottom to top
and correspond to the first, fifth and ninth oscillation cycle. The three images
for γ0 = 1% (figure 9.17a) are essentially identical. This is consistent with the
corresponding correlations functions in figure 9.16 that are between 0.9 and 1 (note
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Fig. 9.15 Two maps that show (a) the strain-stiffening ratio ˜︁S and (b) the shear-
thickening ratio ˜︁T as a function of the strain amplitude γ0 and the scaled volume
fraction ϕ/ϕm. The parameters ˜︁S and ˜︁T are calculated according to equation (1.35) and
equation (1.36), respectively. Data points are based on the same DSS (at f = 0.1 Hz) as
in figure 9.10.
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Fig. 9.16 Set of echo style confocal analysis based on raw images taken at γ = ±γ0
(left and right column, respectively) during oscillatory shear for samples with (from top to
bottom) ϕ/ϕm = 0.95, ϕ/ϕm = 0.92, ϕ/ϕm = 0.89, ϕ/ϕm = 0.86, and ϕ/ϕm = 0.83. Data
is based on jobs #9-23 (cf., table 9.4). Further details in the text.
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(a) (b)

Fig. 9.17 Example set of confocal images used for the echo-style analysis. Shown are
the 1st, 5th, and 9th image of an image series taken at maximum strain during oscillatory
shear with strain amplitude (a) γ0 = 1% and (b) γ0 = 250%. Presented data is from the
ϕ/ϕm = 0.86 sample. The figure contains images with the following modifications: gray
levels are inverted, and contrast is enhanced.
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that the values are partially hidden behind other data points). When one looks
at the images for γ0 = 250% (figure 9.17b) and calculates the Pearson correlation
coefficient for the top and bottom image (which are separated by 8 oscillation cycles),
the result is roughly PCC(8 tp) = 0.1. A correlation value so close to zero intuitively
suggests that the images look very different. But one may argue that the images for
γ0 = 250% are in fact not that different: There are a few repeating patterns. The
tracer particles (dark points) in total move upwards (from image 1 to 9), but their
relative positions do not change dramatically. Similar observations are also observed
for other image series. Besides, tracer particles are also found to (collectively) move
to the right, left or any other direction. Between some images, the offset might be
only a few pixels, in others, the global offset can be as large as a few tens of pixels.

One, therefore, might try to distinguish two phenomena: One phenomenon is that
the decay of the echos stems from a global or collective translation of (all) particles
in the field of view. This could be related to slip, imprecision of the experimental
setup or any additional, non-reversible motion. This is different from decays due
to relative particle motions. To separate the two phenomena, one can attempt to
reject the global translation and only analyze changes in relative positions of tracer
particles. Therefore, global offsets are removed from the raw images in an additional
step. This can be interpreted as going from the laboratory reference frame to a local
sample reference frame.

Corresponding reshifted images of the sample are shown in figure 9.18, again
for ϕ/ϕm = 0.86 and γ0 ∈ [1%, 250%]. By construction, there is hardly any total
tracer movement (i.e., ∑︁tracers δr⃗ ≈ 0) and the images appear “more similar.” This
is especially the case for γ0 = 250% (cf., figure 9.18b). Only minor changes visible.
For instance, a particle that is not present in the 1st image appears in the 5th and
9th image. Particles also wiggle around their positions. This is not easy to see from
the three images, but the reader may believe that the wiggling movements can be
readily ascertained in a movie. The wiggling movements are stronger for γ0 = 250%
than for γ0 = 1%.

We can now compare the previous results from the echo-style analysis (figure 9.16)
with the analysis based on images where the decay can only be caused by relative mo-
tions. These correlation functions based on the images in the sample-reference-frame
are given in figure 9.19. A first remark is that it is not possible to unambiguously
remove a global offset in all cases. Therefore, some data at high strains are missing
– especially for the highest volume fraction (ϕ/ϕm = 0.95). Apart from that, the
decays are similar for all volume fractions. For small strains (i.e., γ0 ≲ 10%), the
correlation functions now have values between 0.9 and 1 and are almost independent
of τ in the studied time window. At intermediate strains (e.g., γ0 = 25%, (light
blue line with filled stars)), the correlation functions decay with increasing lag time.
And for the highest strains (γ0 ≳ 100%), the PCC(τ)-values decrease significantly.
In all cases (i.e., for all volume fractions and strain amplitudes), there is a decay
from τ/tp = 0 to τ/tp = 1. This can be explained by considering the steps that were
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(a) (b)

Fig. 9.18 Example set of reshifted confocal images used for the corrected echo-style
analysis. These reshifted images are based on the same data as the images in figure 9.17.
Due to reshifting, the size of individual images is reduced to 372×372 pixels, corresponding
to 25 µm × 25 µm. The figure contains post-processed images with inverted gray levels and
enhanced contrast.
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Fig. 9.19 Set of echo-style confocal analysis based on reshifted images taken at γ = ±γ0
(left and right column, respectively) during oscillatory shear for samples with (from top to
bottom) ϕ/ϕm = 0.95, ϕ/ϕm = 0.92, ϕ/ϕm = 0.89, ϕ/ϕm = 0.86, and ϕ/ϕm = 0.83. Data
is taken from jobs #9-23 (cf., table 9.4). At first sight, it seems that correlation functions
show no decay for ϕ/ϕm = 0.95. This is misleading: A lot of data for higher strains is
missing because global offsets could not be identified in a unique way.
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taken to calculate the correlation functions: In the image processing step that leads
from figure 9.17 to figure 9.18, images are reshifted by integer pixel numbers. Global
offsets are, therefore, only removed up to an accuracy of about one pixel or 100 nm,
respectively. What is the consequence of that? If one takes two identical images and
computes the Pearson correlation coefficient, the result is 1.0. Shifting one of the
two identical images by one pixel reduces the correlation coefficient down to about
0.95. A shift by two pixels causes a reduction to 0.9. This makes it very plausible
that the initial decay is caused by the limited accuracy. Comparable studies based
on light scattering find values of 0.8 for small lag times and have been normalized
[30, 308]. From the data in figure 9.19, one may suggest that irreversible particle
rearrangements occur above γ0 ≈ 10 − 40%. Furthermore, a decay close to zero is
only observed in the cases of the highest studied strain amplitude γ0 = 400% and
the maximum delay time τ/tp = 9.

To elucidate the strain dependence in more detail, we will consider a fixed delay
time τ and plot the correlation values as a function of strain amplitude γ0. This
is done in figure 9.20 for fixed delay times τ/tp = 2 (figure 9.20a) and τ/tp = 9
(figure 9.20b). In both cases, the values have been normalized by the correlation
value at τ/tp = 1. Normalization by a point with τ > 0 has also been done
in previous studies [218]. Data points in figure 9.20 are obtained by averaging
results from γ = +γ0 and γ = −γ0 at the same ϕ/ϕm, and also incorporate repeated
measurements. As before, data may not be available for the highest strain amplitudes
(γ0 ≳ 70%). The following is observed: For γ0 ≲ 10%, the normalized correlation
values are identical to 1 within experimental uncertainties. This suggests that
particles do not change their relative positions in this strain regime.

Following previous work [30], we define a characteristic strain γconf
c from the

position where the normalized correlation function first drops significantly below
unity, and use a threshold value of 0.95. From the confocal analysis in figure 9.20, we
can identify a yield strain at γconf

c ≈ 10% − 20%. Above γ0 ≳ 10%, the correlations
start to decay. The decays are already for PCC(2 tp)/PCC(1 tp) and consequently
also for PCC(9 tp)/PCC(1 tp). In the latter case, the decays are more pronounced,
which suggests that irreversible particle motions accumulate over many shear cycles.
This implies that the rearrangements are not limited to a finite fraction of particles.
Rather, the fraction of rearranging particles grows or different particles contribute
to the rearrangements during different shear cycles.

Let us have a closer look at figure 9.20b in the regime γ0 ∈ [0.5, 70%], where
data for all volume fractions is available. The correlations functions decay faster
with increasing volume fraction. A possible interpretation is that in a dilute system,
particles have more free space to move. With increasing volume fractions, particle
motions seem to become increasingly irreversible. Thus, one can argue that the yield
strain γconf

c shifts to smaller values with increasing volume fraction.
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Fig. 9.20 Dependence of (a) PPC(2 tp)/PPC(1 tp) and (b) PPC(9 tp)/PPC(1 tp) as
a function of strain amplitude γ0 for all volume fractions. In other words, shown are
correlation values for echos after (a) two and (b) nine cycles of shear that are normalized
with the correlation value after one cycle. The presented data points are averages based
on figure 9.19 as well as a repeated set of experiments. Furthermore, each point is an
average from values obtained at maximum and minimum strain (i.e., at γ = ±γ0).
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9.5 Discussion
Individual results from the last chapter have been discussed on the spot. This section
is meant to discuss the findings in a more general context and to compare them
with previous work.

Flow and turbulence of a fluid in a cone and plate geometry have been investigated
in conjunction with a single parameter ˜︁R (cf., section 1.5.2.3, equation (1.47)). The
parameter compares centrifugal to viscous forces. Laminar flow of a fluid is found
for ˜︁R < 0.5 and turbulence for ˜︁R ≳ 4 [34]. Parameters of this work (radial distance
r = 0.01 m, maximum angular velocity Θ̇ = 0.11 rad/s, cone angle β = 0.035 rad,
density ρ = 1200 kg/m3) result in ˜︁R = 0.0005, if we use the viscosity of the dispersion
medium (η0 = 0.003 Pas). Thus, any turbulent, chaotic and irreversible flow should
originate from the presence of the colloidal spheres – especially at high volume
fractions.

Regarding the volume fraction, results from this work are self-consistent: The flow
behavior upon loading (possibility of pouring the sample vs. necessity of loading with
a spatula, (cf., section 9.3)) is in qualitative agreement with the assumption of the
random close packing based on the polydispersity (cf., section 9.3) and the trends of
the elastic moduli (cf., figure 9.4). For a comparison with literature, it is convenient
to now convert the relative volume fractions ϕ/ϕm ∈ [0.83, 0.86, 0.89, 0.92, 0.95] to
absolute volume fractions ϕ ∈ [0.57, 0.59, 0.61, 0.63, 0.65] using ϕm = 0.687.

We interpret the deviations between measured and expected particle displacements
(cf., figure 9.9a) as signatures of wall slip. Wall slip is an unwanted effect and adds a
bias to the results. One has to, therefore, handle the results of this work for ϕ ≳ 0.61
with care. Nevertheless, it is reassuring that wall slip can be identified concordantly
under steady (cf., figure 9.7) and oscillatory shear (cf., figure 9.9). Slip might even
explain the unexpected small exponent in the Herschel-Bulkley fit for ϕ ≳ 0.61. The
standard flow index in the Herschel-Bulkley fit for hard spheres is around υ = 0.5
[12], indicating shear thinning [11]. Shear thinning is also found during our large
amplitude oscillatory shear (cf., figure 9.15b).

Knowledge of slip from microscopic observation can be used to correct for slip
in macroscopic rheology. If a sample slips, it is sheared less then expected. For
oscillatory shear, ideal γ0 and true strain amplitudes γtrue

0 for the case of slip are
illustrated in figure 9.21. We identify the true strain as

γtrue
0 = ∆xtrue

0
h

, (9.5)

where ∆xtrue
0 is the relative displacement of the sample over the gap with height h.

Using quantities that are directly available we can rewrite equation (9.5) as

γtrue
0 = tan(θtrue

0 ) = γ0h− ∆xconf
0

h− zconf , (9.6)
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Fig. 9.21 Illustration of the calculation of the “true” strain. Axis show gradient positions
z versus the displacement in velocity-direction ∆x. Under no-slip conditions, the strain
amplitude is γ0 = tan(θ0) = ∆x0,cone/h, where ∆x0,cone is the corresponding displacement
of the cone and h the corresponding gap height. With slip, the sample is sheared less. We
assume that slip takes place only at the bottom plate (at z = 0) but not at the top (at
z = h). We furthermore assume linear profiles. Microscopic knowledge is given at z = zconf

The “true” strain (amplitude) is γtrue
0 = tan(θtrue

0 ) = (∆xcone
0 − ∆xconf

0 )/(h− zconf). If the
sample would also slip at the top, then the true strain would be even smaller.
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Fig. 9.22 Same DSS as in figure 9.10 but now with γtrue
0 instead of γ0 (i.e., strain

amplitudes are corrected for slip). Lines show apparent slopes of −0.45 and −0.9, and
−0.7 and −1.4, respectively.

where γ0 is the applied strain amplitude and ∆xconf
0 the measured displacement

amplitude at height zconf. If we rewrite the expression in terms of Err(∆xconf
0 )

(equation (9.3)) we obtain

γtrue
0 = γ0

h− zconf(1 + Err(xconf
0 ))

h− zconf , (9.7)

and see that the true strains are smaller than the applied strains since Err(∆xconf
0 )

is almost always positive (cf., figure 9.9a).
We can use equation (9.7) to correct the previously shown rheological results.

For example, most values of storage and loss moduli during a DSS as shown in
figure 9.10 actually correspond to smaller values of strain. Corrected results are now
presented in figure 9.22. For the ϕ/ϕm = 0.95 sample, major differences are revealed.
We may recall that in the uncorrected case both moduli cross around 10% strain.
Including the slip-correction, the linear regime of the ϕ/ϕm = 0.95 sample is shifted
to much smaller values of strain and the elastic and viscous moduli already cross at
γtrue

0 = 2 − 3% (!). The corrected results for the other samples are also located at
(slightly) smaller strains, but differences to the non-corrected case (cf., figure 9.22
and figure 9.10) are hardly visible by eye.

Similarly, we can correct for the impact of slip in the analysis of confocal echos. This
is done in figure 9.23. The figure shows the normalized correlation between echos that
are separated by nine cycles of shear (i.e., PPC(9 tp)/PPC(1 tp)) as a function of true
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Fig. 9.23 Dependence of PPC(9 tp)/PPC(1 tp) as a function of γtrue
0 . Despite the

correction for slip, the figure contains the same data as in figure 9.20b.

strain γtrue
0 . It is expected that echos from samples with higher volume fraction decay

even faster if plotted against γtrue
0 . This is indeed the case. We observe that echos

decay faster with increasing volume fraction but the difference between ϕ/ϕm = 0.95
and the other volume fractions becomes more obvious. For example, at γtrue

0 = 10%,
the values of PPC(9 tp)/PPC(1 tp) are close to 1 for ϕ/ϕm ∈ [0.83, 0.86, 0.89, 0.92],
but decreased already down to about 0.7 for the ϕ/ϕm = 0.95 sample. We may
recognize that there is a range of strains (2% ≲ γtrue

0 ≲ 10%) where moderately
concentrated colloidal suspensions still behave elastic, while highly concentrated
ones already show viscous signatures.

This leads us to the discussion of yielding phenomena. There are a number of
ways to define characteristic yield strains. In terms of rheology, it is common to
use the value of the strain amplitude in a dynamic strain sweep where G′ and
G

′′ cross, or the position where G′′ exhibits a maximum. Another estimate of a
characteristic strain γc can be obtained by equating the mechanical energy G′

γc
2R3

to the thermal energy kBT [310]. This estimate will be tested using the elastic
moduli from figure 9.4. Estimates for the yield strain, based on rheological data
from this work using the three abovementioned methods, are given in figure 9.24.
We will compare these results with estimates from the confocal echos as well as with
literature data. Relevant work has been done, for instance, by Petekidis et al. [30,
308]. They have studied yielding of hard-sphere glasses (PMMA, R = 183 nm) of
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Fig. 9.24 Dependence of the yield strain as a function of absolute volume fraction. Yield
strains are defined from the slip-corrected DSS (figure 9.22) as strains where G′ and G

′′

cross (open squares), and where G′′ exhibits a peak (open stars). The critical strains γconf
c

are taken from figure 9.23 as values where PPC(9 tp)/PPC(1 tp) drops below a threshold
of 0.95. Solid triangles show critical strains obtained from a comparison of energies [310],
for data of this work. The dotted line is based on an estimate of free volume [308] using
ϕRCP = 0.687. Additional literature values (solid squares, solid gray line, solid black line)
from references [306–308] are included for comparison. Further details in the text.

similar volume fractions and analyzed the relative decays of light scattering echos as
a function of strain. Two different characteristic strains were defined: One (i.e., γp1

c ),
where the echos first drop and another one, where the echos disappeared completely.
For volume fractions ϕ = 0.587 and ϕ = 0.61 they find that Brownian motion plays
a significant role in the decay of the echos. Their values of γp1

c are also shown in
figure 9.24.

The onset of irreversibility of sheared PMMA-suspensions (R = 115 nm) has also
been studied at lower volume fractions (i.e., 0.1 < ϕ < 0.4) by Pine et al. [306].
They fitted threshold strains as a function of volume fraction with the equation
γthreshold = 0.14ϕ−1.93. Lin et al. analyzed the structure of hard spheres (silica
particles, R = 490 nm, ϕ = 0.17 − 0.44) under shear with confocal microscopy. To
this end, they fitted a cutoff strain amplitude with the relation γc ∝ (ϕRCP −ϕ

ϕ
)1/3

[307]. The constant of proportionality can be extracted from their data and is
about 0.218. The fits of Pine and Lin can thus be compared with findings from this
work and they are both included in figure 9.24, together with the other estimates.
Figure 9.24 also includes a line following γfree

c = 1 − (ϕ/ϕRCP )1/3. This is related to
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the free space between two hard particles as a function of volume fraction [308].
From the comparison of yield strains in figure 9.24, we see that the critical strain

that is related to the free space between particles serves as a lower limit. All other
estimates of characteristic strains lie essentially above the line of γfree

c . The fact that
other measures of the critical strain result in larger values has led to the picture of
“cage elasticity” [308]. Even though particles should collide above γfree

c , they seem
to retain their relative positions after one or more cycles of shear. Most estimates
for critical strains lie in the range between strains of 5% and 15%, which is in
good agreement with the estimate from the confocal echo analysis of this work.
The fit by Pine et al. is an outlier. Fair enough, it was used to fit (much) smaller
volume fractions. Approaching ϕRCP, most estimates suggest that the critical strain
goes to zero. This can be inferred from the fit by Lin, the data of Petekidis, and
the trend of the critical strain from the equalization of mechanical and thermal
energy. The situation between the glass transition and random close packing (i.e.,
ϕ = 0.57 − 0.64) is not that clear. While some estimates show a monotonic decrease
as a function of volume fraction, other estimates show local peaks (e.g., at ϕ ≈ 0.62).
Generally speaking, the critical strain depends on the volume fraction, as also found
in other systems like oil in water emulsions [218].

It has been observed before that critical strains γc from a microscopic perspective
are close to but not identical to a (macroscopic) yield strain [318]. In reference
[318], the characteristic microscopic strain is found to be slightly lower than the
rheological yield strain. Apparently, it seems quite difficult to define a characteristic
microscopic strain. For example, irreversible rearrangements are observed for the
small strain amplitudes down to γ0 = 1% [310] and large exponential tails are found
in the distribution of particle displacements at small strains [245]. Actually, also
macroscopic rheology from this work reveals some viscous contribution at small
strain (cf., figure 9.11). So one might pose the question differently. To elucidate
the effect of shear, one might not ask “when will trajectories become irreversible?”
but rather “when will trajectories become more irreversible than without shear?”
The combination of slow dynamics in glasses combined with external shear and
the possibility of aging are driving complexity upwards. (Shear-induced) spatial
heterogeneities do not make it easier either [218, 245, 310]. The same system
of particles may have a fraction of mobile and a fraction of immobile particles.
Observation time can also play a crucial role. Many microscopic studies are limited
to a small number of oscillation cycles, while rheology or simulations can average
over many more cycles.

This work covers delay times up to nine cycles and may, therefore, contribute to
the controversial discussion of whether the fraction of mobile and immobile particles
changes with time [218] or not [310]. A constant fraction of immobile particles would
contribute to a finite and time-independent correlation coefficient. We observe that
the correlation coefficients decay more and more with increasing delay times (cf.,
figure 9.19 and figure 9.20). This suggests that the fraction of mobile and immobile
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particles indeed changes with time.
When analyzing spatially heterogeneous samples, one has to make sure that

results from a subset of particles are representative of the total system. This calls
for a critical opinion upon the use of two-dimensional confocal microscopy images.
By construction, confocal microscopy only images a thin layer. Nevertheless, linear
velocity profiles are found and thus particles all over the gap are subjected to
the same local shear rate. The gap is large enough to avoid confinement effects,
which could be present in other work [307]. Images of this work used to evaluate
microscopic motions contain about 10 tracer particles (cf., figure 9.18) and a few
thousand (hidden) small particles. The physics should be dominated by the small
spheres and not by the tracer particles. At the present moment, it is, therefore,
reasonable to assume that the confocal results are representative of the whole system.

Experimental studies using scattering techniques are superior to microscopy tech-
niques when it comes to statistics. By varying the scattering angle, light scattering
can also probe different length scales. They, therefore, take up an important position.
Real-space confocal movies can relatively easily be used to distinguish linear and
nonlinear shear profile and to reveal the existence of wall slip. If this information is
not available directly, one has to be very careful with the corresponding assumptions.

9.6 Conclusion
The flow of colloidal hard-sphere glasses was analyzed under oscillatory shear by
means of simultaneous rheology and confocal microscopy. Experiments cover a large
strain range with strain amplitudes from γ0 = 0.5% up to γ0 = 500%. Large strains
are accessible due to the use of a rotational rheometer that is coupled to a fast
scanning confocal microscope. The experimental setup allows measuring macroscopic
rheological properties on the same sample that is simultaneously imaged with the
microscope. Samples of different volume fractions were first characterized using
standard rheological tests. Results from a dynamic frequency sweep and a flowcurve
are essentially consistent with the literature on hard spheres. Confocal observations
elucidated wall slip for higher volume fractions and accordingly, strain values were
corrected. Despite slip, a linear shear profile is observed for all samples.

With the help of LAOS experiments, strain stiffening and shear thickening regimes
are identified as a function of volume fraction and strain. Shear thickening is found
to occur during yielding.

Estimates for yield strains are obtained from rheology and confocal echos and
compared with previous work. Confocal microscopy is used to distinguish between
collective and relative motion of tracer particles. Characteristic yield strains are
found around 10% strain. Particle motions are essentially reversible below the yield
strain. Above yielding, the amount of irreversibility increases both with increasing
strain and lag time. We may conclude with the following picture: Yielding of hard
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spheres is a smooth transition from a solid-like to a liquid-like state. A single-valued
critical strain might be an oversimplification. The scattering of the yield strain
data (cf., figure 9.24) indicates that there is, in fact, a finite region of strains
where the yielding process takes place. During yielding, some particles undergo
irreversible motions. This fraction of non-elastic, mobile or “super-mobile” [218]
particles increases, until, at some point, essentially all particles experience irreversible
motions. Future rheological measurements could systematically vary the number
of cycles contributing to quantities like the elastic or viscous moduli. A related
question is whether echos (or correlation coefficients) will eventually decay to zero
for strains just above yielding and for sufficiently long times, and this could be
answered in future investigations.

A similar question involves the dependence on the oscillation frequency: Observa-
tions of yielding and flow under LAOS may differ due to differently used oscillation
frequencies. Some experimental particle diffusion coefficients are found to be rather
independent of the oscillation frequency [306]. In contrast, frequency dependence is
found by Poulos et al. [166]: The frequency dependence is found to be different above
and below the glass transition. Below ϕg, the amount of irreversibility increases
with increasing frequency, above ϕg, the opposite trend is observed. Additionally
Poulos et al. find that measurements with conventional rheometers at moderate
frequencies ω > 5 rad/s can be biased by instrumental effects [166]. Experimental
studies at high frequencies, therefore, require sophisticated machines.

Finally, confocal imaging is ideal to probe the microscopic dynamics at different
z-heights (i.e., at different positions within the gap). Future studies could perform
experiments at different heights to clarify whether the observed physics is height-
dependent or not.
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10
Transient Start-Up Tests: Bend It

like Beckham

10.1 Abstract
Transient dynamics of hard-sphere-like colloidal suspensions in the vicinity of
the glass transition are investigated during start-up shear at low Péclet numbers.
Using a rheo-confocal setup, we shed light on the evolution of mesoscopic velocity
profiles while simultaneously monitoring the overall stress-strain response. We find
that microscopic dynamics depend on parameters such as volume fraction, gap
height, particle size, and experimental protocol. In particular, one sample exhibits
time-dependent and highly nonlinear velocity profiles. These transient nonlinear
responses are furthermore reflected in local quantities such as nonaffine motions and
mean squared displacements. We phenomenologically establish a link between the
evolution of mesoscopic shear profiles on the one hand and microscopic dynamics
on a single-particle level on the other hand. The origin of the nonlinearity remains
to be understood. Possible explanations are related to yield stress, aging, and size
effects.
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10.2 Introduction
The flow of soft matter is ubiquitous in daily life, ranging from squeezing of tooth-
paste and the handling of paints to flow of blood cells inside the human body.
Understanding and tuning the flow of soft materials is a long-standing problem and
tackled by experiments [64, 135, 136, 164, 190, 215, 319], theory [320–323], and
simulations [324–326].

In order to understand the underlying physics, particular interest has emerged
in the investigation of hard spheres. The popularity of the hard-sphere model
system stems from its – in principle – simple interaction potential that is infinite
at contact and zero else. The only control parameter is the volume fraction ϕ =
Vspheres/Vtotal, relating the volume of all spheres to the total volume. Hard spheres
can be experimentally realized with colloidal suspensions (cf., section 2.3). Due to
their size, colloids are observable with visible light, making them ideal candidates
for studies on a single-particle level.

The equilibrium phase behavior has been experimentally studied by Pusey and
van Megen [65] (cf., section 2.4.1). The so-called glass transition (cf., section 2.5.2)
is located around ϕg ≈ 0.58 and reflected in an increase of the viscosity (cf.,
section 2.5.4). The microscopic picture is that for volume fractions ϕ > ϕg, particles
are trapped in cages formed by their neighbors and motion gets frustrated. Colloidal
glasses have amorphous structures like fluids but behave mechanically more similar
to solids. This means that structural quantities cannot be solely responsible for the
mechanical properties of glasses, and dynamical quantities have to be important.
Indeed, dynamical quantities differ between liquids and glasses (cf., section 2.5.3),
and they could be the key to a complete understanding of the physics of glasses.

Transient dynamics of colloidal glasses during start-up shear have been studied
extensively [168, 169, 263, 327]. Experimental observations reveal that particles
undergo different kinds of rearrangements depending on the applied strain. The
deformation is reversible for low strains. By further increasing the strain, particles
experience irreversible changes in structure and dynamics. Under shear, the behavior
thus changes from elastic to plastic deformation and eventually the systems flows
[255, 308, 327]. Rheological experiments reveal that the stress overshoot is related to
the cage deformation and yielding of the system [168, 215, 220, 327]. Recent studies
find super-diffusion at strains similar to the strains at which the stress overshoot
occurs [168].

Dynamics of glassy systems are in general heterogeneous and much interest is
related to so-called dynamical heterogeneities. For instance, some groups suggests
that the onset of yielding is related to a percolation transition and plastic deformation
zones [133, 188, 231, 245, 328, 329]. Heterogeneities occur on the scale of a few
particles as well as on larger length scales. Heterogeneous flow is expressed in
nonlinear shear profiles and has been related to non-monotonic flow curves [330]
or a plateau region within a flow curve [331]. Shear bands (cf., section 2.5.4.2) are
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R/ nm δ/% dye tracer particles
Batch A 178 18 − 1% (v/v), R ≈ 795 nm
Batch B 780 8 Rhodamine B −

Tab. 10.1 Summary of sample parameters. Specified is the mean radius R, the polydis-
persity δ, the fluorescent dye, and details of any existing tracer particles.

usually expected for stresses below the yield stress (cf., e.g., [176]) or, alternatively,
below a critical shear rate [187, 331].

This chapter deals with the dynamics of concentrated (ϕ ≈ ϕg) hard-sphere-
like colloidal suspensions during start-up shear. The investigated Péclet number
(equation (2.22)) is below unity (Pe ≈ 0.016) meaning that Brownian dynamics are
expected to dominate over shear. Using two different samples we study and compare
macroscopic rheology with mesoscopic velocity profiles and microscopic dynamics.
We will show that shear profiles are directly linked to local properties – even for
transient non-uniform flows.

10.3 Materials and Methods
We investigate dispersions of polymethylmethacrylate (PMMA) hard-sphere-like
particles with volume fractions ϕ1 = 0.57 and ϕ2 = 0.61, that is, in the vicinity of
the colloidal glass transition [65, 70]. The samples contain either smaller spheres
(“batch A”) with a mean radius of RA = 178 nm or larger spheres (“batch B”) with
a mean diameter of RB = 780 nm. A summary of sample properties is provided in
table 10.1.

Size and polydispersity of non-dyed particles of Batch A are estimated with
dynamic light scattering and the corresponding correlation function is shown in
figure 10.1. Fluorescently labeled tracer particles are added afterward (1% (V/V))
to allow for confocal imaging.

Batch B contains only dyed particles and we assume a mean radius of RB = 780 nm.
An upper limit for the mean particle radius is taken from the first peak of the pair
correlation function located at 2RB,max = 2 · 820 nm (not shown here). A lower
limit is estimated from electron microscopy (SEM) images. A corresponding SEM
image of batch B is shown in figure 10.2 together with a size distribution as obtained
from multiple SEM images. The distribution is bimodal with a mean value of 725 nm
and an overall polydispersity of δB = 8%. Particles for the SEM micrographs are
prepared in a dried state, which means that sizes are smaller than if particles were
dispersed in a liquid.

In the experiments, particles of both batch A and batch B are dispersed in a
mixture of cis-decalin and cycloheptyl bromide, matching closely both the refractive
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Fig. 10.1 Correlation function for batch A as obtained from dynamic light scattering
at an angle of θ = 90◦. Based on this data, the cumulant analysis from the 3D LS
Spectrometer Software (LS Instruments) yields a hydrodynamic radius of RA = 178 nm
and a polydispersity of δA = 18%.

index and the density of the particles. The addition of 4 mmol of the salt tetrabutyl
ammonium chloride (TBAC) screens residual charges. Volume fractions are set by a
dilution from random close packing after sedimentation, which is assumed to be at
ϕA,RCP = 0.67 and ϕB,RCP = 0.66, respectively [91].

Simultaneous rheology and confocal microscopy experiments are performed with
the rheo-confocal setup (cf., section 4.2). The rheo-confocal setup consists of a
stress-controlled rheometer (Anton Paar, MCR302 WESP) mounted on an inverted
microscope (Nikon, Eclipse Ti-U) that itself is connected to a confocal unit (Visitech,
VTEye). We use an oil-immersion objective (Nikon, Plan Fluor 100x, NA = 1.30)
with a working distance of 200 µm (cf., figure 4.2). Rheological properties of batch
A are measured with a sandblasted cone-plate geometry (Anton Paar, CP25-2/S,
SN36375, d = 24.9826 mm, β = 2.001◦). The larger spheres (batch B) need larger
cones to produce enough torque. If not stated otherwise then shear in the case of
batch B is applied with a home-build cone-plate geometry (d = 40.1 mm, β = 3.03◦)
with a roughened surface. In any case, a serrated glass bottom-plate (d = 50 mm,
thickness #1.5 (0.16-0.19 mm)) prevents slip as verified by confocal microscopy. A
solvent trap filled with cis-decalin is used to prevent evaporation.

To make sure that rheological results are not affected by the customized set-up,
start-up tests with batch A are additionally carried out with a strain-controlled
rheometer (TA, ARES G2) that is equipped with a stainless steel cone-plate geometry
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Fig. 10.2 (a) SEM image of batch B. (b) Histogram of particle radii as obtained from
several SEM images.
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(d = 50 mm, β = 1.16◦). All experiments are performed at Pe = γ̇τB = 0.016, that
is, at γ̇ = 0.2 s−1 for batch A and at γ̇ = 0.0025 s−1 for batch B. Loading and
history effects are reduced by means of a rejuvenation procedure. If not stated
otherwise, the following rejuvenation procedure (RJ) is executed before starting
each measurement: An inverse strain sweep with amplitudes from γ0 = 150% to
γ0 = 1% at a frequency of ω = 1 rad/s, followed by a waiting time with a duration
of 185τB at zero stress.

Local velocities are determined at various heights (i.e., 0 ≤ z ≤ 100 µm) through-
out the gap. For high rates (i.e., γ̇ = 0.2 s−1), images of 512×512 pixels, corresponding
to 49×49 µm2, are acquired in ∆t2D = 0.02 s. Single data points for the velocity
profiles are obtained from independent start-up tests (one for each z-height). For
each height, velocities are calculated with particle tracking of tracer particles for
strains between 100% ≤ γ ≤ 900% and based on image-series with more than 2000
images.

For low rates (i.e., γ̇ = 0.0025 s−1), image stacks of 512×512×101 pixels, cor-
responding to 49×49×75 µm3, and are captured within ∆t3D = 2.0 s. To avoid
disturbances due to the scanning of large heights, we move the piezo with the
same speed up and down and add a time delay. Consecutive image stacks are
separated by 7.2 s and analyzed with image velocimetry. Additional image stacks of
512×512×57 pixels or 31×31×10 µm3 (with the intermediate magnification knob
on the microscope set to 1.5x instead of 1.0x) are acquired within time periods of
∆t3D = 1.1 s to extract ∼2500 particle coordinates using standard routines [203]
that are extended for flowing systems ([207], cf., section 6.2). Once more, we lower
the piezo with a finite speed after image acquisition such that consecutive image
stacks are separated by 1.8 s. These image stacks correspond to regions of the sample
that are 15-25 µm away from the bottom wall. All images are collected in a radial
distance of r = 10 mm with respect to the center of the cone.

Single-particle dynamics are quantified by local nonaffine motions D2
min (equa-

tion (7.17)) and local shear rates γ̇local (equation (7.20)) (cf., section 7.2). For
D2

min = D2
min(t, δt) we use a fixed time interval δt = 9.0 s = 1.4τB. We also utilize

mean squared displacements (MSDs), which we calculate in the moving reference
frame and with respect to the vorticity direction, that is,⟨︂

∆y2(τ, tw)
⟩︂

=
⟨︂
(yn(tw + τ) − yn(tw))2

⟩︂
n
, (10.1)

where yn is the y-position of particle n. The quantity ⟨∆y2(τ, tw)⟩ is an ensemble
average but it is not averaged over delay times τ . The waiting time tw defines the
elapsed time with respect to the start of the experiment and shear is applied for
tw ≥ 0.
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Fig. 10.3 Start-up tests (γ̇ = 0.2 s−1 or Pe = 0.016) of batch A at ϕ1 = 0.57 (open and
filled blue circles) and ϕ2 = 0.61 (filled red squares). Measurements are performed with
a stress-controlled rheometer (Anton Paar, MCR302) and a strain-controlled rheometer
(TA Instruments, ARESG2) as indicated in the legend. Both rheometers are equipped
with cone-plate geometries. The ARES G2 is superior in short times.

10.4 Results
This chapter is organized as follows: First, we will focus on batch A. To this end, we
examine the rheological response to a start-up experiment and reveal corresponding
shear profiles by means of confocal microscopy. Then we take effort to reproduce
the experiments with batch B. Since batch B consists of bigger spheres – where
overall dynamics are slower and particles can be tracked in three dimensions – we
aim to get better insights into the single-particle dynamics. We will once more take
a look at mesoscopic velocity profiles and complement them with local quantities
such as nonaffine motions and mean squared displacements.

Figure 10.3 shows a typical response of batch A to a start-up experiment at
Pe = 0.016. Data is collected with the strain-controlled ARES G2 as well as
the stress-controlled MCR302, and the results collapse reasonably well. The only
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Fig. 10.4 Steady-state velocity profiles of batch A at Pe = 0.016 for ϕ1 = 0.57 (blue
circles) and ϕ2 = 0.61 (red squares). The dashed line indicates an ideal Newtonian velocity
profile.

striking difference is that the values at low strains are noisy in the case of the
rheo-confocal setup. Recall that the Anton Paar MCR302 WESP rheometer is
stress-controlled and performs strain-controlled measurements with a feedback-loop.
In this specific configuration (i.e., for γ̇ = 0.2 s−1) it takes up to one second to set
up a constant shear rate, which corresponds to up to 20% strain.

Corresponding velocity profiles are shown in figure 10.4. Linear velocity profiles
are found for batch A for both ϕ1 = 0.57 and ϕ2 = 0.61. The velocity profiles
essentially match the ideal “Newtonian” velocity profile (i.e., vx = γ̇z, dotted black
line in the figure) as expected for simple shear (cf., figure 1.6).

With batch A, dynamics are only accessible indirectly from the motion of the
tracer particles. This shortcoming can be overcome by the use of bigger spheres (i.e.,
batch B). We try to compare batch A and batch B in the same state. In terms of
scaled quantities, both batches should give the same result (cf., section 2.5.4). In
the following, we characterize both batches with standard rheological tests.

Dynamic frequency sweeps are shown in figure 10.5 for batch A and batch B.
The agreement is relatively good for both volume fractions (i.e., ϕ1 = 0.57 and
ϕ2 = 0.61). In terms of Péclet, the overlap region is small since for the same Péclet
(Peω = ωτB) the oscillation frequencies ω differ by the factor (RA/RB)3 ≈ 84. Data
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Fig. 10.5 DFS of batch A (filled symbols) and batch B (open symbols) for ϕ1 = 0.57
(blue) and ϕ2 = 0.61 (red). The dotted line refers to batch B and indicates inertia limits
(equation (1.46)), with ϵ = 0.01 as an additional correction factor (cf., [1, p.218]).

for both batches are available in a small region around Peω ≈ 6. There, the biggest
rheological discrepancy between batch A and batch B can be seen in the scaled
values of the elastic moduli G′, especially at ϕ1 = 0.57.

Similar results are obtained from corresponding flow curves. Flow curves for botch
batches are depicted in figure 10.6 and parameters of Herschel-Buckley fits are listed
in table 10.2. The data of batch A shows a volume fraction dependence similar to
what has been reported by Petekidis et al. for hard spheres [164] (cf., figure 2.16).
For instance, at ϕ2 = 0.61, batch A exhibits a yield stress plateau at low rates and
a sub-linear increase at higher rates. At high rates (Pe ≳ 1) where only data of
batch B is available, the slope of stress versus strain is higher than unity, which is
indicative of shear thickening. In terms of Péclet, we have an overlap region between
batch A and B over two orders of magnitude. This enables us to take a closer look at
rheological similarities and differences between batch A and batch B: For the higher
volume fraction (i.e., ϕ2 = 0.61) the agreement is very good: The scaled stress versus
Péclet superimposes almost identical as expected for hard spheres. Small differences
only arise for Pe ≲ 0.02. For the lower volume fraction (i.e., ϕ1 = 0.57) the picture
is different: Starting from high Péclets (i.e., Pe ≳ 1), the response of batch A and
batch B is still similar. But this changes dramatically at lower Péclets (i.e., Pe ≲ 1).
As we go to smaller Péclets (Pe ≲ 10−2), the relative difference between the (scaled)
stresses of batch A and B increases up to ∼ 100%.
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Fig. 10.6 Flow curves of batch A (filled symbols) and batch B (open symbols) for
ϕ1 = 0.57 (blue cycles) and ϕ2 = 0.61) (red squares). Lines are fits to the Herschel-Buckley
law. All fitting parameters are listed in table 10.2.

Batch ϕ σyR
3/(kBT ) υ

A 0.57 0.32 0.59
A 0.61 0.93 0.70
B 0.57 1.1 0.62
B 0.61 2.1 1.0

Tab. 10.2 Parameters of Herschel-Buckley fits with σ = σy + κγ̇υ for data of the
flowcurves given in figure 10.6.
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Fig. 10.7 Creep tests of (a) batch A and (b) batch B at ϕ1 = 0.57. Lines indicate slopes
of unity.

A stress value for γ̇ → 0 corresponds to the yield stress. Yield stresses are double-
checked for ϕ1 = 0.57 by creep experiments as shown in figure 10.7. A slope of unity
is reached for batch A for all investigated stresses. Batch B reaches a slope of unity
only for σR3/(kBT ) = 1.2 and σR3/(kBT ) = 5.8. This is in reasonable agreement
with the Herschel-Buckley fits to the flow curves.

A flow curve shows steady-state values of the stress for different Péclet numbers.
We now look at a specific Péclet number and follow the transient response of the
stress. In other words, the results of start-up experiments at Pe = 0.016 are given
in figure 10.8 for botch batch A and batch B. What we can learn from the start-up
tests in figure 10.8 is that the steady-state values of batch B are actually fluctuating
as a function of strain (or time). The measured stress σ = FσM (cf., section 1.5.2) of
bigger spheres is typically much noisier because bigger spheres produce less torque
M . We emphasize that we tested different cones and plates and that the usage of
smaller cones or small plates produces even noisier data.

Nevertheless, it is possible to deduce new insights from these start-up experiments:
At both volume fractions, batch B shows a weaker stress overshoot with respect to
batch A. Although the data of both batches does not exactly fall on top of each other,
values are within the same order of magnitude and differ in the long-time regime by
a factor of 1.4, in reasonable agreement with the previously shown flowcurves.

Let us now take a look at the velocity profiles of batch B. For ϕ2 = 0.61, a typical
evolution of the velocity profiles is given in figure 10.9, for selected values of strain.
Initially (i.e., at γ ≈ 1%) an almost ideal Newtonian profile is observed. With
increasing strain, the velocity profile shifts to the left, that is, the velocity is smaller
than expected for Newtonian flow. Above γ ≈ 100%, the system seems to reach a
steady state and only small variations are observed until our maximum strain of
γ ≈ 900%.
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Fig. 10.8 Comparison of start-up tests of batch B (open symbols) together with pre-
viously shown start-up tests of batch A (solid lines) for ϕ1 = 0.57 (blue) and ϕ2 = 0.61
(red).
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Fig. 10.9 Transient velocity profiles of batch B for ϕ2 = 0.61 at strains as indicated in
the legend. The dashed black line corresponds to a Newtonian behavior with v(z) = γ̇z,
where γ̇ = 0.0025 s−1 is the applied shear rate. The total gap height is h = 529 µm.
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Fig. 10.10 Transient velocity profiles of batch B for ϕ1 = 0.57 at strains as indicated in
the legend. In this case, batch B exhibits inhomogeneous flow, which depends on history.
Velocity profiles in (a) will be denoted as scenario 1 and profiles in (b) as scenario 2 (see
text). In both cases, the dotted black line corresponds to a Newtonian shear profile. Note
the different scale of the x-axis in (a) and (b).

What we have to keep in mind is that we only have data from a fraction of the
gap. In order to meet no-slip conditions at both boundaries (i.e., v(z = 0) = 0 and
v(h) = vwall) the profiles need to have a curvature or a kink at higher z. To clarify
the terminology, we speak of ideal Newtonian flow if the condition

z

h
= v(z)
vwall

(10.2)

is true for all gap heights z. The velocity of the moving (top) wall is vwall = γ̇h,
where γ̇ is the applied shear rate and h the corresponding gap height.

Interestingly, velocity profiles in the case of ϕ1 = 0.57 show two different scenarios,
that is, we observe different evolutions of the velocity profiles for the same externally
applied shear rate (γ̇ = 0.0025 s−1, or Pe = 0.016). On the one hand, linear and
almost time-independent profiles are observed as shown in figure 10.10b. In this
case, the relation z/h < v(z)/vwall holds, that is, the velocity of the sample in the
investigated heights is smaller than the velocity of a corresponding Newtonian fluid.
For reasons that will become clear later on, this phenomenon will be denoted as
scenario 2.

Performing the same experiment (i.e., a start-up with γ̇ = 0.0025 s−1) with
literally the same sample can lead to a totally different microscopic picture, as
shown in figure 10.10a. Note here that the x-axis needs to cover a much larger range
to show all data points. What we observe is the following: For very small strains
(i.e., γ = 1%), the velocity profile is relatively close to an ideal Newtonian flow
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i protocol observation
1 sample loading
2 RJ

3 start-up test scenario 1
4 RJ

5 start-up test scenario 2

Tab. 10.3 Dependence of mesoscopic velocity profiles during start-up tests on the order
of the experiments for batch B (ϕ1 = 0.57, Pe = 0.016). The order of the experiments
is indicated by the index i. The rejuvenation protocol RJ , as well as the two types of
velocity profiles (i.e., scenario 1 and 2 ), are explained in the text.

(dashed black line). A closer look reveals that the measured profile (at γ = 1%)
is to the right of the dotted black line, that is, particles locally move faster than
expected for Newtonian flow. The difference between the measured and the ideal
Newtonian velocity profile increases with increasing strain and reaches a maximum
for γ ≈ 10 − 20%. Afterward (i.e., for γ ≳ 20%), the velocity profile slowly “moves
back to the left.” For γ = 100%, the profile is still to the right of the Newtonian line
but it is not that far away anymore. At this relatively high strain, the velocity profile
is still transient and changes further with increasing strain. Around γ ≈ 500%, the
profile reaches its steady state that is to the left of the Newtonian line. We will refer
to this second set of velocity profiles (figure 10.10a) as scenario 1.

Interestingly, the only difference for the set of velocity profiles that we observe
for batch B and ϕ1 = 0.57 (i.e., scenario 1 and scenario 2 ) is the order of the
experiments. For instance, if we load the sample, apply our rejuvenation procedure
(RJ) and then the start-up experiment, we observe scenario 1. If afterward we
repeat the rejuvenation (RJ) and perform a second start-up, we find scenario 2.
These findings are summarized in table 10.3.

While we speak about the velocity profiles, we have seen velocity profiles only
for a small fraction within the gap so far (i.e., z/h ≲ 0.15). To get an impression of
what is happening in the whole gap we show a preliminary velocity profile of batch
B at ϕ1 = 0.57 as obtained with another cone-plate geometry1 in figure 10.11. Here,
we clearly see that the profile has an s-shape at certain values of strain. Furthermore,
wall slip seems to be absent both at the top and bottom.

Hence, determining a velocity profile once and assuming this velocity profile
for further experiments appears risky. On the other hand, if we always need to

1To obtain a smaller gap height, a different cone (d = 40 mm, β = 0.97◦) is used and this cone
is furthermore lowered below its correct measuring position by 32 µm. We measure velocity
profiles between absolute heights of z = 15 − 115 µm by using the maximum range of the piezo
(100 µm) and an additional offset with respect to the bottom plate by turning the focus knob
on the microscope.
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Fig. 10.11 Velocity profiles of batch B at ϕ1 = 0.57, measured with a smaller gap height
(h = 137 µm). At intermediate and higher strains, the profile is s-shaped.

determine a velocity profile, we cannot easily investigate single-particle motions in
detail. The solution is to measure dynamics within a small volume and to deduce
velocity profiles from properties within that small z-region. Figure 10.12 illustrates
the principle: Three relatively “simple” velocity profiles are drawn in red, blue and
black. The black line corresponds to the ideal Newtonian velocity profile and the red
and blue curves represent, for instance, scenarios 1 and 2. The boundary conditions
at z = 0 and z = h are fixed by the no-slip condition. A third point within the gap
(e.g., P1, P2 or P3) helps to shed light on the shape of the velocity profile. Note
that not only the velocity v(z) is known at these points but also the local shear
rate. In a z-v-representation, the shear rate corresponds to the inverse slope. If we
assume “simple” profiles, we can thus deduce the overall profile from local measures.
In the following, we will quantify the deviation of the measured velocity profiles
from Newtonian flow by the two normalized quantities

vnorm = vnorm(z) = v(z)
γ̇z

(10.3)

and
γ̇norm = γ̇norm(z) = γ̇(z)

γ̇
, (10.4)
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Fig. 10.12 Schematic shear profiles with different curvatures. At point P1 all velocities
are identical whereas points P2 and P3 have identical shear rates. Local velocities and
shear rates can be inferred from a time-series of 3D-stacks captured in a small volume
(semi-transparent gray box).

where v(z) and γ̇(z) are local measures at height z, and γ̇ is the applied (macroscopic)
shear rate.

We can now take a step forward and look at single-particle dynamics that are
obtained by scanning a small 3D volume. Figure 10.13 depicts single-particle dy-
namics inside the 3D volume through the calculation of local properties, such as
ensemble-averaged local velocities (c,d), ensemble-averaged local shear rates (e,f),
and ensemble-averaged nonaffine motions ⟨D2

min⟩ (g,h). In (a) and (b) of the same
figure, we see two corresponding start-up experiments that are measured simultane-
ously. Interestingly, the macroscopic response of the start-up tests is similar but the
microscopic dynamics are not that similar.

Let us first examine figure 10.13c,e,g, that is, scenario 1 : For γ ≲ 6%, particles
first follow the applied shear (i.e., ⟨vnorm⟩ ≈ 1 & ⟨γ̇norm⟩ ≈ 1). As the strain is
increased further, the local ensemble-averaged velocity ⟨vnorm⟩ reaches a maximum
at the peak of the stress overshoot (γ ≈ 20%) where the velocity is more than 3
times higher than expected for a linear velocity profile (figure 10.13c). By further
increasing the strain, the local velocity decreases and subsequently becomes smaller
than expected (i.e., ⟨vnorm⟩ < 1). A similar trend is observed for ⟨γ̇norm⟩, which
reaches almost a value of 3 at the peak of the stress overshoot and subsequently
decreases with increasing strain (figure 10.13e). The trend of ⟨vnorm⟩ and ⟨γ̇norm⟩ is
also depicted in the calculation of the ensemble averaged nonaffine displacement
⟨D2

min⟩ (figure 10.13g). For γ ≲ 6%, the nonaffine displacements gradually increase.
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Fig. 10.13 Macroscopic rheological response together with local dynamical quantities
of batch B at ϕ1 = 0.57. (a,b) Macroscopic stress response of a start-up experiment at
γ̇ = 0.0025 s−1. (c-h) Local quantities for scenario 1 (left column) and scenario 2 (right
column). Further details in the text.
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Fig. 10.14 MSDs of batch B at ϕ1 = 0.57 and Pe = 0.016 that correspond to (a)
scenario 1 and (b) scenario 2.

Afterward, they sharply increase to a maximum at γ ≈ 30%. Later on, ⟨D2
min⟩ slowly

decreases to its initial value.
Next, we step over to scenario 2 : The averaged normalized velocity within

the small 3D volume is always less than unity (figure 10.13d), which means that
particles move slower than expected for Newtonian flow. At small strains, the
ensemble-averaged velocity has a value of ⟨vnorm⟩ = 0.5 − 0.6 . It then decreases to
about ⟨vnorm⟩ = 0.3 at 100% strain and stays between 0.2 and 0.7 for larger strains.
Similarly, the normalized shear rate (figure 10.13f) starts around ⟨γ̇norm⟩ = 0.7,
decreases down to ⟨γ̇norm⟩ = 0.2 at intermediate strains, and fluctuates later on.
Within the measured strain interval (i.e., 1 ≤ γ ≤ 900%), the normalized shear
rate is always less than unity. In this scenario 2, the averaged nonaffine motion
experiences small modulations between ⟨D2

min/(2R)2⟩ = 0.01 − 0.02. The values are
relatively constant in the rheological linear regime, that is, for γ ≲ 12%. A tiny
increase might be present in the vicinity of the stress overshoot (γ ≈ 20%), and
larger fluctuations are observed above 50% strain.

If we would only knew scenario 1 or figure 10.13a and (g), we could conclude
that particles exhibit strong nonaffine motions close to the stress overshoot [263].
By comparing all data from figure 10.13, we might need to revise this picture and
attribute (most of) the trend of ⟨D2

min⟩ to the transient behavior of ⟨vnorm⟩ and
⟨γ̇norm⟩, that is, to the transient nonlinear velocity profiles.

Before we discuss possible explanations for the emergence of nonlinear velocity
profiles, we end the current section with results of mean squared displacements
(MSDs). Figure 10.14 shows MSDs in the vorticity direction for ϕ1 = 0.57 during
start-up shear. Both MSDs belong to the same repeated experiments as the results
that were shown in figure 10.13. Waiting times tw are multiplied with the applied
shear rate γ̇ = 0.0025s−1 to obtain units of strain. These strain units can be directly
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compared with figure 10.13a and b.
The MSDs in figure 10.14a belong to scenario 1. At twγ̇ = 0% (black squares),

the MSD shows an initial sub-diffusive plateau. The initial sub-diffusive plateau
vanishes for twγ̇ ≳ 5% and is followed by a super-diffusive behavior (with a slope
close to two). Above twγ̇ ≈ 16%, the super-diffusive regime starts to disappear
and the MSDs eventually become diffusive. For twγ̇ = 23% and twγ̇ = 461%, the
MSDs are essentially diffusive (slope 1) with the only difference that the absolute
displacements are smaller at larger twγ̇. The super-diffusive behavior found with
batch B at ϕ1 = 0.57 occurs at intermediate strains close to the stress overshoot
where also vnorm and γ̇norm have their maximum values (cf., figure 10.13).

We now turn to the MSDs in figure 10.14b that correspond to scenario 2 :
Independent of twγ̇, all MSDs show a sub-diffusive behavior at small lag times τ
(with a slope less than unity), followed by a diffusive behavior (slope 1). Despite
the fact that there are some quantitative differences between the individual MSDs,
all of them show essentially the same qualitative trend.

Last but not least we turn back to the case of ϕ2 = 0.61. For this larger volume
fraction, we always observe scenario 2 and thus all local quantities (i.e., ⟨vnorm⟩,
⟨γ̇norm⟩, ⟨D2

min⟩, ⟨∆y⟩) behave qualitatively like figure 10.13 (d,f,h) and figure 10.14b,
respectively (not shown here).

10.5 Discussion
Different results are obtained for the two investigated batches. For batch A, the
velocity profile is linear for all times investigated as has also been reported before in
an experimental study of PMMA-spheres of similar size [186] (cf., figure 2.21).

In the case of batch B, different kinds of transient and nonlinear velocity profiles
are observed. On the one hand, we find transient s-shaped velocity profiles (scenario
1 ) that have previously been observed, for instance, in colloidal glasses [186] and
granular media [332]. On the other hand, we observe profiles where particles experi-
ence a shear rate that is lower than the applied one (scenario 2 ). Our scenario 2 is
typical for a system that exhibits shear banding (cf., figure 2.20). As with different
trends of mesoscopic velocity profiles, we also observe different qualitative trends in
local dynamical quantities. Is there a link between mesoscopic shear profiles and
local particle dynamics?

Mean squared displacements are sensitive to the shear rate as observed, for
example, by Chen et al. [245]. Higher shear rates γ̇ lead to larger displacements ∆y.
Previous works report the relation τ ∗ ∝ γ̇−u, where τ ∗ is a diffusion time scale and
the exponent is u = 0.8 [182] or u = 1 [245]. If we argue that the inverse diffusion
time scale is proportional to the diffusion coefficient D then we can write D ∝ γ̇u.
Thus, a larger (local) shear rate should lead to larger (local) diffusion coefficients
and hence to larger (local) displacements. If the (local) shear rate is increasing
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with time then consequently super-diffusive behavior might be observed. Thus, it
seems likely that the observed super-diffusion in our experiments is related to the
strong increase of the local shear rate that is present in our scenario 1 but absent
in scenario 2.

To this end we have to distinguish at least three phenomena:

• Why is there a difference between batch A and batch B?

And, in the case of Batch B:

• Why is the steady-state behavior nonlinear?

• Why are there different transient pathways to the final state?

Possible explanations can be related to the yield stress, various kinds of inhomo-
geneities, aging and history dependence, as well as size effects. We will discuss them
in the following.

The perhaps most obvious difference between batch A and batch B is their particle
size. Colloids of different sizes exposed to the same (rescaled) shear should give
the same (rescaled) results (cf., section 2.5.4). Uncertainties of absolute particle
sizes can lead to uncertainties of rescaled physical quantities. We cannot rule out
this argument completely. Nevertheless, it seems unlikely that the very different
behavior between batch A and batch B can be explained by small differences in
Péclet and volume fraction. For instance, the flow curves of batch A and B differ
not only quantitatively as expected for different ϕ (cf., section 2.5.4) but they have
qualitatively different shapes as seen in figure 10.6.

Related to the size difference of the two batches is a different absolute rheological
signal since bigger spheres produce less torque. We used customized big tools
(i.e., d = 40.1 mm, β = 3.03◦) in order to increase the sample volume below the
transducer. The total sample volume of batch A and B in the cone-plate geometries
contains about 3 · 1012 and 2 · 1011 particles, respectively. If we only consider the
number of particles along the z-direction then we end up with “only” 980 and 340
particles, respectively. Thus, there are fewer bigger particles (batch B) within the
gap than smaller ones (batch A), even though we use one of the biggest available
cones for batch B. Higher gap heights can be achieved with plate-plate geometries:
A preliminary measurement with a large gap (i.e., h = 1 mm ≈ 640RB) reveals an
approximately Newtonian velocity profile for batch B (!). This could be related to
wave propagation that is important in oscillatory measurements and depends on the
gap height [333]. We also briefly studied particles of intermediate sizes and believe
that future experiments could continue along these lines to systematically study the
gap height and particle size dependence.

Another experimental detail may be of importance. Before each start-up test, we
run our rejuvenation procedure where both batch A and batch B are subjected to
the same dynamic strain sweep (i.e., the same oscillation frequency). Thus, samples
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ζ (ϕ = 0.57) ζ (ϕ = 0.61)
Batch A 1.7 0.89
Batch B 0.16 0.011

Tab. 10.4 Distance from the yield stress as quantified with equation (10.5).

containing the larger spheres are relatively speaking prepared faster. This leads us to
aging phenomena and history dependence of colloidal suspensions under shear: For
samples beyond the glass transition, aging phenomena affect the sample’s rheological
properties [334–337]. For instance, the stress overshoot depends on age [338] and
quenching speed [339]. Rogers et al. find that a previously fluidized system exhibits
a metastable linear velocity profile while an aged sample shows the coexistence of
a fluid and a solid band [331]. Indeed, if we add a flowcurve to our rejuvenation
procedure, we always observe scenario 1 for batch B and ϕ1 = 0.57. However,
batch A always shows essentially Newtonian velocity profiles, independent of the
rejuvenation procedure.

Colloidal glasses belong to the group of yield stress materials, which only flow
above the yield stress σy. This suggests that nonlinear velocity profiles with regions
of higher and regions of lower (local) shear rates might be related to yield stress
phenomena. To quantify this a little bit further, we define

ζ = σs − σy

σy

, (10.5)

where σs is the steady-state stress and σy the yield stress of the system. We take
steady-state values from the start-up experiments (cf., figure 10.8) and estimate yield
stresses with Herschel-Bulkley-fits of the flowcurve (cf., table 10.2). Corresponding
values of ζ are given in table 10.4. We see that batch B is very close to the yield
stress, especially for ϕ1 = 0.57. This is another possible explanation for the observed
transient velocity profiles. What remains unclear is why batch B is in a state that is
much closer to its yield stress than batch A.

We can only speculate that interactions such as attractive or repulsive forces
or frictional/non-frictional contacts between particles might be of relevance. For
instance, frictional contacts are found to be relevant for shear thickening, which
in turn has an impact on flow properties, as shown in theoretical work [162].
Inhomogeneous flow below the static yield stress is also observed in simulations
[187], and the softness of the interaction potential is thought to play a role. Shear
localization below a critical shear rate is observed by another simulation [340] and
leads, for a given shear rate, to higher shear stresses than homogeneous flow. In an
experimental system that is very similar to our model system (i.e., PMMA-particles
with R = 850 nm, cone-plate geometry), shear banding has been seen for small
rates, that is, for γ̇ < 0.01 s−1 [182]. Preliminary results with batch B at ϕ1 = 0.57
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indicate inhomogeneous flow even for γ̇ = 0.1 s−1. Unfortunately, local velocities at
still higher shear rates are experimentally not accessible to us.

We may turn back to the question: “What is the reason for inhomogeneous flow
for the given volume fractions and Péclet numbers?” A solution could also be that
not only the velocities and shear rates have local inhomogeneities but also other
quantities such as the volume fraction. Indeed, local changes in the volume fraction
have been related to changes in the shear profiles [177, 341–344]. We do have some
indications for density fluctuations within the gap but a conclusive answer to this
effect needs further investigations, especially since particle sizes and thus local
volume fractions are difficult to determine experimentally [64].

10.6 Conclusion
We have studied colloidal suspensions close to the glass transition under start-up
shear. Two different batches with different particle sizes show different types of
velocity profiles even though they are sheared at the same Péclet number. The
batch of smaller spheres shows linear Newtonian velocity profiles for all volume
fractions investigated, while the batch of bigger spheres exhibits transient and highly
nonlinear flow that depends, among others, on volume fraction and history.

Transient nonlinear shear profiles seem to be coupled to local properties. In what
we call scenario 1, particles (locally) move faster and are strained more with respect
to an ideal Newtonian velocity profile. This is reflected in increasing nonaffine
motions and super-diffusive mean squared displacements. Correspondingly, in what
we call scenario 2, particles are (locally) moving slower and strained less than
expected. Resulting nonaffine motions barely change with time and the MSDs show
essentially diffusive behavior in the whole time (or strain) window.

Consequently, the comparison of differently sized spheres, as well as the extrapo-
lation of local quantities to macroscopic variables, has to be treated with caution if
the corresponding velocity profiles are unknown.
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11
Preliminary Experiments: Episode XI:

A New Hope

Preliminary experiments in this chapter are meant to provide an impression of
further experiments that are related to soft systems under external load. Three
small example projects will be presented: First, section 11.1 will deal with the
ordering of PMMA-spheres under oscillatory and steady shear. This is reasonably
close to one of the previous experimental chapters where we studied the shear-
induced crystallization of binary mixtures (e.g., chapter 8). Then, in section 11.2,
PMMA-particles will be subjected to another type of external load: indentation.
Finally, in section 11.3, we will switch from colloidal spheres to gels and examine
them with the rheo-confocal setup under start-up shear. There, we will see that the
methods of this work can be readily applied to other systems.
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11.1 Shear-Induced Ordering and Melting
11.1.1 Introduction
Shear can induce order, as we have seen in chapter 8. Ordering under oscillatory
shear has also been studied extensively in previous work [228, 282, 285, 287, 290,
291]. We may recall that oscillation frequencies and strain amplitudes of the order
one were found suitable to induce order [282, 286]. Experiments on two-dimensional
colloidal polycrystals with intermediate volume fraction also demonstrate that small
oscillatory strains lead to large defect-free crystals [257].

Experiments usually make use of shear cells [228, 239, 282, 290–292, 313]. Local
ordering is then quantified by microscopy [239, 289], or scattering techniques [282,
286, 290–292]. The orientation of the crystals depends on the details of shear [228, 345,
346]. Often, rheology is performed separately and then compared to the microscopic
results [289, 291, 292, 313]. Gap heights, geometries, sample volumes, and other
parameters typically differ in shear cells and rheometers. Linking (macroscopic) flow
properties to structural ordering is ideally done in a combined setup.

A few studies have combined rheology with simultaneous light scattering using
optically transparent geometries [337, 347]. They revealed a drop of elastic and
viscous moduli due to shear-induced crystallization [337], as well as a structure-
dependent viscosity [347].

Here, the rheo-confocal setup will be used to provide simultaneous rheological
and microscopic signatures of shear-induced structural changes under oscillatory
and steady shear.

11.1.2 Materials and Methods
The sample under study is a colloidal suspension of PMMA-spheres (R ≈ 750 nm,
δ ≈ 5%) suspended in cis-decahydronaphthalene, known to be a hard-sphere model
system [240].

The PMMA-spheres are synthesized by M. A. Escobedo Sánchez and J. P. Segovia
Gutiérrez and labeled with rhodamine B. The volume fraction is set by sedimentation
of the sample to a random close packing (assumed to be ϕrcp = 0.655), followed
by a subsequent dilution to ϕ ≈ 0.56, as verified with a Voronoi tessellation (cf.,
section 7.4) of particle coordinates.

Measurements are performed with the rheo-confocal setup (cf., section 4.2). It
combines a stress-controlled rotational rheometer (Anton Paar, MCR 301 WESP)
with an inverted microscope (Nikon Ti-U) that is connected to a confocal scan
head (Visitech, VTEye). The sample is illuminated with a λ = 488 nm laser and
imaged through an oil-immersion objective (Nikon, Plan Apo VC, NA = 1.40, 100x).
The rheometer is equipped with cone and plate geometry. The cone (Anton Paar,
CP25/2-S, SN36375) is sandblasted and has a diameter of d = 24.9826 mm and
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a cone angle of β = 2.001◦. A serrated glass coverslip (original thickness: #1.5,
diameter: d = 50 mm) acts as the bottom plate. The glass slide is supported by a
stainless steel plate.

Two main tests are conducted: A dynamic strain sweep (DSS) with strain ampli-
tudes from γ0 = 200% to γ0 = 1% at a frequency of ω = 1 rad/s, and a start-up test
with a shear rate of γ̇ = 10 s−1. This corresponds to Péclet numbers of Peω = 5 and
Pe = 50, respectively (cf., equation (2.23) and equation (2.22)). The sequence of
tests is given in table 11.1 and lasts about two hours altogether.

Confocal image acquisition is triggered electronically at the start of each test.
Under shear, two-dimensional time-series are recorded at heights of z1 = 7.7 µm or
z2 = 10 µm above the bottom plate. The frame rate for the 2D series is one frame
per second. Three-dimensional z-stacks are recorded under quiescent conditions with
51 frames per second from 7.7 µm to 22.7 µm, with a z-step of 0.15 µm. Individual
images contain 512 × 512 pixels corresponding to 47.4 µm × 48.7 µm.

Particle tracking is done using standard routines [203]. Local order parameters q6
(cf., equation (7.23) or [266]) are calculated on a single-particle level. To this end,
neighbors are defined with a cutoff-distance. The cutoff-distance is taken from the
position of the first minimum of the pair correlation function. The ensemble-averaged
quantity ⟨q6⟩ serves as a measure for the overall degree of ordering. Particles close
to the edges of the field of view are disregarded.

11.1.3 Results
Visual inspection of the sample during the measurements indicates that the sample
changes its microscopic structure depending on the applied shear. Upon loading, the
sample is amorphous. Order is then induced during oscillatory shear, especially at
small strain amplitudes. An amorphous structure is recovered, for example, at large
strains during a start-up test. In either case, the shear-induced structures persist
after cessation of shear – at least within the experimental time window. Qualitative
results from the full sequence of tests are given in table 11.1.

A few tests will now be analyzed quantitatively. First, we will take a closer look at
shear-induced ordering during oscillatory shear (i.e., tests #3, #7, #9 of table 11.1).
As a second step, we will have a brief look at shear-induced melting under steady
shear (i.e., test #11).

11.1.3.1 Dynamic Strain Sweeps

The rheological results of the three executed dynamic strain sweeps are shown in
figure 11.1. The strain sweeps are performed from large to small strain amplitudes.
At any strain amplitude, the storage moduli G′ are smaller than the loss moduli
G

′′ , indicating a liquid-like sample. The trends of the moduli differ from the typical
response of colloidal glasses (cf., figure 2.18a). Furthermore, the moduli are largest
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test action observation by eye
#1 sample loading
#2 no action amorphous sample
#3 DSS crystallization under shear
#4 no action mainly crystalline sample with some fluid zones
#5 manual shearing melting of crystalline zones
#6 no action amorphous sample
#7 DSS crystallization under shear
#8 no action mainly crystalline sample with some fluid zones
#9 DSS amorphous at high, crystalline at low strains
#10 no action mainly crystalline sample with some fluid zones
#11 start-up melting of crystalline zones
#12 no action amorphous sample

Tab. 11.1 Tabular list of executed tests together with qualitative observations from
confocal microscopy. The first column specifies the running sequence, the second column
describes what has been done and the third column provides a short observation note.
Actions include a dynamic strain sweep (DSS) and a start-up test as described in the
materials and methods. During “manual shearing,” the cone is rotated by hand. The item
“no action” means that no shear is applied and that the sample is left undisturbed.
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Fig. 11.1 Comparison of three DSSs, measured from large to small strain amplitudes.
The numbers in the legend refer to the test sequence as introduced in table 11.1. Tests
with lower numbers are executed before tests with higher numbers. The gray area indicates
a region of low torque according to equation (1.43).
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(a) (b)

0.0 0.2 0.4 0.6 0.8
0

5

10

15

(c)

Fig. 11.2 (a,b) Renderings of particle positions showing the state of the sample before
and after the DSS (test #7), that is, during test #6 (top left) and #8 (top right). The color
coding of the q6-values goes from 0 (blue) via 0.33 (white) to 0.66 (red). (c) Histograms
of corresponding q6-values for test #6 and #8, as indicated in the legend.

for test #3 and smallest for test #9, revealing a history dependence. Experimental
limits are reached at small strains (i.e., γ ≲ 3%), where the inertia of the sample is
comparable to the inertia of the rheometer, as indicated in figure 11.1 by the gray
area. We will now pick the intermediate DSS (test #7) and have a closer look at the
corresponding microscopic results. Renderings of reconstructed particle coordinates
before and after this DSS are shown in figure 11.2, where particles are color-coded
according to their q6-value. Fluid-like particles appear blue and crystalline particles
red. Obviously, the local structure of the sample has changed during the DSS from an
amorphous state to a more crystalline state. This is also revealed in the histogram of
the q6-values (figure 11.2c). The threshold to distinguish between order and disorder
is around q6 = 0.33 [266].

To elucidate the amount of ordering during the DSS, one can take a look at results
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Fig. 11.3 DSS (test #7) at ω = 1 rad/s. Inserted are snapshots of the particle positions
for high (γ0 = 200%) and low strains (γ0 = 2%), acquired at z = 7.7 µm. The color coding
inside the snapshots refers to the magnitude of the q6-values and ranges from 0.35 (blue)
to 0.92 (red). The scale for the ensemble-averaged structure order parameter ⟨q6⟩ is shown
on the right axis. The top-axis shows the elapsed time of this measurement.

from simultaneous rheology and confocal microscopy. In figure 11.3, the storage
modulus G′ and the loss modulus G′′ are again plotted as a function of γ0. This
time, the rheological results are superimposed with the ensemble-averaged order
parameter ⟨q6⟩ as calculated for all particles within the field of view during shear.
The lowest ⟨q6⟩-values are found at the beginning of the experiment, that is, around
γ0 = 200%. The ⟨q6⟩-values increase with decreasing strain until they are essentially
constant for γ0 ≲ 70%. With this microscopic information, we can understand that
the sample undergoes a transition from an amorphous to a crystalline state at
γ0 ≈ 100%. Interestingly, ⟨q6⟩ and (−1 ·G′′) have very similar trends.

Information on the full series of raw-images indicates that the crystallization
process starts with small nuclei that grow with time. Two renderings of particle
positions at small (γ0 = 2%) and large strains (γ0 = 200%) are shown inside
figure 11.3. In both cases, the x-axis corresponds to the direction of shear and the
y-axis to the vorticity direction. One can, therefore, infer that crystalline particles
are aligned parallel to the direction of shear.
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Fig. 11.4 Pair correlation function g(r) as a function of distance r at different strain
amplitudes during a DSS (test #7). The positions of the three tagged peaks are discussed
in the text.

The structure of the sample can also be quantified by a pair correlation function.
Figure 11.4 shows the pair correlation function g(r) based on two-dimensional
images for small (γ0 = 2%) and large (γ0 = 200%) strain amplitudes. At large
strains, g(r) shows the typical profile of a (concentrated) fluid. At small strains,
however, the pair correlation function reveals signatures of a crystal, where particles
occupy their lattice positions. The position of the first, second, and third peak
is located at r1 = 1.62 µm, r2 ≈

√
3 r1, and r3 ≈ 2 r1. They correspond to the

distances of the nearest, second nearest, and third nearest neighbors, as expected for
a two-dimensional close-packed hexagonal lattice. The first peak is more pronounced
and shifted to a slightly larger distance as compared to the amorphous sample. This
means that the average inter-particle distance is larger in a crystalline than in a
disordered state. The position of the first minimum is the same for both cases, which
justifies the use of a fixed cutoff radius for the bond order analysis.

11.1.3.2 Start-Up Shear

We now take a look at the start-up experiment at γ̇ = 10 s−1 (i.e., test #11 in
table 11.1). Initially, the sample is in a crystalline state (similar to figure 11.2b)
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Fig. 11.5 Start-up experiment at γ̇ = 10 s−1. Shown is the stress σ as a function of
strain γ (bottom axis) and elapsed time (top axis), together with the ensemble-averaged
quantity ⟨q6⟩ as obtained from confocal microscopy. Inserted are renderings of the particle
positions at short (t = 1 s, left inset) and long times (t = 590 s, right inset). The color
coding of the particles is due to the q6-values as indicated.

that is interrupted by defects of various sizes and shapes. At the end of the start-up
experiment, the crystalline regions are melted and the sample has an amorphous
structure (comparable to figure 11.2a).

The degree of ordering during shear is quantified again by the ensemble-averaged
order parameter ⟨q6⟩ and shown together with the rheological response in figure 11.5.
The stress response at small strains (short times) is noisy and not shown for clarity.
The increase of σ at γ ≈ 5 · 104 % coincides with a transition from a crystalline to
a disordered structure of the sample as can be inferred from the abrupt drop of ⟨q6⟩.
The two renderings inside the figure are taken at γ = 103 % and γ = 6 · 105 % and
illustrate the ordered and disordered structure on a single-particle level. One can
see that the crystalline structure at t = 1 s is interrupted by small defects. In the
experiment, defects of different sizes are passing through the field of view leading
to the apparent fluctuations of ⟨q6⟩ for γ ≲ 5 · 104 %. From γ ≈ 105 % onward,
the ensemble-averaged bond order parameter is almost constant, and the system is
amorphous as also directly observed from the raw images.
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11.1.4 Discussion
The possibility of getting an ordered structure heavily depends on the properties of
the probed sample. For spherical colloidal particles, polydispersity plays a crucial
role (cf., section 2.4.3 and chapter 8). Here, the polydispersity is small enough
(δ ≈ 5%) such that ordered structures can appear.

The crystalline structures are aligned parallel to the direction of shear. This
corresponds to an orientation previously found at high strains: Haw et al. observed
an orientation parallel to shear at “high strains” (γ > 50%) and perpendicular to
shear at “low strains” (γ < 50%) [228, 345]. Our preliminary experiments do not
show any ordering perpendicular to shear even though also small strain amplitudes
are applied to the system. A possible explanation is that previous work used fixed
strain amplitudes, while experiments from this work are performed continuously
from high to small strains. Hence, it seems plausible that the orientation is induced
in the high-strain regime and persists until the cessation of shear. Low strains might
not be able to revert the high-strain orientation. This is supported by the observation
by Haw et al., stating that the orientation at low strains is not as pronounced as in
the case of high strains [228]. In fact, Haw et al. find a distribution of orientations
at low strains as well as “narrow bands of disorder” that separate individual crystals
[228]. Narrow bands, small islands, and other shapes of disorder are also found in
this work. It is expected that a mono-crystal can be obtained under a prolonged
application of shear.

Particles in a crystalline state can slide along each other [228, 337, 345, 347],
whereas larger rearrangements are necessary in the case of disordered systems.
Similarly, our storage and loss moduli are larger for a disordered state than they
would be expected in their ordered counterparts, in agreement with reference [337].
Koumakis et al. found that the elastic modulus G′ of a shear aligned crystal is lower
than the elastic modulus G′ of a poly-crystal, which in turn is again lower than a
completely amorphous sample [337]. The moduli can, therefore, serve as an indicator
of the degree of ordering.

According to the train of thought of Koumakis et al., the results can be explained
as follows [337]: Even though the ordered and disordered states have the same overall
volume fraction, their distances to the corresponding maximum packing are different.
While the maximum packing for a disordered system is at 0.64 ≲ ϕmax ≲ 0.66, it
is at ϕmax = 0.74 for a hexagonal close-packed system. This means that at a given
volume fraction, a crystal is effectively further away from its maximum packing
than its disordered counterpart. Accordingly, crystalline particles have a larger free
volume and show less resistance to external shear than glasses at the same ϕ. Smaller
stresses of crystals as compared to glasses at the same volume fraction have also
been seen in numerical simulation [346]. This is in line with our start-up test, in
which we also observe that the shear stress of the ordered state is lower than the
shear stress of the amorphous state (cf., figure 11.5).
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11.1.5 Conclusion
The results show shear-induced crystallization and melting. While oscillatory exper-
iments at low and moderate strains facilitate ordering, tests at high rates and large
strains destroy any ordered structure.

The transition from disorder to order is smooth in terms of the order parameter
⟨q6⟩ and takes place in a relatively broad strain range, namely, from γ0 = 200% to
γ0 = 70% (cf., figure 11.3). Instead, the transition from order to disorder is found
to be rather abrupt (cf., figure 11.5).

Structural rearrangements are linked to rheological measures and and manifest
themselves in moderate changes of the shear stress or modulus. The stress is found
to be higher in the disordered than in the ordered state. This implies that it is easier
to shear a crystal than a fluid of the same volume fraction.

11.2 Indentation
Indentation experiments have been performed at the Max Planck Institute for
Polymer Research in Mainz in the group of G. K. Auernhammer.

11.2.1 Introduction
Besides shear, indentation is another method to mechanically probe a sample. A
good overview including historical aspects as well as a more detailed description
of indentation – mostly based on metallic glasses – may be provided in references
[348–350]. Indentation is also frequently used in applied science, for instance, to test
the endurance of a windshield.

Recently, indentation is also performed on a submicron scale. This is termed
nanoindentation [351] and can be combined with in situ particle tracking in the case
of colloids [352]. Preliminary experiments from this work follow previous studies on
colloidal glasses and crystals [254, 353–355] and may be seen as a starting point for
future investigations.

11.2.2 Materials and Methods
PMMA-spheres (synthesized by A. B. Schofield) are used for the indentation ex-
periments. The particles have a radius of R = 720 nm, a polydispersity of δ = 6%,
and are labeled with 4-methylaminoethylmethacrylate-7-nitro-benzo-2-oxal,3-diazol
(NBD). They are dispersed in a density and refractive index matching mixture of
cis-decalin and cycloheptyl bromide. The sample cell consists of a PTFE-cylinder
(with an inner diameter of 6 mm and a height of about 5 mm) that is glued onto a
coverslip. The sample is filled from the top and placed into the home-build setup
at MPI Mainz. The temperature inside the setup is T = 28 ◦C. The sample is
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Fig. 11.6 (a) Raw image with the tip of the Berkovich indentor. The image is cut and a
scale bar of 10 µm added. (b) Rendering of particle positions. “Missing” particles indicate
the position of the indentor. Particles in (c) are color-coded according to their q6-values
and in (d) according to their ϵzz-values. For the latter, particles having positive values are
colored in red and particles with negative ones in blue.

illuminated from below with a λ = 468 nm laser. Confocal image-stacks consist of
512 × 512 × 96 pixels, corresponding to a volume of 40 × 40 × 15 µm. It takes roughly
∆t3D = 170 s to capture a full 3D-stack and a total of 100 3D-stacks are recorded. A
Berkovich tip indents the sample. The indentor is lowered by zstep = 0.15 µm between
two consecutive 3D-stacks, and the motion is paused during image acquisition.

Particle coordinates are obtained using standard routines [203, 204] (cf., sec-
tion 6.1.1). The structure and dynamics of the sample are analyzed using bond order
parameters (equation (7.23)) and local strains (equation (7.18), with δt = ∆t3D).
Neighbors are defined using a cutoff-distance of 1.4R for the bond order parameters
and 2.8R for the calculation of local strains, respectively.

11.2.3 Results
The preliminary results are summarized in figure 11.6: The image in figure 11.6a
shows a part of the raw data in which the Berkovich indentor is visible. A corre-
sponding reconstruction of particle coordinates is given in figure 11.6b. One can see
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in the rendering that particles do not fill the entire box. Missing particles at the top
indicate the presence of the indentor. The shape of the indentor is clearly visible
from the arrangement of particles. Wetting is observed close to the (smooth) surface
of the indentor. This is quantified in figure 11.6c, where each particle is color-coded
according to its q6-value. The color range goes from blue over white to red and
ranges from q6 = 0 to q6 = 0.66. One can see that the majority of particles next to
the (invisible) indentor are red, and particles in the bulk are blue. Thus, indentation
explicitly affects the structure of the sample close to the tip of the indentor.

Besides the structure, also the dynamics can be investigated. It is very common,
to evaluate shear strains during indentation. Similar to reference [354], we also plot
the strains ϵzz on a single-particle level (figure 11.6d). The ϵzz quantify the extension
and compression along the z-axis. Positive values (extension) are marked red and
negative values (compression) are marked blue. Intuitively, the sample should be
compressed along the z-direction since the indentor is pushed downwards. This is
indeed observed here since the mean value over all ϵzz-values is negative.

11.2.4 Discussion
Rahmani et al. find that histograms of strain values differ close to and further away
from the indentor [354]. One needs to admit that the quality of the given set of
data is not suitable for quantitative analysis. Particles move too far between two
consecutive images. The Brownian time of the particles is τB = 5 s, which is very
small compared to the time it takes to capture a 3D-stack.

In terms of data analysis, new insights might be obtained by calculating D2
min.

Varying systematically volume fraction, sample composition or the distance of the
field of view with respect to the indentor are further possibilities for future studies.

11.2.5 Conclusion
Nanoindentation of colloids can serve as a fruitful technique to study colloidal
materials. The preliminary results give an impression of what can be done. Confocal
microscopy allows for in situ observation of structural and dynamical properties.
Once the particle coordinates have been determined, many local properties can be
calculated. As proof of principle, this was done for q6 and ϵzz.

11.3 Gels under Shear
So far, results were entirely based on colloidal spheres. We will use this final section
to slightly change perspective and take a look at another model system: gels.
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Fig. 11.7 Schematic representing a gel that consists of linear polymer chains (lines)
connected by cross-links (small black blobs).

11.3.1 Introduction
There are a variety of gels and their applications range from food additives over
pharmaceuticals to synthetic tissues and biomedical implants [356–358].

A relevant subgroup is made up of hydrophilic gels or in short: hydrogels. Ev-
eryday examples include wound dressings and contact lenses. Hydrogels are based
on polymer networks and can store a large amount of water due to hydrophilic
functional groups. A schematic of a hydrogel is given in figure 11.7. A hydrogel
can be, for example, based on the monomer acrylamide (AAm) and the cross-linker
N,N’-methylenebis(acrylamide) (MBAAm). The properties of these gels can be tuned
by varying the polymer concentration and the cross-linking density [359]. Other syn-
thetic hydrogels are so-called polyisocyanopeptide hydrogels (PIC), which resemble
intermediate filaments and can thus be used to mimic the natural environment of
biological cells [360].

The physics of gels strongly depends on the details of the individual constituents
and the bonding between them. One may separate the bonds into “physical” and
“chemical” bonds. While the latter are strong and permanent, the former are much
weaker and can easily break and reform at thermal energies.

Gel networks have been studied experimentally with rheology [360], a combined
setup consisting of a tensile stage and confocal microscopy [361], and boundary stress
microscopy [362]. Gels often show strain stiffening. Mechanical failure manifests
itself in cracks [361], slip [363], plastic events [364], and breaking of bonds [365].
More details are beyond the scope of this section and further reading is, for example,
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Gel Objective magn NA FOV / px3 FOV / µm3

AAm Plan Fluor (oil) 100x 1.30 512 × 512 × 134 49 × 49 × 100
PIC Plan Apo VC (water) 60x 1.20 512 × 512 × 134 79 × 77 × 100

Tab. 11.2 Parameters for the confocal image acquisition. The water-immersion objective
was lent by Nikon GmbH, Düsseldorf.

provided in one out of many recent reviews [356–358, 366, 367]. It was stated by
Brink et al. in 2007 that “there is clearly a need of sophisticated measurement
techniques for fracture dynamics at the microscopic level in addition to traditional
large-scale rheological methods in order to fully map the structural dynamics leading
to failure” [361].

In the following, we will study a polyisocyanopeptide hydrogel (PIC-gel) as an
example of a gel with weak bonds, and an acrylamide-based hydrogel (AAm-gel)
with strong bonds.

11.3.2 Materials and Methods
The AAm-gel is prepared by cross-linking polymerization of the monomer acrylamide
(AAm) (Sigma, A8887) with the cross-linker N,N’-methylenebis(acrylamide) (Sigma-
Aldrich, 146072). The cross-linker to monomer ratio is 1 : 60. The reaction is stated
with ammonium peroxydisulphate (Roth, 9592.2) and accelerated with N,N,N’,N’-
Tetramethyl ethylenediamine (Merck, 110732). For an aqueous solution of V = 2 ml,
75 mg of AAm is used. The solution contains 0.1% (V/V) fluorescently labeled
polystyrene-spheres (Thermo Scientific, R0200) that have a radius of Rtracer = 2 µm.

The PIC-gel has a catalyst to monomer ratio of 1 : 4000 and a molecular weight
of 562 kg/mol. Sample preparation yields a 2 mg/ml solution of polyisocyanide. The
solution contains 0.25% (V/V) fluorescently labeled spheres (Thermo Scientific,
R0200) – the same as used for the AAm-gel.

The confocal rheometer is equipped with a parallel plate geometry (Anton Paar,
PP25, SN34724) with a diameter of d = 25.0 mm. Shear is applied by means
of a start-up experiment with a shear rate of γ̇ = 0.0025 s−1. Gap heights and
temperatures in the case of the AAm-hydrogel and the PIC-hydrogel are hAAm =
675 µm, TAAm = 20.5 ◦C and hPIC = 85 µm, TPIC = 24 ◦C, respectively. Further
parameters for confocal image acquisition are given in table 11.2.

Tracer particles are tracked using modifications of standard routines [203] as
described in section 6.1.1 and section 6.2. Local shear rates and nonaffine motions
are calculated following section 7.2. To this end, neighbors are defined via a cutoff-
distance of 60 µm and 13 µm, respectively.
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Fig. 11.8 Rheological stress response of the AAm-gel as a function of strain during a
start-up test at γ̇ = 0.0025 s−1.

11.3.3 Results
11.3.3.1 AAm-Gel

We start with the rheological response of the acrylamide-hydrogel. Figure 11.8 shows
the stress as a function of strain during the start-up experiment. The AAm-gel
exhibits a long linear regime until about 100% strain where it reaches its maximum
stress value. Stress values of the order of 100 Pa are much higher than found in
colloidal suspensions. From γ ≂ 100% on, the stress decreases slowly and shows
evidence of a steady-state plateau at high strains.

Keeping the rheological results in mind, we may step over to results from confocal
microscopy. Renderings of tracer particles at γ = 38%, γ = 108% and γ = 188%
are shown in figure 11.9. The direction of shear is from left to right and all particle
positions are projected into the velocity-gradient plane. For clarity, some – at first
sight arbitrary – particles are highlighted in green. These particles are chosen because
they can be connected by a straight line. Moreover, they represent the sample in
different heights within the gap. One can see that the highlighted particles, which
are aligned along an imaginary straight line at γ = 38% (figure 11.9a), are still
arranged along a straight line at γ = 108% (figure 11.9b). Thus, the sample moves
affine during the strain interval of 38% to 108%. At γ = 189%, the highlighted
particles are still arranged along a straight line but they are strained less than
one would expect. Compared to γ = 108%, particles actually move in the opposite

208



11.3 Gels under Shear

(a) (b) (c)

Fig. 11.9 Renderings of tracer particles inside the AAm-gel at (a) γ = 38%, (b) γ = 108%
and (c) γ = 189%. All renderings are projections in the velocity-gradient direction. The
direction of shear is in positive x-direction and the field of view covers a z-range from
0 µm to 100 µm. The bottom plate at z = 0 µm is stationary. In each rendering, three
particles (green color) are highlighted to indicate the overall motion. The radii of the
three highlighted particles are doubled for clarity. Between (a) and (b), particles move
affine and follow the imposed shear. Between (b) and (c), the gel does not follow the shear
anymore as can be inferred from the (almost stationary) particle positions.
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Fig. 11.10 Combined results of the AAm-gel as obtained from simultaneous rheology
and confocal microscopy. The stress is the same as in figure 11.8 but plotted here in a
linear scale for better comparison. The local shear rate is obtained from tracer particle
trajectories. Dashed lines are located at γ ∈ [38%, 108%, 189%], that is, at the same strains
as in figure 11.9.

direction of shear. Examination of particle reconstructions over the whole strain
range reveals that particles move smooth and affine for γ ≲ 108% and discontinuous
at higher strains.

This will be quantified in the following: From the single-particle displacements,
one can calculate local shear rates γ̇local. We now calculate the ensemble-averaged
quantity ⟨γ̇local⟩ and normalize it with the macroscopic shear rate γ̇appl. that is
applied. The quantity ⟨γ̇local⟩/γ̇appl. is plotted together with the macroscopic stress
response in figure 11.10. The data of the shear stress is the same as in figure 11.8
and plotted here in a lin-lin representation for better comparison with confocal
results. Dashed vertical lines indicate the corresponding strains of the renderings
(cf., figure 11.9). We now see that the local shear rate for strains below γ ≈ 108%
is as expected, i.e., ⟨γ̇local⟩/γ̇appl. ≂ 1. This changes dramatically above γ ≳ 108%
where the local shear rate exhibits several peaks in both positive and negative
directions. In particular, there are a number of strong recoils and in most of the time,
⟨γ̇local⟩/γ̇appl. is now less than unity. Thus, the AAm-gel is not sheared properly
anymore at high strains. From the confocal data, it can be inferred that the AAm-gel
exhibits a behavior that is reminiscent of a stick-slip phenomenon. Since no slip is
observed at the bottom plate, slip needs to take place entirely at the top plate. The
stress-overshoot at γ ≈ 100% marks the onset of the stick-slip regime.
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Fig. 11.11 Combined macroscopic and microscopic results of the PIC-gel. The figure
shows a lin-lin plot of the stress (left axis) and local nonaffine motion (right axis) as a
function of strain. Dashed vertical lines are located at γ1 = 16.3% and γ2 = 40.5%, that
is, where the first two stress drops are observed.

11.3.3.2 PIC-Gel

We can now turn to the PIC-gel. The use of a smaller gap height provides the
opportunity to image tracer particles throughout the entire gap. Slip is observed
neither at the top nor at the bottom plate. Yet, we have another interesting
observation: The motion of the tracer particles is nonaffine. In figure 11.11, the
ensemble-averaged nonaffine motion ⟨D2

min⟩ is plotted together with the measured
shear stress σ as a function of strain. The stress increases from σ = 0 Pa up to a
maximum of about σ = 12 Pa. The increase is not monotonic, but there are several
stress fluctuations together with sharply increasing nonaffine motions. For example,
the first two stress drops are indicated by dashed lines and located at γ1 = 16.3%
and γ2 = 40.5%. At the same time, a peak in ⟨D2

min⟩ is observed.
Renderings of tracer particles at γ1 and γ2 are shown in figure 11.12. All particle

positions are projected into the velocity-gradient plane. The direction of shear is
from left to right and the gradient axis covers the full gap from the bottom plate to
the top plate. Tracer particles are color-coded according to their amount of nonaffine
motion. Here, blue indicates small and red large D2

min-values, respectively. What we
can see is that nonaffine events take place in localized spots. The first event (cf.,
figure 11.12a) is located in the velocity-vorticity plane at a height of z ≈ 33µm and
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(a) (b)

Fig. 11.12 Renderings of tracer particles inside the PIC-gel at (a) γ1 = 16.3% and
(b) γ2 = 40.5%. The positions of tracer particles are projected into the velocity-gradient
plane. Blue particles are in zones of negligible nonaffine motion whereas red particles are
in regions of large nonaffine motion.

the second event (cf., figure 11.12b) takes place at z ≈ 63 µm. Nonaffine events at
higher strains show very similar results. These events are spread in the velocity-
vorticity-plane and occur anywhere within the gap. Inspection of confocal data
suggests that the gel fractures at these places.

11.3.4 Discussion
We have seen two different scenarios for the AAm- and the PIC-gel. The AAm-
hydrogel shows a long linear increase of the stress as a function of strain between
γ = 0% and γ ≈ 100%. In this regime, the local shear rate is equal to the macroscopic
shear rate and the gel behaves elastic (σ ∝ γ). Further deformation of the AAm-gel
is then prevented by strong chemical bonds. The apparent overshoot and steady
state are the consequence of a stick-slip phenomenon as revealed by confocal
microscopy. The results are in good agreement with experiments on a carbopol
microgel, where Divoux et al. identify four regimes [363]: Initially, they observe a
regime of homogeneous deformation. Then, they find a maximum value of the stress
that coincides with the emergence of a lubrication layer. Third, their gel experiences
a recoil and finally enters a regime of total wall slip [363]. Similarly, plug flow of a
hydrogel is observed in a recent rheo-confocal study [367].

The PIC-gel shows a different behavior. Simultaneous rheology and confocal
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microscopy show a strong correlation between shear stresses on the one hand and local
nonaffine motion on the other hand. Microscopically, it is observed that the PIC-gel
locally fractures, as indicated by significant nonaffine motions. This is macroscopically
reflected in a reduction of the shear stress. Stress drops have previously been related
to plastic events [364] and breaking of bonds [365]. Breaking of bonds takes place
in a plane parallel to the velocity-vorticity direction (figure 11.12), as previously
observed in amorphous solids [364].

11.3.5 Conclusion
We can relate the two observations to the material properties of the two gels. To do
so, we recognize that the AAm-gel has “strong, chemical bonds,” while the PIC-gel
has “weak, physical bonds.” This leads to the following conclusion: Initially, (all) gels
behave elastically. Any non-elastic behavior stems from small, microscopic cracks
between subunits of the gel. Depending on the amount of external load, bonds
may break or resist. If they withstand the external load, then further shearing is
impossible, and the sample will eventually exhibit slip. Once connections break, the
sample deforms plastically, and the stress is reduced.
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This work investigated the flow of concentrated colloidal suspensions of hard
spheres. External shear can crystallize or melt the system and thereby change
the internal structure, which in turn affects the macroscopic rheological response
(section 11.1). The size distribution of the colloidal particles plays a crucial role in
determining this behavior. For instance, binary mixtures at ϕ = 0.58 were observed to
crystallize under shear unless the size difference between the individual constituents
is larger than about 15% (chapter 8). For much smaller size differences, the system
forms a substitutional crystal with a random mixture of fcc and hcp stackings.
Therefore, samples with high enough polydispersity were used to investigate the
yielding and flow of colloidal glasses (0.56 ≤ ϕ ≤ 0.65).

Yielding under oscillatory shear is reflected macroscopically in the transition
from elastic to viscous behavior, microscopically in the transition from reversible
to irreversible particle motions, and takes place at strain amplitudes of around
2 − 20% (chapter 9), depending on the volume fraction. At these strains, the system
shows rheological signatures of intra-cycle shear thickening. Strain amplitudes were
monitored by confocal microscopy and corrected if slip occurred.

Start-up experiments at low shear rates (chapter 10) suggest that colloidal glasses
obey the principles of simple shear only in a specific parameter range that is
smaller than previously expected. Transient and highly nonlinear shear profiles are
found together with transient and nonlinear dynamics on a single particle-level.
Interestingly, the nature of the flow of colloidal glasses does not only depend on
the external shear but also on the experimental conditions and the sample itself.
The direct real-space observation of microscopic and mesoscopic quantities provided
useful evidence that is barely accessible by rheology alone. Future work could extend
the results using different volume fractions, Péclet numbers, and particle sizes to
reveal the corresponding regions of homogeneous and inhomogeneous flow.

Further studies could also tackle different mechanical tests, and preliminary
experiments for this have already been performed (section 11.2). For instance, the
rheo-confocal setup (section 4.2) could be extended for indentation experiments if
an indentor tip replaces the measuring geometry. Then, indentation steps with a
precision of 1 µm, and normal forces measurements down to 5 mN are technically
feasible.

Furthermore, a set of rheo-confocal experiments with a sinusoidal stress input
(instead of strain) could be performed, since the respective material response can
differ significantly [368]. Similarly, creep tests are straightforward to perform on the
rheo-confocal setup.

Yielding, flow, and other phenomena are not limited to systems of hard spheres.
A simple step would be to include other soft systems (e.g., gels (section 11.3)) that
can, for instance, change their interaction potential as a function of temperature.
A temperature-controlled sample cell for the rheo-confocal setup has already been
developed and is available for future research.
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