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ZUSAMMENFASSUNG 

Molekulare Erkennungsprozesse beschreiben wie biologische Makromoleküle miteinander 

oder mit kleineren Molekülen interagieren und so einen Komplex mit biologischer Funktion 

bilden. Der resultierende Komplex ist ein Produkt aus hoher Spezifität und Affinität zwi-

schen den Interaktionspartnern. Eine detaillierte Erkundung dieser Erkennungsprozesse 

kann dazu beitragen, bisher noch ungeklärte biologische und medizinische Fragestellungen 

zu erläutern, denn häufig sind jene ungeklärten Ursachen auf Änderungen der Affinität oder 

Spezifität zwischen den Interaktionspartnern zurückzuführen.  

Um diese fundamentalen Erkennungsprozesse und die damit einhergehenden funktionellen 

Konsequenzen von Struktur, Dynamik und Interaktionen biologischer Moleküle zu verste-

hen, habe ich ein breites Spektrum computergestützter Methoden angewendet. Ein Charak-

teristikum dieser Arbeit ist jedoch, dass die Ergebnisse der Simulationen stets im Sinne des 

integrativen Modellierens mit experimentellen Daten verknüpft wurden. So wurden die Ex-

perimente zur Verfeinerung und Validierung von meinen berechneten Ergebnissen herange-

zogen. Alternativ konnte ich durch meine computergestützten Methoden dazu beitragen ex-

perimentelle Beobachtungen auf funktionaler Ebene in atomarer Auflösung zu erklären.  

So habe ich in PUBLICATION I und PUBLICATION II die molekularen Regulations- und 

Inhibierungsmechanismen der humanen Glutamin-Synthetase untersucht. Verlust der en-

zymatischen Glutamin-Synthetase-Aktivität steht im Zusammenhang mit schwersten klini-

schen Symptomen. In der vorliegenden Arbeit habe ich herausgefunden, dass sowohl ange-

borene Enzymvariationen als auch Tyrosinnitrierung die Affinität der Glutamin-Synthetase 

zum Substrat reduzieren, was wiederum zum Verlust der enzymatischen Aktivität führt. 

Diese Erkenntnisse können dazu beitragen, neue Strategien zu entwickeln, um die ursprüng-

liche Affinität des Enzyms zu seinem Substrat wiederherzustellen. 

Hochspezifische Interaktionen zwischen einem Enzym und Substrat spielen in der Entwick-

lung von Resistenzmechanismen gegenüber antibakteriell wirkenden Substanzen eine be-

deutende Rolle. So produziert Streptococcus agalactiae, im Zuge der Resistenzentwicklung, 

das Resistenzprotein NSR, welches hochspezifisch antibakteriell wirksames Nisin bindet, 

spaltet und somit ineffektiv macht. In der vorliegenden Arbeit, habe ich herausgefunden, wie 

und warum NSR spezifisch Nisin bindet (PUBLICATION III). Diese Einsichten bilden die 

Grundlage für die Identifizierung potentieller NSR Inhibitoren, um so die Bildung von Resi-

tenzen zu verhindert. 
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Der eigentliche Prozess wie, zwei Moleküle aneinander binden, kann näherungsweise in 

zwei Reaktionsschritte geteilt werden; zuerst bewegen sich beide Moleküle frei und erst 

wenn sich beide Moleküle räumlich nähern, bildet sich als Resultat von hoher Spezifität und 

Affinität ein Komplex. In PUBLICATION IV ist es mir gelungen, den Bindungsprozess des 

neuen, potentiellen Arzneistoffes Aminoxyrone an sein Rezeptor zu rekonstruieren. Die Er-

gebnisse liefern Hinweise bezüglich eines neuen und zuvor unbekannten Wirkmechanismus. 

Diese Arbeit bildet somit das Fundament für die Entwicklung neuer Arzneistoffe in der 

Krebstherapie, die dem gleichen Wirkmechanismus wie Aminoxyrone folgen. 
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ABSTRACT 

Molecular recognition describes the process of how biological macromolecules interact with 

each other or with smaller molecules to form a complex with a biological function. The 

complex is thus a product of high specificity and affinity. In many cases, enzymatic mal-

function is often induced by a change in the affinity or specificity between the interaction 

partners. An in-depth understanding of the fundamental recognition processes can help to 

answer so far unresolved biological and medical questions. To study these fundamental 

recognition processes, I employed computer-aided methods, which are summarized under 

the term "computational microscopy". A fundamental aspect of this work, however, is that 

the results of the simulations were always linked to experimental data in the sense of inte-

grative modeling. Hence, experiments were used to refine and validate my computational 

results. Alternatively, I was able to use my computer-aided methods to explain experimental 

observations at the functional level in atomic resolution. 

In particular, I investigated the molecular regulation and inhibition mechanisms of the hu-

man glutamine synthetase, an enzyme essential for the human nitrogen metabolism. Loss of 

enzymatic activity is associated with severe clinical conditions. In the present work, I found 

that both innate enzyme variations and tyrosine nitration adversely affect the affinity the 

glutamine synthetase to its substrates. The reduced affinity provides a plausible explanation 

for the associated loss of enzymatic activity (PUBLICATION I and PUBLICATION II). The 

results may also help to develop new strategies to restore the initial affinity of the glutamine 

synthetase towards its substrates. 

Highly specific interactions between an enzyme and a substrate play an important role in the 

development of resistance mechanisms to antibacterial substances. For example, in the 

course of resistance development Streptococcus agalactiae produces the resistance protein 

NSR, which binds and cleaves antibacterial nisin. The cleaved nisin, however, is antibacte-

rial ineffective. In the present work, I found how and why NSR specifically recognizes nisin 

(PUBLICATION III). These insights form the basis for the identification of potential NSR 

inhibitors to prevent nisin inactivation. 

The actual process of binding of two molecules can be described by two individual steps; 

first, both molecules move freely and only when both molecules approach each other does a 

complex form as a result of high specificity and affinity. In PUBLICATION IV, I succeeded 
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in reconstructing the binding process of the novel, first-in-class anticancer compound   Ami-

noxyrone to its receptor. The insights suggest a new and previously unknown mode of action. 

This work thus forms the basis for the development of new compounds in cancer therapy, 

which follow the same mode of action as Aminoxyrone. 
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1. INTRODUCTION

How does an enzyme catalyze its reactants? How does the antibody specifically recognize 

its antigen, but does not associate with miscellaneous peptides or proteins? How is DNA 

replication controlled although a series of complex enzyme-catalyzed reactions participating 

in this procedure? How do ion channels distinguish between cations and anions? How does 

a G protein-coupled receptor (GPCR) recognize the correct G protein? And how does a drug 

bind to its target? These are only a few questions that address and share the same desire, 

namely, to understand how two or more molecules recognize and bind to each other. 

In that sense, molecular recognition describes the process in which two or more mole-

cules interact with or bind to each other to form a specific complex1. Until now, three dif-

ferent models, the lock-and-key2, the induced fit3, and the model of conformational selec-

tion4-6 enjoy a profound level of popularity to explain protein-ligand interactions1. In his 

pioneering work, Emil Fischer described this process via a lock-and-key mechanism, such 

that only the correctly shaped ligand molecule (key) can bind or insert into its complemen-

tarily shaped binding pocket (lock) of a receptor molecule2. However, the lock-and-key 

model neglects any ligand or receptor flexibility. This major drawback was addressed in two 

additional models, namely the induced fit3 and the conformational selection4-6 models1. As 

to the induced fit model, the association of a rigid ligand and a flexible receptor molecule 

induces a conformational change in the receptor molecule, when the initial shapes of ligand 

and binding pocket do not match well3,7. As to the conformational selection model, the re-

ceptor structure is not a single rigid structure at all, but instead exists as a dynamic ensemble 

of multiple states, and the ligand binds to the receptor conformations that is complementary 

with its shape and shifts the ensemble towards this specific state4-7. Interestingly, there is 

also evidence that suggests that conformational selection can be followed by subsequent 

binding interface conformational adjustment via an induced fit mechanism8,9. Thus, whether 

the mechanisms of ligand binding can be narrowed down to one of the models or whether it 

is always a combined mechanism cannot be correctly answered and still needs further re-

search. However, all models share the common key aspects that ligand binding is driven by 

high specificity and affinity between the ligand and the receptor molecules1. 

The change in Gibbs free energy upon ligand binding is a measure for the binding affinity 

and logarithmically related to the equilibrium binding- and unbinding constants1,10 (details 

in section 2.1). A negative Gibbs free energy characterizes ligand binding processes that 
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occur spontaneously and without any external guiding force10 and methods that provide ac-

cess to the binding free energy are essential for the understanding of protein-ligand recogni-

tion and binding processes. Concerning the experimental methods, isothermal titration calo-

rimetry (ITC) is the gold standard for obtaining estimates of the binding free energy related 

to the ligand binding process11,12. ITC experiments provide access to the complete thermo-

dynamic profile, including the total change in Gibbs free energy and its enthalpic and en-

tropic contributions10. However, ITC experiments lack structural information. X-ray crystal-

lography, nuclear magnetic resonance (NMR) or cryo-electron microscopy provide struc-

tural information about protein-ligand complexes in full atomic or near-atomic resolution1, 

but also denote laborious and time-consuming procedures and lack any energetic evalua-

tion1. Here, theoretical or computational approaches denote a good compromise, as these 

methods are often less laborious, more economical, and faster than the experimental proce-

dures1 and provide access to both structural and energetic features of ligand binding (details 

in section 2.2). In that sense, binding free energy calculation methods (section 2.2.2) provide 

direct access to the thermodynamic properties of ligand binding and, complementarily, mo-

lecular dynamics (MD) simulations (section 2.2.1) denote a prominent approach that pro-

vides the structural information in full atomic detail13. In sum, an in-depth understanding of 

the structural and thermodynamic determinants of protein-ligand binding is essential for un-

derstanding any biological processes in which two or more molecules form complexes to 

fulfill its biological function. 

One primary goal of modern biomedical research is to understand the function-associated 

consequences of the structure, dynamics, and interactions of biological molecules. In recent 

years, this was achieved by the close integration of experiments and simulations, such that 

experiments are used to refine and corroborated simulations and simulations are used to pro-

vide a molecular interpretation of experimentally derived observations14. The fact that com-

putational methods provide full energetic description and also provide structural insights 

into the binding mechanism makes these tools highly valuable to investigate ligand binding 

pro-cesses. Thus, it is not surprising that in recent years, MD simulations and free energy 

calcu-lations gained more and more attention in order to address sophisticated questions 

in the field of biomedical research15 (section 2.2).  

A prominent example is to explain the molecular consequences of enzyme variations or post-

translational modifications that were related to reduced enzymatic activities. Often, these 

effects have been well described biochemically, but any molecular explanation has remained 
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elusive. Here, the integration of computational methods to the existing biochemical obser-

vations can provide structural and energetic insights into the functional consequences of en-

zyme variations and posttranslational modifications and may allow deriving strategies to 

counteract the functional consequences.  

In this regard, I used MD simulations and free energy calculations in PUBLICATION I, to 

elucidate the molecular mechanisms of three enzyme variations that were linked to the re-

duced enzymatic activity of the human glutamine synthetase (GS), a pivotal enzyme in hu-

man nitrogen metabolism16-19 (Figure 1A). Interestingly, human GS is also sensitive to post-

translational tyrosine nitration that was also linked to a reduced catalytic activity20-22. In 

PUBLICATION II, I provide the first molecular explanation by what means tyrosine nitra-

tion causes GS catalytic inhibition (Figure 1A). In both publications, my predictions were, 

subsequently, corroborated experimentally. Integration of simulation and experimental re-

sults provide the basis for the development of potential strategies to compensate for the in-

hibitory effects of point mutations and tyrosine nitration in human GS.  

Additionally, computational methods can provide an in-depth understanding of the highly 

specific recognition mechanisms between ligand and receptor, which is of particular interest 

in the field of drug resistance mechanisms. Here, theoretical methods can provide valuable 

insights to support the understanding of drug resistance mechanisms and, furthermore, guide 

the development of novel drugs. Hence, in PUBLICATION III, combining results from com-

putational simulations and results from biochemical experiments led to the first structural 

model of the antibiotic peptide nisin bound to a protease that specifically cleaves nisin, 

thereby inducing nisin resistance23,24 (Figure 1B). Therefore, based on my results from com-

putational simulations, I suggested amino acid substitution sites that were then experimen-

tally characterized towards their effects on nisin resistance. The structural and functional 

insides build the basis for the subsequent search for molecules that inhibit the protease, 

thereby overcoming nisin resistance.  
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Figure 1: Overview of biological systems that were investigated throughout this thesis.  
A: Top panel: 3D structure of the human glutamine synthetase (GS; PDB-ID: 2QC825; subunits are colored 
differently). Lower panel: Close up view of the catalytic site of human (PDB-ID: 2QC825) with R324 (purple), 
R341 (cyan), ADP (orange), and phosphorylated MSO (methionine sulfoximine; magenta) depicted as a ball-
and-stick model. The structurally bound manganese ions (Mn2+), which are essential for GS function26, are 
depicted as gray spheres. In PUBLICATION I, the molecular consequences of three GS variants (R324C, 
R324S, and R341C) were investigated. PUBLICATION II addresses the question by what means Y336 nitra-
tion causes GS catalytic inhibition. B: Top panel: 3D structure of nisin resolved by solution NMR spectroscopy 
(PDB-ID: 1WCO27). Lower panel: 3D structure of the nisin resistance protein (NSR; PDB-ID: 4Y6828) that 
specifically binds and cleaves nisin. In PUBLICATION III, the first structural model of nisin bound to NSR is 
reported, which provides atomic-level insights into the recognition mechanisms of nisin by NSR. C: Top panel: 
3D structure of the dimeric heat shock protein of 90 kDa (HSP90; PDB-ID 2CG929; the N-terminal domains 
are colored blue, the middle domains green, and the C-terminal domains orange). Two ATP molecules (ma-
genta spheres) are bound to the NTDs. Lower panel: 2D structure of Aminoxyrone. PUBLICATION IV pro-
vides a binding-mode model of Aminoxyrone bound the C-terminal domain of HSP90.  

Recent advances of hardware and software enabled to investigate the complete protein-lig-

and association process. In PUBLICATION IV, I elucidate the binding process of Aminoxy-

rone, a novel and first-in-class anticancer compound, to its molecular target, namely the heat 

shock protein of 90 kDa (HSP90; Figure 1C). Initially, the C-terminal domain of HSP90 

was identified as the target of Aminoxyrone. However, a molecular picture of how Ami-

noxyrone binds to the C-terminal domain has remained elusive. Here, I used unbiased MD 

simulations of Aminoxyrone binding to provide the first structural model of Aminoxyrone 

bound the HSP90. Interestingly, the findings suggest a novel and mode of action that opens 

a new avenue to target HSP90 for cancer therapy. 
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2. BACKGROUND

Throughout this thesis, I will, first, review the principles of molecular recognition that de-

scribe the process by which biomacromolecules, such as proteins, recognize or specifically 

bind to other molecules, such as proteins, peptides, nucleic acids, or small organic ligands, 

and thereby realize their functions. Second, I will provide an overview of computational 

methods to investigate molecular recognition, as I used these methods intensively to study 

molecular recognition processes for biological systems. I will also describe how the 

integration of results from biomolecular simulations and biophysical/-chemical experiments 

guide the understanding of sophisticated biological question . After this, I will introduce 

the model systems, for which I determined the structural and energetic features of 

function-as-sociated protein-ligand, protein-peptide, and protein-protein interactions. 

 Kinetic and thermodynamic concepts of molecular recognition 

Molecular recognition describes the process by which two or more molecules interact with 

each other through non-covalent interactions to form a specific complex1. In that sense, pro-

teins likely constitute the most important class of all biomacromolecules as proteins are rel-

evant in nearly all aspects of living30 and proteins can form complexes with different types 

of ligand molecules, including proteins, peptides, nucleic acids, small organic ligands, and 

many more1. Thus, for clarity purposes, the term protein will always refer to a receptor mol-

ecule throughout the following sections. Similarly, the term ligand will denote to any mole-

cule that can bind to the protein structure. 

Consider the simple and straight-forward binding process of a protein (P) and any ligand (L) 

to form a non-covalently bound complex (PL). The association and dissociation reactions 

can then be described by the reaction, which is described by eq. (1) 

P + L  PL. (1) 

If the rate of the forward reaction (complex formation or ligand binding), described by the 

kinetic constant kon, equals the rate of the reverse reaction (complex dissociation or ligand 

unbinding), described by koff, the overall reaction reached its reaction equilibrium. At 

equilibrium, the binding constant Kb or dissociation constant Kd can be expressed by eq. (2) 
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 Kb=
kon

koff
= 

[PL][P][L]  = 1
Kd

(2) 

where [P], [L], and [PL] denote the equilibrium concentration of the respective species in 

molar units15,31. Kd, in turn, is logarithmically related to the change in free energy upon ligand 

binding31 ( Gbinding) by eq. (3) 

where R is the gas constant, T the absolute temperature, and c0 the standard concentration in 

units consistent with the units of the concentrations in Kd
15,32. The introduction of c0 ensures 

that the logarithm in eq. (3) becomes dimensionless and allows the meaningful comparison 

of experimentally determined results with computational results32,33. A specialized case de-

notes to the change of standard free energy upon ligand binding, Gb
0
inding,  corre

sponds to the free energy change under standard conditions of 1 atm pressure, T = 298 K, 

and protein and ligand concentrations of 1 1,33. 

In genera G denotes the change in Gibbs free energy for a given system and is a measure 

for the potential of a system to do maximum work1,34. Processes that occur spontaneously 

and without external influence are characterized by a negative change in free energy10. If the 

free energy of a system is zero, the system is in equilibrium10. In terms of protein-ligand 

binding, t Gbinding is negative, which 

makes this parameter a fundamental quantity for the characterization of protein-ligand inter-

actions15,33. 

G can be expressed by its individual enthalpic and entropic contributions 

following eq. (4) 

G H – T S (4) 

where H S the change in entropy, and T the absolute 

temperature1 H describes energetic changes related to changes in interactions and (de)solv-

ation upon ligand binding10 S denote G and can be consid-

ered as an order parameter to describe how the energy is distributed over the thermodynamic 

system before and after ligand binding10. Importantly, even small entropic changes will re-

sult in large free energy changes, as, according to eq. (4) S is weighted by the temperature 

H and S can also be considered as the key determinants in protein-

Gbinding0  = -RT ln
Kd

c0  (3) 
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ligand binding, as these quantities determine the magnitude and direction of the binding free 

G1. The process of ligand binding and the free energy change associated with com-

plex formation can be accessed via computational methods. 

 

 Biomolecular simulations to investigate protein-ligand interactions. 

Although experimental procedures can provide the complete thermodynamic profile for a 

protein-ligand complex, these techniques are also often considered laborious, time-consum-

ing, and expensive1. Computational procedures, by contrast, denote a valuable alternative to 

derive atomic-level insights into the key determinants of ligand binding1. A very detailed 

level of information can be obtained via quantum mechanical calculations, which considers 

the electronic properties of the relevant molecules35. However, quantum mechanical calcu-

lations are yet limited to very small systems and short time scales35. By contrast, coarse-

grained simulations group many atoms into larger, single particles, which then allows 

studying complex biological systems on a much longer time scale36. By grouping multiple 

atoms into a larger particle, however, coarse grain methods allow to study huge systems36, 

but one also loses the atomistic level of information. In this regard, MD simulations denote 

an excellent compromise to investigate the structure and dynamics of biological systems at 

the millisecond time scale37 and, simultaneously, offer atomistic insights into the fundamen-

tal mechanisms of biomolecular systems, such that also the term “computational microscopy” 

was introduced for this method13. MD simulations cover a broad scope of application sys-

tems from rather small, for example, the effect of amino acid substitutions on the catalytic 

activity of enzymes38,39, to highly complex and sophisticated, for example, an atomistic 

model of a bacterial cytoplasm40,41. Throughout this thesis, I applied MD simulations and 

related methods to study the function-associated principles of protein-ligand, protein-peptide, 

and protein-protein interactions (PPIs).  

 

2.2.1 Unbiased molecular dynamics simulations to investigate ligand binding. 

MD simulations denote a physical method for studying the time-dependent interaction and 

motion of atoms and molecules15,42. Starting from a static structure, MD simulations record 

the change of an atom’s position over time, resulting in a trajectory15,42. The trajectory is 

obtained by integrating the second-order differential equation of Newton’s second law of 
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motion15,42. Therefore, Newton’s equation is integrated at distinct time steps, typically be-

tween 1 fs – 4 fs43. At each time step, forces on atoms are calculated by differentiating the 

potential energy at the positions of every atom in the system44. For MD simulations, a po-

tential energy function V (eq. (5)) 

V = Kr(r - req)2+ 
bonds

K (  - eq)2

angles

 
+ Vn

2
[1 +  cos (n  - y) ]

dihedrals

+
Aij

Rij
12  - Bij

Rij
6  + qi qj

Rijnonbonded
i < j

 
(5) 

is introduced to describe the physical interactions between atoms, which is also referred to 

as the molecular mechanics (MM) force field15,42. Eq. (5) depicts the Amber force field45-48 

to describe protein systems, which was also applied throughout this thesis. Nowadays, al-

most all relevant biological systems can be described via force fields, including amino 

acids45-48, nucleic acids49,50, lipids51,52, carbohydrates53, and also small organic compounds54. 

Thus, MD simulations allow investigating a broad range of biologically relevant processes, 

such as function-related structural changes55,56, protein folding and unfolding57-59, and ligand 

binding60,61. 

In a very simplified representation of the protein-ligand binding process, the whole associa-

tion process can be decomposed into two major events. First, protein and ligand molecules 

diffuse freely within the solvent environment until, second, a collision of both molecules 

introduces contacts, thereby promoting complex formation (Figure 2)1,15. Thus, the simplest 

way to investigate how a ligand binds to its target, one could imagine, is to track the diffusion 

process over time until the desired complex is formed. In recent years, MD simulations have 

been extensively used to investigate the principles of protein-ligand binding, as this proce-

dure indeed allows to record the diffusion processes of protein and ligand molecules (Figure 

2). As to slow binding events, very long MD simulations are required that were, until re-

cently, beyond the range of MD simulations15. The design of a specialized supercom-

puter62,63 and the increasing usage of graphics processor units (GPUs), however, opened new 

opportunities and shifted the boundaries in terms of timescales covered by MD simulations, 

for example, the first millisecond length MD simulation64. 
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Figure 2: Schematic workflow of a ligand binding simulation. 
From left to right: The starting structure denotes to a conformation in which the protein (cartoon representation) 
and ligand (sphere model) molecules are completely unbound. During molecular dynamics simulations of lig-
and binding, the protein and ligand structures diffuse freely and without guiding force (only the diffusion of 
the ligand is shown for clarity purposes; starting and final ligand poses are shown as sphere model). The ligand 
diffusion process (during diffusion the ligand is shown as stick models) is colored according to the progressing 
simulations time (see the color range). This procedure enables to analyze the resulting trajectory towards ligand 
binding to or unbinding from the protein structure. In this example, the minimal distance between the protein 
and ligand structure was used to characterize the (un-)binding events. The ligand is bound, if the minimal 
distance < 4 Å, which is indicated by the red line.  

Shan et al.

anticancer drug Dasatinib and the kinase inhibitor PP1 bind, spontaneously and without any 

guiding force, to their target, namely the Src kinase60. Remarkably, the binding poses 

adopted by Dasatinib and PP1 agree almost perfectly with the crystallographic poses60. In a 

similar study, Shan et al. performed unbiased MD simulations in which Lapatinib, another 

anticancer drug, binds to the epidermal growth factor receptor adopting a binding pose vir-

tually identical to that observed crystallographically65. Dror et al. performed unbiased MD 

simulations in which three -adrenergic receptor antagonists and one agonist bind to either 

the 1- or 2-adrenergic receptor, again, with binding poses in agreement with the crystallo-

graphic ones66. Further, the authors reconstructed the complete binding path for these ligands 

and observed that initial protein-ligand association is followed by ligand dehydration before 

the ligand finally reaches its destination66. The dehydration process is accompanied by local 

receptor deformation, such that the ligand squeezes through a narrow passage towards the 

crystallographic binding site66. While the above examples provide structural insights origi-

nating from very long MD simulations, which are currently accessible only for a limited 

amount of people, new analysis techniques were developed to provide the same accuracy of 

insight, but for simulation data on a smaller time scale. 
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Markov state models denote such an analysis technique that allows extracting long-time ki-

netic information from multiple but much shorter simulations, based on the stochastic de-

scription of the kinetics67-69. In this regard, De Fabritis and co-workers constructed a Markov 

state model based on 495 independent MD trajectories, each of 100 ns length, to characterize 

the binding process of Benzamidine to -trypsin61. Based on the simulation data, they built 

a full three-dimensional projection of the binding process, from which they computed kinetic 

and energetic information61. They found that Benzamidine rather binds to metastable binding 

sites before binding to the crystallographic binding site instead of directly binding from the 

bulk61. While the authors focused on the ligand binding process exclusively, Plattner and 

Noé later extended their analyses to the apo form of -trypsin70. Employing a Markov state 

model for 150 -trypsin conformations 

in the apo form that all differ in their substrate binding affinities and binding/dissociation 

constants70. Moreover, they observed that the presence of Benzamidine significantly shifts 

the conformational population of the protein structure, such that Benzamidine binding to -

trypsin can be explained by the principles of the conformational selection and induced fit 

models70. Just recently, Plattner et al. reported the first microscopic model of a complete 

protein-protein association process obtained by cumulative 2 ms MD simulation data and 

Markov state modeling71. An alternative approach to Markov state modeling was reported 

by Decherchi et al.72, who integrated microsecond MD simulations into machine learning 

algorithms to study structural and dynamic features of ligand binding to the human purine 

nucleoside phosphorolysis72. 

While the studies above addressed the central question to reconstruct the ligand binding pro-

cess towards an experimentally resolved ligand binding pose, ligand binding simulations can 

also be applied to identify novel binding sites for ligands61,73. In this regard, the first binding 

mode models of allosteric modulators of the M2 muscarinic acetylcholine receptor were 

determined73 before any experimental evidence was available. The authors observed that the 

allosteric ligand reproducibly binds to a novel allosteric binding site within the receptor’s 

extracellular vestibule, a region almost 15 Å from the orthosteric site for the native ligand73. 

Later, a crystallographic binding pose of a structurally similar ligand was available and con-

firmed the spatial location of the allosteric binding site73,74. Remarkably, the crystallograph-

ically resolved ligand pose is very similar to the ligand pose observed during the simula-

tions73,74. Similarly, Bowman et al. built a Markov state model that revealed hidden allosteric 
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sites that were experimentally corroborated subsequently75. Finally, the use of MD simula-

tions and flexible docking approaches led to the discovery of an at that time unknown bind-

ing trench in human immunodeficiency virus (HIV) integrase76, which in turn led to the 

development of Raltegravir to treat HIV infections77. 

Besides providing an atomistic insight into the association process of ligand and receptor, 

MD simulations also provide valuable insights into ligand-induced structural adaptation 

mechanisms, which are connected to biological function. In this regard, MD simulations 

supported the understanding of the structural dynamics of GPCRs, particularly, how extra-

cellular ligand binding induces structural changes that allow G proteins and other signaling 

molecules to bind to a GPCRs’ intracellular surface78. Crystallographic studies of the active 

and inactive configurations of the 2-adrenergic receptor revealed distinct rearrangements of 

transmembrane helices 5 – 7 (TM5 – 7)79-83, however, the underlying mechanism of receptor 

activation/deactivation remained elusive. During unbiased MD simulations of the 2-adren-

ergic receptor, Dror et al. observed that the receptor transitions from the crystallographic 

active state to the crystallographic inactive state via a metastable transition state, which is 

stable for several hundreds of nanoseconds to microseconds84. As long as the receptor resides 

in the transition state, TM7 adopts the crystallographically inactive conformation while TM6 

is still in its active conformation78,84. Subsequently, NMR spectroscopy experiments of an 

agonist bound to the 2-adrenergic receptor corroborated the findings, as the authors ob-

served that strong agonists destabilize the inactive conformation, but do not fully stabilize 

the active conformation of the receptor56. Further, the authors suggest that the described 

agonist instead stabilizes an intermediate state that might correspond to the state observed 

during MD simulations56,84. Employing MD simulations, Neale et al. provided an explana-

tion why negatively charged lipids favor GPCR activation85, as they observed that anionic 

lipids bind to the G protein binding site, intercalating between the intracellular parts of TM6 

and TM7, thereby stabilizing the active state of the receptor86. As to G protein regulation, 

MD simulations of, first, G proteins in the GDP bound and unbound state and, second, a 

crystal structure of a GPCR-G protein complex80 provided atomistic insights into the nucle-

otide exchange mechanisms in heterotrimeric G proteins87.  

In a more generalized context, MD simulations provide molecular insights into the search of 

treatment for diseases. Toy et al. reported the consequences of mutations of the ESR1 gene, 

which encodes for the estrogen receptor39, a popular target for cancer therapy. The mutations 

are of clinical importance as they induce resistance towards the primary treatment39. 
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However, the underlying mechanisms remained unclear39. Using MD simulations of the wild 

type estrogen receptor and the Y537S and D538G variants, the authors observed hydrogen 

bond interactions of the substituted amino acids that are not present in the wild type39. They 

suggest that these hydrogen bonds stabilize an agonist-like conformation of the receptor and, 

in turn, trigger downstream signaling in the absence of the native activator39. Fanning et al. 

observed that the D538G variant relaxes the H11-H12 loop of the estrogen receptor, thereby 

improving the packing of side chain residues, which, finally, stabilizes the receptor’s ago-

nist-like state in the absence of any ligand38. This agonist-like state also restricts ligand ac-

cess to the estrogen binding pocket, which might explain the decreased affinity for estrogen38. 

Ihle et al. provided a structural explanation for the progression-free survival of cancer pa-

tients carrying the KRas-G12C or KRas-G12V variant compared to patients with wild type 

KRas or other KRas variants88. KRas interacts with different downstream effectors and the 

investigated amino acid substitutions in KRas result in different downstream behavior88. The 

simulation data suggests that conformational changes in the switch I and II regions caused 

by the KRas mutant control the interaction with downstream effectors, thereby resulting in 

different major signaling pathways88. By long-timescale MD simulations, Shan et al. pro-

vided a plausible explanation of why the widespread L834R variant in the EGFR kinase 

leads to high kinase activity, promoting EGFR dimerization. The activation of the kinase 

domain in EGFR depends on the formation of active dimers, in which the kinase C lobe of 

the activator interacts with the kinase N-lobe of the receiver65. The authors found that the N-

lobe dimerization interface of wild type EGFR is intrinsically disordered, whereas the 

widespread L834R variant facilitates dimerization by suppressing the disorder65. 

In sum, MD simulations offer atomistic insight into the fundamental mechanisms of bio-

molecular systems13. In particular, MD simulations provide direct access to characterize how 

a ligand molecule binds to its target15. Moreover, the successful applications of ligand bind-

ing simulations to investigate how a ligand binds to its target demonstrate their potential to 

predict, and not just reproduce, plausible binding poses15. Nevertheless, to thoroughly un-

derstand the mechanisms of protein-ligand interactions, it remains indispensable to link the 

structural insights to the fundamental thermodynamics of protein-ligand association. As 

mentioned previously in section 2.1, the thermodynamic key determinant of protein-ligand 

G upon ligand binding. Thus, deriving energetic 

features directly from the MD trajectories would complement the method. According to eq. 
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(3) G can be linked to the equilibrium constant Kd, which quan-

tifies the probability of the unbound relative to the bound state (eq. (2)). Just recently, Pan 

et al. performed MD simulations of several microsecond length  to observe drug

fragments spontaneously and repeatedly bind to and unbind from its target protein, which 

allowed to estimate binding affinities and kinetics directly from the simulation data89. 

However, to de-rive statistically meaningful probabilities of these states from an MD 

trajectory requires very long simulations, in which many binding and unbinding events 

must be recorded15. Alterna-tively, there are several free energy calculation methods to 

estimate (relative) binding affin-ities that require less computing time. 

2.2.2 Binding free energy calculations 

Binding free energy calculations of protein-ligand binding yield the free energy difference 

between the two states of the system (ligand-bound or unbound). As the free energy differ-

G can be linked to the equilibrium constant Kd (eq. (3)), these methods provide an 

estimate about the binding affinities for complex formation. The free energy calculations can 

be classified into three main types of calculations: the alchemical free energy calculations, 

the path sampling methods, and the endpoint methods1. 

2.2.2.1 Alchemical free energy calculations 

Alchemical free energy calculations employ a non-physical, alchemical pathway to deter-

mine the free energy difference between two states90-92. In many cases, these types of com-

putations are also referred to as alchemical transformation calculation as these methods de-

termine the free energy difference that is associated with the transformation of one chemical 

species into another one, which is slightly different93. Hence, to determine the free energy 

difference of two ligands A and B binding to the same protein structure, one would simulate 

the transformation of ligand A into ligand B in the unbound and bound state. The perturba-

tions along this alchemical pathway are much smaller and converge much faster compared 

to the direct association path94 in which also slow desolvation processes95 and substantial 

conformational changes must be considered. Employing a thermodynamic cycle93,94 (Figure 

3 Gbinding of ligands A and B can be calculated94,96. Al-

ternatively, by transforming amino acids of the protein structure, these methods also allow 

investigating the effects of amino acid substitutions on ligand binding97. 
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In detail, instead of computing the change in free energy associated with the ligand binding 

to its protein ( Gbinding
A  and Gbinding

B ; horizontal arrows in Figure 3) alchemical transfor-

mation methods determine the changes in free energy associated with the vertical arrows, 

namely the transformation of ligand A into ligand B ( GA B 
unbound

 and GA B
bound; Figure 3)97,98. 

Taking into consideration that the free energy is a state function, that changes in free energy 

are independent of the path connecting the end states, and that all free energy changes within 

a thermodynamic cycle add up to zero97, the thermodynamic cycle enables to estimate the 

relative change i Gbinding according to eq. (6) 

The transformation of A into B technically means that the potential energy function (force 

field; see eq. (5) in section 2.2.1) of A is transformed into the potential energy function of 

B93. Therefore, a coupling parameter is introduced that connects both potential energy func-

tions99. This coupling parameter is frequently referred to as  and ranges from  = 0 for ligand 

A to  = 1 for ligand B99. In practice, the simulations are broken down into a series of indi-

vidual simulations for multiple values of 99. With an increasing number of individual -

steps, the accuracy of the calculations increases, however, so does the computational costs99. 

The free energy perturbation99,100 (FEP) and thermodynamic integration101 (TI) approaches 

are two widely applied methods in the class of alchemical free energy calculations98. To 

determine the free energy difference between the states A and B, FEP calculations use the 

principles of the Zwanzig relationship100. FEP calculations usually result in accurate esti-

mates only, if the changes from A to B are small, which comes along with small differences 

in the potential energy functions98. TI calculations treat the free energy as a derivative of the 

coupling parameter 98. To derive the free energy difference via TI, one simulates the trans-

formation of ligand A into ligand B at discrete -steps and, subsequently, integrates over the 

averaged -dependent potentials98. In contrast to FEP calculations, the accuracy of TI calcu-

lations can always be increased by subsequently performing simulations at additional -

steps102, which, however, requires more computational resources103. 

Gbinding =  Gbinding
B  Gbinding

A  =   GA B
bound GA B 

unbound. (6) 
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Figure 3: Thermodynamic cycle to calculate relative binding free energies.
The horizontal arrows depicted the binding process of ligand A and ligand B to the receptor structure that, in 
this example, is a protein structure. The vertical arrows depict the transformation reaction of ligand A (magenta) 
into ligand B (green) performed in unbound (left) and bound (right) states. During the transformation in the 
unbound state, no protein structure is present during the computations. FEP and TI calculations calculate the 
changes in free energy associated with the vertical lines ( GA B 

unbound
 and GA B

bound) and calculate the relative dif-
ference according to eq. (6). (Figure is adapted from ref.94.) 

Jorgensen et al. performed the first alchemical free energy calculation to study relative solv-

ation free energies for methanol and ethan104, but alchemical free energy calculations gain 

more importance to study protein-ligand free energies of binding, which makes these tech-

niques also relevant in rational drug discovery and drug design92,96. An explanation might 

be the development of new simulation techniques to increase the level of accuracy and to 

accelerate the computations105. Wong and McCammon reported the first study that investi-

gated ligand binding to a protein structure106. First, they computed relative binding free en-

ergies of Benzamidine (would denote ligand A) and p-Fluorobenzamidine (would denote 

ligand B) binding to trypsin. Second, they compared changes of binding free energy when 

Benzamidine binds to trypsin (would denote receptor A) or binds the G216A variant (would 

denote receptor B)106. Their results were in agreement with experimental binding affinities, 

such that the authors concluded that alchemical free energy calculations enable the analysis 

and prediction of affinities in large biomolecular systems95. T4 lysozyme has become a 

prominent system to study ligand binding for both theoreticians and experimentalist96. 

Mobley et al. studied the binding of small organic fragment-like ligands to the binding site 

of the L99A variant of T4 lysozyme107, obtaining a good agreement with experimentally 

determined energies107. Later, Boyce et al. calculated binding free energies of thirteen com-

pounds, which were not tested experimentally before, to a polar cavity in the L99A/M102Q 

variant of T4 lysozyme. This study also addressed the question of whether the calculations 
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could prospectively distinguish binding compounds from non-binding compounds108. Based 

on the binding free energies, they predicted that eight of these ligands would most likely 

bind to the T4 lysozyme whereas the remaining five ligands will likely not bind and, finally, 

ten of 13 predictions were correct108. 

In recent years, alchemical free energy calculations performed well in retrospective and pro-

spective studies in active drug discovery projects92,96,109,110. Rombouts et al. applied alchem-

ical free energy calculations to predict the structure-activity relationship of drug candidates 

binding to a lipophilic roof pocket of phosphodiesterase 2 and identified novel phos-

phodiesterase 2 inhibitors111. Prospective alchemical free energy calculations were also suc-

cessfully applied to optimize -secretase 1 inhibitors112,113. Interestingly, the authors suggest 

strategies to characterize the convergence of computational sampling112, such that the corre-

lation to experiments was improved by repeating simulations with different initial velocities 

and longer simulation times113. Kuhn et al. reported the first study that applied alchemical 

free energy calculations to covalent inhibitors of the cysteine protease cathepsin L114. There-

fore, the authors designed a thermodynamic cycle that, first, describes non-covalent ligand 

binding and, second, the chemical reaction to form a covalent bond114. The recent successes 

are likely connected to the significant improvements concerning the accuracy and computing 

time for such sophisticated calculations115. In this context, Wang et al. developed a fully 

automated calculation protocol, which was retrospectively and prospectively validated 

across a broad range of ligands and targets (over 200 ligands and ten targets)115. One might 

speculate that future advances in specialized hardware and highly accurate software will 

promote alchemical free energy calculations to study protein-ligand binding. In this regard, 

the workflow tool for free energy calculations of ligand binding was designed to prepare, 

conduct, and analyze various kinds of free energy calculations efficiently116,117. 

2.2.2.2 Path sampling methods 

While alchemical transformation methods calculate the change in free energy along a non-

physical path, path sampling methods describe the change in free energy along a physically 

meaningful path, termed reaction coordinate hereafter1. In this regard, path sampling meth-

ods also allow observing relevant conformational rearrangements of the molecules during 

the actual binding process15. Path sampling methods are based on the assumption that the 

dynamics of biomolecules can be described in terms of a free energy landscape where free 
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energy is expressed as a function of distinct configurations56,118. However, to study protein-

ligand binding the reaction coordinate or ligand binding path must be defined a priori15, such 

that some knowledge about a likely binding path must be guaranteed. 

Path sampling methods provide access to the free energy profile or landscape of a complete 

protein-ligand association process, including energetic barriers along the binding path34 

(Figure 4). The projection of the free energy profile along a reaction coordinate is also 

referred to as a potential of mean force (PMF)101. In the context of ligand binding processes, 

the PMF is a measure for the work spent to move the ligand from the unbound to the bound 

state34. PMF calculations also allow estimating absolute protein-ligand binding free ener-

gies119,120 or the kinetic determinants, kon and koff (eq. (2) in section 2.1), of protein-ligand 

binding15. 

Figure 4 depicts a simplified and schematic free energy profile for the association/dissocia-

tion of a ligand with/from its target structure, which can be approximated by a PMF. The 

reaction coordinate can be considered as the shortest pathway connecting the unbound (lig-

and fully solvated in bulk solvent) and bound state (ligand non-covalently bound to the pro-

tein structure). In Figure 4, the bound conformation is energetically more favorable com-

pared to the unbound state. The bound and unbound conformations are separated by a tran-

sition state of relatively high free energy, which points to a practical issue one has to address 

for pathway sampling methods. In conventional MD simulations, the probability of visiting 

any microstate is proportional to the Boltzmann factor, with the consequence that high-en-

ergy configurations, such as the transition state in Figure 4, are less frequently visited than 

low energy configurations15. Even small energetic barriers can hamper sufficient sampling 

of the configurational space, which is, however, required to estimate binding 

thermodynamics accurately1. Therefore, various techniques were introduced to overcome 

the limitations of insufficient sampling, which are also summarized under the term of en-

hanced sampling methods1. They can be divided into equilibrium-based methods and non-

equilibrium methods1. 
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Figure 4: A schematic free energy profile of protein-ligand binding. 
A simplified free energy profile that describes the protein-ligand (un)binding process. The reaction coordinate 
describes the physical association/dissociation pathway between protein and ligand. The bound state corre-
sponds to the free energy minimum and the unbound state to a higher free energy state. The free energy differ-
ence between the bound and unbound states ( Gbinding) quantifies the binding affinity. The kinetics of (un)bind-
ing are described by kon or koff, and are related to Gon or Goff via eq. (3) (see section 2.1), respectively, where 
R is the gas constant and T the absolute temperature in Kelvin. Gon or Goff quantify the free energy difference 
of the unbound or bound state relative to the transition state. (Figure adapted from refs.15,31.) 

The Umbrella sampling (US) method121 denotes a prominent example for an equilibrium-

based method, while steered MD simulations in combination with Jarzynski’s equality122 is 

a popular non-equilibrium approach to compute the PMF123. The idea of the US method is 

to break the reaction coordinate down into a series of windows (umbrellas). For each window, 

a simulation is run where the system is restraint close the center of the window using har-

monic potentials124. This procedure allows the rather efficient sampling even at high-energy 

states124. To compute the PMF, the unbiased distribution of sampled states must be extracted 

from the simulation data124. The weighted histogram analysis method (WHAM)125 is a pop-

ular postprocessing method, but the umbrella integration method can be used alternatively126. 

The principal idea of steered MD simulations is to pull or push the system along the reaction 

coordinate with a constant velocity, thereby forcing the system away from its equilibrium or 

low energy condition127. From the steered simulations, one can derive the applied force, and 

the work spent to steer the system into the desired state127. Repeating the simulations for 

slightly different reaction coordinates enables to compute the PMF on principles of Jarzyn-

ski’s equality122, which connects the equilibrium free energy difference to work done 

through non-equilibrium processes128, over the average work spent for many pathways123,128. 

There is, however, some evidence that suggests that the more complex the investigated sys-

tems are, the more the US method outperforms steered MD-based methods in terms of the 
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needed computing time to generate reliable PMFs129. Nevertheless, both methods are valua-

ble tools to study protein-ligand interactions as they provide, first, an estimate about protein-

ligand affinities, and, second, insights into the structural adaptation mechanisms associated 

with the ligand binding process. 

Historically, PMF calculations were routinely used to study the mechanisms of ion permea-

tion through a wide variety of different channels130-135, but in recent years these methods 

were applied to study the thermodynamics of ligand binding. Sun et al. applied US to study 

the (un)binding process of type II kinase inhibitors through different pathways and found 

evidence that suggests that inhibitors might bind or dissociate through an allosteric chan-

nel136. In 2010 Colizzi et al. reported a steered MD-based computational protocol that could 

be applied to discriminate between binders and non-binders or active and inactive com-

pounds137. Therefore, the authors computed the forces needed to steer structurally related 

inhibitors of -hydroxyacyl-ACP dehydratase from the binding pocket and found that rup-

ture forces are higher for active compounds than those observed for inactive compounds137. 

Patel et al. investigated the unbinding mechanisms of cyclin-dependent kinase 5 inhibitors 

and could also qualitatively discriminate binders from non-binders138. Li and co-workers 

performed unbinding experiments of neuraminidase inhibitors from their binding pocket and 

compared the rupture force profiles to commercially available compounds139. From the rup-

ture force profiles, they suggest that some of the new ligands are supposed to bind stronger 

to the protein structure than the marketed drugs139. Recently, Palermo et al. determined the 

unbinding mechanism of topoisomerase II inhibitor F14512 and found that the polyamine 

moiety contributes to a hydrogen bond network, which provides a plausible explanation for 

its increased potency with respect to other drugs140. To corroborate their MD results, the 

authors designed and synthesized five new compounds bearing a polyamine chain140. All of 

these compounds showed anti-topoisomerase II activity, and four of five were more potent 

than Etoposide, a known topoisomerase II inhibitor, which denotes an excellent example for 

the prospective potencies of steered MD-based methods140. While the above studies provided 

a mechanistic insight in protein-ligand (un)binding processes, Woo and Roux applied an US-

based approach to accurately compute the absolute binding free energy for a peptide binding 

to the human Lck kinase120. This method was subsequently applied to study antibiotics bind-

ing to the bacterial ribosome, and the ranking according to computed binding affinities of all 

ligands was in agreement with the experimentally observed ranking141. Later, Doudou et 

al.119 and Lee and Olson142 introduced similar strategies to estimate protein-ligand affinities 
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based on PMF calculations. Again, the computational results were in reasonable agreement 

with experiment119,142. 

In sum, the US method is likely one of the most accurate methods to computed changes in 

binding free energy15, although it might be considered laborious, as many overlapping win-

dows have to be carefully prepared, equilibrated, and sampled. The same applies to steered 

MD-based methods that require many individual (un)binding simulations to construct the 

PMF15. Wojtas-Niziurski et al. addressed this point and developed an automatized US strat-

egy for calculating multidimensional PMF-based on a significantly smaller number of um-

brella windows without any loss in accuracy143. For larger ligand data sets, however, binding 

free energy estimation based on PMF calculations is not yet feasible. 

 

2.2.2.3 Endpoint methods 

One reason for the relatively high computational costs of the non-physical and physical path-

way methods is that these methods derive the binding free energy from a series of individual 

simulations along the reaction pathway144. Contrarily, endpoint methods compute the bind-

ing free energy only considering the free and unbound states of the system and thereby re-

duce computational costs1. One such method is the linear interaction energy approach145 that 

uses only data from two simulations, one with the ligand-free in solution and one with the 

ligand bound to the protein structure103. The binding free energy is derived from averaged 

changes in van der Waals and electrostatic interactions when the ligand changes from the 

unbound to the bound state103.  

In the class of endpoint methods, the molecular mechanics Poisson-Boltzmann surface area 

(MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) ap-

proaches are well-known proceduers144. In contrast to all other methods described so far, 

MM-PBSA and MM-GBSA use a continuum or implicit solvent model to treat solvent ef-

fects144,146, such that computational costs can be further reduced. In MM-PBSA and MM-

GBSA the binding free energy Gbinding is calculated as the sum of gas phase energies and 

entropic contribution plus solvation free energies according to eq. (7) 

Gbinding = EMM +  Gsolv
complex - Gsolv

protein - Gsolv
ligand  - T Sconf.  (7) 

where EMM Sconf. are the changes of the gas phase MM energy and configurational 

entropy upon ligand binding, respectively, Gsolv is the change in solvation free energy for 
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complex, protein, and ligand, respectively, and T is the temperature in Kelvin144,147. In prac-

tice, whether to use the MM-PBSA or MM-GBSA approach to estimate binding free ener-

gies is a question of interest; while MM-PBSA is considered the more rigorous method to 

calculate absolute binding free energies, MM-GBSA is considered faster and better in rank-

ing structurally similar ligands146,148,149. 

The quality of computed binding free energies, in general, is strongly dependent on the pa-

rameters that were chosen for the calculations, in particular, the selected implicit solvent 

model, the dielectric constant, the method that was applied to derive atomic partial charges, 

and the simulation protocol to generate the configurational ensemble146,148-151. If the relative 

binding free energies of similar ligands shall be computed, the entropic contribution upon 

binding is often neglected without decreasing the accuracy of the calculations148, yielding 

effective binding free energies152. In MM-PBSA and MM-GBSA calculations, binding free 

energies are computed over a configurational ensemble generated from a single MD simu-

lation of the protein-ligand complex (single-trajectory approach) or three independent sim-

ulations for complex, free protein, and free ligand (three-trajectory approach)144. The preci-

sion of computed binding free energies is also dependent on the simulation protocol. Thus, 

instead of computing binding free energies over a long trajectory, the accuracy could be 

increased by computing binding free energies over many but short and independent simula-

tions153,154. Interestingly, Hou et al. observed that the accuracy of MM-GBSA results varied 

with the simulation length, but that simulations longer than four nanoseconds do not increase 

the accuracy of the results when the single-trajectory approach is used148. The MM-PBSA 

and MM-GBSA calculations also allow decomposing the binding free energy into its indi-

vidual contributions according to eq. (7). There are also strategies established to decompose 

the binding free energy into the per-residue contributions upon ligand binding152,155, allow-

ing to study the molecular mechanism of protein-ligand binding in even higher detail. 

Comprehensive studies on large data sets were performed by Hou and co-workers or Yang 

et al. to investigate the performance of both methods under changing conditions. They suc-

cessively resolved the influence of the solute dielectric constant, simulation time, force fields, 

or charge models148-151,156. These studies suggest that the level of accuracy of the binding 

energy predictions and the correlation with experiment are strongly dependent on structural 

features of the protein-ligand systems and computation-specific properties. Thus, best cor-

relations were found for data sets of similar ligand that bind to a predominant hydrophobic 

binding site148,156. Homeyer et al. studied the performance of MM-PBSA, MM-GBSA, and 
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TI calculations for three “real life” data sets of compounds from industrial lead optimization 

and also found that the predictions of binding free energies are of valuable accuracy when 

considering set-specific features157. However, the authors also stressed that care must be 

taken during all steps of computations, from the preparation of the protein-ligand structures 

to the interpretation of results157. Alternatively, MM-PBSA and MM-GBSA calculations 

were frequently applied to study the influence of amino acid substitutions in proteins on 

ligand binding, in particular concerning drug resistance mechanisms. In this respect, recent 

successes contributed to a better understanding of drug resistance mechanisms of the HIV 

protease158-160. MD simulations, MM-PBSA calculations, and TI calculations revealed that 

amino acid substitutions induce a pronounced decrease of binding energy towards the tested 

HIV protease inhibitors158-160. Interestingly, some of these substitutions are neither directly 

involved in drug nor substrate binding, but cause a loss in binding energy160. This observa-

tion highlights the fact that these methods can also be considered to study long-range influ-

ences160. Leonis et al. also included a novel compound in their calculations and found that 

the loss in binding free energy is comparable to the marketed ones, but the novel compound 

shows a favorable change in the polar contribution to the solvation energy upon binding to 

certain variants158. In sum, the good performance and the moderate computational costs 

make endpoint methods highly valuable to study protein-ligand binding. 

 The integration of biophysical experiments and biomolecular simulations  

Modern biomedical research intends to understand the function-associated consequences of 

the structure, dynamics, and interactions of biological molecules on an atomic-level descrip-

tion14. In recent years, these challenges were accomplished by the close integration of ex-

periments and simulations14. Experimentalists collect lots of data to characterize biological 

molecules in highly complex environments, and this data must be transformed into a com-

patible model14. Computational scientists often reversely address these question so that they 

first build a model, which then can be compared with the experimental data, to guide the 

interpretation of experimental data and to design and predict the outcome of future experi-

ments14,37. On the other hand, experiments are indispensable for the corroboration of com-

putational predictions and the further refinement of the model14.  

The term integrative modeling, sometimes also referred to as hybrid modeling161, originates 

from the field of structure determination in classical structural biology162,163. In this regard, 
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experimental data is combined with theoretical information to build a model to increase the 

accuracy, precision, and efficiency of structure determination162. Integrative modeling is of 

particular relevance for biological molecules that cannot be characterized by a classical 

structural biology method, such as, for example, X-ray crystallography, NMR spectroscopy, 

or 3D electron microscopy, as the molecules might be hard to crystallize, are insoluble, or 

do not retain their spatial configuration over the course of the experimental procedures162. 

As an example, integrative modeling guided the determination of the molecular architecture 

of the nuclear pore complex, for which the authors combined diverse experimental and 

theoretical information in an iterative series: (i) data generation by experiment and (ii) 

translation into spatial restraints, (iii) generation of a structural ensemble by satisfaction 

of these restraints, and (iv) the analysis of the ensemble to extract the final structure164,165. 

As another example, the molecular assembly of the pore-forming toxin Aerolysin was 

determined by integrating data from X-ray crystallography, cryo-EM, MD simulations, and 

computational modeling166,167. Furthermore, MD trajectories were screened for agreement 

with Förster resonance energy transfer data, to describe the molecular architecture of the 

productive HIV-1 reverse transcriptase:DNA primer-template complex168. Alternatively, 

molecular simulations can also be directly restrained with experimental data14, such that the 

physical force field is combined with an experimentally derived biasing potential169, yielding 

accurate protein structures when using data from chemical shifts experiments170,171. MD sim-

ulations with NMR restraints also led to the first structural model of the complex between 

single-stranded DNA and the single-stranded DNA-binding protein of the filamentous phage 

M13172. Loquet et al. considered experimental restraints from solid-state NMR and electron 

microscopy in Rosetta modeling to derive a model of the bacterial type III secretion nee-

dle173. To investigate the molecular architecture of the 26S proteasome, Lasker et al. derived 

restraints from electron microscopy, X-ray crystallography, chemical cross-linking, and 

proteomics and used the Integrative Modeling Platform package174 to resolve a 3D structural 

model175.  

Besides structure determination, integrative modeling also provides insight into the function-

associated consequences of the structure, dynamics, and interactions of biological mole-

cules14,37. By combining data from X-ray crystallography, long and unbiased MD simula-

tions, and in vitro mutagenesis experiments, Latorraca et al. elucidated an alternating access 

mechanism in a sugar transporter, providing an atomic-level description how the substrate 

is carried across the membrane176. Similarly, integrating in vitro structural and functional 
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data and computational analyses provided evidence suggesting that the nitrate/nitrite porter 

NarK functions as an antiporter and that substrate recognition induces structural changes 

enabling the transport across the membrane177. By combining MD simulations and NMR 

spectroscopy, the allosteric inhibition mechanism of a small molecule binding to a regulator 

of a G protein signaling molecule was clarified178. The integration of homology modeling, 

docking, and molecular simulations alongside functional in vitro experiments provided in-

sights into how substrates and inhibitors bind to a dopamine transporter179. Pogoryelov et 

al. provided detailed insights into the rotation mechanism of the ATP-synthase rotor by 

combining data from free energy MD simulations with data from mass spectroscopy, bi-

ochemical experiments, and X-ray crystallography180. Microsecond timescale coarse-

grained simulations of a model of the influenza A virion, which was derived by combining 

results from X-ray crystallography, NMR spectroscopy, cryo-EM, and lipidomics, re-

vealed that specific glycoproteins alter the lipid mobility of the virion membrane, which 

provides a plausible explanation why the influenza virus is robust to changing environ-

mental conditions181. 

Taking together, complementary tools of experimental and theoretical origin often provide 

insights into different structural aspects of a biological system, and tight integration of these 

data might provide a deeper level of understanding, which is out of reach for any standalone 

method14,37. In this regard, insights from molecular simulations complement the structural 

and functional data from experiments. Thus, it is not surprising that in recent years, compu-

tational methods gained more and more attention to address sophisticated questions in the 

field of biomedical research13,15,37.  

 Function-associated molecular recognition in biological processes 

So far, I reviewed the principles of protein-ligand recognition and binding. The thermody-

namic driving force of the binding reaction is the free energy of binding. I introduced three 

different classes of computational approaches to compute the binding free energy, from 

which the alchemical transformation reactions are the most accurate but less efficient ap-

proaches, while the endpoint approaches are much faster but less accurate1. Besides, I 

showed how computational alongside experimental methods provide an in-depth under-

standing of molecular structure and function, which is not possible by any of these methods 

alone. In the following chapters, I will introduce the reader to three model systems, for which 
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I in collaboration with experimentalist, in the sense of integrative modeling, investigated the 

structural, energetic, and functional consequences of molecular recognition processes. In 

particular, we provide (i) insights into the molecular and functional consequences of amino 

acid substitutions and posttranslational modifications on enzyme activity (section 2.4.1), (ii) 

how an antibiotic peptide is recognized by a highly specific protease (section 2.4.2), and (iii) 

how a novel PPI inhibitor binds to a shallow protein-protein interface.  

2.4.1 Protein-ligand recognition in human glutamine synthetase 

The GS (glutamine synthetase, glutamate-ammonia ligase, EC 6.3.1.2) catalyzes the ATP-

dependent ligation of glutamate and ammonia to glutamine182. Based on sequences, struc-

tural, and functional aspects, and currently, three classes of GS have been described (Figure 

5). GS class I enzymes have been found in prokaryotes, in both bacteria and archaea183, and 

constitute oligomers of twelve identical subunits184,185 (Figure 5). GS class II enzymes are 

composed of ten identical subunits and can be found in eukaryotes and in bacteria in families 

of Rhizobiaceae186, Frankiaceae187, and Streptomycetaceae188 (Figure 5). GS class III en-

zymes, the most different class with less than 10 % sequence identity relative to GS class I 

and II enzymes189, was first found in Bacteroides fragilis190 and, later, also in protozoans191. 

GS class III enzymes are organized as homododecamers, such as GS class I (Figure 5), but 

with a much larger amino acid chain (about 730 in GS class III vs. about 450 in GS class III 

vs. about 360 GS class I)189. In sum, all of the known GS structures show a similar organi-

zation with some specialized features found in the individual classes (Figure 5). 

The human GS is encoded by a single gene, GLUL192, and belongs to class II of GS en-

zymes193. Thus, ten identical subunits form a homodecamer in which two pentameric rings 

stack against each other25 (Figure 5). The -barrel active sites are formed by the association 

of two adjacent subunits resulting in ten catalytic sites in total. For the glutamine synthesis 

of GS, a two-step mechanism has been suggested193-196 and, recently, this two-step mecha-

nism was corroborated by two computational studies for the reaction mechanism on human 

GS197,198 and one complementary study on Mycobacterium tuberculosis GS199. In the first 

step of glutamine synthesis, adenosine triphosphate (ATP) binds to GS and induces confor-

mational changes to enable the binding of glutamate194. After glutamate has bound, the ter-

minal phosphate group of ATP is transferred to the -carboxylate group of glutamate yield-
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ing adenosine diphosphate (ADP) and -glutamyl phosphate (GGP), the reactive intermedi-

ate. In the second step of glutamine synthesis, an ammonium ion binds to a negatively 

charged site pocket formed by D63, E96, and E305198 (according to the residue numbering 

of human GS in ref.25). Subsequently, ammonia attacks GGP via an SN2 reaction, which 

results in inorganic phosphate and glutamine198. To yield ammonia as the nucleophile, Kra-

jewski et al. proposed that E305 and D63 are involved in ammonium deprotonation200, later 

corroborated by computational studies198,199. On the other hand, Issoglio et al. calculated a 

pKa ~ 7.8197 for E305, such that E305 could be protonated (E305-H) at the beginning of the 

catalytic reaction. They also observed that glutamate binding promotes the interaction of 

E305-H with D63 by hydrogen bond interactions197 and concluded that it seems unlikely that 

any of these residues would be responsible for the deprotonation of ammonium even though 

they are directly interacting with ammonium197. Instead, they propose that the phosphate 

moiety could be a good candidate for deprotonation of ammonium (in the case of not being 

already protonated), besides making it an excellent leaving group197. While both study re-

sults disagree in the point of ammonium generation, such that further research is needed to 

clarify the open question, both groups agree that the second step is likely the limiting step of 

the reaction kinetics197-199. Both groups calculated an activation free energy for ammonium 

deprotonation of ~19 kcal mol-1 197,198. 
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Figure 5: 3D structures and classes of glutamine synthetases. 
3D structures of class I184,185,201, II25,202-204, and III GS189. Corresponding organisms and PDB entries205,206 are 
depicted below the GS structures. The individual subunits are colored differently and depicted in surface rep-
resentation. The structures of class I S. typhimurium GS184 and class II H. sapiens GS25 are rotated by 90° 
around the x-axis. 

Although GS is ubiquitously expressed in human tissues, high concentrations of GS can be 

found in two different compartments. First, high expression levels of GS are found in brain 

tissue (Figure 6). In particular, GS can be found in astrocytes207,208, but also in oligodendro-

cytes, ependymal cells, and some neurons of human brain209. In astrocytes, GS is the major 

route for the removal of ammonia210-213, which enters the brain mainly by diffusion214, and 

to date, there is no other enzyme known that sufficiently replaces GS in cases of GS dys-

function210,213,215. The GS-catalyzed reaction is also the predominant route for the removal 

of glutamate, the major excitatory neurotransmitter in the brain216. Benjamin and Quastel 
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suggested a glutamate-glutamine cycle in the brain217 (Figure 6): (i) astrocytes take up glu-

tamate, which was released from neurons during signal transmission, as a precursor for glu-

tamine and (ii) neurons accumulate glutamine, which was released from astrocytes, as a pre-

cursor for the neurotransmitter glutamate217. Hence, astrocyte GS is crucial for the cerebral 

detoxification of ammonia and maintenance of glutamate concentrations between neurons 

and astrocytes218. 

 
Figure 6: The role of cerebral and hepatic glutamine synthetase in glutamine metabolism. 
Abbreviations: GS = glutamine synthetase, PAG = phosphate-activated glutaminase, CPS-I = car-
bamoylphosphate synthetase I, Cbm-P = carbamoylphosphate, Gln = glutamine, Glu = glutamate, NH3 = am-
monia, NH4

+ = ammonium ion. The arrow width schematically depicts a likelihood-gradient with wider arrows 
defining the main route of metabolites. (Figure adapted from refs.218-220.) 

High concentrations of GS can also be found in perivenous hepatocytes221,222, where GS is 

one component of the intercellular glutamine cycle and essential for ammonia detoxification 

by the liver221,223,224 (Figure 6). Under physiological conditions, ammonia-rich blood enters 

the liver via the portal vein and initially passes periportal hepatocytes capable of urea syn-

thesis221. Subsequently, hepatic GS, exclusively found in perivenous hepatocytes, catalyzes 

glutamine synthesis from ammonia that escaped periportal removal during urea synthesis221. 

This functional hepatocyte heterogeneity represents a periportal low-affinity but high capac-

ity system (urea synthesis) and a perivenous high-affinity system for ammonia detoxication 

(glutamine synthesis)220,221,223,225 such that perivenous hepatocytes function as scavenger 
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cells for ammonia escaping periportal ureogenesis226 (Figure 6). Inhibition of GS with me-

thionine sulfoximine (MSO)221 or elimination of perivenous hepatocytes with CCl4
225 ham-

pers efficient ammonia detoxification resulting in increased concentrations of blood ammo-

nia after leaving the liver. Taken together, cerebral and hepatic glutamate clearance, ammo-

nia detoxification, and glutamine formation make GS essential for the human nitrogen me-

tabolism220,221,227 and neurological functionality. 

Accordingly, changes in GS activity or changes in GS expression levels have been linked to 

several neurological disorders, including Alzheimer’s disease228-230, hepatic encephalopathy 
213,224,231,232 and epilepsy219,233-235 but also general aging236 and learning processes237,238. In 

particular, inherent GS deficiency, an ultra-rare disease, results in systemic glutamine defi-

ciency and chronic hyperammonemia16,17,19,239. Currently, inherent GS deficiency was con-

firmed in only three patients16,17,19,239, although there is some evidence that suggests a fourth 

patient19. Patient 1 carried the R324C and patient 2 the R341C variation of GS16,17,19. In both 

patients, GS deficiency resulted in severe brain malformations, multiorgan failure, and, fi-

nally, in neonatal death16,17,19. The biochemical explanation was a reduced GS catalytic 

activity for both of the variants16. Remarkably, patient 3 who carried the R324S variant sur-

vived the neonatal age239. The authors’ plausible, but not proven explanation for the longer 

survival of patient 3, compared to patients 1 and 2, was a higher level of GS residual activity 

compared to the other two GS variants18. Nevertheless, due to low glutamine and high am-

monia levels, the patient was neurologically compromised and suffered severe episodes of 

epileptic seizures18,239. Enteral and parenteral glutamine supplementation partially improved 

the clinical status18, but at the age of six, the patient died from an acute respiratory decom-

pensation19. Just recently, another GS variant, which carries the A165D and R319H variants, 

in a five-year-old boy was reported although the authors state that they cannot confirm the 

diagnosis of a GS deficiency in this patient19. In all cases, however, the molecular mecha-

nisms of how these mutations lead to glutamine deficiency have remained elusive. 

In the crystal structure of human GS, residue R324 is directly interacting with ADP25. How-

ever, it is not clear why the R324C GS is presumably less catalytically active compared to 

the R324S GS16. Residue R341 is neither part of the catalytic site nor interacting with any 

of the substrates25. How the R341C variant causes the deactivation of GS is also not clear. 

In PUBLICATION I, we, in collaboration with the Clinic for Gastroenterology, Hepatology, 

and Infectious Diseases at the Heinrich Heine University Düsseldorf, director Prof. Dr. D. 

Häussinger, provide the first molecular explanation of how the R324C and R341C mutations 
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cause GS deactivation leading to neonatal death16,17,19. Further, we explain why the R324S 

variant likely conserves a higher level of GS residual activity18, concerning the R324C var-

iant16. In a subsequent study, we found that betaine (trimethylglycine), first, binds to S324 

in the R324S GS variant, and, second, stabilizes ATP within the binding site240. These 

find-ings might stimulate the search  new strategies to counteract the effect of an 

inborn GS deficiency, as, currently, no appropriate medication is available. 

Another essential feature of human GS is its sensitivity to protein tyrosine nitration (PTN). 

Tyrosine nitration in GS was observed for both perivenous GS after treatment with lipopol-

ysaccharide20 and astrocyte GS after treatment with benzodiazepines21 and inflammatory 

cytokines22. In all studies, GS tyrosine nitration is always related to GS catalytic inhibition20-

22. Loss of the catalytic function of GS is also of clinical importance, as lack of GS activity

in perivenous hepatocytes leads to hyperammonemia and cerebral ammonia intoxication224. 

However, how this modification causes inhibition of GS catalytic activity is, so far, not un-

derstood. In PUBLICATION II, we, in collaboration Clinic for Gastroenterology, Hepatol-

ogy, and Infectious Diseases at the Heinrich Heine University Düsseldorf, director Prof. Dr. 

D. Häussinger, provide the first explanation about the inhibitory mechanisms of tyrosine 

nitration in human GS. These findings indicate a novel, fully-reversible, pH-sensitive mech-

anism for the regulation of GS function by tyrosine nitration. We also provide a strategy on 

how to counteract the inhibitory effect of tyrosine nitration in human GS. 

2.4.2 Highly specific protein-peptide recognition in the nisin resistance protein 

In 1928, Alexander Fleming discovered penicillin241, the first widespread antibiotic that 

changed medicine and provided cures for many infections242. However, due to the extensive 

consumption of antibiotics, also the number of antibiotic-resistant bacterial strains in-

creases243,244. Today, antibiotic resistance is rising to threatening high levels all over the 

world, such that the World Health Organization publishes reports to guide resistance pre-

vention245 and the development of new antibiotic drugs246. 

In recent years, bacteriocins have become of particular interest for various applications, such 

as antibiotic alternatives or for the application as food preservatives247-249. Bacteriocins are 

ribosomally synthesized and bacterially produced peptides or proteins that exhibit antibac-

terial activity against other bacteria250,251. Lanthipeptides or lantibiotics252 (from hereafter 

the term lantibiotic is used for both) represent a large sub-group of bacteriocins253-256. 
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Lantibiotics exhibit antimicrobial activities in the nanomolar range254,255,257, and currently, 

some lantibiotics are in the preclinical and clinical stages for medical application258. 

In general, these peptides are mostly produced by gram-positive bacteria and contain cyclic 

structures, the lanthionine rings. Therefore, the ribosomally synthesized peptides undergo 

posttranslational modifications in terms of dehydration of threonine to dehydrobutyrine 

(Dhb) and serine to dehydroalanine (Dha)259. Both Dhb and Dha residues can react with a 

cysteine side chain via a Michael addition, yielding the lanthionine rings259. However, 

the number and exact location of the lanthionine rings var  within lantibiotics259. 

Nisin (Figure 7A, B) was the first reported lantibiotic260, which was officially approved in 

1969 as a safe food preservative by the joint Food and Agriculture Organization/World 

Health Organization. Today, nisin and its variants become more important also for biomed-

ical applications including infections associated with drug-resistant pathogens, such as the 

methicillin-resistant Staphylococcus aureus261-265. Antibacterial active nisin consists of 34 

amino acids and contains five lanthionine-based rings (rings A – E)27; rings A, B, and C are 

separated from rings D and E by a flexible hinge region266,267. (Figure 7A, B). The antibac-

terial effect is based on a dual mode of action; first, nisin inhibits cell wall biosynthesis and, 

second, it disrupts membrane integrity and induces pore formation268-270. The nisin N-termi-

nus, carrying rings A, B, and C, binds to lipid II, a precursor molecule for the synthesis of 

the bacterial cellular membrane, such that the rings A and B form a cage that binds to the 

pyrophosphate moiety of lipid II27,268,269 thereby inhibiting cell wall biosynthesis269. Alter-

natively, nisin also induces the formation of pores in the cytoplasmic membrane268,271, also 

by binding to lipid II272. Here, the highly flexible hinge region allows the C-terminal rings 

D and E to flip into the membrane268. The resulting cytoplasmatic pores are composed of 

four lipid II and eight nisin molecules273 with an average pore diameter of ~2.5 nm268, such 

that the barrier function is disabled and small molecules can escape from the cell270. Remark-

ably, hardly any resistance against lantibiotics has developed although some bacterial strains 

have been reported to be congenitally resistant against nisin274 via different mechanisms, 

such as cell wall modifications, biofilm formation or the expression of resistance pro-

teins28,275. 
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Figure 7: Schematic structure of nisin and its deactivation. 
A, B: 3D structure of nisin resolved by solution NMR spectroscopy (A; PDB-ID: 1WCO27) and schematic 
representation of nisin (B). Residues 1-28 are depicted as orange spheres and residues 29-34 as blue spheres, 
respectively, with one/three letter amino acid code (ala-S-X = lanthionine rings). Lanthionine rings A-E are 
labeled with red letters. Numbers below spheres (I1, ala28, and K34) are residue numbers. C: Schematic rep-
resentation of nisin resistance. Nisin resistance can be induced by peptide-bond cleavage between residues 28 
and 29 by the membrane-associated (gray bilayer) nisin resistance protein NSR (green) or by the export of 
nisin from the membrane by NsrFP276 (blue). NsrRK (red) denotes a two components system that controls the 
expression of the nsr operon (encodes for NSR, NsrFP, and NsrRK) in the presence of nisin upon phosphory-
lation of NsrR. (Figure adapted from refs.24,270.) 

As to nisin, in particular, the nsr operon in Streptococcus agalactiae (S. agalactiae) was 

identified to be important for nisin resistance23. The nsr operon carries the genes nsr, nsrF, 

nsrP, nsrR, and nsrK23. These genes encode the proteins involved in nisin resistance, namely 

NSR (the nisin resistance protein), NsrFP (an ATP binding cassette (ABC) transporter), 

NsrR (a response regulator), and NsrK (a histidine kinase)23,24. As to the two latter proteins, 

NsrR and NsrK built the two-component system NsrRK that is responsible for the controlled 

expression of the nsr, nsrF, and nsrP genes23 (Figure 7C). Therefore, the kinase domain 

(NsrK) phosphorylates supposedly D55 of NsrR, which in turn enables NsrR to bind to pro-

motor molecules, initiating the transcription of the target gene23,277 (Figure 7C). As to NsrF 
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and NsrP, both proteins together set up a functional ABC transporter, in which NsrF repre-

sents the nucleotide binding domain and NsrP the transmembrane domain23 (Figure 7C). It 

is suggested that NsrFP functions as an exporter, such that it exports nisin from the cellular 

membrane23,276. The NSR protein has been described as a membrane-associated protease that 

cleaves nisin between methyllanthionine 28 (MeLan28) and S2928,274,278 (Figure 7B, C). The 

cleaved and truncated nisin1-28 has a reduced affinity towards the cellular membrane and 

revealed a 100-fold less antimicrobial activity, although all five lanthionine rings are still 

present278. Remarkably, when the NSR from S. agalactiae ATCC 13813 (SaNSR) is ex-

pressed in Lactococcus lactis (L. lactis), the bacterium gains a nisin resistance, which is 20-

fold higher compared to non-expressing L. lactis23. 

Taking into consideration that the lanthionine rings, in particular, the intertwined rings D 

and E, usually cause a steric hindrance for protease cleavage, nisin cleavage by NSR is im-

pressive269. How NSR specifically recognizes nisin is, so far, unknown. In PUBLICATION 

III, we, in collaborations with the research group of Dr. S. Smits, report the first 3D structure 

of SaNSR. Further, we provide a binding mode model of nisin bound to SaNSR that explains 

why nisin is specifically recognized and cleaved by SaNSR. To overcome the resistance 

mechanism by SaNSR, we used the reported binding model as a template for the search of 

the first SaNSR inhibitor. 

2.4.3 Targeting protein-protein interactions in human HSP90 for cancer therapy 

It has been estimated that in human, more than 80 % of proteins operate in multi-protein 

complexes279,280, highlighting the importance of PPIs in biological processes. In particular, 

PPIs play an essential role in the cellular organization and regulation processes such as cel-

lular growth or apoptosis, which makes PPIs an attractive drug target for cancer therapeu-

tics281,282. Proteostasis, also referred to as the protein homeostasis, describes the maintenance 

of the integrity of the cellular protein network283 and includes the controlling of protein con-

centration, conformation, interactions, and localizations284. Unbalanced proteostasis due to 

cellular stress events leads to protein misfolding and aggregation and, thus, constitutes the 

basis for numerous pathological conditions284,285. Chaperones denote a group of proteins that 

assist in protein folding of newly synthesized proteins, refolding of misfolded proteins, and 

break up of protein aggregates285. Thus, these chaperones are essential for cellular quality 

control. 
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Many chaperones are heat shock proteins (HSPs)286. The expression of HSPs is sensitive to 

increased temperature and other stress conditions, such that HSPs are also known as stress 

proteins286. The HSP of 90 kDa (HSP90) is found in nearly all cellular compartments in 

eukaryotes, but in particular in the cytoplasm where it constitutes 1-2 % of the total protein 

concentration285. HSP90 belongs to the gyrase, HSP90, His kinase, and MutL (GHKL) fam-

ily of “split ATPases”283,287, and hence uses the energy released from ATP hydrolysis to 

fulfill its biological function, namely binding, stabilization, and maturation of numerous pro-

teins286. 

HSP90 is a large and highly flexible protein that operates as homodimer288,289. Dimerization 

is mandatory for it's in vivo activity288,289, but higher oligomeric complexes have been 

reported, too290,291. Each monomer in the HSP90 dimer is composed of three subunits; a 

highly conserved N-terminal domain (NTD), a middle domain, and a C-terminal domain 

(CTD) (Figure 8). The NTD harbors the ATP binding site and mediates ATP hydrolysis in 

conjunction with the middle domain292. The NTD is connected with the middle domain via 

a charged and flexible linker, which is also relevant for the client and co-chaperone recog-

nition and binding285,292-294. Recently, Verda et al. were successful in obtaining a 3.9 Å cryo-

electron microscopy structure of a full-length human HSP90–Cdc37–Cdk4 (chaperone–co-

chaperone–client) structure, which revealed that both, Cdc37 and Cdk4, predominantly bind 

to the middle domain with HSP90 clamping around the client protein293. The CTD mediates 

dimerization of HSP90 monomers295,296, via inter-subunit PPIs and is essential for the in vivo 

activity of HSP90288. There is evidence that suggests a second nucleotide binding site within 

the CTD297,298, for which, however, currently no structural evidence is available. Finally, the 

CTD ends in a flexible linker that contains the MEEVD motif that plays a crucial role in co-

chaperon recognition299. 

To recognize co-chaperones and client proteins, the HSP90 dimer has to undergo large and 

highly dynamic conformational shifts, which are also known as the HSP90 chaperone cy-

cle283,286,300,301 (the complete cycle is summarized in Figure 8). In general, during the chap-

erone cycle, the structural rearrangements are similar to the opening and closing motion of 

a clamp301. Initially, HSP90 adopts a wide-open, V-shaped conformation in the apo state, in 

a way that both NTDs are separated and both CTDs are dimerized302. Although HSP90 di-

merization can be considered very stable, with a KD in the nanomolar range295,303, Ratzke et 

al. reported C-terminal opening and closing dynamics on the time scale of seconds304. ATP 
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binds fast305,306, but weakly (apparent KD 
307) to the highly conserved NTD nucle-

- -sandwich motif286,308. ATP binding induces the 

lid region to close over the ATP binding site, leading to an intermediate state283,301. The lid 

closing, in turn, induces NTD dimerization and formation of the closed state29,283, thereby 

promoting ATP hydrolysis yielding ADP and inorganic phosphate309. These large confor-

mational rearrangements result in a closed state and are considered the rate-limiting step of 

the whole chaperone cycle306,310. After ATP hydrolysis, the chaperone adopts a highly com-

pact state in which the NTDs have rotated downwards, making inter-monomeric contacts311. 

Finally, the lid opens again, HSP90 returns to the open V-shaped conformation, and ADP 

and inorganic phosphate are released from the nucleotide binding site283,301,312. 

Figure 8: The chaperone cycle of HSP90. 
Schematic representation of the proposed HSP90 conformational cycle. In the absence of ATP, HSP90 is in its 
open, V-shaped conformation (PDB-ID: 2IOQ302) and dimerized via the CTD, but in equilibrium with at CTD-
open and NTD-closed conformation. ATP binding induces closure of the “lid” followed by the dimerization of 
the NTD (PDB-ID: 2CG929). ATP hydrolysis leads to a highly compact state before the chaperone partially 
opens (PDB-ID: 2O1V313) and ADP gets released from the binding site. The N-terminal domain (NTD), is 
colored blue, the middle domain green, and the C-terminal domain (CTD) orange. (Figure was adapted from 
refs.283,285,300.) 
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HSP90 holds a central role in cell regulation and interacts with a myriad of client proteinsb, 

such as steroid hormone receptors, kinases, or transcription factors283,314-316. HSP90 has been 

reported to be involved in many human diseases in particular neurodegenerative diseases, 

infectious diseases, and cancer283. As to the latter one, many of the chaperone’s client pro-

teins have been linked to cellular processes that are associated with the hallmarks of cancer, 

namely proliferation, evasion of apoptosis, immortalization, invasion, angiogenesis, and me-

tastasis317 and are, thus, key players in tumor cell growth, proliferation, and survival318. 

There is also some evidence that suggests that cancer cells contain HSP90 complexes in an 

activated, high-affinity conformation that facilitate malignant progression319. In line, in-

creased levels of HSP90 expression were associated with decreased survival rates in breast 

cancer320, explaining why HSP90 has been recognized as promising anticancer target321,322. 

Inhibition of HSP90 will interfere with the chaperone cycle, which, in turn, leads to inhibi-

tion of client protein activity, promotes proteasomal degradation of oncogenic client pro-

teins, and, thus may counteract the uncontrolled proliferation of cancer cells323. Many clini-

cal trials on HSP90 inhibitors that targeted a wide range of different tumor types have been 

performed, but no inhibitor has been approved for cancer treatment yet283,324. Most of the 

HSP90 inhibitors address the N-terminal nucleotide binding site, as the kinked binding pose 

of ATP325 (Figure 9A, B) allows specific inhibition of HSP90 by chemical compounds283. 

The natural product Geldanamycin, extracted from Streptomyces bacteria, was the first 

HSP90 inhibitor and blocked the N-terminal ATP binding site326,327 (Figure 9B). Although 

Geldanamycin showed promising antitumor activity in more than 50 cell lines, poor solubil-

ity and stability, and marked liver toxicity in animal models hampered its clinical success328. 

However, many other compounds have been developed that also target the NTD of 

HSP90324,329, such as NVP-AUY 922330 (also known as Luminespib) (Figure 9B). 

Although a blockade of the ATP binding pocket seems the simplest way to interfere with 

HSP90’s chaperone function, HSP90 inhibitors that bind to the N-terminal ATP binding 

pocket induce a resistance mechanism called heat shock response (HSR). The HSR is a cel-

lular response that initiates the synthesis of further HSPs, in particular, HSP70 and HSP27, 

which in turn limit the activity of HSP90 inhibitors as they coordinate malignant protein 

folding, support tumor growth, hamper apoptosis, and, thereby, induce cancer cell 

growth323,331. Alternatively, molecules that target the CTD of HSP90, such as Novobiocin 

b A comprehensive list of HSP90 clients is provided by the Picard research group (see https://www.pi-
card.ch/downloads). 



BACKGROUND 37 

 

(Figure 9C) and its coumarin derivatives, do not trigger HSR331,332. Interestingly, these mol-

ecules are suggested to bind to a second, C-terminal nucleotide binding site of unknown 

location, thereby interfering with the chaperone function of HSP90298,333. Remarkably, the 

proteasomal degradation of the BCR-ABL, an oncogenic fusion protein with tyrosine kinase 

activity, sufficient to propagate and sustain cancergrowth334, was promoted in Novobiocin 

treated leukemia cells329. Alternatively, targeting the interaction between HSP90 and its co-

chaperones also shows promising effects335.  

Recently, it was shown that peptides mimicking key interactions in the CTD helix bundle296 

(Figure 9C) inhibit HSP90 dimerization336. As CTD dimerization is essential for HSP90’s 

chaperone function289, inhibitors of CTD dimerization may constitute a promising alterna-

tive to modulate HSP90 function. Although peptides are frequently used as therapeutics337, 

they also bear disadvantages, such as a high degree of conformational flexibility and poor 

bioavailability due to proteolytic degradation338. The use of peptidomimetics may help to 

circumvent these issues. 

 
Figure 9: HSP90 inhibitors. 
A: 3D structure of ATP bound to the N-terminal domain of HSP90 from S. cerevisiae (PDB-ID 2CG929). B: 
Close up view of ATP in its NTD binding site of human HSP90 (PDB-ID 5FWK293), overlay of the NTD 
inhibitor Geldanamycin (after superimposing the protein structure from PDB-ID 1YET326), and the 2D struc-
tural formula of the NTD inhibitor NVP-AUY 922. C: Close up view of the C-terminal domain (CTD) of 
human HSP90 (extracted from PDB-ID 3Q6M7290) and the 2D structural formula of the CTD inhibitor Novo-
biocin. The helices H4, H4', H5, and H5' form the CTD dimerization interface. 

Following the definition of Vagner, Qu, and Hruby339, peptidomimetics are molecules that 

mimic a natural peptide in 3D space, interact with the biological target, produce the same 

effect as the native peptide, but show improved stability and bioavailability. In a previous 

study, we found that oligomeric -aminoxy peptides fold into a 28-helical conformation, 
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thereby mimicking the spatial arrangement of peptide side chains in -helices340. Now, we 

target HSP90 dimerization via the CTD by -aminoxy peptides as a new class of HSP90 

inhibitors. In PUBLICATION IV, we have developed a novel, first-in-class, PPI inhibitor of 

HSP90 function interfering with HSP90 CTD dimerization. 
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3. SCOPE OF THE THESIS 

In biological systems, molecular recognition describes the process in which macromolecular 

structures, such as proteins, interact with ligand molecules to form a specific complex (sec-

tion 2.1). One key determinant of the recognition process between protein and ligand is the 

affinity between the interacting molecules, and changes in binding affinity might have a 

marked influence on protein-ligand complex formation. 

Enzymes usually show a high affinity towards their substrates, which is a prerequisite for a 

specific enzymatic activity. However, disturbed recognition mechanisms between an en-

zyme and its substrate will result in enzymatic malfunction and, in turn, might also result in 

severe clinical conditions. One example is the human GS that is a pivotal enzyme in the 

human nitrogen metabolism, and loss of hepatic GS function triggers systemic hyperammo-

nemia (section 2.4.1). In particular, congenital GS variants (R324C, R324S, and R341C) 

lead to reduced catalytic activity and result in early death (sections 2.4.1 and 4.1). In addition, 

nitration of residue Y336 in human GS has also been linked to reduced catalytic activity 

(sections 2.4.1 and 5.1). However, why and how the GS variants and Y336 nitration decrease 

GS activity has been remained elusive. 

Another key determinant of the recognition process between protein and ligand is the high 

specificity between the interacting molecules, and even ligands that contain an unusual 3D 

structure can be recognized by specialized enzymes (section 2.1). The recognition of the 

antibiotic nisin by the resistance protein NSR from S. agalactiae denotes an interesting case 

of enzymatic specificity (section 2.4.2 and 6.1). Nisin shows antimicrobial activity and gains 

more and more relevance for medicinal applications, including infections associated with 

multi drug-resistant pathogens. However, NSR specifically cleaves nisin between MeLan28 

and S29 and, unfortunately, cleaved nisin is antimicrobial inactive such that NSR expression 

denotes a known resistance mechanism. Nisin cleavage is simply impressive if one considers, 

in particular, the intertwined rings in nisin that usually prevent protease cleavage. This raises 

questions about the determining factors for nisin recognition by NSR. 

From a very simplified point of view, the protein-ligand recognition process can be described 

as the diffusion of ligand and receptor molecules until both molecules come close to each 

other to form non-covalent or covalent contacts. Recent technical advances enabled to study 

the complete recognition and binding process in full atomic detail by unbiased MD simula-

tions (section 2.2.1). This is of particular interest in the field of drug development, as MD 
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simulations can provide a picture of how a novel drug could bind to its target, which might 

then stimulate further research. In this regard, MD simulations of drug binding can help to 

guide the understanding of the underlying mode of action. This is of particular interest if the 

drug binding site is unknown and/or experimentally only difficult to access, as it was the 

case for a novel HSP90 inhibitor (sections 2.4.3 and 7.1). Most of the HSP90 inhibitors 

address the N-terminal ATP binding site, but blockade of the ATP binding site induces a 

resistance mechanism that counteracts HSP90 inhibition. Alternatively, molecules that target 

the CTD do not trigger these resistance mechanisms. Thus, a drug that targets the CTD is 

clinically desirable and a promising alternative in cancer therapy. 

In the present work, I used MD simulations (section 2.2.1) and binding free energy calcula-

tions (section 2.2.2) to investigate the function-associated consequences of protein-ligand, 

protein-peptide, and PPIs in atomic resolution. In particular, I determined the functional con-

sequences of amino acid substitutions and posttranslational modifications on substrate bind-

ing, I predicted a binding mode of an antibiotic peptide bound a binding pocket, and I derived 

a binding mode model of a novel PPI inhibitor bound to a shallow protein surface. All ques-

tions were addressed in an integrative manner (section 2.3), such that results from in vitro 

and in vivo experimentsc were combined with my computational results. In this regard, my 

computations played a crucial role in the structural interpretation of experimental data, 

and/or were applied prospectively, such that experiments were subsequently used to corrob-

orate my models. In particular, by combining the results from computations and in vitro 

and/or in vivo experiments, we answered the following questions: 

I. What are the molecular consequences of the human GS variations that lead to clini-

cally relevant pathologies? 

II. How does tyrosine 336 nitration reduce the catalytic activity of human GS? 

III. What are the key determinants for nisin recognition and cleavage by NSR from S. 

agalactiae? 

IV. How does the novel HSP90 inhibitor Aminoxyrone bind to its target? 

which led to the following publications. 

 

 

                                                 
c The in vitro and/or in vivo experiments were performed in collaboration with research groups that are ex-

plicitly mentioned in the following chapters. 
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4. PUBLICATION I 

Molecular mechanisms of glutamine synthetase mutations that lead to clin-

ically relevant pathologies. 

Frieg, B., Görg, B., Homeyer, N., Keitel, V., Häussinger, D., Gohlke, H.

PLoS Comput. Biol. (2016), 12, e1004693. 

 

Original publication, see PUBLICATION I in section 11.1; contribution: 30 % (details pro-

vided below).  

 

(The following text was adapted from the above publication.) 

 Inborn glutamine synthetase deficiency

The GS catalyzes the ATP-dependent ligation of toxic ammonia and glutamate to glutamine, 

the most substantial free amino acid182,194. Changes in GS activity have been linked to neu-

rological disorders, such as Alzheimer’s disease229,230, hepatic encephalopathy213,224,231,232, 

and epilepsy233-235. In particular, patients that suffer congenital GS deficiency, an ultra-rare 

inborn error of glutamine biosynthesis, suffer systemic glutamine deficiency, and chronic 

hyperammonemia16,17,19,239. Initially, the two GS variants R324C (patient 1) and R341C (pa-

tient 2) have been linked to congenital GS deficiency16,17,19. These variants led to a drop of 

GS catalytic activity that finally resulted in neonatal death of both patients after a few weeks 

of life16,17,19. Later, another GS variant (R324S) was identified in a three-year-old boy (Pa-

tient 3), who was neurologically compromised19,239. A plausible but not proven explanation 

for the longer survival of this patient would be that the R324S variant conserves a higher 

level of GS catalytic activity compared to the other two GS variants18. However, during the 

disease, glutamine concentrations in blood plasma and cerebrospinal fluid decreased239 such 

that the patient received a trial of enteral and parenteral glutamine supplementation18. Alt-

hough glutamine supplementation improved the clinical status and partially rescued the bi-

ochemical phenotype18, the patient finally died from an acute respiratory decompensation 

after six years of life19. 

The clinical and biochemical phenotypes of the different variants are well described16,17,19,239. 

However, a molecular explanation of how these variants lead to glutamine deficiency has 

been remained elusive. The crystal structure of human GS25 revealed that residue R324 is 

part of the catalytic site and binding to ADP (Figure 10). However, why the R324S variant 
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most likely retains a higher level of GS activity relative to the R324C is not clear. Remark-

ably, the amino acid R341 is pointing away from the catalytic site and is separated by more 

than 10 Å (Figure 10). Thus, any direct influence of the R341C variant on any substrate is 

rather unlikely. The mechanism of how the R341C variant causes GS deactivation is also 

not clear yet. 

 
Figure 10: The catalytic site of the human GS. 
Close up view of the crystallographic catalytic site of human GS (PDB-ID: 2QC825) with R324 (purple), R341 
(cyan), ADP (orange), and phosphorylated MSO (methionine sulfoximine; magenta) depicted as a ball-and-
stick model. The structurally bound manganese ions (Mn2+), which are essential for GS function26, are depicted 
as gray spheres. The salt-bridge between R324 and ADP is depicted as a black dotted line. R341 is separated 
by from the catalytic site, schematically depicted by a black dotted line. 

Here we set out to determine changes in the GS structure, dynamics, and energetics at the 

molecular level caused by the three GS variants R324C, R324S, and R341C. Additionally, 

we determined the differences between both R324C and R324S variants, to provide a plau-

sible explanation of why the R324S likely retains some residual activity18. 

 

 Molecular consequences of inborn glutamine synthetase mutations 

To investigate the molecular consequences of the three GS variants R324C, R324S, and 

R341C, I performed a set of unbiased MD simulations, binding free energy calculations and 

rigidity analyses for wild type GS and all three variants. After my calculations, the results 

were corroborated by in vitro experiments performed at the Clinic for Gastroenterology, 

Hepatology, and Infectious Diseases at the Heinrich Heine University Düsseldorf, director 

Prof. Dr. D. Häussinger. Together we showed that all GS variants hamper the first steps of 

glutamine formation, namely ATP or glutamate binding341. 
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In detail, I performed unbiased all-atom MD simulations of wild type GS and the three GS 

variants (GS variants R324C, R324S, and R341C) in explicit solvent. I investigated four 

different states that represent the individual steps of glutamine synthesis by GS193-196. In 

these states, GS is either bound to ATP (this state is further referred to as GSATP), to ATP 

and glutamate (GSATP+GLU), or ADP and GGP (GSADP+GGP). Additionally, I investigated the 

apo state of GS without any ligand bound (GSApo). For all systems, three replicates were 

performed each of 100 ns length, which resulted in 3 × 4 × 4 = 48 MD simulations and a 

total simulation time . All results are reported as the mean ± standard error of the 

mean (SEM) over n = 3. 

As to the R324S and R324C variants, I found that the direct interactions between the wild 

type R324 and ATP and ADP (Figure 10) are lost in both of the GS variants that explain, 

why both of the GS variants lead to a reduced GS activity16-19. As a measure for the interac-

tions between GS and ATP/ADP, I calculated the distance between the functional groups in 

the side chains of R324, R324C, and R324C in wild type GS and GS variants, respectively, 

-phosphate group of ATP and ADP. While the mean distances for wild type GS are 

not larger than 3.5 Å (SEM < 0.1 Å), the mean distances for both variants are not smaller 

than 7 Å (SEM < 0.1 Å), which makes any direct contact in both variants impossible (Figure 

11A). Thus, I hypothesized that the loss of the direct interactions with ATP must be partially 

replaced by indirect interaction with ATP in R324S GS that may explain the suggested 

higher residual activity of R324S GS relative to R324C GS18. 

I found indirect water-mediated interactions between R324S/R324C and ATP that are more 

frequent in the R324S variant. First, I computed the distribution of water molecules around 

the side chain oxygen (R324S) or sulfur (R324C) (Figure 11B). As to R324S GS, I found 

the first water shell at ~2.8 Å342 and the second shell at ~4.5 Å (Figure 11B). Remarkably, 

as to R324S GS, the distance of the first water shell peaks at a range of a strong hydrogen 

bond (2.5 – 3.2 Å343), such that two water molecules likely connect the side chain of S324 

and ATP (Figure 11C). As to R324C GS, the first shell peaks at ~3.2 Å and is ~30 % smaller 

compared to R324S (Figure 11B). Thus, the water shell is considerably more structured in 

the R324S GS, demonstrating stronger hydrogen bonding, as expected344. Next, I computed 

the occurrence of weak (distance cutoff between hydrogen bond donor and acceptor of 

dcut = 3.2 Å343) and strong (dcut = 2.8 Å343) water-mediated hydrogen bonds between R324S 

or R324C and the -phosphate group of ATP (Figure 11D). The hydrogen bond interactions 

are more frequent in R324S compared to R324C (Figure 11D). Thus, as to R324S GS, the 
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loss of the direct interaction (Figure 11A) is replaced by water-mediated hydrogen bonds

(Figure 11C, D), which likely explains the suggested higher catalytic activity of R324S 

GS18,19.  

 
Figure 11: Indirect interactions for R324S and R324C with ATP. 
A: Mean distances between R324 (wild type GS), or S324 and C324 in GS variants and the -phosphate group 
of ATP/ADP in the GSATP, GSATP+GLU, and GSADP+GGP state. Stars indicate significant differences (p < 0.05) 
relative to wild type GS. The SEM is < 0.1 Å and not shown. B: Radial distribution function (RDF) of water 
molecules around side chains of S324 and C324 in GS variants in the GSATP+GLU state. The solid lines depict 
the mean RDF, and dashed lines indicate mean ± SEM. C: A representative structure extracted from the MD 
trajectory that depicts the water-mediated interaction between S324 (green ball-and-stick model) and ATP 
(orange ball-and-stick model), bound to the R324S GS (protein structure depicted as a white cartoon). Hydro-
gen bonds are shown as black dashed lines. For clarity reasons, only water molecules that are involved in the 
interactions are shown in this plot. D: Mean relative occurrence of water-mediated hydrogen bonds that connect 
the -phosphate group of ATP and residues S324 or C324 in the GS variants. The distance cutoff for strong 
and weak hydrogen bonds was set to 2.8 Å and 3.2 Å343, respectively. The error bars denote the SEM and the 
stars indicate a significant difference (p < 0.05) between both variants. E: Mean effective binding energies 
relative to wild type GS ( G) calculated by the MM-PBSA approach for ATP binding to R324S and R324C 
GS. Error bars indicate SEMtotal (eq. 3 in PUBLICATION I341); stars indicate a significant difference (p < 0.05) 
between wild type and variant. In A, B, and D, mean values and SEM were calculated over three trajectories 
each. Results for wild type, R324S, and R324C GS are always shown in black, green, and red, respectively. 
(Figures and caption are taken from PUBLICATION I341.) 
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The favored water-mediated hydrogen bonds in R324S GS are also in agreement with results 

from MM-PBSA calculations that suggest that ATP binding is energetically more favored 

in R324S GS compared to R324C GS (Figure 11E). Nevertheless, ATP binding is 

significantly disfavored in both variants with respect to wild type GS (Figure 11E), which 

provides a plausible explanation for the impaired catalytic activity of both variants16,17,19,239. 

As to the R341C variant, I found a long-range effect between the catalytic site and the region 

around helix H8 (residues 266-288) on the outside on the protein surface. Therefore, I first 

investigated the influence of variant R341C on GS’ mechanical stability and applied the 

constraint network analysis345. The loss of interactions of R341 leads to a significant desta-

bilization of the C-terminus of the GS, in particular in the region around helix H8 (Figure 

12A). I identified that R341 forms hydrogen bonds with H281, H284, and Y288 on H8 (Fig-

ure 12B) that could be relevant for structural integrity. Thus, I analyzed the structural sta-

bility of H8 during MD simulations of wild type and R341C GS. The secondary structure 

analysis of helix H8 revealed an increased loop probability for H8 residues in R341C com-

pared to wild type GS (Figure 12C). To further corroborate this finding, I introduced another 

GS variant (H281A/H284A/Y288A variant; named HHY hereafter) that mimics the loss of 

interactions between R341 and helix H8. Again the loop probability of residues on H8 in-

creases relative to wild type GS (Figure 12C), which further supports the conclusion that 

R341 stabilizes H8 in wild type GS; this stabilizing influence is lost in both the R341C and 

HHY variants. As ATP binding to GS induces a shift of H825 that is prerequisite for 

glutamate binding25, I hypothesized that glutamate binding might be hampered in the 

R341C var-iant. The hypothesis was corroborated by MM-PBSA calculations that revealed 

energetically disfavored glutamate binding for the R341C variant relative to wild type GS 

(Figure 12D). 
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Figure 12: Structural changes in the R341C variant and experimental validation by dot-blot analysis. 
A: Stability map depicting significant differences (p < 0.05) in the structural stability as computed by constraint 
network analysis345 between wild type GS and the R341A variant. Red colored areas in stability map346 depict 
areas, where the variant is less stable compared to wild type GS. The GS secondary structure is depicted on the 
top, with green bars representing -strands and raspberry bars representing -helices. The horizontal arrows 
indicate subunits A and B. The vertical arrows point to H8. B: Close up view of the crystal structure of human 
GS (PDB-ID: 2QC825) around R341 that shows the interactions between R341 (cyan) and H281, H284, and 
Y288 on helix 8 (H8; raspberry), depicted by black dashed lines. The structurally bound ADP (orange), MSO 
(magenta), and manganese ions (Mn2+, gray spheres) depict the location of the catalytic site. C: Loop proba-
bility for residues 278 to 288 of H8 for 3 × 100 ns MD simulations of wild type GS, the R341C variant, and 
the HHY variant in the GSATP state. The error bars denote the SEM and the stars significant differences (p < 
0.05) relative to the wild type. D: Mean effective binding energies relative to G) calculated 
by the MM-PBSA approach for glutamate binding to the R341C GS. Error bars indicate SEMtotal (eq. 3 in 
PUBLICATION I341); stars indicate a significant difference (p < 0.05) between wild type and variant. E: GS-
YFP-transfected human embryonic kidney cells (HEK293) were either left untreated (-) or treated (+) with the 
GS inhibitor MSO for two hours. Equal amounts of GS were spotted onto a nitrocellulose membrane and 
detected by dot-blot analysis, followed by densitometric quantification of anti-GS immunoreactivity. Anti-GS 
immunoreactivity in MSO-treated cells is given relative to the untreated control. Stars denote significant dif-
ferences (p < 0.05) relative to untreated control. n.s.: not statistically significantly different. (Figures and cap-
tion are taken from PUBLICATION I341.) 

Next, we investigated the role of the R341C/HHY interactions in vitrod. Previous studies 

revealed that MSO binding to GS masks the epitope for a monoclonal antibody raised against 

GS347. As MSO binds to the glutamate binding site25 and irreversibly inactivates the en-

zyme348, MSO binding was used as a surrogate for glutamate binding. As residue R341 is 

essential for antibody binding, we used the HHY GS variant in our in vitro experiments. As 

d The biochemical experiments were performed at the “Clinic for Gastroenterology, Hepatology, and Infec-
tious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany”, director Prof. Dr. D. 
Häussinger.  
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a control, another GS variant (S278A, K279A, and R280A; named SKR hereafter) was in-

troduced. In the SKR variant, the modified residues are also located on H8 but do not interact 

with R341. We hypothesized that MSO would mask the epitope for a monoclonal antibody 

in wild type GS and SKR GS, but not in HHY GS. Figure 12E shows that MSO-treatment 

significantly reduced anti-GS immunoreactivity in wild type GS and SKR GS. By contrast, 

anti-GS immunoreactivity was unchanged in MSO-treated HHY GS, indicating impaired 

substrate binding to the catalytic center, which is in perfect agreement with the computa-

tional results. In sum, impaired substrate binding provides a plausible explanation for the 

loss of enzymatic activity16,17,19 (Figure 12E). 

Conclusion and significance 

In this study, I significantly contributed to a collaborative study, in which we investigated 

the molecular mechanisms, how the three clinically relevant GS variants R324C, R324S, 

and R341C cause GS catalytic deactivation16-19. To do so, we combined atomistic simula-

tions with biochemical experiments and found strong evidence that suggests that all three 

variants hamper the first steps of GS’ catalytic cycle, namely ATP or glutamate binding. 

As principal results, we found that: 

the first steps of the GS catalytic reaction, namely ATP and glutamate binding, are

hampered in all three variants, which explains GS deactivation,

the direct interaction between the wild type R324 and ATP is lost in both R324S and

R324C variants. As to the R324S variant this loss is partially compensated by an

indirect water-mediated interaction via hydrogen bonds, which likely explains the

residual R324S GS catalytic activity18,

loss of interactions between R341 and amino acids on helix H8 leads to a pronounced

destabilization of H8, which negatively affects glutamate binding and in vitro exper-

iments supported for my predictions.

This study provides the first molecular insights into the impaired catalytic mechanisms of 

clinically relevant GS variants. It also provides the structural basis for identifying potential 

strategies to counteract the effects of the GS variants, as currently, no therapy is available to 
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treat inborn GS deficiency. In the search for a treatment of this ultra-rare disease, our find-

ings could stimulate the development of ATP binding enhancing molecules for the R324S 

variant by which the R324S GS variant can be “repaired” extrinsically349. 
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5. PUBLICATION II

Mechanism of fully-reversible, pH-sensitive inhibition of human glutamine synthetase 

by tyrosine nitration. 

Frieg, B., Görg, B., Qvartskhava, N. Jeitner, T., Homeyer, N., Häussinger, D., Gohlke, H. 

submitted. 

Original manuscript, see original PUBLICATION II in section 11.2; contribution: 30 % (de-

tails provided below) 

(The following text was adapted from the above publication.) 

Protein tyrosine nitration in human glutamine synthetase 

Hepatic and cerebral GS is highly sensi  to PTN that, in turn, causes GS catalytic inhi-

bition20-22. PTN is a post-translation modification under “nitroxidative stress” conditions 

yielding 3’-nitro tyrosine350,351 (in the following named TYN and referring to the nitrated 

amino acid in solution; Figure 13A) and causes a drop of the pKa of the phenolic hydroxyl 

group by three log units352. Thus, also the deprotonated phenolate variant (in the following 

named TYD and referring to the nitrated amino acid in solution; Figure 13A) is also relevant 

under physiological condition. As to human GS, tyrosine 336 (Y336; according to the crystal 

structure numbering25) was identified to be the target of nitration20,353 and linked to hepatic 

and cerebral GS inhibition20-22. In the crystallographically resolved structure of human GS25, 

Y336 is part of a predominately hydrophobic pocket that harbors the purine ring of ADP, 

thereby interacting via face-to-face stacking with ADP (Figure 13B). It is reasonable to as-

sume that Y336 most likely interacts similarly with ATP, the precursor for ADP. Although 

PTN modifies key properties of the amino acid, such as phenol group pKa, redox potential, 

hydrophobicity, and volume351,354, any molecular explanation has been remained elusive 

how Y336 nitration causes GS catalytic inhibition. 

In the present work, I performed unbiased MD simulations as well as binding and configu-

rational free energy calculations to clarify the molecular mechanisms of GS catalytic inhibi-

tion by Y336 nitration. My results guided the design of subsequent biophysical and biochem-

ical in vitro experiments. Together we revealed a novel regulatory mechanism of human GS 

function by Y336 nitration. 
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Figure 13: Protein tyrosine nitration in human glutamine synthetase. 
A: Schematic mechanism of tyrosine nitration. Tyrosine nitration decreases the pKa of the phenolic hydroxyl 
group by three log units351, such that there is an equilibrium between the protonated (TYN) and deprotonated 
(TYD) state at physiological pH (figure adapted from ref.351). B: ADP (blue) and tyrosine 336 (Y336, green) 
depicted as a ball-stick model in crystallographic poses25. (Figures and caption are taken from PUBLICATION 
II.) 

 The pH sensitivity of glutamine synthetase inhibition by Y336 nitration 

To address the unresolved question, how Y336 nitration causes GS inhibition, I performed 

unbiased all-atom MD simulations in explicit solvent of three different GS variants; i) wild 

type GS carrying Y336, ii) GS carrying TYN336 (the protein system is always referred to 

as GSTYN), and iii) GS carrying TYD336 (the protein system is always referred to as GSTYD) 

bound to ATP. All GS variants were subjected to 5 × 500 ns of unbiased MD simulations, 

 

To characterize the stacking interactions between the phenyl ring of 

Y336/TYN336/TYD336 and the purine ring system of ATP, the MD trajectories were 

analyzed towards the distance between the centers of mass (Figure 14A) and the angle  

between the planes of these ring systems (Figure 14B). The measurements indicate that the 

major populations are found at short distances (d Å, Figure 14A) and for an almost 

parallel orientation of the ring systems (  Figure 14B) for all GS variants, although the 

relative frequencies of the changes decrease from wild type GS to GSTYN to GSTYD. The 

shapes of the histograms also reveal populations at higher distances or angles, in particular 

for GSTYD (Figure 14A, B). Ab initio calculations found that interactions for face-to-face 

tyrosine/adenine arrangements are strongest for a coplanar arrangement between the ring 

systems (at distances < 4 Å and  355). Thus, these distance and angle 

measurements suggest that Y336 nitration weakens the tyrosine/adenine interaction, espe-

cially in GSTYD. Configurations extracted from the MD ensemble revealed that the coplanar 
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orientation of the rings is partially lost and ATP is more mobile in both nitrated GS variants 

(Figure 14C). By computing the root mean square fluctuations (RMSF), a measure for mo-

bility, for all non-hydrogen atoms in ATP, I corroborated this hypothesis as ATP bound to 

GSTYD shows a significantly increased mobility relative to ATP bound to wild type GS (Fig-

ure 14D). These results again suggest that TYD336/ATP interactions are weakened in the 

GSTYD variant compared to the Y336/ATP interactions in wild type GS.  

Figure 14: Structural consequences of Y336 nitration.
A, B: Mean relative frequencies (normalized by the sum of all bins) with standard error of the mean (SEM; 
depicted as filled curve) for (A) the distance between the centers of mass of the phenyl ring (residue 
Y336/YTN336/TYD336) and the purine ring system (ATP) (bin size 0.1 Å) and (B) the angle between the ring 
planes of the phenyl ring (residue Y336/YTN336/TYD336) and the purine ring system (ATP) (bin size 1°). C: 
Representative structures extracted from the MD trajectory for wild type GS (left), GSTYN (middle), and GSTYD 
(right). In the foreground, representative ATP configurations belonging to the main populations in A and see 
respective labels depicting “distance [Å]/  [°]” combinations  are depicted as an opaque ball-stick model. For 
representative purposes, for ATP molecules that do not belong to the major population, only the adenine system 
is shown. In the background, an overlay of ATP configurations extracted in 10 ns intervals is depicted as gray 
sticks that visualizes the motion of ATP throughout the MD simulations. D: Mean root mean square fluctuation 
(RMSF) with SEM (error bars) calculated for all non-hydrogen atoms in ATP. * Statistically significantly 
different compared to wild type GS (p < 0.05). n.s.: not significantly different. (Figures and caption are taken 
from PUBLICATION II.) 

In agreement with the structural analyses, I computed, by means of subsequent MM-PBSA 

calculations, that ATP binding is energetically disfavored in GSTYD ( Geffective = 

4.57 kcal mol-1 ± 0.06 kcal mol-1; p < 0.01) but, interestingly, favored in GSTYN ( Geffec-

tive = -2.84 kcal mol-1 ± 0.04 kcal mol-1; p < 0.01) relative to wild type GS (Figure 15A). 
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While MD simulations and MM-PBSA both suggest that ATP binding is significantly 

weakened in GSTYD, both methods also suggest that GSTYN does not affect or even slightly 

promote ATP binding. However, instead of influencing the thermodynamics of ATP binding, 

Y336 nitration might also influence the ATP binding process by introducing a barrier along 

the ATP binding path. 

Figure 15: pH-sensitive inhibition of GS activity. 
A: Mean relative effective binding energies relative to wild type GS ( Geffective). G values were calculated 
by using the MM-PBSA approach for ATP binding to both nitro variants GSTYN (orange) and GSTYD (blue). 
Error bars indicate SEM; stars indicate a significant difference (p < 0.05) between wild type GS and GSTYN or 
GSTYD, respectively and labels depict Geffective ± SEM in kcal mol-1. B: Schematic depiction of the ATP 
binding path and the corresponding potential of mean force (PMF), for ATP binding to wild type GS (black), 
GSTYN (orange), and GSTYD (blue). I (yellow background), II (green background), and III (cyan background) 
depict the phases of ATP binding. Configurational free energies are normalized relative to the unbound state 
(Distance = 38.9 Å). Labels depict relevant changes in the PMF (in kcal mol-1). C: Thermodynamic cycle em-

thermodynamic integration for transformations of TYN into TYD (top panel depicts the transformation for 
ACE-TYN/TYD-NME, the bottom panel for TYN336/TYD336 in the GS structure). The difference in free 

G was calculated according to eq. (6) and the pKa shift Ka) according to eq. (9). The exper-
imentally determined pKa (exp. pKa) was measured for free 3-nitro tyrosine352. At physiological pH (~7.4), the 
TYD state in GS is preferred over the TYN state (schematically depicted by red arrows). D: pH dependence of 
ONOO--mediated inhibition of GS activity. Purified human GS was exposed to different concentrations of 
ONOO- were taken for measuring GS activity. GS activity in vehicle-treated 
control at pH 7.0 was set to 1, and activities measured under the other experimental conditions are given relative 
to it. *: statistically significantly different. n.s.: not statistically significantly different. (Figures and caption are 
taken from PUBLICATION II.) 
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Thus, I performed US simulations of ATP binding to wild type GS, GSTYN, and GSTYD. The 

complete ATP binding path covers a distance of ~37 Å, divided into 75 windows/umbrellas 

and each window/umbrella was sampled for 60 ns. Thus, US simulations cumulate to a total 

WHAM and revealed several interesting facts (summarized in Figure 15B). First, the ATP 

bound state is markedly favorable over the unbound state for all GS variants. Second, the 

ATP binding process can be separated into three phases (I, II, and III). During phase I, ATP 

diffuses freely around all GS variants (see original PUBLICATION II in section 11.2). Dur-

ing phase II, ATP gets weakly rejected in GSTYD, which may hamper further ATP binding. 

By contrast, in GSTYN and wild type GS, ATP becomes bound via hydrogen bonds involving 

the phenolic hydroxyl group (see original PUBLICATION II in section 11.2). During phase 

III, ATP reaches the bound state with a minimum in the PMF at  3.7 Å for all GS variants. 

In the bound state, relative changes between wild type GS, GSTYN, and GSTYD reveal that 

ATP binding is thermodynamically disfavored in GSTYD, but, again, is favored in GSTYN, 

mirroring the results from MM-PBSA calculations (Figure 15A). Taken together, results 

from MD simulations and free energy calculations suggest that ATP binding is thermody-

namically disfavored in GSTYD, but favored in GSTYN. 

Nitration of free tyrosine decreases the pKa value of the phenolic hydroxyl group by three 

log units351 (Figure 13A), but the protein environment may further influence the pKa of 

amino acids356. To probe whether such influence also exists in the present case, I computed 

the pKa shift of TYN336 (within the protein environment) relative to free TYN. Therefore, I 

used the relation of the equilibrium constant Ka G (adapted 

from eq. (3) in section 2.1) that can also be expressed as 

pKa = -log Ka = 
1

2.303 RT
G (8) 

or 

pKa,prot.= pKa, model+ 
1

2.303 RT
G (9) 

where R is the gas constant of 0.001987 kcal mol-1 K-1, T G is the difference 

in free energy between the protein-embedded and the free amino acid357. G in eq. (9) was 

computed by evaluation of the thermodynamic cycle derived using TI computations, yield-

ing G = -4.83 kcal mol-1 (Figure 15C), indicating a marked decrease of the pKa (-3.5 log 
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units) of TYN336 embedded in GS to pKa . Hence, at physiological pH ( 7.4), the 

TYN336:TYD336 ratio thus amounts to ~1:4,000, such that only TYD336 is relevant under 

these conditions. These findings are further supported by in vitro experimentse showing a 

reduced catalytic activity of nitrated GS at pH 7 and pH 6, but not at pH 4 (Figure 15D). 

Together with the above findings that ATP binding is weakened in GSTYD, this result ex-

plains how tyrosine nitration leads to GS inhibition20,358. 

Conclusion and significance 

In the present work, I significantly contributed to a collaborative study that set out to deter-

mine the molecular mechanisms of how Y336 nitration causes inhibition of human GS. For 

this, we combined atomistic simulations with biochemical experiments and found strong 

evidence that suggests that nitration of Y336 hampers binding of the substrate ATP in a pH-

dependent manner. 

As principal results, we found that: 

Y336 nitration weakens the interactions between Y336 and the substrate ATP, but

only if nitrated Y336 exists in its deprotonated TYD336 state,

nitrated Y336 predominantly exists in the deprotonated TYD form at physiological

pH conditions,

by decreasing the pH in vitro, we showed that the inhibitory effect of Y336 is fully-

reversible.

So far, tyrosine nitration has been related to three effects on protein function: loss of function, 

a gain of function, and no change on protein function (for a comprehensive review, see 

ref.359). This study, however, indicates a novel regulatory mechanism of protein function 

mediated by PTN. As the pKa value of 3‘-nitrotyrosine can vary within a protein, depending 

on the environment, the observed pH sensitivity on the impact of tyrosine nitration on protein 

function will have to be considered in evaluating existing and future studies on PTN. 

The observed pH sensitivity of GS function due to Y336 nitration may be of clinical im-

portance, as a reduced GS activity leads to hyperammonemic conditions224, which, in turn, 

e The biochemical experiments were performed at the “Clinic for Gastroenterology, Hepatology, and Infec-
tious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany”, director  Prof. Dr. D. 
Häussinger. 
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may then completely abolish GS activity. A strategy to shift the TYN336:TYD336 equilib-

rium towards the TYN336 state in tissues with high GS expression denotes a plausible but 

also sophisticated route to counteract the inhibition of GS by Y336 nitration. Interestingly, 

the ionophore Nigericin lowers the intracellular pH from ~7 to ~5.5 in nonproliferating rat 

hepatocytes in primary monolayer culture, which might denote a promising starting point 

for further research in that direction360. 
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6. PUBLICATION III

Structural basis of lantibiotic recognition by the nisin resistance protein 

from Streptococcus agalactiae. 

Khosa, S.§, Frieg, B.§, Mulnaes, D., Kleinschrodt, D., Hoeppner, A., Gohlke, H., Smits, 

S.H.J. 

Sci. Rep. (2016), 6, 18679 

§ Both authors contributed equally to this work. 

Original publication, see original PUBLICATION III in section 11.3; contribution: 30 % (de-

tails provided below) 

(The following text was adapted from the above publication.) 

Lantibiotics, nisin, and nisin resistance 

Lantibiotics are antimicrobial peptides, synthesized by bacteria253,254,256,270, exhibit antimi-

crobial activities in the nanomolar range254,255,257, and represent a promising class for future 

therapeutic application to overcome existing antibiotic resistances253,254,256,270,361. Nisin was 

the first described lantibiotic260, shows high efficiency in the treatment of staphylococcal 

mastitis in human270,362 and dairy cows270,363, and is commercially used as food preserva-

tive270,364-366 (E234, Nisaplin®). Although nisin exhibits its antimicrobial activity via multi-

ple modes of actions27,268,269,273,367, some bacterial strains have been reported to be naturally 

resistant towards nisin274,275. 

In particular, the nisin resistance protein NSR from S. agalactiae ATCC 13813 (SaNSR), a 

protease that cleaves the peptide bond between MeLan28 in ring E and S29 in nisin (Figure 

7C), induced a 20-fold increased resistance towards nisin when expressed in L. lactis23. Tak-

ing into consideration that the bulky lanthionine rings usually cause a steric hindrance that 

prevents peptide cleavage24, the cleavage of nisin by SaNSR is impressive. However, the 

underlying mechanisms of how NSR recognizes nisin has remained elusive. A thorough un-

derstanding of the underlying mechanisms by what means SaNSR recognizes nisin may en-

courage the research and development of new therapeutic strategies and/or new antibiotic 

drugs. Here we set out to clarify by what means nisin is recognized, cleaved, and thereby 

inactivated by SaNSR. 
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Structural determinants of nisin recognition 

In the present work, the first three-dimensional structure of NSR from SaNSR (PDB-ID: 

4Y68)28 was resolvedf (Figure 16A). The SaNSR monomer is composed by eleven helices 

and -strands, which together form three individual domains: (i) an N-terminal helix bundle, 

(ii) a protease cap domain, and (iii) a protease core that contains the catalytically active ser-

ine at position 23623, which is also part of the conserved “TASSAEM” region (Figure 16A). 

These domains form a hydrophobic tunnel (Figure 16A), which could very well bind a nisin 

molecule. Although we put extraordinary efforts, we were not successful in obtaining a crys-

tal structure of a SaNSR/nisin complex. One explanation might be that nisin gets cleaved as 

soon as it binds to SaNSR. Thus, we derived a SaNSR/nisin complex model, by site-directed 

mutagenesis guided by MD simulations and free energy calculations. 

Initially, to determine nisin substructures essential for SaNSR recognition, the two C-termi-

nal cysteine(s) in nisin were mutated to alanine in vitrog, which led to nisin substructures 

containing only rings A-D or A-C (see original PUBLICATION III in section 11.3). In 

addition, truncated nisin variants were prepared by removing residues from the C-terminus. 

All nisin variants were analyzed for the resistance mediated by the expression of the SaNSR 

protein in the NZ9000 SaNSR strain368. That way it was elucidated that in particular ring E 

is highly essential for nisin recognition by SaNSR368. 

In the next step, I generated a set of nisin structures bound to SaNSR and performed unbiased 

MD simulations and MM-PBSA calculations144,147, employing the residue-wise decomposi-

tion scheme152,155. I found that, besides ring E, also ring D and I30 in nisin are essential for 

binding to SaNSR368 (see original PUBLICATION III in section 11.3). Thus, rings D and E 

as well as I30 form the binding motive (hereafter name Nisincore), which is essential for nisin 

recognition by SaNSR. Binding of the Nisincore ensures that residue Ser29 at the nisin cleav-

age site is correctly positioned close to the catalytic dyad of SaNSR. 

f The three-dimensional structure was obtained by X-ray crystallography by the research group of Dr. Sander 
Smits at the “Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 
Düsseldorf, Germany”. 

g Site-directed mutagenesis and activity measurements were performed by the research group of Dr. Sander 
Smits at the “Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 
Düsseldorf, Germany”. 
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Figure 16: The crystal structure, activity data, and nisin bound model of SaNSR. 
A: Top panel: an illustration of the domain organization. Bottom panel: a monomeric structure of SaNSR 
shown as a cartoon-surface representation that illustrates the hydrophobic tunnel in the center of the protein 
structure. The N-terminal helical bundle is colored green, protease cap domain in red, the protease core domain 
in gray, and the catalytic site containing the TASSAEM region in blue. Residue numbering in the top panel is 
in accordance with the crystal structure28. B: The activity of wild type (WT) SaNSR and its variations (is 
determined using the L. lactis NZ9000 strain). Normalization of the IC50 values was done by setting the values 
exhibited by the empty vector (NZ9000Erm) and NZ9000SaNSR to 0 % and 100 %, respectively. The error 
bars denote the standard error of at least three independent experiments368. C: Representative structure of nisin 
(residues 22-34; extracted from the MD trajectory) bound to the hydrophobic tunnel of SaNSR. D: Schematic 
representation of the Nisincore (rings D+E (red labels), Ser29, and Ile30) bound to SaNSR residues. Residues that 
compose the catalytic site are colored in blue, residues that contribute to nisin binding in magenta, residues 
that have an indirect effect on binding in black-magenta, and residues with a supposedly regulatory function in 
SaNSR in red368. For residues with an opaquely colored background, SaNSR activity information for alanine 
mutants is available (B). Residues marked with a star form the catalytic dyad. The nisin structure is depicted 
as an orange ball-and-stick model. (Figures and captions are taken from PUBLICATION III28.)

Next, I performed a series of MD simulations and free energy calculations and predicted 

amino acids that are likely important for nisin recognition and SaNSR specificity towards 
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nisin. Subsequently, the suggested amino acids were substituted to alanine, and the catalytic 

activity of the new SaNSR variants was measured experimentallyh (Figure 16B). By com-

bining results from computations and in vitro experiments, we derived the first structural 

model of nisin bound to SaNSR that revealed several exciting facts about nisin recognition 

by SaNSR and its specificity. 

First, SaNSR acts via a catalytic dyad mechanism in which Ser32623 and His98 form the 

catalytic dyad (Figure 16C, D) and alanine variants in these positions reduce SaNSR cata-

lytic activity (Figure 16B). Second, the highly conserved sequence motif “TASSAEM” 

(Figure 16A) is structurally stabilized via a hydrogen bond network (Figure 16C, D), and 

any disruption of this network results in a reduced SaNSR catalytic activity (Figure 16B). 

Third, SaNSR binds nisin via hydrophobic (Leu102, Leu137, Met173, Ile174, Ala277) and 

polar/charged amino acids (Asn172 and Glu266), but also via water-mediated interactions 

(Asn265 and Thr267) (Figure 16B, C). Finally, we found that Asp110 and Arg275, although 

not interacting with nisin, are essential for SaNSR catalytic activity (Figure 16B), such that 

these amino acids stabilize the secondary structure of helix 4 of the cap domain that is 

required for SaNSR function (Figure 16B, C). The loss of Asp110 or Arg275 results in a 

reduced catalytic activity relative to wild type GS. By using these findings as experimental 

restraints, I screened the MD trajectory towards a representative structure of nisin bound to 

SaNSR. In this structure, rings D and E bind to a hydrophobic pocket, which, in turn, ensures 

the correct spatial orientation of the nisin cleavage site towards the catalytic residues in 

SaNSR (Figure 16C, D) 

Conclusion and significance 

In the present study, I significantly contributed to a collaborative study that shed light onto 

the question by what means SaNSR recognizes and cleaves nisin. By the integration of bio-

molecular simulations with biochemical experiments, the first structural model in full atomic 

detail of how nisin is bound to SaNSR is generated. Our SaNSR/nisin binding model re-

vealed that SaNSR recognizes specifically the C-terminal lanthionine rings of nisin28. 

Taken together, as principal results, we found: 

h Site-directed mutagenesis and activity measurements were performed by the research group of Dr. Sander 
Smits at the “Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 
Düsseldorf, Germany”. 
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the first 3D structure of NSR from S. agalactiae at 2.2 Å resolution (PDB-ID:

4Y6828),

that SaNSR is composed of three structural domains that together form a hydrophobic

tunnel that harbors the nisin molecule,

that SaNSR specifically binds to the C-terminal lanthionine rings (rings D and E) and

residue I30 in nisin. This determines the nisin specificity of SaNSR and ensures the

precise coordination of the nisin cleavage site at the catalytic important TASSAEM

region.

These findings and our model of the SaNSR/nisin complex open up a new avenue in the 

understanding of lantibiotic resistance by human pathogens28. These findings might also en-

courage the development of therapeutics to overcome nisin resistance. 
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7. PUBLICATION IV

Targeting HSP90’s C-terminus is effective in Imatinib resistant CML and 

lacks heat shock response induction. 

Bhatia, S., Diedrich, D., Frieg, B., Ahlert, H., Stein, S., Bopp, B., Lang, F., Zang, T., Kröger, 

T., Ernst, T., Kögler, G., Krieg, A., Lüdeke, S., Kunkel, H., Rodrigues Moita, A. J., Kassack, 

M. U., Marquardt, V., Opitz, F. V., Oldenburg, M., Remke, M., Babor, F., Grez, M., Hoch-

haus, A., Borkhardt, A., Groth, G., Nagel-Steger, L., Jose, J., Kurz, T., Gohlke, H., Hansen, 

F. K., Hauer, J. 

Blood (2018), 132, 307 – 320. 

Original publication, see original PUBLICATION IV in section 11.4; contribution: 15 % 

(details provided below) 

(The following text was adapted from the above publication.) 

Role of HSP90 in chronic myeloid leukemia, peptidomimetics, and -aminoxy 

peptides 

The presence of the “Philadelphia chromosome”, a translocation of chromosomes 9 and 22, 

constitutes the hallmark of chronic myeloid leukemia (CML)369. The Philadelphia chromo-

some induces the synthesis of the oncogenic fusion protein BCR-ABL334,370. The BCR-ABL 

protein constitutes tyrosine kinase activity, and its activation was linked to cell survival by 

inhibition of apoptosis, inhibition of differentiation, and loss of tumor suppressor function371. 

Hence, the discovery of tyrosine kinase inhibitors (TKI) and their development to the next 

generations have revolutionized the treatment of CML371. However, long-term treatments on 

TKIs increase the risk of resistance and subsequent disease progression to blast crisis, a clin-

ical state challenging to treat with current therapies372. Therefore, novel treatment ap-

proaches are needed for treating BCR-ABL induced leukemia resistant to TKIs. 

In CML cells, HSP90 levels are elevated and HSP90 protects BCR-ABL by inhibition with 

its proteasomal degradation373. Thus, inhibiting the interaction between BCR-ABL and 

HSP90 with HSP90 inhibitors promotes BCR-ABL proteasomal degradation373, as previ-

ously shown for Novobiocin and NVP-AUY 922329,374. In this regard, HSP90 denotes a 

promising target to treat distinct types of cancer, related to high BCR-ABL concentrations. 



PUBLICATION IV 62 

Figure 17: Crystal structures of human HSP90 CTD and structure of Aminoxyrone. 
A: Crystal structure of the dimeric human HSP90 C-terminal domain (extracted from PDB-ID 3Q6M290). Hel-
ices H4 and H5 form the dimerization interface. B: Overlay of C  atoms (orange spheres) of the -aminoxy 
moiety (blue sticks) side chains (after quantum mechanical energy minimization) onto the C atoms of residues 
I688, Y689, I692, and L696 on helix H5. C: 2D structure of Aminoxyrone. (Figures A-C are taken from PUB-
LICATION IV.) 

Most of the HSP90 inhibitors target the N-terminal ATP binding site and thereby induce 

HSR that weakens HSP90 inhibition323,331. Molecules targeting the CTD do not promote 

HSR. As CTD dimerization is essential for HSP90’s chaperone function289, molecules that 

inhibit the inter-subunit PPI constitute a promising alternative. When trying to interfere with 

a system, the most direct way is to mimic the protein’s epitope in their biological environ-

ment375. As to HSP90, the CTD dimerization interface is formed by a helix bundle (Figure 

17A), and recently it was shown that the amino acids I688, Y689, I692, and L696, which are 

part of the dimerization interface, are essential for CTD dimerization296. Furthermore, pep-

tides mimicking these critical interactions in the CTD helix bundle interfere with HSP90 

dimerization336. Although peptides are used as therapeutics337, poor bioavailability due to 

proteolytic degradation338 limit their clinical application. In this regard, the use of pep-

tidomimetics, molecules that mimic a natural peptide in 3D space, interact with the biologi-

cal target, produce the same effect as the native peptide, and show improved stability and 

bioavailability339, denote a promising alternative for cancer therapy. -Aminoxy peptides 

constitute a class of peptidomimetic foldamers that fold into a 28-helical conformation, 

thereby mimicking the spatial arrangement of the side chains in -helices340 (Figure 17B). 

In the present study, we have developed the novel, first-in-class HSP90 inhibitor Aminoxy-

rone (Figure 17C). By combining results from biomolecular simulations with results from 
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in vitro and in vivo experiments, our data suggest a novel mode of action, in that Aminoxy-

rone inhibits the C-terminal dimerization of HSP90. 

Conformational analysis and biological evaluation 

Initially, the biological properties of Aminoxyrone were elucidated in vitroi. First, Aminoxy-

rone inhibits HSP90 dimer formation (see original PUBLICATION IV in section 11.4). Sec-

ond, a KD Aminoxyrone binding to purified CTD of HSP90 was measured (see 

original PUBLICATION IV in section 11.4), and the in vitro efficacy in a cell-based lucif-

erase refolding assay is comparable to the efficacy of the C-terminal inhibitor Novobiocin 

and the N-terminal inhibitor NVP-AUY 922 (see original PUBLICATION IV in section 

11.4). In sum, the results revealed specific binding of Aminoxyrone to the HSP90 CTD.  

Next, we set out to clarify Aminoxyrone’s mode of action. Although Aminoxyrone was 

found to be able to either dissociate oligomeric species or suppress HSP90 CTD oligomeri-

zation (see original PUBLICATION IV in section 11.4)j, a picture of how Aminoxyrone 

binds to the CTD has remained elusive. Thus, to further elucidate the mode of action of 

Aminoxyrone in full atomic detail, I performed MD simulations of Aminoxyrone binding to 

HSP90 CTD. Beforehand, in order to focus the computational time available on sampling of 

Aminoxyrone configurations around the CTD, I established a simulation procedure that al-

lows the usage of a monomeric CTD model (sequence Glu527 – Gly697; extracted from the 

crystal structure290; see original PUBLICATION IV in section 11.4) rather than the full-

length HSP90 structure, which would had been computationally more demanding.  

Although MD simulations have been successfully applied to study and reconstruct the bind-

ing process of smaller ligands in classical drug targets, such as GPCRs60,61,65,73, the structural 

features of PPIs provide quite a challenge when applying MD simulations of ligand binding 

to protein-protein interfaces. First, in contrast to classical drug targets, the protein-protein 

interfaces are much larger, are often shallow, and lack deep, well-defined pockets376,377. In 

this regard, the contact surface in PPIs varies between 1500 – 3000 Å2 378,379, or even larger, 

while the contact area in classical target varies between 300 – 1000 Å2 378,380. Second, the 

i The experiments were performed by the research group of Prof. Dr. J. Jose at the “Institute for Pharmaceutical 
and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany”. 

j The experiments were performed by the research group of Dr. L. Nagel-Steger at the “Institute for Physical 
Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany” and the “Institute of Complex Sys-
tems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany”. 
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binding epitopes between the protein binding partners are often described as discontinuous, 

in that amino acids from different, not necessarily connected, regions are crucial for the PPI, 

the so-called hot-regions376,377. Interestingly, within these hot-regions only some amino acids 

contribute largely to binding, the so call hot-spots376,377. One strategy to target PPIs is to 

mimic the spatial orientation and interactions of hot-spot residues by structural analogs, such 

as peptidomimetics.  

I found that Aminoxyrone predominantly binds to the helices H4 and H5 in the dimerization 

interface, thereby mimicking key interactions of the previously defined hot-spot residues 

(summarized in Figure 18). Therefore, I performed a set of 60 unbiased all-atom MD simu-

lations of Aminoxyrone binding to the HSP90 CTD. The MD simulations were initiated 

from conformations in which a single Aminoxyrone molecule was randomly placed around 

the HSP90 CTD (see original PUBLICATION IV in section 11.4), such that each simulation 

can be considered as independent from the rest of the simulations (see original PUBLICA-

TION IV in section 11.4). In all starting conditions, the minimal distance between Aminoxy-

rone and the HSP90 CTD was at least 10 Å, such that Aminoxyrone was not influenced by 

the HSP90 CTD right from the start. During all simulations, Aminoxyrone was free to move 

and not biased by a guiding force. All systems were subjected to production simulations of 

at least 400 ns length, each, such that the total simulation time cumulates to 24 

progressing simulation time, the number of simulations in which Aminoxyrone is bound to 

the dimerization interface of the CTD (referred to as ) increases. After 400 ns, in the ma-

jority of my MD simulations (in 22 of the simulations), Aminoxyrone binds to the dimeri-

zation interface  (Figure 18A-C). Using MM-GBSA calculations throughout the MD sim-

ulations, I also found the most favorable effective binding energies for Aminoxyrone binding 

at the site  (see original PUBLICATION IV in section 11.4). In the remaining simulations, 

Aminoxyrone binds to a hydrophobic site (referred to as ) occupied by the middle domain 

in full-length HSP90 or Aminoxyrone temporarily binds to locations scattered across the 

CTD surface (Figure 18A-C). When extending the simulation times to 1 s, however, Ami-

noxyrone unbinds from HSP90 and, finally, binds to the dimerization interface (see original 

PUBLICATION IV in section 11.4). Interestingly, as soon as Aminoxyrone is bound at site 

, it doe see original PUBLICATION IV in section 11.4),

which supports the view that site  is likely the main binding site for Aminoxyrone. 
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Figure 18: Results of MD simulations of Aminoxyrone binding to HSP90. 
(a) Relative frequencies of ligand poses (see color scale) as a function of the relative distance between the 
center of mass of Aminoxyrone and helix H4 in the dimerization interface ( ; Aminoxyrone was designed 
to mimic hot-spot amino acids290 on helix H5’ of the adjacent CTD in the dimeric HSP90, such that the dis-
tances are expressed as relative distances D) with respect to the distance between the backbone COMs of 
helices H4 and H5’ in the crystal structure290) Geffective). (b) Lo-
cations of the center of mass of Aminoxyrone (spheres) after 400 ns for 60 MD simulations, with each simu-
lation result colored differently. The black dashed line highlights all conformations that are bound to dimeri-
zation interface  Dmin  Å, the gr Dmin < 4 Å. The protein structure is 
shown as surface representation with the middle domain (not present during MD simulations) in orange and 
the CTD in white. In the left panel, the structure is rotated by 180° around the y-axis. (c) The frequency of 
occupation of binding sites  (yellow), close to  (green; Dmin 4 Å),  (red), or  (black) by Ami-
noxyrone across 60 MD simulations. (d) Binding mode model of Aminoxyrone. The left panel shows a repre-
sentative conformation of Aminoxyrone bound to the CTD, extracted from the MD trajectory. Residues I688, 
I692, and M691 (gray spheres) bind to the side chain of Aminoxyrone. (e) The right panel shows an overlay of 
Aminoxyrone onto helix H5’ extracted from the crystal structure (PDB-ID: 3Q6M290). Aminoxyrone is 
depicted as blue sticks, hot-spot amino acids I688, Y689, I692, and L696296 as gray sticks with C atoms as 
magenta spheres, helix H5’ as white cartoon with black backbone atoms, and the CTD in the left panel as 
surface representation, with all residue within 3 Å of Aminoxyrone colored in red. In (a, b, c) , , and  
denote the binding sites of Aminoxyrone where  represents all binding sites besides  and . (Figure and 
caption are taken from PUBLICATION IV.) 

Finally, I calculated effective binding energies for configurations showing the minimal dis-

tance between Aminoxyrone and the CTD dimerization interface during 60 MD simulations 

of 400 ns length. Strong interactions energies were found for Aminoxyrone bound to site , 

while interactions energies for Aminoxyrone bound to sites  and  are, in general, weaker 

(see original PUBLICATION IV in section 11.4), suggesting, again, that Aminoxyrone most 

likely binds to the site . Visual inspection of the Aminoxyrone binding poses at the site  



PUBLICATION IV 66 

revealed that Aminoxyrone binds to the dimerization interface, such that its side chains 

partially align with side chains of hot-spot residues296 of helix H5 (Figure 18D, E). In sum, 

results from MD simulations and free energy calculations suggest that Aminoxyrone binds 

to the HSP90 CTD dimerization interface, thereby mimicking hot-spot residues, which 

are crucial for CTD dimerization296. That way, Aminoxyrone likely acts as a PPI modulator 

and suppresses HSP90 CTD dimerization, which denotes a novel mode of action to 

modulate HSP90 function. 

One of the major challenges with HSP90 inhibitors in the preclinical and clinical testing 

phase is their non-selectivity and the induction of HSR331, which decreases the HSP90 in-

hibitor efficacy. In vitro and in vivo experimentsk, however, revealed that Aminoxyrone 

shows a potent anti-BCR-ABL effect without inducing HSR. In this regard, Aminoxyrone 

inhibits cell proliferation, induces apoptosis, and also shows cytotoxic efficacy (see original 

PUBLICATION IV in section 11.4). Next, the in vivo efficacy of Aminoxyrone was 

investigated in primary CMLCD34+ patient-derived cells. The findings revealed that Ami-

noxyrone, again, inhibits cell proliferation and induces apoptosis at reasonable concentra-

tions without inducing any HSR. Next, BCR-ABL+ cells were transplanted in an in vivo 

xenograft model. The growing tumor was treated locally with Aminoxyrone for 17 days. 

Aminoxyrone leads to a significant reduction in tumor weight, indicating that Aminoxyrone 

has anti-oncogenic potential in vivo. Finally, the efficacy of Aminoxyrone was tested in 

Imatinib-resistant clinically relevant BCR-ABL variants and found to be superior over 

Imatinib (see original PUBLICATION IV in section 11.4). 

 Conclusion and significance 

The BCR-ABL oncoprotein constitutes tyrosine kinase activity and is the molecular hall-

mark of CML371. However, the increasing number of resistances towards TKIs highlights 

the importance of novel therapeutic strategies372. HSP90 levels are increased in CML cells 

and HSP90, in turn, stabilizes BCR-ABL and inhibits its proteasomal degradation373. Thus, 

k The experiments were performed by the research group of Prof. Dr. J. Hauer at the “Department of Pediat-
ric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düssel-
dorf, Düsseldorf, Germany”. 
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HSP90 inhibitors lead to BCR-ABL destabilization and promote proteasomal degrada-

tion329,374. In this collaborative study, we developed Aminoxyrone as a novel PPI inhibitor 

of HSP90 that suppresses HSP90 dimerization via its CTD. 

As principal results, we found that: 

 Aminoxyrone inhibits HSP90 function via a novel mode of action. Results from MD 

simulations and free energy calculations suggest that Aminoxyrone acts as a PPI in-

hibitor, which interferes with the CTD dimerization by mimicking hot-spot residues, 

which are crucial for CTD dimerization, 

 modulation of HSP90 function by CTD dimerization inhibitors denotes a novel ther-

apeutic strategy, in order resistances towards established anti-cancer drugs, 

 Aminoxyrone acts in a reasonable therapeutic window and does not induce HSR, 

neither in vitro nor in vivo. 

Remarkably, Aminoxyrone is the first-in-class peptidomimetic that interferes with the CTD 

dimerization via a novel mode of action. One might anticipate that Aminoxyrone or its de-

rivatives could be applied to other species of leukemia or diseases as HSP90 stabilizes many 

different proteins with critical functions in diseases (see section 2.4.3). This study may also 

facilitate the development of additional therapeutics, that follow the same mode of action as 

Aminoxyrone, namely as CTD dimerization inhibitors.  
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8. SUMMARY AND PERSPECTIVE 

Throughout this thesis, I used computer-aided techniques to elucidate the molecular mecha-

nisms of function-associated ligand binding processes in three different systems. In particu-

lar, I determined the functional consequences of point mutations and posttranslational mod-

ifications on substrate binding, I predicted a binding mode of a peptide to its target, and I 

derived a binding mode model of a novel PPI inhibitor bound to a shallow protein surface. 

In all studies, my results and predictions were corroborated with experimental results, which 

highlights the enormous potential of the strategy to combine theoretical modeling studies 

with experimental procedures. 

Thus, in PUBLICATION I and PUBLICATION II, I determined the molecular mechanisms 

of human GS deactivation either by mutations R324C, R324S, and R341C (PUBLICATION 

I) or by Y336 nitration (PUBLICATION II). In both cases, substrate binding to GS is 

hampered via direct or indirect effects. Furthermore, PUBLICATION II demonstrates a 

novel mechanism of GS regulation mediated by Y336 nitration. So far, tyrosine nitration has 

been related to three effects on protein function: loss of function, a gain of function, or no 

change on protein function359 and, so far, Y336 nitration in human GS has been associated 

with a loss of GS function20,358,381,382. However, PUBLICATION II provides the first evi-

dence that indicates that the inhibitory effect of Y336 nitration in human GS is fully-reversi-

ble depending on the pH of the protein environment. While PUBLICATION II demonstrates 

that the catalytic activity of nitrated GS can be fully restored by changing to a more acidic 

environment, there is currently no therapeutic strategy available to counteract the inhibitory 

effects of inborn GS mutations. Based on PUBLICATION I that suggests that ATP binding 

is weakened in the R324S GS variant, our findings could stimulate the search of ATP binding 

enhancing molecules for the R324S variant, by which the R324S GS variant can be “repaired” 

extrinsically349. In an initial study240, we focused on trimethylglycine (betaine) as one such 

molecule and found that betaine weakly stabilizes ATP within its binding site of the R324S 

GS240. Currently, betaine and structural analogs are investigated concerning their in vitro 

potency to restore the R324S GS activityl. 

PUBLICATION III provides the first binding mode model of the antibiotic peptide nisin 

bound to the resistance protease SaNSR in full atomic detail. Based on it, I predicted amino 

                                                 
l The in vitro experiments are performed by the research group of Prof. Dr. D. Häussinger at the “Clinic for 

Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, 
Germany”. 
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acids in SaNSR that are crucial for recognition. Site-directed mutagenesis and in vitro activ-

ity measurements of SaNSR in the research group of Dr. S. Smits confirmed their critical 

roles in the recognition and coordination of nisin by SaNSR. That way, PUBLICATION III 

provides an enhanced understanding of lantibiotic resistance by human pathogens and may 

also promote the development of therapeutics to overcome nisin resistance. Thus, in search 

of a novel therapeutic, I identified a set of potential SaNSR inhibitors. Currently, these com-

pounds are in the stage of in vitro evaluation of their inhibitory potencym. 

Finally, in PUBLICATION IV, I provided the first picture in atomic detail of how the novel 

anticancer drug Aminoxyrone binds to its target, namely HSP90. Importantly to note, Ami-

noxyrone is the first-in-class peptidomimetic that acts as a PPI inhibitor. In detail, Aminoxy-

rone binds to the HSP90 CTD dimerization interface, thereby preventing HSP90 dimeriza-

tion, which interferes with the HSP90 function. In particular, Aminoxyrone mimics the spa-

tial side chain orientation of amino acids that are crucial for the CTD dimerization. Consid-

ering Aminoxyrone’s high efficiency also in specific drug resistance cells, Aminoxyrone or 

analogs show a promising potential to be clinically relevant to other cancer types. Further-

more, small molecules that also mimic the spatial helical side chain orientation, such as 

trispyrimidonamide derivatives383, denote promising alternatives to inhibit HSP90 function 

following the same mode of action as Aminoxyrone. 

As demonstrated in the above examples, the combined use of multiple techniques of theo-

retical and experimental origin can guide the understanding of complex biological systems. 

In this context, MD simulations play a key role in the interpretation of existing data14,37. 

Alternatively, MD simulations should always be corroborated by experiments or, at least, be 

directly compared to experimental observables14,37. As to biomolecular simulations in gen-

eral, substantial progress in software and hardware has been made that provided access to 

study even very complex systems. One might anticipate that future software and hardware 

developments will then allow addressing even more complex biological processes such as, 

for example, molecule transport via the nuclear pore complex, the principles of transcription 

and translation during protein biosynthesis, or the molecular aspects of ATP production. 

                                                 
m The in vitro experiments are performed by the research group of Dr. Sander Smits at the “Institute of Bio-

chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany”. 
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12. CURRICULUM VITAE

Professional and scientific career

07.17 – present Scientist at the Forschungszentrum Jülich GmbH at the Jülich Su-
percomputing Centre (JSC), Institute for Complex Systems - Struc-
tural Biochemistry (ICS-6), and John von Neumann, Institute for 
Computing (NIC).

Investigation of protein-ligand, protein-peptide, protein-protein,
and protein-DNA interactions,
Identification and design of protein-ligand and protein-protein 
interaction modulators,
Determination of the molecular mechanisms of enzyme regula-
tion and deactivation for soluble and transmembrane systems,
Fragment-based lead discovery,
Proposal writing,
Mentoring of junior Ph.D. students, master students, and tech-
nical assistants,
System admin for group-internal computing resources (incl. 
HPC environment) for Linux and Windows systems.

11.13 – 06.17 Ph.D. student at the Institute for Pharmaceutical und Medicinal 
Chemistry, Heinrich Heine University Düsseldorf in the research 
group of Prof. Dr. Holger Gohlke.

Determining the molecular mechanisms of enzyme regulation 
and deactivation,
Investigate the determinants of protein-ligand, protein-peptide, 
and protein-protein interactions,
Teaching of pharmaceutical chemistry including lectures and 
practical laboratory work,
Assistance in proposal writing,
Supervision of master students and technical assistants,
System admin substitute for group-internal computing re-
sources for Linux and Windows systems.

11.14 – 03.17 Professional experience as pharmacist at the Neue Apotheke in der 
Kö
Galerie, Düsseldorf.

Advice and care for patients, customers, and physicians.

04.14 License to practice pharmacy (Approbation).

05.13 – 10.13 Trainee pharmacist in the research group of Prof. Dr. Holger Gohlke 
at the Institute for Pharmaceutical und Medicinal Chemistry, Hein-
rich Heine University Düsseldorf.

11.12 – 04.13 Trainee pharmacist at the Sebastianus Apotheke, Neuss.
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10.08 – 10.12 Pharmacy studies at Heinrich Heine University Düsseldorf, Düssel-
dorf.

Skills

Scientific computing Computational chemistry/biology software packages AMBER, 
Schrödinger Maestro®, OpenEye Scientific, MOE, VMD, Glide, 
AutoDock (very good)

Molecular dynamics simulations/enhanced sampling methods
Free energy calculations
Molecular docking, and virtual screening in drug discovery
Fragment-based drug discovery

Experience in usage of high-performance computing resources (very 
good)

JUROPA, JURECA, and JUWELS at the Forschungszentrum 
Jülich GmbH
HILBERT, and CPCSRV at the Heinrich Heine University 
Düsseldorf

Linux system admin (incl. HPC environment) (good)

Scientific programming using Python, Bash, and R (good)

Machine learning and data science toolkits, e.g. RDKit, scikit-learn, 
and tensorflow (basic knowledge)

GPU programming using C++ and openACC (basic knowledge)

General computing MS office (very good)

Inkscape (very good)

Gimp (good)

Languages German, written and spoken (native language)

English, written and spoken (fluent)

Additional soft skills Leadership qualifications (iGRAD Workshop)

Writing a research paper (iGRAD Workshop) 
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Scientific successes

Recent publications Porta, Schumacher, Frieg, et al.: Small-molecule inhibitors of nisin 
resistance protein NSR from the human pathogen Streptococcus 
agalactiae.
submitted (2019)

Krater, Frieg, et al.: Partially inserted nascent chain unzips the lateral 
gate of the translocon.
submitted (2019)

Frieg, et al.: Mechanism of fully-reversible, pH-sensitive inhibition 
of human glutamine synthetase by tyrosine nitration.
submitted (2019)

Kondapuram, […], Frieg, et al.: Opposing subunits interact to stabi-
lize the closed state in HCN2 channels.
Biophys. J., 2019, 116(3), 108a

Bhatia, Diedrich, Frieg, et al.: Targeting HSP90’s C-terminus is ef-
fective in Imatinib resistant CML and lacks heat shock response in-
duction.
Blood, 2018, 132, 307-320.

Kroeger, Frieg, et al.: EDTA aggregates induce SYPRO Orange-
based fluorescence in thermal shift assay.
PLoS ONE, 2017, 12, e0177024

Krieger, […], Frieg, et al.: -Aminoxy peptoids: a unique peptoid 
backbone with a preference for cis-amide bonds.
Chem. Eur. J., 2017, 23, 3699-3707

(Please, find a full list of all publications here.)

Oral presentations Mechanism of fully-reversible, pH-sensitive inhibition of human 
glutamine synthetase by tyrosine nitration.
33rd Molecular Modelling Workshop, Erlangen, 2019.

1st Lecture award
(Speaker slot at the Young Modellers Forum in London, orga-
nized by the MGMS-UK.)

Molecular mechanisms of human glutamine synthetase deactivation.
SFB 974 Retreat, Trier, 2017.

Determining the molecular consequences of clinically relevant glu-
tamine synthetase mutations.
Annual meeting of GASL, Düsseldorf, 2016.
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Poster presentations Molecular determinants of glutamine synthetase deactivation by ty-
rosine nitration
NIC Symposium, Jülich, 2018.

Molecular determinants of glutamine synthetase deactivation by ty-
rosine nitration
DeLIVER Symposium, Düsseldorf, 2017.

Consequences of clinically relevant glutamine synthetase mutations 
at the atomic level.
NIC Symposium, Jülich, 2016.

Determining the molecular consequences of clinically relevant glu-
tamine synthetase mutations.
Annual meeting of GASL, Düsseldorf, 2016.

Grants and funding
05.17 – present Computing time grant on JURECA and JUWELS, Jülich Supercom-

puting Centre. (Project ID: HDD17)
“Disinhibition and inhibition of HCN2 channel function by ligand 
binding to the cyclic nucleotide binding domain”.

05.14 – 04.17 Computing time grant on JURECA/JUROPA, Jülich Supercompu-
ting Centre (Project ID: HDD13)
“Molecular mechanisms of human glutamine synthetase regulation 
and deactivation”.

05.13 – 10.13 Research fellowship funded by the NRW Researchschool “BioStruct 
- Biological structures in molecular medicine and biotechnology”.

Associated research communities
04.17. – present Research associate of the Research Unit 2518

“Functional dynamics of ion channels and transporters - DynIon”.

11.13 – present Research associate of the Collaborative Research Center SFB 974 
“Liver damage and regeneration”.

05.13 – 10.13 Research fellow of the NRW Researchschool
“BioStruct - Biological structures in molecular medicine and bio-
technology”.
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