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Chapter 1

Introduction

The careful handling of unobserved heterogeneity – such as individual or time

specific effects – is an essential concern in econometrics for causal analyses. If these

unobserved effects are related to any explanatory variable, neglecting them causes

an omitted variables bias. A great advantage of panel data over pure cross-sections

is that they allow to fully control for these unobserved effects and thus offer new

possibilities to researchers that go beyond proxy variable and instrumental variable

approaches. Another benefit is the possibility to study different sources of persistence

(see chapter 1.2 in Baltagi 2013 and Hsiao 2014 for a comprehensive list of further

advantages). For example, Roberts and Tybout (1997) and Bernard and Jensen

(2004) employed dynamic discrete choice models to disentangle the drivers behind

firms’ exporting persistence, such as sunk costs and unobserved plant heterogeneity.

Within panel data estimators, fixed effects estimators are very popular, because

unlike random-effects estimators, they do not impose any distributional assumption

on the unobserved heterogeneity. A flourishing part of the theoretical econometric

literature is in particular concerned with nonlinear fixed effects models. However,

their application confronts practitioners with several problems that will be discussed

below.

To illustrate some typical problems, let us consider a popular class of binary choice

estimators to control for individual specific unobserved heterogeneity. So-called con-

ditional logit estimators, such as Rasch (1960), Andersen (1970), Chamberlain (1980),

and Honoré and Kyriazidou (2000), are consistent under an asymptotic framework,

where the number of time periods T is held fixed and the number of individuals

N grows. They achieve the desirable fixed T consistency property by condition-

ing on sufficient statistics such that the likelihood function does not dependent on

the individual effects anymore. However, this transformation trick is also one of

the major disadvantages of conditional logit estimators. Removing the unobserved

heterogeneity precludes the estimation of partial effects, which are important to

obtain interpretable values for the ceteris paribus effects on the response probability.
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Another limitation of this transformation trick is that sufficient statistics cannot be

found for all nonlinear panel estimators, such as probit estimators (see Hahn and

Newey 2004; Arellano and Hahn 2007; Fernández-Val and Weidner 2018a).

An alternative approach is a maximum likelihood estimator which jointly esti-

mates the fixed effects and the structural parameters. In the following this estimator

is denoted as nonlinear fixed effects estimator. The problem associated with this

estimator is that, under fixed T asymptotics, it is affected by the so-called incidental
parameters problem (see Neyman and Scott 1948). Intuitively, the fixed effects are

estimated with noise because only a few number of observations contribute to their

identification. Due to the nonlinear nature of the estimator, the estimation noise

contaminates the estimates of the structural parameters, which is reflected in a bias.

Motivated by the increasing availability of large panel data sets, recent literature

gradually switches to asymptotic approximations that require both panel dimensions

(usually N and T) to grow with the sample size, i.e. N,T →∞. Under this asymptotic

framework, the nonlinear fixed effects estimator is consistent, but shows a bias in

its asymptotic distribution that can be reduced substantially by bias corrections (see

Fernández-Val and Weidner 2018a for an overview). The corrected estimators also

allow to estimate average partial effects and show desirable finite sample properties

in simulations. Since bias corrections can be developed for a variety of nonlinear

models (including dynamic models) with different error components, they are broadly

applicable.

Despite their wide range of possible applications, nonlinear fixed effects estima-

tors still receive little attention in empirical research and are often substituted by

linear ones. As frequently made statements by empirical researchers let suggest,

there are two main reasons. The first one is a widespread misbelief that the estima-

tion of nonlinear models with high-dimensional fixed effects is infeasible (see among

others Glick and Rose 2016; Markussen and Røed 2017). Another frequently men-

tioned reason is that researchers want to avoid the incidental parameters problem

(see among others Markussen and Røed 2017; Ullman 2017; Sanches, Silva Junior,

and Srisuma 2018; Popov and Zaharia 2019).

This thesis is intended to draw empirical researchers’ attention to nonlinear

fixed effects estimators and to facilitate their applicability. For this purpose, the

strand of econometric literature on bias corrections is linked to computational

advances. This makes it possible to estimate nonlinear models even with many

observations and high-dimensional fixed effects, which is more and more required

due to the increasing magnitude of panel data sets. This thesis also contributes to

the literature on bias corrections itself by providing further insights on finite sample

properties of various corrections and proposing novel corrections for special two- and

three-way fixed effects models required in international trade. Further, I offer the

2



corresponding software routines, bife and alpaca, to make the methods presented

in this thesis ready to use. In the following, I give a detailed overview about the

different contributions of this thesis.

In chapter 2, co-authored with Florian Heiss and Daniel McFadden, we derive a

computationally efficient maximum likelihood algorithm to estimate logit models

with individual fixed effects. For clarification, this algorithm corresponds to a

nonlinear fixed effects estimator. The methodological core of this algorithm is

the application of the Frisch-Waugh-Lovell (Frisch and Waugh 1933; Lovell 1963)

(FWL) theorem in each iteration of the Newton-Raphson optimization routine and

establishes the basis for several extensions presented in the subsequent chapters

of this thesis. More precisely, since Newton’s update is the solution of a weighted

regression, the updates of the structural parameters can be separated from the

high-dimensional fixed effects. The corresponding projection matrix is sparse and

thus allows to derive a straightforward scalar expression, we refer to as pseudo-
demeaning. The beauty of this approach is its link to the within transformation

that is well-known in the context of linear fixed effects models. Another aspect we

address, is that this fixed effects estimator suffers from a bias in its asymptotic

distribution stemming from the need to estimate incidental parameters. To mitigate

this bias, we combine our algorithm with an analytical bias correction proposed by

Fernández-Val (2009). Moreover, we propose a novel hybrid approach that allows

to estimate average partial effects for conditional logit estimators. In an extensive

simulation-based comparison between (bias-corrected) fixed effects estimators and

conditional logit estimators, we find that the former are promising candidates both

in terms of their statistical properties and in terms of their computation times.

Chapter 3 extends the pseudo-demeaning approach introduced in chapter 2 to

the class of nonlinear generalized linear models (GLMs) with multi-way fixed effects.

I derive a fast and memory efficient maximum likelihood algorithm by combining the

insights on the sparse projection matrix from chapter 2 and the method of alternating
projections (MAP) tracing back to Neumann (1950) and Halperin (1962). The latter

is required, since in nonlinear multi-way fixed effects models the projection matrix

loses its sparse structure and thus prevents the formulation of an efficient scalar

expression to partial out the fixed effects from Newton’s update. The algorithm is

highly compatible with the needs of empirical research, because it allows to estimate

GLMs with many observations and high-dimensional fixed effects on a standard

desktop computer and is directly applicable to unbalanced data. Moreover, it can be

easily combined with jackknife bias corrections to mitigate the incidental parameter

bias that appears frequently in GLMs with fixed effects. I highlight the relevance

of my algorithm by applying it to an example from international trade, where a

maximum likelihood estimator that is able to cope with high-dimensional multi-

3



way fixed effects is urgently needed. The workhorse model in this discipline is

the structural gravity model, which is estimated by the pseudo-poisson maximum

likelihood estimator (PPML) and, in case of panel data, includes two or three sets of

high-dimensional fixed effects.

In chapter 4, co-authored with Daniel Czarnowske, we use the example of binary

choice models with individual and time fixed effects to show how the Newton-

Raphson pseudo-demeaning algorithm and MAP established in chapter 3, can be

adapted to dramatically accelerate analytical bias corrections. Moreover, we study

the finite sample properties of several types of bias corrections by conducting exten-

sive simulation experiments. On the one hand, we consider bias corrections that have

been proposed by Fernández-Val and Weidner (2016) but not analyzed so far. On the

other hand, we introduce different patterns of unbalancedness, giving more realistic

insights about the usability of bias corrections for applied work. This aspect has

received little attention in the literature so far. Most notably, we find that analytical

bias corrections outperform jackknife approaches irrespective of the missing data

pattern. Finally, we provide an extended empirical illustration from labor economics

to highlight the usefulness of bias corrections in combination with our suggested

algorithms. In spirit of Fernández-Val (2009), we estimate a dynamic fixed effects

probit model to investigate the inter-temporal labor force participation of women.

Contrary to him, we utilize a large scale data set of 10,712 women observed between

1984 and 2013.

Chapter 5, co-authored with Julian Hinz and Joschka Wanner, utilizes and

extends the contributions made in chapter 4 in order to estimate the extensive

margin of trade. We theoretically motivate a dynamic empirical model by combining

a heterogeneous firms model of international trade with bounded productivity and

features from the firm dynamics literature to derive expressions for an exporting

country’s participation in a specific destination market in a given period. Our

preferred econometric specification demands a dynamic probit estimator with three

sets of high-dimensional fixed effects and thus causes computational and econometric

issues. The latter is associated with the incidental parameter bias. Thus, we

characterize new analytical and jackknife bias corrections and show how these

can be efficiently implemented in the context of high-dimensional fixed effects.

Extensive simulation experiments confirm the desirable statistical properties of

the bias-corrected estimators. In our empirical application, we demonstrate that

controlling for both sources of persistence – market entry dynamics and unobserved

heterogeneity – and taking the incidental parameter bias into account makes a

substantial difference. To be more specific, we find that among the most frequently

studied potential determinants (joint WTO membership, common regional trade

agreement, and shared currency), only sharing the same currency has a significant

4



impact on whether two countries trade with each other or not.

In chapter 6, I briefly summarize the contributions of this thesis and give some

outlooks for future research. The user manuals of the R-packages bife and alpaca,

developed during this thesis, are listed in the appendices A and B, respectively.
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Chapter 2

Estimation of Fixed Effects Logit
Models with Large Panel Data

Co-authored with Florian Heiss and Daniel McFadden
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2.1 Introduction

The recent availability of long microeconomic panels like the Panel Study for Income

Dynamics constitutes new computational challenges for the estimation of common

econometric models. One of these is the logit model with individual fixed effects

which is referred to hereinafter as the fixed effects logit model. The fixed effects logit

model is a popular specification for analyzing panel data of binary variables, since it

allows for unobserved individual heterogeneity like the variation in tastes with an

arbitrary distribution.

There are two established approaches for the estimation of fixed effects logit

models. On the one hand, it is possible to carry out a standard maximum likeli-

hood estimation in which the regressor set is extended by one dummy variable per

cross-sectional unit. We call this estimator the unconditional logit estimator and

abbreviate it with UCL. The other estimator, a conditional logit estimator (CL), con-

centrates the individual heterogeneity out of the likelihood function by conditioning

on a sufficient statistic. Both estimators suffer from substantial drawbacks which

this article is intended to address.

UCL can become computationally challenging when the number of fixed effects

N is large since it requires the computation and inversion of a large Hessian. Apart

from the computational challenge, the parameters of most nonlinear fixed effects

models suffer from the incidental parameters problem (IPP), which is reflected in a

bias, first noted by Neyman and Scott (1948). This incidental parameters bias can

be especially severe in models with a small number of observations T per individual.

The reason is that only few observations contribute to the estimation of the fixed

effects leading to noisy estimates. Due to the nonlinear nature of the logit model, the

estimation noise of the fixed effects also contaminates the estimates of the structural

parameters. Thus, UCL is inconsistent under fixed T asymptotics (see Arellano

and Hahn 2007; Fernández-Val and Weidner 2018a). Even increasing T does not

necessary solve the incidental parameters bias because fixed effects estimators are

asymptotically biased even if T grows at the same rate as N (see Hahn and Newey

2004).

CL has been derived by Rasch (1960) and Andersen (1970) and later generalized

by Chamberlain (1980) as a solution to IPP. They show that CL is a fixed T consistent

estimator for structural parameters. However it is not clear how interpretable

values, such as average partial effects (APEs), can be estimated since CL does not

deliver estimates of the fixed effects (see Hahn and Newey 2004; Arellano and

Hahn 2007; Fernández-Val and Weidner 2018a).1 Another drawback is that CL is

computationally very costly if T is large. Even if we use a more efficient recursion

1. Often partial effects are also called marginal or ceteris paribus effects.
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method proposed by Gail, Lubin, and Rubinstein (1981), the computational burden

increases roughly quadratic in T which makes CL infeasible for panels with large

time horizons.

The contributions of our article are manifold. We address the aforementioned

problems of the different estimators. With respect to the UCL estimator this means

that we first derive an intuitive and efficient algorithm based on the Frisch-Waugh-

Lovell (FWL) theorem (Frisch and Waugh 1933; Lovell 1963).2 We call this approach

pseudo-demeaning because of its similarity to the within transformation in linear

fixed effects models. The remaining challenge of UCL, which is the incidental

parameter bias, is reduced by combining the pseudo-demeaning algorithm with

an analytical bias correction proposed by Fernández-Val (2009).3 To tackle the

computational burden of CL for large T, we introduce a new estimator which we

refer to as CLsub. This estimator is based on an estimator that has been designed by

McFadden (1978) to overcome the curse of dimensionality problem in multinomial

logit models. CLsub is essentially an adaption of this estimator to a binary dependent

variable. The idea is to reduce the computational costs by using only a subset of all

permutations of the observed choice sequence in the estimation routine. Furthermore,

we propose a novel approach that uses estimates of the fixed effects obtained by an

offset algorithm to compute APEs for conditional logit estimators. We also present

an appropriate formula, based on a concentrated delta method, which can be used for

conditional and unconditional logit estimators to calculate standard errors for APEs

without having to use computationally demanding bootstrap methods. In extensive

simulation experiments we finally investigate the finite sample properties of the

different estimators with respect to structural parameters and APEs. In addition, we

empirically verify the theoretical computational complexities that we have derived in

advance. Finally, we use an empirical example from labor economics, to demonstrate

a relevant field for the application of our pseudo-demeaning algorithm. In this

example, T is even so large that conditional logit estimators are not feasible, whereas

our pseudo-demeaning approach can easily estimate the model. In order to make

our (bias-corrected) pseudo-demeaning algorithm accessible for applied work, we

offer it in the R-package bife.4

2. An alternative approach exploits the specific sparse structure of the Hessian (see Hall 1978;
Prentice and Gloeckler 1978; Chamberlain 1980; Greene 2004).

3. A comprehensive overview on different bias correction approaches is given by Arellano and
Hahn (2007) and Fernández-Val and Weidner (2018a). For our purposes only ex-post bias corrections
are of interest, since they can be conveniently combined with our pseudo-demeaning approach. They
can be analytical (e.g Hahn and Newey 2004; Fernández-Val 2009) or based on re-sampling methods
(e.g Hahn and Newey 2004; Dhaene and Jochmans 2015).

4. The package can estimate structural and incidental parameters, as well as average partial effects
of fixed effects logit and probit models and provides the analytical bias correction of Fernández-Val
(2009). The package also offers the corresponding standard errors. https://cran.r-project.org/
web/packages/bife/.
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Our simulation experiments confirm the findings of Greene (2004), who reports

large distortions in the UCL estimator of the structural parameters for small T.

Furthermore, the bias correction substantially reduces this distortion and, for suffi-

ciently large values of T, it has similar desirable properties like the fixed T consistent

CL estimator. Similar results regarding BCL are presented by Fernández-Val (2009),

who focuses on probit models. Besides, our results, that UCL shows only little

distortions in the APEs even for small values of T and that the bias correction works

similarly well, are also in line with Fernández-Val (2009). Furthermore, we find that

the CLsub estimator provides consistent estimates for the structural parameters

only if the subset is large enough relative to the entire permutation set. However,

compared to CL it is less efficient. The simulation results also demonstrate that

estimates of the APEs obtained by conditional logit estimators can suffer from severe

biases if the contributions of the fixed effects are ignored in their calculation. Our

new strategy to estimate APEs for conditional logit estimators based on an offset

algorithm is a substantial improvement over the aforementioned approach. However,

even CL, which has the best properties among all conditional logit estimators, is

slightly outperformed by UCL and BCL in estimating APEs. Moreover, the sim-

ulation experiments verify that the computational burden of UCL and BCL, both

combined with the pseudo-demeaning approach, increase linearly with T, whereas

the burden of recursive CL increases quadratically, which makes a dramatic dif-

ference for large T. Besides, we demonstrate that CLsub can further reduce the

computation time if the used subset of permutations is small. Considering the trade-

off between statistical properties and computation time, we conclude that there is

no advantage of using CLsub over CL. Especially if T is large, the speed advantage

of a small subset comes at costs of high biases. Overall, UCL and BCL offer a clear

computation time advantage over CL, which is particularly evident for samples with

large T. Apart from that, (bias-corrected) UCL is also a promising candidate for

practical applications in terms of statistical properties, especially when APEs are of

main interest.

The paper is organized as follows. Section 2.2 presents a short recap of the

fixed effects logit models along with its basic estimators. In section 2.3 we derive

the pseudo-demeaning approach and present the entire Newton-Raphson pseudo-

demeaning optimization routine. Section 2.4 introduces CLsub. It follows the

description of different offset algorithms and the concentrated delta method in sec-

tion 2.5. In section 2.6, the design and results of a series of Monte Carlo simulations

are presented before section 2.7 demonstrates an empirical example. Finally, section

2.8 concludes.
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2.2 The Fixed Effects Logit Model and Basic Esti-
mators

2.2.1 The Fixed Effects Logit Model

For the sake of notational simplicity, we assume a balanced panel of i = 1, . . . ,n
individuals observed for t = 1, . . . ,T time periods.5 Suppose we observe a binary

dependent variable yit, such that yit = 1 if an event occurs and yit = 0 if it does not

occur. Let N = ∑n
i=1 1[0 < ∑T

t=1 yit < T] be the number of cross-sectional units for

which yit varies over time, where 1[·] is an indicator function. The n−N individuals

without varying yit do not contribute to the identification and can be dropped from

the analysis without affecting the estimator of the structural parameters. We refer

to these observations as perfectly classified.

The fixed effects logit model is defined by the joint probability of observing yit

f (yit|xit,β,αi)= pyit
it (1− pit)1−yit (2.1)

with the conditional success probability

pit =Pr(yit = 1|xit,αi,β)= 1
1+exp(−ηit)

,

where ηit =αi+x′
itβ is the linear predictor and β is a vector of structural parameters

corresponding to M regressors xit. The parameter αi is called a fixed effect which is

allowed to be arbitrarily correlated with the regressors. Throughout the paper, we

assume that N À M and that the regressor matrix X has full column rank.

The most common approach to estimate the fixed effects logit model is maximum

likelihood. In the following subsections we depict the advantages and drawbacks

of the two most popular estimators which are the conditional logit estimator (CL)

and the unconditional logit estimator (UCL). Further, we address the problem of

estimating APEs.

2.2.2 Basic Estimation Approaches for Structural Parameters

Unconditional Logit Estimator via Dummy Variables

The simplest estimator for the fixed effects logit model is a full maximum likelihood

estimator which jointly estimates β and α = [α1, . . . ,αN]′. It can be conveniently

estimated with standard statistical software by including a dummy variable for each

individual as additional covariates.

5. The same type of model applies to unbalanced data and so-called pseudo panels where we include
fixed effects for n groups each of size Ti.
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This estimator is inconsistent as N increases and T is held constant, which is

known as the incidental parameters problem (IPP) noted by Neyman and Scott

(1948). However, several bias corrections have been proposed in the literature to

reduce this bias (e.g. Hahn and Newey 2004; Carro 2007; Fernández-Val 2009;

Dhaene and Jochmans 2015).

Estimates of UCL can be obtained by maximizing the log-likehood function

L(β,α)=
N∑

i=1

T∑
t=1

log
(
f (yit|xit,β,αi)

)= N∑
i=1

T∑
t=1

l it . (2.2)

The standard routine to optimize (2.2) is the Newton-Raphson algorithm, which has

the following parameter update in iteration (k−1)

(θk −θk−1)=−H−1g , (2.3)

where H denotes the (M+N)× (M+N) Hessian, g denotes the (M+N)×1 gradient,

and θ = [β′,α′]′ is the parameter vector. To be more specific, (2.3) can be reformulated

as follows:

(θk −θk−1)= (Z′WZ)−1Z′(y−p) , (2.4)

where Z= [X,D] denotes the entire regressor matrix, which includes the dummy

variable matrix D and the remaining regressors X, and W is a positive definite

diagonal weighting matrix with diag(W)=p(1−p). After convergence, the standard

errors of θ̂ can be obtained as the square-root of the diagonal of the inverse Hessian,

V̂(θ̂)=−H−1. Details on the implementation are presented in appendix A.

Adding N dummy variables as covariates creates a substantial computational

burden if N is large. Especially the computation and inversion of the Hessian needed

for a Newton-Raphson optimization is demanding. As shown in appendix B, the

computational costs of estimating UCL based on dummy variables is linear in T but

cubic in N. This can quickly become prohibitive for large panel data sets. We discuss

an algorithm that dramatically reduces the computational burden of this estimator

in section 2.3.

The Conditional Logit Estimator

CL uses the individual number of successes t1i =
∑

t yit as sufficient statistics to

concentrate the incidental parameters out of the log-likelihood function. Thus, β

obtained by CL is consistent for N →∞ and fixed T (see Chamberlain 1980).
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The corresponding log-likelihood function is given by

Lc(β)=
N∑

i=1
log

(
f (yi|xi,β, t1i)

)
, (2.5)

where

f (yi|xi,β, t1i)=
exp

(∑T
t=1 yitx′

itβ
)∑

bi∈B(t1i) exp
(∑T

t=1 bitx′
itβ

) (2.6)

is the joint probability of yi conditional on t1i, and B(t1i) is the set of all ci =
( T
t1i

)
permutations of yi. Just like (2.2), (2.5) can be maximized using a standard Newton-

Raphson algorithm. In contrast to (2.3) the Hessian corresponding to CL is only

of the dimension M×M. Nevertheless, CL can become computationally intensive

due to two other problems, stemming from the individual likelihood contributions

given by (2.6). First, a large time-series dimension T implies substantial or even

prohibitive computational costs, since B(t1i) quickly becomes huge. For example,

ci =
(50
20

)
is larger than 1013. In total, a brute force implementation of CL requires

≈ O(
∑N

i=1 t1i
( T
t1i

)
) time, which is exponentially increasing in T (see appendix B).

Second, the higher the number of permutations, the more likely the denominator in

(2.6) becomes numerically hard to deal with.6

It is nowadays standard to mitigate the computational burden of CL by using

a recursive algorithm proposed by Gail, Lubin, and Rubinstein (1981). As detailed

in appendix B, the computational costs of this recursive implementation are ≈
O(

∑N
i=1 t1i(T − t1i)). In the worst case, which is t1i = T/2, they are quadratic in

T.7 We will discuss another strategy to reduce the computational burden of CL by

considering only a random subset of B(t1i) in section 2.4.

2.2.3 Basic Estimation Approaches for Average Partial Effects

Since the structural parameters β do not have a direct interpretation, average partial

effects (APEs) are often of major interest for applied work. When calculating APEs,

a case distinction is made for discrete and continuous regressors. Suppose our k-th

regressor is non-binary then we define the partial effect of individual i at time t
based on the conditional success probability

∆k
it =

∂Pr(yit = 1|xit,β,αi)
∂xitk

(2.7)

=Pr(yit = 1|xit,β,αi)[1−Pr(yit = 1|xit,β,αi)]βk .

6. For instance, the largest value a computer can handle is 1.797693 ·10308 in double precision.
7. The recursion can also be accelerated by using a not completely recursive implementation which

reuses results and thus decreases the number of arithmetic operations by a factor. This however
comes along with a higher memory requirement compared to the fully recursive program (see Gaure
2012).
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In the situation where the k-th regressor is binary, we consider the difference

between the conditional success probabilities, where once all observations of the

regressor are set to one and once all are set to zero

∆k
it =Pr(yit = 1|xitk = 1,xit{−k},β,αi)−Pr(yit = 1|xitk = 0,xit{−k},β,αi) . (2.8)

An estimator of the APEs can be formed by replacing (2.7) or (2.8) by their sample

analogues and taking the average8

δ̂k =
1

nT

n∑
i=1

T∑
t=1

∆̂k
it . (2.9)

This is straightforward for UCL because we can simply plug their estimates of β and

α into the corresponding formulas (2.7) and (2.8).9 However, CL does not provide

any estimates of α to form the plug-in estimator (2.9). A simple but inconsistent

approach is to assume that all fixed effects estimates are zero.10

Another quantity of interest are the standard errors of APEs. They can be either

estimated using bootstrap techniques or the delta method. If at least one of the panel

dimensions is large, bootstrapping becomes impractical since we have to re-estimate

the model multiple times. Thus the preferred strategy is the delta method. Using

this approach, the corresponding covariance matrix for APEs can be estimated as

follows:

V̂(δ̂)= ĴV̂(θ̂)Ĵ′ ,

where Ĵ = ∂δ̂/∂θ̂′ is the Jacobian and δ̂ = [δ̂1, . . . , δ̂M]′ is the vector containing es-

timates of the APEs. In section 2.5 we present solutions to the aforementioned

problems that are also feasible in case of large panel data.

2.3 Computationally Efficient Unconditional Logit
Estimation

Greene (2004) and Chamberlain (1980), among others, propose an efficient algorithm

which results in identical parameter estimates as the dummy variable approach.

Their method avoids the inversion of the large Hessian in (2.3) by utilizing the

8. When calculating the average, it is important to include those individuals who do not have a
varying response. Since their log-likelihood contributions are zero, these individuals do not contribute
to the identification of the structural parameters. However, these individuals are still informative
about partial effects. The corresponding partial effects are zero (see appendix C).

9. Note that APEs obtained by UCL are also affected by IPP, but bias corrections are available (e.g.
Hahn and Newey 2004; Carro 2007; Fernández-Val 2009; Dhaene and Jochmans 2015).

10. This approach is used for example by the software package Stata in post-estimation routines of
clogit and xtlogit.
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partitioned inverse formula and exploiting the sparsity of the Hessian. We show how

the Frisch-Waugh-Lovell (FWL) theorem (Frisch and Waugh 1933; Lovell 1963) can

be applied alternatively.

Our basic idea is to use the fact that the parameter updates of the Newton-

Raphson routine is the solution of a weighted least squares problem. This allows to

apply the well-known FWL theorem to separate the updates of structural parameters

from the ones of the fixed effects. Due to the sparsity of the corresponding projection

matrix we can derive a straightforward and computationally efficient update formula

based on transformed regressors. This transformation is comparable to the demean-

ing procedure of a linear fixed effects model. Since in our approach the demeaning

involves weights and takes place in each iteration step of the optimization routine,

we call the procedure pseudo-demeaning.

In order to derive the efficient pseudo-demeaning algorithm we need to reconsider

the naive dummy variable approach presented in section 2.2. Since the weighting

matrix W is positive definite and diagonal, (2.4) is equivalent to the solution of a

regression of the dependent variable ỹ= (y−p)¯w̃−1 on the independent variables

Z̃ = w̃¯Z, where w̃ is the square-root of the diagonal of W. The corresponding

regression model is

ỹ= X̃(βk
0 −βk−1

0 )+ D̃(αk
0 −αk−1

0 )+u , (2.10)

where the subscript zero denotes the population parameters, X̃= w̃¯X, D̃= w̃¯D,

and u is an error term. Using reformulation (2.10) we can apply the FWL theorem

to separate the high-dimensional fixed effects update from the structural parameter

update. In terms of our problem, the FWL theorem states that if we regress the

residuals obtained from a regression of ỹ on D̃ on the residuals from separate

regressions of each column of X̃ on D̃, we get the same parameter estimates (βk−βk−1)

as if we estimate the original regression model (2.10). Thus, pre-multiplying (2.10)

with the projection matrix Q = INT −P = INT − D̃(D̃′D̃)−1D̃′ eliminates the fixed

effects and residualizes the remaining variables ỹ and X̃. The resulting concentrated

regression is

Qỹ=QX̃(βk
0 −βk−1

0 )+Qu

and has the solution

(βk −βk−1)= (X̃′QQX̃)−1X̃′QQỹ . (2.11)

Since the matrix Q is idempotent and symmetric, (2.11) can be further trans-
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formed while retaining the same parameter estimates11

(βk −βk−1)= (Ẍ′Ẍ)−1Ẍ′ỹ , (2.12)

where Ẍ = QX̃. Noticing the special sparse structure of Q, the projection QX̃ can

be computed without having to create the NT × NT projection matrix. In fact,

QX̃ translates into an efficiently implementable and intuitive weighted demeaning

formula which allows to compute the parameter updates given in (2.12) at minimal

computational costs

(βk −βk−1)=
(

N∑
i=1

T∑
t=1

ẍitẍ′
it

)−1 (
N∑

i=1

T∑
t=1

ẍit ỹit

)
, (2.13)

where x̃it = w̃itxit, ỹit = (yit − pit)/w̃it, and ẍit = x̃it − (w̃it
∑T

t=1 w̃itx̃it)/
∑T

t=1 w̃2
it.

Unlike a linear regression model, we also need to recover the estimates of the

fixed effects to update the weights of the iterative maximization algorithm. Re-

arranging (2.10) yields the update formula of the fixed effects estimates

(αk −αk−1)= (D̃′D̃)−1D̃′
(
ỹ− X̃(βk −βk−1)

)
, (2.14)

which depends on the previously computed structural parameter updates. Similarly

to the updates of the structural parameters, formula (2.14) can be simplified by the

block-diagonal structure of (D̃′D̃)−1D̃′ as follows:

(αk
i −αk−1

i )=

T∑
t=1

w̃it ỹit

T∑
t=1

w̃2
it

−

T∑
t=1

w̃itx̃′
it

T∑
t=1

w̃2
it

(βk −βk−1) . (2.15)

After we have derived all components to update the model parameters θ effi-

ciently, we can now introduce the entire optimization algorithm, which is linear in

N and T.12 This estimation routine is concisely summarized in algorithm 1.

Finally, we show how to obtain the standard errors of β̂ and α̂ after convergence

of algorithm 1. Instead of estimating the covariance matrix of β̂ as the inverse of the

entire negative Hessian, it can be easily obtained by its concentrated counterpart

V̂(β̂)= (
Ẍ′Ẍ

)−1 =−Ḧ−1 .

11. This transformation would not be useful in a linear regression model, since the residuals of
(2.11) and (2.12) differ, and thus the standard errors would be incorrect.

12. A detailed derivation of the computational complexity is presented in appendix B.
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Algorithm 1 Newton-Raphson with Pseudo-Demeaning

1: Initialize β0, α0, and k = 0.
2: repeat
3: Set k = k+1.
4: Compute pk−1 (see formula (2.1)).
5: Compute ỹk−1 and Ẍk−1 to update βk (see formula (2.13)).
6: Update αk (see formula (2.15)).
7: until convergence.

Similarly, the variance of α̂ can be computed as

V̂ar(α̂i)=
1

T∑
t=1

w̃2
it

+


T∑

t=1
w̃itx̃it

T∑
t=1

w̃2
it


′

V̂(β̂)


T∑

t=1
w̃itx̃it

T∑
t=1

w̃2
it

 .

Additionally we would like to draw the reader’s attention to the fact that our

pseudo-demeaning approach can be combined with different post-estimation bias

corrections to reduce the incidental parameters bias; e.g. the analytical ones of Hahn

and Newey (2004) and Fernández-Val (2009) or the jack-knife approaches of Hahn

and Newey (2004) and Dhaene and Jochmans (2015). Especially if the panel is large

the analytical corrections are advantageous because they only require to estimate

the model once and the entire estimation procedure remains linear in N and T.

2.4 Conditional Logit with Random Subsets

As discussed above, CL can be attractive since it delivers fixed T consistent estimates

for the structural parameters β. However, it suffers from large computational costs

with a long individual time series T. In this section, we introduce a new estimator

that reduces this burden at the costs of efficiency.

Similar to the binary case, the multinomial logit estimator (CML) faces a huge

computational burden in the presence of many alternatives. McFadden (1978)

introduced a consistent but less efficient estimator for the multinomial logit model

that overcomes this curse of dimensionality. We denote this estimator as CMLsub.

Contrary to CML, it uses only random subsets of all possible permutations. Recently,

D’Haultfœuille and Iaria (2016) analyzed the behavior of this estimator for a five-

alternative multinomial logit model in a simulation study with respect to bias and

computation time. Their key findings are that CMLsub is asymptotically less efficient

than CML and that increasing the number of sampled permutations increases

the precision. Thus, CMLsub becomes especially attractive when CML is either

computationally too costly or not feasible at all.
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For the binary fixed effects logit model, this approach is very similar, and we

denote the corresponding estimator as CLsub. Instead of using the entire set B(t1i)

of all permutations in the denominator of equation (2.6), we only use a random

subset D(t1i) which contains m elements of B(t1i) where we make sure that the

observed sequence is included. For brevity, we denote B(t1i) and D(t1i) as B and

D, respectively. Suppose that D is drawn conditionally on the observed choice

yi according to a probability π(D|yi). The key condition that we have to respect

when creating the subset is the uniform conditioning property of McFadden (1978)

which states: if yi,di ∈D ⊆B, then π(D|yi)= π(D|di).13 This condition holds if all

remaining possible permutations of the observed choice sequence have the same

probability of being selected in the subset, regardless of which choice sequence is

observed.

In the following, the log-likelihood function of CLsub is derived. Given the joint

success probability Pr(yi|xi,β) of yi ∈B conditioned on covariates xi and given the

probability π(D|yi) of selecting a subset D ⊆ B, the joint probability of (yi,D) is

π(D|yi)Pr(yi|xi,β) and hence the conditional probability of yi given D is

Pr(yi|xi,D,β)= π(D|yi)Pr(yi|xi,β)∑
di∈D π(D|di)Pr(di|xi,β)

(2.16)

with Pr(yi|xi,β)=∏T
t=1 exp(yit(x′

itβ+αi))/(1+exp(x′
itβ+αi)). Equation (2.16) can be

rewritten to

Pr(yi|xi,D,β)=
π(D|yi)

∏T
t=1 exp(yit(x′

itβ+αi))∑
di∈D π(D|di)

∏T
t=1 exp(dit(x′

itβ+αi))
. (2.17)

Let k(yi)=
∑T

t=1 yit, then equation (2.17) can be further simplified since k(yi)= k(di)

and thus the fixed effect αi is conditioned out

Pr(yi|xi,D,β)=
π(D|yi)

∏T
t=1 exp(yitx′

itβ)∑
di∈D π(D|di)

∏T
t=1 exp(ditx′

itβ)
. (2.18)

The application of the uniform conditioning property, reduces (2.18) to

Pr(yi|xi,D,β)=
∏T

t=1 exp(yitx′
itβ)∑

di∈D

∏T
t=1 exp(ditx′

itβ)
,

13. The validity of the uniform conditioning property can be shown as follows: D is selected to
contain yi plus m−1 random permutations di of yi. There are ci =

( T
k(yi)

)
ways to place k(yi)=

∑T
t=1 yit

ones in T slots, and hence (ci −1)!/((m−1)!(ci −m)!) ways to randomly select m−1 permutations of
yi without replacement. Thus π(D|yi)= ((m−1)!(ci −m)!)/(ci −1)! depends only on k(yi). Since any
permutation di of yi has the same ci, it follows π(D|di)=π(D|yi), which is the uniform conditioning
property of McFadden (1978).
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which can be finally used to form the log-likelihood function of CLsub

Lsub(β)=
N∑

i=1
log

(
exp

(∑T
t=1 x′

it yitβ
)∑

di∈D(t1i) exp
(∑T

t=1 x′
itditβ

)) .

Next, we encounter a practical problem with the implementation of CLsub. A

naive approach would first generate B to sample D from it. However, this approach

has two shortcomings: it requires a lot of memory and for data sets with large T the

computation of B is infeasible. Therefore we recommend to randomly shuffle the

observed choice sequence m−1 times and to store the positions of the successes on

each occasion. Multiple permutations are deleted and the process is repeated until

the subset contains m unique permutations.

Compared to CL, which uses the entire permutation set B in the log-likelihood,

CLsub reduces the number of arithmetic operations per individual from ci t1i −1 to

mt1i −1. Hence, it can be derived that CLsub requires O(m
∑N

i=1 t1i) time, which

means that the shape of the computational complexity depends on the choice of

m (see appendix B).14 Note that the theoretical derivation of the computational

complexity is based on the assumption that D is already generated. From a practical

point of view the total computation time, including the sampling of D, is of interest.

This will be the subject of our simulation experiments presented in section 2.6.

2.5 Feasible Estimation of Average Partial Effects

2.5.1 Efficient Offset Algorithm

So far, we have dealt with the problems of estimating structural parameters. In this

section we tackle the remaining problems associated with the estimation of average

partial effects.

Remember that one of the drawbacks of CL and CLsub is that they do not

provide estimates of the fixed effects, so that the APE plug-in estimator (2.9) cannot

be formed. In the following, we propose a simple ex-post estimation strategy to

obtain estimates of the fixed effects. This is usually done by a so-called offset

algorithm which in our case maximizes the log-likelihood function (2.2) while keeping

the estimates of the structural parameters fixed at their values obtained by any

conditional logit estimator.15 The estimates obtained by this algorithm can in turn

be used to calculate the APEs according to (2.9). The same type of algorithm is also

14. For example if m is a linear function of T the computational complexity evolves roughly quadrat-
ically in T.

15. In an offset algorithm an additional variable is added to the linear predictor whose parameter is
constrained to the value one (see Nelder and Wedderburn 1972).
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required to alleviate the IPP using analytical bias corrections for average partial

effects.16

We now turn to the derivation of an efficient offset algorithm, which is linear in

N and T. Let β̃ denote known estimates of the structural parameters. Maximizing

(2.2) with Xβ̃ being fixed yields the Newton-Raphson update in iteration (k−1)

(αk −αk−1)= (D̃′D̃)−1D̃′ỹ . (2.19)

Thus, (2.19) can be efficiently computed according to

(αk
i −αk−1

i )=

T∑
t=1

w̃it ỹit

T∑
t=1

w̃2
it

(2.20)

and the whole procedure is repeated until convergence.17

In the context of CL, Bartolucci and Pigini (2019) suggest a refined version of

our offset approach presented above. They use a strategy proposed by Firth (1993)

to obtain an estimate of α with improved finite sample properties by solving the

following modified score equations

sFirth(α)=
T∑

t=1
(yit − pit)+

∑T
t=1 pit(1− pit)(1−2pit)

2
∑T

t=1 pit(1− pit)
= 0 , (2.21)

where pit = 1/(exp(−αi −x′
itβ̃)).

Solving the system (2.21) has the drawback that it becomes computationally

demanding if N increases. Therefore, we follow Kosmidis and Firth (2009), who have

shown that the solution of (2.21) can be obtained equivalently by using a standard

Newton-Raphson algorithm with a modified dependent variable y∗ = y+diag(S)(0.5−
p), where S=D(D′WD)−1D′W. The sparse structure of S in turn suggests to compute

the adjusted dependent variable as follows y∗it = yit + (w̃2
it/

∑T
t=1 w̃2

it)(0.5− pit). Thus,

we can use the same kind of efficient offset algorithm described previously by

simply replacing the dependent variable in (2.20). Another modification compared to

Bartolucci and Pigini (2019) is that we estimate the fixed effects of all n individuals.18

We draw on a very recent result of Kunz, Staub, and Winkelmann (2018), who have

16. Analytical bias corrections of the APEs require, among other steps, that the fixed effects have to
be re-estimated after bias-correcting the structural parameter estimates (see among others Hahn
and Newey 2004).

17. Note that Xβ̃ is still part of the linear predictor and thus has to be incorporated when updating
the weights and the adjusted dependent variable.

18. Bartolucci and Pigini (2019) seem to estimate fixed effects only for individuals with varying
responses. The specific approach is not clear from the methodological part of their article. However,
a replication of their simulation results indicates that they only consider the APEs obtained from
non-perfectly classified observations.
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proven that Firth’s method can be used to obtain finite estimates of the fixed effects

in probit models for perfectly classified individuals. It is straightforward to show

that the same applies to logit models with fixed effects. Although the article of Kunz,

Staub, and Winkelmann (2018) is about predicting fixed effects, we have found that

their approach is also useful to obtain non-zero estimates of partial effects in the

case of perfect classification.

2.5.2 Concentrated Delta Method

Next, we address the estimation of the standard errors for the APEs. The attentive

reader might have noticed that using the brute force delta method as described

in section 2.2 is problematic, because it requires the entire covariance matrix of θ̂.

However, with our pseudo-demeaning approach for UCL estimation described in

section 2.3, we have only a reduced covariance matrix corresponding to the structural

parameters and the variance of the fixed effects. The same obstacle occurs when

we estimate the APEs for conditional logit estimators using the (modified) offset

algorithm.

A solution to this problem consists of a concentrated delta method, which we

derive from a combination of the results of Fernández-Val and Weidner (2016) and

our pseudo-demeaning approach. To be more precise, Fernández-Val and Weidner

(2016) have suggested an estimator for the covariance of APEs for nonlinear models

with individual and time fixed effects. Thanks to the fact that our approach is based

on the FWL theorem, it is straightforward to translate their estimator to the case

of individual fixed effects and to exploit the sparsity of several terms included.19

Assuming that the individual fixed effects are independent, the variance estimator

of the APEs is given by

V̂(δ̂)= 1
N2T2

(
N∑

i=1

T∑
t=s=1

̂̄∆it
̂̄∆′

is +
N∑

i=1

T∑
t=1

Γ̂itΓ̂
′
it

)
,

where

Γ̂it =
(

N∑
i=1

T∑
t=1

∂∆̂it

∂β
− x̄it

w̃it

∂∆̂it

∂αi

)′
V̂(β̂)ẍit ỹit −

ψ̄it

w̃it

∂l it

∂αi
,

ψit and ψ̈it are the it-th rows of Ψ and QΨ , ψit = (∂∆̂it/∂αi)/w̃2
it, ∆̂it = [∆̂1

it, . . . ,∆̂
M
it ]′,

x̄it = xit−ẍit, ψ̄it =ψit−ψ̈it, and ̂̄∆it = ∆̂it−δ̂. Note that the first part of the variance

estimator takes into account the variation induced by estimating sample instead

of population means and the second term is a concentrated version of the delta

method. Especially the former is not very well known from the standard textbook

19. This relationship is not so obvious when we use the partitioned inverse formula instead of the
FWL theorem.
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literature, but it substantially improves the finite sample properties of the estimator

(see Fernández-Val and Weidner 2016).

2.6 Simulation Experiments

2.6.1 Simulation Design

In this section we analyze the statistical properties of UCL, BCL, CL, and CLsub in

terms of structural parameters and APEs. Further, we investigate the computation

times of the different estimation routines. BCL refers to the bias-corrected UCL

estimator suggested by Fernández-Val (2009).20 For CLsub we consider two variants

which differ by the size of the random subset D. To be more precise, we choose

m∗ ∈ {1,T/2}, where m∗ denotes the size of D without the observed choice sequence

yi. All estimators analyzed in the simulation study are implemented by ourselves in

the same programming language to guarantee comparability.21 UCL and BCL are

estimated using the Newton-Raphson pseudo-demeaning approach introduced in

section 2.3. For the recursive CL and the CLsub algorithm we use a standard Newton-

Raphson optimization routine with numerical derivatives to make it comparable to

the estimation routine used for UCL and BCL without unnecessarily blowing up the

memory.22

For our simulation experiments we generate the data according to Greene (2004)

as follows:

yit = 1[αi +β1xit +β2dit +vit > 0] , (2.22)

where vit = log(uit/(1−uit)), uit ∼U (0,1), β1 =β2 = 1 xit ∼N (0,12), dit = 1[xit+hit >
0], hit ∼N (0,12), αi =

p
Tx̄i +ai, x̄i = T−1 ∑

t xit, ai ∼N (0,12). This design is well

suited to analyze the behavior of the various fixed effects estimators, as it introduces

an approximately constant correlation between the unobserved heterogeneity and

the regressors for different T.

Throughout our experiments, we analyze several model specifications with differ-

ent n and T. We also consider panels with unusual large T, which can be justified

when we think about so-called pseudo panels, where n groups, each consisting of T

20. In an earlier version of this article we use the bias correction of Hahn and Newey (2004).
However, we find that the bias correction of Fernández-Val (2009) has better finite sample properties,
although both approaches are asymptotically equivalent.

21. All estimators and replication scripts are available on request.
22. We do not investigate the brute-force implementations of UCL and CL because their computa-

tional costs are unreasonable high and in most of our analyzed setups they are even infeasible. In
addition, we do not use analytical first and second order derivatives of the recursive CL due to its
enormous memory requirement especially for large T (see appendix A). Also note that we are not
using a full recursive implementation of CL, but an algorithm that exploits the usage of previous
results in the recurrence that is substantially faster (see Gaure 2012).
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statistical units, are observed. For instance, n could be the number of postal code

areas and T the number of households living in each area.

2.6.2 Finite Sample Properties

First of all, we focus on the statistical properties of the different estimators for the

structural parameters and APEs. In order to investigate the biases and inference

accuracies, all tables report the bias and standard deviations (SD) in percent relative

to the true parameter value, the ratio between the average standard errors and

the standard deviation, as well as the empirical coverage probabilities at a nominal

value of 95%. All results are obtained by 1,000 replications of 9 model specifications

with n = 1,000 and T ∈ {4,8,10,12,16,20,50,100,200}. For the sake of brevity, we

only report the results of the continuous regressor, since we make similar findings

for the discrete regressor.23

Table 2.1 shows the corresponding results for the structural parameter β1. The

UCL estimator is strongly distorted by the incidental parameter bias, but the distor-

tion decreases as the T increases. At T = 50 the estimator still suffers a percentage

distortion of 2.51 and even at T = 200 the coverage probabilities are too low, although

its bias is below one percent. On the other hand, we find that the bias correction con-

siderably reduces the bias of the UCL estimator. However, since the bias correction

is based on a large-T expansion, it also requires a sufficiently large T to eliminate

most of the distortion (see Fernández-Val 2009). Whereas for T = 4 there is still a

bias of 13.01 percent, for T = 8 it is already only 0.49 percent and finally disappears

with increasing T. Furthermore, the bias correction already brings the coverage

probabilities close to their nominal level for T = 8. As expected, the CL estimator is

unaffected by the incidental parameter bias. It delivers almost undistorted estimates

across all T and the coverage probabilities are almost at the desired 95 percent.

Thus, we can consider CL as a benchmark for the bias correction and find that the

properties of CL and BCL for the structural parameters become closer as T increases.

CLsub delivers similar results as CL if its subset D is not too small relative to the

entire permutation set B. In the case of m∗ = 1, CLsub is almost undistorted for

T ≤ 12 but the bias increases rapidly from T = 16. While the distortion for T = 12 is

still 0.25 percent, it rises to 85.12 percent for T = 200. We observe a similar behavior

for CLsub with m∗ = T/2, albeit in a delayed form. Since m∗ does not depend on

the size of the entire permutation set, it is not surprising that the bias of of CLsub

increases considerably for large T. The optimization problem also becomes very

unstable and produces unreliable results if m∗ is small relative to T. Altogether,

these findings suggest a careful choice of m∗. In a direct comparison to CL, we also

23. The results of the discrete regressor are available on request.
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find that CLsub is less efficient and precise, which is reflected by a larger standard

error and higher distortion. Interestingly, CLsub can maintain coverage probabilities

of about 95 percent even in cases where it exhibits extreme distortions.

Table 2.1: Finite sample properties of β̂1

UCL BCL CL CLsub

m∗ = 1 m∗ = T/2

T = 4 Bias 47.08 -13.01 0.17 0.81 0.35
SD 11.48 5.13 7.34 11.08 8.78
SE/SD 0.81 1.42 1.01 0.99 0.99
CP .95 0.00 0.60 0.96 0.95 0.94

T = 8 Bias 19.69 -0.49 0.20 0.74 0.27
SD 5.51 4.38 4.47 9.62 5.99
SE/SD 0.91 1.06 1.02 0.98 1.01
CP .95 0.03 0.96 0.96 0.95 0.95

T = 10 Bias 14.94 -0.29 0.03 0.82 0.29
SD 4.54 3.82 3.85 9.05 5.40
SE/SD 0.94 1.05 1.03 1.03 1.02
CP .95 0.06 0.96 0.95 0.95 0.95

T = 12 Bias 11.91 -0.33 -0.14 0.25 -0.05
SD 4.11 3.58 3.60 9.18 5.49
SE/SD 0.92 1.01 0.99 1.01 0.94
CP .95 0.14 0.95 0.95 0.95 0.94

T = 16 Bias 9.00 0.17 0.26 1.81 0.32
SD 3.32 3.00 3.01 9.98 4.72
SE/SD 0.95 1.02 1.00 0.98 1.01
CP .95 0.20 0.95 0.95 0.95 0.95

T = 20 Bias 6.84 -0.03 0.02 1.06 0.07
SD 2.90 2.68 2.68 10.62 4.71
SE/SD 0.95 1.00 0.99 0.98 0.98
CP .95 0.31 0.94 0.94 0.96 0.95

T = 50 Bias 2.51 -0.07 -0.06 8.19 0.82
SD 1.77 1.72 1.72 23.82 5.70
SE/SD 0.94 0.95 0.95 0.92 1.00
CP .95 0.66 0.93 0.93 0.97 0.96

T = 100 Bias 1.29 0.03 0.03 60.13 2.40
SD 1.16 1.14 1.14 165.22 10.27
SE/SD 0.99 1.00 1.00 3.70 0.97
CP .95 0.80 0.95 0.94 0.97 0.95

T = 200 Bias 0.66 0.04 0.04 85.12 5.55
SD 0.80 0.80 0.80 184.48 22.21
SE/SD 1.00 1.00 1.00 113.49 0.87
CP .95 0.87 0.95 0.95 0.95 0.95

Note: Bias and SD denote biases and standard deviations in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and
standard deviations and empirical coverage probabilities of 95 % confidence
intervals; results based on 1,000 repetitions.

Next, we consider the statistical properties of the different estimators regarding

the APEs. First, we discuss table 2.2, which summarizes the results for UCL, BCL
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and CL. Then we will look at CLsub, whose results are given in table 2.3. For CL

we analyze the performance of the three different approaches to estimate APEs. We

denote the first approach which neglects the contributions of the fixed effects as

naive, the second approach which uses the offset algorithm to recover estimates of

the fixed effects as score, and the third approach which is based on the modified score

as Firth. Remarkably, the incidental parameter bias present in the UCL estimator

of the structural parameters hardly transfers to the APEs. For T = 4 we find a

distortion of 2.23 percent and for T ≥ 8 the distortion is close to zero. This notable

result is consistent with the finding of Fernández-Val (2009).24 The bias correction

delivers comparatively good results like UCL, with the exception of T = 4, where the

distortion is substantially higher with 8.16 percent. In addition, both estimators

provide coverage probabilities close to the level of 95 percent for T ≥ 8. We now turn

to CL. The naive approach has a persistent high bias that ranges between 19.61 and

29.25 percent across all T. The score approach leads to a considerable reduction of

the distortion with increasing T and also improves the coverage probabilities. At

T = 200 the bias is only 0.32 percent and the coverage probability is 94 percent.

Firth’s approach brings a further substantial improvement. Overall, it performs

similar as UCL, but always a bit worse for T ≥ 8. Whereas CL based on Firth’s

method still has a distortion of 1.01 percent in the case of T = 8, UCL is almost

undistorted. Next we compare the different conditional logit estimator combined

with Firth’s method to each other in table 2.3.25 With regard to the distortion of

the APEs, we make similar observations as with the structural parameters. CLsub

provides comparable low distortions as CL, as long as T ≤ 20. However, if T becomes

too large, the CLsub collapses and its distortions increase. This is again particularly

extreme in the case of m∗ = 1. A crucial difference to the structural parameters is

that the inference of the APEs obtained with CLsub is invalid. We conjecture that

this is due to the fact that the higher dispersion of the structural parameters carries

over to the estimation of the standard errors of the APEs with the delta method.

24. Fernández-Val (2009) shows that the components that drive the bias of uncorrected APEs are
the variation of the individual effects and their impact on the regressors. He finds that the bias
is small, even in panels with a short time dimension, for a wide range of different distributions of
individual effects and regressors. On the other hand Fernández-Val (2009) motivates the need of
bias corrections in models with lagged dependent variables, where the small bias property of static
binary-choice models disappears.

25. A complete table with the naive and score approach can be provided upon request. Overall, they
perform substantially worse compared to Firth’s approach.
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Table 2.2: Finite sample properties of δ̂1

UCL BCL CL

naive score Firth

T = 4 Bias -2.23 -8.16 29.25 -21.34 1.76
SD 6.43 5.47 8.28 5.28 6.48
SE/SD 0.92 0.93 1.24 0.89 0.89
CP .95 0.92 0.63 0.14 0.01 0.91

T = 8 Bias 0.16 -0.22 26.27 -9.71 -1.01
SD 4.13 4.04 5.08 3.77 3.95
SE/SD 0.93 0.91 1.14 0.95 0.95
CP .95 0.93 0.92 0.00 0.24 0.93

T = 10 Bias 0.12 -0.15 25.21 -7.68 -1.30
SD 3.53 3.49 4.39 3.29 3.39
SE/SD 0.96 0.95 1.14 0.99 0.98
CP .95 0.94 0.93 0.00 0.34 0.93

T = 12 Bias -0.11 -0.32 24.37 -6.52 -1.53
SD 3.29 3.27 4.07 3.11 3.18
SE/SD 0.94 0.93 1.09 0.96 0.96
CP .95 0.94 0.93 0.00 0.44 0.90

T = 16 Bias 0.29 0.13 23.99 -4.47 -1.05
SD 2.82 2.81 3.43 2.71 2.74
SE/SD 0.95 0.94 1.09 0.98 0.97
CP .95 0.93 0.93 0.00 0.60 0.92

T = 20 Bias 0.08 -0.04 23.18 -3.68 -1.11
SD 2.53 2.53 3.01 2.46 2.46
SE/SD 0.96 0.95 1.09 0.98 0.98
CP .95 0.95 0.94 0.00 0.65 0.91

T = 50 Bias -0.04 -0.08 21.12 -1.50 -0.65
SD 1.67 1.67 1.89 1.66 1.65
SE/SD 0.99 0.98 1.05 0.99 0.99
CP .95 0.94 0.94 0.00 0.85 0.93

T = 100 Bias 0.02 0.00 20.26 -0.70 -0.31
SD 1.23 1.23 1.26 1.22 1.22
SE/SD 1.05 1.04 1.09 1.05 1.05
CP .95 0.96 0.96 0.00 0.93 0.95

T = 200 Bias 0.03 0.03 19.61 -0.32 -0.14
SD 1.05 1.05 0.86 1.05 1.05
SE/SD 1.01 1.01 1.11 1.01 1.01
CP .95 0.94 0.94 0.00 0.94 0.94

Note: Bias and SD denote biases and standard deviations in percent-
age relative to the truth; SE/SD and CP. 95 refer to average ratios of
standard errors and standard deviations and empirical coverage proba-
bilities of 95 % confidence intervals; results based on 1,000 repetitions.
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Table 2.3: Finite sample properties of δ̂1
(based on Firth’s method)

CL CLsub

m∗ = 1 m∗ = T/2

T = 4 Bias 1.76 2.10 1.84
SD 6.48 9.60 7.70
SE/SD 0.89 1.24 1.00
CP .95 0.91 0.98 0.94

T = 8 Bias -1.01 -0.89 -1.02
SD 3.95 7.73 5.05
SE/SD 0.95 1.87 1.22
CP .95 0.93 1.00 0.98

T = 10 Bias -1.30 -1.00 -1.20
SD 3.39 7.29 4.53
SE/SD 0.98 2.19 1.30
CP .95 0.93 1.00 0.98

T = 12 Bias -1.53 -1.45 -1.49
SD 3.18 7.44 4.52
SE/SD 0.96 2.39 1.27
CP .95 0.90 1.00 0.98

T = 16 Bias -1.05 -0.18 -1.01
SD 2.74 7.54 3.92
SE/SD 0.97 3.03 1.47
CP .95 0.92 1.00 0.99

T = 20 Bias -1.11 -0.76 -1.16
SD 2.46 8.07 3.81
SE/SD 0.98 3.61 1.57
CP .95 0.91 1.00 1.00

T = 50 Bias -0.65 2.35 -0.23
SD 1.65 14.50 4.27
SE/SD 0.99 13.05 3.32
CP .95 0.93 1.00 1.00

T = 100 Bias -0.31 8.65 0.66
SD 1.22 38.56 7.34
SE/SD 1.05 > 1000 8.22
CP .95 0.95 1.00 1.00

T = 200 Bias -0.14 17.56 1.54
SD 1.05 54.44 14.16
SE/SD 1.01 > 1000 22.44
CP .95 0.94 1.00 1.00

Note: Bias and SD denote biases and standard deviations
in percentage relative to the truth; SE/SD and CP. 95 re-
fer to average ratios of standard errors and standard de-
viations and empirical coverage probabilities of 95 % con-
fidence intervals; results based on 1,000 repetitions.
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2.6.3 Computational Costs

Aside from the statistical properties of the estimators, their computation times

also matter for their application in practice. Whereas the theoretical computational

complexities derived earlier in this article give a rough impression of the relationship

between the panel dimension and the computation time, they do not reveal anything

about the total magnitude of time required by an algorithm.

The computation times reported in table 2.4 are the averages of the respective

fitting processes over 30 different data sets per n−T combination generated accord-

ing to (2.22). Furthermore, we investigate whether the theoretical computational

complexities hold up empirically. To this end we measure the average computation

times per iteration, since the estimators sometimes require a different number of

iterations for each data set and n−T combination. All calculations were done with

the software R (R Core Team 2019) version 3.6.1 on a Linux Workstation with Intel

Xeon E5-2640 v3 and 64 GB RAM.

Altogether our theoretical findings about the shape of the computational com-

plexities are also verified empirically as shown in figure 2.1. The left figure depicts

exemplary for T = 500 that all estimators evolve linearly in n. Moreover, UCL,

BCL, and CLsub with m∗ = 1 rise linear in T whereas CLsub with m∗ = T/2 rises

quadratically as demonstrated in the right figure for n = 10,000.

Figure 2.1: Empirical Computational Complexities
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Table 2.4 depicts the enormous speed advantage of UCL and BCL compared to

CL, especially when T becomes large. BCL takes on average 5.47 seconds when

T = 200 and n = 10,000, whereas CL takes 9.77 seconds. The difference becomes

even more dramatic when T = 500. In this case BCL requires 13.25 seconds and CL
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Table 2.4: Average Computation Times

UCL BCL CL CLsub

m∗ = 1 m∗ = T/2

n = 10,000 T = 4 0.04 0.11 0.04 0.81 (0.75) 1.30 (1.23)
T = 8 0.10 0.22 0.10 0.91 (0.83) 1.61 (1.49)
T = 10 0.12 0.27 0.13 0.92 (0.83) 1.69 (1.52)
T = 12 0.15 0.32 0.17 0.96 (0.85) 1.79 (1.59)
T = 16 0.22 0.44 0.26 1.02 (0.89) 2.07 (1.76)
T = 20 0.29 0.57 0.35 1.09 (0.91) 2.35 (1.95)
T = 50 0.81 1.42 1.03 1.38 (1.00) 6.73 (4.01)
T = 100 1.56 2.84 2.87 1.91 (1.08) 17.50 (8.55)
T = 200 3.05 5.47 9.77 2.62 (1.20) 50.95 (22.32)
T = 300 4.38 7.94 21.21 3.38 (1.31) 108.40 (42.47)
T = 400 5.78 10.44 37.60 4.37 (1.43) 187.46 (68.35)
T = 500 7.40 13.25 58.17 4.10 (1.50) 287.42 (98.08)

T = 500 n = 1,000 0.69 1.23 5.81 0.31 (0.15) 31.49 (9.98)
n = 2,500 1.67 3.05 14.55 1.14 (0.37) 73.48 (24.66)
n = 5,000 3.55 6.41 28.99 2.37 (0.75) 144.03 (49.06)
n = 10,000 7.40 13.25 58.17 4.10 (1.50) 287.42 (98.08)

Note: Computation times in seconds; time needed for generating D in parentheses; results based
on 30 repetitions.

roughly 1 minute. As indicated in table 2.4, CLsub with m∗ = 1 is faster than CL

when T ≥ 100 and CLsub with m∗ = T/2 is not able to outperform CL. Furthermore,

table 2.4 depicts that CLsub with m∗ = 1 is negligibly slower than CL if T is small,

but when T increases it outperforms CL by far. Table 2.4 also reveals two other

notable results about CLsub. First, CLsub with m∗ = T/2 is always much slower

than the other two conditional logit estimators. On the other hand, the creation

of the subset of the entire permutation set, whose computation time is shown in

parentheses, accounts for a large part of the total computation time. Even after

subtracting this time from the total computation time, the CL estimator is still much

faster, especially at large T.

Summarizing the findings from the simulation experiments, we conclude that

CLsub is not an option to CL. If we sample a sufficiently large subset from the

entire permutation set, the estimator is still computationally more demanding and

additionally less precise than CL. As we have shown in theory and simulation,

CL quickly encounters computational challenges when T rises, although we have

already employed the efficient recursive implementation. Moreover, the conditional

logit estimators are outperformed by UCL and BCL in the estimation of APEs and

computation times in general. Thus, UCL and BCL offer attractive alternatives.
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2.7 Empirical Illustration

In this section we demonstrate the advantage of or pseudo-demeaning approach

by providing an illustration from labor economics, where the brute-force dummy

approach as well as the recursive CL approach fail due to computational limitations.

We investigate the labor force participation of women using a data set from the Amer-
ican Community Survey (2017 ACS 1-YEAR PUMS). The data set can be interpreted

as a pseudo panel where the cross-sectional units are Public Use Microdata Areas
(PUMAs) and the time dimension translates into groups of women in these PUMAs.

The data set consists of 1,294,938 women in N = 982 PUMAs, where the smallest

PUMA includes Ti = 230 and the largest Ti = 26,772 women.

We specify our model as follows:

workit = 1
[
ηit ≥ vit

]
,

ηit =αi +
∑

j
γ j educ jit +β1age it +β2mar it +β3incit +β4kids6it ,

where i and t refer to the t-th woman in PUMA i, work denotes the labor force

participation status, age refers to the age in years, mar is the marital status, inc
is the household income without the labor earnings of the woman in thousand

dollars, educ j are indicators of different educational attainments26, and kids6 is an

indicator of the presence of children under the age of 6 years.

Table 2.5 shows the estimates of the structural parameters (left panel), APEs

(right panel), and the corresponding standard errors (in parentheses). We observe

that the bias-corrected and uncorrected estimates are almost identical, which is

as expected due to large Ti. Overall the results are intuitive. For instance, higher

education has a significant positive impact on the probability to participate in the

labor force. Having a high school degree increases the probability by 26.2 percentage

points relative to a woman with no high school degree. Further the presence of

young and new born children lowers the probability to participate. Interestingly,

the transitory non-labor household income does not affect the participation decision,

which is in line with Hyslop (1999).

To demonstrate that the bias correction also works with real data, we extract

a subset from the entire data set by randomly drawing Ti = 8 observations from

each PUMA. Now that T is small enough to be handled by the CL estimator, we

can use it as a benchmark for the performance of the bias correction due to its fixed

T consistency property in case of structural parameter estimation. Furthermore,

the small T makes a bias correction of the UCL estimator necessary. The results

26. More precisely, educ has three levels: no high-school degree, high-school degree, college and/or
university degree.
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shown in table 2.6 are in line with the findings in the simulation study. Whereas

the structural parameter estimates of CL and BCL are close to each other, the

corresponding estimates obtained by UCL differ remarkably. However, although the

structural parameter estimates obtained by the UCL estimator are clearly distorted,

its estimated APEs hardly differ from the bias-corrected ones. With the CL estimator,

we get substantially lower estimated APEs in terms of magnitude.

Table 2.5: Estimation results based on the entire sample

β̂ δ̂

UCL BCL UCL BCL

college / university 2.229 2.227 0.375 0.375
(0.008) (0.008) (0.001) (0.001)

highschool 1.549 1.548 0.262 0.262
(0.007) (0.007) (0.001) (0.001)

age -0.057 -0.057 -0.011 -0.011
(0.000) (0.000) (0.000) (0.000)

married 0.285 0.284 0.053 0.053
(0.004) (0.004) (0.001) (0.001)

kids6 -0.741 -0.741 -0.139 -0.139
(0.007) (0.007) (0.001) (0.001)

nlinc -0.003 -0.003 -0.001 -0.001
(0.000) (0.000) (0.000) (0.000)

Note: β̂ denotes estimates of the structural parameters; δ̂ denotes esti-
mates of APEs; standard errors in parenthesis; standard errors of δ̂ are
computed with the delta method.

Table 2.6: Estimation results based on a subsample

β̂ δ̂

UCL BCL CL UCL BCL CL Firth

college / university 2.292 1.939 1.952 0.344 0.339 0.323
(0.108) (0.102) (0.099) (0.013) (0.013) (0.012)

highschool 1.619 1.367 1.376 0.247 0.243 0.230
(0.097) (0.092) (0.089) (0.014) (0.014) (0.013)

age -0.062 -0.053 -0.053 -0.010 -0.010 -0.009
(0.002) (0.002) (0.002) (0.000) (0.000) (0.000)

married 0.363 0.307 0.310 0.060 0.058 0.055
(0.065) (0.063) (0.060) (0.010) (0.010) (0.010)

kids6 -1.003 -0.855 -0.862 -0.164 -0.163 -0.154
(0.103) (0.100) (0.095) (0.017) (0.017) (0.016)

income -0.003 -0.003 -0.003 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: β̂ denotes estimates of the structural parameters; δ̂ denotes estimates of APEs; standard
errors in parenthesis; standard errors of δ̂ are computed with the delta method.
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2.8 Conclusion

This paper discussed and addressed the disadvantages of the two most commonly

used estimators for logit models with fixed effects, especially in the case of data

sets where many cross-sectional units are observed for long time horizons. These

are the conditional and the unconditional logit estimators. In a series of simulation

experiments we found that the (bias-corrected) unconditional logit estimator has

desirable finite sample properties with respect to structural parameters and average

partial effects. Furthermore, by combining the estimator with our novel pseudo-

demeaning approach, our algorithm is linear in both panel dimensions.

Thus, the (bias-corrected) unconditional logit estimator is a promising candidate

for many relevant applications based on large panel data. To allow the readers to

use our algorithm in a straightforward and convenient way, we provide an imple-

mentation in our R-package bife.

We would like to draw the attention of our readers to the fact that our pseudo-

demeaning paves the way to derive algorithms for more complex nonlinear fixed

effects models. Stammann (2018) combines the pseudo-demeaning with the method

of alternating projections (MAP) to develop a feasible algorithm for the estimation

of generalized linear models with multiple high-dimensional fixed effects. The

combination of MAP and pseudo-demeaning can also be extended to bias corrections

with multiple fixed effects, as shown by Czarnowske and Stammann (2019) for binary

choice models with additive unobservable individual and time effects.
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Appendix

A Details on the Implementations

A.1 Brute-Force UCL Estimation

Let Z = [X,D] denote the NT × (M +N) regressor matrix, where D is the NT ×N
dummy variable matrix corresponding to the fixed effects and X is the NT × M
matrix of the remaining regressors. In a similar way as Greene (2004) we define the

gradient and the Hessian of UCL. The (N +M)×1 gradient is given by

g= [g′
β,g′

α]′

with

gβ = ∂L
∂β

=
N∑

i=1

T∑
t=1

xit(yit − pit) ,

gαi =
∂L
∂αi

=
T∑

t=1
(yit − pit) ,

and the (N +M)× (N +M) Hessian takes the following form

H=



Hββ hβα1 hβα2 · · · hβαN

hα1β hα1α1 0 · · · 0

hα2β 0 hα2α2 · · · 0
...

...
... . . . ...

hαNβ 0 0 · · · hαNαN


=

(
Hββ Hβα

Hαβ Hαα

)

with

Hββ =
N∑

i=1

T∑
t=1

∂2L
∂β∂β′ =−

N∑
i=1

T∑
t=1

xitx′
it pit(1− pit) ,

hβαi =
T∑

t=1

∂2L
∂β∂αi

=−
T∑

t=1
xit pit(1− pit) ,

hαiαi =
T∑

t=1

∂2L
∂α2

i
=−

T∑
t=1

pit(1− pit) .

Thus, the (k−1)-th Newton-Raphson update in (2.3) can be rewritten as follows:

(θk −θk−1)=−H−1g= (Z′WZ)−1Z′(y−p) , (2.23)

where the NT ×NT matrix W serves as a weighting matrix. W is a diagonal-matrix

with strictly positive weights wit = pit(1− pit) where pit is defined in (2.1). Note that
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the weights and all dependent quantities are evaluated at θk−1 .

A.2 Recursive CL Estimation

Gail, Lubin, and Rubinstein (1981) proposed an recursive implementation of CL.

This approach accelerates the computation while retaining the exactness of the brute

force approach presented in section 2.2.

The individual likelihood contribution in (2.6) can be rewritten as follows:

exp(Lci)=
∏t1i

k=1 exp(x′
kβ)∑ci

h=1
∏t1i

kh=1 exp(x′
kh

β)
, (2.24)

where the index k denotes the observed data and the index kh the h-th possible

assignment. Lets define the denominator in (2.24) as follows:

f i(t1i,T)=
ci∑

h=1

t1i∏
kh=1

exp(x′
kh

β)=
ci∑

h=1

t1i∏
kh=1

Ukh .

The recursion can be specified by

f i(t1i,T)= f i(t1i,T −1)+UT f i(t1i −1,T −1)

with f i(0,T) = 1 for T ≥ 0, f i(t1i,T) = 0 for t1i > T and UT = exp(x′
iTβ). Finally, the

conditional log-likelihood in (2.5) can be rewritten to

Lc =
N∑

i=1
Lci =

N∑
i=1

(
T∑

t=1
yitx′

itβ− log( f i(t1i,T))

)
. (2.25)

The maximization of the conditional log-likelihood (2.25) is usually solved iter-

atively with gradient based maximization techniques. It is possible to apply the

recurrence to the computation of the gradient and Hessian as well. However, this

has not been proven to be useful since the recurrence is very time and memory

consuming. Gail, Lubin, and Rubinstein (1981) proposed to implement the estimator

based on numerical first and second order derivatives.
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B Computational Complexities

For the following derivations we assume a balanced panel with N À T À M.

B.1 Brute-Force UCL Estimation

Remember the (k−1)-th Newton-Raphson step is

(θk −θk−1)=−H−1g= (Z′WZ)−1Z′(y−p) .

The most demanding part is the computation of the (M +N)× (M +N) Hessian.27

The multiplication of the NT × (M+N) matrix Z with the NT ×NT diagonal matrix

W can be done in ≈ O(N2T). Suppose we have already generated the variable

Zw = WZ. The matrix multiplication Z′Zw costs ≈ O(N3T), matrix multiplication

Z′Y costs ≈O(N2T), matrix inversion (Z′
wZ)−1 costs ≈O(N3) and finally the product

of the Hessian and the gradient costs ≈O(N2). Since O(N3T)>O(N2T)>O(N2) the

computation time increases cubically in N and linear in T.

B.2 Computationally Efficient UCL Estimation

The computational complexity of the pseudo-demeaning can be derived by consider-

ing the most extensive part, which is the computation of the structural parameter

updates

(βk −βk−1)= (Ẍ′Ẍ)−1Ẍ′ỹ=
(

N∑
i=1

T∑
t=1

ẍitẍ′
it

)−1 (
N∑

i=1

T∑
t=1

ẍit ỹit

)
.

Although Ẍ consists out of MNT elements, its computation requires only ≈O(MNT)

time, since
∑T

t=1 w̃it x̃it is different for MN elements and
∑T

t=1 w̃2
it is different for

N elements. Thus,
∑T

t=1 w̃it x̃it requires MN(T −1+T) arithmetic operations and∑T
t=1 w̃2

it requires N(T −1) arithmetic operations. The matrix multiplication Ẍ′Ẍ
costs ≈ O(M2NT), matrix multiplication Ẍ′Ỹ costs ≈ O(MNT), matrix inversion

(Ẍ′Ẍ)−1 costs ≈O(M3) and finally the product of the Hessian and the gradient costs

≈O(M2). Altogether, O(M2NT)>O(MNT)>O(M3). Thus, the computation time of

the pseudo-demeaning is linear in T and N.

27. Note that some software routines, such as glm() in R, include n dummies instead of N and the
computation becomes even more costly. Remember, N =∑n

i=1 1[0<∑T
t=1 yit < T] where n denotes the

total number of individuals in the data set.
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B.3 Brute-Force CL Estimation

Next, we demonstrate the computational complexity of brute force implementation

of CL. Taking into account that yit is binary, (2.5) can be rewritten to

Lc(β)=
N∑

i=1
log

 exp
(∑t1i

k=1 x′
ikβ

)
∑ci

h=1 exp
(∑t1i

kh=1 x′
ikh

β
)
 , (2.26)

where the index k denotes the observed data and the index kh the h-th possible

assignment. Lets consider the individual likelihood contribution

exp(Lci)=
∏t1i

k=1 exp(x′
kβ)∑ci

h=1
∏t1i

kh=1 exp(x′
kh

β)
. (2.27)

A direct evaluation of the denominator in (2.27) requires the summation of ci terms

and becomes prohibitive if T increases (see Gail, Lubin, and Rubinstein 1981). The

computation of the denominator involves roughly t1i ci arithmetic operations: there

are (ci −1) outer additions and (t1i −1) inner multiplications. Thus, evaluating

the log-likelihood, as it is required by a numerical optimization routine, costs ≈
O(

∑N
i=1 t1i

( T
t1i

)
). Since t1i is a proportion of T, which usually grows with T, the

complexity is exponential in T.

B.4 Recursive CL Estimation

In order to determine the computational complexity of the recursive implementation

of CL, we consider how it tackles the problem of computing the denominator of (2.27).

Reid and Tibshirani (2014) have shown that the denominator can be computed in

≈O(t1i(T−t1i))) time. Thus evaluating the log-likelihood, takes ≈O(
∑N

i=1 t1i(T−t1i))).

Hence, the computational complexity is linear in N and roughly quadratic in T since

t1i is a proportion of T, which usually grows with T. Even if one follows Simen

Gaure’s recommendation not to set up the program completely recursively, but to

reuse intermediate results, nothing changes in the form of computational complexity,

since it is reduced only by a factor (see Gaure 2012).

B.5 CL Estimation with Random Subsets

CLsub reduces the number of arithmetic operations per individual from roughly

t1i ci with the brute force CL algorithm to t1im, since CLsub requires only (m−1)

outer additions and still (t1i − 1) inner multiplications. Hence, CLsub requires

≈O(m
∑N

i=1 t1i) to evaluate the log-likelihood function. Therefore, the shape of the

computational complexity depends on the choice of m. If m is a function of T the
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computational complexity evolves roughly quadratically in T, else linearly.

C Details on Average Partial Effects

Remember that we estimate N ≤ n fixed effects since we use the reduced sample in

the optimization of the log-likelihood. For those individuals who don’t change their

status over time (perfectly classified) the estimates of the fixed effects are unbounded.

Thus, their estimates of partial effects are zero as shown in the following.

Non-binary regressor:

lim
α̂i→∞

∆̂k
it = lim

α̂i→∞
Pr(yit = 1|xit, β̂, α̂i)︸ ︷︷ ︸

=1

lim
α̂i→∞

[1−Pr(yit = 1|xit, β̂, α̂i)]︸ ︷︷ ︸
0

β̂k = 0

lim
α̂i→−∞

∆̂k
it = lim

α̂i→−∞
Pr(yit = 1|xit, β̂, α̂i)︸ ︷︷ ︸

=0

lim
α̂i→−∞

[1−Pr(yit = 1|xit, β̂, α̂i)]︸ ︷︷ ︸
1

β̂k = 0

Binary regressor:

lim
α̂i→∞

∆̂k
it = lim

α̂i→∞
Pr(yit = 1|xitk = 1,xit{−k}, β̂, α̂i)︸ ︷︷ ︸

=1

−

lim
α̂i→∞

Pr(yit = 1|xitk = 0,xit{−k}, β̂, α̂i)︸ ︷︷ ︸
=1

= 0

lim
α̂i→−∞

∆̂k
it = lim

α̂i→−∞
Pr(yit = 1|xitk = 1,xit{−k}, β̂, α̂i)︸ ︷︷ ︸

=0

−

lim
α̂i→−∞

Pr(yit = 1|xitk = 0,xit{−k}, β̂, α̂i)︸ ︷︷ ︸
=0

= 0
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Chapter 3

Fast and Feasible Estimation of
Generalized Linear Models with
High-Dimensional k-way Fixed
Effects
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3.1 Introduction

Fixed effects models are popular specifications in panel data econometrics to account

for unobserved heterogeneity. Some relevant examples can be found in labor eco-

nomics or in international trade. For instance, models of labor supply incorporate

individual and time fixed effects to control for individual specific taste for labor

and time specific shifts in preferences (see among others Hyslop 1999). A further

example is the estimation of structural gravity models in international trade. Here

importer-time and exporter-time fixed effects are required to account for “multi-

lateral resistances” (see Anderson and Van Wincoop 2003) and often additionally

dyadic (exporter-importer pairs) fixed effects to control for unobserved bilateral

heterogeneity (see Baier and Bergstrand 2007). Due to the rising availability of

large micro-level panel data like the U.S. Panel Study for Income Dynamics (PSID) or

pseudo-panels of trade flows from the Centre d’Etudes Prospectives et d’Informations
Internationales (CEPII) such model specifications quickly lead to high-dimensional

fixed effects that cause a substantial computational burden.

Usually the unobserved heterogeneity is captured by including a dummy variable

for each level of each fixed effects category. In linear regression models several

approaches exist to handle the computational burden arising from high-dimensional

fixed effects. The most common strategy is the within transformation, which for

one-way error components only requires to subtract group specific means from all

variables. Balazsi, Matyas, and Wansbeek (2018) have derived and revisited various

generalizations of the within transformation for the most commonly used two- and

three-way error component structures. For some of them it is possible to derive

scalar transformations, however, for others a projection matrix is required to within

transform the variables. Especially for large data sets, the computation of the

projection matrix often becomes infeasible. More flexible approaches have been

proposed in the literature that directly calculate the within transformed variables

for any k-way error component structure without the need to compute the projection

matrix in advance. The two most popular ones are the algorithms by Guimarães and

Portugal (2010) and Gaure (2013b). Whereas Guimarães and Portugal (2010) use an

efficient version of a Gauss-Seidel algorithm that alternates between the solutions

of normal equations, Gaure (2013b) computes the within transformed variables

iteratively with the method of alternating projections (MAP).1 Both approaches are

close approximations of the brute-force dummy variable approach and especially

1. Guimarães and Portugal (2010) also sketch an alternative efficient algorithm that is actually
the alternating projections approach independently proposed by Gaure (2013b). The latter introduced
MAP in the context of linear regression models with high-dimensional fixed effects along with an
extensive theoretical foundation.
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MAP is widely used by researchers.2

In the field of generalized linear models (GLMs) only special cases have been

treated so far. One-way fixed effects models can be estimated at low computational

costs. Stammann, Heiß, and McFadden (2016) derived computationally efficient

parameter update formulas using the FWL theorem (Frisch and Waugh 1933; Lovell

1963). They show that the corresponding projection results essentially in a weighted

within transformation. Another approach uses the partitioned inverse formula along

with the sparse structure of the Hessian (see among others Hall 1978; Chamberlain

1980; Greene 2004). Guimarães and Portugal (2010) suggest a Gauss-Seidel algo-

rithm to estimate nonlinear models with high-dimensional multi-way fixed effects.

Using the example of poisson regression they demonstrate how a closed form of the

fixed effects can be exploited to derive a feasible algorithm. However, most GLMs

do not have such a closed form. For these cases Guimarães and Portugal (2010)

show that the Gauss-Seidel algorithm can be combined with a demanding numerical

optimization routine to solve for the fixed effects. Recently, two modifications of

the Gauss-Seidel algorithm of Guimarães and Portugal (2010) have been proposed:

Larch et al. (2019) provide a Stata routine to estimate poisson gravity models with a

three-way error component and Bergé (2018) offers an R-package to estimate poisson,

logit and negative binomial models with a multi-way error structure. Even more

recently, Correia, Guimarães, and Zylkin (2019) provide a Stata routine ppmlhdfe
for poisson models with a k-way error component that uses a similar approach as we

propose in this article.3

For GLMs with a k-way error component a general and memory efficient algo-

rithm is still missing. We close this gap by deriving a straightforward maximum

likelihood approach that can be easily incorporated into existing GLM software

architectures.4 Moreover, it is very flexible because it can be directly applied to

unbalanced data and linear dependencies between fixed effects do not need to be

addressed. Our algorithm combines the work of Gaure (2013b) and Stammann, Heiß,

and McFadden (2016) by embedding MAP into a Newton-Raphson optimization

2. Software for linear fixed effects models based on MAP is provided in the R-package lfe (Gaure
2013a) and in the Stata routine reghdfe (Correia 2016).

3. The routine ppmlhdfe is an extension of Paulo Guimaraes Stata routine poi2hdfe (Guimarães
2014), which is limited to poisson models with two-way fixed effects. poi2hdfe uses the method of
alternating projections by incorporating the Stata routine hdfe of Correia (2016) into an iteratively
reweighted least squares algorithm. The underlying approach is similar, albeit different, to the one
we present in this article. Both have been independently developed. To the best of our knowledge
the routine used by poi2hdfe and ppmlhdfe has not been presented in an article until February 2019
(Correia, Guimarães, and Zylkin 2019).

4. Our algorithm is made available on CRAN as an R-package alpaca (co-authored with Daniel
Czarnowske): https://cran.r-project.org/web/packages/alpaca/index.html. Note that al-
paca only provides routines for nonlinear GLMs because there is already a comprehensive R-package
lfe by Simen Gaure for linear regression models (Gaure 2013a). Additionally alpaca allows to estimate
negative binomial models.
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algorithm to concentrate out the fixed effects from the parameter update. We refer

to this step as pseudo-demeaning to highlight its link to the well-known within

transformation for linear regression models.

Another problem besides the computational burden of many nonlinear models

with fixed effects is the incidental parameters problem known since Neyman and

Scott (1948). As a consequence the estimators of the structural parameters and

partial effects are inconsistent. For some selected error components and types of

models bias corrections have been proposed (see Fernández-Val and Weidner 2018a

for an overview). A very simple type of bias correction is the split-panel jackknife

tracing back to Dhaene and Jochmans (2015) that can be directly combined with our

suggested algorithm given the researcher knows the order of the bias. A recently

proposed heuristic by Fernández-Val and Weidner (2018a) helps to determine the

order. With this knowledge one can exploit the relation between sample size and

bias to form a suitable correction from multiple estimates based on subsamples. This

however makes the split-panel jackknife computationally demanding but combined

with our efficient software routine still manageable.

The remainder of the article is organized as follows. First we introduce the k-way

fixed effects GLM in section 3.2. In section 3.3 we derive a computationally efficient

algorithm based on the FWL theorem and MAP. Afterwards a simulation study in

section 3.4 demonstrates the performance of our algorithm and finally an empirical

example from international trade highlights its practical relevance in section 3.5.

Finally, section 3.6 concludes.

3.2 The Model and Brute-Force Estimation

In this section we introduce a generalized linear model (GLM) with k-way fixed

effects and its standard estimation procedure. Every GLM consists of three parts:

a stochastic component µ, a systematic component η, also known as the linear

predictor, and a link function h(·) between both components (see McCullagh and

Nelder 1989).

In case of a k-way additive separable error component, the linear predictor takes

the following specific form:

η=Zγ=Dα+Xβ=
K∑

k=1
Dkαk +Xβ ,

where the regressor matrix Z can be split into a n× p matrix X containing the

variables of interest and a sparse n× l matrix D= [D1, . . . ,DK ], with n denoting the

number of observations. More specifically, the submatrices Dk arise from dummy

encoding K categorical variables that are used to capture different sources of unob-
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served heterogeneity. Each dummy matrix is of dimension n× lk, where lk is the

number of levels of the k-th categorical variable, such that l =∑K
k=1 lk. Throughout

the article we refer to α= [α′
1, . . . ,α′

K ]′ and β as fixed effects and structural parame-

ters, respectively. For the sake of clarity we only use notation for balanced data, but

all approaches presented in this article are also directly applicable to unbalanced

data.

The remaining components of a GLM can be expressed as follows:

E(y)=µ= h−1(η) ,

where the link function h(·) is a monotonic differentiable function and y is a realiza-

tion of an independently distributed random variable from the exponential family Y.

The distribution of Y is given by

fY (y,θ,φ)= exp
(

yθ−b(θ)
a(φ)

+ c(y,φ)
)

,

where a(·), b(·), and c(·) are specific functions. In this article φ is known and thus

θ is a canonical parameter. Table 3.1 summarizes the corresponding functions and

parameters of GLMs that are frequently used in economics. Examples of other GLMs

are given in McCullagh and Nelder (1989).

Table 3.1: Common Model Families

Logit Probit Poisson

Dispersion parameter φ 1 1 1
Scale parameter a 1 1 1
Cumulant function b(θ) log(1+exp(θ)) log(1+exp(θ)) exp(θ)
c(y,φ) 0 0 log(y!)
µ(θ) exp(θ)/(1+exp(θ)) Φ(θ) exp(θ)
Canonical link θ(µ) log(µ/(1−µ)) log(µ/(1−µ)) log(µ)
Variance function V (µ) µ(1−µ) µ(1−µ) µ

Note: Φ(·) is the cumulative distribution function of the standard normal distribution.
Source: Modification of table 2.1 in McCullagh and Nelder (1989).

The unknown parameters γ= [α′,β′]′ are estimated jointly using the method of

maximum likelihood. The corresponding log-likelihood function is

L (γ)=
n∑

i=1

yiθi(µi(γ))−b(θi(µi(γ)))
a(φ)

+ c(yi,φ) ,

which can be maximized iteratively using a standard Newton-Raphson algorithm.

The parameter update in iteration (r−1) can be expressed as

(γr −γr−1)=−(
Hr−1)−1 gr−1 , (3.1)

46



where the superscript r indicates the iteration number and g and H are the gradient

and Hessian, respectively. Since θ(µ(γ)) is the canonical link we can apply the chain

rule resulting in the following expression of the gradient:

∂L

∂γr = gr =Z′Wrνr ,

where νr = (y−µr)¯∂ηr/∂µr, Wr is a positive definite diagonal weighting matrix

with its i-th entry equal to (∂µr
i /∂η

r
i )

2/V r
i . The Hessian

∂2L

∂γr∂γr′ =Hr =−Z′WrZ

can be derived analogously.

At this point we need to assume that Z has full column rank. If we assume that

this holds for X, too, full column rank of Z can usually be achieved by dropping some

reference categories in D.5 For example in the classical two-way fixed effects model

with individual and time fixed effects usually one column associated with a certain

time period is removed from D (given X does not include an intercept). In models

with more complicated error structures this might not be that straightforward, such

that in general dim(Z)= n× (p+ l), where l ≤∑K
k=1 lk. Brute-force estimation of (3.1)

requires the computation and inversion of a potentially large Hessian of dimension

(p+ l)× (p+ l), which quickly becomes computationally demanding or even infeasible.

In the next section we present a new Newton-Raphson pseudo-demeaning algo-

rithm based on the Frisch-Waugh-Lovell (FWL) theorem and MAP, which substan-

tially decreases the computational costs of the optimization problem.

3.3 Estimation with High-Dimensional Fixed
Effects

3.3.1 The Newton-Raphson Pseudo-Demeaning Algorithm

In the classical linear fixed effects model the FWL theorem is applied to separate the

estimation of the fixed effects from the structural parameters. Recently, Stammann,

Heiß, and McFadden (2016) have shown in the context of one-way fixed effects logit

models how the FWL theorem can be adapted to separate the Newton-Raphson

update of the structural parameters from the fixed effects update.

The same logic can be applied to GLMs with any additive separable k-way error

5. In some cases it might also occur that some columns of X can be perfectly explained by columns
in D.
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structure since the parameter update

(γr −γr−1)= (Z′Wr−1Z)−1Z′Wr−1νr−1 (3.2)

is essentially the least-squares solution of

ν̃r−1 = D̃r−1(αr
0 −αr−1

0 )+ X̃r−1(βr
0 −βr−1

0 )+ ũr−1 , (3.3)

where ν̃r = W̃r((y−µr)¯∂ηr/∂µr), D̃r = W̃rD, X̃r = W̃rX, W̃r = (Wr)1/2, ũr is an error

term, and subscript zero denotes the population parameters.6

Since we know that (3.3) is a linear regression model we can apply the FWL

theorem to partial out D̃r−1(αr
0 −αr−1

0 ). This yields the following concentrated

regression:

Mr−1
D̃ ν̃r−1 =Mr−1

D̃ D̃r−1(αr
0 −αr−1

0 )+Mr−1
D̃ X̃r−1(βr

0 −βr−1
0 )+Mr−1

D̃ ũr−1 (3.4)

=Mr−1
D̃ X̃r−1(βr

0 −βr−1
0 )+Mr−1

D̃ ũr−1 ,

where the annihilator matrix Mr
D̃
= In − D̃r(D̃r′D̃r)−1D̃r′ is the projection onto the

orthogonal complement of the column space of D̃r.7 Thus the parameter update of

the structural parameters can be obtained as the least-squares solution of (3.4):

(βr −βr−1)= (Ẍr−1′Ẍr−1)−1Ẍr−1′ν̈r−1 , (3.5)

where ν̈r = Mr
D̃
ν̃r and Ẍr = Mr

D̃
X̃r. Throughout the article we denote ν̈r and Ẍr as

pseudo-demeaned variables. Equation (3.5) can be interpreted as a Newton-Raphson

update based on a concentrated gradient and Hessian. Note that once the pseudo-

demeaned variables are computed, the parameter update (βr −βr−1) only requires to

invert a p× p instead of the (p+ l)× (p+ l) matrix in (3.1). However, the computation

of the pseudo-demeaned variables is an additional challenge, since the annihilator

matrix Mr
D̃

has dimension n× n and is typically non-sparse.8 This issue will be

addressed in the next subsection.

In the following, let us assume that we know a feasible approach to pseudo-

6. The standard approach to estimate GLMs is iteratively reweighted least squares (IRLS) with
the following update: γr = (Z′Wr−1Z)−1Z′Wr−1 (

νr−1 +Zγr−1)
. We use the different formulation (3.2)

in order to obtain the scores of the log-likelihood directly from the estimation routine. These are
required to compute robust and (multi-way) clustered standard errors.

7. Note, M is idempotent and that (3.4) can be transformed into W̃r−1Pr−1νr−1 =
W̃r−1Pr−1Xr−1(βr−βr−1)+W̃Pr−1ũr−1, where Pr = In−D(D′WrD)−1D′Wr. Both projection approaches
are suitable to concentrate out the high-dimensional fixed effects from (3.3). Throughout the article
we restrict ourselves to projection M.

8. One exception is the case K = 1 where the block-diagonal structure of the annihilator matrix
allows to derive a straightforward scalar expression to compute the pseudo-demeaned variables (see
Stammann, Heiß, and McFadden 2016). For K > 1 this is not possible since the annihilator matrix
loses its sparse structure.
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demean the variables. To complete the entire estimation routine, we require to

compute a concentrated gradient and Hessian in each iteration of the optimization

routine. Since those are functions of the linear predictor ηr =Dαr +Xβr we need to

find an efficient way to update ηr. The naive approach would recover estimates of the

fixed effects and use them to update the linear predictor. We present a substantially

less costly approach that directly recovers the linear predictor from already computed

quantities.9 Therefore reconsider the reformulation of the Newton-Raphson update

into the regression model

ν̃r−1 = D̃r−1(αr
0 −αr−1

0 )+ X̃r−1(βr
0 −βr−1

0 )+ ũr−1 . (3.6)

Following Gaure (2013b), it can be shown that the residuals of the projected system

(3.4) are identical to the ones of the full system (3.6):

ν̃r−1 − X̃r−1(βr −βr−1)− D̃r−1(αr −αr−1)= ν̈r−1 − Ẍr−1(βr −βr−1) . (3.7)

Solving (3.7) for ηr delivers an efficient formula to obtain the linear predictor

ηr = (w̃r−1)−1 ¯ (
ν̃r−1 − ν̈r−1 − Ẍr−1(βr −βr−1)

)+ηr−1

from already computed quantities, where w̃r = diag(W̃r). Bringing together all

previously mentioned components the Newton-Raphson k-way pseudo-demeaning

algorithm can be summarized by algorithm 2.

Algorithm 2 Newton-Raphson with Pseudo-Demeaning

1: Initialize β0, η0, and r = 0.
2: repeat
3: Set r = r+1.
4: Compute the weights w̃r−1 and νr−1.
5: Compute ν̃r−1 and X̃r−1.
6: Compute ν̈r−1 and Ẍr−1.
7: Update βr.
8: Update ηr.
9: until convergence.

So far we have only dealt with estimating the structural parameters but usually

we are also interested in inference. Since our algorithm is a maximum likelihood

approach it facilitates the construction of different covariance estimators and allows

for standard testing procedures. Let β̂ denote the maximum likelihood estimator of

9. If required, the fixed effects coefficients can be computed ex-post with a numerical solver for
linear systems of equations as presented in appendix B. However, most of the times, the fixed effects
coefficients are not necessary. For ex-post computations like predictions or partial effects, the linear
predictor obtained after convergence of algorithm 2 will suffice.
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the structural parameters. Estimates of the asymptotic covariance matrix of β̂ can be

easily computed using the concentrated Hessian Ḧ and/or scores G̈ after convergence

of algorithm 2. Note that Ḧ=−Ẍ′Ẍ and G̈= [g̈1, . . . , g̈p], where g̈ j = ẍ j ¯ ν̈ and ẍ j is

the j-th column of Ẍ. Standard covariance estimators are

V̂emp(β̂)=−Ḧ−1 ,

V̂opg(β̂)= (
G̈′G̈

)−1 ,

V̂rob(β̂)= Ḧ−1G̈′G̈Ḧ−1 ,

where V̂emp(β̂) is the estimator based on the inverse of the empirical Hessian,

V̂opg(β̂) is known as the BHHH estimator, and V̂rob(β̂) is the sandwich estimator for

robust standard-errors.

Remember, algorithm 2 is only computationally efficient if we know a feasible

approach to compute the pseudo-demeaned variables. In the next subsection, we

show how a combination of the one-way pseudo-demeaning proposed by Stammann,

Heiß, and McFadden (2016) along with MAP can be used to approximate the pseudo-

demeaned variables directly without having to compute the expensive and potentially

infeasible annihilator matrix Mr
D̃

.

3.3.2 The Method of Alternating Projections

An approach to compute the pseudo-demeaned variables efficiently is the method of

alternating projections (MAP) tracing back to Neumann (1950) and Halperin (1962).

Gaure (2013b) introduced MAP in the context of classical linear models with many

fixed effects categories. His solution is widely accepted among researchers as an

equivalent to the brute-force dummy variable approach. In the following, we adapt

MAP to GLMs.

First of all, we follow Gaure (2013b) and show why MAP is suitable for pseudo-

demeaning. Let A be an arbitrary matrix, R(A) its column space, and R(A)⊥ the

orthogonal complement of R(A). Suppose we want to compute v̈=MD̃v where v is an

arbitrary n×1 vector. Since MD̃ is the projection onto the orthogonal complement of

the column space of D̃, it follows that v̈ ∈ R(D̃)⊥. Further, since R(D̃)⊥ =∩K
k=1R(D̃k)⊥,

the pseudo-demeaned variable lies in the intersection of the subspaces R(D̃k)⊥,

i.e. v̈ ∈ ∩K
k=1R(D̃k)⊥. Since MAP is generally used to approximate a point in the

intersection of a finite number of closed subspaces of a Hilbert space (see Escalante

and Raydan 2011) it is suitable to find v̈. In a nutshell, the idea is to approximate

v̈ by repeatedly projecting onto the individual subspaces R(D̃k)⊥. This is often

computationally more efficient than having to compute MD̃ in advance. Another

great advantage of MAP is that, unlike the dummy variable approach, the full
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column rank assumption of D and D̃ is no longer required. To get an intuition, let D̃

denote a rank deficient weighted dummy matrix where no collinear columns have

been removed. The structural parameter updates (3.5) are not influenced by the

design of the dummy variable matrix, since R(D̃)⊥ = R(D̃)⊥, and thus ν̃ and X̃ are

projected onto the correct space anyway. For simplicity we do not further distinguish

whether D and D̃ are rank deficient or not.10

There are basically two methods of alternating projections that differ in how

they link the individual projections: Neumann-Halperin and Cimmino. Neumann

(1950) developed MAP for the case of two subspaces, and Halperin (1962) extended

it to a finite number of subspaces. Originally the method proposed by Cimmino

(1938) is intended to solve linear systems of equations. However, as shown by

Kammerer and Nashed (1972) it is also suitable for linear operations on subspaces

(see Hernández-Ramos, Escalante, and Raydan 2011).

The Neumann-Halperin approach can be summarized as follows:

lim
N→∞

‖(Mr
D̃1

Mr
D̃2

· · ·Mr
D̃K

)Nv−Mr
D̃v‖ = 0.

This expression means that v is projected onto R(D̃1)⊥, resulting in vector v1 ∈
R(D̃1)⊥. v1 is projected onto R(D̃2)⊥, resulting in vector v2 ∈ R(D̃2)⊥ which is

projected onto the next subspace, and so on, until we project from R(D̃K−1)⊥ onto

R(D̃K )⊥. The whole procedure is repeated until convergence.

In contrast to Neumann-Halperin’s approach, Cimmino’s projections are not

nested. Instead one projects v separately onto each of the K subspaces R(D̃k)⊥ and

computes the centroid of these projections according to

lim
N→∞

‖(
1
K

K∑
k=1

Mr
D̃k

)Nv−Mr
D̃v‖ = 0.

With help of MAP the large and non-sparse projection Mr
D̃

v can be decom-

posed into an iterative procedure based on only sparse projections Mr
D̃k

= In −
D̃r

k(D̃r′
k D̃r

k)−1D̃r′
k , which translate into one-way pseudo-demeaning over category k.

Using the result shown by Stammann, Heiß, and McFadden (2016), the projections

10. What is still required is that X has column full rank and that none of the regressors is perfectly
collinear with the fixed effects. Whereas the former is easy to check the latter implies the need of a
well-thought-out model specification by the researcher.
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Mr
D̃k

v can be efficiently computed as follows:11

(Mr
D̃k

v)i = vi − w̃r
i

∑
j∈gkκ

w̃r
jv j∑

j∈gkκ
wr

j
∀i ∈ gkκ , (3.8)

where gkκ defines a group consisting of those observations that share the same level

κ in category k, and w̃r
i and wr

i are the i-th diagonal entry of W̃r and Wr, respectively.

Equation (3.8) demonstrates that the individual projections essentially subtract

“weighted” group means from the dependent variable ν̃r and the regressor matrix X̃r.

In order to approximate ν̈r and Ẍr, MAP is subsequently applied to ν̃r and each

column of X̃r. This could be either the Neumann-Halperin algorithm (algorithm

3) or the Cimmino algorithm (algorithm 4). A suitable selection of the tolerance

level allows us to get an arbitrary close approximation of ν̈r and Ẍr. Finally, the

approximations of the pseudo-demeaned variables are used to make algorithm 2

efficient and feasible in the presence of high-dimensional fixed effects.

Algorithm 3 Pseudo-Demeaning: Neumann-Halperin
1: Let v ∈ {ν̃r, x̃r

j}, j = 1, . . . , p.
2: Set i = 1 and zi = v.
3: repeat
4: Set zi0 = zi.
5: for k = 1, . . . ,K do
6: Compute zik by subtracting “weighted” group means from zi(k−1) (see

formula (3.8)).
7: Set i = i+1, zi = ziK .
8: until convergence.
9: Set v̈= zi.

Algorithm 4 Pseudo-Demeaning: Cimmino
1: Let v ∈ {ν̃r, x̃r

j}, j = 1, . . . , p.
2: Set i = 1, zi = v, and zsum = 0p.
3: repeat
4: Set zi0 = zi.
5: for k = 1, . . . ,K do
6: Compute zik by subtracting “weighted” group means from zi0 (see formula

(3.8)).
7: zsum = zik +zsum

8: Set i = i+1, zi = 1
K zsum.

9: until convergence.
10: Set v̈= zi.

11. It would also be possible to use the alternative projection defined in footnote 7. Although this
projection seems to be favorable due to fewer operations, we found that it often takes longer to
converge such that none of the projections is dominant with respect to total computation time.
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3.4 Simulation Experiments

In this section we perform some simulation experiments to demonstrate the capa-

bilities of our algorithm compared to a standard GLM routine based on dummy

encoding. To this end we analyse the exactness of the parameter estimates and the

corresponding standard errors and measure the computation times given different

tolerance levels for MAP.

In order to illustrate the relevance of our algorithm we consider a simulation

design that mimics a structural gravity model commonly used in international trade

to explain the effect of policy variables on trade flows.12 A standard structural

gravity model for panel data takes the following form:

yi jt = exp(λit +ψ jt +δi j +x′
i jtβ)εi jt (3.9)

where exporters and importers are indexed by i = 1, . . . , I and j = 1, . . . , J, respectively,

and t = 1, . . . ,T is a time identifier. Further, yi jt denotes the trade flows from exporter

i to importer j at time t, λit is an exporter-time fixed effect, ψ jt is an importer-

time fixed effect, δi j is an exporter-importer (dyadic) fixed effect, xi jt is a vector of

variables of interest, and β the corresponding parameter vector.

The workhorse approach to estimate this kind of model is the so-called pseudo-

poisson maximum likelihood estimator (PPML) proposed by Silva and Tenreyro

(2006). Because trade flows are positive and continuous, this estimator is basi-

cally a poisson maximum likelihood estimator applied to a non-poisson distributed

dependent variable.13 Even in relatively short panels, researchers quickly find

themselves confronted with a high computational effort, and thus PPML with three-

way fixed effects is a well suited application for our algorithm. For instance, in a

balanced panel, where I = J = N = 30 and T = 15, the number of fixed effects is

N(N −1)+2NT = 1,770.

For our simulation experiments we generate data according to (3.9), where

xi jt = [xi jt,di jt], xi jt is generated as iid. standard normal, di jt = 1[ψi jt > 0] with ψi jt

beeing generated as iid. standard normal, and εi jt is an iid. log-normal error term

with mean zero and variance one (on the log scale). Further, β= 1, λit ∼ iid. N (x̄it,1),

ψ jt ∼ iid. N (x̄ jt,1), and δi j ∼ iid. N (x̄i j,1), where x̄. denote the corresponding group

means. We consider balanced panels of different sizes (N = I = J and T) and generate

30 different data sets for each size.

All simulations were done on a Linux Mint 18.1 workstation using R version 3.6.1

12. We also conduct simulation experiments for a logit model with two-way fixed effects. The
corresponding design and results are reported in appendix A. Overall, we make similar findings.

13. See Gourieroux, Monfort, and Trognon (1984) and Silva and Tenreyro (2006) why this estimator
is valid.
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(R Core Team 2019). We use the pseudo-demeaning algorithm (feglm()) provided in

our R-package alpaca (version 0.3.1) and the standard GLM routine glm() provided

in base R. Both routines are very similar, they essentially only differ by the fact that

glm() uses dummy variables instead of MAP in the optimization routine. The results

we report for MAP in this section are based on the Neumann-Halperin algorithm.14

At first we investigate the exactness of our Newton-Raphson pseudo-demeaning

algorithm. Remember, MAP is an approximate method whose approximation error

can be regulated by the choice of the tolerance level in algorithm 3 and 4. Whereas

MAP is widely accepted in linear fixed effects models, in nonlinear models there

might be suspicion that the approximation error is further exaggerated by the

iterative optimization routine. To this end, we use different tolerance levels for MAP

and measure how often coefficients and standard errors differ from the exact dummy

variable approach which serves as a benchmark. Tables 3.2 and 3.3 summarize

the joint relative frequencies of β̂ and its standard error for different digits. We

observe that up to 4 digits the exact dummy approach and our Newton-Raphson

pseudo-demeaning algorithm deliver identical coefficients and standard errors for

tolerance levels larger than 10−4. As expected, tighter tolerance levels improve

precision. Additionally, we observe that the standard errors are more sensitive to

the selected tolerance level.

Next we analyze the computation times of the naive dummy variable approach

and our Newton-Raphson pseudo-demeaning algorithm for different tolerance levels

in MAP. Table 3.4 shows the dramatic increase of the computation time of the

dummy variable approach. Whereas the latter approach takes roughly 24 minutes

to estimate a three-way fixed effects PPML model with 30,000 observations and

3,100 fixed effects, our routine requires roughly 1 second. For higher combinations

of N and T we only report the computation times obtained by our Newton-Raphson

pseudo-demeaning algorithm. Even in the largest data set consisting of 1.99 million

observations and 59,800 fixed effects our routine is able to estimate the model in

roughly 3.3 minutes for the tightest tolerance level of 10−8 and only 1.3 minutes for

the loosest. Another aspect we observe is that a less strict tolerance level does not

necessarily reduce computation time. This is because the larger approximation error

associated with MAP causes algorithm 2 to take more iterations until convergence.

Overall, the simulation experiments confirm that our algorithm is able to handle

estimation problems with high-dimensional fixed effects. It offers a considerable

14. We also performed simulations using Cimmino’s approach and several acceleration schemes,
e.g. Hernández-Ramos, Escalante, and Raydan (2011) and Gearhart and Koshy (1989). However,
we did not find any algorithm to be superior. It is already well known that acceleration techniques
can but do not necessarily accelerate (see among others Hernández-Ramos, Escalante, and Raydan
2011; Escalante and Raydan 2011). Nevertheless, we observed that the classical Neumann-Halperin
algorithm never performed worst.
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Table 3.2: PPML: Exactness of β̂

N T 10−8 10−7 10−6 10−5 10−4 10−3

4 digits 10 5 1.00 1.00 1.00 1.00 1.00 0.97
10 10 1.00 1.00 1.00 1.00 1.00 0.93
10 25 1.00 1.00 1.00 1.00 1.00 1.00
10 50 1.00 1.00 1.00 1.00 1.00 0.97
25 5 1.00 1.00 1.00 1.00 1.00 1.00
25 10 1.00 1.00 1.00 1.00 1.00 0.97
25 25 1.00 1.00 1.00 1.00 1.00 1.00
25 50 1.00 1.00 1.00 1.00 1.00 1.00

6 digits 10 5 1.00 1.00 1.00 1.00 0.73 0.13
10 10 1.00 1.00 1.00 1.00 0.80 0.10
10 25 1.00 1.00 1.00 0.97 0.53 0.07
10 50 1.00 1.00 1.00 1.00 0.67 0.03
25 5 1.00 1.00 1.00 1.00 0.63 0.20
25 10 1.00 1.00 1.00 1.00 0.87 0.27
25 25 1.00 1.00 1.00 1.00 0.87 0.27
25 50 1.00 1.00 1.00 1.00 0.80 0.40

Note: Three-way fixed effects PPML; measurement of exactness frequencies
relative to dummy variable approach up to 4 and 6 digits; used Neumann-
Halperin projection with different tolerance levels; results based on 30 repeti-
tions.

Table 3.3: PPML: Exactness of se(β̂)

N T 10−8 10−7 10−6 10−5 10−4 10−3

4 digits 10 5 1.00 1.00 1.00 1.00 0.97 0.93
10 10 1.00 1.00 1.00 1.00 1.00 0.97
10 25 1.00 1.00 1.00 1.00 1.00 1.00
10 50 1.00 1.00 1.00 1.00 1.00 1.00
25 5 1.00 1.00 1.00 1.00 1.00 1.00
25 10 1.00 1.00 1.00 1.00 1.00 0.97
25 25 1.00 1.00 1.00 1.00 1.00 1.00
25 50 1.00 1.00 1.00 1.00 1.00 1.00

6 digits 10 5 0.83 0.83 0.80 0.40 0.13 0.00
10 10 1.00 1.00 1.00 0.73 0.57 0.10
10 25 0.93 0.93 0.97 0.93 0.73 0.30
10 50 1.00 1.00 0.97 0.90 0.70 0.50
25 5 1.00 1.00 1.00 0.97 0.83 0.30
25 10 1.00 1.00 0.97 0.97 0.83 0.53
25 25 1.00 1.00 1.00 1.00 0.97 0.87
25 50 1.00 1.00 1.00 1.00 1.00 0.97

Note: Three-way fixed effects PPML; measurement of exactness frequencies
relative to dummy variable approach up to 4 and 6 digits; used Neumann-
Halperin projection with different tolerance levels; results based on 30 repeti-
tions.
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Table 3.4: PPML: Average Computation Times

feglm()

N T glm() 10−8 10−7 10−6 10−5 10−4 10−3

10 5 0.09 0.03 0.03 0.03 0.02 0.04 0.04
10 10 0.35 0.05 0.04 0.04 0.03 0.05 0.06
10 25 3.45 0.10 0.09 0.07 0.06 0.09 0.11
10 50 24.25 0.18 0.15 0.13 0.10 0.15 0.16
25 5 9.42 0.13 0.11 0.09 0.08 0.10 0.12
25 10 34.17 0.20 0.17 0.14 0.11 0.14 0.18
25 25 239.99 0.47 0.40 0.33 0.26 0.31 0.39
25 50 1421.84 1.00 0.84 0.67 0.53 0.65 0.78
50 5 - 0.46 0.39 0.32 0.25 0.25 0.31
50 10 - 0.71 0.60 0.50 0.40 0.36 0.47
50 25 - 1.75 1.47 1.21 0.94 0.98 1.26
50 50 - 3.65 3.05 2.51 1.95 1.96 2.38

100 5 - 1.99 1.68 1.37 1.08 1.03 1.29
100 10 - 3.37 2.81 2.28 1.76 1.61 2.03
100 25 - 8.20 6.82 5.54 4.23 4.26 5.04
100 50 - 22.20 18.58 14.94 11.39 10.07 11.83
200 5 - 7.62 6.41 5.24 4.15 3.66 4.30
200 10 - 18.30 15.29 12.26 9.47 7.88 9.22
200 25 - 86.46 71.73 56.15 42.24 35.47 37.71
200 50 - 197.29 161.61 126.28 91.75 80.38 78.59

Note: Three-way fixed effects PPML; average computation times in seconds; glm() refers
to the standard GLM routine provided in R; feglm() refers to the Newton-Raphson pseudo-
demeaning algorithm (Neumann-Halperin projection with different tolerance levels); re-
sults based on 30 repetitions.

computation time advantage over glm() while maintaining the same accuracy up to

relevant digits. Taking all aspects into account we recommend to use a tolerance

level of at least 10−5.

3.5 Empirical Illustration

In this section we emphasize the practical relevance of our algorithm by applying it

to an example from international trade. As in section, 3.4 we estimate a structural

gravity model with three high-dimensional fixed effects using PPML. We replicate

parts of Larch et al. (2019), who reassessed some results of Glick and Rose (2016)

and showed that PPML and OLS can lead to different conclusions. We extend the

reassessment by two aspects. First, we test the assumptions of symmetry between

the effects of entries and exists from currency unions. Testing these assumptions

implies computationally demanding hypothesis tests because it requires to estimate

models with high-dimensional fixed effects and many regressors. Second, we address

an econometric issue that arises from using only specific time intervals of the entire

data set. Interval data are used due to concerns that trade flows need some time to

adjust to changes in trade costs (see among others Cheng and Wall 2005; Weidner
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and Zylkin 2018; Larch et al. 2019). However, this strategy leads to a special

incidental parameters problem which occurs only with small T and can be mitigated

using a bias correction recently proposed by Weidner and Zylkin (2018).

Glick and Rose (2016) analyzed the effect of being in a currency union (CU)

on export flows, with particular interest to quantifying the effect of membership

in the European Monetary Union (EMU). For this purpose they considered three

specifications with different levels of aggregation with respect to the currency unions.

They used a data set with 879,794 observations (after dropping all zero trade

flows) where roughly 200 countries trade for 65 years (1948−2013). Their model

specification required roughly 11,000 exporter-time and importer-time fixed effects,

respectively, as well as roughly 34,000 dyadic fixed effects. Due to the lack of

a feasible software routine at that time, Glick and Rose (2016) estimated a log-

linear specification instead of the desired PPML counterpart. Recently, Larch et

al. (2019) proposed a feasible PPML algorithm based on the Gauss-Seidel algorithm

by Guimarães and Portugal (2010) that can handle high-dimensional three-way fixed

effects. With this tool at hand, they were able to estimate the model of Glick and

Rose (2016) by PPML with the entire set of fixed effects.

We start by replicating some estimation results of Larch et al. (2019) to show

that our Newton-Raphson pseudo-demeaning algorithm produces identical results

as their routine. They estimated the following theory-consistent gravity model:

yi jt = exp(γCUi jt +x′
i jtβ+λit +ψ jt +δi j)εi jt ,

where yi jt denotes the nominal value of bilateral exports from exporter i to importer

j at year t, CUi jt is dummy variable, specifying whether i and j use the same

currency at time t, xi jt are further control variables, λit denotes a time-varying

exporter fixed effect, ψ jt a time-varying importer fixed effect, and δi j is a dyadic fixed

effect. Unlike the log-linear specification, PPML is able to deal with zero trade flows.

Thus we follow Larch et al. (2019) and replace all missing trade flows with zeros

resulting in a data set of roughly 3 million observations. Table 3.5 reproduces table 2

from Larch et al. (2019) using our Newton-Raphson pseudo-demeaning algorithm.15

Depending on the aggregation level of the currency unions, we are able to estimate

the model in 63 up to 160 seconds. A detailed discussion of the estimation results is

given in Larch et al. (2019).

15. Larch et al. (2019) also reported multi-way clustered standard errors as motivated by Egger and
Tarlea (2015). For this purpose, they adjusted the approach suggested by Figueiredo, Guimarães,
and Woodward (2015) to get the residuals of an auxiliary regression. Afterwards they used them
to compute multi-way clustered standard errors following Cameron, Gelbach, and Miller (2011).
Contrary to the post-estimation procedure of Larch et al. (2019) our approach directly builds on the
suggestion of Cameron, Gelbach, and Miller (2011) to compute multi-way clustered standard errors
based on the Hessian and scores. In our case we can simply use their concentrated counterparts.
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Table 3.5: Empirical Results

All CUs Disagg. EMU Disagg. CUs

All Currency Unions 0.1531
(0.0102, 0.0828)

All Non-EMU Currency Unions 0.7276
(0.0255, 0.1789)

EMU 0.0521 0.0489
(0.0103, 0.0946) (0.0103, 0.0946)

CFA Franc Zone -0.1256
(0.0997, 0.3522)

East Caribbean Currency Union -0.8773
(0.0835, 0.2949)

Aussie 0.3845
(0.1188, 0.2235)

British £ 1.0600
(0.0347, 0.2377)

French Franc 2.0957
(0.0630, 0.3063)

Indian Ruppee 0.1697
(0.1470, 0.3009)

US $ 0.0183
(0.0215, 0.0509)

Other CUs 0.7660
(0.0533, 0.2493)

Importer-time fixed effects 11,277
Exporter-time fixed effects 11,227
Dyadic fixed effects 34,104

time (in sec.) 63 73 160
iterations 13 13 13

Note: After dropping observations that do not contribute to the log-likelihood, we end up with roughly 1.6 million
observations; two further control variables: regional FTA membership and current colony/colonizer; standard errors
in parentheses: robust (sandwich estimator) and multi-way clustered standard errors by importer, exporter, and
time in parentheses; Neumann-Halperin projection with tolerance level 10−5.
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In the following we extend the reassessment of Larch et al. (2019). First we

show that our routine is also able to deal with many regressors. For this reason,

we reassess table 6 of Glick and Rose (2016) where they tested, based on their log-

linear specification, the assumption of symmetric effects of entries and exits from a

currency union using joint hypotheses. The authors used the following specification:

yi jt = exp

(
14∑

k=−14
θkCUENTRYi j(t−k) +

14∑
k=−14

φkCUEXITi j(t−k)+

x′
i jtβ+λit +ψ jt +δi j

)
εi jt ,

where CUEXITi j(t−k) is one if country i and j entered a currency union at time

t− k and CUEXITi j(t−k) is one if country i and j exited a currency union at time

t−k. The tests require to estimate unrestricted models with 60 and 89 regressors.

Table 3.6 summarizes the seven hypotheses and the corresponding results of the

Table 3.6: Entry - Exit Symmetry

Wald test

Hypothesis robust clustered

After any CU Entry = - After any CU Exit? 27.5 (0.0165) 7.5 (0.9119)
Before any CU Entry = - Before any CU Exit? 16.8 (0.2665) 6.0 (0.9669)
Both 149.8 (0.0000) 6.8 (1.0000)
Number of regressors: 60, Time: 16 minutes

After non-EMU CU Entry = After EMU Entry? 29.0 (0.0106) 7.8 (0.9010)
Before non-EMU CU Entry = Before EMU Entry? 52.5 (0.0000) 24.2 (0.0430)
Both 80.3 (0.0000) 21.0 (0.8252)
After non-EMU CU Exit = - After EMU Entry? 28.3 (0.0132) 7.7 (0.9049)
Number of regressors: 89, Time: 22 minutes

Note: Wald tests based on robust standard errors and multi-way clustered standard errors by importer,
exporter, and time; reported test-statistics and p-values in parentheses; two further control variables:
regional FTA membership and current colony/colonizer; Neumann-Halperin projection with tolerance
level 10−5.

Wald tests based on PPML. The test statistics are constructed from robust and

multi-way clustered estimates of covariance matrices. The results are ambiguous. If

the test statistics are based on the robust covariances, we reject the null hypotheses

of symmetry in all except one case, assuming a significance level of 5%. Using the

multi-way clustered covariances we get completely opposite results. Since clustered

inference is common practice in structural gravity estimation, our results seem to

validate the symmetry assumption of Glick and Rose (2016).

Our second extension of the reassessment addresses concerns among trade

economists that 1 year is not enough for trade flows to adjust to changes in trade

costs. In this case, data should not be taken annually but for example at five year

intervals (see among others Cheng and Wall 2005; Weidner and Zylkin 2018; Larch

et al. 2019). Restricting our sample to 5-year intervals, t ∈ {1948,1953, . . . ,2013},
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results in a data set with 14 time periods. This however, raises econometric concerns.

Very recently, Weidner and Zylkin (2018) study the statistical properties of the PPML

estimator in a three-way fixed effects gravity model. They show that although the

estimator is fixed T consistent, it exhibits a bias in its asymptotic distribution. This

incidental parameter bias is especially severe for panels with small T and may lead

to invalid inference. Thus, the authors propose a jackknife bias correction in the

spirit of Dhaene and Jochmans (2015).

As shown by Weidner and Zylkin (2018), under fixed T, the leading order bias has

the following structure B/I+D/J, which implies two suitable splitting strategies. The

first strategy, proposed by Weidner and Zylkin (2018), splits the panel simultaneously

along exporters and importers, leading to the following bias-corrected estimator:

β̂
sp j1 = 2β̂− β̂I/2,J/2,T , with

β̂I/2,J/2,T = 1
4

[
β̂{i:i≤dI/2e},{ j: j≤dJ/2e},T + β̂{i:i≥bI/2+1c},{ j: j≤dJ/2e},T

+ β̂{i:i≤dI/2e},{ j: j≥bJ/2+1c},T + β̂{i:i≥bI/2+1c},{ j: j≥bJ/2+1c},T
]

,

where b·c and d·e denote the floor and ceiling functions, respectively.16 The subscript

{i : i ≤ dI/2e}, { j : j ≥ bJ/2+1c}, T indicates that the estimator is based on a subsample

containing the first half of all exporters, and the second half of all importers, but all

time periods. Another valid splitting strategy splits the panel sequentially along

exporters and importers. In this case the corresponding bias-corrected estimator is

β̂
sp j2 = 3β̂− β̂I/2,J,T − β̂I,J/2,T , with

β̂I/2,J,T = 1
2

[
β̂{i:i≤dI/2e},J,T + β̂{i:i≥bI/2+1c},J,T

]
,

β̂I,J/2,T = 1
2

[
β̂I,{ j: j≤dJ/2e,T + β̂I,{ j: j≥bJ/2+1c,T

]
.

We reestimate column 1 of table 3.5 using the sample on 5-year intervals and the

suggested bias corrections. Table 3.7 reports estimates of the currency union effect

based on the uncorrected estimator (column 1), and the two split-panel jackknife

estimators (column 2 and 3).17 The two bias corrections correct the PPML estimate

of the currency union effect downward, but they are still substantially higher than

those based on annual data (see column 1 of table 3.5). Interestingly, the estimates

of both splitting strategies differ, making a difference of roughly 0.5% points in the

16. The application of floor and ceiling functions generates overlapping subpanels in case of a
odd number of exporters and/or importers as suggested by Fernández-Val and Weidner (2016) and
Cruz-Gonzalez, Fernández-Val, and Weidner (2017).

17. Since there is no natural ordering of the exporters and importers, we follow the suggestion
of Fernández-Val and Weidner (2016) to compute the average over different split-panel jackknife
estimates, where the indices of the exporters and importers are randomly shuffled. We average over
100 different estimates.
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effect of membership in a currency union.18 Another aspect that is of importance

for the practical application of bias corrections is the overall computation time. As

expected, it increases considerably due to the number of repetitions and the necessity

to estimate multiple subpanels. However, the overall computation time of 14 and 24

minutes is still manageable with our algorithm.

Table 3.7: Empirical Results (5-Year Intervals)

PPML SPJ 1 SPJ 2

All Currency Unions 0.1732 0.1691 0.1652
(0.0226 , 0.0850)

Importer-time fixed effects 2378
Exporter-time fixed effects 2382
Dyadic fixed effects 30789

time (in sec.) 7.56 844.52 1461.67

Note: PPML, SPJ1, and SPJ2 denote the (bias-corrected) estima-
tors; after dropping observations that do not contribute to the
log-likelihood, we end up with roughly 311,563 observations; two
further control variables: regional FTA membership and current
colony/colonizer; standard errors in parentheses: robust (sandwich
estimator) and multi-way clustered standard errors by importer, ex-
porter, and time in parentheses; Neumann-Halperin projection with
tolerance level 10−5.

To sum up, the application demonstrates the practical relevance of our Newton-

Raphson pseudo-demeaning routine, since it allows to estimate models with many

high-dimensional fixed effects in a reasonable amount of time even in the presence

of many regressors.

3.6 Conclusion

We presented a new algorithm for the maximum likelihood estimation of general-

ized linear models (GLMs) with a high-dimensional k-way error component. Our

approach is straightforward since it resembles the classical within transformation

used in linear regression models. To be more precise the algorithm incorporates a

special pseudo-demeaning procedure into a standard Newton-Raphson estimation

routine such that the updates of the structural parameters are separated from the

high-dimensional fixed effects. Given an appropriate tolerance level in the pseudo-

demeaning procedure we are able to obtain estimates and standard errors that are

arbitrarily close to those of a classical maximum likelihood estimation with dummy

variables. Whereas the latter approach quickly becomes either time demanding or

even infeasible, our algorithm is fast and memory efficient. Although this article

18. Further research is required on the statistical properties of both split panel jackknife approaches.
Intuitively, one would expect that the second splitting strategy should be more precise, since it is
based on larger subpanels.

61



focuses on GLMs the proposed procedures might be adjustable to other nonlinear

models.

Many nonlinear models with fixed effects are affected by the incidental parame-

ters problem. Whereas an extensive literature on one-way bias corrections exists,

further research is required for models with multi-way fixed effects. Fortunately,

our algorithm can be easily combined with split-panel bias corrections in spirit of

Dhaene and Jochmans (2015), which require only knowledge of the order of bias.

Fernández-Val and Weidner (2018a) propose a simple heuristic to determine this

order. As we demonstrate in the empirical application, jackknife bias corrections can

become computationally demanding emphasizing the relevance of our algorithm. At

the same time it encourages the development of analytical bias corrections for com-

monly used multi-way error components. Recent developments include analytical

bias corrections of Fernández-Val and Weidner (2016), Weidner and Zylkin (2018),

and Hinz, Stammann, and Wanner (2019) for nonlinear models with two-way fixed

effects, and pseudo-poisson and binary choice models with three-way fixed effects,

respectively. Czarnowske and Stammann (2019) show how the computational bur-

den of analytical bias corrections can be reduced considerably using the algorithm

described in this article.

To sum up, our Newton-Raphson pseudo-demeaning routine offers new possi-

bilities and reliefs to researchers since it allows to estimate models with many

observations and high-dimensional fixed effects even on a standard computer. We

provide the routine in an R-package alpaca to make it available for empirical re-

search.
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Appendix

A Further Monte Carlo Experiments

For the logit model with two-way fixed effects we generate data according to

yit = 1[x′
itβ+αi +γt +εit > 0],

where i = 1, . . . , N, t = 1, . . . ,T, xit = [xit1, xit2, xit3] with xitp beeing generated as iid.

standard normal for p = 1, . . . ,3, εit is an iid. logistic error term with location zero

and scale one, and β= [1,−1,1]′. To introduce a correlation between the fixed effects

and the regressors, they are generated according to αi ∼ iid. N (
∑3

p=1 x̄ip,1) and

γt ∼ iid. N (
∑3

p=1 x̄tp,1), where x̄. denote the corresponding group means.

Table 3.8: Logit: Exactness of β̂

N T 10−8 10−7 10−6 10−5 10−4 10−3

4 digits 250 50 1.00 1.00 1.00 1.00 1.00 1.00
250 100 1.00 1.00 1.00 1.00 1.00 1.00
500 50 1.00 1.00 1.00 1.00 1.00 1.00
500 100 1.00 1.00 1.00 1.00 1.00 1.00
500 250 1.00 1.00 1.00 1.00 1.00 1.00

6 digits 250 50 1.00 1.00 1.00 1.00 1.00 1.00
250 100 1.00 1.00 1.00 1.00 1.00 1.00
500 50 1.00 1.00 1.00 1.00 1.00 1.00
500 100 1.00 1.00 1.00 1.00 1.00 1.00
500 250 1.00 1.00 1.00 1.00 1.00 1.00

Note: Two-way fixed effects logit; measurement of exactness frequencies relative
to dummy variable approach up to 4 and 6 digits; used Neumann-Halperin pro-
jection with different tolerance levels; results based on 30 repetitions.

Table 3.9: Logit: Exactness of se(β̂)

N T 10−8 10−7 10−6 10−5 10−4 10−3

4 digits 250 50 0.90 0.90 0.90 0.90 0.90 0.90
250 100 0.97 0.97 0.97 0.97 0.97 0.97
500 50 1.00 1.00 1.00 1.00 1.00 1.00
500 100 1.00 1.00 1.00 1.00 1.00 1.00
500 250 1.00 1.00 1.00 1.00 1.00 1.00

6 digits 250 50 0.10 0.10 0.10 0.10 0.10 0.03
250 100 0.17 0.17 0.17 0.17 0.20 0.13
500 50 0.13 0.13 0.13 0.13 0.13 0.13
500 100 0.27 0.27 0.27 0.27 0.27 0.30
500 250 0.63 0.63 0.63 0.63 0.63 0.67

Note: Two-way fixed effects logit; measurement of exactness frequencies relative
to dummy variable approach up to 4 and 6 digits; used Neumann-Halperin pro-
jection with different tolerance levels; results based on 30 repetitions.
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Table 3.10: Logit: Average Computation Times

feglm()

N T glm() 10−8 10−7 10−6 10−5 10−4 10−3

250 50 4.60 0.06 0.05 0.05 0.05 0.05 0.05
250 100 13.26 0.11 0.10 0.10 0.09 0.09 0.08
500 50 32.42 0.11 0.10 0.10 0.09 0.09 0.08
500 100 77.44 0.21 0.20 0.19 0.18 0.17 0.16
500 250 299.06 0.52 0.50 0.46 0.45 0.42 0.39

1,000 50 - 0.22 0.22 0.20 0.18 0.17 0.16
1,000 100 - 0.44 0.40 0.38 0.36 0.35 0.31
1,000 250 - 1.06 1.01 0.94 0.94 0.84 0.78
1,000 500 - 2.61 2.50 2.25 2.16 1.95 1.78
5,000 50 - 1.19 1.08 1.03 0.97 0.89 0.84
5,000 100 - 2.75 2.59 2.37 2.30 2.07 1.87
5,000 250 - 8.78 8.36 7.52 7.15 6.27 5.58
5,000 500 - 17.51 17.09 15.28 14.22 12.67 11.27
5,000 1,000 - 32.75 32.18 28.35 27.19 24.25 21.95

1,0000 50 - 2.57 2.39 2.27 2.12 1.93 1.80
1,0000 100 - 7.06 6.64 6.04 5.71 4.99 4.46
10,000 250 - 17.77 17.22 15.05 14.23 12.84 11.27
10,000 500 - 33.35 31.92 28.26 26.95 24.24 22.00
10,000 1,000 - 65.78 65.00 57.77 55.16 49.93 44.87

Note: Two-way fixed effects logit; average computation times in seconds; glm() refers to
the standard GLM routine provided in R; feglm() refers to the Newton-Raphson pseudo-
demeaning algorithm (Neumann-Halperin projection with different tolerance levels); results
based on 30 repetitions.

B Recovering the Fixed Effects Ex-Post

Sometimes researchers might not only require estimates of the structural parameters

but also of the fixed effects. In the following we present two algorithms to efficiently

recover estimates of the fixed effects in a post-estimation routine.

Rearranging the linear predictor η=Dα+Xβ after convergence of algorithm 2

yields a large and sparse system of linear equations

Dα=η−Xβ︸ ︷︷ ︸
b

, (3.10)

where b can be computed at low computational cost from already available quantities.

Since the analytical solution of (3.10) is inefficient and often infeasible, we propose

two numerical routines to efficiently solve the linear system of equations.19

The first solver we present is in spirit of the Gauss-Seidel algorithm used by

Guimarães and Portugal (2010). We apply the same idea in order to compute the fixed

effects by alternating between the solution of the normal equations corresponding

to (3.10). Consider the case with three high-dimensional fixed effects α1,α2 and α3.

19. Note that the numerical solvers do not require D to have full column rank. In order to get
meaningful estimates for the fixed effects it is necessary to apply an estimable function to the solution
(see Gaure 2013b).
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The normal equations of system (3.10) are

D′
1D1α1 +D′

1D2α2 +D′
1D3α3 =D′

1b

D′
2D1α1 +D′

2D2α2 +D′
2D3α3 =D′

2b

D′
3D1α1 +D′

3D2α2 +D′
3D3α3 =D′

3b

and can be rearranged to

α1 = (D′
1D1)−1D′

1(b−D2α2 −D3α3)

α2 = (D′
2D2)−1D′

2(b−D1α1 −D3α3)

α3 = (D′
3D3)−1D′

3(b−D1α1 −D2α2)

The solver works as follows: given some starting values for the fixed effects, we

alternate between the solutions of the three normal equations. Fortunately, the

single equations can be computed easily. The vector αk = (D′
kDk)−1D′

k(b−D−kα−k)

contains the group means of (b−D−kα−k) with respect to group k, where D−kα−k

denotes all fixed effects contributions without the k-th. Algorithm 5 summarizes the

procedure for an arbitrary number of fixed effects.

Algorithm 5 Alternating Between Solutions of Normal Equations
1: Set j = 1, ρ j = (α1 j, . . . ,αK j) = 0l , where αk j is the vector of coefficients corre-

sponding to group k at iteration j, ρ j−1 =ρ j −1l , and tolerance level ε.
2: while ||ρ j −ρ j−1||2 ≥ ε do
3: for k = 1, . . . ,K do
4: Compute αk j as the group means of (b−D−kα−k j) w.r.t. group k.
5: Update ρ j with new αk j.

6: Set j = j+1.
7: Set α=ρ j.

A second approach to solve the system (3.10) is the Kaczmarz method (see Kacz-

marz 1937). The Kaczmarz method belongs to the so-called row-action methods and

is suitable to solve large and sparse systems (see Escalante and Raydan 2011). The

idea is similar to the alternating projection methods described in section 3.3. Each

equation of (3.10) defines a hyperplane and by alternating orthogonal projections

onto hyperplanes we can find the intersection. In our application the intersection

translates into the fixed effects coefficients. Each projection of the i-th hyperplane

onto the (i+1)-th hyperplane can be summarized as follows:

ρ i+1 =ρ i +
(bi −〈di,ρ i〉)

||di||22
di , (3.11)

where ρ is a l-dimensional vector of coefficients, di and bi denote the i-th row of D
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and b respectively, and || · ||22 is the squared euclidean norm. Each row of D contains

K times the value one, such that the denominator in (3.11) can be simplified as

follows:

ρ i+1 =ρ i +
(bi −〈di,ρ i〉)

K
di . (3.12)

Since D is sparse, the Kaczmarz updates can be computed at minimum memory.

Algorithm 6 summarizes the procedure. During the development of our software

package alpaca we found that algorithm 5 performs much faster than algorithm 6.

Algorithm 6 Kaczmarz
1: Set j = 1, ρ j = 0l , ρ j−1 =ρ j −1l , and tolerance level ε.
2: while ||ρ j −ρ j−1||2 ≥ ε do
3: Set ρ0 j =ρ j.
4: for i = 1, . . . ,n do
5: Compute ρ i j (see formula (3.12)).

6: Set j = j+1, ρ j =ρn j.

7: Set α=ρ j.
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Binary Choice Models with
High-Dimensional Individual and
Time Fixed Effects
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4.1 Introduction

The increasing number and availability of large panel data sets offers several advan-

tages to researchers compared to pure cross-sections or time series (see chapter 1.2

in Baltagi 2013 and Hsiao 2014 for a comprehensive list of advantages). Maybe the

most important advantage is that they allow to control for different sources of het-

erogeneity such as unobserved individual and/or time specific effects. So-called fixed

effects models treat these effects as additional parameters to be estimated and thus

allow for unrestricted correlation patterns between the explanatory variables and

the unobserved effects. As the researcher does not have to make any distributional

assumptions about the unobserved heterogeneity, these models are very flexible and

a natural candidate for many empirical applications.

In the early stage of panel data econometrics, panels consisted of relatively few

observations per individual. Consequently, when deriving asymptotic properties of

estimators, it is very often assumed that the number of individuals (N) grows and the

number of time periods (T) is held fixed. Under this asymptotic framework, nonlinear

fixed effects estimators are inconsistent, known as the incidental parameters problem

(IPP) first mentioned by Neyman and Scott (1948). Intuitively, only T observations

contribute to the identification of one individual effect, resulting in potentially noisy

estimates that bias the estimation of the other model parameters (see Arellano and

Hahn 2007; Fernández-Val and Weidner 2016, 2018a). This strand of literature

is therefore particularly interested in deriving fixed T consistent estimators. For

instance, so-called conditional logit estimators have been proposed for static and

dynamic binary choice models with individual fixed effects (see Rasch 1960; Andersen

1970; Chamberlain 1980; Honoré and Kyriazidou 2000). However, it is not possible to

derive fixed T consistent fixed effects estimators for all kind of models, e.g. the probit

model. Another drawback of all conditional logit estimators is that they preclude the

estimation of partial effects, which are often of interest in economics (see Arellano

and Hahn 2007; Fernández-Val and Weidner 2018a).

For these reasons, among others, and further motivated by the seminal work of

Phillips and Moon (1999) and the rising availability of comprehensive longitudinal

data, a growing literature now focuses on large N and T asymptotics. The beauty of

this asymptotic framework is that IPP turns into an asymptotic bias problem which

is easier to deal with than an inconsistency problem. In the meantime, this strand

of literature proposed several bias-corrected estimators for nonlinear models with

different error structures, which substantially reduce this asymptotic bias. We refer

the reader to Arellano and Hahn (2007) and Fernández-Val and Weidner (2018a) for

comprehensive overviews. The rest of this article focuses on binary choice models

with individual and time fixed effects and the appropriate bias corrections proposed
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by Fernández-Val and Weidner (2016).

Another apparent challenge that discourages researchers from using nonlinear

fixed effects models is the computational burden associated with the estimation.

This issue is especially severe if the model specification leads to high-dimensional

fixed effects, which happens quite often if we think about longitudinal micro data of

individuals or firms. Models with only one source of unobserved heterogeneity are

easy to handle, thanks to the partitioned inverse formula (see Chamberlain 1980;

Greene 2004), or an approach introduced as pseudo-demeaning by Stammann, Heiß,

and McFadden (2016). Even the estimation of nonlinear panel models with multiple

fixed effects is feasible, using algorithms such as Guimarães and Portugal (2010)

and Stammann (2018).

In this article, we offer new insights that facilitate and validate the usage of

binary choice models with individual and time fixed effects in empirical research.

First of all, we show how the computational obstacles which often preclude the

application of bias corrections, can be tackled by combining them with the method of

alternating projections (MAP). This approach is very well suited to our problem, be-

cause MAP is the work-horse method in linear models to deal with high-dimensional

fixed effects and is easily adjustable to generalized linear models, for instance logit

and probit models, as shown by Stammann (2018).1 Apart from the computational

improvements, we extend the simulation experiments of Fernández-Val and Weidner

(2016) by several aspects to gain deeper insights into the statistical properties of

various bias-corrected estimators. More precisely, we analyze further analytical and

split-panel jackknife bias-corrected estimators which have been suggested but not

studied by the authors. We additionally consider alternative estimators of average

partial effects based on bias-corrected linear fixed effects models which are fre-

quently used in empirical research to avoid the aforementioned pitfalls of nonlinear

models. Furthermore, because many real world data sets are initially unbalanced,

we add different patterns of unbalancedness to our analysis. This aspect has received

little attention in the literature so far. Finally, we provide an illustrative example

using an unbalanced panel data set drawn from the German Socio Economic Panel

(see Wagner, Frick, and Schupp 2007) to investigate the inter-temporal labor force

participation of 10,712 women between 1984 and 2013. Our suggested algorithm

reduces the computational burden of this application dramatically. For instance,

obtaining analytically bias-corrected estimates takes roughly two seconds on a stan-

dard desktop computer. To encourage the application of analytical bias corrections,

we provide our routines in the R-package alpaca.2

1. The corresponding R and Stata routines for linear models (lfe and reghdfe) provided by Gaure
(2013a) and Correia (2016), respectively, are widely used in empirical research. Together they have
about 170 citations on Google Scholar (checked at 2019-04-18).

2. Until now, the analytical bias correction proposed by Fernández-Val and Weidner (2016) was
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Overall, we find that analytical bias corrections are preferable to split-panel

jackknife approaches. In general, the latter show higher distortion and dispersion

and they are less robust to different missing data patterns. In addition, our findings

suggest a prudent use of (bias-corrected) linear probability models. Although their

application is very simple, their inference might be severely misleading.

The remainder of this article is organized as follows. Section 4.2 introduces

the model and different bias corrections. Section 4.3 demonstrates how to handle

high-dimensional fixed effects. Section 4.4 provides results of extensive simula-

tion experiments. Section 4.5 applies the different bias-corrected estimators to an

empirical example from labor economics. Finally section 4.6 concludes.

Throughout this article, we follow conventional notation: scalars are represented

in standard type, vectors and matrices in boldface, and all vectors are column vectors.

4.2 Bias Corrections for Fixed Effects Binary
Choice Models

4.2.1 Fixed Effects Binary Choice Models and the Incidental
Parameters Problem

At first, we derive the fixed effects binary choice model, studied in this article, from

a latent variable model with an additive separable two-way error component for the

disturbance. Let

y∗it = x′
itβ+αi +γt + e it ,

be the latent variable, where i = 1, . . . , N and t = 1, . . . ,T are individual and time

specific identifiers, xit is a J-dimensional vector of explanatory variables equal to

the it-th row of the regressor matrix X, β are the corresponding parameters, and

e it is an idiosyncratic error term. Note that xit might also include predetermined

variables. Further, let αi and γt denote unobserved individual and time specific

heterogeneity, respectively. Throughout this article, we refer to β as structural and

φ= (α′,γ′)′ as incidental parameters. However, instead of the latent variable, we

observe yit = 1 if y∗it ≥ 0 and yit = 0 otherwise which leads to the nonlinear nature of

the binary choice model.

The most popular way to derive an parametric estimator for fixed effects binary

choice models is the principle of maximum likelihood. Suppose the idiosyncratic

only provided in a Stata routine, which is not adapted to large panel data (see Cruz-Gonzalez,
Fernández-Val, and Weidner 2017).
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error term is drawn independently from a specific distribution. Then

l it
(
β,αi,γt

)= yit log(Fit)+ (1− yit) log(1−Fit) ,

is the log-likelihood contribution of individual i at time t, where Fit is the cumulative

distribution function of the idiosyncratic error term evaluated at ηit = x′
itβ+αi +γt.

Note that in the literature of generalized linear models (GLMs), ηit is known as

the linear predictor (see McCullagh and Nelder 1989). Common choices for Fit, in

economics, are the standard normal, the logistic, and the complementary log-log

distribution. The corresponding maximum likelihood estimator is

θ̂ =
(
β̂
′,α̂′, γ̂′

)′
= arg max

β,α,γ
L

(
β,α,γ

)
, (4.1)

where

L
(
β,α,γ

)= N∑
i=1

T∑
t=1

l it
(
β,αi,γt

)
.

Because (4.1) does not have a closed form solution, it has to be solved numerically.

The standard approach to estimate these models is to use any available standard

software routine and add indicators for each individual and time period to the list

of explanatory variables, also known as dummy encoding. However, if N and T
increases this estimation approach quickly becomes very time consuming or even

infeasible (see Stammann 2018 for a recent treatment of this issue).

Beside some computational obstacles, fixed effects estimators also suffer from the

so-called incidental parameters problem (IPP) known since the article of Neyman and

Scott (1948). To get an intuition of IPP suppose that T is small. In this case only a few

observations per individual provide information that contribute to the identification

of α. Thus the estimation error with respect to these incidental parameters can be

very severe. Due to the nonlinear nature of binary choice models, this estimation

error carries over to β̂, which is known as IPP (see among others Arellano and

Hahn 2007; Fernández-Val and Weidner 2018a). To deal with this problem, several

bias-corrected estimators have been proposed (see among others Hahn and Newey

2004; Fernández-Val 2009; Dhaene and Jochmans 2015; Fernández-Val and Weidner

2016; Kim and Sun 2016).

Next, we briefly summarize the key findings of Fernández-Val and Weidner (2016),

who developed bias-corrected estimators for nonlinear models with a two-way error

component. Using the same asymptotic framework as Hahn and Kuersteiner (2011),

the authors show that under certain conditions, most notably additive separability

and concavity, and under asymptotic sequences where N/T → κ2 and 0< κ<∞, the
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fixed effects estimator has the following asymptotic distribution:

p
NT

(
β̂−β

) d−→W
−1
∞ N

(
κB

β

∞+κ−1C
β

∞,W∞
)

,

where B
β

∞ and C
β

∞ are leading bias terms, stemming from the inclusion of individual

and time specific fixed effects, and W∞ is the Hessian of the concentrated log-

likelihood:

L ∗ (
β

)=max
α,γ

N∑
i=1

T∑
t=1

l it
(
β,αi,γt

)
. (4.2)

Despite that β̂ is consistent (plim N,T→∞ β̂=β), its distribution reveals an asymptotic

bias which can lead to severe consequences for inference even in moderately large

panels (see Fernández-Val and Weidner 2016, 2018a).

Often researchers are not directly interested in estimates of β, but rather in

so-called partial effects. Let ∆it j denote the partial effect of a change in xit j cor-

responding to individual i at time t, where xit j is the j-th element in xit. This

yields

∆it j =β j∂ηFit (4.3)

for continuous and

∆it j = Fit|xit j=1 −Fit|xit j=0 (4.4)

for binary regressors, where ∂ηFit is the first-order partial derivative of Fit with re-

spect to ηit. Because ∆it j is most likely different across individuals and time periods,

a common strategy is to compute the average such that δ j = (NT)−1 ∑
i
∑

t∆it j. This

quantity is known as the average partial effect of a change in xit j.

Imposing further sampling conditions, Fernández-Val and Weidner (2016) derive

the asymptotic distribution of the average partial effects estimator δ̂:

r
(
δ̂−δ−T−1B

δ

∞−N−1C
δ

∞
)

d−→N
(
0,V

δ

∞
)

,

where r is a convergence rate which depends on the sampling assumptions of the

unobserved heterogeneity, and V
δ

∞ is the asymptotic covariance matrix. Again, B
δ

∞
and C

δ

∞ are asymptotic bias terms stemming from the inclusion of individual and

time specific fixed effects. Thus similar to β̂ there is an asymptotic bias in the

distribution of δ̂.

In the next subsection, we review the various bias-corrected estimators proposed

by Fernández-Val and Weidner (2016). We use modified notation to ensure that it is

consistent with that of the acceleration techniques presented in section 4.3.
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4.2.2 Asymptotic Bias Corrections

Before we present the different bias-corrected estimators proposed by Fernández-

Val and Weidner (2016), we introduce some additional notation. Let ∂ηG it, ∂η2G it,

and ∂η3G it denote the first-, second-, and third-order partial derivative of an ar-

bitrary function G it with respect to ηit. ∂ηĜ it, ∂η2Ĝ it, and ∂η3Ĝ it are the cor-

responding sample analogues. For clarification, we refer to η̂it = x′
itβ̂+ α̂i + γ̂t

as the sample analogue of ηit. Further, let ∂η l̂ it = Ĥit(yit − F̂it), ω̂it = Ĥit∂ηF̂it,

Ĥit = ∂ηF̂it/(F̂it(1− F̂it)), and ν̂it = (yit − F̂it)/∂ηF̂it. Finally, we define the residual

projection M̂ = 1NT −P̂ = 1NT −D(D′Ω̂D)−1D′Ω̂, where 1NT is an identity matrix of

dimension NT × NT, D is a sparse indicator matrix arising from dummy encod-

ing of individual and time identifiers, and Ω̂ is a diagonal weighting matrix with

diag(Ω̂)= ω̂. Table 4.1 provides explicit expressions of some frequently used distri-

butions for binary choice models.

Table 4.1: Common Distributions and Derivatives

Logit Probit Complementary Log-Log

Fit (1+exp(−ηit))−1 Φ(ηit) 1−exp(−exp(ηit))
∂ηFit Fit(1−Fit) φ(ηit) exp(ηit −exp(ηit))
∂η2 Fit ∂ηFit(1−2Fit) −ηitφ(ηit) ∂ηFit(1−exp(ηit))
∂η3 Fit ∂ηFit((1−2Fit)2 −2∂ηFit) (η2

it −1)φ(ηit) ∂η2 Fit(2−exp(ηit))−∂ηFit

Note: Φ(·) and φ(·) are the cumulative distribution and probability density
function of the standard normal distribution.

Throughout this article we distinguish between two types of bias corrections:

analytical and re-sampling. The latter exploits the relation between sample size and

bias to construct estimators of the bias terms, whereas the former relies on explicit

expressions. A general expression for a bias-corrected estimator of the structural

parameter is

β̃= β̂− b̂β , (4.5)

where b̂β is an estimator of the composite bias term such that

p
NT

(
β̃−β

) d−→N
(
0,W

−1
∞

)
.

Next, we describe one of the analytical bias corrections proposed by Fernández-

Val and Weidner (2016). The corresponding estimator of the composite bias term

is

b̂β

abc = Ŵ−1
(
B̂β+ Ĉβ

)
,
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where

B̂β =− 1
2

N∑
i=1

∑T
t=1 Ĥit∂η2 F̂it

(
M̂X

)
it +2

∑L
l=1 (T/ (T − l))

∑T
t=l+1∂η l̂ it−lω̂it

(
M̂X

)
it∑T

t=1 ω̂it
,

Ĉβ =− 1
2

T∑
t=1

∑N
i=1 Ĥit∂η2 F̂it

(
M̂X

)
it∑N

i=1 ω̂it
,

Ŵ=
N∑

i=1

T∑
t=1

ω̂it
(
M̂X

)
it

(
M̂X

)′
it .

Note that Ŵ is the Hessian of (4.2) evaluated at β̂, L is a bandwidth parameter

proposed by Hahn and Kuersteiner (2007) required for the estimation of spectral

densities, and T/(T−l) is a finite sample adjustment suggested by Fernández-Val and

Weidner (2016). If all explanatory variables are assumed to be strictly exogenous, we

can set L = 0 and the second term in B̂β drops out, leading to symmetric bias terms.

If not, Fernández-Val and Weidner (2016, 2018a) suggest to do a sensitivity analysis

reporting estimates for L ∈ {1, . . . ,4}. The authors also note that the analytical bias-

corrected estimator can be further iterated. More precisely, for a given β̃, we can

compute b̂abc and update β̃ again and again. Although the asymptotic distribution

of (4.5) is not affected by the iteration, its finite-sample performance might improve

(see among others Hahn and Newey 2004; Arellano and Hahn 2007).

Fernández-Val and Weidner (2016) also extend the split-panel jackknife bias

correction of Dhaene and Jochmans (2015) to nonlinear models with a two-way error

component. The idea is to split the panel into smaller subpanels and use these

to form an estimator of the composite bias term. Those subpanels are extracted

as blocks, to maintain the dependency structure of the panel. Next, we describe

two estimators of the bias term that are based on different splitting strategies to

generate subpanels. The first one is described in Fernández-Val and Weidner (2016).

Let

b̂β

spj1 = β̂
N + β̂

T −2β̂ (4.6)

be an estimator of the composite bias term, where

β̂
N = 1

2
(
β̂{i≤dN/2e} + β̂{i≥bN/2+1c}

)
, β̂T = 1

2
(
β̂{t≤dT/2e} + β̂{t≥bT/2+1c}

)
,

d·e and b·c are floor and ceiling functions, and the subscript in curly brackets indicates

the corresponding subpanel. For instance, {i ≤ dN/2e} means that we only use the

first half of all individuals in the sample to compute β̂. Note that if N and/or T
are odd this leads to overlapping subpanels that introduce an additional variance

inflation (see Dhaene and Jochmans 2015).3 Cruz-Gonzalez, Fernández-Val, and

3. The authors also describe how to construct non-overlapping subpanels.
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Weidner (2017) propose another splitting strategy. The corresponding estimator of

the composite bias term is

b̂β

spj2 = β̂
NT − β̂ , (4.7)

where

β̂
NT =1

4
(
β̂{i≤dN/2e;t≤dT/2e} + β̂{i≤dN/2e;t≥bT/2+1c}+

β̂{i≥bN/2+1c;t≤dT/2e} + β̂{i≥bN/2+1c;t≥bT/2+1c}
)

.

Contrary to the first strategy, the panel is split simultaneously along both dimensions.

Thus {i ≤ dN/2e; t ≤ dT/2e} indicates that β̂ is computed based on the first half of

all individuals in the first half of all time periods. The second splitting strategy is

computationally less intense because the four subpanels are significantly smaller.

However this strategy might lead to larger dispersion compared to the first one.

Further note that, contrary to analytical bias corrections, the split-panel jackknife

requires an additional unconditional homogeneity assumption (see assumption 4.3

in Fernández-Val and Weidner 2016 for details). For instance, this condition rules

out time-trends or structural breaks in the explanatory variables. Intuitively, if the

subpanels stem from very different data generating processes, for instance due to

non-stationarity, this will result in a poor estimate of the bias term because the

subpanel estimates are very different from each other (see Dhaene and Jochmans

2015; Fernández-Val and Weidner 2016, 2018a).

So far the bias corrections are applied at the level of the estimator. Fernández-Val

and Weidner (2016) also show how to apply the analytical correction at the level of

score. The corresponding bias-corrected estimates can be obtained by solving

(
M̂X

(
β̃

))′
Ω̂

(
β̃

)
ν̂

(
β̃

)= B̂β+ Ĉβ

for β̃ using any nonlinear solver. Note that the left hand side is the gradient of (4.2)

evaluated at β̃. The authors also suggest a continuously updated score correction by

replacing B̂β and Ĉβ with B̂β(β̃) and Ĉβ(β̃), respectively.

Additionally Fernández-Val and Weidner (2016) derive bias corrections for av-

erage partial effects. Let δ̂= (NT)−1 ∑
i
∑

t ∆̂it, where ∆̂it is the sample analogue of

(4.3) or (4.4). Similar to the structural parameters, a bias-corrected estimator for the

average partial effects is

δ̃= δ̂− b̂δ ,

where b̂δ is an estimator of the composite bias term such that

r
(
δ̃−δ

) d−→N
(
0,V

δ

∞
)

.
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Again, we can either use analytical expressions to construct an estimator of the

composite bias term or we can use re-sampling techniques. Because the adjustment

of the different split-panel jackknife strategies to average partial effects is generic

and straightforward, we omit it for brevity.

Next, we describe the analytical bias-corrected estimator of the averaged partial

effects proposed by Fernández-Val and Weidner (2016, 2018b) and assume that

∆̂it and δ̂ are constructed from bias-corrected estimates of β. The corresponding

estimator of the composite bias term is

b̂δ
abc = (NT)−1

(
B̂δ+ Ĉδ

)
,

where

B̂δ =1
2

N∑
i=1

∑T
t=1−Ĥit∂η2 F̂it

(
P̂Ψ̂

)
it +∂η2∆̂it +2

∑L
l=1 (T/ (T − l))

∑T
t=l+1∂η l̂ it−lω̂it

(
M̂Ψ̂

)
it∑T

t=1 ω̂it

Ĉδ =1
2

T∑
t=1

∑N
i=1−Ĥit∂η2 F̂it

(
P̂Ψ̂

)
it +∂η2∆̂it∑N

i=1 ω̂it
,

and Ψ̂it = ∂η∆̂it/ω̂it, where ∂η∆̂it is the first-order partial derivative of ∆̂it with

respect to η̂it. An estimator of the asymptotic covariance is

V̂δ = r2

N2T2

[(
N∑

i=1

T∑
t=1

¯̂∆it

)(
N∑

i=1

T∑
t=1

¯̂∆it

)′
+

N∑
i=1

T∑
t=1

Γ̂itΓ̂
′
it +2

N∑
i=1

T∑
s>t

¯̂∆itΓ̂
′
is

]
,

where

Γ̂it =
(

N∑
i=1

T∑
t=1

∂β∆̂it −
(
P̂X

)
it ∂η∆̂it

)′
Ŵ−1 (

M̂X
)

it ω̂itν̂it −
(
P̂Ψ̂

)
it ∂η l̂ it ,

¯̂∆it = ∆̂it − δ̂, and ∂β∆̂it is the first-order partial derivative of ∆̂it with respect to

β̂. Note that the first term takes into account the variation induced by estimating

sample instead of population means, the second term captures variation due to

parameter estimation also known as delta method, and the last term is a covariance

between both sources of variation that can be dropped if all explanatory variables

are assumed to be strictly exogenous. Fernández-Val and Weidner (2016, 2018b)

also derive an alternative estimator of V
δ

by imposing additional sampling condi-

tions with respect to the unobserved heterogeneity. Given that {αi}N and {γt}T are

sequences of independent random variables and that αi ⊥ γt∀ i, t, the estimator of

the asymptotic covariance simplifies to

V̂δ = r2

N2T2

N∑
i=1

(
T∑

t,s=1

¯̂∆it
¯̂∆′

is +
N∑
j 6=i

T∑
t=1

¯̂∆it
¯̂∆′

jt +
T∑

t=1
Γ̂itΓ̂

′
it +2

T∑
s>t

¯̂∆itΓ̂
′
is

)
.
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So far we know how to construct bias-corrected estimators for binary choice

models with a two-way error component. However, the estimation of these models

themselves is computationally challenging even in moderately large panels. The

same applies to the computation of all quantities based on M̂ and P̂ that are required

for the different bias corrections. In the next section, we present three algorithms

that help to overcome those computational obstacles.

4.3 Computation in Large Panel Data

Recently Stammann (2018) proposed a fast and feasible algorithm to estimate

all GLMs with a multi-way error component that is also directly applicable to

unbalanced data. We briefly review the algorithm for binary choice models with

individual and time fixed effects and show how parts of the estimation algorithm

can be used to accelerate analytical bias corrections as well.

Remember, (4.1) has no closed form solution and has to be solved numerically.

Using Newton’s method, the parameter update in iteration r is

(
θ̂r+1 − θ̂r

)= (
Z′Ω̂Z

)−1 Z′Ω̂ν̂ , (4.8)

where Z= (X,D) and θ̂ = (β̂′,φ̂′)′.4 Because increasing the number of observations

also increases the rank of D, the computation of the parameter update quickly

becomes infeasible. Fortunately, a closer look reveals that (4.8) is essentially the

solution of the following weighted least-squares problem:

ν̂=X
(
βr+1 −βr

)+D
(
φr+1 −φr

)+u , (4.9)

where Ω̂ is the corresponding weighting matrix. This implies that the normal

equations of (4.9) are

X′Ω̂X
(
β̂r+1 − β̂r

)+X′Ω̂D
(
φ̂r+1 − φ̂r

)=X′Ω̂ν̂ , (4.10)

D′Ω̂X
(
β̂r+1 − β̂r

)+D′Ω̂D
(
φ̂r+1 − φ̂r

)=D′Ω̂ν̂ . (4.11)

Re-arranging (4.11) yields

D
(
φ̂r+1 − φ̂r

)= P̂
(
ν̂−X

(
β̂r+1 − β̂r

))
. (4.12)

4. It is actually a particular variant of Newton’s method known as Fisher scoring where the
observed Hessian is replaced by its expectation (see chapter 2.5 in McCullagh and Nelder 1989).
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Substituting (4.12) in (4.10) and exploiting that M̂ is idempotent reveals that

(
β̂r+1 − β̂r

)= ((
M̂X

)′
Ω̂

(
M̂X

))−1 (
M̂X

)′
Ω̂

(
M̂ν̂

)
is the weighted least-squares solution of

M̂ν̂= M̂X
(
βr+1 −βr

)+u . (4.13)

Consequently, as for the linear model, we can separate the estimation of the struc-

tural from the incidental parameters.5

However, we also need to update ν̂ and Ω̂ in each iteration. Both are functions of

the linear predictor η̂ which is a function of the incidental parameters as well. Either

we need to use a numerical solver to find estimates of the incidental parameters

for a given β̂, which can be very computationally demanding, or we need to find a

way to update the linear predictor itself. Fortunately, η̂ can be updated quite easily

using already computed quantities. From the linear fixed effects model it is well

known that the residuals of (4.9) and (4.13) are equal see (see Gaure 2013b). Some

rearrangements yield

(
η̂r+1 − η̂r

)= ν̂−M̂ν̂+M̂X(β̂r+1 − β̂r) .

Summing up, the entire algorithm can be sketched as follows:

Definition. Newton’s Method
Initialize β̂ and η̂; repeat the following steps until convergence

Step 1: Given η̂ compute ν̂ and Ω̂

Step 2: Given ν̂ and Ω̂ update β̂

Step 3: Given β̂ update η̂

So far we have re-arranged the optimization problem such that it abstains

from the estimation of potentially many incidental parameters. Unfortunately, a

remaining challenge is the computation of M̂ itself. Because the residual projection is

of dimension NT×NT, the computation and storage quickly becomes infeasible. Let

v be an arbitrary vector and M̂v the corresponding weighted within transformation.

In case of a one-way error component, M̂v can be efficiently computed by subtracting

weighted group means from v. Throughout this article we refer to any M̂v as centered

5. Note that Stammann (2018) proposes an additional valid residual projection. Let M̃= 1NT −P̃=
1NT −D̃(D̃′D̃)−1D̃′, where D̃ = Ω̂

1/2D. An estimate of (βr+1 −βr) can be obtained by regressing M̃ν̃

on M̃X̃, where ν̃ = Ω̂
1/2

ν̂ and X̃ = Ω̂
1/2X. Thus Ω̂

1/2
M̂ν̂ = M̃ν̃ and Ω̂

1/2
M̂X = M̃X̃. During extensive

studies in the development of our R-package alpaca, we did not find any projection to be superior
in terms of computation time. In this article, we use M̂ because it is in line with notation used in
Fernández-Val and Weidner (2016, 2018a).

82



vector. However, because M̂ loses its sparse structure for models with a multi-way

error component, we cannot derive a simple scalar expression for these cases.

In the context of linear models, Guimarães and Portugal (2010) and Gaure

(2013b) propose a computationally efficient approach to obtain centered vectors

for any multi-way error component. Combining the results of Neumann (1950)

and Halperin (1962), they suggest an iterative procedure known as the method of

alternating projections (MAP) which results in an arbitrary close approximation of

the within transformation. Gaure (2013b) gives a detailed theoretical foundation

of this approach in the context of linear models. Stammann (2018) shows how to

extend MAP to GLMs.

To get an intuition how MAP works, we briefly describe an algorithm for GLMs

with a two-way error component. Let D= (D1,D2), where D1 and D2 are submatrices

indicating individuals and time periods, respectively. Further, we introduce the

following centered vectors M̂kv = 1NT −Dk(D′
kΩ̂Dk)−1D′

kΩ̂v, where k ∈ {1,2}. The

appropriate scalar expressions for the weighted within transformations are

(
M̂1v

)
it = vit −

∑T
t=1 ω̂itvit∑T

t=1 ω̂it
and

(
M̂2v

)
it = vit −

∑N
i=1 ω̂itvit∑N

i=1 ω̂it
.

The centering algorithm using MAP can be described as follows:

Definition. Centering Algorithm using MAP (von Neumann / Halperin)
Initialize M̂v= v; repeat the following steps until convergence

Step 1: Compute M̂1M̂v and update M̂v such that M̂v= M̂1M̂v
Step 2: Compute M̂2M̂v and update M̂v such that M̂v= M̂2M̂v

Because this algorithm only needs to evaluate scalar expressions, it is memory

efficient and quite fast. Further, given an appropriate tolerance level, it returns

an arbitrary close approximation to M̂v, that can be used to accelerate Newton’s

method as well as analytical bias corrections (see Stammann 2018 for further details

on MAP). More precisely, we can use MAP to approximate M̂ν̂ and M̂X, where

the latter is obtained by sequentially applying the algorithm to each column of X.

These approximations can be used afterwards to compute updates of the structural

parameters and estimates of the leading bias terms.

Next, we present a further algorithm that is required in the context of bias

corrections. Suppose we have bias-corrected the structural parameter estimates and

want to re-estimate our model given we already know that β̂= β̃. For instance, this

is required if we want to apply an analytical bias correction at the level of the score

or bias-correct the average partial effects. In the literature of GLMs, this type of

algorithm is known as offset tracing back to Nelder and Wedderburn (1972). In the
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following, we derive a computationally efficient offset algorithm based on MAP. To

do this, we have to re-formulate the maximization problem in (4.1) as

φ̂= (
α̂′, γ̂′)′ = arg max

α,γ

N∑
i

T∑
t

l it(β̃,αi,γt) ,

where β̃ is assumed to be known. This yields the following update step in iteration r:

(
φ̂r+1 − φ̂r

)= (D′Ω̂D)−1D′Ω̂ν̂

with

η̂r+1 =Xβ̃+Dφ̂r+1 and Dφ̂r+1 = P̂ν̂+Dφ̂r .

Note that the linear predictor is a sufficient quantity to compute, for example,

standard errors, partial effects, or predictions. The entire offset algorithm can be

summarized as follows:

Definition. Newton’s Method (Offset)
Given β̃ initialize η̂; repeat the following steps until convergence

Step 1: Given η̂ compute ν̂ and Ω̂

Step 2: Given ν̂ and Ω̂ update η̂

Finally, we give a short impression about the capabilities of the algorithms

presented in this section. Therefore, we estimate a fixed effects probit model with

three explanatory variables and a two-way error component and compare the overall

computation time of different R commands. More precisely, we use feglm() provided

in our R-package alpaca, which is based on the algorithms described in this section,

and compare it to speedglm() (Enea 2017) and glm() (R Core Team 2019). Used on

a data set consisting of 2,000 individuals observed for 52 time periods, our routine

takes about half a second, while speedglm() and glm() require 22 and 1,120 seconds,

respectively.6

In summary, we have presented three algorithms that help to speed up the compu-

tation of binary choice models with two-way error components and the corresponding

bias corrections. In the next subsequent sections, we use these algorithms in an

extensive simulation study and an empirical example from labor economics.

4.4 Simulation Experiments

We analyze the finite sample behavior of different uncorrected and bias-corrected

fixed effects estimators for binary choice models. The quantities of interest are the

6. All computations were done on a Linux Mint 18.1 workstation using R version 3.6.1 and an Intel
Xeon E5-2640 v3s.
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structural parameters and average partial effects. Beside the different nonlinear

estimators introduced in this article, we additionally consider the linear fixed effects

estimator as an alternative to obtain estimates of the average partial effects. We

restrict ourselves to the analysis of dynamic models, because the statistical properties

with respect to the exogenous regressor are similar in static and dynamic designs

(see Fernández-Val and Weidner 2016).

Next, we describe all estimators analyzed in this simulation study. Beside

the uncorrected probit estimator (MLE), we consider four different analytical bias

corrections for the structural parameters. Two of them correct the estimator itself,

whereas the others are obtained by minimizing modified score equations. ABC1

is the analytical bias correction analyzed by Fernández-Val and Weidner (2016,

2018a). ABC2 is essentially ABC1, but additionally iterated until convergence.

Arellano and Hahn (2007) refer to this approach as infinitely repeated analytical

bias correction. ABC3 and ABC4 are the score-corrected estimators. They only

differ in that ABC4 updates the bias terms in each iteration of the nonlinear solver,

whereas ABC3 treats them as fixed. The analytical bias-corrected estimators of the

average partial effects are labeled analogously. Further, we consider two split-panel

jackknife bias-corrected estimators that differ in their splitting strategy. SPJ1 and

SPJ2 refer to the strategies used in (4.6) and (4.7), respectively. Finally, we use an

analytical bias-corrected estimator for dynamic linear fixed effects models that was

initially proposed by Nickell (1981) (see among others Hahn and Kuersteiner 2002;

Hahn and Moon 2006; Fernández-Val and Weidner 2018a; Chen, Chernozhukov, and

Fernández-Val 2019). Throughout this article, we denote the (bias-corrected) linear

fixed effects estimator as LPM.

We use the dynamic model design of Fernández-Val and Weidner (2016) and

generate

yit =1
[
ρyit−1 +βxit +αi +γt ≥ εit

]
,

yi0 =1
[
βxi0 +αi +γ0 ≥ εi0

]
,

where i = 1, . . . , N, t = si, . . . ,Ti, αi ∼ iid. N (0,1/16), γt ∼ iid. N (0,1/16),

εit ∼ iid. N (0,1), and 1[·] is an indicator function. Furthermore, we assume that

the exogenous regressor follows an AR-1 process: xit = 0.5xit−1 +αi +γt +νit, where

νit ∼ iid. N (0,0.5) and xi0 ∼ iid. N (0,1). The corresponding structural parameters

are ρ = 0.5 and β= 1.

Contrary to Fernández-Val and Weidner (2016), we analyze three different panel

structures and use sample sizes that better reflect commonly used data sets (much

more individuals than time periods). More precisely, the first structure is a balanced

panel, whereas the others mimic different patterns of randomly missing observations.
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To describe the different patterns, we introduce two types of individuals: type 1

and type 2. Let N1 and N2 denote the number of type 1 and type 2, such that

N = N1 +N2. Further, we assume that type 1 and type 2 are observed for T1 and

T2 consecutive time periods, respectively. In the first pattern, the time series of

both types starts at t = 1 but type 1 leaves the panel at an earlier point of time

such that T1 < T2. The second pattern is identical in the sense that type 2 is

observed longer than type 1. However, the time series of any type 1 does not

necessary start at t = 1. Instead, an initial period is chosen randomly for each

type 1 such that t = si, . . . , si +T1, where si is sampled with equal probability from

{0,1, . . . ,T2 −T1}. Figure 4.1 provides a graphical illustration for both of the missing

Figure 4.1: Patterns of Randomly Missing Observations

data patterns. Further, we generate panel data sets of different sizes. In case of

balanced data N = 200 and Ti = T ∈ {10,15,20,25,30}, whereas in case of unbalanced

data {N1, N2} ∈ {{300,100}, {150,150}, {60,180}}, T1 = 10, and T2 = 30. The different

pairs of {N1, N2} are chosen such that the average number of individuals (N) and

time periods (T) allow comparisons between the different panel structures. More

precisely, N = N = 200 and T ⊂ Ti ∈ {15,20,25}.

To analyze the finite-sample properties and ensure comparability, we follow

Fernández-Val and Weidner (2016) and compute the following statistics: biases, stan-

dard deviations (SD), root mean squared errors (RMSE), average ratios of standard

errors and standard deviations (SE/SD), and empirical coverage probabilities of 95

% confidence intervals (CP .95). Throughout this article we report biases, SD, and

RMSE in percentage relative to the truth. The average partial effects and the corre-

sponding standard errors are computed based on (4.3) and (4.4) and the simplified

expression of the asymptotic covariance. Additionally, we consider different choices
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of the bandwidth parameter for the analytical bias corrections, L ∈ {1,2,3,4}. To get

insights how joint hypothesis testing is affected by IPP, we analyze sizes of different

Wald tests with H0 : ρ = 0.5∧β = 1 at a nominal level of 5 % using test statistics

constructed from different estimators. All results are based on 1,000 replications

using R version 3.6.1 (R Core Team 2019) on a Linux Mint 18.1 workstation with an

Intel Xeon E5-2640 v3s.7 A complete summary of all statistics can be found in the

supplementary material.8

We start with the comparison between the different analytical corrections. Table

4.2 reports the relative biases of the estimators of the structural parameters and

average partial effects along with different choices of the bandwidth parameter. For

brevity, we only present results for balanced panels where T ∈ {10,20,30} and note

that the findings are similar in unbalanced panels. The relative biases of estimators

corresponding to the predetermined variable are more severe than their exogenous

counterpart. As expected, all corrections reduce a larger fraction of the bias as T
increases. Furthermore, the differences between the estimators are most apparent

in the case of T =10, where ABC2–ABC4 are clearly dominated by ABC1. This also

holds for T = 20 and T = 30, but the differences in relative biases become negligible

small. This is in line with findings of Juodis (2015) who analyzed an iterated

analytical bias correction for static probit models with one-way error component. If

we additionally take into account that the other analytical bias corrections are much

more computationally demanding, ABC1 is clearly preferable. Further, we find that

values of L ∈ {1,2} are the most appropriate bandwidth choices for our chosen panel

dimensions.

Next, we compare the two different split-panel jackknife estimators described

in this article. Again, we restrict ourselves to the case of balanced panels and note

that we have similar findings for unbalanced. The results are reported in table 4.3.

Similar to the analytical correction, the bias reduction improves as T increases. We

find almost identical properties of both estimators which is remarkably, because we

would expect that the splitting strategy of SPJ2 leads to higher dispersion due to

the use of significantly smaller subpanels to construct the composite bias term. Only

for estimators of the structural parameters and T = 10, we observe that the relative

bias and dispersion of SPJ2 is slightly higher. For the average partial effects we

observe that the properties of both estimators are indistinguishable irrespective of

the sample size. Further, note that SPJ2 is computationally less demanding because

7. Additionally, we use the R-package lfe of Gaure (2013a) for the estimation of linear fixed
effects models and the nonlinear equations solver (nleqslv) provided by Hasselman (2018) for the
score-corrected analytical bias corrections.

8. We also report results of a static data generating process and different designs of the exogenous
regressor following Fernández-Val and Weidner (2016). Additionally, we provide a replication of the
authors simulation study. The complete summary of all statistics is available from the authors upon
request.
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Table 4.2: Analytical Bias Corrections and Bandwidth Parameters

Coefficients APE

L = 1 L = 2 L = 3 L = 4 L = 1 L = 2 L = 3 L = 4

N = 200; T = 10

Lagged Dependent Variable
ABC1 -7.31 -8.75 -17.52 -26.82 -9.26 -10.67 -19.70 -29.21
ABC2 -13.94 -13.91 -20.99 -29.00 -16.94 -16.88 -24.05 -32.09
ABC3 -9.34 -10.73 -19.18 -28.13 -11.82 -13.18 -21.77 -30.84
ABC4 -11.13 -10.96 -18.39 -26.86 -13.60 -13.40 -21.00 -29.58

Exogenous Regressor
ABC1 1.38 1.20 1.37 1.54 -0.01 -0.14 -0.15 -0.20
ABC2 4.90 4.74 4.76 4.70 2.37 2.22 2.08 1.87
ABC3 3.08 2.90 2.95 3.02 1.12 0.99 0.89 0.78
ABC4 3.04 2.85 2.95 2.92 1.14 0.97 0.88 0.69

N = 200; T = 20

Lagged Dependent Variable
ABC1 -4.25 -2.20 -3.85 -5.91 -4.99 -2.81 -4.54 -6.70
ABC2 -6.07 -3.85 -5.21 -7.03 -7.16 -4.84 -6.26 -8.16
ABC3 -4.63 -2.61 -4.24 -6.27 -5.51 -3.37 -5.06 -7.18
ABC4 -5.36 -3.05 -4.45 -6.33 -6.27 -3.84 -5.31 -7.27

Exogenous Regressor
ABC1 0.86 0.72 0.78 0.88 0.28 0.18 0.24 0.32
ABC2 1.80 1.69 1.75 1.82 0.95 0.87 0.91 0.96
ABC3 1.22 1.10 1.15 1.23 0.52 0.44 0.49 0.56
ABC4 1.29 1.16 1.22 1.31 0.60 0.50 0.55 0.61

N = 200; T = 30

Lagged Dependent Variable
ABC1 -3.07 -1.15 -1.72 -2.58 -3.32 -1.29 -1.88 -2.79
ABC2 -3.92 -1.97 -2.43 -3.20 -4.35 -2.29 -2.78 -3.59
ABC3 -3.22 -1.32 -1.88 -2.73 -3.53 -1.52 -2.11 -3.00
ABC4 -3.60 -1.60 -2.07 -2.86 -3.93 -1.82 -2.32 -3.15

Exogenous Regressor
ABC1 0.33 0.20 0.23 0.27 0.16 0.05 0.09 0.12
ABC2 0.78 0.67 0.70 0.73 0.48 0.39 0.42 0.45
ABC3 0.48 0.36 0.39 0.42 0.26 0.17 0.20 0.23
ABC4 0.53 0.41 0.44 0.48 0.31 0.21 0.24 0.27

Note: All entries are biases in percentage relative to the truth; results based on 1,000 repetitions.
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Table 4.3: Split-Panel Jackknife Bias Corrections

Coefficients APE

SPJ1 SPJ2 SPJ1 SPJ2

Bias SD Bias SD Bias SD Bias SD

Lagged Dependent Variable
N = 200; T = 10 19.82 21.20 22.15 21.93 -12.05 19.64 -11.88 19.68
N = 200; T = 15 -0.07 15.06 0.52 15.11 -10.67 15.14 -10.62 15.11
N = 200; T = 20 3.38 12.38 3.75 12.42 -2.82 13.37 -2.80 13.38
N = 200; T = 25 0.34 10.64 0.57 10.68 -3.21 11.41 -3.18 11.42
N = 200; T = 30 1.44 9.79 1.63 9.82 -0.89 10.70 -0.86 10.71

Exogenous Regressor
N = 200; T = 10 -7.12 9.05 -9.86 9.55 5.67 7.60 5.26 7.65
N = 200; T = 15 -1.08 6.00 -1.98 6.07 2.55 5.79 2.39 5.79
N = 200; T = 20 -1.70 4.71 -2.31 4.74 1.43 4.68 1.31 4.69
N = 200; T = 25 -0.61 4.13 -0.99 4.13 0.93 4.17 0.85 4.17
N = 200; T = 30 -1.00 3.51 -1.32 3.51 0.54 3.77 0.48 3.77

Note: Bias and SD denote biases and standard deviations in percentage relative to the truth; results
based on 1,000 repetitions.

the model is re-estimated the same amount of times but on smaller subpanels.

So far, we found that the statistical properties of the different analytical and split-

panel bias corrections barely differ from each other. To allow for some comparisons

with the study of Fernández-Val and Weidner (2016), we focus on the small sample

properties of MLE, ABC1, SPJ1, and LPM, where values in parentheses indicate

the corresponding choice of the bandwidth parameter. Table 4.4 and 4.5 report the

results based on balanced panel data sets. First, we find that the properties of the

estimators that refer to effect of the predetermined variable are worse than those

that are related to the exogenous regressor. For instance, we observe larger relative

biases and dispersion as well as coverage probabilities further away from their

nominal level. The relative distortion we find in the coefficients is also reflected in

the estimates of the average partial effects. That is contrary to the results we observe

with regard to the average partial effects of the exogenous regressor, where we can

only find negligibly small relative biases.9 Generally, the bias corrections work as

expected. They reduce the relative biases and improve the coverage probabilities.

As in Fernández-Val and Weidner (2016), the properties of SPJ1 are worse than

those of ABC1. Another interesting insight can be learned from LPM. In case

of the exogenous regressor, the estimators do not show any distortion, but valid

inference is questionable, because standard errors are underestimated and coverage

probabilities are lower than their nominal level. For the predetermined variable,

there is also the curiosity that the relative bias increases in T.10 Our explanation for

9. Hahn and Newey (2004), Fernández-Val (2009), and Fernández-Val and Weidner (2016) also find
only small biases in average partial effects of the exogenous regressor.

10. To ensure that this is not due to a weird programming error, we add some simulation experiments
in appendix A where we apply the bias-corrected linear fixed effects estimator to a standard data
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Table 4.4: Properties: Balanced - Lagged Dependent Variable

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 10

MLE -64 18 66 0.96 0.05 -70 15 72 1.05 0.01
ABC1 (1) -7 16 17 1.09 0.95 -9 16 19 1.10 0.94
ABC1 (2) -9 17 19 1.01 0.92 -11 18 21 1.02 0.91
SPJ1 20 21 29 0.79 0.76 -12 20 23 0.99 0.88
LPM (1) 6 18 18 0.95 0.92
LPM (2) 7 19 20 0.88 0.89

N = 200; T = 15

MLE -42 14 44 1.01 0.12 -50 12 51 1.05 0.03
ABC1 (1) -6 12 14 1.09 0.95 -7 13 15 1.08 0.94
ABC1 (2) -4 13 14 1.03 0.95 -5 14 15 1.03 0.94
SPJ1 -0 15 15 0.89 0.91 -11 15 19 0.94 0.87
LPM (1) 10 14 17 0.95 0.87
LPM (2) 13 15 20 0.90 0.82

N = 200; T = 20

MLE -31 12 33 0.98 0.23 -38 11 39 0.98 0.09
ABC1 (1) -4 11 12 1.04 0.94 -5 12 13 1.01 0.94
ABC1 (2) -2 11 12 1.00 0.95 -3 12 13 0.97 0.94
SPJ1 3 12 13 0.92 0.91 -3 13 14 0.91 0.93
LPM (1) 12 13 17 0.92 0.80
LPM (2) 15 13 20 0.88 0.71

N = 200; T = 25

MLE -24 10 26 1.03 0.35 -30 10 32 1.02 0.15
ABC1 (1) -3 9 10 1.08 0.95 -4 10 11 1.05 0.95
ABC1 (2) -1 10 10 1.04 0.96 -2 10 11 1.02 0.95
SPJ1 0 11 11 0.95 0.94 -3 11 12 0.94 0.93
LPM (1) 14 11 18 0.96 0.71
LPM (2) 17 11 20 0.93 0.61

N = 200; T = 30

MLE -20 10 23 0.97 0.41 -25 10 27 0.95 0.22
ABC1 (1) -3 9 10 1.01 0.94 -3 10 10 0.97 0.93
ABC1 (2) -1 9 9 0.98 0.94 -1 10 10 0.95 0.93
SPJ1 1 10 10 0.94 0.93 -1 11 11 0.91 0.92
LPM (1) 15 11 18 0.89 0.65
LPM (2) 17 11 20 0.87 0.56

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.
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Table 4.5: Properties: Balanced - Exogenous Regressor

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 10

MLE 22 8 24 0.87 0.14 3 6 7 1.10 0.93
ABC1 (1) 1 6 7 1.00 0.95 -0 6 6 1.11 0.97
ABC1 (2) 1 6 7 0.99 0.94 -0 6 6 1.10 0.97
SPJ1 -7 9 12 0.69 0.68 6 8 9 0.91 0.83
LPM (1) -0 6 6 0.81 0.88
LPM (2) -0 6 6 0.81 0.88

N = 200; T = 15

MLE 14 6 15 0.95 0.23 3 5 6 0.97 0.90
ABC1 (1) 1 5 5 1.04 0.95 0 5 5 0.98 0.94
ABC1 (2) 1 5 5 1.04 0.95 0 5 5 0.97 0.94
SPJ1 -1 6 6 0.82 0.88 3 6 6 0.87 0.87
LPM (1) -0 5 5 0.78 0.88
LPM (2) -0 5 5 0.77 0.87

N = 200; T = 20

MLE 11 5 12 0.95 0.32 2 4 5 0.98 0.90
ABC1 (1) 1 4 4 1.02 0.95 0 4 4 0.99 0.94
ABC1 (2) 1 4 4 1.02 0.95 0 4 4 0.98 0.95
SPJ1 -2 5 5 0.88 0.89 1 5 5 0.90 0.90
LPM (1) -0 4 4 0.78 0.88
LPM (2) -0 4 4 0.78 0.88

N = 200; T = 25

MLE 8 4 9 0.95 0.41 2 4 4 0.96 0.91
ABC1 (1) 0 4 4 1.01 0.96 0 4 4 0.96 0.94
ABC1 (2) 0 4 4 1.01 0.96 0 4 4 0.96 0.94
SPJ1 -1 4 4 0.88 0.92 1 4 4 0.91 0.91
LPM (1) -0 4 4 0.77 0.87
LPM (2) -0 4 4 0.77 0.86

N = 200; T = 30

MLE 7 4 8 0.95 0.48 2 4 4 0.95 0.90
ABC1 (1) 0 3 3 1.00 0.95 0 4 4 0.96 0.93
ABC1 (2) 0 3 3 1.00 0.95 0 4 4 0.95 0.93
SPJ1 -1 4 4 0.94 0.93 1 4 4 0.92 0.93
LPM (1) -0 4 4 0.74 0.84
LPM (2) -1 4 4 0.74 0.84

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.

91



this phenomenon is that for larger values of T, the predicted probabilities of LPM

are more frequently outside of the unit interval. Because the average partial effects

of binary regressors are simply differences in the predicted probabilities, this might

explain the increase in the relative bias for the effect of the predetermined variable.

Note that Hinz, Stammann, and Wanner (2019) use a slight modification of the data

generating process used in this article and have very similar findings.

Table 4.6: Properties: Unbalanced 1 - Lagged Dependent Variable

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 15

MLE -40 10 42 0.94 0.01 -48 9 49 0.99 0.00
ABC1 (1) -5 9 11 1.02 0.91 -7 10 12 1.03 0.90
ABC1 (2) -5 10 11 0.96 0.90 -6 10 12 0.97 0.89
SPJ1 -31 12 33 0.81 0.14 -37 11 39 0.86 0.05
LPM (1) 10 11 15 0.90 0.78
LPM (2) 12 11 17 0.85 0.69

N = 200; T = 20

MLE -30 9 31 1.02 0.10 -37 9 38 1.02 0.02
ABC1 (1) -4 9 10 1.09 0.95 -5 9 11 1.04 0.92
ABC1 (2) -3 9 9 1.05 0.96 -4 10 10 1.00 0.92
SPJ1 -14 10 17 0.97 0.68 -19 10 21 0.95 0.52
LPM (1) 13 10 16 0.97 0.73
LPM (2) 15 10 18 0.93 0.63

N = 200; T = 25

MLE -24 10 26 0.98 0.28 -30 9 31 0.98 0.13
ABC1 (1) -3 9 10 1.03 0.94 -4 10 10 1.01 0.93
ABC1 (2) -1 9 9 0.99 0.94 -2 10 10 0.97 0.95
SPJ1 -4 10 11 0.91 0.91 -7 11 13 0.91 0.85
LPM (1) 14 10 18 0.91 0.66
LPM (2) 17 11 20 0.88 0.58

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.

Next, we analyze how the two patterns of unbalancedness affect the properties of

the different estimators. First of all our results, summarized in table 4.6–4.9, support

the conjecture of Fernández-Val and Weidner (2018a) that the order of the bias in the

asymptotic distribution of MLE, in case of randomly missing observations, depends

on N and T. This can be confirmed by comparing the statistical properties of MLE in

balanced and unbalanced settings where N = N and T = T. We observe that in these

cases the properties of MLE are almost identical. Whereas the different missing data

patterns do not affect MLE, ABC1, and LPM, they worsen the statistical properties

generating process for dynamic linear fixed effects models. This small simulation study confirms that
the bias correction works as intended.
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Table 4.7: Properties: Unbalanced 1 - Exogenous Regressor

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 15

MLE 14 4 14 0.90 0.05 2 4 5 1.00 0.90
ABC1 (1) 1 4 4 0.98 0.94 0 4 4 1.00 0.94
ABC1 (2) 1 4 4 0.98 0.94 -0 4 4 0.99 0.95
SPJ1 9 5 10 0.76 0.32 3 5 6 0.85 0.81
LPM (1) -0 4 4 0.72 0.84
LPM (2) -0 4 4 0.72 0.84

N = 200; T = 20

MLE 10 4 11 0.91 0.22 2 4 4 0.99 0.91
ABC1 (1) 1 3 4 0.98 0.95 -0 4 4 0.99 0.95
ABC1 (2) 0 3 4 0.97 0.95 -0 4 4 0.98 0.95
SPJ1 3 4 5 0.86 0.80 1 4 4 0.93 0.91
LPM (1) -0 4 4 0.76 0.86
LPM (2) -1 4 4 0.76 0.85

N = 200; T = 25

MLE 8 4 9 0.97 0.36 2 4 4 0.95 0.91
ABC1 (1) 0 3 3 1.02 0.95 0 4 4 0.96 0.94
ABC1 (2) 0 3 3 1.02 0.95 -0 4 4 0.96 0.94
SPJ1 1 4 4 0.93 0.93 1 4 4 0.91 0.92
LPM (1) -0 4 4 0.75 0.86
LPM (2) -0 4 4 0.75 0.86

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.
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Table 4.8: Properties: Unbalanced 2 - Lagged Dependent Variable

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 15

MLE -40 10 41 0.95 0.01 -47 9 48 0.99 0.00
ABC1 (1) -5 9 10 1.04 0.93 -6 10 12 1.03 0.92
ABC1 (2) -5 10 11 0.98 0.92 -6 10 12 0.98 0.91
SPJ1 -20 10 22 0.91 0.46 -27 10 29 0.93 0.24
LPM (1) 11 11 15 0.91 0.76
LPM (2) 13 11 17 0.86 0.69

N = 200; T = 20

MLE -30 9 32 1.00 0.10 -37 9 38 0.99 0.03
ABC1 (1) -4 9 10 1.06 0.93 -5 10 11 1.02 0.92
ABC1 (2) -3 9 10 1.02 0.94 -4 10 11 0.98 0.93
SPJ1 -9 10 13 0.96 0.83 -14 10 18 0.94 0.67
LPM (1) 12 10 16 0.95 0.73
LPM (2) 15 11 18 0.91 0.64

N = 200; T = 25

MLE -24 10 26 0.94 0.28 -30 10 32 0.94 0.12
ABC1 (1) -4 9 10 0.99 0.93 -4 10 11 0.97 0.91
ABC1 (2) -2 10 10 0.96 0.94 -2 10 11 0.94 0.92
SPJ1 -3 10 11 0.90 0.91 -6 11 13 0.89 0.87
LPM (1) 14 11 17 0.88 0.67
LPM (2) 16 11 20 0.86 0.58

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.
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Table 4.9: Properties: Unbalanced 2 - Exogenous Regressor

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 15

MLE 13 4 14 0.92 0.05 2 4 4 1.01 0.91
ABC1 (1) 1 3 4 1.01 0.95 -0 4 4 1.01 0.95
ABC1 (2) 1 3 4 1.01 0.95 -0 4 4 1.01 0.95
SPJ1 6 4 7 0.89 0.62 3 4 5 0.96 0.86
LPM (1) -0 4 4 0.79 0.88
LPM (2) -0 4 4 0.79 0.88

N = 200; T = 20

MLE 10 4 11 0.95 0.19 2 4 4 0.98 0.90
ABC1 (1) 1 3 3 1.01 0.95 0 4 4 0.98 0.95
ABC1 (2) 1 3 3 1.01 0.95 0 4 4 0.98 0.95
SPJ1 2 4 4 0.93 0.89 2 4 4 0.94 0.90
LPM (1) -0 4 4 0.75 0.86
LPM (2) -0 4 4 0.75 0.85

N = 200; T = 25

MLE 8 4 9 0.96 0.32 2 4 4 0.95 0.91
ABC1 (1) 1 3 3 1.02 0.95 0 4 4 0.95 0.94
ABC1 (2) 0 3 3 1.01 0.95 0 4 4 0.95 0.94
SPJ1 0 4 4 0.95 0.94 1 4 4 0.91 0.92
LPM (1) -0 4 4 0.74 0.85
LPM (2) -0 4 4 0.74 0.85

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage relative
to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and empirical
coverage probabilities of 95 % confidence intervals; values in parentheses after ABC1 and LPM indicate the chosen
bandwidth parameter; results based on 1,000 repetitions.
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of SPJ1 to some extend substantially, especially for smaller values of T. Pattern 1
stands out in particular, because it clearly shows that the reduction of distortion

decreases and the dispersion increases. An intuitive explanation is that the splitting

strategy leads to subpanels of widely differing sizes. This issue is not that severe in

pattern 2, but the performance is still worse than in the balanced case.

Table 4.10: Sizes of Different Wald Tests

MLE ABC1 SPJ1

L = 1 L = 2

Balanced
N = 200; T = 10 0.99 0.05 0.07 0.39
N = 200; T = 15 0.97 0.05 0.05 0.13
N = 200; T = 20 0.90 0.06 0.06 0.11
N = 200; T = 25 0.80 0.04 0.04 0.08
N = 200; T = 30 0.74 0.05 0.05 0.08

Unbalanced 1
N = 200; T = 15 1.00 0.08 0.08 0.92
N = 200; T = 20 0.97 0.06 0.05 0.34
N = 200; T = 25 0.85 0.05 0.05 0.10

Unbalanced 2
N = 200; T = 15 1.00 0.06 0.07 0.63
N = 200; T = 20 0.97 0.06 0.06 0.17
N = 200; T = 25 0.86 0.06 0.06 0.08

Note: All entries refer to sizes of different Wald tests: H0 :
ρ = 0.5∧β = 1; nominal size 5%; results based on 1,000
repetitions.

Table 4.10 reports different sizes of Wald tests. Overall the results are in line

with the insights we have gained so far. Whereas sizes of tests based on MLE are

heavily distorted, using bias-corrected estimators to construct test-statistics brings

them closer to their nominal level, irrespective of the missing data pattern. But

as in our previous analysis of the different missing data patterns, we find that the

performance of SPJ1 worsens by randomly missing observations while MLE and

ABC1 remain unaffected. This is especially apparent when we look at T = T = 15

where the sizes based on SPJ1 range between 0.13 and 0.92 whereas those of MLE

and ABC1 are almost identical. Again the distortion is less severe in pattern 2.

Overall ABC1 strictly dominates MLE and SPJ1 as its sizes are always very close to

their nominal level.

Finally, we conclude that the various analytically bias-corrected and the different

split-panel jackknife estimators work similarly well with each other. Further, we

find that analytical bias corrections are clearly preferable to split-panel jackknife

approaches. Although the latter have the advantage that they are relatively easy

to implement, this convenience is associated with considerable performance losses.

More precisely, split-panel jackknife estimators have higher distortion and react

sensitive to different missing data patterns. Lastly, we suggest a cautious use
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of linear probability models, because its inference can be misleading as in our

considered designs.

In the next section, we apply MLE, ABC1, SPJ1, and LPM to an empirical

example of labor economics where we investigate the inter-temporal labor force

participation of 10,712 German women between 1984 and 2013.

4.5 Empirical Illustration

In the following, we illustrate one possible area of application by analyzing the

inter-temporal labor-force participation of women using longitudinal micro data from

the German Socio Economic Panel (GSOEP). More precisely, we want to examine

how fertility decisions and the availability of non-labor income jointly affect women’s

participation decisions in the labor market.

For a long time labor economists are concerned with fertility decisions being

endogenous due to correlation with multiple unobserved variables. Most studies

use cross-sectional data along with an instrumental variable strategy to deal with

this problem (see among others Angrist and Evans 1998). However, the availability

of comprehensive panel data sets offers new reliefs to researchers. For instance,

Heckman and MaCurdy (1980, 1982), Hyslop (1999), and Carro (2007) use panel data

from the Panel Study of Income Dynamics (PSID) which allows them to tackle this

omitted variables problem by controlling for individual specific unobserved effects.

For our illustration, we use an empirical strategy adopted from Hyslop (1999)

and estimate the following dynamic binary choice model:

yit = 1
[
ρyit−1 +x′

itβ+z′
itπ+αi +γt + e it ≥ 0

]
where i = 1, . . . , N and t = si, . . . ,Ti are individual and time specific identifiers, yit

is an indicator equal to one if woman i is in labor-force at time period t, xit and

zit are vectors of explanatory and further control variables, γ, β, and π are the

corresponding parameters, and e it is an idiosyncratic error term assumed to be

independently and identically distributed standard normal. More precisely, we

consider the following explanatory variables: number of children in different age

groups, non-labor income, and an indicator that is equal to one if a birth occurs in

the next time period. Further controls are squared age, martial status, regional

identifier, number of children between zero and one in the previous period, and

number of other household members. Additionally, we include individual and time

specific intercepts to control for unobserved heterogeneity. For instance, αi captures

individual specific taste for labor and permanent income, whereas γt controls for the

business cycle and other time specific shifts in preferences.
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For our analysis, we extract an unbalanced panel data set of 10,712 women

between 1984 and 2013 from the GSOEP.11 Because we want to estimate a dynamic

model of labor supply, we restrict the sample to women between 16 and 65 that

are observed consecutively for at least five years and do not receive any retirement

income. A woman is assumed to participate in labor-force if she has positive income

from individual labor and works at least 52 hours a year. Further, a proxy for transi-

tory non-labor income is constructed from post-government household income minus

woman’s individual labor earnings. Note that all income variables are converted

to constant 2010 EURO using a consumer price index and that labor earnings are

reported before taxes. Thus we additionally correct labor income by a household

specific tax rate. To make income comparable between different household sizes, we

use an equivalence scale proposed by Buhmann et al. (1988). More precisely, we

divide the transitory non-labor income by the square root of household members. To

analyze whether the effect of transitory non-labor income on participation decisions

differs across groups, we define the following three income classes: lower, middle,

and upper. A woman belongs to the lower class if she has a non-labor income of

less than 11,278 EURO at her disposal. Contrary a woman is in the upper income

class if she has more than 56,391 EURO available. Women in between this interval

belong to the middle class. Those numbers are equal to 60 % and 300 % of the annual

median equivalence income.12 The class distinction is taken from the Armuts- und
Reichtumsbericht of the federal government.13 Further, we follow Grabka (2014)

and construct regional identifiers. Therefor the federal states are grouped in four

geographic regions (north, south, west, and east) which allows us to control for

regional differences in preferences for labor.14

The descriptive statistics of our data set are reported in table 4.11. The average

participation rate is 72 % in the full sample and 65 % for women who change their

labor-force participation decision at least once. We refer to the latter group as movers.

Further, the group of women who never participate is the smallest and most different

from the other groups. On average, this group is older, more likely to be married,

and prefers to live in the west instead of the east. Contrary, women who always

participate have less children and live in smaller households. Note that identification

in binary choice models with two-way error component is solely based on the group

of movers, which consist of 5,346 women observed for roughly 13 time periods on

average. Because our model specification requires to estimate roughly 5,400 fixed

11. More precisely, we use the $PEQUV-File from 1984–2013 (version 30 of the GSOEP).
12. https://www.destatis.de
13. https://www.armuts-und-reichtumsbericht.de/
14. North: Schleswig-Holstein, Hamburg, Lower-Saxony, Bremen; South: Hessen, Baden-

Wuerttemberg, Bavaria; West: North-Rhine-Westfalia, Rheinland-Pfalz, Saarland; East: Berlin,
Brandenburg, Mecklenburg-Vorpommern, Saxony, Saxony-Anhalt, Thueringia.
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Table 4.11: Descriptive Statistics

Full Always Never Movers

Mean SD Mean SD Mean SD Mean SD

Participation 0.72 0.45 1.00 0.00 0.00 0.00 0.65 0.48
Age 40.10 11.76 42.47 10.38 46.83 12.73 37.40 11.66
Married 0.66 0.47 0.64 0.48 0.85 0.36 0.65 0.48
Middle Class 0.44 0.50 0.42 0.49 0.45 0.50 0.45 0.50
Upper Class 0.01 0.09 0.01 0.09 0.01 0.11 0.01 0.08
North 0.13 0.34 0.13 0.33 0.16 0.37 0.13 0.34
East 0.22 0.41 0.27 0.44 0.08 0.27 0.21 0.41
South 0.36 0.48 0.35 0.48 0.35 0.48 0.37 0.48
#Children 0-1 0.04 0.21 0.02 0.13 0.05 0.22 0.06 0.25
#Children 2-4 0.12 0.35 0.05 0.23 0.13 0.39 0.16 0.41
#Children 5-18 0.68 0.94 0.53 0.81 0.74 1.10 0.76 0.98
#HH older 2.27 0.86 2.18 0.81 2.55 0.97 2.28 0.87
Birtht+1 0.03 0.18 0.01 0.12 0.03 0.17 0.04 0.21

#Observations 127,736 46,398 11,644 69,694
#Individuals (N) 10,712 4,220 1,146 5,346
Avg. #Individuals (N) 4,562 1,657 416 2,489
Avg. #Years (T) 12 11 10 13

effects, it is a suitable candidate for the application of our algorithms.

Table 4.12 reports estimates of the structural parameters and average partial

effects obtained by different linear and probit fixed effects estimators. The labels are

identical to the ones used in section 4.4. All results are intuitive and in line with

the theoretical model of Hyslop (1999). We find strong positive state-dependence

and negative effects with respect to transitory non-labor income, number of children,

and expectations about future fertility. Remarkably, the estimated average partial

effects obtained from dynamic probit models are all very close to each other. An

exception is the state dependence which ranges from roughly 0.20 up to 0.29. All

effects are significant at the 5 % level, except being in the upper income class.

Estimates obtained by the bias-corrected linear probability models are also very

close to their nonlinear counterparts. Two exceptions are the average partial effects

with respect to the lagged dependent variable and number of children between zero

and one. However the standard errors obtained by the linear probability models are

unreasonable low.

Our final conclusions are based on the results obtained by the different fixed

effects probit estimators. First, we detect strong persistence in womens’ participation

decisions. A woman who has currently a job increases her probability to participate

in the future by 20-29 percentage points. Second, we find that women only respond

weakly to changes in transitory non-labor income. More precisely, being in the

middle class reduces the participation probability by roughly two percentage points

compared to a woman in the lower income class. The reduction associated with
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Table 4.12: Empirical Results: Labor-Force Participation Decision

MLE ABC1 SPJ1 LPM

L = 1 L = 2 L = 1 L = 2

Coefficients

Participationt−1 1.315 1.476 1.546 1.577 - -
(0.015) (0.015) (0.015) (0.015) - -

Middle Class -0.122 -0.103 -0.111 -0.093 - -
(0.020) (0.020) (0.021) (0.021) - -

Upper Class -0.368 -0.318 -0.311 -0.363 - -
(0.111) (0.112) (0.113) (0.112) - -

#Children 0-1 -1.839 -1.606 -1.591 -1.684 - -
(0.033) (0.032) (0.032) (0.032) - -

#Children 2-4 -0.480 -0.351 -0.339 -0.425 - -
(0.023) (0.023) (0.023) (0.024) - -

#Children 5-18 -0.186 -0.133 -0.127 -0.176 - -
(0.011) (0.011) (0.011) (0.012) - -

Birtht+1 -0.564 -0.518 -0.509 -0.573 - -
(0.034) (0.034) (0.034) (0.034) - -

Average Partial Effects

Participationt−1 0.198 0.277 0.292 0.267 0.492 0.521
(0.038) (0.043) (0.045) (0.046) (0.003) (0.003)

Middle Class -0.014 -0.014 -0.015 -0.011 -0.014 -0.016
(0.005) (0.004) (0.004) (0.004) (0.002) (0.002)

Upper Class -0.042 -0.044 -0.044 -0.048 -0.037 -0.040
(0.027) (0.026) (0.026) (0.026) (0.013) (0.013)

#Children 0-1 -0.203 -0.214 -0.216 -0.204 -0.305 -0.303
(0.037) (0.033) (0.032) (0.033) (0.004) (0.004)

#Children 2-4 -0.053 -0.047 -0.046 -0.052 -0.047 -0.040
(0.011) (0.009) (0.008) (0.010) (0.003) (0.003)

#Children 5-18 -0.021 -0.018 -0.017 -0.022 -0.016 -0.010
(0.005) (0.004) (0.004) (0.004) (0.001) (0.001)

Birtht+1 -0.066 -0.074 -0.073 -0.074 -0.085 -0.085
(0.014) (0.013) (0.013) (0.014) (0.005) (0.005)

Note: Standard errors in parentheses; additional covariates: squared age, married, regional
identifiers, number of children between zero and one in the previous period, and number of
household members above 18; estimates relative to lower income class.

100



belonging to the upper income class is stronger (five percentage points), but not

significantly different from zero at any usual level. Finally, the number of children

reduces the likelihood of current participation decision significantly. As expected, the

effect is negative and declining in age of children. Each additional child between zero

and one reduces current participation probability by roughly 20 percentage points.

For children older than four, the reduction is only one percentage point. The results

presented in this illustration are largely consistent with the empirical findings of

Hyslop (1999). However, contrary to him, we find that future birth always negatively

affects current participation decision across different models. This might confirm

the author’s perfect foresight assumption with respect to life-cycle fertility decisions.

4.6 Conclusion

In this article, we offered new reliefs and guidance for empirical researchers who

would be otherwise deterred from using binary choice models with fixed effects. First,

we showed how to overcome computational obstacles that arise both in estimating

these models themselves and in applying appropriate bias corrections to mitigate

the incidental parameters problem. Beyond that, we have carried out extensive

simulation experiments to gain further insights into the statistical properties of

various bias corrections. Analytical bias corrections performed particularly well,

even in unbalanced panel data. An empirical illustration from labor economics gave

a first impression about the applicability of bias corrections in longitudinal data sets.

To encourage the usage of bias-corrected binary choice models, we embedded the

analytical bias correction of Fernández-Val and Weidner (2016) in our R-package

alpaca.

Although we focused on binary choice models, remember that Fernández-Val and

Weidner (2016) derived bias corrections for any nonlinear model with a two-way

error component. It is straightforward to apply the same acceleration techniques

described in this article to other generalized linear models, such as poisson models.

Further, note that the bias corrections proposed by Fernández-Val and Weidner

(2016) are not limited to classical panel structures. For instance, Cruz-Gonzalez,

Fernández-Val, and Weidner (2017) applied some of bias corrections to cross-sectional

data of bilateral trade flows such as those used by Helpman, Melitz, and Rubinstein

(2008).

Other related research projects, which dealt with bias corrections in the presence

of multiple high-dimensional fixed effects, are Weidner and Zylkin (2018) and Hinz,

Stammann, and Wanner (2019). Both adapted and extended the bias corrections of

Fernández-Val and Weidner (2016) to special two- and three-way error components

which are particularly relevant in the context of international trade. Whereas the
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former dealt with pseudo poisson models, the latter have treated binary choice.

102



References

Andersen, Erling Bernhard. 1970. “Asymptotic properties of conditional maximum-

likelihood estimators.” Journal of the Royal Statistical Society. Series B: 283–

301.

Angrist, Joshua D., and William N. Evans. 1998. “Children and Their Parents’ Labor

Supply: Evidence from Exogenous Variation in Family Size.” The American
Economic Review 88 (3): 450–477.

Arellano, Manuel, and Jinyong Hahn. 2007. “Understanding bias in nonlinear panel

models: Some recent developments.” Econometric Society Monographs 43:381.

Baltagi, Badi H. 2013. Econometric Analysis of Panel Data. 5th ed. Wiley.

Buhmann, Brigitte, Lee Rainwater, Günther Schmaus, and Timothy M. Smeed-

ing. 1988. “EQUIVALENCE SCALES, WELL-BEING, INEQUALITY, AND

POVERTY: SENSITIVITY ESTIMATES ACROSS TEN COUNTRIES USING

THE LUXEMBOURG INCOME STUDY (LIS) DATABASE.” Review of Income
and Wealth 34 (2): 115–142.

Carro, Jesus M. 2007. “Estimating dynamic panel data discrete choice models with

fixed effects.” Journal of Econometrics 140 (2): 503–528.

Chamberlain, Gary. 1980. “Analysis of Covariance with Qualitative Data.” Review of
Economic Studies 47:225–238.

Chen, Shuowen, Victor Chernozhukov, and Iván Fernández-Val. 2019. “Mastering

Panel Metrics: Causal Impact of Democracy on Growth.” AEA Papers and Pro-
ceedings 109:77–82.

Correia, Sergio. 2016. “A feasible estimator for linear models with multi-way fixed

effects.” Working Paper.

Cruz-Gonzalez, Mario, Iván Fernández-Val, and Martin Weidner. 2017. “Bias correc-

tions for probit and logit models with two-way fixed effects.” The Stata Journal
17 (3): 517–545.

Dhaene, Geert, and Koen Jochmans. 2015. “Split-panel jackknife estimation of

fixed-effect models.” Review of Economic Studies 82 (3): 991–1030.

Enea, Marco. 2017. “speedglm: Fitting Linear and Generalized Linear Models to

Large Data Sets.” R Software Package (version 0.3-2).

Fernández-Val, Iván. 2009. “Fixed effects estimation of structural parameters and

marginal effects in panel probit models.” Journal of Econometrics 150:71–85.

103



Fernández-Val, Iván, and Martin Weidner. 2016. “Individual and time effects in

nonlinear panel models with large N, T.” Journal of Econometrics 192 (1): 291–

312.

. 2018a. “Fixed Effects Estimation of Large-T Panel Data Models.” Annual
Review of Economics 10 (1): 109–138.

. 2018b. “Individual and time effects in nonlinear panel models with large N,

T.” arXiv preprint:1311.7065.

Gaure, Simen. 2013a. “lfe: Linear group fixed effects.” The R Journal 5 (2): 104–117.

. 2013b. “OLS with multiple high dimensional category variables.” Computa-
tional Statistics & Data Analysis 66:8–18.

Grabka, Markus. 2014. “SOEP 2013 – Codebook for the $PEQUIV File 1984-2013:

CNEF Variables with Extended Income Information for the SOEP.” SOEP
Survey Papers 204: Series D. Berlin: DIW/SOEP.

Greene, William. 2004. “The Behaviour of the Maximum Likelihood Estimator of Lim-

ited Dependent Variable Models in the Presence of Fixed Effects.” Econometrics
Journal 7:98–119.

Guimarães, Paulo, and Pedro Portugal. 2010. “A simple feasible procedure to fit

models with high-dimensional fixed effects.” Stata Journal 10 (4): 628–649.

Hahn, Jinyong, and Guido Kuersteiner. 2002. “Asymptotically unbiased inference

for a dynamic panel model with fixed effects when both n and T are large.”

Econometrica 70 (4): 1639–1657.

. 2007. “Bandwidth choice for bias estimators in dynamic nonlinear panel

models.” Working Paper.

. 2011. “Bias reduction for dynamic nonlinear panel models with fixed effects.”

Econometric Theory 27 (06): 1152–1191.

Hahn, Jinyong, and Hyungsik Roger Moon. 2006. “Reducing bias of MLE in a

dynamic panel model.” Econometric Theory 22 (3): 499–512.

Hahn, Jinyong, and Whitney Newey. 2004. “Jackknife and analytical bias reduction

for nonlinear panel models.” Econometrica 72 (4): 1295–1319.

Halperin, Israel. 1962. “The product of projection operators.” Acta Sci. Math.(Szeged)
23 (1-2): 96–99.

Hasselman, Berend. 2018. nleqslv: Solve Systems of Nonlinear Equations. R package

version 3.3.2. https://CRAN.R-project.org/package=nleqslv.

104

https://CRAN.R-project.org/package=nleqslv


Heckman, James J., and Thomas E. MaCurdy. 1980. “A Life Cycle Model of Female

Labour Supply.” The Review of Economic Studies 47 (1): 47–74.

. 1982. “Corrigendum on A Life Cycle Model of Female Labour Supply.” The
Review of Economic Studies 49 (4): 659–660.

Helpman, Elhanan, Marc Melitz, and Yona Rubinstein. 2008. “Estimating trade flows:

Trading partners and trading volumes.” The Quarterly Journal of Economics
123 (2): 441–487.

Hinz, Julian, Amrei Stammann, and Joschka Wanner. 2019. “Persistent Zeros: The

Extensive Margin of Trade.” Working Paper.

Honoré, Bo E., and Ekaterini Kyriazidou. 2000. “Panel data discrete choice models

with lagged dependent variables.” Econometrica 68 (4): 839–874.

Hsiao, Cheng. 2014. Analysis of Panel Data. 3rd ed. Econometric Society Monographs.

Cambridge University Press.

Hyslop, Dean R. 1999. “State dependence, serial correlation and heterogeneity in

intertemporal labor force participation of married women.” Econometrica 67 (6):

1255–1294.

Juodis, Arturas. 2015. “Iterative Bias Correction Procedures Revisited: A Small

Scale Monte Carlo Study.” Working Paper.

Kim, Min Seong, and Yixiao Sun. 2016. “Bootstrap and k-step bootstrap bias correc-

tions for the fixed effects estimator in nonlinear panel data models.” Econometric
Theory 32 (6): 1523–1568.

McCullagh, Peter, and James A. Nelder. 1989. Generalized Linear Models, no. 37 in
Monograph on Statistics and Applied Probability.

Nelder, John Ashworth, and Robert William Maclagan Wedderburn. 1972. “General-

ized linear models.” Journal of the Royal Statistical Society: Series A (General)
135 (3): 370–384.

Neumann, John von. 1950. “Functional Operators. Vol. II. The geometry of orthogonal

spaces, volume 22 (reprint of 1933 notes) of Annals of Math.” Studies. Princeton
University Press.

Neyman, Jerzy, and Elizabeth L Scott. 1948. “Consistent estimates based on partially

consistent observations.” Econometrica 16 (1): 1–32.

Nickell, Stephen. 1981. “Biases in Dynamic Models with Fixed Effects.” Econometrica
49 (6): 1417–1426.

105



Phillips, Peter C. B., and Hyungsik Roger Moon. 1999. “Linear regression limit

theory for nonstationary panel data.” Econometrica 67 (5): 1057–1111.

R Core Team. 2019. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing. https://www.R-

project.org/.

Rasch, George. 1960. “Probabilistic models for some intelligence and attainment tests:

Danish institute for Educational Research.” Denmark Paedogiska, Copenhagen.

Stammann, Amrei. 2018. “Fast and Feasible Estimation of Generalized Linear Mod-

els with High-Dimensional k-way Fixed Effects.” arXiv preprint:1707.01815v3.

Stammann, Amrei, Florian Heiß, and Daniel McFadden. 2016. “Estimating Fixed

Effects Logit Models with Large Panel Data.” Working Paper.

Wagner, Gert G., Joachim R. Frick, and Jürgen Schupp. 2007. “The German Socio-

Economic Panel study (SOEP)-evolution, scope and enhancements.” SOEPpaper.

Weidner, Martin, and Thomas Zylkin. 2018. “Bias and Consistency in Three-way

Gravity Models.” Working Paper.

106

https://www.R-project.org/
https://www.R-project.org/


Appendix

A Further Simulation Experiments

To demonstrate that the analytical bias corrections for dynamic linear models work

as intended, we adjust the data generating process used in section 4.4 to linear

models. More precisely, we change the data generating process to

yit =ρyit−1 +βxit +αi +γt +εit ,

yi0 =βxi0 +αi +γ0 +εi0 ,

and keep everything else unchanged.

Table 4.13: Properties: Balanced - Dynamic Linear Model

Coefficients (ρ̂) Coefficients (β̂)

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 200; T = 10

LM -17 3 18 0.99 0.00 3 3 4 1.00 0.84
BC (1) -8 3 8 1.03 0.34 1 3 3 1.00 0.93
BC (2) -4 3 6 0.99 0.72 0 3 3 0.99 0.95

N = 200; T = 15

LM -11 3 11 0.98 0.01 3 3 4 0.95 0.80
BC (1) -5 2 6 1.01 0.44 1 3 3 0.96 0.92
BC (2) -3 3 4 0.99 0.81 0 3 3 0.95 0.92

N = 200; T = 20

LM -8 2 9 0.95 0.03 2 2 3 0.98 0.84
BC (1) -4 2 5 0.98 0.55 1 2 2 0.98 0.93
BC (2) -2 2 3 0.97 0.82 0 2 2 0.98 0.94

N = 200; T = 25

LM -7 2 7 0.97 0.07 2 2 3 0.99 0.83
BC (1) -3 2 4 0.99 0.60 1 2 2 0.99 0.93
BC (2) -2 2 3 0.98 0.87 0 2 2 0.99 0.94

N = 200; T = 30

LM -5 2 6 0.99 0.13 2 2 2 1.02 0.87
BC (1) -3 2 3 1.00 0.68 1 2 2 1.02 0.94
BC (2) -1 2 2 1.00 0.88 0 2 2 1.02 0.95

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and
empirical coverage probabilities of 95 % confidence intervals; LM and BC denote (bias-corrected) fixed effects
estimators; values in parentheses after BC indicate the chosen bandwidth parameter; results based on 1,000
repetitions.

Table 4.13 reports the results of the simulation experiments. As expected, the bias

correction reduces the distortion considerably and brings the coverage probabilities

closer to their nominal level.
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Chapter 5

Persistent Zeros: The Extensive
Margin of Trade

Co-authored with Julian Hinz and Joschka Wanner

108



5.1 Introduction

What induces country pairs to trade? In 2006, still more than one quarter of potential

bilateral trade relations reported zero trade flows. Figure 5.1 breaks down the share

of nonzero trade flows in 2006 along the percentiles of four different ad-hoc indicators

of “trade potential”: Bilateral distance; product of GDPs; “naive” gravity, i.e. the

product of GDPs divided by their bilateral distance; and the latter when excluding

country pairs in FTAs, with common currencies or common colonial history. The x-

axis indicates the potential trade volume, i.e. the joint economic size and/or proximity

of any two countries. All four plots paint a common picture: The circles, covering

all country pairs, show a strong general relationship between trade potential and

actual nonzero trade. The filled dots and triangles split the country pairs according

to whether the two did or did not engage in trade in the previous year. The clearly

Figure 5.1: Determinants of the Extensive Margin - Gravity and Persistence
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separated pattern for the two groups highlights a remarkable persistence of trade

relations, even after controlling for differences in trade potential in terms of distance,

size, and bilateral trade policy. More than 75 percent of those country pairs in the

lowest percentile of trade potential trade again in 2006, provided they already did so

in 2005. On the other hand, even comparably large and close pairs are likely not to

trade in 2006 if they did not trade in 2005 either.1,2

In this paper we examine the determinants of the extensive margin of interna-

tional trade, taking explicitly into account its persistence. We combine a heteroge-

neous firms model of international trade with bounded productivity with features

from the firm dynamics literature to derive expressions for an exporting country’s

participation on a specific destination market in a given period. These expressions

depend on partly unobserved (i) exporter-time, (ii) destination-time, and (iii) exporter-

destination specific components, as well as on (iv) whether the exporter has already

served the market in the previous period, and on (v) exporter-destination-time spe-

cific gravity-type trade cost determinants. We estimate the model making use of

recent advances in the estimation of binary choice estimators with high-dimensional

fixed effects to address (i)-(iii). The inclusion of fixed effects in a binary choice setting

induces an incidental parameters problem that is potentially aggravated by the dy-

namics introduced by (iv). To mitigate this bias, we characterize and implement new

analytical and jackknife bias corrections for coefficients and estimates of average

partial effects in our specifications with two- and three-way fixed effects. Extensive

simulation experiments demonstrate the desirable statistical properties of our pro-

posed bias-corrected two- and three-way fixed effect logit and probit estimators. The

empirical results provide evidence that both unobserved bilateral factors and true

state dependence due to entry dynamics contribute strongly to the high persistence.

Taking this persistence into account changes the coefficients considerably: out of the

most commonly studied potential determinants (joint WTO membership, common

regional trade agreement, and shared currency), only sharing a common currency

has a significant effect on whether two countries trade with each other at all.

Our paper builds on recent insights from three flourishing strands of literature.

First, our paper is related to the literature on the extensive margin of international

trade. A number of theoretical frameworks have sought to propose mechanisms

behind the decisions of firms to export, and their aggregate implications of zero or

nonzero trade flows at the country pair level. Analogous to the intensive margin

counterpart, these theories have established gravity-like determinants, such as two

1. Note that throughout the paper, “country pair” refers to a directed pair of countries, i.e. Germany-
France and France-Germany are two distinct country pairs.

2. The years 2005–2006 are the last available in our data set. A very similar pattern emerges for
other points in time. If longer time intervals are considered (e.g. 10 years), a similar picture remains,
but the relationship gets considerably weaker.
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countries’ bilateral distance, a free trade agreement, a common currency and joint

membership in the WTO. Egger and Larch (2011) and Egger et al. (2011) append an

extensive margin to a Anderson and Van Wincoop (2003)-type model by assuming

export participation to be determined by (homogeneous) firms weighing operating

profits and bilateral fixed costs of exporting. This results in a two-part model in

which given a country’s participation in exporting to any given destination, trade

flows follow structural gravity. Helpman, Melitz, and Rubinstein (2008) build a model

of international trade with heterogeneous firms. Here the volume of trade between

two countries can change either because incumbent firms expand their operations,

or due to new competitors entering into a market. Eaton, Kortum, and Sotelo (2013)

move away from the arguably simplifying notion of a continuum of firms and develop

a model of a finite set of heterogeneous firms. Here no firm may export to a given

market due to their individual efficiency draws. Our model proposed in this paper

directly builds on Helpman, Melitz, and Rubinstein (2008) and extends it by features

from the literature on firm dynamics. In this firm-level literature, Das, Roberts,

and Tybout (2007) develop a dynamic discrete-choice model in which current export

participation depends on previous exporting, and hence sunk costs, and observable

characteristics of profits from exporting. Alessandria and Choi (2007) extend this

line of research and develop a general equilibrium framework that takes sunk costs

and “period-by-period” fixed costs into account, showing that contrary to previous

partial equilibrium evidence, aggregate effects are negligible for the US. More recent

works have looked at new exporter dynamics (see Ruhl and Willis 2017), emphasizing

that sunk costs may be relatively smaller and continuation costs relatively larger

than previously assumed. Bernard et al. (2017) stand somewhat in contrast to this

finding, showing that first and second year growth rates may suffer from a bias due

to different entry dates throughout the year. Berman, Rebeyrol, and Vicard (2019)

note the important role of “demand learning” and firms’ updating of their future

demand and market participation. In a similar vein, Piveteau (2019) develops a

model in which new firms accumulate consumers — or fail to do so — determining

entry and exit. While these newer models feature rich firm-level predictions, they

require tailor-made econometric models for their estimation. Our model abstracts

from the specific role of new firms and has the advantage of yielding an econometric

specification and demanding an estimator that remains general and flexible to be

applied in other contexts.

Second, our paper builds on advances in the literature on the gravity equation

and the intensive margin of international trade. With the advent of what has now

been coined structural gravity (see Head and Mayer 2014) the gravity framework

has gained rich microfoundations. Anderson and Van Wincoop (2003) and Eaton and

Kortum (2002) each formulate an underlying structure for exporting and importing
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countries that in estimations can easily be captured by appropriate two-way country(-

time) fixed effects, as first noted by Feenstra (2015) and Redding and Venables

(2004). Although not theoretically motivated, since Baier and Bergstrand (2007)

it has furthermore become standard to include country pair fixed effects to tackle

unobservable bilateral characteristics. Estimating the model introduced in this

paper similarly calls for at least two sets of fixed effects, specific to exporters and

importers in a given year. Additionally, and following Baier and Bergstrand (2007),

there is no reason to believe that bilateral unobservables should not be a problem

in the context of the extensive margin. Our preferred estimation of the model thus

includes the “full set” of fixed effects that has become standard in the estimation

of gravity models of the intensive margin of trade: exporter-year, importer-year

and bilateral fixed effects that leave only bilateral-time-specific variation for the

estimation of parameters of interest.

Third, the paper builds on and contributes to the literature on the econometrics

of generalized linear models (GLMs) with fixed effects. Recent advances in this

literature have made it possible to go beyond ordinary linear models in the context

of high-dimensional fixed effects by providing fast and feasible algorithms (see

Guimarães and Portugal 2010; Stammann 2018; Hinz, Hudlet, and Wanner 2019).3

As known since Neyman and Scott (1948) the inclusion of fixed effects potentially

introduces an incidental parameters problem, leading to biased estimates. In the

last few years, there have been a number of advances to correct this bias, and a

variety of approaches have been proposed (see Fernández-Val and Weidner 2018a

for a recent overview). Fernández-Val and Weidner (2016) develop analytical and

jackknife bias corrections for nonlinear maximum likelihood estimators in static

and dynamic models with individual and time effects for structural parameters and

average partial effects. In Fernández-Val and Weidner (2018a) they generalize their

previous findings and show that the order of the bias induced by fixed effects in a wide

family of models translates into a simple heuristic p/n, with n being the sample size

and p the number of estimated parameters. Recently, Czarnowske and Stammann

(2019) show how analytical bias corrections can be efficiently implemented in a high-

dimensional fixed effects setting using the methods described by Stammann (2018).

Our paper is complementary to computational and econometric contributions on the

estimation of the intensive margin of trade. Larch et al. (2019) present a feasible

procedure to estimate pseudo-poisson (PPML) models with three high-dimensional

3. Stammann, Heiß, and McFadden (2016) have shown in the context of binary choice models
with individual fixed effects that a weighted version of the Frisch-Waugh-Lovell theorem (Frisch
and Waugh 1933; Lovell 1963) can be incorporated in a standard Newton-Raphson optimization
procedure. This result paved the way to derive a computationally efficient algorithm for all GLMs
with high-dimensional multi-way fixed effects (see Stammann 2018). More recently, Hinz, Hudlet, and
Wanner (2019) offer a different way to partial out fixed effects using a modification of the Gauss-Seidel
algorithm proposed by Guimarães and Portugal (2010).
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fixed effects. Correia, Guimarães, and Zylkin (2019) generalize this estimation

procedure to arbitrary sets of fixed effects. Weidner and Zylkin (2018) investigate the

incidental parameters problem in three-way fixed effects PPML models under fixed

T asymptotics and suggest an appropriate jackknife bias correction. We contribute

to this literature by characterizing and implementing analytical and jackknife

bias corrections for our specific two- and three-way fixed effects in the context of

binary choice models. This helps us mitigate the bias induced by estimating our

theory-consistent model, requiring exporter-time (it), importer-time ( jt), and in our

preferred specification bilateral fixed effects (i j).4

The remainder of the paper is structured as follows. In section 5.2 we build a

dynamic model of the extensive margin of international trade. The model yields

aggregate predictions that can be structurally estimated using a probit model with

high-dimensional fixed effects. In section 5.3 we describe the estimator and bias

correction procedure. We show its performance in Monte Carlo simulations in

section 5.4, before finally estimating the theoretical model in section 5.5. Section 5.6

concludes.

5.2 An Empirical Model of the Extensive Margin of
Trade

As a theoretical foundation for our econometric specification, we consider a styl-

ized dynamic Melitz (2003)-type heterogeneous firms model of international trade.

Following Helpman, Melitz, and Rubinstein (2008, henceforth HMR) we assume

a bounded productivity distribution, like a truncated Pareto in HMR’s case. We

deviate from HMR by explicitly stating a time dimension and, unlike in the standard

Melitz setting, separate fixed exporting costs into costs of entering a new market and

costs of selling in a given market (as in Alessandria and Choi 2007; Das, Roberts,

and Tybout 2007).

There are N countries, indexed by i and j, each of which consumes and produces

a continuum of products. The representative consumer in j receives utility according

to a CES utility function:

u jt =
(∫

ω∈Ω jt

(ξi jt)
1
σ q jt(ω)

σ−1
σ dω

) σ
σ−1

with σ> 1.

where q jt(ω) is j’s consumption of product ω in period t, Ω jt is the set of products

available in j, σ is the elasticity of substitution across products, and ξi jt is a log-

4. An R implementation of the estimators developed in this paper will be provided on CRAN and is
currently available from the authors upon request.
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normally distributed idiosyncratic demand shock (with µξ = 0 and σξ = 1) for goods

from country i in country j and period t (similar to Eaton, Kortum, and Kramarz

2011). Demand in country j for good ω depends on this demand shock, j’s overall

expenditure E jt, and the good price p jt(ω) relative to the overall price level as

captured by the price index P jt:

q jt(ω)= p jt(ω)−σ

P1−σ
jt

ξi jtE jt.

with P jt =
(∫

ω∈Ω jt

ξi jt p jt(ω)1−σdω

) 1
1−σ

.

Each country has a fixed continuum of potentially active firms that have different

productivities drawn from the distribution G it(ϕ), where ϕ ∈ (0,ϕ∗
it]. The productivity

distribution evolves over time and firms’ ranks within the productivity distribution

can also change from period to period, though firms that in the last period did

not export to a market already served by a domestic competitor are assumed not

to directly jump to being the country’s most productive firm in the next period.5

Each period, a firm can decide to pay a fixed cost f prod
it and start production of

a differentiated variety using labour l as its only input, such that l t(ω) = f prod
it +

qt(ω)/ϕt(ω). A firm’s marginal cost of providing one unit of its good to market j
consists of iceberg trade costs τi jt and labour costs wit/ϕt(ω). Firms compete with

each other in monopolistic competition and charge a constant markup over marginal

costs. Therefore, the price of a good ω produced in i and sold in j is

pi jt(ω)= σ

σ−1
τi jtwit

ϕt(ω)
.

A firm’s operating profits in market j are hence given by

π̃i jt(ω)= 1
σ

(
σ

σ−1
τi jtwit

ϕt(ω)

)1−σ

Pσ−1
jt ξi jtE jt.

If a firm wants to export to a market j in period t, it has to pay a fixed exporting

cost f exp
i jt . The exporting fixed cost is higher by a market entry cost factor f entry ≥ 1

if the firm has not been active in the respective market in the previous period. For

tractability, the entry cost factor is assumed to be constant across countries and time.

Capturing the export decision by a binary variable yi jt(ω), i.e. equal to one if the

firm decides to serve market j in period t, we can formalize a firm’s realized profits

5. Note that we could in principle also allow for new firm entry into the pool of potential producers
without changing our final expression for the extensive margin as long as the new entrants cannot be
the country’s most productive firm right away.
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in market j as follows:

πi jt(ω)= yi jt(ω)
{
π̃i jt(ω)− f exp

i jt ( f entry)[1−yi j(t−1)(ω)]
}

.

In the absence of entry costs, a firm would simply compare its operating profits to

the fixed exporting cost and decide to serve a market if the former are greater than

the latter. With market entry costs, a firm might be willing to incur a loss in the

current period if expected future profits from that same market outweigh the initial

loss. Firms discount future profits at a rate δ per period. To keep things tractable

and allow us to derive a theory-consistent estimation expression below, we assume

that firms expect their future operating profits from and fixed costs of serving a

given market to be equal to today’s values, i.e. Et[π̃i j(t+s)]= π̃i jt and Et[ f exp
i j(t+s)]= f exp

i jt

∀s ∈N.6 The current value of today’s and all future operating profits from market

j is then given by
∑∞

s=0(1−δ)sπ̃i jt = π̃i jt/δ. A firm will decide to serve a destination

market if these discounted expected profits exceed the sum of today’s and discounted

future fixed costs of entry and exporting, given by

f exp
i jt ( f entry)(1−yi j(t−1)(ω)) +

∞∑
s=1

(1−δ)s f exp
i jt =

f exp
i jt

δ

(
1+δ( f entry −1)

)(1−yi j(t−1)(ω)) .

Given this model setup, the question whether a country exports to another

country at all can be considered by looking at the most productive firm (with ϕ∗
t )

only. Denoting that firm’s product by ω∗, we can capture the aggregate extensive

margin by the binary variable yi jt as follows:

yi jt = yi jt(ω∗)=


1 if

(
1
σ

(
σ

σ−1
τi jtwit

ϕ∗it

)1−σ

Pσ−1
jt ξi jtE jt

)
f exp
i jt (1+δ( f entry−1))(1−yi j(t−1))

≥ 1,

0 else.

(5.1)

Country i is hence more likely to export to country j in period t if (i) bilateral

variable trade costs are lower; (ii) wages in i, and hence production costs, are lower;

(iii) the productivity of the most productive firm is higher, again reducing production

costs; (iv) competitive pressure, inversely captured by the price index, in j is lower,

corresponding to the idea of inward multilateral resistance coined by Anderson and

Van Wincoop (2003) in the intensive margin context; (v) the market in j is larger;

(vi) bilateral fixed costs of exporting are smaller; or (vii) i’s most productive firm

already served market j in the previous period and therefore does not have do pay

the market entry cost. Note that (i) to (iv) all act via higher operating profits and

6. Note that our final expression for the extensive margin also holds if firms instead expect their
operating profits from serving an export market to grow at a constant rate ḡ < δ.
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depend on the elasticity of substitution between goods. The higher this elasticity,

the stronger the reaction of profits to changes in any of these factors. At the same

time, a higher elasticity reduces the mark-up firms can charge and hence makes

it generally harder to earn enough profits to mitigate the fixed costs of exporting.

Further note that the importance of the entry costs depends on the discount factor.

Intuitively, if agents are more patient, the one-time entry costs matter less compared

to the repeatedly earned profits.

In order to turn equation (5.1) into the empirical expression that we will bring to

the data, we take the natural logarithm and group all exporter-time and importer-

time specific components and capture them with corresponding sets of fixed effects.

Further, we need to specify the fixed and variable trade costs. In keeping with the

existing literature, we model them as a linear combination of different observable

bilateral variables, such as geographical distance, whether i and j are both WTO

members, or whether i and j share a common currency. In our most general spec-

ification, we additionally include country pair fixed effects. Following Baier and

Bergstrand (2007), this is common practice in the estimation of the determinants

of the intensive margin of trade in order to avoid endogeneity due to unobserved

heterogeneity. Further, these bilateral fixed effects may capture (part of) the strong

persistence documented above.7 We then end up with the following econometric

model:

yi jt =
1 if κ+λit +ψ jt +βy yi j(t−1) +x′

i jtβx +µi j ≥ ζi jt,

0 else,
(5.2)

where κ = −σ log(σ)− (1−σ) log(σ−1)− log(1+δ( f entry −1)), λit = (1−σ)(log(wit)−
log(ϕ∗

it)), ψ jt = (σ−1)log(P jt)+ log(E jt), βy = log(1+δ( f entry −1)), x′
i jtβx +µi j = (1−

σ) log(τi jt)− log( f exp
i jt ), and ζi jt = − log(ξi jt) ∼ N (0,1). The error term distribution

implies that a probit estimator is the appropriate choice to estimate our model.

Alternatively, we could deviate from Eaton, Kortum, and Kramarz (2011) and assume

a log-logistic distribution for the idiosyncratic demand shocks, which would lead to a

logit specification.

Our theoretical framework implies a flexible empirical specification that can

reconcile the extensive margin estimation with the stylized fact presented in section

5.1. Note that we chose to make a number of simplifying assumptions in order to

achieve the clear theory-consistent interpretation of specification (5.2). An alter-

native interpretation of equation (5.2) as a reduced-from representation of a more

elaborate and realistic model (similar e.g. to how Roberts and Tybout 1997 motivate

7. If the trade costs further include any exporter(-time) or importer(-time) specific components,
these are captured by the aforementioned corresponding sets of fixed effects.
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their empirical consideration) is equally justifiable. At the same time, while our

model is written along the lines of Helpman, Melitz, and Rubinstein (2008), which

remains the benchmark for the empirical assessment of the (aggregate) extensive

margin of trade, it is not decisive for our empirical specification that zero trade

flows result from a truncated productivity distribution instead of a discrete number

of firms (as in Eaton, Kortum, and Sotelo 2013) or from fixed exporting costs in a

Krugman (1980)-type homogeneous firms setting (as in Egger and Larch 2011; Egger

et al. 2011).

5.3 Binary Response Estimators with High-
Dimensional Fixed Effects

Having set up the empirical framework, we now turn to the estimation procedure.

As equation (5.2) demands two- or three-way fixed effects to capture unobservable

characteristics, we describe how to implement suitable binary choice estimators. In

a first step, we review a recent procedure for estimating probit and logit models

with high-dimensional fixed effects proposed by Stammann (2018).8 In a second

step, we characterize appropriate bias correction techniques to address the induced

incidental parameters problem.

5.3.1 Feasible Estimation

In this subsection, we sketch how to estimate structural parameters, average partial

effects (APEs), and the corresponding standard errors in a binary response setting in

the presence of high-dimensional fixed effects. Let Z= [D,X], where D is the dummy

matrix corresponding to the fixed effects and X is a matrix of further regressors.

Note that X may also include predetermined variables. Further, let α denote the

vector of fixed effects, β the vector of structural parameters, and θ = [α′,β′]′.

The log-likelihood contribution of the i jt-th observation is

`i jt(β,αi jt)= yi jt log(Fi jt)+ (1− yi jt) log(1−Fi jt),

where αi jt = [λit,ψ jt]′ in the case of two-way fixed effects and αi jt = [λit,ψ jt,µi j]′ in

the case of three-way fixed effects.9 Further, Fi jt is either the logistic or the standard

normal cumulative distribution function. See table 5.1 for the relevant expressions

and derivatives.

8. We review the estimation procedure to reconcile the notation with the one used in Fernández-Val
and Weidner (2016) and this article.

9. Note that we use for brevity notation for balanced data.
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Table 5.1: Expressions and Derivatives for Logit
and Probit Models

Logit Probit

Fi jt (1+exp(−ηi jt))−1 Φ(ηi jt)
∂ηFi jt Fi jt(1−Fi jt) φ(ηi jt)
∂η2 Fi jt ∂ηFi jt(1−2Fi jt) −ηi jtφ(ηi jt)
νi jt (yi jt −Fi jt)/∂ηFi jt (yi jt −Fi jt)/∂ηFi jt
Hi jt 1 ∂ηFi jt/(Fi jt(1−Fi jt))
ωi jt ∂ηFi jt Hi jt∂ηFi jt
∂η`i jt yi jt −Fi jt Hi jt(yi jt −Fi jt)

Note: ηi jt = x′
i jtβ+λit +ψ jt or ηi jt = x′

i jtβ+λit +ψ jt +µi j is
the linear predictor.

The standard approach to estimate binary choice models is to maximize the

following log-likelihood function:

L (β,α)=
I∑

i=1

J∑
j=1

T∑
t=1

`i jt(β,αi jt)

using Newton’s method. The update in iteration (r−1) is

(θr −θr−1)= (Z′Ω̂Z)−1Z′Ω̂ν̂ , (5.3)

where Z′Ω̂Z and Z′Ω̂ν̂ denote the negative Hessian and gradient of the log-likelihood,

respectively, and Ω̂ is a diagonal weighting matrix with diag(Ω̂)= ω̂.

The brute-force computation of equation (5.3) quickly becomes computationally

demanding, if not impossible.10 Thus Stammann (2018) suggests a straightforward

strategy called pseudo-demeaning that mimics the well known within transforma-

tion for linear regression models. The approach allows to update the structural

parameters without having to explicitly update the incidental parameters, which

leads to the following concentrated version of equation (5.3):

(βr −βr−1)= (
(M̂X)′Ω̂(M̂X)

)−1 (M̂X)′Ω̂(M̂ν̂) , (5.4)

where (M̂X)′Ω̂(M̂ν̂) is the concentrated gradient, (M̂X)′Ω̂(M̂X) is the concentrated

negative Hessian, and M̂= IIJT−P̂= IIJT−D(D′Ω̂D)−1D′Ω̂ is known as the residual

projection that partials out the fixed effects. After convergence of the optimiza-

tion routine, the standard errors associated with the structural parameters can be

computed from the inverse of the concentrated Hessian.

Since the computation of M̂ itself is problematic even in moderately large data

10. In a balanced data set (I = J = N) with two-way fixed effects the routine requires to estimate
≈ 2NT fixed effects associated with a 2NT ×2NT Hessian. In the case of three-way fixed effects, the
number of parameters to be estimated is even ≈ N(N −1)×2NT. In a trade panel data set with 200
countries and 50 years, the number of fixed effects in the latter case amounts to 59,800 parameters.
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sets, Stammann (2018) proposes to calculate M̂ν̂ and M̂X using the method of

alternating projections (MAP), which only requires to repeatedly perform group-

specific one-way weighted within transformations. This approach is feasible, since

these within transformations translate into simple scalar transformations (see

Stammann, Heiß, and McFadden 2016).11 Note that all expressions that contain M̂

or P̂ can be calculated efficiently based on the MAP.

Next, we address the estimation of APEs. An estimator for the APEs is

δ̂k =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆̂k
i jt ,

where the partial effect of the k-th regressor ∆̂k
i jt is either ∆̂k

i jt = ∂F̂i jt/∂xi jtk in the

case of a continuous regressor or ∆̂k
i jt = F̂i jt|xi jtk=1 − F̂i jt|xi jtk=0 in the case of a binary

regressors.

Another question that arises in the context of APEs is how to calculate appropri-

ate standard errors, even in the case of high-dimensional fixed effects. A possible

candidate is the delta method, but in its standard form it requires the entire co-

variance matrix, which we do not obtain using the pseudo-demeaning approach.

However, as outlined in Fernández-Val and Weidner (2016) and Czarnowske and

Stammann (2019) in the context of individual and time fixed effects, it is possible

to use a concentrated version of the delta method. In the following we present the

feasible covariance estimators for our two-way and three-way error structure.12 An

appropriate covariance estimator for the APEs of the two-way fixed effects model is

V̂δ = 1
I2J2T2


(

I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆i jt

)(
I∑

i=1

J∑
j=1

T∑
t=1

̂̄∆i jt

)′
︸ ︷︷ ︸

v1

+
I∑

i=1

J∑
j=1

T∑
t=1

Γ̂i jtΓ̂
′
i jt︸ ︷︷ ︸

v2

 , (5.5)

11. For further details, we refer the reader to appendix A.1, where we sketch the MAP for our appli-
cation of two-way and three-way models, and provide the entire optimization routine corresponding
to equation (5.4).

12. The corresponding asymptotic distribution of the estimators is provided in appendix A.3.
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and of the three-way error component model

V̂δ = 1
I2J2T2


(

I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆i jt

)(
I∑

i=1

J∑
j=1

T∑
t=1

̂̄∆i jt

)′
︸ ︷︷ ︸

v1

+
I∑

i=1

J∑
j=1

T∑
t=1

Γ̂i jtΓ̂
′
i jt︸ ︷︷ ︸

v2

+2
I∑

i=1

J∑
j=1

T∑
s>t

̂̄∆i jtΓ̂
′
i js︸ ︷︷ ︸

v3

 , (5.6)

where in both cases ̂̄∆i jt = ∆̂i jt − δ̂, ∆̂i jt = [∆̂1
i jt, . . . ,∆̂

m
i jt]

′, δ̂= [δ̂1, . . . , δ̂m]′, and

Γ̂i jt =
(

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆̂i jt −
(
P̂X

)
i jt ∂η∆̂i jt

)′
Â−1 (

M̂X
)

i jt ω̂i jtν̂i jt −
(
P̂Ψ̂

)
i jt ∂η

ˆ̀i jt ,

with Â = (M̂X)′Ω̂(M̂X), Ψ̂i jt = ∂η∆̂i jt/ω̂i jt, and ∂η
ˆ̀i jt defined in table 5.1. To clarify

notation, ∂ιg(·) denotes the first order partial derivative of an arbitrary function g(·)
with respect to some parameter ι. Note that the term v2 refers to the concentrated

delta method. The terms v1 and v3 are in spirit of Fernández-Val and Weidner (2016)

to improve the finite sample properties. These are on the one hand the variation

induced by estimating sample instead of population means (v1). On the other hand,

if we are concerned about the strict exogeneity assumption (as we are in the case of

dynamic three-way error structure models), the covariance between the estimation

of sample means and parameters is another factor that should be incorporated (v3).

These computationally efficient covariance estimators can be readily applied not

only to uncorrected APE estimators, but also to the bias-corrected APE estimators,

which we will introduce below.

5.3.2 Incidental Parameter Bias Correction

As many nonlinear estimators, standard fixed effects versions of the logit and probit

models suffer from the well-known incidental parameters problem first identified by

Neyman and Scott (1948). The problem stems from the necessity to estimate many

nuisance parameters which contaminate the estimator of the structural parameters

and average partial effects. It can be further amplified by the inclusion of a lagged

dependent variable. Note that this induces an incidental parameters problem even

in the linear three-way fixed effects setting (see Nickell 1981) — and hence in our

case also affects a linear probability model specification. Fernández-Val and Weidner

(2018a) derive the order of the bias induced by incidental parameters to be given
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by bias ∼ p/n, where p and n are the numbers of parameters and observations,

respectively. The literature suggests different types of bias corrections to reduce this

incidental parameter bias. Jackknife corrections, like the leave-one-out jackknife

proposed by Hahn and Newey (2004) or the split-panel jackknife (SPJ) introduced by

Dhaene and Jochmans (2015), are the simplest approaches to obtain a bias correction,

at the expense of being computationally costly. In contrast to analytical corrections,

their application only requires knowledge of the order of the bias to form appropriate

subpanels that are used to reestimate the model and to form an estimator of the bias

terms. For analytical bias correction (ABC), it is necessary to derive the asymptotic

distribution of the maximum likelihood estimator (MLE) in order to obtain an explicit

expression of the asymptotic bias. This is then used to form a suitable estimator

for the bias terms. Fernández-Val and Weidner (2016) propose analytical and split-

panel jackknife bias corrections for structural parameters and APEs in the context

of nonlinear models with individual and time fixed effects. In the following two

subsections, we adapt and extend the bias corrections of Fernández-Val and Weidner

(2016) to our two-way and three-way error component.13

Two-way fixed effects

The two-way fixed effects case with exporter-time and importer-time fixed effects is

closely related to the two-way fixed effects models with a classical panel structure and

individual and time fixed effects or with a pseudo-panel i j-structure and exporter and

importer fixed effects as discussed by Fernández-Val and Weidner (2016) and Cruz-

Gonzalez, Fernández-Val, and Weidner (2017), respectively. It is straightforward to

see that in our case the overall bias consists of two components that are due to the

inclusion of importer-time and exporter-time fixed effects, respectively, and takes

the form B1/I +B2/J (see appendix A.3).14

The form of the bias suggests to separately split the panel by I and J, leading to

the following split-panel corrected estimator for the structural parameters:

β̂
sp = 3β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T , with (5.7)

β̂I/2,J,T = 1
2

[
β̂{i:i≤dI/2e},J,T + β̂{i:i≥bI/2+1c},J,T

]
,

β̂I,J/2,T = 1
2

[
β̂I,{ j: j≤dJ/2e,T} + β̂I,{ j: j≥bJ/2+1c,T}

]
,

where b·c and d·e denote the floor and ceiling functions. To clarify the notation,

the subscript {i : i ≤ dI/2e}, J,T denotes that the estimator is based on a subsample,

13. We do not elaborate on the leave-one-out jackknife bias correction because the large number of
fixed effects in our panel structure makes it unnecessary computationally demanding.

14. We also report the appropriate Neyman and Scott (1948) variance example in appendix A.2 as
an illustration.
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which contains all importers and time periods, but only the first half of all exporters.

In order to form the appropriate analytical bias correction, we need to specify the

asymptotic distribution of the MLE, which we show in appendix A.3. The analytical

bias-corrected estimator β̃
a is formed from estimators of the leading bias terms that

are subtracted from the MLE of the full sample β̂I,J,T . More precisely,

β̃
a = β̂I,J,T −

B̂β

1

I
−

B̂β

2

J
, with B̂β

1 = Ŵ−1B̂1,B̂β

2 = Ŵ−1B̂2, and

B̂1 =− 1
2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥi jt∂η2 F̂i jt

(
M̂X

)
i jt∑I

i=1 ω̂i jt
,

B̂2 =− 1
2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥi jt∂η2 F̂i jt

(
M̂X

)
i jt∑J

j=1 ω̂i jt
,

Ŵ= 1
IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂i jt
(
M̂X

)
i jt

(
M̂X

)′
i jt ,

where ∂ι2 g(·) denotes the second order partial derivative of an arbitrary function g(·)
with respect to some parameter ι. The explicit expressions of Hi jt and ∂η2 Fi jt are

reported in table 5.1.

The split-panel jackknife estimator works similarly with APEs as with structural

parameters. We simply replace in formula (5.7) the estimators for the structural

parameters with estimators for the APEs. The following analytically bias-corrected

estimator for the APEs is formed based on the asymptotic distribution presented in

appendix A.3:

δ̃
a = δ̂−

B̂δ
1

I
−

B̂δ
2

J
, with

B̂δ
1 =

1
2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥi jt∂η2 F̂i jt

(
P̂Ψ̂

)
i jt +∂η2∆̂i jt∑I

i=1 ω̂i jt
,

B̂δ
2 =

1
2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥi jt∂η2 F̂i jt

(
P̂Ψ̂

)
i jt +∂η2∆̂i jt∑J

j=1 ω̂i jt
.

Note that all quantities are evaluated at bias-corrected structural parameters and

the corresponding estimates of the fixed effects, where the latter can be obtained by

reestimating the model using an offset algorithm as in Czarnowske and Stammann

(2019). The covariance can be estimated according to equation (5.5).

Three-way fixed effects

Having adapted the two-way fixed effects bias correction of Fernández-Val and

Weidner (2016) to the i jt-panel setting, we now move on to the more difficult case of
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extending the consideration to three-way fixed effects. Fernández-Val and Weidner

(2018a) conjecture based on their previously discussed formula, bias ∼ p/n, that the

bias is of order (IT + JT + IJ)/(IJT) and of the form B1/I +B2/J+B3/T. Intuitively,

the inclusion of pair fixed effects induces another bias of order 1/T because there are

only T informative observations per additionally included parameter. We support

their conjecture by providing the appropriate Neyman and Scott (1948) variance

example in appendix A.2 and propose novel analytical and jackknife bias corrections

for three-way fixed effects models.

For the split-panel jackknife bias correction, this bias structure implies that we

add an additional splitting dimension, leading to the following estimator for the

structural parameters:

β̂
sp = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2, with (5.8)

β̂I/2,J,T = 1
2

[
β̂{i:i≤bI/2c,J,T} + β̂{i:i≥dI/2+1e,J,T}

]
,

β̂I,J/2,T = 1
2

[
β̂{I, j: j≤bJ/2c,T} + β̂{I, j: j≥dJ/2+1e,T}

]
,

β̂I,J,T/2 =
1
2

[
β̂{I,J,t:t≤bT/2c} + β̂{I,J,t:t≥dT/2+1e}

]
.

Combining insights from the classical panel structure in Fernández-Val and

Weidner (2016), the pseudo-panel setting in Cruz-Gonzalez, Fernández-Val, and

Weidner (2017), and the three-way fixed effects conjecture by Fernández-Val and

Weidner (2018a), we formulate a conjecture for the asymptotic MLE distribution in

the three-way setting (which we present in appendix A.3) and propose to extend the

analytical two-way bias correction by a third part B̂3, such that

β̃
a = β̂I,J,T −

B̂β

1

I
−

B̂β

2

J
−

B̂β

3

T
, with B̂β

3 = Ŵ−1B̂3

B̂3 =− 1
2IJ

I∑
i=1

J∑
j=1

(
T∑

t=1
ω̂i jt

)−1 (
T∑

t=1
Ĥi jt∂η2 F̂i jt

(
M̂X

)
i jt

+2
L∑

l=1
(T/(T −L))

T∑
t=l+1

∂η
ˆ̀i jt−lω̂i jt

(
M̂X

)
i jt

)
.

L is a bandwidth parameter and is used for the estimation of spectral densities

(Hahn and Kuersteiner 2007). In a model where all regressors are exogenous, L is

set to zero, such that the second part in the numerator of B̂3 vanishes and all three

estimators of the bias terms are symmetric. Otherwise, for instance in the dynamic

model, Fernández-Val and Weidner (2016) suggest to conduct a sensitivity analysis

with L ∈ {1,2,3,4}.

Again, for the APEs the split-panel jackknife estimator is formed by replacing the
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estimators for the structural parameters with estimators for the APEs in formula

(5.8). The analytically bias-corrected estimator, based on our conjecture for the

asymptotic distribution provided in appendix A.3, is given by

δ̃
a = δ̂−

B̂δ
1

I
−

B̂δ
2

J
−

B̂δ
3

T
, with

B̂δ
3 =

1
2IJ

I∑
i=1

J∑
j=1

(
T∑

t=1
ω̂i jt

)−1 (
T∑

t=1
−Ĥi jt∂η2 F̂i jt

(
P̂Ψ̂

)
i jt +∂η2∆̂i jt

+2
L∑

l=1
(T/ (T − l))

T∑
t=l+1

∂η
ˆ̀i jt−lω̂i jt

(
M̂Ψ̂

)
i jt

)
.

The last part of the numerator is again dropped if all regressors are assumed to be

strictly exogenous. As previously mentioned, standard errors can still be obtained

from equation (5.6).

5.4 Monte Carlo Simulations

In this section, we conduct extensive simulation experiments to investigate the

properties of different estimators for both the structural parameters and the APEs.

The estimators we study are MLE, ABC, SPJ and a (bias-corrected) ordinary least

squares fixed effects estimator (LPM).15 Our main focus are the biases and inference

accuracies. To this end, we compute the relative bias and standard deviation (SD)

in percent, the ratio between standard error and standard deviation (SE/SD), the

relative root mean square error (RMSE) in percent, and the coverage probabilities

(CPs) at a nominal level of 95 percent.

For the simulation experiments we adapt the design for a dynamic probit model

of Fernández-Val and Weidner (2016) to our i jt-panel structure for the two cases

with two- and three-way fixed effects.16

5.4.1 Two-Way Fixed Effects

The simulations in this section correspond to a theory-consistent estimation of

the extensive margin outlined in section 5.2, taking into account unobserved time-

varying exporter- and importer-specific terms as well as dynamics, but not allowing

15. Details on LPM and our suggested bias correction in this context are given in appendix A.4. We
use the R-package lfe of Gaure (2013a) for the estimation of LPM and our own implementation for
the estimation of the nonlinear estimators.

16. Further simulation experiments including static panel models are presented in appendix C.
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for bilateral unobserved heterogeneity. Specifically, we generate data according to

yi jt = 1
[
βy yi jt−1 +βxxi jt +λit +ψ jt ≥ εi jt

]
,

yi j0 = 1
[
βxxi j0 +λi0 +ψ j0 ≥ εi j0

]
,

where i = 1, . . . , N, j = 1, . . . , N, t = 1, . . . ,T, λit ∼ iid. N (0,1/16), ψ jt ∼ iid. N (0,1/16),

and εi jt ∼ iid. N (0,1).17 Further, xi jt = 0.5xi jt−1 + λit +ψ jt + νi jt, where νi jt ∼
iid. N (0,0.5), xi j0 ∼ iid. N (0,1). To get an impression of how the different statis-

tics evolve with changing panel dimensions, we consider all possible combinations

of N ∈ {50,100,150} and T ∈ {10,20,30,40,50}. For each of these combinations we

generate 1,000 samples.

Tables 5.8 – 5.13 in appendix B.1 report the extensive simulation results for the

exogenous and predetermined regressors, respectively. The left panels contain the

results of the structural parameters and the right panels the results of the APEs.

In the following, we focus on the biases and coverage probabilities for N ∈ {50,150},

which we visualize in figures 5.2 and 5.3 for better comprehensibility.

First of all, we start with analyzing the properties of the different estimators for

the structural parameters. MLE exhibits persistent biases which do not fade with

increasing T but with increasing N. This result is as expected since MLE is fixed T
consistent as shown in appendix A.3. Further, its CPs are too low and decreasing

in T. The bias-corrected estimators perform clearly better than MLE. First, they

reduce the bias considerably. ABC shows basically no bias for any considered sample

size. SPJ performs slightly worse. Second, the bias corrections also dramatically

improve the coverage probabilities. Whereas the CPs of ABC are close to the nominal

value in all cases, the CPs of SPJ are somewhat too low for the exogenous regressor

in the case of N = 50.

Next, we turn to the estimators of the APEs, where we now also consider LPM.

It turns out that MLE as well as the two bias-corrected estimators are essentially

unbiased. This is particularly noteworthy for MLE, since it exhibits a non-negligible

bias for the structural parameters. Remarkably, LPM displays persistent biases

which — different than for the nonlinear estimators — do not vanish with larger

N. The bias is very small for the exogenous regressor but for the predetermined

regressor it ranges between 5 and 6 percent.18 This persistent biases also explain

that LPM delivers too small CPs that decrease in T. Contrary, the CPs of the three

nonlinear estimators are close to the nominal value in most cases.

17. Since {λit}IT and {ψ jt}JT are independent sequences, and λit and ψ jt are independent for all it,
jt, we follow Fernández-Val and Weidner (2016) and incorporate this information in the covariance
estimator for the APEs. The explicit expression is provided in the appendix A.3.

18. We found that the predicted probabilities of LPM exceed the boundaries of the unit interval
considerably. This in turn affects the APEs for binary regressors, since they are based on differences
of predicted probabilities.
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Figure 5.2: Dynamic: Two-Way Fixed Effects - Predetermined Regressor
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Figure 5.3: Dynamic: Two-Way Fixed Effects - Exogenous Regressor
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All in all, our two-way fixed effects simulation results demonstrate that the

bias-corrected estimators work extremely well in this context — for both structural

parameters and APEs and both bias and coverage probabilities. Between the two, the

analytical correction slightly outperforms the split-panel jackknife correction. If the

interest lies only in APEs, the MLE works well, too, but for the structural parameters

it shows bias and essentially useless coverage probabilities. LPM performs clearly

worse than the probit estimators and should — given the availability of the nonlinear

alternatives — only be used with great caution.

5.4.2 Three-Way Fixed Effects

The simulations in this section correspond to our preferred empirical specification

for the extensive margin of international trade, in which we not only take into

account the theoretically motivated it- and jt-fixed effects, but additionally allow for

bilateral unobserved heterogeneity. In this three-way error structure environment,

we generate data according to

yi jt =1
[
βy yi jt−1 +βxxi jt +λit +ψ jt +µi j ≥ εi jt

]
,

yi j0 =1
[
βxxi j0 +λi0 +ψ j0 +µi j ≥ εi j0

]
,

where i = 1, . . . , N, j = 1, . . . , N, t = 1, . . . ,T, βy = 0.5, βx = 1, λit ∼ iid. N (0,1/24),

ψ jt ∼ iid. N (0,1/24), µi j ∼ iid. N (0,1/24), and εi jt ∼ iid. N (0,1).19 The exogenous

regressor is modeled as an AR-1 process, xi jt = 0.5xi jt−1+λit +ψ jt +µi j +νi jt, where

νi jt ∼ iid. N (0,0.5) and xi j0 ∼ iid. N (0,1). Again, we consider different sample sizes,

specifically N ∈ {50,100,150} and T ∈ {10,20,30,40,50} and generate 1,000 data sets

for each.

Tables 5.17 – 5.16 in appendix B.2 summarize the extensive simulation results for

both regressors. For ABC and LPM we report two different choices of the bandwidth

parameter, L = 1 and L = 2. Here, we again focus on the biases and coverage

probabilities for N ∈ {50,150} which are shown in figures 5.4 and 5.5.

We start by considering the different estimators for the structural parameters.

For both kinds of regressors, MLE exhibits a severe bias that decreases with increas-

ing T. However, even with T = 50, the estimator shows a distortion of 11 percent in

the case of the predetermined regressor and 5 percent in the case of the exogenous

regressor. We also find that the inference is not valid, since the CPs are zero or close

to zero. The bias corrections bring a substantial improvement. First, they reduce

the bias considerably. For example, the MLE of the predetermined regressor shows

19. We again follow Fernández-Val and Weidner (2016) and incorporate the information that {λit}IT ,
{ψ jt}JT , and {µi j}IJ are independent sequences, and λit, ψ jt, and µi j are independent for all it, jt, i j
in the covariance estimator for the APEs. The explicit expression is provided in appendix A.3.
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Figure 5.4: Dynamic: Three-Way Fixed Effects - Predetermined Regressor
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Figure 5.5: Dynamic: Three-Way Fixed Effects - Exogenous Regressor
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a distortion of 63 percent for T = 10 and N = 150. ABC reduces the bias to 8 percent

and SPJ to 20 percent. In the case of the exogenous regressor, MLE exhibits a bias of

23 percent, whereas ABC has a bias of 1 percent and SPJ of 7 percent. Irrespective

of the type of the regressor, both bias-corrected estimators also converge quickly to

the true parameter value with growing T. Second, the bias corrections improve the

CPs. For the exogenous regressor the CPs of ABC are close to the desired level of 95

percent for all T, whereas SPJ remains far away from 95 percent even at T = 50. In

the case of the predetermined regressor, the CPs of both corrections approach the

nominal level when T rises. This happens faster for ABC.

We again proceed with the APEs, where we also consider LPM as an alternative

estimator. Overall, we obtain similar findings as for the structural parameters. MLE

is distorted over all settings, but the bias decreases as T increases. The distortion is

especially severe in the case of the predetermined regressor. Even at T = 50, MLE

suffers a bias of 15 percent. The bias corrections bring a substantial reduction in

this case. Whereas ABC shows only a small distortion of 1 percent in the case of the

exogenous regressor at T = 10, SPJ is even heavier distorted than MLE. However,

with increasing T, both SPJ and ABC quickly converge to the true APE. Furthermore,

unlike ABC, SPJ needs a sufficiently large number of time periods to get its CPs

close to 95 percent. For the predetermined regressor, these convergence processes

last longer for both bias corrections. Looking at LPM in the case of the exogenous

regressors, it produces almost unbiased estimates irrespective of T, but its CPs

fall dramatically with increasing T. Moreover, in the case of the predetermined

regressor, we observe an increase in the bias up to 14 percent with increasing T.20

These results illustrate the superiority of ABC and SPJ over LPM.

Overall, our three-way fixed effects simulation results confirm the conjecture of

Fernández-Val and Weidner (2018a) about the general form and lend support to our

conjecture for the specific structure of the bias terms in the three-way fixed effects

specification. First, we find that the bias corrections indeed substantially mitigate

the bias. Second, as already found in other studies, analytical bias corrections clearly

outperform split-panel jackknife bias corrections (see among others Fernández-Val

and Weidner 2016; Czarnowske and Stammann 2019). For samples with shorter

time horizons, ABC is often less distorted and its dispersion is generally lower. This

20. A similar behaviour of LPM has been observed by Czarnowske and Stammann (2019) in the
context of a dynamic probit model with individual and time fixed effects. To ensure that the bias
correction presented in appendix A.4 in our three-way fixed effects specification is implemented
correctly we have tested it in a data generation process for classical linear models, i.e. without binary
dependent variables, and found that it works as intended. The undesirable behavior in our simulation
design for the probit model is driven by the fact that due to the autoregressive process of x, the
predicted probabilities of LPM exceed the boundaries of the unit interval more and more frequently
as T increases. This is particularly reflected in the APEs for binary regressors, since they are based
on differences of predicted probabilities.
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is also reflected by better CPs. Further, our three-way fixed effects simulation results

suggest that estimates based on MLE or LPM should be treated with great caution.

Generally, in the three-way fixed effects setting, a sufficiently large number of time

periods appears to be crucial to obtain reliable results, even for the bias-corrected

estimators.

5.5 Determinants of the Extensive Margin of Trade

Having described the estimation and bias correction procedures, we now turn to

the estimation of the determinants of the extensive margin of international trade

outlined in section 5.2.

Recall equation (5.2) that relates the incidence of nonzero aggregate trade flows

to exporter-time and importer-time specific characteristics, as well as trade in the

previous period, next to fixed and variable trade costs:

yi jt =
1 if κ+λit +ψ jt +βy yi j(t−1) +x′

i jtβx ≥ ζi jt,

0 else.

This yields the following probit model:

Pr(yi jt = 1|xi jt, yi j(t−1),λit,ψ jt)= F
(
x′

i jtβx +βy yi j(t−1) +λit +ψ jt

)
, (5.9)

in case we assume to capture bilateral variables and fixed trade costs entirely with

observables, or

yi jt =
1 if κ+λit +ψ jt +βy yi j(t−1) +x′

i jtβx +µi j ≥ ζi jt,

0 else

and

Pr(yi jt = 1|xi jt, yi j(t−1),λit,ψ jt,µi j)= F
(
x′

i jtβx +βy yi j(t−1) +λit +ψ jt +µi j

)
, (5.10)

in case we include a time-invariant bilateral fixed effect to capture unobservable

country pair characteristics. yi j(t−1) is the lagged dependent variable, x is a vector of

observable bilateral variables, βy and βx are the corresponding parameters.

We largely follow HMR and the wider literature on the determinants of the

intensive margin of trade (compare Head and Mayer 2014) in the choice of these

variables: Distance, a common land border, the same origin of the legal system,

common language, previous colonial ties, a joint currency, an existing free trade

agreement, or joint membership in the WTO. In terms of data, we turn to the
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comprehensive gravity dataset provided alongside Head, Mayer, and Ries (2010)

that encompasses information on trade flows and these variables of interest from

1948 – 2006.

Table 5.2: Probit: Coefficients

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) - - 1.664∗∗∗ - 1.140∗∗∗

[-] [-] [1.719] [-] [1.057]
(-) (-) (0.004) (-) (0.005)

log(Distance) - -0.800∗∗∗ -0.528∗∗∗ - -
[-0.656∗∗∗] [-0.821] [-0.546] [-] [-]

(0.003) (0.003) (0.004) (-) (-)
Land border - 0.207∗∗∗ 0.118∗∗∗ - -

[0.260∗∗∗] [0.214] [0.124] [-] [-]
(0.014) (0.016) (0.018) (-) (-)

Legal - 0.137∗∗∗ 0.089∗∗∗ - -
[0.090∗∗∗] [0.141] [0.093] [-] [-]

(0.004) (0.004) (0.005) (-) (-)
Language - 0.426∗∗∗ 0.280∗∗∗ - -

[0.380∗∗∗] [0.436] [0.289] [-] [-]
(0.005) (0.006) (0.007) (-) (-)

Colonial ties - 0.657∗∗∗ 0.487∗∗∗ - -
[0.190∗∗∗] [0.702] [0.542] [-] [-]

(0.02) (0.031) (0.036) (-) (-)
Currency Union - 0.631∗∗∗ 0.424∗∗∗ 0.303∗∗∗ 0.214∗∗∗

[0.381∗∗∗] [0.649] [0.443] [0.335] [0.255]
(0.012) (0.015) (0.017) (0.032) (0.034)

FTA - 0.543∗∗∗ 0.359∗∗∗ 0.073∗ 0.038
[0.508∗∗∗] [0.552] [0.364] [0.072] [0.033]

(0.017) (0.019) (0.021) (0.038) (0.04)
WTO - 0.152∗∗∗ 0.101∗∗∗ 0.052∗∗∗ 0.039∗∗

[0.286∗∗∗] [0.154] [0.104] [0.058] [0.048]
(0.005) (0.008) (0.009) (0.016) (0.017)

Fixed effects i, j, t it, jt it, jt it, jt, i j it, jt, i j
Sample size 1,204,671 1,204,671 1,171,794 1,204,671 1,171,794
- perf. class. 12,298 147,760 141,537 370,617 374,067
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Note: Uncorrected coefficients in square brackets; standard errors in parentheses.

We report the bias-corrected coefficients in table 5.2 and the corresponding

average partial effects in table 5.3.21 For each uncorrected and (analytically) bias-

corrected coefficients and average partial effects we also report the uncorrected one

in square brackets, as well as the standard errors in parentheses below. In column

(1) we first mimic the specification estimated by HMR.22 Their specification includes

21. While the error term distribution assumed in section 5.2 suggests a probit estimator, we also
estimate equations (5.9) and (5.10) with a logit estimator and show the corresponding results in
tables 5.26 and 5.27 in appendix D. The coefficients and average partial effects are similar to those
estimated with the probit model.

22. HMR use a dataset that ranges from 1970 to 1997. They also include dummy variables for
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Table 5.3: Probit: Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) - - 0.346∗∗∗ - 0.179∗∗∗

[-] [-] [0.344] [-] [0.138]
(-) (-) (0.003) (-) (0.052)

log(Distance) - -0.135∗∗∗ -0.066∗∗∗ - -
[-0.136∗∗∗] [-0.135] [-0.066] [-] [-]

(0.005) (0.005) (0.001) (-) (-)
Land border - 0.035∗∗∗ 0.015∗∗∗ - -

[0.054∗∗∗] [0.035] [0.015] [-] [-]
(0.004) (0.004) (0.003) (-) (-)

Legal - 0.023∗∗∗ 0.011∗∗∗ - -
[0.019∗∗∗] [0.023] [0.011] [-] [-]

(0.001) (0.001) (0.001) (-) (-)
Language - 0.071∗∗∗ 0.035∗∗∗ - -

[0.078∗∗∗] [0.071] [0.035] [-] [-]
(0.003) (0.001) (0.001) (-) (-)

Colonial ties - 0.107∗∗∗ 0.061∗∗∗ - -
[0.039∗∗∗] [0.111] [0.066] [-] [-]

(0.004) (0.007) (0.005) (-) (-)
Currency Union - 0.103∗∗∗ 0.053∗∗∗ 0.038∗∗∗ 0.024∗∗∗

[0.078∗∗∗] [0.103] [0.054] [0.037] [0.025]
(0.004) (0.003) (0.002) (0.005) (0.009)

FTA - 0.090∗∗∗ 0.045∗∗∗ 0.009 0.004
[0.103∗∗∗] [0.088] [0.044] [0.008] [0.003]

(0.005) (0.004) (0.003) (0.007) (0.006)
WTO - 0.026∗∗∗ 0.013∗∗∗ 0.006∗∗ 0.004

[0.061∗∗∗] [0.026] [0.013] [0.006] [0.005]
(0.002) (0.002) (0.001) (0.003) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, i j it, jt, i j
Sample size 1,204,671 1,204,671 1,171,794 1,204,671 1,171,794
- perf. class. 12,298 147,760 141,537 370,617 374,067
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Note: Uncorrected average partial effects in square brackets; standard errors in parentheses.
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exporter, importer and time fixed effects.23 All coefficients have the expected sign, i.e.

a negative impact of distance on the probability to trade, while all other variables are

estimated to have a positive impact. Note the strong and highly significant impact of

a common currency, free trade agreement or joint membership of the WTO. Ceteris

paribus, each is estimated to increase the probability of nonzero flows by between 6

and 10 percentage points. Column (2) introduces a stricter set of fixed effects, namely

at the exporter-time and importer-time level. Most coefficients and average partial

effects are similar to those in column (1). This changes in column (3), which keeps the

same fixed effects, but adds a lagged dependent variable. Assuming no unobservable

bilateral heterogeneity, as in equation (5.9), this specification correctly estimates

the model set up in section 5.2. The first thing to note is the highly significant

coefficient for the lagged dependent variable, which reflects the strong impact of

previous nonzero trade flows on current ones. Ceteris paribus, the average partial

effect shows a 34 percentage points higher probability of nonzero trade, given the two

countries were also engaged in trade in the previous year. The second observation is

that essentially all coefficients are remarkably smaller than those in column (2), and

average partial effects are reduced by about 50 percent across the board. This result

underlines the need to explicitly take persistence into account. Note, however, that

the APEs of the two specifications are not directly comparable, because the static

model forces immediate effects and long-run dynamic adjustments into a single

estimate.

Column (4) then takes one step back and one forward. While not including the

lagged dependent variable in the estimation, it introduces a bilateral fixed effect

that controls for bilateral unobserved heterogeneity. This follows the important

insight by Baier and Bergstrand (2007), who show that controlling for unobserved

bilateral heterogeneity produces considerably a different estimated impact of free

trade agreements, among other variables, on the intensive margin of trade. While

now an identification of many of the variables of interest is not possible anymore

due to their time invariance, this specification reveals a much reduced estimated

impact of the time-varying variables. The impact of a common currency on the

probability of exporting is reduced to 3.8 percentage points, while those of a common

free trade agreement and WTO are decreased to less than 1 percentage point.

This result highlights the importance of controlling for unobserved country pair

heterogeneity and possible endogeneity. Finally, in column (5) we present our

preferred specification, estimating equation (5.10). The estimation now includes the

whether both countries are landlocked or islands, or follow the same religion. Hence our coefficients
deviate somewhat from theirs, while remaining qualitatively similar.

23. Note that following Fernández-Val and Weidner (2018a) the incidental bias problem is small
enough to ignore in this setting with i, j and t fixed effects, since the order of the bias is 1/IT+1/JT+
1/IJ, which in our case becomes negligible small since I, J and T are large.
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“full set” of fixed effects, i.e. exporter-time, importer-time and bilateral fixed effect,

in addition to the lagged dependent variable.24 Again the coefficient on the latter is

highly significant, entailing an average partial effect of about 18 percentage points.

Importantly, the only remaining statistically significant average partial effect is

estimated for a common currency at 2.4 percentage points. The impact of a free trade

agreement or joint membership of the WTO are statistically insignificant.

Contrasting the results from column (5) to those of column (1), which currently

constitutes the de-facto standard of estimating the determinants of the extensive

margin of trade, underlines the importance of (i) appropriate exporter-time and

importer-time fixed effects that capture all country-time specific variation; (ii) coun-

try pair fixed effects that capture all unobserved bilateral heterogeneity and address

endogeneity concerns, analogous to Baier and Bergstrand (2007) on the intensive

margin; (iii) dynamics, in that country pairs that have previously traded are sig-

nificantly more likely to do so than otherwise comparable country pairs. This

corroborates the stylized facts from section 5.1, which showed country pairs that had

previously engaged in trade to be likely to do so again in the next year. Failing to

observe any of these three insights produces widely different estimates.

Table 5.4: Probit vs. LPM (Three-Way): Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) - - 0.444∗∗∗ 0.474∗∗∗ 0.179∗∗∗

(-) (-) (0.001) (0.001) (0.052)
Currency Union 0.009∗∗∗ 0.038∗∗∗ 0.008∗∗∗ 0.008∗∗ 0.024∗∗∗

(0.003) (0.005) (0.003) (0.003) (0.009)
FTA -0.121∗∗∗ 0.009 -0.065∗∗∗ -0.062∗∗∗ 0.004

(0.003) (0.007) (0.002) (0.002) (0.006)
WTO 0.017∗∗∗ 0.006∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.004

(0.002) (0.003) (0.002) (0.002) (0.003)

Estimator LPM Probit LPM LPM Probit
bias-corrected false true false true true
Sample size 1,204,671 1,204,671 1,171,794 1,171,794 1,171,794

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard errors in
parentheses.

Another important insight is that the magnitude of the incidental parameters

problem — at least in this specific setting — is not as severe as one might have

feared. The most significant impact is observed on the coefficient for the lagged

dependent variable, which in table 5.2 column (5) differs by about 10 percent, and

even almost 24 percent in the respective average partial effect reported in table 5.3

24. Note that in the analytical bias correction we set the bandwidth parameter to L = 2. We report
results for L ∈ {0,1,2,3,4} in tables 5.28 to 5.33 in appendix D. The results remain robust with
L = 1−4.
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column (5). However, this does not carry through to other variables, in particular for

average partial effects. As shown in simulations in section 5.4, this may not come as

a big surprise. In this application we consider a panel that covers 57 years, meaning

the relatively large T inhibits a strong bias (e.g. compare figure 5.5). As shown in

the simulations, the bias is more severe in settings with fewer time periods and

should be handled appropriately.

To show the superiority of using suitable binary choice estimators with high-

dimensional fixed effects we also contrast the results to estimating equations (5.9)

and (5.10) with a linear probability model (LPM). Table 5.4 shows that LPM with

the same set of three-way fixed effects produces estimates that are far off the probit

ones.25 Columns (1) and (2) compare estimates without, columns (3) to (5) those

with a lagged dependent variable.26 Figure 5.6 underlines this impression: the LPM

produces up to 28 percent of fitted probabilities < 0 or > 1. This result highlights

that binary choice estimators with high-dimensional fixed effects cannot easily be

mimicked by an OLS estimator.

5.6 Conclusion

In this paper we reexamined the determinants of the extensive margin of interna-

tional trade. We set up a model that exhibits a dynamic component and allows for

time-invariant unobserved bilateral trade cost factors, generating persistence — a

feature in the data that has so far been paid little attention to. We estimated the

model using a probit estimator with high-dimensional fixed effects. As fixed effects

create an incidental parameters problem in binary choice settings, we characterized

and implemented bias corrections for estimations with appropriate two- and three-

way fixed effects. Finally, we showed that our estimates of the determinants of the

extensive margin of trade differ significantly from previous ones. This highlights the

importance of true state dependence and unobserved heterogeneity and therefore

strongly supports the use of our bias-corrected dynamic fixed effects estimator.

The extensive margin of trade obviously extends beyond the aggregate level,

warranting further research at lower levels of aggregation, in particular in the

context of firms. While our model’s prediction and its empirical specification rely on

some abstractions, it provides a very tractable and flexible framework that can be

estimated with recently established estimation procedures, when combined with the

bias correction technique we introduce.

25. As for the probit estimates, we also report the bias-corrected LPM estimates with different
bandwidth parameters in table 5.33. All in all, the results remain robust with L = 1−4. We also
report estimates for two-way fixed effects in table 5.32 in appendix D.

26. In column (3) we ignore and in column (4) we apply the appropriate bias correction for the LPM
with endogenous regressor, as detailed in appendix A.4.
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Appendix

A Computational and Econometric Details

A.1 Computational Details

In this section we briefly demonstrate how the method of alternating projections

(MAP) works in the context of logit and probit models with a two- or three-way error

component, and how it can be efficiently embedded into a standard Newton-Raphson

optimization routine (see Stammann 2018 for further details).

First note that Mv is essentially a weighted within transformation, where v is

an arbitrary n×1 vector, and M = In −P = In −D(D′ΩD)−1D′Ω. The computation

of M is problematic even in moderately large data sets, and since M is non-sparse,

there is also no general scalar expression to compute Mv. Thus Stammann (2018)

proposes to calculate Mv using a simple iterative approach based on the MAP

tracing back to Neumann (1950) and Halperin (1962).27 Let Dk, denote the dummy

variables corresponding to the k-th group, k ∈ {1,2,3}. Further, let MDk v, with

MDk = In −Dk(D′
kΩDk)−1D′

kΩ. The corresponding scalar expressions of MDk v are

summarized in table (5.5).

Table 5.5: Scalar Transformations

group MDk v

importer-time (k = 1) vi jt −
∑J

j=1 ωi jtvi jt∑J
j=1 ωi jt

exporter-time (k = 2) vi jt −
∑I

i=1 ωi jtvi jt∑I
i=1 ωi jt

pair (k = 3) vi jt −
∑T

t=1 ωi jtvi jt∑T
t=1 ωi jt

The MAP can be summarized by algorithm 7, where K = 2 in the case of two-

way fixed effects and K = 3 in the case of three-way fixed effects. Thus, the MAP

only requires to repeatedly apply weighted one-way within transformations (see

Stammann 2018). The entire optimization routine is sketched by algorithm 8.

Algorithm 7 MAP: Neumann-Halperin
1: Initialize Mv= v.
2: repeat
3: for k = 1, . . . ,K do
4: Compute MDk Mv and update Mv such that Mv=MDk Mv
5: until convergence.

27. The MAP has been introduced to econometrics by Guimarães and Portugal (2010) and Gaure
(2013b) in the context of linear models with multi-way fixed effects.
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Algorithm 8 Efficient Newton-Raphson using the MAP

1: Initialize β0, η0, and r = 0.

2: repeat
3: Set r = r+1.

4: Given η̂r−1 compute ν̂ and Ω̂.

5: Given ν̂ and Ω̂ compute M̂ν̂ and M̂X using the MAP

6: Compute βr −βr−1 = (
(M̂X)′Ω̂(M̂X)

)−1 (M̂X)′Ω̂(M̂ν̂)

7: Compute η̂r = η̂r−1 + ν̂−M̂ν̂+M̂X(βr −βr−1)

8: until convergence.

A.2 Neyman-Scott Variance Example

In this section we study two variants of the classical Neyman and Scott (1948)

variance example to support the form of the bias terms, and to illustrate the function-

ality of the bias corrections. To the best of our knowledge, the variance example of

Neyman and Scott (1948) has not been investigated for our specific error components.

We start with the more general three-way fixed effects case, which nests the two-way

error structure.

Three-way Fixed Effects

Let i = 1, . . . , I, j = 1, . . . , J and t = 1, . . . ,T. Consider the following linear three-way

fixed effects model:

yi jt = x′
i jtβ+λit +ψ jt +µi j +ui jt . (5.11)

According to Balazsi, Matyas, and Wansbeek (2018), the appropriate within transfor-

mation corresponding to equation (5.11) is given by

zi jt − z̄i j·− z̄· jt − z̄i·t + z̄··t + z̄· j·+ z̄i··− z̄··· ,

where

z̄i j· = T−1
T∑

t=1
zi jt , z̄· jt = I−1

I∑
i=1

zi jt , z̄i·t = J−1
J∑

j=1
zi jt ,

z̄··t = (IJ)−1
I∑

i=1

J∑
j=1

zi jt , z̄· j· = (IT)−1
I∑

i=1

T∑
t=1

zi jt , z̄i·· = (JT)−1
J∑

j=1

T∑
t=1

zi jt ,

and z̄··· = (IJT)−1
I∑

i=1

J∑
j=1

T∑
t=1

zi jt .
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This result is helpful to study the following variant of the Neyman and Scott (1948)

variance example

yi jt|λ,ψ,µ∼N (λit +ψ jt +µi j,β) ,

where we now can easily form the uncorrected variance estimator

β̂I,J,T = 1
IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yi jt − ȳi j·− ȳ· jt − ȳi·t + ȳ··t + ȳ· j·+ ȳi··− ȳ···)2 (5.12)

and the (degrees-of-freedom)-corrected counterpart

β̂cor
I,J,T = IJT

(I −1)(J−1)(T −1)
β̂I,J,T .

Taking the expectation of (5.12) (conditional on the fixed effects) yields

β̄I,J,T = Eα[β̂I,J,T]=β0
(
(I −1)(J−1)(T −1)

IJT

)
(5.13)

=β0
(
1− 1

I
− 1

J
− 1

T
+ 1

IT
+ 1

JT
+ 1

IJ
− 1

IJT

)
,

where β0 is the true variance parameter. Thus, the three leading bias terms, which

drive the main part of the asymptotic bias, are B
β

1,∞ =−β0, B
β

2,∞ =−β0, and B
β

3,∞ =
−β0.

Analytical Bias Correction

Using equation (5.13), we can form the analytically bias-corrected estimator

β̃a
I,J,T = β̂I,J,T −

B̂β

1,I,J,T

I
−

B̂β

2,I,J,T

J
−

B̂β

3,I,J,T

T
, (5.14)

where we set B̂β

1,I,J,T = −β̂I,J,T , B̂β

2,I,J,T = −β̂I,J,T , and B̂β

3,I,J,T = −β̂I,J,T to reduce

the order of the bias in equation (5.13) at costs of introducing higher order terms

(see equation (5.16)). Thus, we can rewrite the analytically bias-corrected estimator

(5.14)

β̃a
I,J,T = β̂I,J,T

(
1+ 1

I
+ 1

J
+ 1

T

)
. (5.15)
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Taking the expectation of (5.15) yields

β̄a
I,J,T =Eα[β̃a

I,J,T] (5.16)

=β0
(
1− 1

I
− 1

J
− 1

T
+ 1

IT
+ 1

JT
+ 1

IJ
− 1

IJT

)(
1+ 1

I
+ 1

J
+ 1

T

)
=β0

(
1− 1

IT
− 1

JT
− 1

T2 − 3
IJ

+ 1
I3 + 1

J3 + 4
IJT

+ 1
IT2 + 1

JT2

− 1
I3T

− 1
J3T

− 1
IJT2

)
.

Split-Panel Jackknife

As an alternative to equation (5.15) we can also form the following SPJ estimator:

β̂
sp j
I,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2 ,

where β̂I/2,J,T denotes the half panel estimator based on splitting the panel by

exporters. This estimator also reduces the order of the bias in equation (5.13) as we

see from its expected value:

β̄
sp j
I,J,T = Eφ[β̂sp j

I,J,T]= 4β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T − β̄I,J,T/2 (5.17)

=β0
(
1− 1

IT
− 1

JT
− 1

IJ
+ 2

IJT

)
.

Numerical Results

Table 5.6 shows numerical results for the uncorrected and the bias-corrected esti-

mators in finite samples, where we assume symmetry, i.e. I = J = N. The results

demonstrate that the bias corrections are effective in reducing the bias.

Table 5.6: Numerical Results (Three-Way): Bias

N T (β̄I,J,T −β0)/β0 (β̄a
I,J,T −β0)/β0 (β̄sp j

I,J,T −β0)/β0

10 10 -0.271 -0.052 -0.028
25 10 -0.171 -0.021 -0.009
25 25 -0.115 -0.009 -0.005
50 10 -0.136 -0.015 -0.004
50 25 -0.078 -0.004 -0.002
50 50 -0.059 -0.002 -0.001
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Two-way Fixed Effects

In the following we briefly review the example with two-way fixed effects:

yi jt|λ,ψ∼N (λit +ψ jt,β) .

Since it is a subcase of three-way fixed effects example, all previous results simplify

by dropping the terms that exhibit T. The uncorrected variance estimator is28

β̂I,J,T = 1
IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yi jt − ȳ· jt − ȳi·t + ȳ··t)2

and the (degrees-of-freedom)-corrected variance estimator is

β̂cor
I,J,T = IJ

(I −1)(J−1)
β̂I,J,T .

Taking the expected value yields

β̄I,J,T = Eα[β̂I,J,T]=β0
(
(I −1)2

IJ

)
(5.18)

=β0
(
1− 1

I
− 1

J
+ 1

IJ

)
.

Analytical Bias Correction

Based on equation (5.18) we can form the following analytically bias-corrected

estimator:

β̃a
I,J,T = β̂I,J,T

(
1+ 1

I
+ 1

J

)
,

which has the expected value

β̄a
I,J,T = Eα[β̃a

I,J,T]=β0
(
1− 3

IJ
+ 1

I3 + 1
J3

)
.

Split-Panel Jackknife

A suitable split-panel jackknife estimator is

β̂
sp j
I,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T ,

28. We draw on the appropriate demeaning formula for the two-way fixed effects model yi jt =
x′

i jtβ+λit +ψ jt +ui jt, which is given by zi jt − z̄· jt − z̄i·t + z̄··t.
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which has the expected value

β̄
sp j
I,J,T = Eα[β̂sp j

I,J,T]= 3β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T

=β0
(
1− 1

IJ

)
.

Numerical Results

The numerical results in table 5.7 demonstrate that the bias corrections work.

Table 5.7: Numerical Results (Two-Way): Bias

N (β̄I,J,T −β0)/β0 (β̄a
I,J,T −β0)/β0 (β̄sp j

I,J,T −β0)/β0

10 -0.190 -0.028 -0.010
25 -0.078 -0.005 -0.002
50 -0.040 -0.001 -0.000

100 -0.020 -0.000 -0.000

A.3 Asymptotic Bias Corrections

For the following expressions we draw on the results of Fernández-Val and Weid-

ner (2016), who have already derived the asymptotic distributions of the MLE for

structural parameters and APEs in classical two-way fixed effects models based on

it-panels. As outlined in Cruz-Gonzalez, Fernández-Val, and Weidner (2017) the bias

corrections of Fernández-Val and Weidner (2016) can be easily adjusted to two-way

fixed effects models based on pseudo-panels with an i j-structure (i corresponds to

importer and j to exporter), and importer and exporter fixed effects. We give an

intuitive explanation. Since only J observations are informative per exporter fixed

effects, we get a bias of order J for including exporter fixed effects, and vice versa

a bias of order I for including importer fixed effects. Further, since there are no

predetermined regressors in an i j-structure, we get two symmetric bias terms

B1,∞ = plimI,J→∞

[
− 1

2J

J∑
j=1

∑I
i=1Eα[Hi j∂η2 Fi j(MX)i j]∑I

i=1Eα[ωi j]

]
, (5.19)

B2,∞ = plimI,J→∞

[
− 1

2I

I∑
i=1

∑J
j=1Eα[Hi j∂η2 Fi j(MX)i j]∑J

j=1Eα[ωi j]

]
, (5.20)

where ωi j is the i j-th diagonal entry of Ω, and M = IIJ −D(D′ΩD)−1D′Ω. ∂ι2 g(·)
denotes the second order partial derivative of an arbitrary function g(·) with respect

to some parameter ι. The explicit expressions of Hi jt and ∂η2 Fi jt are reported in

table 5.1. Equations (5.19) and (5.20) are essentially D∞ from Fernández-Val and
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Weidner (2016) with adjusted indices. The same adjustment can be transferred to

the APEs.

In the following we apply the same logic to derive the asymptotic bias terms in

our two- and three-way error structure.

Two-way fixed effects

We get a bias of order J for including exporter-time fixed effects, since J observations

are informative per exporter-time fixed effect. In the same way we get a bias of order

I for including importer-time fixed effects. Similar to the case of the i j-structure

of Cruz-Gonzalez, Fernández-Val, and Weidner (2017) we get two symmetric bias

terms in the distributions of the structural parameters and the APEs, respectively,

because including predetermined regressors does not violate the strict exogeneity

assumption.

Asymptotic distribution of β̂

p
IJ(β̂I,J,T −β0) d−→W

−1
∞ N (κB1,∞+κ−1B2,∞,W∞), with (5.21)

B1,∞ = plimI,J→∞

[
− 1

2J

T∑
t=1

J∑
j=1

∑I
i=1Eα[Hi jt∂η2 Fi jt(MX)i jt]∑I

i=1Eα[ωi jt]

]
,

B2,∞ = plimI,J→∞

[
− 1

2I

T∑
t=1

I∑
i=1

∑J
j=1Eα[Hi jt∂η2 Fi jt(MX)i jt]∑J

j=1Eα[ωi jt]

]
,

W∞ = plimI,J→∞

[
1

IJ

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωi jt(MX)i jt(MX)′i jt]

]
,

where
p

J/I → κ as I, J →∞ and 0< κ<∞.

Asymptotic distribution of δ̂

r(δ̂−δ− I−1B
δ

1,∞− J−1B
δ

2,∞) d−→N (0,V∞), with (5.22)

B
δ

1,∞ = plimI,J→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hi jt∂η2 Fi jt]Eα[(PΨ)i jt]+Eα[∂η2∆i jt]∑I

i=1Eα[ωi jt]

]
,

B
δ

2,∞ = plimI,J→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hi jt∂η2 Fi jt]Eα[(PΨ)i jt]+Eα[∂η2∆i jt]∑J

j=1Eα[ωi jt]

]
,

V
δ

∞ = plimI,J→∞
r2

I2J2T2 Eα

[(
I∑

i=1

J∑
j=1

T∑
t=1

∆̄i jt

)(
I∑

i=1

J∑
j=1

T∑
t=1

∆̄i jt

)′
+

I∑
i=1

J∑
j=1

T∑
t=1

Γi jtΓ
′
i jt

]
,
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where ∆̄i jt = ∆i jt − δ, ∆i jt = [∆1
i jt, . . . ,∆

m
i jt]

′, δ = [δ1, . . . ,δm]′,

δk = (IJT)−1 ∑I
i=1

∑J
j=1

∑T
t=1∆

k
i jt, Ψi jt = ∂η∆i jt/ωi jt, r is a convergence rate, and

Γi jt =Eα

[
(IJ)−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆i jt − (PX)i jt ∂η∆i jt

]′
W

−1
∞ Eα

[
(MX)i jt ωi jtνi jt

]
−Eα

[
(PΨ)i jt ∂η`i jt

]
.

∂ιg(·) denotes the first order partial derivative of an arbitrary function g(·) with

respect to some parameter ι. The expression V
δ

∞ can be modified by assuming that

{λit}IT and {ψ jt}JT are independent sequences, and λit and ψ jt are independent for

all it, jt:

V
δ

∞ = plimI,J→∞
r2

I2J2T2 Eα

[
I∑

i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄i jt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄i jt∆̄
′
p jt

+
I∑

i=1

J∑
j=1

T∑
t=1

Γi jtΓ
′
i jt

]
.

Three-way fixed effects

With the inclusion of pair fixed effects, we introduce an additional bias of order T,

since only T observations are informative per pair fixed effect. Another difference

that occurs in contrast to the two-way fixed effects case is that predetermined

regressors lead to a violation of the strict exogeneity assumption. To deal with this

issue we adapt the asymptotic bias terms B∞ and B
δ

∞ of Fernández-Val and Weidner

(2016) to the new structure.

Conjectured asymptotic distribution of β̂

p
IJT(β̂I,J,T −β0) d−→W

−1
∞ N (κ1B1,∞+κ2B2,∞+κ3B3,∞,W∞), with

B1,∞ = plimI,J,T→∞

[
− 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1Eα[Hi jt∂η2 Fi jt(MX)i jt]∑I

i=1Eα[ωi jt]

]
,

B2,∞ = plimI,J,T→∞

[
− 1

2IT

T∑
t=1

I∑
i=1

∑J
j=1Eα[Hi jt∂η2 Fi jt(MX)i jt]∑J

j=1Eα[ωi jt]

]
,

B3,∞ = plimI,J,T→∞

[
− 1

2IJ

I∑
i=1

J∑
j=1

(
T∑

t=1
Eα[ωi jt]

)−1 (
T∑

t=1
Eα[Hi jt∂η2 Fi jt(MX)i jt]

+2
T∑

τ=t+1
Eα[Hi jt(Yi jt −Fi jt)ωi jt(MX)i jt]

)]
,
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W∞ = plimI,J,T→∞

[
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωi jt(MX)i jt(MX)′i jt]

]
,

where
p

(JT)/I → κ1,
p

(IT)/J → κ2,
p

(IJ)/T → κ3 as I, J,T →∞, and 0< κι <∞ for

ι= 1,2,3. The second term in the numerator of B3,∞ is dropped if all regressors are

assumed to be strictly exogenous.

Conjectured asymptotic distribution of δ̂

r(δ̂−δ− I−1B
δ

1,∞− J−1B
δ

2,∞−T−1B
δ

3,∞) d−→N (0,V
δ

∞), with

B
δ

1,∞ = plimI,J,T→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hi jt∂η2 Fi jt]Eα[(PΨ)i jt]+Eα[∂η2∆i jt]∑I

i=1Eα[ωi jt]

]
,

B
δ

2,∞ = plimI,J,T→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hi jt∂η2 Fi jt]Eα[(PΨ)i jt]+Eα[∂η2∆i jt]∑J

j=1Eα[ωi jt]

]
,

B
δ

3,∞ = plimI,J,T→∞

[
1

2IJ

I∑
i=1

J∑
j=1

(
T∑

t=1
Eα[ωi jt]

)−1 (
T∑

t=1
−Eα[Hi jt∂η2 Fi jt]Eα[(PΨ)i jt]

+Eα[∂η2∆i jt]+2
T∑

τ=t+1
Eα[∂η`i jt−lωi jt (MΨ)i jt]

)]
.

V
δ

∞ = plimI,J,T→∞
r2

I2J2T2 Eα

[(
I∑

i=1

J∑
j=1

T∑
t=1

∆̄i jt

)(
I∑

i=1

J∑
j=1

T∑
t=1

∆̄i jt

)′

+
I∑

i=1

J∑
j=1

T∑
t=1

Γi jtΓ
′
i jt +2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄i jtΓ
′
i js

]
,

Γi jt = Eα

[
(IJT)−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆i jt − (PX)i jt ∂η∆i jt

]′
W

−1
∞ Eα

[
(MX)i jt ωi jtνi jt

]
−Eα

[
(PΨ)i jt ∂η`i jt

]
,

and r is a convergence rate. The second term in the numerator of B3,∞ and the last

term in V
δ

∞ are dropped if all regressors are assumed to be strictly exogenous. The

expression V
δ

∞ can be further modified by assuming that {λit}IT , {ψ jt}JT and {µi j}IJ

are independent sequences, and λit, ψ jt and µi j are independent for all it, jt, i j:

V̂δ = plimI,J,T→∞
r2

I2J2T2 Eα

(
I∑

i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄i jt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄i jt∆̄
′
p jt

+
I∑

i=1

J∑
j=1

T∑
s 6=t

∆̄i jt∆̄
′
i js +

I∑
i=1

J∑
j=1

T∑
t=1

Γi jtΓ
′
i jt +2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄i jtΓ
′
i js

)
.
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A.4 Bias-Corrected Ordinary Least Squares

Consider the three-way fixed effects linear probability model

yi jt =λit +ψ jt +µi j +x′
i jtβ+εi jt ,

which can also be rewritten in matrix notation:

y=Dα+Xβ+ε . (5.23)

We first deal with the computational burden. Applying the three-way fixed

effects residual projection M = IIJT −D(D′D)−1D′ to (5.23), leads to the following

concentrated regression:

My=MXβ+ε . (5.24)

The demeaning can be efficiently carried out by using the method of alternating

projections (see Gaure 2013b).

Hahn and Moon (2006) have derived the bias of dynamic linear models with

individual and time fixed effects. They show that there is only a bias of order 1/T
stemming from the inclusion of individual effects in combination with predeter-

mined regressors. Transferring their result to our problem with the three-way error

component suggests that the inclusion of pair fixed effects in combination with prede-

termined regressors leads to the same order of the bias. Thus, the linear probability

model needs only to be bias-corrected if not all regressors are strictly exogenous.

This is for example the case in a dynamic model, where we include yt−1 to our set of

regressors.

An estimator of the bias is given by

B̂=
(

1
IJT

I∑
i=1

J∑
j=1

T∑
t=1

(MX)i jt(MX)′i jt

)−1 (
−

I∑
i=1

J∑
j=1

L∑
l=1

1
T − l

T∑
t=l+1

Xi jtε̂i jt−l

)
,

where ε̂ is the residual of (5.24) and L is a bandwidth parameter.29 This yields the

bias-corrected estimator

β̂− B̂
IJT

, (5.25)

where β̂= (
(MX)′(MX)

)−1 (MX)′My.

29. The residuals of equation (5.23) and equation (5.24) are identical (see Gaure 2013b).
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B Detailed Monte Carlo Results

B.1 Two-Way Fixed Effects

Table 5.8: Properties: Dynamic (Two-Way) - xi jt - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 2 5 0.95 0.14 0 1 1 0.97 0.95
ABC -0 2 2 0.99 0.95 -0 1 1 0.98 0.95
SPJ -1 2 2 0.96 0.90 -0 1 1 0.96 0.95
LPM -0 1 1 0.89 0.91

N = 50; T = 20

MLE 5 1 5 0.97 0.00 0 1 1 0.97 0.95
ABC -0 1 1 1.01 0.95 -0 1 1 0.98 0.95
SPJ -1 1 1 0.97 0.88 -0 1 1 0.96 0.94
LPM -0 1 1 0.88 0.92

N = 50; T = 30

MLE 5 1 5 0.93 0.00 0 1 1 0.97 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.98 0.95
SPJ -1 1 1 0.93 0.86 -0 1 1 0.96 0.94
LPM -0 1 1 0.90 0.92

N = 50; T = 40

MLE 5 1 5 0.98 0.00 0 1 1 1.00 0.96
ABC -0 1 1 1.03 0.95 -0 1 1 1.01 0.96
SPJ -1 1 1 0.98 0.83 -0 1 1 0.98 0.94
LPM -0 1 1 0.92 0.92

N = 50; T = 50

MLE 5 1 5 0.92 0.00 0 1 1 0.95 0.93
ABC -0 1 1 0.96 0.94 -0 1 1 0.95 0.94
SPJ -1 1 1 0.94 0.80 -0 1 1 0.93 0.92
LPM -0 1 1 0.86 0.90

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.

150



Table 5.9: Properties: Dynamic (Two-Way) - xi jt - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 1 3 0.97 0.12 0 1 1 0.95 0.94
ABC -0 1 1 0.99 0.94 -0 1 1 0.95 0.94
SPJ -0 1 1 0.97 0.94 -0 1 1 0.94 0.93
LPM -0 1 1 0.79 0.87

N = 100; T = 20

MLE 2 1 2 0.96 0.01 0 1 1 0.90 0.92
ABC -0 1 1 0.98 0.94 -0 1 1 0.90 0.92
SPJ -0 1 1 0.96 0.93 -0 1 1 0.89 0.91
LPM -0 1 1 0.73 0.82

N = 100; T = 30

MLE 2 0 2 0.97 0.00 0 0 0 0.92 0.93
ABC -0 0 0 0.99 0.95 -0 0 0 0.92 0.93
SPJ -0 0 0 0.98 0.93 -0 0 0 0.91 0.92
LPM -0 0 1 0.75 0.83

N = 100; T = 40

MLE 2 0 2 0.97 0.00 0 0 0 0.89 0.92
ABC -0 0 0 0.99 0.95 -0 0 0 0.89 0.92
SPJ -0 0 0 0.99 0.92 -0 0 0 0.88 0.92
LPM -0 0 0 0.73 0.81

N = 100; T = 50

MLE 2 0 2 0.99 0.00 0 0 0 0.92 0.93
ABC -0 0 0 1.00 0.95 -0 0 0 0.92 0.94
SPJ -0 0 0 0.99 0.93 -0 0 0 0.91 0.93
LPM -0 0 0 0.74 0.83

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.10: Properties: Dynamic (Two-Way) - xi jt - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95
N = 150; T = 10

MLE 2 1 2 0.98 0.12 -0 1 1 0.91 0.92
ABC -0 1 1 0.99 0.95 -0 1 1 0.91 0.93
SPJ -0 1 1 0.99 0.94 -0 1 1 0.91 0.93
LPM -0 1 1 0.67 0.80

N = 150; T = 20

MLE 2 0 2 0.99 0.01 0 0 0 0.91 0.92
ABC -0 0 0 1.00 0.95 -0 0 0 0.90 0.93
SPJ -0 0 0 0.98 0.93 -0 0 0 0.90 0.92
LPM -0 0 0 0.67 0.76

N = 150; T = 30

MLE 2 0 2 1.01 0.00 0 0 0 0.86 0.91
ABC -0 0 0 1.02 0.95 -0 0 0 0.86 0.90
SPJ -0 0 0 1.01 0.95 -0 0 0 0.86 0.91
LPM -0 0 0 0.63 0.73

N = 150; T = 40

MLE 2 0 2 0.99 0.00 0 0 0 0.88 0.91
ABC 0 0 0 1.00 0.95 0 0 0 0.88 0.91
SPJ -0 0 0 0.98 0.94 0 0 0 0.88 0.91
LPM -0 0 0 0.66 0.75

N = 150; T = 50

MLE 2 0 2 1.02 0.00 0 0 0 0.90 0.93
ABC -0 0 0 1.03 0.96 -0 0 0 0.90 0.93
SPJ -0 0 0 1.02 0.95 -0 0 0 0.90 0.93
LPM -0 0 0 0.67 0.73

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.

152



Table 5.11: Properties: Dynamic (Two-Way) - yi j(t−1) - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 4 7 0.99 0.81 0 4 4 0.99 0.95
ABC -0 4 4 1.03 0.95 -0 4 4 1.01 0.95
SPJ -1 4 4 1.00 0.94 -0 4 4 0.98 0.94
LPM 5 4 7 0.97 0.76

N = 50; T = 20

MLE 5 3 6 0.96 0.65 -0 3 3 0.96 0.94
ABC -0 3 3 1.00 0.95 -0 3 3 0.97 0.95
SPJ -1 3 3 0.97 0.93 -0 3 3 0.94 0.94
LPM 5 3 6 0.96 0.56

N = 50; T = 30

MLE 5 3 6 0.95 0.48 0 3 3 0.94 0.92
ABC 0 3 3 0.99 0.95 0 3 3 0.96 0.93
SPJ -1 3 3 0.97 0.93 0 3 3 0.94 0.93
LPM 6 3 6 0.94 0.40

N = 50; T = 40

MLE 5 2 5 0.98 0.38 0 2 2 0.99 0.95
ABC -0 2 2 1.02 0.95 -0 2 2 1.01 0.95
SPJ -1 2 2 1.01 0.94 -0 2 2 0.99 0.95
LPM 6 2 6 0.97 0.27

N = 50; T = 50

MLE 5 2 5 0.92 0.31 0 2 2 0.93 0.93
ABC -0 2 2 0.96 0.94 -0 2 2 0.95 0.93
SPJ -1 2 2 0.94 0.92 -0 2 2 0.92 0.93
LPM 6 2 6 0.93 0.21

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.12: Properties: Dynamic (Two-Way) - yi j(t−1) - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 2 3 0.96 0.80 0 2 2 0.94 0.94
ABC 0 2 2 0.98 0.94 0 2 2 0.95 0.94
SPJ -0 2 2 0.97 0.94 0 2 2 0.95 0.94
LPM 5 2 6 0.91 0.30

N = 100; T = 20

MLE 2 2 3 0.99 0.63 0 2 2 0.99 0.94
ABC -0 1 1 1.01 0.95 -0 2 2 1.00 0.94
SPJ -0 2 2 0.99 0.94 -0 2 2 0.98 0.94
LPM 6 2 6 0.96 0.06

N = 100; T = 30

MLE 2 1 3 0.97 0.52 0 1 1 0.97 0.94
ABC -0 1 1 0.99 0.94 -0 1 1 0.98 0.94
SPJ -0 1 1 0.96 0.94 -0 1 1 0.96 0.93
LPM 6 1 6 0.94 0.01

N = 100; T = 40

MLE 2 1 3 0.99 0.42 0 1 1 0.97 0.94
ABC -0 1 1 1.01 0.95 -0 1 1 0.98 0.94
SPJ -0 1 1 0.99 0.94 -0 1 1 0.96 0.94
LPM 6 1 6 0.94 0.00

N = 100; T = 50

MLE 2 1 3 0.94 0.31 0 1 1 0.92 0.93
ABC -0 1 1 0.96 0.93 -0 1 1 0.92 0.93
SPJ -0 1 1 0.95 0.93 -0 1 1 0.91 0.92
LPM 6 1 6 0.90 0.00

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.13: Properties: Dynamic (Two-Way) - yi j(t−1) - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 2 1 2 0.98 0.79 0 2 2 0.96 0.94
ABC 0 1 1 0.99 0.95 0 2 2 0.97 0.94
SPJ -0 1 1 0.98 0.95 0 2 2 0.95 0.94
LPM 6 2 6 0.92 0.04

N = 150; T = 20

MLE 2 1 2 0.98 0.66 -0 1 1 1.00 0.95
ABC -0 1 1 1.00 0.95 -0 1 1 1.00 0.95
SPJ -0 1 1 0.99 0.95 -0 1 1 0.99 0.95
LPM 5 1 6 0.96 0.00

N = 150; T = 30

MLE 2 1 2 0.98 0.53 0 1 1 0.99 0.95
ABC 0 1 1 1.00 0.95 0 1 1 0.99 0.95
SPJ -0 1 1 0.98 0.95 0 1 1 0.98 0.95
LPM 6 1 6 0.94 0.00

N = 150; T = 40

MLE 2 1 2 0.96 0.42 -0 1 1 0.96 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.96 0.94
SPJ -0 1 1 0.96 0.94 -0 1 1 0.95 0.94
LPM 6 1 6 0.91 0.00

N = 150; T = 50

MLE 2 1 2 0.94 0.34 -0 1 1 0.93 0.93
ABC -0 1 1 0.95 0.94 -0 1 1 0.94 0.94
SPJ -0 1 1 0.94 0.94 -0 1 1 0.93 0.94
LPM 6 1 6 0.90 0.00

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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B.2 Three-Way Fixed Effects

Table 5.14: Properties: Dynamic (Three-Way) - xi jt - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 29 3 29 0.82 0.00 4 2 4 1.01 0.33
ABC (1) -1 2 2 1.02 0.94 -1 2 2 1.09 0.94
ABC (2) -1 2 2 1.01 0.93 -1 2 2 1.08 0.93
SPJ -14 3 14 0.62 0.00 4 2 5 0.87 0.32
LPM (1) 0 2 2 0.94 0.93
LPM (2) -0 2 2 0.94 0.93

N = 50; T = 20

MLE 16 1 16 0.87 0.00 3 1 3 0.97 0.36
ABC (1) -0 1 1 0.98 0.94 -0 1 1 1.00 0.95
ABC (2) -0 1 1 0.97 0.93 -0 1 1 0.99 0.95
SPJ -5 1 5 0.86 0.04 1 1 1 0.91 0.89
LPM (1) -0 1 1 0.90 0.93
LPM (2) -0 1 1 0.90 0.92

N = 50; T = 30

MLE 12 1 12 0.92 0.00 2 1 2 1.00 0.48
ABC (1) -0 1 1 1.01 0.95 -0 1 1 1.01 0.95
ABC (2) -0 1 1 1.01 0.95 -0 1 1 1.01 0.94
SPJ -3 1 3 0.93 0.15 -0 1 1 0.96 0.95
LPM (1) -0 1 1 0.89 0.92
LPM (2) -0 1 1 0.89 0.90

N = 50; T = 40

MLE 10 1 10 0.89 0.00 1 1 2 0.97 0.53
ABC (1) -0 1 1 0.97 0.94 -0 1 1 0.98 0.93
ABC (2) -0 1 1 0.97 0.94 -0 1 1 0.97 0.93
SPJ -2 1 2 0.88 0.27 -0 1 1 0.91 0.91
LPM (1) -0 1 1 0.84 0.89
LPM (2) -0 1 1 0.84 0.86

N = 50; T = 50

MLE 9 1 9 0.90 0.00 1 1 1 1.01 0.61
ABC (1) -0 1 1 0.97 0.94 -0 1 1 1.01 0.96
ABC (2) -0 1 1 0.97 0.93 -0 1 1 1.01 0.96
SPJ -2 1 2 0.90 0.33 -0 1 1 0.94 0.94
LPM (1) -0 1 1 0.86 0.88
LPM (2) -0 1 1 0.86 0.87

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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Table 5.15: Properties: Dynamic (Three-Way) - xi jt - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 24 1 24 0.89 0.00 4 1 4 1.04 0.02
ABC (1) 0 1 1 1.05 0.95 -0 1 1 1.08 0.94
ABC (2) 0 1 1 1.05 0.96 -1 1 1 1.08 0.91
SPJ -9 1 9 0.70 0.00 6 1 6 0.89 0.00
LPM (1) 0 1 1 0.88 0.91
LPM (2) -0 1 1 0.87 0.91

N = 100; T = 20

MLE 13 1 13 0.89 0.00 2 1 2 0.96 0.02
ABC (1) 0 1 1 0.98 0.93 0 1 1 0.98 0.95
ABC (2) 0 1 1 0.98 0.94 -0 1 1 0.97 0.94
SPJ -3 1 3 0.86 0.01 1 1 1 0.89 0.54
LPM (1) -0 1 1 0.85 0.89
LPM (2) -0 1 1 0.85 0.87

N = 100; T = 30

MLE 9 1 9 0.91 0.00 2 0 2 0.96 0.05
ABC (1) 0 0 0 0.97 0.95 0 0 0 0.96 0.94
ABC (2) -0 0 0 0.97 0.94 -0 0 0 0.96 0.94
SPJ -1 1 2 0.91 0.14 0 0 1 0.93 0.86
LPM (1) -0 0 1 0.82 0.86
LPM (2) -0 0 1 0.82 0.81

N = 100; T = 40

MLE 7 0 7 0.91 0.00 1 0 1 0.94 0.12
ABC (1) 0 0 0 0.96 0.94 0 0 0 0.94 0.93
ABC (2) -0 0 0 0.96 0.94 -0 0 0 0.94 0.92
SPJ -1 0 1 0.92 0.32 0 0 0 0.91 0.91
LPM (1) -0 0 1 0.79 0.81
LPM (2) -0 0 1 0.79 0.73

N = 100; T = 50

MLE 6 0 6 0.94 0.00 1 0 1 1.00 0.17
ABC (1) 0 0 0 0.99 0.94 0 0 0 1.00 0.95
ABC (2) -0 0 0 0.98 0.94 -0 0 0 1.00 0.95
SPJ -1 0 1 0.95 0.48 0 0 0 0.96 0.94
LPM (1) -0 0 0 0.80 0.76
LPM (2) -0 0 1 0.80 0.69

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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Table 5.16: Properties: Dynamic (Three-Way) - xi jt - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 23 1 23 0.86 0.00 3 1 4 1.06 0.00
ABC (1) 1 1 1 1.01 0.82 -0 1 1 1.09 0.94
ABC (2) 0 1 1 1.00 0.88 -0 1 1 1.07 0.90
SPJ -7 1 7 0.67 0.00 6 1 6 0.89 0.00
LPM (1) 0 1 1 0.84 0.88
LPM (2) -0 1 1 0.83 0.90

N = 150; T = 20

MLE 11 0 11 0.94 0.00 2 0 2 0.97 0.00
ABC (1) 0 0 0 1.02 0.89 0 0 0 0.97 0.94
ABC (2) 0 0 0 1.01 0.93 -0 0 0 0.97 0.94
SPJ -2 0 2 0.89 0.00 1 0 1 0.90 0.16
LPM (1) -0 0 0 0.81 0.88
LPM (2) -0 0 0 0.81 0.81

N = 150; T = 30

MLE 8 0 8 0.92 0.00 2 0 2 0.96 0.00
ABC (1) 0 0 0 0.98 0.91 0 0 0 0.97 0.93
ABC (2) 0 0 0 0.98 0.95 -0 0 0 0.97 0.95
SPJ -1 0 1 0.91 0.06 0 0 1 0.92 0.73
LPM (1) -0 0 0 0.79 0.80
LPM (2) -0 0 0 0.79 0.66

N = 150; T = 40

MLE 6 0 6 0.95 0.00 1 0 1 0.95 0.01
ABC (1) 0 0 0 1.00 0.94 0 0 0 0.95 0.92
ABC (2) -0 0 0 1.00 0.95 -0 0 0 0.95 0.94
SPJ -1 0 1 0.94 0.22 0 0 0 0.92 0.87
LPM (1) -0 0 0 0.75 0.68
LPM (2) -0 0 0 0.75 0.54

N = 150; T = 50

MLE 5 0 5 0.95 0.00 1 0 1 0.97 0.02
ABC (1) 0 0 0 0.99 0.93 0 0 0 0.97 0.93
ABC (2) -0 0 0 0.99 0.94 -0 0 0 0.97 0.94
SPJ -1 0 1 0.95 0.38 0 0 0 0.95 0.91
LPM (1) -0 0 0 0.76 0.61
LPM (2) -0 0 0 0.76 0.45

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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Table 5.17: Properties: Dynamic (Three-Way) - yi j(t−1) - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE -62 5 62 0.95 0.00 -70 4 71 1.02 0.00
ABC (1) -6 4 7 1.14 0.81 -7 5 8 1.11 0.76
ABC (2) -7 5 9 1.05 0.68 -8 5 10 1.02 0.62
SPJ 24 6 25 0.77 0.01 -11 6 12 0.94 0.48
LPM (1) 2 5 5 1.02 0.95
LPM (2) 3 5 6 0.94 0.89

N = 50; T = 20

MLE -27 4 27 0.94 0.00 -36 3 37 0.95 0.00
ABC (1) -3 3 4 1.05 0.87 -3 3 5 1.00 0.85
ABC (2) -1 3 3 1.00 0.94 -1 3 4 0.96 0.93
SPJ 5 4 6 0.89 0.69 -2 4 4 0.89 0.89
LPM (1) 8 3 9 0.95 0.28
LPM (2) 11 4 12 0.91 0.09

N = 50; T = 30

MLE -16 3 16 0.97 0.00 -25 3 25 0.97 0.00
ABC (1) -2 3 3 1.06 0.88 -2 3 3 1.01 0.87
ABC (2) -0 3 3 1.03 0.95 -0 3 3 0.98 0.95
SPJ 2 3 3 0.95 0.88 -1 3 3 0.92 0.93
LPM (1) 10 3 11 0.96 0.03
LPM (2) 13 3 13 0.94 0.00

N = 50; T = 40

MLE -11 2 11 0.96 0.01 -19 2 19 0.95 0.00
ABC (1) -2 2 3 1.03 0.86 -2 2 3 0.99 0.85
ABC (2) -0 2 2 1.01 0.95 -0 2 2 0.97 0.95
SPJ 1 2 3 0.93 0.92 -0 3 3 0.90 0.92
LPM (1) 11 2 12 0.95 0.01
LPM (2) 13 2 13 0.93 0.00

N = 50; T = 50

MLE -7 2 8 0.94 0.07 -15 2 15 0.92 0.00
ABC (1) -2 2 3 1.01 0.89 -2 2 3 0.95 0.87
ABC (2) -0 2 2 0.99 0.95 -0 2 2 0.93 0.93
SPJ 0 2 2 0.92 0.92 -0 2 2 0.87 0.90
LPM (1) 12 2 12 0.92 0.00
LPM (2) 14 2 14 0.91 0.00

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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Table 5.18: Properties: Dynamic (Three-Way) - yi j(t−1) - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE -63 3 63 0.98 0.00 -70 2 70 1.04 0.00
ABC (1) -6 2 7 1.13 0.22 -8 2 8 1.10 0.09
ABC (2) -8 2 8 1.04 0.08 -9 2 10 1.01 0.03
SPJ 21 3 21 0.80 0.00 -11 3 11 0.94 0.02
LPM (1) 2 2 3 1.00 0.84
LPM (2) 4 3 4 0.92 0.66

N = 100; T = 20

MLE -29 2 29 0.96 0.00 -37 2 37 0.96 0.00
ABC (1) -3 2 4 1.03 0.42 -4 2 4 0.99 0.37
ABC (2) -1 2 2 0.99 0.86 -2 2 2 0.95 0.83
SPJ 4 2 5 0.91 0.26 -2 2 3 0.90 0.80
LPM (1) 8 2 9 0.95 0.00
LPM (2) 11 2 11 0.91 0.00

N = 100; T = 30

MLE -18 1 18 0.97 0.00 -25 1 25 0.96 0.00
ABC (1) -3 1 3 1.03 0.50 -3 1 3 0.98 0.49
ABC (2) -1 1 1 1.00 0.93 -1 1 2 0.95 0.92
SPJ 2 1 2 0.94 0.72 -1 1 2 0.90 0.90
LPM (1) 10 1 10 0.95 0.00
LPM (2) 13 1 13 0.92 0.00

N = 100; T = 40

MLE -13 1 13 1.01 0.00 -19 1 19 1.01 0.00
ABC (1) -2 1 2 1.06 0.57 -2 1 2 1.04 0.56
ABC (2) -0 1 1 1.04 0.94 -0 1 1 1.02 0.94
SPJ 1 1 2 0.98 0.86 -0 1 1 0.96 0.93
LPM (1) 11 1 11 0.98 0.00
LPM (2) 13 1 13 0.96 0.00

N = 100; T = 50

MLE -10 1 10 0.98 0.00 -15 1 15 0.97 0.00
ABC (1) -2 1 2 1.03 0.61 -2 1 2 0.99 0.62
ABC (2) -0 1 1 1.01 0.95 -0 1 1 0.98 0.94
SPJ 1 1 1 0.98 0.91 -0 1 1 0.95 0.93
LPM (1) 12 1 12 0.94 0.00
LPM (2) 14 1 14 0.93 0.00

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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Table 5.19: Properties: Dynamic (Three-Way) - yi j(t−1) - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE -63 2 64 0.95 0.00 -70 1 70 1.02 0.00
ABC (1) -7 1 7 1.09 0.01 -8 2 9 1.08 0.00
ABC (2) -8 2 9 1.01 0.00 -10 2 10 1.00 0.00
SPJ 20 2 20 0.78 0.00 -11 2 11 0.92 0.00
LPM (1) 2 2 3 0.98 0.71
LPM (2) 3 2 4 0.90 0.42

N = 150; T = 20

MLE -30 1 30 0.99 0.00 -37 1 37 1.00 0.00
ABC (1) -4 1 4 1.07 0.05 -4 1 4 1.03 0.03
ABC (2) -2 1 2 1.02 0.69 -2 1 2 0.99 0.61
SPJ 4 1 4 0.92 0.05 -2 1 2 0.90 0.61
LPM (1) 8 1 8 0.96 0.00
LPM (2) 11 1 11 0.92 0.00

N = 150; T = 30

MLE -19 1 19 0.98 0.00 -25 1 25 0.97 0.00
ABC (1) -3 1 3 1.04 0.15 -3 1 3 0.99 0.13
ABC (2) -1 1 1 1.01 0.89 -1 1 1 0.97 0.87
SPJ 2 1 2 0.96 0.47 -0 1 1 0.92 0.90
LPM (1) 10 1 10 0.93 0.00
LPM (2) 13 1 13 0.91 0.00

N = 150; T = 40

MLE -14 1 14 1.01 0.00 -19 1 19 0.99 0.00
ABC (1) -2 1 2 1.06 0.20 -2 1 2 1.01 0.19
ABC (2) -0 1 1 1.03 0.92 -0 1 1 0.99 0.90
SPJ 1 1 1 0.96 0.76 -0 1 1 0.93 0.92
LPM (1) 11 1 11 0.96 0.00
LPM (2) 13 1 13 0.94 0.00

N = 150; T = 50

MLE -11 1 11 0.97 0.00 -15 1 15 0.95 0.00
ABC (1) -2 1 2 1.01 0.30 -2 1 2 0.97 0.30
ABC (2) -0 1 1 0.99 0.92 -0 1 1 0.95 0.91
SPJ 1 1 1 0.96 0.84 -0 1 1 0.92 0.92
LPM (1) 12 1 12 0.92 0.00
LPM (2) 14 1 14 0.90 0.00

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations and em-
pirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-corrected)
estimators; values in parentheses after ABC and LPM indicate the chosen bandwidth parameter; results based
on 1,000 repetitions.
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C Further Monte Carlo Simulations

Although the main focus of our article is on the dynamic two- and three-way fixed

effects model, the static counterparts are also highly relevant for applied work. For

this reason, we study the finite sample properties of MLE, ABC, SPJ and LPM for

these model specifications, too. In the following we briefly sketch the designs. Let

i = 1, . . . , N, j = 1, . . . , N, t = 1, . . . ,T, βy = 0.5, β= 1.

Design - Two-way fixed effects

yi jt = 1
[
βxi jt +λit +ψ jt ≥ εi jt

]
,

where λit ∼ iid. N (0,1/16), ψ jt ∼ iid. N (0,1/16), and εi jt ∼ iid. N (0,1). Further,

xi jt = 0.5xi jt−1 +λit +ψ jt +νi jt, where νi jt ∼ iid. N (0,0.5), xi j0 ∼ iid. N (0,1).

Design - Three-way fixed effects

yi jt = 1
[
βxi jt +λit +ψ jt +µi j ≥ εi jt

]
,

where λit ∼ iid. N (0,1/24), ψ jt ∼ iid. N (0,1/24), µi j ∼ iid. N (0,1/24), and εi jt ∼
iid. N (0,1). Further, xi jt = 0.5xi jt−1 +λit +ψ jt +µi j +νi jt, where νi jt ∼ iid. N (0,0.5),

xi j0 ∼ iid. N (0,1).

Note that unlike in the dynamic three-way fixed effects model, the OLS estimator

of the linear probability model (LPM) does not require a bias correction for the

specifications considered in this section.

We now review the key results of the simulation experiments.

Results - Two-way fixed effects

Static (see tables 5.20, 5.21, 5.22): Although MLE shows a distortion in the structural

parameter estimates, the bias does not carry over to the estimates of APEs. The

bias corrections ABC and SPJ work well. They reduce the biases of the structural

parameters and APEs to 1 or zero percent, and bring the CPs close to the nominal

level. Overall, ABC, SPJ and MLE work similarly well if APEs are of interest. In

terms of structural parameters, ABC exhibits a lower bias and better CPs than SPJ

in samples with smaller N. LPM shows no distortion of the APEs in all settings,

but we observe that with increasing N, the standard errors are underestimated,

resulting in too low CPs.

Note that MLE is consistent under fixed T asymptotics. This is also evident from

the simulation results, where the properties of the estimator do not change with T.
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Results - Three-way fixed effects

Static (see tables 5.23, 5.24, 5.25): We find a considerable distortion in the MLE

estimates of the structural parameters, which decreases with rising T, but is not

negligibly small even at T = 50. ABC and SPJ both reduce this bias considerably,

but ABC works better in samples with smaller T. While the CPs of ABC quickly

converge to the nominal level, the CPs of SPJ are still far away from 95 percent even

at T = 50. If we look at the APEs, we see that all estimators have either a very small

bias of 1 percent or none at all. With increasing T, their CPs are also getting closer

to 95 percent.

Table 5.20: Properties: Static (Two-Way) - xi jt - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 2 5 0.97 0.10 0 1 1 0.98 0.94
ABC -0 1 1 1.01 0.94 -0 1 1 0.99 0.94
SPJ -1 1 2 0.98 0.93 -0 1 1 0.96 0.93
LPM 0 1 1 0.96 0.93

N = 50; T = 20

MLE 5 1 5 0.99 0.01 0 1 1 1.06 0.96
ABC -0 1 1 1.03 0.96 -0 1 1 1.07 0.97
SPJ -1 1 1 0.98 0.91 -0 1 1 1.04 0.95
LPM -0 1 1 1.05 0.96

N = 50; T = 30

MLE 5 1 5 0.98 0.00 0 1 1 1.01 0.95
ABC -0 1 1 1.02 0.95 -0 1 1 1.03 0.95
SPJ -1 1 1 1.00 0.89 -0 1 1 1.00 0.95
LPM 0 1 1 0.99 0.94

N = 50; T = 40

MLE 5 1 5 0.94 0.00 0 1 1 0.98 0.95
ABC -0 1 1 0.97 0.94 -0 1 1 0.99 0.95
SPJ -1 1 1 0.95 0.84 -0 1 1 0.97 0.94
LPM -0 1 1 0.97 0.94

N = 50; T = 50

MLE 5 1 5 0.97 0.00 0 1 1 1.02 0.95
ABC -0 1 1 1.01 0.96 -0 1 1 1.04 0.96
SPJ -1 1 1 0.98 0.83 -0 1 1 1.00 0.95
LPM 0 1 1 1.00 0.95

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.21: Properties: Static (Two-Way) - xi jt - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 1 2 0.95 0.13 0 1 1 0.96 0.94
ABC -0 1 1 0.97 0.94 -0 1 1 0.96 0.93
SPJ -0 1 1 0.95 0.93 -0 1 1 0.95 0.93
LPM 0 1 1 0.85 0.90

N = 100; T = 20

MLE 2 1 2 0.98 0.00 0 0 0 0.99 0.96
ABC -0 1 1 1.00 0.95 -0 0 0 1.00 0.95
SPJ -0 1 1 0.99 0.94 -0 0 0 0.99 0.95
LPM -0 0 0 0.89 0.92

N = 100; T = 30

MLE 2 0 2 1.00 0.00 0 0 0 1.03 0.95
ABC 0 0 0 1.02 0.96 -0 0 0 1.03 0.95
SPJ -0 0 0 1.00 0.95 -0 0 0 1.03 0.96
LPM 0 0 0 0.92 0.93

N = 100; T = 40

MLE 2 0 2 0.98 0.00 0 0 0 0.97 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 0.97 0.94
SPJ -0 0 0 0.98 0.93 -0 0 0 0.96 0.94
LPM -0 0 0 0.87 0.91

N = 100; T = 50

MLE 2 0 2 1.00 0.00 0 0 0 0.99 0.95
ABC -0 0 0 1.02 0.96 -0 0 0 0.99 0.95
SPJ -0 0 0 1.02 0.94 -0 0 0 0.99 0.95
LPM -0 0 0 0.88 0.92

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.22: Properties: Static (Two-Way) - xi jt - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 1 0 2 0.99 0.12 0 0 0 1.02 0.96
ABC -0 0 0 1.01 0.96 -0 0 0 1.02 0.96
SPJ -0 0 0 1.00 0.95 -0 0 0 1.01 0.95
LPM -0 0 0 0.84 0.90

N = 150; T = 20

MLE 1 0 2 0.95 0.01 0 0 0 0.95 0.94
ABC 0 0 0 0.96 0.94 0 0 0 0.95 0.94
SPJ -0 0 0 0.95 0.93 0 0 0 0.95 0.94
LPM 0 0 0 0.79 0.86

N = 150; T = 30

MLE 1 0 2 1.01 0.00 0 0 0 0.96 0.95
ABC -0 0 0 1.03 0.95 -0 0 0 0.97 0.94
SPJ -0 0 0 1.02 0.94 -0 0 0 0.96 0.95
LPM -0 0 0 0.79 0.88

N = 150; T = 40

MLE 1 0 2 0.99 0.00 0 0 0 0.97 0.94
ABC -0 0 0 1.00 0.95 -0 0 0 0.97 0.94
SPJ -0 0 0 0.99 0.94 -0 0 0 0.96 0.94
LPM -0 0 0 0.80 0.88

N = 150; T = 50

MLE 1 0 2 0.99 0.00 0 0 0 0.95 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 0.95 0.94
SPJ -0 0 0 0.99 0.94 -0 0 0 0.95 0.94
LPM 0 0 0 0.78 0.88

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.23: Properties: Static (Three-Way) - xi jt - N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 22 2 22 0.85 0.00 1 1 2 1.00 0.89
ABC -1 2 2 1.03 0.88 -1 1 2 1.07 0.86
SPJ -12 2 12 0.72 0.00 -0 2 2 0.88 0.91
LPM 0 1 1 1.04 0.96

N = 50; T = 20

MLE 12 1 12 0.92 0.00 0 1 1 1.00 0.94
ABC -1 1 1 1.02 0.92 -0 1 1 1.03 0.93
SPJ -4 1 4 0.88 0.08 -1 1 1 0.92 0.89
LPM -0 1 1 1.04 0.96

N = 50; T = 30

MLE 10 1 10 0.94 0.00 0 1 1 1.02 0.94
ABC -0 1 1 1.02 0.94 -0 1 1 1.04 0.94
SPJ -2 1 2 0.93 0.28 -0 1 1 0.96 0.89
LPM 0 1 1 1.01 0.95

N = 50; T = 40

MLE 8 1 8 0.93 0.00 0 1 1 1.02 0.95
ABC -0 1 1 0.99 0.92 -0 1 1 1.03 0.94
SPJ -2 1 2 0.94 0.40 -0 1 1 0.99 0.90
LPM -0 1 1 0.98 0.94

N = 50; T = 50

MLE 8 1 8 0.96 0.00 0 1 1 1.04 0.94
ABC -0 1 1 1.03 0.93 -0 1 1 1.06 0.95
SPJ -1 1 2 0.95 0.46 -0 1 1 0.99 0.91
LPM 0 1 1 0.99 0.94

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.24: Properties: Static (Three-Way) - xi jt - N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 18 1 18 0.89 0.00 1 1 1 1.05 0.90
ABC -1 1 1 1.05 0.80 -1 1 1 1.09 0.70
SPJ -8 1 8 0.74 0.00 0 1 1 0.89 0.87
LPM -0 1 1 1.04 0.96

N = 100; T = 20

MLE 9 1 9 0.93 0.00 0 0 1 1.01 0.92
ABC -0 1 1 1.00 0.92 -0 0 1 1.03 0.92
SPJ -2 1 2 0.94 0.01 -0 1 1 0.96 0.91
LPM 0 0 0 0.96 0.93

N = 100; T = 30

MLE 7 0 7 0.95 0.00 0 0 0 1.05 0.95
ABC -0 0 0 1.01 0.93 -0 0 0 1.06 0.95
SPJ -1 0 1 0.93 0.21 -0 0 0 0.98 0.92
LPM -0 0 0 0.97 0.95

N = 100; T = 40

MLE 6 0 6 0.96 0.00 0 0 0 1.00 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 1.01 0.94
SPJ -1 0 1 0.95 0.44 -0 0 0 0.95 0.92
LPM -0 0 0 0.93 0.93

N = 100; T = 50

MLE 5 0 5 0.94 0.00 0 0 0 0.99 0.94
ABC -0 0 0 0.98 0.94 -0 0 0 1.00 0.94
SPJ -1 0 1 0.94 0.57 -0 0 0 0.97 0.92
LPM -0 0 0 0.91 0.93

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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Table 5.25: Properties: Static (Three-Way) - xi jt - N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 16 1 16 0.87 0.00 0 0 1 1.04 0.87
ABC -1 1 1 1.02 0.77 -1 0 1 1.07 0.51
SPJ -7 1 7 0.76 0.00 1 1 1 0.91 0.73
LPM -0 0 0 0.95 0.94

N = 150; T = 20

MLE 8 0 8 0.92 0.00 0 0 0 1.00 0.91
ABC -0 0 0 0.99 0.91 -0 0 0 1.01 0.89
SPJ -2 0 2 0.89 0.00 -0 0 0 0.93 0.91
LPM -0 0 0 0.93 0.93

N = 150; T = 30

MLE 6 0 6 0.93 0.00 0 0 0 0.97 0.93
ABC -0 0 0 0.97 0.93 -0 0 0 0.98 0.92
SPJ -1 0 1 0.93 0.08 -0 0 0 0.92 0.90
LPM -0 0 0 0.88 0.92

N = 150; T = 40

MLE 5 0 5 0.95 0.00 0 0 0 1.01 0.93
ABC -0 0 0 0.99 0.94 -0 0 0 1.02 0.94
SPJ -1 0 1 0.93 0.33 -0 0 0 0.98 0.93
LPM -0 0 0 0.90 0.93

N = 150; T = 50

MLE 4 0 4 0.98 0.00 0 0 0 1.05 0.95
ABC -0 0 0 1.01 0.94 -0 0 0 1.05 0.95
SPJ -0 0 0 0.97 0.51 -0 0 0 1.00 0.94
LPM -0 0 0 0.92 0.92

Note: Bias, SD, and RMSE denote biases, standard deviations, and root mean squared errors in percentage
relative to the truth; SE/SD and CP. 95 refer to average ratios of standard errors and standard deviations
and empirical coverage probabilities of 95 % confidence intervals; MLE, ABC, SPJ, and LPM denote the (bias-
corrected) estimators; results based on 1,000 repetitions.
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D Application

Table 5.26: Logit: Coefficients

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) - - 2.869∗∗∗ - 1.929∗∗∗

[-] [-] [2.985] [-] [1.798]
(-) (-) (0.008) (-) (0.009)

log(Distance) - -1.454∗∗∗ -0.980∗∗∗ - -
[-1.181∗∗∗] [-1.494] [-1.012] [-] [-]

(0.005) (0.006) (0.007) (-) (-)
Land border - 0.621∗∗∗ 0.231∗∗∗ - -

[0.660∗∗∗] [0.643] [0.244] [-] [-]
(0.026) (0.029) (0.033) (-) (-)

Legal - 0.262∗∗∗ 0.169∗∗∗ - -
[0.172∗∗∗] [0.269] [0.176] [-] [-]

(0.007) (0.008) (0.009) (-) (-)
Language - 0.737∗∗∗ 0.514∗∗∗ - -

[0.663∗∗∗] [0.757] [0.529] [-] [-]
(0.009) (0.01) (0.012) (-) (-)

Colonial ties - 1.345∗∗∗ 1.002∗∗∗ - -
[0.342∗∗∗] [1.443] [1.102] [-] [-]

(0.036) (0.061) (0.07) (-) (-)
Currency Union - 1.137∗∗∗ 0.775∗∗∗ 0.578∗∗∗ 0.421∗∗∗

[0.660∗∗∗] [1.173] [0.807] [0.64] [0.497]
(0.021) (0.027) (0.031) (0.06) (0.064)

FTA - 1.059∗∗∗ 0.664∗∗∗ 0.130∗ 0.072
[0.955∗∗∗] [1.077] [0.674] [0.123] [0.054]

(0.031) (0.036) (0.04) (0.07) (0.075)
WTO - 0.228∗∗∗ 0.187∗∗∗ 0.095∗∗∗ 0.087∗∗∗

[0.462∗∗∗] [0.232] [0.191] [0.105] [0.102]
(0.009) (0.014) (0.016) (0.028) (0.031)

Fixed effects i, j, t it, jt it, jt it, jt, i j it, jt, i j
Sample size 1,204,671 1,204,671 1,171,794 1,204,671 1,171,794
- perf. class. 12,298 147,760 141,537 370,617 374,067
Deviance 8.857×105 6.976×105 5.2×105 4.728×105 4.184×105

Note: Uncorrected coefficients in square brackets; standard errors in parentheses.

169



Table 5.27: Logit: Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) - - 0.331∗∗∗ - 0.168∗∗∗

[-] [-] [0.332] [-] [0.13]
(-) (-) (0.002) (-) (0.049)

log(Distance) - -0.138∗∗∗ -0.067∗∗∗ - -
[-0.140∗∗∗] [-0.137] [-0.067] [-] [-]

(0.005) (0.005) (0.001) (-) (-)
Land border - 0.058∗∗∗ 0.016∗∗∗ - -

[0.077∗∗∗] [0.059] [0.016] [-] [-]
(0.004) (0.004) (0.003) (-) (-)

Legal - 0.025∗∗∗ 0.012∗∗∗ - -
[0.020∗∗∗] [0.025] [0.012] [-] [-]

(0.001) (0.001) (0.001) (-) (-)
Language - 0.069∗∗∗ 0.035∗∗∗ - -

[0.078∗∗∗] [0.069] [0.035] [-] [-]
(0.003) (0.001) (0.001) (-) (-)

Colonial ties - 0.122∗∗∗ 0.069∗∗∗ - -
[0.040∗∗∗] [0.127] [0.074] [-] [-]

(0.004) (0.006) (0.006) (-) (-)
Currency Union - 0.104∗∗∗ 0.053∗∗∗ 0.041∗∗∗ 0.027∗∗∗

[0.077∗∗∗] [0.104] [0.054] [0.04] [0.028]
(0.004) (0.003) (0.002) (0.006) (0.009)

FTA - 0.098∗∗∗ 0.046∗∗∗ 0.009 0.004
[0.110∗∗∗] [0.097] [0.045] [0.008] [0.003]

(0.005) (0.004) (0.003) (0.006) (0.006)
WTO - 0.022∗∗∗ 0.013∗∗∗ 0.007∗∗ 0.005∗

[0.056∗∗∗] [0.021] [0.013] [0.006] [0.006]
(0.002) (0.002) (0.001) (0.003) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, i j it, jt, i j
Sample size 1,204,671 1,204,671 1,171,794 1,204,671 1,171,794
- perf. class. 12,298 147,760 141,537 370,617 374,067
Deviance 8.857×105 6.976×105 5.2×105 4.728×105 4.184×105

Notes: Uncorrected average partial effects in square brackets; standard errors in parentheses.
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Table 5.28: Probit with Different Bandwidths: Coefficients

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) 0.961∗∗∗ 1.112∗∗∗ 1.140∗∗∗ 1.154∗∗∗ 1.161∗∗∗

(0.036) (0.037) (0.039) (0.04) (0.04)
Currency Union 0.228∗∗∗ 0.217∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.216∗∗∗

(0.05) (0.048) (0.048) (0.048) (0.047)
FTA 0.035 0.037 0.038 0.042 0.043

(0.056) (0.054) (0.053) (0.053) (0.053)
WTO 0.041 0.039 0.039 0.040 0.042∗

(0.026) (0.025) (0.025) (0.025) (0.025)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard
errors in parentheses.

Table 5.29: Probit with Different Bandwidths: Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) 0.144∗∗∗ 0.173∗∗∗ 0.179∗∗∗ 0.182∗∗∗ 0.183∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Currency Union 0.026∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.025∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA 0.004 0.004 0.004 0.005 0.005

(0.004) (0.004) (0.004) (0.004) (0.004)
WTO 0.005∗∗ 0.004∗∗ 0.004∗∗ 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard
errors in parentheses.
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Table 5.30: Logit with Different Bandwidths: Coefficients

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) 1.606∗∗∗ 1.879∗∗∗ 1.929∗∗∗ 1.953∗∗∗ 1.965∗∗∗

(0.037) (0.038) (0.039) (0.04) (0.04)
Currency Union 0.448∗∗∗ 0.426∗∗∗ 0.421∗∗∗ 0.421∗∗∗ 0.425∗∗∗

(0.057) (0.054) (0.054) (0.054) (0.053)
FTA 0.065 0.069 0.072 0.077 0.080

(0.063) (0.061) (0.06) (0.06) (0.06)
WTO 0.091∗∗∗ 0.087∗∗∗ 0.087∗∗∗ 0.088∗∗∗ 0.091∗∗∗

(0.028) (0.027) (0.027) (0.027) (0.027)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard
errors in parentheses.

Table 5.31: Logit with Different Bandwidths: Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) 0.133∗∗∗ 0.162∗∗∗ 0.168∗∗∗ 0.170∗∗∗ 0.172∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Currency Union 0.028∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA 0.004 0.004 0.004 0.005 0.005

(0.004) (0.004) (0.004) (0.004) (0.004)
WTO 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard
errors in parentheses.
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Table 5.32: Probit vs. LPM (Two-Way): Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (5)

yi j(t−1) - - 0.599∗∗∗ 0.346∗∗∗

(-) (-) (0.001) (0.003)
log(Distance) -0.133∗∗∗ -0.135∗∗∗ -0.053∗∗∗ -0.066∗∗∗

(0.001) (0.005) (0) (0.001)
Land border 0.014∗∗∗ 0.035∗∗∗ 0.003∗ 0.015∗∗∗

(0.002) (0.004) (0.002) (0.003)
Legal 0.008∗∗∗ 0.023∗∗∗ 0.002∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001)
Language 0.098∗∗∗ 0.071∗∗∗ 0.040∗∗∗ 0.035∗∗∗

(0.001) (0.001) (0.001) (0.001)
Colonial ties 0.021∗∗∗ 0.107∗∗∗ 0.008∗∗∗ 0.061∗∗∗

(0.003) (0.007) (0.002) (0.005)
Currency Union 0.107∗∗∗ 0.103∗∗∗ 0.046∗∗∗ 0.053∗∗∗

(0.003) (0.003) (0.002) (0.002)
FTA -0.155∗∗∗ 0.090∗∗∗ -0.063∗∗∗ 0.045∗∗∗

(0.002) (0.004) (0.002) (0.003)
WTO -0.010∗∗∗ 0.026∗∗∗ -0.008∗∗∗ 0.013∗∗∗

(0.001) (0.002) (0.001) (0.001)

Estimator LPM Probit LPM Probit
bias-corrected false true false true
Sample size 1204671 1204671 1171794 1171794

Note: All columns include exporter-time and importer-time fixed effects; standard
errors in parentheses.

Table 5.33: LPM with Different Bandwidths: Average Partial Effects

Dependent variable: yi jt

(1) (2) (3) (4) (5)

yi j(t−1) 0.444∗∗∗ 0.466∗∗∗ 0.474∗∗∗ 0.480∗∗∗ 0.485∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Currency Union 0.008∗∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
FTA -0.065∗∗∗ -0.062∗∗∗ -0.062∗∗∗ -0.061∗∗∗ -0.061∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
WTO 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Trim L = 0 L = 1 L = 2 L = 3 L = 4

Note: All columns include exporter-time, importer-time, and pair fixed effects; standard errors
in parentheses.
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Figure 5.6: Fitted Probabilities
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Chapter 6

Conclusion

This thesis focused on solving computational and statistical challenges arising from

the application of nonlinear fixed effects models. First, computationally efficient

algorithms were derived that allow to estimate these models even in the presence

of high-dimensional fixed effects. Additionally it was shown how these algorithms

can be combined with and adapted to bias corrections to mitigate the incidental

parameters problem. Second, this thesis provided deeper insights on the finite

sample properties of various bias corrections. Third, novel three-way fixed effects

bias corrections were proposed that are particularly relevant in international trade.

The algorithms presented in this thesis are directly applicable to every general-

ized linear model. However, it would be beneficial to derive computationally efficient

fixed effects algorithms for other popular nonlinear models like tobit or ordered logit.

Further, a theoretical proof for the three-way bias corrections proposed in chapter

5 would still be useful, although their validity was credibly demonstrated through

extensive simulation experiments. Overall, a major finding of this thesis is that

especially analytical bias corrections are promising candidates for empirical research.

This encourages the development of novel bias corrections for more complex error

components that have not been studied so far.
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Appendix A

R-Package bife

The R-package bife was developed in the context of chapter 2. It estimates fixed

effects binary choice models (logit and probit) with potentially many individual fixed

effects and computes average partial effects. The incidental parameter bias can be

reduced with an asymptotic bias correction proposed by Fernández-Val (2009).

The corresponding user manual is provided in the following.
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License GPL (>= 2)
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bias_corr Asymptotic bias-correction for binary choice Models with fixed effects

Description

bias_corr is a post-estimation routine that can be used to substantially reduce the incidental pa-
rameter bias problem (Neyman and Scott (1948)) present in non-linear fixed effects models (see
Fernandez-Val and Weidner (2018) for an overview). The command applies the analytical bias-
correction derived by Fernandez-Val (2009) to obtain bias-corrected estimates of the structural pa-
rameters.

Remark: Fernandez-Val (2009) further refined the bias-correction of Hahn and Newey (2004). The
correction is now also applicable to dynamic models.

Usage

bias_corr(object, L = 0L)

Arguments

object an object of class "bife".

L unsigned integer indicating a bandwidth for the estimation of spectral densities
proposed by Hahn and Kuersteiner (2011). Default is zero, which should be
used if all regressors are assumed to be strictly exogenous. In the presence
of weakly exogenous or predetermined regressors, Fernandez-Val and Weidner
(2018) suggest to choose a bandwidth not higher than four.



bife 3

Value

The function bias_corr returns a named list of class "bife".

References

Fernandez-Val, I. (2009). "Fixed effects estimation of structural parameters and marginal effects in
panel probit models". Journal of Econometrics 150(1), 71-85.

Fernandez-Val, I. and Weidner, M. (2018). "Fixed effects estimation of large-t panel data models".
Annual Review of Economics, 10, 109-138.

Hahn, J. and Kuersteiner, G. (2011). "Bias reduction for dynamic nonlinear panel models with fixed
effects". Econometric Theory, 27(6), 1152-1191.

Hahn, J. and Newey, W. (2004). "Jackknife and analytical bias reduction for nonlinear panel mod-
els". Econometrica 72(4), 1295-1319.

Neyman, J. and Scott, E. L. (1948). "Consistent estimates based on partially consistent observa-
tions". Econometrica, 16(1), 1-32.

Stammann, A., Heiss, F., and and McFadden, D. (2016). "Estimating Fixed Effects Logit Models
with Large Panel Data". Working paper.

See Also

bife

Examples

# Load 'psid' dataset
library(bife)
dataset <- psid

# Fit a static logit model
mod <- bife(LFP ~ I(AGE^2) + log(INCH) + KID1 + KID2 + KID3 + factor(TIME) | ID, dataset)
summary(mod)

# Apply analytical bias-correction
mod_bc <- bias_corr(mod)
summary(mod_bc)

bife Efficiently fit binary choice models with fixed effects



4 bife

Description

bife can be used to fit fixed effects binary choice models (logit and probit) based on an uncondi-
tional maximum likelihood approach. It is tailored for the fast estimation of binary choice models
with potentially many individual fixed effects. The routine is based on a special pseudo demeaning
algorithm derived by Stammann, Heiss, and McFadden (2016). The estimates obtained are identical
to the ones of glm, but the computation time of bife is much lower.

Remark: The term fixed effect is used in econometrician’s sense of having a full set of individual
specific intercepts. All other parameters in the model are referred to as structural parameters.

Usage

bife(formula, data = list(), model = c("logit", "probit"),
beta_start = NULL, control = list(), bias_corr = NULL,
tol_demeaning = NULL, iter_demeaning = NULL, tol_offset = NULL,
iter_offset = NULL)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. formula must be of type y x|id where
the id refers to an individual identifier (fixed effect category).

data an object of class "data.frame" containing the variables in the model.

model the description of the error distribution and link function to be used in the model.
For bife this has to be a character string naming the model function. Default is
"logit".

beta_start an optional vector of starting values used for the structural parameters in the
optimization algorithm. Default is zero for all structural parameters.

control a named list of parameters for controlling the fitting process. See bife_control
for details.

bias_corr deprecated; see bias_corr.

tol_demeaning, iter_demeaning, tol_offset, iter_offset

deprecated; see bife_control.

Details

bife drops all observations of cross-sectional units (individuals) with non-varying response. This
can de done because these observations do not contribute to the identification of the structural
parameters (perfect classification).

If bife does not converge this is usually a sign of linear dependence between one or more regressors
and the fixed effects. In this case, you should carefully inspect your model specification.

Value

The function bife returns a named list of class "bife".



bife_control 5

References

Stammann, A., Heiss, F., and and McFadden, D. (2016). "Estimating Fixed Effects Logit Models
with Large Panel Data". Working paper.

Examples

# Load 'psid' dataset
library(bife)
dataset <- psid

# Fit a static logit model
mod <- bife(LFP ~ I(AGE^2) + log(INCH) + KID1 + KID2 + KID3 + factor(TIME) | ID, dataset)
summary(mod)

bife_control Set bife Control Parameters

Description

Set and change parameters used for fitting bife.

Usage

bife_control(dev_tol = 1e-08, rho_tol = 1e-04, conv_tol = 1e-06,
iter_max = 100L, trace = FALSE)

Arguments

dev_tol tolerance level for the first stopping condition of the maximization routine. The
stopping condition is based on the relative change of the deviance in iteration r
and can be expressed as follows: (devr−1 − devr)/(0.1 + devr) < tol. Default
is 1.0e-08.

rho_tol tolerance level for the stephalving in the maximization routine. Stephalving
only takes place if the deviance in iteration r is larger than the one of the pre-
vious iteration. If this is the case, ||βr − βr−1||2 is halfed until the deviance
is less or numerically equal compared to the deviance of the previous iteration.
Stephalving fails if the the following condition holds: ρ < tol, where ρ is the
stepcorrection factor. If stephalving fails the maximization routine is canceled.
Default is 1.0e-04.

conv_tol tolerance level that accounts for rounding errors inside the stephalving routine
when comparing the deviance with the one of the previous iteration. Default is
1.0e-06.

iter_max unsigned integer indicating the maximum number of iterations in the maximiza-
tion routine. Default is 100L.

trace logical indicating if output should be produced in each iteration. Default is
FALSE.
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Value

The function bife_control returns a named list of control parameters.

See Also

bife

coef.bife Extract estimates of structural parameters or fixed effects

Description

coef.bife is a generic function which extracts estimates of the structural parameters or fixed effects
from objects returned by bife.

Usage

## S3 method for class 'bife'
coef(object, type = c("sp", "fe"), corrected = NULL,

fixed = NULL, ...)

Arguments

object an object of class "bife".

type the type of parameter estimates that should be returned; structural parameters or
fixed effects. Default is "sp" referring to the structural parameters.

corrected, fixed

deprecated.

... other arguments.

Value

The function coef.bife returns a named vector of estimates of the requested parameters.

See Also

bife
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coef.bifeAPEs Extract estimates of average partial effects

Description

coef.bifeAPEs is a generic function which extracts estimates of the average partial effects from
objects returned by get_APEs.

Usage

## S3 method for class 'bifeAPEs'
coef(object, ...)

Arguments

object an object of class "APEs".

... other arguments.

Value

The function coef.bifeAPEs returns a named vector of estimates of the average partial effects.

See Also

get_APEs

fitted.bife Extract bife fitted values

Description

fitted.bife is a generic function which extracts fitted values from an object returned by bife.

Usage

## S3 method for class 'bife'
fitted(object, ...)

Arguments

object an object of class "bife".

... other arguments.

Value

The function fitted.bife returns a vector of fitted values.
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See Also

bife

get_APEs Compute average partial effects for binary choice models with fixed
effects

Description

get_APEs is a post-estimation routine that can be used to estimate average partial effects with
respect to all covariates in the model and the corresponding covariance matrix. The estimation of the
covariance is based on a linear approximation (delta method). Note that the command automatically
determines which of the regressors are continuous or binary.

Remark: The routine currently does not allow to compute average partial effects based on func-
tional forms like interactions and polynomials.

Note: apeff_bife is deprecated and will be removed soon.

Usage

get_APEs(object, n_pop = NULL, weak_exo = FALSE)

apeff_bife(...)

Arguments

object an object of class "bife".

n_pop unsigned integer indicating a finite population correction for the estimation of
the covariance matrix of the average partial effects proposed by Cruz-Gonzalez,
Fernandez-Val, and Weidner (2017). The correction factor is computed as fol-
lows: (n∗ − n)/(n∗ − 1), where n∗ and n are the size of the entire population
and the full sample size. Default is NULL, which refers to a factor of one and is
equal to an infinitely large population.

weak_exo logical indicating if some of the regressors are assumed to be weakly exoge-
nous (e.g. predetermined). If object is returned by bias_corr, the option will
be automatically set to TRUE if the choosen bandwidth parameter is larger than
zero. Note that this option only affects the estimation of the covariance matrix.
Default is FALSE, which assumes that all regressors are strictly exogenous.

... arguments passed to the deprecated function apeff_bife.

Value

The function get_APEs returns a named list of class "bifeAPEs".
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References

Cruz-Gonzalez, M., Fernandez-Val, I., and Weidner, M. (2017). "Bias corrections for probit and
logit models with two-way fixed effects". The Stata Journal, 17(3), 517-545.

Fernandez-Val, I. (2009). "Fixed effects estimation of structural parameters and marginal effects in
panel probit models". Journal of Econometrics 150(1), 71-85.

Fernandez-Val, I. and Weidner M. (2018). "Fixed effects estimation of large-t panel data models".
Annual Review of Economics, 10, 109-138.

Neyman, J. and Scott, E. L. (1948). "Consistent estimates based on partially consistent observa-
tions". Econometrica, 16(1), 1-32.

Stammann, A., Heiss, F., and and McFadden, D. (2016). "Estimating Fixed Effects Logit Models
with Large Panel Data". Working paper.

See Also

bias_corr, bife

Examples

# Load 'psid' dataset
library(bife)
dataset <- psid

# Fit a static logit model
mod <- bife(LFP ~ I(AGE^2) + log(INCH) + KID1 + KID2 + KID3 + factor(TIME) | ID, dataset)
summary(mod)

# Compute average partial effects
mod_ape <- get_APEs(mod)
summary(mod_ape)

# Apply analytical bias-correction
mod_bc <- bias_corr(mod)
summary(mod_bc)

# Compute bias-corrected average partial effects
mod_ape_bc <- get_APEs(mod_bc)
summary(mod_ape_bc)

predict.bife Predict method for bife fits

Description

predict.bife is a generic function which obtains predictions from an object returned by bife.
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Usage

## S3 method for class 'bife'
predict(object, type = c("link", "response"),

X_new = NULL, alpha_new = NULL, corrected = NULL, ...)

Arguments

object an object of class "bife".

type the type of prediction required. "link" is on the scale of the linear predictor
whereas "response" is on the scale of the response variable. Default is "link".

X_new a regressor matrix for predictions. If not supplied predictions are based on the
regressor matrix returned by the object bife. See Details.

alpha_new a scalar or vector of fixed effects. If not supplied predictions are based on the
vector of fixed effects returned by bife. See Details.

corrected deprecated.

... other arguments

Details

The model frame returned by the object bife only includes individuals that were not dropped before
the fitting process (due to perfect classification). The linear predictors of perfectly classified obser-
vations are equal to - Inf or Inf whereas the predicted probabilities are equal to their response.
In-sample predictions are only based on non-perfectly classified observations.

If alpha_new is supplied as a scalar the linear predictor is computed using the same value of the
fixed effect for each observation. If alpha_new is supplied as a vector it has to be of same length as
the rows of the corresponding regressor matrix.

Value

The function predict.bife returns a vector of predictions.

See Also

bife

print.bife Print bife

Description

print.bife is a generic function which displays some minimal information from objects returned
by bife.
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Usage

## S3 method for class 'bife'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x an object of class "bife".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.

See Also

bife

print.bifeAPEs Print bifeAPEs

Description

print.bifeAPEs is a generic function which displays some minimal information from objects re-
turned by get_APEs.

Usage

## S3 method for class 'bifeAPEs'
print(x, digits = max(3L, getOption("digits") - 3L),

...)

Arguments

x an object of class "bifeAPEs".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.

See Also

get_APEs
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print.summary.bife Print summary.bife

Description

print.summary.bife is a generic function which displays summary statistics from objects returned
by summary.bife.

Usage

## S3 method for class 'summary.bife'
print(x, digits = max(3L, getOption("digits") -

3L), ...)

Arguments

x an object of class "summary.bife".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.

See Also

bife

print.summary.bifeAPEs

Print summary.bifeAPEs

Description

print.summary.bifeAPEs is a generic function which displays summary statistics from objects
returned by summary.bifeAPEs.

Usage

## S3 method for class 'summary.bifeAPEs'
print(x, digits = max(3L, getOption("digits")

- 3L), ...)

Arguments

x an object of class "summary.bifeAPEs".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.
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See Also

get_APEs

psid Female labor force participation

Description

The sample was obtained from the "Panel Study of Income Dynamics" and contains information
about N = 1461 women that were observed over T = 9 years.

Usage

psid

Format

A data frame with 13,149 rows:

ID individual identifier

LFP labor force participation

KID1 # of kids aged between 0 and 2

KID2 # of kids aged between 3 and 5

KID3 # of kids aged between 6 and 17

INCH income husband

AGE age of woman

TIME time identifier

References

Hyslop, D. (1999). "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor
Force Participation of Married Women". Econometrica 67(6), 1255-1294.

Fernandez-Val, I. (2009). "Fixed effects estimation of structural parameters and marginal effects in
panel probit models". Journal of Econometrics 150(1), 71-85.

See Also

bife
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summary.bife Summarizing models of class bife

Description

Summary statistics for objects of class "bife".

Usage

## S3 method for class 'bife'
summary(object, type = c("sp", "fe"), corrected = NULL,

fixed = NULL, ...)

Arguments

object an object of class "bife".

type the type of parameter estimates the summary statistics are related to: structural
parameters or fixed effects. Default is "sp" referring to the structural parame-
ters.

corrected, fixed

deprecated.

... other arguments.

Value

Returns an object of class "summary.bife" which is a list of summary statistics of object.

See Also

bife

summary.bifeAPEs Summarizing models of class bifeAPEs

Description

Summary statistics for objects of class "bifeAPEs".

Usage

## S3 method for class 'bifeAPEs'
summary(object, ...)
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Arguments

object an object of class "bifeAPEs".

... other arguments.

Value

Returns an object of class "summary.bifeAPEs" which is a list of summary statistics of object.

See Also

get_APEs

vcov.bife Extract estimates of the covariance matrix

Description

vcov.bife computes an estimate of the covariance matrix of the estimator of the structural param-
eters from objects returned by bife. The estimate is obtained using the inverse of the negative
Hessian after convergence.

Usage

## S3 method for class 'bife'
vcov(object, ...)

Arguments

object an object of class "bife".

... other arguments.

Value

The function vcov.bife returns a named matrix of covariance estimates.

See Also

bife
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vcov.bifeAPEs Extract estimates of the covariance matrix

Description

vcov.bifeAPEs computes an estimate of the covariance matrix of the estimator of the average
partial parameters from objects returned by get_APEs.

Usage

## S3 method for class 'bifeAPEs'
vcov(object, ...)

Arguments

object an object of class "bifeAPEs".

... other arguments.

Value

The function vcov.bifeAPEs returns a named matrix of covariance estimates.

See Also

get_APEs
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Appendix B

R-Package alpaca

The R-package alpaca was developed in the context of chapter 3 and 4. It provides

a routine to concentrate out factors with many levels during the optimization of

the log-likelihood function of the corresponding generalized linear model (GLM).

The package is based on the algorithm proposed by Stammann (2018) and is re-

stricted to GLMs that are based on maximum likelihood estimation and nonlinear.

It also offers an efficient algorithm to recover estimates of the fixed effects in a

post-estimation routine and includes robust and multi-way clustered standard errors.

Further the package provides an analytical bias correction for two-way fixed effects

binary choice models (logit and probit) derived by Fernández-Val and Weidner (2016).

The corresponding user manual is provided in the following.
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Package ‘alpaca’
May 24, 2019

Type Package

Title Fit GLM's with High-Dimensional k-Way Fixed Effects

Version 0.3.1

Description Provides a routine to concentrate out factors with many levels during the
optimization of the log-likelihood function of the corresponding generalized linear model (glm).
The package is based on the algorithm proposed by Stammann (2018) <arXiv:1707.01815> and is
restricted to glm's that are based on maximum likelihood estimation and non-linear. It also offers
an efficient algorithm to recover estimates of the fixed effects in a post-estimation routine and
includes robust and multi-way clustered standard errors. Further the package provides an
analytical bias-correction for binary choice models (logit and probit) derived by Fernandez-Val
and Weidner (2016) <doi:10.1016/j.jeconom.2015.12.014>.

License GPL-3

Depends R (>= 3.1.0)

Imports data.table, Formula, MASS, Rcpp, stats, utils

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/amrei-stammann/alpaca

BugReports https://github.com/amrei-stammann/alpaca/issues

RoxygenNote 6.1.1

Suggests bife, car, knitr, lfe

VignetteBuilder knitr

NeedsCompilation yes

Author Amrei Stammann [aut, cre],
Daniel Czarnowske [aut] (<https://orcid.org/0000-0002-0030-929X>)

Maintainer Amrei Stammann <amrei.stammann@hhu.de>

Repository CRAN

Date/Publication 2019-05-24 15:50:02 UTC
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alpaca-package alpaca: A package for fitting glm’s with high-dimensional k-way fixed
effects

Description

Concentrates out factors with many levels during the optimization of the log-likelihood function of
the corresponding generalized linear model (glm). The package is restricted to glm’s that are based
on maximum likelihood estimation. This excludes all quasi-variants of glm. The package also
offers an efficient algorithm to recover estimates of the fixed effects in a post-estimation routine and
includes robust and multi-way clustered standard errors. Further the package provides an analytical
bias-correction for binary choice models (logit and probit) derived by Fernandez-Val and Weidner
(2016).

Note: Linear models are also beyond the scope of this package since there is already a comprehen-
sive procedure available felm.
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biasCorr Asymptotic bias-correction after fitting binary choice models with two-
way error component

Description

biasCorr is a post-estimation routine that can be used to substantially reduce the incidental pa-
rameter bias problem (Neyman and Scott (1948)) present in non-linear fixed effects models (see
Fernandez-Val and Weidner (2018) for an overview). The command applies the analytical bias-
correction derived by Fernandez-Val and Weinder (2016) to obtain bias-corrected estimates of the
structural parameters and is currently restricted to logit and probit models.

Usage

biasCorr(object = NULL, L = 0L)

Arguments

object an object of class "feglm"; currently restricted to binomial with "logit" or
"probit" link function.

L unsigned integer indicating a bandwidth for the estimation of spectral densities
proposed by Hahn and Kuersteiner (2011). Default is zero, which should be
used if all regressors are assumed to be strictly exogenous. In the presence
of weakly exogenous or predetermined regressors, Fernandez-Val and Weidner
(2016, 2018) suggest to choose a bandwidth not higher than four.

Value

The function biasCorr returns a named list of classes "biasCorr" and "feglm".

References

Czarnowske, D. and Stammann, A. (2019). "Binary Choice Models with High-Dimensional Indi-
vidual and Time Fixed Effects". ArXiv e-prints.

Fernandez-Val, I. and Weidner, M. (2016). "Individual and time effects in nonlinear panel models
with large N, T". Journal of Econometrics, 192(1), 291-312.

Fernandez-Val, I. and Weidner, M. (2018). "Fixed effects estimation of large-t panel data models".
Annual Review of Economics, 10, 109-138.

Hahn, J. and Kuersteiner, G. (2011). "Bias reduction for dynamic nonlinear panel models with fixed
effects". Econometric Theory, 27(6), 1152-1191.

Neyman, J. and Scott, E. L. (1948). "Consistent estimates based on partially consistent observa-
tions". Econometrica, 16(1), 1-32.

See Also

feglm
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Examples

# Generate an artificial data set for logit models
library(alpaca)
data <- simGLM(1000L, 20L, 1805L, model = "logit")

# Fit 'feglm()'
mod <- feglm(y ~ x1 + x2 + x3 | i + t, data)

# Apply analytical bias-correction
mod.bc <- biasCorr(mod)
summary(mod.bc)

coef.APEs Extract estimates of average partial effects

Description

coef.APEs is a generic function which extracts estimates of the average partial effects from objects
returned by getAPEs.

Usage

## S3 method for class 'APEs'
coef(object, ...)

Arguments

object an object of class "APEs".

... other arguments.

Value

The function coef.APEs returns a named vector of estimates of the average partial effects.

See Also

getAPEs
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coef.feglm Extract estimates of structural parameters

Description

coef.feglm is a generic function which extracts estimates of the structural parameters from objects
returned by feglm.

Usage

## S3 method for class 'feglm'
coef(object, ...)

Arguments

object an object of class "feglm".

... other arguments.

Value

The function coef.feglm returns a named vector of estimates of the structural parameters.

See Also

feglm

coef.summary.feglm Extract coefficient matrix of structural parameters

Description

coef.summary.feglm is a generic function which extracts a coefficient matrix of structural param-
eters from objects returned by feglm.

Usage

## S3 method for class 'summary.feglm'
coef(object, ...)

Arguments

object an object of class "summary.feglm".

... other arguments.
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Value

The function coef.summary.feglm returns a named matrix of estimates related to the structural
parameters.

See Also

feglm

feglm Efficiently fit glm’s with high-dimensional k-way fixed effects

Description

feglm can be used to fit generalized linear models with many high-dimensional fixed effects. The
estimation procedure is based on unconditional maximum likelihood and can be interpreted as a
“pseudo demeaning” approach that combines the work of Gaure (2013) and Stammann et. al.
(2016). For technical details see Stammann (2018). The routine is well suited for large data sets
that would be otherwise infeasible to use due to memory limitations.

Remark: The term fixed effect is used in econometrician’s sense of having intercepts for each level
in each category.

Usage

feglm(formula = NULL, data = NULL, family = binomial(),
beta.start = NULL, eta.start = NULL, control = NULL)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.
formula must be of type y ~ x | k, where the second part of the formula refers
to factors to be concentrated out. It is also possible to pass additional variables
to feglm (e.g. to cluster standard errors). This can be done by specifying the
third part of the formula: y ~ x | k | add.

data an object of class "data.frame" containing the variables in the model.

family a description of the error distribution and link function to be used in the model.
Similiar to glm.fit this has to be the result of a call to a family function. Default
is binomial(). See family for details of family functions.

beta.start an optional vector of starting values for the structural parameters in the linear
predictor. Default is β = 0.

eta.start an optional vector of starting values for the linear predictor.

control a named list of parameters for controlling the fitting process. See feglmControl
for details.
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Details

If feglm does not converge this is usually a sign of linear dependence between one or more regres-
sors and a fixed effects category. In this case, you should carefully inspect your model specification.

Value

The function feglm returns a named list of class "feglm".

References

Gaure, S. (2013). "OLS with Multiple High Dimensional Category Variables". Computational
Statistics and Data Analysis, 66.

Stammann, A., Heiss, F., and McFadden, D. (2016). "Estimating Fixed Effects Logit Models with
Large Panel Data". Working paper.

Stammann, A. (2018). "Fast and Feasible Estimation of Generalized Linear Models with High-
Dimensional k-Way Fixed Effects". ArXiv e-prints.

Examples

# Generate an artificial data set for logit models
library(alpaca)
data <- simGLM(1000L, 20L, 1805L, model = "logit")

# Fit 'feglm()'
mod <- feglm(y ~ x1 + x2 + x3 | i + t, data)
summary(mod)

feglm.nb Efficiently fit negative binomial glm’s with high-dimensional k-way
fixed effects

Description

feglm.nb can be used to fit negative binomial generalized linear models with many high-dimensional
fixed effects (see feglm).

Usage

feglm.nb(formula = NULL, data = NULL, beta.start = NULL,
eta.start = NULL, init.theta = NULL, link = c("log", "identity",
"sqrt"), control = NULL)
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Arguments

formula, data, beta.start, eta.start, control

see feglm.

init.theta an optional initial value for the theta parameter (see glm.nb).

link the link function. Must be one of "log", "sqrt", or "identity".

Details

If feglm.nb does not converge this is usually a sign of linear dependence between one or more
regressors and a fixed effects category. In this case, you should carefully inspect your model speci-
fication.

Value

The function feglm.nb returns a named list of class "feglm".

References

Gaure, S. (2013). "OLS with Multiple High Dimensional Category Variables". Computational
Statistics and Data Analysis. 66.

Stammann, A., F. Heiss, and D. McFadden (2016). "Estimating Fixed Effects Logit Models with
Large Panel Data". Working paper.

Stammann, A. (2018). "Fast and Feasible Estimation of Generalized Linear Models with High-
Dimensional k-Way Fixed Effects". ArXiv e-prints.

See Also

glm.nb, feglm

feglmControl Set feglm Control Parameters

Description

Set and change parameters used for fitting feglm.

Note: feglm.control is deprecated and will be removed soon.

Usage

feglmControl(dev.tol = 1e-08, center.tol = 1e-05, rho.tol = 1e-04,
conv.tol = 1e-06, iter.max = 100L, limit = 10L, trace = FALSE,
drop.pc = TRUE, pseudo.tol = NULL, step.tol = NULL)

feglm.control(...)
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Arguments

dev.tol tolerance level for the first stopping condition of the maximization routine. The
stopping condition is based on the relative change of the deviance in iteration r
and can be expressed as follows: (devr−1 − devr)/(0.1 + devr) < tol. Default
is 1.0e-08.

center.tol tolerance level for the stopping condition of the centering algorithm. The stop-
ping condition is based on the relative change of euclidean norm in iteration
i and can be expressed as follows: ||vi − vi−1||2 < tol||vi−1||. Default is
1.0e-05.

rho.tol tolerance level for the stephalving in the maximization routine. Stephalving
only takes place if the deviance in iteration r is larger than the one of the pre-
vious iteration. If this is the case, ||βr − βr−1||2 is halfed until the deviance
is less or numerically equal compared to the deviance of the previous iteration.
Stephalving fails if the the following condition holds: ρ < tol, where ρ is the
stepcorrection factor. If stephalving fails the maximization routine is canceled.
Default is 1.0e-04.

conv.tol tolerance level that accounts for rounding errors inside the stephalving routine
when comparing the deviance with the one of the previous iteration. Default is
1.0e-06.

iter.max unsigned integer indicating the maximum number of iterations in the maximiza-
tion routine. Default is 100L.

limit unsigned integer indicating the maximum number of iterations of theta.ml.
Default is 10L.

trace logical indicating if output should be produced in each iteration. Default is
FALSE.

drop.pc logical indicating to drop observations that are perfectly classified (perfectly
seperated) and hence do not contribute to the log-likelihood. This option is
useful to reduce the computational costs of the maximization problem, since it
reduces the number of observations and does not affect the estimates. Default is
TRUE.

pseudo.tol deprecated; use center.tol instead.

step.tol depreacted; termination conditions is now similar to glm.

... arguments passed to the deprecated function feglm.control.

Value

The function feglmControl returns a named list of control parameters.

See Also

feglm
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fitted.feglm Extract feglm fitted values

Description

fitted.feglm is a generic function which extracts fitted values from an object returned by feglm.

Usage

## S3 method for class 'feglm'
fitted(object, ...)

Arguments

object an object of class "feglm".

... other arguments.

Value

The function fitted.feglm returns a vector of fitted values.

See Also

feglm

getAPEs Compute average partial effects after fitting binary choice models with
two-way error component

Description

getAPEs is a post-estimation routine that can be used to estimate average partial effects with respect
to all covariates in the model and the corresponding covariance matrix. The estimation of the
covariance is based on a linear approximation (delta method). Note that the command automatically
determines which of the regressors are continuous or binary.

Remark: The routine currently does not allow to compute average partial effects based on func-
tional forms like interactions and polynomials.

Usage

getAPEs(object = NULL, n.pop = NULL, weak.exo = FALSE)
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Arguments

object an object of class "biasCorr" or "feglm"; currently restricted to binomial
with "logit" or "probit" link function.

n.pop unsigned integer indicating a finite population correction for the estimation of
the covariance matrix of the average partial effects proposed by Cruz-Gonzalez,
Fernandez-Val, and Weidner (2017). The correction factor is computed as fol-
lows: (n∗ − n)/(n∗ − 1), where n∗ and n are the size of the entire population
and the full sample size. Default is NULL, which refers to a factor of one and is
equal to an infinitely large population.

weak.exo logical indicating if some of the regressors are assumed to be weakly exoge-
nous (e.g. predetermined). If object is of class "biasCorr", the option will
be automatically set to TRUE if the choosen bandwidth parameter is larger than
zero. Note that this option only affects the estimation of the covariance matrix.
Default is FALSE, which assumes that all regressors are strictly exogenous.

Value

The function getAPEs returns a named list of class "APEs".

References

Cruz-Gonzalez, M., Fernandez-Val, I., and Weidner, M. (2017). "Bias corrections for probit and
logit models with two-way fixed effects". The Stata Journal, 17(3), 517-545.

Czarnowske, D. and Stammann, A. (2019). "Binary Choice Models with High-Dimensional Indi-
vidual and Time Fixed Effects". ArXiv e-prints.

Fernandez-Val, I. and Weidner, M. (2016). "Individual and time effects in nonlinear panel models
with large N, T". Journal of Econometrics, 192(1), 291-312.

Fernandez-Val, I. and Weidner, M. (2018). "Fixed effects estimation of large-t panel data models".
Annual Review of Economics, 10, 109-138.

Neyman, J. and Scott, E. L. (1948). "Consistent estimates based on partially consistent observa-
tions". Econometrica, 16(1), 1-32.

See Also

biasCorr, feglm

Examples

# Generate an artificial data set for logit models
library(alpaca)
data <- simGLM(1000L, 20L, 1805L, model = "logit")

# Fit 'feglm()'
mod <- feglm(y ~ x1 + x2 + x3 | i + t, data)

# Compute average partial effects
mod.ape <- getAPEs(mod)
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summary(mod.ape)

# Apply analytical bias-correction
mod.bc <- biasCorr(mod)
summary(mod.bc)

# Compute bias-corrected average partial effects
mod.ape.bc <- getAPEs(mod.bc)
summary(mod.ape.bc)

getFEs Efficiently recover estimates of the fixed effects after fitting feglm

Description

Recover estimates of the fixed effects by alternating between the normal equations of the fixed
effects as shown by Stammann (2018).

Remark: The system might not have a unique solution since we do not take collinearity into ac-
count. If the solution is not unique, an estimable function has to be applied to our solution to get
meaningful estimates of the fixed effects. See Gaure (n. d.) for an extensive treatment of this issue.

Usage

getFEs(object = NULL, alpha.tol = 1e-08)

Arguments

object an object of class "feglm".

alpha.tol tolerance level for the stopping condition. The algorithm is stopped in iteration
i if ||αi −αi−1||2 < tol||αi−1||2. Default is 1.0e-08.

Value

The function getFEs returns a named list containing named vectors of estimated fixed effects.

References

Gaure, S. (n. d.). "Multicollinearity, identification, and estimable functions". Unpublished.

Stammann, A. (2018). "Fast and Feasible Estimation of Generalized Linear Models with High-
Dimensional k-way Fixed Effects". ArXiv e-prints.

See Also

feglm
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predict.feglm Predict method for feglm fits

Description

predict.feglm is a generic function which obtains predictions from an object returned by feglm.

Usage

## S3 method for class 'feglm'
predict(object, type = c("link", "response"), ...)

Arguments

object an object of class "feglm".

type the type of prediction required. "link" is on the scale of the linear predictor
whereas "response" is on the scale of the response variable. Default is "link".

... other arguments.

Value

The function predict.feglm returns a vector of predictions.

See Also

feglm

print.APEs Print APEs

Description

print.APEs is a generic function which displays some minimal information from objects returned
by getAPEs.

Usage

## S3 method for class 'APEs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x an object of class "APEs".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.
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See Also

getAPEs

print.feglm Print feglm

Description

print.feglm is a generic function which displays some minimal information from objects returned
by feglm.

Usage

## S3 method for class 'feglm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x an object of class "feglm".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.

See Also

feglm

print.summary.APEs Print summary.APEs

Description

print.summary.APEs is a generic function which displays summary statistics from objects returned
by summary.APEs.

Usage

## S3 method for class 'summary.APEs'
print(x, digits = max(3L, getOption("digits") -

3L), ...)

Arguments

x an object of class "summary.APEs".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.
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See Also

getAPEs

print.summary.feglm Print summary.feglm

Description

print.summary.feglm is a generic function which displays summary statistics from objects re-
turned by summary.feglm.

Usage

## S3 method for class 'summary.feglm'
print(x, digits = max(3L, getOption("digits") -

3L), ...)

Arguments

x an object of class "summary.feglm".

digits unsigned integer indicating the number of decimal places. Default is max(3L, getOption("digits") - 3L).

... other arguments.

See Also

feglm

simGLM Generate an artificial data set for some GLM’s with two-way fixed
effects

Description

Constructs an artificial data set with n cross-sectional units observed for t time periods for logit,
poisson, or gamma models. The “true” linear predictor (η) is generated as follows:

ηit = x′itβ + αi + γt ,

where X consists of three independent standard normally distributed regressors. Both parameter
refering to the unobserved heterogeneity (αi and γt) are generated as iid. standard normal and the
structural parameters are set to β = [1,−1, 1]′.
Note: The poisson and gamma model are based on the logarithmic link function.
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Usage

simGLM(n = NULL, t = NULL, seed = NULL, model = c("logit",
"poisson", "gamma"))

Arguments

n a strictly positive integer equal to the number of cross-sectional units.

t a strictly positive integer equal to the number of time periods.

seed a seed to ensure reproducibility.

model a string equal to "logit", "poisson", or "gamma".

Value

The function simGLM returns a data.frame with 6 variables.

See Also

feglm

summary.APEs Summarizing models of class APEs

Description

Summary statistics for objects of class "APEs".

Usage

## S3 method for class 'APEs'
summary(object, ...)

Arguments

object an object of class "APEs".

... other arguments.

Value

Returns an object of class "summary.APEs" which is a list of summary statistics of object.

See Also

getAPEs
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summary.feglm Summarizing models of class feglm

Description

Summary statistics for objects of class "feglm".

Usage

## S3 method for class 'feglm'
summary(object, type = c("hessian", "outer.product",

"sandwich", "clustered"), cluster = NULL, cluster.vars = NULL, ...)

Arguments

object an object of class "feglm".

type the type of covariance estimate required. "hessian" refers to the inverse of the
negative expected Hessian after convergence and is the default option. "outer.product"
is the outer-product-of-the-gradient estimator, "sandwich" is the sandwich esti-
mator (sometimes also refered as robust estimator), and "clustered" computes
a clustered covariance matrix given some cluster variables.

cluster a symbolic description indicating the clustering of observations.

cluster.vars deprecated; use cluster instead.

... other arguments.

Details

Multi-way clustering is done using the algorithm of Cameron, Gelbach, and Miller (2011). An
example is provided in the vignette "Replicating an Empirical Example of International Trade".

Value

Returns an object of class "summary.feglm" which is a list of summary statistics of object.

References

Cameron, C., J. Gelbach, and D. Miller (2011). "Robust Inference With Multiway Clustering".
Journal of Business & Economic Statistics 29(2).

See Also

feglm
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vcov.feglm Extract estimates of the covariance matrix

Description

vcov.feglm computes an estimate of the covariance matrix of the estimator of the structural pa-
rameters from objects returned by feglm. The estimate is obtained using the Hessian, the scores, or
a combination of boths after convergence.

Usage

## S3 method for class 'feglm'
vcov(object, type = c("hessian", "outer.product",

"sandwich", "clustered"), cluster = NULL, cluster.vars = NULL, ...)

Arguments

object an object of class "feglm".

type the type of covariance estimate required. "hessian" refers to the inverse of the
negative expected Hessian after convergence and is the default option. "outer.product"
is the outer-product-of-the-gradient estimator, "sandwich" is the sandwich esti-
mator (sometimes also refered as robust estimator), and "clustered" computes
a clustered covariance matrix given some cluster variables.

cluster a symbolic description indicating the clustering of observations.

cluster.vars deprecated; use cluster instead.

... other arguments.

Details

Multi-way clustering is done using the algorithm of Cameron, Gelbach, and Miller (2011). An
example is provided in the vignette "Replicating an Empirical Example of International Trade".

Value

The function vcov.feglm returns a named matrix of covariance estimates.

References

Cameron, C., J. Gelbach, and D. Miller (2011). "Robust Inference With Multiway Clustering".
Journal of Business & Economic Statistics 29(2).

See Also

feglm
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