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Abstract

Quantum information theory explores the opportunities and challenges that arise
when quantum systems are used as information carriers. However, the interface of
most information technologies (e.g., in cryptography and computing) is classical and
this data is obtained via a measurement of the quantum system. Therefore, general
quantum measurements (also called POVMs) play a central role in information
technologies.

While the understanding of noiseless, projective measurements is advanced in the
literature, the role of noisy, general measurements is an active research field. It is
known that due to their rich structure POVMs outperform projective measurements
for numerous tasks in quantum information theory. This is because the noise
present in a measurement can be a valuable resource rather than a drawback.
In this thesis, we introduce and investigate two different information-theoretic
scenarios and study the role of general quantum measurements in them.

First, we consider quantum randomness generation. Random numbers are an
integral part of many information-theoretical tasks, in particular cryptography.
Measurements of quantum systems enable the generation of bit strings that are
truly unpredictable for any observer. We devise and analyze a general measurement-
device-independent randomness generation setup, consisting of a well-characterized
source of quantum states and a completely uncharacterized and untrusted detector.
Moreover, we provide a semidefinite program that allows to quantify the crypto-
graphic randomness gain of any such setup via efficient numerical computation.
This is used to propose simple and realistic quantum random number generators
that yield high randomness generation rates for detectors who exhibit the statistics
of general quantum measurements.

Second, we introduce and analyze a resource theory of coherence based on general
quantum measurements. Quantum coherence is a fundamental feature of quantum
states and a prerequisite for the advantage of quantum information technologies.
We devise a generalized, rigorous, resource-theoretical framework which defines
quantum coherence (superposition) with respect to a general measurement. In
particular, we characterize quantum states and quantum operations that are free of
the coherence resource. A semidefinite program is used to compute interconversion
properties of resource states. We present several POVM-based coherence mea-
sures that generalize well-known standard coherence measures, and study their
properties and relations. In addition, we establish a connection of POVM-based
coherence to randomness generation: under a mild assumption, a fundamental
POVM-coherence measure is equal to the cryptographic randomness gain. This
provides an important operational meaning to our resource theory.
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Zusammenfassung

Die Quanteninformationstheorie untersucht die neuen Moglichkeiten und Her-
ausforderungen, die entstehen, wenn Quantensysteme als Informationtrager di-
enen. Die Benutzeroberflidche der meisten Informationstechnologien (z.B. in der
Kryptographie und im Computing) ist jedoch klassisch und diese Daten wer-
den durch eine Messung des Quantensystems gewonnen. Daher spielen allge-
meine Quantenmessungen (auch POVMSs genannt) eine zentrale Rolle in Quanten-
Informationstechnologien.

Wiahrend das Versténdnis von rauschfreien, projektiven Messungen weit fortgeschrit-
ten ist, ist die Rolle von verrauschten, allgemeinen Messungen ein Gegenstand der
aktuellen Forschung. Aufgrund ihrer komplexen Struktur tibertreffen POVMs pro-
jektive Messungen in vielen Anwendungen der Quanteninformationstheorie. Daher
ist das (Quanten-)Rauschen in allgemeinen Messungen nicht immer ein Nachteil,
sondern eine potenziell wertvolle Ressource. In dieser Dissertation werden zwei
unterschiedliche informationstheoretische Szenarien im besonderen Hinblick auf
die Rolle von allgemeinen Quantenmessungen untersucht.

Das erste Thema ist die Quanten-Zufallszahlenerzeugung. Zufallszahlen sind ein in-
tegraler Bestandteil vieler informationstheoretischer Anwendungen, insbesondere
der Kryptographie. Das Messen von Quantensystemen ermoglicht die Erzeugung
von Zeichenfolgen, die fiir jeden Beobachter unvorhersagbar sind. Wir formulieren
und analysieren ein allgemeines messgerdt-unabhédngiges Schema zur Erzeugung
von Zufallszahlen, bestehend aus einer genau charakterisierten Quantenzustands-
Quelle und einem uncharakterisierten und nicht vertrauenswiirdigen Detektor.
Dartiiber hinaus zeigen wir ein semidefinites Programm, das die effiziente nu-
merische Quantifizierung der kryptographischen Zufallsrate erméglicht. Dadurch
sind wir in der Lage einfache und realistische Schemata zu entwerfen, die hohe
Zufallsraten garantieren, fiir Detektoren, deren Statistik allgemeinen Quantenmes-
sungen entspricht.

Das zweite Thema ist die Konstruktion und Analyse einer Ressourcentheorie der
Kohdreng basierend auf allgemeinen Quantenmessungen. Kohérenz ist eine funda-
mentale Eigenschaft von Quantenzustdnden und eine grundlegende Bedingung fiir
die meisten Anwendungen der Quanteninformationstheorie. Wir konstruieren ein
verallgemeinertes, mathematisch rigoroses Modell, in dem die Ressource Koharenz
(Superposition) definiert wird beziiglich einer allgemeinen Messung. Insbesondere
charakterisieren wir ressourcenfreie Quantenzustinde und Quantenkanéle. Ein
semidefinites Programm ermoglicht die Bestimmung von Konvertierungseigen-
schaften von Ressourcen-Zustdnden. Wir fithren mehrere POVM-Kohérenzmalf3e
ein, die bisherige RessourcenmaRle der Standard-Kohdrenztheorie verallgemeinern,
und untersuchen deren Eigenschaften. Ferner beweisen wir einen Zusammen-



hang zwischen POVM-Kohérenz und Zufallszahlenerzeugung: in einem wichtigen
Spezialfall entspricht ein fundamentales POVM-Kohdrenzmafd genau der kryp-
tographischen Zufallsrate. Dieses Resultat etabliert eine operative Bedeutung
unserer Ressourcentheorie.
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CHAPTER 1

Introduction

The laws of quantum mechanics govern the behavior of physical systems at the
smallest scales in nature. Predictions of quantum mechanics have been verified in
experiment to an extremely high degree of accuracy [OHdGO6]. In this thesis, we
restrict our attention to finite-dimensional and non-relativistic quantum systems.
In particular, we focus on discrete time steps, that is, on individiual states, measure-
ments and evolutions with distinguished properties. Finally, we consider quantum
mechanics from the viewpoint of information theory — a framework founded by
Claude Shannon [Sha48] to quantitatively describe the storage and communication
of information.

The intersection of quantum mechanics and information theory has been proven
to be very fruitful. In the beginning of the 20th century, the features of quantum
mechanics, e.g., its inherent uncertainty, puzzled the physics community [EPR35].
In quantum information theory, these features are understood as a valuable resource
rather than a drawback. This led to the invention of quantum information technolo-
gles, i.e., practical applications of quantum mechanics, which aim at surpassing
restrictions in information processing imposed by classical physics. Among other
examples, this includes the celebrated tasks of quantum cryptography [SBPC*09],
quantum computing [NC00, LJL*10] and quantum randomness generation [AM16].
Moreover, the information-theoretical viewpoint of quantum mechanics allows us
to comprehend the abstract mathematical quantum formalism from a deeper and
more physical perspective.

Any quantum experiment is necessarily composed of the preparation of a state
and the measurement of it. Measurements take a more prominent role in quantum
mechanics than in classical physics, as in the latter there is no need to introduce
observables through measurements. Consequently, measurements play an integral
part in quantum information technologies. In the open system formulation of
quantum mechanics, systems can be noisy which enables to describe (the lack
of) information. Noisy quantum measurements are also called general quantum
measurements or positive-operator-valued measures (POVMs) [Hel69]. The latter
name stems from the fact that POVMs are described by conditions similar to prob-
ability measures. Interestingly, POVMs can outperform projective measurements
for many tasks in quantum information theory [OGWA17]. This includes quantum



1 Introduction

tomography [RBKSCO04], unambiguous discrimination of quantum states [Ber10],
quantum cryptography [Ben92, Ren04], Bell inequalities [Gis96, VB10] or quan-
tum randomness generation [APVW16, BKB17].

In this thesis, we present new insights into the role of general quantum measure-
ments in information technologies. Our work is organized as follows. The subse-
quent four chapters are devoted to providing all mathematical tools and concepts
for the in-depth understanding of the results. In particular, they contain selected
findings that are not detailed in our included publications. In Chap. 2 we present
tools from linear algebra that are extensively used in this work. In particular, we
describe concepts such as partial isometries and the generalized inverse, which
are not necessarily contained in textbooks. In Chap. 3 we introduce noisy quan-
tum mechanics from the perspective of finite-dimensional information theory. This
formulation is particularly suited to introduce quantum information concepts. Chap-
ter 4 describes how the constituents of quantum mechanics can be purified in order
to be free of noise. In Chap. 5 we introduce semidefinite programming and provide
selected applications that will be used in this work. This includes semidefinite
programs for the optimization over measurements and quantum channels under
particular constraints.

The following two chapters contain the main results of this thesis. In Chap. 6
we describe and investigate quantum randomness generation. We focus on a
measurement-device-independent randomness generation setup and present our
findings. Chap. 7 describes the quantum resource theory of coherence. There, we
present results on our resource theory of coherence based on general quantum
measurements. Finally, in Chap. 8 we conclude and give an outlook for possible
future research directions.

The Appendix contains supplementary information. In App. A we include the
original publications used for this thesis, as well as publication details. In App. B we
provide Matlab files that implement functions and semidefinite programs related
to our work.



CHAPTER 2

Elements of Linear Algebra

The (finite-dimensional) Hilbert space formalism of quantum mechanics is for-
mulated in the language of linear algebra. This section serves as a summary of
important concepts and results in linear algebra that are used throughout the
thesis. It is assumed that the reader is familiar with basic concepts of linear algebra
that can be found in many introductory textbooks, which includes the concepts
of vector space, basis, matrix representation, eigenvalues and scalar product. The
content is mostly based on the two books on linear algebra by Fischer [Fis03]
and Janich [J4n08]. Additionally, Renner’s lecture notes [Ren13], Tomamichel’s
thesis [Tom12] and the book Quantum Computation and Quantum Information by
Nielsen and Chuang [NCOO] were used as resources.

2.1 Hilbert Spaces

A finite-dimensional Hilbert space H is a finite-dimensional vector space over the
complex numbers equipped with a scalar product (-|-): H X H — C. We use
the convention that the scalar product is conjugate-linear in its first argument,
a{p|ly) = (a*P|¥) = {(p|lay), for any ¢,y € H and where a* denotes the complex
conjugation of any @ € C. The dual space H* is the vector space of all linear
forms on #, that is, linear functions from # to C. In the Dirac bra-ket notation,
elements of H are denoted by kets |y), while elements of H* are denoted by
bras (¢|. The scalar product provides a one-to-one correspondence between kets
and bras. Concretely, to any |) € H we associate (| € H* via the vector space
isomorphism (from now on just isomorphism)

) = W) =l -) e H. (2.1

In the following, we make extensive use of this correspondence by which we can
write (@||¥) = (¢|(J¥)) = (#|¢) for any ket and bra.

The scalar product introduces a measure of lengths and angles on the Hilbert
space. A vector () € H is normalized if it has length one, (/|/) = 1. We call a
set of kets {|i;)} orthogonal if (¥;[;) = O for all i # j, and we call it orthonormal
if additionally all vectors are normalized. The orthonormality condition can be
conveniently written as (y;|;) = 9; j with the Kronecker symbol ¢; ;.
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Given a set of kets {|e;) € H}, its complex (real) span, denoted spanc{|e;)}
(spang{le;)}), is the subspace of all complex (real) linear combinations of the
vectors |e;). A basis {|b;)} of H is an ordered set of vectors (we always employ
lexicographical ordering) such that any vector |/) € H can be written as a unique
linear combination of the basis. With that, the dimension of H, denoted dim H, is
defined as the number of elements of a basis. The set {|b;)} forms a basis if and
only if it is linearly independent and spanc{|b;)} = H. Consequently, an orthogonal
set {|e;)} with spanc{|e;)} = H is a basis of H.

2.1.1 Direct Sum and Tensor Product

Two subspaces S,S’ C H of a Hilbert space H are orthogonal, denoted S L §’,
if (s|s’) = 0 holds for all |s) € S and all |s’) € S’. For such subspaces, their
orthogonal direct sum is defined as

SoS ={|s)+]|s):|s)eS,|s")eS,SLS}. (2.2)

We will often omit the word orthogonal when talking about orthogonal direct sums.
The dimension of the direct sum is given by dim(S @ S’) = dim § + dim §’. The
orthogonal complement of S in H is the unique subspace S* such that S ® S+ = H.

Given two Hilbert spaces H 4 and H g, the tensor product Ha ® Hp is defined
as the linear span of all (formal) pairs [) ® [¢), where |y) € Ha and |¢") € Hp,
such that the following relations hold

o (aly))@y’) =y) @ (aly) = aly) ® |y’)
o (Y1) + W) @ [¥') = Y1) @ [Y') + Y2) ® [¥")

o )@y +1w) = ) @ [y) + [¥) ® |v3)

for any |y1), [2) € Ha, [¥]),l¢,) € Hp, and & € C. Moreover, the scalar product
on H ® Hp is defined by the sesquilinear extension of

(Y1 @Yz ® Yr3) = (W) Wy ls) (2.3)

to all elements of H 4 ® H . For orthonormal bases {|e;)}; of H 4 and {|ejf>}j of Hp,
the set {|e;) ® |ejf)}i,j is an orthonormal basis of H4 ® Hp and dim(H 4 ® Hp) =
dimH 4 - dim Hp.

2.2 Linear Operators on Hilbert spaces

The set of linear operators from # to H’ is also a vector space, denoted by L(H, H').
Of particular importance are (rank-one) operators R € L(#,H’) that can be written
as the concatenation of a bra (3| € H* and a ket |a@) € H' as

R() = |a)(BI() = (Bl -)a). (2.4)



2.2 Linear Operators on Hilbert spaces

In particular, for orthonormal bases {|e;)}; of H and {|e/)}; of H’, the set of
operators {|e;){e;|};,; is a basis of L(#, H’). Every operator L € L(H,H’) can be
represented as a matrix in this basis,

L= (efILlej)le})ejl, (2.5)
i,j

where L; ; = (e]|L|e;) denotes the (i, j)-entry of the matrix.
For every L € L(H,?#’) the adjoint operator LT € L(#’,H) is the unique
operator satisfying

(pILy) = (L ply) (2.6)

for any ¢ € H and ¢ € H’ (omitting Dirac notation). This definition is equivalent
to (¢|L|y) = (W|LT|¢)*, for any |¢) € H and |¢) € H’. In matrix notation, the
adjoint operator of (L; ;); j is obtained by taking the conjugate transpose, that is,
(LT )= (L )i
i,j/tJ i/t
We will now define important subspaces that can be associated to every linear
operator. They are visualized in Fig. 2.1. The kernel of an operator L € L(H,H') is
defined as the subspace of vectors that are mapped to zero, namely

ker(L) = {|¢) € H : L|y) = 0}. 2.7)

Closely related is the support of L, being the orthogonal complement of the kernel
supp(L) = (ker L)*. Further, the image of L is the subspace of 7’ spanned by (the
columns of) L

im(L) = {Lly) : [y) € H}. (2.8)

With that, the rank of L is given as the dimension of its image, rank L = dim(im L) =
dim(supp L). Taking the adjoint exchanges image and support of any L € L(H,H’),
i.e.,suppL" = im L and im L = supp L. Finally, the restriction of a linear operator
L € L(H,H’) to a subspace S C H is by definition the linear map

L|St S—>H
such that |s) — L|s) for all |s) € S. (2.9)

Conversely, when we specify the action of a linear operator L € L(#,H’) only on a
subspace S C H, we mean that L|g: = 0.

2.2.1 Projectors, Isometries and Generalized Inverse

The set of linear operators from H to itself is denoted by L(H) = L(H,H). Its
elements are called endomorphism and have a square matrix representation. The
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L:H—H

Figure 2.1: Important subspaces that can be associated to every linear operator L €
L(H,H’). The kernel of L is the subspace ker(L) C H that gets mapped to zero. Its
orthogonal complement (ker L)* = supp(L) is called the support of L. The image of L is
the subspace im(L) C #’ that is spanned by L.

orthogonal projection onto a subspace S is an operator P € L(H) with supp P =
im P = S that acts as an identity on S, i.e., P|s = 1g. This implies that P> = P
and P" = P, and conversely, every operator P € L() with these two properties
is an orthogonal projection. In the following, we denote the projector onto S by
IIg. This operator can be decomposed in any orthonormal basis {|e;)} of S as
Il = Z?f?s le;Y{e;|. This holds in particular for the identity operator 1 = Ily.
The projector onto S+ is then given by ITg. = 1 — IIg.

The inverse of an operator L € L(H), if it exists, is the unique operator L™ €
L(H) satisfying L™'L = LL™" = 1. For singular or non-square operators we use
the generalized inverse (Moore-Penrose inverse), which exists for every operator
L € L(H,H’) and is defined as the inverse of L on its support. More precisely,
the generalized inverse L~ € L(H’,H) of L is the unique operator satisfying
L™L = Ilgypp s and supp L™ = im L.

Operators V € L(H,H’) that preserve the scalar product of any two vectors are
of particular importance in quantum mechanics. These are called isometries and
are defined as

(VolVy) = (oY) (2.10)

for any ¢,y € H (omitting Dirac notation). The definition is equivalent to
(ViVoly) = (Vo|Vy) = (¢|¢), ie., VIV = 1. This means, a linear map
V € L(H,H’) is an isometry if and only if it maps an orthonormal basis {|e;)}
of H to an orthonormal set {|e/) € H'}, i.e., V]e;) = |e]). In matrix notation,
V is an isometry if and only if its columns form an orthonormal set. A unitary
operator U € L() is an isometry from 7 to itself. Because of U'U = 1, the
inverse of a unitary operator U exists and is given by the adjoint U™ = U'. A more
general concept, the partial isometry is an operator V € L(H,H’) that satisfies
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viv = Isupp v . Hence, its generalized inverse is equal to the adjoint V= = Vv and
is also a partial isometry. Furthermore, the restricted partial isometry V|s,ppv is
an isometry between supp V C H and H’. Thus, an isometry is a partial isometry
with full support on . Since isometries preserve angles and distances, they can
be understood as embeddings. Let H and H’ be two Hilbert spaces such that
dimH < dim#’ and let V € L(H,H’) be an isometry that embeds H into H’,
i.e., it satisfies VTV = 1 on . Then, for every operator L € L(#), we define its
embedding by isometric conjugation L’ := VLV' € L(#’). In particular, L’ has
the same nonzero eigenvalues as L (see Sec. 2.3).

2.2.2 Partial Trace

The set of linear operators L(#,7’) is a vector space and thus we can form the
tensor product L(Ha,H,) ® L(Hp,H}), as defined in the previous section. One
can show that there exists a canonical identification (isometry) of this space with
the space of linear operators from H ® Hp to 7—[/’4 ® Hp, that is,

L(’HA,/HA) ®L(/HB,/H2;) ~L(Ha ®7‘[B,7‘[lA ®7‘[;3) (2.11)
This correspondence allows us to write

(L ® R)(lya) ® [¥B)) = (L|a)) ® (Rly)) (2.12)

for any two operators L € L(Ha,H/,), R € L(Hp,H}y), and [ya) € Ha, [¥B) € Hp.
An analogous property can be used to define the direct sum of operators defined
on subspaces S,S’ C H,

(Lo R)(|s) @ 1s")) = (Lls)) & (R|s")) (2.13)

for given operators L € L(S,H’), R € L(S’,H’) and any |s) € S, |s') € §’.
The trace of a (square) operator L € L(#) over a Hilbert space H is defined by
(L) = ) (eilLle:) (2.14)

4

where {|e;)} is any orthonormal basis of H. Hence, in matrix notation the trace
is obtained by summing all diagonal elements. The trace is well-defined because
the above expression is independent of the basis choice, which can be seen as
follows. Let {|e/)} be any orthonormal basis which implies 1 = Zjlejf )(e_;|. Then,
(L) = X (eilLleieflen = B fefleeilLle)) = 5(e¢jILlef). The trace
operation tr: L(H) — C is linear, i.e.,

tr(aL + BR) = atr(L) + B tr(R), (2.15)

for any L, R € L(H) and a, 8 € C. Further properties of the trace operation are
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o tr(L") = tr(L)*
o tr(LR) = tr(RL) (cyclicity)
o tr(VLV") = tr(L) for any isometry V,

where the third property follows immediately from the second.

The partial trace trg is a map from operators L(# 4 ® Hpg) on a product space
Ha ® Hp to the operators L(H 4) on H . It is defined by the linear extension of
the mapping

trg: L ® R — tr(R)L (2.16)

forany L € L(H4) and R € L(Hp). Similar to the trace operation, the partial trace
trp is linear and commutes with taking the adjoint. Furthermore, it obeys the two
important properties
trg(R(L ® 1)) = trg(R)L (2.17)
trg((L ® 1)R) = Ltrg(R) (2.18)

where R € L(HA®Hp)and L € L(H 4). Finally, the trace over a bipartite system can
be decomposed into partial traces over the individual systems, tr(R) = tr(trg(R)).

2.3 Operator Decompositions

Certain classes of operators in L(#,?’) have decompositions that are useful in
applications. First, we discuss how this vector space can be equipped with a scalar
product and discuss hermitian operators. The Hilbert-Schmidt scalar product on
the complex vector space L(H, H’) is defined as

(L,R) = tr(L'R) (2.19)

for any operators L, R € L(#H,H’). For orthonormal bases {|e;)}; of H and {|e])};
of H’, the basis {|e;)(e;|}:,; of L(H,H’) is orthonormal with respect to the Hilbert-
Schmidt scalar product. Consider the tensor space #’ ® H equipped with the basis
B = {le]) ® |e;)}. The linear map vecy given by

vecs(le;)(ejl) = le) ® lej) (2.20)

is an isomorphism between L(H,H’) and H’ ® H, and an isometry because it maps
an orthonormal basis onto another. Therefore it has the property

(vec(L)|vec(R)) = (L,R) (2.21)

forany L, R € L(H,H’), which can also be verified directly. We employ in Eq. (2.20)
the row vectorization convention, while also the column vectorization convention is
frequently used [WBC15].



2.3 Operator Decompositions

2.3.1 Hermitian and Positive Operators

An operator M € L(#) is called hermitian if M™ = M. The set of hermitian matrices
H(H) is closed under addition of matrices and multiplication with real numbers
and hence forms a real subspace (subspace over R) of L(#). Moreover, equipped
with the Hilbert-Schmidt scalar product from Eq. (2.19), it is a real Hilbert space.
For an orthonormal basis {|e;)} of H, the set of operators E; ; defined by

%('ei><ej| + lej)ei]) ifi<j
Eij = plenlel —le)el) ifi>j (2.22)

lei){e;] otherwise

forms a Hilbert-Schmidt orthonormal basis of H(?). Therefore, its real dimension
is given by dimg H(H) = (dim¢ #)?.
An operator M € L(#) is called positive semidefinite if

WM|y)y >0 forall |y) € H. (2.23)

Note, that in the following we call M from (2.23) simply positive, and we call it
strictly positive if the expectation values are strictly greater than zero. The set P(H)
of positive operators is a subset of H(#) and we often write M > 0 to indicate that
M € P(H). Moreover, given two hermitian operators M, N € H(#), the notation
M > N means that M — N > 0. For any two positive operators M, N > 0, the
trace of their product cannot be negative, tr(M N) > 0. Finally, an operator M is
positive if and only if there exists an operator L € L(H) such that M = LYL. The
“if” direction holds because (¢/|LTL|y) = (¢'|y’) > 0, where |¢’) = L|¥). The
“only if” direction holds because every positive operator M has a unige positive
square root VM, which can be obtained from the spectral decomposition in the
next section, Eq. (2.24).

2.3.2 Spectral Decomposition

An operator L € L(#) is called normal if it commutes with its adjoint, i.e., LTL =
LL". Among other examples, unitary operators with LY = L' and hermitian
operators with LT = L are normal. For any normal operator L € L(#) there exists
an orthonormal set {|e;)} in H such that L can be written in spectral decomposition

L= Ale) el (2:24)

with the unique (up to ordering) eigenvalues A; = A;(L) € C and eigenvectors |e;).
The set {|e;)} of eigenvectors with nonzero eigenvalue forms an orthonormal basis
of supp L = im L, and therefore the number of nonzero eigenvalues of L counted
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with multiplicity is equal to rank L. The eigenbasis is unique if and only if all the
eigenvalues are mutually different. Hermitian operators have real eigenvalues and
the eigenvalues of positive operators are nonnegative, 4; > 0. Given a positive
operator M > 0, we define its unique positive square root as VM = Y; VA;|e; ) (e;l.
Finally, the eigenvalues of unitary operators are phases, i.e., elements of the complex
unit circle U(1) = {a € C :|a|= 1}.

2.3.3 Singular Value Decomposition

For any general linear operator L € L(H,H'), there exists a pair of orthonormal
sets {|e;) € H} and {|e]) € H'} such that L can be decomposed as

L= sile))eil (2.25)

where the summation is over i € {1,...,rank L}. This form is called singular value
decomposition with the unique (up to ordering) positive numbers s; = s;(L) > 0, the
singular values. The s;(L) = s;(Q’LU) are invariant under unitaries U € L(#) and
Q' € L(H’), as these can be absorbed into the orthonormal bases. The sets {|e;)}
and {|e;)} form orthonormal bases of the subspaces supp L and im L, respectively.
The operator L'L = 3, sl.2 le;){e;| € P(H) is positive and consequently has a unique
positive square root called the modulus of L,

IL| = VLTL = Z silei){ei| € P(H). (2.26)

Therefore, the singular values s;(L) can be obtained by computing the eigenvalues
Ai(|L]) of |L|. The singular value decomposition implies the following observation,
which we employ frequently.

Lemma 2.1. Let M € P(H) be a positive operator written as M = ATA with
A € L(H,H’). There is a partial isometry V such that A = VNM. If A is square, i.e.,
A € L(H), V can be chosen unitary.

Proof. Given the decompositions M = X, p;[i){i| and A = }; s;e/){e;|, the
assumption M = A" A implies that 3; p;|i)(i| = 3 s?lei)(eil. We conclude that
si = 4/pi and [i) = |e;). Define the partial isometry V|i) = |e/) which yields
A = VV/M. In the special case of a (square) operator L € L(H), the partial isometry
can be extended to a unitary U. For that, complete {|i)} and {[e;)} to orthonormal
bases of H, respectively. Then, the unitary is defined by U|é;) = |&]). O
A related result which directly follows from the singular value decomposition
is the polar decomposition L = V|L| of an operator L € L(H,H’). By comparing
Egs. (2.25) and (2.26), we see that V|e;) = |e’) is a partial isometry from H to H’
defined via the vectors appearing in the singular value decomposition of L.
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CHAPTER 3

Quantum Mechanics

Quantum mechanics is the physical theory which describes nature at the scales and
energy levels of atoms and subatomic particles. Despite more than one century of
research, there are many open questions regarding the foundations of quantum
mechanics. In particular, in the axiomatic formulation of quantum mechanics we
employ, the postulates lack a physical or operational motivation. We introduce
quantum mechanics from the viewpoint of information theory which focuses on
concepts such as knowledge and uncertainty about a system. Therefore, we start
with the open system formulation of quantum mechanics, in which states can be
noisy and thus (the lack of) information can be described. Importantly, this allows
us to describe classical information theory in the quantum language as classical
random variables can be viewed as special quantum states. In the next chapter, we
will see how one can get back to the closed system formulation, usually found in
quantum mechanics textbooks, by enlarging the system under consideration.

We take an abstract approach by which a quantum experiment is necessarily
composed of a preparation of a state and a measurement of it. If time elapses
between the preparation event and measurement event, states and measurements
can evolve in time. The necessity of this separation is one of the basic differences
between quantum and classical physics, as in classical physics there is no need
to introduce observables through measurements. Moreover, quantum mechan-
ics is a statistical theory, meaning that it generally does not predict individual
events, but only probabilities of outcomes in statistical experiments. As a conse-
quence of recent experiments [GVW*15, SMSC*15, HBD* 15, Bed171], it is believed
that this statistical character of quantum mechanics is not due to the incomplete-
ness of the theory but rather a part of nature. This chapter is based on lecture
notes [Ren13, Wol12, Wol14], Tomamichel’s thesis [Tom12] and quantum infor-
mation textbooks [NC00, Will3].

3.1 Systems and States

The preparation of a quantum system is the set of actions which determines all
probability distributions of any possible measurement. Since different preparations
can result in equal probability distributions, the concept of a state is introduced

11



3 Quantum Mechanics

as the unique specification of the effect of a preparation. In the following, we use
the words state and measurement to refer to both the physical concept and the
mathematical operators.

Postulate 1 (States). A quantum system can be associated to a Hilbert space H, such
that any physical state of the system is uniquely described by a density matrix, that is,
a positive operator p € P(H) with unit trace, tr(p) = 1. We denote the set of density
matrices by S(H).

We call (square) operators L € L(H) normalized if tr(L) = 1 and subnormalized
if 0 < tr(L) < 1. We will often fix an orthonormal basis {|i)} of #, called
computational basis, in which we express density matrices. As a consequence of
normalization, any density matrix can be parameterized by d — 1 real parameters,
where d = dim¢ . It is important that density matrices can form a basis of the
space of hermitian operators and the space of linear operators, i.e., spang(S(H)) =
H(#) and spang(S(#)) = L(H). Such a basis is given by the set {p(; ;) € S(H)}
defined as

20y + )+ G ifi<
Pag) = 510y + i —i(jl) ifi> ) (3.1)
i) (i otherwise.

3.1.1 Pure States

A probability distribution is a set {p;} of nonnegative real numbers p; > 0 with
>.; i = 1. Given a probability distribution {p; }, the convex combination or mixture
of a set {M; € H(H)} of hermitian operators is given by the hermitian opera-
tor ); piM;. The set of density matrices S(?{) is a convex set, i.e., any convex
combination of two (or more) states p,o € S(H) is also element of S(H).

Of particular importance are pure states that we define to be the states that lie
on the boundary of the convex set S(#). Therefore, a pure state cannot be written
as a convex combinations of states other than itself. Since quantum states p € S(#)
are hermitian, they can be written in spectral decomposition p = »}; 4;|i)(i|, where
positivity and normalization imply that the eigenvalues A; form a probability distri-
bution. Hence, we see that any pure state can have only one nonzero eigenvalue,
because otherwise it could be written as the convex combination of different eigen-
states. We conclude that pure states take the form p = |) (| with a normalized
state vector |) € H which is unique up to a phase factor e/ € U(1). We will
often represent a pure state by its state vector. This implies that pure states are
projectors p?> = p, while the square of all other states, which we call mixed, is
subnormalized, tr(p?) < 1. Moreover, pure states have rank one, while mixed
states have rank larger than one.

12



3.1 Systems and States

The spectral decomposition p = Y ; p;|i){i|] of any mixed state can now be
interpreted operationally. It describes a probabilisitic preparation of p, where
the pure state |i) is prepared with probability p;. In this sense, mixed states can
be considered noisy, while pure states contain full information about a quantum
system. In the next chapter, we will see that mixed states can be interpreted as
states that contain correlations with the environment.

3.1.2 Composite Systems

The following postulate specifies how the Hilbert spaces of two systems can be
combined to obtain the Hilbert space of the composite system.

Postulate 2 (Composition). The states of a joint system with component Hilbert
spaces H and H g are described by the set of density matrices S(H o ® Hpg). Moreover;
if the states of the subsystems, ps and pp, are independent of each other; the state of
the joint system is given by pa ® pp.

For a quantum system composed of two subsystems, i.e., a bipartite system, we
denote the subsystems by capital letters, e.g., A, B, and the joint density matrix
by pag € S(Hap = Ha @ Hp). Whenever a linear operator Ly € L(H,4) is only
defined on one subsystem, we extend its action on the whole space by Ly ® 1 €
L(HA ® Hp). Therefore, tr(Lapap) = tr((La ® 1p)pa) = tr(La trg(paB)), where
the last equality follows from property (2.18) of the partial trace. Since the state
of system A is fully characterized by the action of all linear forms tr(L, - ) on it, the
system is fully described by trg(pag). We call p4 = trg(pap) the reduced state on
A, and pp = tra(pap) the reduced state on B.

Entanglement

Bipartite quantum states p4p can contain correlations in the sense that there exist
local operators L € L(H4) and R € L(Hp) such that

tr(L @ Rpap) # tr(Lpa) tr(Rpp). (3.2)

However, these correlations can have a classical origin, i.e. arise due to a corre-
lated preparation of states via a joint probability distribution. This motivates the
definition of classically correlated or separable states, which are of the form

PAB = ZPiO'i ® T, (3.3)
i

where 0; € S(Ha), 7, € S(Hp) and {p;} is a probability distribution. The set of
separable states is convex. Conversely, any state p4p which cannot be written in
the above form is said to be entangled. Entanglement is often perceived to embody

13



3 Quantum Mechanics

quantum correlations, which are a fundamental prerequisite for many quantum
information protocols. In particular, in so-called nonlocal games [HHHHO09, Bus12],
entangled states can lead to correlations at the classical level that cannot be
simulated by separable states.

The singular value decomposition implies an analogous decomposition of vec-
tors on tensor spaces. This Schmidt decomposition of a vector is useful for the
investigation of pure state entanglement.

Lemma 3.1 (Schmidt decomposition). For any vector |) € Ha ® Hp there exist
orthonormal sets {|e;) € Ha} and {|e!) € Hp} and unique positive numbers A; > 0
such that

d
Y= > Ve ®lep), > A=), (3.4)
i=1 i

where d < min{dim H 4,dim Hg}. The A; are called Schmidt coefficients and the
number of (nongero) A; is the Schmidt rank of |s). Moreover, a pure state p = |y ){Y|
is separable if and only if W) has Schmidt rank of one.

Proof. Let |¢) € Ha ® Hp be any vector in a tensor Hilbert space and let vecs be
the isomorphism defined in Eq. (2.20). For any basis B of HA®Hp, L = vecgz ()
is an operator in L(Hg,H ). Now, we fix B = {|¢;) ® |ejf>} to be the basis such
that L = }’; si|e;)(e;| is in its singular value form (2.25). This implies

) = vecs(L) = vecs (D | silei)(e]l) = ) siler) ® le)), (3.5)

i i

which is the Schmidt decomposition of |) if we write §; = V4;, i.e., the Schmidt
coefficients of |y) are the squares of the singular values of vec, (|i/)).

For the second assertion, suppose that p is pure and separable p = }; p;0; ® 7;.
Because p is rank one, every (normalized) product term 0; ® 7; must be equal to
p. Therefore p = |W)(W| = |e){e| ® | f){f],i.e., |¥) = |e) ® | f) has Schmidt rank
of one. |

The Schmidt decomposition can be computed efficiently without making use of
the singular value decomposition. Consider the reduced states p4 = trg(|¥) (¥])
and pp = tra(|¢){¥|): the vectors |e;) € Ha (le;) € Hp) from Lemma 3.1 are the
eigenvectors with nonzero eigenvalue of p4 (pp). The Schmidt coefficients are the
corresponding eigenvalues A; = 1;(p4). In particular, the existence of the Schmidt
decomposition implies that the reduced density matrices of a pure state have the

same nonzero eigenvalues.

1

@
where d = min{dim H 4,dimHp}. We call the following vector the canonical

A pure state is called maximally entangled if it has Schmidt coefficients A; =
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3.1 Systems and States

maximally entangled state
1
¥y =— ) [)®li), |¥)eHs0Hs, (3.6)
P
which is in Schmidt decomposition form (3.4) with respect to the computational
basis {|i)}.

Lemma 3.2 (Maximally entangled states). Let |¥) = % iy ® i) € H® H bea
maximally entangled state. For any operator L € L(H) it holds that

(L)) = (1 L)), 3.7)

where the transposition is taken with respect to the Schmidt basis of |'V'). Consequently,
for any bipartite pure state |) € H @ H with reduced density matrix pa there exists
a unitary U such that it can be written as

)y = (K@ 1)|¥), K = Vdyp,U. (3.8)

Proof. For the first assertion, we expand L in the computational basis L =
2k Liklj){kl, such that L|i) = 3; L; ;|j). Therefore,

1 . . 1 . .
(Lonlw) = — %]L;,i|1> ol == JZm ® ZL?JW
1 . .
= ﬁ;'” ® L'|j) = (1o L")|¥). (3.9)

For the second assertion, let [) = Y, VA;|e;) ® le;) be in Schmidt form such that
pa = 2 4jlej){ej|. Let O,V be unitaries such that Q[i) = |e;) and vy = lef)
and define U := QV which is unitary as well. Therefore,

(K@ DY) = (Vdyp,U @ |¥) = (Vdyp,0 8 1)(V & 1)|¥)
= (VdVp,Q @ YL V)I¥) = » VP2l ® VTli)

= > Valeelen ®le)y = Y Vile ® ey = ). (3.10)
i i
O

3.1.3 Classical Systems

Quantum information theory can be considered as a generalization of classical
information theory. This is because the constituents of classical information theory,
random variables, are describable in the quantum formalism. For the purpose of this
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3 Quantum Mechanics

thesis, a random variable is a set X = {x € X'}, where X C Ris discrete and called
alphabet, such that each element x is associated to a probability p,. The probability
distribution {p,} is also called the state of the random variable X. Let {|x)}xcx
be the computational basis of a Hilbert space Hyx such that dim Hx = |X|. Then,
the state of the random variable X is represented by the quantum state

px = ) pal)xl, (3.11)

xeXxX

which is a positive normalized operator because {p, } is a probability distribution.
We call a quantum system X with only states of the above form a classical system.
In the following, we will see that classical systems can be used to describe the
outcomes of measurements.

We can also consider composite systems where one or more subsystems are
classical. Let X be a classical system and A be a quantum system. Then, a joint
state pxa € S(Hx ® Ha), is called classical-quantum state (CQ-state) and takes
the form

pxa =) plx)(x|® px, (3.12)
X

where {p,} is a probability distribution and p, € S(H 4). These states are of the
form (3.3) and, thus, are separable. A special case is the state of two classical
systems X and Y which takes the form

pxy = ) Pyl (x| 8 1y) (]
X,y

= pr|x><X| ®Zp(y|x)|y><y|, (3.13)
X y

where the probability distribution {p, := %, px y} is called marginal of {px y},
and {p(y|x) = p;’y } is called conditional probability distribution on Y. Marginal

X

probabilities are compatible with reduced states in the sense that px = try(pxy) is
the quantum state that represents the marginal {p}.

3.2 Measurements and Observables

Information about a quantum system can only be obtained by performing a mea-
surement in a statistical experiment. The fundamental abstract notion of a (general)
quantum measurement provides the basis for all observables, i.e., physical properties
of a quantum system. In contrast to classical physics, a quantum measurement
generally disturbes the measured state, even on average.
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Postulate 3. A measurement on a quantum system with Hilbert space H is described
by a set E = {E;} of positive operators E; > 0 on H, satisfying the completeness
relation ),; E; = 1. If E is measured on the state p € S(H), the probability of
observing the outcome i is given by p; = tr(E;p).

A quantum measurement E is also called a positive-operator-valued measure
(POVM), and its elements are called effects. An n-outcome POVM has n € N effects.
We call a POVM informationally complete if its effects form a basis of the space of
hermitian operators H(#). Therefore, a quantum state p is uniquely characterized
by the outcome probabilities p; = tr(E;p) of an informationally complete POVM.
A projective measurement P = {P;} is a POVM whose effects form a projector
family, i.e., P;P; = 6; jP;. The standard example of a projective measurement is
the measurement P = {|i)(i|} in the computational basis {|i)}.

3.2.1 Extremal Measurements

A POVM is called linearly independent if its effects are linearly independent, and it
is called rank one, if its effects have rank one. In order to define mixtures of POVMs,
it is useful to write the n-outcome POVM E = {E;} as the n-tuple of operators
E = (E4,...,E,). Then, the multiplication with a scalar & and the addition of two
n-outcome POVMs E, F on the same Hilbert space is defined element-wise

E+F =(E +F,...,E,+F,),
aE = (aE,,...,aE,), acC. (3.19)

For any probability p € [0, 1], the mixture or convex combination of two POVMs
E.F is defined as pE + (1 — p)F, which is also a POVM [OGWA17]. Therefore,
given a Hilbert space H, the set of quantum measurements on it is a convex set.
Measurements on the boundary of this set are called extremal [DPP0O5]. Thus,
extremal measurements cannot be expressed by a (nontrivial, i.e., p € (0,1))
convex combination of two different POVMs. Any general POVM can be obtained
from extremal (rank-one) POVMs by mixing and relabeling [HHP12]. Relabeling,
also called coarse-graining, is the procedure where the labels of the POVM effects
are shuffled and combined, where the latter means that a single label is given to the
sum of effects. The fact that classical post-processing of extremal measurements
leads to the most general POVM makes extremal measurement the analog of pure
quantum states. However, extremal measurements are harder to characterize. Any
linearly-independent rank-one POVM is extremal, which in particular includes rank-
one projective measurements. Moreover, the most general extremal measurement
can be obtained from an extremal rank-one POVM by relabeling [HHP12].
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3.2.2 Observables and Measurement Process

Physical properties of a quantum system are represented by observables, which we
introduce via quantum measurements. More precisely, any physical property of
a quantum system is represented by an observable and the value of the property
is (only) revealed by an underlying measurement. In contrast to classical physics,
quantum mechanics does not describe the physical properties of a system before a
measurement.

Definition 3.1. An observable N is a POVM {N;}, where each effect N; is associated
to a real number n; € R, the measurement outcome. Given a quantum system in state
p, the expectation value of the observable is given by

(N) = Zpini, pi = tr(N;p). (3.15)

We associate to any observable the hermitian operator M := }}; n;N; € H(H),
such that the expectation value of the observable can be expressed as (N) = (M) =
tr(M p). The spectral theorem implies that if N is projective, the observable is fully
described by M: the measurement outcomes 7; are the eigenvalues of M and the
POVM effects N; are the corresponding projectors on the eigenspace.

Performing a measurement (partially) characterizes the measured quantum
state, but the state after the measurement with outcome i is not uniquely specified.
This is why we introduce the notion of measurement process to eliminate this
ambiguity. It turns out that any operator A; with E; = AlTAi defines a compatible
(possible) post-measurement state as follows. The subnormalized state p; = A; pAlT
is positive and leads to the right outcome probability tr(A; pA:.f) = tr(E;p) for any
state p.

Definition 3.2 (Measurement process). A measurement process isa POVM E = {E;}
on ‘H together with the specification of compatible post-measurement states p;. It
can be described by a collection of operators A = {A;} with A; € L(H,H’) such that
E; = AZAI- and p; = I%Aiij, and where p; = tr(E;p).

We call A a set of measurement operators for the POVM E. As a consequence
of Lemma 2.1, any measurement operator compatible with E; is given by A; =
ViVE;, where V; € L(H,H’) is a partial isometry. For a projective measurement
P, each effect is also a measurement operator, P; = P;(Pi. Thus, for projective
measurements we always employ the set { P;} as measurement operators. A non-
selective measurement process is the map A[p] = X, pip; = X; A; pAlT, which
corresponds to the average state after the measurement, i.e., when the information
about the outcome is lost. In the next section we study such processes from the
(seemingly) broader perspective of time evolutions.
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3.3 Evolution of States and Measurements

3.3 Evolution of States and Measurements

In the quantum formalism, preparations and measurements are described by density
operators and POVMs, respectively. If time elapses between the preparation and
measurement event, both parts can evolve in time. It is convenient to either fully
associate the time evolution to states, which is called Schrédinger picture, or fully
to POVMs, which is called Heisenberg picture. In the following, we will mostly
focus on the Schrodinger picure and occasionally comment on the Heisenberg
picture. A quantum state evolves in time through the action of a quantum channel,
which is the most general transformation mapping density matrices to density
matrices in a consistent way. In particular, quantum channels need to be linear to
be consistent with the probabilistic interpretation of convex combinations. This is
why we introduce the concept of superoperators.

3.3.1 Superoperators

Given two Hilbert spaces H, H’, a superoperator £ : L(H) — L(H’) is a linear map
between the respective operator spaces. In the case H’ = H, we simply call £ a
superoperator on L(#). We denote the identity superoperator on L(#) by id. The
set of superoperators is a vector space and the tensor product of superoperators is
defined in analogy to Eq. (2.12).

The composition of any two superoperators &, L is defined as the superoperator
(€0 L)[] := E[L]]]. For any superoperator £ : L(H) — L(#H’) its adjoint superop-
erator £ : L(H’) — L(#) is defined via the Hilbert-Schmidt scalar product (2.19)
as the unique operator satisfying

(L.E[R]) = (£[L].R) (3.16)
forall L € L(H’) and R € L(H).

Definition 3.3. A superoperator £: L(H) — L(H’) is called a positive map if
E[M] = 0 holds for any M > 0.

However, for quantum mechanics a stronger condition is needed. Completely
positive maps have the property that when they are applied to only a subsystem of
a joint (entangled) quantum system, the state after the map remains positive.

Definition 3.4. A superoperator £: L(H) — L(H') is completely positive (CP) if for
any operator space L(Hg) of arbitrary dimension, £ ® idg is a positive map.

An important example of a completely positive map is obtained from a set of
operators {K; € L(#H,H')}, defining the map E[L] = }; K,-LK;(, for L € L(H).
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This map is CP because with ;) = (K; ® 1)"|¢’) and M € P(H ® Hg), it holds
that

W'IE ®idr[MIly") = > (w'I(K; ® DM(K; ® 1)'|y”)

- Z(l//i|M|l//i> >0 ifM >0, (3.17)

We later show in Theorem 3.4 that, remarkably, every CP map can be written in
the above form.

3.3.2 Channels

A superoperator €& is trace-preserving (TP) if tr(€[L]) = tr(L) for all L € L(#) and
it is trace-nonincreasing (TN) if tr(£[L]) < tr(L). We call any completely positive
map CPTP if it is trace-preserving, and CPTN if it is trace-nonincreasing. Moreover,
we call a superoperator £ unital if it satisfies £[1] = 1. For any CPTP map & its
adjoint superoperator £ is completely positive and unital, where unitality follows
from

tr(E[1]L) = tr(E[L]) = tr(L) (3.18)
for any L € L(H).

Postulate 4. The time evolution of quantum states p € S(H) is described by quantum
channels A, which are completely positive trace-preserving (CPTP) maps on L(H).

In contrast, in the Heisenberg picture of quantum mechanics, POVMs evolve via
completely positive unital maps. In particular, for any quantum channel A in the
Schrodinger picture, AT is a quantum channel in the Heisenberg picture. If the input
and output spaces match, compositions and also convex combinations of quantum
channels are again quantum channels. We note that the partial trace operation is a
channel. Given an isometry V € L(H,H’), we define the corresponding isometric
channel as V[p] = VpV'. Likewise, a unitary U € L(H) defines the unitary channel
U[p] = UpU’. Only unitary channels have the property that the inverse map
U™ is also a (unitary) channel, i.e., the evolution is reversible. Therefore, unitary
channels corresponds to a noise-free evolution as no information is lost.

Deciding whether a superoperator £ is completely positive seems a priori to
involve an infinite number of conditions, namely for any dimension of Hy in
(3.4). The following theorem establishes a duality between quantum channels and
bipartite quantum states, and thereby simplifies the check of completely positivity.
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3.3 Evolution of States and Measurements

Theorem 3.3 (Choi theorem). Let Hr = H be isomorphic Hilbert spaces with the
maximally entangled state |¥') = % 2ilr ® i) € Hr ® H. Given a superoperator
E: L(H) — L(H’), the following map is an isomorphism

Er Jo = EQid[|P)(Y]] €L(H ®H). (3.19)
Its inverse maps a bipartite operator J € L(H’ ® H) to the superoperator
&L =dtry(JA ® LT))  from L(H) to L(H), (3.20)

where LT denotes the transposition with respect to {|i)}, and d = dim H. Moreover,
the following equivalences hold:

o & preserves hermiticity, E{M]" = E[M] VM € H(H), iff (J:)" = J;
o & is completely positive if and only if J. > 0

o & is trace-preserving if and only if tryy(J;) = %

e & isunital if and only if try(Je) = %, where d’ = dim H’

A proof of this theorem can be found, e.g., in [Wil13]. Remarkably, the Choi
theorem tells us that in order to check whether a superoperator £ is completely
positive, one needs to check just one condition, namely whether the Choi matrix
J¢ is positive. In particular, £ is a quantum channel (CPTP) if and only if J; is a
quantum state. As an application of the theorem above we prove the extremely
useful Kraus decomposition, or operator-sum representation.

Theorem 3.4 (Kraus decomposition). A superoperator £ : L(H) — L(H’) is com-
pletely positive if and only if it can be written as

E[L] = Z K:LK], (3.21)
i=1

with the Kraus operators K; € L(H,H'). Moreover, the following assertions hold:

o The minimal number of Kraus operators is called the Choi rank of £ and given
by rmin = rank(J;) < dimH - dim H’

o & is trace-preserving iff 3.; K;Ki =1, and & is unital iff }; K,-KiT =1

e The adjoint superoperator admits the form E[L] = . KiTLKi
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3 Quantum Mechanics

Proof. According to Theorem 3.3 a superoperator £ is completely positive if and
only if its Choi matrix J. is positive. By the spectral theorem, J. € L(H’ ® H) can
be decomposed into positive rank one operators

Je= Y Wiyl = D (K ® DIY)PI(K; @ 1), (3.22)
i=1 i=1

where in the second equality we have used Lemma 3.2 with the maximally entan-
gled state |¥). Comparing the right side of (3.22) with the definition of the Choi
matrix J; = £®id(|¥)(¥|) leads to the desired operator-sum decomposition (3.21),
because of the one-to-one correspondence of a superoperator and its Choi matrix.
This argument also shows that r > rank(J;) and equality ry;, = rank(Js) can be
achieved if the |y;) are chosen to be linearly independent.

Conversely, Eq. (3.22) also implies that any superoperator which can be writ-
ten as E[L] = ); KiLKiT leads to a positive Choi matrix J; > 0 and therefore,
£ is a CP map which we have already verified directly in (3.17). With the de-
composition (3.21), it is clear that £ is unital iff }; KiKl.T = 1. The condition for
trace-preservation, ;; KiTKi = 1, directly follows from

tr(E[L]) = tr(Z KiLK) = tr(Z K'K:L). (3.23)

Finally, the Kraus decomposition of the adjoint superoperator follows from

(L,E[R)) = tr(LTE[R]) = tr(LT Z K:RK))

= tr((z K/ LK)'R) = (¢'[L],R), (3.24)

where we have used the definition of the adjoint superoperator with respect to the
Hilbert-Schmidt scalar product. |

The Kraus decomposition implies that a measurement process (3.2), remarkably,
is already the most general time evolution of a quantum state.

3.3.3 Qubit Bloch Representation

A quantum two-level system is called a qubit and it is described by a two-dimensional
Hilbert space 1 = C2. Qubits are the simplest quantum systems and, similar to
classical bits, are often used as building blocks of larger quantum systems. The
qubit Pauli matrices are defined as

{01y _fo -\ (10 (3.25)
0-1_1030—2_1- 030—3_0_19 .
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3.3 Evolution of States and Measurements

and are also called Pauli-X, Pauli-Y, and Pauli-Z matrix, respectively. The Pauli
matrices are unitary, hermitian, traceless (tr(o;) = 0) and satisfy the relation

00y = Gl +i ) €1 kT%, (3.26)
k

with the (totally anti-symmetric) Levi-Civita symbol ¢; ; x. Together with the qubit
identity 1 the Pauli matrices form a Hilbert-Schmidt orthogonal basis of the space
of hermitian operators H(C?). Consequently, qubit hermitian matrices can be
expressed conveniently in the Bloch sphere representation. Any hermitian operator
M € H(C?) is in one-to-one relation with the pair (@, 7), where @ € R and the
Bloch vector ¥ = (ry1,79,73) € R3 is defined by

_ tr(o-,-M)

M=a(l+F-7), r
2a

(3.27)
with the vector of Pauli matries & = (071,0%,03), and 7 - & = Y, r;0;. In particular,
the operator M is a density matrix p if and only if @ = % and |[F| < 1, ensuring
normalization and positivity, respectively. Therefore, any qubit density matrix can
be represented by a vector in the unit ball of R3. Moreover, pure states lie on the
boundary of the sphere, i.e., p> = p is equivalent to |F| = 1.

The Bloch sphere representation is useful to visualize qubit POVMs. Any qubit
POVM E = {E;} can be decomposed as

E; = ai(]l + I’T’li . 5') with

@ >0, |fl <1, Zai =1, ZaiFi = 0. (3.28)
i i
As an example, we consider the qubit trine POVM

i 2
E = (S180/ (0}, (3.29)

with measurement vectors |¢;) given by

|pr) = i(|O) + k1)), where w = = (3.30)
V2

The trine POVM is extremal and can be considered as the simplest example of

a symmetric extremal nonprojective POVM. We will utilize this measurement in

Chapter 7 in the context of the resource theory of POVM-based coherence. In Fig. 3.1

below, we show the Bloch sphere, as well as the the Bloch vectors (measurement

directions) my, of the effects E;Crine.
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3  Quantum Mechanics

Figure 3.1: Bloch sphere representation of subnormalized positive qubit operators. The
computational basis states |0),|1) lie on the z-axis. The vectors 7 indicate the measure-
ment directions of the qubit trine POVM in the xy-plane, which is given in Eq. (3.29).
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CHAPTER 4

Purified Quantum Mechanics

In the previous chapter, we introduced quantum mechanics from the open system
viewpoint, in which partial information in terms of noisy state preparations, noisy
measurements and classical random variables could be embedded in the description.
In this chapter, we describe a process called purification which tells us that the lack
of information about a quantum system can be thought of as arising from quantum
correlations with an environment that we did not include in the description. This
exclusion of correlated degrees of freedom necessarily leads to an incomplete local
description and thus results in noise. Once we take the purifying system, i.e., any
system that interacts with the one under consideration, into account, the noisy
quantum system can be viewed as part of a larger noiseless global system. In the
closed global system, quantum physics is described in terms of the traditional quan-
tum formalism from textbooks, i.e., states are pure, measurements are projective,
and evolutions are unitary. This chapter is based on the resources [Wil13, Wol12].

4.1 State Purification

Every mixed state on a finite-dimensional Hilbert space can be viewed as the
reduced state of a bipartite pure state, called purification.

Definition 4.1 (Purification). A purification of a density matrix p € S(H) is a pure
bipartite state ) € H ® Hp such that its reduced state is equal to p

p = tr([Y )Y l). (4.1)

Theorem 4.1 (Purification). For every density matrix p € S(H) there exists a
purification ) € H®Hg. The minimal dilation space ’Hg‘in has dim(’z’-[rlgin) = rank p.
If ) € H® HR™ is a purification of p then all other purifications are of the form
|’y = (1 @ V)|&), where V € L(HR™, Hg) is an isometry.

Proof. Let p = ); pili)(i| be in spectral decomposition. For any orthonormal
set {|e;) € Hr}_, of size r = rank p, the pure state [) = 3; \/pi|i) ® |e;) is a
purification of p, since

trr(lY) W) = Z Vpipili){illejlei) = p. (4.2)
i.j
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4 Purified Quantum Mechanics

Conversely, any pure state |[y) € H®Hg which is not of the form |/) = 3, \/pili) ®
le;) cannot be a purification of p. Therefore the minimal dimension of Hpg is
dim(?—lgin) = rank p.

Let [y) = X; Vpili)®le;) € HOHR™and |y') = 3, Vpili)®le]) € H®H be
two purifications of p, where |e’) is an orthonormal set in Hg. Define Vle;) = |e])
which is an isometry such that |¢) = (1 ® V)|¥). O

The canonical purification of p is the state ) = (\/d—p ® 1)|¥), where |V¥)
denotes the canonical maximally entangled state (3.6). In this case, for p =
> pili){il, the purifying system is equipped with the computational basis {|i)},

) = Wdp @ D)¥) = " pilidilj) @iy = Y Vil @li).  (43)
i,j i

The purification of a quantum state has many applications in quantum in-
formation theory. It is of particular importance for quantum cryptography and
randomness generation. Also, it can be used to obtain a relation between any two
convex decompositions of a density matrix.

Lemma 4.2 (Relation between convex decompositions). Let p be a density matrix
admitting the two convex decompositions,

d d
p = pilvid(wil = ) aildi) (il (4.4)
i=1 i=1
where d < d’ and |¥;),|¢;) are pure states. There exists an isometry V such that
Vailgi) = > Vi Vplw)- (4.5)
J

Proof. Let |¢) = X; /P;l¥) ®|j) and |¢) = 2; \/g:|$:) ®|i) be two purifications of
p. According to Theorem 4.1 there exists an isometry V such that |[¢) = (1 ® V)| ).
Therefore

Vailg:) = (L& GiDlg) = (1@ (IV)Iy)
= D VBV = D Vi vBi ), (4.6)
J J

where V; ; = (i|V|j). O

4.2 Isometric Extension of Channel

Also a quantum channel admits a purification, called isometric extension or Stine-
spring dilation of the channel.
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Definition 4.2 (Stinespring dilation). Let A: L(H) — L(H’) be a quantum channel.
A Stinespring isometry V of A is an isometry V € L(H,H’ ® Hg) such that

Alp] = trr(VpV"), (4.7)

for any density matrix p € S(H). The isometric channel E[p] = VpV" is called
Stinespring dilation of A.

In the following, we often use the notation d = dimH and d’ = dimH’. By
utilizing the Kraus decomposition of a channel, we can employ an orthogonaliza-
tion procedure akin to the purification of a quantum state to prove the following
theorem.

Theorem 4.3 (Stinespring dilation). Any quantum channel A: L(H) — L(H’) ad-
mits an isometric extension with dim Hg < dd’. Moreover, for a channel A : L(H) —
L(H), there exists a pure state |1) € Hg and a unitary U € L(H ® Hg) such that

Alp] = tr(U(p ® [1)(1)UT). (4.8)

Proof. Let Alp] = Xi_ K; ,oKiT be in Kraus decomposition. We define the operator
V = Yi_, K; ® |i) which is element of L(H,’ ® Hg), where the dimension of
the space Hy can be chosen as dimHg = r = rank J, < dd’. Moreover, V is an

isometry because

ViV = Z K/ K;i(ilj) = Z KK = 1y. (4.9)
i,j i

Finally, £[p] = VpV" is an isometric extension of A since

ur(VoV') = () KipK ® li)(j)) = ) KipK! = Alp).  (4.10)
i.J i

For the second assertion, we choose the dilation space Hgr of dimension
dimHgr = r < d?. Let U € L(H ® Hg) be a unitary embedding of V into

H ® Hpg, that is, U is unitary and for the fixed state |1) € Hp it satisfies

U(ly) ® (1)) = VIy) (4.11)

for any |¢) € H. Therefore, V = U(1 ® |1)), and the Stinespring relation can be
written as

Alp] = wr(VpV") = tr(U(p ® [1)(1))UT). (4.12)

O
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4.3 Naimark Extension of General Quantum Measurement

According to the Stinespring dilation, a quantum channel can be viewed as part of
a unitary on a larger system. Similarly, any measurement can be seen as part of a
projective measurement, called Naimark extension.

Definition 4.3 (Naimark extension). Let E = {E;} be a POVM on H. A Naimark
extension P = {P;} of E is a projective measurement on a Hilbert space H’ of
dimension d’ > d, such that

tr(E;p) = tr(Pi(p @ 0)), (4.13)
where 0 is the gero matrix of dimension d’ — d.

The isometric channel £[L] = L & 0 € L(H’) can be understood as an embed-
ding of operators L € L(#). It is also possible to use a general isometric channel
E[L] = TLT" for embedding.

Theorem 4.4 (Naimark extension). Any n-outcome POVM E on ‘H admits a Naimark
extension P on H’ with d’ = ) ; rank E;. Moreover, if we choose H' = H ® Hg with
dim Hg = n there exists an orthonormal set {|i) € Hg} and a unitary U € L(H’)
such that

tr(Eip) = tr(Pi(p ® |1)(1])) with (4.14)
P =U'1 & |i)|)U. (4.15)

Proof. The spectral decomposition of the effects of the POVM E,

Ey = Z Ak ilex){ek.1l, (4.16)
7

defines a fine-grained rank one POVM as

F = A{ly)Wilyi, W)Wl = Ak ilex,i) ekl (4.17)

where i = i(k,l) is a multi-index. The d’ = }}; rank E; vectors [y;) are sub-
normalized and fulfill };|¢;){(¢¥i| = Xx Ex = 1. Let H’ be a Hilbert space of
dimension d’ = }; rank E; equipped with an orthonormal basis {|j) € #H'}.

We embed the system space H into H’ as the subspace spanned by first d basis
elements, i.e., H =~ span{| j)};izl. Define the linear map ¥ € L(H,H’) with matrix
components such that the vectors |¢;) form the matrix rows,

Wi = (i), ‘{’jj = (Y;li). (4.18)
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4.3 Naimark Extension of General Quantum Measurement

The map VW is an isometry, i.e., Y7 = 14, because

W = D )Gl = D Gludwliy = 61y (419)
k k

The isometry ¥ can be extended to a unitary ® € L(H’) by completing the set of
orthonormal column vectors (spanning im ¥ C ') to an orthonormal basis of H'.
In other words, we fill up the columns of the d’ X d matrix ¥ to a unitary d’ X d’
matrix ® = (¥|]*). The missing column vectors are obtained from an arbitrary
orthonormal basis of (im ¥)*, or equivalently, from an orthonormal set of d’ — d
vectors {|e’ )f;d} satisfying the equation

¥Tlely = 0. (4.20)

This procedure ensures that ® has orthonormal rows, which correspond to vectors
that orthogonalize the |y;). Define the d’ vectors |¢;) as the rows of the unitary @,
that is,

(i) = D, ;. (4.21)

These vectors define a Naimark extension Pr = {|¢;){#;|} of F, which is a projec-
tive (rank one) measurement satisfying by construction

(¢ilp ®0|e;) = (Wilplvi) (4.22)

for any state p = Z;szl pj.klj) (k| € S(H), see (4.18) and (4.21). We obtain a
Naimark extension of the original POVM E by coarse-graining (relabeling) Pr

Py = Z|¢k,l><¢k,l|» (4.23)
7

where k(i),[(i) are the original indices from Eq. (4.17). Therefore, P = {P;} is a
projective measurement and because of (4.16) and (4.22) a Naimark extension of
E,i.e., for any state p € S(H) it holds that

tr(Eip) = tr(Pi(p @ 0)). (4.24)

We now prove to the second part of the theorem. For practical implementations
of the POVM, a tensor product structure is more convenient than a direct sum, as
this allows an experimental realization by coupling the system to an ancilla. This
ancilla implentation of a POVM can be directly obtained from the previous result
by further enlarging the space H’ such that d’ = n-d > }; rank E;, where n is the
number of outcomes of E. Thus, we can impose a product structure H' = Hr @ H
with dim H g = n. As the zero block now has dimension (n — 1)d, it is possible to
write p @ 0 = |1)(1| ® p, where |1) is the first element of the computational basis
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4 Purified Quantum Mechanics

of Hg. Finally, the vectors |¢;) from Eq. (4.21) can be embedded in the larger
space Hr ® H as |$;) = |¢;) ® 0 such that we obtain

(Sl @ p)ldi) = (ilplpi)- (4.25)

To be more concrete, we now provide an explicit construction of the (basis
change) unitary U from the theorem. To match the convention in the literature,
we reverse the subsystem order H’ = H ® Hg such that the ancilla space comes
second. Let {A;} be any set of measurement operators for E, i.e., E; = Aj'A,-. We
define the operator V € L(H,H’) by

V= Z A; ® i), (4.26)
i
which is an isometry because of the POVM normalization, V'V = 3, A:.fA,- =

>i Ei = 14. Let U € L(H’) be a unitary embedding of V into H’, i.e., U is unitary
and for the fixed state |1) € Hp it satisfies

Ully) ® 1)) = Viy) (4.27)
for any |) € H. We parameterize the unitary by operators A; , € L(H) as
U= Aia®liXal. (4.28)

Comparing Egs. (4.26), (4.27) and (4.28)) implies the consistency condition A; ; =
A;. We define the canonical Naimark extension P = {P;}" | of E as

P, = UL ®i)iU = ) Al A;p®|a)(bl, (4.29)
a,b
which is a (rank-d) projective measurement since P;P; = ¢; ;jP;. Moreover, every
effect of P satisfies

tr(Pi(p ® [1)(1))) = tr(A] | Ai1p) = tr(Eip) (4.30)

for any p € S(H). O

We call P from Eq. (4.13) the minimal Naimark extension, and P from Eq. (4.14)
the canonical Naimark extension of E. In the Appendix B we provide the Matlab
file MinNaimark.m that constructs the minimal Naimark extension of any POVM.
Thm. 4.4 can also be interpreted as follows: if the POVM effects are embedded
into H(H’) as £[E;] = E; @ 0, they can be extended to a projective measurement
P on the whole of #’ [BKB18]. In particular, this implies that P and £[E] have
the same expectation values for all embedded states £[p] = TpT', which implies
Eq. (4.13):

tr(P;E[p]) = t(E[ENE[p]) = e(TET TpT") = tr(E; p). (4.31)

Here, we have used that P; extends £[E;] and that T is an isometry.
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CHAPTER 5

Semidefinite Programming

A large number of problems in quantum information theory involve convex opti-
mization, where the goal is to minimize a convex function, or maximize a concave
function, over a convex set. In particular, the convex sets of quantum states,
measurements and channels can be characterized by only linear and semidefinite
constraints. If additionally the objective function, i.e. the function that is optimized,
is linear, the optimization task is called semidefinite programming. For semidefinite
programs (SDPs) there exists a powerful duality that allows to readily obtain useful
bounds on the optimization problem and to make it numerically efficiently solvable.
In the following, we describe elements of this theory and discuss selected quantum
information tasks involving SDPs that will be used later. This chapter is based on
the lecture notes by Watrous [Wat17].

5.1 Primal and Dual Problem

We recall that the space of hermitian operators H(H) together with the Hilbert-
Schmidt scalar product (L, R) = tr(LTR) defines a real Hilbert space.

Definition 5.1 (SDP). A semidefinite program is a triple (A, B, L), where A € H(H),
B € H(H') are hermitian and L: L(H) — L(H’) is a superoperator that preserves
hermiticity. The SDP defines the following two optimization problems

Primal problem Dual problem
maximize: (A, X) minimize: (B,Y) (5.1)
subject to: L[X] =B subject to:  LT[Y] > A
X € P(H) Y € HH')

These problems are computational tasks with the aim to maximize (A, X) € R
or minimize (B,Y) € R, subject to the indicated constraints. We call the operators
X,Y SDP variables of their respective problem. Moreover, the functions X — (A, X)
and Y — (B,Y) are called primal and dual objective function, respectively. From
this basic SDP form it is possible to derive seemingly more general problems that
include further equality and semidefinite constraints of the SDP variables [Wat17].
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An operator X € L(H) is called primal feasible if it satisfies the primal problem
constraints {£[X] = B,X > 0}. Similarly, an operator Y € L(H’) is called dual
feasible if it satisfies the dual problem constraints {£7[Y] > A,Y" = Y}. The optimal
values of the primal and dual problem are denoted by a, 8 € R, respectively, i.e.,

a = sup{{A, X) : X is primal feasible}
B = inf{(B,Y) : Y is dual feasible}. (5.2)

The following two theorems provide a relation between the primal and dual prob-
lems of an SDP.

Theorem 5.1 (Weak Duality). Let (A, B,L) be an SDP with a,8 defined as in
Eq. (5.2). It holds that: a < 5.

Proof. In the case that the primal (dual) feasible set ist empty, we set @ = —c0
(8 = ), and a < B trivially holds. For any primal feasible operator X and every
dual feasible operator Y it holds that

(A, X) < (LT[Y],X) = (¥, L[X]) = (Y,B) = (B,Y). (5.3)

Taking the supremum over all primal variables X and the infimum over all dual
variables Y yields @ < S. |

This theorem implies that any primal feasible operator X yields a lower bound
on the optimal dual value 8, and any dual feasible operator Y yields an upper
bound on the optimal primal value &

(A, X) <a <B<(BY). (5.4)

An operator X € L(H) is called strictly primal feasible if it satisfies {L[X] =
B,X > 0}, where X > 0 means that every eigenvalue is positive, 1;(X) > O.
Similarly, an operator Y € L(#’) is called strictly dual feasible if it satisfies {£T[Y] >
AY' =Y}

Theorem 5.2 (Strong Duality). Let (A, B, L) be an SDP with a, 8 defined as in
Eq. (5.2). It holds that:

e o = f3, if the primal feasible set and the strictly dual feasible set are nonempty.
Moreover, there exists a primal feasible X such that (A, X) = a.

e «a = (3, if the dual feasible set and the strictly primal feasible set are nonempty.
Moreover, there exists a dual feasible Y such that (B,Y) = 3.

Strong duality is employed for efficient numerical computation of SDPs, for ex-
ample, via the open-source MATLAB-based toolbox YALMIP [L6f04] and a suitable
solver like SDPT3 [TTT99].
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5.2 Optimizing over Measurements

Optimizations of linear functions of POVMs also correspond to an SDP optimization
problem. An n-outcome POVM E = {E;} on a d-dimensional Hilbert space H
consists of n positive operators E; > 0 that sum to the identity »; £; = 1. An
important example of an optimization problem involving POVMs is the minimum
error discrimination of an ensemble {p;, p; }, where the quantum state p; is prepared
with probability p;. The task is to find the optimal measurement E = {E;} such
that the probability of obtaining outcome i when p; was prepared is maximized.
The figure of merit, the guessing probability Pgyess, is the average probability of
successful identification with the optimal POVM. It is given by the solution of the
following optimization problem

Pguess = maXZpi tr(Eipi)
i
subject to: Z E =1,
i
E; > 0. (5.5)

We now rewrite this optimization problem to put it into the SDP standard form,
Def. 5.1. Let H’ be an n-dimensional Hilbert space with computational basis {|i)}.
Define £ = try: H ® H' — H to be the partial trace over H’, and define the
operators A € H(H ® H’) and B € H(H) as

n
A=) pipi®li)il and B=1. (5.6)
i=1

Then, the optimization problem (5.5) can be written in terms of the basic form (5.1)
with respect to the SDP (A, B, £) as

Primal problem Dual problem
Pguess = max (A, X) Pguess = mintr(Y) (5.7)
subject to: try(X) =1 subjectto: Y ®1 > A
XePH®H) Y € H(H)

Here, we used that the trace over the second subsystem has the adjoint tr;[3 )=
Y ® 1, which follows from Eq. (2.18). If we make the Ansatz X = }; ; X; ; ® [i){j,
the primal constraints try/(X) = 1 and X > 0 imply >,; X;; = 1 and X;; > O,
respectively. Moreover, the scalar product becomes (A, X) = }; p; tr(X;.ipi).- By
the identification E; = X; ;, we see that the SDP above (5.7) is equivalent to the
optimization (5.5). A useful upper bound to the guessing probability Pgyess < tr(Y)
is obtained by any dual feasible variable Y, see Eq. (5.4).
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5.3 Optimizing over Channels

The optimization of linear functions over the set of channels can be treated with
similar methods as before. Let H,H’ be Hilbert spaces with d < d’ and let
A: L(H) — L(H’) be a channel with Choi matrix J, € L(H’ ® H) given by

Iy = AN = = " Al 8 . (5.8)
i,J

According to Thm. 3.3, A being a channel is equivalent to J, being positive and
try (Jy) = %. Moreover, because of the one-to-one correspondence of A and J,,
any real-valued linear function g(A) € R on the set of quantum channels can be
expressed by a hermitian operator G € H(H’ ® H) as

g(A) =(G, J,). (5.9)

To establish a connection with the SDP standard form (5.1), we define the operators
A=G,L=tryyand B = %. As a consequence of the Choi theorem 3.3, optimizing
a linear function over all channels A can be represented by the SDP (A, B, £) whose
primal and dual problems are given by

Primal problem Dual problem
maximize: g(A) = (G,J) minimize: g(A) = %tr(Y ) (5.10)
subject to: try(J) = % subjectto: 1®Y > G
JeP(H' @ H) Y € H(H)

This SDP has the same form as (5.7), except that G € H(H' ® H) is now an arbitrary
operator determined by g and not necessarily of block-diagonal form.

5.3.1 Subspace-preserving Channels

In quantum information, a recurring task is the optimization over channels which
preserve a number of subspaces, see Ref. [BKB18] for an example. In this section,
we provide the necessary background to incorporate such constraints in SDPs.

A superoperator can also be expressed by its coordinate matrix with respect
to a fixed basis. This representation has the advantage that the composition of
superoperators corresponds to a multiplication of the respective matrices. Let
E: L(H) — L(H) be a superoperator and let B = {B,} be a Hilbert-Schmidt
orthonormal basis of L(#). The process matrix & of £ is defined as the coordinate
matrix of £ with respect to B [Wol12]

Euy = (B, E[B,]) = tr(B},E[B, ). (5.11)
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5.3 Optimizing over Channels

By construction, the composition of superoperators £ = &, o & corresponds
to the matrix multiplication £ = &&,. Any CP superoperator is self-adjoint,
& = &7, if and only if its process matrix is hermitian & = £ [Wol12]. Given the
computational basis {|i)} of H, we define the orthonormal standard basis of L(#)
as B = {B, = |i){j|}, where u = (i, j) is a multi-index. This basis permits a direct
method to obtain the process matrix by employing the isomorphism (2.20) given
by vecg(|i){j|) = |i) ® |j). When applied to a superoperator £[X]| = }; L;XR;,
this gives the process matrix

£=> LioR. (5.12)

In particular, for a completely positive map with Kraus representation £[X]| =
i KiXKj, the process matrix is given by & = 2iKi®K!.

Theorem 5.3 (Choi transformation). Let £: L(H) — L(H) be a superoperator
with process matrix & with respect to the standard basis of L(H), and Choi matrix
Je € L(H ® H) (5.8). It holds that € = dJR, where

JE =Y e (NNl © 1), (5.13)
i,

with d = dim H. The row-reshuffling operation L + LR is called Choi transformation
and satisfies (L®)R = L.

Proof. The row-reshuffling L +— LR acts on coordinates as (u|JX|v) =
(m,n|JR|k,ly = (m,k|J¢|n,1), where we abbreviate the output and input coordi-
nates as u = (m,n),v = (k,l), respectively. The definition of the Choi matrix (5.8)
yields d{m, k|J:|n, 1) = (m|E[|k){l|]|n) = tr(|n){m|E[|k)(l|]). Putting these to-
gether results in:

d{ulIEv) = t(in)(m|E[1k)I)

= tr(BE[By]) = & (5.14)
In the last line we used that the standard basis has elements B,, = [i){j]|. O

We now provide an application of Thm. 5.3, that is related to the methods
developed in Ref. [BKB18]. Let S; C L(H), i € I be a sequence of subspaces of the
linear operator space, with index set /. We investigate the task of optimizing a linear
function g(A) over channels A that are required to preserve the subspaces S;, i.e.,
A[S;] € S;foralli € I. The process matrix allows to readily formulate the subspace-
preserving constraint. We define the CPTN superoperator S;[L] = I1; LII;, where
I1; denotes the projector onto S;. A channel A preserves the subspace S; if and
onlyif AoS; =8; 0 AoS;, orin terms of the process matrices,

/A\‘SA',' = S,[\Sl (515)
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5 Semidefinite Programming

Optimizing a linear function over subspace-preserving channels A can thus be
formulated via the Choi matrix J, and the process matrix A = dJX as:

maximize: g(A) = (G,J)
subject to: J >0, try(J)= %
JRS; = SiIRS; foriel (5.16)
5.3.2 Quantum Fidelity

We now introduce the quantum fidelity as a measure of how close two quantum
states are. Given an operator L € L(H,H’) the trace norm is defined as

LI = w(IL]) = ) si(L), (5.17)

1

where {s;(L)} denotes the set of singular values of L (2.25). For positive operators
M,N € P(H), we define the quantum fidelity as

F(M,N) = |[VMVN||, = r(VM2NM1/2). (5.18)

Below, we provide a list of some properties of the fidelity. Let p,o- € S(H) be
two quantum states and let A be a quantum channel. It holds that [NCOO]:

e 0 < F(p,0) <1 (normalized)
o F(p,0) = F(o, p) (symmetric)
o F(Alp),Alo]) = F(p,o) (monotonic)

e F(X;pipi-0) = >;piF(pi,o) for any probability distribution {p;} and
quantum states p; € S(#) (concave in both arguments)

These properties qualify the fidelity to be a good measure of “closeness” of two
quantum states. If one of its arguments is pure, ¥ = | )(¥|, the fidelity simplifies to
F(y, p) = (¥|p|ly). Finally, the fidelity can be cast in the form of an SDP [Wat12].

Lemma 5.4 (Fidelity SDP). The fidelity between two positive operators M,N € P(H)
is equal to the optimal value of an SDP primal problem given by

F(M,N) = max %(tr(X) +tr(XT))
. M X
subject to: (XT N) >0,
X € L(H). (5.19)
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CHAPTER 6

Quantum Randomness Generation

The concept of randomness has become an integral part of modern science and
technologies. The question whether truly random events exist in nature is fun-
damental for science and philosophy. In addition, randomness is nowadays an
important resource for numerous applied tasks such as cryptography, algorithms
and simulations [AM16].

Until the experimental success of quantum mechanics in the early 20th century,
it was believed that nature on the microscopic level is governed by deterministic
laws that describe the evolution of any physical system. In a deterministic theory,
once the initial conditions of the universe are set, its future can be in principle
completely predicted. Consequently, there only exists pseudorandomness or apparent
randomness, where the random behavior of a system emerges because of the
incomplete knowledge of its precise microstate [BAK17].

Probabilistic theories such as quantum mechanics allow for a stronger notion
of randomness. There can exist events that in principle cannot be predicted with
certainty by any knowledge “prior” to the event. We call this notion true randomness,
intrinsic randomness or private randomness [Col09]. Here, the word “private” means
that degrees of freedom outside the user’s safe laboratory, which we collectively call
eavesdropper (or Eve), are uncorrelated to the system of interest. True randomness
is crucial for any task that requires secrecy, such as cryptography and gambling.
Fundamentally, in order to assess how truly random particular data is, one needs
to monitor the process of creating the data and its underlying physics.

The probabilistic character of quantum mechanics is evident in the measurement
postulate. The measurement of a pure quantum state by a projective measurement
(not in the states’ eigenbasis) yields outcomes that even in principle cannot be
perfectly predicted by any observer. In current quantum technologies, this feature
is exploited to generate truly random numbers (see, e.g., www.idquantique.com).
However, in any realistic setting true randomness is mixed with apparent ran-
domness due to noise or a mismatch between theoretical description and actual
implementation. The challenging task in the field of quantum randomness genera-
tion is to quantify the amount of true randomness produced in a quantum protocol,
while keeping the assumptions experimentally viable.

37



6 Quantum Randomness Generation

6.1 Randomness Expansion

In this thesis, we focus on one of the two important kinds of quantum randomness
protocols, namely on randomness expansion [Col09, CK11]. Here, the aim is to
start with a perfectly private random string and generate a longer one, in a way that
guarantees that the longer string is also kept private from the eavesdropper during
the execution of the protocol. A more precise definition will be given at the end of
this section, when we will have established the necessary concepts. In subsequent
sections, we decribe how randomness expansion can be performed employing
quantum mechanics. The other important type of protocol is called randomness
amplification or randomness extraction from weak sources. Here, the user has only
imperfect randomness at his disposal and aims at distilling fully random bits from
it [GMDLT*13, KAF17]. This task is similar to privacy amplification in quantum
cryptography [Ren08, SBPC*09]. However, the latter is usually performed using
seeded extractors, which require a small amount of perfect randomness from the
start, see Sec. 6.1.2.

Data obtained from unpredictable events is not useful for a subsequent task,
if it is immediately broadcasted to the eavesdropper. In order for randomness
expansion to be useful before employing, for example, a cryptographical protocol,
assumptions about the privacy of the laboratory and the devices in it are needed.
Therefore, we set the following assumptions valid for the rest of the discussion.

Randomness Expansion Assumptions:

1. The randomness expansion protocol takes place in a laboratory that during
the execution of the protocol is shielded from any information transfer to
the outside.

2. The user possesses secure classical information processing devices in the
laboratory, that allow for the processing of classical data without leakage to
the eavesdropper.

3. The devices and their surroundings function according to the laws of quantum
mechanics.

These assumptions allow the user to reuse randomness that was utilized for
the classical information processing in the laboratory. However, one needs to
ensure that the generated data is uncorrelated to the randomness that is initially
held. Quantum key distribution (QKD) [SBPC*09] describes the task where two or
more parties establish correlated random data. Compared to QKD, in randomness
generation no correlations with a remote party are needed, and thus, no classical
information is leaked to the eavesdropper (for error correction) until the data is
utilized in a task.
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6.1 Randomness Expansion

Further assumptions are often made depending on the concrete protocol at hand.
For example, so-called device-independent protocols [Col09, PAM* 10, LZL*18]
require a stronger version of the first assumption, namely that the laboratory
contains sub-laboratories that can be shielded from each other. This is necessary
to ensure causal separation of the measurement devices.

6.1.1 True Randomness

A formal and quantitative definition of true randomness can be provided via the
notion of spacetime quantum states [FRT13]. These are states with an associated
four-vector that describes the physical location of the state in relativistic spacetime.
We interpret the spacetime coordinate of p as the event where the process gen-
erating p is started. Moreover, we describe side information, i.e., any additional
system correlated to p, by spacetime states. In this case, the four-vector indicates
when and where this information is accessible. By means of Eq. (3.11) we directly
obtain a notion of spacetime random variables.

Definition 6.1 (True randomness). A random variable X with alphabet X is called
g-random if for any system E, the CQ-state pxg is &-close to a state that is uniform
and uncorrelated to any space time state pg not in the future light cone of px:

1||/)XE—£®pE|| <e&. (61)
2 |X] !
Here, ||L||; = tr(|L|) denotes the trace norm of L. We call X fully random if & is not
larger than a predefined small treshold value, € < &€ < 1.

The definition above captures the idea that a variable is truly random if it is
uncorrelated to any information that does not lie in the causal future of it. Certainly,
particular systems in the causal future of p are highly correlated with it. This is why
the safe-laboratory assumption is crucial: it prevents Eve from learning the value of
X by just broadcasting it after its generation. Her power is (necessarily) restricted
to establish correlations with systems in the “past” of the process that generates p.
In the definition above, the (normalized) trace distance D(p, o) = %H p—ollis
chosen as distance measure as it has the operational interpretation as distinguishing
advantage. If two equiprobable quantum states are £-close to each other in trace
distance, the success probability of distinguishing them by a measurement is at most
%(1 + &) [NCO0O0]. Thus, one can consider the two scenarios described by them as
identical except with probability €. Consequently, a fully random variable X can be
considered completely unpredictable, except for a small failure probability &. This
property of the trace distance is at the root of the universally composable security
framework in quantum cryptography [RKO5], which ensures that a cryptographic
protocol is secure in any arbitrary context. For example, a bit of X remains secret
even if some other part of X is given to the adversary.
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6 Quantum Randomness Generation

6.1.2 Quantum Entropies and Randomness Extraction

The raw output of any realistic, physical random number generator is almost
certainly not fully random. However, perfect randomness can be distilled from the
output via post-processing called randomness extraction or privacy amplification. A
randomness extractor takes an initial string X, about which a potential adversary
has partial knowledge E, and compresses it to a shorter string X', which is fully
random. The compression rate is determined by the min-entropy [Ren08], which
we describe below.

Let A, B be two quantum systems and p4p a joint quantum state. The min-
entropy of pap given the side information o € S(Hp) is defined as

Hyin(Alog), = sup{/l €R: pap < 27, ® 0'3}. (6.2)

There exists a feasible A only if supp o 2 supp pp [Tom12]. The min-entropy of
A given B on the state psp is defined via the optimal side information

Hmin(AlB)p ‘= max Hmin(Alo—B)p- (6.3)
op€eS(Hp)

If the first system is classical, A = X, the state pxp is a CQ-state (3.12). In this
case, the min-entropy can be related to the maximal probability of guessing the
random variable X given quantum side information B [KRS09]

Hmin(XlB) = —log Pguess(X|B)’ (6.4)

with the guessing probability from Eq. (5.5). This relation provides an operational
meaning to the min-entropy. Similar to the guessing probability, the general
min-entropy can be evaluated by an SDP (5.7), making it accessible for efficient
numerical computation [Tom12].

The quantum min-entropy obeys a duality relation with the quantum max-
entropy, which can be used to define the max-entropy as follows [KRS09]. Let
pAB be a quantum state with purification | )4pc. We define the max-entropy of A
given B on the state pap as

Hmax(AlB) = min(Alc)- (6.5)

Another important quantity is the von Neumann entropy of a state p, which is
defined as

S(p) = —tr(plog p). (6.6)

The conditional von Neumann entropy of A given B on the state p4p is defined as

S(A[B), = S(paB) — S(pB). (6.7)
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6.1 Randomness Expansion

As the labels suggest, for any state p4p it holds that
Hmin(AlB) < S(AlB) < Hmax(A|B)' (6.8)

Some bounds in information theory can be made (almost) tight by employing
a smoothed version of the entropies [Ren08, TCR09]. Given two positive operators
0, P, the purified distance is defined as P(p, p) := /1 — F2(p, p) with the quantum
fidelity F(p,p) from (5.18). The purified distance is a metric on the space of
subnormalized quantum states [TCR10]. For any £ > 0, the &-ball around a state
p € S(H) is given by

Be(p) = {p € P(H) : P(p,p) < &,tr(p) < 1}. (6.9)

With that, the smooth conditional min-entropy of A given B on the state psp €
S(Hap) is defined as

Hy: (AlB), = max Hmin(A|B)p. (6.10)
PEB:(p)

The smooth min-entropy plays an important role in quantifying the extractable
randomness in data. We now describe the important case of randomness extraction
via two-universal hashing, where the hash (extraction) function is chosen from
the following class. A set of functions F from X to X’ with |X’| = 2! is called
two-universal if: for any f € F chosen uniformly at random and for any distinct
instances x1 # x9 € X, it holds that

PH(f(x) = f(12)) < o 6.11)

In other words, the probability that the hash function maps x1, x; to the same
value of X’ is bounded from above. It has been shown that a two-universal set F
can be chosen with size | F| = |X| [CK11]. In practice, the hash function f € F
is drawn by making use of a small fully random seed, which ensures that the
eavesdropper (and the quantum devices) do not know f in advance. If the user
has only partial randomness at his disposal, security is not guaranteed. Therefore,
two-universal hashing as formulated in the following Lemma belongs to the class
of seeded extractors [Ren08].

Lemma 6.1 (Leftover hashing). Let pxr be a CQ-state and let F be a two-universal
family of hash functions from X to X’ with |X’| = 2!. If we denote the quantum
registers of X’ and F as X’ and F, respectively, it holds that

1 1 __1pye —
o ®PEF”1 <e+ 52 2 XIE)=D = o 4 g,
where px'gF is the average joint state after randomly applying the hash function,

1
PX'EF = Z —=PrxE ® O
feF |]:|

1
EHPX’EF -
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6 Quantum Randomness Generation

Note that the inclusion of the register F in the state ensures that X’ = f(X)
is uniform from Eve’s point of view even if she learns the function f. Lemma 6.1
states that for a fixed length / of the output string, &, decays exponentially in

H?. (X|E) and thus the randomness quality increases. Moreover, for the choice
[ =H? (X|E)—twitht > 0such that § := & + %2"/2 < g, the output X’ = f(X)

of the hash function is fully random, i.e., uniform and independent of E except
with probability £ < 1. Thus, for large |X|, the min-entropy H?. (X|E) is roughly
equal to the number of fully random bits that can be extracted from X. With
that, we are ready to give a more precise definition of a randomness expansion

protocol [BKB17].

Quantum Randomness Expansion: a quantum randomness expansion scheme
is any protocol satisfying at least the assumptions 6.1, and consists of the
following steps. An honest user possesses a fully random initial bit string A.
The user supplies a certain number of bits from A roundwise to quantum
devices that provide the bit string X as joint output. The remaining bits
of A are employed for two-universal hashing of X to obtain a compressed
string X’ which is fully random, conditioned on A as well as on any side
information E previously stored in the devices. The protocol outputs the
fully random concatenated string (A, X’).

We can interpret the additional randomness X’ as being generated by the in-

trinsic unpredictability of quantum mechanics. Hence, we use the term randomness
generation synonymously with randomness expansion.

6.2 Accumulated Entropy

As we described in the previous section, the main step in a randomness generation
protocol is to establish a nontrivial lower bound on the conditional min-entropy
Hyin(X|CE). Here, X denotes the raw output of the quantum devices, C denotes
any classical data except X that is used or generated in the protocol, and E
denotes the eavesdropper’s degrees of freedom. Since randomness generation
protocols consist of a large number of identical rounds, the usual strategy to bound
Hpuin(X|CE) is divided into two parts:

i) The min-entropy of all rounds Hpy;,(X|CE) is related to a suitable single-
round entropy, by making use of assumptions about the eavesdropper’s power
and the physical setup.

ii) The single-round conditional entropy is bounded by employing assumptions
about the physical setup.
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6.2 Accumulated Entropy

In this section we discuss step i), while step ii) will be described in the next
section. One assumption commonly used to simplify task i) is that in an n-round
protocol, the bits of X = X" = (Xy,...,X,) are created independently from
each other in the same way. That is, the adversary employs an independent and
identically distributed (IID) attack: in every round of the protocol the quantum
devices make the same measurement on the same quantum state. Consequently,
both the shared state between the user and Eve at the beginning of the protocol
and the measurements have tensor product form [AFRV16]. This implies that the
joint quantum state p} . after n rounds is the n-fold tensor product of a single
round state

PXE = Py (6.12)

We call a state of the form (6.12) an IID state. In this case, there are simple means
to relate the total entropy of X" to single-round entropies depending on X;. The
easiest variant of such an argument leads to the following bound for any € > 0

HZ (X"|E")pen > Hypin(X"|E™)pen = nHpin(X|E),. (6.13)

The inequality holds because Hyin(X|E) = Hr‘fﬂ:nO(X |E). The equality follows from
the additivity of the min-entropy [Ren08]. However, the bound (6.13) is usually
too pessimistic. If we accept a small failure probability, a tigher bound for IID
states (6.12) can be derived based on smooth entropies. The improvement is
provided by the quantum asymptotic equipartition property (AEP) [TCRO9].

In classical information theory the AEP is a central result because it allows to
characterize the typical behaviour of IID random variables in terms of the Shannon
entropy. The Shannon entropy of a random variable X = {p,, x} is given by

H(X) = — Z Py log py. (6.14)
XEX

The classical AEP states that, for large enough n, the outcome of a random exper-
iment given by an IID sequence of random variables X" = (X1,...,X,) € X*",
where X; is distributed according to {p, }, will almost certainly be in a set of approx-
imately 2" X) typical events that each occur with a probability close to 27 X),
This result can be derived from the law of large numbers. As a consequence, e.g.,
for source compression only 2" X) bits are needed to store the whole sequence
X" if we accept a small failure probability for non-typical events. The quantum
generalization of H(X) is the von Neumann entropy S(p) (6.6), which plays a
similar role as described by the quantum AEP [AF18].

Theorem 6.2 (Quantum AEP). Let par € S(Hag) and &€ > 0. For the IID state
pfg with large enough n € N, it holds that

HE, (A"|E™)pon > nS(A|E), — Vnd(e,v), (6.15)
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6 Quantum Randomness Generation

where the second term is given by

8(g,v) = 4log v/log(2/€2), with v = 2V2Hnax(AIE) 4 1, (6.16)

Note that ¢ is independent of n and thus the term +/nd can be neglected in
the large n limit. Moreover, the AEP bound is independent of dim H g, which is
important for randomness generation as the dimension of the adversary’s quantum
system cannot be bounded. The quantum AEP establishes the von Neumann
entropy as the relevant quantity for problems involving IID states and usually
leads to significantly better bounds than (6.13). On the other hand, in partially-
characterized setups, the single-round von Neumann entropy is usually harder to
bound compared to the single-round min-entropy. This is because the former is non-
linear, while the latter can be derived from the linear guessing probability (6.4).

In the following, we focus on the IID asymptotic case, that is, we assume that
Eve performs an IID strategy and consider the limit of an infinite number of rounds
n — oo. This relevant idealization is often employed in the literature because
it simplifies the analysis, as finite-statistics effects do not need to be taken into
account. In this case, the quantum AEP can be formulated as follows [Ren08]. For
an an IID state pfg with n € N it holds that

. .1
lim lim —HZ,
e—0n—oon

1
lim lim =HZ, (A"|E")yen = S(A|E),. (6.17)

max
g—>0n—oopn

(A"|E™)pen = S(A|E), and

Moreover, when relaxing the IID assumption, the single-round von Neumann
entropy can still be related to the min-entropy of all rounds via: i) the quantum de
Finetti theorem [CFS02, Ren08] ii) the entropy accumulation theorem [AFDF*18].
These results essentially imply that in the asymptotic case an IID strategy is optimal
for the adversary.

6.3 Quantum Random Number Generators

Quantum random number generators (QRNGs) exploit the intrinsic probabilistic
nature of quantum mechnics to generate truly random numbers. A QRNG is a device
where a quantum state p is measured by a POVM F = {F,}. The raw randomness
is the random variable X of the measurement results, where the outcome X = x
occurs with probability

Px = tr(Fyp). (6.18)

Quantum mechanics predicts that if we measure a pure quantum state by a projec-
tive measurement not in the state’s eigenbasis, the outcomes of X cannot be fully
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predicted, i.e., X contains true randomness. However, any realistic QRNG contains
some amount of noise due to couplings with the environment, i.e., p is not pure and
F is not projective. As a consequence, Eve can gain additional information about X.
The security analysis of a QRNG bounds the maximal amount of information that
Eve obtains about X given some assumptions about the devices. As described by
Eq. (6.15), this amounts to establishing a lower bound on the single-round entropy
S(X|E), (6.7). Thus, we define the (IID asymptotic) randomness generation rate
as

Ry|e = S(X|E),, (6.19)

where X is the outcome variable of the POVM F (6.18). If Eve only possesses side
information about the measured state and not the POVM, we say that the noise in
the measurement is trusted (see later). In this case, the randomness generation
rate is given by a quantity called relative entropy of POVM-based coherence [BKB19].
That is, Rx|g = Crel(p, F), where

Crai(p,F) = HX) + > pu(p)S(px) = S(p), (6.20)

with px(p) = tr(Fyp), px = Aprl/px and A, = VF,. Here, S(p) denotes the
von Neumann entropy (6.6) and H(X) denotes the Shannon entropy (6.14). In
Fig. 6.1 below we visualize this type of QRNG.

Whaz AT

| —— |

Figure 6.1: A QRNG where the noise in the measurement is trusted. Eve has maximal side
information about the measured state py4, that is, she holds the system E of a purification
|Y)aE. If pa is measured by a POVM F, the measurement outcomes X = x contain private
randomness with respect to Eve. The IID asymptotic randomness generation rate is given
by Rx|e = Crel(pa,F), with the relative entropy of POVM-based coherence defined in
Eg. (6.20).

The amount of certifiable randomness depends on the level of characterization
of the devices and on the assumption on the adversary’s power [LBS14]. The
following list contains assumptions that can be used to classify most existing
randomness generation protocols.
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6 Quantum Randomness Generation

Characterization of state/measurement: The state (measurement) of the QRNG
can be either fully characterized or uncharacterized. There also exist works
where partial characterizations are employed, e.g., the Hilbert space dimen-
sion is upper bounded, or states (measurements) are restricted to a particular
subset.

Trusted/Untrusted noise: We call any noise present in a characterized state (mea-
surement) untrusted, if Eve holds a quantum system correlated with it, e.g.,
a purifying system. We call noise trusted if Eve does not have accesss to
correlated degrees of freedom. In the latter case, the user may need to utilize
initial randomness to ensure that the noise is trusted.

Classical/Quantum adversary: The adversary is called classical if Eve must mea-
sure her side information before the classical postprocessing (e.g., random-
ness extraction) of the protocol. The adversary is called quantum if Eve holds
quantum side information. This enables her to store the information in a
quantum memory and delay her measurement until any later time convenient
for her, e.g., when the randomness is used for a subsequent protocol. She can
then perform the best measurement determined by her knowledge, which in
general is a joint measurement on all of Eve’s quantum side information.

To provide an example, we describe the assumptions made in standard quantum
key distribution [SBPC*09]. In this case, one assumes characterized and trusted
measurement devices and an uncharacterized shared state. Moreover, an IID attack
of a classical adversary is called an individual attack, while an IID attack of a
quantum adversary is called a collective attack.

With the classification above, we can discuss the most common theoretical
schemes for QRNGs, which are shown in Table 6.1. The levels of characterization
are ordered from strongest to weakest assumption.

State | Measurement
Device-dependent | v/, V¢
Source-device-independent X vy
Measurement-device-independent ve X
Semi-device-independent x* x*
Device-independent X X

Table 6.1: Frameworks for quantum randomness generation with different levels of
characterization of state and measurement (see the main text for details). The symbol v/,
means characterized and with trusted noise, v/, means characterized and with untrusted
noise, X means uncharacterized, while X* means uncharacterized except an upper bound
on the Hilbert space dimension.
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6.4 Measurement-device-independent Randomness Generation

Device-dependent schemes explicitly model the devices used in the QRNG
[AAM*15, BAK*17]. Typical off-shelf and practical devices belong to this class.
These QRNGs usually apply statistical tests on the output bits to ensure unpre-
dictability. In source-device-independent (SDI) schemes one assumes a trusted mea-
surement device and a completely untrusted source of quantum states [CZYM16,
MVV17, AMVV18]. Here, usually entropic uncertainty relations between quantum
observables are used to obtain some bound on the conditional min-entropy.

Following the observation that detectors are particularly susceptible to side-
channel attacks, the measurement-device-independent (MDI) level of characteriza-
tion has been proven to be very successful in practical QKD [LCQ12, TYC"14]. MDI
QRNGs consist of a characterized state source and a completely uncharacterized
measurement device [CZM15, NGZ"16, BKB17]. We describe and analyze this
scheme in the subsequent section.

Moreover, there exist various further schemes with an intermediate level of char-
acterization, where different types of certifying quantumness are used to quantify
generated randomness. This includes QRNGs based on quantum steering [PCSA15,
GMG'18], quantum contextuality [UZZ*13] or the maximum overlap of emit-
ted states [BME*16]. In particular, semi-device-independent schemes [LYW*11,
LBL*15] assume uncharacterized devices with an upper bound on their Hilbert
space dimension.

Finally, device-independent (DI) schemes promise the highest level of security
by viewing all QRNG devices as black boxes with a classical interface [Col09,
AFDF*18, LZL*18]. Randomness is certified via the violation of a Bell-type in-
equality, which requires a loophole-free Bell test setup. While loophole-free Bell
violations have been reported, the complexity of these setups makes DI QRNGs
rather impractical [BKG*18].

6.4 Measurement-device-independent Randomness Gen-
eration

In this section, we describe measurement-device-independent (MDI) randomness
generation, which is a family of QRNGs with an intermediate level of characteriza-
tion, see Table 6.1. The content of this section is a summary of the results in my
publication Ref. [BKB17]. The original publication and my precise contribution to
this work can be found in the Appendix A.1.

6.4.1 Summary of Results

The role of general measurements for quantum randomness generation was studied
in Ref. [BKB17]. We investigated a general MDI QRNG setup, consisting of two
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6 Quantum Randomness Generation

devices: any well-characterized state source and a completely uncharacterized
detector. The setup is shown in Fig. 6.2. In every round, the characterized state
source upon receiving the input a emits the quantum state p(a) from a fixed set
{p(a)}. The uncharacterized detector announces an outcome x whenever a state
was sent. We denote by Pgps(x, @) the probability that the pair (x,a) occurs, which
is estimated after a large number of rounds. The knowledge of {p(a), Pobs(x,a)}
can be used to bound the amount of side information that Eve may have about the
detector outcomes.

Lab +—|
a
Box
(sending)
LT e
S Yy Yy
built Black Box Black Box T
(detecting)

Figure 6.2: The measurement-device-independent setup for randomness generation. The
trusted source sends for the input a € {1,...,ns} a known state p(a) to an untrusted
measurement device, which outputs x with x € {1,...,n,}. The outcome randomness Rx
is characterized by the observed probability distribution Pyps(x, @), i.e. the probability that
the pair (x, a) occurs. This figure is taken from my publication [BKB17].

We formulated a randomness expansion protocol, describing how the inital
random string A is employed together with the quantum states and measurement
device to obtain the raw randomness [BKB17]. The latter is described by the single-
round random variable X with outcomes x. Under the randomness expansion
assumptions from Sec. 6.1 and for the IID asymptotic case, we performed a detailed
analysis of the eavesdropper’s degrees of freedom in any MDI QRNG setup. This
is used to characterize the generation rate Ry of fresh random bits. Here, Rx =
Huin(X|AE) is the single-round min-entropy, characterizing the unpredictability
of measurement outcomes with respect to the utilized randomness A and Eve
E. It holds that Hpin(X|AE) = —log Pguess(X|AE), see Eq. (6.4). Moreover, the
single-round entropy Hpyin(X|AE) is connected to the min-entropy of all rounds
by virtue of Eq. (6.13).

The following main result is proven in [BKB17]. The guessing probability

48



6.4 Measurement-device-independent Randomness Generation

Pguess(X|AE) in any MDI QRNG setup is characterized by the following SDP:

Poues(X|AE) £ max > pa tr(My xjap(@)

x,ela x,a

st Myeja > 0, ZMma -1 Va,

X,e

Pobs(x’a) = Zpa tr(Mx,elap(a))
e
+ Further linear constraints. (6.21)

Here, p, = X, Pobs(x,a) is the probability that p(a) was sent. The second line
means that the optimization variable {M, |,} is a POVM with outcomes (x, e)
for each a. The third line ensures that the adversary’s operations actually give
rise to the observed measurement statistics P,ps. The omitted constraints can be
interpreted as nonsignalling conditions between the detector and Eve’s site £, and
between the systems A and E, respectively.

In Ref. [BKB17], the general characterization (6.21) was then used to study
various specific MDI QRNGs defined by { p(a), Pobs(x,a)}. In particular, the findings
include setups that yield the maximally achievable randomness generation rate
of Rx = 2logd bits per round, where d = dim H is the dimension of the Hilbert
space. Hence, for fixed d, (extremal) POVMs can yield up to twice the random-
ness generation rate compared to projective measurements, see Fig. 6.3. This
demonstrates the advantage of general quantum measurements over projective
measurements in quantum random number generation. Moreover, Fig. 6.3 shows
that the usage of additional linearly independent states p(a) yields an improvement
of the randomness generation rate for noisy detectors (quality 7 < 1). The string of
raw randomness X encompasses the outcomes of X after all rounds of the protocol.
The user can employ two-universal hashing (Lemma 6.1) to transform X to a string
X’ that is fully random, see Def. 6.1.
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2 ‘ ‘
__ ex.POVMn=4n=4
1.8 e s
1| — _ _ projective no=2 ns=4
1.61| _ _ projective n =2 n =2

randomness Rx

quality n '

Figure 6.3: The randomness rate versus the detector quality for an optimal qubit setup
(see Ref. [BKB17] for details). Here, 1 is a quality parameter that is inversely proportional
to the amount of white noise in the measurement statistics. The solid (dashed) line depicts
an extremal POVM with n, = 4 (n, = 2) outcomes for an informationally complete set of
ng = 4 states. The dash-dotted line corresponds to the case of two non-orthogonal sent
states and two outcomes. This figure is taken from my publication [BKB17].
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CHAPTER 7

Resource Theory of Quantum Coherence

Quantum information theory can be understood as a theory of interconversion
of different resources. In particular, it describes how quantum properties (re-
sources) enable superior performance in certain information tasks compared to
classical physics. Quantum resource theories (QRTs) offer a versatile, application-
independent, methodological framework for the quantitative analysis of different
quantum phenomena.

The main insight of resource theories is that under given constraints, particular
operations become very costly compared to others. Such constraints are present
in most physical setups and stem from either practical, experimental limitations
or the laws of physics. Consequently, only a subset of operations can be (easily)
realized, which are called free operations. Properties of quantum states that cannot
be created by free operations are considered a valuable resource. States without
resource content are called free states and can often be prepared by free operations
from any state. Conversely, quantum states carrying resource can be employed
to (partially) circumvent the restrictions on the free operations, i.e., to realize
general operations. Building solely on free states and operations, it is possible to
develop a rigorous, quantitative QRT framework. This provides insights into the
different means of quantifying a resource, the optimal distillation and dilution of
the resource and the rate of interconversion of resource states under the given
constraints.

The first resource theory was formulated to provide a quantitative theory of
entanglement [HHH*03, HHHHO09]. In recent years, the QRT framework has been
applied to other quantum information concepts such as coherence [BCP14, WY16]
and purity [HHOO3]. QRTs also play a role in broader research areas, including
asymmetry [GS08] and thermodynamics [BHO" 13]. In the latter case, the resource-
theoretic viewpoint has been proven especially useful, as it avoids problematic and
ambiguous quantum generalizations of classical concepts such as heat and entropy
as its starting point [KJJ*18].
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7 Resource Theory of Quantum Coherence

7.1 General Structure of Resource Theories

In the present time, there exists an increasing number of results on general quantum
resource theories, see [BG15, CFS16, LHL17, CG19] for an overview. In this section,
we discuss basic definitions and consistency properties of general QRTs. Further
topics such as resource quantification and manipulation will be treated later in the
resource theory of coherence.

A resource theory is based on two main concepts, free channels and free states.
In this thesis, we only consider operations (channels) with the same input and
output space L(#H) which suffice for the resource theory of coherence. In the
following, we usually suppress the dependence of all quantities on the underlying
Hilbert space H.

Definition 7.1 (Resource-free operations). A subset O of the set of all channels from
L(H) to itself is called a set of free operations if:

1. for any Hilbert space H, O contains the identity map id
2. for free operations A, A’ € O the composition A o A’ € O is free

The set of free operations describes channels that can be (easily) implemented
under given, physical or practical constraints. The first condition in Def. 7.1 says
that the identity map is free, as in most resource theories “doing nothing” is for
free. Condition two says that performing free maps consecutively is free, which
ensures that operations in O can be performed freely any number of times and
in any order. These two conditions can be understood as minimal requirements
for free operations. Many results on general QRTs require more assumptions, for
example [CG19]:

1. O admits a tensor product structure: i) applying free maps to a part of a
composite system is free ii) appending free states is a free operation iii)
discarding a system is a free operation.

2. O is selectively free: free operations admit a decomposition into free Kraus
operators. This ensures that the map is also free when a particular outcome
of the channel is selected.

3. O is dually free: the (normalized) adjoint map of any free map is free. This
means that the map can neither create nor detect the resource.

4. O is physically implementable: free operations can be generated by a se-
quence of free global unitaries, free measurements, and free processing of
classical outcomes (free Stinespring dilation).
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7.2 Resource Theory of Coherence

We discuss these properties for the resource theory of coherence in the next chapter.
First, we describe quantum states that are free of the resource.

Definition 7.2 (Resource-free states). Let O be a set of free operations and let
F C S(H) be a nonempty set of quantum states. We call F a set of free states if for
all free operations A € O it holds that

AlF] c F. (7.1)

In other words, a set of free states is closed under all free operations. We call a
state p € S(H)\.F a resource state. The restriction on F in Eq. (7.1) ensures that
free operations cannot create resource from any free state. The pair (F, O) can be
understood as the definition of a QRT. Such a theory can become trivial if almost
any quantum operation is free and thus almost no state is resourceful, e.g., in the
case F = S(H). A QRT (F, Q) is called convex if O and F are convex sets.

One example for a consistent set of free states is the set Frep [CG19]. Its
elements o € Fprep have the property that for any state p € S(H) there exists
a free operation A such that A[p] = o. In other words, the states in Fpep can
be created from “anything” (any state) without cost. The set Fep is usually the
smallest free set of interest, although it is not necessarily the smallest possible
set given our definitions. This is because in principle any fixed point of the set O
(often but not necessarily the maximally mixed state) defines the smallest possible
nonempty set F.

One can also build a QRT starting from free states. Given a subset 7 C S(#)
of quantum states, we can define O as a (maximal) set of operations under which
F is closed.

Definition 7.3 (Maximally free operations). Given a subset F C S(H) we define
the set of maximally free operations Onax as the set of all channels satisfying

A[F] c F. (7.2)

Because of Defs. 7.1 and 7.2 it is clear that Op.y corresponds to the largest
set of free operations consistent with F. The set Op,.x is convex if and only if F is
convex [CG19].

7.2 Resource Theory of Coherence

Quantum coherence describes the possibility for a quantum system to be in a
superposition of different states [SAP17]. This feature, together with the mea-
surement postulate, can be understood as the most fundamental property which
differentiates quantum mechanics from the classical realm. In the history of physics,
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7 Resource Theory of Quantum Coherence

coherence was identified as the reason for the particle-wave duality which led to the
invention of quantum mechanics. Moreover, coherence underlies other phenomena
such as quantum interference and quantum entanglement, which play a central
role in quantum information technologies today.

In the context of quantum information, it is natural to perceive quantum
coherence as a resource. Indeed, quantum information technologies often suffer
from the loss of coherence (decoherence) in a particular basis, distinguished, for
example, by the Hamiltonian of the system. Since coherence underlies other
quantum phenomena, it is a valuable prerequisite to obtain an advantage of
quantum information technologies compared to classical resources. For instance,
in quantum thermodynamics, coherence in the energy eigenbasis can be utilized to
extract work from a system without affecting the classical energy statistics [KJJ"18].
In quantum metrology, the estimation of a magnetic field in a certain direction
requires coherence [SAP17].

Given a d-dimensional Hilbert space #, we denote its distinguished orthonormal
reference basis by {|i)}. We call a state p; € S(H) incoherent if it is diagonal in the
reference basis, i.e., it has the form

pr= ) pilidil, (7:3)

where {p;} is a probability distribution. The incoherent states form a convex set
Z c S(H) of free states F = Z. An important feature of coherence theory is that it
can be characterized by a resource destroying map [LHL17], namely the dephasing
channel A : L(H) — L(H) given by

Am=2wmww (7.4)

The set Z is the image of A applied to the set of quantum states, Z = A[S(#)].
Moreover, the incoherent states can be characterized as the fixed points of the
dephasing map, A[p]=p o pel.

7.2.1 Incoherent Operations

The set of free operations for the resource theory of coherence is not unique.
Depending on the application, different classes are studied in the literature, partially
inspired by the properties 2.—4. from the previous section [SAP17]. Here, we present
the four most relevant classes for the purpose of this thesis and briefly discuss their
properties and relations among them. We start with the largest set, the maximally
incoherent operations (MIO), which contains all channels A: L(H) — L(#) such
that

A[Z] C T. (7.5)
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In other words, the class MIO corresponds to the set of maximally free operations
Onmax from the previous section for the choice 7 = Z. MIO channels can equivalently
be characterized by the property [A06]

AoA=AoAoA. (7.6)

The definition of incoherent maps can be readily adapted to Kraus operators.
Given a set of Kraus operators {K,, } fulfilling normalization };, K}:Kn =1, we call
K,, incoherent if

Knli) o< ). (7.7)

This condition is equivalent to K, = }}; ¢,,.;| f(i))(i|, where ¢, ; € C and f is an
index function. In particular, this includes incoherent unitaries which admit the
form U = 3, €% |n(i))(i|, with a; € R and where r is an index permutation.

Interestingly, there are MIO maps which admit a Kraus decomposition where
each Kraus operators is (maximally) coherent [SKW*18]: let {|n,)} be a mutu-
ally unbiased basis with respect to the incoherent basis {|i)}, i.e., |(i|ns)|? = é.
Consider the Kraus operators K,, = |n)(n;| which are not incoherent as they
map to a coherent state. However, the channel A[p] = }, KnpK): is in MIO
since it maps any incoherent state o = }; p;|i)(i| to the maximally mixed state,
Aol = 5, KnoKyy = 5 5 pi SulneY(nel = 4.

For this reason, one introduces the class of incoherent operations (I10) [BCP14].
A channel A is in IO if there exists a Kraus decomposition A[p] = }}; K, pKZ where
all K,, are incoherent. This means that IO channels cannot even probabilistically
create coherence: there is a Kraus decomposition such that each Kraus arm is
incoherent, i.e., for all p € Z it holds that K, pK,Tl / tr(KnpKz) € 7. However, note
that in general it is hard to decide whether a channel is in IO, since it may be
necessary to check all possible Kraus decompositions. The incoherent operations
are strictly included in the maximal set, IO ¢ MIO [SAP17].

At last, we mention two further classes of incoherent operations. Dephasing-
covariant incoherent operations (DIO) have the property that they commute with
the dephasing operation, A o A = A o A [CG16b, MS16]. This implies that these
operations can neither create nor detect coherence [TEZP19]. The latter property
is characterized by the condition Ao A = Ao A o A, i.e., the incoherent part of the
channel output is independent of the coherent part of the input. Finally, strictly
incoherent operations are those 10 maps for which each Kraus operator cannot
detect coherence. Equivalently, SIO can be characterized as those operations which
have an incoherent Kraus decomposition {K},} such that their adjoints K,I are also
incoherent [WY16]. Therefore, it holds that SIO ¢ DIO ¢ MIO and SIO c IO.
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7 Resource Theory of Quantum Coherence

7.2.2 Golden Unit of Coherence

The resource theory of coherence has a golden unit, i.e., there are quantum states
from which any other state can be prepared deterministically via free opera-
tions [BCP14]. As we will see in the next section, these states have necessarily
maximal coherence. The canonical maximally coherent state is given by

d
1
W)= ). (7.8)
W) Q;ID

Any quantum state p can be prepared from |¥;) by using incoherent operations
(I0). Let {Kn},‘le be a set of operators defined as

d
K, = Z cilidi ®nl, (7.9)
i=1

with ¢; € C such that };|c;|> = 1, and where & is the sum modulo 2. These are
Kraus operators since they satisfy normalization, };, K,'I;Kn = 1. Moreover, all K},
are incoherent because for any incoherent state vector it holds that K, |[i ®n) = ¢;|i).
The operators are even strictly incoherent as KZ is incoherent as well. Finally, for
the maximally coherent state |¥;) = % >.ili ® n), we obtain

1 1
Kn|¥,) = ﬁZKnliean) = ﬁZciﬁ). (7.10)

Hence, any pure state |/) = }}; ¢;|i) can be prepared deterministically by the SIO
map Alp] = 2, KnpKJ;. Therefore, any state p = ); p;i|y:){(¥;| can be obtained
from |¥;) by an incoherent map, namely by preparing the eigenstate |i;) with
probability p;. Lastly, we note that the full set of maximally coherent states is
obtained as the orbit of |¥;) under all incoherent unitaries [BD15].

7.2.3 Coherence Quantification

The coherence content of quantum states is quantified by suitable coherence mea-
sures [SAP17]. As the usefulness of a particular resource measure depends on the
application, it has been proven useful to employ an axiomatic approach, that is,
to demand properties that a proper coherence measure needs to satisfy. We call a
real-valued function C : S(H) — R coherence measure if:

(C1) Faithfulness: C(p) > 0 with equality if and only if p € Z.
(C2) Monotonicity: C does not increase under incoherent operations, i.e.,
C(Alp]) < C(p) (7.11)

for a given set of incoherent operations {A}.
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(C3) Convexity: mixing does not increase coherence, i.e.,

C(p) < ZPiC(Pi) (7.12)

for any convex decomposition p = ) ; p;p; with p; € S(H).

Note, that the coherence measure implicitly depends on the chosen incoherent
basis. The conditions (C1) and (C2) can be seen as minimal requirements for a
sensible measure of coherence. Condition (C3) describes the intuition that “losing
information” should not increase coherence. Instead of condition (C2) a stronger
condition is often employed in the literature.

(C4) Strong Monotonicity: C does not increase on average under selective inco-
herent operations, i.e.,

2 PiClpn) < Clp) (7.13)
l

for any set of incoherent Kraus operators K; defining probabilities p; =
tr(KlpK;) and post-measurement states p; = K ,oKlT /pi.

This condition is indeed stronger than monotonicity, because (C3) and (C4) together
imply condition (C2) for the set IO [BCP14].

The standard example for a coherence measure is the ¢;-norm of coherence
[BCP14], defined as

Ce(p) = Z|Pi,j|, (7.14)

ij

where p; ; = (i|p|j) are the matrix elements of p in the incoherent basis. This
measure captures the intuition that the magnitude of the off-diagonal elements
pizj quantifies the coherence content of states. In particular, Cy, (p) satisfies (C1),
(C3), (C4), as well as (C2) for the class IO [BCP14]. However, for d > 3, Cy,
violates monotonicity (C2) for the classes MIO and DIO [BX17].

Of fundamental importance is the relative entropy of coherence defined as [BCP14]

Crel(p) = min S(pllo), (7.15)

where S(pl||o) = tr(plog p — plog o) denotes the quantum relative entropy. The
relative entropy of coherence satisfies (C1)-(C3) for the set MIO, as well as (C4).
Remarkably, this measure is also one of the simplest, because it can be written
as [A06]

Crei(p) = S(Alp]) = S(p), (7.16)
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with the dephasing operator A, and where S(p) = —S(p||1) is the von Neumann
entropy from Eq. (6.6). The relative entropy of coherence has several important
operational meanings regarding the asymptotic interconversion of resources. We
make the following definitions without giving the precise mathematical expressions
which can be found in [WY16].

e The distillable coherence Cq(p) is the maximal rate %, at which & copies of
the qubit golden unit |¥;) can be obtained from n copies of p via incoherent
operations in the asymptotic limit n — oo.

e The coherence cost C¢(p) is the minimal rate %, at which k copies of the
qubit golden unit |¥;) can be transformed to n copies of p via incoherent
operations in the asymptotic limit n — oo.

It holds that Cq(p) < C.(p) with equality for pure states and both quantities
are coherence measures satisfying (C1)—(C4) for the class MIO. Remarkably, the
distillable coherence is equal to the relative entropy of coherence Cy. under the
classes IO and MIO [WY16]. Moreover, C; also coincides with the coherence cost
under MIO. This means that under the maximal set of free operations, coherence
theory is reversible, i.e., C4(p) = C.(p) holds for any quantum state. Coherence
theory under IO is irreversible, but there is no “bound coherence”, that is, C4(p) =
0 & C.(p) = 0 [WY16]. A recent result shows that under the class SIO bound
coherence is generic: almost every mixed quantum state is undistillable, C4(p) =
0 [ZLY*19, LRA19]. This is particularly surprising as SIO has exactly the same
conversion power as IO in pure-to-pure state transformations [CG16a].

7.3 Resource Theory of Block Coherence

The notion of quantum state coherence has been generalized in several directions.
A straightforward generalization consists of relaxing the orthogonality requirement
of the incoherent basis. The resource theory of superposition is formulated via a
reference basis {|c,~)}l¢:1 of H that is not necessarily orthogonal [TKEP17, TVKJ17,
DMR*17]. Given such a basis, free states and free operations are defined similarly
to the resource theory of coherence. Also several measures can be readily general-
ized such that they describe the degree of superposition of quantum states with
respect to the reference basis. In particular, the relative-entropy-based measure is
a proper superposition measure. However, in the case of a nonorthogonal basis,
the loss of symmetry also implies that particular structure of the theory is lost:
i) for qubit systems there exists only a single state with maximal superposition
ii) for higher dimensions, there exists no state with maximal superposition in
general [TKEP17]. The QRT of superposition can be used to quantify the nonclas-
sicality in the superposition of a finite number of optical coherent states [Gla63].
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This is not possible using standard coherence theory since the optical coherent
states are not orthogonal.

In this thesis, we focus on a further generalized notion of coherence which
was introduced in Ref. [A06]. This work aimed at quantifying the degree of su-
perposition in quantum states with respect to an orthogonal decomposition of the
underlying Hilbert space. We refer to this framework as the QRT of block coherence
since it contains standard coherence theory as a special case and has an analog struc-
ture (see below). Although Ref. [A06] put forward the first work on the axiomatic
quantification of coherence, the QRT of block coherence is far less developed than
standard coherence theory. However, we note that parts of block-coherence theory
can be viewed as a special case of the QRT of asymmetry [PCB*16].

We consider a Hilbert space H = &;n; that is partitioned into orthogonal
subspaces mr;, that is, 7; L m;;. By denoting the projector onto the i-th subspace by
P;, the set P = {P;} is a projective measurement on /. We define block-incoherent
(BI) states as density matrices of the form [AO6]

o1 = Z PioP;, o €S(H). (7.17)

The resource-destroying map is now the block-dephasing operation A[o"| = }; P;o P;,
which sets all entries except the blocks on the diagonal to zero. Hence, the set of
block-incoherent states is given by Z = A[S(H)]. In other words, block-incoherent
states are block-diagonal and thus do not possess “outer” coherence across the
subspaces ;.

In the QRT of block coherence, Oy, is called the set of (maximally) block-
incoherent (MBI) operations. The set MBI contains all channels satisfying

Awmpi[Z] € Z, or equivalently, (7.18)
AMBI oA=Ao AMBI oA. (719)

In the QRT of asymmetry, the free operations studied in the literature are the
group-covariant operations, i.e., channels that commute with all unitary channels
obtained from the symmetry group. In the language of coherence theory these
operations are the translationally-invariant operations TIO [MSZ16], which form a
strict subset of the maximal set of free operations MBI [MS16].

Block-coherence measures can be introduced in analogy to coherence measures.
Given a projective measurement P, we call a real-valued function C(-, P) : S(H) —
R a block-coherence measure if it satisfies the properties (C1)-(C3) from Sec. 7.2.3
for the class MBI. For that, we replace incoherent by block-incoherent and view
7 as the set of block-incoherent states. By employing condition (C2) it can be
shown that any block-coherence measures C(p, P) obeys the natural property of
block-unitary invariance: C is invariant under unitaries acting on the subspaces
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Figure 7.1: Visualization of the structure of convex quantum resource theories in the
case of block coherence. The block-coherence content C(p;) = C(p1,P) of a quantum
state p; € S(H) is the distance of this state to the set Z of block-incoherent states. Block-
incoherent operations Ayp; map any state o7 € 7 to a state o0y, € Z. When applied
to a resourceful state p;, the free map Aypg; decreases the distance to the set Z: with
P2 = Ampi[p1] it holds that C(p2) < C(p1).

m; = im P; [BKB18]. The structure of the QRT of block coherence is visualized in
Fig. 7.1.

Several block-coherence quantifier were introduced in [}0\06] and the monotonic-
ity condition (C2) was proven for some of them. Further block-coherence measures
were presented in [BKB19]. In Ref. [BKB18] the general class of distance-based
block-coherence quantifiers was investigated. We call a realvalued positive function
D(p,0) > 0 a distance measure on quantum states p, o if D(p, o) = 0 is equivalent
to p = o. If D additionally satisfies symmetry and the triangle inequality, it is
called a metric [NCOO]. For any distance D we obtain a coherence quantifier given
by

Cp(p,P) = inf D(p,0), (7.20)
o€

where the infimum is taken over the set of block-incoherent states. This definition
immediately implies that Cp satisfies property (C1). Moreover, Cp(p, P) from
Eq. (7.20) satisfies:

e (C2) if D is contractive under any quantum operation A, i.e.,

D(Alp). Alo]) < D(p,0), (7.21)

e (C3) if the corresponding distance is jointly convex, i.e.,

D(Z Pipi,ZPjO'j) < ZPiD(Pi, o) (7.22)
i J i

holds for any ensembles {p;, p; }, {pi,0:} [BCP14].
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It is apparent that the QRT of block coherence reduces to standard coherence
theory in the special case when all effects P; have rank one, i.e., P; = |i){i|. Block-
coherence theory has the merit that it naturally views coherence as a quantity that
is defined with respect to a (projective) measurement. The next section addresses
and answers the question whether the QRT of quantum coherence can also be
defined with respect to the most general quantum measurement.

7.4 Resource Theory of POVM-based Coherence

In this section, we describe the broadest generalization of the QRT of coherence
that currently exists: the resource theory of POVM-based coherence. Coherence is
an intrinsic property of quantum states and thus should be defined with respect
to general quantum measurements (POVMs). This is because POVMs describe
the most general type of quantum observable, see Sec. 3.2. Moreover, POVMs
can outperform projective measurements for many tasks in quantum information
theory [OGWA17]. This includes quantum tomography [RBKSC04], unambiguous
discrimination of quantum states [Ber10], quantum cryptography [Ben92, Ren04],
Bell inequalities [Gis96, VB10] or quantum randomness generation [APVW16,
BKB17].

We argued in Ref. [BKB19] that a notion of coherence with respect to a general
quantum measurement is meaningful if: i) it can be embedded in a consistent
resource theory ii) POVM-based coherence measures have interesting operational
interpretations, i.e, they quantify the advantage of states in a quantum information
protocol. Both points were addressed in [BKB18, BKB19], where a QRT of quantum
state coherence with respect to an arbitrary POVM was introduced and studied.
The content of this section is a summary of the results contained in these two
manuscripts. The original publications and my precise contribution to these works
can be found in App. A.2 and App. A.3. We expect that our findings will help to
clarify the role of coherence in all information technologies employing nonprojective
quantum measurements.

7.4.1 Summary of Results

Let E be a POVM on H with d = dim H. POVM-based coherence theory is defined
by linking it to the resource theory of block coherence specified by the Naimark
extension P of E. See Sec. 4.3 to find a detailed construction of two different
Naimark extensions for any POVM. In particular, we specify the minimal dimension
d’ > d of the Naimark space H’. We denote by £ : L(H) — L(H') the isometric
Naimark embedding channel. It holds that

tr(E;p) = tr(P;E[p]), forall p € S(H). (7.23)
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Hence, the Naimark extension P leads to the same expecation values for embedded
states £[p] as the original POVM E for p. Therefore, it is natural to define the
coherence of a state p w.r.t. a POVM E as the block coherence of £[p] w.r.t. the
Naimark extension P of E, namely

C(p.E) = C(&[p].P), (7.24)

where the function C on the right denotes any block-coherence measure [BKB18].
This concept is visualized in Fig. 7.2. Since the Naimark extension of a POVM is
not unique, one should ensure that the right side of Eq. (7.24) does not depend on
the choice of Naimark extension P. If this holds, it implies that in the special case
of E being a von Neumann measurement E; = |i)(i|, that C(p, E) generalizes the
corresponding standard coherence measure [BKB19].

Embedding
channel

States on Naimark space

Block-incoherent
states of P

System states

Embedded
system states

Figure 7.2: The QRT of POVM-based coherence is defined by making use of the Naimark
construction. Quantum states p are embedded as £[p] to act on a higher-dimensional
Hilbert space (Naimark space). The POVM E is extended to a projective measurement
P on the Naimark space which defines a set of block-incoherent states Z. The POVM-
coherence measure Cye (p, E) is the distance between £[p] and its projection A[£[p]] onto
block-incoherent states. This figure is taken from my publication [BKB18].

The definition in Eq. (7.24) allows to characterize the states with zero coherence
(POVM-incoherent states pp;) by a simple condition [BKB18]. This can be used
to show that for some POVMs the set of POVM-incoherent states is empty. The
generalization of incoherent states are states with minimal coherence ppi,, which
form a set M that has similar properties as the standard incoherent set: it is
nonempty, convex, and closed under POVM-incoherent operations, which are
defined below [BKB18].

In the QRT of POVM-based coherence, free (POVM-incoherent) operations
can be derived from block-incoherent operations on the enlarged space. Let A}
be a block-incoherent map on states p’ € S(H’) on the Naimark space with the
additional property that the set of embedded states {E[p] € S(H’) : p € S(H)}
is closed under A{;;. Then, the following channel is called a POVM-incoherent
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operation [BKB18]:
Ampi[p] = E7 0 Ay 0 Elp]. (7.25)

The set of maximally POVM-incoherent operations MPI contains all channels of
the above form and is the largest class of channels that cannot create POVM-
based coherence. Crucially, the set MPI is independent of the chosen Naimark
extension that defines A{;. This invariance property of MPI implies that, in
the case of von Neumann measurements, MPI coincides with the class MIO of
standard coherence theory [BKB18]. Finally, the set MPI can be characterized by
a semidefinite feasibility problem (SDP) by employing the methods developed in
Sec. 5.3.1. In App. B we provide the Matlab file IsMPI.m that evaluates whether
a given channel is element of MPI. This can be used to study the interconversion
of resource states in the QRT of POVM-based coherence. Combining the SDP
characterization of POVM-incoherent operations together with the Fidelity SDP
(Lemma 5.4) allows to determine the maximally achievable fidelity

Fmax(p, O-) = max F(AMPI[/)]’ o) (7.26)
Ampr
between a target state o € S(H) and Aypi[p] € S(H) [BKB18]. A Matlab file that
computes the expression from Eq. (7.26) is given as Fmax.m in App. B.
POVM-incoherent (PI) Kraus operators were introduced in an analogy to MPI
operations [BKB19]. As in standard coherence theory, the class of selective POVM-
incoherent operations PI can be defined via incoherent Kraus operators. Also PI
operations are invariant under the choice of Naimark extension and form a subset
of the maximal set, PI C MPI [BKB19].

Following the axiomatic approach of coherence measures, it is natural to de-
mand that any POVM-based coherence measure satisfies the following conditions:

(P1) Faithfulness: C(p,E) > 0 with equality iff p = pp.
(P2) Monotonicity: C(Ampi[p], E) < C(p, E) for any MPI map with respect to E.
(P3) Convexity: C(p,E) is convex in p.

(P4) Strong Monotonicity: C(p,E) does not increase on average under selective
POVM-incoherent operations P, i.e.,

D piC(p,E) < C(p,E) (7.27)
1

for any set of POVM-incoherent Kraus operators K; defining probabilities
pI = tr(K“oKlT ) and post-measurement states p; = K; ,OK;r /pi.
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Remarkably, any POVM-coherence measure C(p, E) (7.24) satisfies the condition
(P1)—(P4) if the underlying block-coherence measure satisfies (C1)-(C4) under
MBI [BKB18, BKB19]. Below, we give a list of POVM-coherence measures that
were introduced and studied so far [BKB18, BKB19].

o Relative entropy of POVM-based coherence:

Cra(p.E) = H({pi(p)}) + Z pi(0)S(p:) = S(p), (7.28)

with p;(p) = tr(E;p), pi = Al-pAlT /pi, Ai = VE;, and the Shannon entropy
H from Eq. (6.14). This function satisfies (P1)—(P4).

® Robustness of POVM-based coherence:

rob(p ) Tg(l?l}l,){s STi,j iP J l ]} ( )

where 7 = 3, ; 7;,; ® |i)(j| and A; = VE;. This function satisfies (P1)—(P4).

o {1-norm of POVM-based coherence:

Ca(p.E) = ) |lAipA]lh. (7.30)
i#]

This function satisfies (P1) and (P3) but not (P2) in general. It is open
whether it satisfies (P4).

o The class of distance-based quantifiers: Cp(p, E) is defined via Egs. (7.24),
(7.20). Cp satisfies (P1), as well as (P3) if the distance is jointly convex.
If D is contractive under quantum operations, Cp(p, E) is independent of
the choice of Naimark extension and satisfies (P2). This class includes the
geometric POVM-based coherence Cgeo(p, E), and the maximum relative
entropy of POVM-coherence Cpax(p, E) [BKB19].

All of the quantifiers above generalize well-known and frequently used measures
from standard coherence theory [SAP17]. In Ref. [BKB19] we also established
relations among the first three measures which are visualized in Fig. 7.3 for the
qubit trine POVM from Eq. (3.29). In App. B we provide Matlab code to compute
these measures, namely the files Re1EntPBC.m, L1NormPBC.m and RobPBC.m.

The POVM-coherence measure Cyei(p, F') has an important operational inter-
pretation that we explained in Sec. 6.3: it equals the private randomness Ry g
generated by the POVM F on the state p with respect to an eavesdropper E hold-
ing optimal side information about the measured state [BKB19]. Fig. 7.4 (left)
shows the value of Ce(, E™™) for the qubit trine POVM from Eq. (3.29) and
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pure qubit states . Note that E™™ yields up to log(3) ~ 1.58 private random
bits per measurement, compared to maximally one random bit for qubit projective
measurements. The right side of Fig. 7.4 shows the conversion fidelity Fyax(0,0)
from Eq. (7.26) for the trine POVM when starting from an initial state with less
than maximal resource.

1.6 1 27
14 18+
12+ 1.6
° -

S O 14}
08 r 1.2 ¢
0.6 Crob 1 rob

0.5 1 15 2 0.5 1 1.5 2

Figure 7.3: POVM-coherence measures in relation to the generalized robustness of
coherence s := Cyop(p, E) for the qubit trine POVM E = E™™ from Eq. (3.29). Left: the
blue line indicates the bound C1(p, E) < log,(1+s). Red (yellow) dots represent randomly
sampled pure (mixed) states. Similar to standard coherence theory [RPWL17], the upper
bound is not tight. Right: the blue, straight line indicates the graph of C¢,(p,E) = s, on
which all pure states lie (red dots). The yellow dots represent mixed states for which
Cy,(p,E) = s holds. This figure is taken from my publication [BKB19].
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.

11 12 13 14 15 0.94 _0.96. 0.98
Coherence Fidelity

Figure 7.4: POVM-based coherence theory for qubit states with respect to the trine
POVM E"" from Eq. (3.29) in the Bloch sphere representation. Gray lines indicate
the three measurement directions. Left: POVM-based coherence of pure qubits (sur-
face of sphere). The states |0) and |1) have maximal coherence of C = log3. The
Bloch vectors of the three states with the lowest pure-state coherence C = 1 are an-
tipodal to the measurement directions. Right: Maximally achievable conversion fidelity
Frax(p, ) = maxp,,, F(Ampr[p], o) between a pure initial state p (red dot) subjected to
POVM-incoherent operations Ayp; and a pure target state o~ on the sphere surface. Here,
p = |Y) | with [y} = cos(F)[0) + sin(F)[1). Only states in the orbit of [/) under the six
POVM-incoherent unitaries can be reached with unit fidelity, as depicted by the yellow
spots. This figure is taken from my publication [BKB18].
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CHAPTER 8

Conclusion and Outlook

In this thesis, we presented results on two information-theoretical scenarios and
studied the role of general quantum measurements in them.

Employing the results from my publication [BKB17], we investigated a general
MDI setup for randomness generation (i.e., expansion) that consists of two devices:
a source of arbitrary, well-characterized quantum states and an untrusted detector
implementing any measurement. We presented a randomness generation protocol
and quantified its achievable randomness gain depending on the observed measure-
ment statistics and sent states. Our results were applied by investigating several
examples of simple MDI quantum random number generators, where we outlined
optimal honest strategies. In particular, we demonstrated that POVMs can yield up
to twice the randomness generation rate of projective measurements. This proves
the advantage of general quantum measurements over projective measurements in
quantum random number generation. Our MDI setup is practical compared to fully
device-independent (DI) settings, because no loophole-free Bell inequality violation
is required. Moreover, our approach achieves nonzero randomness generation even
for low detector qualities, whereas DI protocols abort in this scenario [PAM*10].
It is possible to generalize our results by relaxing some of our assumptions. Of
primary interest are adversarial attacks beyond the IID assumption and a security
analysis for a finite number of rounds, which becomes relevant for devices with
a low rate of raw randomness generation. Moreover, our bounds could be made
tighter by establishing a bound on the single-round von Neumann entropy instead
of the the single-round min-entropy.

Taking a broader perspective, we believe that in quantum randomness genera-
tion, the optimal trade-off between theoretical security and practical implementabil-
ity has yet to be found. On the theoretical side, future research should identify
general means to connect the many-round min-entropy to suitable single-round
entropies, complementing the methods from Refs. [CFS02, Ren08, AFDF*18]. The
next step would consist in developing general methods to bound the single-round
von Neumann entropy in partially-characterized adversarial setups, akin to the
results from [ABG*07].

Employing the results from my publications [BKB18, BKB19], we introduced
and investigated the resource-theoretical concept of coherence with respect to a

67



8 Conclusion and Outlook

general quantum measurement. A novel quantum resource theory was established
that generalizes the popular, well-studied resource theory of quantum coherence.
In particular, we proposed and analyzed several generalized resource measures.
The results include a characterization of free states, free operations and result-
ing conversion properties within the resource theory. We found an interesting
connection of POVM-based coherence to randomness generation that provides an
operational meaning to the concept of coherence with respect to a measurement.

Our work provides the foundation for a full operational analysis of POVM-based
coherence as a resource, similar to the results in standard coherence theory [WY16,
CG16a, CG16b, YMG*16]. In particular, this analysis would enable to compute the
distillable POVM-coherence and the POVM-coherence cost, in analogy to [ZLY*18,
RFWA18, Lam19, LZ19]. As a consequence it would reveal whether our generalized
resource theory is reversible under a given class of POVM-incoherent operations,
or whether there exist bound resources [ZLY*19, LRA19]. Future research would
benefit from a possible simplification of our constructions. In particular, we believe
that a purely local characterization of the POVM-incoherent operations can be
obtained. Several extensions of our framework are possible. It is likely that nearly
all known incoherent channel classes and coherence measures [SAP17] can be
generalized to a POVM-based formulation. In addition, we expect that more POVM-
based coherence measures admit an operational interpretation, which will further
motivate our theory and link it to applications in quantum information science.
Finally, future work could reveal the connection of POVM-based coherence to other
notions of nonclassicality such as entanglement and purity [SSD*15, SKW*18].
We expect our advances to help clarify the role of general quantum measurements
in information technologies.
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Measurements of quantum systems can be used to generate classical data that are truly unpredictable for every
observer. However, this true randomness needs to be discriminated from randomness due to ignorance or lack of
control of the devices. We analyze the randomness gain of a measurement-device-independent setup, consisting
of a well-characterized source of quantum states and a completely uncharacterized and untrusted detector. Our
framework generalizes previous schemes as arbitrary input states and arbitrary measurements can be analyzed.
Our method is used to suggest simple and realistic implementations that yield high randomness generation rates
of more than one random bit per qubit for detectors of sufficient quality.
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I. INTRODUCTION

Random numbers are a fundamental resource for many
information-theoretical tasks, in particular cryptography. For
any task that requires secrecy, it is important that the random
numbers are unpredictable for every observer, also a potential
eavesdropper—a property which is called true randomness [1]
or private randomness [2]. In contrast to viewing randomness
as a property of actual numbers, this notion crucially depends
on the process of creating the random numbers and its underly-
ing physics. In the deterministic classical world, randomness
is the result of ignorance and hence a subjective property,
which cannot be proven for a powerful adversary. In nature,
however, private randomness is made possible by the intrinsic
unpredictability of quantum measurements: even if the whole
system is known, outcomes cannot be predicted with certainty.
Yet, even in quantum mechanics, true randomness cannot
be certified without further assumptions. This is because
realistic settings always exhibit a mixture of true quantum
randomness and classical randomness. The latter may stem
from uncontrolled environmental degrees of freedom but needs
to be attributed to an eavesdropper’s malicious tampering
with the devices. The challenge consists of separating and
quantifying these types of randomness while keeping the
assumptions experimentally viable.

The amount of certifiable randomness depends on the
level of control over the devices [3]. Device-independent (DI)
randomness generation protocols [4-7] view all devices as
black boxes and certify randomness via the violation of a Bell-
type inequality and thus require loophole-free Bell tests. While
these have recently been demonstrated experimentally [§—11],
DI randomness generation setups are far from practical.

More practical schemes are obtained by introducing
additional assumptions, e.g., semi-device-independent ran-
domness generation [12—14], the quantum steering scenario
[15], and others. In this work, we discuss measurement-
device-independent (MDI) randomness generation, of which
a particular instance was introduced in Ref. [16] and has
recently been realized in experiment [17]. The MDI setup
consists of two devices: a well-characterized state source and
a completely uncharacterized detector. While previous work
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2469-9926/2017/95(6)/062305(9)

062305-1

[16] provides the randomness generation rate of a specific
two-outcome single-qubit setup, we introduce and analyze a
general framework which encompasses all MDI randomness
generation setups, with an arbitrary state source and detector.
This allows us to devise practical setups that yield up to twice
the randomness of the previous work [16].

This paper is structured as follows. In Sec. II we introduce
the general MDI randomness generation protocol. In Sec. 11T
we discuss the eavesdropper’s degrees of freedom and state
the optimization problem in terms of a semidefinite program.
Finally, examples and practical applications of our result are
provided in Sec. IV.

II. MEASUREMENT-DEVICE-INDEPENDENT
RANDOMNESS GENERATION

A. Setup and protocol

The MDI randomness generation setup consists of two
devices (see Fig. 1). The first is a source, able to emit a
set of well-characterized quantum states of arbitrary (finite)
dimension. In particular, for the input a the state p(a) is sent.
Second is an uncharacterized detector which announces an
outcome x whenever a state was sent. The knowledge of
the quantum states and the measurement results are used to
characterize the detector.

We denote the user of the protocol Alice, and the adversary
Eve. Alice sets up the devices in a secure laboratory which is
shielded from any kind of information transfer to the outside
world. It is verified that the sending box has no further degrees
of freedom than to emit a quantum state upon receiving a
specific input. The adversary Eve may have built the detector
but has no access to the laboratory afterwards.

The sent states p(a) are selected via an initial string of
random numbers. Because of that, we describe a randomness
expansion scheme [2,4]: a user with access to an initial
random string A = (aj,ay, ...) interacts roundwise with a
device leading to a string X = (x1,X>, ... ), which contain the
input and output of each round, respectively. The randomness
expansion protocol then outputs a processed string X(X) which
is close to uniform, conditioned on A as well as on any side
information E previously stored in the device.

The MDI randomness expansion protocol is as follows:

(1) For every round, do steps 2 and 3.

©2017 American Physical Society



BISCHOF, KAMPERMANN, AND BRUS

Lab
a
Box
(sending) @
L @
Eve Yy \J
built Black Box Black Box T
(detecting)

FIG. 1. The measurement-device-independent setup for random-
ness generation (for details see text). The trusted source sends for the
inputa € {1, ... ,n,} aknown state p(a) to an untrusted measurement
device (black box), which outputs x with x € {1,... ,n,}. The
outcome randomness Ry is characterized by the observed probability
distribution Poys(x,a), i.e., the probability that the pair (x,a) occurs.

(2) The sending box sends a state p(a) of dimension d with
randomly chosena € {1, ... ,n,} to the measurement box. On
average, this uses up >, p,(—1log,(p,)) bits of the initial
randomness per round, where p, denotes the probability that
p(a) was sent.

(3) After the state p(a) has been sent, the measurement box
outputs x € {1, ... ,n,} distributed according to p,. Potential
losses can be announced as an extra no-detection outcome
which is appended to the proper outcomes, or the device
randomly attributes measurement results, which contributes
to the noise. The only requirement is that the detector gives an
outcome in every round.

(4) After many rounds, Alice estimates the observed
measurement statistics Pyps(X,a) = p, Pobs(x]a), i.€., the prob-
ability that the pair (x,a) occurs. From that the randomness
gain per round Ry can be computed (see below).

(5) Alice uses some further bits of the initial random string
to postprocess the raw output into a shorter string of fresh
private random numbers.

In the last step of the protocol, the user applies a quantum-
secure extraction protocol to transform the output string X
to a string X that is close to uniform with respect to Eve
and the input. This can be done via seeded extraction, e.g.,
two-universal hashing, for which some further random bits are
needed. For details, see Ref. [1] and references therein.

B. Randomness quantification

For the extraction protocol it is necessary to quantify
the minimal number of bits needed for Eve to reconstruct
the measurement result from her side information, i.e., the
conditional min-entropy [18]. The single-round degrees of
freedom in randomness expansion can be described by a
tripartite state py4g on the single-round classical output and

PHYSICAL REVIEW A 95, 062305 (2017)

input registers and Eve’s system, which reads

PXAE = pr|x><x|X ® pae(x), (H

X

where {|x)} denotes a family of orthonormal states on X. The
randomness contained in the random variable X, associated to
Dy, 1s quantified by the conditional min-entropy

7—\>/X = Hmin(X|AE) (2)

that measures the unpredictability of X with respect to the
classical system A and the quantum system E. For classical-
quantum states it is known [19] that the min-entropy can be
expressed via the optimal guessing probability

Huin(X|AE) = —log,[ Pges(XIAE)], 3)
defined as

Paress(X|AE) = max XA: ptr(F(x)pae(x)). “4)

Here, {F(x)} denotes a positive operator-valued measure
(POVM) on the system AE, i.e., a collection of positive-
semidefinite operators F(x) > 0 fulfilling " VFo)=1.

X=

III. ANALYSIS OF RANDOMNESS GENERATION

A. Eavesdropping characterization

Before introducing the degrees of freedom in the MDI
setup, we list the assumptions below:

(1) The laboratory is shielded from any information trans-
fer to the outside.

(2) The sending device’s behavior is fully characterized to
emit a single specific state p(a) upon receiving the input a.

(3) The measurement device employs an independent
and identically distributed (i.i.d.) strategy; i.e., it behaves
independently and identically in each round.

(4) We consider the asymptotic limit; i.e., the measurement

statistics is precisely known.
The first condition is necessary in any randomness expan-
sion scheme, since otherwise the generated output could be
transmitted to Eve directly. The second assumption is what
differentiates MDI from fully device-independent schemes.
The third condition corresponds in the language of quantum
key distribution (QKD) to individual attacks. In Ref. [16], the
authors describe how to prove the security of the MDI setup
against collective attacks solely by employing the security
proof against individual attacks and convexity arguments. If
the arguments given there hold, this proof would also be
applicable in our analysis, extending the result to collective
attacks.!

Given these assumptions, the eavesdropper’s most general
strategy in the MDI setup is as follows. Eve has built the
measurement apparatus that deviates from the honest device
in two ways (see Fig. 2). First, to obtain correlations with the
measurement outcome, she has hidden a system E’ in the box.

'However, we are not sure whether the tensor product structure of
the (effective) detector POVM across different rounds, employed in
the proof, can be guaranteed for MDI collective attacks.

062305-2
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Detector :P(a)

FIG. 2. The graphic depicts the relevant systems, states, and
measurement to estimate the randomness generation rate, which is
conditioned on the outside systems A and E. The primed systems
are contained in the measurement box and represent internal degrees
of freedom (E’) as well as the incoming state p(a) (A’). A further
internal degree of freedom is given by the unknown measurement
{G(x)}, which produces the outcome x in the laboratory. The state
o provides correlations between the detector degrees of freedom and
Eve’s site E.

Her distant laboratory E and the hidden system share a state o
that may contain arbitrary amounts of entanglement. Second,
upon receiving the incoming states p(a), the measurement
apparatus performs an unknown measurement {G(x)} on it
and part of o, leading to the outcome x in the laboratory. Eve
aims to adjust her state and the performed measurements in
such a way that she is perfectly correlated with the laboratory
outcome, while producing the measurement statistics expected
from the device. Furthermore, the analysis includes the
correlation of the output system X with the input system A.
Conditioning on the input ensures the outcome randomness to
be “fresh,” i.e., independent of the initial randomness.

B. Degrees of freedom in the MDI setup

In order to characterize the general way that the state in
Eq. (1) is obtained in the MDI setup, we introduce the relevant
systems and operators below. Each system S is associated to a
Hilbert space Hs, on which the operators act.

(1) A and X denote classical registers that store the input
a and output x of each round, respectively.

(2) The incoming state p(a) is associated to A’.

(3) Eve has equipped the measurement apparatus with an
additional system E’ that shares an arbitrary state o with her
site E.

(4) The measurement box performs an unknown POVM
{G(x)} with n, outcomes on the primed system A’E’ whose
result is stored in X.

(5) The optimal POVM from Eq. (4) on AE is denoted by
{F(e)},withe € {1,... ,n,}.

PHYSICAL REVIEW A 95, 062305 (2017)

In the following, we formulate the security analysis as an
optimization problem, whereby A and E try to guess X, while
their operations are consistent with the classical data in the
laboratory. The initial average global state reads

pin =Y pala)(als ® pa(a) ® ok, (5)
a
while the register X is initialized with an uncorrelated state.
We denote by pin(a) the initial global state if a has occurred.
The box measurement {G(x)}, which acts on A’E’, maps the
state on AFE into an ensemble {p,,tag(x)} given by

TAp(X) = pitrA’E/(GA’E’(x) ® LA Pin)s (6)
X

where trg denotes the partial trace over S. According to Eq. (4),
these states are distinguished by a measurement {F(e)}. Its
outcome e = x represents the system A E’s guess of the output
x of the detector.

We denote the probability of the event (x,e) as p, ., which
is given by

Px,e = thr(FAE(e)TAE(x))~ (7)

With that, the guessing probability from Eq. (4) can be for-
mulated as Py (X|AE) = max(p(x) >, Px.x- By combining

Egs. (6) and (7), we obtain
Dre = TaE(Fap(e) tap (Gap (x) ® Lag pin))
=tr(Gap(x) ® Fagp(e) i), 3
where in the second line we have used that, for all linear
operators L; on H;, and I';; on H; ® H,, it holds that
Litry(Ty2) = trp(Ly ® 1T71»). In Ref. [20] it was proven that
when conditioning on classical information, here given by the

register A, the optimal measurement in Eq. (4) consists of
choosing an optimal POVM on E for each a, i.e.,

Fap(e) =) la)(ala ® Fi(ela), )
where {Fg(e|a)} is a family of POVMSs on E (with outcome
e), indexed by a, fulfilling

Fr(ela) > 0, Z Fe(ela)=1 Va. 10
Next, we consider the action of the measurement F,g(e) on

the initial global state pj,(a) for an observer with access to A.
The state after measurement on E’E is given by

heta0E 5(ea) = i a(y Faz(@) pm(@/Fac@), (1)

where 1., denotes the probability to obtain the outcome e
given a, and o g(e,a) is the corresponding conditional state.
Note that the unitary degree of freedom of the postmeasure-
ment state plays no role in the following, as the system E is
traced out. Since Eve’s outside laboratory has no access to the
input, her description of the postmeasurement state is given
by Za Dahrela0r E(e,a). Note that because of the preparation
by measurement, it holds that og/(e,a) = trg(opg(e,a)) is
independent of a, when averaged over e:

> heaop(e.a)=op Va, (12)

e
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ie., the index a determines a particular ensemble

{Aeja,0e(e,a)} of the state op. This is because a local

measurement, if the outcome cannot be communicated, does

not influence a remote part of a state. It is known from quantum

steering that, for a suitable global state, any local state can be

prepared by a measurement on the other side [21].
Altogether, we obtain

Px.e = Z PaPx.ela
a

=Y patr(Gup(0)pa(@) ® heaop(e,a),  (13)

a

where only the (primed) degrees of freedom in the measure-
ment box need to be considered.

In our protocol we observe the statistics Pops(x,a), which
constrains any valid strategy:

Pops(x,a) = Z PaDx.ela
e

= patt(Gap(X)pa(a) ® o). (14)

Here, the average over Eve’s outcomes was taken, because
they are unobservable for the user, and we have used Eqs. (12)
and (13) in the second line.

C. The optimization problem

We summarize the results of the previous section by stating
the optimization problem for the guessing probability. Since
we are left with only two subsystems in the detector A’E’, we
omit the system subscript:

Pruess(X|AE) = max Z Patr(G(x)p(a) ® 6 (x|a)
such that G(x) = 0, Z G(x)=1,
Glela) >0, Y t(dlela) =1 Va, (15)

> 6(elay=)_6(el|l) Va,and

Pops(x,0) = Y patr(G(x)p(a) ® 6 (ela)).

The optimization runs over ensembles {5 (¢|a)} with 6 (e|a) =
Aeja0 (e,a) of arbitrary dimension and a POVM {G(x)} acting
on it and the incoming state. The fourth line represents the
requirement from Eq. (12), and the last line ensures that
the detector degrees of freedom give rise to the observed
probability distribution. This optimization problem is not
straightforwardly feasible, as it has a nonlinear target function
with linear and semidefinite constraints. However, we observe
that the degrees of freedom relevant for the guessing probabil-
ity can be combined into a single effective measurement acting
only on the known state p(a). For that, we define an effective
measurement M, ., on H 4 via

Mx,e\a = )"e\atrE’(GA’E/(-x) ]lA’ X GE’(e9a))a (16)
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with which we can write

P (XIAE) =) patte(M yjapa(a)) 17

by comparison with Eq. (15). We instead optimize over a
superset of the actual degrees of freedom relevant for the
guessing probability, which consists of linear operators My .|q
on H 4 with semidefinite and linear constraints that follow
from Eq. (16). This, in turn, will yield an upper bound to
the guessing probability and consequently a lower bound to
the randomness gain. These constraints are as follows. The
operator defined by Eq. (16) is positive semidefinite, since all
constituents are positive semidefinite, and furthermore fulfills
for all a

D Mo =) trp(Gap®ly @op) =1y,  (18)

where we have used Eq. (12) in the first equality. Thus, it has
the properties of a family of POVMs on H 4/, indexed by a,
where the outcome x goes to Alice and e to Eve. Two further
properties can be observed, which read

D Myge o< 1, (19)

Y M=) Mo (20)

where Eq. (19) follows directly from Eq. (16), and Eq. (20)
follows from Eq. (12). Thus, strategies given by a POVM
family {M, ..} with properties (19) and (20) include the
actual strategy (15), but may not fully characterize it. The new
formulation is characterized by only linear and semidefinite
constraints and due to the linearity of the target function can
be cast into the form of a semidefinite program (SDP).

Theorem 1. The optimal guessing probability in any MDI
randomness generation setup, subject to the assumptions
explained in Sec. III A, is upper bounded by the solution of the
following SDP:

P;uess(X|AE) < {?}ax} Z Patt(M, xjqp(a))
X,a

x.ela

suchthat Myeq > 0, Y Myga=1 Va,
X,e

D Moo= [ZM:| -1 Vea, @21)
x X 1

1

ZMx.ela = ZMx.ell Vx,a, and
e e

Pops(x,0) =Y patt(My oap()).

The second line characterizes the operators {My .} as a
POVM for each a. The third and fourth lines ensure that the
POVM family {M, ..} obeys the properties (19) and (20),
respectively, which follow from the form of the effective
measurement (16). The former property may be interpreted as
a nonsignaling condition between the detector and Eve’s site,
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and the latter as a nonsignaling condition between the systems
A and E. The notation [ M ];; denotes the (1,1) element of the
matrix M. The last line ensures that the adversary’s operations
actually give rise to the observed measurement statistics Pops
in the laboratory. The outcome of the SDP provides via Egs. (2)
and (3) a lower bound to the randomness generated per round
‘R x in the measurement-device-independent setup.

IV. RESULTS

For any MDI setup with arbitrary detector and state source,
the observed probability vector can be read into the SDP
(21) to determine the randomness of the output bits. In the
following, we discuss which sets of states {p(a)} and observed
distributions p, Pyys(x|a) are optimal in practical setups.

Our model of the detector behavior consists of a proposed
ideal quantum measurement mixed with white noise,

1—n

o

Pops(x,a) = 77Pid(x,a) + Pas (22)

where Py is the distribution of the ideal measurement, 1 €
[0,1] is a quality parameter, n,, is the number of outcomes, and
P 1s the input distribution.

In order to characterize the detector, we make use of the
tomographically complete qubit state set {|+),[0),|1),]+i)},
corresponding to the £1 eigenstates of Pauli o, and the +1
eigenstates of o,,0,,. We employ pure states since we wish to
minimize the input randomness.

An upper bound of the MDI randomness gain is given by
the classical conditional min-entropy of the input and output
distributions [20]:

Huin(X|A) = —log, [Z max Pobs(x,a)] (23)

In order to maximize this expression we need to have unbiased
measurement outcomes x for every input a. Since for an ideal
quantum measurement we cannot ensure unbiased outcomes
with respect to each of the input states, we make use of an
input distribution p, that is almost sharp. This means that
the first state |+) from the ordered list of states is sent with
probability ¢ = p; — 1, and the other states are only sent
rarely to characterize the detector. We call the parameter g
asymmetry of the distribution p,. Furthermore, an asymmetric
choice of inputs is desirable for randomness expansion in the
asymptotic limit, as it reduces the input randomness (see step
2 of the protocol in Sec. II).

To make the limit ¢ — 1 feasible in the SDP, we divide
all rounds into test and generation rounds: in test rounds,
states are sent according to a uniform distribution, and in
generation rounds, only o(1) is sent. The asymptotic limit is
then defined as the number of rounds N — oo. Simultaneously
we take the limit ¢ — 1 to ensure maximal asymmetry.
Similarly to QKD Eve’s optimal strategy is now as follows: She
provides a POVM that reproduces the expected measurement
statistics in the fest rounds, but aims at optimally predicting
the outcomes of generation rounds, since test rounds have
negligible contribution to the total guessing probability in the
limitg — 1.

PHYSICAL REVIEW A 95, 062305 (2017)

In this asymmetric scenario, the optimal situation for
randomness generation (expansion) corresponds to the mea-
surement statistics of a POVM with three properties:

(i) The POVM is extremal [22]; i.e., it cannot be given
as a mixture of two different POVMs [23]. This ensures
that its outcomes cannot be predicted by having access to
a random variable (which determines the mixing) and thus
maximizes randomness with respect to the measurement
apparatus controlled by Eve.

(ii)) The POVM has unbiased outcomes for the first input
state; i.e., the output distribution has maximal entropy.

(iii) The POVM has d? outcomes for the state space
dimension d. This is because d? corresponds to the highest
number of independent outcomes: any further POVM element
can be written as a linear combination of previous ones,
which amounts to classical postprocessing that cannot increase
the true randomness. Therefore, the maximally achievable
randomness is 2 log, d bits [24].

We stress that this POVM is realized in the optimal honest
device, i.e., a device that implements a particular predefined
POVM. The semidefinite program, on the other hand, finds
the optimal measurement for Eve that gives rise to the
measurement statistics expected from the honest device.

We have no proof of optimality of the considered Pauli-
eigenstate preparations, but in the scenarios below these
states perform equally well or better than randomly chosen
pure states. For the considered asymmetric input distribution,
where the first state has unbiased outcomes, we have found
numerically (i) that the randomness gain does not depend on
which set of tomographically complete states is used and (ii)
for two sent states it is optimal for the second state to be
an eigenstate of the measurement as this poses the strongest
constraint on the classical noise of the detector.

A. Single-qubit setups

From the previous section, it follows that a qubit mea-
surement can have up to four independent outcomes. In the
following, we compare the performance in randomness gain
of different sets of sent states and numbers of outcomes. In
practice, the configuration is chosen by taking into account
which states and measurements are most readily available in
the laboratory.

In general, qubit POVM elements can be decomposed as

M; =O(k(]1+771k5') with oy > 0,
=1 Y oy =0, (24)
k k

where k =1, ... ,n,. To ensure unbiased measurement out-
comes with respect to the most frequent state, we require

S 5 1
(FIMi|+) = (1 +my - e1) = —

ne

Vk=1,...,n,.
(25)

Furthermore, we have the following extremality conditions
[22]. The POVM elements have rank 1, which is ensured by
normalized measurement directions || = 1. Additionally,
the measurement operators are linearly independent. This is
fulfilled, e.g., for four outcomes if and only if the measurement
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FIG. 3. The randomness rate versus the detector quality defined
in Eq. (22) in the asymptotic limit and for ¢ = p; — 1. The solid
(dashed) line depicts an extremal POVM with n, =4 (n, =2)
outcomes for a tomographically complete set of n; = 4 states. The
ideal measurement statistics arises from the measurement directions
in Eq. (26) (n, = 4) and from a o, measurement (n, = 2). The lower
line corresponds to the case of two nonorthogonal sent states and two
outcomes.

directions form a tetrahedron; i.e., they cannot lie in a common
plane.

Note that not all o, can be equal, since then the property
(25) would force all vectors to lie in the plane defined by iy -
¢, = ¢, which violates the extremality condition. A maximally
symmetric four-outcome configuration is given by

myp=é;, my= —761 + Tez,
- 1. 2J/3_ 6.
M3y = —Z€1 = ——€ =+ €3
1 7
alzg, a2=a3=a4=i, (26)

which we make use of in the following.
Also, we later employ a three-outcome extremal POVM
given by

V3.

nyy3 = —562 + —e3,

2

mp = e,

(03] :a2:a3:%. (27)

Figure 3 compares the performance of different numbers of
outcomes and sent states in the asymptotic limit as a function
of the detector quality n. For ny = 2 (ny, = 4), states are drawn
from the first two (all) elements of the set {|+),]0),[1),]|+i)}.
The measurement statistics is described by Eq. (22), where P4
is the distribution, which we obtain if, for n, = 4, the honest
device implements the four-outcome measurement (26), and
for n, = 2 a 0, measurement. The optimization is performed
with standard tools such as YALMIP [25], and SDPT3 [26] as
solver. We observe that states drawn from a tomographically
complete set in test rounds are clearly advantageous, since
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randomness Rx

0 0.2 0.4 0.6 0.8 1
angle parameter o

FIG. 4. The randomness rate as a function of the angle parameter
o [see Eq. (28)] between two sent states for several detector qualities
n and asymmetry g = % The statistics of the ideal measurement
corresponds to a o, measurement. For o = 0, the randomness rate is
equal to zero.

these allow for a better detector characterization. Moreover,
the figure shows that for fixed input states, the performance
of an extremal four-outcome measurement is, depending on
the visibility, up to twice as good as the best projective
measurement. In particular, the maximal local randomness
of two bits is reached for a noiseless detector (n = 1). For a
detector quality of n > 97%, the setup generates more than one
random bit per qubit. In the special case of a one-qubit sending
box with tomographically complete states in the asymptotic
limit, and ideal statistics given by a o, measurement, our bound
is equal to the exact formula from previous work [16].

1. Randomness for different relative angles

We are also able to study the angle dependency between
two states of the MDI randomness rate. Consider the case of
the observed distribution (22), where P4 corresponds to the
statistics of a o, measurement. For any « € [0, 1], the two sent
states are drawn from the set {|¢,),|Vy)} with

pa) = /1 — |0 fu
o o
Iwa>=,/1—5|0>—\/;ll>- (28)

Figure 4 depicts the randomness generation rate for several

detector qualities as a function of « € [0,1]. For « =0
both states are identical, |¢g) = |¥o) = |0), and for o =1
they become orthogonal, |¢1) = |+), Y1) =|—). In both

cases the randomness generation rate vanishes, as expected.
However, we observe that for an infinitesimally small but
nonvanishing angle, we achieve near-maximal randomness
for n = 1, indicating that any amount of nonorthogonality in
this scenario forces Eve to provide the honest measurement.
More specifically, the n = 1 line coincides with the classical
min-entropy from Eq. (23). However, the feature of much
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randomness RX

quality

FIG. 5. The randomness rate of a two-state two-outcome setup
with the sent states |+), |0) and different asymmetry parameters
q = p1. The ideal measurement statistics corresponds to a o,
measurement. The ¢ — 1 line is nonzero for n > %

randomness for almost no quantumness comes at the cost of
two requirements: (i) precisely characterized states to ensure
that they are not identical and (ii) precise determination of the
observed measurement statistics Pqps, because the randomness
rate is discontinuous at @ = 0, where no randomness can be
extracted. Thus, in practice one would use a preparation with
a finite parameter «, such that the experimentally observed
statistics allow to distinguish the two states.

2. The role of the asymmetry

In the asymptotic limit, and for a tomographically complete
set of sent states, a higher asymmetry [i.e., higher probability
to send p(1)] amounts to a larger gain in randomness
for all detector qualities. However, we make the intriguing
observation that for two sent qubit states {|+),|0)}, the optimal
asymmetry g = p; depends on the detector quality. For that,
we make use of an ideal statistics of a o, measurement.
Figure 5 shows that for detector qualities n 2 0.8 maximal
asymmetry g — 1 is optimal, whereas for lower qualities
a more balanced input distribution performs better. This
behavior is possible in the two-state case, since there are
uncharacterized detector degrees of freedom that can be
optimized for Eve. In particular, there are two opposing effects.
On the one hand, the maximally achievable randomness is
upper bounded by the conditional min-entropy from Eq. (23),
which is maximal in the asymmetric case, since for ¢ — 1
(g = 0.6) the upper bound is 1 (=0.51) at n = 1. However,
with increasing unbiased noise (lower n), the difference
between the upper bounds goes to zero. On the other hand,
for low detector qualities, Eve can be perfectly correlated
with the measurement outcomes of one state (]+)) while
reproducing Pops. In this case, the measurement outcomes of
the |0) state contain unpredictable randomness, provided 7 is
nonzero. In such cases, the asymmetric rate Ry is equal to
zero, but sending both states with similar probability leads to
nonzero Ry.
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FIG. 6. The randomness rate per qubit versus the detector quality
from Eq. (22) for different setups in the asymptotic limit (order
from upper to lower line corresponds to order in legend). The upper
two lines correspond to setups with four different sent states per
qubit, whereas the lower three lines correspond to two different sent
states per qubit. The ideal measurement statistics is given by a 2"
measurement, where m is the number of sent qubits.

B. Multiple-qubit setups
1. Performance comparison

Here, we compare setups consisting of a sending device
with states of dimension d and a measurement box withn, = d
outcomes. In particular, the sent states are tensor products of
m single-qubit states which are drawn from either the first two
or all elements of the set {|+),]0),|1),|+i)}. The measurement
statistics is described by Eq. (22), where Pyq is the distribution
where the honest device implements a 0 ®" measurement. We
consider the asymmetric limit, in which the first state |4)®"
is sent almost always. To account for experimental resources,
we normalize the randomness gain to the state dimension:
‘Rx/log, d, which is the randomness rate per qubit.

Figure 6 depicts the randomness rate per qubit for several
numbers of sent qubits, m = 1,2,3, per round. States drawn
from a tomographically complete set in test rounds are clearly
advantageous, as the upper two lines show, since these allow
for a better detector characterization. Within our noise model
from Eq. (22), the normalized randomness gain is essentially
independent of the number of sent qubits. More precisely, it
slightly increases with dimension for four sent states per qubit
(upper two lines), and slightly decreases with dimension for
two sent states per qubit (lower three lines).

Furthermore, we have investigated entangled measure-
ments, such as a Bell-state measurement, concluding that
these do not generate more randomness and thus provide no
advantage for increased experimental complexity.

2. Individual versus coherent attacks for two copies

Next, we wish to compare the performance of a single-
qubit setup with a two-qubit setup, in which all observable
quantities correspond to two independent copies of the single
setup. This allows us to assess whether coherent attacks, which
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FIG. 7. The difference of the normalized randomness rates of a
one-qubit setup with tomographically complete states, and a two-
qubit doubling in the asymptotic limit. The solid line corresponds
to a three-outcome POVM, whose statistics is determined by the
measurement directions in Eq. (27), and the dashed line to a projective
measurement.

act simultaneously on both qubits, provide an advantage over
individual attacks. The results from Fig. 6 cannot be used for
that, since there the two-qubit probability distribution is not
the doubling of the one-qubit distribution.

Figure 7 shows the difference of normalized randomness
generation A := Ry (1-qubit) — %RX (2-qubit) of a one-qubit
setup with tomographically complete states, and a two-qubit
doubling. The single-qubit statistics is given again by Eq. (22).
The positive difference indicates that coherent attacks lead to
more predictive power for Eve in the MDI setup. However, this
assertion only holds if Eve can announce results of different
round measurements simultaneously. It is an open question
how Eve’s predictive power behaves in a sequential setup,
where she is forced to announce an outcome in each round, but
the device can have a memory. This means that measurements
of different rounds are in tensor product form and act in general
on the postmeasurement state of all previous rounds, as well
as a fresh ancilla [7].

V. CONCLUSION AND OUTLOOK

In this paper, we have introduced a general framework
for randomness generation (i.e., expansion) with a well-

PHYSICAL REVIEW A 95, 062305 (2017)

characterized source of arbitrary quantum states and an
untrusted detector with arbitrary measurements. We presented
arandomness generation protocol and analyzed its achievable
gain in randomness depending on the observed measurement
statistics and sent states. A lower bound on the randomness rate
is calculated by a numerically feasible semidefinite program.

As an application, we have discussed several examples of
simple MDI setups and outlined optimal honest strategies.
In particular, we devised a one-qubit MDI setup with four
outcomes, which achieves more than one random bit per qubit
for experimentally achievable detector efficiencies. These
setups are practical compared to fully device-independent
schemes, since no loophole-free Bell tests are required.
Moreover, they achieve nonzero randomness generation even
for low detector quality, whereas DI protocols abort in this
scenario [5].

Generalizations of our result are possible by relaxing
assumptions we have made. Of primary interest are attacks
beyond the i.i.d. assumption. In this scenario, the i.i.d.
assumption is relaxed to sequential (roundwise) interaction
with the devices, including the possibility of a detector
memory. For fully device-independent sequential randomness
expansion, it has been shown [7] that for more than 108 rounds,
the rate for general attacks is essentially the same as for i.i.d.
attacks. We expect a similar behavior to hold in the case of
MDI randomness expansion. The extension to a finite number
of rounds is expected to be straightforwardly implementable
in the SDP in Eq. (21). In analogy to parameter estimation
in QKD, one can replace equality in the last constraint by
an appropriate semidefinite constraint which includes the
statistical deviation.

By comparison with previous work [16], we noticed that for
the setup treated there, our lower bound to the randomness rate
coincides with their exact rate. It is an open question whether
this is the case in all MDI setups, which we leave for future
work.

Note added. Recently, we became aware of related work
[27], in which a comparable semidefinite program was used to
calculate the MDI randomness rate in a two-qubit setup with
tomographically complete states.

ACKNOWLEDGMENTS

The authors thank Matthias Kleinmann for discussion. F.B.
acknowledges financial support from Evangelisches Studien-
werk Villigst and from Strategischer Forschungsfonds (SFF)
of the University of Diisseldorf. We acknowledge financial
support from the German Federal Ministry of Education and
Research (BMBF).

[1] D. Frauchiger, R. Renner, and M. Troyer, arXiv:1311.4547
(2013).

[2] R. Colbeck, Ph.D. thesis, University of Cambridge, 2009.

[3] Y. Z. Law et al., J. Phys. A 47, 424028 (2014).

[4] R. Colbeck and A. Kent, J. Phys. A 44, 095305 (2011).

[51 S. Pironio, A. Acin, S. Massar, A. B. de La Giroday, D. N.
Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning et al., Nature (London) 464, 1021 (2010).

[6] B.Christensen, K. McCusker, J. Altepeter, B. Calkins, T. Gerrits,
A. Lita, A. Miller, L. Shalm, Y. Zhang, S. Nam et al., Phys. Rev.
Lett. 111, 130406 (2013).

[71 R.  Arnon-Friedman, R.
arXiv:1607.01797 (2016).

[8] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M.
Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abelldn
et al., Nature (London) 526, 682 (2015).

Renner, and T. Vidick,

062305-8



MEASUREMENT-DEVICE-INDEPENDENT RANDOMNESS ...

[9] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst,
M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel,
M. S. Allman et al., Phys. Rev. Lett. 115, 250402 (2015).

[10] M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner,
A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A.
Larsson, C. Abellan et al., Phys. Rev. Lett. 115, 250401 (2015).

[11] A. Bednorz, Phys. Rev. A 95, 042118 (2017).

[12] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W. Chen,
G.-C. Guo, and Z.-F. Han, Phys. Rev. A 84, 034301 (2011).

[13] J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H.
Zbinden, and N. Brunner, Phys. Rev. Appl. 7, 054018 (2017).

[14] T. Lunghi, J. B. Brask, C. Ci Wen Lim, Q. Lavigne, J. Bowles,
A. Martin, H. Zbinden, and N. Brunner, Phys. Rev. Lett. 114,
150501 (2015).

[15] E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acin, New J.
Phys. 17, 113010 (2015).

[16] Z. Cao, H. Zhou, and X. Ma, New J. Phys. 17, 125011 (2015).

[17] Y.-Q. Nie, J.-Y. Guan, H. Zhou, Q. Zhang, X. Ma, J. Zhang, and
J.-W. Pan, Phys. Rev. A 94, 060301(R) (2016).

PHYSICAL REVIEW A 95, 062305 (2017)

[18] R. Renner, Int. J. Quantum Inf. 6, 1 (2008).

[19] R. Konig, R. Renner, and C. Schaffner, IEEE Trans. Inf. Theory
55, 4337 (2009).

[20] M. Tomamichel, arXiv:1203.2142 (2012).

[21] L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A 183,
14 (1993).

[22] G. M. D’Ariano, P. L. Presti, and P. Perinotti, J. Phys. A 38,
5979 (2005).

[23] E. Haapasalo, T. Heinosaari, and J.-P. Pellonpéd, Quantum Inf.
Proc. 11, 1751 (2012).

[24] A. Acin, S. Pironio, T. Vértesi, and P. Wittek, Phys. Rev. A 93,
040102(R) (2016).

[25] J. Lofberg, in 2004 IEEE International Symposium on Computer
Aided Control Systems Design (IEEE, New York, 2005),
pp. 284-289.

[26] K.-C. Toh, M. J. Todd, and R. H. Tiitlincii, Optim. Meth.
Software 11, 545 (1999).

[27] L Supié, P. Skrzypczyk, and D. Cavalcanti, Phys. Rev. A 95,
042340 (2017).

062305-9



A.2 Resource theory of coherence based on positive-operator-
valued measures

Title: Resource theory of coherence based on positive-operator-
valued measures

Authors:  Felix Bischof, Hermann Kampermann, and Dagmar Bruf3
Journal: Physical Review Letters
Impact factor: 9.227 (2018)
Date of submission: 23 December 2018
Publication status: Accepted
Contribution by F.B.:  First author (input approx. 85%)

This publication corresponds to the Bibliography entry [BKB18]. A summary of the
results is given in Sec. 7.4. The main idea and research objectives were devised in
collaboration with my co-authors. I derived the resource measure and investigated
its properties. Moreover, I constructed the free operations and provided the SDP
to characterize them. In addition, I developed the relations between Naimark
extensions to prove the consistency of our theory. The example based on the qubit
trine POVM was analyzed by me. I performed all numerical computations and

created the figures and plots. Finally, I prepared the manuscript together with my
co-authors and gave the bibliography concerning the state of the art.

87



Resource theory of coherence based on positive-operator-valued measures

Felix Bischof,” Hermann Kampermann, and Dagmar Bruf3
Institut fiir Theoretische Physik 111, Heinrich-Heine-Universitdt Diisseldorf, Universitdtsstrafse 1, D-40225 Diisseldorf, Germany
(Dated: August 16, 2019)

Quantum coherence is a fundamental feature of quantum mechanics and an underlying requirement for most
quantum information tasks. In the resource theory of coherence, incoherent states are diagonal with respect
to a fixed orthonormal basis, i.e., they can be seen as arising from a von Neumann measurement. Here, we
introduce and study a generalization to a resource theory of coherence defined with respect to the most general
quantum measurements, i.e., to arbitrary positive-operator-valued measures (POVMs). We establish POVM-
based coherence measures and POVM-incoherent operations which coincide for the case of von Neumann
measurements with their counterparts in standard coherence theory. We provide a semidefinite program that
allows to characterize interconversion properties of resource states, and exemplify our framework by means of
the qubit trine POVM, for which we also show analytical results.

Quantum resource theories (QRTs) [1-3] provide a structured
framework in which quantum properties such as entanglement,
coherence and purity are described in a quantitative way. Every
QRT is based on the notions of free states (which do not con-
tain the resource) and free operations (which cannot create the
resource). Building on these basic constituents, QRTs allow to
determine the resource content in quantum states, the optimal
distillation of the resource, and the possibility of interconversion
between resource states via free operations.

In recent years, the resource theory of quantum coherence has
received much attention [4—7]. In the standard resource theory of
coherence, the free states or incoherent states are states that are
diagonal in a fixed orthonormal basis of a d-dimensional Hilbert
space ‘H. Incoherent states p; can thus also be seen as arising
from a von Neumann measurement P = {P;} in this basis, i.e.,
pr = Z;’ P;o P; for some state o € S, where S denotes the set
of quantum states on #, and the measurement operators P; are
mutually orthogonal rank-one projectors that form a complete
set, Zfl P; = 1. Coherent states are those which are not of the
above form. This notion of coherence has been generalized in
two directions. In [8—10], a resource theory of superposition was
studied, where the requirement of orthogonality of the basis was
lifted. In [11], Aberg proposed a framework that can be seen as
the definition of coherence with respect to a general projective
measurement, where the orthogonal measurement operators P;
may be of higher rank. In this generalized resource theory of
coherence the free states are block-diagonal.

It is an important question whether the notion of coherence as
an intrinsic quantum property of states can be further extended
and formulated with respect to the most general quantum mea-
surements, i.e., positive-operator-valued measures (POVMs). In
this letter, we answer this question in the affirmative by in-
troducing a resource theory of quantum state coherence based
on arbitrary POVMs. More precisely, we establish a family of
POVM-based resource theories of coherence, as each POVM
leads to a different resource theory. In the special case of rank-1
orthogonal projective measurements, our theory coincides with
standard coherence theory. Note that our approach is distinct
from the mentioned previous generalizations [8—10] in terms of
free states and operations. A motivation for our work is the fact
that POVMs are generally advantageous compared to projective
measurements, see [12] for a survey. In addition, we show in [13]

that coherence of a state with respect to a POVM can be inter-
preted as the cryptographic randomness generated by measuring
the POVM on the state. That is, the amount of POVM-coherence
in a state is equal to the unpredictability of measurement out-
comes relative to an eavesdropper with maximal information
about the state, generalizing results from [14].

For a POVM-based coherence theory, the first challenge is to
identify a meaningful notion of free, POVM-incoherent, states.
This is achieved via the Naimark theorem [15, 16] which states
that any POVM can be extended to a projective measurement
in a larger space. Our concept of POVM-coherence of states in
S is linked to a generalized resource theory of coherence from
[11] in the extended (Naimark) space, for which we denote the
set of states as §’. POVM-coherence can be interpreted as the
coherence resource that is required to implement the POVM on
a given state via the canonical Naimark extension. The latter is
realized by coupling the state to a probe, performing a global
unitary and measuring the probe. This is relevant as POVMs
are usually implemented in this way in experiments [17-19]. If
one views the probe as a measurement apparatus, POVM-based
coherence is the bipartite coherence generated in the global state
by this process.

Conceptually, our work describes a novel way to construct re-
source theories. Quantum states and operations from the system
space are embedded into a larger space which is equipped with
a resource theory, providing a derivated resource theory on the
original space. For this reason, our work does not follow the
standard construction method for a resource theory: our starting
point is the definition of a POVM-based coherence measure, from
which we construct free states and operations. We then provide
a semidefinite program that characterizes all POVM-incoherent
operations, making them accessible for efficient numerical com-
putation. Finally, we apply our framework to the example of the
qubit trine POVM, for which we study the coherence measure
and characterize all incoherent unitaries.

In the following, we present our main results and their inter-
pretation. Technical details and proofs from every section of
the main text are provided in the corresponding section of the
Supplemental Material [20], which includes Refs. [21-33].

POVM and Naimark extension— A POVM on H with n
outcomes is a set E = {E;}", of positive semidefinite operators
E; > 0, called effects, which satisfy ¥/ E; = 1. The probability



to obtain the i-th outcome when measuring p is given by p;(p) =
tr[E;p]. We denote by {A;} a set of measurement operators
of E, ie., E; = AlTA,-. Each measurement operator A; is only
fixed up to a unitary U;, as the transformation A; — U; A; leaves
E; invariant. The i-th post-measurement state for a given A; is
pi = - AipAl.

Let us remind the reader that according to the Naimark theo-
rem [15, 16], every POVM E = {E;}" | on H, if embedded in a
larger Hilbert space, the Naimark space ' of dimension d’ > d,
can be extended to a projective measurement P = {P;}! on H'.
The most general way to embed the original Hilbert space H into
H' is via a direct sum, requiring

tr[Eip] = w[Pi(p ©0)] (D

to hold for all states p in S, where @ denotes the orthogonal
direct sum, and O is the zero matrix of dimension d’ — d. We call
any projective measurement P which fulfills Eq. (1) a Naimark
extension of E.

The embedding into a larger-dimensional space can also be
performed via the so-called canonical Naimark extension [34,
35]: one attaches an ancilla or probe, initially in a fixed state
[1){1], via a tensor product. We denote the map that performs
the embedding by £[p] = p ® |1){1] and the space of embedded
states by Sg = E[S]. A suitable global unitary V describes the
interaction between system and probe such that the resulting state
is p’ == V(p® [1){1])V'. A von Neumann measurement on the
probe leads to the same probabilities p; as the POVM if

tw[Eip] = u[(L @ iNiDp'] =u[Pi(p@ 1)(ID] ()

holds for all states p in S. Here we have included the unitary V
into the projective measurement, i.e., P; := V' (1®li){(i|)V. Thus,
P; has rank d. This type of Naimark extension is not optimal
in terms of smallest additionally required dimension [36], but its
structure allows for a simpler derivation of general results, and
directly describes the possibility to implement a POVM in an
experiment. Both described types of Naimark extensions are not
unique.

Resource theory of block coherence—  Aberg [11] introduced
general measures for the degree of superposition in a mixed
quantum state with respect to orthogonal decompositions of the
underlying Hilbert space, thus pioneering the resource theory
of coherence. Here we translate his work into the present-day
language of resource theories and refer to it as resource theory
of block coherence.

The set Z of block-incoherent (or free) states ppgy arises via a
projective measurement P = {P; } | on the set of quantum states
S, namely [11]

pB]:ZPiO'Pi:A[O'], O'ES, (3)

where the rank of the orthogonal projectors P; is arbitrary, and
we have defined the block-dephasing map A. In this framework,
coherence is not “visible” within a subspace given by the range of
P;, but only across different subspaces. If all P; have rank one,
the standard resource theory of coherence is recovered. Note

that here we have intentionally chosen the same symbol P; as in
Eq. (2), as we shortly identify the two.

We refer to the largest class of (free) operations that cannot
create block coherence as (maximally) block-incoherent (MBI)
operations. A channel Aypr on S is element of this class iff it
maps any block-incoherent state to a block-incoherent state, i.e.,

AMBI [I] c I, (4)

or equivalently Aypr o A = Ao Aypr © A. In standard coherence
theory this class is referred to as maximally-incoherent operations
(MIO).

The amount of block coherence contained in a state p with re-
spect to a projective measurement P can be quantified by suitable
measures. We call a real-valued positive function C(p,P) >0 a
block-coherence measure iff it fulfills

i. Faithfulness: C(p,P) =0 < peZ,
ii. Monotonicity: C(Amgi[p],P) < C(p,P) for all Amgi,

iii. Convexity: C(Y; pipi,P) < 3 piC(p:,P) for all {p;},
piz20,¥;pi=1

Several block-coherence measures were introduced in [11], and
a general class of measures can be derived from distances that
are contractive under quantum operations [20]. An important
example is the relative entropy of block coherence, defined as

Crer(p,P) = minS(pll) = S(A[p]) - S(p), (5)

where S(p||lo) = tr[plog p — plog o] denotes the quantum rela-
tive entropy and S(p) = —=S(p||1) is the von Neumann entropy.
In standard coherence theory, the relative entropy of coherence
has several important operational meanings [5, 14, 37], e.g., it
quantifies the distillable coherence and coherence cost under the
class MIO [6].

POVM-based coherence measures— The main idea of our
approach is to define the coherence of a state p with respect to
the POVM E via its canonical Naimark extension. This concept
is visualized in Fig. 1.

Embedding
channel

States on Naimark space

Block-incoherent
states of P

System states

Embedded
system states

FIG. 1. We introduce a resource theory of POVM-based coherence by
making use of the Naimark construction. Quantum states p are embed-
ded as £[p] = p ® |1)(1] to act on a higher-dimensional Hilbert space
(Naimark space). The POVM E is extended to a projective measurement
P on the Naimark space, which defines a set of block-incoherent states
Z. The POVM-coherence measure C(p, E) is the distance between &[ p]
and its projection A[E[ p]] onto block-incoherent states.



Definition 1 (POVM-based coherence measure). Let C(p’,P)
be a unitarily-invariant block-coherence measure on S’. The
POVM-based coherence measure C(p,E) for a state p in S is
defined as the block coherence of the embedded state E[p] =
p®|1){1] with respect to a canonical Naimark extension P of the
POVM E, namely

C(p.E) = C(&[p].P), ©)

where the constraint in Eq. (2) has to hold. —It is straightfor-
ward to generalize this definition to the most general Naimark
extension from Eq. (1).

The convexity of the underlying block-coherence measure
directly implies that C(p,E) is convex in p. Here, unitarily-
invariant means that C(p’,P) = C(Up'U",UPU") holds for all
unitaries U on H’. This property ensures that C(p,E) is invari-
ant under a change of measurement operators A; — U;A;, with
unitary U; [20]. Note that the right side of Eq. (6) should also
remain invariant if we employ a more general Naimark extension
of E regarding dimension and form. We call measures with this
property well-defined.

In this letter, we focus on the relative-entropy-based mea-
sure for which one can straightforwardly show that it is well-
defined [20, 38]. See [13] for many further well-defined POVM-
coherence measures.

Lemma 1 (Analytical form of a POVM-based coherence mea-
sure). The relative entropy of POVM-based coherence Crej (0, E)
is convex and independent of the choice of Naimark extension
for its definition. It admits the following form:

Cra(p.E) = H({pi(p)}) + 2 pi(p)S(pi) = S(p). (1)

with p;(p) = t[E;p], pi = piiAl-pAlT, and the Shannon entropy
H({pi(p)}) = - %, pilogp;. In the special case of E being a
von Neumann measurement, i.e., E; = [i){i], Cre1(p, E) equals the
standard relative entropy of coherence.

The independence property holds because the eigenvalues of
A[&[p]] are the same for any two Naimark extensions used to
define A and because the von Neumann entropy solely depends
on the eigenvalues of its argument [20].

Minimal and maximal POVM-based coherence— We show
in [20] that for an n-outcome POVM E the bounds 0 <
Cre1(p,E) < logn hold. However, there exist POVMs for which
one or both of these bounds cannot be attained for any quantum
state. First, let us discuss maximal coherence: the convexity of
Cie implies that its maxima are attained by the pure states that
lead to the highest entropy of measurement outcomes, see [39]
for a partial characterization.

Now, we address the lower bound. We can characterize
POVM-incoherent states (i.e., states with zero POVM coherence)
as follows.

Lemma 2 (Characterization of POVM-incoherent states). Let
E = {E;}"_, be a POVM and let E; denote the projective part of

E;, i.e., the projector onto the eigenvalue-1 eigenspace of E;. A
state ppy € S is POVM-incoherent with respect to E iff

Z EippE; = ppr. (®)

By employing the canonical Naimark extension, one can show
that p is POVMe-incoherent iff E;pE; = 0 holds for all i # j,
generalizing the requirement of vanishing off-diagonal elements
for standard incoherent states. From this, Lemma 2 can be ob-
tained [20], which implies that for particular POVMs the set of
incoherent states Zpoyy is empty since no effect has a nonzero pro-
jective part. This includes any informationally complete POVM
and the trine POVM which we discuss in detail below. The set
Trovm may be empty because we decribe a derivated resource
theory, i.e., a part of an encompassing framework in which free
states exist. A resource theory where every object contains some
resource is meaningful, since different objects can possess very
different amounts of resource and are thus of different useful-
ness. In the following paragraph we introduce the set of POVM-
incoherent operations which is nonempty, as it is defined via the
Naimark extension. The generalization of Zyqyy is the set M of
minimally POVM-coherent states that has similar properties as
the standard incoherent set: it is nonemtpy, convex and closed un-
der POVM-incoherent operations. Interestingly, the maximally
mixed state p = % is not necessarily contained in M [13].

POVMe-incoherent operations— The final main ingredient
of our resource theory are quantum operations that cannot create
POVM-based coherence, i.e., free operations. We denote maps
acting on the larger space 8" as A’, while maps acting on the
original system S are called A.

Definition 2 (POVM-incoherent operations). Let E be a POVM
and P any Naimark extension of it. Let A’ be a completely
positive trace-preserving map on S’ that is

i. Block-incoherent: A’ is block-incoherent (MBI) with re-
spect to P, see Eq. (4).

ii. Subspace-preserving: N'[S¢] € S for the subset Sg ¢ S’
of embedded system states.

We call the channel Ayp; = E'oA’0&onS a (maximally)
POVM-incoherent (MPI) operation.

While this definition seems to be involved, it merely formalizes
the feature that any MPI operation can be extended to an MBI
map on a larger space. The second requirement in Def. 2 is
necessary so that the POVM-incoherent channel only contains
degrees of freedom of the original space H.

Lemma 3 (Operations from Def. 2 cannot increase POVM-based
coherence). Let Ayppr be a POVM-incoherent operation of the
POVM E. Then, for any well-defined POVM-based coherence
measure C(p,E) it holds that

C(Awmpi[p].E) < C(p,E). )

For any measurement, we can characterize the set of POVM-
incoherent operations by a semidefinite program (SDP), since



these operations are defined solely by linear conditions (i, ii
and trace-preservation) and semidefinite conditions (complete
positivity).

Theorem 1 (Characterization of POVM-incoherent operations).
The set MPI of POVM-incoherent operations is independent of
the chosen Naimark extension and can be characterized by a
semidefinite feasibility problem (SDP). In the special case of
von Neumann measurements, MPI operations are equivalent to
MIO maps of the standard coherence theory.

The independence property holds because for every two
Naimark extensions of a POVM, any block-incoherent map on the
larger Naimark space can be identified with a block-incoherent
map on the smaller Naimark space which leads to the same (local)
POVM-incoherent map [20].

Regarding the interconversion of resource states in our POVM-
based coherence theory, we can employ the SDP character-
ization of POVM-incoherent operations Ayp; for a POVM
E to determine numerically the maximally achievable fidelity
Finax(p,07) = maxa,, F(Ampi[p],07) between a target state o
and Ampi[p], see the Supplemental Material [20]. The fidelity
F(p,0o) = tr\/\/po/p quantifies how close two quantum states
p, 0 are.

Example: qubit trine POVM— As an example, we analyze
the case of the qubit trine POVM E"™™ = { 2|y )(¢|}7_,, with

measurement directions ¢z ) = 1/3/2(|0) + w*~|1)), where w =
exp(2ni/3). The corresponding POVM-based coherence of pure
states is illustrated in Fig. 2 (left). For the qubit trine POVM there
are two states with maximal POVM-coherence C;* = log3,
namely [Wp) € {|0),|1)}. The set M of states with minimal
POVM-based coherence C/" = log3 - 1 contains solely the
maximally mixed state, M = {%}

Regarding POVM-incoherent (free) operations, the free uni-
tary operations can be fully characterized: up to a global phase
there exist exactly six POVM-incoherent unitaries U™, They
correspond to the rotations on the Bloch sphere that map the trine
star to itself, i.e., the symmetry group of the equilateral triangle.
In standard coherence theory the measurement map p — A[p] is
incoherent. However, for a general POVM the measurement map
o = ¥ VEip\/E; is not necessarily POVM-incoherent with re-
spect to E as one can find POVMs for which the map increases
the coherence of a state [13]. Notably, for the trine POVM
E"™, the SDP from Thm. 1 verifies that the measurement map
is indeed POVM-incoherent. As to conversion properties, ev-
ery qubit state p can be obtained deterministically by applying
some POVM-incoherent operation to a maximally coherent state
|[¥m) € {|0),]1)}. By applying the SDP, we have numerical ev-
idence that given a state [i/) # [¥,), the only pure states that
can be obtained from it with certainty via free operations are
in the orbit {U"™|y)} under the trine-incoherent unitaries. An
example for the conversion fidelity when starting from an initial
state with less than maximal resource is shown in Fig. 2 (right).

Conclusion and Outlook— We have introduced a familiy of
resource theories which quantify the coherence of a quantum
state with respect to any given POVM. These resource theories
are derived from the resource theory of block coherence [11]

z axis

11 12 13 14 15 0.94 0.96 0.98 1

Coherence Fidelity

FIG. 2. POVM-based coherence theory for qubit states with respect
to the trine POVM E"™ in the Bloch sphere representation. Gray
lines indicate the three measurement directions. Left: POVM-based
coherence of pure qubits (surface of sphere). The states |0) and |1)
have maximal coherence of C = log3. The Bloch vectors of the three
states with the lowest pure-state coherence C = 1 are antipodal to the
measurement directions. Right: Maximally achievable conversion fi-
delity Fmax(p,07) = maxp,,, F(Ampi[p],07) between a pure initial
state p (red dot) subjected to POVM-incoherent operations App; and
a pure target state o~ on the sphere surface. Here, p = |y ){y| with
) = cos(§)I0) +sin(g)[1). Only states in the orbit of [y) under
the six POVM-incoherent unitaries can be reached with unit fidelity, as
depicted by the yellow spots.

via the Naimark extension on a higher-dimensional space. The
restriction to the embedded original space led to the character-
ization of free states, free operations and resulting conversion
properties within the POVM-based resource theories. For the
case of von Neumann measurements, POVM-coherence mea-
sures and POVM-incoherent operations reduce to their counter-
parts in standard coherence theory.

Our approach has identified the coherence resource that is
necessary to implement experimentally a general measurement
on a given state via the Naimark extension. Also note other
works that elucidate the role of quantum resources in the Naimark
extension [40, 41].

Several open questions should be addressed in the future. First,
it is not clear whether a characterization of POVM-incoherent
operations without reference to the Naimark space is possible.
A necessary condition is given by Ampi[M] € M, where M
is the set of states with minimal POVM-based coherence. For
projective measurements, this property is also sufficient as M =
Z. However, in general this property is not sufficient: for the trine
POVM, M = {%} thus the condition is equivalent to unitality,
but there are unital maps that can increase the POVM-based
coherence [20].

We expect that further consistent POVM-coherence measures
can be introduced which have operational interpretations that
generalize the results from standard coherence theory [42—47].
Finally, one can introduce the sub-class of selective POVM-
incoherent operations, and study the corresponding conversion
properties [13].
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Supplemental Material

In the following we provide the technical details and proofs that
complement the main text. In part A we give a detailed de-
scription of the Naimark extension of a POVM. Subsequently, in
part B we describe the resource theory of block coherence [1] in
a way that is analogous to standard coherence theory. The rest of
the Supplemental Material is devoted to our resource theory of
POVM-based coherence, which we formulate in the main text. In
part C, we discuss general POVM-based coherence measures, in-
cluding the relative entropy of POVM-based coherence on which
we focus for the remainder of the paper. Achievable lower and
upper bounds for the POVM-based coherence of quantum states
are discussed in part D. In part E we prove properties of POVM-
incoherent operations, i.e., free operations, and present explicitly
the semidefinite program that characterizes them. Moreover, we
study the conversion of resource states under free operations. Fi-
nally, in part F we exemplify all general results by means of the
qubit trine POVM and provide analytical results of its POVM-
based coherence theory.

Symbol | Explanation
H  |d-dimensional Hilbert space
H’™  [d’-dimensional (Naimark) Hilbert space
S [set of (system) quantum states on H
S [set of quantum states on H’
€ |embedding channel, from S to S
He |subspace of H' of embedded state vectors
Il |orthogonal projector onto He
Se subset of S” of embedded system states
Q | projector onto operators on Hg
E [POVMonH
{A;} |set of measurement operators of E
\% Naimark interaction unitary on 7’
P  |Naimark extension of E on H’
A |Block-dephasing operation defined by P
T set of block-incoherent states w.r.t. P
Trovm |set of POVM-incoherent states w.r.t. E
ppt  |POVM-incoherent state w.r.t. E
block-incoherent operation on S’
embedded POVM-incoherent operation
POVMe-incoherent operation on S

7
A}VIBI
Als,
Ampr

TABLE I. Notation used throughout this work.

Appendix A: POVM and Naimark extension

In this part, we provide the details and construction of the
Naimark extension of a POVM E. Under a general Naimark
extension we understand any projective measurement P = {P;}
on H’, which fulfills Eq. (1). Consequently, the uppper left
d x d block of the Naimark extension effect P; coincides with the
POVM effect E;, i.e., for 1z = 14 & 04:_ it holds that

E &0y _g=11cPIl,. (A1)
Therefore, it is convenient to embed system operators X on H
into the Naimark space H' via the isometric embedding map
E[X]=X®0andcall Hy == {|y)®0: |y) € H} the embedded

state space. Now, we only need to consider (embedded) opera-
tors on the Naimark space H’. The construction of a projective
measurement fulfilling Eq. (A1) is straigthforward. We pro-
vide details for the canonical Naimark extension, for which the
Naimark space has product form H' = H®H g, with Hg being the
probe’s state space. In this case, we employ the embedding map
E[X] = X®|1){1] and H; = H ® |1). The canonical Naimark
extension is generally not of the smallest possible dimension
dl. = Y;rank E; [2]. In section C (E) we show that POVM-
based coherence measures (POVM-incoherent operations) are
independent of the choice of Naimark extension.

Let E = {E;}", be an n-outcome POVM on H, and {A;} a
set of measurement operators for E. Any measurement operator
can be written as A; = U;\/E; for some unitary operator U;. Let
{li)} be an orthonormal basis of the probe space Hg and define
the operator

7= A i)l (A2)
i=1

which is an isometry from H. to H', i.e., it fulfills VIV = 1,
on H, as a consequence of the normalization of the POVM. The
isometry V can be extended to a unitary V on H’ by completing
the set of orthonormal column vectors (lying in im V ¢ H') to an
orthonormal basis, i.e., by filling up the columns of the nd x d
matrix to an nd x nd matrix with orthonormal column vectors.
Now, we can parameterize the unitary by operators A; , on H as

V= Z Aiq ®|i)al. (A3)

i,a=1

where A; | = A;. To ensure the unitary condition viv =yvt=
1., these operators need to fulfill

S Al JAip =06apla, and
i

> Ai,aA;:,a =0; ;14. (A4)

Finally, the canonical Naimark extension P = {P;}!" | of E is
defined as
P =V ei)iv
=Y Al A @la)(b

a,b

; (AS)

which is a rank-d projective measurement, i.e., rank P; = d and
P;P; = 6; ;P;. Projecting this measurement onto the embedded
state space Hg with the projector Iz = 1 ® |1)(1] yields the
embedding of the POVM E,

I PiIle = AlT’lA,-,l ® [1){1| = E; ® |1){1] = E[ E;]. (A6)
This property implies that
w[Eip] = ulPi(p@[1)(1])], (A7)

and thus, up to an exchange of the two subsystems the Naimark
extension property from Eq. (1).



Appendix B: Resource theory of block coherence

In this part, we supplement details of the resource theory of
block coherence as described in the main text. This theory was
introduced in [1] and we formulate it in a modern way that is
analogous to the resource theory of coherence [3].

LetP = {P;} | be a projective measurement on . Resource-
free states, called block-incoherent, are block-diagonal with re-
spect to P and belong to the set

Z={ppi=) PioP;:0¢cS}. (B1)

Therefore, block-incoherent states are characterized as the image
of the block-dephasing operator A[o"] = ; P;o"P; applied to any
state 0. By the mutual orthogonality of the effects P;, block-
incoherent states are also characterized by the condition

pel <= PipPj=0 Vizje{l,...,n}. (B2)
Let C(p,P) be a block-coherence measure as defined in the main
text. Any block-coherence measures obeys a further desirable

property, which ensures that it does not depend on the choice of
basis within the blocks (subspaces) 7; := im P;.

Proposition 1. Every block-coherence measure C(p,P) as de-
fined in the main text also fulfills

iii. Block-unitary invariance: C(UpU',P) = C(p,P) with
U = ®;U;, and where U; is unitary on 7;.

Proof. The assertion holds since U is a reversible block-
incoherent operation and thus the monotonicity property holds
with equality. More precisely, it holds that P;U = U P; and there-
fore UA[cJU" = A[UcU"]. Because block-incoherent states
have the form p = A[o ], we conclude that UpU" ¢ 7 for all states
p € T. Hence, the unitary channel p - UpU" is a maximally-
block-incoherent (MBI) operation. Since unitary channels are
invertible, we can apply the monotonicity property in both direc-
tions to obtain equality, from which the assertion follows. O

Several block-coherence quantifier were introduced in [1], and
the monotonicity condition was proven for some of them. We
consider a general class of a block-coherence quantifier that is
obtained from a distance D(p, o) via

C(p,P) == inf D(p,0). (B3)
oel
Certain properties of the distance measure lead to the block-
coherence measure properties.

Proposition 2. The distance-based block-coherence quantifier
C(p,P) = inf,e7 D(p,0) fulfills

i. Positivity and Faithfulness, if the distance D(p, o) is non-
negative and vanishes if and only if p = 0.

ii. Monotonicity, if the distance is contractive under quantum
operations A, that is, D(A[p],A[o]) < D(p,0).

Proof. The proof of the second assertion is analogous to the case
of coherence theory [3, 4]. For convenience, we outline it here,

C(p.P) = inf D(p,) = D(p,0”")
> D(Awsi[p]. Ami[o])
> }_E;D(AMBI[IJ]’T)
= C(Awmmi[p]),

where o* denotes a state that achieves the minimum. The first
inequality follows from the contractive property of the distance,
and the second equality holds because Appi[o*] € Z. O

(B4)

In the following, we focus on the relative-entropy-based block-
coherence measure which was introduced in [1]. The relative
entropy of block coherence is defined as

Ceel(p) = min S(p||o), (BS)

oel
where S(p|lo") denotes the quantum relative entropy. The co-
herence quantifier Cy(p) is convex and satisfies nonnegativity.

Moreover, the monotonicity property is proven in the following
Proposition.

Proposition 3. The relative entropy of block coherence is a
block-coherence measure and admits the following simple form

Crel(p) = S(A[p]) - S(p)

Proof. The relative entropy is contractive under quantum opera-
tions [5] and thus G (p) satisfies the monotonicity condition be-
cause of Prop. 2. The simplified form Cre1(p) = S(A[p]) — S(p)
was first stated in [1], and is proven analogous to coherence the-
ory [6, 7]. For the convenience of the reader, we outline the
proof. Observe that

(B6)

tr[A[p]log opi] = tr[ pA[log opi]]

= tr[plog ogi], (B7)

for any block-incoherent state opj, since the operator logarithm
of a nonnegative matrix preserves the block-diagonal structure,
as it only acts on the eigenvalues. This implies that

S(plloer) = tr[plog p] - tr[plog o]
= —tr[A[p]log A[p]] + tr[plog p]
+tr[A[p]log A[p]] - tr[A[p]log oa1]
= S(Alp]) = S(p) + S(Alp]llosr).
The third term is nonnegative, S(A[p]||osr) > 0, and therefore

the minimum over block-incoherent states is achieved when it
vanishes, i.e., o1 = A[p]. O

(B8)

Appendix C: POVM-based coherence measures

In this part, we provide details and proofs concerning POVM-
based coherence measures that are introduced in the main text as
the first constituent of our resource theory.

First, we show that any POVM-based coherence measure in-
herits convexity from the underlying block-coherence measure.



Let {p;} be a set of quantum states from S and let {p;} be a
probability distribution, i.e., p; >0, }; p; = 1. Then it holds that

C(Zpipi,E) = C(E[ZPiPi],P) = C(ZPiE[Pi]’P)

< ZPiC(S[Pi],P) = ZPiC(Pi,E)’ cn

where we have employed the linearity of the embedding channel
€ and the convexity of the block-coherence measure C(p’,P).

In the next proposition we focus on POVM-coherence mea-
sures derived from the canonical Naimark extension defined on
HHRg.

Proposition 4. Let C(p,E) = C(E[p],P) be a POVM-based co-
herence measure, evaluated on the canonical Naimark extension
P of E. The measure can also be expressed as

C(p,E) = C(&v[pl {1 ®i)i[}),

where now the interaction V is attributed to the embedding
Evip] = Vp e |I){1|VT = Z[,jA,-pAJT ® [i)(j|- The measure
is invariant under a change of measurement operators, i.e., under
the transformation A; — U;A; with unitary U;.

(€2

Proof. By definition of C(p,E), C(p’,P) is a unitarily-invariant
block-coherence measure, that is, C(p’,P) = C(Up'UT,UPU )
holds for all unitaries U on H' and all states p’ € S’. Therefore,
it holds that

C(p.E) = C(E[p).P)
- Clpe (1L {ViL e i)ilv})
- c(vpe ) (1IVE.{L e li)il})
- C(&vlpl AL @ li)il}).

where the third equality follows from unitary invariance.

This implies that C(p,E) is invariant under a change of mea-
surement operators, A; - U; A;, with unitary U;, and is therefore
well-defined. Indeed, the unitary transformation acts on the em-
bedded state as Ey[p] - ¥, ; U,~Al~pA;L-UJT ®|i){j| = Usy[p]UT,
with a block-diagonal unitary U = Y; U; ® |i}{i]. Since every
block-coherence measure is invariant under block-diagonal uni-
taries, as shown in Prop. 1, the measure is invariant under a
change of measurement operators. O

(C3)

In the remainder of this part we prove Lemma 1 from the
main text. For the claim that Cy(p,E) is independent of the
chosen Naimark extension of a POVME = {E; }, we consider any
Naimark extension P of E as defined in Eq. (1), not necessarily
of tensor product form. To do so, we employ the generalized
definitions introduced in App. A,

E[X]1=Xa0, He={ly)®0}, M=1a0. (C4)

Moreover, we define the generalized POVM-based coherence
measure Crei (o, E) as

Cei(p.E) = S(A[p @ 0]) - S(p).

e Proof of Lemma 1 from main text. First, we show that the
POVM-based coherence measure obtained from the relative en-
tropy Cre1(0,E) = Cre1(p ® 0,P) is independent of the choice of

(©5)

Naimark extension P. We do that by showing that the eigenvalues
of A[p @ 0] are the same for any two Naimark extensions used
to define the dephasing A. The assertion then readily follows be-
cause the von Neumann entropy is a function of the eigenvalues
of a state.

Let P on 7’ and P on 7’ be two Naimark extensions of the
same POVM E, such that without loss of generality d’ > d'
holds. We embed the smaller Hilbert space H canonically into
the larger Hilbert space H' such that all operators on the smaller
space are filled up appropriately with zeros. First, we show that
P;p®0P; and P; p®0P; have the same eigenvalues. By definition
of the Naimark extension it holds that

tr[P;p @ 0] = tr[ Pip @ 0] (C6)

for all system states p € S. If p is a pure state, P;p & OP; and
13,-p ® 0P; are both rank-1 operators that because of Eq. (C6)
have the same nonzero eigenvalue. For the mixed state case,
we consider the following. From the definition of the Naimark
extension it follows that

M.P;P;Il, = E; ® 0 = [1. P; P;11,, (C7)

where P; is extended to H’, implying that ¥; P; is the projector
onto . The equation follows from Eq. (C6) because the system
states provide a POVM-tomography on the subspace H¢. It is
known, that Eq. (C7) implies that there exists a unitary Q; on H'
such that

PIL; = Q; P11, (C8)

Concretely, these matrices have singular value decomposition
I 5 A (X
pnte=uy (7 Wi pme=ai (M )L )

for some unitaries Uy, U;, Vi, r; = rank E;, and a r; x r; diagonal
matrix X,, containing the square root of the nonzero eigenval-
ues of E;. Then, the unitary is given by Q; = U;U;. Now, the
unitaries Q; can be combined into a single unitary, by noting
that the restriction Q;|z, with #; = im P isa map from and to
orthogonal subspaces Q;|z,:#; — m;. Thus, we can define the
block-diagonal unitary Q = @;Q;|#, @1, where the last term is the
identity on the subspace (H')* of H’. With that, we have con-
structed a unitary Q that relates the two Naimark extension act-
ing on the subspace H ., namely P;I1, = QISiHE. Consequently,
Alp@0] =%; Pille(p@O0)IcP; = Q%; Pl (p@ 0)I: P,Q" =
QA[p®0]Q" holds , i.e., A[p ® 0] and A[p ® 0] have the same
eigenvalues. Since the von Neumann entropy solely depends on
the eigenvalues of its argument, we conclude that

Crel(p @ O,P) = S(A[p @ 0]) - S(p)
=S(Alp®0]) - S(p)
= rel(p ® O7f)),

(C10)

which means that Gy (p,E) is independent of the Naimark ex-
tension used to define it.

The relative entropy of POVM-based coherence admits an
expression just in term of system degrees of freedom, i.e., without
making reference to the Naimark space. We need to show that Cie



can be expressed as Cra(p.E) = H({pi(p)}) + S pi(0)S(p1) -
S(p), with p;(p) = trf[E;p], and p; = P%AipA}L, and where S
denotes the von-Neumann entropy, and H the Shannon entropy.
Let A[-] = ¥; P; - P; be the block-dephasing operator of the
canonical Naimark extension P = {V'1 ® [i)(i|V} with V(p ®
[(1DVT = %, ; AipA] ®1i)(j]. Then it holds that

Crel(,O,E) = Crel(p® |1>(1|’P)
=S(Alp e [1)(1]]) - S(p e [1)(1])
=S e i)iv(p® I(INV L @ i)il) - S(p)

= S(X AipA] ®i)il) - S(p)
= S(X pipi @ i) il) - S(p)

=H({pi(p)}) + X piS(pi) = S(p), (C11)

where the last equality follows from the joint entropy theorem [8].
O

Appendix D: Minimal and maximal POVM-based coherence

In this part, we prove the characterization of POVM-incoherent
states from Lemma 2. Moreover, we show general upper and
lower bounds on Crj(p,E) and discuss classes of POVMs for
which these bounds can or cannot be attained.

Proposition 5. A state p is POVM-incoherent with respect to a
POVME = {E;} | iff the following holds:
EpE;=0 Vizje{l,...n}. (D1)
Proof. We need to show that Ce (0, E) = Cre1(p ® [1){1],P) =0
is equivalent to E;pE; =0V i # j € {1,...,n}. The set Z of
block-incoherent states with respect to the canonical Naimark
extension P = {V'1 ® [i)(i|V'} is composed of states of the form

Z={V' Y pipi @ lD)ilV}, (D2)

as these are the states that are invariant under the dephasing
operation A[-] = 3; P; - P;. Here, {p;} is a set of states and {p; }
a probability distribution. A state p ® |1)(1] € S¢ is of the above

form if and only if Vp ® |[1){1|V" = ¥, pip; ® |i){i|, which is
equivalent to
> AipAl ®i)(j| = Y. pipi @ i)l
i.Jj i
< AipAj =0 Vizje{l,...n} (D3)

Since E; = AlTAi, the condition (D3) implies E;pE; = 0V i #
J €{L,...,n}. The converse implication is also true which can
be seen by employing the Moore-Penrose inverse X~ of a matrix
X [9]. It has the properties X~ X = Ilgyppx, and XX~ = Iy x,
with the projectors onto the support and image of X, respectively.

4

Together with supp X* = im X and supp X' = im X it follows that

El'pEj =0
< AfAipAjA; =0
= (A])A] AipATA;AT =0

= HimAfAipA;Hsupp A; =0

< AipAl = 0. (D4)
Since Cpei(p,E) is independent of the choice of Naimark ex-
tension, we thus obtain a general characterization of POVM-
incoherent states. ]

e Proof of Lemma 2 from main text. According to Prop. 5, a
state p is POVM-incoherent iff E;pE; = 0 for all i # j. This
implies that p = (¥, E;)p(¥; Ej) = ¥; EipE;. Thus, we obtain
the following necessary condition for a POVM-incoherent state

[} E?p]=1. (D5)

This equation can only be fulfilled if }; El-2|Supp p = 1. On the
other hand, due to normalization also }; E; |Supp p = 1 holds. This
means that any POVM-incoherent state can only have support on
the projective parts E; of the E;. Moreover, due to the char-
acterization from Prop. 5, an incoherent state p cannot possess
coherence across the subspaces stabilized by the E;. Therefore,
we obtain the following characterization: any POVM-incoherent
state needs to fulfill

> E;ppiE; = pp1, or equivalently, (D6)
i

PP1 = ®;piT, (D7)
where {p;} is a probability distribution and o; a quantum state
with supp o; = supp E;. We can immediately verify the condition
from Prop. 5 for this expression. Since Ey is a projector, any other
effect E;. (projective or not) must necessarily have orthogonal
support, otherwise normalization cannot be achieved. Thus,

EippiE; = Y Ei(ExppiEx)Ej =0 Vizj. (D8)
%

[}

As a corollary we obtain that for any POVM for which no
effect has a projective part the set of POVM-incoherent states of
E is empty. This shows that there can be a finite gap between the
set of embedded states S € S’ and the set of block-incoherent
statesZ ¢ §’.

Since POVM-incoherent states do not exist for all measure-
ments, it is important to characterize states with minimal and
maximal POVM-based coherence. The measure Cei(p,E) is
bounded by the extremal values of the corresponding block-
coherence measure on S’ given by 0 < C(p’,P) < log(d’).
However, the upper bound can be made tighter.

Proposition 6. Let E be an n-outcome POVM. The POVM-
based coherence measure Cp(p,E) satisfies the bounds 0 <
Crel(0,E) <logn.



Proof. We show the upper bound. First, we consider the pure
state case p = [ )(y|, for which the measure reads

Cra([¥).E) = H({pi([¥))}). (DY)
The expression is maximized for states with uniform outcomes
pi = < which yields H({p;([¢))}) < logn. Since Cyei(p,E) is a
convex function, i.e., it decreases under mixing, the maxima are

attained by pure states, and thus Ciej(p,E) < logn also holds for
mixed states. O

The convexity of C implies that the maximum coherence
of a POVM is attained by the pure states with highest outcome
entropy. However, analytically maximizing C,. even for pure
states is generally hard, see e.g., Ref. [10], where the maximal
value for all symmetric informationally complete (SIC-) POVMs
was obtained. Examples for POVMs that attain the upper bound
of log n are the qubit trine POVM, but also informationally com-
plete POVMs, namely those for which there are pure states with
maximal randomness gain [11]. Moreover, one can readily con-
struct rank-one POVMs in any dimension that achieve the upper
bound.

Finally, we discuss states which minimize C,. for a given
POVM. Because Cy is a convex function on a convex set it can
be shown that the set M of its minima is convex. In the qubit
case, the states with minimal coherence can be found analytically.
Qubit quantum states can be parameterized as p(F) = % (1+7-0)
with Bloch vector |F| < 1, and 7 - & = ¥ ; r;0y, where o; denotes
the i-th Pauli matrix. The function p(7) is affine in 7 and thus
Crel(F) = Cii(p(F)) is convex. Consequently, for any fixed
POVM E we have the following optimization problem

minimize  Cpe  (F)

such that |#*-1<0 (D10)
This is a convex optimization problems, i.e., the objective func-
tion Cre1 (7) and the inequality contraint function g(7) = |7> - 1
are convex. For such problems it is known that any point 7*
that fulfills the Karush—Kuhn—Tucker (KKT) [12] conditions is a
global minimum of the objective function. One can readily check
that for the problem above a point 7* fulfills the KKT conditions
if

[F*P<1 and V;Ce(7*) = 0. (D11)
Therefore, given a POVM E, the minimum of C(p,E) is
achieved for states p(r*) with 7* from Eq. (D11). In dimen-
sions higher than two, a similar analysis can be carried out with
more involved constraints.

Appendix E: POVM-incoherent operations

In this part, we provide proofs for the general results concern-
ing POVM-incoherent operations from the main text. In partic-
ular, we present the semidefinite programs that characterize the
set of POVM-incoherent operations and the fidelity Fax(p,0),
respectively.

e Proof of Lemma 3 from main text. Let Aypy be a POVM-
incoherent operation with respect to the POVM E. By definition
there exists a channel A}z on S’ obeying the two properties
from Def. 2 such that Ampi[p] ®0 = A0 © 0]. Thus, it holds
that

C(Awmpi[p].E) = C(Ampi[p] ® O,P)
= C(Aypi[p ®0],P)
<C(p®0,P) = C(pE), (E1)

where the inequality is a consequence of Ay being an block-
incoherent operation with respect to P. O

If the Naimark space has tensor product form H ® Hg, then
due to subspace-preservation A’ can be decomposed as

A =QoANoQ+AoQ
=(A®id) o Q+A 0 QF, (E2)

where A is a channel on S, Q[p'] = Hp'Tl; and Q* = id-Q.
Thus, in this case we have A’ |35 = A ® id, leading to the local
operation A on S.

In the following, we show that the set of POVM-incoherent
operations of a POVM E is independent of the choice of Naimark
extension used for its definition. We consider any Naimark ex-
tension P of E as defined in Eq. (1), not necessarily of tensor
product form. For that, it is instructive to read the proof of
Lemma 1 established in App. C. There, we summarized the gen-
eralized embedding definitions introduced in App. A,

E[X]=X®0, Hc={ly)®0}, M.=1e0. (E3)

e Proof of Theorem 1 from main text. First, we prove that the
set of POVM-incoherent operations is independent of the choice
of Naimark extension used for its definition. We start by showing
some useful relations that connect different Naimark extensions
of a POVM. Let P, P be two Naimark extensions of the same
POVM E such that rank P; < rank P;. Let the effects of the
extensions have spectral decomposition P; = Y |i,k)(i,k| and
P, = >elis 12)(112 s (S for small), respectively. Define the partial
isometry Q' as

k) = {|z,k)s fork=k=1,...,rank P;

QT

. (E4)
0 for k > rank P;.

Consequently, the operator Q is an isometry which satisfies

PiQ = Y li. k)i, k|Q = Y i k) (i, ks
k i

QP = > 0li.k)s(ik|s = Y|, k)i, k|s. (E5)
3 3
This implies that
P;0=0P; and
QoA=A0Q, (E6)

where we have defined the isometric channel Q[ps] = QpsQ".
Therefore, the two Naimark extension can be related as

P =0'0P; = 0"P,0, (E7)



which ensures that P; is normalized: Y 0'P,0=0"10=1.

Since P, P are Naimark extensions of the same POVM E, the
isometry Q can be further constrained. It holds that I, P;T1; =
. P11 = £[E;], and therefore

M P, = [1.Q" P, QI
< (PlI) (PiTI) = (P:OTL, )T (P, QT1, ). (E8)

For relations of the form A}Ai = B}L B; itholds that B; = U; A; [13]
with U; being a unitary. In our case we have A; = P;Il and
B; = P;QIl,, that is,

P;Qlle = Ui Pillg. (E9)
Define the operator

C; = QI (P 1L, (E10)
where X~ denotes the generalized (Moore-Penrose) inverse of
any operator X [9]. From Eq. (E9) we see that the matrix C; =
U; P11 (P;T1;)~ = U; P;, where P; = 15,-+131.l, is a partial isometry
since C;r C; =P is a projector. Note that suppC; S m; and
im C; € m;, where mr; denotes the image of P;. This means that
the restriction Cl-|,,i : r; — m; is a partial isometry, too. Therefore
Ci|, canbe extended to an isometry C; : mj — m; with full support
on 71; by defining:

G = {C,-|,rl. on supp Ci|n,

, Ell
1 on ker Cy|, (E1D

which is equivalent to ; = (U; P; + P})|,. Then we introduce

U = oG (E12)
which is a block-diagonal unitary operator since
U'U=e;,C/C;=e,C/Ci=> Pi=1. (E13)
i
With that, we can write Eq. (E9) as
P;QIle = UP;I1;. (E14)
By summing over i, we obtain
OlIl; = UIl; and
Qo&=UE. (E15)

Finally, since the unitary is block-diagonal it commutes with the
Naimark extension effects

UP; = P;U and
AolU =UoA. (E16)

The channel Q'[p] = QFpQ is completely positive but gen-
erally not trace-preserving. For this we define the projector
S = 00" and its complement $* = 1 - S. It holds that
A[S] = ; PiQQTP; = ¥, QP;Q" = S and also A[S'] = S*.
We define the map

T1p] = tr(S*p)1 /dumin (E17)

which crucially satisfies

Ao Tlp] = u(S*p)A[1]/dumin = T o), (E18)
and also
T o Alp] = tr(S*A[p])1/dmin
= tr(A[S*]p)1/dmin = T[p]. (E19)

Now we are able to define the following reversal channel of the
isometric channel Q

R=0Q0"+T. (E20)

It holds that R o Q[p] = p. Moreover, one can check that R is
completely positive and trace-preserving: tr(R[p]) = tr(Sp) +
tr(Stp) = tr(p) = 1. By combining the Egs. (E6), (E18), (E19)
we observe that the following equation holds

AoR =RoA. (E21)

Finally, it holds that 7 o &[p] = tr(S*E[p])1/dmin = O and
therefore

RoE=0Q'0€.

Having established the above relations, we come to the main
independence proof. Let I' be any block-incoherent (MBI) and
subspace-preserving (SP) map with respect to P. We define
the map I' := Roll oT o U o Q which acts on states of the
smaller Naimark space. Clearly, I' is completely positive and
trace-preserving, as it is the concatenation of channels. We show
below that I’

(E22)

1. is block-incoherent with respect to f’,
2. is subspace-preserving,
3. leads to the same POVM-incoherent operation as I'.

For the flrst claim, we verify that [ is block-incoherent with
respect to P,i.e., Aol'o A= Aol holds:

Aol oA=AoRoldoTold 0 QoA
=RoAoldoT ol 0 A0 Q
=RoldoAoToAolU 0 Q
=RoldoToAolU 0 Q
=RoldoTold 0A0Q
=RoldoTold 0 QoA
=ToA. (E23)

In the fourth equation we have used that I" is MBI w.r.t. P.

For the second claim, we verify that I is subspace-preserving,
ie,QoloQ=10Q, where Q=Eo0 &

[oQ=RoldoT ol 0QoQ
=RoldoTold ol oQ
=RolUdoToQoldl olh
=RolUoQoTloQold ol
=QoRoldoTolU 0 Qo
=QoloQ

(E24)



In the fourth equation we have used that I' is subspace-preserving.
Finally, for the third claim we show that I'" leads to the same
POVM-incoherent operation as I'. By using

e that I" is subspace-preserving: o £ =Qol o &,
*RoUQ=Ro0QoQ=Q,
we see that the following holds:

E ol oE=E"oRolhoT ol 0 Qo0&
=E"oRolUoT ol oo &
=E'oRolUToE
=E'oRolUQoTo&

=E'oTo&. (E25)

Altogether, we conclude that the set of POVM-incoherent op-
erations is well-defined as it does not depend on the choice of
Naimark extension for its definition.

With the independence property established in the previous
paragraph we can show that if E is an orthogonal rank-1 mea-
surement, POVM-incoherent operations MPI are equivalent to
coherence MIO channels. Since in this case E is already projec-
tive, we can choose the trivial Naimark space H' = H® C ~ H
and P = E. Then, subspace-preservation is trivially fulfilled for
all channels from S to itself, while the block-incoherent condi-
tion is equivalent to the MIO condition in standard coherence
theory. Since POVM-incoherent operations are independent of
the chosen Naimark extension the assertion also holds for any
other Naimark extension of E.

Finally, we show that the set of POVM-incoherent opera-
tions can be characterized by a semidefinite program. Let
B={Ba}ta={li){j |}fl;=1 be the (Hilbert-Schmidt-orthonormal)
standard matrix basis of operators on H' in lexicographical order.
Let vec : S’ — C4” be the isomorphism that maps a state p on
the Naimark space to its coordinate vector vec(p) with respect
to B. To any superoperator A’ on S’, we associate its coordinate
matrix with respect to B, called the process matrix,

A, 5 = u[BLA[Bg]], (E26)
which has the property that A’vec(p) = vec(A'[p]) [14]. The
process matrix A’ is related to the Choi matrix J,, of A" as [14]

A=dJS, Xx®=>(1©B,)X(Ba®1), (E27)

o4
where the mapping X — X% is an involution, called row-
reshuffling [15]. On the level of transfer matrices the com-
position of superoperators £ o F becomes multiplication £F.
With that we can characterize POVM incoherent operations via
a semidefinite feasibility problem. A system channel A on S is

POVM-incoherent if and only if there exists a Choi matrix J on
H' ® H' such that

find: d'EJRE=A

J>0, tr;J=21,
JRA = AJRA,
JRQ = QIRG.

subj. to:

(E28)

Here tr; denotes the trace over the first subsystem of 1’ ® H', and
E[p] = p®0. Moreover, A denotes the block-dephasing operator
and Q[p'] = H.p'Tl,, with Iz being the projector onto S;.
The SDP characterization allows for an efficient numerical check
whether a channel is element of the set of POVM-incoherent
operations. ml

The fidelity between two quantum states p,o is given by
F(p,o) = tr\/\/po./p. We define the quantity Fyu(p,07) =
maxa,, F(Ampi[p], o) between the states o- and Avipi[ o], max-
imized over all POVM-incoherent operations App; of a POVM
E. The quantity characterizes the usefulness of a particular state
p when only POVM-incoherent operations can be implemented,
as it provides a measure of how well o can be approximated. As
a consequence of the SDP characterization of POVM-incoherent
operations we are able to efficiently numerically calculate Fpy.

Proposition 7. The fidelity Fax(0,07) = max F(Ampr[p],0)
equals the solution of the following semidefinite program

Fmax(p» O-) =
1 ;
maximize: i(tr[X] +u[XT])
o X
subj. to: >0,
! (xT A[p])

Alp] = vec (&' ETIRE vec(p))
J720, trjJ=2,

JRA = AJRA,
JRO = QIRG. (E29)

Proof. The fidelity between two arbitrary quantum states can be
cast in the form of an SDP [16, 17]. Combining this with the
SDP characterization of POVM-incoherent operations from the
proof of Theorem 1 proves the assertion. O

Appendix F: Example: qubit trine POVM

In this section we apply all previously obtained results to study
the POVM-based coherence theory of qubit POVMs.

Coherence theory of mixed-unitary channel

The simplest example for a POVM-based coherence theory is
obtained from the Kraus operators of a mixed-unitary channel
which lead to the POVM E = {p;1,...,p, 1} with a probability
distribution {p;}. The canonical Naimark extension is given by
P = {1 ® |¢;){¢i|}, where |¢;) is an orthonormal basis of Hg
such that |(¢;|1)]* = p;. In this case all states have the same
coherence of Gy (0,E) = H({p;}), since the system-apparatus
interaction is just a local unitary generating coherence in the
measurement apparatus. As a consequence all system channels
A on § are POVM-incoherent, since the embedding A ® id is
subspace-preserving and commutes with the dephasing opera-
tion A[-] = ¥; P; - P; and thus maps incoherent states to them-
selves, (A ® id)[A[p]] = A[(A ® id)[p]]. Note that in general



a part of this coherence is used to generate classical randomness
for the mixing of the POVM. If the experimenter is able to per-
form statistical mixtures of measurements, certain POVMs can
be implemented with less resource. However, this is not the case
for extremal measurements [18].

Coherence theory of qubit trine POVM

In this section we apply the results from the main text to study
the POVM-based coherence theory of the qubit trine POVM
which is given by

g [l 1(1TeY1(l o
13\ 1)3\w 1 )3\t 1))’

(F1)

with w = e3¢, and w* = w?. Since our resource theory is in-

dependent of the choice of Naimark extension, it is numerically
advantageous to employ the Naimark extension of smallest di-
mension. Such a minimal Naimark extension of E is given by

P = {|oi){@il}i, on H' = €3 with
1) = %m) +12)+[3)) F2)
62) = %(m +ol2) + w*3)) (F3)
! (|])+w*|2)+w|3). (F4)

|903):$

Any incoherent state on S’ with respect to P can be written as

3
pr =Y. pilei){eil =
i

1 i} p1+wpy+wp3 p1+wp +w'p3
3| ren2twips 1 ., Pireprops], (F5)
P1+tw prtwp3 pp+wpr+w p3 1

for some probability distribution {pi}f=l. Moreover, a general
embedded system state in S¢ € S’ is of the form

Pt p12 0
Elpl=p@0=|p2 p22 O], (F6)
0 0 0
with p € S. Finally, any dephased embedded state reads as
L pi2 p2n
Alp@0]==|pa 1 pn2 (F7)
pi2 p2 1

We now provide a characterization of the POVM-incoherent
unitaries of the trine POVM. Let U’ be a unitary on the Naimark
space H' = C? that is

i. (Naimark-) incoherent: U'|p;) o< |¢;)

l4
ii. Subspace-preserving: U’ (|¢6>) - (|‘/(’) ))’

with [),|") € C? and |¢;) being the i-th measurement vector
of the Naimark extension. Then we call the operator U™ on
H = C? given by

ULrine — (1 00

1
01 0) U'lo (F8)
0

S = O

a POVM-incoherent unitary of the trine POVM. It has been
shown [19] that all qutrit incoherent unitaries are of the form

3
Uy =2 e %ol (F9)

i=1

where @; € R and 7 = (n(1) n(2) 7n(3)) € S; is one of the six
permutations of a three-element set. Thus, there are six classes
of 3-parameter incoherent unitaries. Moreover, the subspace-
preservation condition ii. is fulfilled for all i) € C? if and only
if the unitary is of the form

Uy =

, (F10)

O ¥ ¥
S ¥ ¥
¥ ¥ ¥

where * denotes some complex entry. Therefore, to obtain a
POVM-incoherent unitary we require that U satisfies (U~ )31 =
(UL)3.2 = 0. This yields the POVM-incoherent unitary U™ as
the upper left 2 x 2 block of the resulting matrix. The following
list contains all trine POVM-incoherent unitaries:

trine  _ 10 _
U(123)_(0 1 =1,

trine vo* 0 _ 21
U(231) _( 0 \/(_U _REZ( 3 )7
trine w* 0 _ p. 4i
UGl = ( 0 w) =Re. ().
0 —i
vy = (5 9) = R,
5
i 0 w3
oy (% ) - R
0 wi
i w
veats) ‘(wg 0)=Rm3(7r), (F11)

Up to a phase, any qubit unitary can be expressed as R;(6) =

¢TI0 ¢ SU(2), namely as the rotation around the bloch vector

7 with angle 6. Here, m; denotes the Bloch vector of the mea-
surement vector |¢;), and U™ denotes the POVM-incoherent
unitary obtained from U. This set is composed of the six rota-
tions that leave the equilateral triangle, whose vertices are given
by the measurement direction vectors {#; }, invariant. There are
no continuous degrees of freedom left, since the two subspace-
preserving conditions together with the requirement of having
unit determinant uniquely determines the parameters ;.

Atlast, we discuss the usefulness of a maximally coherent state
[¥m) € {|0),]1)} for the POVM-based coherence theory of the
trine POVM. We have numerical evidence that the transformation
[¥m)(Pm| = p with p € S is always possible by a maximally




POVM-incoherent (MPI) map. Concretely, by plotting the value
of Fax (|¥m),o) for any pure state o = | )(y/|, we observe
that all pure states can be obtained with certainty from |¥p,)

under POVM-incoherent operations. Therefore, all qubit states
p = Y; pili){i| can be obtained from |¥p,) by a POVM-incoherent
map, namely via preparing the eigenstate |i) with probability p;.
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Quantifying coherence with respect to general quantum measurements
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Coherence is a cornerstone of quantum theory and a prerequisite for the advantage of quantum technologies.
In recent work, the notion of coherence with respect to a general quantum measurement (POVM) was introduced
and embedded into a resource-theoretic framework that generalizes the standard resource theory of coherence. In
particular, POVM-incoherent (free) states and operations were established. In this work, we explore features of
this framework which arise due to the rich structure of POVMs compared to projective measurements. Moreover,
we introduce a rigorous, probabilisitic framework for POVM-based coherence measures and free operations.
This leads to the introduction of new, strongly monotonic resource measures that neatly generalize well-known
standard coherence measures. Finally, we show that the relative entropy of POVM-coherence is equal to the
cryptographic randomness gain, providing an important operational meaning to the concept of coherence with

respect to a general measurement.

I. INTRODUCTION

In quantum technologies, particular properties of quantum
states and channels become valuable resources for the appli-
cation. For example, quantum entanglement enables superior
performance in nonlocal games compared to classical resources,
which can be utilized for the device-independent distribution
of a secret key [1, 2]. Quantum resource theories (QRTs) [3—
5] provide a versatile, application-independent methodology for
the quantitative analysis of resources. The QRT framework has
been applied to different quantum phenomena such as entangle-
ment [6, 7], purity [8], asymmetry [9, 10], thermodynamics [11]
and coherence [12—14]. In recent years, the core common struc-
ture of QRTs has been identified [15, 16]. In physical setups, the
feasible quantum operations are usually constrained, either due to
practical limitations or fundamental physical laws such as energy
conservation. Consequently, only a subclass of operations can
be (easily) realized, which are called free operations. Properties
of quantum states that cannot be created by free operations are
considered a resource. States without resource content are called
free states. Building on these basic notions, it is possible to
develop a rigorous quantitative framework which yields insights
into the different means of quantifying a resource, the optimal
distillation and dilution of the resource and the possibility of
interconversion of resource states under the given constraints.

Quantum coherence [14], i.e., the feature of quantum sys-
tems to be in a superposition of different states is at the core of
quantum mechanics. In particular, coherence underlies quantum
entanglement [17] which plays a central role in quantum com-
munication and computing. The resource theory of coherence
is formulated with respect to a distinguished basis of a Hilbert
space, the incoherent basis {|i) }, which defines free states as the
states that are diagonal in this basis. For instance, in quantum
thermodynamics {[i)} is the energy eigenbasis and work can be
extracted by a thermal process which removes the off-diagonal
entries of the state of the system [18]. Equivalently, coherence
can be defined with respect to the von Neumann measurement
P = {|i)(i|} such that free states arise as post-measurement states
of P.

* felix.bischof @hhu.de

However, coherence as an intrinsic property of quantum
states should be defined with respect to the most general quan-
tum measurements, namely, positive-operator-valued measures
(POVMs). This is because POVMs describe the most general
type of quantum observable and can have a real operational ad-
vantage compared to any projective measurement, see e.g. [19].
A notion of coherence with respect to a general measurement
is meaningful if i) it can be embedded in a consistent resource
theory ii) POVM-based coherence measures have interesting op-
erational interpretations, i.e, they quantify the advantage of states
in a quantum information protocol. Recently, a resource theory
of quantum state coherence with respect to an arbitrary POVM
was introduced and studied [20]. Here, we develop this frame-
work further by discussing selected features that are distinct from
standard coherence theory. In particular, we answer point ii) by
providing an important operational interpretation of the most fun-
damental POVM-coherence measure. Moreover, we introduce
further operational restrictions on the class of free operations in
conjunction with new useful measures of POVM-coherence. We
expect that our findings will help to clarify the role of coherence
in all quantum technologies employing nonprojective measure-
ments.

The structure of our work is as follows. In Sec. I B we briefly
recapitulate the resource theory of POVM-based coherence [20].
Sec. II discusses a particular one-parameter POVM, which de-
scribes how standard coherence turns into POVM-based coher-
ence, highlighting features of minimally coherent states and the
measurement map. In Sec. III, we show that the relative entropy
of POVM-based coherence quantifies the cryptographic random-
ness of the measurement outcomes in relation to an eavesdropper
who has side information about the measured state. This pro-
vides an operational interpretation of the resource theory. Sub-
sequently, in Sec. IV, we define and study free Kraus operators as
well as selective free operations. Finally, in Sec. V, we introduce
new, strongly monotonic POVM-coherence measures and find
relations among them.



A. Resource theory of block coherence

The resource theory of POVM-based coherence is de-
rived from the framework of block coherence!, introduced by
Aberg [21]. In the latter resource theory, the Hilbert space
‘H = &;n; is partitioned into orthogonal subspaces m;. If we
denote the projector on the i-th subspace by P;, the set P = {P;}
constitutes a projective measurement on /. Block-incoherent
(BI, free) states are defined as states of the form

pw =Alo], €S, (D
Alo] =) PioP;, )

where S is the set of quantum states and A denotes the block-
dephasing operation, which sets all entries except the blocks on
the diagonal to zero. In other words, block-incoherent states do
not possess “outer” coherence across the subspaces m;. Note
that the convex set of block-incoherent states Z is equal to the
set of U(1)-symmetric states in the resource theory of asym-
metry with the symmetry group {U(6) = e”¥2xkPx} [22]. A
further ingredient of the resource theory are maximally block-
incoherent (MBI) operations Aypr. These are channels (i.e.,
completely positive trace-preserving maps) that preserve the set
of block-incoherent states?, that is, Ampi[Z] € Z. Finally, the
block-coherence content of states can be quantified by suitable
measures [21]. The standard example for a measure is the relative
entropy of block coherence, which has the form

G (p,P) = S(Alp]) = S(p), 3

where S denotes the von Neumann entropy S(p) = —tr(plog, p).
The quantity G, satisfies the following properties which we view
as minimal requirements for a block-coherence measure [20]:

(B1) Faithfulness: C(p,P) > 0 with equality iff p = pg,.
(B2) Monotonicity: C(Amsi[p],P) < C(p,P) for any MBI map.

(B3) Convexity: C(Y; pipi-P) < ¥; piC(p;,P) for all states
{pi}, and probabilities p; > 0, 3; p; = 1.

Note that the concepts explained so far coincide with their coun-
terparts in the standard resource theory of coherence if all P;
have rank one.

B. Resource theory of coherence based on POVMs

A much broader generalization of standard coherence is pro-
vided by the POVM-based resource theory of coherence [20].

! In Aberg’s work block coherence is called superposition. However, since block
coherence is a generalization of coherence with very similar structure, we find
this name more suitable from the current literature perspective.

2 In the resource theory of asymmetry, the free operations usually considered in
the literature [9, 10, 23, 24] are the group-covariant operations, i.e., channels
that commute with all unitary channels obtained from the symmetry group.
In the language of coherence theory, these operations are the translationally-
invariant operations [24], which form a strict subset of the maximal set of free
operations MBI we consider here [25].

POVMs describe the most general type of quantum measure-
ment, namely a collection of n positive operators E = { E; > 0} |
that sum to the identity, >*; E; = 1. We will also use the corre-
sponding measurement operators, defined as A; = U;\/E;. Here,
VE; denotes the unique positive square root of E; and U; is an
arbitrary unitary. Thus, Ain = E; holds.

Let E be a POVM on a d-dimensional Hilbert space H. The
main idea to define POVM-based coherence theory is to link it to
the resource theory of block coherence specified by the Naimark
extension P of E. The Naimark extension is a projective measure-
ment with the following property: if the POVM is embedded into
a subspace of a higher-dimensional Hilbert space " of suitable
dimension d’ > d, P extends E to the whole space. We denote
by £ an (isometric) embedding channel, mapping operators on
‘H to operators on H’. Consequently, it holds that

tr(E;p) = tr(P;E[p]),

that is, P has the same expectation values for any embedded state
E[p] as E for p. Therefore, it is natural to define the coherence
of a state p w.r.t. a POVM E as the block coherence of £[p]
w.r.t. the Naimark extension P of E, namely

C(p.E) = C(&[p].P), ©)

where the function C on the right denotes any unitarily-covariant
block-coherence measure [20]. Note that the Naimark extension
of a POVM E, in particular its dimension d’, is not unique3.
Therefore, one should ensure that the right side of Eq. (5) does not
depend on the choice of Naimark extension P. This property was
shown in [20] for the case of C(p',P) = Cr1(p’,P) from Eq. (3).
One obtains the relative entropy of POVM-based coherence

Ce(p.E) = H({pi(p)}) + ZPi(P)S(Pi) -S(p), (6)

forall p e S, “4)

with p;(p) = tr(Eip), pi = AipAf[pi A; = \/E;, and the Shan-
non entropy H({pi(p)}) = —X; pilog, p;. In the special case
of E being a von Neumann measurement, E; = |i){i|, Cre1(0,E)
corresponds to the standard relative entropy of coherence. From
Def. (5) it follows that for some POVMs the set of states with
zero coherence (POVM-incoherent states pp) is empty [20]. The
generalization of incoherent states are states with minimal co-
herence ppmin, Which form a set M that has similar properties as
the standard incoherent set: it is nonempty, convex, and closed
under POVM-incoherent operations, which are defined below.
POVM-incoherent (free) operations can be derived from block-
incoherent operations on the enlarged space. Let Aj;g; be a block-
incoherent map on states p’ € 8" on the Naimark space with the
additional property that the set of embedded states {E[p] € S’ :
p € S} is closed under A{VIBI. Then, the following channel is
called a (maximally) POVM-incoherent operation (MPI) [20]

Awpi[p] = €7 o Alypr 0 E[p)- (N

POVM-coherence measures and MPI maps are the main con-
stituents of the resource theory of quantum state coherence based

3 For instance, given any Naimark extension, one can always increase the dimen-
sion of each effect by adding projections on additional degrees of freedom.



on POVMs. Crucially, these two concepts are consistent with
each other by construction, as any POVM-based coherence mea-
sure (5) satisfies:

(P1) Faithfulness: C(p,E) > 0 with equality iff p = py,.

(P2) Monotonicity: C(Ampi[p].E) < C(p,E) for any MPI map
with respect to E.

(P3) Convexity: C(p,E) is convex in p.

See Ref. [20] for a detailed discussion of the concepts. The ques-
tion whether POVM-coherence measures satisfy strong mono-
tonicity is an open problem that will be addressed and answered
in Sec IV.

II. MINIMALLY COHERENT STATES AND THE
MEASUREMENT MAP

In this section, we examine a one-parameter POVM to il-
lustrate how standard coherence theory turns into POVM-based
coherence. Moreover, this example sheds light on two natural
questions in the context of the generalized notion of coherence: i)
does the maximally mixed state always contain the lowest amount
of coherence? ii) is the measurement map Ag[p] = ¥; VE oV E;
POVM-incoherent for any POVM? In standard coherence theory,
both questions can be answered in the affirmative. However, our
example shows that this does not hold in general.

To illustrate the amount of POVM-based coherence in states,
we discuss a POVM representing the continuous distortion from
a von Neumann measurement into a non-projective POVM. Con-
cretely, we consider E(6) = {E;(6)}>_, which coincides for 6 = 0
with the qubit Y-measurement, and for 6 = 1 with the qubit trine
POVM, whose measurement directions 72; form an equilateral
triangle on the xy-plane of the Bloch sphere. With the Bloch
representation of qubit POVMs

Ei:CZi(]l+I’7’li~5') with «@; >0

Za/,- = 1, Za/,-r?z,- = 0, (8)

the POVM elements E;(§) are given by the parameters
0

a’lzg,

iy = (1,0,0)7  and with 7=
iy = (-1,V/1 - 12,0)"
s = (-t,-V'1-12,0)". 9)

1 o
(1220'3:5(1—3)

0
3-6

The effects E;(§) are linearly independent (except for § = 0)
as the measurement directions form a triangle [26]. Moreover,
since |m;| = 1, the effects have rank one, except for 6 = 0 where
the first effect has rank zero. Thus, E(6) is an extremal POVM
for any 6, i.e., it cannot be written as a mixture of two other
POVMs, and in this sense does not contain classical noise. In
Fig. 1, we plot the POVM-based coherence of selected states, as
well as the minimally and maximally achievable coherence for
all values of ¢. Interestingly, the figure shows that for 0 < ¢ < 1,

the state with minimal coherence is distinct from the maximally
mixed state. We abstain from stating the explicit form of oy (5)
in the range 0 < § < 1 as it is too cumbersome. However, we
report that in this interval the maximal eigenvalue takes values
0.5 <||pmin(6)]|eo S 0.6.

Coherence C

0 ‘ —1d/2

0 0.2 0.4 06 |——Min/Max | 1
distortion parameter 0

FIG. 1. The relative entropy of POVM-based coherence plotted for
selected states with respect to the POVM E(§) defined in Eq. (9) for
all values of the distortion parameter 6. The states yx,iy,¥; denote
the +1-eigenstates of the Pauli matrices o, 0y, 07, respectively. The
lowest solid line corresponds to the maximally mixed state. The dashed
lines indicate the achievable minimal and maximal coherence, respec-
tively, which were obtained analytically (by Karush-Kuhn-Tucker con-
ditions [20]).

This property can be utilized to show that the measurement
map of the POVM E, defined as

Aelp] = Y. VEpVE: (10)

which is unital, Ag[1] = 1, is not incoherent in general. A coun-
terexample is provided by the POVM E(§): Table I shows for
selected parameters of ¢ that Ag increases the coherence of ppin
for 0 < § < 1. However, note that Ag from Eq. (10) is POVM-
incoherent for any projective measurement but also for certain
nonprojective measurements like the qubit trine POVM [20].

H 6 ‘Crel(Pmin) ‘ Crel(AE[Pmin]) ‘ Cra1(1/2) H

0 0 0 0
04| 0412 0.427 0.433
0.5] 0462 0.476 0.483
0.6] 0.503 0.514 0.522

1 0.585 0.585 0.585

TABLE 1. POVM-based coherence of states w.r.t. E(§) for selected
values of 6. For 6 € {0,1}, the maximally mixed state 1/2 is a state
Pmin of minimal coherence. Moreover, the measurement map Ag is
incoherent in these cases and thus does not increase the coherence of
Pmin- For 0 < § < 1, the maximally mixed state 1/2 does not have
minimal coherence and Ag increases the coherence of ppip.



III. POVM-BASED COHERENCE AND PRIVATE
RANDOMNESS

In Ref. [20], the relative entropy of POVM-based coherence
Cee1(p,E) from Eq. (6) was established as a measure of coherence
with respect to general measurements. However, in the previous
work the operational meaning of this measure was left open.
In this section, we show that Ci(p,E) quantifies the private
randomness generated by the POVM E on the state p with respect
to an eavesdropper holding optimal side information about the
measured state. This is a relevant result for quantum randomness
generation and cryptography, which generalizes the findings from
Refs. [27, 28], where it was shown that the standard relative
entropy of coherence corresponds to the quantum randomness of
a von Neumann measurement.

We consider a POVM F = {F;} that is measured on a state p4
on a quantum system A, such that the measurement outcomes i
are stored in the register X, see Fig. 2. An eavesdropper holds
maximal side information about py, i.e., all degrees of freedom
correlated with A in the form of a purifying system E such that
| )ag with pa = trg (¢ ){¥|ag) describes the joint pure state.
After the measurement F, the joint state is given by

PXAE = Zpi|i)(i|x ® i) (Jilae (1n

where p; = tr(F; pa) denotes the probability to obtain outcome i.
The pure post-measurement states |¢f; )ag = \/%(A,- ® 1)|y)aE

are defined by the measurement operators A; that implement the
POVM, that is, F; = A} A;.

Let S(X|E), = S(pxe) — S(pE) denote the conditional von
Neumann entropy of X given E on the state p. We define the
randomness contained in the random variable X = (i,p;) of the
measurement outcomes of F as

Rx|£(pa) = min S(X|E)z (12)
[¥)aE

where p = pxg is obtained from Eq. (11) by tracing out A and
the minimum is taken over all purifications [/)ag of pa. This
choice of randomness quantification is relevant in practice, as it
describes the asymptotic private randomness, i.e., unpredictabil-
ity of the measurement outcomes. Indeed, for an eavesdropper
employing an independent and identically distributed (IID) attack
in an n-round protocol, the single-round von Neumann entropy is
related by the quantum asymptotic equipartition property [29] to
the smooth quantum min-entropy HS,,(X"|E™) of all n rounds.
The latter quantity has been proven to quantify composable secu-
rity in quantum randomness generation and cryptography. More
precisely, HZ; (X"|E") is equal to the minimal number of bits
needed to reconstruct X" from E”, except with probability of
order € [2, 30].

Proposition 1. Let Eve hold a purification of p4. The private
randomness generation rate is equal to the relative entropy of
POVM-based coherence, Ry|r (pa) = Crel(pa,F), for any possi-
ble POVM F measured on p4 generating the outcome random
variable X.

Proof. — First, note that the local measurement F on A leaves
the state pg = tra (| )(¥|ar) invariant, i.e., o = pg. Moreover,

X

FIG. 2. The relation between private randomness and POVM-based
coherence. The eavesdropper Eve has maximal side information about
the state p4, namely a purification |) 4. Nonetheless, if ps possesses
coherence with respect to the POVM F, the measurement outcomes
X =i contain secrecy with respect to Eve. That is, the asymptotic
randomness generation rate is given by RX| £(pa) = Crer(pa,F), with
the relative entropy of POVM-based coherence defined in Eq. (6).

it holds that S(pg) = S(pa) since pag :~|¢)(~w|AE is pure, and
likewise S(pa)i) = S(PE;) since Pag; = [ )(Yilak is pure. This
argument is a direct consequence of the Schmidt decomposition
of pure states [31]. Therefore, it holds that

Ry|e(pa) = ‘LIDT;iIL{S(ZPiV)(”X ® PEji) — S(ﬁE)}
= ‘g;irllz{H({pi}) + 2. piS(Peps) = S(pE) }

=H({p:}) + 2 piS(Baji) - S(pa)- (13)

In the first line, we inserted the state pxg from Eq. (11) into
Eq. (12). In the second equation, we employed the joint entropy
theorem [31]. The minimization can be dropped in the last step,
as all quantities are independent of the choice of purification
|¢)ar. By inspecting Eq. (6) we see that the expression in the
last line is equal to Cye1(pa,F). O

This result explains why noisy POVMs typically lead to higher
values of POVM-based coherence than projective measurements.
The noise injects randomness into the outcomes X, which cannot
be predicted by an eavesdropper with side information about the
measured state. It is crucial that the eavesdropper does not have
access to the measurement device, i.e., any noise in the measure-
ment device is trusted. However, if the POVM E is extremal,
the results of Ref. [32-35] show that an eavesdropper cannot get
additional knowledge about the measurement outcomes by pre-
programming the measurement device. Extremal measurements
such as the qubit trine POVM are thought to possess intrinsic
quantum noise [26], explaining why even the maximally mixed
state can generate nonzero trusted randomness. The POVM E(6)
from Eq. (9) is extremal for any 6 € [0,1]. Thus, Fig. 1 shows
the generated private randomness Ry £ (p) for selected states p
and the advantage of POVMs over projective measurements. In
particular, for § > % E(6) yields up to log,(3) ~ 1.58 private
random bits per measurement, compared to maximally one bit
for qubit projective measurements.



IV. PROBABILISTICALLY FREE OPERATIONS AND
STRONG MONOTONICITY

POVM-incoherent operations as defined in Eq. (7) form the
set MPI, that is, the largest class of channels that cannot cre-
ate POVM-based coherence. Thus, MPI generalizes the set
of maximally-incoherent operations MIO [14]. However, in
practice it is useful to also have a notion of selective POVM-
incoherent operations, which we introduce in this section. These
operations cannot create coherence, not even probabilistically,
when a particular outcome of the channel is selected. This
stronger notion of incoherent operations was introduced in
Ref. [12] for the standard resource theory of coherence under
the name of incoherent operations (IO). It holds that incoherent
operations are strictly included in the maximal set, IO c MIO.

A. Block-incoherent Kraus operators

As a first building block, we need to introduce Kraus operators
that cannot create block coherence. Let P be any projective
measurement defining the Hilbert space partition H' = @;m;,
where m; = im P;. In Sec. IB we have introduced the block-
dephasing operation A and block-incoherent states in Eq. (1).
Consequently, block-incoherent pure states are element of the set
{|¢:)}i, where |p;) denotes any normalized state vector such that

|(pi) cimP;. (14)

Note that if dim P; > 2, the above set is not finite as superpositions
within im P; are allowed.

Let {K]} be a set of Kraus operators on 7{', that is, the opera-
tors satisfy the normalization condition ¥;(K]) K] = 1. We call
a Kraus operator block-incoherent if

K{|@i) o< ;) (15)

holds for all block-incoherent pure states |¢;). Note that in
analogy to the case in standard coherence theory [13] block-
incoherent Kraus operators have the form

K| = ZPf(,-)ClP,-, (16)

where f is some index function, which has to be chosen together
with the complex matrix C; on H such that normalization holds.
We call a Kraus operator K] strictly block-incoherent, if f is
invertible, that is, an index permutation. In this case, also (K l’ )T
is block-incoherent.

B. POVMe-incoherent Kraus operators

Next, we construct Kraus operators that cannot create POVM-
coherence in analogy to the construction of MPI operations (7).
We consider a POVM E on the d-dimensional space H and
any Naimark extension P of it, defined on the d’-dimensional
space H'. The (Naimark) embedding of H into M’ is given

by H & 0 = Hg, which is a choice we make for the sake of
concreteness without loss of generality. Define the operator

T = (g), (17)

where 0 denotes the zero matrix of size (d'—d ) xd. Consequently,
operators X on H are transformed to Naimark space operators
by the isometric channel £[X] = TXT". It holds that 77T = 1
and TTT =100 = II,.

Let {K/} be a set of block-incoherent Kraus operators (15) on
‘H’, where any operator additionally satisfies

K/l =T.K/T,. (18)

In other words, K; maps the embedded original space H & 0
to itself, which we call the subspace-preserving property. It is
fulfilled if and only if all Kraus operators are of the form

Kj = (3 ) (19)

where 0 denotes the zero matrix of size (d’ — d) x d and where
* represents matrices of suitable dimension.

Definition 1. We call the following operator on H a POVM-
incoherent (PI) Kraus operator:

K, =T'K]T, (20)

where T is given in (17) and Kl' satisfies (15), (18) and normal-
ization.

In Eq. (20), the operators T" and T extract the upper left d x d
block of the d” x d’-matrix K. One can readily check that a PI
set {K;} satisfies normalization by construction. At this point,
we need to ensure that the above definition is not ambiguous.

Proposition 2. The set containing all POVM-incoherent (PI)
Kraus operators K; does not depend on the choice of Naimark
extension used to define it, see Eq. (20).

The proof can be found in the Appendix A. In the special
case of a von Neumann measurement, E can be chosen as its
own Naimark extension such that d’ = d. Thus, in this case
Def. 1 and Prop. 2 imply that PI Kraus operators are equivalent
to standard incoherent Kraus operators.

C. Selective free operations and strong monotonicity

Building on the previous section, we are ready to define two
classes of probabilistically free channels. These have the prop-
erty that even when we post-select outcomes of the operation,
POVM-coherence cannot be created from an incoherent input
state. We call a channel A a selective POVM-incoherent (PI)
operation, if it admits a Kraus decomposition A[X] = ¥, K;XK]
such that all operators K; are POVM-incoherent (20). Moreover,
we call A strictly POVM-incoherent (SPI), if additionally all ad-
joint operators (K;)* are POVM-incoherent. These definitions
clearly generalize the classes of incoherent operations IO and



strictly incoherent operations SIO [14], respectively. We obtain
the following hierarchy of POVM-incoherent operations

SPI ¢ PI ¢ MPI, @1

where MPI denotes the maximal set of POVM-incoherent oper-
ations from Eq. (7).

This leads to the following definition, which extends the
requirements on a POVM-coherence measure C(p,E) from
Sec. IB. It guarantees that free operations cannot create coher-
ence on average when the observer has access to measurement
results.

(P2s) Strong monotonicity of POVM-coherence measure:
C(p,E) does not increase on average under selective
POVM-incoherent operations P, i.e.,

> piC(pi.E) < C(p.E) (22)
1

for any set of POVM-incoherent Kraus operators K; defin-
ing probabilities p; = tr(K;pK;) and post-measurement
states p; = K;pK; /p;.

(B2s) Strong monotonicity of block-coherence measure: Same
as (P2s) for the special case of projective measurements
E = P and selective block-incoherent operations BI.

Note that as a consequence of convexity, any measure that
obeys (P2s) also satisfies (P2) for the class of PI operations, in
analogy to e.g. [12]. As in Ref. [20] we can show that POVM-
coherence measures, by construction, inherit the properties of
the underlying block-coherence measure.

Proposition 3. Let C(p,E) be a POVM-based coherence mea-
sure derived via (5) from a block-coherence measure C (o', P) that
obeys strong monotonicity (B2s). Then, C(p,E) obeys strong
monotonicity (P2s) with respect to PI operations.

Proof. — In the following, we make use of the constructions
from Sec. IVB. Let {K;} be a set of POVM-incoherent Kraus
operators, leading to the post-measurement states p; = K;pK [ /pi.
Embedding these yields Naimark space operators given by

pi€lp] = TKpK,T" =TT K] TpT" (K))'TT?
=LK/ E[p](K))'Te,  (23)

where we have used £[p] = TpT", Eq. (20) and Iy = TT".
Since £[p] = M €[ p]T1e, we employ Eq. (18) twice to obtain the
following simplification:

MK/ E[p)(K]) T = M K[TIE[p]M (K] ) T,
- KIE[p)(K})'. (24)

Thus, we have shown that p;E[p;] = K/E[p](K])", which im-

mediately implies the desired relation:
> piC(pr.E) =) piC(E[p1].P)
[ [
= > niC(KiE[p)(K])" [p1.P)
[

< C(£[p).P) = C(p.E). 25)

In the first and last line we have used Eq. (5) and the inequality
holds since C(p’,P) is by assumption strongly monotonic (B2s)
with respect to block-incoherent Kraus operators K. O

An example is given by the relative entropy of block coherence
Cee1(p',P), which satisfies (B2s), as one can prove analogously to
Ref. [12] for the standard coherence measure. Thus, Prop. 3 im-
plies that the POVM-coherence measure Cye (0, E) from Eq. (6)
is strongly monotonic.

V. MORE MEASURES OF POVM-BASED COHERENCE

So far, the relative-entropy-based quantifier introduced in
Ref. [20] is the only known well-defined measure of POVM-
based coherence. In this section we introduce further POVM-
coherence measures, which are generalizations of standard co-
herence measures known in the literature [14]. As before, E is a
POVM on H and P any Naimark extension of it on the space H’.
We denote by S (S) the set of density matrices on H (H).

First, we discuss distance-based block-coherence quantifiers,
which are defined as

C(p',P) = inf D(p'.Alc]), (26)

where D > 0 is a distance such that D(p,0) = 0 < p = o
and A is the block-dephasing operation from Eq. (2). The in-
fimum runs over quantum states o € S’. In Ref. [20] it was
shown that a distance-based quantifier satisfies monotonicity
(B2) (see 1 A) if D is contractive under quantum operations,
that is, D(A[p],A[o]) < D(p, o) holds for any channel A.

Distance-based POVM-coherence measures C(p,E) are de-
rived from the measures C(p’,P) (26) via Eq. (5). We show
below that this class of measures is independent of the choice
of Naimark extension. Importantly, this implies that the POVM-
coherence measure coincides for von Neumann measurements
with the corresponding standard coherence measure [14].

Observation 1. Let C(p,E) be a POVM-based coherence mea-
sure that is well-defined, i.e., it is invariant under the choice of
Naimark extension P in Eq. (5). Then, in the special case of or-
thogonal rank-1 (von Neumann) measurements, C (o, E) is equal
to its counterpart in standard coherence theory.

Proof. — The assertion holds because for the POVM E; = |i}{i],
the Naimark extension can be chosen as P = E and the embedding
can be chosen trivial, [ p] = p. Thus, the independence property
together with Eq. (5) guarantee that the POVM-based measure
generalizes the standard measure. Note that the same argument
holds for projective measurements, where E; = P;. ml

Proposition 4. Any distance-based POVM-coherence measure
C(p,E) defined via Egs. (5) and (26) is invariant under the choice
of Naimark extension if the distance is contractive.

Proof. — Let P, P be two Naimark extensions of the same
POVM E such that rank P; < rank P;. The corresponding block-
dephasing operations are denoted A,A. We need to show that
C(&[p],P) = C(E[p),P). In the Appendix A we show that there
exists a channel (completely positive trace-preserving map) A
which satisfies N o £ = € and N o A = A o A [20].



Let C(p',P) = D(p',A[c*]) be a distance-based block co-
herence measure, where o* denotes a state that achieves the
minimum. Then, it holds that

C(&[p].P) = D(E[pl.A[c"])
>D(N o €|

C(E[plP)., @7

where we have defined 6 := N[c*]. In the first inequality
we have used the contractivity of D. The reverse inequality
C(E[p],P) < C(E[p],P) follows from similar arguments but is
more straightforward: the optimal state A[6-*] on the smaller
Naimark space can be embedded in the larger Naimark space
and suitably rotated such that it is incoherent with respect to A.
This is achieved by the channel N = U o Q which satisfies
No&E=Eand N oA =AoN, see App. A. m]

Example: Consider the distance measure Dgeo(0,07) = 1 -
F?(p,0), where the fidelity F(p,0) = try /\/P0+/p quantifies
how close two quantum states p, o are. We define the geometric
POVM-based coherence Cgeo(p,E) via Egs. (5) and (26) for the
distance Dyeo. The fidelity satisfies F2(A[p],A[o]) > F?(p,0)
for any quantum operation A [31], from which follows that
Coeo(p, E) obeys monotonicity (P2). Observation 1 implies that
this measure generalizes the standard geometric coherence [17].

In the following, we introduce and study the robustness
of POVM-based coherence which generalizes the measure
from [36]. This quantity is derived from the robustness of block
coherence, which is equal to the robustness of asymmetry from
Ref. [22] for the U(1) symmetry group {U(6) = e~ Zx Pk} Let
P be a projective measurement and A the corresponding dephas-
ing operator (2). We define the robustness of block coherence of
a quantum state p as

Con(pP) = min{s>0: 2220 afs])  @9)
=I§1€ig{s201pS (1+s)A[6]}. (29)

In other words, Ciop(p,P) is the minimal mixing weight s re-
quired to make p block-incoherent. Itis clear that the measure sat-
isfies faithfulness (B1). Moreover, the arguments from Ref. [22]
imply that Cy (0, P) satisfies convexity (B3), and strong mono-
tonicity (B2s) under selective block-incoherent operations. In-
terestingly, the robustness measure can be related to the max-
imum relative entropy of block coherence, which we define as
Cinax (p,P) = minges{1 > 0: p < 2*A[6]} [37]. By comparison
with Eq. (29) we infer that Cpax (0, P) =1og,[1 + Gion(0.E)]. A
further characterization of C, is given in the Appendix B.

Now, let E be a POVM and P any Naimark extension of it.
We employ the standard construction from Eq. (5) to define the
robustness of POVM-based coherence as

Crob(p, E) = Crob(g[p]’P)' (30)

The following result establishes Cyop (0, E) as a proper measure
of POVM-coherence.

Proposition 5. The robustness of POVM-based coherence
Ciob(0,E) is well-defined and a POVM-coherence measure that
satisfies strong monotonicity (P2s). It admits the following form:

Ciob(0.E) = gjgg{s >0: 577 = —AipAl Vi % j}, @31

where 7 = ¥, ;7 ; ® |i){j| and A; = /E;.

Observation 1 implies that in the special case of von Neumann
measurements E = {[i){(i|}, Ciob(p,E) coincides with the stan-
dard robustness of coherence [36]. The evaluation of Cyy, in
Eq. (31) is a semidefinite program (SDP). It can be simplified to
the following form suited for numerical computation, for exam-
ple, via the open-source MATLAB-based toolbox YALMIP [38]:

Crob(p,E) =min ) tr(o7,;)

st oieg = —AipAl, Yoy eli){j] 0. (32)
i

This form is obtained from Prop. 5 by setting o = s7.

Proof of Prop. 5. — First, we prove that the definition of
Ciob(0,E) is not ambiguous as it leads to the same quantity
for any Naimark extension P of E. Let P, P be two Naimark
extensions of the same POVM E such that rank P; < rank P;.
The corresponding block-dephasing operations are denoted A, A.
It is clear that Ciop(E[p],P) < Crop(E[p],P) since the optimal
state A[6*] in Eq. (29) on the smaller Naimark space can be
embedded in the larger Naimark space and suitably rotated such
that it is incoherent with respect to A. We proceed to prove the
reverse inequality by employing the channel A/ from the proof of
Prop. 4. Take Eq. (29) with optimal quantities s*,6* and apply
N to both sides of the constraint

Elp] < (1 +sM)A[T] = No&[p] < (1+5")N o A[5*]
<= Elp]<(1+s)A[8],  (33)

where we have defined § = N[6*]. Thus, Cop(E[p],P) < s* =
Ciob(E[p],P). Altogether, we conclude that Ciop(0,E) is inde-
pendent of the Naimark extension choice. Moreover, C, satis-
fies strong monotonicity (P2s) because of Prop. 3 and Property 2
in Ref. [22].

In order to prove Eq. (31), we use the following result estab-
lished as Prop. 4 in Ref. [20]. Any POVM-coherence measure
can be written as

C(p.E) = C(&v[pl.{L @ i)(il}), (34)

with the embedding &y [p] = Vp® [1)(1|[VT = ¥, ; AipAT ® i) (/]
containing an interaction isometry V, and the Naimark extension
{1 ® [i){i|}. By using that in this formulation, § € Z <> § =
> 6; ® |i)(i| and employing the parameterization 7 = }; ; 7; ; ®
i){(j], we obtain

Crob(p’E)
=min {s>0: Z(Aiij+sr,»,j)®|i)(j| = (1+5) Zéi®|i)(i|}

7,0€S7

— mi . - R
= gelfsr}{s 20:57;; = -AipA} Vi # J}, 35)



Note that the constraint for i = j was neglected in the last line,
since for any s and state 7 satisfying the last line, we can define
8; = (AipA] +s7;;)/(1+s), which directly implies that § > 0
and tro = 1. O

We also define the following quantifier, the £;-norm of POVM-
based coherence: Cr, (p,E) = ¥:.;||Pi€[p]Pjl|1, where [|X]|; =

tr(v/ X¥X) denotes the trace norm. By making use of Eq. (34)
and that ||X ® Y||; = ||X]|1||Y|l; holds for operators X,Y, it is
straightforward to show that a simplified, local expression holds

Cr,(p.E) = > [|AipAf 1. (36)

i*j

This generalized coherence quantifier satisfies faithfulness (P1),
see Prop. 5 in [20], and convexity (P3). Since for a von Neumann
measurement C, (o, E) reduces to the standard £;-norm of coher-
ence, we can infer that the measure does not satisfy monotonicity
(P2) for the class MPI in general, see Ref. [39]. However, Cy, sat-
isfies (P2) under MPI for any two-outcome POVM E = {E;}7_,
which follows from Proposition 9 of Ref. [21] together with
Prop. 3. We leave open for future work whether C, (p,E) sat-
isfies strong monotonicity (P2s) under PI, which holds for von
Neumann measurements [12].

For completeness, we show that Cg, (p,E) is invariant under
the choice of Naimark extension and unambigiously given by
Eq. (36). Given two Naimark extensions P, P, we utilize the
isometry Q from App. A satisfying P;Q = QP;. Further, we
employ the unitary U on the larger Naimark space with properties
UP; = P;U and UIl; = QIl¢, where Il is the projector onto the
embedded original space H¢. Since the trace norm is invariant
under multiplication by isometries V, W, ||X||; = |[VXWT||;, we
have

1B:E[p]B 1 = U QP:E[p] 207U
= |PUTQE[PIQ UP |1 = IPi€Lp] Pl D
Note that in the special case of rank-one effects E;, Ce1 (0, E) and
Cr,(p,E) coincide with the generalized coherence quantifiers
proposed in [41].
The following result establishes general relations between

POVM-coherence measures that are visualized in Fig. 3. These
findings generalize results from Ref. [40].

Proposition 6. Given an n-outcome POVM E, the following
inequalities hold for the measures from Egs. (6), (31), (36):

Crob (0. E) < Cp (p,E) <n—1, 37)
Crel(va) < 10g2[1 + Crob(paE)]' (38)
Moreover, Ciob (¢, E) = C¢, (,E) holds for any pure state .

Proof. — First, we prove Ciop(p,E) < n — 1 by showing that
Cob(p,P) < n— 1 for any n-outcome projective measurement P
and any state p’ € S’. For that, define K; ; = (P; - P;)/\/2 and
consider the expression

1
ZKi,ijiT,j =5 Z(Pi - Pj)p(P;i - P;)
i,] L,J
=Y PipP; = PipP; (39)

i,j iJj
=nY PipP; - Y PipP; = (nA - id)[p].
i i.j

Consequently, the map (nA —id) admits a Kraus decomposition
and is thus completely positive. This implies that nA[p'] -’ > 0
holds for any quantum state p’. Hence, we obtained o' < nA[p']
and by comparison with Eq. (29) we conclude that Ciop (o', P) =
s<n-—1.

The relation Cy, (p,E) < n -1 can be shown by evaluating the
underlying block-coherence measure for a maximally coherent
state. The latter is given by |¥,) = ﬁ >ilei) with pure block-

incoherent states |¢;) defined in Eq. (14). This leads to

Ca (). P) = = SIS Pl il = Slloid el

i k1l i)

1 1
:;ZII;}’Z(H—I):H—I. (40)

i*j

In the Appendix B we show a further SDP characterization of
the robustness of POVM-based coherence. Moreover, this form
is used to show that Cop (¢, E) = C¢, (¢, E) for pure states and
Crob (0, E) < Cp, (p,E) in general.

Finally, we show Eq. (38) similar to Ref. [40]. Let s*,5* be the
the optimal quantities for Cob (0, E) = Cion (€[ p],P) in Eq. (29).
Using the abbreviation ps = E[p], it holds that Cie(pe,P) =
S(pellALpe]) < S(pellA[6*]). Moreover

S(pellA[67])

1+s7)A[6*
:U'[Ps (10g2 pe —log, “Si)[])] “D

(1+s*)
=log, (1 +5") + tr[pe (logy pe —logy (1 +s*)A[6"])],

where we have used the definition of the relative entropy
S(pllo) = tr[p(log, p — log, o7)]. On the other hand, Eq. (29)
implies that p < (1+s5*)A[6*]. The latter relation together with
the fact that the logarithm is operator-monotone yields that the
second term in (41) (last line) is non-positive. We conclude that
Crel(p,E) < S(pe||A[6%]) < log,(1 + s*) implying the desired
relation. o

VI. CONCLUSION AND OUTLOOK

We presented several results on the resource-theoretical con-
cept of coherence with respect to a general quantum measure-
ment. We expect these advances to clarify the role of quantum
coherence in information technologies employing nonprojective
measurements. In particular, we discussed selected features of
POVM-based coherence theory that are distinct from the stan-
dard resource theory of coherence. Moreover, we established a
probabilistic framework of free transformations in conjunction
with resource measures. This led to the introduction of new,
strongly monotonic POVM-based coherence measures that gen-
eralize well-known coherence measures. We also established
relations among the new measures. Finally, we showed that the
relative-entropy-based resource measure is equal to the cryp-
tographic randomness gain, providing an important operational
meaning to the concept of coherence with respect to a measure-
ment.

Together with Ref. [20], we have paved the way for a detailed
operational analysis of POVM-based coherence as a resource,
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FIG. 3. POVM-coherence measures in relation to the generalized robustness of coherence s := Cyop(p, E) for the qubit trine POVM E(6 = 1) (9).
Left: the blue line indicates the bound Ciej(p,E) < log, (1 + s) from Eq. (38). Red (yellow) dots represent randomly sampled pure (mixed) states.
Similar to standard coherence theory [40], the upper bound is not tight. Right: the blue, straight line indicates the graph of C¢, (p,E) = s, on which
all pure states lie (red dots). The yellow dots represent mixed states for which Cy, (p.E) 2 s holds (37).

akin to what has been achieved in the standard resource theory of
coherence [13, 42—44]. The operational analysis includes the in-
vestigation of resource distillation and dilution in the asymptotic
and single-shot regime, see [45—47]. In particular, it is open
whether our theory is reversible, or there are bound resources
for a given class of POVM-incoherent operations [48, 49]. An
important step towards this goal would consist in a possible
simplification of our constructions, e.g., of the MPI and PI oper-
ations. Moreover, we expect that virtually all known coherence
measures and incoherent channel classes [14] can be generalized
to POVMs. 1t is likely that more operational interpretations of
POVM-based coherence measures can be found which link the
resource theory to interesting applications in quantum informa-
tion science. Finally, future work should address the connection
of POVM-based coherence with other notions of nonclassicality
such as entanglement and purity [17, 50].
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APPENDIX
Appendix A: Relating Naimark extensions of a POVM

In the Supplemental Material of Ref. [20] several relations
between Naimark extensions of a POVM were established. In
this section, we provide an overview of these results which are
used to show that the constituents of our POVM-based coherence
theory do not depend on the choice of Naimark extension. In
particular, we prove Prop. 2 at the end of this section.

Let P, P be two Naimark extensions of the same n-outcome
POVM E such that rank P; < rank P;. There exists an isome-
try Q:H — H' from the smaller Naimark spacer to the larger

Naimark space such that

P;Q=0P; and
QoA=A0Q,

(AD)
(A2)

where we have defined the isometric channel Q[X] = 0XQ and
A[X] =Y, P:XP; denotes the block-dephasing operator.

Moreover, it was shown that there exists a unitary U on the
larger Naimark space such that [20]

QHgZUHg and
Qo&=UoE,

(A3)
(A4)

where £[X] = TXT" = X @ 0 denotes the embedding operation,
see Sec. I B. This unitary can be chosen to be block-diagonal
such that it commutes with the Naimark extension effects

UPI':P,'U and
Aol =UoA.

(AS5)
(A6)

The channel Q[p] = Q7pQ is completely positive but not
trace-preserving in general. Define the projector S := QQ" and
its complement S* = 1 — § for which holds that S*Q = 0. We
define the completely positive map

Tlpe] = tr(S*p)1/dmin, (A7)
which has Kraus operators
1 A L
L&,b = |a)(b|S N (AS)
dmin

where {|@)} ({|b)}) denotes an orthonormal basis of the smaller
(larger) Naimark space. We choose as output basis |a@) € 7 an
incoherent basis with respect to ;. Consequently, Lg,p cannot
create coherence for any input. Define the operators
¥ -
Rm:{Q form =0 (A9)
Lap form>1,



where the index m for m > 1 runs over all combinations of (4,b).
The set {R,, } is a set of Kraus operators for the channel

R=0"+T. (A10)

It holds that R o Q = id, i.e., R is a reversal channel of the
isometric channel Q. One can show that the following equation
holds [20]

AoR=RoA. (A11)

In addition, it holds that 7 o £[p] = tr(S*E[p])1/dmin = 0 and
therefore

RoE=00€. (A12)

Finally, we define the following channel from operators on the
larger Naimark space to operators on the smaller Naimark space:

N :=Rol, which satisfies
No&E=E and NoA=AoN.

(A13)
(Al4)

The first equality follows from N'o€ = Roldo& =R 0Qof =¢.
The second equality follows from Ao A = RoldfoA = AoRold =
AoN.

Proof of Proposition 2

Proposition 2. The set containing all POVM-incoherent (PI)
Kraus operators K; does not depend on the choice of Naimark
extension used to define it, see Eq. (20).

Proof. —LetP, P be two Naimark extensions of the same POVM
E such that rank P; < rank P;. Let {K; = TTKI'T} be the set of
POVM-incoherent Kraus operators defined via incoherent oper-
ators {K/} of the “larger” Naimark extension P, see Eq. (20).
Consider the MBI channel I'[p'] = ¥, K/p’(K])" on the larger
Naimark space. The channel [' ;== Rolf o T o U 0 Q is a MBI
channel on the smaller Naimark space, that leads to the same (lo-
cal) MPI operation Appy [20]. We consider the following Kraus
decomposition of the channel:

I[p] = . RuUK[U'QpQ"U(K]) U'RY,
m,l

= Z km,lﬁk:n,l,
m,l

K = RaUK[U'Q, (A15)
where R, was defined in Eq. (A9).

We proceed to show that the set {K,,, ;}

i) satisfies 3, ; k;,lkm,l =1,
ii) has the property that each element is incoherent w.r.t. P,
iii) leads to the previous set of PI Kraus operators, more pre-
cisely, T" K 1T = 6m.0K;.

The first claim holds since {K,, ;} is a set of Kraus operators

of I', which is a completely positive trace-preserving map [20].
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For the second claim, consider a block-incoherent pure state
|oi} = Pile;), for which holds:

km,l|‘1‘7i> = km,lpi|90i)
= R, UK P;UQ|g;)
= RuUPy( K PiU" Qlei)
= RuPr(iy UK PiU" Qloi)
_ {[A’f(i)QTUKl'PiUTQL,o,-) form=0 (AL6)
LapPiiyUK/PUQlg;)  else.

The second equation makes use of (Al) and (AS). In the third
line we have used that for an incoherent input, the output of K;
is incoherent (16). Finally, the last equation follows from the
definition of R,, (A9). Note that in any case, the output of the
Kraus operator in (A16) is incoherent, see (AS8).

For the third claim, we evaluate:

T'R,,,T =T'R,UK/U QT
=T'R,UK|T
=T'R,UllK|T
=T 'R, QKT
= 60T K|T = 6,n.0K. (A17)

In the first line, the definition of Iem,l (A15) was inserted.
The second and fourth line utilize the relations UT = QT and
Il; = TT'. In the third line, we have used that K 1’ is subspace-
preserving (18). Finally, for the last line, note that according
to (A9), RyQ =00 =1, and R,,Q =0 for m > 1. O

Appendix B: Alternative SDP for generalized robustness measure

In Ref. [22] it was shown that the robustness of block-
coherence (asymmetry) can be expressed by the following SDP:

Crob(0,P) = maxtr(Xp) — 1,
st. X>0, A[X]=1. (BI)

where A[X] = ¥; P;XP; denotes the block-dephasing opera-
tion. Consider the POVM-coherence measure Crop(0,E) =
Crob(Ev[p],P), where P; = 1 ® [i)(i| and Ev[p] = ¥; ; AipA] ®
|i)(jl, see Eq. (34). If we write X = ¥, ; X; ; ®|i}{/j|, we directly
obtain the SDP:

Crob(p.E) = maxtr(} Xj,iAiPA}-) 1

i.j
st Y Xi;®li)j|>0, X;;=1. (B2)
i.j

Employing this form, we are able to show that Ciop(0,E) <



C, (p,E) as follows:

Crob(p,E) = X>(§n)?-x»—]1 Ztr(Xj,,:A,»pA]T) -1
20, &ii=b 5 5

= tr(X; ;AipA]

xZéf‘;?,-’ﬁ:n;j 1(X;.iAipAf)

2 Y Retr(X;,:AipA))
i<j

2 3 |ir(X;,iAipA))|

i<j

= max
X>0,X; ;=1

< max
X>0,X; ;=1

<2% max |u(X;;AipA])|

i<y 1Xijlleo<1

= 23[|4ipAf[i = Cr, (p.E). (B3)
i<j
For the second inequality, we have used that X > 0,X;; = 1

implies ||X; j||oo < 1, where ||X||o denotes the largest singular
value of X. Then, we employed the variational characterization
of the trace norm, ||R||; = max||L||m51|tr(LTR)|, which follows
from the duality property of the Schatten norms [51].

We proceed that show that Cop (%, E) = Cy, (¢, E) holds for
any pure state ¢ = |y ){y/|. For indices i, j, consider the rank one
operator Ay )(|A] = \/Pipjlei) (¢ with pi = (W|A] Aily) < 1.

The vectors |¢;) = \/IITA,-W/) are normalized and not necessarily
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orthogonal. Evaluating Cy, (¥, E) yields

Ce, (0. E) = Y [l Ailw ) (Al

i+

= > /il )l I

i*j

= > \/Pip;- (B4)

y
We define the hermitian operator X = ¥, ; X; ; ® [i){j] as

X =3Il @li)(il+ 2 (L - i) @)l (BS)

It holds that X > 0 since the first term can be written as |Q)(Q| > 0
with |Q) = ¥;|¢;) ® |i), while the second term is in spectral de-
composition form and apparently positive semidefinite. More-
over, the diagonal blocks of X are equal to the identity, X; ; = 1.
Thus, X is element of the feasible set of operators X used to obtain
Ciob (Y, E) = maxx>0,x, ;=1 Lixj tr(Xj,,-Al-|zp)(¢|A}L). Hence, it
follows that

Cuon (V. E) 2 3 (K14l Y1)
= > /pipy tr(l9;)(¢il [0 ){9)1])

= \/Pip;- (B6)

i*]

By comparing (B4) and (B6), we infer that Cup(¥,E) >
C¢, (,E) holds for any pure state . Combining this with the in-
equality Crob (0, E) < C¢, (0, E) for general states p, we conclude
that Cyop = Cy, holds for pure states and any POVM. ]
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APPENDIX B

Matlab Source Codes

The Matlab files below make use of the toolbox QETLAB, which is freely available at:
www.qetlab.com. Moreover, all files involving semidefinite programming require
the Matlab toolbox YALMIP [L6f04], which is freely available at: yalmip.github.io.
Moreover, these require the SDP solver SDPT3 [TTT99].

Construction of minimal Naimark Extension

% This is MinNaimark.m

% Input: a POVM E in the form of an array, i.e., the i-th effect is
given by E(:,:,1)

% Output: the minimal Naimark extension Pmin of E in the form of an
array

function [Pmin] = MinNaimark(E)
dim = size(E,1);
m = size(E,3);

% Identity

Id = eye(dim);

for i=1:dim
c(:,i)=Id(:,1i);

end

% Check POVM properties
for i=1:m

if any(eig(E(:,:,1)))<-1e-9 % nonnegative effects
disp('POVM not positive')
return

end

end

if norm(sum(E,3)-Id)>1e-9 % normalized POVM
disp('POVM not normalized')
return

end
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B Matlab Source Codes

% Calculate Rank of POVM effects
for i=1:m
r(i) = rank(E(:,:,1i),1e-8); % l1le-8 is rank tolerance
end
dmin = sum(r); % outcome number of fine-grained POVM

% Identities and bases

Idn = eye(dmin);

for i=1:dmin
cn(:,i)=Idn(:,1i);

end

% Compute eigenvectors with nonzero eigenvalue of effects
for i=1:m

[eigvec{i}, lambda{i}] = eig(E(:,:,1));

[lambdasort{i},ind{i}] = sort(diag(lambda{i}));

eigvecsort{i} = eigvec{il}(:,ind{i}); % sort in ascending order
end

% Determine measurement directions of the fine-grained POVM
f=0;
for i=1:m
for k=(dim-r(i)+1):dim % only use the eigenvectors of nonzero
eigenvalue
f = f+1;
psi(:,f) = sqrt(lambdasort{i}(k))xeigvecsort{i}(:,k);
end
end

% Isometry matrix, with measurement directions as rows
for i=1:dmin

for j=1:dim
Psi(i,j) = dot(c(:,3),psi(:,1));
end

end

% Extend isometry to unitary
Orthocompl = null(Psi');
Psi = [Psi,Orthocompl];

% Naimark measurement directions are ROWS of Unitary
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for

end

i=1:dmin
phi(:,1i) = Psi(i,:);

% Minimal Naimark extension effects

f=1;
for

end

i=1:m
for k=f:f+r(i)-1
if k==
Pmin(:,:,1)
else
Pmin(:,:,1)

phi(:,k)*phi(:,k)";

Pmin(:,:,1i) + phi(:,k)*phi(:,k)";
end

end

f=f+r(i);

% Check for correct Naimark extension

for

end
for

end
for

end
for

end

i=T:m

if norm(sum(Pmin,3)-eye(dmin))>1e-9 % normalization
disp('NE not normalized')
return

end

i=1:m

if norm(Pmin(:,:,i)*2-Pmin(:,:,i))>1e-9 % idempotent
disp('NE not idempotent')
return

end

i=1:m
for j=1:i-1
if norm(Pmin(:,:,i)*Pmin(:,:,3j))>1e-9 % orthogonal
disp('NE not orthogonal')
return
end
end

i=1:m

if norm(E(C:,:,i)-Pmin(1:dim,1:dim,i))>1e-9 % extension
disp('NE not proper extension')

return

end

return
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B Matlab Source Codes

Relative Entropy of POVM-based Coherence

% This is RelEntPBC.m

% Input: a quantum state rho AND a POVM E in the form of an array,

.e., the i-th effect is given by E(:,:,1)

% Output: the Relative Entropy of POVM-based coherence of rho given

E

function [Coh] = RelEntPBC(rho,E)

dim = length(rho);
m = size(E,3);

% Compute Measurement operator from POVM
A = zeros(dim,dim,m);
for i=1:m
AC:,:,i)=sqrtm(E(:,:,1));
end

% Compute Relative Entropy of PB Coherence via
for i=1:m

if (i==1)

Sum = Entropy(A(:,:,i)*xrhoxA(:,:,1)"');
else

Sum = Sum + Entropy(A(:,:,i)*rhoxA(:,:

end
end

Coh = Sum - Entropy(rho);

return
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{1-norm of POVM-based Coherence

% This is L1NormPBC.m

% Input:

.e

% Output:

function [Coh] =

dim =

LTNormPBC(rho,E)

length(rho);
m = size(E,3);

% Compute Measurement operator from POVM
A = zeros(dim,dim,m);
for i=1:m

AC:,:,i)=sqrtm(E(:,:,1));

end

the 11-norm of POVM-based coherence of rho given E

a quantum state rho AND a POVM E in the form of an array,
., the i-th effect is given by E(:,:,1)

% Compute Relative Entropy of PB Coherence via QETLAB vN Entropy
for i=1:m

for j=1:m
if (i==18&&j==1)

Sum

:0;

elseif (i~=j)
= Sum + TraceNorm(A(:,:,i)*rho*xA(:,:,3)");

end

end

end

Coh =

return

Sum;

Sum

%Sum

Norm
= Sum + norm(A(:
Infinity Norm

yi,i)*rhoxA(:, 0, 3) ", inf);
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B Matlab Source Codes

Robustness of POVM-based Coherence

% This is RobPBC.m

% Input: a quantum state rho AND a POVM E in the form of an array,

.e., the i-th effect is given by E(:,:,1)

% Output: the Robustness of POVM-based coherence of rho given E

function [Coh] = RobPBC(rho,E)

dim = length(rho);
m = size(E,3);

% Matrix Units

Idm = eye(m);

for i=1:m
c(:,i)=Idm(:,1i);

end

for i=1:m
for j=1:m

mu(:,:,i,j) = c(:,i)*c(:,3j)"; % Matrix canonical basis
lexicographical order
end

end

% Compute Measurement operators from POVM
A = zeros(dim,dim,m);
for i=1:m
AC:,:,i)=sqrtm(E(:,:,1));
end

% Variable and Objective
for i = 1:m

X{i} = sdpvar(dim,dim, "hermitian', 'complex');
end

for i=1:m
if i==
Objective = trace(X{i});
else
Objective = Objective + trace(X{i});
end
end
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% Constraint

for i=1:m

for j=1:m
if i==j
sigma{i,j} = X{i};
else
sigma{i,j} = -A(:,:,i)*xrhoxA(:,:,3)";
end
end
end
for i=1:m
for j=1:m
if (i==1 && j==1)
Sum = kron(sigma{i,j},mu(:,:,1i,3));
else
Sum = Sum + kron(sigma{i,j},mu(:,:,1i,3));
end
end
end
Constraints = [Sum >= 0];
Options = sdpsettings ('verbose',2,'cachesolver', (1, 'showprogress'
1,0
"solver', 'sdpt3', 'savesolveroutput',61);
sol = optimize(Constraints,Objective,Options);
Coh = value(Objective)
return
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Check whether a given Channel is POVM-incoherent (MPI)

% This is IsMPI.m

% Input: a channel "Channel” given as a matrix in the standard

matrix basis AND a POVM E in the form of an array, i.e.,

th effect is given by E(:,:,1)

% Output: a string indicating whether the input channel
maximally) POVM-incoherhent MPI

function [ChannelIsMPI] = IsMPI(Channel E)

dim = size(E,1);

m = size(E,3);

Pmin = MinNaimark(E);
dmin = size(Pmin,k1);
dn = dmin;

% Identity and basis

Idn = eye(dn);

for i=1:dn
cn(:,i)=Idn(:,1i);

end

% Identity

Id = eye(dim);

for i=1:dim
c(:,i)=Id(:,1);

end

for i=1:dn
for j=1:dn

Bh(:,:,j,i) = en(:,i)*cn(:,Jj)"'; % Matrix canonical basis
lexicographical order
end

end

B = reshape(Bh(:,:,:,:),[dn dn dn*2]);

% Extract basis elements belonging to the system basis
for i=1:dim

for j=1:dim

Blh(:,:,j,i) = cn(:,i)*xen(:,3)";

end
end
Bl = reshape(Blh(:,:,:,:),[dn dn dim*2]);
for i=1:dim*2
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Blv(:,i) = reshape(transpose(Bl(:,:,i)),[dn*2 11);
end

% POVM from Naimark extension
for i=1:m

E(:,:,1) = Pmin(1:dim,1:dim,1i);
end

% SDP variable
Choi = sdpvar(dn*2,dn?2, 'hermitian', 'complex');

% Derive process (transfer) matrix from Choi matrix
for i=1:dn"2
if i==
Trans = kron(Idn,B(:,:,i))*Choixkron(B(:,:,1i),Idn);
else
Trans = Trans + kron(Idn,B(:,:,i))*Choi*kron(B(:,:,1i),Idn);
end
end

Trans = dn*Trans; % Renormalization, because Choi has trace one for
channel

% Measurement map is equal to primal feasible map
for i=1:dim"2
for j=1:dim*2
Translocal(i,j) = Blv(:,1i) "*Trans*Blv(:,j);
end
end
Equality = [Channel==Translocall;

% @. Constraint: completely positive and trace preserving
CPTP = [Choi>=0, PartialTrace(Choi,1)==Idn/dn];

% 1. Constraint: Naimark incoherent
% Action of Naimark-dephasing operator on matrix basis
for i=1:dn"2

for k=1:m
if (k==1)
Delta(:,:,i) = Pmin(:,:,k)*B(:,:,i)*Pmin(:,:,k);
else
Delta(:,:,i) = Delta(:,:,i) + Pmin(:,:,k)*B(:,:,i)*Pmin

(G VX
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end

end
end

% Transfer matrix of dephasing operator
Deltat=zeros(dn*2,dn"*2);

for

end

% 2.

Pil

i=1:dn"2
for j=1:dn"2

Deltat(i,j) = trace(B(:,:,1i)'*xDelta(:,:,3));
end

Constraint: subspace preserving
= blkdiag(Id,zeros(dn-dim)); % Projector onto local subspace

% Transfer matrix of local subchannel projection L
Lt=zeros(dn*2,dn"2);

for

end

Sub
Inc

i=1:dn*2
for j=1:dn*2

Lt(i,j) = trace(B(:,:,1i)'*PiL*B(:,:,j)*PiL);
end

= [Trans*Lt==Lt*Trans*Lt]; % subspace-preserving operation
= [Trans*Deltat*xLt==Deltat*Trans*DeltatxLt]; % Incoherent
operation

% SDP optimization
Constraints = [Equality,CPTP,Inc,Subl;

Options = sdpsettings ('verbose',2, 'cachesolver',1, 'showprogress',1,
"debug',1,...
'solver', 'sdpt3', 'savesolveroutput',1,'allownonconvex',1, " 'debug',1)
sol=optimize(Constraints,[],Options);

error=1le-6;

if

(sol.problem==0||sol.problem==5]||sol.problem==48&so0l.solveroutput
.info.relgap<le-3) %not for SEDUMI

disp('SDP converged')

Trans = value(Trans);
Choi = value(Choi);
Translocal = value(Translocal);

% no square root for this fidelity
% check whether map is CPTP

if (norm(PartialTrace(Choi,1)-Idn/dn)>error||any(eig(Choi)<-error
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disp('Channel not CPTP'")
% Fidelity=-1;
return

end
for

end

i=1:100 % Check whether channel is really POVM-incoherent
check{i} = RandomDensityMatrix(dim);
checkv{i} = reshape(transpose(check{i}),[dim*2 11);
Imcheckv{i} = Translocal*checkv{i};
Imcheck{i} = transpose(reshape(Imcheckv{i},[dim dim]));
if RelEntPBC(Imcheck{i},E)-RelEntPBC(check{i},E)>=1e-6
disp('Input Map not incoherent')
CohIncrease = abs(RelEntPBC(Imcheck{i},E)-RelEntPBC(check{
i},E))
return
elseif abs(trace(Imcheck{i})-1)>=1e-5
disp('Test: Channel not TP')
return
else
continue
end

% if norm(M-MA)>1e-4

%

disp('consistency check failed"')
return

% end
disp('Map passed CPTP and MIO Test')
disp('Channel is POVM-incoherent')
ChannelIsMPI = true;

else

disp('optimization problem:"')
yalmiperror (sol.problem)
ChannelIsMPI = false;

return

end
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Maximal Fidelity between two states under MPI operations

% This is Fmax.m

% The program computes the maximal Fidelity between two states

achievable by POVM-incoherent operations MPI

% Input: an initial state I AND a target state T AND a POVM E in the

form of an array, i.e., the i-th effect is given by E(:,:,1)

% Output: the quantum fidelity between T and MPI[I] optimized over

all MPI operations of the POVM E

function [Fidelity] = Fmax(I,T,E)

dim
m:

Pmin

dn

= size(E,1);
size(E,3);
= MinNaimark (E);
size(Pmin,1);

% Auxiliary definitions

Id

Idn
for

end

for

Bh(:

eye(dim);

= eye(dn);
i=1:dn
cn(:,i)=Idn(:,1i);

i=1:dn

for j=1:dn

,:,3,1) = cn(:,i)*cn(:,3J)"; % Matrix canonical basis in
lexicographical order

end

reshape(Bh(:,:,:,:),[dn dn dn*2]);

% SDP Variables

Choi

X =

= sdpvar(dn*2,dn*2, '"hermitian', "complex"'); % Choi matrix on
Naimark space

sdpvar (dim,dim, 'full', 'complex'); % Auxiliary variable for
Fidelity

% Derive Process (transfer) matrix from Choi matrix

for

i=1:dn"*2
if i==
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Trans = kron(Idn,B(:,:,i))*Choi*kron(B(:,:,1i),Idn);
else
Trans = Trans + kron(Idn,B(:,:,i))*Choi*kron(B(:,:,i),Idn);
end
end

Trans = dn*Trans; % Renormalization, because Choi has trace one for
channel

% ©. Constraint: completely positive and trace preserving
CPTP = [Choi>=0, PartialTrace(Choi,1)==Idn/dn];

% 1. Constraints: Naimark incoherent
% Dephasing operator on matrix basis
for i=1:dn*2

for k=1:m
if (k==1)
Delta(:,:,i) = Pmin(:,:,k)*B(:,:,i)*Pmin(:,:,k);
else
Delta(:,:,i) = Delta(:,:,i) + Pmin(:,:,k)*B(:,:,1i)*Pmin
(GIEIN O
end
end

end

% Transfer (process) matrix of dephasing operator
Deltat=zeros(dn*2,dn"2);
for i=1:dn"2
for j=1:dn*2
Deltat(i,j) = trace(B(:,:,i) '*Delta(:,:,3));
end
end

% 2. Constraint: subspace preserving
PiL = blkdiag(Id,zeros(dn-dim)); % Projector onto local subspace
% Transfer matrix of projection onto local operators
Lt=zeros(dn*2,dn*2);
for i=1:dn"2

for j=1:dn*2

Lt(i,j) = trace(B(:,:,1i) '*PiL*B(:,:,j)*PiL);

end

end

Sub = [Trans*Lt==Lt*TransxLt]; % subspace-preserving operation
Inc = [Trans#*Deltat==Deltat*Trans*Deltat]; % MIO operation
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% Correct representation for transfer matrix

In = blkdiag(I,zeros(dn-dim));

Iv = reshape(transpose(In),[dn*2 1]); % vectorization, transpose
necessary

% for lexicographical ordering

% Mapping by multiplying transfer matrix

Mv = Trans*Iv; % vector after map

Mn = transpose(reshape(Mv,[dn dnl)); % transpose necessary
M = Mn(1:dim,1:dim); % state after map

% MA needs to coincide with M if everything is consistent
MAn = dnxPartialTrace(Choi*xkron(Idn, transpose(In)),b2);
MA = MAn(1:dim,1:dim); % state after map

% FIDELITY FUNCTION CONSTRAINT
Y = [T X;X' MI;
FidP = [Y>=01;

% SDP optimization
Constraints = [CPTP,Inc,Sub,FidP];

% Maximizing function: Fidelity
%Fidelity = trace(Tn*Mn);
Fidelity = 1/2x(trace(X)+trace(X'));

Options = sdpsettings ('verbose',2, 'cachesolver',1, 'showprogress',1,
"debug',1,...
'solver', 'sdpt3', 'savesolveroutput',1,'allownonconvex',1, 'debug',1)

’

sol=optimize(Constraints,-Fidelity,Options);

% Extract optimized parameters
Channel = value(Trans);

Choi = value(Choi);

M = value(M);

MA = value (MA);

error=1e-9;

if (sol.problem==0]||sol.problem==5|]|sol.problem==48&so0l.solveroutput
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.info.relgap<le-3)
135 disp('SDP converged')

136 % no square root for this fidelity

137 Fidelity=value(Fidelity)

138 % check whether map is CPTP

139 if (abs(trace(M)-1)>error||any(eig(M)<-error))

140 disp('Channel not CPTP")
141 Fidelity=-1;

142 return

143 end

144 for i=1:100 % Check whether channel is really POVM-incoherent

145 check{i}=RandomDensityMatrix (2);

146 checkn{i} = blkdiag(check{i}, zeros(dn-dim));

147 checkv{i} = reshape(checkn{i},[dn*2 11);

148 Imcheckv{i} = Channel*xcheckv{i};

149 Imcheckn{i} = reshape(Imcheckv{i},[dn dnl]);

150 Imcheck{i} = Imcheckn{i}(1:dim,1:dim);

151 if RelEntPBC(Imcheck{i},E)-RelEntPBC(check{i},E)>=1e-9

152 disp('Channel not incoherent')

153 CohIncrease = RelEntPBC(Imcheck{i},E)-RelEntPBC(check{i},E
)

154 Fidelity=-1;

155 break

156 else

157 continue

158 end

159 end

160 if norm(M-MA)>le-4

161 disp('consistency check failed')

162 return

163 end

164 disp('Map passed CPTP and MIO Test')

165 else

166 disp('optimization problem:"')

167 yalmiperror(sol.problem)
168 return

169 end

170

171

172 return
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Eidesstattliche Versicherung

Ich versichere an Eides Statt, dass die Dissertation von mir selbstdndig und ohne
unzuléssige fremde Hilfe unter Beachtung der ,,Grundsétze zur Sicherung guter
wissenschaftlicher Praxis an der Heinrich-Heine-Universitét Diisseldorf” erstellt
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