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Abstract 

The overexpression of ATP-binding cassette (ABC) transporters is one of the main 

mechanisms that result in the phenomenon of multidrug resistance (MDR) existing across all 

organisms from man to bacteria. In Saccharomyces cerevisiae, the ABC transporters of the 

pleiotropic drug resistance (PDR) network are often involved in conferring MDR by lowering the 

cytosolic concentration of cytotoxic compounds. The key player of this network is Pdr5, a full-size 

ABC transporter that was discovered thirty years ago as a gene which’s gene product confers 

cycloheximide resistance. Since then it has become an important model to study MDR in fungi, 

especially since its homologues like Cdr1 from pathogenic Candida albicans are conferring 

resistance towards the most commonly clinically used antifungals. 

Mutational studies of Pdr5 mapped several key residues that are important for either its 

ATPase or transport activity. However, since it was not possible to investigate this efflux pump in 

an isolated form, many aspects of the molecular mechanism of the transport process remained 

elusive. Therefore, in a first step, a purification protocol was established that enabled in-depth 

biochemical, biophysical and structural analysis of Pdr5. It could be demonstrated that the 

detergent purified Pdr5 exhibits identical NTPase characteristics compared to Pdr5 located in the 

plasma membrane. Remarkably, using an electrophysiological approach, we could show that Pdr5 

reconstituted into a planar lipid bilayer acts as a drug/proton symporter and can conduct ion 

currents. This has not been demonstrated for any other ABC exporter before.  

Pdr5 belongs to the class of asymmetric ABC transporters that possess a degenerate 

nucleotide binding site (NBS). Mutational studies demonstrated that this degeneration is of 

crucial importance for the functionality of the protein. Based on the established purification 

protocol it was possible to perform structural analysis of Pdr5 using single particle cryo electron 

microscopy (cryo-EM). During this doctoral research, we were able to obtain the first electron 

density maps and the resulting model structure of Pdr5 in its apo and occluded state. This allowed 

to propose a mechanistic model that explains how the degenerate NBS forms the structural basis 

for the transport process, which does not fully follow the classical ‘alternating access model’ but 

rather indicates a ‘twist-like’ conformational shift of Pdr5 during the substrate efflux. Finally, 

based on the biochemical and biophysical data combined with the proposed transport model, it 
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can be concluded that cycloheximide, which initially led to the discovery of the ABC transporter 

Pdr5, might in fact not be a real substrate of Pdr5, but the observed cycloheximide-resistance is 

a byproduct of the proton pumping properties of Pdr5. 
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Zusammenfassung 

Die Überexpression von ATP-binding cassette (ABC) Transportern ist einer der 

Hauptmechanismen, der in dem Phänomen der Multidrogenresistenz (MDR) resultiert und das in 

allen Organismen vom Menschen bis zur Bakterie existiert. In Saccharomyces cerevisiae sind die 

ABC Transporter des pleiotropen Drogenresistenz (PDR) Netzwerkes oft in die Vermittlung von 

MDR involviert, indem sie die zytosolische Konzentration zytotoxischer Stoffe reduzieren. Der 

Hauptakteur dieses Netzwerkes ist Pdr5, ein volllängen ABC Transporter, der vor dreißig Jahren 

als Gen entdeckt wurde, dessen Genprodukt Resistenz gegen Cycloheximid vermittelt. Seitdem 

ist es zu einem wichtigen Modell geworden, um MDR in Fungi zu untersuchen, vor allem, da seine 

Homologe wie Cdr1 von pathogenen Candida albicans Resistenz gegen die üblicherweise klinisch 

eingesetzten Fungizide vermitteln. 

 Mutationsstudien mit Pdr5 haben mehrere Schlüssel-Aminosäuren aufgezeigt, die wichtig 

sind für entweder seine ATPase- oder Transportaktivität. Dennoch, da es nicht möglich war diese 

Effluxpumpe in isolierter Form zu studieren, blieben viele Aspekte des molekularen Mechanismus 

des Transportprozesses ungeklärt. Folglich wurde in einem ersten Schritt ein Protokoll zur 

Reinigung des Proteins etabliert, das die tiefgehende biochemische, biophysische und strukturelle 

Analyse von Pdr5 ermöglicht. Es konnte gezeigt werden, dass das Detergenz-gereinigte Pdr5 

identische NTPase Eigenschaften aufweist wie Pdr5, das in der Plasmamembran lokalisiert ist. 

Bemerkenswerterweise konnten wir mit einem elektrophysiologischen Ansatz zeigen, dass Pdr5 

rekonstituiert in eine planare Lipid-Doppelschicht als Drogen/Proton Symporter agiert und 

Ionenströme leiten kann. Dies wurde noch für keinen anderen ABC Exporter zuvor demonstriert. 

 Pdr5 gehört zu der Klasse der asymmetrischen ABC Transporter, die eine degenerierte 

Nukleotidbindestelle (NBS) besitzen. Mutationsstudien zeigten, dass diese Degeneration von 

äußerster Wichtigkeit für die Funktionalität des Proteins ist. Basierend auf dem etablierten 

Protokoll für die Reinigung, war es möglich, Pdr5 strukturanalytisch mittels Einzelpartikel 

Kryoelektronenmikroskopie (cryo-EM) zu untersuchen. Während dieser Doktorarbeit konnten wir 

die ersten Elektronendichtekarten und die daraus resultierende Modellstruktur von Pdr5 in seiner 

apo und geschlossenen Form erhalten. Dies erlaubte ein mechanistisches Modell vorzuschlagen, 

das erklärt, wie die degenerierte NBS die strukturelle Basis für den Transportprozess bildet, 
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welcher nicht vollständig dem klassischen „abwechselnden Zugangsmodell“ folgt, sondern eher 

auf eine drehungsähnliche Konformationsänderung von Pdr5 während des Substrateffluxes 

hindeutet. Abschließend, basierend auf den biochemischen und biophysischen Daten zusammen 

mit dem vorgeschlagenen Transportmodell, kann geschlussfolgert werden, dass Cycloheximid, 

welches initial zu der Entdeckung des ABC Transporters Pdr5 geführt hat, tatsächlich kein echtes 

Substrat von Pdr5 ist, sondern die beobachtete Cycloheximidresistenz ein Nebenprodukt der 

Eigenschaft Pdr5 ist, Protonen zu pumpen. 
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1. Introduction 

1.1 Membrane transport 

Biological membranes protect cells from all kind of environmental stress and its integrity 

is crucial for cell survival (Cocucci et al., 2017; Engelman, 2005). However, they form also a barrier 

against solutes and molecules that the cell needs in order to survive and to proliferate. Therefore, 

it is necessary to enable the uptake of these compounds as well as to ensure the efflux of toxic 

molecules out of the cell. Depending on the chemical and structural characteristics of the 

molecules, different kinds of transport processes across the membrane can take place (Cocucci 

et al., 2017; Sugano et al., 2010). In general, membrane transport can occur in two different ways: 

active or passive. Small nonpolar molecules like oxygen can passively diffuse over the membrane 

along the concentration gradient, while larger and polar or charged molecules need carrier 

proteins in order to pass this barrier (Cocucci et al., 2017). Channel proteins interact more weakly 

with their substrates and therefore are able to transport significantly faster compared to carriers. 

As depicted in Figure 1, passive transport occurs as diffusion of small nonpolar molecules or as 

facilitated diffusion by channels or pores as in the case for hydrogen peroxide by aquaporins or 

various cell metabolites across all organisms (Bienert et al., 2007; Neuhaus and Wagner, 2000). 

These channels or pores can be voltage-, ligand-gated or mechanosensitive (Armstrong and Hille, 

1998; Perozo et al., 2002). Carrier-mediated active membrane transport can be subdivided into 

secondary and primary active transport. In the case of primary active transport, the carrier or 

pump utilizes an energy source like ATP or light in order to translocate the substrate across the 

membrane, which can also occur in an uphill manner, i.e. against the concentration gradient of 

the substrate. Secondary transporters like antiporters or symporters use co-substrates that are 

transported unidirectional (symporter) or in opposing directions (antiporter) (Cocucci et al., 2017; 

Saier, 2000). The largest family of secondary active transporters is the major facilitator 

superfamily (MFS) consisting of more than 70 subfamilies. They transport a huge variety of 

different substrates ranging from ions over lipids to peptides (Yan, 2013). One of the most famous 

families of primary active transporters are the ATP binding cassette (ABC) transporters that 

energize the substrate transport by binding and hydrolyzing ATP. Like the MFS transporters, ABC 
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transporters are found in all kingdoms of life (Higgins, 2001). Other transport ATPases like P-type 

ATPases catalyze the translocation of lipids or cations (Bublitz et al., 2011). 

 
Figure 1 Schematic overview of the membrane transport types. Passive transport occur either 
by diffusion or facilitated by channel or pore proteins. Carrier-mediated active transport is divided 
into primary and secondary active transport (based on (Cocucci et al., 2017; Saier, 2000) and 
created with BioRender). 
 

1.2 Structure of ABC transporters 

ABC transporters are ubiquitous integral membrane proteins that serve a variety of 

physiological roles. Depending on the direction of transport, they are divided in two subclasses: 

ABC importers and exporters. However, the former are in general only present in prokaryotes 

while ABC exporters are found in all organisms (Higgins, 2001; Hollenstein et al., 2007; Locher, 

2016). Although ABC transporters are highly diverse in their physiological roles, they all share a 

similar structural blueprint. A functional unit consists of four domains that are either located in 

one molecule (full-size transporter) or separated in two monomers (half-size transporters): two 

transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). The latter are the 

motor-domains of the ABC transporter that bind and hydrolyze ATP and are thought to thereby 

give the power stroke that is necessary to translocate the substrate across the lipid bilayer 

(Oswald et al., 2006). These domains share an overall high sequence similarity and consist of 
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characteristic and conserved sequence motifs that are necessary to bind and hydrolyze the 

nucleotides: Walker A (consensus sequence GXXGXGKST, where X is any amino acid), C-loop 

(consensus sequence LSGGQ), Walker B (consensus sequence ϕ ϕ ϕ ϕDE, where ϕ is any 

hydrophobic amino acid) and additionally the H-loop, Q-loop and D-loop. In the presence of ATP 

the two NBDs dimerize and form two nucleotide binding sites (NBDs) in which the C-loop of one 

NBD interacts with the sequence motifs of the second NBD and vice versa (Jones and George, 

2013; Oswald et al., 2006). 

While there is a high sequence identity within the NBDs throughout the ABC transporter 

family, the TMDs have low sequence similarity which reflects the substrate diversity of these 

proteins. The highly hydrophobic TMDs each consist typically of six membrane spanning 

transmembrane helices (TMHs) although there are examples for 5 up to 11 helices per domain 

(Biemans-Oldehinkel et al., 2006; Oldham et al., 2008). 

Prokaryotic ABC importers consist additionally of a substrate binding protein (SBP) which are 

located in the periplasmic or extracellular space (see Figure 2) and are necessary for the uptake 

process as they guide the substrate to the TMDs (Biemans-Oldehinkel et al., 2006). 

 
Figure 2 Structures of ABC transporters. Depending on their fold, ABC importers and exporters 
are subdivided into type I (e.g. ModBC-A, TM287/288) and type II (e.g. BtuCD-F, ABCG5/ABCG8) 
(created with BioRender based on (Lee et al., 2016)). 
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 Structures of membrane proteins are rare compared to their soluble counterparts. 

However, especially since the “resolution revolution” in cryo EM began, more and more 

structures of ABC transporters are solved using this technique (Elmlund et al., 2017). The first 

structure of an ABC exporter was Sav1866 from Staphylococcus aureus (Dawson and Locher, 

2006). Since then, it took ten years until it became clear that there are more than one type of 

exporters similar to the situation of ABC import systems (Figure 2). The structure of the human 

sterol transporter ABCG5/ABCG8 shows a different fold compared to all other ABC transporters 

that were determined to that date. Interestingly, it has similarities to type II importers in which 

coupling helices only interact within one monomer unit, i.e. NBD1 with TMD1 and NBD2 with 

TMD2 (Lee et al., 2016).The human multidrug transporter ABCG2 has a similar overall fold as 

ABCG5/ABCG8 which might indicate that exporters of the ABCG subfamily of ABC transporters 

might share this feature (Paumi et al., 2009; Taylor et al., 2017). 

 

1.3 Models, functions and mechanisms of ABC transporters 

ABC transporters fulfill a broad variety of different functions within a cell, ranging from 

nutrition uptake in bacteria, maintenance of the lipid bilayer asymmetry to efflux of toxic 

compounds (Locher, 2016; Schmitt and Tampe, 2002). Despite this diversity in function, the 

known structures of importers and exporters as well as biochemical data proof that the 

translocation process is coupled to the catalytical process of ATP binding and hydrolysis (Oldham 

et al., 2008). The mechanism of ATP binding, dimerization of the NBDs and ATP hydrolysis is rather 

well-understood thanks to structural data of purified NBDs (Oswald et al., 2006). On the other 

hand, little is known about how the released energy of ATP hydrolysis is transferred to induce the 

movement of the TMDs or to enable the release of the substrate. Mutational and structural 

studies point towards several key residues on the transmission interface between the TMDs and 

NBDs especially of the Q-loops in the NBDs and intracellular loops (ICLs) of the TMDs 

(Ananthaswamy et al., 2010; Oancea et al., 2009; Sauna et al., 2008). There is an ongoing debate 

whether the hydrolysis or the binding of ATP to the NBDs is the conformational change inducing 

step. In the ATP switch model the NBDs dimerize upon ATP binding which induces the 

conformational change in the TMDs. The subsequent ATP hydrolysis resets the transporter and 
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leads to the separation of the NBD dimer (Higgins and Linton, 2004). However, the limited amount 

of structures of ABC pumps in the different conformations that they undergo during a pump cycle 

makes it difficult to elucidate this question. 

 Starting from the catalytic ATPase mechanism, over the transmission interface between 

NBDs and TMDs, there are several models for the translocation mechanism. The importance of 

understanding the molecular mechanisms of transport results from diverse physiological 

functions of ABC transporters. Especially diseases caused by pathogenic organisms that are 

resistant towards drugs by the means of multidrug resistance (MDR) ABC transporters or that are 

caused by malfunctioning of human ABC transporters that are involved in cellular processes like 

membrane homeostasis (Borst and Elferink, 2002; Jungwirth and Kuchler, 2006; Prescher et al., 

2019). The most prominent model regarding the overall mechanism for ABC transporters is the 

alternating two-site access model (Jardetzky, 1966). The basis of this model are two major 

conformations of the membrane protein: the inward-facing conformation and the outward-facing 

conformation. In the inward-facing conformation, the NBDs of an ABC exporter are monomeric, 

i.e. no ATP is bound while the high affinity substrate binding pocket is accessible from the cytosol. 

Upon substrate and ATP binding, the NBDs dimerize and drive a conformational change of the 

TMDs to the outward-facing conformation that result in the exposure of the substrate to the 

extracellular space in the low affinity binding pocket. As the ATP switch model proposes, the 

hydrolysis of ATP leads to the return to monomeric NBDs and therefore the inward-facing 

conformation (Higgins and Linton, 2004; Hollenstein et al., 2007). 

 Although this model is widely used to explain the mechanism of ABC transporters, it has 

its limitations. In the case of lipid transporters for example, it is unlikely that a protein could 

transport such a highly hydrophobic substrate through a mostly hydrophilic and water filled 

translocation channel across a membrane. Therefore, it is questionable if these transporters 

undergo the same conformational changes as proposed by the two-site access model. Another 

proposed mechanism to explain the translocation of lipids is the credit card mechanism (Pomorski 

and Menon, 2016). Here, the substrate is not transported through the channel formed by the 

TMDs, but rather along the transmembrane helices on the surface of the protein and through the 

membrane bilayer, which prevents unfavorable interactions of the polar head group of the lipid 

and the hydrophobic interior of the membrane.  
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1.4 MDR ABC exporters – a special case 

Multidrug resistance in cells describes the ability to survive high concentrations of 

cytotoxic compounds that is caused by different mechanisms. The increasing number of multidrug 

resistant pathogenic organisms as well as the inefficient chemotherapeutic treatment of cancer 

caused by multidrug resistance are alarming (Blair et al., 2015; Gottesman et al., 2002). 

 Multidrug resistance can occur through different mechanisms as for example target 

modification, decreased uptake, metabolic alterations or increased efflux of the drugs. The latter 

is caused by MDR transporters that belong to two classes, depending on the energy source: First, 

secondary active transporters of the multidrug and toxic compound extrusion (MATE) family, the 

small MDR (SMR) superfamily, the resistance-nodulation-cell division (RND) family and MFS. 

Second, primary active transporters of the ABC transporter family (Chang, 2003; Lage, 2003; Sa-

Correia et al., 2009). MDR ABC transporters have been in the focus of clinical research for years, 

especially after the discovery of the involvement of human MDR1 (P-glycoprotein (P-gp), ABCB1) 

in MDR of tumor cells (Kim, 2006). Since then, numerous studies in vivo and in vitro, including 

structures of some transporters, have helped to characterize these transporters from human, 

bacteria or fungi. However, it still is not possible to elucidate how these transport proteins are 

able to facilitate the efflux of such a wide variety of structurally and chemically unrelated 

compounds while all other known transporters and enzymes have a high substrate specificity 

(Chang, 2003; Ernst et al., 2010). The most commonly assumed model for MDR ABC transporters 

is the ‘drug pump model’, i.e. the transporter actively translocates the substrates across the 

biological membrane against a concentration gradient. Several studies used liposomal systems or 

inside-out plasma membrane vesicles to demonstrate substrate transport, although these 

methods do not provide any proof for uphill transport (Eckford and Sharom, 2008; International 

Transporter et al., 2010; Kolaczkowski et al., 1996; Velamakanni et al., 2008). Another model 

proposes that these ABC transporters do in fact lower the intracellular drug concentration. 

However, they do not actively expel the drugs out of the cell through pumping, but through 

altering the membrane environment. This ‘alternated partitioning model’ describes the ability of 

ABC transporters to influence the internal pH, membrane potential and lipid environment and 

thereby lowers the ability of the drugs to pass the membrane (Roepe, 2000). Both models are 
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able to explain certain aspects of MDR that is mediated by ABC transporters, but none is 

describing all features of ABC transporters universally and therefore disputed. Most scientific 

evidence supports the model of direct drug extrusion as the drug resistance conferring 

mechanism (Ambudkar et al., 1999; Roepe et al., 1996; Sharom, 1997). However, the ability of 

MDR ABC transporters to mediate ion efflux or uptake was also shown in several studies (Agboh 

et al., 2018; Hoffman and Roepe, 1997; Milewski et al., 2001; Singh et al., 2016). It is therefore 

likely that both models interplay and while direct drug extrusion takes place, these membrane 

proteins alter simultaneously the drug partitioning by changing the membrane environment. 

 

1.5 MDR in yeast – The pleiotropic drug resistance network 

Infections with the main pathogenic fungi Candida albicans or Candida glabrata are 

primarily treated for decades with antifungals like azoles (Denning and Hope, 2010). Overall, 

there are only five common drug classes used to treat fungal infections (Kontoyiannis and Lewis, 

2002). The general use of this limited number of antifungals has led to the development of isolates 

that are multidrug resistant, which in yeast is also referred to as pleiotropic drug resistance (PDR) 

(Alexander and Perfect, 1997; Balzi and Goffeau, 1995). Saccharomyces cerevisiae is a model 

organism for studying PDR in fungi since the genome is fully sequenced and the proteins involved 

are highly homologues to other fungi like C. albicans (Balzi and Moye-Rowley, 2019; Lamping et 

al., 2010). 

 The members of the PDR network of S. cerevisiae can be divided into 3 major classes: ABC 

transporters, MFS transporters and transcription factors (Balzi and Goffeau, 1995). As seen 

exemplary in Figure 3 for PDR1 and PDR3, the regulation of the network is highly complex and 

involves several transcription factors that interact with each other and have overlapping target 

genes. Overall there are at least six transcription factors within the PDR network, of which PDR1 

and PDR3 with their characteristic Cys6Zn2 DNA binding motifs are the most prominent (Balzi and 

Goffeau, 1995; Kolaczkowska and Goffeau, 1999). PDR1 was discovered in 1987 and has since led 

to important insights into the mechanisms of PDR in yeast (Balzi and Moye-Rowley, 2019). 

Following the discovery of PDR1, another key player and target gene of PDR1 was discovered 

three years later. 
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Figure 3 Schematic overview of target genes of the transcription factors PDR1 and PDR3 of the 
PDR network. LTE: lipid-translocator exporter family, MFS: major facilitator superfamily, ABC: 
ATP-binding cassette transporter family. Modified based on (Kolaczkowska and Goffeau, 1999). 
 

PDR5, a gene that was later found to encode an ABC transporter was found to play a major 

role in resistance of S. cerevisiae towards cycloheximide (Balzi et al., 1994; Leppert et al., 1990). 

A gain-of-function mutation of PDR1 (PDR1-3) led to overexpression of Pdr5 and thereby to hyper 

resistance towards cycloheximide (Meyers et al., 1992). In the following years the importance of 

Pdr1 was further manifested as it was shown that it also regulates the expression of the genes for 

the PDR ABC transporters SNQ2, which confers resistance towards different xenobiotics, and 

YOR1 that confers oligomycin resistance (Decottignies et al., 1995; Katzmann et al., 1995; Servos 

et al., 1993). 

 Fungal PDR ABC transporters form a first line of defense against a broad range of toxic 

compounds. They belong to the ABCG subfamily of ABC transporters and like their plant and 

human homologues, they possess a reverse domain topology of (NBD-TMD) whereas other 

subfamilies are (TMD-NBD) oriented. In S. cerevisiae, except Adp1, all PDR ABC transporter are 

full-size transporters (Bénédicte et al., 1991; Lamping et al., 2010). An interesting feature of full-

size fungal PDR ABC transporter is that they are members of the family of asymmetric ABC 



Introduction 
 

9 
 

transporters. Although both, N-terminal and C-terminal halves show high similarity as they are 

likely a product of gene duplication, they have alterations within their NBDs (Lamping et al., 2010). 

It is important to note, however, that although there are several asymmetric ABC transporters, 

e.g. CFTR, ABCG5/G8 or MRP1, the degree of asymmetry varies a lot (Lee et al., 2016; Sorum et 

al., 2017; Yang et al., 2003). It is not well understood yet how the degree of asymmetry within the 

NBDs influences the overall function of the protein. 

 

1.6 Pdr5 – The key player of the pleiotropic drug resistance 

Since the discovery of the PDR5 gene as a cause of cycloheximide resistance in S. cerevisiae 

and that the product of this gene is an ABC transporter, many mutational and biochemical studies 

provided important insights about fungal drug resistance and ABC transporters in general (Golin 

and Ambudkar, 2015; Leppert et al., 1990). 

 Like all members of the PDR ABC full-size transporters family, Pdr5 is an asymmetric ABC 

transporter. As depicted in Figure 4, the NBS of Pdr5 has amino acid exchanges in all of the key 

motifs that are necessary to bind and hydrolyze ATP. Compared to other members of this family, 

e.g. ABCG5/ABCG8 or TM287/288, it has, together with its homologue Cdr1 from C. albicans, the 

highest degree of asymmetry (Banerjee et al., 2019; Gupta et al., 2014; Hohl et al., 2012; Wang 

et al., 2011). Although the purpose of this degeneration is not known, mutational studies 

demonstrated that they are crucial for the functionality of the protein as already mutations within 

the degenerate NBS result in loss of function in ATPase activity, substrate transport or both 

(Gupta et al., 2014). 
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Figure 4 Sequence alignment of the Walker A, C-loop, Walker B and H-loop motifs of the 
asymmetric ABC transporters Pdr5, Cdr1, ABCG5/G8 and TM287/288. A: Canonical NBS. B: 
Degenerate NBS. Residues that are non-canonical are marked red. 
 

Moreover, PDR ABC transporters with their inverse domain topology of (NBD-TIMD) 

belong to the ABCG subfamily of ABC transporters (Paumi et al., 2009). As such, Pdr5 belongs 

structure wise to the type II exporter that were first identified based on the structure of the 

human sterol transporter ABCG5/G8 (Lee et al., 2016). A model based on ABCG5/G8 for Pdr5 and 

its homologue Cdr1 from C. albicans indicates differences to known type II structures like 

ABCG5/G8 and ABCG2 (Tanabe et al., 2019; Taylor et al., 2017). One of the key differences are 

the larger extracellular loops, a region that is also the target for a known inhibitor FK506 

(Kueppers et al., 2013; Tanabe et al., 2019). However, since there is only the computational model 

of Pdr5 and no structure of fungal ABC transporters has been solved yet, it remains elusive what 

the exact key features of this efflux pump are. 

An interesting feature of Pdr5 is its high basal ATPase activity. Other model MDR ABC 

transporters as for example MDR1 have a low basal ATPase activity that is stimulated by its 

substrates and at higher concentrations undergoes substrate inhibition as described by the bell-

shaped curves of its substrate dependent ATPase activity curves (Kimura et al., 2007; Muller et 

al., 1996). MDR1 belongs therefore to the coupled ABC transporters that link directly the ATPase 

activity to substrate transport. Contrarily, Pdr5 shows no stimulation by any of its substrates but 
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trans-inhibition at higher concentrations (Decottignies et al., 1994; Ernst et al., 2008). This fact 

raises several questions:  

 

First, is the high basal ATPase activity in the absence of a substrate a waste of energy and 

resources for the cell? 

Second, if Pdr5 follows the alternating access model that is proposed for all ABC transporters and 

the ATPase activity is always at the same level, how does substrate selection work for this 

transporter? 

And third, what benefit does the transporter and finally the cell have to keep the efflux pump in 

an always-on state? 

 

(I) It is argued in literature that the high basal ATPase activity could be an artifact of 

purification. In fact the maltose ABC importer from E. coli displayed high basal activity when 

solubilized with detergent. However, it was shown that this was indeed a detergent artifact, as 

the importer did not possess such a high basal ATPase activity upon reconstitution in liposomes 

and therefore is not an uncoupled transporter (Bao and Duong, 2012; Reich-Slotky et al., 2000). 

For S. cerevisiae it was demonstrated that specific PDR pump inhibitors like FK506 lead to 

increased intracellular ATP levels (Krasowska et al., 2010). As the study was performed in the 

absence of any known PDR substrate, it indicates that these ABC transporters are in fact in an 

always-on state. Moreover, comparison of the overall growth of cells harboring Pdr5 and other 

PDR ABC transporters and cells lacking these demonstrates that the ATP consumption by the 

efflux pumps does not inhibit cell proliferation (Krasowska et al., 2010). One has to be aware, 

however, that the physiological substrate of Pdr5, if there is one, is not known and there is the 

possibility that a substrate is always present. 

 

(II) The molecular mechanism of substrate recognition and transport of ABC efflux pumps 

is still unknown. Based on determined structures of ABC transporters together with biochemical 

data, the alternating access model describes roughly how the underlying mechanism might work. 

Here, an ABC transporter can adopt two distinct conformations: inward-facing and outward-

facing (Jardetzky, 1966). The conformational shift between the two states is driven by ATP binding 
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and hydrolysis. Some structures, however, show an intermediate state in which the NBDs are 

dimerized upon ATP binding, but the transporter remains occluded to the extracellular space 

(Choudhury et al., 2014; Locher, 2016). This indicates that the combination of substrate and ATP 

binding are necessary to enable the conformational movement from the inward to the outward-

facing state. For a coupled ABC transporter like MDR1 this concept seems to make sense as upon 

substrate binding, the ATPase activity increases in a concentration dependent manner. For an 

uncoupled system like Pdr5, however, it seems more complicated as the transporter must move 

always between the inward-facing and occluded conformation. How then does Pdr5 select 

between substrates, if not the substrate binding induces the shift? One possible explanation is 

the ‘kinetic substrate selection’ model. Here, not the affinity of the substrates to the binding 

pocket of the transporter are the crucial step, but rather the rate of equilibration of the substrate 

with Pdr5 (Ernst et al., 2010). Interestingly, this model can also explain why trans-inhibition of 

Pdr5 by its substrates is differently affected depending on which nucleotide is used. For 

clotrimazole it was shown that at concentrations that inhibit the ATPase activity completely, the 

GTPase activity remained intact, indicating that the kinetics of NBD dimerization influence the 

transport activity (Golin et al., 2007). 

 

 (III) Assuming that the transporter is in an always-on state and that it is not harming cell 

proliferation, the question of what the benefits are of a high basal ATPase activity remains. First, 

in a study on BtuC2D2 from E. coli, the authors compared the stability as well as the functionality 

of the ABC transporter in vitro coming from an always-on and from an idle state. The always-on 

state was simulated by repeated additions of ATP to the storage buffer over the time course of 

several days, while the sample of the idle state lacked ATP. The results proved that BtuC2D2 was 

longer stable and functional if the basal ATPase activity was continuously fueled by ATP additions. 

Additionally, transport activity did not show any lag phase, which was observed in the idle state 

sample (Livnat-Levanon et al., 2016). As it was shown in vivo, Pdr5 has a long lifetime with more 

than 80% of the molecules still found after a chase period of 180 min (Decottignies et al., 1999). 

This fact supports the finding of a high basal ATPase activity as it might stabilize the protein and 

protect it from degradation. The long lifetime of Pdr5 and the fact that an ABC transporter is more 

responsive coming from an always-on state make sense for Pdr5 given the fact that this efflux 
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pump mediates resistance towards such a broad variety of structurally diverse substrates, ranging 

from azoles over ionophores to steroids and antibiotics (Kolaczkowski et al., 1996; Rogers et al., 

2001). Overall, the high basal ATPase activity appears to not be a waste of energy, but rather a 

mechanism of the yeast cell to ensure the protection towards xenobiotics in the shortest amount 

of time and thereby cell proliferation. 

 Although studied over decades, several key characteristics of the PDR ABC transporter 

Pdr5 are yet to be elucidated. So far, it was not possible to study this transporter in an isolated 

system that allows for functional and structural characterization in order to understand the 

molecular mechanisms that underlie substrate binding and translocation. As the model protein 

of the pleiotropic drug resistance and for asymmetric eukaryotic ABC transporters, it is crucial to 

establish the necessary tools to study this transporter in vitro. 
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2. Aims 

The ABC transporter Pdr5 from Saccharomyces cerevisiae is one of the most prominent 

fungal PDR exporter of great physiological significance that is studied for almost three decades 

(Golin and Ambudkar, 2015). Since it belongs to the family of asymmetric PDR ABC transporters 

that confers resistance towards a wide variety of cytotoxic compounds, it is used as a model to 

study the impact of the degenerated NBS in asymmetric ABC transporters as well as to study 

multidrug resistance in pathogenic fungi like Candida albicans or Candida gebralta (Gupta et al., 

2014; Prasad et al., 2015; Tanabe et al., 2019; Vermitsky and Edlind, 2004). 

Numerous mainly mutational studies on this ABC transporter have been performed, giving 

insights into possible mechanisms for transport function as well as identifying new substrates and 

inhibitors. Nonetheless, many open questions remain, especially because it was not possible to 

purify Pdr5 in an active form and investigate molecular details of this export pump in an isolated 

system. In order to elucidate the molecular mechanism of substrate transport the first aim of this 

doctoral thesis was to establish a purification protocol that allows to study Pdr5 in an active and 

functional state.  

Moreover, substrate transport assays have been limited to either in vivo or plasma 

membrane vesicle experiments such as liquid drug assays or fluorescence quenching assays based 

on rhodamine 6G (Kolaczkowski et al., 1996; Rogers et al., 2001). Therefore, a second focus was 

set on finding new approaches among others using electrophysiological techniques with purified 

Pdr5 reconstituted into lipid bilayers to further investigate molecular details of the transport 

process with substrates of varying physicochemical properties.  

The degenerate NBS of the asymmetric efflux pump Pdr5 is of fundamental importance 

(Gupta et al., 2014). However, since there are no structures of fungal ABC transporters, not to 

mention PDR ABC transporters, it remains unclear what the structural basis for this functionally 

crucial asymmetry in the motor domains of Pdr5 is. Consequently, the final aim of this thesis was 

the structure determination of the ABC transporter Pdr5 using single particle cryo-EM that allows 

in combination with collected biochemical and biophysical data to establish a model for the 

overall transport mechanism of the ABC transporter Pdr5 on a molecular basis.
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4. Discussion 

This thesis focusses on elucidating the molecular mechanism of substrate transport of the 

asymmetric ABC transporter Pdr5 from S. cerevisiae. In a first step and in order to perform 

biochemical, functional and structural analysis in vitro, it was necessary to establish an isolation 

and purification protocol for the protein in an active and functional state. Initial studies 

performed by Decottignies et al. indicated that n-Dodecyl-β-D-maltoside (DDM) as a detergent 

might retain the ATPase activity of Pdr5 (Decottignies et al., 1994). So far, we have not been able 

to reproduce these results and instead had to experience that Pdr5 does not retain any significant 

ATPase activity in DDM. Extensive detergent screens and optimization of the purification protocol 

led to functional and homogenous Pdr5 as described in detail in Chapter II. The key to the final 

success was the use of the detergent trans-4-(trans-4ʹ-propylcyclohexyl)cyclohexyl-α-D-maltoside 

(trans-PCC-α-M) (Hovers et al., 2011). Only this detergent allowed to purify Pdr5 in a two-step 

procedure (immobilized metal ion chromatography (IMAC) (loaded with Zn2+ ions) in combination 

with size exclusion chromatography (SEC)) to homogeneity while retaining its ATPase activity (see 

Chapter II, Figures 1-3). 

Although it remains elusive why certain detergents retain the activity of a membrane 

protein while others, even structurally similar detergents inactivate the protein, we can speculate 

that some features of trans-PCC-α-M are beneficial to maintain Pdr5 functionality. Trans-PCC-α-

M is a mild, non-ionic detergent of the class of maltosides that are widely used in the field of 

membrane protein purification (Seddon et al., 2004). Comparing the structures of one of the most 

prominent member of the class of maltosides DDM and trans-PCC-α-M (Figure 5) it becomes 

apparent that the more bulky di-cyclohexyl moiety of trans-PCC-α-M gives a more rigid 

hydrophobic structure compared to the alkyl chain of DDM. One might therefore speculate that 

exactly this rigidity is the cause for the mildness of the detergent as there will be fewer 

interactions with the hydrophobic transmembrane parts of the protein and less tightly bound 

lipids will be displaced by the detergent (Hovers et al., 2011) 



Discussion 
 

117 
 

  
Figure 5 Structural comparison of two maltosides. A: n-Dodecyl-β-D-maltoside (DDM). B: trans-
4-(trans-4ʹ-propylcyclohexyl)cyclohexyl-α-D-maltoside (trans-PCC-α-M). 
 

After this basic task was fulfilled, biochemical, biophysical and structural analysis of this efflux 

pump could be performed. During these investigations, the following four discoveries on the 

molecular basics of the Pdr5 activity were obtained: 

First, Pdr5 has a high basal NTPase activity in solution that cannot further stimulated by 

its substrates but at high concentrations undergoes trans-inhibition.  

 

Second, Pdr5 functions as an H+/drug symporter and therefore represents a new class of 

ABC transporters.  

 

Third, the NBDs of Pdr5 are always dimerized even in the absence of ATP, which is based 

on the degenerated NBS.  
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Fourth, Pdr5 might not follow the ‘alternating access model’ with two distinct inward and 

outward facing conformations but rather function in a twist-like fashion that allows 

substrate transport at the membrane-protein interface from the inner to the outer leaflet 

of the membrane. 

 

4.1 Pdr5 is an uncoupled transporter 

Since its discovery, it was always controversial discussed whether the high basal ATPase 

activity of Pdr5 in plasma membrane preparations is artificial, if it’s due to the ‘real’ substrate 

being present or whether this ABC transporter is in fact an uncoupled transporter that hydrolyzes 

ATP at high rates even in the absence of a substrate that cannot be further stimulated 

(Decottignies et al., 1994; Ernst et al., 2008; Golin and Ambudkar, 2015). Other MDR ABC 

transporters like P-gp are strictly coupled transporters with a rather low basal ATPase activity that 

can be stimulated by its substrates which was shown for membrane vesicles as well as in 

detergent purified preparations (Shukla et al., 2017). The data presented in Chapter II of isolated, 

detergent purified Pdr5 wildtype in comparison to the ATPase deficient E1036Q mutant proves 

that the ATPase activity is indeed uncoupled from transport activity. Similar to plasma membrane 

preparations the ATPase activity cannot be stimulated beyond the basal level, but Pdr5 undergoes 

allosteric or trans-inhibition at high substrate concentrations (see Chapter II, Figure 7) (Ernst et 

al., 2008). This on the first sight futile ATPase activity in the absence of substrate makes sense if 

one considers the broad substrate specificity of Pdr5 (Kolaczkowski et al., 1996; Rogers et al., 

2001). As stated by Ernst et al., it is difficult to imagine for MDR ABC transporters how the binding 

of hundreds of structurally and physicochemical diverse substrates can lead to the same response 

of the transporter in upregulating its ATPase activity (Ernst et al., 2008). Moreover, given the 

importance of the efflux pump Pdr5 for cell survivability in the presence of xenobiotics, the 

response time to toxic compounds should be as short as possible while the lifetime of the 

transporter should be considerable high. As shown for the ABC transporter BtuC2D2, the protein 

remains stable over a longer period with a shorter response time towards the addition of 

substrate if ATP is continuously added compared to the same protein under starving conditions 

(Livnat-Levanon et al., 2016). 
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 The fact that isolated, detergent-purified Pdr5 exhibits a high basal ATPase activity 

supports the finding that this ABC transporter works in fact uncoupled. From a physiological 

perspective, basal ATPase activity is necessary for MDR ABC efflux pumps as they need to be able 

to respond fast upon presence of xenobiotic compounds in order to protect the cell. 

 

4.2 Pdr5 as a proton pump and its implications 

The most common model to explain the drug resistance conferred by ABC transporters is 

the ‘pump model’. In this model, the MDR ABC transporter actively expel the drugs from the cell 

into the extracellular space against a concentration gradient (Gottesman and Pastan, 1988). 

Although most biochemical studies support this model some key features of MDR pumps are not 

explained by it. Therefore, the ‘altered partitioning model’ challenges the ‘pump model’ as it 

assumes MDR ABC transporter do not actively transport their substrates but rather change the 

membrane environment by ion transport which leads to lowered drug accumulation within the 

cells (Roepe, 2000; Roepe et al., 1996). This model was mainly discussed in the field of MDR1 and 

supported by data demonstrating elevated intracellular pH of MDR1 containing cell lines and 

changed ion concentrations as well as the argument of lack of MDR1 substrate specificity 

(Hoffman and Roepe, 1997). Nonetheless, these findings are not sufficient to account for the 

magnitude of fold increase in resistance of MDR cell lines (Ambudkar et al., 1999). 

 Interestingly, during our biochemical and biophysical characterization of Pdr5, we 

discovered that not the ‘pump model’ nor the ‘altered partitioning model’ are sufficient to 

describe the mechanism of Pdr5 conferred drug resistance. In vivo studies on MDR1 and the Pdr5 

homologue Cdr1 from Candida albicans indicated altered intracellular pH compared to null-

mutant cells, supporting the ‘altered partitioning model’ (Hoffman and Roepe, 1997; Milewski et 

al., 2001). Unfortunately, the complexity of the cell environment renders in vivo studies 

unsuitable to draw exact direct conclusions from the multitude of altered cellular parameters. 

Therefore, we reconstituted purified functional Pdr5 into planar lipid bilayers and performed 

electrophysiological measurements in the absence and presence of substrates and inhibitors (see 

Chapter III).The electrophysiological data on the reconstituted Pdr5 demonstrate that Pdr5 can 

facilitate permeation of K+ and Cl- ions at high rates across the membrane. Moreover, in the 
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presence of Mg2+-ATP and substrates, Pdr5 can generate a proton motive force (ΔpH) across the 

membrane by acting as a proton/drug symporter (see Chapter IV). At the same time, the 

measured difference of the reversal potentials between the neutral ketoconazole and charged 

rhodamine 6G (R6G) proves that not only a proton gradient is established, but also the R6G 

substrate is actively transported across the bilayer. Although in a study of the ABC transporter 

LmrA and MsbA indications of ion transport and effects of ions on the translocation activity were 

shown, these studies did not provide direct evidence of a generated proton gradient nor active 

substrate transport (Agboh et al., 2018; Singh et al., 2016). Remarkably, in the yeast S. cerevisiae 

only two classes of MDR efflux pumps are known so far: MDR ABC transporter and major 

facilitator superfamily (MFS) transporter that all function as drug/H+ antiporters. Pdr5 is therefore 

the first representative of a new type of drug/H+ ABC symporter. Similar transporters have not 

been identified yet. Since no other ABC transporter so far was systematically examined by 

electrophysiological means, it remains unclear (i) whether this is a general mechanism of MDR 

ABC transporters, or (ii) whether it is a feature of asymmetric ABC transporters, or (iii) solely a 

unique characteristic of Pdr5, which, given the observations of in vivo studies performed on MDR1 

and Cdr1, seems rather unlikely. 

 

4.3 On the proposed R6G transport mechanism mediated by Pdr5 

One of the most commonly used biochemical assays for Pdr5 is the R6G transport assay in 

isolated inside-out plasma membrane vesicles ((Ernst et al., 2008; Kolaczkowski et al., 1996; 

Kueppers et al., 2013)). In these vesicles, the NBDs of the transporter are situated outside of the 

vesicles, which enables the substrate transport into the vesicle lumen (see Figure 6). Since its first 

appearance, it was described as a concentration-dependent quenching assay in which R6G 

molecules undergo self-quenching by forming non-fluorescent excimers (Figure 6A) (Ernst et al., 

2008; Furman et al., 2013; Kolaczkowski et al., 1996).  
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Figure 6 Schematic overview of the R6G transport assay mediated by Pdr5. A: R6G transport 
assay with fluorescence quenching based on concentration dependent non-fluorescent excimer 
formation upon transport initiation by ATP addition. Left panel: Pdr5 is inside-out oriented in the 
vesicle membrane and R6G molecules are evenly distributed between the two leaflets. Right 
panel: ATP addition initiates the Pdr5-mediated transport of R6G from the outer to the inner 
leaflet where concentration dependent self-quenching of R6G excimers takes place. B: R6G 
fluorescence quenching based on depolarization of the vesicle membrane. Left panel: as in A, 
Pdr5 is inside-out oriented. The R6G molecules are evenly distributed and highly fluorescent as 
an intact membrane potential (ΔΨ ≠ 0 mV) is given. Right panel: upon ATP addition, Pdr5 actively 
transports R6G and H+ which leads to the depolarization of the membrane (ΔΨ = 0 mV) which 
causes quenching of the R6G fluorescence. Note that although R6G is transported in B, it remains 
evenly distributed across the membrane as it freely diffuses between the membrane leaflets. Pdr5 
is depicted with its TMDs in orange, the NBDs in green; the vesicle membrane is shown in blue; 
fluorescent R6G molecules as yellow stars, quenched R6G molecules as white stars. 
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Without doubt, we can confirm that following published protocols a Pdr5 and Mg2+-ATP-

dependent fluorescence quenching is observed. However, it is to question whether it is 

concentration-dependent or if there might be other reasons causing the quenching of R6G 

fluorescence. In R6G transport assays with Pdr5 containing plasma membrane vesicles, a R6G 

concentration between 75 – 600 nM is commonly used, although R6G causes trans-inhibition with 

a Ki = 600 nM (Ernst et al., 2008; Furman et al., 2013; Kolaczkowski et al., 1996; Kueppers et al., 

2013). Now, if we consider the partition coefficient of R6G of logP = 6.52 (see Chapter II, Table 2), 

virtually all R6G molecules will be located in the membrane, roughly equally distributed between 

the inner and outer leaflet. Next, if an initial concentration of 300 nM is used, the concentration 

at start within one leaflet is approximately 150 nM and at the end of the transport assay - 

assuming 100% transport rate - 300 nM in the inner leaflet, causing complete quenching of the 

R6G fluorescence (see Figure 6A). Now, if a start concentration for R6G of 600 nM is chosen 

instead, the concentration in both membrane leaflets will be 300 nM at the beginning of the 

experiment. This is the concentration that arguably led to the complete quenching of R6G in the 

experiment with an initial concentration of 300 nM. We would expect a complete self-quenching 

at the beginning of the experiment with a start concentration for R6G of 600 nM. Instead, the 

fluorescence increases and only after addition of ATP a decrease in fluorescence is observed. 

Moreover, complete fluorescence self-quenching of R6G is not to be expected at concentrations 

below 40 μM, which is probably not reached in experiments with concentrations far below 1 μM 

as it is usually the case in Pdr5 transport assays (Bavali et al., 2015). 

 Another explanation for the observed fluorescence decrease can be derived from the use 

of R6G as a mitochondrial marker, as it passes the outer mitochondrial membrane and 

accumulates at the inner mitochondrial membrane that carries an electronegative potential of 

about Vm=-180 mV (Scaduto and Grotyohann, 1999; Trounce and Wallace, 1996; Ziegler and 

Davidson, 1981). In a study with R6G as a probe for membrane potential in bovine aortic 

endothelial cells, it was shown that R6G is strongly responsive to the membrane potential as it is 

highly fluorescent if an intact membrane potential exists, while it can be completely quenched if 

the membrane is depolarized (Mandala et al., 1999). Now, taking this into consideration for the 

transport assay in combination with the fact that Pdr5 is a drug/H+ symporter, we can come to 

the conclusion that the reason for the fluorescence decrease is very likely the result of a 
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depolarization of the membrane by Pdr5-mediated proton transport (see Figure 6B). It is 

important to note that the R6G transport assay is only established for plasma membrane vesicles 

in which numerous other pumps and ion channels like the proton pump Pma1 are present. So far, 

we were not able to perform the R6G transport assay with isolated Pdr5 reconstituted into 

liposomes, which is possibly caused by the missing initial polarization of the membrane generated 

by other electrogenic pumps present in plasma membrane vesicles. 

 

4.4 The structure of Pdr5 

So far, only structures of bacterial type I and type II importers, e.g. ModBC-A and BtuCD-F 

and type I exporters like Sav1866 as well as mammalian type I (e.g. MDR1) and type II exporters 

(ABCG5/G8 and ABCG2) have been determined (Dawson and Locher, 2006; Lee et al., 2016; Taylor 

et al., 2017). However, structures of plant and fungal ABC transporter have not been reported to 

date.  

In Chapter IV, we present the first structure of the ABC transporter Pdr5, which at the 

same time is the first structure of a fungal ABC transporter in general. As infectious diseases with 

fungal pathogens is a growing risk (Pfaller and Diekema, 2007), it is important to develop new 

strategies and treatments as the limiting number of clinically used antifungals leads to rising 

multidrug resistance (Cannon et al., 2009). The presented structure of Pdr5 provides new insights 

into the molecular mechanisms of fungal MDR ABC transporters and can open new avenues to 

determine new drug target sites in pathogenic homologues such as Cdr1 from C. albicans. 

 

4.5 Asymmetry of the NBDs – A new constant contact model 

The ‘switch model’ is the most prominent model for describing the process of energizing 

the substrate transport of ABC efflux pumps (Higgins and Linton, 2004). Here, the NBDs of a 

transporter switch between two main conformations: a closed dimer that forms upon ATP binding 

in both NBS and an open conformation in which the dimer opens up after ATP hydrolysis. The 

switch between the two conformations drives the conformational change of the TMDs to 

translocate the substrate. A second model is the ‘constant contact model’ (Jones and George, 
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2013). The basic steps of ATP binding and hydrolysis driving the overall energization of the 

catalytic cycle are the same. However, the main difference is that while in the ‘switch model’ the 

C-loop (signature motif) and Walker A motif separate completely in both NBS after ATP hydrolysis, 

the constant contact model assumes that ATP hydrolysis takes place in one NBS at a time and 

thereby the NBDs always remain as a dimer. It is long ongoing debate with both models having 

biochemical and structural evidence (Higgins, 2007; Janas et al., 2003; Jones and George, 2009). 

Based on the complexity and versatility of the huge family of ABC transporters one wonders 

whether only one of the two, neither or both models can explain the actual mechanism of the 

catalytic cycle. Especially since, although the NBDs of ABC transporters are highly conserved in 

sequence and structure compared to their TMDs, variations occur as for example in the case of 

asymmetric ABC transporters like ABCG5/ABCG8, TM287/288, CFTR or Pdr5 that all have 

alterations within key motifs of their NBDs (Basso et al., 2003; Furman et al., 2013; Hohl et al., 

2012; Wang et al., 2011). As shown in Figure 6A of Chapter IV, the structure of the yeast ABC 

transporter Pdr5 leads to a different and so far not described model as a basis for the 

conformational changes. Based on this structure, a constant contact model can be assumed that 

differs from the model described in literature in two major aspects: ATP hydrolysis does not occur 

alternatingly in both NBS but only in the canonical NBS while the degenerate site stays in constant 

contact speculatively by a hydrogen bond between R194 of the N-terminal NBD Walker A and 

E1013 of the C-terminal NBD C-loop. 

 The duality in literature between the ‘constant contact model’ and the ‘switch model’ 

does not account for the complexity of the ABC transporter superfamily. The presented structural 

data in Chapter IV indicates that another mechanism exists that forms the basis for the 

conformational shifts during the transport cycle. At the same time, it allows for a variation of the 

well-established ‘alternating access model’ (Jardetzky, 1966) as only one NBS induces a 

movement of the TMDs. 

 

4.6 Pdr5 – An ABC transporter with a twist 

Based on the electron density maps in the presence and absence of ATP-Vi, i.e. the apo 

and occluded state of Pdr5 (see Chapter IV, Figure 3D and E), it is apparent that the extracellular 
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loops of Pdr5 do not open up during the dimerization of the canonical NBS and the induced 

movement of the coupling helix of the N-terminal TMD. The classical ‘alternating access model’ 

describes the switch between two distinct states: the inward- and the outward-facing 

conformation, facilitated by the association and dissociation of the NBD dimer (Higgins, 2001; 

Jardetzky, 1966). Several structures of ABC transporters in the presence of nucleotides with or 

without substrate suggest that the mechanism follows a transport mechanism as depicted in 

Figure 7A. In the inward-facing conformation, the substrate can bind to the high affinity binding 

pocket. Upon ATP binding, the NBDs dimerize and the overall conformation switches to the 

outward-facing conformation that opens up the translocation pathway with the low affinity 

binding pocket accessible towards the extracellular space and the substrate can exit the efflux 

pump. Structures of type I exporters like MsbA, BtuC2D2, P-gp and TmrAB all support this 

translocation pathway and mechanism with the ECLs opening towards the extracellular space to 

release the substrate (Hofmann et al., 2019; Locher et al., 2002; Rosenberg et al., 2003; Ward et 

al., 2007).  

Since Pdr5 belongs to the ABCG subfamily of ABC transporters (Paumi et al., 2009) and as 

obvious from its structure, it follows the type II exporter fold that was first described for the 

human sterol transporter ABCG5/ABCG8 (Lee et al., 2016). Two of the key features of the type II 

exporter fold are that there is no NBD-TMD interdomain crosstalk between the N-terminal and C-

terminal half, as described in Chapter I and that in the apo state the NBDs are not as far separated 

as seen in structures of type I exporters like MDR1.  It could be tempting to assume that proteins 

of the same class with similar structure and type follow the same mechanism. However, as the 

structure of the human type II MDR ABC transporter ABCG2 suggests, the translocation process 

for this pump follows the same principle as described in the model in Figure 7A in which the ECLs 

separate and thereby open the translocation pathway towards the extracellular space to release 

the substrate. (Manolaridis et al., 2018). 

Nonetheless, some open questions remained concerning the transport mechanism 

regarding structures of ABCG2 in the inward- and outward-facing state, especially in light of its 

substrate estrone-3-sulfate (E1S) that was identified in the structure. E1S is a lipophilic compound 

with a partition coefficient of logP = 2.36 (Steingold et al., 1986). Therefore, it is likely that this 

substrate locates within the lipid bilayer and avoids the water-filled pore that forms the 
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translocation channel. However, the structure and model described in the study suggests that the 

substrate is released upon opening of the gate that is formed by the ECLs (Manolaridis et al., 

2018).  

 
Figure 7 Simplified schematic representation of possible transport mechanisms. A: Alternating 
access model that shifts between the inward- and the outward-facing conformation. Left panel: 
the substrate can bind to the high affinity binding pocket that is accessible from the intracellular 
space. ATP binding leads to the dimerization of the NBDs, which induces the conformational shift 
of the TMDs. Right panel: the NBDs are dimerized and the low affinity binding pocket is accessible 
from the extracellular space. B: Twist model based on the constant contact model for Pdr5. Left 
panel: the substrate binds on the membrane protein interface (inner leaflet) to the high affinity 
binding pocket. The NBDs are dimerized by the degenerate NBS. ATP binding induces the closure 
of the canonical NBS that induces the twist-like movement of the N-terminal TMD. Right panel: 
the substrate diffuses from the accessible low affinity binding pocket into the outer leaflet of the 
lipid bilayer. The ECLs do not open as the translocation pathway lays within the membrane. 
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Similar to ABCG2, Pdr5 substrates are – with a few exceptions – hydrophobic with high 

partition coefficients (see also Chapter II) (Kolaczkowski et al., 1996; Rogers et al., 2001). 

Consequently, these substrates will be concentrated within the membrane and not in solution 

(intra- or extracellular) where they can be taken up by Pdr5 from the inner leaflet. Our transport 

model for Pdr5 as depicted in Figure 7B is based on the electron density that was obtained from 

ATP-Vi trapping, suggests that the translocation process is as follows: Starting in the inward-facing 

conformation, the substrate is taken up from the inner leaflet of the lipid bilayer into the high 

affinity binding pocket by Pdr5. Following, the canonical NBS dimerizes upon ATP binding which 

induces a twist-like shift in the N-terminal TMD. This makes the low affinity binding pocket at the 

outer-leaflet-protein interface accessible from which the substrate subsequently diffuses into the 

outer leaflet. During this process the hydrophobic compound does not interact with the water-

filled pore and the ECLs do not open towards the extracellular loop. 

 

4.7 Cycloheximide – Transport or degradation? 

Pdr5 was first discovered as a gene product in S. cerevisiae that confers resistance towards 

cycloheximide (CYH) (Leppert et al., 1990). CYH is a naturally occurring fungicide that is produced 

by Streptomyces griseus and acts as protein synthesis inhibitor (Müller et al., 2011). Since the 

discovery of Pdr5, numerous mutational studies on this MDR ABC transporter were conducted. 

Thereby, the resistance towards CYH was used as a read out in liquid drug or similar 

microbiological assays to validate whether and how the mutation impacts the transport 

functionality (Ananthaswamy et al., 2010; Dou et al., 2016; Downes et al., 2013; Golin et al., 2000; 

Gupta et al., 2014).  

Interestingly, CYH is a hydrophilic molecule (logP = 0.55 (Hansch et al., 1995)), which is 

quite different to all other known Pdr5 substrates. If the proposed ‘twist-model’ holds true (Figure 

7B), it is rather unlikely that CYH is taken up by Pdr5 at the membrane-protein interface and in 

the same way unlikely to exit the transporter towards the membrane. Additionally, CYH does not 

lead to allosteric or trans-inhibition during the measurement of the Pdr5 ATPase activity like other 

tested substrates in plasma membrane vesicles (Ernst et al., 2008) or purified in solution (Chapter 

II). Moreover, when tested as a substrate for electrophysiological measurements with Pdr5 (see 
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Chapter III), CYH did not cause a Pdr5 induced proton gradient across the membrane like 

ketoconazole and rhodamine 6G did, which means that it was not transported in symport with 

protons. 

In conclusion, the above described findings could be explained in either of two ways: First, 

cycloheximide is transported in a different fashion than its hydrophobic counterparts such as 

ketoconazole or rhodamine 6g. The latter two freely partition into the membrane and are able to 

enter and exit the transporter at the protein-membrane interface and both are transported 

together unidirectional with protons (see Chapter III). CYH could be transported through the 

water-filled pore of the translocation channel as shown in Figure 7A without the co-translocation 

of protons. The second possibility is that CYH is not a substrate of Pdr5. The fact that it behaves 

completely different from all other tested substrates and that it is hydrophilic opens up the 

question, if the effects seen in in vivo experiments are directly attributed to Pdr5 or whether 

indirect effects cause the resistance. CYH is stable at neutral and acidic pH, but rapidly degrades 

at basal pH (Müller et al., 2011). Assuming Pdr5 is active and transports lipids, steroids or other 

cellular compounds as suggested (Decottignies et al., 1998; Mahe et al., 1996), it will influence 

the intracellular pH by pumping protons outwards, leading to a basic cytosolic pHi. Since CYH 

degrades at basic pH, the Pdr5-mediated, observed resistance towards this fungicide could be an 

indirect effect instead of an active extrusion which would eventually mean that CYH is not a real 

substrate of Pdr5. 
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