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Abstract

Active Brownian particles can propel themselves by taking energy from their
environment and converting it into mechanical motion while being subject to
the fluctuating random kicks of the surrounding medium. The dynamics of
such self-propelled particles, hence, exhibits a nonequilibrium Brownian phe-
nomenon. The core functionalities of active Brownian particles include trans-
port, sensing, and manipulation.

For microscopic active Brownian particles swimming in a Newtonian liquid (mi-
croswimmers), viscous forces are dominant and inertial effects are negligible rel-
ative to the viscous effects. One of the most popular descriptions of microswim-
mers is provided by active Brownian motion, wherein the overdamped dynamics
is modeled through Gaussian white noise as solvent kicks and an effective self-
propulsion force. Inertia becomes relevant in the dynamics for micron-sized
active Brownian particles flying in a gaseous medium (microflyers), where vis-
cous friction becomes such small that the inertial effects get dominant. The
dynamics is then coined as active Langevin motion. Here we study the behav-
ior of active Brownian particles moving in a plane both analytically and using
computer simulations. Our studies include both active Langevin motion and its
overdamped counterpart, i.e. active Brownian motion.

We observe a distinct inertial delay between orientation and velocity of mi-
croflyers. The velocity of microflyers —unlike microswimmers— does not in-
stantaneously pursue their orientation. We characterize the inertial delay via
the cross correlations of velocity and orientation and derive the correspond-
ing analytic expression describing inertial delay. Using analytical calculations
we demonstrate that inertia significantly influences the dynamics and enables
novel control strategies in active systems. Our theoretical predictions are con-
firmed by experiments. We also generalize the equations of motion to time-
dependent parameters. Assuming a slow power-law time-dependence for these
parameters, we predict an anomalous diffusion involving long-time dynamics.

we report on the design, experimental realization and characterization of an in-
situ adjustable trapping mechanism for microswimmers which does not require
any body-forces (or associated torques) and is entirely based on self-propulsion.
In particular, this trapping mechanism solely hinges on systematic force-free ro-
tations of active colloids towards the center of the trap. The force-free rotations
originate from a motility gradient. The fact that the trapping mechanism acts
on the orientation of the microswimmers, rather than on their center of mass,



facilitates controllably transfer of active particles over a potential barrier using
the trap as a tweezer. This force-free trapping mechanism also enables extract-
ing coupling coeflicients of microswimmers to external fields that can cause a
better understanding of their mutual interactions.

Furthermore, we study the segregation dynamics in a repulsively interacting bi-
nary mixture of microswimmers with a triangular-like motility field using com-
puter simulations and experiments. We observe segregation of microswimmers
near the intensity minima while one species is localized close to the minimum
(bottom) and the other one is centered around in an outer shell (top). Through
attributing an effective heaviness to microswimmers, we define a colloidal Brazil
nut effect in analogy to shaken granular matter in gravity. The demixing of the
binary mixture exhibits a Brazil nut effect when the particles of the heavier
species are floating on the lighter ones.
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Preface

The content of this dissertation is based on the subsequent publications, sub-
mitted paper, and planned but still ongoing research project:

I. Christian Scholz, Soudeh Jahanshahi, Anton Ldov, and Hartmut Lowen, Iner-
tial delay of self-propelled particles, Nature Communications 9, 5156 (2018).
This publication is presented in chapter 2.

II. Soudeh Jahanshahi, Celia Lozano, Borge ten Hagen, Clemens Bechinger, and
Hartmut Lowen, Colloidal Brazil nut effect in microswimmer mixtures induced
by motility contrast, The Journal of Chemical Physics 150, 114902 (2019).

Note: This article is part of the Special Topic “Chemical Physics of Active Mat-
ter” in J. Chem. Phys.

This paper was selected as Featured and is presented in chapter 5.

III. Soudeh Jahanshahi, Celia Lozano, Benno Liebchen, Hartmut Lowen, and
Clemens Bechinger, Realization of a motility-trap for active particles, submitted
to Science Advances.

The basic model of this submitted paper is presented in chapter 4.

IV. Soudeh Jahanshahi, and Hartmut Léwen et al., Normal and anomalous diffu-
sion in active Langevin motion, (in progress).
This research project is presented in chapter 3.

My contributions to these scientific projects are specified in their corresponding
chapters.






Acknowledgments

I would like to express my deepest appreciation to all those who provided me
the possibility to complete this project. Especially, I would like to express my
gratitude to my supervisor Prof. Dr. Hartmut Léwen, who continuously and
convincingly takes a spirit of adventure in regard to research. Without his guid-
ance and persistent help, this thesis would not have been possible. I cannot say
thank you enough for his tremendous support and help.

My heartfelt thanks also go to Prof. Dr. Clemens Bechinger, Prof. Dr. Benno
Liebchen, Dr. Celia Lozano, Dr. Christian Scholz, Dr. Borge ten Hagen and An-
ton Ldov, with whom I had the incredible privilege to co-author papers: work-
ing alongside anyone of these people extended my insight into science in gen-
eral and into physics in specific. Especially, I would here like to thank Dr. Celia
Lozano for valuable discussions and advice, and for her great spirit.

None of my studies and learning would have been possible without all the peo-
ple working at “Heinrich-Heine-Universitiat Diisseldorf”, in particular at our
institute. Specifically, I thank Claudia Stader, who has facilitated my work in
our group immensely. I also thank Joachim Wenk the system administrator of
the “Institut fiir Theoretische Physik II: Weiche Materie”.

My special thanks go to my fellow doctoral candidates with whom I shared
a very significant time, in particular Christian Hoell, Mate Puljiz and Sonja
Tarama. I am also grateful for constant support and help of the members of
the “Institut fiir Theoretische Physik II: Weiche Materie”. I hereby would like to
thank Priv.-Doz. Dr. Alexei Ivlev for accepting to advise and review my thesis.

Moreover, I am deeply grateful to my parents and my sisters for always be-
ing there for me, for cheering me up when things did not work out the way
I wanted, and also for sharing many unforgettable happy moments. Last but
not least, I am very happy and incredibly thankful to have my husband Soroosh
Alighanbari by my side. His belief in me and his continuous support have al-
ways encouraged me and have been an important milestone for my personal
development and development of my career.






Contents

Abstract

Preface

1

Introduction

1.1
1.2

1.3

The basicmodel . . . ... ... .. ... ... L.
Inertia-dominated active Brownian particles . . . . ... .. ..
1.2.1  Circle flyer with time-independent self-propulsion, in-
ertia, damping, and fluctuations . . . . . . ... ... ..
1.2.2  Circle flyer with time-dependent self-propulsion, iner-
tia, damping, and fluctuations . . . . . . ... ... ...
Active Brownian particles in the overdamped limit . . . . . . . .
1.3.1  Experiment . . ... ... ... ... 0.
132 Theory . .. . ... ...

Inertial delay of self-propelled particles

Normal and anomalous diffusion in active Langevin motion

3.1
3.2
3.3

3.4

3.5

3.6

Introduction . . . .. ... Lo oL
The basic model of active Langevin motion . . . . . .. ... ..
Time-independent self-propulsion, inertia, damping, and fluc-

tuations . . . . . .. L L
3.3.1  Results for vanishing noise . . . ... ... ... ....
3.3.2 Effect of Browniannoise . . . . ... ... ... .....
Time-dependent self-propulsion, inertia, damping, and fluctua-

tions . . ...
3.4.1  Adiabatic approximation for slow variations . . . . . . .
3.4.2 Non-adiabatic correction to the adiabatic approximation
343 Fastvariations . .. ... .. ... ... ... .....
Oscillating self-propulsionspeed . . . . . . ... ... ... ...
3.5.1  Results for vanishing noise . . .. ... .........
3.5.2 Effect of Browniannoise . . . . . ... ... ... ....
Conclusion . . . . . .. ... ..

Localization of a microswimmer in a triangular trap

4.1
4.2

Introduction . . . . . . . . .
Theory . . . . . . . .

ix



Acknowledgments

5 Colloidal Brazil nut effect in microswimmer mixtures induced

by motility contras 61
6 Concluding remarks 73
Bibliography 75



1 Introduction

Converting energy stored in the environment into systematic movement is the
defining characteristic of active matter systems [1]. The main characteristic fea-
tures of living entities are likewise caused by a continuous injection of energy
at the microscale [2]; hence, active systems provide a powerful platform to in-
vestigate the natural processes of life [3]. Through transduction of free energy
into mechanical work, active agents drive themselves locally far from thermo-
dynamic equilibrium [4], which makes them a useful framework in studying
non-equilibrium statistical physics [5]. Their application delves though into
various disciplines beyond physics; for instance, ecology for stochastic model-
ing of movement [6, 7], biomedical areas as drug carriers or sensors for biolog-
ical targets[8, 9], robotics to develop systems that exhibit swarm intelligence
[10], traffic flow [11] and environmental science [12].

Self-propelled particles were originally introduced to study the mass-migrating
animal groups [13, 14, 15]. As a special class of self-propelled agents, active
Brownian particles —unlike their passive counterparts whose equilibrium mo-
tion is driven just by thermal fluctuations due to erratic collisions with the sur-
rounding medium [16]- propel themselves by a motility beyond random ther-
mal fluctuations [17, 18]. The main applications of active Brownian particles
—-whether biological like bacteria [19, 20] or artificial such as Janus particles
[21, 22, 23]~ are centered around their functionalities in transport, sensing, and
manipulation [24].

Here we study the behavior of active Brownian particles both as a single agent
and when in interaction with other particles both analytically and using com-
puter simulations. We assume the active agents to be spherical particles whose
translational and rotational motions are confined to a two-dimensional plane.
The self-propulsion is modeled through a coarse-grained approach by an effec-
tive force and torque fixed in the particle’s body frame [25].

Moving on a surface brings about hydrodynamic couplings between the self-
propelled particles and the substrate [26, 27, 28]. The consequence of these
couplings is that the particle orientation is always almost parallel to the nearby
surface [29, 30]. For dry active matter systems, including vibrated granular par-
ticles on a plate [31, 5, 32], for highly crowded environments when no global
flow is built up [33, 24], and for half-coated Janus colloids with a weakly nonuni-
form surface mobility at typical densities [34, 35], hydrodynamic interactions
can be negligible. In this scientific research, apart from hydrodynamic fric-
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tion, hydrodynamic interactions are disregarded. However, restriction of the
rotational dynamics to two dimensions takes the hydrodynamic effects near a
boundary into account. The validity of this model and our theoretical results
are confirmed by real-space experiments.

1.1 The basic model

We use Langevin equation to investigate the stochastic dynamics of a subset
of the degrees of freedom [36]. For a self-propelled particle confined in two
spatial dimensions, the characteristic degrees of freedom are the center of mass
position r(¢) and the rotational angle . The latter specifies the orientation of
the particle n(t) = (cos o(t), Siﬂg@(i)). Where no physical barriers or other
particles are present, the equations of motion for a single particle with mass m
and moment of inertia .J are [37, 38]

mi(t) +&r(t) = Eun(t) +EvV2D fu(t), (1.1)
JOt) +&0(t) = LwEn/2D, T (t). (1.2)
The self-propulsion speed v corresponds to an effective force F' = Svn(t),

which acts along the particle orientation n(t). w is the circling frequency cor-
responding to an effective torque 7 = &, w. In order to restrict the rotational
motion to two dimensions, the effective torque has to be perpendicular to the
plane of motion. Within the picture of effective force and torque, we track the
net motion of the particle and ignore completely the microscopic mechanism
of movement. ¢ and &, denote the translational and rotational friction coeffi-
cients. The latter couples the circling frequency to the effective torque, while
the former associates the propulsion speed to the effective force. The transla-
tional and rotational Brownian motions are modeled by independent zero-mean
Markovian white noise processes f () and 7 (¢) with unitary variance, such
that [24]

(f+(t) @ fu(t)) = 6@t —1t)1, (1.3)
(Tt (1) T (t)) St —1t). (1.4)

Here the brackets (-) indicate noise average and 1 is the unit matrix. Ther-
mal fluctuations are quantified by the short-time translational and rotational
diffusion coefficients D and D,. For a spherical particle with diameter ¢ in

bulk situation, the diffusion coefficients fulfill D/D, = ¢/3. This ratio could
change for particles moving near walls or system boundaries [39, 23].
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1.2 Inertia-dominated active Brownian particles

The class of inertia-dominated active Brownian particles includes macroscopic
self-propelled particles with non-negligible inertial effects and micron-sized ac-
tive particles flying in a gaseous medium, where friction becomes such small
that the inertial effects get dominant. The motion is affected by the random
kicks of the surrounding medium. Therefore, the dynamics is coined as active
Langevin motion and these inertia-dominated active Brownian particles are re-
ferred to as microflyers [40].

A particular example is dusty plasma, also called complex plasma, which is com-
posed of mesoscopic dust particles in a weakly ionized gas [41, 42, 43, 44, 45].
Dusty plasmas are ubiquitous in space; for instance, they are found in planetary
rings, cometary tails, interplanetary and interstellar clouds, the mesosphere and
thunderclouds [46].

Other examples include vibration-driven granular particles [47, 48, 49, 50, 51,
52, 53, 54, 55], which get propelled through converting vibrational energy of
the vibrating baseplate into directed motion, and mini-robots [56, 57], which
are driven by an internal motor. Further examples are autorotating seeds and
fruits [58, 59], which are equipped with appendages that act as wing and enable
them to fly. Furthermore, the dynamics of animals [60, 61, 62] and insects [63,
64, 65, 66] can be analyzed within active Langevin motion, because of a two-
fold reason: first, they are self-propelled with dominant inertial effects; second,
the impact of environmental noise in their motion can be modeled by Brownian
noise.

The model of active Langevin motion successfully describes active systems with
nonvanishing inertial effects. However, the theoretical results are usually pro-
vided in the overdamped limit of rotational motion, i.e., case of negligible mo-
ment of inertia [67, 68, 69, 70, 38, 71]. In practice, neglecting the impact of the
moment of inertia in dynamics is solely a good approximation for microfly-
ers with fast rotational relaxation [72]. We have theoretically and experimen-
tally demonstrated in the publication presented in chapter 2 that generically
the dynamics of inertia-dominated Brownian particle is explicitly affected by
the moment of inertia. Then, we have studied, as addressed in chapter 3, how
the dynamics of the microflyer can be changed by taking temporally varying
parameters into account.

1.2.1 Circle flyer with time-independent self-propulsion,
inertia, damping, and fluctuations

When a microflyer undergoes chiral motion through the impact of an effective
torque, we call it circle flyer. The chiral motion may, for instance, arise from
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shape anisotropy [73, 74] or from particle imperfections [75] or from exter-
nal fields [76, 77, 78]. Here we study the dynamics of a circle flyer with time-
independent parameters. The translational and rotational motions are restricted
to a two-dimensional plane. This restriction on rotational motion dictates that
the effective torque is perpendicular to the plane of motion. The subsequent
discussions are addressed in the publication presented in chapter 2, where we
have performed real-space experiments and through which we have confirmed
the theoretical predictions.

1.2.1.1 Experiment

Our experimental microflyers are minimalistic robots called vibrobots, which
convert vibrational energy into directed motion using their tilted elastic legs
[50]. Our vibrobots are made from a proprietary methacrylate-based photopoly-
mer using a 3D printer at a precision of 0.05 mm. A new microflyer with new
parameter combinations and consequently new dynamics can be created by
varying the leg inclination, mass or moment of inertia of the vibrobot.

A single vibrobot of radius about 10 mm is placed on a circular acrylic baseplate
with diameter of 300 mm and thickness of 15 mm. An electromagnetic shaker
(Tira TV 51140) is attached to and shakes the baseplate. Due to the vibrations of
the baseplate, the vibrobot skips by repeated collisions of its tilted elastic legs
on the vibrating surface. Motion is confined to the two dimensional circular
baseplate by an enclosing barrier [32]. To ensure that the vibrobot does a stable
quasi-two-dimensional motion, the frequency and amplitude of excitations are
fixed to f = 80 Hz and A = 66 um, respectively.

Brownian motion originates from microscopic surface inhomogeneities and in
case of sufficiently strong driving, also from a bouncing ball instability [79],
that gives rise to asynchronous jumps of the particle’s legs and so to a tiny but
very irregular precession, which in turn leads to random reorientations of the
vibrobot. The propulsion speed depends on the frequency and the amplitude of
the excitations, and on leg inclination. Since the elasticity and friction coeffi-
cients depend on material properties, the propulsion speed depends on material
properties too [50, 79, 80, 81]. Owing to the strong non-equilibrium nature of
the system, the Stokes-Einstein relation does not hold, i.e., the diffusion and
friction coefficients are not related though D = kg7 /¢, where kgT is the ef-
fective thermal energy. [82].

Any object with inertia carries out ballistic motion, even if only on minuscule
time and length scales. For instance, ballistic motion of colloids, whose inertial
effects are overwhelmed by viscous friction, takes place on length scales smaller
than 1 A for approximately 100 ns. The reason is that, ballistic motion happens
when dynamics is dominated by the inertia. Observation of such short ballistic
motion requires high accuracy measurements and has been performed only for
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passive colloids [83, 84, 85]. Inertia-dominated active Brownian particles, on
the other hand, perform ballistic motion on larger time scales. For example, the
ballistic regime of our vibrobots lasts between 0.1s to around 1s. As a con-
sequence, we observe a clear transition from purely ballistic motion to normal

diffusion in our experiments for mean-square displacement.

1.2.1.2 Theory

The profound influence of inertia on dynamics is portrayed by inertial delay, i.e.
a time delay between the orientation variations and the subsequent changes in
the velocity direction. In case of vanishing inertial effects, velocity direction

pursues the orientation instantaneously, and the inertial delay is zero.
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Figure 1.1: Time-dependence of the inertial delay C'(7(¢),n(t)) for different
circling frequencies (see legend). The other parameters are as follows: v =
8s L4 =7s1,D=8x10"m?s !,and D, = 5s L.

The retarded response of the velocity to the orientation variations can be quan-
tified via the correlations between the velocity and the orientation. The inertial
delay is hence defined as the average difference between the projection of the
orientation at time ¢, on the velocity at some later time ¢ + ¢, and projection of

the velocity at time ¢, on the orientation at some later time ¢ + %, i.e.
. r(t)-n(0) —r(0) - n(t
The inertial delay is made dimensionless by scaling with the propulsion speed.

Here the brackets (-); indicate time average through which the impact of ¢y is
averaged out, more specifically the impact of the initial configuration is aver-

aged out.
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The effects of initial configurations can be canceled out also by an ensemble av-
erage over all possible initial configurations. An ensemble average is generally
associated with a density function. The required density function can be pro-
vided by taking into account a steady-state initial condition, i.e. first, the system
is let to reach the steady-state, then the measurement begins. Consequently,
the average over all possible initial configurations becomes the steady-state av-
erage. For example, the averaged initial angular and translational velocities are

[ 0 PG éo = Jim (o(t0) = . (1.6
/ diy P(0) o = lim {#(t0)) = 0. (17)

respectively. Here P(¢) and P(7) indicate the steady-state distributions of the
respective angular and translational velocities. Specifically, due to the steady-
state initial condition, the average over all possible initial states of a quantity
is evaluated as an ensemble average over that quantity according to its steady-
state distribution.

Based on the ergodic hypothesis [86, 87, 88], the former, time average, is equiv-
alent to the latter, steady-state average,

(@) = lim (z(t +10)), (1.8)

where x represents an arbitrary quantity. While noise average contains the in-
formation of the initial configuration, this information is lost in time average. In
other words, a system that evolves for a long time (like in steady-state), forgets
its initial state.

Different time-scales which characterize the motion of the circle flyer are as
follows: the translational and rotational damping times 7~ = m/¢ and v, ! =
J/&,, the persistence time D, 1 the translational and rotational crossover times
2D /v? and 2D, /w?, and the reorientation time w™'.

As visualized in Fig. 1.1, the inertial delay starts from zero at time equal to zero
and grows until reaches its maximum. Then it decays and re-approaches zero
for times much larger than the damping times. In case of nonvanishing circling
frequency, the inertial delay may undergo damped oscillations between positive
and negative values during the decaying stage (see Fig.1.1). Moments with neg-
ative inertial delay stem from the fact that the orientation may get lag behind
the velocity direction because of rapid circling. Thermal fluctuations accelerate
the decay rate such that in case of smaller random noise, the velocity and the
orientation remain correlated for a longer time.

In case of vanishing random noise, the circle flyer performs circular motion
after some transient initial revolutions. The transient initial regime is attributed
to the inertial effects, i.e. the higher the moment of inertia, the more difficult
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the change in the angular velocity. Because of this higher resistance towards
any change in the angular velocity, it takes longer for a circle flyer with larger
moment of inertia to arrive its final circular flying path. The radius of the final
circular flying path

v ~?2
— . 1.9
" w\ 2+ w? (1.9)

does not depend on the moment of inertia, however, the center of the circular
flying path is an increasing function of the moment of inertia. This demon-
strates that during the transient initial regime, the stretched particle with higher
moment of inertia flies away farther than the shrunk one with smaller moment
of inertia. When inertia vanishes, the radius of the final flying path reduces to
the one for a noise-free overdamped circle flyer, referred to as circle swimmer,
namely if 7 — o0, Eq.(1.9) approaches the radius of the swimming path of a
noise-free circle swimmer, i.e. r = vg/w [89].

In the presence of thermal noise, the distribution of the angular velocity for
times much larger than the rotational damping time reaches its stationary state
around the circling frequency with width \/2D,~,, while the distribution of
the rotational angle keeps spreading over the angle domain as time passes. The
correlation function of the angular velocity mimics the correlations of a colored
noise. Therefore, due to the angular velocity, the dynamics of the rotational an-
gle is subject to an exponentially correlated Gaussian colored noise [90, 91]. The
time-scale of the correlations in the orientation is the persistence time which
reflects the fact that the fluctuating torque decorrelates the orientation. The
additional short-time correlations in the orientation is due to the colored noise
imposed by the angular velocity.

The translational velocity correlation function results in the mean-square dis-
placement through [92]

((r(t) —mp)?) = 2/0 ds (t —s)(r(s)-7(0))r. (1.10)

In the short-time limit, the dynamics of the circle flyer is still in the ballistic
regime such that

((r(t) —mo)*) = (P) £, (1.11)

while the second moment of the translational velocity (72) = (#(0) - 7(0)) 7 is
comprised of the thermal energy and the injected kinetic energy. In the long-
time limit, the circle flyer undergoes diffusive motion, i.e. {(r(t)—7¢)?) = 4Dt
with long-time diffusion coefficient

’02 Dr (DT*iw) DT — 1w Dr‘

Re eDw-/%-(i)* = Y(, )] . (1.12)
271” f}/r fY’I‘ FYT‘

Dy =D +
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Here
‘y(a,x):/ t* e tdt, (1.13)
0

is the lower incomplete gamma function [93]. The first term in Eq.(1.12) is
related to the equilibrium diffusive behavior of a passive particle when v = 0.
In the limit of vanishing inertia, the long-time diffusion coeflicient goes to that
for overdamped microflyers (microswimmers), i.e. D, = D + v3D, ' /2 when
w = 0 [94]. The long-term diffusive dynamics does not explicitly depend on
the mass, but it depends on the mass distribution around the axis of rotation,
namely on the moment of inertia. There is no dependence on the translational
friction coefficient in the long-time dynamics.

When the moment of inertia shrinks to small values, the asymptotic long-time
diffusion coeflicient of the circle flyer grows proportional to the moment of
inertia such that

2 2 2
v> D v D

Do=D+ ———"—+-——"—=J+0(J%). 1.14

L 2D3+w2+2§}D2+w2 +0(J9) (1.14)
The terms independent of moment of inertia in Eq. (1.14) characterize the long-
time diffusion coefficient for circle swimmers [95].

On the other hand, as the moment of inertia grows to large values, the long-
time diffusion coefficient of the circle flyer asymptotically vanishes to zero. This
stems from the fact that circling diffusion becomes more difficult by increasing
the moment of inertia due to getting trapped in circular cages of the trajectory.
However, in case of vanishing circling frequency, the asymptotic behavior of the
long-time diffusion coefficient for large moments of inertia grows proportional
to the square root of the moment of inertia

Dy =D+’ 8£§T\/7+0<\/7_1) . (1.15)

The reason behind this different behavior in case of vanishing circling fre-
quency is that a very large moment of inertia brings about huge resistance to
changing the angular velocity. This causes the impact of fluctuating torque
fades away by the large moment of inertia and the the microflyer diffusively
moves with the optimum speed along the preferred direction.

1.2.2 Circle flyer with time-dependent self-propulsion,
inertia, damping, and fluctuations

When animals move while swimming, flying, walking or running, the maneu-
verability of motion is provided by changes in the body shape [96, 97]. As
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a consequence, the moment of inertia changes constantly and becomes time-
dependent. Along with propulsion speed, this can result in temporally-varying
rotational parameters such as friction coefficient [98, 99]. The randomness in
motion, caused by environmental stimuli, can also be included through Brow-
nian noise.

Variable-mass systems, whose mass changes with time, comprise an important
class in transportation technology. Examples include rockets, which are pro-
pelled by continuously losing mass, and robots with discrete mass variation
through picking up or releasing objects [100]. Time-dependent mass can bring
about time-dependent friction coefficient [101]. Variable-mass systems can be
also affected by noise, e.g. because of thermal fluctuations in microscopic scales.
Therefore, active Langevin motion provides an efficient model to study such
systems with temporally varying mass.

When inertia is time-dependent, the coupled Langevin equations in Eqgs. (1.1)
and (1.2) must now include the terms proportional to the temporal change of
inertia. This results in the following coupled equations of motion

m(t)7(t) + () + mhen)7(t) = E()v(t)n(t) + (1) /2D(t) fu(t) (1.16)
JOG() + (&(8) + J)@(t) = &(w(t) + & (8)/2D, (1) T (t) . (1.17)

in which self-propulsion, damping, and thermal fluctuations are considered to
be time-dependent, too. Here 71.,, denotes the isotropic change in mass due to
the interaction with the environment and can be positive or negative. Also, we
have to take in mind that in case of rockets, the propulsion force depends on
the rate of change in mass due to eject the exhaust fluid, i.e. on 77, which is
negative. Therefore, {(t)vn(t) = 1yu, where u = —un(t) is the velocity of
exhaust relative to the rocket.

While for normal diffusion, the mean-square displacement is proportional to
t, in case of anomalous diffusion, this proportionality becomes ¢, where the
anomalous exponent « is a real positive number and o # 1 [102, 103, 104, 105,
106, 107, 108, 109]. When « < 1 subdiffusive behavior emerges, while for o > 1
the circle flyer superdiffuses. We have demonstrated that temporal variations
of parameters can give rise to anomalous diffusion. This results in the transport
process of the diffusion to be adjustable through choosing the temporal behav-
ior of parameters [110]. The subsequent discussions are regarding chapter 3.

1.2.2.1 Oscillating self-propulsion speed

In case of oscillating self-propulsion

v(t) = v <1 + xsin(vt + 90)> : (1.18)
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while inertia, damping, fluctuations, and circling frequency are time-independent,
the inertial delay is the same as that for a circle flyer with constant self-propulsion
speed. The reason stems from the sinusoidal nature of time-dependence, where
the oscillations cancel out the impact of each other over the course of each
propulsion period, hence only the term corresponding to the constant propul-
sion, i.e. vy, contributes to the inertial delay. In Eq. (1.18), v and vy denote the
frequency and the amplitude of the self-propulsion, respectively, where x < 1,
and 0, is the initial phase of the oscillation. The here presented results are for
the situation when the ratio of the frequencies w and v is rational and for non-
vanishing circling frequency.

0.25¢
0.20r
0.15¢

a®

0.10r

y (m)

0.05¢

0.00

—0.05¢

-0.10 : : : : :
0.0 0.1 0.2 0.3 0.4
X (m)

Figure 1.2: Noise-free trajectories for two different moments of inertia (see
legend). The circle flyer starts its motion from the origin along z direction
with zero initial velocity and vanishing initial angular velocity. The flying
paths after relaxation of the initial conditions are visualized by dotted ma-
genta curves. The centers of the flying paths are shown by orange circles.
The other parameters are as follows: & = 7 X 108 kg m?s~!, v = 8s71,
vo=0.07ms L, x =05 w=13sYLv=07s""1 and 0, = 0.

The translational dynamics of the circle flyer with oscillating propulsion speed
demonstrates an interplay between different frequencies, i.e. circling frequency
w, sum frequency w + v, and difference frequency w — . Specifically, the contri-
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1.2 Inertia-dominated active Brownian particles

bution of the terms, which contain circling frequency in sec.1.2.1, expands now
to three different terms regarding the circling frequency, the sum frequency,
and the difference frequency.

In case of vanishing noise, after the relaxation of the initial regime which in-
cludes some transient revolutions and takes longer for a higher moment of iner-
tia, the circle flyer reaches its final periodic flying path. This feature is visualized
in Fig.1.2 for a circle flyer when it is stretched and when it is shrunk. The period
of the final trajectory is 7 = 27r LCM(w ™', (w + v)7!, |w + v|!). Here LCM
denotes the lowest common multiple. In special case when w = v, the period of
the trajectory is simply 7" = 27 /w. The final flying path does not depend on the
moment of inertia, however, its center (shown by orange circles in Fig.1.2) is an
increasing function of moment of inertia. In the overdamped limit, a noise-free
circle swimmer with oscillating self-propulsion is also confined to a periodic
swimming path as reported in Refs. [111, 112].

In the presence of thermal noise, as the moment of inertia grows to very large
values, the long-time diffusion coefficient goes asymptotically to zero. This
happens because the growth of the moment of inertia increases the resistance
to circling motion and this results in vanishing circling diffusion.

However, when w = v, the long-time diffusion coeflicient asymptotically grows
proportional to v/.J by increasing the moment of inertia to very large values.
This comes from the contribution of the difference frequency (w — v) in the
long-time dynamics and corresponds to a resonance situation when the particle
flies with the optimum speed along the preferred direction.

1.2.2.2 Adiabatic approximation for slow variations

The appearance of the anomalous diffusion in a system is usually attributed to
power law variations in the system’s parameters [109]. A slow power law in
time for the moment of inertia, self-propulsion, rotational friction, and diffusion
coefficients

J(t) = jot®, V,(t) =wot?, &(t) =&ot’ D(t) = Dyot®,  (1.19)

can cause the emergence of anomalous diffusion in long-time dynamics of the
microflyer. 7o, vg, &0 and D, are constant values, and «, 3,  and ¢ are expo-
nents whose combination shapes the anomalous exponent.

In case of vanishing circling frequency and large jj, within adiabatic approxi-
mation, the long-time mean-square displacement is proportional to

j a—0—¢&
((r(t) _ ,,,0)2) ~ U(Q) 5 O0g : 28+ (a—6—2)/2 (1.20)

When
26+ (a—0—¢)/2>0, (1.21)

11
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Eq. (1.20) manifestly demonstrates superdiffusive behavior in the long-time dy-
namics for large moments of inertia. In case of

286+ (a—d—¢)/2<0, (1.22)

random forces overwhelm the subdiffusive behavior of Eq.(1.20) and as a re-
sult, normal diffusion emerges in the long-time dynamics. In the limit jo — 0,
the mean-square displacement goes to that of a microswimmer with power law
time-dependent self-propulsion, which is reported in Ref. [111]. The first order
non-adiabatic correction to the adiabatic approximation of the mean-square dis-
placement demonstrates a ballistic phase in the long-time dynamics.

Since there is no explicit dependence on mass or translational friction coefficient
in the long-time diffusion coefficient, temporal behavior of m(t) or £(¢) can not
indeed alter the long-time dynamics. For noise-free cases, which is relevant to
the macroscopic variable-mass systems such as rockets, a time-dependent mass
can, for instance, change the final flying path, on which circle flyer arrives after
relaxation of the initial regime.

1.2.2.3 Fast variations

In case of rapidly varying parameters, the system is able to dynamically respond
just to the mean variations. For example, a rapidly oscillating moment of inertia

J(t) = jo(1 +sin(v1)) (1.23)

with a very large oscillation frequency v, when w = 0 and j, — oo, gives rise
to the long-time dynamics

TJo

((r(t) —7o)?) ~ 4Dt + 20? 3D,

t, (1.24)

which is the same as the long-time behavior of a microflyer with a large constant
moment of inertia, here jy, given by Eq. (1.15).

1.3 Active Brownian particles in the
overdamped limit

For microscopic particles swimming in a Newtonian liquid, viscous effects are
dominant and inertial effects are negligible. Such agents are called active Brow-
nian particles, also referred to as microswimmers and their describing model is
called active Brownian motion, wherein the overdamped dynamics is modeled
through Gaussian white noise as solvent kicks, and an effective self-propulsion

12



1.3 Active Brownian particles in the overdamped limit

force [95, 113, 23, 114]. This is referred to as low Reynolds number regime since
Reynolds number quantifies the strength of inertial effects relative to viscous
forces in the system [115]. In this case, the coupled Langevin equations, given
by Egs.(1.1) and (1.2), are presented in the overdamped limit where inertia is
negligible

#(t) = on(t) + V2D fu(t), (1.25)
p(t) = w+ /2D, 7w(1) . (1.26)

Typical microswimmers are micron-sized biological or artificial objects swim-
ming in a viscous fluid medium, e.g., water. Examples of biological microswim-
mers include spermatozoa [116, 117, 118], and bacteria species, such as E. coli
[119,120], and vibrio cholera [20]. One famous example of man-made microswim-
mers is Janus particle; it is named after the two-faced Roman deity because its
surface has two or more distinct physical properties [94, 121, 122, 123, 124, 125].
When a microswimmer performs chiral motion because of the impact of an ef-
fective torque, it is named circle swimmer [126, 127]. In nature, certain bacteria
[128, 129, 19, 130] and spermatozoa [116, 117, 131] exhibit circling swimming
on a planar substrate.

Using experiments, simulations and analytical theory, we have studied the dy-
namics of a single Janus particle as well as collective effects of many such mi-
croswimmers, whose motility, i.e. individual swimming speed of a single par-
ticle, is tunable by light [132, 133, 134, 135, 136]. The subsequent discussion is
regarding chapter 4 and the publication presented in and chapter 5.

1.3.1 Experiment

Artificial microswimmers are Janus particles made of silica spheres, with di-
ameter of a few micrometers, which are half-coated with a nanometer carbon
layer. The microswimmers are suspended in a critical mixture of water and 2,6-
lutidine. The whole sample is homogeneously illuminated with laser light at
A = 532 nm, which is mainly absorbed at capped hemisphere. This results in
a temperature gradient across the microswimmer. When the cap temperature
locally exceeds the critical temperature of the solvent 7, = 34.1 °C, the solvent
locally demixes, and the Janus particle exhibits self-propulsion. The resultant
swimming speed depends linearly on the incident laser intensity [132]. Below
and above a threshold intensity /., microswimmers propel with the carbon cap
at the rear and at the front, respectively [133].

Demixing of solvent near the cap results in the appearance of a droplet nucleat-
ing around the microswimmer [137]. In the presence of intensity gradients, the
cap becomes inhomogeneously heated leading to the nucleation of asymmetric

13
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droplets [137, 132]. This brings about an active torque aligning the particle’s
cap towards the intensity gradient. Consequently, negative and positive photo-
tactic behaviors happen for / < I, and I > I,, respectively [133, 136]. When
intensity is lower than the threshold intensity, the particle is directed towards
the regions with lower intensity (i.e. negative phototaxis). Whereas for I > I,.,
the orientation of the particle is aligned towards increasing light intensity (i.e.
positive phototaxis).

Creation of periodic triangular intensity pattern is achieved by a laser line focus
being scanned across the sample plane with a frequency of 200 Hz. Synchro-
nization of the scanning motion with the input voltage of an electro-optical
modulator leads to a quasi-static illumination landscape [132, 136]. Due to the
large thermal diffusivity of the carbon cap, the temperature field around the par-
ticle responds to illumination intensity variations on time scales below 10~°s.
This gives rise to an almost immediate response of the particle motility to the
light intensity changes [133, 136].

Active colloidal mixtures with different size ratios are prepared by doping ac-
tive suspension of small particles with a few large active colloids. Since the
propulsion speed depends linearly on the absorbed intensity across the parti-
cle’s cap, the speed can be varied in a linear pattern by changing the thickness
of the cap’s carbon layer [133].

1.3.2 Theory

The microswimmer is confined to a two-dimensional substrate in a static pe-
riodic triangular-like light intensity field. Since the motility of the particles
is proportional to the imposed light intensity, the triangular-like intensity field
leads to a triangular motility profile for the microswimmer. The self-propulsion
is periodic in the z-coordinate with a characteristic length /,,, and depends on
the particle’s position along the z-direction, but it is independent of the y-
coordinate. In one spatial period, in case of negative phototaxis, the motility
profile is defined as

A .
v(z) = QTUM + pmn for |z| <1,/2, (1.27)
while for positive phototaxis, it is specified by
A
v(x) = =2 l”!x| + Ve for x| <1,/2, (1.28)

with Ay = Vm& — /min_ The propulsion velocity spatially varies between the
maximum value V™ and the minimum value V™",

The aligning active torque generates the angular velocity

/

w () = = 0,(2) vy () sin o, (1.29)
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1.3 Active Brownian particles in the overdamped limit

which depends on the z-coordinate through the propulsion speed. Here, v’ () =
dZ—f) denotes the velocity gradient. The magnitude of the aligning torque is in-
versely tuned by the particle diameter 0. The constant ¢ follows from experi-
ments while its sign depends on whether the particle moves with the cap in the
rear or in the front: ¢ < 0 corresponds to the positive phototaxis case and ¢ > 0
is for the negative phototaxis situation [138, 132, 133, 136].

The axial symmetry of the velocity field around the particle breaks due to the
light intensity gradient leading to the alignment of the orientation towards the
direction of the negative or positive intensity gradient [132, 133]. Consequently,
the aligning torque is perpendicular to both orientation and intensity gradient,
which induces dependence on sin ¢ in Eq. (1.29).

For positive phototaxis situation, the microswimmer becomes effectively lo-
calized near motility maximum [136]. In case of negative phototaxis, the mi-
croswimmer gets dynamically trapped in the dark spots where its motility is
minimum [139, 140, 141].

When granular mixtures of variously sized particles are subjected to shaking or
vibration, Brazil nut effect emerges where the largest particles rise to the top
against the gravitational gradient; once at the top, they stay there (on the sur-
face of the mixture) [142]. In analogy to shaken granular matter in gravity, we
define a colloidal Brazil nut effect in a repulsively interacting binary mixture of
small negative phototactic microswimmers doped with large ones, wherein par-
ticles interact via a short-ranged repulsive Weeks-Chandler-Andersen (WCA)
pair potential [143].

In the binary mixture of microswimmers, we observe a segregation of active
particles near the intensity minimum where one species is localized close to
the minimum (bottom) and the other one is centered around in an outer shell
(top). When the aligning torque is very strong, there is an exact mapping of
the nonequilibrium system onto an equilibrium system in an effective exter-
nal potential, which is similar to (height-dependent) gravity. Accordingly, we
define effective heaviness of the particles. We call the situation with heavier mi-
croswimmers on top of the lighter ones colloidal Brazil nut effect. Apart from
size (diameter) and maximum velocity V™, the small and large microswim-
mers of the binary mixture are exactly the same in different parameters. The
results of real-space experiments confirm the theoretical predictions.
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ewton’s first law states that because of inertia, a massive

object resists any change of momentum. Before this

groundbreaking idea, the dominant theory of motion was
based on Aristotelian physics, which posits that objects come to
rest unless propelled by a driving force. In retrospect, this per-
ception is unsurprising, as the motions of everyday objects are
influenced significantly by friction. In microscopic systems such
as colloids, inertial forces are completely overwhelmed by viscous
friction. In fact, in the absence of inertia, particles cannot move by
reciprocal shape deformations due to kinematic reversibility.
Biological organisms such as bacteria must therefore self-propel
by implementing non-reciprocal motion!.

However, any finitely massive object performs ballistic motion,
even if only on minuscule time and length scales. For example,
colloidal particles undertake ballistic motion below 1A for
approximately 100ns. Experimental verification of this motion
requires high accuracy measurements and has been achieved only
for passive colloids?**. In contrast, for macroscopic self-propelled
particles, such as animals and robots, the magnitude of inertial
forces can be comparable to that of the propulsion forces and
influence the dynamics on large time scales.

A particularly simple example of a macroscopic self-propelled
particle is a minimalistic robot called a vibrobot, which converts
vibrational energy into directed motion using its tilted elastic legs®.
Collectives of such particles exhibit novel non-equilibrium
dynamics®-?, self-organisation'?, dlustering®'! and swarming!'?-1%,
Along with animals!®, artificial and biological microswimmers!7-17,
vibrobots belong to the class of active soft matter.

Here, we demonstrate that the inertia of self-propelled particles
causes a significant delay between their orientation and velocity
and increases the long-time diffusion coefficient through persis-
tent correlations in the underdamped rotational motion. Standard
models, such as the Vicsek-model?? and active Brownian
motion’! cannot explain this behaviour as they neglect inertia.
Instead, the dynamics can be understood in terms of under-
damped Langevin equations with a self-propulsion term that
couples the rotational and translational degrees of freedom. Using
the mean squared displacements (MSDs) and velocity distribu-
tions, fitted by numerical and analytical results, we extract a
unique set of parameters for the model. We derive analytic
solutions for the short- and long-time behaviour of the MSD and
prove that the long-time diffusion coefficient explicitly depends
on the moment of inertia.

Results

Experimental observation of inertial effects. Our experimental
particles are 3D-printed vibrobots driven by sinusoidal vibrations
from an electromagnetic shaker. To investigate a wide range of
parameter combinations, we varied the leg indination, mass and
moment of inertia of the particles (see Fig. 1a-d). The excitation
frequency and amplitude were fixed to f= 80 Hz and A = 66 pm,
respectively, which ensures stable quasi-two-dimensional motion
of the particles.

The mechanism is illustrated in Fig. le and Supplementary
Movie 1. The vibrobots move by a ratcheting mechanism driven
by repeated collisions of their tilted elastic legs on the vibrating
surface. Their propulsion velocity depends on the excitation
frequency, amplitude, leg inclination and material properties such
as the elasticity and friction coefficients®?>~?%, Long-time random
motions are induced by microscopic surface inhomogeneities and
(under sufficiently strong driving) a bouncing ball instability?4,
that causes the particle’s legs to jump asynchronously and
perform a tiny but very irregular precession, which in tum leads
to random reorientations of the particle. Thereby, the vibrobot
motion is considered as a macroscopic realisation of active

2 NATL

Brownian motion'>132526, Figure 1f shows three representative
trajectories of particles with different average propulsion
velocities (see also Supplementary Movie 2). The persistence
length is noticeably shorter for slower particles than for faster
particles, as generally expected for self-propelled partides'®.

However, the significance of inertial forces is an important
difference between motile granulates and microswimmers!'!?7,
Massive particles do not move instantaneously, but accelerate
from rest when the vibration is started. The time dependence of
the initial velocity (averaged over up to 165 runs per particle) is
shown in Fig. 2a. The particles noticeably accelerated up to the
steady state on a time scale of 107 !s, one order of magnitude
larger than the inverse excitation frequency and the relaxation
time of the shaker. When perturbed by an external force,
vibrationally driven particles approach their steady state on a
similar time scale'®. The relaxation process is well fitted by an
exponential function, as expected for inertial relaxation. Inertia
also influences the dynamical behaviour of the particles’
orientation relative to their velocity. The orientation (red arrows
in Fig. 2b) systematically deviates from the movement direction
(black arrows in Fig. 2b). Particularly, during sharp tums the
orientation deviates towards the centre of the curve, whereas the
velocity is obviously tangential to the trajectory. We compare the
angle of orientation ¢ to the angle of velocity ® = atan2(Y, X) in
Fig. 2b and find that © systematically pursues ¢ with an inertial
delay of order 10~ !'s. A slow-motion recording of one partide in
Supplementary Movie 3 illustrates the dynamic delay between
motion and orientation. The particle quickly reorients, but its
previous direction is retained by inertia. Consequently, the
particle drifts around the corner, mimicking the well-known
intentional oversteering of racing cars.

Underdamped Langevin model. Despite the complex non-linear
dynamics of the vibrobots™2»2428.29 qur observations can be
fully described by a generalised active Brownian motion model
with explicit inertial forces. The dynamics are characterised by
the centre-of-mass position R(#) = (X(t), Y(t)) and the orientation
n(t) = (cos¢(t), sing(t)), where ¢(t) defines the direction of the
propulsion force. The coupled equations of motion for R(t) and ¢
(t), describing the force balance between the inertial, viscous and
random forces, are given by

MR(t) +ER(f) = §V,n(t) +EvV2DE(1), (1)

J$(1) +&8(t) = 7+ /2D, 7, (1) )

Here, M and ] are the mass and moment of inertia, respectively,
and & and £ denote the translational and rotational friction
coefficients. The translational and rotational Brownian fluctua-
tions are quantified by their respective short-time diffusion
coeffidents D and D,. The random forces f,(t) and torque 14(t)
are white noise terms with zero mean and correlation functions
E) D () —8(t—t)1  and  (ralb)rdt)) =8t— 1),
respectively, where (---) denotes the ensemble average and 1 is the
unit matrix. Owing to the strong non-equilibrium nature of the
system, the diffusion and damping constants are not related by
the Stokes—Einstein relation®. Moreover, as typical partides are
not perfectly symmetrical, they tend to perform circular motions
on intermediate time scales. To capture this behaviour, we
applied an external torque 1, that induces circular movement
with average velocity @ = 1¢/£,**2. Similar models applied in the
literature have typically neglected the moment of inertia or have
only been solved numerically! 1*3-37, The motion of a partide
govemed by Egs. (1) and (2) is determined by different time
scales given by the friction rates /M =1"! and £, /] = 17!, the
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Fig. 1 3D-printed particles, setup and trajectories. a Generic particle. b Carrier particle with an additional outer mass. ¢ Tug particle with an additional
central mass. d Ring particle without a central core. Scale bars represent 10 mm. e lllustration of the mechanism with a generic particle on a vibrating plate.
f Three exemplary trajectories with increasing average particle velocities. Particle images mark the starting point of each trajectory. The trajectory colour

indicates the magnitude of the velocity. Scale bar represents 40 mm

rotational diffusion rate D,, the angular frequency w and the
crossover times 2D/ V> and 2D,/7;. In the limit of vanishing M
and | the model is equivalent to the well-known active Brownian
motion formulation™".

The trajectories obtained by numerically integrating the
Langevin model compare well with the experimental observa-
tions. As show by the representative trajectory in Fig. 2d, e, the
model reproduces the delay between the orientation and velocity,
when the friction is sufficiently weaker than the inertia. The
model can be analytically solved by averaging and integration.
The orientational correlation

(n(t) -n(0))r = cos(wr)e >(—=(="), (3)

where {--- )t is the time average, quantifies the temporal evolution
of the active noise term. The periodic cosine term results from the
external torque and captures the induced circular motion. The
rotational noise, quantified by D,, decorrelates the orientation on
long-time scales. This decorrelation is described by the exponen-
tial term in Eq. (3). The double exponential reflects the additional
orientation correlation on short time scales imposed by the
inertial damping rate 7,!. Consequently, the particle dynamics
non-trivially depend on the orientation, even in the short- and
long-time limits. In the short-time limit the MSD is given by

((R(@) - Ro)) = ()2 (4)
with

(1‘12) = 2D/7 + {(Dp, D, D) V2. (s)

The first term is the equilibrium solution for a passive partide,
and the second term arises from the active motion term. The
latter is proportional to Vg, i.e. the kinetic energy injected by the
propulsion. This contribution is quantified by the ratio of
competing time scales, i.e. the dimensionless delay numbers
Dy=Dzx

Thry D1 =wT, DZ = 11';71 (6}
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through the function
(B, Dy, Dy) = Dy Re Dy B3+
* YDy — iy + Dy, Dy)],

)

where Re denotes the real part and y is the lower incomplete
gamma function. The long-time behaviour of the motion is
diffusive, with the long-time diffusion coefficient

®)

]'0
DL =D+ TPI(Tv Dm D]}‘

In Eq. (8), the first term is the passive diffusion coefficient and the
second term represents the contribution from the driving force
with persistence time given by

—(D—iD, .
t(5, Do, D) = re>Re[ ;™ Dy(Dy - 1D, D). (9)

Equation (8) is similar to the active Brownian motion model,
where the persistence time 1/D, is replaced by Eqg. (9). The long-
time diffusion coefficient is therefore a function of the inertial
correlations introduced by J through D,. This starkly contrasts
with passive Brownian motion, which assumes an inertia-
independent diffusion coefficient.

Comparison between model and measurement. Equations (5)
and (8) depend non-trivially on six independent parameters.
They are determined by fitting the MSD given by Eq. (4) and the
linear and absolute velocity distributions, obtained by numerically
solving Eqgs. (1) and (2), to the measurements. The measurements
and fitting curves for the four different particle types are sum-
marised in Fig. 3. The angular MSDs in Fig. 3a—d show a ballistic
short-time regime and a diffusive long-time regime (dashed lines)
from which we can determine 7, and D, respectively. The
¢-distribution in Fig. 3e-h is a shifted Gaussian. The minor
deviations at small velocities are caused by the finite tracking
accuracy. The first moment of this distribution gives the mean
angular velocity w. The parameters 7, D and V/, are extracted
from the linear velocity distributions P(v,) = P(X) = P(¥)
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Fig. 3 Determination of model parameters for the generic, carrier, tug and ring particles (ordered from top to bottom). a-d Rotational mean squared
displacement, e-h rotational velocity distribution, il linear velocity distribution, m-p absolute velocity distribution, g-t translational mean squared
displacement. Solid dark blue and dashed magenta curves show the experimental data and simulation results, respectively. Dotted light blue plots are the
theoretical solutions. Experimental error intervals represent the standard error of the mean (3 s.em). The parameter values are listed in Supplementary

Table 1

(Fig. 3i-p) and the translational MSDs (Fig. 3q-t), which can be
directly fitted by Eqs. (4) and (5). The linear velocity distribution
is not a simple Gaussian, but shows a double peak related to the
activity. The absolute velocity distribution also clearly deviates
from the two-dimensional Maxwell—Boltzmann distribution of
passive particles, especially, the maximum is shifted by the pro-
pulsion force. The translational MSD mainly depicts the ballistic
short-time behaviour, because the persistence length of our par-
ticles is of the order of the system size. To test the parameters on
an independent quantity, we systematically compared the model
with the measured inertial delay. We define the correlation

4 NATURE C

function
C(R(#),n() = (R(¥) - n(0)),—(R(0) - n(1)),,

i.e. the average difference between the projection of the orienta-
tion on the initial velocity and projection of the velocity on the
initial orientation. This function starts at zero and re-approaches
zero in the limit t — . In overdamped systems, Eq. (10) is zero
at all times. In the underdamped case the velocity direction
pursues the orientation and C(R(t), n(t)) reaches its maximum
after a specific delay. Pronounced peaks, related to the decay

(10)
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numbers and 1, are observed in Fig. 4a—d. The measurements and
theoretical predictions using the parameters determined from
Fig. 3 are consistent. Some deviations above the statistical error
are visible, in particular for the tug particle (dotted line in Fig. 4c),
due to overfitting the parameters, when the delay function is not
explicitly taken into account. This is confirmed by a more general
fit, which minimises the total mean squared error for the curves
from Figs. 3 and 4. All curves obtained from this agree with the
measurements within the statistical error (see dashed magenta
lines in Fig. 4a—-d).

Inertial dependence. Strikingly, both the short- and long-time
particle dynamics in our system depend on the delay number T,.
The fundamental reason is the additional orientational correla-
tion in Eq. (3), which is delayed by the rotational friction rate 7.
The exponent in this expression represents the MSD of ¢, which
is dominated by order + at short times and order ¢ at long times.
Consequently, neglecting external torque, this function follows a
Gaussian decay at short times and an exponential decay at long
times. The significance of the inertial delay is quantified by D,.
For small Dy, the correlation approaches the overdamped result
and for large D, the correlation time is significantly delayed by ..
To confirm this prediction, we compare the measured correlation
functions and the solutions of Eq. (3). The results are consistent,
as shown in Fig. 5a.

The numerical and analytical dependence of the ballistic and
diffusive regimes on the mom ent of inertia are displayed in
Fig. 5b, ¢, which show that Rﬁg and Dy increase with J. The
effects of finite ] can be simpS:'d monstrated mathematically by
expanding Eqgs. (5) and (8) in the limit ] — 0, e, As [ vanishes, we
find that

. .2 ¢ 2
Lim((R(t) — R,)*) = (2D=+ V2 ———)¢’, 11
lm(R(O - R)") = (2D + Vi ) (D)
which agrees with the results reported in ref. **. For infinitely
large ] we obtain

: 2 _ g 2,2
Jim (RO ~Rf) = (0 +V)E (2)
which simply corresponds to the sum of the thermal and injected
kinetic energies. For the long-time diffusion constant the
asymptotic behaviour for small moments of inertia is

vz oy
L7400, (13)

Dy=D
L =P, T,

which intuitively demonstrates, how, the leading order J increases
the persistence time (namely by a linear term proportional to (£,/

22

J)~1). The dependence of D; on D, has no upper bound, and its
asymptotic behaviour is described by

D, =D+ V2 ﬁﬁ+ G(JFI), (14)

The origin of this dependence can be intuitively understood by
considering the turn-around manoeuvre of a simple noise-free
active particle. When a torque is applied perpendiculary to the
velocity, the particle will turn around at point P and eventually
approach circular motion. As the moment of inertia quantifies the
resistance of a partide to changing its angular momentum, a
particle with low J will turn faster than one with high J, as shown
in Fig. 5d. This applies only to the transient states, where ¢=0. In
the steady state, the radius r of the final cirde is independent of J.
The angular momentum of an active particle with random
reorientations is constantly changing. Its inertia resists these
changes and modifies the distribution of reorientations directly
opposing the effect of rotational noise.

Discussion

Qur observations demonstrate the profound influence of inertia
on the long- and short-time dynamics of self-propelled particles.
Considering the relevance of inertia®®, our model is applicable to
various systems, such as levitating®®>® and floating*’ granular
particles and dusty plasmas®!. It is stralﬁhtforward to extend the
model to elongated partides™! 12143742 and it was shown
numerically that collective motion of rod-like partices is well
described by similar equations of motion®”. Qualitatively, in our
system, rod-like particles show an inertial delay as well (see
Supplementary Fig. 2). In a more general framework, diffusion
and friction coefficient could be tensorial and additional non-
linear force terms, such as a self-aligning torque reported in
refs. 2733, might be added to the force balance. Our model pre-
dicts that microswimmers perform a short-time ballistic motion
like passive particles, but in practice, their motion also depends
on their specific propulsion mechanism**** and hydrodynamic
effects*>4®, Generally, the inertial effects will depend on the
corresponding time scales in the system. In numerical experi-
ments, this can be demonstrated by gradually reducing the den-
sity of hypothetical particles, retaining all other parameters as
constants. At very low densities, the MSD exhibits four different
regimes: short-time ballistic, short-time diffusive, active ballistic
and long-time diffusive regime (see Fig. 6).

The long-time diffusion coefficient of passive partices is
independent of inertia and is related to the friction coefficient via
the Stokes—Einstein relation. However, for actively moving par-
tides we find an explicit dependence on the moment of inertia

AUMICATIONS | (2018)5:5156 | DO1: 101038/ 5414 67-018-07556-x | www. nature.com/naturecommunications 5
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(with no explicit dependence on the total mass M). This finding
illustrates the importance of J for macroscopic self-propelled
particles. While mass distribution and shape are generally
important for efficient motion of animals*’~*0 and adaptation to
the environment>*2, our results suggest that ] can be exploited in
novel control strategies for active matter. Biological organisms
cannot rapidly vary their mass, but they can change J by moving
their limbs. For instance, cheetahs use tail motion to stabilise fast
turns®>. While the effect on the long-time diffusivity of vibrobots
is a few percent, our theory predicts that for flying and floating
particles these changes are more dramatic. For similar sized

NATURE CO

particles flying in air (e.g. insects) we can expect that friction is
about two orders of magnitude smaller. Also, biological organ-
isms can vary their moment of inertia dynamically for up to
almost two orders of magnitude, depending on the position and
the axis of rotation™. In this case, from Eg. (8), the long-time
diffusion coefficient changes up to a factor of about three per
order of magnitude in J. By increasing J, animals can then faster
explore a large area. Conversely, by decreasing J, they can more
easily dodge obstades or predators and counteract sensorial®® and
behavioural dday“s. Even under conditions, where animals can-
not control their rotational deflections, such as aerodg;mnuc
turbulence, or during random collisions with neighbours>®,

could stabilise their movements through variations of J.

Methods

Particle fabrication. Four particle types were designed and printed: The generic
particle consists of a cylindrical core (diameter 9 mm, length 4 mm) topped by a
cylindrical cap (diameter 15 mm, length 2 mm). Beneath the cap, seven tilted
cylindrical legs (each of diameter 0.8 mm) were attached in parallel in a regular
heptagon around the core. The legs lift the bottom of the body by 1 mm above the
surface. The typical mass was about m =076 g From the mass and shape of the
particle the moment of inertia was approximated as | = 1.64x10~8 kg m?. To vary
the propulsion velocity of the particles, we printed five types with different leg
inclination angles 0°, 2% 4° 6° and 8°.

The carrier particle was fabricated with the same core as generic, but its cap was
topped with a 1 mm tall, 8.5mm diameter cylinder. The carrier socket held two
galvanised steel washers, each with an outer diameter of 16 mm and a mass of L6 g.
The leg inclination of carrier particles was fixed at 2°, and mass and moment of
inertia were m =407 g J = L46x10~7 kg m?, respectively.

The tug particle was a generic with a fixed leg inclination 0f 2° and thinner core
(diameter 4 mm). This core held ah 1 M5 threaded galvanised steel nut with
ashondnpnalandhenghlof&andS?Smm.mspecuvely The mass and moment
of inertia were m = 1.57 g and J = 254x10~ ¥ kg m?, respectively.

The ring particle had a leg inclination of 4° and a ring-shaped cap with a hole
(diameter 9mm) in the middle. The mass and moment of inertia were m=0.33 g
and J= 1.26x10~¥kg m?, respectively.

All particles were labelled with a simple high contrast image allowing the
detection software to identify the particle’s position and orientation. The particles
were printed from a proprietary methacrylate-based photopolymer (FormLabs
Grey V3, FLGPGRO3) of typical density 1.11(1)kg/L at a precision of 0.05 mm.
They were subsequemly deaned in high purity (>97%) isopropyl alcohol in a still
bath, foll , then hardened by three 10-min bursts under
four 9 WUVA bulbs. Finally, irregularities were manually filed away and the label
sticker was attached.
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Experimental setup. The vibrobots were excited by vertical vibrations generated
by a circular acrylic baseplate (diameter 300 mm, thickness 15 mm) attached to an
electromagnetic shaker (Tira TV 51140) and surrounded by a barrier to confine the
particles. The tilt of the plate was adjusted with an accuracy of 0.01° The vibration
frequency and amplitude was set to f= 80 Hz and A = 66(4) pum, respectively,
guaranteeing stable excitation with peak accelerations of 1.7(1) g (measured by four
LIS3DH accelerometers). To ensure homogeneous excitation, the acceleration
amplitude was measured at different radial and azimuthal positions in steps of 3 cm
and 45° respectively, at constant . The variation of amplitades at a mean
acceleration of 1.7 g is below 5% (see Fig. 7a, b). To ensure that no other factors
significantly affect the isotropy of the system, the average particle velocity was
measured as a function of the radial distance to the centre (Fig. 7c). The resulting
fluctuations are small compared to the mean (standard deviation lies b 18
and 3.6% of the respective mean). Experiments were recorded using a high-speed
camera system (Allied Vision Mako-U130B) operating at up to 152 fps with a
spatial resolution of 102.4 x 1024 pme].& Smgle pamcles were tracked to sub-pixel
accuracy using dard image rec hods. The tracking accuracy was

ined from test ofaparndeng)dlyamdledmlheplaleal
different locations. A bivariate Gaunssian distribution was fitted to the positions,
from which the covariance matrix was obtained. The accuracy 2- Oy is defined
from the maximum of the diagonal entries in this covariance matrices a2, (see
Fig. 8a). For the angular position, the error is directly obtained from the 95.4%
confidence interval, since the distribution is non-normal due to pixel locking effects
(see Fig. 8b). The resulting accuracy is +4.7x10~% m and +0.013 rad. Multiple
single trajectories were recorded for each particle, until 10 min of data were
acquired. Events involving particle-border collisions were discarded.

Analytic results. The rotational behaviour of the particle was obtained by sto-
chastic integration®” of Eq, (2). The angular frequency and angular coordinate we

friction rate J/&, the variance of the angular distribution far exceeds 2, while the
mean cycles between 0 and 2z This behaviour ¢ ges to the stationary state
with a uniform distribution of ¢. At times much longer than the rotational friction
rate J/E, the stationary distribution of the angular velocity reduces to

1 T ~ w)’)_

g, P ( DL,

P(¢) = (20)

The width of this distribution is inversely proportional to the moment of inertia.
From the translational equation of motion ie. Eq. (1), the velocity in the
laboratory frame of reference is obtained as
R(t) = Rye /M +§Vpe‘w"_[;dr’e¢'mn(t’)

21
+/ID et [1 dr N, (1), 2

where the initial velocity is denoted by Ry, The centre-of- mass position of a particle
beginning its motion from the origin is calculated as
RE) = R + R (1 - e-8/%) +fyv, [ arecsem
x [bdteIMu(t") 4 /2D [ dete 5™
x [odr e IME (1),

(22)

The mean square displacement (R?) is obtained in the following integral form:
(R(1)) = R, % (1= etiM )2+zvp (1= ™)
x [odtte &M [0 ap e MR (n(1)) + f V2

obtained as ” _[‘;df’e"""’”_[‘:dr"e""’“"l“_[‘;dr’e‘f’f“ (23)
#(1) = @+ (po — w)e & + ‘/—‘f _;.:;;f ard= ey, (1) x j‘;'dr"J"'EM{n(l”)n(r")}+4Dt
+}—”M(e“’f“ — 1= LM 1)2},
and win)i2
. wh — ] , 8 and 1)+ is defined
) = g, +at +=E:’“I[E""” | l) 3 Jﬁ& ere (n(t))=e (cos{@(1)), sin{g(1))) (n(t)-n(ty)) is by
x [hdre e [E arre e (1), () {n(t,)  n(t,)) = e Pt P exp [%"I
* (e'éﬂ" &l 4 eH) 1 (e_z%' + E_é”}}] (24)
respectively. Here, ¢y and ¢, are initial angle and angular velocity, respectively, and
themmalnmewassellozem As{a(l)andﬂr)a:ebmhhmar combinations of xm[@([, _,2)+_¢n;( ' 5,'4:}]
G iables, the o sponding probability distributions are also Gaussi
St il p e ) ‘The inertial delay carrelation fnction Eq. (10) s given by
il
W) =g +ut+—¢ I(ﬁ""” - l}‘ (17) (R(1) - n(0) ). —(R(0) - n(t) = V, D™ D>+ gtz
and the variance x Re[b“ml (b;mz?(bn =D+ Dy, Dy) =
2D, 11 (et — 1) —e/T Dy (D — D, + Dy, Doe /%)
u(t) :ZD,I+£—I el e (18) =Dy = iD, = Dy, Dye /=)
’ +(Dy = D, = Dy, D))
o e s In the stationary case the Fokker—Planck equation of our model projected into one
P(g,1) = 1 exp(—w——{ﬂr)})z)_ (19) dimension reduces to
= 20(1) £ .
f dgay ( Vicosg— X - D( ) ak)p(x,m - (26)
At times much longer than the reorientation time scale 1/D, and the rotational L
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One can anticipate the linear velocity distribution to be in the following form:

w5

where g and W are functions of D, Dy, 7, T, V;, and w. Analytic approximations for
g and Wareobhmedﬂ“ommmparmglhesemndandhmhmomemsnlhe
solution of the Langevin Methods).

(¥ - Weos9)

7 (27)

see §
7 PF

P. hing. All p are obtained from fitting analytic and
numeric results to the measurements of MSDs, velocity dm.nbm.nons and even-
tually the delay function, which describes a cross-correl

and velocity. The velocity in experiments is defined from the displacement of
successive positions of the particle v(t) = (r(t + At) — r(t))/At, where At is the the
time between two frames. Correspondingly the angular velocity is defined as ¢ = (¢
(t+ Af) — ¢(r))/At. The recording frame rate is 152 Hz, which corresponds to a
minimal Aty = 0.0066 s. When At is small enough, ie. below 7, such that the
ballistic motion of the particle can be captured accurately, the distribution of v and
¢ will approach the stationary state. In our experiment we find 7 is on the order of
0.1s and Ar= Aty is noticeably smaller. However, to ensure that the choice of At
does not significantly alter the parameters, fits with At =2, 3, 4At, were checked
and show no significant difference within the error bars of the parameters. The
distribution and delay functions are provided for Ar=1, 2, 3, 4At, in Supple-
mentary Fig. 1 as reference. Note that for the experimental linear velocity dis-
tribution, Le. the distribution of the comp of the velocity vector, each
trajectory is numerically rotated by a random angle to reduce anisotropy of the
distribution that arises from the initial conditions, where each particle, at start,
points towards the plate centre.

Initial parameters can be obtained from analytic results of the model directly.
The parameters 7, D; and 1, are straightforwardly determined from fitting the
well-known solution to Eq. (2) (Ornstein—Uhlenbeck process). The first moment
of the angnlar velocity distribution gives 7, = wy,. Angular diffusion coefficient and
relaxation time are determined fmmthe fit to the angular MSD.

The d of the i D, t and V, is more
sophisticated. The analytic solution for the initial slope of the Iran.slal.ional MSD is
given by Eq. (5) and an analytic approximation of the linear velocity distribution is
obtained from Eq. (27). The function f{ Dy, D, Dy ) in Eq. (5) starts from zero and
goes asymptotically to 1 as D, grows large, such that it is confined to the interval
[0, 1]. This gives upper and lower bounds for V,, namely

) o 57

the foll

V, €

By comparing the agr b the Iting T and D from both choices
and the measurement Ihmugh taking MSD and absolute velocity distribution into
account, the estimate with the worst agreement gets discarded. The iteration
continues with the accepted estimate for the set of values of the parameters until
Iheresull.ingcurvesagme below the standard error.

The g set of | fit the experimental curves in Fig. 3 with high
accuracy. Note ‘that the de]ay function is not explicitly fited in this scheme, but
used as a cross-check of our | eters. H this can p ially overfit the
parameters, such as for the mg particle (see Fig 4c). We additium]ly implemented
a numerical optimisation routine (Nelder—Mead optimisation®®), which fits the
numerical solution of the model to all experiment curves (MSDs, velocity
distributions and delay function, where velocities are defined such that they match
the experimental time scale Aty), by minimising the weighted sum of the mean
squared errors. For the generic, carrier and ring particle only minor improvements
were found. In the case of the tug particle a significantly better agreement for the
delay fanction can be found by slightly sacrificing the agreement of the other
curves. In particular, r and D are sensitive to small variations. This is in accordance
with our model, whereonlylhepmduclofrandﬂemersmdommatmglems
Nevertheless, the d without and with taking the delay
ﬁmcnonmloamcmmvarymlhewmﬂcasebyahomm (tug particle) in rand D
and much less for all other Both sets of values are shown in
Supplememary Tables 1 and 2 for comparison. In the latter case an error estimate

d from the p that quadruples the mean squared

error.

Code availability. The custom code that supports the findings of this study is
available from the corresponding authors upon reasonable request.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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Supplementary Figure 1. Linear and absolute velocity distributions and delay function. (a-c)
Generic particle, (d-e) carrier particle, (g-i) tug particle and (j-1) ring particle. The timescale At in the
velocity definition is changed in the range 1,2,3,4 Aty. Only small differences are observed in some

curves, which lead only to minor changes in the fit parameters.
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05 1time (51).5 2 25
Supplementary Figure 2. Inertial delay of a rod-like particle. (a) 3D-printed rod-like vibrobot with
aspect ratio three, printed from clear resin. Scale bar represents 10 mm. (b) Sample trajectory showing
delay of velocity direction (black) and orientation angle (red). (c) Delay between velocity direction
angle © (black) and orientation angle ¢ (red) demonstrates that © typically lags behind ¢. (d) Delay

function showing the characteristic shape.
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Supplementary Table 1. Mass, moment of inertia and model parameters obtained from analytic

solutions and fits to measurements in Fig. 3.

Particle M [kg] J[kgm?] V,[ms™ '] 77! [s7!] D [m?s~'] D, [rad® s~ '] 7! [s~'] w, [rads!]
Generic  0.76 x 1073 1.64 x 1078 0.071 9.3 3.56 x 107° 0.91 14.9 0.354
Carrier 4.07 x 1073 1.46 x 107 0.0929 6.85 77x107° 2.7 5.1 0.714

Tug 1.57 x 1073 2.54 x 10~%  0.087 3.0 2.2x107* 059 17.6 —0.614
Ring  0.33x107% 1.26x 107 0.057 5.0 84x 1075 24 5.0 ~0.19

Supplementary Table 2. Model parameters obtained from numerical fits to measurements in
Fig. 3 and Fig. 4. Experimental uncertainty is specified in brackets in iso notation starting

from the last respective digit.

Particle V, [ms™!] 771 [s7!] D [m?s7!] D, [rad® s7'] 77 ![s7'] w, [rads!]
Generic  0.0708(55) 12.45(211)  2.48(105) x 10~°  0.94(10) 15.20(454)  0.346(13)
Carrier  0.0054(76)  6.11(151)  8.20(336) x 10  2.73(35) 517(97)  0.734(28)
Tug 0.0846(72)  6.20(120)  9.74(327) x 105 0.60(7) 16.78(482)  —0.622(23)
Ring  0.0553(33) T7.15(107)  5.90(117) x 105  2.45(13) 498(122)  —0.181(4)

4
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SUPPLEMENTARY METHODS

Analytic approximation of linear velocity distribution

One can obtain the time-dependent probability distribution through the corresponding

Fokker—Planck equation which can be derived from Langevin equations as

0

—513(9%, t) = IxXP(M, 1) + Oy Y P(R, 1) + 040 P(R, 1)
o &y S (&Y s
| pcosqﬁ—mX—D - dx | P(R, 1)

m

2
+0y<7insin¢ 6Y7D<%> ay>P(m,t)

2
+ 0, <§w - %¢3 —- D, (%) aé) P(R, 1), (1)

with R = (X Y ¢ XY qb) The stationary distribution is obtained by setting the r.h.s
of Supplementary Eq. (1) to zero. Since we are interested in the stationary linear velocity
distribution along (for instance) X direction, we integrate the other variables such that the

Fokker Planck equation reduces to

i 3 £ £\’ ~
/d¢aX <mVpcos¢—mX—D<m> 8X>P(X.,¢) —0. (2)

Because the stationary distribution of the angle ¢ is uniform, based on Supplementary
Eq. (2), one can anticipate the linear velocity distribution to be in the following form
kg . 2
. 1 1 (X — W cos qzb)
P (X ) = dp — _ 7 | 3
\/2mq ¢ 2 P 2q 3)

In analogy to [1], via computing the respective second and forth moments and by using

the ansatz of Supplementary Eq. (3),

()0 .

<X4> =3¢° 4 3¢gW?* + 2W4, (4)
it is deduced that under the condition
£ = % <1, (5)
5
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W and ¢ can be evaluated as

Qn4 — Wdev
W =2+ IOTTERE
_ é 7 QI]4 — Wyev
B Dm 72 (6)
where
Qn - VP f(©07 91 792) (7)
and

Waey = DV D) Re | (3D, + Do — D1, Do)

X |:Y(©2 + Do + 191, @0) + @gigl\{(gg + Dy — i@[,@o)

x <1 + 2D5¢90 (4D,) P20

X Y(2D4 + 49D — 21Dy, 433@)} , ()
where f is given by Eq. (7) in the main manuscript.
SUPPLEMENTARY REFERENCES
[1] U. Basu, S. N. Majumdar, A. Rosso, and G. Schehr, Preprint at

<https://arxiv.org/abs/1804.09027> (2018).
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

3.1 Introduction

The non-equilibrium dynamics of the active Brownian particles —also referred
to as microswimmers- is typically described in the overdamped limit, where in-
ertial effects are sufficiently negligible relative to viscous ones [94, 144, 145, 24].
This is a good approximation for micron-sized self-propelled particles swim-
ming in a Newtonian liquid where viscous forces are dominant [115]. However,
for big active Brownian particles when inertial effects becomes larger or in case
of flying in gaseous environment where viscous forces gets smaller, inertial ef-
fects are involved in the dynamics. The relevant model to study such flyers with
non-negligible or even dominant inertial effects is referred to as active Langevin
motion [40].

Examples include a complex plasma consisting of mesoscopic dust particles in
a weakly ionized gas [41, 42, 43, 44, 45], vibration-driven granular particles [47,
48, 49, 50, 37, 52, 53, 54, 55], animals [60, 61, 62] and insects [63, 64, 65, 66],
autorotating seeds and fruits [58, 59], and mini-robots [56, 57]. Most of the
previous work of inertial active Langevin motion [67, 68, 69, 70, 38, 71] has
included inertia in the translational motion by including a finite particle mass m,
but has ignored inertia in the rotational motion; or in other terms, the moment
of inertia J was set to zero. However, in general, this moment of inertia plays a
decisive role as has been shown recently for the example of vibrated granulates
(see chapter 2).

The aim of this paper is twofold: first of all, we collect analytical results for
the dynamical correlations of a single particle governed by active Langevin dy-
namics. In particular we present an analytical expression for the time-resolved
mean-squared-displacement (MSD) of the particle. In doing so, we generalize
the previous expression of Howse et al [94], valid in the overdamped limit where
the particle mass m and the moment of inertia .J are zero, to finite m and J. In
the long-time limit, as shown in chapter 2, the MSD scales linear in time ¢ indi-
cating normal translational diffusion with a long-time self-diffusion coefficient
DL .

Second we generalize the equation to a novel situation where all system param-
eters, namely the self-propulsion speed v,, the translational and orientational
frictions and noise strengths, and m and J depend explicitly on time. A time-
dependent moment of inertia, J(t), for instance, is motivated by the fact that
the maneuverability of animal motion is provided by changes in the body shape
[96, 97] which implies a change in the moment of inertia at fixed total mass m.
On the contrary, variable-mass systems, whose mass m(t) changes with time,
comprise another class important in transportation technology. Examples in-
clude rockets, which are propelled by continuously losing mass, and robots with
discrete mass variation through picking up or releasing objects [100]. Time-
dependent mass can bring about time-dependent friction coefficients [101]. Fi-
nally, other external stimuli may govern a time-dependence of the other system
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3.2 The basic model of active Langevin motion

parameters. For example, the self-propulsion speed V,,(¢) can be made time-
dependent by external optical fields [135], the noise strength and damping by
governing the solvent viscosity externally [98, 99] etc.

Here we assume a slow variation in time for these parameters and use an adi-
abatic approximation to access the MSD. Again we generalize previous work
for overdamped systems [111] towards finite mass and moment of inertia. In
particular, for a change in the system parameters described by a power law in
time we predict a superdiffusive anomalous diffusion involving an MSD o< t*
which scales as a power law in time with a non-trivial exponent a [102, 103,
104, 105, 106, 107, 109]. The exponent « is determined and we also calculate
non-adiabatic corrections to the adiabatic limit. Finally we further provide an-
alytical results for the dynamical correlations in case the self-propulsion speed
is oscillatory in time. This may mimic and model run-and-tumble motion. In
this case, the MSD exhibits again normal diffusion.

Our results can be tested in various experimental set-ups ranging from macro-
scopic vibrated granular matter, robots or living systems to self-propelled micron-
particles which are flying in a gaseous medium or in a plasma.

This paper is organized as follows: in sec.3.2, we introduce the theoretical model
for active Langevin motion describing a microflyer. We study a microflyer with
time-independent self-propulsion, inertia, damping and fluctuations in sec.3.3:
the results are provided for both the noise-free case and the general situation
with Brownian noise. In sec.3.4, we demonstrate how time-dependent param-
eters change the dynamics of the system: here, we study slow temporal varia-
tions and rapid oscillations. We also present the first order non-adiabatic cor-
rection to the adiabatic approximation. In sec.3.5, we consider a microflyer with
oscillating propulsion speed, while the other parameters are kept constant: re-
sults are provided for both noise-free case and general situation with Brownian
noise. Finally, we conclude in sec.3.6.

3.2 The basic model of active Langevin motion

In our basic model of active Langevin motion in two dimensions, a microflyer
with inertia is characterized by its time-dependent center-of-mass position R(t)
= (X(t), Y(t)) and the orientational unit vector n(t) = (COS o(t), sin gb(t)),
which defines the direction of its internal self-propulsion velocity. The angle
¢(t) describes its time-dependent orientation. While previous work, as ad-
dressed in chapter 2, has considered constant particle mass and moment of
inertia, we generalize the model here towards time-dependent parameters: a
time-dependent particle mass m(t), a time-dependent moment of inertia .J(t)
for the rotation around the z-axis, and a time-dependent self-propulsion veloc-
ity V,,(t). The time -dependence is imposed externally, i.e. m(t), J(t) and V),(t)

35



Chapter 3 Normal and anomalous diffusion in active Langevin motion

are known prescribed functions. In order to give the model as general as possi-
ble we also assume in the same spirit a time-dependent external torque M (t), a
time-dependent translational friction () and a time-dependent rotational fric-
tion coefficient &.(t) and time-dependent noise strengths of the translational
and rotational fluctuations. Then the equations of the translational and the ro-
tational motion are governed by the following coupled Langevin equations for
R(t) and ¢(t), respectively, such that

jt(mu) R(1)) +£(1) R(t) = £V (t)n(t) + £()y/2D(1) u(t),  (3.1)

d

(T (1) +& (1) dt) = M(1) + & (1) 2D: (1) Mu(1). (3.2)

We use the notations %A(t) = A(t) equivalently for the time derivative of the
time-dependent function A(t). Here we assumed that the change in transla-
tional momentum is equal to the total force and the change in angular momen-
tum is equal to the total torque. As far as the translational dynamics is con-
cerned, the force has a frictional component —¢(t)R(t) and a self-propelling
effective force along the particle orientation &(¢)V,(¢)n(t). The latter couples
the orientational and translational degrees of freedom. Furthermore there are

stochastic forces (“noise”) £(t)/2D(t) fs;(t) where the effective translational

diffusion coefficient D(t) > 0 quantifies the noise strength. We describe the
stochastic term fy;(¢) as zero-mean Markovian white noise with variance

<fst (t) ® (t/» = (S(t - t/)]la (3.3)

where (---) indicates a noise average and 1 is the unit matrix. Likewise, the

rotational dynamics involves the frictional torque —&,.()¢(¢) and the imposed
torque M (t) plus the stochastic torque &,.(t),/2D,(t) My (t) where the effec-

tive rotational diffusion coefficient D, () > 0 quantifies the rotational noise
strength and the Markovian Gaussian noise M () has zero-mean and variance

(M (8) M (#)) = 3¢ — 1), (3.4

Obviously for constant parameters m, J, &, &., M, D and D, we recover the
standard modeling of active Langevin motion considered earlier. We shall re-
visit this standard situation again in sec.3.3. In the absence of any inertial ef-
fects, i.e. when m = J = 0, the equations of motion are overdamped and were
already considered previously in Ref. [111].

For an analytical solution of the equations of motion we first consider the ro-
tational part Eq.(3.2) which is uncoupled to the translational ones. Denot-
ing the initial conditions for the orientational angle and angular velocity as
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3.2 The basic model of active Langevin motion

d(t = 0) = ¢y and ¢(t = 0) = ¢y, the solution of Eq. (3.2) is

éwze“Q[mEWWﬁmww+ 2D, (1) M (t) )

+ goe T, (3.5)
and thus
t / / t, " " " " "
() = / dt e ") / dt" e )y (t )(w(t ) + /2D, () My (t ))
0 0
t !
+ o + Po / dt' e Tr®), (3.6)
0

where I';(t) = [Jdt'y () + In (J(£)/J(t = 0)), %(t) = &(t)/J(t) and
w(t) = M(t)/& (t). The temporal behavior of the orientation is characterized
by different rotational time scales. The most basic rotational time-scales include
the rotational damping time v, ' = J/¢,, the persistence time D, ! and the re-
orientation time w~!. Additional time-scales are embedded in the time-scales
corresponding to the variations of time-dependent parameters, for instance, the
restyling time J/ J. In the course of restyling time, the particle restyles its mass
distribution around the axis of rotation through change its shape.

According to Eqs. (3.5) and (3.6), both ¢() and ¢(t) are linear combinations of
Gaussian variables. This implies that the probability distributions of the angu-
lar velocity and orientational angle are Gaussian, uniquely determined by the
corresponding means and variances, such that

| (86— o))
PO@t)::vﬁquu>eXp< ( 201 (1) ) )’ 7

and

~(6(6) — o))
P(o,t :mexp< < ) ) ) (3.8)

Here, the mean of angular velocity and the mean of orientational angle are given
by

/

t , ,
ww»z%f“@+f““/dﬁ”“%@wu
0

), (3.9)

and

!
/7

t t " " "
() = [t ™ [ O et
0

0

t /
+ ¢o + ¢0/ df e, (3.10)
0
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respectively, while the respective variances of the angular velocity and orien-
tational angle are

(o) = (300~ () )

t , ,
= 2¢ 2" (®) / dt' e® 2t D, (t
0

’

), (3.11)

and

patt) = (600 (o(0)) ) = [[at e

/ "

t " t " " 1"
X / dt’ e T >/ dt" 22 (VDL (). (3.12)
0 0
The translational equation of motion yields for the particle velocity

() =0 [t e 50) (e n) + 2DW))

+ Roe t®), (3.13)

where the initial velocity is denoted by R and I'(¢ fo dt' (') +1In ( (t)/m(t =

O)) Hence, the center-of-mass position of a mlcroﬂyer is calculated as

/

t / t ” " ” " " ”
R(t) = / df e T / dt" ") (¢ )(vp(t (") + /2Dt )Lt ))
0 0

t !
+ Ry + R, / dt e Tt (3.14)

0

with Ry = (X, Yy) indicating the initial position. The most basic time-scale
corresponding to the translational motion is the translational damping time
v~! = m/¢. The temporal behavior of time-dependent parameters introduce
additional time-scales to the dynamics, such as m /m, namely the time-scale in
the course of which the inertia varies.

3.3 Time-independent self-propulsion, inertia,

damping, and fluctuations

We now turn to the special case for time-independent parameters summarizing
some results of chapter 2 but also providing some new analytical results. In
doing so, we first consider the noise-free case and then include effects of noise.
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3.3 Time-independent self-propulsion, inertia, damping, and fluctuations

3.3.1 Results for vanishing noise
Here, we take the dynamics of a circle flyer with constant self-propulsion speed

vp at zero temperature, when thermal fluctuations vanish, into consideration.
The noise-free rotational coordinate of the circle flyer is

B(t) = o + wt + w = (e*%t - 1) . (3.15)
Y
This results in the noise-free translational velocity
R(t) = Roe " + 5o [eiwo%—@g(@, 1, 0)} , (3.16)

which leads to the noise-free translational coordinate

R
12@)::Iﬂ)+7?(1——6”)—%:?P{é@“+%wl%«@,lfU}- (3.17)

Here
~ ﬁ/—&-u:} ~
Z(©,a,b) = <i(¢0 - d))) ae " ‘y( — 7 — i@, i(pg — &;)e‘”’“t>
+ (z’(a@o - w)) b

y( — o, i(cgo — cD)) — ay( — i@, i(cgo — d))@‘””)] , (3.18)

—v(—a—m,i@o—@))

X

where
y(a,$):/ t" e tdt, (3.19)
0

is the lower incomplete gamma function [93]. The letters with a tilde above
represent the corresponding parameters now scaled by 7., e.g. D, = D, /7,
and @ = w/7,. The operator P = (Re, Tm)” is defined to extract the real and
the imaginary part of the complex function for x and y coordinate, respectively.

According to the trajectory given by Eq. (3.17), it takes longer for a microflyer
with larger moment of inertia to change its direction of motion and start turn-
ing around in response to the effective torque. To be more specific, the higher
moment of inertia brings about higher resistance towards any change in the
angular velocity. The transient initial revolutions due to the initial transient
resistance eventually relax to the final circular flying path

Roo(t) = yugB| @906 (1, w)| | (3.20)
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

where

_,l’eiwt

C(t,w) = WCEERE

(3.21)

The center of the final circular motion, after the relaxation of the transient initial
regime, is located at

R N
R.=Ry+—+ %P{el(%*%”)f(w, 0,1)], (3.22)
i Vr

while the radius of the final circular flying path is

v [
w 72_+_w2'

(3.23)

The final flying path and its radius do not depend on the moment of inertia. In
contrast, the center of circular motion is an increasing function of the moment
of inertia indicating that during the transient initial regime, the stretched par-
ticle (with larger J) flies away farther than the shrunk one (with smaller .J). In
case of vanishing inertia, i.e. v — o0, the radius of the final flying path, given
by Eq. (3.23), reduces to the radius of the swimming path of a noise-free circle
swimmer, i.e. 7 = vg/w.

3.3.2 Effect of Brownian noise

In case of time-independent self-propulsion, inertia, damping, and fluctuations,
the distributions of the angular velocity and orientational angle, given by Eqgs. (3.7)
and (3.8), become

2

(L)

2Dy, (1—e=27r1)

V27D, (1 — e=20t)

(3.24)

P(¢7 ta ¢0) =

and

2
_ (¢—¢0—wt—“’;¢0 (e'Yrt_l))
exp ( ) )
1 4D, t+22r <evrt_1_(5_'y’";1)>
] Ir
P<¢7 ta ¢07 ¢0) == 7 (325)

N 4D,ﬂt+4fr(6%t 1 (6“;—1)2)

respectively. In the course of time, the distributions spread over their corre-
sponding domains; while the distribution of the angular velocity reaches its
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3.3 Time-independent self-propulsion, inertia, damping, and fluctuations

steady-state around the circling frequency with width \/2D,, for times much
larger than the rotational damping time, such that

L] —(¢ —w)’
P(¢) = WGXP (M)> (3.26)

the distribution of the orientational angle keeps becoming wider as time pass-
ing.

In the presence of thermal fluctuations, the rotational mean-square displace-
ment is described via

<<¢(t) — ¢0)2> =2D,t + 23" (e—%t — 1) + Wt (3.27)

Accordingly, at very early times when ¢ < 7, ! and for very late times ¢ >
7.1, the circle flyer undergoes a ballistic rotational expansion with circling fre-
quency w. The effects of initial configurations are averaged out by considering
a steady-state initial condition, i.e., the system reaches the steady-state before
the measurement begins. That is to say, averaging over all possible initial con-
figurations results in a steady-state average, for instance,

0 P6w) o = Jim (9(0)) =, (5.28)
[ 0 PG 68 = Jim (67(0)) = Dy + . (3.29)

Here P(¢y) is the steady-state distribution of the angular velocity given by
Eq. (3.26).

The angular velocity correlation function

(D()p(0))r = w? + Dyype (3.30)

indicates that the different times’ rotational frequencies always remain corre-
lated through the mediation of the circling frequency. Here ( - - - )1 denotes time
average, which according to the ergodic hypothesis [86, 87], is equivalent to the
steady-state average. Specifically,

(6(t)6(0))r = lim (6(t1)é(t)), (3:31)

téﬁoo
when the time difference is finite and equal to ¢; — ¢, = ¢. While noise average
contains the information of the initial configuration, this information is lost

through time average.

The exponentially decaying term of the angular velocity correlation function
(see Eq.(3.30)) mimics the correlations of a colored noise; that is to say, the
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

angular velocity imposes an exponentially correlated Gaussian colored noise
on the orientational angle [90, 91]. According to the orientational correlation

(n(t) - n(0)), = cos(wt) e Prl=r (=770 (3.32)
rotational thermal fluctuations cause the orientation to decorrelate on time

scales longer than the persistence time. Colored noise induces the additional
correlation on time scales shorter than the persistence time.

The correlations in the translational velocity as introduced by
. . 2
(B(t) - R(O0)r = 2D7e " + D3e " Re [%(W, t)}, (3.33)
are damped exponentially at the translational damping rate . Here the function

Y (w,t) = ePr D Pr=i@+) | 2y (D, — i + 74, Dye )

— D¥vy(D, —i& — 7, D,e” ") + D¥y(D, — i& — 7, D,)

captures the impact of the additional correlation due to the rotational correla-
tions. This additional correlation is imposed by the rotational damping rate -,
on short time scales.

The mean-square displacement can be obtained through the velocity correlation
function [92], which results in

t -t
(R(t) — Ry)®) = 202 Re |~ 2(w) + —— A(w, 1) + F(w, 1)
Vr 297,
e’ —1
+4D(t + #) : (3.35)
with
9 (w) = e” Dy P~y (D, — i, D,) (3.36)

Aw,t) = eDT[DT_(DT_“’) DIy(D, —i& —#,D,) + D;7e*"

X Y(D, — i@ + 4, Dpe™ ) + D77 (1 — 2e7)y(D, — i + 7, D,.)

— D}y(D, —i&s — 4, D,e )| (3.37)
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3.3 Time-independent self-propulsion, inertia, damping, and fluctuations

and
ar eDT 0. QO 9 )
F(w.t) = F(Q,0,Q9+ 1,94 1;-D,
(1) (D, —iw)? LR LA !
+e P B (Q, 00+ 1,0+ ;=D )| (3:38)

where in the latter function, 2/ represents the generalized hypergeometric
function [146] and €2 = D, — .

In the short-time limit, the circle flyer undergoes ballistic motion such that

(R(t) — Ro)*) = (R(0) - R(0))r 1, (3.39)

where (R(0) - R(0))7 is the second moment of the velocity obtained through
the velocity correlation function (given by Eq. (3.33)) when ¢ = 0. As moment
of inertia vanishes, the ballistic dynamics approaches

lim((R(t) — Ry)*) = (2D7 + H (w, D,.)>t2, (3.40)

J—0

while as J grows, it goes to

lim ((R(t) — Ry)?) = (207 + A (w, 0)>t2. (3.41)

J—00

The function .# (w, D,) is introduced as

vy (v + D)

JL//(LU,DT) = (”y—l—Dr)Q-i-wQ.

(3.42)

The difference between these two limiting behaviors is that in the latter, the
impact of rotational fluctuations fades away because of large moment of inertia,
i.e. huge resistance towards changing the direction of motion causes the circle
flyer to not be influenced by the fluctuating torque. The fact that the term 2D~
in Eqs (3.40) and (3.41) is thermal energy, implies that the rest terms are the
injected kinetic energy.

The flying dynamics ends up in diffusion for long-time limit with the long-time
diffusion coeflicient

v
27,
The first term in Eq. (3.43) captures the diffusive behavior of a passive particle
when vy = 0. Comparing to microswimmers whose long-time diffusion coef-

ficient is Dy, = D + v D, ' /2 when w = 0 [94], we characterize the effective
persistence time of the circle flyer as

Dy =D+

Re [@(w)] : (3.43)

W) = ;Re [@(w)]. (3.44)
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

The long-term diffusive behavior therefore depends, not explicitly on mass, but
on the mass distribution around the axis of rotation, i.e. on the moment of
inertia.

In case of small moments of inertia, the long-time diffusion coefficient of the
circle flyer asymptotically goes to

v3 3D, )
D; =D+ 57'65((,0) + ? Tes(w) J + O(J7), (3.45)

which grows dominantly proportional to moment of inertia. Here

D,

= — 3.46
D? + w?’ (3.46)

Tes(W)

represents the effective persistence time of a circle swimmer [95].

The asymptotic behavior of the long-time diffusion coeflicient for large mo-
ments of inertia in case of vanishing circling frequency is

Dy =D +v? 8;§ \/7+O<\/71). (3.47)

In case of nonvanishing circling frequency, as moment of inertia grows, the
long-time diffusion coeflicient goes asymptotically to zero. The reason is that
the diffusive circling motion becomes more and more difficult by increasing
more and more the moment of inertia, i.e. the circle flyer may get trapped in
a circular path since due to its huge moment of inertia, it can not leave this
circular cage. This results in suppressing the diffusive dynamics.

The function .# (w, t), provided by Eq. (3.38), captures the oscillating behavior
of the mean-square displacement, which is damped by thermal fluctuations with
damping rate D,.. The transient middle time behavior of the mean-square dis-
placement also decays due to the translational friction force. Rotational friction
force induces an additional decaying rate to the dynamics, too.

The velocity of the circle flyer —opposed to that of circle swimmer— does not
instantaneously follow the orientation. The retarded response of the velocity to
the variations of the orientation can be quantified via the average difference be-
tween the projection of the velocity on the initial orientation and the projection
of the orientation on the initial velocity, i.e.,

= e " Re [c(w, t)} : (3.48)
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3.3 Time-independent self-propulsion, inertia, damping, and fluctuations

with

c(w,t) = eDT[);(DT_i‘DM) D¥vy(D, — i — 4, D,)

+Y(D; — i +7.D,) = y(Dy — i+, D)

— D¥y(D, — i@ — 7, f)Te_%t)] . (3.49)

Since the nonvanishing identity of the dimensionless correlation C'(R(t), n(0))
stems from the inertial effects, we call it “inertial delay”.

As afunction of time, C'(R(t), n(0)) starts from zero at t = 0 and re-approaches
zero for times much larger than the damping times. Before decaying, the iner-
tial delay reaches its maximum value, when the velocity direction pursues the
orientation with a pronounced delay. Fluctuating torque accelerates the decay
rate such that in case of small random torque, the velocity and the orientation
remain correlated for a longer time. Circling motion can cause the inertial de-
lay to oscillate between positive and negative values while decaying, until the
oscillations damped to zero. During the moments with negative inertial delay,
the orientation, due to circling, gets lag behind the velocity direction.

The asymptotic behavior of the inertial delay for small moments of inertia is

C(R(t),n(t)) = 2.4 (w)y(1 + ?J) + O(J?), (3.50)

which intuitively demonstrates, how, the leading order .J increases the inertial
delay. Here, the function 7 (w) is described as

o (w) = [Dr(v2 — Dr? — w?)(cos(wt)e Pt — )

+ w(72 + Dr? + wQ) sin(wt)e_D“t}

-1

< [((v+ D)2 +w?)((v = Do)* + wQ)} . (3.51)

As the moment of inertia grows such that it goes to infinity, the inertial delay
approaches

lim C(R(H), n(t) = —“ sin(wt), (3.52)

J—00 a v2 4 w?

which is independent of D,. Specifically, large moments of inertia put the im-
pact of the rotational noise in the shade; hence no decoherence arises in corre-
lations.
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

3.4 Time-dependent self-propulsion, inertia,
damping, and fluctuations

Here we study the influence of temporal behavior of different parameters on
the dynamics of the circle flyer. To do so, we focus on two different cases:
First, slowly varying parameters with respect to time; second, rapidly oscillat-
ing parameters. We also present the first order non-adiabatic correction to the
adiabatic approximation.

3.4.1 Adiabatic approximation for slow variations

When the parameters involved in the dynamics change gradually in time, the
system can be analyzed through adiabatic approximation. Specifically, the mi-
croflyer can adapt such rapidly to the slow variations that dynamically it has the
same experience as that when the concerning parameters are time-independent;
hence we use the results of the previous section, i.e. sec.3.3, to investigate the
behavior of a microflyer with temporally varying parameters within adiabatic
approximation. Here the variations are considered to be slow if the temporal
changes happen on a time-scale much larger than the time-scales of the system.

We investigate the adiabatic dynamics of a microflyer with power-law time de-
pendence in moment of inertia, self-propulsion, rotational friction and diffusion
coefficients, namely

‘](t) - jOta7 ‘/;D(t) = /UOtBJ 57"(25) - 57’0 té Dr(t> - DTO ta ) (353)

and vanishing circling frequency. In practice, a gradually varying dynamics
is obtainable from power-law varying parameters through a two-fold process;
first, the time ¢ is scaled with a large factor ¢y, while ¢ < t,. Second, the mea-
surements are set to initiate at £ = ¢,. Then, for instance, the power-law time
dependence t transforms to (1 + ¢/t¢)®. In order to have a gradually varying
temporal behavior, the larger the absolute value of the law’s exponent, i.e. |«
is, the larger the scaling factor ¢, requires.

>

In case of large moments of inertia, which happens for large Jy, the long-time
mean-square displacement is proportional to

(R(t) — R0)2> N Ug Jo t1+25+(a7675)/27 (3.54)
Do &ro

which is obtained by Eq.(3.47) within adiabatic approximation and gives rise
manifestly to anomalous diffusion. If

26+ (a—0—¢€)/2>0, (3.55)
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3.4 Time-dependent self-propulsion, inertia, damping, and fluctuations

superdiffusive behavior emerges in long-time dynamics. The microflyer can not
undertake subdiffusion in long-time limit since even for —1 < 23 + (o — § —
£)/2 < 0, the subdiffusive behavior of Eq. (3.54) is suppressed by the first term
in Eq. (3.47) and a normal diffusive behavior arises, which is equivalent to the
passive diffusion with ((R(t) — Ry)?) = 4Dt.

When j, reduces to be small enough, through Eq.(3.45) within adiabatic ap-
proximation, we obtain the long-time diffusive behavior to be proportional to

2 U(Q) 142 U(Q)jO 142 5
(R(t) — Ry)?) ~ =2 ¢1T20e 4 00yl+20ta=0 (3.56)
DTO 57’0
When
20 —¢e>0, (3.57)
or
204+ a—0>0, (3.58)

the microflyer performs superdiffusive motion in long-time limit. when the
moment of inertia vanishes, i.e. in the limit j, — 0, the mean-square dis-
placement agrees with the results of a microswimmer with power-law time-
dependent self-propulsion as reported in Ref[111]. In case of —1 < 25 —¢ < 0
and —1 < 20 + a — 6 < 0, the subdiffusion, which appears in Eq. (3.56), is
overwhelmed by normal diffusion, that stems from random forces.

Temporally varying mass or translational friction coefficient can not alter the
long-time dynamics of the circle flyer; however, the short-time dynamics gets
affected by variations in mass or £ (see Egs. (3.40) and (3.41)). In case of vanish-
ing noise, which is relevant to the macro variable-mass systems such as rockets,
taking into account a time-dependent mass can also change the dynamics sig-
nificantly (see Eqgs. (3.16) and (3.17)).

3.4.2 Non-adiabatic correction to the adiabatic
approximation

We are interested in the first order non-adiabatic correction to the adiabatic
approximation of the temporally-varying parameters. To do so, we use Tay-
lor expansion and keep the linear terms up to the first time derivative of the
parameters; for instance,

() ~ 4t (3.59)

 t?
et drir(™) et (1 & 7,,5), (3.60)
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

where 7. denotes the first derivative of +,.(t). For reason of simplicity, we just
present here the corrections to long-time dynamics regarding slow variations
in ¢ and D,. Within adiabatic approximation, the dominant first order non-
adiabatic correction to the adiabatic approximation of the long-term diffusive
behavior is characterized as

(R(t) — Ry)*) (v, D;) = Re {QFQ(Q, ALO+1,0+1; -D,)

D,'y, V! 1 Dr —iw + 7,

_ I /p,—r T

. ( D2 D,,> D, — i)
Dr/ 2

where 5 F, denotes the generalized hypergeometric function and Q = D, — i.
Therefore, the first order non-adiabatic correction induces a ballistic phase to
the long-time dynamics of the circle flyer. Here we use the notation ((R(t) —
Ry)?) (7', D.) to emphasize non-adiabatic correction; whereas the full mean-
square displacement is obtained within adiabatic approximation through the
summation of Egs. (3.35) and (3.61) and replacing constant v, and D, with the
time-dependent ones.

3.4.3 Fast variations

Rapidly varying parameters prevent the system from adapting instantaneously
to the changes. Therefore, the dynamics can be approximated by the response
of the system to the mean variations of the corresponding time-dependent pa-
rameter over a time-window; which should be sufficiently long for the system
to perceive the variations and be able to respond to them. Here the variations
are fast if the rate of change is much faster than the damping rates.

When the mean variations yield a constant value, the results of sec.3.3 for time-
independent parameters are retrieved as a rough estimate for the behavior of
the system. For instance, in case of a rapidly oscillating moment of inertia

J(t) = jo(1+sin(;t)) (3.62)

with large frequency v; — oo, the system can respond to just the average of
these fast oscillations over one period, i.e.

o2/
J(t) = jo +j02yj/ dt sin(v;t) = jo . (3.63)
T Jo

When w = 0, in the limit j, — oo and by using Eq. (3.63), the long-time mean-
square displacement yields

Ty (3.64)

((R(t) — Ry)?) ~ 4Dt + 20 2D !
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3.5 Oscillating self-propulsion speed

which is equivalent to the long-time dynamics of a microflyer with large time-
independent moment of inertia given by Eq. (3.47). For a sufficiently small mo-
ment of inertia, the long-time diffusive behavior becomes

(R(t) — Ry)?) ~ 4Dt+2”—gt+2vgj°t (3.65)
0 Dr gr 9 .

which resembles the long-time diffusion of a microflyer whose moment of in-
ertia is sufficiently small (see Eq. (3.45)).

3.5 Oscillating self-propulsion speed

Here the dynamics of a circle flyer with oscillating propulsion speed is inves-
tigated, while inertia, damping, fluctuations, and circling frequency are time-
independent. The self-propulsion speed is modeled by

Vo(t) = v (1 + xsin(vt + 90)> , (3.66)

with the propulsion oscillation frequency v. Here vy and 6, are the amplitude
and initial phase of the oscillation, respectively, with x < 1. We start the dis-
cussion with noise-free situation. Then, we take the effect of Brownian noise
into account. Subsequently, we just focus on the translational dynamics since
the oscillatory behavior of the self-propulsion does not affect the rotational dy-
namics; namely the rotational dynamics is the same as that in sec.3.3.

3.5.1 Results for vanishing noise
As thermal fluctuations vanish, the noise-free translational velocity becomes
R(t) = Fu,P [ei<¢0+$0—@> (,%(a), ~1,0) — %ewoz(@ +7,—1,0)
+ %e—wog(@ — 7,1, 0))] + Rye ", (3.67)

which results in the noise-free translational coordinate

R(t) = %J@[e“%%@ (g(w, 1,1) - %ei"og(@ +i,1,1)
Tr
+ile L@ -p,1,1))] + Ro+ ?(1 — ). (3.68)

Here £ (&, a, b) is provided by Eq.(3.18). The subsequent results are for the
situation when the ratio of the frequencies w and v is rational and w # 0.
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After some transient revolutions, circle flyer arrives in a periodic trajectory with
period T = 27 LCM(w ™!, (w + ) ™!, |w + v|7!). Here LCM denotes the lowest
common multiple. In special case w = v, the period of the trajectory is simply
T =27/w.

Equation (3.68) demonstrates that compared to the shrunk circle flyer with smaller
J, when the circle flyer is stretched, i.e. in case of larger moment of inertia, the
transient initial regime takes longer and during which the particle flies farther
away through initial transient revolutions. The transient initial regime eventu-
ally relaxes to a periodic motion around the center

Rf;%ﬂﬂ%%ww(Z@ﬂﬂy4gﬁﬂﬂ&+%QU
Vr
. R
+ ige—woj(@ — 7,0, 1))] + Ry + 70 (3.69)
Y

The final periodic flying path is characterized by

R, (t) = fyvo]f‘{ei(‘m*%o‘b) (‘K(t, w) — igewo%(t, w+v)

+ %e*“’%(t, w — u))}, (3.70)

where the function ¢ is defined in Eq. (3.21). The final flying path after relax-
ation of the initial regime is due to an interplay between circling and propulsion
frequencies and independent of the moment of inertia. The center of the peri-
odic flying path, on the other hand, is an increasing function of the moment of
inertia which illustrates that through transient initial revolutions, the stretched
particle flies away farther than the shrunk one.

3.5.2 Effect of Brownian noise

In the presence of thermal fluctuations, the translational velocity correlation
function is described by

2 2
(R(t) - R(0))y = 2D~e " + Q;—O’ye’”t Re {7/(% t) + XZ”//(UJ + v, t)
2

+ﬁ%w—%ﬂ, (3.71)
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where the function 7 is given by Eq.(3.34). This yields the mean-square dis-
placement [92]

2 2

2
(R() — Ry)?) = 23015Re {@(w) + X 9w+ + 29w y)]
2 2 2

Yot [ X XA (w— }

+ 7%e Re [A(w, t) + 1 Alw+rv,t)+ 1 Alw — v, t)
X’ X’
+ 2v2 Re [ﬁ(w,t) + Zﬁz(w—i-u,t) + Zﬁ(w — u,t)]
et —1
+4D(t + ) (3.72)
gl

where functions 2, A, and .# are provided by Egs. (3.36), (3.37), and (3.38),
respectively.

In the short-time limit, the circle flyer undergoes ballistic motion such that
(R(t) — Ro)*) = (R(0) - R(0))r 1" (3.73)

As moment of inertia vanishes, the ballistic dynamics approaches

lim (R(t) — Ro)?) = <2D7 4 H (w,D,) + ’f%(w +u,D,)

J—0

22
+ Z%(w — v, DT)>t2, (3.74)

while as J grows, it goes to

2

lim ((R(t) — Ro)?) — <2D7 A (,0)+ X w0+ 2,0)

J—00
2

X
+ Z%/(w — v, 0))t2. (3.75)

The function K is introduced in Eq. (3.42). The difference between these two
limiting behaviors stems from the fact that a large moment of inertia eliminates
the impact of rotational fluctuations. In Eqs(3.74) and (3.75), the term 2D~y
associates to the thermal energy and the rest is the contribution of the injected
kinetic energy:.

The long-time diffusion coefficient

2
Dy, =D+ %’T(w, v), (3.76)

is characterized in terms of the effective persistence time of a circle flyer with
oscillating propulsion speed

T(w,v) =7(w) + fT(w +v)+ ZQT(w —v). (3.77)
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Here the function 7 represents the effective persistence time of a circle flyer
with time-independent propulsion speed as shown by Eq.(3.44). The inertial
effects affect the long-term diffusive behavior through the moment of inertia.

In case of small moments of inertia, the long-time diffusion coeflicient of the
circle flyer asymptotically approaches

v3 2D, )
Dp=D+3 cs(w,y)+?’rcs(w,u)J+O(J ), (3.78)
which is dominantly proportional to the moment of inertia. Here
X X
Tes(w, V) = Tes(w) + ZTCS(W +v)+ ZTCS(w —v), (3.79)

represents the effective persistence time of a circle swimmer with oscillating
propulsion speed [111, 112]. The function 7., as defined in Eq.(3.46), indi-
cates the effective persistence time of a circle swimmer with time-independent
propulsion speed.

As moment of inertia grows, the long-time diffusion coefficient goes asymp-
totically to zero. This stems from the fact that diffusive circling becomes more
difficult by increasing the moment of inertia due to getting trapped in circular
cages of the trajectory.

However, the long-time diffusion coeflicient of a circle flyer with oscillating
propulsion speed asymptotically grows proportional to v/J when w = v. This
stems from the fact that in this resonance situation, the particle flies with opti-
mum speed along a preferred direction, here x-direction; circling becomes sup-
pressed and diffusion gets enhanced. The term 7(w — v) in Eq.(3.76) captures
the resonance situation while the terms proportional to w and w + v vanish as
J grows. As soon as v drives out of resonance, circling motion dominates and
long-time diffusion fades away by increasing the moment of inertia.

The oscillatory nature of the self-propulsion does not change the inertial delay,
namely the inertial delay is the same as that for a circle flyer with constant
propulsion speed. The reason is that the oscillations cancel out each other over
the course of each propulsion period, hence only the term corresponding to the
constant propulsion, i.e. vy, contributes in the inertial delay.

3.6 Conclusion

We have investigated the dynamics of a single circling inertia-dominated Brow-
nian particle, which is named circle flyer, by including time-dependence with
regard to inertia, self-propulsion, damping and fluctuations. A time delay be-
tween the orientation variations and the subsequent changes in the velocity
direction depicts the profound influence of inertia on dynamics.
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3.6 Conclusion

In case of a circle flyer with oscillating propulsion speed and constant inertia,
damping, circling frequency and fluctuations, we have found an interesting in-
terplay between circling frequency and propulsion frequency. In the absence of
thermal fluctuations, periodic trajectories are observed after passing a transient
initial regime. The final flying path is independent of the moment of inertia;
however, for larger moments of inertia, it takes more transient revolutions un-
til the regular periodic path is reached. By including thermal noise, we have
specifically provided general results for mean-square displacement and inertial
delay; whereas the inertial delay is not affected by propulsion oscillations.

Moreover, we have studied the dynamics of a microflyer with time-dependent
inertia, damping, self-propulsion and fluctuations. To do so, we have addressed
two limiting cases; slow variations and rapid oscillations. We have highlighted
that a microflyer can undergo anomalous diffusion if temporally varying pa-
rameters are included. The first order non-adiabatic correction to the adiabatic
approximation is also presented, which demonstrates a transition to the ballistic
regime.

This study emphasizes that the diffusion transport process can be adjusted by
taking into account an appropriate time-dependence with regard to the system’s
parameters. For future studies, it is interesting to take a mixture of inertia-
dominated Brownian particles into account and investigate the collective be-
havior of such a system in simple or complex environments.
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Chapter 4 Localization of a microswimmer in a triangular trap

4.1 Introduction

The development of particle trapping techniques which allows controlling the
number density and configuration of micron- and nano-sized objects has pro-
moted some of the most spectacular advancements in fundamental and applied
science throughout the past few decades. In particular at small length scales,
where the particle’s motion is governed by thermal noise, their spatial confine-
ment requires additional effort which has lead to the development of e.g. Paul
and Penning traps or optical and magnetic tweezers [147, 148, 149].

The resemblance of active colloids with living organisms, makes them ver-
satile model systems to study the response of organisms to external stimuli
[150]. However, confinement of these active Brownian agents in an efficient
and experimentally realizable mechanism is still a challenge. So far, only little
attempts have been performed to develop generic mechanisms for localizing
Brownian self-propelled particles, for instance, some studies have presented
near—harmonic trap models for confinement within external potentials via uti-
lizing optical landscapes [121], acoustic tweezers [151], or even gravitation [55],
or using optical gradient [78] to trap such particles.

In this letter, we introduce a trapping mechanism induced by phototaxis for
localizing active colloids. We report one-dimensional confinement of a single
self-propelled particle, which moves on a two-dimensional substrate, by pho-
totactic motion in a triangular trap. This creates a semi one-dimensional active
diffusion, which brings about an improved functionality of microswimmers in
sensing applications, such as telemetry and monitoring.

4.2 Theory

In our trapping mechanism, the bias in dynamics required generally for a tactic
motion is created by an aligning torque which rotates the orientation towards
intensity extremum, i.e. towards minimum or maximum of intensity for nega-
tive and positive phototaxis, respectively. In fact, the key quantity in confining
process is the aligning rate, which reads as

C / .
w(p,z) = o vp(2) v, () sin . (4.1)
Here, c is a common prefactor, which follows from experiments; c is negative
(positive) for positive (negative) phototaxis case. v,(z) and v, (z) = d”g—g(f) de-

note the propulsion velocity and its gradient, respectively. The magnitude of
the aligning torque is inversely tuned by the particle diameter o.

An active particle phototaxes by a net motion of its center along the gradient of
the light intensity field, i.e. along the x-direction, in a steady triangular motility
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4.2 Theory

profile. For negative phototactic motion, the active particle is trapped by oscil-
lating along a short path around the trap center where the propulsion velocity
is minimum. Whereas in case of positive phototaxis, the confinement is limited
to the regions with the highest propulsion velocities. By attributing an effective
temperature to the self-propulsion speed, we call the former case “cooling trap"
and the latter one “heating trap".

T T TN =] v
(@) “ "cooling " trap ,'
S Y
) Y
A 7] e Y
A 0 Y
N o /
v O 4
. Y
) 4
. 0
A4
. N/ .
y/min . ' . y/mint { ‘
-05 0 05 -05 0 05

x/1, x/1,

v(x) oft
v(x) o/t

"heating " trap

Figure 4.1: Schematic view of (a) cooling trap and (b) heating trap.

We describe the motion of particle’s center-of-mass r(t) = (x(t), y(t)) and

orientation 7t = (cos(w), sin(@)) by coupled overdamped Langevin equations
with Gaussian noise. In detail, the respective translational and rotational mo-
tion are governed by

i (t) = v, (z) A+ V2DE (), (4.2)
and

P (1) = w(p,x) + 2D, & (1) (4.3)
E(t) = (&(t),&(t)) and &, (t) describe zero—mean Markovian white noise,
with the variance

€W @Ew) =01 a9

and

(o (1) &6 (1)) = 0(t — 1), (4.5)

where (-) indicates a noise average, ® denotes the dyadic product, and 1 is the
unit matrix. The translational and rotational diffusion coeflicients are repre-
sented by D and D,., respectively.

For cooling trap (see Fig.4.1 (a)), the steady triangular motility profile is defined
as

QVINVIM o ymin for |g| < 1,/2
vp(x):{ B \Vmax o] < L/

(4.6)
else
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Chapter 4 Localization of a microswimmer in a triangular trap

while in case of heating trap (see Fig.4.1 (b)), it is specified by

VISV ) max for |z| <I,/2
’lJp(SL') = { & ‘/|min | | . / '

(4.7)
else
Here, [, is the characteristic spacing of the motility field spatially varying be-
tween the maximum value V™ and the minimum value V™", In simulation,
the typical Brownian time 7 = ¢2/D and the diameter of the particle o are
considered as time and length scales, respectively.

The noise—free dynamics can be obtained by solving Egs.(4.2) and (4.3) for
vanishing diffusion coefficients. Specifically, when thermal noise vanishes and
Vmin — (), the dynamics of z—coordinate follows from the integral equation

x(t) dx’' |/ max
/ 92 Vmax = 2 t
20 \le — sin® (o) exp[4<5™ (|| — |o])] ly

(4.8)

Here, the particle starts its motion from the trap canter zy with the initial rota-
tional angle (.

Since the swimmer’s motion along z-direction is confined, the mean-square dis-
placement of the x-coordinate reaches a plateau after some time. We introduce
the confinement length as the square root of the mean-square displacement at
the plateau. The confinement length tunes inversely with the motility contrast.

Vmﬂ"f---‘ r---
A 4
s 4
A 4
) 4
. \ ’
= A 4
o s Y
= \ ’
= ‘s 4
A 4
A 4
log trap ) 4
= == frigngular trap § &
0t : ‘
-0.5 0 0.5
x/1,

Figure 4.2: Schematic view of how a triangular trap can be mimicked by a
logarithmic one.

In order to investigate the transition from delocalization to localization, we in-
troduce a negative phototaxis logarithmic trap through a motility profile
Vmax
vp(z) = In (Va2 +1 for x| <1,/2, (4.9)
: In (\/(1.,/2)? +1) ( )
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4.2 Theory

in which V™" is assumed to be zero. In principle, the triangular trap can be
assumed to be mimicked by this logarithmic trap with curved walls and smooth
bottom (see Fig.4.2). The noise-free probability distribution along z-direction
is obtained as follows

1 ¢ ymax
P@):CV |z @+ 1) arn (V72771
o In (4/(1/2)? +1)
_ Cvmax
5 ~1/2
(1 —(®41) " (vera “>) . (4.10)

Based on the leading order analysis, by taking the second moment (x?) into
account, the condition to have a localized particle is

5= cV > 1. (4.11)

20l (1/(,/2) + 1)

For 0 < 1 the particle is delocalized and the transition from localization to
delocalization happens when ¢ = 1.
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ABSTRACT

We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-
dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional
to the imposed light intensity, and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the
active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find
a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the
other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium
system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-
dependent) gravity such that one can define effective “heaviness” of the self-propelled particles. In analogy to shaken granular
matter in gravity, we define a “colloidal Brazil nut effect” if the heavier particles are floating on top of the lighter ones. Using
extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and
explain it based on a generalized Archimedes’ principle within the effective equilibrium model: heavy particles are levitated in
a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform
real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083098

1. INTRODUCTION

The physics of active colloidal matter is a rapidly expand-
ing research area on nonequilibrium phenomena. Typically,
active suspensions are composed of self-propelled particles
on the micron scale, swimming in a fluid at low Reynolds num-
ber.’-> The main focus of research has been both on the indi-
vidual swimming mechanism and on collective effects of many
such microswimmers.® The individual swimming speed of a
single particle, also called particle motility, is typically of the
order of microns per second and can be steered externally by
various means.” 2!

Recently, the behavior of microswimmers has been
explored in externally imposed motility fields where the

swimming speed depends on the spatial coordinate.?? This
not only mimics the chemotactic escape of a living swimming
object from toxins or its attraction by nutrient gradients?*>-27
but is also important to steer the directed motion of swimmers
for specific applications such as targeted drug delivery?® and
nanorobotics.?® Various kinds of motility fields have recently
been considered including constant gradients,**>! stepwise
profiles,*23* and ratchets,***> as well as time-dependent
motility fields.*63° In particular, the tunability of the colloid
motility by light®'449-42 provides the opportunity to impose
almost arbitrary laser-optical motility fields. When the pre-
scribed light intensity is proportional to the local motility, a
particle will get dynamically trapped in the dark spots where
its motility is low.3%33.43

J. Chem. Phys. 150, 114902 (2019); doi: 10.1063/1.5083098
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Here we explore a repulsively interacting binary mix-
ture of small self-propelled spherical colloidal particles doped
with large ones. The binary mixture of self-propelled colloids
is confined to a two-dimensional substrate in a static peri-
odic triangular-like light intensity field. The motility of the
particles is proportional to the imposed light intensity, but
the prefactor depends on the species. In line with previous
experimental findings, the light-activated particles also expe-
rience a torque aligning their motion towards the direction of
the negative intensity gradient, i.e., swimmers exhibit nega-
tive phototaxis.>> This strongly favors the dynamical trapping
effect near motility minima. Using Brownian dynamics com-
puter simulations, we find indeed a demixing of the active
particles mixture, where typically one species of particles is
close to the minimum and the other is centered around in
an outer shell. In the limit of very strong aligning torque, we
demonstrate that an exact mapping of the nonequilibrium sys-
tem onto an equilibrium system is possible. This equilibrium
system involves an effective external potential that is mini-
mal at the intensity minima. The external potential is piece-
wise parabolic around the intensity minima. Therefore, it can
be understood as an external gravitational potential, where
the gravity force depends on the height. Using this analogy,
one can define an effective “heaviness” of the self-propelled
particles. Thereby, there is an important link between motil-
ity fields of active colloids and equilibrium sedimentation of
passive colloids where a lot of theoretical*+“® and exper-
imental knowledge“®>* exists, see Ref. 54 for a review. In
analogy to shaken granular matter in gravity>>-° and to the
sedimentation of colloidal mixtures,®'-7 we define a “col-
loidal Brazil nut effect (BNE)” if the heavier particles are
floating on top of the lighter ones. We identify system param-
eters for the colloidal Brazil nut effect to occur and explain
it based on a generalized Archimedes’ principle®® within the
effective equilibrium model: heavy particles are levitated in a
dense fluid of lighter particles if their effective mass density is
lower than that of the surrounding fluid. As an aside, another
application of the Archimedes’ principle has been recently
applied to the lift of passive particles in an active bath.5?

We also perform real-space tracking experiments on
light-activated colloidal mixtures. The experimental results
agree quantitatively with the simulation predictions.

The paper is organized as follows: in Sec. 1], we introduce
the theoretical model, define the colloidal Brazil nut effect,
and propose a simple depletion bubble picture to predict
the basic physics. Our experiments are described in Sec. III.
Results from both theory and experiment are presented in
Sec. IV. Finally, we conclude in Sec. V.

Il. THEORY
A. Active Brownian particle model

We consider an active Brownian particle model for a mix-
ture of big and small spheres moving in the two-dimensional
xy-plane at temperature T. The particles have a diameter o,
where @ = b, s (for big and small particles) is a species index.
The self-propulsion speed of the particles v,(x) depends on
their position and is periodic in the x-coordinate with a

ARTICLE scitation.org/journalfjcp

characteristic spacing l,, but independent of the y-coordinate.
Having a light motility landscape in mind,*> we assume the
same function for both types of particles except for a differ-
ent prefactor. In detail, we assume a triangular velocity profile
(see Fig. 1), for which in one period

Ve (x) = 2|x|Ve®*/l, for x| < 1p/2, )

where V@ indicates the maximum propulsion velocity of
species @. We consider a large field with several of such
velocity grooves, which accommodates N,, particles of species
a (@ = b, s). The system is considered in a rectangular box
of edge lengths L, and Ly with periodic boundary condi-
tions in both directions. Then the partial system densities can
either be described by areal densities pf,a) = No/(LxLy) or line
densities per wedge p, = pff)lu‘

The direction of the self-propulsion velocity defines an
internal particle orientation degree of freedom which is
described by the angle ¢ between the velocity and the x-axis.
In addition, there is a torque aligning the particle orientation
along the negative gradient of the motility field, which leads to
an angular velocity w,. Note that, in a homogeneous motility
field, where v, (x) is constant, this angular velocity obviously
vanishes. In general, following our modeling in a previous
study,*> the angular velocity wq(¢,x) also depends on the x
coordinate via

walp,X) = —— va(x) V), (x)sin(e), @
Ta
where v/,(x) = % denotes the velocity gradient and c is a
common prefactor. Moreover, it was shown?> that the mag-
nitude of the angular velocity scales with the inverse of the
particle diameter.

The particles interact via a short-ranged repulsive

Weeks-Chandler-Andersen (WCA) pair potential”®

at
(1) Uy Ry +Rg) 1< T2
Uap(1) = v ®)
T > —3
—_— o |
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—
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FIG. 1. Schematic view of the propulsion velocity as a function of x/l, for the two
different particle species as originating from a triangular-like light intensity field.
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where r is the interparticle distance, ul,(r) = 4&[(cap/7)"
—(Tap /1)%] is the Lennard-Jones potential, and the additive
repulsion diameters are a5 = 277/%(c, + 0p) (@, B € {3, b}).
The repulsion strength ¢ is fixed to 100kgT, where kT is the
(effective) thermal energy.

We describe the center-of-mass positions of the particles
with

Fa k() = (Xa k(0 Va k(1) @

and their orientations by the unit vectors

gk = (COS(ga k), SIN(La k), (5)

where ¢, |, are the orientational angles. Here, k € {1, N, } labels
the particles of the same species.

In the active Brownian model, the equations of motion
for the translational and orientational degrees of freedom
are coupled overdamped Langevin equations with stochastic
noise. In detail, the translational motion of the kth particle of
species « is governed by

d N 1 5 kgT
giTok = Va (%)l + ;Fi?tk + 271 Earlt): (6)
Here, the pairwise repulsive interaction force F‘:‘k is obtained
from

. Ng'
Fl=—Vag Z Z Ua g ([Fpi — Tak)- (7)
B=bs i=1

The prime symbol indicates the exclusion of the self-
interaction, i.e., if 8 = @, then i cannot take the value k.

The rotational motion of the kth particle of species « is
governed by

d kgT
a%,k(t) = Wa (Pat Xak) + \(2 va €7, (®)

Eak(t) = (£ ,00), §(y7 (1) and &7 (t) describe zero-mean
Markovian white noise, with the variance

Eakl) @& o) = 6(t=)0aa Ol ©)

and
(€2 082 () = 8(t = V)b 0, (10)

where (.- -) indicates a noise average, ® denotes the dyadic
product, and 1 is the unit matrix. For species «, the transla-
tional and rotational friction coefficients are represented by
ve and v}, respectively. We neglect hydrodynamic interac-
tions between particles.”’

For spherical particles with a hydrodynamic diameter o,
the friction coefficients are given by y, = 37no, and v,
= ano, where 7 is the viscosity of the medium. The respec-
tive short-time translational and rotational diffusion coeffi-
cients D, and D}, are characterized by the corresponding
friction coefficients such that

Do = kgT/ya (1)

ARTICLE scitation.org/journalfjcp

and
DY, =ksT/yg. (12)
Thus, for spherical particles, D, and D}, fulfill

D, /D, =03/3 1)

when in equilibrium (v, = 0).

In our active Brownian model, particles will localize where
the self-propulsion velocity is zero, i.e., around x = nl, with an
integer n. There are two reasons for that: first of all, a vanish-
ing mobility implies a larger resting time. Consequently, even
for ¢ = 0, the probability density of an ideal non-fluctuating
particle will scale as 1/v,(x). Fluctuations will lead to an alge-
braic decay with distance x (when [, — «).7? Second, and much
more importantly here, for ¢ > 0, there is an aligning torque
that rotates the particles back such that they travel back to
the intensity minimum. The second effect yields exponential
localization of an ideal particle in the groove as a function of x
when [, — .

B. Effective equilibrium model

In the experiments, the aligning torque towards the neg-
ative gradient of the velocity field is strong®> relative to the
rotational noise. In this limit, formally achieved by very large
prefactors c in Eq. (2), one can neglect the stochastic term in
Eq. (8). Then, for all particles, the orientation is fixed along the
x-axis such that in one period

7 0<Xak< L
Pai(ar) = {0 e (14)

—lzi <Xqk <0,

since misalignments are quickly oriented back. This implies
that the self-propulsion velocity in the translational Langevin
equation (6) is directed along the x-axis and the resulting term
can be derived as a gradient from a “potential” function. This
means that the equations of motion in this limit can be written

as
d 1 ; kT
— T = — [F(x k) + F‘“‘) +4[2282 t), 15
pr m( O (are) + FI o £ax(t) (15)

where the external force F&(x) is a gradient of a potential
energy Ug(x),

P () = — Uy (08 (1)
The equations of motion (15) describe ordinary Brownian
particles—with translational coordinates only—in equilibrium
and define our effective equilibrium model. In general, in anal-
ogy to the velocity profile of the active mixture defined via
Eq. (1), Ug(x) is periodic in x with periodicity length [, and is
piecewise parabolic, see Fig. 2. In one period, it is given by

X X
U0 = v [ o) = 2vpede [ i)
0 v Jo
= V{?a"%xz for |x| < l,/2. 17
v
In this equilibrium model, particles would clearly accu-
mulate in the minimum of the potential energy, e.g., around
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FIG. 2. Schematic view of the external potential applied to the particles in the
effective equilibrium model as a function of x/1, .

x = 0, in qualitative agreement with the active Brownian
particle model.

C. Definition of the colloidal Brazil nut effect

The Brazil nut effect (BNE) is directly connected to the
space-dependent accumulation around the motility minima in
the steady state. Information about particle distributions is
contained in the inhomogeneous one-particle density profiles
in the resulting steady state. For a system homogeneous in the
y-direction, the corresponding density profiles only depend
on x and are l,-periodic non-negative functions. In analogy to
equilibrium systems,”® we hence define line-density profiles

o= { Yot x,0) 1)
i=1

Here, the brackets (...) denote a steady state average and
become a traditional canonical average in equilibrium (for
Vo(X) = 0, respectively, in the effective equilibrium model).

In order to characterize the Brazil nut effect, we define a
spatial extension (or a width) h,, of the line-density profile in
one groove by considering the normalized second moment

l,/2
/2

1,/2 :
71‘,//2 dx pa(x)

dx 2 p,
X X% Po (X) (19)

For sedimentation, this would correspond to an averaged
sedimentation height of species a.

The effective equilibrium model now helps to define
a “heaviness” of the particle species. The prefactor y,Vy#*
~ 0o V™ in Eq. (17) for the potential energy corresponds to
effective heaviness. Therefore, we define that the big particles
are “heavier” than the small ones if the following condition is
fulfilled:

ARTICLE scitation.org/journalfjcp

a'bV{J"ax > o ViR (20)
while obviously in the opposite case the smaller particles are
heavier than the bigger ones. By definition, a Brazil nut effect
occurs if the heavier particles are on top of the lighter ones,
i.e., if the height of the heavier particles is larger than the height
of the lighter particles. Clearly, there are three possibilities for
that:

1. The bigger particles are heavier than the smaller ones,
ie., o-bVl'U"” > osVI". Then a BNE occurs if h; > hs. We
call this situation BNE(". Conversely, if h, < hs, there is a
state with the reverse effect, which we refer to as reverse
BNE®.

2. The smaller particles are heavier than the bigger ones,
ie., oV > o, Vi, Then a BNE occurs if hs > hy, this
situation is referred to as BNE®. Conversely, if hs < hy,
there is a reverse BNE referred to as reverse BNE®),

3. The special case when hg = h,, is termed no BNE.

In conclusion, we have classified the system within a
scheme of five possible states: BNE(), reverse BNE(), BNE®),
reverse BNE®), and no BNE. Two of these states correspond
to a Brazil nut effect where the heavier particles float on the
lighter ones. We remark that in the sequel, gravity in our
two dimensional system is directed along the x-direction (not
along the conventional y-direction). So, floating on the top
means an outermost layer along the y-direction.

D. Depletion bubble picture

We now provide a minimal theory that describes the
physics driving the colloidal BNE in terms of a generalized
Archimedes’ law. This approach is based on the effective equi-
librium model and was discussed in the context of sediment-
ing colloidal mixtures in Ref. 68. When a big particle excludes
small particles, it creates a bubble or a cavity depleted by small
particles. This “depletion” bubble is attached to the big parti-
cle and effectively provides a buoyant force which lifts the big
particle. For the sake of simplicity, let us assume that the den-
sity field of the small particles around the groove is piecewise
constant, i.e., there is a block of fluid at (areal) density g (see
Fig. 3).

When a big particle is embedded into this active fluid
at a distance x;, from the origin, it will create an encircling
depletion bubble of radius Ry = (o + 075)/2 due to the repul-
sive interactions. This bubble is attached to the big parti-
cles. According to the effective equilibrium model, one can
locally apply Archimedes’ principle such that the big particle

experiences a buoyant lift force F:uoy given by
F"% (xp) = nREpsFE (), (21)
where, from Eq. (16),
Ft(x,) = —2VMax XS e for x| < /2. 22)

[

If the buoyant lift force dominates the inward effective
force [see Eq. (16) again], i.e., if

FoX(xp) < Fp"™ () @3)
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FIG. 3. Schematic picture of the depletion bubble mechanism. Small particles
are considered to be uniformly distributed in a fluid block of constant density ps.
When a big particle delves into this fluid, it will create a depletion bubble of radius
Ry = (0p + o7g)/2. This will result in an equilibrium buoyant force according to
Archimedes’ principle.

is fulfilled, the big particles are expelled from the central area

of the grooves by the small ones. Obviously, the dependence

on x, drops out in Eq. (23) such that the condition can be
rewritten as

Vmax o_h + o

- s

b 20
ymax S RPS( 2 ) 75‘
S

- 24

Combined with our previous classification of the Brazil
nut effect, for a given particle heaviness, this approach makes
explicit predictions about whether the state BNE(!) occurs or
not. However, it requires an input for g, from simulations and
is therefore not fully microscopic. Moreover, this approach
only works in the case that the big particles are much more
diluted than the small ones.

We finish with two remarks: first of all, correlations will
lead to density oscillations in the density profile of the small
particles around the big one as discussed in Ref. 74. Second,
the converse situation BNE®, where a heavy small particle
is floating on a sea of big particles, is also conceivable. This
would result from a strongly non-additive large radius Ry. A
similar depletion bubble picture can be established in this
case by interchanging the species indices b and s which we
shall, however, not consider further in detail. For more details
to the BNE® state, we refer to previous studies on passive
colloids.”475

E. Brownian dynamics simulations

We have solved the equations of motion for the active
Brownian model and the effective equilibrium model by using
Brownian dynamics computer simulations. In detail, N, = 14
big and N; = 2068 small particles were simulated in a peri-
odic square simulation box with size Ly = Ly = 1020, which
contained 3 complete periods of the motility field, at room
temperature. The partial line densities per wedge, p., are thus
given by ps = 6.76 ;! and p, = 0.046 ;. In terms of a typical
Brownian time 7 = o-SZ/DS, the time step At was chosen to be
At = 10-°7. The initial configuration was an ideal gas, and the
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system was equilibrated for an initial time of about 607. Statis-
tics for the density profiles was gathered during an additional
subsequent time window of typically 2007.

In line with the experiments, the maximum velocity of the
small particles was fixed at Vi™®* = 34.50%/7 and the pref-
actor ¢ was chosen to be ¢ = 0.67.3° The simulation results
are obtained for different diameter ratios, where o has been
kept fixed. For each diameter ratio, the maximum velocity
of the big particles was varied from V** = 0.25V{® to
vmax = 3vmax with steps of 0.25V{"@*. Then, for every value
of V;j“ax /V@aX the occurrence of BNE or reverse BNE has been
investigated.

1ll. EXPERIMENTS

We experimentally studied concentrated active colloidal
mixtures with different size ratios. As small active particles,
we used silica spheres of diameter os = 2.7 um half-capped
with a carbon layer of thickness d = 20 nm. We doped the
active suspension with a few large active colloids of diameters
op =13 um, 7.75 pm, and 4.96 pm, respectively, while keep-
ing the diameter of small spheres constant. The partial line
densities per wedge were approximately ps = 2.6 um™" and p,
=0.027 um™" for small and big particles, which are comparable
to the line densities used in the simulation (o5 = 2.5 yum™ and
pp = 0.017 um™?), respectively.

The colloids were suspended in a critical mixture of water
and 2,6-lutidine (lutidine mass fraction 0.286), whose lower
critical point is at T, = 34.1°C. When the solution is kept well
below this value, the capped colloids perform an entire diffu-
sive Brownian motion. Upon laser illumination (at wavelength
A =532 nm), which is only absorbed by the particle’s cap, the
solvent locally demixes, and then persistent particle motion is
achieved with a constant swimming velocity v which linearly
depends on the incident laser intensity.®'? For a given cap
thickness, independent of the size of the active particles, the
same linear dependence v « [ is observed. Since the propulsion
velocity v depends on the absorbed intensity across the par-
ticle’s cap, the speed can be varied by the cap thickness with
the linear dependence v o 1d.76

To vary the propulsion velocity in mixtures of big and
small particles, our experiments were performed with three
different carbon cap thicknesses of the big particles: d = 5 nm,
20 nm, and 30 nm. Under our experimental conditions, the
maximum velocity of the small species was fixed at V"
= lum/s. For the big species, V"™ was varied as follows:
Vi = 0.25um/s, 1 pm/s, and 15 um/s. The experiments
for each combination of big and small particles were repeated
between 5 and 20 times to yield good statistical averages.

Periodic triangle-like light patterns were created by a
laser line focus being scanned across the sample plane with a
frequency of 200 Hz. Synchronization of the scanning motion
with the input voltage of an electro-optical modulator leads to
a quasi-static illumination landscape.*> Particle positions and
orientations were obtained by digital video microscopy with a
frame rate of 13 fps. The particle orientation was determined
directly from the optical contrast due to the carbon cap.””
To be more precise, because of the optical contrast between
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the dark carbon cap and the transparent silica, the angu-
lar coordinate ¢ of the active particle can be obtained from
the vector connecting the particle center and the intensity
centroid of the particle image. The error of this detection is
less than 5% as confirmed by comparison with stuck particles
whose orientation can be precisely varied using a rotational
stage.

IV. RESULTS

Figure 4 summarizes our main findings in the (V;?*/V{"¥,
op/0) parameter space of the motility and size ratio of
the mixture. The results are shown for (a) the experi-
ment, (b) the active mixture model, (c) the effective equi-
librium model, and (d) the depletion bubble picture. For the
considered parameter span, three different states, namely,
reverse BNE®, BNE(®, and reverse BNE(®, were identified
(plus the trivial special case of the no BNE state), see the
legend with the different symbols in Fig. 4(a). Remarkably,
the topology of the state diagram is the same in Figs. 4(a)-
4(d) and there is a quantitative agreement between experi-
ment and theory. As compared to the active mixture model
[shown in Fig. 4(b)], the equilibrium model shows qualita-
tive but not full quantitative agreement. Moreover, the sim-
ple depletion bubble pictures are in line with the equilibrium
model.

As expected, the reverse BNE® state is favored when
Vi /v s small (i.e., small particles are heavier). When
both species are equally heavy, the crossover from the reverse
BNE® to the BNE( state takes place, as expressed by the con-
dition o-bV‘bmX = oV which is shown as the olive green
reference line in Figs. 4(a)-4(d). In the BNE( state, the big
particles are heavier but float on the interface. Increasing
vmax/ymas fyrther leads ultimately to the reverse BNE®, as
the big particles are getting too heavy to be lifted by the
depletion bubble and sink to the motility minima. Hence,
as the motility asymmetry Vi*®/V#® is increased, the state
sequence

reverse BNE® — BNE® — reverse BNE®

is observed. This sequence is reproduced in all of our 4
approaches considered in Figs. 4(a)-4(d).

Let us now comment on the comparison between the
active mixture and the equilibrium model. The widening of
the stability region of the BNE( state in the equilibrium model
can be qualitatively understood in terms of the aligning torque
which is strongest in the equilibrium model. If the aligning
torque is weakened, the demixing is expected to get weaker,
favoring the standard reverse BNE( case relative to the BNE®
state. This is indeed observed when comparing Figs. 4(b)
and 4(c).

The value of Vj®/V® where the threshold for the
crossover from BNE(® to reverse BNE() happens, grows
monotonically with o/0s. This can be explained qualita-
tively within the depletion bubble picture via the generalized
Archimedes’ law. Assuming that the size o5 and the areal den-
sity ps of the small species are fixed, the number of small
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FIG. 4. Occurrence of the Brazil nut effect (BNE) in the parameter space spanned
by the motility ratio V;‘ax /VP3X and the size ratio o-p/o-s of the binary mixture.
Results are shown for (a) experiment, (b) the active mixture model, (c) the effective
equilibrium model, and (d) the depletion bubble picture. The olive green curve
indicates the boundary when FET = Feff. Data are presented for four diameter
ratios: oploms = 1, 1.84, 2.87, and 4.82 at fixed o~s. More detailed results are
shown in Fig. 5 for the three parameter combinations highlighted by the light blue
arrow in (a).

particles excluded by a big one grows by increasing the diam-
eter ratio o, /075, which results in a stronger buoyant lift force.
Based on Eq. (24), the crossover from BNE® to reverse BNE(!)
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FIG. 5. Comparison of experiment and
simulation: (a)—(c) simulation snapshots,
(d)—(f) experimental snapshots, (g)(i)
line-density profiles p. (x) [defined via
Eq. (18)], and (j)—() polarizations P (x)
[introduced in Eq. (26)]. The results
are shown for the reverse BNE? with
Ve = 0.25V@ (first column), the

BNE( state with Vi"®* = V@ (sec-

ond column), and the reverse BNE(")
with V&% = 1.5V (third column).
The size ratio is kept constant at o-p/o-s
=1.84. Since gravity in our 2D system is
along the x-direction, floating on the top
occurs along the y-direction. The inset
of (d) shows the microscope picture of a
single active particle.
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is roughly governed by
i o
Y T 2 2 T
y/max 1P5%s (u'h /o +1 o5’ @)

The right hand side of Eq. (25) is an increasing function in
oy /o (for o /o5 > 1). This implies that the crossover from
BNE® to reverse BNE® occurs at larger Vi***/Va¥ if the diam-~
eter ratio o, /0 is increased. Note that this consideration
does not capture the situations on the left hand side of the
olive green curve in the parameter space, where the big par-
ticles are lighter than the small ones, since the depletion bub-
ble picture does not hold here. Finally, we remark that we
never observe a BNE® state for the parameters considered
here. However, this state is expected to occur in principle in a
strongly non-additive binary mixture.

Simulational and experimental snapshots together with
averaged partial density and polarization profiles are summa-
rized in Fig. 5 for the three states: reverse BNE@), BNE(®, and
reverse BNE() at fixed size asymmetry and increasing motility
asymmetry V"®*/V{ ¥, The associated path of parameters is
marked by a light blue arrow in Fig. 4(a). The snapshots clearly
indicate whether the big particles are floating on the layer
of small particles or are confined to the motility minima and
therefore directly reveal the different states. The partial line-
density profiles p,(x) [defined in Eq. (18)] reveal a remarkable
quantitative agreement between experiment and simulation
in all three states, see Figs. 5(g)-5(i). Most of the deviations
are within the statistical errors, and small systematic devia-
tions may be attributed to polydispersity and hydrodynamic
interactions which are neglected in our model.

Finally, we show polarization profiles in Figs. 5()=5(l).
For a one-component active system under conventional grav-
ity, polarization effects have been studied in theory”®72 and
experiments.®® Likewise, we define the partial polarization
profiles here as

<Zi\ili COS(‘pa,i) 6(36 - x(r,i)>
Palx)
Clearly, the polarization is strongly affected by the aligning
torque. When a particle crosses the motility minimum from
left to right (respectively, right to left), the torque quickly
changes its orientation by 180°. In the ideal case of instan-
taneous orientational flips as embodied in the effective equi-
librium model, the polarization profile would exhibit a sharp
kink-like sign function sgn(x). A finite torque will lead to a
smearing of this sign-function, where at the motility minima
P, (x = 0) = 0 vanishes due to symmetry. If one particle species
floats on top of a fluid of the other species, there is a non-
monotonicity in the polarization, which is well-pronounced
for the big particles in Fig. 5(j) and for the small particles in
Fig. 5(I). This peak in P,(x) roughly corresponds to the outer-
most particle layering and has its physical origin in the fact
that active particles near repulsive walls show a polarization
peak in general.®1®2 Clearly, the stronger the motility, the
sharper the polarization profiles. Again there is a very good
agreement between experiment and simulation, supporting
earlier findings that the used propulsion mechanism employed

Po(x) = (26)
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in our experiments remains largely unaffected by the presence
of other nearby particles.*!76

V. CONCLUSIONS

We have presented a systematic study of demixing (or
segregation) in binary mixtures of active particles moving on
a motility contrast landscape by comparing theory, computer
simulations, and experiments. Our findings are based on the
strong orientational response of the active particles towards
the local minima, which depends on their size and velocity.>>
We have shown that the colloidal Brazil nut effect, well estab-
lished for sedimenting mixtures of passive colloids in the pres-
ence of gravity,°® can also be achieved in mixtures of active
colloids being exposed to an inhomogeneous motility field.
We define a Brazil nut effect as a situation where the par-
ticles of the heavier species are floating on the lighter ones.
Thus, “heaviness” is defined by their coupling to the motility
contrast. Within this viewpoint, we have considered different
parameter combinations for the size and motility asymmetry
and, then, mapped out the BNE occurrence.

We remark that, while active systems consisting of one
particle species have been extensively studied in gravitational
fields®4283.84 (see also Refs. 85 and 86 for other aspects of
gravity), there are no studies on dense active mixtures under
nonuniform motility fields so far. Our theoretical approach
can be flexibly applied to other active mixtures regardless of
the details of the static external field. This is demonstrated
by mapping our active system onto an equilibrium one with a
static effective external potential.

Our qualitative findings can also be exploited for applica-
tions. In particular, different kinds of active particles (see Refs.
87-90 for recent studies) can be separated and sorted. This
is of particular importance since an inhomogeneous motility
field (e.g., an external light gradient) can be better controlled
than gravity. Moreover, in contrast to dynamical separation
phenomena (e.g., in ratchets??), the separation procedure pro-
posed here is static in the steady state such that the upper-
most layer of floating particles can be removed more eas-
ily. Extensions to ternary mixtures are straight-forward and
will be considered in future work, where understanding such
demixing structures is a prerequisite to create novel materials
through active phase separation and self-assembly.
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6 Concluding remarks

Here I briefly summarize the most important features of my research during
my Ph.D. study and I present a short perspective. I have studied the dynam-
ics of active Brownian particles both as a single agent and when in interaction
with other particles, while the translational and rotational motions are con-
fined to a two-dimensional plane. The here-presented studies include active
Brownian particles with non-negligible inertial effects referred to as microfly-
ers, and active Brownian particles with negligible inertial effects referred to as
microswimmers.

I have shown that, opposed to the long-time behavior of passive particles, which
is independent of the moment of inertia and dependent just on friction coeffi-
cient through Stokes-Einstein relation, the long-time dynamics of microflyers
depends explicitly on the moment of inertia. These results provide a route to-
wards novel control strategies in active systems using the moment of inertia as
a variable parameter. For instance, animals can change their moment of iner-
tia —since changing of mass is not usually a rapid process for them- through
restyling their mass distribution around their axis of rotation leading to stabi-
lizing their motion, for example, in fast turns [152]. Due to vanishing inertial
effects, the velocity of microswimmers pursues instantaneously the changes in
their orientation, however, the inertial effects in microflyers result in a time
delay between the orientation variations and the subsequent changes in the
velocity direction, which demonstrates the profound influence of inertia on dy-
namics.

For circle flyers, the transient initial regime of the noise-free dynamics depends
on the moment of inertia in motion; explicitly, the higher the moment of inertia
is, the longer the initial regime takes. This reflects the fact that the moment of
inertia quantifies the resistance to changing the angular momentum. However,
after the relaxation of the initial regime, the final flying path is independent of
the moment of inertia and just dependent on mass.

I have found an interesting interplay between circling frequency and propulsion
frequency in the dynamics of a circle flyer with oscillating propulsion speed. I
have specifically presented general results for mean-square displacement and
inertial delay. I have demonstrated that the inertial delay is not affected by
propulsion oscillations and is the same as that for a circle flyer with time-
independent self-propulsion.
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Chapter 6 Concluding remarks

I have studied the dynamics of a microflyer with time-dependent inertia, damp-
ing, self-propulsion, and fluctuations in two limiting cases; when variations are
slow, and for rapid oscillations. I have highlighted that a microflyer can un-
dergo anomalous diffusion if temporally varying parameters are included. This
study emphasizes that the diffusion transport process can be adjusted by tak-
ing into account an appropriate time-dependence with regard to the system’s
parameters.

For future studies, it is interesting to study the interaction of microflyers with
physical obstacles and boundaries in complex environments. For example, geo-
metric confinements can drastically alter the transport properties of microswim-
mers [153, 154, 155]. Moreover, future studies should focus on mixtures of in-
teracting microflyers and investigate the collective behavior of such systems in
simple or complex environments [156].

Furthermore, we presented a generic scheme to trap microswimmers, without
requiring any body-forces. By specifically exploiting self-propulsion to system-
atically bias the motion towards the trapping center, it serves as an alternative
to conventional trapping schemes involving body-forces competing with self-
propulsion. This leads to exponential localization, even for fast active particles.
This mechanism can hence be used as a tweezer to transfer fast microswim-
mers over a barrier; specifically, self-propulsion helps to overcome the barrier.
This is in contrast to force-based trapping where self-propulsion away from the
trapping center is suppressed by the body-forces used to achieve trapping.

Our trapping mechanism opens a route towards widespread novel applications,
e.g. as a tool to measure unknown coupling coefficients of microswimmers to
external fields, which may help to better understand their mutual interactions.
Such controlled localization may also be useful in situations where directed
motion of autonomous self-propelled objects is required, for example, in appli-
cations where they serve as microshuttles for directed cargo delivery.

Future studies should include a finite concentration of microswimmers in a one-
dimensional periodic landscape of the groove geometry of our trapping mecha-
nism. In such a landscape, repulsive microswimmers will form crystalline one-
dimensional arrays which exhibit novel dynamical modes, even in the absence
of noise. While negatively phototactic microswimmers will basically assemble
in the motility minima, positively phototactic ones exhibit motility-induced os-
cillatory modes which are very different from thermally activated phonons. In
some analogy to crystals of trapped atoms and ions [157, 158, 159], such a chain
of vibrating particles is expected to buckle [160, 161] and synchronize show-
ing topologically protected solitons, novel defect dynamics and active nano-
frictional effects.
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