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Abstract

Active Brownian particles can propel themselves by taking energy from their
environment and converting it into mechanical motion while being subject to
the fluctuating random kicks of the surrounding medium. The dynamics of
such self-propelled particles, hence, exhibits a nonequilibrium Brownian phe-
nomenon. The core functionalities of active Brownian particles include trans-
port, sensing, and manipulation.

For microscopic active Brownian particles swimming in a Newtonian liquid (mi-

croswimmers), viscous forces are dominant and inertial effects are negligible rel-
ative to the viscous effects. One of the most popular descriptions of microswim-
mers is provided by active Brownian motion, wherein the overdamped dynamics
is modeled through Gaussian white noise as solvent kicks and an effective self-
propulsion force. Inertia becomes relevant in the dynamics for micron-sized
active Brownian particles flying in a gaseous medium (microflyers), where vis-
cous friction becomes such small that the inertial effects get dominant. The
dynamics is then coined as active Langevin motion. Here we study the behav-
ior of active Brownian particles moving in a plane both analytically and using
computer simulations. Our studies include both active Langevin motion and its
overdamped counterpart, i.e. active Brownian motion.

We observe a distinct inertial delay between orientation and velocity of mi-
croflyers. The velocity of microflyers –unlike microswimmers– does not in-
stantaneously pursue their orientation. We characterize the inertial delay via
the cross correlations of velocity and orientation and derive the correspond-
ing analytic expression describing inertial delay. Using analytical calculations
we demonstrate that inertia significantly influences the dynamics and enables
novel control strategies in active systems. Our theoretical predictions are con-
firmed by experiments. We also generalize the equations of motion to time-
dependent parameters. Assuming a slow power-law time-dependence for these
parameters, we predict an anomalous diffusion involving long-time dynamics.

we report on the design, experimental realization and characterization of an in-
situ adjustable trapping mechanism for microswimmers which does not require
any body-forces (or associated torques) and is entirely based on self-propulsion.
In particular, this trappingmechanism solely hinges on systematic force-free ro-
tations of active colloids towards the center of the trap. The force-free rotations
originate from a motility gradient. The fact that the trapping mechanism acts
on the orientation of the microswimmers, rather than on their center of mass,
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facilitates controllably transfer of active particles over a potential barrier using
the trap as a tweezer. This force-free trapping mechanism also enables extract-
ing coupling coefficients of microswimmers to external fields that can cause a
better understanding of their mutual interactions.

Furthermore, we study the segregation dynamics in a repulsively interacting bi-
nary mixture of microswimmers with a triangular-like motility field using com-
puter simulations and experiments. We observe segregation of microswimmers
near the intensity minima while one species is localized close to the minimum
(bottom) and the other one is centered around in an outer shell (top). Through
attributing an effective heaviness to microswimmers, we define a colloidal Brazil
nut effect in analogy to shaken granular matter in gravity. The demixing of the
binary mixture exhibits a Brazil nut effect when the particles of the heavier

species are floating on the lighter ones.
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Preface
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tial delay of self-propelled particles, Nature Communications 9, 5156 (2018).
This publication is presented in chapter 2.

II. Soudeh Jahanshahi, Celia Lozano, Borge ten Hagen, Clemens Bechinger, and
Hartmut Löwen, Colloidal Brazil nut effect in microswimmer mixtures induced
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Note: This article is part of the Special Topic “Chemical Physics of Active Mat-
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III. Soudeh Jahanshahi, Celia Lozano, Benno Liebchen, Hartmut Löwen, and
Clemens Bechinger, Realization of a motility-trap for active particles, submitted
to Science Advances.
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IV. Soudeh Jahanshahi, and Hartmut Löwen et al., Normal and anomalous diffu-

sion in active Langevin motion, (in progress).
This research project is presented in chapter 3.
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1 Introduction

Converting energy stored in the environment into systematic movement is the
defining characteristic of activematter systems [1]. Themain characteristic fea-
tures of living entities are likewise caused by a continuous injection of energy
at the microscale [2]; hence, active systems provide a powerful platform to in-
vestigate the natural processes of life [3]. Through transduction of free energy
into mechanical work, active agents drive themselves locally far from thermo-
dynamic equilibrium [4], which makes them a useful framework in studying
non-equilibrium statistical physics [5]. Their application delves though into
various disciplines beyond physics; for instance, ecology for stochastic model-
ing of movement [6, 7], biomedical areas as drug carriers or sensors for biolog-
ical targets[8, 9], robotics to develop systems that exhibit swarm intelligence
[10], traffic flow [11] and environmental science [12].

Self-propelled particles were originally introduced to study the mass-migrating
animal groups [13, 14, 15]. As a special class of self-propelled agents, active
Brownian particles –unlike their passive counterparts whose equilibrium mo-
tion is driven just by thermal fluctuations due to erratic collisions with the sur-
rounding medium [16]– propel themselves by a motility beyond random ther-
mal fluctuations [17, 18]. The main applications of active Brownian particles
–whether biological like bacteria [19, 20] or artificial such as Janus particles
[21, 22, 23]– are centered around their functionalities in transport, sensing, and
manipulation [24].

Here we study the behavior of active Brownian particles both as a single agent
and when in interaction with other particles both analytically and using com-
puter simulations. We assume the active agents to be spherical particles whose
translational and rotational motions are confined to a two-dimensional plane.
The self-propulsion is modeled through a coarse-grained approach by an effec-
tive force and torque fixed in the particle’s body frame [25].

Moving on a surface brings about hydrodynamic couplings between the self-
propelled particles and the substrate [26, 27, 28]. The consequence of these
couplings is that the particle orientation is always almost parallel to the nearby
surface [29, 30]. For dry active matter systems, including vibrated granular par-
ticles on a plate [31, 5, 32], for highly crowded environments when no global
flow is built up [33, 24], and for half-coated Janus colloids with aweakly nonuni-
form surface mobility at typical densities [34, 35], hydrodynamic interactions
can be negligible. In this scientific research, apart from hydrodynamic fric-
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Chapter 1 Introduction

tion, hydrodynamic interactions are disregarded. However, restriction of the
rotational dynamics to two dimensions takes the hydrodynamic effects near a
boundary into account. The validity of this model and our theoretical results
are confirmed by real-space experiments.

1.1 The basic model

We use Langevin equation to investigate the stochastic dynamics of a subset
of the degrees of freedom [36]. For a self-propelled particle confined in two
spatial dimensions, the characteristic degrees of freedom are the center of mass
position r(t) and the rotational angle ϕ. The latter specifies the orientation of

the particle n(t) =
(

cos ϕ(t), sinϕ(t)
)
. Where no physical barriers or other

particles are present, the equations of motion for a single particle with mass m
and moment of inertia J are [37, 38]

mr̈(t) + ξṙ(t) = ξvn(t) + ξ
√

2D fst(t), (1.1)

Jϕ̈(t) + ξrϕ̇(t) = ξrω + ξr

√
2Dr τst(t). (1.2)

The self-propulsion speed v corresponds to an effective force F = ξvn(t),
which acts along the particle orientation n(t). ω is the circling frequency cor-
responding to an effective torque τ = ξrω. In order to restrict the rotational
motion to two dimensions, the effective torque has to be perpendicular to the
plane of motion. Within the picture of effective force and torque, we track the
net motion of the particle and ignore completely the microscopic mechanism
of movement. ξ and ξr denote the translational and rotational friction coeffi-
cients. The latter couples the circling frequency to the effective torque, while
the former associates the propulsion speed to the effective force. The transla-
tional and rotational Brownianmotions are modeled by independent zero-mean
Markovian white noise processes fst(t) and τst(t) with unitary variance, such
that [24]

〈fst(t) ⊗ fst(t′)〉 = δ(t − t′)1, (1.3)

〈τst(t) τst(t′)〉 = δ(t − t′). (1.4)

Here the brackets 〈·〉 indicate noise average and 1 is the unit matrix. Ther-
mal fluctuations are quantified by the short-time translational and rotational
diffusion coefficients D and Dr. For a spherical particle with diameter σ in
bulk situation, the diffusion coefficients fulfill D/Dr = σ2/3. This ratio could
change for particles moving near walls or system boundaries [39, 23].
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1.2 Inertia-dominated active Brownian particles

1.2 Inertia-dominated active Brownian particles

The class of inertia-dominated active Brownian particles includes macroscopic
self-propelled particles with non-negligible inertial effects and micron-sized ac-
tive particles flying in a gaseous medium, where friction becomes such small
that the inertial effects get dominant. The motion is affected by the random
kicks of the surrounding medium. Therefore, the dynamics is coined as active
Langevin motion and these inertia-dominated active Brownian particles are re-
ferred to as microflyers [40].

A particular example is dusty plasma, also called complex plasma, which is com-
posed of mesoscopic dust particles in a weakly ionized gas [41, 42, 43, 44, 45].
Dusty plasmas are ubiquitous in space; for instance, they are found in planetary
rings, cometary tails, interplanetary and interstellar clouds, themesosphere and
thunderclouds [46].

Other examples include vibration-driven granular particles [47, 48, 49, 50, 51,
52, 53, 54, 55], which get propelled through converting vibrational energy of
the vibrating baseplate into directed motion, and mini-robots [56, 57], which
are driven by an internal motor. Further examples are autorotating seeds and
fruits [58, 59], which are equipped with appendages that act as wing and enable
them to fly. Furthermore, the dynamics of animals [60, 61, 62] and insects [63,
64, 65, 66] can be analyzed within active Langevin motion, because of a two-
fold reason: first, they are self-propelled with dominant inertial effects; second,
the impact of environmental noise in their motion can be modeled by Brownian
noise.

Themodel of active Langevinmotion successfully describes active systemswith
nonvanishing inertial effects. However, the theoretical results are usually pro-
vided in the overdamped limit of rotational motion, i.e., case of negligible mo-
ment of inertia [67, 68, 69, 70, 38, 71]. In practice, neglecting the impact of the
moment of inertia in dynamics is solely a good approximation for microfly-
ers with fast rotational relaxation [72]. We have theoretically and experimen-
tally demonstrated in the publication presented in chapter 2 that generically
the dynamics of inertia-dominated Brownian particle is explicitly affected by
the moment of inertia. Then, we have studied, as addressed in chapter 3, how
the dynamics of the microflyer can be changed by taking temporally varying
parameters into account.

1.2.1 Circle flyer with time-independent self-propulsion,

inertia, damping, and fluctuations

When a microflyer undergoes chiral motion through the impact of an effective
torque, we call it circle flyer. The chiral motion may, for instance, arise from
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Chapter 1 Introduction

shape anisotropy [73, 74] or from particle imperfections [75] or from exter-
nal fields [76, 77, 78]. Here we study the dynamics of a circle flyer with time-
independent parameters. The translational and rotationalmotions are restricted
to a two-dimensional plane. This restriction on rotational motion dictates that
the effective torque is perpendicular to the plane of motion. The subsequent
discussions are addressed in the publication presented in chapter 2, where we
have performed real-space experiments and through which we have confirmed
the theoretical predictions.

1.2.1.1 Experiment

Our experimental microflyers are minimalistic robots called vibrobots, which
convert vibrational energy into directed motion using their tilted elastic legs
[50]. Our vibrobots aremade from a proprietarymethacrylate-based photopoly-
mer using a 3D printer at a precision of 0.05 mm. A new microflyer with new
parameter combinations and consequently new dynamics can be created by
varying the leg inclination, mass or moment of inertia of the vibrobot.

A single vibrobot of radius about 10 mm is placed on a circular acrylic baseplate
with diameter of 300 mm and thickness of 15 mm. An electromagnetic shaker
(Tira TV 51140) is attached to and shakes the baseplate. Due to the vibrations of
the baseplate, the vibrobot skips by repeated collisions of its tilted elastic legs
on the vibrating surface. Motion is confined to the two dimensional circular
baseplate by an enclosing barrier [32]. To ensure that the vibrobot does a stable
quasi-two-dimensional motion, the frequency and amplitude of excitations are
fixed to f = 80 Hz and A = 66 µm, respectively.

Brownian motion originates from microscopic surface inhomogeneities and in
case of sufficiently strong driving, also from a bouncing ball instability [79],
that gives rise to asynchronous jumps of the particle’s legs and so to a tiny but
very irregular precession, which in turn leads to random reorientations of the
vibrobot. The propulsion speed depends on the frequency and the amplitude of
the excitations, and on leg inclination. Since the elasticity and friction coeffi-
cients depend on material properties, the propulsion speed depends on material
properties too [50, 79, 80, 81]. Owing to the strong non-equilibrium nature of
the system, the Stokes-Einstein relation does not hold, i.e., the diffusion and
friction coefficients are not related though D = kBT/ξ, where kBT is the ef-
fective thermal energy. [82].

Any object with inertia carries out ballistic motion, even if only on minuscule
time and length scales. For instance, ballistic motion of colloids, whose inertial
effects are overwhelmed by viscous friction, takes place on length scales smaller
than 1Å for approximately 100 ns. The reason is that, ballistic motion happens
when dynamics is dominated by the inertia. Observation of such short ballistic
motion requires high accuracy measurements and has been performed only for
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1.2 Inertia-dominated active Brownian particles

passive colloids [83, 84, 85]. Inertia-dominated active Brownian particles, on
the other hand, perform ballistic motion on larger time scales. For example, the
ballistic regime of our vibrobots lasts between 0.1 s to around 1 s. As a con-
sequence, we observe a clear transition from purely ballistic motion to normal
diffusion in our experiments for mean-square displacement.

1.2.1.2 Theory

The profound influence of inertia on dynamics is portrayed by inertial delay, i.e.
a time delay between the orientation variations and the subsequent changes in
the velocity direction. In case of vanishing inertial effects, velocity direction
pursues the orientation instantaneously, and the inertial delay is zero.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
�0.2

0.0

0.2

0.4

0.6

t �s�

C
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Figure 1.1: Time-dependence of the inertial delay C(ṙ(t), n(t)) for different
circling frequencies (see legend). The other parameters are as follows: γ =
8 s−1, γr = 7 s−1, D = 8 × 10−5 m2 s−1, and Dr = 5 s−1.

The retarded response of the velocity to the orientation variations can be quan-
tified via the correlations between the velocity and the orientation. The inertial
delay is hence defined as the average difference between the projection of the
orientation at time t0 on the velocity at some later time t + t0 and projection of
the velocity at time t0 on the orientation at some later time t + t0, i.e.

C(ṙ(t), n(t)) = 〈ṙ(t) · n(0) − ṙ(0) · n(t)〉T

v
. (1.5)

The inertial delay is made dimensionless by scaling with the propulsion speed.
Here the brackets 〈·〉T indicate time average through which the impact of t0 is
averaged out, more specifically the impact of the initial configuration is aver-
aged out.
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Chapter 1 Introduction

The effects of initial configurations can be canceled out also by an ensemble av-
erage over all possible initial configurations. An ensemble average is generally
associated with a density function. The required density function can be pro-
vided by taking into account a steady-state initial condition, i.e. first, the system
is let to reach the steady-state, then the measurement begins. Consequently,
the average over all possible initial configurations becomes the steady-state av-
erage. For example, the averaged initial angular and translational velocities are

ˆ
dφ̇0 P (φ̇0) φ̇0 = lim

t0→∞〈ϕ̇(t0)〉 = ω , (1.6)
ˆ

dṙ0 P (ṙ0) ṙ0 = lim
t0→∞〈ṙ(t0)〉 = 0 , (1.7)

respectively. HereP (φ̇0) andP (ṙ0) indicate the steady-state distributions of the
respective angular and translational velocities. Specifically, due to the steady-
state initial condition, the average over all possible initial states of a quantity
is evaluated as an ensemble average over that quantity according to its steady-
state distribution.

Based on the ergodic hypothesis [86, 87, 88], the former, time average, is equiv-
alent to the latter, steady-state average,

〈x(t)〉T = lim
t0→∞〈x(t + t0)〉 , (1.8)

where x represents an arbitrary quantity. While noise average contains the in-
formation of the initial configuration, this information is lost in time average. In
other words, a system that evolves for a long time (like in steady-state), forgets
its initial state.

Different time-scales which characterize the motion of the circle flyer are as
follows: the translational and rotational damping times γ−1 = m/ξ and γ−1

r =
J/ξr, the persistence time D−1

r , the translational and rotational crossover times
2D/v2 and 2Dr/ω2, and the reorientation time ω−1.

As visualized in Fig.1.1, the inertial delay starts from zero at time equal to zero
and grows until reaches its maximum. Then it decays and re-approaches zero
for times much larger than the damping times. In case of nonvanishing circling
frequency, the inertial delaymay undergo damped oscillations between positive
and negative values during the decaying stage (see Fig.1.1). Moments with neg-
ative inertial delay stem from the fact that the orientation may get lag behind
the velocity direction because of rapid circling. Thermal fluctuations accelerate
the decay rate such that in case of smaller random noise, the velocity and the
orientation remain correlated for a longer time.

In case of vanishing random noise, the circle flyer performs circular motion
after some transient initial revolutions. The transient initial regime is attributed
to the inertial effects, i.e. the higher the moment of inertia, the more difficult
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1.2 Inertia-dominated active Brownian particles

the change in the angular velocity. Because of this higher resistance towards
any change in the angular velocity, it takes longer for a circle flyer with larger
moment of inertia to arrive its final circular flying path. The radius of the final
circular flying path

r = v

ω

√
γ2

γ2 + ω2 , (1.9)

does not depend on the moment of inertia, however, the center of the circular
flying path is an increasing function of the moment of inertia. This demon-
strates that during the transient initial regime, the stretched particle with higher
moment of inertia flies away farther than the shrunk one with smaller moment
of inertia. When inertia vanishes, the radius of the final flying path reduces to
the one for a noise-free overdamped circle flyer, referred to as circle swimmer,
namely if γ → ∞, Eq. (1.9) approaches the radius of the swimming path of a
noise-free circle swimmer, i.e. r = v0/ω [89].

In the presence of thermal noise, the distribution of the angular velocity for
times much larger than the rotational damping time reaches its stationary state
around the circling frequency with width

√
2Drγr, while the distribution of

the rotational angle keeps spreading over the angle domain as time passes. The
correlation function of the angular velocity mimics the correlations of a colored
noise. Therefore, due to the angular velocity, the dynamics of the rotational an-
gle is subject to an exponentially correlated Gaussian colored noise [90, 91]. The
time-scale of the correlations in the orientation is the persistence time which
reflects the fact that the fluctuating torque decorrelates the orientation. The
additional short-time correlations in the orientation is due to the colored noise
imposed by the angular velocity.

The translational velocity correlation function results in the mean-square dis-
placement through [92]

〈(r(t) − r0)2〉 = 2
ˆ t

0
ds (t − s)〈ṙ(s) · ṙ(0)〉T . (1.10)

In the short-time limit, the dynamics of the circle flyer is still in the ballistic
regime such that

〈(r(t) − r0)2〉 = 〈ṙ2〉 t2 , (1.11)

while the second moment of the translational velocity 〈ṙ2〉 = 〈ṙ(0) · ṙ(0)〉T is
comprised of the thermal energy and the injected kinetic energy. In the long-
time limit, the circle flyer undergoes diffusivemotion, i.e. 〈(r(t)−r0)2〉 = 4DLt
with long-time diffusion coefficient

DL = D + v2

2γr

Re
[
eDr/γr(Dr

γr

)−( Dr−iω
γr

)γ

(
Dr − iω

γr

,
Dr

γr

)]
. (1.12)
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Chapter 1 Introduction

Here

γ(a, x) =
ˆ x

0
ta−1e−tdt , (1.13)

is the lower incomplete gamma function [93]. The first term in Eq. (1.12) is
related to the equilibrium diffusive behavior of a passive particle when v = 0.
In the limit of vanishing inertia, the long-time diffusion coefficient goes to that
for overdamped microflyers (microswimmers), i.e. DL = D + v2

0D−1
r /2 when

ω = 0 [94]. The long-term diffusive dynamics does not explicitly depend on
the mass, but it depends on the mass distribution around the axis of rotation,
namely on the moment of inertia. There is no dependence on the translational
friction coefficient in the long-time dynamics.

When the moment of inertia shrinks to small values, the asymptotic long-time
diffusion coefficient of the circle flyer grows proportional to the moment of
inertia such that

DL = D + v2

2
Dr

D2
r + ω2 + v2

2ξr

D2
r

D2
r + ω2 J + O(J2) . (1.14)

The terms independent of moment of inertia in Eq. (1.14) characterize the long-
time diffusion coefficient for circle swimmers [95].

On the other hand, as the moment of inertia grows to large values, the long-
time diffusion coefficient of the circle flyer asymptotically vanishes to zero. This
stems from the fact that circling diffusion becomes more difficult by increasing
the moment of inertia due to getting trapped in circular cages of the trajectory.
However, in case of vanishing circling frequency, the asymptotic behavior of the
long-time diffusion coefficient for large moments of inertia grows proportional
to the square root of the moment of inertia

DL = D + v2
√

π

8Drξr

√
J + O

(√
J

−1
)

. (1.15)

The reason behind this different behavior in case of vanishing circling fre-
quency is that a very large moment of inertia brings about huge resistance to
changing the angular velocity. This causes the impact of fluctuating torque
fades away by the large moment of inertia and the the microflyer diffusively
moves with the optimum speed along the preferred direction.

1.2.2 Circle flyer with time-dependent self-propulsion,

inertia, damping, and fluctuations

When animals move while swimming, flying, walking or running, the maneu-
verability of motion is provided by changes in the body shape [96, 97]. As
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1.2 Inertia-dominated active Brownian particles

a consequence, the moment of inertia changes constantly and becomes time-
dependent. Along with propulsion speed, this can result in temporally-varying
rotational parameters such as friction coefficient [98, 99]. The randomness in
motion, caused by environmental stimuli, can also be included through Brow-
nian noise.

Variable-mass systems, whose mass changes with time, comprise an important
class in transportation technology. Examples include rockets, which are pro-
pelled by continuously losing mass, and robots with discrete mass variation
through picking up or releasing objects [100]. Time-dependent mass can bring
about time-dependent friction coefficient [101]. Variable-mass systems can be
also affected by noise, e.g. because of thermal fluctuations inmicroscopic scales.
Therefore, active Langevin motion provides an efficient model to study such
systems with temporally varying mass.

When inertia is time-dependent, the coupled Langevin equations in Eqs. (1.1)
and (1.2) must now include the terms proportional to the temporal change of
inertia. This results in the following coupled equations of motion

m(t)r̈(t) + (ξ(t) + ṁen)ṙ(t) = ξ(t)v(t)n(t) + ξ(t)
√

2D(t) fst(t) (1.16)

J(t)ϕ̈(t) + (ξr(t) + J̇)ϕ̇(t) = ξr(t)ω(t) + ξr(t)
√

2Dr(t) τst(t) , (1.17)

in which self-propulsion, damping, and thermal fluctuations are considered to
be time-dependent, too. Here ṁen denotes the isotropic change in mass due to
the interaction with the environment and can be positive or negative. Also, we
have to take in mind that in case of rockets, the propulsion force depends on
the rate of change in mass due to eject the exhaust fluid, i.e. on ṁp, which is
negative. Therefore, ξ(t)vn(t) = ṁpu, where u = −un(t) is the velocity of
exhaust relative to the rocket.

While for normal diffusion, the mean-square displacement is proportional to
t, in case of anomalous diffusion, this proportionality becomes tα, where the
anomalous exponent α is a real positive number and α �= 1 [102, 103, 104, 105,
106, 107, 108, 109]. When α < 1 subdiffusive behavior emerges, while for α > 1
the circle flyer superdiffuses. We have demonstrated that temporal variations
of parameters can give rise to anomalous diffusion. This results in the transport
process of the diffusion to be adjustable through choosing the temporal behav-
ior of parameters [110]. The subsequent discussions are regarding chapter 3.

1.2.2.1 Oscillating self-propulsion speed

In case of oscillating self-propulsion

v(t) = v0

(
1 + χ sin(νt + θ0)

)
, (1.18)

9



Chapter 1 Introduction

while inertia, damping, fluctuations, and circling frequency are time-independent,
the inertial delay is the same as that for a circle flyerwith constant self-propulsion
speed. The reason stems from the sinusoidal nature of time-dependence, where
the oscillations cancel out the impact of each other over the course of each
propulsion period, hence only the term corresponding to the constant propul-
sion, i.e. v0, contributes to the inertial delay. In Eq. (1.18), ν and v0χ denote the
frequency and the amplitude of the self–propulsion, respectively, where χ ≤ 1,
and θ0 is the initial phase of the oscillation. The here presented results are for
the situation when the ratio of the frequencies ω and ν is rational and for non-
vanishing circling frequency.

0.0 0.1 0.2 0.3 0.4
�0.10

�0.05
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J�10�7kg m2

Figure 1.2: Noise-free trajectories for two different moments of inertia (see
legend). The circle flyer starts its motion from the origin along x direction
with zero initial velocity and vanishing initial angular velocity. The flying
paths after relaxation of the initial conditions are visualized by dotted ma-
genta curves. The centers of the flying paths are shown by orange circles.
The other parameters are as follows: ξr = 7 × 10−8 kgm2 s−1, γ = 8 s−1,
v0 = 0.07ms−1, χ = 0.5, ω = 1.3 s−1, ν = 0.7 s−1, and θ0 = 0.

The translational dynamics of the circle flyer with oscillating propulsion speed
demonstrates an interplay between different frequencies, i.e. circling frequency
ω, sum frequency ω+ν, and difference frequency ω−ν. Specifically, the contri-
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1.2 Inertia-dominated active Brownian particles

bution of the terms, which contain circling frequency in sec.1.2.1, expands now
to three different terms regarding the circling frequency, the sum frequency,
and the difference frequency.

In case of vanishing noise, after the relaxation of the initial regime which in-
cludes some transient revolutions and takes longer for a higher moment of iner-
tia, the circle flyer reaches its final periodic flying path. This feature is visualized
in Fig.1.2 for a circle flyer when it is stretched and when it is shrunk. The period
of the final trajectory is T = 2π LCM(ω−1, (ω + ν)−1, |ω + ν|−1). Here LCM
denotes the lowest common multiple. In special case when ω = ν, the period of
the trajectory is simply T = 2π/ω. The final flying path does not depend on the
moment of inertia, however, its center (shown by orange circles in Fig.1.2) is an
increasing function of moment of inertia. In the overdamped limit, a noise-free
circle swimmer with oscillating self-propulsion is also confined to a periodic
swimming path as reported in Refs. [111, 112].

In the presence of thermal noise, as the moment of inertia grows to very large
values, the long-time diffusion coefficient goes asymptotically to zero. This
happens because the growth of the moment of inertia increases the resistance
to circling motion and this results in vanishing circling diffusion.

However, when ω = ν, the long-time diffusion coefficient asymptotically grows
proportional to

√
J by increasing the moment of inertia to very large values.

This comes from the contribution of the difference frequency (ω − ν) in the
long-time dynamics and corresponds to a resonance situation when the particle
flies with the optimum speed along the preferred direction.

1.2.2.2 Adiabatic approximation for slow variations

The appearance of the anomalous diffusion in a system is usually attributed to
power law variations in the system’s parameters [109]. A slow power law in
time for the moment of inertia, self-propulsion, rotational friction, and diffusion
coefficients

J(t) = j0t
α, Vp(t) = v0t

β, ξr(t) = ξr0 tδ Dr(t) = Dr0 tε , (1.19)

can cause the emergence of anomalous diffusion in long-time dynamics of the
microflyer. j0, v0, ξr0 and Dr0 are constant values, and α, β, δ and ε are expo-
nents whose combination shapes the anomalous exponent.

In case of vanishing circling frequency and large j0, within adiabatic approxi-
mation, the long-time mean-square displacement is proportional to

〈(r(t) − r0)2〉 ∼ v2
0

√
j0

Dr0 ξr0
t1+2β+(α−δ−ε)/2 . (1.20)

When

2β + (α − δ − ε)/2 > 0 , (1.21)

11



Chapter 1 Introduction

Eq. (1.20) manifestly demonstrates superdiffusive behavior in the long-time dy-
namics for large moments of inertia. In case of

2β + (α − δ − ε)/2 < 0 , (1.22)

random forces overwhelm the subdiffusive behavior of Eq. (1.20) and as a re-
sult, normal diffusion emerges in the long-time dynamics. In the limit j0 → 0,
the mean-square displacement goes to that of a microswimmer with power law
time-dependent self-propulsion, which is reported in Ref. [111]. The first order
non-adiabatic correction to the adiabatic approximation of themean-square dis-
placement demonstrates a ballistic phase in the long-time dynamics.

Since there is no explicit dependence onmass or translational friction coefficient
in the long-time diffusion coefficient, temporal behavior of m(t) or ξ(t) can not
indeed alter the long-time dynamics. For noise-free cases, which is relevant to
the macroscopic variable-mass systems such as rockets, a time-dependent mass
can, for instance, change the final flying path, on which circle flyer arrives after
relaxation of the initial regime.

1.2.2.3 Fast variations

In case of rapidly varying parameters, the system is able to dynamically respond
just to the mean variations. For example, a rapidly oscillating moment of inertia

J(t) = j0
(
1 + sin(νjt)

)
, (1.23)

with a very large oscillation frequency νj , when ω = 0 and jo → ∞, gives rise
to the long-time dynamics

〈(r(t) − r0)2〉 ∼ 4Dt + 2v2
√

πj0

2Drξr

t , (1.24)

which is the same as the long-time behavior of amicroflyerwith a large constant
moment of inertia, here j0, given by Eq. (1.15).

1.3 Active Brownian particles in the

overdamped limit

For microscopic particles swimming in a Newtonian liquid, viscous effects are
dominant and inertial effects are negligible. Such agents are called active Brow-
nian particles, also referred to as microswimmers and their describing model is
called active Brownian motion, wherein the overdamped dynamics is modeled
through Gaussian white noise as solvent kicks, and an effective self-propulsion

12



1.3 Active Brownian particles in the overdamped limit

force [95, 113, 23, 114]. This is referred to as low Reynolds number regime since
Reynolds number quantifies the strength of inertial effects relative to viscous
forces in the system [115]. In this case, the coupled Langevin equations, given
by Eqs. (1.1) and (1.2), are presented in the overdamped limit where inertia is
negligible

ṙ(t) = vn(t) +
√

2D fst(t), (1.25)

ϕ̇(t) = ω +
√

2Dr τst(t) . (1.26)

Typical microswimmers are micron-sized biological or artificial objects swim-
ming in a viscous fluid medium, e.g., water. Examples of biological microswim-
mers include spermatozoa [116, 117, 118], and bacteria species, such as E. coli
[119, 120], and vibrio cholera [20]. One famous example ofman-mademicroswim-
mers is Janus particle; it is named after the two-faced Roman deity because its
surface has two or more distinct physical properties [94, 121, 122, 123, 124, 125].
When a microswimmer performs chiral motion because of the impact of an ef-
fective torque, it is named circle swimmer [126, 127]. In nature, certain bacteria
[128, 129, 19, 130] and spermatozoa [116, 117, 131] exhibit circling swimming
on a planar substrate.

Using experiments, simulations and analytical theory, we have studied the dy-
namics of a single Janus particle as well as collective effects of many such mi-
croswimmers, whose motility, i.e. individual swimming speed of a single par-
ticle, is tunable by light [132, 133, 134, 135, 136]. The subsequent discussion is
regarding chapter 4 and the publication presented in and chapter 5.

1.3.1 Experiment

Artificial microswimmers are Janus particles made of silica spheres, with di-
ameter of a few micrometers, which are half-coated with a nanometer carbon
layer. The microswimmers are suspended in a critical mixture of water and 2,6-
lutidine. The whole sample is homogeneously illuminated with laser light at
λ = 532 nm, which is mainly absorbed at capped hemisphere. This results in
a temperature gradient across the microswimmer. When the cap temperature
locally exceeds the critical temperature of the solvent Tc = 34.1 ◦C, the solvent
locally demixes, and the Janus particle exhibits self–propulsion. The resultant
swimming speed depends linearly on the incident laser intensity [132]. Below
and above a threshold intensity Ir, microswimmers propel with the carbon cap
at the rear and at the front, respectively [133].

Demixing of solvent near the cap results in the appearance of a droplet nucleat-
ing around the microswimmer [137]. In the presence of intensity gradients, the
cap becomes inhomogeneously heated leading to the nucleation of asymmetric
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droplets [137, 132]. This brings about an active torque aligning the particle’s
cap towards the intensity gradient. Consequently, negative and positive photo-
tactic behaviors happen for I < Ir and I > Ir, respectively [133, 136]. When
intensity is lower than the threshold intensity, the particle is directed towards
the regions with lower intensity (i.e. negative phototaxis). Whereas for I > Ir,
the orientation of the particle is aligned towards increasing light intensity (i.e.
positive phototaxis).

Creation of periodic triangular intensity pattern is achieved by a laser line focus
being scanned across the sample plane with a frequency of 200 Hz. Synchro-
nization of the scanning motion with the input voltage of an electro-optical
modulator leads to a quasi-static illumination landscape [132, 136]. Due to the
large thermal diffusivity of the carbon cap, the temperature field around the par-
ticle responds to illumination intensity variations on time scales below 10−5s.
This gives rise to an almost immediate response of the particle motility to the
light intensity changes [133, 136].

Active colloidal mixtures with different size ratios are prepared by doping ac-
tive suspension of small particles with a few large active colloids. Since the
propulsion speed depends linearly on the absorbed intensity across the parti-
cle’s cap, the speed can be varied in a linear pattern by changing the thickness
of the cap’s carbon layer [133].

1.3.2 Theory

The microswimmer is confined to a two-dimensional substrate in a static pe-
riodic triangular-like light intensity field. Since the motility of the particles
is proportional to the imposed light intensity, the triangular-like intensity field
leads to a triangular motility profile for the microswimmer. The self-propulsion
is periodic in the x-coordinate with a characteristic length lv, and depends on
the particle’s position along the x-direction, but it is independent of the y-
coordinate. In one spatial period, in case of negative phototaxis, the motility
profile is defined as

v(x) = 2Δv

lv
|x| + V min for |x| ≤ lv/2 , (1.27)

while for positive phototaxis, it is specified by

v(x) = −2Δv

lv
|x| + V max for |x| ≤ lv/2 , (1.28)

with Δv = V max − V min. The propulsion velocity spatially varies between the
maximum value V max and the minimum value V min.

The aligning active torque generates the angular velocity

ω (ϕ, x) = c

σ
vp(x) v

′
p(x) sin ϕ , (1.29)
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1.3 Active Brownian particles in the overdamped limit

which depends on the x-coordinate through the propulsion speed. Here, v
′(x) =

dv(x)
d x

denotes the velocity gradient. The magnitude of the aligning torque is in-
versely tuned by the particle diameter σ. The constant c follows from experi-
ments while its sign depends on whether the particle moves with the cap in the
rear or in the front: c < 0 corresponds to the positive phototaxis case and c > 0
is for the negative phototaxis situation [138, 132, 133, 136].

The axial symmetry of the velocity field around the particle breaks due to the
light intensity gradient leading to the alignment of the orientation towards the
direction of the negative or positive intensity gradient [132, 133]. Consequently,
the aligning torque is perpendicular to both orientation and intensity gradient,
which induces dependence on sin ϕ in Eq. (1.29).

For positive phototaxis situation, the microswimmer becomes effectively lo-
calized near motility maximum [136]. In case of negative phototaxis, the mi-
croswimmer gets dynamically trapped in the dark spots where its motility is
minimum [139, 140, 141].

When granular mixtures of variously sized particles are subjected to shaking or
vibration, Brazil nut effect emerges where the largest particles rise to the top
against the gravitational gradient; once at the top, they stay there (on the sur-
face of the mixture) [142]. In analogy to shaken granular matter in gravity, we
define a colloidal Brazil nut effect in a repulsively interacting binary mixture of
small negative phototactic microswimmers dopedwith large ones, wherein par-
ticles interact via a short-ranged repulsive Weeks-Chandler-Andersen (WCA)
pair potential [143].

In the binary mixture of microswimmers, we observe a segregation of active
particles near the intensity minimum where one species is localized close to
the minimum (bottom) and the other one is centered around in an outer shell
(top). When the aligning torque is very strong, there is an exact mapping of
the nonequilibrium system onto an equilibrium system in an effective exter-
nal potential, which is similar to (height-dependent) gravity. Accordingly, we
define effective heaviness of the particles. We call the situation with heaviermi-
croswimmers on top of the lighter ones colloidal Brazil nut effect. Apart from
size (diameter) and maximum velocity V max, the small and large microswim-
mers of the binary mixture are exactly the same in different parameters. The
results of real-space experiments confirm the theoretical predictions.
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Supplementary Figure 1. Linear and absolute velocity distributions and delay function. (a-c)

Generic particle, (d-e) carrier particle, (g-i) tug particle and (j-l) ring particle. The timescale Δt in the

velocity definition is changed in the range 1, 2, 3, 4Δ�� . Only small differences are observed in some

curves, which lead only to minor changes in the fit parameters.
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Supplementary Table 1. Mass, moment of inertia and model parameters obtained from analytic

solutions and fits to measurements in Fig. 3.

Particle M [kg] J [kgm2] Vp [m s−1] τ−1 [s−1] D [m2s−1] Dr [rad2 s−1] τ−1
r [s−1] ωp [rad s−1]

Generic 0.76× 10−3 1.64× 10−8 0.071 9.3 3.56× 10−5 0.91 14.9 0.354

Carrier 4.07× 10−3 1.46× 10−7 0.0929 6.85 7.7× 10−5 2.7 5.1 0.714

Tug 1.57× 10−3 2.54× 10−8 0.087 3.0 2.2× 10−4 0.59 17.6 −0.614

Ring 0.33× 10−3 1.26× 10−8 0.057 5.0 8.4× 10−5 2.4 5.0 −0.19

Supplementary Table 2. Model parameters obtained from numerical fits to measurements in

Fig. 3 and Fig. 4. Experimental uncertainty is specified in brackets in iso notation starting

from the last respective digit.

Particle Vp [m s−1] τ−1 [s−1] D [m2s−1] Dr [rad2 s−1] τ−1
r [s−1] ωp [rad s−1]

Generic 0.0708(55) 12.45(211) 2.48(105)× 10−5 0.94(10) 15.20(454) 0.346(13)

Carrier 0.0954(76) 6.11(151) 8.20(336)× 10−5 2.73(35) 5.17(97) 0.734(28)

Tug 0.0846(72) 6.20(120) 9.74(327)× 10−5 0.60(7) 16.78(482) −0.622(23)

Ring 0.0553(33) 7.15(107) 5.90(117)× 10−5 2.45(13) 4.98(122) −0.181(4)
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SUPPLEMENTARY METHODS

Analytic approximation of linear velocity distribution

One can obtain the time–dependent probability distribution through the corresponding

Fokker–Planck equation which can be derived from Langevin equations as

− ∂

∂t
P (R, t) = ∂XẊP (R, t) + ∂Y Ẏ P (R, t) + ∂φφ̇P (R, t)

+ ∂Ẋ

(
ξ

m
Vp cosφ− ξ

m
Ẋ −D

(
ξ

m

)2

∂Ẋ

)
P (R, t)

+ ∂Ẏ

(
ξ

m
Vp sinφ− ξ

m
Ẏ −D

(
ξ

m

)2

∂Ẏ

)
P (R, t)

+ ∂φ̇

(
ξr
J
ω − ξr

J
φ̇−Dr

(
ξr
J

)2

∂φ̇

)
P (R, t) , (1)

with R =
(
X Y φ Ẋ Ẏ φ̇

)
. The stationary distribution is obtained by setting the r.h.s

of Supplementary Eq. (1) to zero. Since we are interested in the stationary linear velocity

distribution along (for instance) X direction, we integrate the other variables such that the

Fokker Planck equation reduces to

∞∫
−∞

dφ ∂Ẋ

(
ξ

m
Vp cosφ− ξ

m
Ẋ −D

(
ξ

m

)2

∂Ẋ

)
P
(
Ẋ, φ

)
= 0 . (2)

Because the stationary distribution of the angle φ is uniform, based on Supplementary

Eq. (2), one can anticipate the linear velocity distribution to be in the following form

P
(
Ẋ
)
=

1√
2πq

π∫
−π

dφ
1

2π
exp

⎛
⎜⎝−

(
Ẋ −W cosφ

)2

2q

⎞
⎟⎠ . (3)

In analogy to [1], via computing the respective second and forth moments and by using

the ansatz of Supplementary Eq. (3),〈
Ẋ2

〉
= q +

1

2
W 2 ,〈

Ẋ4
〉
= 3q2 + 3qW 2 +

3

8
W 4 , (4)

it is deduced that under the condition

Ec = |W4 −wdev|
W4

� 1 , (5)
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W and q can be evaluated as

W = W+
W4 −wdev

4W3
,

q = D
ξ

m
− W4 −wdev

4W2
, (6)

where

W = Vp

√
f(D0,D1 ,D2) (7)

and

wdev = D2
2V

4
p e

2D0D
−2(2D2+D0)
0 Re

[
γ(3D2 +D0 − iD1,D0)

×
[
γ(D2 +D0 + iD1,D0) +D2iD1

0 γ(D2 +D0 − iD1,D0)

×
(
1 + 2D2e

4D0(4D0)
−2(D2+2D0−iD1)

× γ(2D2 + 4D0 − 2iD1, 4D0)

)]]
, (8)

where f is given by Eq. (7) in the main manuscript.
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

3.1 Introduction

The non-equilibrium dynamics of the active Brownian particles –also referred
to as microswimmers– is typically described in the overdamped limit, where in-
ertial effects are sufficiently negligible relative to viscous ones [94, 144, 145, 24].
This is a good approximation for micron-sized self-propelled particles swim-
ming in a Newtonian liquid where viscous forces are dominant [115]. However,
for big active Brownian particles when inertial effects becomes larger or in case
of flying in gaseous environment where viscous forces gets smaller, inertial ef-
fects are involved in the dynamics. The relevant model to study such flyers with
non-negligible or even dominant inertial effects is referred to as active Langevin
motion [40].

Examples include a complex plasma consisting of mesoscopic dust particles in
a weakly ionized gas [41, 42, 43, 44, 45], vibration-driven granular particles [47,
48, 49, 50, 37, 52, 53, 54, 55], animals [60, 61, 62] and insects [63, 64, 65, 66],
autorotating seeds and fruits [58, 59], and mini-robots [56, 57]. Most of the
previous work of inertial active Langevin motion [67, 68, 69, 70, 38, 71] has
included inertia in the translationalmotion by including a finite particlemassm,
but has ignored inertia in the rotational motion; or in other terms, the moment
of inertia J was set to zero. However, in general, this moment of inertia plays a
decisive role as has been shown recently for the example of vibrated granulates
(see chapter 2).

The aim of this paper is twofold: first of all, we collect analytical results for
the dynamical correlations of a single particle governed by active Langevin dy-
namics. In particular we present an analytical expression for the time-resolved
mean-squared-displacement (MSD) of the particle. In doing so, we generalize
the previous expression of Howse et al [94], valid in the overdamped limit where
the particle mass m and the moment of inertia J are zero, to finite m and J . In
the long-time limit, as shown in chapter 2, the MSD scales linear in time t indi-
cating normal translational diffusion with a long-time self-diffusion coefficient
DL.

Second we generalize the equation to a novel situation where all system param-
eters, namely the self-propulsion speed vp, the translational and orientational
frictions and noise strengths, and m and J depend explicitly on time. A time-
dependent moment of inertia, J(t), for instance, is motivated by the fact that
the maneuverability of animal motion is provided by changes in the body shape
[96, 97] which implies a change in the moment of inertia at fixed total mass m.
On the contrary, variable-mass systems, whose mass m(t) changes with time,
comprise another class important in transportation technology. Examples in-
clude rockets, which are propelled by continuously losingmass, and robots with
discrete mass variation through picking up or releasing objects [100]. Time-
dependent mass can bring about time-dependent friction coefficients [101]. Fi-
nally, other external stimuli may govern a time-dependence of the other system
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parameters. For example, the self-propulsion speed Vp(t) can be made time-
dependent by external optical fields [135], the noise strength and damping by
governing the solvent viscosity externally [98, 99] etc.

Here we assume a slow variation in time for these parameters and use an adi-
abatic approximation to access the MSD. Again we generalize previous work
for overdamped systems [111] towards finite mass and moment of inertia. In
particular, for a change in the system parameters described by a power law in
time we predict a superdiffusive anomalous diffusion involving an MSD ∝ tα

which scales as a power law in time with a non-trivial exponent α [102, 103,
104, 105, 106, 107, 109]. The exponent α is determined and we also calculate
non-adiabatic corrections to the adiabatic limit. Finally we further provide an-
alytical results for the dynamical correlations in case the self-propulsion speed
is oscillatory in time. This may mimic and model run-and-tumble motion. In
this case, the MSD exhibits again normal diffusion.

Our results can be tested in various experimental set-ups ranging from macro-
scopic vibrated granularmatter, robots or living systems to self-propelledmicron-
particles which are flying in a gaseous medium or in a plasma.

This paper is organized as follows: in sec.3.2, we introduce the theoreticalmodel
for active Langevin motion describing a microflyer. We study a microflyer with
time-independent self-propulsion, inertia, damping and fluctuations in sec.3.3:
the results are provided for both the noise-free case and the general situation
with Brownian noise. In sec.3.4, we demonstrate how time-dependent param-
eters change the dynamics of the system: here, we study slow temporal varia-
tions and rapid oscillations. We also present the first order non-adiabatic cor-
rection to the adiabatic approximation. In sec.3.5, we consider a microflyer with
oscillating propulsion speed, while the other parameters are kept constant: re-
sults are provided for both noise-free case and general situation with Brownian
noise. Finally, we conclude in sec.3.6.

3.2 The basic model of active Langevin motion

In our basic model of active Langevin motion in two dimensions, a microflyer
with inertia is characterized by its time-dependent center-of-mass positionR(t)
=

(
X(t), Y (t)

)
and the orientational unit vector n(t) =

(
cos φ(t) , sin φ(t)

)
,

which defines the direction of its internal self-propulsion velocity. The angle
φ(t) describes its time-dependent orientation. While previous work, as ad-
dressed in chapter 2, has considered constant particle mass and moment of
inertia, we generalize the model here towards time-dependent parameters: a
time-dependent particle mass m(t), a time-dependent moment of inertia J(t)
for the rotation around the z-axis, and a time-dependent self-propulsion veloc-
ity Vp(t). The time -dependence is imposed externally, i.e. m(t), J(t) and Vp(t)
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are known prescribed functions. In order to give the model as general as possi-
ble we also assume in the same spirit a time-dependent external torque M(t), a
time-dependent translational friction ξ(t) and a time-dependent rotational fric-
tion coefficient ξr(t) and time-dependent noise strengths of the translational
and rotational fluctuations. Then the equations of the translational and the ro-
tational motion are governed by the following coupled Langevin equations for
R(t) and φ(t), respectively, such that

d

dt

(
m(t) Ṙ(t)

)
+ ξ(t) Ṙ(t) = ξ(t)Vp(t)n(t) + ξ(t)

√
2D(t) fst(t), (3.1)

d

dt

(
J(t) φ̇(t)

)
+ ξr(t) φ̇(t) = M(t) + ξr(t)

√
2Dr(t) Mst(t). (3.2)

We use the notations d
dt

A(t) ≡ Ȧ(t) equivalently for the time derivative of the
time-dependent function A(t). Here we assumed that the change in transla-
tional momentum is equal to the total force and the change in angular momen-
tum is equal to the total torque. As far as the translational dynamics is con-
cerned, the force has a frictional component −ξ(t)Ṙ(t) and a self-propelling
effective force along the particle orientation ξ(t)Vp(t)n(t). The latter couples
the orientational and translational degrees of freedom. Furthermore there are

stochastic forces (“noise”) ξ(t)
√

2D(t) fst(t) where the effective translational
diffusion coefficient D(t) > 0 quantifies the noise strength. We describe the
stochastic term fst(t) as zero-mean Markovian white noise with variance

〈fst(t) ⊗ fst(t′)〉 = δ(t − t′)1, (3.3)

where 〈 · · · 〉 indicates a noise average and 1 is the unit matrix. Likewise, the
rotational dynamics involves the frictional torque −ξr(t)φ̇(t) and the imposed

torque M(t) plus the stochastic torque ξr(t)
√

2Dr(t) Mst(t) where the effec-
tive rotational diffusion coefficient Dr(t) > 0 quantifies the rotational noise
strength and the Markovian Gaussian noise Mst(t) has zero-mean and variance

〈Mst(t)Mst(t′)〉 = δ(t − t′). (3.4)

Obviously for constant parameters m, J , ξ, ξr, M , D and Dr we recover the
standard modeling of active Langevin motion considered earlier. We shall re-
visit this standard situation again in sec.3.3. In the absence of any inertial ef-
fects, i.e. when m = J = 0, the equations of motion are overdamped and were
already considered previously in Ref. [111].

For an analytical solution of the equations of motion we first consider the ro-
tational part Eq. (3.2) which is uncoupled to the translational ones. Denot-
ing the initial conditions for the orientational angle and angular velocity as
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3.2 The basic model of active Langevin motion

φ(t = 0) = φ0 and φ̇(t = 0) = φ̇0, the solution of Eq. (3.2) is

φ̇(t) = e−Γr(t)
ˆ t

0
dt

′
eΓr(t′ )γr(t

′)
(

ω(t′) +
√

2Dr(t′)Mst(t
′)

)

+ φ̇0e
−Γr(t), (3.5)

and thus

φ(t) =
ˆ t

0
dt

′
e−Γr(t′ )

ˆ t
′

0
dt

′′
eΓr(t′′ )γr(t

′′)
(

ω(t′′) +
√

2Dr(t′′)Mst(t
′′)

)

+ φ0 + φ̇0

ˆ t

0
dt

′
e−Γr(t′ ), (3.6)

where Γr(t) =
´ t

0 dt
′
γr(t

′) + ln
(
J(t)/J(t = 0)

)
, γr(t) = ξr(t)/J(t) and

ω(t) = M(t)/ξr(t). The temporal behavior of the orientation is characterized
by different rotational time scales. Themost basic rotational time-scales include
the rotational damping time γ−1

r = J/ξr, the persistence time D−1
r and the re-

orientation time ω−1. Additional time-scales are embedded in the time-scales
corresponding to the variations of time-dependent parameters, for instance, the
restyling time J/J̇ . In the course of restyling time, the particle restyles its mass
distribution around the axis of rotation through change its shape.

According to Eqs. (3.5) and (3.6), both φ̇(t) and φ(t) are linear combinations of
Gaussian variables. This implies that the probability distributions of the angu-
lar velocity and orientational angle are Gaussian, uniquely determined by the
corresponding means and variances, such that

P (φ̇, t) = 1√
2πμ1(t)

exp
(−

(
φ̇(t) − 〈φ̇(t)〉

)2

2μ1(t)

)
, (3.7)

and

P (φ, t) = 1√
2πμ2(t)

exp
(−

(
φ(t) − 〈φ(t)〉

)2

2μ2(t)

)
. (3.8)

Here, themean of angular velocity and themean of orientational angle are given
by

〈φ̇(t)〉 = φ̇0e
−Γr(t) + e−Γr(t)

ˆ t

0
dt

′
eΓr(t′ )γr(t

′)ω(t′), (3.9)

and

〈φ(t)〉 =
ˆ t

0
dt

′
e−Γr(t′ )

ˆ t
′

0
dt

′′
eΓr(t′′ )γr(t

′′)ω(t′′)

+ φ0 + φ̇0

ˆ t

0
dt

′
e−Γr(t′ ), (3.10)
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respectively, while the respective variances of the angular velocity and orien-
tational angle are

μ1(t) =
〈(

φ̇(t) −
〈
φ̇(t)

〉)2〉

= 2e−2Γr(t)
ˆ t

0
dt

′
e2Γr(t′ )γ2

r (t′)Dr(t
′) , (3.11)

and

μ2(t) =
〈(

φ(t) −
〈
φ(t)

〉)2〉
= 4
ˆ t

0
dt

′
e−Γr(t′ )

×
ˆ t

′

0
dt

′′
e−Γr(t′′ )

ˆ t
′′

0
dt

′′′
e2Γr(t′′′ )γ2

r (t′′′)Dr(t
′′′). (3.12)

The translational equation of motion yields for the particle velocity

Ṙ(t) = e−Γ(t)
ˆ t

0
dt

′
eΓ(t′ ) γ(t′)

(
Vp(t′) n(t′) +

√
2D(t′)fst(t

′)
)

+ Ṙ0e
−Γ(t), (3.13)

where the initial velocity is denoted by Ṙ0 andΓ(t) =
´ t

0 dt
′
γ(t′)+ln

(
m(t)/m(t =

0)
)
. Hence, the center-of-mass position of a microflyer is calculated as

R(t) =
ˆ t

0
dt

′
e−Γ(t′ )

ˆ t
′

0
dt

′′
eΓ(t′′ ) γ(t′′)

(
Vp(t′′) n(t′′) +

√
2D(t′′)fst(t

′′)
)

+ R0 + Ṙ0

ˆ t

0
dt

′
e−Γ(t′ ), (3.14)

with R0 = (X0, Y0) indicating the initial position. The most basic time-scale
corresponding to the translational motion is the translational damping time
γ−1 = m/ξ. The temporal behavior of time-dependent parameters introduce
additional time-scales to the dynamics, such as m/ṁ, namely the time-scale in
the course of which the inertia varies.

3.3 Time-independent self-propulsion, inertia,

damping, and fluctuations

We now turn to the special case for time-independent parameters summarizing
some results of chapter 2 but also providing some new analytical results. In
doing so, we first consider the noise-free case and then include effects of noise.
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3.3.1 Results for vanishing noise

Here, we take the dynamics of a circle flyer with constant self-propulsion speed
v0 at zero temperature, when thermal fluctuations vanish, into consideration.
The noise-free rotational coordinate of the circle flyer is

φ(t) = φ0 + ωt + ω − φ̇0

γr

(
e−γrt − 1

)
. (3.15)

This results in the noise-free translational velocity

Ṙ(t) = Ṙ0e
−γt + γ̃v0P̂

[
ei(φ0+ ˙̃φ0−ω̃)L (ω̃, −1, 0)

]
, (3.16)

which leads to the noise-free translational coordinate

R(t) = R0 + Ṙ0

γ

(
1 − e−γt

)
+ v0

γr

P̂

[
ei(φ0+ ˙̃φ0−ω̃)L (ω̃, 1, 1)

]
. (3.17)

Here

L (ω̃, a, b) =
(

i( ˙̃φ0 − ω̃)
)γ̃+iω̃

a e−γt

⎡
⎣γ

(
− γ̃ − iω̃, i( ˙̃φ0 − ω̃)e−γrt

)

− γ

(
− γ̃ − iω̃, i( ˙̃φ0 − ω̃)

)⎤
⎦ +

(
i( ˙̃φ0 − ω̃)

)iω̃

b

×
⎡
⎣γ

(
− iω̃, i( ˙̃φ0 − ω̃)

)
− aγ

(
− iω̃, i( ˙̃φ0 − ω̃)e−γrt

)⎤
⎦, (3.18)

where

γ(a, x) =
ˆ x

0
ta−1e−tdt , (3.19)

is the lower incomplete gamma function [93]. The letters with a tilde above
represent the corresponding parameters now scaled by γr, e.g. D̃r = Dr/γr

and ω̃ = ω/γr. The operator P̂ = (Re , Im)T is defined to extract the real and
the imaginary part of the complex function for x and y coordinate, respectively.

According to the trajectory given by Eq. (3.17), it takes longer for a microflyer
with larger moment of inertia to change its direction of motion and start turn-
ing around in response to the effective torque. To be more specific, the higher
moment of inertia brings about higher resistance towards any change in the
angular velocity. The transient initial revolutions due to the initial transient
resistance eventually relax to the final circular flying path

Rosc(t) = γv0P̂

[
ei(φ0+ ˙̃φ0−ω̃)C (t, ω)

]
, (3.20)
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where

C (t, ω) = −ieiωt

ω(γ + iω) . (3.21)

The center of the final circularmotion, after the relaxation of the transient initial
regime, is located at

Rc = R0 + Ṙ0

γ
+ v0

γr

P̂

[
ei(φ0+ ˙̃φ0−ω̃)L (ω̃, 0, 1)

]
, (3.22)

while the radius of the final circular flying path is

r = v0

ω

√
γ2

γ2 + ω2 . (3.23)

The final flying path and its radius do not depend on the moment of inertia. In
contrast, the center of circular motion is an increasing function of the moment
of inertia indicating that during the transient initial regime, the stretched par-
ticle (with larger J ) flies away farther than the shrunk one (with smaller J ). In
case of vanishing inertia, i.e. γ → ∞, the radius of the final flying path, given
by Eq. (3.23), reduces to the radius of the swimming path of a noise-free circle
swimmer, i.e. r = v0/ω.

3.3.2 Effect of Brownian noise

In case of time-independent self-propulsion, inertia, damping, and fluctuations,
the distributions of the angular velocity and orientational angle, given by Eqs. (3.7)
and (3.8), become

P (φ̇, t, φ̇0) =
exp

(−
(

φ̇−ω−φ̇0e−γrt+ωe−γrt

)2

2Drγr(1−e−2γrt)

)
√

2πDrγr(1 − e−2γrt)
, (3.24)

and

P (φ, t, φ̇0, φ0) = 1√
π

exp
( −

(
φ−φ0−ωt− ω−φ̇0

γr
(e−γrt−1)

)2

4Drt+ 4Dr
γr

(
e−γrt−1− (e−γrt−1)2

2

)
)

√
4Drt + 4Dr

γr

(
e−γrt − 1 − (e−γrt−1)2

2

) , (3.25)

respectively. In the course of time, the distributions spread over their corre-
sponding domains; while the distribution of the angular velocity reaches its
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steady-state around the circling frequency with width
√

2Drγr for times much
larger than the rotational damping time, such that

P (φ̇) = 1√
2πDrγr

exp
(−(φ̇ − ω)2

2Drγr

)
, (3.26)

the distribution of the orientational angle keeps becoming wider as time pass-
ing.

In the presence of thermal fluctuations, the rotational mean-square displace-
ment is described via

〈(
φ(t) − φ0

)2〉
=2Drt + 2Dr

γr

(
e−γrt − 1

)
+ ω2t2. (3.27)

Accordingly, at very early times when t  γ−1
r and for very late times t �

γ−1
r , the circle flyer undergoes a ballistic rotational expansion with circling fre-

quency ω. The effects of initial configurations are averaged out by considering
a steady-state initial condition, i.e., the system reaches the steady-state before
the measurement begins. That is to say, averaging over all possible initial con-
figurations results in a steady-state average, for instance,

ˆ
dφ̇0 P (φ̇0) φ̇0 = lim

t→∞〈φ̇(t)〉 = ω , (3.28)
ˆ

dφ̇0 P (φ̇0) φ̇2
0 = lim

t→∞〈φ̇2(t)〉 = Drγr + ω2 . (3.29)

Here P (φ̇0) is the steady-state distribution of the angular velocity given by
Eq. (3.26).

The angular velocity correlation function

〈φ̇(t)φ̇(0)〉T = ω2 + Drγre
−γrt, (3.30)

indicates that the different times’ rotational frequencies always remain corre-
lated through themediation of the circling frequency. Here 〈 · · · 〉T denotes time
average, which according to the ergodic hypothesis [86, 87], is equivalent to the
steady-state average. Specifically,

〈φ̇(t)φ̇(0)〉T = lim
t1→∞
t2→∞

〈φ̇(t1)φ̇(t2)〉 , (3.31)

when the time difference is finite and equal to t1 − t2 = t. While noise average
contains the information of the initial configuration, this information is lost
through time average.

The exponentially decaying term of the angular velocity correlation function
(see Eq. (3.30)) mimics the correlations of a colored noise; that is to say, the
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angular velocity imposes an exponentially correlated Gaussian colored noise
on the orientational angle [90, 91]. According to the orientational correlation

〈n(t) · n(0)〉T = cos(ωt) e−Dr(t−γ−1
r (1−e−γrt)), (3.32)

rotational thermal fluctuations cause the orientation to decorrelate on time
scales longer than the persistence time. Colored noise induces the additional
correlation on time scales shorter than the persistence time.

The correlations in the translational velocity as introduced by

〈Ṙ(t) · Ṙ(0)〉T = 2Dγe−γt + v2
0
2 γ̃e−γt Re

[
V (ω, t)

]
, (3.33)

are damped exponentially at the translational damping rate γ. Here the function

V (ω, t) = eD̃rD̃−(D̃r−iω̃+γ̃)
r

⎡
⎣e2γtγ(D̃r − iω̃ + γ̃, D̃re

−γrt)

− D̃2γ̃
r γ(D̃r − iω̃ − γ̃, D̃re

−γrt) + D̃2γ̃
r γ(D̃r − iω̃ − γ̃, D̃r)

+ γ(D̃r − iω̃ + γ̃, D̃r)
⎤
⎦ , (3.34)

captures the impact of the additional correlation due to the rotational correla-
tions. This additional correlation is imposed by the rotational damping rate γr

on short time scales.

Themean-square displacement can be obtained through the velocity correlation
function [92], which results in

〈(R(t) − R0)2〉 = 2v2
0 Re

[
t

γr

D(ω) + e−γt

2γγr

Δ(ω, t) + F (ω, t)
]

+ 4D(t + e−γt − 1
γ

) , (3.35)

with

D(ω) = eD̃rD̃−(D̃r−iω̃)
r γ(D̃r − iω̃, D̃r) , (3.36)

Δ(ω, t) = eD̃rD̃−(D̃r−iω̃)
r

⎡
⎣D̃γ̃

rγ(D̃r − iω̃ − γ̃, D̃r) + D̃−γ̃
r e2γt

× γ(D̃r − iω̃ + γ̃, D̃re
−γrt) + D̃−γ̃

r (1 − 2eγt)γ(D̃r − iω̃ + γ̃, D̃r)

− D̃γ̃
rγ(D̃r − iω̃ − γ̃, D̃re

−γrt)
⎤
⎦, (3.37)
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and

F (ω, t) = eD̃r

(Dr − iω)2

⎡
⎣ − 2F2(Ω̃, Ω̃; Ω̃ + 1, Ω̃ + 1; −D̃r)

+ e−(Dr−iω)t
2F2(Ω̃, Ω̃; Ω̃ + 1, Ω̃ + 1; −D̃re

−γrt)
⎤
⎦, (3.38)

where in the latter function, 2F2 represents the generalized hypergeometric
function [146] and Ω̃ = D̃r − iω̃.

In the short-time limit, the circle flyer undergoes ballistic motion such that

〈(R(t) − R0)2〉 = 〈Ṙ(0) · Ṙ(0)〉T t2 , (3.39)

where 〈Ṙ(0) · Ṙ(0)〉T is the second moment of the velocity obtained through
the velocity correlation function (given by Eq. (3.33)) when t = 0. As moment
of inertia vanishes, the ballistic dynamics approaches

lim
J→0

〈(R(t) − R0)2〉 =
(

2Dγ + K (ω, Dr)
)

t2, (3.40)

while as J grows, it goes to

lim
J→∞

〈(R(t) − R0)2〉 =
(

2Dγ + K (ω, 0)
)

t2. (3.41)

The function K (ω, Dr) is introduced as

K (ω, Dr) = v2
0γ(γ + Dr)

(γ + Dr)2 + ω2 . (3.42)

The difference between these two limiting behaviors is that in the latter, the
impact of rotational fluctuations fades away because of large moment of inertia,
i.e. huge resistance towards changing the direction of motion causes the circle
flyer to not be influenced by the fluctuating torque. The fact that the term 2Dγ
in Eqs (3.40) and (3.41) is thermal energy, implies that the rest terms are the
injected kinetic energy.

The flying dynamics ends up in diffusion for long-time limit with the long-time
diffusion coefficient

DL = D + v2
0

2γr

Re
[
D(ω)

]
. (3.43)

The first term in Eq. (3.43) captures the diffusive behavior of a passive particle
when v0 = 0. Comparing to microswimmers whose long-time diffusion coef-
ficient is DL = D + v2

0D−1
r /2 when ω = 0 [94], we characterize the effective

persistence time of the circle flyer as

τ(ω) = 1
γr

Re
[
D(ω)

]
. (3.44)
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The long-term diffusive behavior therefore depends, not explicitly on mass, but
on the mass distribution around the axis of rotation, i.e. on the moment of
inertia.

In case of small moments of inertia, the long-time diffusion coefficient of the
circle flyer asymptotically goes to

DL = D + v2
0
2 τcs(ω) + v2

0Dr

2ξr

τcs(ω) J + O(J2), (3.45)

which grows dominantly proportional to moment of inertia. Here

τcs(ω) = Dr

D2
r + ω2 , (3.46)

represents the effective persistence time of a circle swimmer [95].

The asymptotic behavior of the long-time diffusion coefficient for large mo-
ments of inertia in case of vanishing circling frequency is

DL = D + v2
0

√
π

8Drξr

√
J + O

(√
J

−1
)

. (3.47)

In case of nonvanishing circling frequency, as moment of inertia grows, the
long-time diffusion coefficient goes asymptotically to zero. The reason is that
the diffusive circling motion becomes more and more difficult by increasing
more and more the moment of inertia, i.e. the circle flyer may get trapped in
a circular path since due to its huge moment of inertia, it can not leave this
circular cage. This results in suppressing the diffusive dynamics.

The function F (ω, t), provided by Eq. (3.38), captures the oscillating behavior
of themean-square displacement, which is damped by thermal fluctuationswith
damping rate Dr. The transient middle time behavior of the mean-square dis-
placement also decays due to the translational friction force. Rotational friction
force induces an additional decaying rate to the dynamics, too.

The velocity of the circle flyer –opposed to that of circle swimmer– does not
instantaneously follow the orientation. The retarded response of the velocity to
the variations of the orientation can be quantified via the average difference be-
tween the projection of the velocity on the initial orientation and the projection
of the orientation on the initial velocity, i.e.,

C(Ṙ(t), n(t)) = 〈Ṙ(t) · n(0)〉T − 〈Ṙ(0) · n(t)〉T

v0

= γ̃e−γt Re
[
c(ω, t)

]
, (3.48)
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with

c(ω, t) = eD̃rD̃−(D̃r−iω̃+γ̃)
r

⎡
⎣D̃2γ̃

r γ(D̃r − iω̃ − γ̃, D̃r)

+ γ(D̃r − iω̃ + γ̃, D̃r) − e2γtγ(D̃r − iω̃ + γ̃, D̃re
−γrt)

− D̃2γ̃
r γ(D̃r − iω̃ − γ̃, D̃re

−γrt)
⎤
⎦. (3.49)

Since the nonvanishing identity of the dimensionless correlationC(Ṙ(t), n(0))
stems from the inertial effects, we call it “inertial delay”.

As a function of time,C(Ṙ(t), n(0)) starts from zero at t = 0 and re-approaches
zero for times much larger than the damping times. Before decaying, the iner-
tial delay reaches its maximum value, when the velocity direction pursues the
orientation with a pronounced delay. Fluctuating torque accelerates the decay
rate such that in case of small random torque, the velocity and the orientation
remain correlated for a longer time. Circling motion can cause the inertial de-
lay to oscillate between positive and negative values while decaying, until the
oscillations damped to zero. During the moments with negative inertial delay,
the orientation, due to circling, gets lag behind the velocity direction.

The asymptotic behavior of the inertial delay for small moments of inertia is

C(Ṙ(t), n(t)) = 2A (ω)γ(1 + Dr

ξr

J) + O(J2), (3.50)

which intuitively demonstrates, how, the leading order J increases the inertial
delay. Here, the function A (ω) is described as

A (ω) =
[
Dr(γ2 − Dr2 − ω2)(cos(ωt)e−Drt − e−γt)

+ ω(γ2 + Dr2 + ω2) sin(ωt)e−Drt
]

×
[(

(γ + Dr)2 + ω2
)(

(γ − Dr)2 + ω2
)]−1

. (3.51)

As the moment of inertia grows such that it goes to infinity, the inertial delay
approaches

lim
J→∞

C(Ṙ(t), n(t)) = 2γω

γ2 + ω2 sin(ωt), (3.52)

which is independent of Dr. Specifically, large moments of inertia put the im-
pact of the rotational noise in the shade; hence no decoherence arises in corre-
lations.
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3.4 Time-dependent self-propulsion, inertia,

damping, and fluctuations

Here we study the influence of temporal behavior of different parameters on
the dynamics of the circle flyer. To do so, we focus on two different cases:
First, slowly varying parameters with respect to time; second, rapidly oscillat-
ing parameters. We also present the first order non-adiabatic correction to the
adiabatic approximation.

3.4.1 Adiabatic approximation for slow variations

When the parameters involved in the dynamics change gradually in time, the
system can be analyzed through adiabatic approximation. Specifically, the mi-
croflyer can adapt such rapidly to the slow variations that dynamically it has the
same experience as that when the concerning parameters are time-independent;
hence we use the results of the previous section, i.e. sec.3.3, to investigate the
behavior of a microflyer with temporally varying parameters within adiabatic
approximation. Here the variations are considered to be slow if the temporal
changes happen on a time-scale much larger than the time-scales of the system.

We investigate the adiabatic dynamics of a microflyer with power-law time de-
pendence in moment of inertia, self-propulsion, rotational friction and diffusion
coefficients, namely

J(t) = j0t
α, Vp(t) = v0t

β, ξr(t) = ξr0 tδ Dr(t) = Dr0 tε , (3.53)

and vanishing circling frequency. In practice, a gradually varying dynamics
is obtainable from power-law varying parameters through a two-fold process;
first, the time t is scaled with a large factor t0, while t  t0. Second, the mea-
surements are set to initiate at t = t0. Then, for instance, the power-law time
dependence tα transforms to (1 + t/t0)α. In order to have a gradually varying
temporal behavior, the larger the absolute value of the law’s exponent, i.e. |α|,
is, the larger the scaling factor t0 requires.

In case of large moments of inertia, which happens for large J0, the long-time
mean-square displacement is proportional to

〈(R(t) − R0)2〉 ∼ v2
0

√
j0

Dr0 ξr0
t1+2β+(α−δ−ε)/2 , (3.54)

which is obtained by Eq. (3.47) within adiabatic approximation and gives rise
manifestly to anomalous diffusion. If

2β + (α − δ − ε)/2 > 0 , (3.55)
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3.4 Time-dependent self-propulsion, inertia, damping, and fluctuations

superdiffusive behavior emerges in long-time dynamics. Themicroflyer can not
undertake subdiffusion in long-time limit since even for −1 < 2β + (α − δ −
ε)/2 < 0, the subdiffusive behavior of Eq. (3.54) is suppressed by the first term
in Eq. (3.47) and a normal diffusive behavior arises, which is equivalent to the
passive diffusion with 〈(R(t) − R0)2〉 = 4Dt.

When j0 reduces to be small enough, through Eq. (3.45) within adiabatic ap-
proximation, we obtain the long-time diffusive behavior to be proportional to

〈(R(t) − R0)2〉 ∼ v2
0

Dr0
t1+2β−ε + v2

0j0

ξr0
t1+2β+α−δ . (3.56)

When

2β − ε > 0 , (3.57)

or

2β + α − δ > 0 , (3.58)

the microflyer performs superdiffusive motion in long-time limit. when the
moment of inertia vanishes, i.e. in the limit j0 → 0, the mean-square dis-
placement agrees with the results of a microswimmer with power-law time-
dependent self-propulsion as reported in Ref[111]. In case of −1 < 2β − ε < 0
and −1 < 2β + α − δ < 0, the subdiffusion, which appears in Eq. (3.56), is
overwhelmed by normal diffusion, that stems from random forces.

Temporally varying mass or translational friction coefficient can not alter the
long-time dynamics of the circle flyer; however, the short-time dynamics gets
affected by variations in mass or ξ (see Eqs. (3.40) and (3.41)). In case of vanish-
ing noise, which is relevant to the macro variable-mass systems such as rockets,
taking into account a time-dependent mass can also change the dynamics sig-
nificantly (see Eqs. (3.16) and (3.17)).

3.4.2 Non-adiabatic correction to the adiabatic

approximation

We are interested in the first order non-adiabatic correction to the adiabatic
approximation of the temporally-varying parameters. To do so, we use Tay-
lor expansion and keep the linear terms up to the first time derivative of the
parameters; for instance,

γr(t) � γr + γ
′
rt, (3.59)

e± ´ t
0 dτγr(τ) � e±γrt(1 ± γ

′
r

t2

2 ), (3.60)
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

where γ
′
r denotes the first derivative of γr(t). For reason of simplicity, we just

present here the corrections to long-time dynamics regarding slow variations
in ξr and Dr. Within adiabatic approximation, the dominant first order non-
adiabatic correction to the adiabatic approximation of the long-term diffusive
behavior is characterized as

〈(R(t) − R0)2〉(γ′, D
′
r) = Re

⎧⎨
⎩2F2(Ω̃, Ω̃; Ω̃ + 1, Ω̃ + 1; −D̃r)

×
(

Dr
′γr

D2
r

− γr
′

Dr

)
+ γr

′Dr
Dr − iω + γr

γr(Dr − iω)2

− Dr
′

(Dr − iω)

⎫⎬
⎭4v2

0
γr

eDr/γr t2, (3.61)

where 2F2 denotes the generalized hypergeometric function and Ω̃ = D̃r − iω̃.
Therefore, the first order non-adiabatic correction induces a ballistic phase to
the long-time dynamics of the circle flyer. Here we use the notation 〈(R(t) −
R0)2〉(γ′, D

′
r) to emphasize non-adiabatic correction; whereas the full mean-

square displacement is obtained within adiabatic approximation through the
summation of Eqs. (3.35) and (3.61) and replacing constant γr and Dr with the
time-dependent ones.

3.4.3 Fast variations

Rapidly varying parameters prevent the system from adapting instantaneously
to the changes. Therefore, the dynamics can be approximated by the response
of the system to the mean variations of the corresponding time-dependent pa-
rameter over a time-window; which should be sufficiently long for the system
to perceive the variations and be able to respond to them. Here the variations
are fast if the rate of change is much faster than the damping rates.

When the mean variations yield a constant value, the results of sec.3.3 for time-
independent parameters are retrieved as a rough estimate for the behavior of
the system. For instance, in case of a rapidly oscillating moment of inertia

J(t) = j0
(
1 + sin(νjt)

)
, (3.62)

with large frequency νj → ∞, the system can respond to just the average of
these fast oscillations over one period, i.e.

J(t) = j0 + j0
νj

2π

ˆ 2π/νj

0
dt sin(νjt) = j0 . (3.63)

When ω = 0, in the limit jo → ∞ and by using Eq. (3.63), the long-time mean-
square displacement yields

〈(R(t) − R0)2〉 ∼ 4Dt + 2v2
0

√
πj0

2Drξr

t , (3.64)
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3.5 Oscillating self-propulsion speed

which is equivalent to the long-time dynamics of a microflyer with large time-
independent moment of inertia given by Eq. (3.47). For a sufficiently small mo-
ment of inertia, the long-time diffusive behavior becomes

〈(R(t) − R0)2〉 ∼ 4Dt + 2 v2
0

Dr

t + 2v2
0j0

ξr

t , (3.65)

which resembles the long-time diffusion of a microflyer whose moment of in-
ertia is sufficiently small (see Eq. (3.45)).

3.5 Oscillating self-propulsion speed

Here the dynamics of a circle flyer with oscillating propulsion speed is inves-
tigated, while inertia, damping, fluctuations, and circling frequency are time-
independent. The self-propulsion speed is modeled by

Vp(t) = v0

(
1 + χ sin(νt + θ0)

)
, (3.66)

with the propulsion oscillation frequency ν. Here v0χ and θ0 are the amplitude
and initial phase of the oscillation, respectively, with χ ≤ 1. We start the dis-
cussion with noise-free situation. Then, we take the effect of Brownian noise
into account. Subsequently, we just focus on the translational dynamics since
the oscillatory behavior of the self-propulsion does not affect the rotational dy-
namics; namely the rotational dynamics is the same as that in sec.3.3.

3.5.1 Results for vanishing noise

As thermal fluctuations vanish, the noise-free translational velocity becomes

Ṙ(t) = γ̃v0P̂

[
ei(φ0+ ˙̃φ0−ω̃)

(
L (ω̃, −1, 0) − i

χ

2 eiθ0L (ω̃ + ν̃, −1, 0)

+ i
χ

2 e−iθ0L (ω̃ − ν̃, −1, 0)
)]

+ Ṙ0e
−γt, (3.67)

which results in the noise-free translational coordinate

R(t) = v0

γr

P̂

[
ei(φ0+ ˙̃φ0−ω̃)

(
L (ω̃, 1, 1) − i

χ

2 eiθ0L (ω̃ + ν̃, 1, 1)

+ i
χ

2 e−iθ0L (ω̃ − ν̃, 1, 1)
)]

+ R0 + Ṙ0

γ

(
1 − e−γt

)
. (3.68)

Here L (ω̃, a, b) is provided by Eq. (3.18). The subsequent results are for the
situation when the ratio of the frequencies ω and ν is rational and ω �= 0.

49



Chapter 3 Normal and anomalous diffusion in active Langevin motion

After some transient revolutions, circle flyer arrives in a periodic trajectorywith
period T = 2π LCM(ω−1, (ω + ν)−1, |ω + ν|−1). Here LCM denotes the lowest
common multiple. In special case ω = ν, the period of the trajectory is simply
T = 2π/ω.

Equation (3.68) demonstrates that compared to the shrunk circle flyerwith smaller
J , when the circle flyer is stretched, i.e. in case of larger moment of inertia, the
transient initial regime takes longer and during which the particle flies farther
away through initial transient revolutions. The transient initial regime eventu-
ally relaxes to a periodic motion around the center

Rc = v0

γr

P̂

[
ei(φ0+ ˙̃φ0−ω̃)

(
L (ω̃, 0, 1) − i

χ

2 eiθ0L (ω̃ + ν̃, 0, 1)

+ i
χ

2 e−iθ0L (ω̃ − ν̃, 0, 1)
)]

+ R0 + Ṙ0

γ
. (3.69)

The final periodic flying path is characterized by

Rosc(t) = γv0P̂

[
ei(φ0+ ˙̃φ0−ω̃)

(
C (t, ω) − i

χ

2 eiθ0C (t, ω + ν)

+ i
χ

2 e−iθ0C (t, ω − ν)
)]

, (3.70)

where the function C is defined in Eq. (3.21). The final flying path after relax-
ation of the initial regime is due to an interplay between circling and propulsion
frequencies and independent of the moment of inertia. The center of the peri-
odic flying path, on the other hand, is an increasing function of the moment of
inertia which illustrates that through transient initial revolutions, the stretched
particle flies away farther than the shrunk one.

3.5.2 Effect of Brownian noise

In the presence of thermal fluctuations, the translational velocity correlation
function is described by

〈Ṙ(t) · Ṙ(0)〉T = 2Dγe−γt + v2
0
2 γ̃e−γt Re

[
V (ω, t) + χ2

4 V (ω + ν, t)

+ χ2

4 V (ω − ν, t)
]

, (3.71)

50



3.5 Oscillating self-propulsion speed

where the function V is given by Eq. (3.34). This yields the mean-square dis-
placement [92]

〈(R(t) − R0)2〉 = 2v2
0

γr

t Re
[
D(ω) + χ2

4 D(ω + ν) + χ2

4 D(ω − ν)
]

+ v2
0

γγr

e−γt Re
[
Δ(ω, t) + χ2

4 Δ(ω + ν, t) + χ2

4 Δ(ω − ν, t)
]

+ 2v2
0 Re

[
F (ω, t) + χ2

4 F (ω + ν, t) + χ2

4 F (ω − ν, t)
]

+ 4D(t + e−γt − 1
γ

), (3.72)

where functions D , Δ, and F are provided by Eqs. (3.36), (3.37), and (3.38),
respectively.

In the short-time limit, the circle flyer undergoes ballistic motion such that

〈(R(t) − R0)2〉 = 〈Ṙ(0) · Ṙ(0)〉T t2 . (3.73)

As moment of inertia vanishes, the ballistic dynamics approaches

lim
J→0

〈(R(t) − R0)2〉 =
(

2Dγ + K (ω, Dr) + χ2

4 K (ω + ν, Dr)

+ χ2

4 K (ω − ν, Dr)
)

t2, (3.74)

while as J grows, it goes to

lim
J→∞

〈(R(t) − R0)2〉 =
(

2Dγ + K (ω, 0) + χ2

4 K (ω + ν, 0)

+ χ2

4 K (ω − ν, 0)
)

t2. (3.75)

The function K is introduced in Eq. (3.42). The difference between these two
limiting behaviors stems from the fact that a large moment of inertia eliminates
the impact of rotational fluctuations. In Eqs (3.74) and (3.75), the term 2Dγ
associates to the thermal energy and the rest is the contribution of the injected
kinetic energy.

The long-time diffusion coefficient

DL = D + v2
0
2 T (ω, ν) , (3.76)

is characterized in terms of the effective persistence time of a circle flyer with
oscillating propulsion speed

T (ω, ν) = τ(ω) + χ2

4 τ(ω + ν) + χ2

4 τ(ω − ν) . (3.77)
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Chapter 3 Normal and anomalous diffusion in active Langevin motion

Here the function τ represents the effective persistence time of a circle flyer
with time-independent propulsion speed as shown by Eq.(3.44). The inertial
effects affect the long-term diffusive behavior through the moment of inertia.

In case of small moments of inertia, the long-time diffusion coefficient of the
circle flyer asymptotically approaches

DL = D + v2
0
2 Tcs(ω, ν) + v2

0Dr

2ξr

Tcs(ω, ν) J + O(J2), (3.78)

which is dominantly proportional to the moment of inertia. Here

Tcs(ω, ν) = τcs(ω) + χ2

4 τcs(ω + ν) + χ2

4 τcs(ω − ν), (3.79)

represents the effective persistence time of a circle swimmer with oscillating
propulsion speed [111, 112]. The function τcs, as defined in Eq. (3.46), indi-
cates the effective persistence time of a circle swimmer with time-independent
propulsion speed.

As moment of inertia grows, the long-time diffusion coefficient goes asymp-
totically to zero. This stems from the fact that diffusive circling becomes more
difficult by increasing the moment of inertia due to getting trapped in circular
cages of the trajectory.

However, the long-time diffusion coefficient of a circle flyer with oscillating
propulsion speed asymptotically grows proportional to

√
J when ω = ν. This

stems from the fact that in this resonance situation, the particle flies with opti-
mum speed along a preferred direction, here x-direction; circling becomes sup-
pressed and diffusion gets enhanced. The term τ(ω − ν) in Eq. (3.76) captures
the resonance situation while the terms proportional to ω and ω + ν vanish as
J grows. As soon as ν drives out of resonance, circling motion dominates and
long-time diffusion fades away by increasing the moment of inertia.

The oscillatory nature of the self-propulsion does not change the inertial delay,
namely the inertial delay is the same as that for a circle flyer with constant
propulsion speed. The reason is that the oscillations cancel out each other over
the course of each propulsion period, hence only the term corresponding to the
constant propulsion, i.e. v0, contributes in the inertial delay.

3.6 Conclusion

We have investigated the dynamics of a single circling inertia-dominated Brow-
nian particle, which is named circle flyer, by including time-dependence with
regard to inertia, self-propulsion, damping and fluctuations. A time delay be-
tween the orientation variations and the subsequent changes in the velocity
direction depicts the profound influence of inertia on dynamics.
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3.6 Conclusion

In case of a circle flyer with oscillating propulsion speed and constant inertia,
damping, circling frequency and fluctuations, we have found an interesting in-
terplay between circling frequency and propulsion frequency. In the absence of
thermal fluctuations, periodic trajectories are observed after passing a transient
initial regime. The final flying path is independent of the moment of inertia;
however, for larger moments of inertia, it takes more transient revolutions un-
til the regular periodic path is reached. By including thermal noise, we have
specifically provided general results for mean-square displacement and inertial
delay; whereas the inertial delay is not affected by propulsion oscillations.

Moreover, we have studied the dynamics of a microflyer with time-dependent
inertia, damping, self-propulsion and fluctuations. To do so, we have addressed
two limiting cases; slow variations and rapid oscillations. We have highlighted
that a microflyer can undergo anomalous diffusion if temporally varying pa-
rameters are included. The first order non-adiabatic correction to the adiabatic
approximation is also presented, which demonstrates a transition to the ballistic
regime.

This study emphasizes that the diffusion transport process can be adjusted by
taking into account an appropriate time-dependencewith regard to the system’s
parameters. For future studies, it is interesting to take a mixture of inertia-
dominated Brownian particles into account and investigate the collective be-
havior of such a system in simple or complex environments.
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Chapter 4 Localization of a microswimmer in a triangular trap

4.1 Introduction

The development of particle trapping techniques which allows controlling the
number density and configuration of micron- and nano-sized objects has pro-
moted some of the most spectacular advancements in fundamental and applied
science throughout the past few decades. In particular at small length scales,
where the particle’s motion is governed by thermal noise, their spatial confine-
ment requires additional effort which has lead to the development of e.g. Paul
and Penning traps or optical and magnetic tweezers [147, 148, 149].

The resemblance of active colloids with living organisms, makes them ver-
satile model systems to study the response of organisms to external stimuli
[150]. However, confinement of these active Brownian agents in an efficient
and experimentally realizable mechanism is still a challenge. So far, only little
attempts have been performed to develop generic mechanisms for localizing
Brownian self-propelled particles, for instance, some studies have presented
near–harmonic trap models for confinement within external potentials via uti-
lizing optical landscapes [121], acoustic tweezers [151], or even gravitation [55],
or using optical gradient [78] to trap such particles.

In this letter, we introduce a trapping mechanism induced by phototaxis for
localizing active colloids. We report one-dimensional confinement of a single
self-propelled particle, which moves on a two-dimensional substrate, by pho-
totactic motion in a triangular trap. This creates a semi one-dimensional active
diffusion, which brings about an improved functionality of microswimmers in
sensing applications, such as telemetry and monitoring.

4.2 Theory

In our trapping mechanism, the bias in dynamics required generally for a tactic
motion is created by an aligning torque which rotates the orientation towards
intensity extremum, i.e. towards minimum or maximum of intensity for nega-
tive and positive phototaxis, respectively. In fact, the key quantity in confining
process is the aligning rate, which reads as

ω (ϕ, x) = c

σ
vp(x) v

′
p(x) sin ϕ. (4.1)

Here, c is a common prefactor, which follows from experiments; c is negative
(positive) for positive (negative) phototaxis case. vp(x) and v

′
p(x) = dvp(x)

d x
de-

note the propulsion velocity and its gradient, respectively. The magnitude of
the aligning torque is inversely tuned by the particle diameter σ.

An active particle phototaxes by a net motion of its center along the gradient of
the light intensity field, i.e. along the x-direction, in a steady triangular motility
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4.2 Theory

in which V min is assumed to be zero. In principle, the triangular trap can be
assumed to be mimicked by this logarithmic trap with curved walls and smooth
bottom (see Fig.4.2). The noise-free probability distribution along x-direction
is obtained as follows

P (x) = c V max

σπ

|x|
ln

(√
(lv/2)2 + 1

)(x2 + 1)
−1− c V max

2σ ln

(√
(lv/2)2+1

)

(
1 − (x2 + 1)

− c V max

σ ln

(√
(lv/2)2+1

) )−1/2
. (4.10)

Based on the leading order analysis, by taking the second moment 〈x2〉 into
account, the condition to have a localized particle is

δ = c V max

2σ ln
(√

(lv/2)2 + 1
) > 1. (4.11)

For δ < 1 the particle is delocalized and the transition from localization to
delocalization happens when δ = 1.
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ABSTRACT
We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-
dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional
to the imposed light intensity, and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the
active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find
a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the
other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium
system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-
dependent) gravity such that one can define effective “heaviness” of the self-propelled particles. In analogy to shaken granular
matter in gravity, we define a “colloidal Brazil nut effect” if the heavier particles are floating on top of the lighter ones. Using
extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and
explain it based on a generalized Archimedes’ principle within the effective equilibrium model: heavy particles are levitated in
a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform
real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083098

I. INTRODUCTION

The physics of active colloidal matter is a rapidly expand-
ing research area on nonequilibrium phenomena. Typically,
active suspensions are composed of self-propelled particles
on the micron scale, swimming in a fluid at low Reynolds num-
ber.1–5 The main focus of research has been both on the indi-
vidual swimming mechanism and on collective effects of many
such microswimmers.6 The individual swimming speed of a
single particle, also called particle motility, is typically of the
order of microns per second and can be steered externally by
various means.7–21

Recently, the behavior of microswimmers has been
explored in externally imposed motility fields where the

swimming speed depends on the spatial coordinate.22 This
not only mimics the chemotactic escape of a living swimming
object from toxins or its attraction by nutrient gradients23–27
but is also important to steer the directedmotion of swimmers
for specific applications such as targeted drug delivery28 and
nanorobotics.29 Various kinds of motility fields have recently
been considered including constant gradients,30,31 stepwise
profiles,32,33 and ratchets,34,35 as well as time-dependent
motility fields.36–39 In particular, the tunability of the colloid
motility by light9–14,40–42 provides the opportunity to impose
almost arbitrary laser-optical motility fields. When the pre-
scribed light intensity is proportional to the local motility, a
particle will get dynamically trapped in the dark spots where
its motility is low.32,33,43

J. Chem. Phys. 150, 114902 (2019); doi: 10.1063/1.5083098 150, 114902-1
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Here we explore a repulsively interacting binary mix-
ture of small self-propelled spherical colloidal particles doped
with large ones. The binary mixture of self-propelled colloids
is confined to a two-dimensional substrate in a static peri-
odic triangular-like light intensity field. The motility of the
particles is proportional to the imposed light intensity, but
the prefactor depends on the species. In line with previous
experimental findings, the light-activated particles also expe-
rience a torque aligning their motion towards the direction of
the negative intensity gradient, i.e., swimmers exhibit nega-
tive phototaxis.35 This strongly favors the dynamical trapping
effect near motility minima. Using Brownian dynamics com-
puter simulations, we find indeed a demixing of the active
particles mixture, where typically one species of particles is
close to the minimum and the other is centered around in
an outer shell. In the limit of very strong aligning torque, we
demonstrate that an exact mapping of the nonequilibrium sys-
tem onto an equilibrium system is possible. This equilibrium
system involves an effective external potential that is mini-
mal at the intensity minima. The external potential is piece-
wise parabolic around the intensity minima. Therefore, it can
be understood as an external gravitational potential, where
the gravity force depends on the height. Using this analogy,
one can define an effective “heaviness” of the self-propelled
particles. Thereby, there is an important link between motil-
ity fields of active colloids and equilibrium sedimentation of
passive colloids where a lot of theoretical44–48 and exper-
imental knowledge49–53 exists, see Ref. 54 for a review. In
analogy to shaken granular matter in gravity55–60 and to the
sedimentation of colloidal mixtures,61–67 we define a “col-
loidal Brazil nut effect (BNE)” if the heavier particles are
floating on top of the lighter ones. We identify system param-
eters for the colloidal Brazil nut effect to occur and explain
it based on a generalized Archimedes’ principle68 within the
effective equilibrium model: heavy particles are levitated in a
dense fluid of lighter particles if their effective mass density is
lower than that of the surrounding fluid. As an aside, another
application of the Archimedes’ principle has been recently
applied to the lift of passive particles in an active bath.69

We also perform real-space tracking experiments on
light-activated colloidal mixtures. The experimental results
agree quantitatively with the simulation predictions.

The paper is organized as follows: in Sec. II, we introduce
the theoretical model, define the colloidal Brazil nut effect,
and propose a simple depletion bubble picture to predict
the basic physics. Our experiments are described in Sec. III.
Results from both theory and experiment are presented in
Sec. IV. Finally, we conclude in Sec. V.

II. THEORY
A. Active Brownian particle model

We consider an active Brownian particle model for a mix-
ture of big and small spheres moving in the two-dimensional
xy-plane at temperature T. The particles have a diameter σα ,
where α = b, s (for big and small particles) is a species index.
The self-propulsion speed of the particles vα(x) depends on
their position and is periodic in the x-coordinate with a

characteristic spacing lv, but independent of the y-coordinate.
Having a light motility landscape in mind,35 we assume the
same function for both types of particles except for a differ-
ent prefactor. In detail, we assume a triangular velocity profile
(see Fig. 1), for which in one period

vα(x) = 2 |x |Vmax
α /lv for |x | ≤ lv/2, (1)

where Vmax
α indicates the maximum propulsion velocity of

species α. We consider a large field with several of such
velocity grooves, which accommodatesNα particles of species
α (α = b, s). The system is considered in a rectangular box
of edge lengths Lx and Ly with periodic boundary condi-
tions in both directions. Then the partial system densities can
either be described by areal densities ρ

(a)
α = Nα/(LxLy) or line

densities per wedge ρα = ρ
(a)
α lv.

The direction of the self-propulsion velocity defines an
internal particle orientation degree of freedom which is
described by the angle ϕ between the velocity and the x-axis.
In addition, there is a torque aligning the particle orientation
along the negative gradient of the motility field, which leads to
an angular velocity ωα . Note that, in a homogeneous motility
field, where vα (x) is constant, this angular velocity obviously
vanishes. In general, following our modeling in a previous
study,35 the angular velocity ωα (ϕ, x) also depends on the x
coordinate via

ωα (ϕ, x) =
c
σα

vα (x) v′α(x) sin(ϕ), (2)

where v′α (x) =
dvα (x)
d x denotes the velocity gradient and c is a

common prefactor. Moreover, it was shown35 that the mag-
nitude of the angular velocity scales with the inverse of the
particle diameter.

The particles interact via a short-ranged repulsive
Weeks-Chandler-Andersen (WCA) pair potential70

uαβ (r) =
⎧⎪⎪⎨
⎪⎪
⎩

uLJαβ (r) − uLJαβ (Rα + Rβ ) r ≤ σα+σβ

2 ,

0 r >
σα+σβ

2 ,
(3)

FIG. 1. Schematic view of the propulsion velocity as a function of x/lv for the two
different particle species as originating from a triangular-like light intensity field.
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where r is the interparticle distance, uLJαβ (r) = 4ε[(σαβ/r)12

− (σαβ/r)6] is the Lennard-Jones potential, and the additive
repulsion diameters are σαβ = 2−7/6(σα + σβ ) (α, β ∈ {s, b}).
The repulsion strength ε is fixed to 100kBT, where kBT is the
(effective) thermal energy.

We describe the center-of-mass positions of the particles
with

rα,k(t) =
(
xα,k(t), yα,k(t)

)
(4)

and their orientations by the unit vectors

ûα,k =
(
cos(ϕα,k), sin(ϕα,k)

)
, (5)

where ϕα ,k are the orientational angles. Here, k ∈ {1, Nα} labels
the particles of the same species.

In the active Brownian model, the equations of motion
for the translational and orientational degrees of freedom
are coupled overdamped Langevin equations with stochastic
noise. In detail, the translational motion of the kth particle of
species α is governed by

d
dt

rα,k = vα
(
xα,k
)
ûα,k +

1
γα

Fint
α,k +

√
2
kBT
γα

ξα,k(t). (6)

Here, the pairwise repulsive interaction force Fint
α,k is obtained

from

Fint
α,k = −∇α,k

∑
β=b,s

Nβ∑
i=1

′

uα,β
(���rβ,i − rα,k���) . (7)

The prime symbol indicates the exclusion of the self-
interaction, i.e., if β = α, then i cannot take the value k.

The rotational motion of the kth particle of species α is
governed by

d
dt

ϕα,k(t) = ωα

(
ϕα,k, xα,k

)
+

√
2
kBT
γr
α

ξ
ϕ

α,k(t). (8)

ξα,k(t) = (ξx
α,k(t), ξ

y
α,k(t)) and ξ

ϕ

α,k(t) describe zero-mean
Markovian white noise, with the variance

〈ξα,k(t) ⊗ ξα′,k′ (t
′)〉 = δ(t − t′)δαα′δkk′1 (9)

and

〈ξφ

α,k(t)ξ
φ

α′,k′ (t
′)〉 = δ(t − t′)δαα′δkk′ , (10)

where 〈· · · 〉 indicates a noise average, ⊗ denotes the dyadic
product, and 1 is the unit matrix. For species α, the transla-
tional and rotational friction coefficients are represented by
γα and γr

α , respectively. We neglect hydrodynamic interac-
tions between particles.71

For spherical particles with a hydrodynamic diameter σα ,
the friction coefficients are given by γα = 3πησα and γr

α

= πησ3
α , where η is the viscosity of the medium. The respec-

tive short-time translational and rotational diffusion coeffi-
cients Dα and Dr

α are characterized by the corresponding
friction coefficients such that

Dα = kBT/γα (11)

and

Dr
α = kBT/γr

α . (12)

Thus, for spherical particles, Dα and Dr
α fulfill

Dα/Dr
α = σ2

α/3 (13)

when in equilibrium (vα = 0).
In our active Brownianmodel, particles will localize where

the self-propulsion velocity is zero, i.e., around x = nlv with an
integer n. There are two reasons for that: first of all, a vanish-
ing mobility implies a larger resting time. Consequently, even
for c = 0, the probability density of an ideal non-fluctuating
particle will scale as 1/vα (x). Fluctuations will lead to an alge-
braic decay with distance x (when lv→∞).72 Second, andmuch
more importantly here, for c > 0, there is an aligning torque
that rotates the particles back such that they travel back to
the intensity minimum. The second effect yields exponential
localization of an ideal particle in the groove as a function of x
when lv →∞.

B. Effective equilibrium model
In the experiments, the aligning torque towards the neg-

ative gradient of the velocity field is strong35 relative to the
rotational noise. In this limit, formally achieved by very large
prefactors c in Eq. (2), one can neglect the stochastic term in
Eq. (8). Then, for all particles, the orientation is fixed along the
x-axis such that in one period

φα,k(xα,k) =
⎧⎪⎨
⎪
⎩

π 0 < xα,k < lv
2 ,

0 − lv
2 < xα,k < 0,

(14)

since misalignments are quickly oriented back. This implies
that the self-propulsion velocity in the translational Langevin
equation (6) is directed along the x-axis and the resulting term
can be derived as a gradient from a “potential” function. This
means that the equations of motion in this limit can be written
as

d
dt

rα,k =
1
γα

(
Fextα

(
xα,k
)
+ Fint

α,k

)
+

√
2
kBT
γα

ξα,k(t), (15)

where the external force Fextα (x) is a gradient of a potential
energy Uα(x),

Fextα (x) = − d
dx

Uα (x)êx. (16)

The equations of motion (15) describe ordinary Brownian
particles—with translational coordinates only—in equilibrium
and define our effective equilibrium model. In general, in anal-
ogy to the velocity profile of the active mixture defined via
Eq. (1), Uα(x) is periodic in x with periodicity length lv and is
piecewise parabolic, see Fig. 2. In one period, it is given by

Uext
α (x) = −γα

∫ x

0
dx′ v(x′) = −2Vmax

α

γα

lv

∫ x

0
dx′ ��x′��

= Vmax
α

γα

l v
x2 for |x | ≤ lv/2. (17)

In this equilibrium model, particles would clearly accu-
mulate in the minimum of the potential energy, e.g., around
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FIG. 2. Schematic view of the external potential applied to the particles in the
effective equilibrium model as a function of x/lv .

x = 0, in qualitative agreement with the active Brownian
particle model.

C. Definition of the colloidal Brazil nut effect
The Brazil nut effect (BNE) is directly connected to the

space-dependent accumulation around the motility minima in
the steady state. Information about particle distributions is
contained in the inhomogeneous one-particle density profiles
in the resulting steady state. For a system homogeneous in the
y-direction, the corresponding density profiles only depend
on x and are lv-periodic non-negative functions. In analogy to
equilibrium systems,73 we hence define line-density profiles

ρα(x) =
〈 Nα∑

i=1

δ(x − xα,i)
〉
. (18)

Here, the brackets 〈. . .〉 denote a steady state average and
become a traditional canonical average in equilibrium (for
vα(x) ≡ 0, respectively, in the effective equilibrium model).

In order to characterize the Brazil nut effect, we define a
spatial extension (or a width) hα of the line-density profile in
one groove by considering the normalized second moment

hα =

√√√√√ ∫ lv /2−lv /2 dx x2 ρα (x)

∫ lv /2−lv /2 dx ρα (x)
. (19)

For sedimentation, this would correspond to an averaged
sedimentation height of species α.

The effective equilibrium model now helps to define
a “heaviness” of the particle species. The prefactor γαVmax

α

∼ σαVmax
α in Eq. (17) for the potential energy corresponds to

effective heaviness. Therefore, we define that the big particles
are “heavier” than the small ones if the following condition is
fulfilled:

σbV
max
b > σsVmax

s , (20)

while obviously in the opposite case the smaller particles are
heavier than the bigger ones. By definition, a Brazil nut effect
occurs if the heavier particles are on top of the lighter ones,
i.e., if the height of the heavier particles is larger than the height
of the lighter particles. Clearly, there are three possibilities for
that:
1. The bigger particles are heavier than the smaller ones,

i.e., σbVmax
b > σsVmax

s . Then a BNE occurs if hb > hs. We
call this situation BNE(1). Conversely, if hb < hs, there is a
state with the reverse effect, which we refer to as reverse
BNE(1).

2. The smaller particles are heavier than the bigger ones,
i.e., σsVmax

s > σbVmax
b . Then a BNE occurs if hs > hb, this

situation is referred to as BNE(2). Conversely, if hs < hb,
there is a reverse BNE referred to as reverse BNE(2).

3. The special case when hs = hb is termed no BNE.
In conclusion, we have classified the system within a

scheme of five possible states: BNE(1), reverse BNE(1), BNE(2),
reverse BNE(2), and no BNE. Two of these states correspond
to a Brazil nut effect where the heavier particles float on the
lighter ones. We remark that in the sequel, gravity in our
two dimensional system is directed along the x-direction (not
along the conventional y-direction). So, floating on the top
means an outermost layer along the y-direction.

D. Depletion bubble picture
We now provide a minimal theory that describes the

physics driving the colloidal BNE in terms of a generalized
Archimedes’ law. This approach is based on the effective equi-
librium model and was discussed in the context of sediment-
ing colloidal mixtures in Ref. 68. When a big particle excludes
small particles, it creates a bubble or a cavity depleted by small
particles. This “depletion” bubble is attached to the big parti-
cle and effectively provides a buoyant force which lifts the big
particle. For the sake of simplicity, let us assume that the den-
sity field of the small particles around the groove is piecewise
constant, i.e., there is a block of fluid at (areal) density ρ̄s (see
Fig. 3).

When a big particle is embedded into this active fluid
at a distance xb from the origin, it will create an encircling
depletion bubble of radius Rd = (σb + σs)/2 due to the repul-
sive interactions. This bubble is attached to the big parti-
cles. According to the effective equilibrium model, one can
locally apply Archimedes’ principle such that the big particle
experiences a buoyant lift force Fbuoyb given by

Fbuoyb (xb) = πR2
dρ̄sF

ext
s (xb), (21)

where, from Eq. (16),

Fexts (xb) = −2Vmax
s

γs

lv
��xb�� for ��xb�� ≤ lv/2. (22)

If the buoyant lift force dominates the inward effective
force [see Eq. (16) again], i.e., if

Fextb (xb) < Fbuoyb (xb) (23)
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FIG. 3. Schematic picture of the depletion bubble mechanism. Small particles
are considered to be uniformly distributed in a fluid block of constant density ρ̄s.
When a big particle delves into this fluid, it will create a depletion bubble of radius
Rd = (σb + σs)/2. This will result in an equilibrium buoyant force according to
Archimedes’ principle.

is fulfilled, the big particles are expelled from the central area
of the grooves by the small ones. Obviously, the dependence
on xb drops out in Eq. (23) such that the condition can be
rewritten as

Vmax
b

Vmax
s
� πρ̄s(

σb + σs

2
)2
σs

σb
. (24)

Combined with our previous classification of the Brazil
nut effect, for a given particle heaviness, this approach makes
explicit predictions about whether the state BNE(1) occurs or
not. However, it requires an input for ρ̄s from simulations and
is therefore not fully microscopic. Moreover, this approach
only works in the case that the big particles are much more
diluted than the small ones.

We finish with two remarks: first of all, correlations will
lead to density oscillations in the density profile of the small
particles around the big one as discussed in Ref. 74. Second,
the converse situation BNE(2), where a heavy small particle
is floating on a sea of big particles, is also conceivable. This
would result from a strongly non-additive large radius Rd. A
similar depletion bubble picture can be established in this
case by interchanging the species indices b and s which we
shall, however, not consider further in detail. For more details
to the BNE(2) state, we refer to previous studies on passive
colloids.74,75

E. Brownian dynamics simulations
We have solved the equations of motion for the active

Brownian model and the effective equilibrium model by using
Brownian dynamics computer simulations. In detail, Nb = 14
big and Ns = 2068 small particles were simulated in a peri-
odic square simulation box with size Lx = Ly = 102σs, which
contained 3 complete periods of the motility field, at room
temperature. The partial line densities per wedge, ρα , are thus
given by ρs = 6.76σ−1s and ρb = 0.046σ−1s . In terms of a typical
Brownian time τ = σ2

s /Ds, the time step Δt was chosen to be
Δt = 10−5τ. The initial configuration was an ideal gas, and the

systemwas equilibrated for an initial time of about 60τ. Statis-
tics for the density profiles was gathered during an additional
subsequent time window of typically 200τ.

In line with the experiments, the maximum velocity of the
small particles was fixed at Vmax

s = 34.5σs/τ and the pref-
actor c was chosen to be c = 0.6τ.35 The simulation results
are obtained for different diameter ratios, where σs has been
kept fixed. For each diameter ratio, the maximum velocity
of the big particles was varied from Vmax

b = 0.25Vmax
s to

Vmax
b = 3Vmax

s with steps of 0.25Vmax
s . Then, for every value

of Vmax
b /Vmax

s , the occurrence of BNE or reverse BNE has been
investigated.

III. EXPERIMENTS
We experimentally studied concentrated active colloidal

mixtures with different size ratios. As small active particles,
we used silica spheres of diameter σs = 2.7 μm half-capped
with a carbon layer of thickness d = 20 nm. We doped the
active suspension with a few large active colloids of diameters
σb = 13 μm, 7.75 μm, and 4.96 μm, respectively, while keep-
ing the diameter of small spheres constant. The partial line
densities per wedge were approximately ρs = 2.6 μm−1 and ρb
= 0.027 μm−1 for small and big particles, which are comparable
to the line densities used in the simulation (ρs = 2.5 μm−1 and
ρb = 0.017 μm−1), respectively.

The colloids were suspended in a critical mixture of water
and 2,6-lutidine (lutidine mass fraction 0.286), whose lower
critical point is at Tc = 34.1 ◦C. When the solution is kept well
below this value, the capped colloids perform an entire diffu-
sive Brownian motion. Upon laser illumination (at wavelength
λ = 532 nm), which is only absorbed by the particle’s cap, the
solvent locally demixes, and then persistent particle motion is
achieved with a constant swimming velocity v which linearly
depends on the incident laser intensity.9,10 For a given cap
thickness, independent of the size of the active particles, the
same linear dependence v ∝ I is observed. Since the propulsion
velocity v depends on the absorbed intensity across the par-
ticle’s cap, the speed can be varied by the cap thickness with
the linear dependence v ∝ Id.76

To vary the propulsion velocity in mixtures of big and
small particles, our experiments were performed with three
different carbon cap thicknesses of the big particles: d = 5 nm,
20 nm, and 30 nm. Under our experimental conditions, the
maximum velocity of the small species was fixed at Vmax

s
= 1μm/s. For the big species, Vmax

b was varied as follows:
Vmax
b = 0.25μm/s, 1 μm/s, and 1.5 μm/s. The experiments

for each combination of big and small particles were repeated
between 5 and 20 times to yield good statistical averages.

Periodic triangle-like light patterns were created by a
laser line focus being scanned across the sample plane with a
frequency of 200 Hz. Synchronization of the scanning motion
with the input voltage of an electro-optical modulator leads to
a quasi-static illumination landscape.35 Particle positions and
orientations were obtained by digital video microscopy with a
frame rate of 13 fps. The particle orientation was determined
directly from the optical contrast due to the carbon cap.77
To be more precise, because of the optical contrast between
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the dark carbon cap and the transparent silica, the angu-
lar coordinate ϕ of the active particle can be obtained from
the vector connecting the particle center and the intensity
centroid of the particle image. The error of this detection is
less than 5% as confirmed by comparison with stuck particles
whose orientation can be precisely varied using a rotational
stage.

IV. RESULTS
Figure 4 summarizes our main findings in the (Vmax

b /Vmax
s ,

σb/σs) parameter space of the motility and size ratio of
the mixture. The results are shown for (a) the experi-
ment, (b) the active mixture model, (c) the effective equi-
librium model, and (d) the depletion bubble picture. For the
considered parameter span, three different states, namely,
reverse BNE(2), BNE(1), and reverse BNE(1), were identified
(plus the trivial special case of the no BNE state), see the
legend with the different symbols in Fig. 4(a). Remarkably,
the topology of the state diagram is the same in Figs. 4(a)–
4(d) and there is a quantitative agreement between experi-
ment and theory. As compared to the active mixture model
[shown in Fig. 4(b)], the equilibrium model shows qualita-
tive but not full quantitative agreement. Moreover, the sim-
ple depletion bubble pictures are in line with the equilibrium
model.

As expected, the reverse BNE(2) state is favored when
Vmax
b /Vmax

s is small (i.e., small particles are heavier). When
both species are equally heavy, the crossover from the reverse
BNE(2) to the BNE(1) state takes place, as expressed by the con-
dition σbVmax

b = σsVmax
s , which is shown as the olive green

reference line in Figs. 4(a)–4(d). In the BNE(1) state, the big
particles are heavier but float on the interface. Increasing
Vmax
b /Vmax

s further leads ultimately to the reverse BNE(1), as
the big particles are getting too heavy to be lifted by the
depletion bubble and sink to the motility minima. Hence,
as the motility asymmetry Vmax

b /Vmax
s is increased, the state

sequence

reverse BNE(2) → BNE(1) → reverse BNE(1)

is observed. This sequence is reproduced in all of our 4
approaches considered in Figs. 4(a)–4(d).

Let us now comment on the comparison between the
active mixture and the equilibrium model. The widening of
the stability region of the BNE(1) state in the equilibrium model
can be qualitatively understood in terms of the aligning torque
which is strongest in the equilibrium model. If the aligning
torque is weakened, the demixing is expected to get weaker,
favoring the standard reverse BNE(1) case relative to the BNE(1)

state. This is indeed observed when comparing Figs. 4(b)
and 4(c).

The value of Vmax
b /Vmax

s , where the threshold for the
crossover from BNE(1) to reverse BNE(1) happens, grows
monotonically with σb/σs. This can be explained qualita-
tively within the depletion bubble picture via the generalized
Archimedes’ law. Assuming that the size σs and the areal den-
sity ρ̄s of the small species are fixed, the number of small

FIG. 4. Occurrence of the Brazil nut effect (BNE) in the parameter space spanned
by the motility ratio Vmax

b /Vmax
s and the size ratio σb/σs of the binary mixture.

Results are shown for (a) experiment, (b) the active mixture model, (c) the effective
equilibrium model, and (d) the depletion bubble picture. The olive green curve
indicates the boundary when Feffb = Feffs . Data are presented for four diameter
ratios: σb/σs = 1, 1.84, 2.87, and 4.82 at fixed σs. More detailed results are
shown in Fig. 5 for the three parameter combinations highlighted by the light blue
arrow in (a).

particles excluded by a big one grows by increasing the diam-
eter ratioσb/σs, which results in a stronger buoyant lift force.
Based on Eq. (24), the crossover from BNE(1) to reverse BNE(1)
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FIG. 5. Comparison of experiment and
simulation: (a)–(c) simulation snapshots,
(d)–(f) experimental snapshots, (g)–(i)
line-density profiles ρα (x) [defined via
Eq. (18)], and (j)–(l) polarizations Pα (x)
[introduced in Eq. (26)]. The results
are shown for the reverse BNE(2) with
Vmax
b = 0.25Vmax

s (first column), the

BNE(1) state with Vmax
b = Vmax

s (sec-

ond column), and the reverse BNE(1)

with Vmax
b = 1.5Vmax

s (third column).
The size ratio is kept constant at σb/σs
= 1.84. Since gravity in our 2D system is
along the x-direction, floating on the top
occurs along the y-direction. The inset
of (d) shows the microscope picture of a
single active particle.

J. Chem. Phys. 150, 114902 (2019); doi: 10.1063/1.5083098 150, 114902-7

Published under license by AIP Publishing

Colloidal Brazil nut effect in microswimmer mixtures induced by motility
contras

69



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

is roughly governed by

Vmax
b

Vmax
s
≈ π

4
ρ̄sσ

2
s (

1
σb/σs

+ 1)2
σb

σs
. (25)

The right hand side of Eq. (25) is an increasing function in
σb/σs (for σb/σs ≥ 1). This implies that the crossover from
BNE(1) to reverse BNE(1) occurs at larger Vmax

b /Vmax
s if the diam-

eter ratio σb/σs is increased. Note that this consideration
does not capture the situations on the left hand side of the
olive green curve in the parameter space, where the big par-
ticles are lighter than the small ones, since the depletion bub-
ble picture does not hold here. Finally, we remark that we
never observe a BNE(2) state for the parameters considered
here. However, this state is expected to occur in principle in a
strongly non-additive binary mixture.

Simulational and experimental snapshots together with
averaged partial density and polarization profiles are summa-
rized in Fig. 5 for the three states: reverse BNE(2), BNE(1), and
reverse BNE(1) at fixed size asymmetry and increasing motility
asymmetry Vmax

b /Vmax
s . The associated path of parameters is

marked by a light blue arrow in Fig. 4(a). The snapshots clearly
indicate whether the big particles are floating on the layer
of small particles or are confined to the motility minima and
therefore directly reveal the different states. The partial line-
density profiles ρα(x) [defined in Eq. (18)] reveal a remarkable
quantitative agreement between experiment and simulation
in all three states, see Figs. 5(g)–5(i). Most of the deviations
are within the statistical errors, and small systematic devia-
tions may be attributed to polydispersity and hydrodynamic
interactions which are neglected in our model.

Finally, we show polarization profiles in Figs. 5(j)–5(l).
For a one-component active system under conventional grav-
ity, polarization effects have been studied in theory78,79 and
experiments.80 Likewise, we define the partial polarization
profiles here as

Pα(x) =

〈∑Nα

i=1 cos(ϕα,i) δ(x − xα,i)
〉

ρα(x)
. (26)

Clearly, the polarization is strongly affected by the aligning
torque. When a particle crosses the motility minimum from
left to right (respectively, right to left), the torque quickly
changes its orientation by 180◦. In the ideal case of instan-
taneous orientational flips as embodied in the effective equi-
librium model, the polarization profile would exhibit a sharp
kink-like sign function sgn(x). A finite torque will lead to a
smearing of this sign-function, where at the motility minima
Pα (x = 0) = 0 vanishes due to symmetry. If one particle species
floats on top of a fluid of the other species, there is a non-
monotonicity in the polarization, which is well-pronounced
for the big particles in Fig. 5(j) and for the small particles in
Fig. 5(l). This peak in Pα(x) roughly corresponds to the outer-
most particle layering and has its physical origin in the fact
that active particles near repulsive walls show a polarization
peak in general.81,82 Clearly, the stronger the motility, the
sharper the polarization profiles. Again there is a very good
agreement between experiment and simulation, supporting
earlier findings that the used propulsionmechanism employed

in our experiments remains largely unaffected by the presence
of other nearby particles.41,76

V. CONCLUSIONS
We have presented a systematic study of demixing (or

segregation) in binary mixtures of active particles moving on
a motility contrast landscape by comparing theory, computer
simulations, and experiments. Our findings are based on the
strong orientational response of the active particles towards
the local minima, which depends on their size and velocity.35
We have shown that the colloidal Brazil nut effect, well estab-
lished for sedimenting mixtures of passive colloids in the pres-
ence of gravity,68 can also be achieved in mixtures of active
colloids being exposed to an inhomogeneous motility field.
We define a Brazil nut effect as a situation where the par-
ticles of the heavier species are floating on the lighter ones.
Thus, “heaviness” is defined by their coupling to the motility
contrast. Within this viewpoint, we have considered different
parameter combinations for the size and motility asymmetry
and, then, mapped out the BNE occurrence.

We remark that, while active systems consisting of one
particle species have been extensively studied in gravitational
fields8,42,83,84 (see also Refs. 85 and 86 for other aspects of
gravity), there are no studies on dense active mixtures under
nonuniform motility fields so far. Our theoretical approach
can be flexibly applied to other active mixtures regardless of
the details of the static external field. This is demonstrated
by mapping our active system onto an equilibrium one with a
static effective external potential.

Our qualitative findings can also be exploited for applica-
tions. In particular, different kinds of active particles (see Refs.
87–90 for recent studies) can be separated and sorted. This
is of particular importance since an inhomogeneous motility
field (e.g., an external light gradient) can be better controlled
than gravity. Moreover, in contrast to dynamical separation
phenomena (e.g., in ratchets22), the separation procedure pro-
posed here is static in the steady state such that the upper-
most layer of floating particles can be removed more eas-
ily. Extensions to ternary mixtures are straight-forward and
will be considered in future work, where understanding such
demixing structures is a prerequisite to create novel materials
through active phase separation and self-assembly.
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6 Concluding remarks

Here I briefly summarize the most important features of my research during
my Ph.D. study and I present a short perspective. I have studied the dynam-
ics of active Brownian particles both as a single agent and when in interaction
with other particles, while the translational and rotational motions are con-
fined to a two-dimensional plane. The here-presented studies include active
Brownian particles with non-negligible inertial effects referred to as microfly-
ers, and active Brownian particles with negligible inertial effects referred to as
microswimmers.

I have shown that, opposed to the long-time behavior of passive particles, which
is independent of the moment of inertia and dependent just on friction coeffi-
cient through Stokes-Einstein relation, the long-time dynamics of microflyers
depends explicitly on the moment of inertia. These results provide a route to-
wards novel control strategies in active systems using the moment of inertia as
a variable parameter. For instance, animals can change their moment of iner-
tia –since changing of mass is not usually a rapid process for them– through
restyling their mass distribution around their axis of rotation leading to stabi-
lizing their motion, for example, in fast turns [152]. Due to vanishing inertial
effects, the velocity of microswimmers pursues instantaneously the changes in
their orientation, however, the inertial effects in microflyers result in a time
delay between the orientation variations and the subsequent changes in the
velocity direction, which demonstrates the profound influence of inertia on dy-
namics.

For circle flyers, the transient initial regime of the noise-free dynamics depends
on the moment of inertia in motion; explicitly, the higher the moment of inertia
is, the longer the initial regime takes. This reflects the fact that the moment of
inertia quantifies the resistance to changing the angular momentum. However,
after the relaxation of the initial regime, the final flying path is independent of
the moment of inertia and just dependent on mass.

I have found an interesting interplay between circling frequency and propulsion
frequency in the dynamics of a circle flyer with oscillating propulsion speed. I
have specifically presented general results for mean-square displacement and
inertial delay. I have demonstrated that the inertial delay is not affected by
propulsion oscillations and is the same as that for a circle flyer with time-
independent self-propulsion.
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Chapter 6 Concluding remarks

I have studied the dynamics of a microflyer with time-dependent inertia, damp-
ing, self-propulsion, and fluctuations in two limiting cases; when variations are
slow, and for rapid oscillations. I have highlighted that a microflyer can un-
dergo anomalous diffusion if temporally varying parameters are included. This
study emphasizes that the diffusion transport process can be adjusted by tak-
ing into account an appropriate time-dependence with regard to the system’s
parameters.

For future studies, it is interesting to study the interaction of microflyers with
physical obstacles and boundaries in complex environments. For example, geo-
metric confinements can drastically alter the transport properties ofmicroswim-
mers [153, 154, 155]. Moreover, future studies should focus on mixtures of in-
teracting microflyers and investigate the collective behavior of such systems in
simple or complex environments [156].

Furthermore, we presented a generic scheme to trap microswimmers, without
requiring any body-forces. By specifically exploiting self-propulsion to system-
atically bias the motion towards the trapping center, it serves as an alternative
to conventional trapping schemes involving body-forces competing with self-
propulsion. This leads to exponential localization, even for fast active particles.
This mechanism can hence be used as a tweezer to transfer fast microswim-
mers over a barrier; specifically, self-propulsion helps to overcome the barrier.
This is in contrast to force-based trapping where self-propulsion away from the
trapping center is suppressed by the body-forces used to achieve trapping.

Our trapping mechanism opens a route towards widespread novel applications,
e.g. as a tool to measure unknown coupling coefficients of microswimmers to
external fields, which may help to better understand their mutual interactions.
Such controlled localization may also be useful in situations where directed
motion of autonomous self-propelled objects is required, for example, in appli-
cations where they serve as microshuttles for directed cargo delivery.

Future studies should include a finite concentration of microswimmers in a one-
dimensional periodic landscape of the groove geometry of our trapping mecha-
nism. In such a landscape, repulsive microswimmers will form crystalline one-
dimensional arrays which exhibit novel dynamical modes, even in the absence
of noise. While negatively phototactic microswimmers will basically assemble
in the motility minima, positively phototactic ones exhibit motility-induced os-
cillatory modes which are very different from thermally activated phonons. In
some analogy to crystals of trapped atoms and ions [157, 158, 159], such a chain
of vibrating particles is expected to buckle [160, 161] and synchronize show-
ing topologically protected solitons, novel defect dynamics and active nano-
frictional effects.
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