
On Outlier Detection in Sequences
—

Finding Anomalies in Mountain
Silhouettes

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Michael Singhof
aus Köln

Düsseldorf, März 2019

aus dem Institut für Informatik der
Heinrich-Heine Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Stefan Conrad

Koreferent: Prof. Dr. Michael Schöttner

Tag der mündlichen Prüfung: 14.05.2019

Erklärung

Ich versichere an Eides Statt, dass die vorliegende Dissertation von mir selbständig und
ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter
wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden
ist. Desweiteren erkläre ich, dass ich eine Dissertation in der vorliegenden oder in
ähnlicher Form noch bei keiner anderen Institution eingereicht habe. Ich habe keinerlei
andere Promotionsversuche unternommen.

Düsseldorf, 1. März 2019 Michael Singhof

i

ii

Acknowledgements

This thesis would not have the form presented here – or any form at all – without the
help of many people to whom I want to express my gratitude. First of all I would like to
thank my advisor Stefan Conrad who offered me a chance to stay at the Heinrich-Heine-
Universität even though my previous studies weren’t primarily at his department. I
couldn’t have hoped for a warmer welcome to the Data Base working group and I would
also like to express my thanks for many discussions, motivation and all the help both
regarding the scientific work as well as the teaching work. I would also like to thank
Michael Schöttner for agreeing to act as a referee for this thesis.

Also, this thesis could have never succeeded without the great help of Sabine Freese,
who was always helping with the many, many forms and regulations, and booking
rooms on extremely short term. Also thank you for the many nice talks in the morn-
ings. Guido Königstein, the best administrator in the world, was also crucial for the
success of this thesis, since doing all the work on a sheet of paper would have been
quite cumbersome. I’ll also certainly remember the “film seminar” sessions on Friday
afternoons.

Having a nice working environment was one of the foundations of this work. Thus
I would like, in hopefully more or less chronological order, Tim Schlüter, the master
of garlic and laughs, Thomas Scholz, carrier of the banana protection box, Ludmila
Himmelspach, resident rumour generator and caring mother, Magdalena Rischka, the
only person in the world to get high on Berliners, Robin Küppers, HHU’s premier film
critic, Pashutan Modaresi, who didn’t sleep for a long time, Janine Golov, the organ-
iser of teaching, Matthias Liebeck, the planner of everything in universe, Alexander
Askinadze, distributor of high spirits, Julia Romberg, the sleepiest person I know, Mr
database project Kirill Bogomasov, Gerhard Klassen, who definitely was alive every
morning in Stuttgart, and Martha Tatusch, who opened the roller blind. Without the
many fun hours and fruitful discussions we spent together, the time in university would
not have been the same.

I would especially like to thank Daniel Braun, without whom this thesis would have
an entirely different topic. Working with you has always been an absolute pleasure, as
was and is spending time with you outside of work!

Also I want to thank all of my friends for being there all the time. Especially I
would like to mention Anja and Lisa Rey, who happened to work nearly next door,
and often walked home with me.

Last but not least I want to thank my family for all the support and patience, and
especially my wife Julia for making me laugh at the right times, urging me on when
I was lazy, helping out with thinking through many problems at any time, and being
there in general. I couldn’t have done it without you.

iii

iv

Abstract

The advent and rise of social networks such as Facebook and Instagram and image
sharing platforms like Flickr and 500px lead to a huge number of photos publicly shared
over the internet. While many of the people that share their photos add appropriate
and detailed tags, short keywords that describe the image, many others do not. Those
photos without tags are much more difficult to search for than other ones. Another
problem arises if the knowledge of the photographer is limited. In these cases, a photo
showing the Gran Paradiso could just be tagged with words like “mountain”, “snow”,
“Italy”, but for someone who searches for a specific photo of that mountain, those tags
are not of much use. Similar examples can of course be found for many other landmarks
like skyscrapers in New York City or for more precise knowledge like photos of flowers,
when flowers of a certain type are searched for.

The automatic generation of tags is a way to solve these problems. For example of
the identification of mountains, this thesis presents an approach to extracting an exact
silhouette of the mountain the photo. This is needed to later identify the mountain by
a comparison of the silhouettes. As the number of mountains on earth is very large,
albeit hard to define, extracting a very precise silhouette is important. This extraction
step is in essence a segmentation process, that is similar with sky detection problems.
However, identifying the mountain is more difficult than the identification of the sky,
as obstacles in front of the mountain can occur and thus conceal parts of it. Also, in
many cases, a mountain is much less homogeneous in terms of texture and features
than the sky.

In order to overcome those difficulties, this thesis emphasises on an outlier detection
framework that is able to detect irregularities in silhouettes computed by a segmenta-
tion algorithm. We therefore introduce a baseline outlier detection algorithm and two
improvements to it, as well as an approach to silhouette outlier detection by artificial
neural networks. Additionally, by the second improvement to the base algorithm, we
present a way to classify the detected outliers in order to be able to utilise different
correction strategies for different kinds of outliers.

Our evaluation shows that both improvements mentioned before do indeed enhance
the quality of the outlier detection, up to an F1 score of 0.83 for the correct detection
of outliers. Of the detected outliers, more than 92% are then correctly classified in
regard to the kind of detected outlier.

v

vi

Zusammenfassung

Durch das Aufkommen von sozialen Netzwerken wie Facebook und Instagram und
Plattformen, auf denen Fotos im Internet geteilt werden können, wie Flickr und 500px,
wird der Öffentlichkeit eine große Anzahl an Fotos zur Verfügung gestellt. Während
diese Fotos häufig mit passenden, kurzen Stichwörtern, sogenannten Tags, versehen
werden, gibt es auch eine große Anzahl von Bildern, bei denen dies nicht der Fall
ist. Diese unmarkierten Fotos lassen sich besonders schwierig suchen, da die meisten
internetbasierten Suchen anhand von textuellen Beschreibungen durchgeführt werden.
Ein weiteres Problem, das im Zusammenhang mit dem Tagging auftritt, ist mangelndes
Wissen des Fotografen über den Inhalt des Fotos. So könnte beispielsweise ein Foto,
das den Gran Paradiso zeigt, nur mit den Schlagworten „Berg“, „Schnee“ und „Italien“
gekennzeichnet sein. Sucht nun ein Benutzer speziell nach Fotos, die den Gran Paradiso
zeigen, würde dieses Foto nicht unter den Ergebnissen auftauchen. Ähnliche Beispiele
lassen sich auch in vielen anderen Anwendungen, wie etwa bei Sehenswürdigkeiten oder
Fotos von Blumen, finden.

Eine Lösung für die oben genannten Probleme besteht darin, die Schlagworte au-
tomatisch zu erzeugen. Für die automatische Identifikation von Bergen ist es aufgrund
der hohen Anzahl von Bergen nötig, eine sehr präzise Silhouette aus Bergfotos zu ex-
trahieren. Mithilfe einer solchen Silhouette ist es dann möglich, den Berg auf einem
Foto durch vergleiche zu einer bekannten Referenzdatenbank zu identifizieren. Diese
Arbeit stellt daher ein solches Verfahren vor. Grundsätzlich handelt es sich bei die-
sem Vorgehen um ein Segmentierungsverfahren, das große Ähnlichkeiten zu Verfahren
zum Entdecken des Himmels auf Fotos hat. Die Extraktion der Form eines Berges aus
einem Foto ist allerdings schwieriger als die Himmelserkennung, da Teile des Berges
durch Hindernisse wie Menschen oder Gebäude verdeckt sein können. Zusätzlich sind
die Textur und farbliche Eigenschaften von Bergen in vielen Fällen weniger homogen
als beim Himmel.

Diese Arbeit konzentriert sich auf die Einführung eines Modells zur Erkennung von
Ausreißern, mit dem es möglich ist, Unregelmäßigkeiten in Silhouetten, die von ei-
nem Segmentierungsalgorithmus berechnet werden, zu erkennen. Im Laufe der Arbeit
werden ein grundlegender Referenzalgorithmus sowie zwei Verbesserungen vorgestellt.
Hierbei ermöglicht die zweite Verbesserung eine Klassifizierung der erkannten Ausrei-
ßer, wodurch unterschiedliche Strategien für die Entfernung angewendet werden kön-
nen. Weiterhin wird ein Ansatz für die Erkennung von Ausreißern mittels künstlicher
neuronaler Netze vorgestellt.

In der abschließenden Auswertung wird gezeigt, dass die in der Arbeit eingeführten
Verfahren ein F1 Maß von 0.83 bei der Erkennung von Ausreißern erreichen. Außerdem
werden mehr als 92% der erkannten Ausreißer der richtigen Klasse zugeordnet.

vii

viii

Contents

1 Introduction 1
1.1 Mountain Identification . 2
1.2 Structure of the Thesis . 5

2 Outlier Detection 7

3 AdaMS and Extensions 13
3.1 Grid and Parameter Initialisation . 14
3.2 Image Segmentation . 15
3.3 Silhouette Extraction . 16
3.4 Possible Errors in Silhouettes . 18
3.5 Silhouette Refinement . 19

4 Outlier Detection in AdaMS 23
4.1 Outlier Definition on Polygonal Chains 23
4.2 Above Average Distance . 26
4.3 Basic Algorithm . 32

4.3.1 Silhouette Conversion . 33
4.3.2 Anomaly Score Computation 34
4.3.3 Outlier Detection . 36
4.3.4 Outlier Classification . 38

4.4 Multi-Reference Enhancement . 39
4.5 Outlier-type Distinction . 40
4.6 Generalisation of the Algorithm . 45

5 Outlier Detection with Neural Networks 47
5.1 Generation of Training Data . 48
5.2 Network Architecture . 49
5.3 Network Output Interpretation . 54

6 Experiments with AdaMS Outlier Detection 57
6.1 Training . 57
6.2 Testing of the Base Algorithm . 61
6.3 Testing the Multi-Reference Enhancement 74
6.4 Evaluation with Outlier-type Distinction 87
6.5 OutlierNet . 96

ix

x CONTENTS

6.6 Summary . 98

7 Conclusion 101
7.1 Summary . 101
7.2 Future Work . 103

Bibliography 105

List of Figures 113

List of Tables 115

A List of Publications 117

B Data Sets 119
B.1 Training Data Set . 119
B.2 Switzerland Data Set / Test Set 2 . 121
B.3 Our Data Set / Test Set 1 . 122

1
Introduction

Today, a huge bandwidth of social media platforms provides easy means for many
people to release text or multimedia messages such as images or even videos to the
public. Examples for such platforms include Facebook, Instagram, Flickr, Tumblr,
DeviantArt, and 500px. This leads to a huge amount of information that is released,
but in case of multimedia content is difficult to search for. While texts are relatively
easy to index and find, for example by full text searches, for other media types this is
much more difficult. This stems from the fact that on one hand the content of a sound
file, an image, or a video is in a form that cannot be easily queried for by subsamples
of the relevant file by users. On the other hand, descriptional keywords to such media,
called labels or tags, are often inconsistent, imprecise, incomplete, or missing altogether
since in most cases tags have to be assigned by users.

A possible solution for this problem is the usage of an automatic tag generation
for submitted content. In such a case a machine learning algorithm could analyse the
input and suggest suitable tags. This could either be a fully automatic, unsupervised
process, where tags are added to the media or a supervised process where the suggested
tags are presented to the user who then is able to accept, modify, or recline tags. In a
general context for image annotation, many entries in challenges such as the ImageNet
Large Scale Visual Recognition Challenge [RDS+15] have shown very impressive results
in labelling images and videos with a set of known labels and even localising those in
the images. Especially the advances made are staggering. In the classification task, in
2014 the best achieved mean average precision was 0.37212 for 1000 classes while in
2017 is has risen to a mean average precision of 0.732227.

However, even such an approach has limitations, for example when a specific in-
stance of a class is searched instead of generic samples. Such searches can arise in
many case, like when searching for specific persons, buildings, or natural sights such
as mountains. In this cases, the number of possible classes is strongly increased, as
every instance of a class needs to be its own class. Therefore, in many such cases,
other strategies or specifically trained classifiers are necessary to successfully solve
these problems.

1

2 1. INTRODUCTION

For sights and other landmarks a variety of approaches to identifying them on photos
exists. Gammeter et.al. [GBQG09] propose a method that generates annotations on
holiday pictures. The approach not only generates labels, but attaches those and links
to relevant Wikipedia articles to bounding boxes of matching objects in the photos.
The paper emphasizes on the creation of a training database. The actual classification
of the images is implemented via a bag of visual words of SIFT [Low04] or SURF
[BTG06] features that are compared to the training images via tf-idf [Jon72].

In [RC15], first the SIFT features of the photos are computed. Those are then
summarised as a bag of visual words that describes the image in a similar fashion to
Gammeter’s approach. To classify a photo, its bag of visual words is compared to that
of a set of labelled training images. A HKM tree [NS06] is used as index structure to
provide fast lookups on very large training datasets.

Another similar approach is presented in [PLSP10]. Here, instead of a visual bag of
words representation as in the aforementioned works, the authors propose to instead
use Fisher vectors [JH99]. The authors argue that the benefits of being able to use the
dot product to compare the vectors outweigh the fact that Fisher vectors in contrast to
bags of visual words are dense and thus require more memory. Further optimisations
applied by the authors includes several binarisation techniques in order to compress
the size of the vectors.

1.1 Mountain Identification
For the example of mountain identification, Baatz et al. released a data set in conjunc-
tion with [BSKP12], which contains 203 images of mountainous terrain in Switzerland
as well as corresponding segmentation ground truth and GPS coordinates of the lo-
cation the photo was taken in. To our knowledge, this is the first dataset that was
publicly released and included a ground truth. The approach presented in this pa-
per does not make use the GPS coordinates as the author’s argue that not all photos
have those. However, the segmentation part of the algorithm, where an input photo
is separated in sky and foreground, is interactive. This means, that the segmentation
algorithm computes a preliminary segmentation, which then is presented to the user.
Then, the user is able to manually mark regions of the image as either foreground or
background and to recompute the segmentation. This technique is similar to relevance
feedback techniques. After an arbitrary number of correction steps the user is able to
mark the quality of the segmentation as sufficient. The authors report that a manual
improvement was needed in 49% of the images of the used data set. The silhouettes
are then converted into so called contourlets, i.e. smoothed contours which are then
coded in a symbol format. These coded contourlets are then matched with contourlets
extracted from a digital elevation map (DEM) in order to find matches.

In contrast to the work presented in [BSKP12] the work presented here describes
an approach to extract silhouette from mountain images in a fully automated fash-
ion. Therefore a part that corrects possible errors in the silhouettes that are initially
extracted is necessary and the main part of this thesis.

In [NMMI97] Naval et al. try to solve a problem similar to the mountain identi-
fication problem, namely the estimation of the point a photography was taken from.
In order to extract the silhouette of the mountain of the image, the authors propose
to first use a Canny edge detection [Can86] on the red channel of the image. Then,

1.1. MOUNTAIN IDENTIFICATION 3

every pixel that has been recognised as an edge by this step is classified by a multilayer
perceptron. This is done by classifying the pixel below and above of the original pixel
in their original RGB representations into the two classes of sky and ground. If the
pixel below is classified as being a ground pixel and the pixel above is classified as
sky the edge pixel has to belong to the silhouette. The actual silhouette or skyline
is then extracted by following the edges detected by the Canny edge detection and
guided by the classification results. Finally, so called feature points such as peaks are
extracted from the silhouette and are used to compare them to artificial silhouettes
from a DEM by a k nearest feature point search in order to localise the position from
which the photography was taken from. Hereby, as the name suggests, the k nearest
feature point search resembles k nearest neighbour classificators.

The approach has only been evaluated on a data set of 32 images of the same
mountain which were taken from eleven different camera positions resulting in a mean
error of 373 meters. However, there are no results that describe the actual capacity of
identifying the mountain in a set of more than one mountains such that the results from
the paper are not easily comparable. From today’s perspective, however, a classification
of single pixels in sky and ground classes based on the pixels colours alone without
taking the neighbourhood into account seems to be rather simplistic, keeping in mind
the advances made in classification and computing power during the last two decades.

Apart from the approaches described above there have been proposals of mountain
identification tasks that require images to be GPS-tagged. Using GPS tags makes the
identification of a certain mountain much easier, since the location from which the
photography was taken from is known and thus the search space, i.e. the number of
mountains one has to take into account as possible matches, is reduced drastically in
size. In turn, this leads to less demands on the precision of the feature extraction from
the images which simplifies every step in the task. In the following some solutions that
make use of GPS tags are introduced.

In [BČES11], Baboud et al. present a mountain identification and annotation al-
gorithm that is based on mapping a photography to a three dimensional model taken
from a DEM. Additionally to GPS data the authors also require to know the field of
view with which the photography was taken. This can be computed by correct EXIF
data regarding focal length and sensor size. However, even if this information is avail-
able it is only correct if the images have not been cropped. If all these prerequisites
are fulfilled an edge detection is used on the image. As in case of [NMMI97] many
of the detected edges in the image are not part of any edges extracted from a DEM,
which the authors call silhouette edges. Another possible case is that silhouette edges
may not detected completely. The authors observe that edges that follow curves of the
terrain usually have T-junctions only, i.e. one edge ends when meeting another one
that continues, while crossings do not usually appear on edges following the terrain
and thus can be neglected.

The remaining edges are then matched to the silhouette edges extracted from the
DEM in the following fashion. Around every silhouette edge es an ε-neighbourhood
is defined. If an edge ep extracted from the photo enters the ε-neighbourhood of an
edge es, the entry and exit points are computed, as well as the distance d of those two
points along es. If d is greater than a predefined threshold dfit the edges are defined
as matching and if it is shorter, they are declared mismatches. By trying to match
the image with all possible extracted images in a 360 degree circle around the location

4 1. INTRODUCTION

of the photographer the best match is found. Once this happened, peaks and other
points of interest can be transferred from information stored with the DEM.

While being a very precise method it is obvious that such an approach is not
feasible if the location from which the photograph was taken is not known at least
approximately, as the authors name a required accuracy of a few hundred meters. In
this regard an adaption of the presented technique might be suitable for the last steps of
a global mountain identification system when the possible locations have been reduced
to very few.

In [FFT14] an approach with a similar idea to the one above is presented, as it does
also propose a peak identification method that requires positional information about
the photo as well as knowledge of the field of view the photography was taken with.
In contrast to [BČES11], however, this work deals with coarse digital elevation maps
specifically as the authors argue that most of the publicly available DEMs have spatial
resolutions between 30 and 90 meters per pixel. Thus those DEMs are missing many
details regarding shape and existence of features of mountains. As a consequence of this
instead of a detailed edge map only the silhouette or skyline is compared to data from
a DEM. The actual skyline extraction is executed by applying the algorithm presented
in [LLLH05] which uses an edge-detection and threshold approach to detect edges that
are candidates for the skyline. The actual silhouette detection is then carried out by
a dynamic programming approach where the binary edge map created in the previous
steps is interpreted as a weighted graph and the shortest path according to cost from
the left to the right is searched. The actual matching process is then carried out by
the same approach as in [BČES11], that has been described above.

In essence this work is a more robust version of the approach by Baboud et al. that
from our point of view suffers from the same problems in regard of high requirements
for the photo. In our experience many photographies without GPS or valid EXIF data
exist. For those neither [BČES11] nor [FFT14] present, or claim to present, solutions.

Porzi et al. present an augmented reality application that is able to annotate
mountain pictures on smartphones in [PBV+14]. The application uses a client-server
architecture where the rendering an edge extraction of the digital elevation map is
carried out on a server while the contour detection and actual annotation of the image
is processed on the smartphone. While the edges in the images are detected by applying
a Sobel filter, they are then classified by a Random Ferns classificator [OFL07] in
order to find edges that belong to terrain contours. The edge extraction from the
DEM is done by using a ray-casting algorithm in order to compute a two-dimensional
representation from the view point. Finally, the actual mapping between the terrain
contours extracted from the image and the DEM is performed on the smartphone with
help of the smartphone’s sensors in regard to positioning as well as by an optimisation
in order to minimise the differences between the two edge maps.

As the mapping operation is very similar to the other mentioned approaches it
shares the same limitations in respect to global scalability. The main feat of the
presented work is the fact that the implementation in this case is fast enough to be
carried out on a smartphone from 2014 in nearly real time and thus is a useful tool in
circumstances where images are taken with a smartphone or, in this case specifically,
to fulfil the information needs of the user in real time.

As already mentioned we share the idea presented in [BSKP12] in that we strive for
a mountain identification system that poses no additional requirements on the image

1.2. STRUCTURE OF THE THESIS 5

or its meta data other than that it shows a mountain. Additionally, we believe that
such a system is much more useful and useable if it works as a fully automatic system.
The only step in the system presented by Baatz et al. which makes human intervention
necessary is the extraction of a correct silhouette from an input image. Apart from
the segmentation of the image and the actual extraction of the silhouette this step also
consists of a check of the silhouette in order to note and mark errors. Given such a
silhouette the actual identification process described in [BSKP12] does not need further
intervention by humans.

The contribution of this thesis is the presentation of mechanisms to automatically
detect errors in silhouettes extracted from mountain images. This thesis therefore
presents an outlier detection algorithm that works on sequences such as polygonal
chains or time series and can be adapted to different features. Also, an approach to
outlier detection with artificial neural networks is presented. These approaches have
been developed by the author in combination with an adaptive segmentation approach
that was developed by Daniel Braun.

Used together, these processes can replace the relevance feedback part of the work of
Baatz et al. and thus provide an automated solution to a global mountain identification
task. Additionally, this work can be used to improve results of existing segmentation
algorithms for example in the context of sky detection.

1.2 Structure of the Thesis
After giving an introduction and motivation to the topic presented in this thesis, we now
outline the further structure of this work. Chapter 2 gives a brief introduction to outlier
detection in general and outlier detection on sequences in particular. The chapter
takes a look at the beginnings of outlier detection in statistics around the middle of
the twentieth century in order to give some context to the general problem of outlier
detection. Then, machine learning approaches to outlier detection are introduced and
finally an overview over existing techniques that are able to detect different kinds of
outliers in sequences is given.

Chapter 3 presents the Adaptive Mountain Silhouette (AdaMS) framework. This
chapter focuses on the segmentation and silhouette extraction process as well as the
refinement step, once errors in the silhouettes have been found. Thus it gives an
overview of the work of Daniel Braun which is necessary to understand the general
framework. The segmentation algorithm is based on a grid that divides the image
into squares. Each of these squares has a local brightness factor that is initialised
identically for all grid cells. This brightness factor commits to the threshold that is
used to distinguish between ground and sky. During the adaptive refinement of the
silhouette it can be changed for single cells in order to improve the segmentation results.
Also, the sources of errors that can occur during the segmentation are presented and
explanations for the causes of these errors are given.

Chapters 4 and 5, together with the evaluation in Chapter 6, form the contribution
of the author of this thesis. The 4th chapter describes the basic outlier detection
algorithm and two extensions. First, an outlier on a polygonal chain is formally defined
as a subsequence with certain properties and the above average distance is introduced
and compared to other histogram distances. After these basics are established we
present the original outlier detection algorithm, which works on positional properties

6 1. INTRODUCTION

of the silhouette, only. It consists of three steps. The first of those is a silhouette
conversion step, where the absolute coordinates of the points in the silhouette are
transformed into values relative to the predecessor of a given point. Then the anomaly
score computation follows, which utilises a sliding windows approach. Each window is
summarised into an histogram whose distance to a reference histogram forms the basis
for the anomaly score. In the final step the outliers are found based on those anomaly
scores. The first of the two extensions is the multi-reference enhancement. While the
basic algorithm uses just one histogram to represent the normal data, this enhancement
introduces multiple histograms and describes how these can be aggregated. The second
enhancement explains how different feature sets and parameter combinations can be
used in parallel to not only improve the outlier detection accuracy but also to implement
an implicit classification of different kinds of outliers. The chapter is concluded by some
ideas that outline a generalisation of the detection algorithm to generic applications
on sequences.

We present an approach to outlier detection with the help of artificial neural net-
works in Chapter 5. As classifiers need training data for each class, but in outlier
detection problems usually only samples for one class – the normal data – exist, we
first describe how training data that represents outliers can be generated. The basic
idea is to deviate from the correct silhouette of the training data in an image and label
the data that emerges from this process as outliers. This is possible as we are sure
that the silhouettes created in such a fashion do not overlap with the normal silhou-
ettes from the images. Subsequently, we describe the two convolutional neural network
architectures that were used to evaluate this approach and explain the mechanisms
employed by the utilised layers. Finally, we explain how the output of the network can
be used to identify outliers.

In Chapter 6 the methods from the previous chapters are evaluated. After present-
ing the training and test sets, we concentrate on the algorithms from Chapter 4 and
discuss how changes to the single parameters affect the quality of the outlier detection.
This is first carried out for the basic algorithm and after that, for both extensions. We
also evaluate the results achieved by the artificial neural network introduces in Chapter
5, which shows promising results that are close to those achieved by the base algorithm.

Chapter 7 concludes the thesis by summarising the ideas and results. We also point
out future work both in regard to the outlier detection algorithms as well as providing
basic approaches for a silhouette based mountain identification tool.

2
Outlier Detection

The general topic of outlier detection emerged as a subfield of statistics in the middle of
the last century [Gru50, Ans60, Fer61]. In this context, an outlier is usually regarded
as an observation in a series of measurements that does not fit the general distribution
of the data. This methods fit Hawkins [Haw80] famous, if much later, description of
an outlier, stating:

“An outlier is an observation which deviates so much from the other obser-
vations as to arouse suspicions that it was generated by a different mecha-
nism.”

A popular implementation of this idea is to use the expectation-maximisation (EM)
algorithm [DLR77, Wu83] on the measurements to estimate the most probable distri-
bution or distributions in multivariate cases. The EM algorithm essentially assigns a
probability of fitting the computed distribution or distributions to each data point in
the data set. Given these probabilities, data points with very low fitting probability
can be considered as outliers.

Another early approach to outlier detection, although with a slightly different in-
terpretation of what an outlier is, is extreme value analysis [Güm58]. In this case,
rather than assuming a certain distribution for a data set the most extreme points,
i.e. maximum and minimum points or points that are outside of certain quantiles, are
treated as outliers.

In the field of data mining anomaly detection emerged with algorithms such as
DBSCAN [EKSX96] and OPTICS [ABKS99] in the context of clustering algorithms
as well as the local outlier factor (LOF) [BKNS00] and the local correlation integral
(LOCI) [PKGF03] in terms of local density. Hereby, DBSCAN and OPTICS are density
based clustering algorithm that define points that do not belong to any cluster as noise
or outliers. In this regard these approaches are somewhat limited in respect to anomaly
detection since no differentiation between noise – which often fits known distributions –
and true anomalies, as in points that are generated by a different mechanism altogether,

7

8 2. OUTLIER DETECTION

is made. It is important to notice, though, that both algorithms are primarily clustering
algorithms and thus do not concentrate on anomaly detection in the first place.

In contrast, LOF and LOCI are dedicated spatial outlier detection algorithms. Both
algorithms consider a point as outlier if its local density varies from the average local
density of its neighbours strongly. While both approaches share the same basic idea,
the definitions of local density vary severely. With the local outlier factor, a point p’s
neighbourhood in a dataset D is defined as the set of points Lk(p) = {q ∈ D|dist(p, q) ≤
distk(p)} where distk(p) is the distance between p and its k-nearest neighbour. Then,
the average reachability distance of p is given as

ARk(p) =
1

|Lk(p)|
∑︂

q∈Lk(p)

max{dist(p, q), distk(q)}.

Finally, the name-giving local outlier factor of a point p is defined as

LOFk(p) =
1

|Lk(p)|
∑︂

q∈Lk(p)

ARk(p)

ARk(q)
.

With this, points that behave normal have a local outlier factor of about one while
outliers have a much higher local outlier factor. In general, LOF is a relative distance-
based approach rather than a local density based approach as it does not heed a
traditional definition of density.

As has already been mentioned the definition of density is the main difference
between LOF and LOCI. In LOCI the local density around a data point p in a data
set D is given by M(p, ε) = |{q ∈ D|dist(p, q) ≤ ε}| for a distance threshold ε > 0.
Then the average density can be computed as

AM(p, ε, δ) =
1

M(p, δ)

∑︂
q∈D:dist(p,q)≤δ

M(q, ε)

for δ > ε. The basic outlier score of LOCI is called multi-granularity deviation factor

MDEF (p, ε, δ) = 1− M(p, ε)

AM(p, ε, δ)
,

which resembles the local outlier factor in the sense that it considers the local density
of a given point relative to the average local density of its surroundings. Additionally,
the authors suggest to treat a point as an outlier if MDEF (p, ε, δ) ≥ 3σ(p, ε, δ) where
σ(p, ε, δ) is the standard deviation of the local densities M(q, ε) for all points q in p’s
δ-neighbourhood normalised by AM(p, ε, δ). This proposal shows that MDEF should
be normally distributed.

All approaches mentioned until now share the assumption that an outlier is a single
point in a data set where each dimension is expected to have the same importance in
regard to its behaviour. However, there exist many cases in data mining where either
outliers do not consist of single points or where one or more dimensions are deemed
more important in respect to behaviour than others. In respect to sequences such as
time series both those problems may arise.

In general, a sequence establishes some kind of order over the points in the sequence
in the sense that a point usually has a predecessor if it is not the first point in the

9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Y

X

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Z

X

Y

Z

Figure 2.1: Example for a trace in form of a sequence and as spatial data.

sequence as well as a successor if it is not the last point in the sequence. Usually it is
assumed that points that are close to each other in regard to that order behave similarly
while it is not unusual for points that are far from each other to be vastly different.
Consider for example a GPS trace of a vehicle where every second the position is noted.
In this case, as illustrated by the example in Figure 2.1 the vehicle is able to cover huge
distances over time but every point is expected to be relatively close to its predecessor
and successor. If one looks at such a data set as consisting of three dimensional points
only, those jumps are much more difficult to detect as illustrated by the section with
low z values in the spatial plot on the right where the order of points cannot be seen
clearly.

Common cases of outliers in sequences, apart from single points, are unusual subse-
quences, that are sometimes called discords, and change points. Discords or anomalous
subsequences fit the general outlier definition from above in that they are subsequences
that do not fit the general behaviour of the sequence they are a part of. This is a gen-
eralisation of the outlier definition given above in the sense that an outlier consisting
of a single point can be interpreted as a subsequence of length one. One popular ap-
proach to outlier detection on time series is HOT SAX [KLF04, KLF05], which is an
algorithm that is able to find the most unusual discord of a fixed length in a given
time series. The approach is based on the symbolic aggregate approximation (SAX)
technique [LKLC03], that first discretises the time dimensions in fixed length parts.
Each such part gets the average value as its discreet value. Those are then divided into
equal depth bins and represented by a symbol. By this approach, comparisons between
subsequences of a fixed length can be carried out relatively fast, due to the possibility
to utilise indexing functions on the symbolic representations. In context of HOT SAX
this is used in order to compute lower and upper bounds on the distances. Thus many
distances do not have to be computed in detail. Other works expand on the HOT SAX
approach. In [PLD10] an extension that ensures equal probability of the symbols for
non-normal distributions by utilising a clustering of the values is introduced. With
iSAX [SK08] SAX was expanded on in a way to allow for distance computations of
different lengths, which was then applied to discord detection in single time series in
[BA11, KA12].

In contrast to this, a change point is a point in sequence that is not necessarily an
outlier in the sense of the definition above, but a point that indicates a change of certain
properties of the subsequence before the change point and after the change point. In

10 2. OUTLIER DETECTION

this context a change point can be seen as an outlier in the sense that it is a point that
does not fit into the behavioural structure of one of the resulting subsequences. Also, it
is possible to find outlying subsequences by looking at sequences that are framed by two
change points. As with any outlier detection theme, there are statistical approaches
[Pic85], that can be used in quality control where the statistical properties of the base
distribution or distributions are known or can be estimated, as well as machine learning
approaches such as [KYM07] in which a subspace method is utilised.

Another related approach to outlier detection is the so-called novelty detection.
The basic idea is very similar to outlier detection, as are used techniques, though the
interpretation is different. In novelty detection or novel class detection in streams, parts
that are unusual up to a point in a stream, are treated as new classes in a classification
problem. The idea behind this is that they might occur again later on. In general this
behaviour of newly arising classes and vanishing classes is called concept-drift. One
example for such an approach is [MAKK+11]. Here, the authors argue that in such
a case new, formerly unknown classes cannot be classified correctly by a method that
assumes a fixed number of classes. This is because it is not possible to predict how
many classes will arise during a stream. The paper also presents a possible solution
to the recurring class problem. A recurring class is a class that has not occurred
for a long time, such that there is a high probability that it is classified as a new
class. In order to solve those problems a two stepped approach is presented, using two
classification ensembles. The primary ensemble M , contains classifiers that are able to
classify frequent classes. If the classification result for all classes has a low confidence,
the query subsequence q is called an outlier. If this is the case it is again classified by
a second ensemble MA which contains the less frequent classes. If q is classified as an
outlier by MA, again, a new class for q may be added if during a giving time frame
similar examples arise. In contrast to classical outlier detection methods, the approach
presented in [MAKK+11] needs human annotators in order to define the classes on the
training data as well as on the stream data, while most outlier detection algorithms
only need a model for the normal data which is prepared before the actual outlier
detection. Therefore such an approach is not suitable to automated outlier detection
on sequences.

Other related approaches such as [MP03a, MP03b, GKVL06] use one-class support
vector machines to facilitate the detection process for novel classes. These approaches
can be used for outlier detection in the same way as [MAKK+11]. Alternately, a static
model can be used to train the support vector machines such that these approaches
can be used for automated outlier detection.

The last kind of anomaly detection on sequences to be mentioned here takes a
whole set of sequences and searches for unusual series among this set. In such a
case, a single sequence is often treated as a high dimensional data point such that
outlier detection techniques that are usually deployed for this kind of data can be
utilised. Examples for this contain evolutionary algorithms [AY01] to determine lower
dimensional projections of the original space that are locally sparse, or angle-based
techniques [KSZ08] where the properties of a point are described by the angle of the
connection between different points rather than a distance to these points in order to
handle the curse of dimensionality. One approach that explicitly targets sequences in
the form of trajectories is presented by Lee et.al. in [LHL08] and is able to also find
outlying sub-trajectories in a database of trajectories. In order to accomplish this,

11

all trajectories are split in sub-trajectories. In those, outliers are then searched via a
combination of the ideas of the distance-based outliers from DBSCAN [EKSX96] and
the LOF [BKNS00]. This finds outlying sub-trajectories in all trajectories. Then, a
trajectory is defined as an outlier if it contains sub-trajectories that are outliers. The
limitations of this approach resemble those of HOT SAX [KLF04] in that the length
of the sub-trajectories and thus of possible outliers has to be known beforehand. Also,
computation time is in O(n2) for n the number of sub-trajectories, though in this time
outliers in all trajectories are detected. There is, however, no shortcut to just detect
outliers in one trajectory, only.

Papadimitriou, Sun, and Faloutsos present an interesting approach in [PSF05] to
detect patterns in parallel data streams. Here, a data point is defined as a n-dimensional
point containing all values of the different streams at the same point in time. These
points are then reduced in dimensionality with help of a principal component analysis
to chose a lower dimensional base with only a small deviation from the original data.
Trends in the stream are then monitored by a hidden variable model in order to adapt
the model to new data from the streams. This model can be used on one hand to
complement missing data in data points, as well as to discover formerly unknown
patterns since they show huge deviations from the model. However, as a downside,
this approach only works well if there are correlations between the original streams.
Otherwise neither the PCA nor the hidden variable model are able to reduce the
dimensionality in a meaningful way and thus the approach degrades into independent
predictions of the single streams.

12 2. OUTLIER DETECTION

3
AdaMS and Extensions

AdaMS is a framework for adaptive mountain silhouette extraction. The goal of the
framework is to find a silhouette of a mountain in a photography that is as exact as
possible in order to allow a precise mapping to a silhouette of a known mountain ex-
tracted from either a labelled image or a digital elevation map. This chapter describes
the AdaMS framework that has been introduced in [BS15, BSC16]. The silhouette
extraction methodology consists of five steps, namely 1) Grid and Parameter Initial-
isation, 2) Image Segmentation, 3) Silhouette Extraction, 4) Outlier Detection, and
5) Silhouette Refinement. Hereby, steps two to five can be repeated multiple times
in order to improve the accuracy of the silhouette in multiple steps. Figure 3.1 gives
an overview over the general structure of the AdaMS framework. This chapter mainly
concentrates on the steps one to three, that have been developed by Daniel Braun.
On their own, these three steps implement a complete segmentation and silhouette
extraction algorithm, while the outlier detection and subsequent silhouette refinement
steps implement the adaptive improvement of the silhouette.

The remainder of this chapter is structured as follows: Section 3.1 describes the
preliminaries of the the extraction process. Section 3.2 describes the bisection of the

Query Image

Grid Initialisation Segmentation Outlier Detection Found an
Outlier?

Classification
of Outliers

Cleaned Silhouette

Is
Obstacle?

Outlier Removal
yes

no

no

yes

Figure 3.1: Flow diagram of the AdaMS framework

13

14 3. ADAMS AND EXTENSIONS

image in the two classes sky and ground, and Section 3.3 show how to get the silhouette
from this. Section 3.4 gives a brief overview over possible errors in the silhouette and
Section 3.5 shows how these can be adaptively removed.

3.1 Grid and Parameter Initialisation
Before the actual segmentation and silhouette extraction steps can begin, some prepa-
rations have to be made. The main point of these is the computation of a grid structure
that partitions the image into several squares. This grid is mainly used later on, during
the local adaptive refinement, where the segmentation process is limited to a number
of affected grid cells. Additionally to this, some other global parameters are computed
as well.

In the following, when talking about image we mean a digital representation of an
image, as defined as follow:

Definition 1 (Image). An image is a matrix

I =

⎛⎜⎝p1,1 · · · pw,1
...

p1,h · · · pw,h

⎞⎟⎠ ∈ Cw×h

where C ⊆ Rc is called the channel or the channels of I if c = 1 or c > 1, respectively.
An entry pi,j ∈ C of an image is called the pixel at position (i, j). For sake of an

easier notation for every image I we define I(i, j) = pi,j.

Usually, digital photos are 8 bit RGB coloured images. That means they have three
channels with an integer range of [0, 255], each. In this notation, the first channel gives
the red intensity, the second the green intensity, and the third the intensity of blue for
a given pixel. Since the RGB colour space is an additive colour space, higher value
represent brighter colours and especially (0, 0, 0) is black and (255, 255, 255) is white.
In some applications, the channels are normalised to a range [0, 1] ∈ R in order to make
algorithms work more easily on images of different channel depth. Popular examples
for this behaviour are Matlab1 or scikit image [VSNI+14].

However, many segmentation algorithms work on brightness values, only. Usually,
the brightness of a RGB pixel p = (rp, gp, bp) is defined as b(p) = rp+gp+bp

3
or the

rounded value of b(p) such that b(p) ∈ [0, 255].
Consequently, for a given input image I we compute the brightness image B as

B =

⎛⎜⎝b(I(1, 1)) · · · b(I(w, 1))
...

b(I(1, h)) · · · b(I(w, h))

⎞⎟⎠
where by Definition 1, B(i, j) = b(I(i, j)). Also, we compute σB, the standard deviation
of all brightness values in B.

The next step during this initialisation phase is the actual grid initialisation. The
idea of the grid is to divide an image – in this case the brightness image B – into

1http://www.mathworks.com/products/matlab.html

http://www.mathworks.com/products/matlab.html

3.2. IMAGE SEGMENTATION 15

Figure 3.2: Examples for brightness differences between different kinds of sky and
ground.

disjunct squares of equal size. As a first step, the centre points of the grid cells are
computed. After that, every pixel of the image is said to belong to the cell, whose
centre point is the closest based on its coordinates in the image:

Definition 2 (Grid Centre Points). Let I ∈ Cw×h be an image with width w and
height h. Let dG ≥ 2 be an even integer. Then the grid with step size dG has

GI =

{︃(︃
dG
2

+ i · dG,
dG
2

+ j · dG
)︃ ⃓⃓⃓⃓

0 ≤ i ≤ w

dG
− 1

2
∧ 0 ≤ j ≤ h

dG
− 1

2

}︃
as cell centre points.

A pixel I(k, l) belongs to the grid cell of the closest cell centre point, i.e. the g ∈ GI

where ∥(k, l)− g∥2 is minimal.

Finally, for every grid cell g ∈ GB we store a local brightness factor γg that we
initially set to the fixed value γ = 0.1 ∈ R≥0.

3.2 Image Segmentation
After all parameters have been initialised, we can now commence with the first segmen-
tation. The goal of this is the segmentation of the image into two uniform segments,
namely sky and foreground. In order to reach that goal, we utilise a region growing
algorithm in order to identify the sky. In the beginning, we give all pixels the class
“ground” except for a few seed pixels that we are fairly sure belong to the “sky”. Then,
for every pixel that is a neighbour of a “sky” pixel, we check whether that pixel belongs
to the sky.

More specifically, given a brightness image B ∈ [0, 255]w×h we initially set the class
C(p) of the pixels of the top row of the image as “sky”, i.e. the pixels B(1, 1), . . . , B(w, 1).
This is because in most cases, the sky is at the top such that we have the highest prob-
ability for “sky” pixels, here. All the other pixels in the image get the class “ground”
and we initialise a look-up queue Q = {B(1, 2), . . . , B(w, 2)} as the second row of the
brightness image.

Now, while Q is not empty, we take one of the pixels p ∈ Q and remove that from
Q. We set the class C(p) = “sky” if

|p− µ(p, r)| < γ · σB,

with µ(p, r) the mean brightness of radius r around p and γ and σB as in Section 3.1.
Also, if the above inequality holds, we add every pixel of the 8 neighbourhood of p to

16 3. ADAMS AND EXTENSIONS

Figure 3.3: Segmentation on the left and added silhouette in red on the right.

Q if is not already of the class “sky”. The idea behind this approach is that inside the
sky, brightness does only change gradually. In contrast to this, when the ground is hit,
that is usually either much brighter, if the sky has a dark blue colour, or much darker,
in case the sky’s colour is bright. Figure 3.2 gives some examples of this. In the first
image we see an example of a light sky with darker foreground. The second and third
image show a darker sky with a lighter foreground, although there is a part in the third
image where the foreground is darker than the sky at the silhouette where the bushes
reach the top of the mountain. Finally, the fourth images shows and example where
both cases occur. The sky is lighter than the rocky parts of the mountain while the
glacier is brighter than the sky.

If Q is empty, there are no further pixels that can be added to the sky segment,
thus the algorithm terminates. At this point the sky segment is connected, due to the
growing algorithm, however this is not necessarily the case for the ground segment.
Therefore, in order to enhance comparability with other segmentation algorithm and
to make the silhouette extraction easier, patches that are classified as ground and that
have no connection to either the right or the left border of the image, are removed by
setting the class of those pixels as “sky”.

After this process, we have a class for every pixel in the brightness image. This can
be interpreted as a binary image

S ∈ {0, 1}w×h

by the mapping

S(i, j) =

{︄
1 if C(B(i, j)) = “sky”
0 else

for all i ∈ [1, w] and j ∈ [1, h].

3.3 Silhouette Extraction
Once we have a segmentation image, such as the result from the process described
in the previous section, we have to extract a silhouette from it. Hereby, figuratively
speaking, we mean the transition between the mountain in the foreground, and the
sky in the background. Figure 3.3 shows an illustration of this. On the left hand, a
segmentation image is shown, while on the right hand, the same image with added

3.3. SILHOUETTE EXTRACTION 17

p0

p1

1

3

2

(a)

8

1

2

7

p2

3

6

5

4

(b)

4

5

p3

1

3

2

(c)

Figure 3.4: An example for the silhouette extraction process.

silhouette is shown. In order to be able to distinguish between foreground and the
rest of the page, both images are framed in blue. This frame is not part of the actual
images. As can be seen from this figure, the silhouette is the set of ground pixels that
are adjacent to sky pixels. For easier comparison, our silhouettes run from the left to
the right of an image.

In order to get a continuous silhouette, we first set the bottom line of pixels in
the segmentation image S ∈ {0, 1}w×h to 0, i.e. define them as ground pixels. Thus,
for all i ∈ [1, w], set S(i, h) = 0. In most cases, this is already the case since most
photographs of mountains do not only show a peak but rather surrounding landscape
or a mountain whose base is wider than the image. Now we are able to commence with
the actual silhouette extraction. In our case, a silhouette is represented as a polygonal
chain, that is, an ordered sequence of pixel coordinates from an image. In the following,
let P denote that polygonal chain. The goal of the silhouette extraction process is to
assemble

P = (pi = (xi, yi))
n
i=1 ,

n ∈ N, such that all pi ∈ [1, w]× [1, h], x1 = 1, and xn = w. By this we get a silhouette
that spans the whole width of the input image from left to right. Since we now have
a segmentation image where the uppermost row is filled completely with ones, and
the lowermost row is filled completely with zeros, and we know that there is one sky
segment only, we can guarantee that such a polygonal chain always exists.

As first silhouette point we set p1 to the pixel in the left column of the pixel, that
is closest to the top and marked as ground, i.e. we set p1 = (x1, 1) with

x1 = min{k ∈ [1, h] |S(1, k) = 0}.

For the algorithm to extract the next silhouette point, we need two silhouette points.
For this we set p0 = (0, y1 − 1), however we do not add p0 to the actual silhouette but
treat it as a helper point.

Now, given the silhouette points pi−1 and pi, we look at the 8 neighbourhood of pi
and enumerate those pixels in clockwise fashion starting with the point that follows
pi−1 in clockwise direction. By this, we set pi+1 as the first of those pixels we encounter,
that has the class “ground”. Thus pi+1 is added to the silhouette and we search for the
next silhouette pixel. This process finishes, once we have reached the right border of
the image, i.e. if we found pn = (xn, yn) with xn = w.

Figure 3.4 gives an example of this process. Here, pixels with class “sky” are marked
by a blue filling and pixels with class “ground” are pictured in brown. Pixels that are

18 3. ADAMS AND EXTENSIONS

part of the silhouette are shown in red and the last silhouette pixel is shown in green.
In Figure 3.4a the first point of the silhouette p1 is found as the highest – and in this
case only – ground pixel in the first row. The helper pixel p0 is included as a pixel
outside the image and the numbers in the other pixels depict the order in that these are
examined. The pixel marked by “2” is obviously the first ground pixel we encounter,
so this becomes p2 in Figure 3.4b. Here, we see, that p1 becomes the last pixel in p2’s
neighbourhood that will be examined. At this point, it is important to note, that one
pixel can be included in a silhouette at different positions if it is the only connection to
the remainder of the ground segment. However, in this case we find the pixel “6” as the
next ground pixel, so this becomes p3 and in 3.4c we look at its neighbourhood. Here,
it is noteworthy, that apart from p0 in the very first step of the silhouette extraction,
only pixels inside the image are considered.

Once by the approach described above, we have a complete silhouette, we are able
to compress it by removing pixels that hold no additional information. These are pixels
that lie on the line segment between their predecessor and successor. Thus, if

pi ∈ {pi−1 + t · pi+1|t ∈ [0, 1]}

holds, pi can be removed from P without loss of information.

3.4 Possible Errors in Silhouettes
The previous section describes a technique to extract silhouettes from segmentation
images. In our case, segmentation images are binary images denoting portions of the
image that are recognised as sky with a pixel value of one. Pixels that are recognised as
ground are denoted by a value of zero. Given a segmentation image S, the algorithm
described in Section 3.3 finds the border between these sections, and therefore the
silhouette of the segmentation image, perfectly. However, for the silhouettes being free
or errors, the segmentation S has to be fault free, too. Unfortunately, this is not the
case for most images. In this section, we explain what errors can occur and name
possible causes for those.

On an abstract level, there are two error sources that we have to consider: First, we
want to find the silhouette of a mountain. However, the previous parts of this chapter
describe a way to extract the silhouette of the complete foreground of an image. Since
images can obviously contain objects, that are neither mountains nor sky, this is not
always the same. Second, even the segmentation into sky and ground, or foreground,
is not always free of faults.

In the first case, objects that are not part of the mountain are a problem if they
actually hide a part of the mountain’s silhouette. This may be the case, when there
are trees on parts of the mountain, or buildings, persons, animals or other objects such
as clouds between the mountain and the camera. In the following, we call such objects
obstacles. Some of these obstacles can be removed in a separate preprocessing step,
such as described in [Kla17]. This approach works especially well for obstacles that
contain a high degree of parallel lines, such as many human made structures like houses
or cable car towers and the cables themselves. Once such structures are identified they
can be retouched by techniques such as inpainting [BSCB00, CS01].

As mentioned above, the second reason for errors in the silhouettes are segmentation
errors. Since the segmentation algorithm described in Section 3.2 assumes, that there

3.5. SILHOUETTE REFINEMENT 19

Figure 3.5: Low contrast between sky and foreground leads to foreground classified as
sky.

are no huge contrasts in the sky, there are two cases where errors can happen. Parts of
the sky, such as clouds, are not classified as sky because there is a high contrast between
them and the surrounding sky. Due to the refinement step that is the last part of the
segmentation algorithm and the silhouette extraction process, that is based on finding
the upper-most ground pixels that are connected to the borders of the image, most of
these errors are not problematic. In order to affect the silhouette, they have to be in
the proximity of the silhouette, such as clouds that are directly above the mountain.

Another class of errors occurs, if the contrast between sky and ground is low in
certain parts. In such a case, a portion of the actual foreground gets classified as
sky. Figure 3.5 shows an example for this behaviour. Low contrast between sky and
foreground can have several reasons, such as a low image quality in terms of noise,
blur, or reduced contrast due to wrong exposure. Also, low contrast can be caused by
natural phenomenons such as fog, light coloured rocks, snow, or clouds.

In order to detect such errors in the silhouette, AdaMS utilises an outlier detection
step. This is described in depth in Chapter 4. At this point, we only need to know,
that we pass the silhouette P to the outlier detection step and in return get a set of
outliers in the form of subsequences of P and corresponding classes. The next section
describes how we correct these errors.

3.5 Silhouette Refinement

As discussed in Section 3.4, there are essentially two kinds of outliers: Segmentation
errors and obstacles. In order to fix these different kinds of errors, we utilise differ-
ent strategies. In respect to the mountain silhouette extraction, all obstacles have in
common that we do not know what the actual mountain silhouette behind them looks
like. Obstacles are non-transparent, so there is no way to get the actual mountain
silhouette by means of other segmentation parameters. In contrast to this, we can
fix segmentation errors by a resegmentation of either the whole image or parts of the

20 3. ADAMS AND EXTENSIONS

Figure 3.6: Grid cells in the proximity of an outlier.

image.
In the following, let us assume that the outlier detection step returned a set O of

outliers. An outlier O = (vs, . . . , ve) ∈ O is a continuous subsequence of the silhouette
P that gets extracted in the silhouette extraction step as described in Section 3.3.
Also, let C(O) denote the class of the outlier O. Depending on the outlier detection
algorithm, the set of possible classes can either be {segmentation error, obstacle} or
{segmentation high, segmentation low, obstacle}. In the second case, both the classes
“segmentation high” and “segmentation low” are segmentation errors. However, in this
case, for an obstacle of the class “segmentation high” the outlier detection sees that
outlier as being segmented too high. This means, that a part of the sky has been
segmented as ground. In case of an obstacle that has been classified as “segmentation
low” we assume that a part of the ground has been classified as sky. When using an
outlier detection algorithm that returns three classes of outliers, and we say an outlier
O is a segmentation error, we mean by this, that its class

C(O) ∈ {segmentation high, segmentation low}.

The first thing we do during the silhouette refinement step is to calculate the ratio
of the length of segmentation errors to the total length of the silhouette

sr =
1

|P |
∑︂

O∈Oseg

|O|,

with Oseg ⊆ O the set of segmentation errors in O.
If sr > τ , where τ ∈ [0, 1] is called the resegmentation threshold, a large portion of

the silhouette has been classified as segmentation errors. Thus it seems, that the global
brightness factor γ was not suited to this particular image. In this case we recompute
the segmentation for a number of precomputed different values of γ and then keep the
segmentation for that the segmentation error ratio sr is the lowest.

If sr ≤ τ we assume that the silhouette in general has been extracted correctly. In
this case, we try to fix the segmentation errors locally. In order to do this, we execute

3.5. SILHOUETTE REFINEMENT 21

a local resegmentation in the proximity of the outlier. In detail, for a segmentation
error O we search the set of grid cells GO, that either contain points of the outlier or
are neighbours of such cells. Figure 3.6 illustrates this. There, the silhouette is shown
in yellow, the detected outlier is blue. The black grid shows the unaffected cells and
the cells that are coloured in red are the cells belonging to GO. The grid cells in GO

are the part of the image, that we use for the resegmentation. Our assumption is, that
the global brightness factor is not ideal. It is either too high if ground is segmented as
sky, or too low if sky is segmented as ground.

In order to change this, we adjust the brightness factor γg for each of the affected
grid cells g ∈ GO by setting the new brightness factor

γ∗
g = γg + α · θ,

where α ∈ {−1, 1} is the direction of the change and θ > 0 is the step width. In case
of an outlier detection method with three classes, we know in which direction we have
to move the brightness factor. Here, we set

α =

{︄
1 if C(O) = “segmentation high”
−1 else.

However, if we only get two classes we do not know, in which direction we have to
move the brightness factor and such have to try both variants and then select the one
with a lower sr.

In all cases, we execute the local refinement of the segmentation as a local region
growing of the sky. Therefore, as with the global segmentation described in Section
3.2, we add every pixel p ∈ GO that has a neighbour that is classified as sky, to the
queue Q. Note here, that those neighbouring pixels can be outside of GO, however we
only add pixels that are included in GO to the queue at any point during the local
refinement. Now, as long as Q is not empty, if

|p− µ(p, r)| < γ∗
g · σB

we classify a pixel p as sky and add all non-sky pixels in the 8 neighbourhood of p to
Q.

After each change – i.e. the removal of segmentation outliers – we extract a new
silhouette P from the changed segmentation image and repeat the refinement process
until no more segmentation errors occur or a maximum number of refinement iterations
has been reached after which segmentation errors are ignored.

At this point we are left with obstacles only. As we have argued above, obstacles
hide the real silhouette of the mountain such that refining the silhouette with reseg-
mentations is not a possibility. Instead, we replace parts of the outliers, that show
high deviations from the connecting line segment of start and end of the outlier with
a straight segment. The idea behind this approach is to get rid of distinctive features
that are not part of the real silhouette in order to not distort the silhouette too much.

In detail, let O = (vs, . . . , ve) be an obstacle and let seg = vsve be the segment
between vs and ve. Also, let d(v, seg) be the minimal distance between a pixel v and
the segment seg. Then we search the first pixel vf ∈ O for which

d(vf , seg) > δ ∧ ∀s ≤ i < f : d(vi, seg) ≤ δ

22 3. ADAMS AND EXTENSIONS

hold, for a deviation threshold δ > 0. By this, vf is the first pixel that deviates farther
than δ from seg. In the same manner, we search the last such pixel vl with

d(vl, seg) > δ ∧ ∀l < i ≤ e : d(vi, seg) ≤ δ.

If we do not find such vf and vl the obstacle does not deviate farther from seg than
δ so we do not replace parts of it. This is because in this case, O does not introduce
any outstanding features into the silhouette p. Thus, a replacement does not improve
the silhouette. If we find vf and vl, we replace the portion between these pixels by the
straight segment vfvl, thus getting rid of distinctive features that are not part of the
actual mountain silhouette.

4
Outlier Detection in AdaMS

As described in Section 3.3, the AdaMS segmentation process yields a polygonal chain
consisting of points in the image that describes the edge of the mountain silhouette.
This chapter introduces various variations of the outlier detection approach. First, a
definition of outliers on polygonal chains is given and we introduce the Above Average
Distance for histograms. Then the basic outlier detection algorithm is presented, fol-
lowed by an enhancement with multiple reference silhouettes and a differentiation for
different kinds of outliers. We then point out other variants of the algorithms and give
a generalisation of the algorithm.

Parts of this chapter have already been published: In [BS15] a first draft of the
whole AdaMS algorithm including the basic idea of the outlier detection algorithm
has been presented. In [BSC16] the first finished version of AdaMS was presented.
This includes the basic definitions of outliers as in Section 4.1 and the basic algorithm
as presented in Section 4.3, albeit with the polar coordinate representation for the
converted silhouettes, only. In [SBC16] we introduced the multi-reference enhancement
as in Section 4.4 and the proof of the above average distance being a pseudometric that
is shown in Section 4.2. In [SKBC17], the outlier-type distinction was introduced. This
is described in Section 4.4.

4.1 Outlier Definition on Polygonal Chains

This section gives a general definition of an outlier in a polygonal chain.
Let P = (p1, . . . , pn) be a polygonal chain, with points p1, . . . , pn ∈ P . In case of

the outlier detection in mountain silhouettes the points pi correspond to pixels of an
input image I as described in Chapter 3. Now, let SP = (ps, . . . , pe), 1 ≤ s < e ≤ n
be a continuous part of P , that itself is a polygonal chain. Generally speaking, we call
SP an outlier in P if SP ’s properties are significantly different to the properties of P .
This reflects the discussion from Section 3.4, that showed that errors in a silhouette
consist not only of one but several points.

23

24 4. OUTLIER DETECTION IN ADAMS

(a) Weak anomalies (green) next to strong
anomalies (blue) form an outlier.

(b) Weak anomalies (green) on their own in
a normal part of a mountain.

Figure 4.1: Different contexts for weak anomalies.

In order to measure the properties of a polygonal chain, let us assume a function

anom : P → R≥0

to be the anomaly score of the points in P . Our only assumption on anom is, that if
anom(pi) > anom(pj), then pi is more unusual than pj. We are now able to define two
types of anomalies. Note here, that an anomaly is a single point p ∈ P while an outlier
is a continuous subsequence of P .

Definition 3 (Strong Anomaly). Let P = (p1, . . . , pn) be a polygonal chain, anom be
an anomaly score and a threshold τs ∈ R≥0. We call p ∈ P a strong anomaly if

anom(p) ≥ τs.

The problem here is choosing a sensible value for the threshold τs such that a strong
anomaly indeed has unusual properties. Normal values for such a threshold in outlier
detection applications as a rule of thumb suggest to set such a threshold to µ + 3σ
for µ the mean of the anomaly score distribution and σ the standard deviation of
that distribution. However, in our experiments we found out that in case of mountain
silhouettes much smaller values in the range of µ+ 1.5σ yielded much better results.

The following definition of a weak anomaly is more or less the same as for a strong
anomaly, only with a lower anomaly score as a threshold.

Definition 4 (Weak Anomaly). Let P , anom, and τs as in Definition 3. Let τw ≤ τs ∈
R≥0. A point p ∈ P is called a weak anomaly if

anom(p) ≥ τw.

As a consequence of this, every strong anomaly also is a weak anomaly. The rea-
soning behind the disambiguation between strong and weak anomalies is, that in most
cases, an outlier does not have to have the points with highest anomaly scores at the
beginning and end of the outlier but rather in the middle. The border area between

4.1. OUTLIER DEFINITION ON POLYGONAL CHAINS 25

outlier and normal parts of a silhouette often consists of weak anomalies. These can
also occur on their own in more or less normal parts of the silhouette. In such cases
we do not want to mark them as outliers. Figure 4.1 gives an impression of this in the
case of mountain silhouettes.

Based on the application, the characteristics of outliers vary, especially in regard
to how many consecutive strong anomalies are necessary to form a meaningful outlier.
In order to incorporate this thought, we define an outlier with a minimum number of
consecutive strong anomalies.

Definition 5 (l Outlier). Let P = (p1, . . . , pn) be a polygonal chain, anom be an
anomaly score and τw ≤ τs ∈ R≥0 be thresholds for weak and strong anomalies.

We call a subsequence O = (ps, . . . , pe) of P a l outlier if the following holds:

1. All points in O are weak anomalies, that is, anom(p) ≥ τw for all p ∈ O.

2. A subsequence SO ⊆ O with a length of l exists, that consists of strong anomalies
only, i.e. ∀p ∈ SO : anom(p) ≥ τs.

Note here, that the length l does not correspond to the total length of the outlier,
as is the case for example with discords in Hot Sax [KLF05]. Instead l is the minimal
number of consecutive strong anomalies required for O to be considered as outlier.
Obviously, the fact that every l + 1 outlier also is a l outlier follows directly from the
definition.

In most cases, we are not only interested in finding outliers of a given severity, but
wants to find the largest possible outliers of that severity. We therefore introduce the
following definition:

Definition 6 (Maximum l outlier). Let P = (p1, . . . , pn) be a polygonal chain, anom
be an anomaly score and τw ≤ τs ∈ R≥0 be thresholds for weak and strong anomalies.

We call a l outlier O = (ps, . . . , pe) of P a maximum l outlier if neither (ps−1, . . . , pe)
nor (ps, . . . , pe+1) is a l outlier.

From this definition it follows that a maximum l outlier O is the outlier with the
maximal number of points in a certain region of a polygonal chain in the sense that
any longer subsequence intersecting with O cannot be an l outlier. It does not mean,
that there cannot be another l outlier Õ ∈ P that consists of more points than O. We
can however state the following theorem:

Theorem 7. Let P = (p1, . . . , pn) be a polygonal chain, anom be an anomaly score,
l ∈ N and τw ≤ τs ∈ R≥0 be threshold for weak and strong anomalies. Then the set O
of all maximum l outliers is unique.

Proof. Let O1 ̸= O2 be two different sets of all maximum l outliers of P . This is
equivalent to ∃O ∈ O1 : O ̸∈ O2 or ∃O ∈ O2 : O ̸∈ O1.

Let, without loss of generality, O ∈ O1 and O ̸∈ O2. It follows that either O2 ⊂ O1

or there exists Q ∈ O2 with Q ̸∈ O1.

Case 1 Let O2 ⊂ O1. Then obviously O2 is not the set of all maximum l outliers of
P and thus a contradiction to the statement.

26 4. OUTLIER DETECTION IN ADAMS

Case 2 Let Q = (q1, . . . , qi) ∈ O2 with Q ̸∈ O1. Let the intersection of the outliers
O ∩Q := {o|o ∈ O ∧ o ∈ Q}.

Case 2.1 Let O ∩ Q = ∅. Then neither O1 nor O2 are sets of all maximum l
outliers.

Case 2.2 Let O ∩ Q ̸= ∅. Then, without loss of generality, there exists o ∈ O
with o ̸∈ Q and o is either adjacent to q1 or qi in P . Also, since O is an outlier, o has
to be a weak anomaly, such that either (o, q1, . . . , qi) or (q1, . . . , qi, o) is an l outlier.
Due to Definition 6, Q is not a maximum l outlier and thus O2 cannot be a set of all
maximum l outliers which, again, is a contradiction to the statement.

4.2 Above Average Distance

For the outlier detection in AdaMS we assume, that outliers do not consist of single
points, but of subsequences of the polygonal chain that forms the silhouette. Hence, the
anomaly scores are not based on the properties of single points, but on histograms that
summarise the properties of consecutive points in the silhouette. In order to compare
these histograms, specialised histogram distance functions are necessary, since normal
distances for Euclidean spaces usually do not yield good results with histograms. This
is mostly due to the fact, that in an Euclidean space the dimensions are not ordered,
i.e. the distance between two values in different dimensions does not change by the
order of the dimensions:⃓⃓⃓⃓

⃓⃓
⎛⎝a1
a2
a3

⎞⎠−

⎛⎝b1
b2
b3

⎞⎠⃓⃓⃓⃓⃓⃓
p

=

⃓⃓⃓⃓
⃓⃓
⎛⎝a1
a3
a2

⎞⎠−

⎛⎝b1
b3
b2

⎞⎠⃓⃓⃓⃓⃓⃓
p

.

For histograms, this behaviour is usually not desirable since it ignores the semantics of
the bins. Consider, for example, a histogram that counts the length of segments, where
the first bin or dimension contains the number of samples of a length in [0, 1), the second
bin contains the number of samples of a length in [1, 3) and the third bin the number of
samples with a length greater or equal than 3. In such a case, intuitively we would want
d((1, 0, 0), (0, 0, 1)) to be greater than d((1, 0, 0), (0, 1, 0)) since the difference between
the samples is larger in the first example.

A related problem is the fact, that, for example, with the Euclidean norm,

||(1, 0, 0)− (2, 0, 0)||2 = ||(1, 0, 0)− (1, 1, 0)||2.

Consider these vectors a histograms as in the paragraph above and intuitively one
would say that a set of one segment with a length in [0, 1) is closer related to a set of
two segments with a length in [0, 1) than to a set of one segment with a length in [0, 1)
and the second segment with a length in [1, 3). We can formally introduce histograms
as follows:

Definition 8 (Histogram, Normalised Histogram). We call H = (h1, . . . , hn) ∈ Rn
≥0 a

histogram with n bins.

4.2. ABOVE AVERAGE DISTANCE 27

We call H = (h1, . . . , hn) ∈ [0, 1]n a normalised histogram with n bins if

n∑︂
i=1

hi = 1.

In this section, the above average distance is introduced, that considers the second
of the problems mentioned above. It is defined as follows:

Definition 9 (Above Average Distance). Let G = (g1, . . . , gn) and H = (h1, . . . , hn)
be histograms with n bins.

We call

aad(G,H) := max{|aab(G)|, |aab(H)|} − |aab(G) ∩ aab(H)|,

with

aab(I) :=

{︄
i ∈ {1, . . . , n}

⃓⃓⃓⃓
⃓fi ≥ 1

n

n∑︂
j=1

fj

}︄
for a histogram I with n bins, the above average distance of G and H.

As mentioned above, a histogram with n bins in this work is a n dimensional vector
with an underlying semantics as to what a dimension means. Consequently, in the
following, a normalised histogram H = (h1, . . . , hn) with n bins is a normalised vector,
i.e.

∑︁n
i=1 hi = 1.

Theorem 10. The above average distance from Definition 9 is a pseudometric but in
general not a metric.

This theorem means, that for the set of histograms with n bins Hn, (Hn, aad) is
a pseudometric space, i.e. a generalised metric space in which two distinct points can
have a distance of zero.

Proof. Let G,H, I be histograms with n bins. First, we show, that aad is a pseudomet-
ric, that means, that aad is non-negative, that it fulfils the identity of indiscernibles,
that it is symmetric and that it is subadditiv.

Non-negativity We have to show that aad(G,H) ≥ 0. Since

|aab(G)| ≥ |aab(G) ∩ aab(H)| and |aab(H)| ≥ |aab(G) ∩ aab(H)|

it holds that
max{|aab(G)|, |aab(H)|} ≥ |aab(G) ∩ aab(H)|.

Thus
0 ≤ max{|aab(G)|, |aab(H)|} − |aab(G) ∩ aab(H)| = aad(G,H)

follows.

Identity of Indiscernibles It holds that

aad(H,H) = max{|aab(H)|, |aab(H)|}−|aab(H)∩aab(H)| = |aab(H)|−|aab(H)| = 0.

28 4. OUTLIER DETECTION IN ADAMS

aab(G)

aab(H) aab(I)

a

b c

d e

f

m

Figure 4.2: Sets for proof of subadditivity.

Symmetry The intersection of sets is symmetric and sets are not ordered, such that

aad(G,H) = max{|aab(G)|, |aab(H)|} − |aab(G) ∩ aab(H)|
= max{|aab(H)|, |aab(G)|} − |aab(H) ∩ aab(G)| = aad(H,G).

Subadditivity For the proof of subadditivity we split the sets aab(G), aab(H), and
aab(I) in seven disjoint sets

a = aab(G) \ (aab(H) ∪ aab(I))
b = aab(H) \ (aab(G) ∪ aab(I))
c = aab(I) \ (aab(G) ∪ aab(H))

d = (aab(G) ∩ aab(H)) \ aab(I)
e = (aab(G) ∩ aab(I)) \ aab(H)

f = (aab(H) ∩ aab(I)) \ aab(G)

m = aab(G) ∩ aab(H) ∩ aab(I)

as shown in figure 4.2.
Without loss of generality, let |aab(G)| ≥ |aab(H)|. Then

aad(G,H) = |aab(G)| − |aab(G) ∩ aab(H)| = |a|+ |e|.

Case 1 Let |aab(H)| ≥ |aab(I)|. Then aad(H, I) = |b|+ |d| and aad(G, I) = |a|+ |d|,
because aad(G) ≥ aad(H) ≥ aad(I). From this it follows that

aad(G, I) + aad(H, I)− aad(G,H) = |a|+ |d|+ |b|+ |d| − |a| − |e|
= |b|+ 2|d| − |e| ≥ 0,

because

|aab(H)| ≥ |aab(I)|
⇒ |b|+ |d|+ |f |+ |m| ≥ |c|+ |e|+ |f |+ |m|

⇒ |b|+ |d| ≥ |c|+ |e| ≥ |e|.

and |b|+ 2|d| ≥ |b|+ |d|.

4.2. ABOVE AVERAGE DISTANCE 29

Case 2 Assume now, that aab(H) < aab(I), so aad(H, I) = |c|+ |e|.

Case 2.1 Let |aab(G)| ≥ |aab(I)|. It follows that

aad(G, I) + aad(H, I)− aad(G,H) = |a|+ |d|+ |c|+ |e| − |a| − |e|
= |d|+ |c| ≥ 0.

Case 2.2 Now consider |aab(G)| < |aab(I)|, so that aad(G, I) = |c|+ |d|. Then

aad(G, I) + aad(H, I)− aad(G,H) = |c|+ |f |+ |c|+ |e| − |a| − |e|
= 2|c|+ |f | − |a| ≥ 0,

because, similar to Case 1,

|aab(I)| ≥ |aab(G)| ⇒ |c|+ |f | ≥ |a|+ |d| ≥ |a|.

We have now shown, that aad is a pseudometric. However, since

aad((0.5, 0.5, 0), (0.4, 0.6, 0)) = 2− 2 = 0

and (0.5, 0.5, 0) ̸= (0.4, 0.6, 0), aad is not a metric.

Comparison to Other Histogram Distances
In this section we compare the above average distance to other distances that are often
used with histograms. These are the histogram intersection distance [SB91] and the
earth mover’s distance [RTG98, RTG00] or Wasserstein metric [Vas69].

The histograms intersection distance is a distance function based on the histogram
intersection. For two normalised histograms G = (g1, . . . , gn), H = (h1, . . . , hn) with n
bins each, the intersection of those histograms is defined as

G ∩H =
n∑︂

i=1

min{gi, hi}.

Obviously it holds that 0 ≤ G ∩ H ≤ 1, and G and H are more similar the larger
G ∩ H is. Consequently, in order to derive a distance function from the histogram
intersection, we define

hid(G,H) = 1−G ∩H.

Theorem 11. Let G = (g1, . . . , gn) and H = (h1 . . . , hn) be normalised histograms
with n buckets. Then hid(G,H) is a metric.

Proof. In the following G = (g1, . . . , gn), H = (h1 . . . , hn), and J = (j1, . . . , jn) be
normalised histograms with n buckets.

Non-negativity hid(G,H) ≥ 0 for all G,H, since

hid(G,H) = 1−G ∩H = 1−
n∑︂

i=1

min{gi, hi} ≥ 1−
n∑︂

i=1

gi = 1− 1 = 0.

30 4. OUTLIER DETECTION IN ADAMS

Identity of Indiscernibles hid(G,H) = 0 is equivalent to G ∩H = 1. Since both
G and H are normalised, this is equivalent to gi = hi = min{gi, hi} for all i ∈ [1, n]
and thus G = H.

Symmetry It holds that

hid(G,H) = 1−
n∑︂

i=1

min{gi, hi} = 1−
n∑︂

i=1

min{hi, gi} = hid(H,G).

Subadditivity First, note that

gi =

{︄
min(gi, hi) + |gi − hi| if gi > hi

min(gi, hi) else

and

hi =

{︄
min{gi, hi}+ |gi − hi| if hi ≥ gi

min{gi, hi} else.

From this it follows that in any case

2 ·min(gi, hi) = gi + hi − |gi − hi|

because
gi + ji = 2 ·min{gi, hi}+ |gi − hi|.

We have to prove that hid(G, J) ≤ hid(G,H) + hid(H, J) which is equivalent to
hid(G,H) + hid(H, J)− hid(G, J) ≥ 0. It holds, that

hid(G,H) + hid(H, J)− hid(G, J)

=1−G ∩H + 1−H ∩ J − 1 +G ∩ J

=1 + (G ∩ J −G ∩H −H ∩ J)

=1 +

(︄
n∑︂
i=i

min{gi, ji} −
n∑︂
i=i

min{gi, hi} −
n∑︂
i=i

min{hi, ji}

)︄

=1 +
1

2

n∑︂
i=1

(2 ·min{gi, ji} − 2 ·min{gi, hi} − 2 ·min{hi, ji})

=1 +
1

2

n∑︂
i=1

(gi + ji − |gi − ji| − (gi + hi − |gi − hi|)− (hi + ji − |hi − ji|))

=1 +
1

2

n∑︂
i=1

(−2hi + |gi − hi|+ |hi − ji| − |gi − ji|)

≥1 +
1

2

n∑︂
i=1

(−2hi) = 1−
n∑︂

i=1

hi = 0,

since |gi − hi|+ |hi − ji| − |gi − ji| ≥ 0, because | · | is a metric in R.

4.2. ABOVE AVERAGE DISTANCE 31

It can be seen from the definition of the histogram intersection distance, that it
treads every bin the same. In contrast to this, with the above average distance the dis-
tance computation is focused on the outstanding bins of a histogram. Thus, the above
average distance exaggerates the difference between histograms that differ greatly while
the distance of histograms with similarly filled bins is understated in comparison with
the histogram cut distance. The computational complexity of both distance functions
is identical, with both being in linear time in respect to the number of histogram bins.

The earth mover’s distance is a metric that has its roots in the first Wasserstein
distance for normalised data, and was introduced first as a means to compare proba-
bility distributions. For this, assume that each distribution D has a so called signature
SD consisting of a number n of tuples (pi, wi), i ∈ [1, n], where pi ∈ Rd is the position
of a representative of the distribution D and wi ∈ [0, 1] is its weight. A popular way
of creating the signature of a distribution is by clustering it into n clusters. Then, the
cluster representatives form the pi and the portion of points that are assigned to a clus-
ter i give its weight wi. In general, the earth mover’s distance can be defined between
distributions with a varying number of representatives. However, for the sake of sim-
plicity in the following we only consider the case for a fixed number n of representatives
as this case suffices for histograms with a fixed number of bins.

Given two probability distributions D and E and their respective signatures

SD = {(p1, w1), . . . , (pn, wn)}
SE = {(q1, v1), . . . , (qn, vn)}

with
n∑︂

i=1

wi =
n∑︂

i=1

vi = 1,

the earth mover’s distance is the minimal solution of the transportation problem to
turn D into E. Hereby we use a metric dist to compute the distances between the
cluster representatives. Most commonly used are LP -norms. It can be shown, that the
earth mover’s distance is a metric if, and only if dist is a metric.

To solve the transportation problem, we want to find a flow

F =

⎛⎜⎝f1,1 · · · fn,1
...

f1,n · · · fn,n

⎞⎟⎠ ∈ [0, 1]n×n

where fi,j is the flow from pi to qj, such that
n∑︂

i=1

n∑︂
j=1

fi,j · dist(pi, qj)

is minimised with respect to the following constraints:
n∑︂

i=1

fi,j ≤ vj for all j ∈ [1, n]

n∑︂
j=1

fi,j ≤ wi for all i ∈ [1, n].

32 4. OUTLIER DETECTION IN ADAMS

These constraints ensure that the flow never exceeds the weight at one of the represen-
tatives. Speaking in terms of transportation theory, this means, that we ensure, that
we never take more goods than are available from pi and never deliver more goods than
needed to qj.

The above minimisation is usually solved by algorithms that solve the minimum-
cost flow problem, such as the polynomial time network simplex algorithm [Orl97]. By
this we get

emd(SD, SE) = min
n∑︂

i=1

n∑︂
j=1

fi,j · dist(pi, qj).

Since normalised histograms are another way to express signatures of distributions,
the earth mover’s distance can be applied to those, too. In this case the position of a
bin is used as a representative and the bin’s entry gives the weight at that point.

It is obvious that the earth mover’s distance is a more complicated metric than the
above average distance and the histogram intersection distance both in terms of com-
putational cost as in interpretation. This is because in contrast to the aforementioned
distances, the earth mover’s distance does take the positions of bins in the histograms
into account and sees bins that are closer together as more similar. As an example to
underline this point, consider three normalised histograms H1 = (1, 0, 0), H2 = (0, 1, 0),
and H3 = (0, 0, 1) over the bin values {1, 2, 3}. Then,

aad(H1, H2) = aad(H1, H3) = 1

and
hid(H1, H2) = hid(H1, H3) = 1

while
emd(H1, H2) = 1 but emd(H1, H3) = 2,

with dist the L2 norm, since the distance between 1 and 2 is smaller than the distance
between 1 and 3.

The classic earth mover’s distance in our case has a computational time in O(n3 log(n)2)
due to the network simplex algorithm [Tar97]. A number of faster implementations
of the earth mover’s distance exist, that imposes additional constraints on the ground
distance, such as [PW08, PW09] and has been used in this work. Also, approximated
earth mover’s distances exist, for example [GD04, SJ08].

4.3 Basic Algorithm

With the definitions and outlier properties from Section 4.1 and the histogram distances
introduced in Section 4.2, the basic outlier detection algorithm from AdaMS can now
be presented. In the following, we show the different steps of the outlier detection
in its basic form as depicted by Figure 4.3. In that figure, it can be seen, that the
outlier detection process takes place in three steps, namely the silhouette conversion
that yields a relative silhouette, followed by the anomaly score computation, in which
each point in the relative silhouette gets an anomaly score. The pipeline is concluded
by the actual outlier detection, where the maximum l outliers are computed.

4.3. BASIC ALGORITHM 33

Silhouette

Silhouette
conversion

Anomaly score
computation

Outlier
detection

Outliers

Figure 4.3: Flow diagram of the outlier detection pipeline.

4.3.1 Silhouette Conversion
We get a silhouette in the form of a polygonal chain P = (p1, . . . , pn) out of the
segmentation part of AdaMS. In the basic case, P consists of the pixels coordinates,
i.e. for every pi ∈ P : pi = (xi, yi). This representation has the disadvantage that
patterns in the silhouette are hard to recognise since the coordinates are absolute. For
example, the subsequence ((1, 1), (2, 1), (2, 3)) and the subsequence ((5, 5), (6, 5), (6, 7))
have completely different absolute values, however, the form of the subsequences is the
same. We therefore convert P to a so-called relative silhouette. We currently have
two approaches to this, both of which give the position of a point pi relative to its
predecessor pi−1.

The first of these methods has been used in [BSC16] and uses a representation based
on polar coordinates. That means, that we use the angle of the x-axis and the segment
between pi−1 and pi together with the length of that segment for all points pi ∈ P
except for p1. Essentially, the conversion to such a relative silhouette is a mapping

P = (p1, . . . , pn) → alrel(P) = (v1, . . . , vn)

where we set v1 = (0, 0) and for all i ∈ [2, n], vi = (li, ai) with li = |pi − pi−1| and
ai = atan2(yi−yi−1, xi−xi−1). Here, atan2(y, x) is the function implemented in nearly
every programming language, which returns arctan(x/y) but, since the signum of both
x and y are known, the right quadrant for the vector (x, y) can be given. It is defined
by

atan2(y, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 arctan

(︃
y√

x2+y2+x

)︃
if x > 0 or y ̸= 0,

π if x < 0 and y = 0,

undefined if x = 0 and y = 0.

Another variant for computing a relative silhouette, that is both easier to compute
as well as less prone to rounding errors, is given by the mapping

P = (p1, . . . , pn) → vrel(P) = (v1, . . . , vn)

where, again, we set v1 = (0, 0) and vi = pi − pi−1 for all i ∈ [2, n]. This obviously
has the advantage, that, if the points in P only contain integers, as is the case in

34 4. OUTLIER DETECTION IN ADAMS

silhouettes extracted from pixel images, then vrel(P) also contains integers, only. Thus,
no rounding errors can occur. On the negative side, we can in general give no boundaries
on the values of points in a relative silhouette computed by the vrel mapping, in
contrast to the alrel mapping, where we know that the lengths are greater or equal
than 0 and the angles are in a range of [0◦, 360◦].

In terms of computational complexity, both mappings can obviously be implemented
in linear time depending on the number n of points in the silhouette, since each point
has to be looked at at most two times.

4.3.2 Anomaly Score Computation
Irrespective of the silhouette conversion algorithm from the section above, the anomaly
score computation is based on a reference histogram. Essentially, the reference his-
togram is a histogram that is computed in the same way as normal histograms from
one or more relative silhouettes that themselves are marked by a human being as not
containing outliers.

In the following, let either Pr = alrel(P) or Pr = vrel(P) for a given silhouette
P , such that Pr = (v1, . . . , vn). As has already been mentioned, we use histograms
of reference data as well as histograms of parts of P . In Section 4.2 we introduced
histograms as vectors with entries greater or equal than zero. However, we have now
data with more than one dimension or feature, namely length and angle in case of the
alrel relative silhouette or relative x and y coordinates if the vrel mapping is used. In
order to accommodate this, we first define corresponding histograms.

Definition 12 (Histogram with f Features). We call

H ∈ Rn1×...×nf

≥0

a histogram with f features and n1, . . . , nf bins per feature.

Lemma 13. A bijective mapping red : Rn1×...×nf

≥0 → Rn1·...·nf

≥0 exists.

Proof. The index sets of histograms in Rn1×...×nf

≥0 and Rn1·...·nf

≥0 are finite and have the
same cardinality.

Let H1 ∈ Rn1×...×nf

≥0 and let H1(i1, . . . , if) = hi1,...,if denote the element at position
(i1, . . . , if) in H1. We set red : Rn1×...×nf

≥0 → Rn1·...·nf

≥0 as the mapping H1 ↦→ H2 where
H2 = (h1, . . . , hn1···nf

) ∈ Rn1·...·nf

≥0 and under which H1(i1, . . . , if) is mapped onto

H2

(︄
f∑︂

j=1

(︄
(ij − 1)

f∏︂
k=j+1

nk

)︄
+ 1

)︄
.

Here, we use H2(i) = hi, for a similar notation as above.
For the inverse mapping red−1 : Rn1·...·nf

≥0 → Rn1×...×nf

≥0 as the mapping

H2(i) ↦→ H1(i1, . . . , if)

with

ij =

⎡⎢⎢⎢
nmod

(︂
i,
∏︁f

k=j nk

)︂
∏︁f

k=j+1 nk

⎤⎥⎥⎥ , j ∈ {1, . . . , f}

4.3. BASIC ALGORITHM 35

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(1)

(2)

(3)

(4)

(5)

(6)

(1, 1) ↦→ (1− 1) · 3 + (1− 1) · 1 + 1 = 1

(2, 3) ↦→ (2− 1) · 3 + (3− 1) · 1 + 1 = 6

Figure 4.4: Example for the mapping of a two dimensional histogram onto a one
dimensional histogram.

and

nmod(i, n) :=

{︄
n if n|i,
i mod n else.

This definition makes nmod(i, n) a normal modulo function, only that the result is in
[1, n] instead of [0, n). Figure 4.4 gives an example where a two dimensional histogram
is mapped onto a one dimensional histogram.

With these functions we are able to use histograms with multiple features and the
histograms under red equivalently in the following. The representation with multiple
features usually is more natural if the semantics of the histograms are used, while for
other computations, such as the above average distance, the reduced version of the
histogram is more handy.

Definition 14 (Normalised Histogram with f Features). We call

H ∈ [0, 1]n1×...×nf

a normalised histogram with f features and n1, . . . , nf bins per feature if

n1···nf∑︂
i=1

hi = 1

for red(H) = (h1, . . . , hn1,··· ,nf
).

Given the reference histogram Href and a number of window lengths and weights
we want to consider, the actual outlier score computation is carried out as follows:

For all window lengths wl:

For all windows w of length wl:

Compute the histogram H of w.
Compute the above average distance dwl = dist(H,Href), where dist is
one of the histogram distances from Section 4.2.
Store dwl with the corresponding weight at every point in w.

36 4. OUTLIER DETECTION IN ADAMS

For all points in Pr compute the anomaly score as the weighted mean of all stored
distances for that point.

In this case, the window length is a positive integer that gives the length of the
subsequences of the relative polygonal chain that are used to compute the histograms.
Such a subsequence w = (vi, . . . , vi+wl) is called a window.

In order to compute a histogram from a window we use a sequence of borders
for each of the two dimensions, i.e. B1 = (b11, . . . , b

n1
1) and B2 = (b12, . . . , b

n2
2) where

bij < bi+1
j for j ∈ {1, 2} and i ∈ {1, . . . , nj}. Let v = (f1, f2) be a point in Pr. We say,

that a feature fj falls into the i-th bin if

bij ≤ fj < bi+1
j .

Consequently, for a two dimensional point v we get a pair of bin coordinates. We
then increase the counter of the bin in the two dimensional histogram. Thus, for each
window of length wl we get a histogram H with∑︂

h∈H

h = wl.

We then compute dwl = dist(red(H), red(Href)) and store that distance and the
corresponding weight wwl for every point v that contributed to H. So, for every point
we get multiple distances for every window length, so that finally we get a set

dists(v) = {(d1wl1
, wwl1), . . . , (d

k1
wl1

, wwl1), (d
1
wl2

, wwl2), . . .)}.

From this, we can compute a point’s anomaly score as

anom(v) =

∑︁
(d,w)∈dists(v) d · w∑︁
(d,w)∈dists(v) w

.

For the sake of a shorter notation, in the future we use

anom(P) = anom(Pr) = (anom(v1), . . . , anom(vn))

for P = (p1, . . . , pn) and Pr = (v1, . . . , vn).
Obviously, since every point is looked at at most window length times per window

and for a fixed number of windows, the anomaly score computation, again, is in linear
time complexity in respect to the number of point in the silhouette.

4.3.3 Outlier Detection
The previous sections introduced all means necessary to now establish the actual outlier
detection algorithm as used in [BSC16]. The goal of this step is to find the set of
maximum l outliers of a given silhouette in as little steps as possible.

Let anom(Pr) = (anom(v1), . . . , anom(vn)) be the sequence of anomaly scores of a
silhouette P = (p1, . . . , pn). Also, let l > 0 be an integer that gives the minimum inner
length of an outlier and let 0 < τw ≤ τs as in Definitions 3 and 4 be thresholds for
weak and strong anomalies.

In order for the algorithm to work in linear time, we need three variables that store
information. These are sout for the start index of an outer outlier, sin for the start of

4.3. BASIC ALGORITHM 37

Condition \ Point type no anomaly weak anomaly strong anomaly
No outlier start — set sout = i set sout = sin = i

Outer start set sout to nothing — set sin = i
Inner start, i− sin ≤ l set sout and sin to nothing set sin to nothing —
Inner start, i− sin > l store outlier, reset variables set ein = i− 1 —

Inner end found store outlier, reset variables — —

Table 4.1: Effects of point types and conditions during the outlier detection.

an inner outlier, and ein for the end of an inner outlier. At the beginning all of these
variables are initialised to nothing.

Now, for every i ∈ [1, n] we check whether vi qualifies as a weak or strong anomaly
or no anomaly at all and the consequences this have in the current conditions. Table
4.1 gives an overview over this. Note, that in this table, the column “weak anomaly”
only gives the effects for weak anomalies, that are not strong anomalies as well.

If vi is no anomaly we have the following cases to consider: If we do not have an
outer outlier start yet, i.e. sout is set to nothing, we do nothing. If we do have a
possible outer outlier start, that is sout has a value, but no inner start has been found
yet – i.e. sin is nothing – we set sout back to nothing, because there is no inner part to
this potential outlier. If we have found an inner outlier start, such that sin has a value,
we have to have an outer outlier start as well, since every strong anomaly is a weak
anomaly, too. We then have to distinguish between two cases. First, let i − sin ≤ l.
Then the outlier is not an l outlier, since the subsequence of strong anomalies is shorter
than l. Thus we reset sin and sout both to nothing and proceed with the next point.
Second, let i − sin > l. In this case, the outlier from position sout to position i − 1 is
a maximum l outlier, since it cannot be extended in any direction and the sequence of
strong anomalies has a length of at least l. Thus we add (psout, . . . , pi−1) to the list of
outliers and afterwards reset both sin and sout to nothing. If an inner end has already
been found, i.e. ein has a value, we also store the outlier and reset all three outlier
variables.

Next, we consider the case, that pi is a weak anomaly but not a strong anomaly.
Again, we have to consider the same cases as above. If sout is nothing, we have not
found the start of a possible outlier yet. Thus, we set sout = i. If sout already has a
value we have to do nothing, since a weak anomaly can be part of the outer part of
an outlier. If we have already a value for sin and i − sin ≤ l, that means, we have
found a beginning of an inner outlier but the inner portion is shorter than l, we reset
sin. In this case, we do not reset sout since the possibility to find a sequence of strong
anomalies that has a length of l or more in this sequence of weak anomalies still exists.
If we have a value for sin and i−sin > l but no value for ein yet, we set ein = i−1 since
we now have a sequence of l or more strong anomalies in the current outlier. However,
we do not save the outlier yet, since further points could be weak anomalies. Thus, we
are not sure yet, whether we already have a maximum l outlier. If there already is a
value for ein, we have to do nothing.

Finally, we have to consider the case, that pi is a strong anomaly. If we do not
have a value for sout yet, we set sout = sin = i, since we have found the beginning of
a possible outlier that starts with a strong anomaly. Also, since we did not have a
value for sout, it is not possible to have a value for sin. Next, assume the case, that sout

38 4. OUTLIER DETECTION IN ADAMS

already has a value. In this case we set sin = i since we found the start of a sequence
of strong anomalies. If sin already has a value, we do nothing, due to the following
consideration: Either, we do not have an value for ein yet, i.e. we did not find the end
of the sequence of strong anomalies, but then we still have not found the end of that
sequence because pi is a strong anomaly as well, or we already have a value for ein. In
this case, we already found a sequence of strong anomalies with a length of at least l,
thus we can handle pi as a weak anomaly in this case. Thus, we further extend the
outlier in order to find the maximum l outlier.

It is obvious, that the detected outliers have to be maximum l outliers: No outliers,
that are not l outliers are reported, since in this case, the information describing the
outlier is discarded. Also, if an outlier O = (pm, . . . , pk), m, k ∈ [1, n], is detected,
we are sure, that neither pm−1 nor pk+1 are weak anomalies. Because of this neither
(pm−1, . . . , pk) nor (pm, . . . , pk+1) are l outliers. This makes O an maximum l outlier
by definition.

Also, we know that maximum l outliers do not overlap. For every weak anomaly,
that is not already part of a possible outlier, we check whether an l outlier starts at
that position, we are sure to find every possible maximum l outlier. From Theorem 7
it follows, that the reported set is the unique set of all maximum l outliers of P .

As can be seen from the description above, we look at every anomaly score only
once. Since the number of anomaly scores equals the number of points in the polygonal
chain that we get as input, it is obvious that the outlier detection step is linear to the
length of the polygonal chain, i.e. the time complexity of the algorithm is in O(n) for
n the number of points in the polygonal chain P .

4.3.4 Outlier Classification

In the Sections 3.4 and 3.5 it has been mentioned that the adaptive refinement steps of
AdaMS expects not only outliers but also the classes these outliers belong to. Due to
the nature of outliers, usually not many samples exist. Therefore, we opt for a simple k
nearest neighbour algorithm [Alt92] for the classification due to its robustness to small
training samples.

The silhouette refinement step can handle two sets of classes as described in Section
3.5, namely either {segmentation error, obstacle} or {segmentation high, segmentation
low, obstacle}. In order to improve the results, during the classification we introduce
the additional class of false positives to improve the result of the outlier detection. Out-
liers, that are classified as false positives are simply not reported back to the refinement
step. By this, we end up with a set of classes

C =

{︄
{segmentation error, obstacle, false positive} or
{segmentation high, segmentation low, obstacle. false positive}.

The actual classification is carried out on the histograms of detected outliers using
a weighted k nearest neighbour approach. Given a set of labelled outliers {(Oi, C(Oi))}
we compute the corresponding histograms H(Oi) for every Oi such that our training
set consists of labelled histograms HT = {(H(Oi), C(Oi)}. Now, in order to classify a
new outlier Q, we also compute its histogram H(Q) and, under the same histogram
distance function as used in the previous steps, we compute the distances between

4.4. MULTI-REFERENCE ENHANCEMENT 39

H(Q) and all of the H(Oi) resulting in a set of tuples

D = {(di, C(Oi)) | di = dist(H(Q), H(Oi)) ∧ (H(Oi), C(Oi)) ∈ HT}.

Then, for every class C ∈ C, we compute the class weight

wC =
∑︂

C(Oi)=C

1

di + ε

for (di, C(Oi)) ∈ D and assign Q to the class C(Q) with the maximum class weight
wC , i.e.

C(Q) = argmax
c∈C

{wC}.

As mentioned before, if C(Q) = false positive, we do not report Q to the silhouette
refinement step.

4.4 Multi-Reference Enhancement
In Section 4.3.2 the reference histogram creation has been laid out very briefly: A set of
silhouettes, that contain no errors, is chosen by human annotators. We call this set the
reference silhouettes. For the basic algorithm, we just compute a histogram for every
single reference silhouette and then take the bin-wise average of these histograms. We
call this histogram the reference histogram Href .

Based on this reference histogram, we execute the anomaly score computation as
described in Section 4.3.2 on the reference silhouette in order to compute the mean
µ and standard deviation σ of the anomaly score distribution. These values are then
used to set the anomaly thresholds

τw = σ + twµ

and
τs = σ + tsµ

with tw ≤ ts.
Obviously, this approach uses a strong aggregation of the reference silhouettes by

representing all of the reference silhouettes as a single histogram. On the one hand this
makes the anomaly score computations very fast and straight forward, but on the other
hand this aggregation leads to a high standard deviation thus obscuring anomalies. The
problem here is, that the combined histogram Href represents an average of all reference
silhouettes. However, histograms of single reference silhouettes or even of parts of a
single reference silhouette can be quite different from this average histogram. As a
result, the distance of such an histogram to Href can be large.

A solution to this problem is to use a weaker aggregation than before. This can
be achieved by using multiple reference histograms instead of only one. An intuitive
solution for this is the usage of one reference histogram per silhouette. However,
when using more than one reference histogram, we cannot just compute the distance
between the histogram of a query silhouette window and the reference histogram any
more. Instead, we use

distmr(H,Href) = min{dist(H,Href)|Href ∈ Href}

40 4. OUTLIER DETECTION IN ADAMS

with Href the set of all reference histograms. By using the minimum distance to any
of the reference histograms, we ensure that we use the distance to the most similar
silhouette and therefore the distances of histograms containing true anomalies should
differ more strongly from those that do not contain anomalies.

One disadvantage of using one reference histogram per reference silhouette is the
fact, that the distance computation during the outlier search grows with the number of
reference silhouettes. With a growing number of reference silhouettes this can hamper
the performance. Also, some mountain silhouettes resemble each other, so an aggrega-
tion of those can even be beneficial, by cancelling out small irregularities in the single
silhouettes. In order to overcome both the problem of using a fixed number of reference
silhouettes as well as making use of the strengths of a local aggregation we use the k
means clustering approach [Mac67] in order to group the reference histograms.

Let P = {P 1
ref , . . . , P

n
ref} be the set of reference silhouettes. For every P i

ref in P
we compute the corresponding reference histogram HP i

ref resulting in a set HPref =
{HP 1

ref , . . . , HP n
ref} that we then use as the input data set for the k means algorithm.

Since the data set consists of histograms, we use the above average distance as distance
function for the clustering. For the computation of the cluster representatives we use
centroids by taking the bin-wise average of all histograms in the cluster, which results
in a normalised histogram. As usually, the clustering stops, if the variance cannot be
minimised any more by changing the cluster assignments.

By this, we get k centroids as a result which we then use a reference histograms.
Since the initial assignment of the cluster centroids is random, we start the clustering
process multiple times for every k and then choose the best clustering based on the
smallest sum of quadratic distance data points to their respective cluster centroids.

As the results of the evaluation in Chapter 6.3 show, by this approach we get bet-
ter outlier detection results without using more reference silhouettes or even informa-
tion about reference silhouettes, since the complete reference histogram computation
process is unsupervised except for the choice of k, the number of resulting reference
histograms. By this, even for a varying number of reference silhouettes, we manage to
keep the outlier detection process in linear time complexity.

4.5 Outlier-type Distinction
The previous sections described an approach to outlier detection in silhouettes that
treats the silhouettes as generic polygonal chains. That means, that we only use
the positional properties of the points that make up the silhouette in order to detect
outliers. In this section, we introduce some additional image specific properties in
order to enhance the outlier detection. We also point out, that different mechanisms
are better suited to detect different kinds of outliers.

As Hawkins noted in [Haw80], an outlier is an observation which derivates so much
from the other observations as to arouse suspicion that it was generated by a different
mechanism. In the case of mountain silhouettes, we do however have a notion, what
causes outliers. In fact, we can divide outliers into two classes, namely obstacles and
segmentation errors, that have different properties. Segmentation errors hereby are
outliers that are caused by the segmentation algorithm not being able to follow the
correct silhouette. This can be caused by low contrast in certain regions of the image,
where the global set of parameters for the segmentation algorithm is not working.

4.5. OUTLIER-TYPE DISTINCTION 41

Figure 4.5: Different errors in a silhouette.

Obstacles, in contrast, are objects in the image, that are between the camera and the
mountain, such as trees, persons, buildings or cable cars. In this cases, the segmentation
algorithm is usually able to follow the borders between the obstacles and the sky, thus
working correctly from an intrinsic perspective. However, these obstacles usually have
silhouettes that do not resemble mountain silhouettes very much. Figure 4.5 shows
examples of different kinds of outliers. The trees on the left of the silhouette are
obstacles, whose borders with the sky gets correctly detected. Since they are not part
of the actual mountain silhouette, we treat them as outliers. The cut in the right below
the lower peak is a segmentation error caused by low contrast between the blue of the
sky and the grey of the rock at this part of the mountain.

Following those arguments, there are two methods to introduce additional proper-
ties to the outlier detection. First, we can add the additional information to the outlier
detection approach as described before. By this, we get five dimensional histograms
instead of histograms with two dimensions, by adding the contrast in x direction, the
contrast in y direction and the gradient direction of the contrast values. Here, the
latter describes the direction in which an edge determined by the directional contrast
values is supposed to go. Second, we can split the attributes in two sets of attributes,
for example the relative coordinates in one set and the contrast based attributes in
another set and execute two separate outlier detection steps.

Both of these approaches have advantages and drawbacks. The first approach is
obviously easier to implement since we only need to add three extra dimensions. Since
all our methods work regardless of the number of dimensions this can be done very
easily. However, adding dimensions to a histograms enlarges the number of bins in the
histogram exponentially for a fixed number of values per dimension. If we use five bins
per dimension, instead of 52 = 25 bins, we end up with 55 = 3125 bins. While this is
not a problem in respect to computational resources, we have to remember, that for
the creation of live histograms we use sliding windows that are rather short, i.e. in a
range of three to ten data points. This leads to very sparse live histograms, that have
very few bins that have values greater or above the average which in turn leads to large
distances under the above average distance to the reference histograms that are denser
because they consist of many more data points.

The second approach does not have the sparsity problem like the first one. For the
positional attribute set, i.e. the relative coordinates, the density of the histograms is
exactly on the level of the basic approach, while the contrast set consists of histograms
of 53 = 125 bins. However, since in this case two independent outlier detection runs are

42 4. OUTLIER DETECTION IN ADAMS

Silhouette
with

contrast

Coordinate
conversion

Positional
anomaly score
computation

Contrast
anomaly score
computation

Positional out-
lier detection

Contrast outlier
detection

Outlier set
merging

Outliers

Coordinates

Contrast

Figure 4.6: Flow diagram of the outlier detection pipeline with type distinction.

executed, that yield an independent set of outliers, each, we have to have a solution for
merging these outlier sets. A further advantage of the second approach is, that it is able
to give a hint of the type of the detected outliers based on the outlier detection instance
that reported the outlier. This can be used for a better adaption of the segmentation
process.

Regarding the properties of both approaches, we decided to go with the second
approach, since it has the intrinsic outlier classification as advantage and the negative
properties, i.e. the merging of two sets of outliers, can be handled easier than the his-
togram sparseness of the first approach. In order to implement an outlier classification
to the other variants of the outlier detection, one has to rely on classic classification
techniques, such as k nearest neighbours classification [Alt92] or decision trees [Qui86].
Such an approach is hampered by the low number of outlier examples, which also makes
more elaborate techniques like artificial neural networks [Ros61] or support vector ma-
chines [VC64, BGV92, CV95] unfeasible.

Figure 4.6 gives an overview of the architecture of the outlier detection framework
that utilises two distinct outlier detection techniques. Note here, that, in theory, further
outlier detection algorithms could be introduced. This can be sensible in other domains
where a greater number of causes for outliers is possible. In contrast to the basic outlier
detection approach as depicted in Figure 4.3, we now expect the contrast information
to be passed additionally. The silhouette or coordinate conversion, as it is called in
Figure 4.6, is the same as before, since the contrast features do not have to be converted
to a relative representation. In contrast to the coordinates, this information does
not depend on the information of previous points in order to be meaningful. Then,
the relevant information is passed to the corresponding anomaly score computation
method. Apart from using a different set of attributes, the actual anomaly score
computation works exactly as described in Section 4.3.2. The same is true for the
actual outlier detection steps, that work as described in Section 4.3.3 and can be
combined with the multi-reference enhancement from Section 4.4. This means, the
main difference to the previous approaches lies in the outlier set merging step, that
was not necessary before since we worked with one set of detected outliers, only.

In contrast to the approaches with a single outlier detection, we now get multiple

4.5. OUTLIER-TYPE DISTINCTION 43

sets of outliers. Considering the architecture from Figure 4.6, we obtain one set of
outliers from the positional outlier detection and another set from the contrast outlier
detection. Both sets contain the set of maximum l outliers for the extended relative
silhouette in respect to the different anomaly scores. However, two or more outliers
from the different sets can overlap with one another, due to the different anomaly
scores, as in the following definition.

Definition 15 (Overlapping Outliers). We say that two outliers O1, O2 overlap if

O1 ∩O2 ̸= ∅,

i.e. if there are points in the silhouette P that are both part of O1 and O2.
Let O1, . . . ,On be sets of outliers returned by different outlier detection approaches.

Then we say that a set

Oover ⊆
n⋃︂

i=1

Oi

overlaps, if for all O,Q ∈ Oover one of the following constraints holds:

1. O and Q overlap.

2. There exist O1, . . . , Ok ∈ Oover such that O and O1 overlap, Oj and Oj+1 overlap
for j ∈ [1, k − 1], and Ok and Q overlap.

If we have such a set of overlapping outliers, we need to dissolve the overlaps in
order to support the adaptive segmentation method by giving a single outlier type
per outlier. This is due to the fact, that outlier removal strategies on part of the
segmentation are different. In order to solve this problem, three splitting strategies
have been developed and are introduced in the following. Since all of these strategies
need information on the strong anomalies in an outlier, in the following let

I(O) = {o ∈ O|anom(o) ≥ τs}

be the set of strong anomalies included in an outlier O and let C(O) be the class of
the outlier O determined by the algorithm that reported O, i.e. one of “positional” or
“contrast”.

The first strategy we developed is called Merge. The basic idea of this approach is to
merge all outliers in an overlapping set Oover into a single outlier and to determine that
outlier’s class by a majority voting of the strong anomalies of each class. Formally, let
O = (ps, . . . , pe) an outlier. Then let indmin(O) = min{i | pi ∈ O} and indmax(O) =
max{i | pi ∈ O} be the minimum and maximum index in that outlier, respectively. For
a set Oover of overlapping outliers, let

pmin(Oover) = pmins with mins = min{indmin(O) |O ∈ Oover}

be the point with the smallest index in Oover and

pmax(Oover) = pmaxs with maxs = max{indmax(O) |O ∈ Oover}

be the point with the largest index in Oover.

44 4. OUTLIER DETECTION IN ADAMS

Now, we are able to merge a set of overlapping outliers Oover into a single out-
lier Omerge = (min(Oover), . . . ,max(Oover)). In respect to the class of Omerge, let
Ic(Oover, c) = {p ∈ I(O) |C(O) = c ∧ O ∈ Oover}. Note here, that outliers of a
single class c do not overlap, since every outlier detection method returns a set of
maximum l outliers. We then set the class of Omerge

C(Omerge) = argmax
c∈C

{| Ic(Oover)|},

for the set C of possible classes.
The reasoning behind this strategy is, that corrections of one outlier often influ-

ence the further form of the silhouette. Trying to correct one large outlier might be
beneficial, because a larger portion of the silhouette is taken into account.

The second strategy is called Merge to Contrast1. As the name suggests, the over-
lapping outliers set is merged in the same way as with the Merge strategy, however in
this case, if at least one outlier is of the contrast class, the merge outlier is given the
contrast class as well. Note here, that with using two strategies as depicted in Figure
4.6, all overlapping outlier sets that contain at least two outlier have to contain one
outlier of each class.

This strategy is based on the fact, that the positional algorithm is also able to find
segmentation errors, as the evaluation results of the basic approach show, so treading
all outliers found by this method as obstacles does not seem sensible. This is especially
the case, because obstacles are removed by replacing them by a straight line while
segmentation errors get resegmented and then rechecked for outliers. Thus classifying
an outlier as obstacle is a more definite choice.

The last strategy is called Split and Merge. The idea here is to separate outliers,
whose overlap only consists of weak anomalies since this might be a sign, that actually
multiple outliers exist but are connected because of their proximity. This kind of
overlap is formalised in the following definitions.

Definition 16 (Strongly Overlapping Outliers). Two outliers O,Q overlap strongly, if

I(O) ∩ I(Q) ̸= ∅.

A set Osover is called strongly overlapping if for all O,Q ∈ Osover one of the following
constraints holds:

1. O and Q overlap strongly.

2. There exist O1, . . . , Ok ∈ Oover such that O and O1 overlap strongly, Oj and Oj+1

overlap strongly for j ∈ [1, k − 1], and Ok and Q overlap strongly.

Given the strongly overlapping outlier definitions we can now define weakly over-
lapping outliers.

Definition 17 (Weakly Overlapping Outliers). Two outliers O,Q overlap weakly, if
O,Q overlap but do not strongly overlap, i.e.

O ∩Q ̸= ∅ ∧ I(O) ∩ I(Q) = ∅.
1In [SKBC17] this strategy is called Merge to Segmentation, because outliers with low contrast are

mostly due to segmentation errors.

4.6. GENERALISATION OF THE ALGORITHM 45

Now, for a set Oover of overlapping outliers, we search all maximum sets of strongly
overlapping outliers. By a maximum set of strongly overlapping outliers, we mean a
set Osover ⊆ Oover such that for all O ∈ Oover \ Osover, Osover ∪ {O} is not a set of
strongly overlapping outliers. We can now use either the Merge or Merge to Contrast
strategy on each of the maximum sets of strongly overlapping outliers. By this we get
a set Owover of outliers, where for each pair O,Q ∈ Owover either O and Q overlap
weakly or O and Q do not overlap at all.

We now order the outliers in Owover by the smallest index of a strong anomaly of
each outlier in ascending order, such that Owover = {Õ1, . . . , Õm} with

indmin(I(Õ1)) < indmin(I(Õ2)) < . . . < indmin(I(Õm)).

Since the outliers in Owover cannot be strongly overlapping, this ordering is distinct.
Now, for i = 1, . . . ,m−1, j = 1+1, . . . ,m we inspect the outliers Õi = (psi , . . . , pei)

and Õj = (psj , . . . , pej). If the outliers do not overlap, we have to do nothing. If Õi and
Õj overlap, we know that they can only overlap weakly. We next compute the middle
between the two outliers inner parts as

m =

⌊︃
1

2

(︂
indmax(I(Õi)) + indmin(I(Õj))

)︂⌋︃
and the practical middle index as

m̃ = argmin
i∈[1,...,n]

{︂
|i−m|

⃓⃓⃓
pi ∈ Õi ∩ Õj

}︂
.

We can now set Õi = (psi , . . . , pm̃) and Õj = (pm̃+1, . . . , pej). By this, we transform
Owover to a set of outliers, that do not overlap pairwise.

Finally, we sort the outliers in Owover again, this time by the smallest index in all
of the outlier and by this we get Owover = {Ō1, . . . Ōm} with

indmin(Ō1) < . . . < indmin(Ōm).

For i = 1, . . . ,m− 1, if C(Ōi) = C(Ōi+1 and indmax(Ōi) + 1 = indmin((̄O)i+1), i.e. if
Ōi and Ōi+1 are outliers of the same class that are direct neighbours, we merge those
two outliers.

4.6 Generalisation of the Algorithm
The previous parts of this chapter described an outlier detection algorithm that focuses
on the detection of outliers in mountain silhouettes. In the remainder we will call this
algorithm and its variants AdaMS outlier detection or AdaMS OD for short. However,
almost all parts of that algorithm and its variants can be used to detect outliers in all
kind of sequences. In this case, though, the general understanding of what an outlier
is has to be similar, i.e. an outlier still has to be a subsequence of unknown length
greater than a minimum length l whose properties deviate from the norm.

While l and window length w can be set to 1 and thus single points can be found
as outliers, our algorithm cannot, for example, explicitly find change points, which are
another view of being outliers on sequences, especially in time series. A change point

46 4. OUTLIER DETECTION IN ADAMS

is a point, at which the behaviour of a sequence changes, but then stays stable for a
longer period of time in that behaviour. While it is possible for AdaMS OD to find
such a change point as an outlier, it is not specialised on this type of outliers and thus
other outliers will most probably found as well.

Also, the AdaMS outlier detection does not support finding outliers of a fixed length.
Due to this, one can argue that it is not as well suited to outlier detection in cyclic time
series, such as outputs of electrocardiography, as specialised algorithm like those of the
HOT SAX family [KLF04, KLF05, PLD10]. If the length of the cycle and therefore
the outliers has to be known however, one could as well declare a cycle an outlier, if
AdaMS OD finds an outlier in it. One of the main advantages of AdaMS OD over
most time series based outlier detection algorithms is the fact, that it is designed from
scratch to support an arbitrary number of features in one sequence. By this, it is able
to detect outliers that do seem normal if one looks at the different features as separate
time series.

In general, the foremost question to answer when trying to use AdaMS OD as an
algorithm is, whether outlier free training or reference data is available. If this is the
case, AdaMS OD with all of its variants can be applied to the problem. If, however,
no training data is available, the whole sequence that is to be inspected can be used as
reference data. In this case, we would advise to use a single reference histogram, since
this minimises the probability for a reference histogram consisting of abnormal parts,
only, and it also minimises the influence of outliers on the whole of the reference data.

Lets say, S = (v1, . . . , vn) is a sequence that we want to examine and there is no
reference data available. Then, in order to use the multi-reference variant, we had to
split S in s ≥ k parts if we wanted to use k reference histograms where each part has
an average length of n

s
. In fact, since we have no knowledge about the properties of

S, it is sensible to make the lengths of the parts as equal as possible. In this case, the
larger s becomes, the smaller the length n

s
of the reference sequences becomes and thus

the larger the probability that one or multiple of these sequences consist of outliers to
a large part or even exclusively gets.

The outlier-type distinction presented in Section 4.5 can be used whenever there
is knowledge of different sources of outliers that affect different characteristics. It is
noteworthy here, that multiple variants do not have to work on different features. It is
also possible to use varying parameters on the single instances of the outlier detection.
This can be useful, if for example there is knowledge about very short outliers, that
deviate greatly from normal data on one the hand and on the other hand outliers that
are very long but otherwise not as remarkable as the short ones exist.

5
Outlier Detection with Neural

Networks

The previous chapter concentrated on partly unsupervised techniques for outlier detec-
tion. While the properties of outlier-free data is learned from reference silhouettes, that
have been selected by humans, and some parameters have to be selected, the definition
of outliers itself and their behaviour is based on assumptions and not on training data.

On the one hand, artificial neural networks, especially since the rise of multi-layered
deep learning architectures [HOT06, BLPL07, BL+07, PCC+07], yield great results
in many knowledge discovery and information retrieval tasks, such as classification
[CMS12, KSH12], image segmentation [GDDM14, Gir15, LSD15, RHGS15], and many
natural language processing problems [BDVJ03, MSC+13, LM14]. On the other hand,
in all these cases there are samples of all classes that are involved or, if this is not the
case, results suffer.

When trying to adopt neural network solutions to outlier detection, the main prob-
lem arises from the fact, that in many cases, there are not many or in many cases
even no examples of outliers available for training. One possible solution for this is to
artificially create outliers. However, as in Chapter 4, we only have a set of outlier-free
silhouettes, such that we have to make assumptions on the nature of outliers in order
to simulate them based on that training data. Once we have created an appropriate
amount of training samples, we can then train a neural network on both the outlier
and the outlier-free data in order to be able to classify parts of the silhouette. In this
case, we will use convolutional neural networks since these show good results in the
classification of images.

The remainder of this chapter is structured as follows: Section 5.1 describes the
process of the training data creation of both normal and anomalous data from the
reference silhouettes and corresponding images. Section 5.2 introduces the network
architecture used for the classification task and give a short overview over the employed
methods.

47

48 5. OUTLIER DETECTION WITH NEURAL NETWORKS

5.1 Generation of Training Data
In order to train a convolutional neural network we need to have training data for all
classes. In case of an outlier detection problem, however, we only have training data
for outlier free silhouettes. Therefore, in order to be able to train the network, we have
to artificially create outliers.

The basis for this is a set of reference images I = {I1ref , . . . , Imref} and their cor-
responding outlier-free reference silhouettes P = {P 1

ref , . . . , P
m
ref}. In this context, let

P i
ref ∈ P be the reference silhouette of the image I iref ∈ I. In order to have a balanced

training set, our goal is to create one anomalous silhouette for every outlier-free sil-
houette. This means, we want to create a set of silhouettes P = {P 1

out, . . . , P
m
out} where

P i
out ∈ P is an anomalous silhouette for the image I iref ∈ I.

Furthermore, as we discussed in the previous chapter, outliers are essentially devi-
ations from the correct silhouette. Therefore, our goal is to create a silhouette, that
only consists of outliers. In order to do so, we create an anomalous silhouette in the
following way. Let Pref = (v1, . . . , vn) with vi = (xi, yi) ∈ Pref be a reference silhouette.
Then we create the anomalous silhouette Pout = (w1, . . . , wn) by setting

w1 = (x1, y1 + ρ1)

where ρ1 ∈ {−1, 1} is a random number. Let o1 = ρ1. We then recursively set

wi = (xi, yi + oi)

with

oi =

{︄
ρi, if oi−1 + ρi = 0

oi−1 + ρi else.

Here, like ρ1, all ρi ∈ {−1, 1} are random numbers as well.
By this, we create a silhouette Pout where nearly no point wi ∈ Pout is also a point

in the corresponding reference silhouette Pref . In fact, the only case when this can
happen, is, if there exist vi, vj ∈ Pref with xi = xj and we coincidentally choose either
oi = yj − yi or oj = yi − yj. Thus, Pout only consists of outliers, apart from highly
unlikely cases.

Having generated the silhouettes alone is not sufficient in order to get training data
because we do not want to classify whole silhouettes but parts of silhouettes in order
to find outliers. At the same time, we do not want to preprocess the data to much.
Preprocessing would induce certain assumptions about the importance of features in
respect to the classification of parts of the silhouettes. However, in this we want to
explore the feature extraction qualities and as such, keep human assumptions about
features and therefore the amount of preprocessing as low as possible.

Again, as in the previous chapter, we use a sliding window approach with a fixed
window length over the points of the silhouette. For each window of a silhouette we
create an image patch out of the corresponding image that shows the silhouette pixels
vertically centred. Therefore, let P = (v1, . . . , vn) be a silhouette for the image I. For
this, P can either be a reference silhouette, a generated anomalous silhouette, or, in
case of the actual outlier detection after the training is finished, an extracted silhouette.

In the following, let wp be the width of the image patches in pixels and let hp be
half the height of the image patches. In order to create the i-th image patch IPi in

5.2. NETWORK ARCHITECTURE 49

Figure 5.1: Image on the top with first image patches below.

respect to the silhouette P , let pi = (xi, yi), . . . , pi+wp−1 = (xi+wp−1, yi+wp−1) ∈ P be
the wp silhouette pixels that contribute to IPi . We then construct the image patch as

IPi =

⎛⎜⎜⎜⎜⎜⎝
I(xi, yi − hp) · · · I(xi+wp−1, yi+wp−1 − hp)

...
...

I(xi, yi) · · · I(xi+wp−1, yi+wp−1)
...

...
I(xi, yi + hp − 1) · · · I(xi+wp−1, yi+wp−1 + hp − 1)

⎞⎟⎟⎟⎟⎟⎠ ∈ Cwp×2hp .

By this, the pixels that belong to the silhouette, form the hp-th row of IPi and
their horizontal neighbourhood is shown in the same column as that pixel. It is worth
mentioning here, that IPi is not a rectangle taken out of I. A pixel p ∈ I can be
included multiple times in IPi if the silhouette P contains multiple points that have the
same x-coordinate and are close enough together. Figure 5.1 illustrates this behaviour.
Here, the area marked in red is the area covered by the first 16 image patches that are
shown below the silhouette.

For the training data, we know that all patches created from reference silhouettes do
not contain outliers and therefore can be labelled as normal data and all patches created
from anomalous data contain anomalies only. Thus, those get labelled as outliers.

5.2 Network Architecture
With the training data computed in the previous section, we are now able to train a
supervised classifier such as a Convolutional Neural Network (CNN). CNNs are mul-
tilayered or deep artificial neural networks that are often used for image classification
tasks, as first described in [LBD+90] for the identification of handwritten digits. Es-
sentially, they consist of three different kinds of layers: convolutional layers, that give
the whole architecture their name, pooling layers, and fully connected or dense layers.

Layers of neural networks are essential matrix operations. In the following we
briefly explain the three basic layers of CNNs. Convolutional and pooling layers take

50 5. OUTLIER DETECTION WITH NEURAL NETWORKS

the dimensionality of the input into account. Here, we will only introduce them in their
two dimensional cases. This is because we only use two dimensional images. However,
variants of these layers in other dimensions exist and work basically analogue.

Let x ∈ Rn be the input data. Then, a fully connected layer is a function

f : Rn → Rm with x ↦→ Wx+ b,

with W ∈ Rn×m the weight matrix and b ∈ Rm the bias vector. The values in W and
b are usually initialised randomly and then trained. Training is normally done by a
stochastic gradient descent or a variation such as the adam optimiser [KB14].

Obviously, a fully connected layer is linear and as such not useful in many scenar-
ios. Therefore, similarly to the usage of the kernel trick [Aiz64, BGV92] for support
vector machines [CV95], non-linear activation functions are combined with layers. An
activation function is usually an element wise function ϕ : R → R that is applied to the
output of a layer of an artificial neural network. For sake of convenience, for a vector
y = (y1, . . . , ym)

⊤ ∈ Rm let us define

ϕ(y) =

⎛⎜⎝ϕ(y1)
...

ϕ(ym)

⎞⎟⎠
and likewise, for a matrix

A =

⎛⎜⎝a1,1 · · · an,1
...

a1,m · · · an,m

⎞⎟⎠ ∈ Rn×m

let

ϕ(A) =

⎛⎜⎝ϕ(a1,1) · · · ϕ(an,1)
...

ϕ(a1,m) · · · ϕ(an,m)

⎞⎟⎠ .

By this, if we use a non-linear activation function ϕ together with a fully connected
layer f , we get a non-linear function

fϕ(x) = ϕ(Wx+ y).

Often used activation functions are rectified linear units (ReLU) [NH10], where

ϕ(x) = max{0, x}

or the logistic sigmoid function

σ(x) =
1

1 + e−x
.

Convolutional layers are based on the mathematical convolution operation in the
same way that fully connected layers are based on linear functions. In general, for two
functions f, g : Rn → C the convolution of f and g is given by

(f ∗ g)(x) =
∫︂
Rn

f(τ)g(x− τ)dτ

5.2. NETWORK ARCHITECTURE 51

I

I ∗K1 I ∗K2 · · · I ∗Kk

O

Figure 5.2: Parallel execution of multiple convolutions in a convolutional layer.

for a well-defined integral. In computer science, data is often discrete. For discrete
functions f, g ∈ Z ⊆ Z → C the discrete convolution is defined as

(f ∗ g)(x) =
∑︂
k∈Z

f(k)g(x− k).

The convolution f ∗ g can be interpreted as the weighted mean of f where g is the
weight function. Due to the fact, that g is parametrised by x, the weight is dependant
on x.

Convolutions are often used in the image processing domain in the form of a kernel,
filter, or mask in applications like edge detection [Rob63, Sob90, Pre70, Can86, Sch00]
or in smoothing [HA91]. In such a case, let I ∈ Cw×h be an image. Also, let K ∈ CwK×hK

for odd wK , hK ∈ N be the kernel matrix and let

(aw, ah) =

(︃⌈︂wK

2

⌉︂
,

⌈︃
hK

2

⌉︃)︃
be the centre coordinates of K. Then the filtered image (I ∗K) ∈ Rw×h is given by

(I ∗K)(x, y) =

wK∑︂
i=1

hK∑︂
i=1

I(x− aw + i, y − ah + j) ·K(i, j).

Note here, that in case of matrices with more than one channel, the product in this
sum is the dot product, such that the resulting matrix has only one channel. Also, the
formula above uses indices that are not in I. In order to solve this problem, I has to
be padded. Usually this is done by treating the values outside of I as zeros, but other
strategies such as padding with the closest existing value exist, too.

Convolutional layers use adaptive masks. That means, that the single weights in the
kernel matrix or in multiple matrices, if more than one filter is used, are learned during
the training. In case of more than one filter, the convolutions are executed in parallel
as depicted in Figure 5.2. For a convolutional layer with k filters K1, . . . , Kk and an
input I ∈ Cw×h, we independently compute the convolutions I ∗K1, . . . I ∗Kk ∈ Rw×h.
Finally, we join these into a single matrix O ∈ (Rk)w×h where each entry

O(i, j) = ((I ∗K1)(i, j), . . . , (I ∗Kk)(ij)) ∈ Rk

has k channels.

52 5. OUTLIER DETECTION WITH NEURAL NETWORKS

In the same manner as in the fully connected layers, a bias can be applied to a
convolutional layer ck with k kernels. In this case, a bias matrix B with the same
dimensions as O is used, so that ck(I) = O+B. Also, an activation function ϕ is used
on the output of a convolutional layer, resulting in

ckϕ(I) = ϕ(O +B)

as output of the layer. Single channels of the output of ckϕ(I) are often referred to as
feature maps.

The weights in both the kernels and the bias matrix are usually randomly ini-
tialised. Thus, the different kernels are able to retain different values due to different
initialisations.

The last kind of layers, that are regularly used in CNNs are pooling layers [LBOM98].
In contrast to fully connected and convolutional layers, pooling layers are static in the
sense, that they are not trained. As a result of this, they are not used in combination
with activation functions as well. The idea of pooling layers is to aggregate parts of
the input, i.e. pools, in order to amplify important characteristics.

Let I ∈ RwI×hI be the input and let wP × hP be the pool size. Then we get an
output O ∈ RwO×hO where

wO =

⌈︃
wI

wP

⌉︃
and hO =

⌈︃
hI

hP

⌉︃
with

O(i, j) = aggr{I(x, y) | (i− 1)wP < x ≤ iwP ∧ (j − 1)hP < y ≤ jhP},

where aggr is an aggregation function such as max,min, or avg. As with convolu-
tional layers, I gets padded if necessary. Obviously, the padding strategy depends on
the aggregation function. While padding with zeros is sensible for max pooling, it is
counterproductive for min pooling in many cases.

If the input of a pooling layer has more than one channel, the pooling operation
is executed on single channels. Let us assume that the values of the input I have
k channels, i.e. I(i, j) ∈ Rk. Then we execute k pooling operations in parallel, by
applying the aggregation function as an element-wise operation. For this, let S ⊆ Rk

with v = (v1, . . . , vk) for all v ∈ S. Then we define

aggr{S} = (aggr{v1 | v ∈ S}, . . . , aggr{vk | v ∈ S}) ∈ Rk.

Figure 5.3 shows an example for a max pooling layer. In CNNs, max pooling layers
are the most frequently used pooling layers. On the one hand this has to do with
the fact, that often input data has values in R≥0. Thus, max pooling minimises the
probability of getting zero values in the data. Too many zeros in the matrices should be
avoided, since they are also used as null values. This is because, zeros are the absorbing
element in respect to multiplications. On the other hand, max pooling highlights the
strongest features in the input if this is a feature map output by a convolutional layer.

For the outlier detection we tested two approaches, that differ in depth. Both
are loosely based on the very deep ConvNets architecture of the Oxford University’s
Visual Geometry Group’s (VGG) presented in [SZ14]. The basic building blocks of

5.2. NETWORK ARCHITECTURE 53

9

5

3

0

5

7

2

4

9

9

5

0

8

10

4

8

6

0

10

8

6

7

9

9

9 10 7

4 8 10

Figure 5.3: Max pooling example.

32 3× 3 Filters

64 3× 3 Filters

128 3× 3 Filters

2× 2 Pool Size

128 Output Nodes

1 Output Node

Convolution Max Pooling Fully Connected

Figure 5.4: Smaller proposed network architecture.

these networks are blocks of two to four convolutional layers with the same number
of 3 × 3 kernels that are followed by a 2 × 2 max pooling layer. The next such block
doubles the number of filters of the previous block, while the sizes of the input data are
halved in every direction. After a certain number of such blocks, three fully connected
layers follow.

As can be seen in Figures 5.4 and 5.5, our network architectures follow the VGG
architecture in the sense, that we use blocks of two convolutional layers with the same
parameters. The next block then doubles the number of filters. However, we do not
utilise a max pooling layer after each of the blocks, since our input is too small for this,
with a width of 16 pixels and a height of 32 pixels. Thus, using more than one max
pooling layer results in too strong an aggregation and thus meaningless results. Also,
since we only have a two class problem, i.e. a single output, we reduce the number of
fully connected layers to two.

54 5. OUTLIER DETECTION WITH NEURAL NETWORKS

32 3× 3 Filters

64 3× 3 Filters

128 3× 3 Filters

2× 2 Pool Size

256 3× 3 Filters

512 3× 3 Filters

128 Output Nodes

1 Output Node

Convolution Max Pooling Fully Connected

Figure 5.5: Larger proposed network architecture.

The smaller of our architectures is shown in Figure 5.4. As can be seen there,
it consists of eight weight layers, namely six convolutional layers and the two fully
connected layers at the end. The first two convolutional layers use 32 kernels, the
second two use 64 kernels, and the final two convolutional layers utilise 128 kernels.
The first of the fully connected layers has 128 output neurons, while the second fully
connected layer reduces this to a single output. Before the output data from the max
pooling layer can be used as input to the first convolutional layer, it has to be reshaped
as a vector in a manner similar to the conversion of higher dimensional histograms
into one dimensional histograms introduced in Section 4.3. Altogether, this network
architecture has 2 097 409 trainable parameters.

Figure 5.5 shows a larger network architecture that we tested in order to investigate
the effect of having more trainable parameters. Essentially this architecture is the direct
result of adding four more convolutional layers after the max pooling layer from the
smaller architecture. These layers are organised in two blocks, where the layers of the
first block use 256 kernels, each, and those of the second block use 512 kernels, each.
As a result of this, the input vector of the first fully connected layer now consists of
65 536 single values instead of 16 384 in the smaller net. Also, we have now a total of
8 388 865 training weights.

5.3 Network Output Interpretation

After the previous sections showed how training data for a neural network for outlier
detection can be generated and what the used network architectures look like, we now
discuss how the predictions the network outputs can be interpreted. We first briefly

5.3. NETWORK OUTPUT INTERPRETATION 55

describe the prediction data preparation and then explain the outputs of the network.
Finally, we discuss how these outputs can be used in order to find the outliers.

In order to prepare an image with a given silhouette, we compute image patches
of the silhouettes as introduced in Section 5.1. These have the same dimensions as
those of the training data, i.e. they have a width of 16 pixels and a height of 32 pixels,
with the silhouette being horizontally in the middle. As we have already explained, for
every point in the silhouette that has 15 successors such an image patch is computed,
thus implementing a sliding window approach similar to the algorithms presented in
Chapter 4. Every image patch is the used as an input for the prediction function of the
network. The prediction output for a single image patch IPi is a floating point number
pred(IPi) ∈ [0, 1] that can be interpreted as the probability of IPi being an outlier.

To summarise the procedure until now, given an image I and a silhouette P =
(v1, . . . , vn) we first compute the images patches (IP1 , . . . , I

P
n−15). We stop at IPn−15

because every image patch has to have a width of 16 pixels, so it must contain 16
silhouette points. Then, we compute the prediction scores (pred(IP1), . . . , pred(IPn−15))
by applying the network. At this point, we have a probability for each image patch
being an outlier. However, as has been discussed in the previous chapters, outliers in
silhouette can be of arbitrary length. Additionally, as each point v ∈ P , except for v1
and vn is part of more than one image patch, we have multiple probabilities for the
single points of belonging to an outlier.

A way to solve both problems lies in computing a single outlier probability for each
silhouette point vi. The easiest way to do this is by computing a prediction value
pred(vi) as an aggregate of the prediction scores of all images patches IPj that contain
vi, i.e.

pred(vi) = aggr
j∈{1,...,n−15}∩{i−15,...,i}

{IPj }.

Possible aggregates aggr are the maximum, the minimum, or the average. Given these
values we can compute the outliers by finding subsequences that consists of points vi
that have an outlier prediction score higher than a given threshold. Due to the training
process described above, the natural threshold is 1

2
, as the training sets for outlier and

normal data are balanced in size.
By choosing such an approach we have the advantage of a method with very few

parameters. Apart from the meta-parameters of the network, the only real parameters
are the width wp and height parameter hp of the image patches. If we set wp = hp

and thus the size of the image patches to wp × 2wp we can reduce this to a single
parameter. Additionally this parameter has a lower boundary of two since otherwise
the max pooling layer cannot be applied. Additionally, we have to choose wp in a size
that does not make the image patches too small to include visual information about
the silhouette. It also has to be even and should not be chosen too large, in order to
be able to recognise smaller outliers.

Another possible interpretation of the prediction scores pred(vi) is to treat them as
anomaly scores as introduced Chapter 4. This approach on the one hand includes an
additional training step as we have to compute the anomaly scores of all points in all
of the training images in order to determine the mean and standard deviation of their
probability distribution. On the other hand it also includes much more parameters
than the direct interpretation of the prediction scores, because we have to chose all of
the parameters introduced in the previous chapter, i.e. both threshold parameters ts

56 5. OUTLIER DETECTION WITH NEURAL NETWORKS

and tw, as well as the minimal inner outlier length l.
In comparison the first mentioned approach is much more usual in regards to the

treatment of output by an artificial neural network in classification problems. In con-
trast to the algorithms in the previous chapter, the convolutional networks introduced
here, have the advantage of being able to not only work on the features of the silhou-
ette pixels themselves, but also on the vertical surroundings given by the height of the
image patches. We therefore feel, that the advantages of fewer parameters that have to
be tuned exceed the flexibility of the second approach. This is also due to the fact that
the second approach was designed for a method that uses much less information of the
surroundings on the one hand while being much more generalisable on the other hand.
As described in Section 4.6, the algorithms presented in the previous chapter can be
used for outlier detection on any sequence with little or no modifications, while the
convolutional networks introduced in this chapter depend strictly on images as input.

6
Experiments with AdaMS Outlier

Detection

In this chapter we evaluate the performance of the algorithms presented in the previous
parts of the thesis. In order to do so, we have used two data sets. The first data set
consists of photos by Michael Singhof, that have been manually segmented by Daniel
Braun. We refer to this data set as our data set or Test Set 1. The second data set is the
data set published with [BSKP12], that contains images of mountains in Switzerland.
In the remainder of this chapter we refer to this data set as the Switzerland data set
or Test Set 2.

First, an evaluation of the AdaMS OD algorithm is given, starting with the train-
ing of all variants. Then, we investigate the different parameters and their effects for
the base algorithm. This is followed by similar examinations for the multi-reference
enhancement and the outlier-type distinction variant. Then the OutlierNet approach
from the previous chapter is benchmarked. Finally, we round the chapter off by com-
paring the results of the different approaches.

6.1 Training
The data set of the Swiss mountains consists of 203 photos from all over Switzerland
that show mountainous terrain. Additionally, for all photos a segmentation ground
truth is given. We used 61 of the images of the Switzerland data set as training for the
outlier detection algorithm in the following fashion: First, the segmentations of all the
images in the data set were computed and then the silhouettes were extracted from
those as described in Chapter 3. We then selected 61 outlier free silhouettes for the
reference data computation. This training portion of the Switzerland data set can be
seen in full in Appendix B.1.

Based on the 61 reference silhouettes we computed reference histogram clusterings
for all numbers of clusters from one cluster to 61 clusters. Note here, that the clustering
with one cluster is equivalent to the basic approach without any clustering whereas with

57

58 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

Distance µ σ σ/µ

aad 0.1574 0.0138 0.0879
hid 0.5388 0.0717 0.1332
emd 2.7651 0.1698 0.0614

Table 6.1: Mean µ and standard deviation σ for the different distance functions without
clustering.

61 clusters every reference silhouette histogram becomes a reference histogram on its
own. For every k the k means clustering has been started 1000 times with randomly
initialised cluster centroids and the best clustering in respect to the mean squared
distance between each histogram and the centroid histogram has been chosen. As a
distance function in this case we used the same distance function that is used during
the algorithm itself.

Table 6.1 gives the basic statistical properties of the outlier score distributions for
the three different distance functions. It can be seen here, that all the functions give
very different mean distances, with the mean distance of the earth mover’s distance
being more than 17 times larger than that of the above average distance. Equally, the
standard deviations vary widely. In order to assess whether these differences are caused
by the different scaling of the distributions the last column of the table gives the stan-
dard deviation σ normalised by the mean distance µ for each distance function. By this
we see, that apart from scale the three distance functions yield similar anomaly score
distributions. The earth mover’s distance has the lowest relative standard deviation,
while the histogram intersection distance has the largest relative standard deviation,
being a little more than double the relative standard deviation of the emd.

Figure 6.1 gives the normalised mean and standard deviation for the different clus-
terings. In order to normalise the data, all values have been divided by the mean
distance without clustering (i.e. one cluster centroid) for the respective distance func-
tion as given in Table 6.1. The points connected by the lines give the normalised mean
distance for each number of clusters while the whiskers show the normalised standard
deviation. Obviously, clustering has the strongest effect on the above average distance.
The mean distance drops rapidly to a relative mean of about 0.7 for k = 3. From
there on, there is a phase where the relative mean jumps between 0.7 and about 0.55
between k = 14 and k = 38. After that, the relative mean settles to about 0.55.

The histogram intersection distance is much less influenced by the number of clus-
ters and converges relatively smoothly to a relative mean of about 0.8. This value is
reached first for k = 13. After that, the slope gets much flatter with only small jitters in
comparison to the above average distance. Finally, the earth mover’s distance seems to
be least affected by the number of clusters. The relative mean even in the beginning is
dropping very slowly compared with the other two distances and stays relatively close
to the value without clustering. The only unusual point occurs for k = 21, where the
mean distance is higher than for the surrounding values. However, even this deviation
is only small compared to the effect of the number of clusters on the other distances
means. An explanation for this behaviour is given below.

An interesting observation is the fact, that for all three distance functions, the
standard deviation does not seem to be greatly affected by the number of clusters. In

6.1. TRAINING 59

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

N
or

m
al

is
ed

µ

Number of Clusters

aad
hid

emd

Figure 6.1: Mean normalised window distance µ on reference data over number of
clusters.

order to further investigate this, Figure 6.2 shows the relative standard deviation for
each distance function. For this plot the actual standard deviation for the number of
clusters is divided by the corresponding mean value for the same distance function.
We see from this plot that both the aad as well as the hid converge to a normalised
standard deviation of about 0.165 with a rising number of clusters. Again, as with
the relative mean, the behaviour of the hid is much smoother than that of the above
average distance that has jumps in the same places as above.

As a result of its somewhat erratic behaviour, the first time the above average
distance reaches its final result is for k = 14 clusters, exactly the same number of
clusters at which the aad first reaches its minimum µ as seen in Figure 6.1. In both
cases, the final values without larger deviations are reached for a number of clusters of
k = 39. An explanation for this behaviour of the above average distance is the fact,
that relatively small values to the bins can have a fairly large influence on the distance
between histograms. This happens especially for more or less equally filled histograms,
where changes of just one occurrence from one bin to another can lead to one bin falling
below the average filling threshold and another one rising above it. Thus, a change of
a single data point inside the histogram may lead to a difference in distance of 2

|H| for
|H| the number of bins in the histogram H. As a consequence, a very small number of
changes in the histograms due to different clusterings or different number of clusters
can lead to slightly different cluster representatives. As described before, in certain
cases these small differences can lead to relatively large differences in the distances.

In contrast to this, both the histogram intersection distance and the earth mover’s
distance do not have a threshold like the above average distance that decides whether
a bin will be considered or not. This results in the much smoother behaviour regarding
the number of clusters we see in the figures, since under both distances, small changes in

60 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

N
or

m
al

is
ed

σ

Number of Clusters

aad
hid

emd

Figure 6.2: Normalised standard deviation σ/µ on reference data over number of clus-
ters.

the data lead to small changes in the distances, only. Under the earth mover’s distance,
this effect is further amplified by the fact, that histograms are not only compared bin-
wise but also between different bins with the distance between those bins taken into
account.

Interestingly in contrast to the other two distances, the overall behaviour of the
earth mover’s normalised standard deviation rather than growing towards the threshold
value is staying even if not getting a little lower over time. Starting at a value of 0.0614
for one cluster it gradually sinks towards its lowest value of 0.0516 at k = 21 and then
again rises to a value of 0.0555 at k = 58, the last known value in this case. The
behaviour between k = 19 and k = 21 looks a bit unusual due to the low dip at k = 21
and a comparably high value at k = 20. However, the hid shows a somewhat related
behaviour in that region, thus this seems data related. Comparing this to Figure 6.1,
both distance function show a dip for k = 20 which seems to be a good number of
clusters to fit the data under both distance functions. The overall behaviour of the
normalised standard deviation of the emd can be explained by the fact, that – other
than both aad and hid – the normalised µ does not change very much at all. Thus,
we see the overall decrease of the standard deviation, that all three distance functions
show, in Figure 6.2, because in case of the earth mover’s distance alone, it is not
diminished by the stronger decline of µ.

We suspect that an explanation for the unusual behaviour of the values for µ of the
earth mover’s distance stems from the fact, that the distances between the single refer-
ence silhouettes’ histograms are much more uniform under the earth mover’s distance
than under the other two distances. This is due to the case, that the emd considers
the spatial distance of the bins in the histograms. Due to this uniformity in distances,
the minimal distance to the centroids does not decrease in the same way as under the

6.2. TESTING OF THE BASE ALGORITHM 61

Length Test Set 1 Test Set 2
1 – 4 1213 9
5 – 9 135 41

10 – 19 65 24
20 – 99 29 31
≥ 100 7 6

Total used 101 61

Table 6.2: Number of outliers by outlier length.

other histogram distances, rendering the clustering possibly less useful. However, due
to the lower standard deviation in comparison with the other two distances, it could
also be possible, that anomalous histograms are more visible under the earth mover’s
distance. If this is the case, it is probable that visibility then is additionally enhanced
by raising the number of clusters.

6.2 Testing of the Base Algorithm
As the first test data set, Test Set 1, we used a set of 46 images from our data set that
we segmented using the AdaMS segmentation. We then classified every point on these
silhouettes as an anomaly, that is farther than three pixels away from the nearest point
of the reference silhouette extracted from the manual segmentation. Finally, we set all
sequences of anomalies of a minimal length of 10 as outliers.

Test Set 2 is the data set that we created for [SBC16]. It consists of 111 manually
annotated outliers on 14 silhouettes extracted by AdaMS from the Switzerland data
set. In contrast to Test Set 1 which only contains segmentation errors, Test Set 2
contains obstacles, too. Again, we only use outliers of a minimal length of 10. This
results in 61 used outliers that are divided in 11 obstacles and 50 segmentation errors.

Table 6.2 shows the distributions of outlier lengths in the test data sets. Due to the
minimal length restrained of 10 pixels, only 101 outliers are used. It is obvious here,
that the vast majority of outliers is shorter than 10 points. However, shorter anomalies
are not as meaningful to the general appearance of the silhouette since they cannot
deviate much from the correct silhouette. Most of these shorter outliers are just jitters
in the silhouette due to image artefacts and thus can be easily ignored in order to get
more meaningful results in respect to the quality of the outlier detection.

We start by evaluating Test Set 1 in order to better understand the effects the
parameters of the outlier detection algorithm have on the detection of segmentation
errors. Test Set 2 will be used later in order verify these results.

First we want to investigate the influence of the threshold parameters ts and tw
on the results of the basic outlier detection without clustering and multi-reference
enhancements. Hereby, precision is the ratio of true positive pixels to all pixels that
are detected as parts of outliers, recall is the ratio of true positive pixels to all pixels
that are part of real outliers, and F1 score is the harmonic mean of precision and recall,
i.e.

F1 = 2
precision · recall
precision + recall

.

62 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5 1 1.5 2

1

2

3

4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

aad hid emd
tw

ts

P
re

ci
si

on

Figure 6.3: Influence of tw and ts on precision without clustering and l = 1 on Test Set
1.

The parameters ts and tw directly influence the strong anomaly border τs and the weak
anomaly border τw via

τs = µ+ ts · σ

and
τw = µ+ tw · σ.

Figure 6.3 shows the influence of ts and tw on the precision of the algorithm for
all three distance functions. Note, that tw has to be lower than ts, therefore there are
no values in the bottom right area of the plot. The figure shows that for the smallest
values of both ts and tw precision is at its lowest, with a precision of about 0.35 for
ts = 0.5 and tw = 0.25, while the highest precision of 0.94 is reached for ts = 4.5 and
tw = 2 for all three distance functions.

Overall we see, that the influence of ts on the precision is higher. This is to be
expected, since the value of ts and therefore τs determines the number of outliers that
is detected. The higher ts gets the fewer outliers are detected and vice versa. In
contrast to this, tw and subsequently τw influence the size of detected outliers. Once
an inner outlier is detected, it is enlarged until a point whose anomaly score is below
τw is found. Thus, while a value of tw that is too low, a few points outside an outlier
might be added, it does not add an outlier that is a false positive in its whole.

It is also obvious from the figure, that the behaviour of all three distance functions
is relatively similar with no systematic differences in the values.

In Figure 6.4 the effects of ts and tw on recall are depicted in a similar fashion
as their effects on precision in Figure 6.3. In terms of effects this figure shows to be
the opposite of the previous figure for the above average distance and the histogram
intersection distance: Lower values of both ts and tw unsurprisingly yield better results

6.2. TESTING OF THE BASE ALGORITHM 63

0.5 1 1.5 2

1

2

3

4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

aad hid emdtw

ts

R
ec

al
l

Figure 6.4: Influence of tw and ts and τout on recall without clustering and l = 1 on
Test Set 1.

in respect to recall. The best recall value is achieved at ts = 0.5, tw = 0.25, being
0.6391 for aad and 0.6480 for hid. The worst value achieved with the above average
distance is a recall of 0.2364 and 0.2839 with the histogram intersection distance, each
for ts = 4.5 and tw = 2.0.

Overall we see, that the recall values are lower than precision values by about 0.1
for the lower values and 0.2 for the better values. Also, the influence of ts and tw on
recall is a bit more even than on precision: While ts again has a greater influence on
recall, since it enables finding an outlier per se if it is lowered, higher values for tw
still lower recall significantly. This is due to the fact, that even if we find a sequence
of strong anomalies inside an outlier, recall is still low if we miss a large part of that
outlier due to a high value of tw. Recall is better for the histogram intersection distance
than the aad by values between 0.0089 for ts = 0.5 and tw = 0.25 and 0.0529 for ts = 3
and tw = 1.25.

For the earth mover’s distance, general behaviour is similar to the other two dis-
tances in that the best recall of 0.6996 is reached for ts = 0.5 and tw = 0.25 and the
worst value is reached at ts = 4.5 and tw = 2.0 with a recall of 0.4012. However, it
is observable that the emd is much more robust in respect to recall to changes to the
thresholds than the other distance functions. The best values of the earth mover’s
distance differs only by 0.0605 to the aad and by 0.0516 to the hid, while the difference
in the worst values is 0.1648 to the above average distance and 0.1173 to the hid. This
is more than double the difference.

Finally, Figure 6.5 shows the F1 score over both thresholds. For the above average
distance it is clear from this plot that the best values regarding F1 score are achieved
for moderately high values of ts, that yield a relatively high precision, and low values
of tw in order to get outliers that are large enough to detect a high portion of the

64 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5 1 1.5 2

1

2

3

4

0.2

0.3

0.4

0.5

0.6

0.7

F
1

aad hid emdtw

ts

F
1

Figure 6.5: Influence of tw and ts on F1 score without clustering and l = 1 on Test Set
1.

outliers that have been detected. The best values, i.e. the values that are no more
than 0.01 worse than the best score, are achieved for combinations of ts and tw of 3.5
and 0.25, 3.0 and 0.25, 3.5 and 0.5, 3.0 and 0.5, and 4.0 and 0.25, achieving F1 score
of 0.5154, 0.5108, 0.5076, 0.5063, and 0.5063, respectively. The lowest values, i.e. the
values being no more than 0.01 better than the worst F1 score, are achieved for the
most extreme value combinations of ts = 4.5, tw = 2.0 and a F1 score of 0.3749 and
ts = 0.5 and tw = 0.25 yielding a F1 score of 0.3782.

The values of the histogram intersection distance show a similar behaviour to the
aad but on a slightly higher level due to the higher recall. The best values are reached
for ts = 4.0 with an F1 score of 0.5418 and ts = 3.5 with an F1 score of 0.5376. Both
values are achieved with tw = 0.25. The worst F1 score of 0.3896 is reached for ts = 0.5
and tw = 0.25.

As expected the earth mover’s distance shows the highest F1 scores, with the dif-
ference stemming from the higher recall values. However, because of the greater ro-
bustness of the emd’s recall in regard to ts in this case the best values are all achieved
for a value of ts = 4.5 with F1 scores of 0.5532, 0.5492, and 0.5447 achieved for values
of tw of 0.25, 0.5, and 0.75 respectively. The worst value again is reached at ts = 0.5
and tw = 0.25 with a F1 score of 0.4089.

In order to examine the influence of the minimal length of subsequent strong anoma-
lies in an outlier l on the results, we first look at the best results in respect to F1 score
for values of l in {1, 2, 3, 4, 5} shown in Table 6.3 for each of the distance functions.
Here, for every value of l the best achieved F1 score is shown, together with the thresh-
olds ts and tw that were used to generate it. The table also shows precision and recall.
We can see from this table, that in regard to F1 score there are no huge differences
between the different values for l for each of the distance functions.

6.2. TESTING OF THE BASE ALGORITHM 65

Distance l ts tw Precision Recall F1

aad

1 3.5 0.25 0.7031 0.4067 0.5154
2 3.0 0.25 0.6450 0.4334 0.5184
3 3.0 0.25 0.6882 0.4047 0.5097
4 2.5 0.25 0.6238 0.4253 0.5058
5 3.0 0.25 0.7748 0.3668 0.4979

hid

1 4.0 0.25 0.7395 0.4275 0.5418
2 3.5 0.25 0.6893 0.4418 0.5385
3 3.0 0.25 0.6392 0.4583 0.5338
4 3.0 0.25 0.6970 0.4324 0.5337
5 2.5 0.25 0.6422 0.4463 0.5266

emd

1 4.5 0.25 0.5870 0.5231 0.5532
2 4.5 0.25 0.6142 0.5100 0.5573
3 4.0 0.25 0.6052 0.5051 0.5506
4 4.0 0.25 0.6598 0.4762 0.5532
5 4.0 0.25 0.6964 0.4516 0.5479

Table 6.3: Best results regarding F1 score for each l on Test Set 1.

For the above average distance, the worst value achieved for l = 5 is only about
0.02 worse than the best value which occurred for l = 2. It is also interesting to note,
that in terms of tw, in all cases a value of 0.25 achieved the best results not only for
the aab but for all distance functions. For ts values range between 2.5 to 3.5. It is
noteworthy here, that in case of l = 2 and l = 5 ts = 3, such that the same combination
of thresholds resulted in both the best and worst F1 score. A value of tw = 3 is also
chosen for l = 3 and unsurprisingly precision, recall, and F1 score all fall between the
values for l = 2 and l = 3.

Overall the histogram intersection distance shows behaviour similar to the above
average distance. The differences in F1 scores are marginal, at about 0.015 between the
best value for l = 1 and the worst for l = 5. For ts the values get smaller the larger l
becomes, indicating that both values affect the score more or less the same. In contrast
to this, for l = 3 and l = 4 the same value of ts of 3 yields the best F1 score and we
see that the differences in F1 score in theses cases are marginal at 0.0001. However, if
we look at precision and recall for these to parameter sets, we see that there are larger
differences regarding these scores, such that the decrease in recall is made up by the
significant rise in precision.

The earth mover’s distance is affected the least by changes of l. This can be seen
from the facts that the difference between the best F1 score at l = 2 and the worst F1

score at l = 4 is less than 0.01, and that the value for ts just changes once from 4.5
at l = 2 to 4 at l = 3. Surprisingly, for the same thresholds the emd’s F1 score seems
to rise rather than fall if l gets larger, at least up to a certain point. This can be seen
due to the fact that both for l = 2 and l = 4 the best values for each ts are reached,
while for the other two distance functions, the best respective value is always reached
for the lowest l is occurs with. We suspect that this behaviour has to do with the earth
mover’s distance’s greater robustness to recall.

Regarding precision the table indicates that ts has a larger impact on both values

66 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

1 2 3 4 5

F
1

sc
or

e

l

aad, ts = 2.5
aad, ts = 3

aad, ts = 3.5
hid, ts = 2.5
hid, ts = 3

hid, ts = 3.5
hid, ts = 4
emd, ts = 4

emd, ts = 4.5

Figure 6.6: Influence of l on F1 scores on Test Set 1.

and thus F1 score than l. This observation is underlined by the fact, that with the aad
for l = 2, l = 3, and l = 5, where identical values of ts were used, precision rises and
recall is lowered while for l = 1, precision is notably higher than for l = 3 and even
more so for l = 2. With the histogram intersection distance we see a similar behaviour
for l = 1 to l = 2, l = 2 to l = 3, and l = 4 to l = 5. For the earth mover’s distance
this is harder to see, since the value of ts does change only once at l = 2 to l = 3. In
this case, however, the precision does get lower like with the other distance functions.

On recall, the effects are similar if somewhat weaker: For the aad at l = 2 recall is
higher than for l = 3 and l = 5, while due to changes in ts the other two entries do
not seem to follow this trend. The same applies to the histogram intersection distance,
where recall is lower for l = 4 than for l = 3 with the same thresholds, while in the
other cases recall is gets higher with lowered ts. For the emd the effects of ts on recall
are lower, as we have already described above. Therefore the recall for l = 3 is slightly
lower than at l = 2.

In order to further investigate the effect of the minimal inner length parameter l
on the F1 score we have plotted the F1 scores over l for all combinations of distance
function and thresholds that feature in Table 6.3 in Figure 6.6. We can see from this
that in general the differences in F1 score are relatively small. However, in most cases
the curves peak at l = 4 or earlier and then start to decline from there on. The only
case, where this behaviour is not obvious is the histogram intersection distance with an
threshold ts of 2.5. However, even here we note a slight decrease from l = 4 to l = 5.

Another interesting observation is that in general the hid seems to be the most
sensitive distance function in regard to a rising l. Apart from the case of ts = 2.5 that
we already discussed above, the other three instances of the histogram intersection
distance show a steep decline in contrast to the emd and aad.

Figure 6.7 shows the effects of l on precision (Figure 6.7a) and recall (Figure 6.7b).

6.2. TESTING OF THE BASE ALGORITHM 67

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

P
re

ci
si

on

l

aad, ts = 2.5
aad, ts = 3

aad, ts = 3.5
hid, ts = 2.5
hid, ts = 3

hid, ts = 3.5
hid, ts = 4
emd, ts = 4

emd, ts = 4.5

(a)

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

R
ec

al
l

l

aad, ts = 2.5
aad, ts = 3

aad, ts = 3.5
hid, ts = 2.5
hid, ts = 3

hid, ts = 3.5
hid, ts = 4
emd, ts = 4

emd, ts = 4.5

(b)

Figure 6.7: Influence of l on precision and recall on Test Set 1.

Again, we see that the histogram intersection distance is more prone to changes of l
than the other two distances. In respect to precision we see, that the gain in precision
from l = 3 to l = 4 is the strongest while after that the histogram intersection distance
flattens out slightly more than the other to distances. In terms of recall, the decline
with rising l is more or less linear for all parameter sets. Again, the hid has a steeper
slope than the graphs of the other two distance functions. This is especially apparent
for the hid with ts = 4 and the aad with ts = 3.5, that have very similar recall in the
l range from 2 to 4. However, the hid’s recall for l = 1 is higher and the recall for
l = 5 lower than the corresponding values of the aad. The combination of both of these
characteristics then leads to the behaviour seen in Figure 6.6.

Other interesting approaches to evaluate the different combinations of parameters
of the outlier detection is the fraction of hit reference outliers compared to all reference
outliers, as well as the fraction of hitting detected outliers. Hereby, by hit reference
outliers we mean the number of reference outliers that overlap with one of the detected
outliers relative the total number of reference outliers. The idea of this measurement
is essentially the outlier based recall where a true positive is a detected outlier that
intersects with a reference outlier. By hitting outliers we mean the number of detected
outliers that intersect with a reference outlier relative to the total number of detected
outliers. This can be interpreted as an outlier based precision.

These measurements are meaningful due to the way the adaptive outlier removal
in AdaMS works. In affected grid cells the segmentation parameters are adjusted.
However, those adjustments do not affect the silhouette inside of that grid cells only.
If, for example, due to false segmentation inside a single grid cell g a larger portion
of ground pixels gets classified as sky pixels, an adjustment of the brightness factor γg
can lead to a correct segmentation of the pixels in g and hence other pixels that were
classified as sky before are never checked in respect to belonging to the sky and thus
stay ground pixels.

Figure 6.8 gives an overview of the influence of the threshold parameters ts and tw
on the hit outliers. In general these results resemble those of the recall presented in
Figure 6.4 in that the earth mover’s distance achieves much higher values for larger
tss than the other two distance functions. Again, the above average distance and
the histogram intersection distance perform similarly albeit the hid is 0.0438 better

68 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5 1 1.5 2

1

2

3

4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

aad hid emd
tw

ts

H
it

O
ut

lie
rs

Figure 6.8: Influence of tw and ts on the fraction of hit reference outliers without
clustering and l = 1 on Test Set 1.

on average. Overall, the results values are about 0.2 higher than the recall values.
This, however is expected behaviour since the probability of a whole detected outlier
intersecting with a reference outlier is higher than the probability of a single detected
point inside a detected outlier lying inside a reference outlier as well.

Also, in general, the influence of tw on the fraction of hit outliers is negligible in all
instances. This shows, that for all distance functions if a detected outlier O intersect
with a reference outlier R, then O’s inner outlier I(O) of strong anomalies does intersect
with R as well. A further conclusion to be drawn from this is that cases where one
detected outlier hits two or more reference outliers are relatively seldom since it is
improbable that the inner outlier portion of detected outliers grows that large.

The fraction of hitting outliers are depicted in Figure 6.9. Again, as with the
hit outliers, it is noticeable that the influence of tw on the number of hitting outliers
is insignificant as there are nearly no changes following the rows of the figure from
left to right. As before, the histogram intersection distance and the above average
distance perform very similarly. However, in this case the aad performs slightly better
on average by 0.0073. This effect is higher for values of ts of 3 and above where the
average advantage of the aad is 0.0225.

Interestingly, in contrast to the precision results shown in Figure 6.3 where the
earth mover’s distance performed on the same level as hid and aad, in this case the
emd’s performance is clearly the worst of all three distance functions. On average it
is 0.1368 worse than the above average distance, while for values of ts ≥ 3, where in
general the performance of all three distances is the best, the difference rises to an
average of 22.09%.

In order to further investigate this phenomenon Table 6.4 shows the absolute num-
ber of detected outliers for each distance function and each value of ts. The other

6.2. TESTING OF THE BASE ALGORITHM 69

0.5 1 1.5 2

1

2

3

4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

aad hid emd
tw

ts

H
it

ti
ng

O
ut

lie
rs

Figure 6.9: Influence of tw and ts on the fraction of hitting detected outliers without
clustering and l = 1 on Test Set 1.

ts 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
aad 2222 1550 1033 727 471 287 178 141 92
hid 2019 1488 1004 697 479 324 222 166 117
emd 1917 1485 1144 882 681 528 419 326 266

Table 6.4: Number of detected outliers over ts for tw = 0.25 and l = 1 on Test Set 1.

parameters used to get the numbers in the table are l = 1 and tw = 0.25. The thresh-
old tw was chosen as the lowest possible value since it is the only value that works in
combination with all values of ts. Higher values of tw marginally increase the number
of outliers since it prevents close-by outliers from growing into a single larger outlier.

We can see from the table that with rising ts the number of detected outliers
decreases significantly. For lower values of ts, i.e. ts ≤ 1.5, under all distance functions
the relative difference of detected outliers is relatively small. However, in the remaining
range of ts we see that when using the earth mover’s distance the number of detected
outliers is considerably higher with nearly three times as many detected outliers than
the above average distance for ts = 4.5. Meanwhile the difference between the aad and
the histogram intersection distance stays very small, as expected when considering the
similar performance in the hit and hitting outlier analyses.

In conclusion we see from this table that the high number of hit reference outliers of
the emd for larger values of ts is bought by a higher total number of detected outliers
compared to the other distance functions. This results in the low fraction of hitting
outliers for the earth mover’s distance that we observed in Figure 6.9.

In order to evaluate the overall performance of the variants of the outlier detection

70 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5 1 1.5 2

1

2

3

4

0.2

0.3

0.4

0.5

0.6

aad hid emd
tw

ts

F
H

Figure 6.10: Influence of tw and ts on the harmonic mean of hit reference outliers and
hitting detected outliers without clustering and l = 1 on Test Set 1.

algorithm, we also investigated the harmonic mean of the hit outliers and the hitting
outliers. Let HR be the fraction of hit reference outliers and HD be the fraction of
hitting detected outliers, then the harmonic mean of those two metrics is given by

FH = 2 · HR ·HD

HR +HD
.

If we interpret HR as related to recall and HD as a kind of precision, FH is the
equivalent to the F1 score for HR and HD.

Figure 6.10 plots this score over the different values for ts and tw. As with Figures
6.8 and 6.9 we see that the influence of tw on the results is once again marginal. For
values of ts up to 3.5 we see that all three distance functions yield very similar results.
This comes as no surprise since aad and hid perform similar for the HR and HD while
the emd yields better HR scores and worse HD scores in comparison. However, for
values of ts ≤ 3.5 these effects seem to cancel each other out in respect to FH .

For higher values of ts we see a significant drop in FH score for the above average
distance which is caused by the lowest values in HR. The histogram intersection
distance drops, too, but not as severe as the aad. Again, the cause of this behaviour
are the low HR values for high ts, however we see that the slightly better values in
HR result in FH scores on the level of the earth mover’s distance for ts = 4 and values
halfway between the other two distances for ts = 4.5.

While the figure shows that the earth mover’s distance is more robust in respect to
changes in ts than the other distances, Table 6.5 reveals that the absolute maximum
and minimum values for all three distance functions are relatively close with less than
2% difference between the best and worst values for maximum and minimum values,
each.

6.2. TESTING OF THE BASE ALGORITHM 71

Dist Maximum Minimum
ts tw FH ts tw FH

aad 3.0 0.5 0.5197 0.5 0.25 0.2766
hid 3.0 1.5 0.5262 0.5 0.25 0.2748
emd 4.5 0.75 0.5330 0.5 0.25 0.2913

Table 6.5: Maximum and minimum FH scores per distance function for l = 1 on Test
Set 1.

Distance l ts tw HR HD FH

aad

1 3.0 0.5 0.5050 0.5354 0.5197
2 3.0 1.5 0.4752 0.6128 0.5353
3 2.5 0.5 0.5248 0.5177 0.5212
4 2.5 0.5 0.4356 0.5913 0.5017
5 2.0 1.5 0.4356 0.5246 0.4760

hid

1 3.0 1.5 0.5248 0.5277 0.5262
2 3.0 2.0 0.4653 0.5982 0.5235
3 3.0 2.0 0.4257 0.6439 0.5126
4 2.5 2.0 0.4554 0.5975 0.5169
5 2.0 0.75 0.4752 0.5246 0.4987

emd

1 4.5 0.75 0.5050 0.5645 0.5330
2 3.5 0.25 0.5842 0.4847 0.5298
3 4.0 0.75 0.4653 0.6089 0.5275
4 3.0 0.25 0.5149 0.5322 0.5234
5 3.0 0.25 0.4752 0.5931 0.5277

Table 6.6: Best results regarding FH score for each l on Test Set 1.

Table 6.6 shows the best FH scores for every distance function and l values ranging
from 1 to 5. Additionally, the thresholds ts and tw leading to the value and HR and
HD resulting from those parameter combinations are given in a similar fashion as in
Table 6.3 for F1 score. Here we see, that overall, l does have a larger impact on FH

score than on F1 score, especially when the above average distance is used as distance
function that yields both the best overall value with l = 2 and the worst overall value
in case of l = 5. It is also noteworthy that in contrast to the F1 measure, in this
case different values for tw feature with values from the complete range featuring in
combination with the different distance functions. This behaviour stems from the fact,
that results regarding HR and HD in general are more similar than for precision and
recall and thus small changes caused by variations of tw have greater influence.

It is also notable that the best values for all three distance functions are closer to
each other than in case of the F1 score. Here the difference between the best value of
the best distance and the best value of the worst distance is less than one percent.

In order to verify whether the results obtained above are transferable on a data
set which contains obstacles in the following we look at Test Set 2. Figure 6.11 shows
the influence of the anomaly thresholds on the F1 score for l = 1 on all three distance

72 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5 1 1.5 2

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

aad hid emd
tw

ts

F
1

Figure 6.11: Influence of tw and ts on F1 scores without clustering and l = 1 on Test
Set 2.

functions. Interestingly, the behaviour is quite different on Test Set 2 than it is on Test
Set 1. In general, lower values of tw here seem to result in better F1 scores over all
distance functions. Also, on this data set, lower values of ts yield better F1 scores.

As a consequence, the best F1 scores for the aad, hid, and emd are reached for
combinations of ts and tw of 1.0 and 0.25, 2.0 and 0.25, and 2.0 and 0.25, respectively.
These threshold combinations yield F1 scores of 0.5058 for the aad, 0.5378 for the hid,
and 0.5776 for the emd. For all three distance functions, the worst values are reached
for ts = 4.5 and tw = 2.0. Overall the scores are a bit higher than for Test Set 1.

In order to explain this difference in behaviour we have to take a look at Figures
6.12a and 6.12b. Here we see, that the general behaviour of precision and recall under

0.5 1 1.5 2

1

2

3

4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

aad hid emd
tw

ts

P
re

ci
si

on

(a)

0.5 1 1.5 2

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

aad hid emd
tw

ts

R
ec

al
l

(b)

Figure 6.12: Influence of tw and ts on precision and recall without clustering and l = 1
on Test Set 2.

6.2. TESTING OF THE BASE ALGORITHM 73

0.5 1 1.5 2

1

2

3

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

aad hid emd
tw

ts

F
H

Figure 6.13: Influence of tw and ts on FH scores without clustering and l = 1 on Test
Set 2.

Dist Maximum Minimum
ts tw FH ts tw FH

aad 2.0 0.5 0.5801 4.5 0.25 0.3487
hid 2.0 1.5 0.6576 4.5 0.25 0.3919
emd 2.0 1.5 0.6576 4.5 0.25 0.3919

Table 6.7: Maximum and minimum FH scores per distance function for l = 1 on Test
Set 2.

changes of the thresholds is very similar to that von Test Set 1 and depicted in Figures
6.3 and 6.4. The lowest precision values are reached if both thresholds are low and
are mostly influenced by ts while recall shows an inverted behaviour. It is noticeable
however, that in contrast to Test Set 1, the earth mover’s distance’s precision is sig-
nificantly lower in comparison to the other two distances for higher values of ts, while
it is better for lower values. Also, the histogram intersection distance in this case
outperforms not only the emd but also the above average distance.

In respect to recall, the above average distance is outperformed both by the hid
and the emd. Again, as with Test Set 1, the earth mover’s distances recall is the most
robust in respect to changes to ts and tw. Overall, recall values are a bit worse for Test
Set 2 than for Test Set 1.

In combination, the overall higher values for precision and lower values for recall
lead to the significantly different values for F1 score that have been described above
and especially the more robust values of the earth mover’s distance.

Figure 6.13 shows the FH score for Test Set 2. As with Test Set 1 these are on a

74 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

Distance l ts tw HR HD FH

aad

1 2.0 0.5 0.6230 0.5427 0.5801
2 1.5 0.5 0.7213 0.5123 0.5991
3 1.5 0.5 0.6393 0.5393 0.5851
4 1.0 0.5 0.6885 0.5024 0.5809
5 0.5 0.25 0.8197 0.4475 0.5789

hid

1 2.0 1.5 0.6885 0.6294 0.6576
2 1.5 1.25 0.7705 0.5714 0.6562
3 1.5 0.25 0.7049 0.5843 0.6390
4 1.0 0.25 0.7213 0.5421 0.6190
5 1.0 0.25 0.6557 0.5921 0.6223

emd

1 3.5 0.5 0.6557 0.7414 0.6959
2 3.0 0.5 0.6721 0.7154 0.6931
3 1.5 0.5 0.8033 0.6096 0.6932
4 2.5 0.5 0.6230 0.7182 0.6672
5 1.0 0.5 0.7377 0.6168 0.6718

Table 6.8: Best results regarding FH score for each l on Test Set 2.

higher level than the F1 scores but the absolute level on Test Set 2 is again higher as
on Test Set 1. The best and worst values are given in Table 6.7. Again we see that on
Test Set 2 lower values for ts lead to better results than on Test Set 1. While on Test
Set 1 the worst results were achieved by ts = 0.5 in this case over distance function
ts = 4.5 lead to the worst results.

Table 6.8 shows the best threshold combination in respect to FH for every distance
function and l ∈ [1, 5]. Apart from the differences in thresholds discussed above the
overall behaviour per distance function is similar to the behaviour on Test Set 1. The
above average distance again reaches its best value for l = 2 while hid as well as emd
get their best values for l = 1. The overall results, however, once again show that on
Test Set 2 the distance function has a much higher impact than on Test Set 1, with
5% difference between aad and hid and another 5% difference between hid and emd.

6.3 Testing the Multi-Reference Enhancement

After testing the base algorithm in the previous section, we are going to evaluate the
multi-reference enhancement described in Chapter 4.4 on the same data sets as we
did with the base algorithm. However, in this section we focus on the effects that are
caused by changing the number of clusters during the training phase and therefore the
number reference histograms.

The effects of the number of clusters on the training data set have already been
described in Section 6.1. There, we have seen, that in general with a rising number
of clusters the mean anomaly scores of points of the training silhouettes decreases. In
contrast to this, the normalised standard deviation rises slightly for the above average
distance and histogram intersection distance, while staying more or less level for the
earth mover’s distance.

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 75

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(a) Test Set 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(b) Test Set 2

Figure 6.14: Normalised mean and standard deviation over the number of clusters k
for aad.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(a) Test Set 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(b) Test Set 2

Figure 6.15: Normalised mean and standard deviation over the number of clusters k
for hid.

The Figures 6.14, 6.15, and 6.16 shows comparable graphs to Figure 6.1, namely
the normalised mean µ over the number of clusters. The whiskers show µ± σ for the
standard deviation σ. For every distance function, as with Figure 6.1, we normalised
all values by dividing through the normal µ for k = 1. By normal data we mean data
points that are not part of the reference outliers. Additionally the purple curves show
the distribution properties over the anomaly scores of points that belong to reference
outliers. For the normal data, we see that the distribution mean and standard deviation
behave very similar to the ones on the training data, albeit the anomaly scores are
slightly higher. It is also observable, that for Test Set 1 in all cases the mean anomaly
score for the data points that belong to outliers is farther than one normal data standard
deviation away from the mean of the normal data. However, if we look at the outlier
points’ standard deviation we see that the normal data points’ mean is inside one
outlier data standard deviation from the outlier data mean. If we take Test Set 2 into
account, we see, that for the aad and hid the mean anomaly score for outliers is about
one normal data standard deviation away from the normal data mean. In contrast

76 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(a) Test Set 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

µ

Number of Clusters

outliers
normal

(b) Test Set 2

Figure 6.16: Normalised mean and standard deviation over the number of clusters k
for emd.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

N
or

m
al

is
ed

σ

Number of Clusters

aad outliers
aad normal
hid outliers
hid normal

emd outliers
emd normal

(a) Test Set 1.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

N
or

m
al

is
ed

σ

Number of Clusters

aad outliers
aad normal
hid outliers
hid normal

emd outliers
emd normal

(b) Test Set 2.

Figure 6.17: Normalised standard deviation σ/µ for test data over the number of
clusters.

to this, for the earth mover’s distance the outlier mean is farther than one normal
data standard deviation away from the normal data mean in both cases although the
difference is much higher in case of Test Set 1.

The behaviour of both the histogram intersection distance and especially the earth
mover’s distance in respect to the number of clusters is relatively smooth. Both dis-
tances average values converge towards their final values quickly and reach them at
about k = 20 for the histogram intersection distance and k = 10 for the earth mover’s
distance. The above average distance shows the same jumps as it has with the refer-
ence data. We suspect that the number of histograms that can be computed from the
training silhouettes and that make an actual difference in the distance computation is
limited. This is due to the way the above average distance is computed, taking into
account an binary distinction for every bin only.

Overall it seems like the absolute distance between the mean of the normal data
anomaly scores and the outlier data anomaly scores is more or less constant. In theory
we expect this to manifest in better results for values where the normal data mean

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 77

is the lowest. However, as Figure 6.17 shows in the same way as Figure 6.2 for the
training data, the relative standard deviation tends to be larger for both normal and
outlier data if the mean gets lower. This could negate the effect described above.

For the earth mover’s distance, Figure 6.17 shows that the influence of the number
of clusters on the normalised standard deviation is negligible, especially for Test Set 2,
where the value is more or less constant over all possible values of k. Also, in general
we see, that the normalised standard deviation for Test Set 2 shows more similar values
than for Test Set 1. In comparison, the normal data standard deviation is higher on
Test Set 2 while the outlier standard deviation is lower. This general distinction in
behaviour between the two Test Sets is reflected by above average distance and the
histogram intersection distance as well.

The histogram intersection distance shows a slight rise in both normalised standard
deviations on both data sets with a rising number of clusters. On both Test Sets we
see a stabilisation of the standard deviations for a number of clusters of around 40. For
lower numbers of clusters we see both an increase in normal data standard deviation
as well as relatively strong jitters between single steps on the x axis. On Test Set 1, it
is noticeable that the normalised standard deviation for outlier data rises faster than
the normalised standard deviation for the normal data, namely by an overall value of
0.05 between k = 1 and k = 61 while the change for the normal data is in the region of
0.02. On Test Set 2, however, this behaviour is not replicated. In this case, both types
of data behave more or less the same, albeit on a higher level for the outlier data.

Finally, the above average distance again shows the distinctive jumps between dif-
ferent numbers of clusters that have already shown in Figures 6.1, 6.2, and 6.14. Despite
the general difference in normalised standard deviation between outlier data and nor-
mal data, the changes are more or less uniform in the sense that if there is a rise in
normalised standard deviation of the normal for a certain number of clusters, we see a
similar rise for the normalised standard deviation for the outlier data. As a consequence
of this, the curves for normal data and outlier data seem to be more or less parallel
to each other. This, again, leads to the assumption that the above average distance is
rather sensitive to the number of clusters in comparison to the other distance functions
due to a relatively small amount of effectively different histograms.

In terms of overall difference between outlier and normal data, the above aver-
age distance offers the weakest distinction, while the earth mover’s distance has the
strongest distinction. The histogram intersection distance is in the middle here. At
least for k = 1 we have already seen in the previous section, that this behaviour is
reflected in the overall quality of the results for both F1 score and FH score.

For the evaluation of the actual performance of the different distance functions
and cluster numbers, we evaluate the maximum F1 score for each distance function
and each number of clusters. For Test Set 1, we see in Figure 6.18 that all distance
function show relatively high oscillations for low number of clusters up to about twenty
clusters. After that, at least the histogram intersection distance and the earth mover’s
distance stabilise. Apart from three unusual results for k = 23, k = 31, and k =
38, the above average distance reaches a stable level, too. For these unusual data
points clusters are found that have centroid histograms which fit the data in Test Set
1 especially well in the same way as some of the clusterings with smaller numbers
of clusters. We also see, that both the earth mover’s distance as well as the above
average distance reach their absolutely best F1 score at a number of clusters of nine

78 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.18: Maximum F1 score over the number of clusters on Test Set 1.

and eight, respectively. The hid reaches the absolute best F1 score for k = 20, though
the difference between that best value and the second best value is much lower than
for the other two distance functions. The hid’s best value is also the worst best value
of all three distance functions. Apart from these best values the histogram intersection
distance and the earth mover’s distance are mostly on similar levels while the above
average distance performs about 0.01 worse. Due to the high number of observations
we believe that this difference, albeit only small in its results, is significant.

While all three distance functions do profit from the multi-reference approach, it is
noteworthy that the above average distance gains the most. For k = 1 its best value
is more than 0.02 worse than that of the histogram intersection distance, however it
then momentarily surpasses both of the other distances at k = 8 before staying in the
same region as the other distances until about k = 20. As with the training data,
we again note that for many numbers of clusters, the aad returns similar results. The
reason for this again is the limited number of histograms that make an actual difference
in regard to distance computation under the above average distance. The histogram
intersection distance and the emd do not loose as much F1 score for higher numbers of
clusters, however, it shows that for all three distances the best results are reached for
a relatively low number of clusters, as discussed above.

Interestingly, Figure 6.19 shows a rather different behaviour for Test Set 2 than
we have seen for Test Set 1. Most notably is the fact that in this case the histogram
intersection distance performs on a lower level than on Test Set 1 while the other two
distance functions are better than before. This leads to the hid being the worst option
on Test Set 2. It is also noteworthy that all distance functions reach their best values
for either 22 clusters in case of the earth mover’s distance and the aad, which is much
higher than for Test Set 1, and for 23 clusters for the histogram intersection distance.
Also the above average distance is stable on the best value, in this case reaching the

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 79

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.19: Maximum F1 score over the number of clusters on Test Set 2.

same value for all numbers of clusters between 22 and 61 expect for 24, 28, 30, 31, 38,
and 41.

As we have discussed before, in contrast to Test Set 1, Test Set 2 contains both
segmentation errors and obstacles. Therefore, we reckon that due to the different kinds
of outliers a higher number of clusters provides better matches on this set. It also
seems, that for the earth mover’s distance and the above average distance, obstacles
are easier to detect than segmentation errors, hence the overall better scores apart from
the absolute best value on Test Set 1. The histogram intersection distance seems to
be better suited to segmentation errors as it is the only distance function that yields
worse values for Test Set 2 than for Test Set 1.

In terms of clustering we see that overall for all distance functions and both Test
Sets that the multi-reference extension has a positive influence on the overall outlier
detection results regarding F1 score. Also it is noteworthy, that in all cases the best
results have been achieved by using between eight and 23 clusters. For higher numbers
of clusters the results either stay more or less stable or even recline slightly such that
we can conclude that a certain aggregation in terms of reference data has a positive
impact on the actual outlier detection.

In order to get a clearer picture of the effects of the clustering of the reference
histograms on the F1 score, some further analysis is necessary. Above, for every distance
function and every number of clusters the best combination for l, ts, and tw has been
plotted. While this does take the fact that different number of clusters can lead to
different anomaly score distributions into account it is hard to separate the impact of
the clusters from this.

In order to overcome this limitation, we investigate the parameter configurations
that yield the best single result for each distance on Test Set 1, aad1, hid1, and emd1,
as well as the parameters configurations that gave the best results on Test Set 2, namely

80 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

dist Test Set 1 Test Set 2
l ts tw l ts tw

aad 1 4.0 0.25 1 2.0 0.25
hid 1 4.0 0.25 3 1.5 0.25
emd 4 4.5 0.25 2 2.5 0.25

Table 6.9: Choice of parameters for best results.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad1
hid1

emd1
aad2
hid2

emd2

Figure 6.20: Best F1 scores over the number of clusters on Test Set 1.

aad2, hid2, and emd2. The parameters for each instance are shown in Table 6.9. It
is obvious from these values, that Test Set 1 works well with an inner threshold close
to the tested maximum while Test Set 2 rewards lower values. The weak anomaly
threshold tw is chosen as 0.25 in all cases, which maximises recall.

Figure 6.20 shows the results of these six parameter sets on Test Set 1. Even
on single parameter sets aad1 shows the most influence from the number of clusters,
overall. It starts slightly above the 0.5 mark for one centroid reaches its high point at
k = 8 and then falls to a value of about 0.53, where it stabilises. The earth mover’s
distance and the histogram intersection distance in the form of emd1 and hid1 are
much less influenced by the number of clusters. The earth mover’s distance in this case
has a single spike at k = 8, while it hovers around a F1 score of 0.55 for most of the
other values. In general, it stabilises on that value after the spike for a greater number
of clusters while the values before the spike are slightly lower. The highest values
are reached around the the spike, e.g. in a range of k ∈ [6, 20]. For the histogram
intersection distance the parameter set established on Test Set 1 starts very close to
emd1 and emd2, except for the absolute height of the peaks, and stabilises somewhere
between emd1 and aad1 without showing a huge impact from the number of clusters.

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 81

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

Figure 6.21: Best F1 score over the number of clusters on Test Set 2. For key see Figure
6.20.

Interestingly, for the variants which are optimised on Training Set 2 the number of
clusters in general seems to have a negative impact. For all three distance functions,
the best values are reached for k = 2 in case of aad2 or k = 3 for the histogram
intersection and earth mover’s distance. In case of the above average distance, results
stabilise for ten or more clusters at an F1 score of about 0.44 while the best values are
slightly above 0.45. The earth mover’s distance starts with similar, if slightly worse
values for less than ten clusters, though with higher oscillations, and then slowly settles
for values of around 0.42 F1 score.

Finally, the histogram intersection distance shows the best values for lower numbers
of clusters with strong oscillations as in case of the earth mover’s distance. However, in
contrast to that, it stabilises later, at about k = 24 and from then on slowly stabilises
to a value of slightly under 0.5. The best values are in the region of 0.52 to 0.53.
In general, the hid2 is situated in the middle between the other sets that have been
optimised on Test Set 2 and the ones that have been optimised on Test Set 1.

Figure 6.21 shows the same evaluation as Figure 6.20, only this time for Test Set
2. We see, that again the earth mover distance with the highest value on Test Set 2,
emd2, performs the best overall. The highest value is reached for 0 clusters with strong
oscillations between k = 7 and k = 16. After that the values begin to stabilise to values
of about 0.56 F1. The above average distance stabilises on very similar values starting
at k = 22 though with some larger downward spikes. Before that, starting from eight
clusters there is a phase where aad2’s results jump around heavily. For lower number
of clusters the results are more similar to each other, albeit on a very low level, starting
with a F1 score of 0.46 with one cluster. This shows, that once again, the above average
distance is the most sensitive to the number of clusters used.

The hid2 parameter set also starts in a region between 0.46 and 0.5 for low numbers

82 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

dist l ts tw k F1

aad 2 2.5 0.25 22 0.5306
hid 1 3.5 0.25 13 0.5424
emd 4 3.0 0.25 9 0.5641
aad1 1 4.0 0.25 8 0.5119
hid1 1 4.0 0.25 23 0.5293
emd1 4 4.5 0.25 9 0.5296
aad2 1 2.0 0.25 8 0.5262
hid2 3 1.5 0.25 27 0.5103
emd2 2 2.5 0.25 19 0.5422

Table 6.10: Best combined parameter sets for F1 score on both test sets.

of clusters and show heavy weaving until 25 clusters, where the best value is reached
for k = 23. Then values begin to stabilise at about 0.53. This makes hid2 the worst of
the parameter sets that have been optimised on Test Set 2. Overall, however, it also
is the only parameter set that yields multiple points with an F1 score higher than 0.5
on both datasets.

Among the datasets optimised on training set 1, hid1 shows the best values. It has
the highest peak for 24 clusters and also stabilises at slightly over 0.45. Apart from
that there are again strong oscillations in the first half. Overall emd1 behaves very
similar, albeit on a lower level and without the high best value shown by hid1. The
first parameter set for the above average distance performs the worst. Its behaviour
more or less mirrors that of aad2, only for values that are about 1.6 worse in F1 score.

Overall we see that parameter sets that perform well on one of the datasets are
usually worse on the other data set, thus indicating some overfitting. Another indicator
for overfitting is the fact, that hid2 does not lead to exceptional results on either data
set, however, its results are the most comparable over both test sets.

Table 6.10 shows the best parameter combinations for each distance function over
both test sets, where both test sets are weighted the same. In the lower part of the
table, the combined results of the best parameter combinations on the single test sets
are shown. We can see that again, in all cases tw is set to 0.25, e.g. the lowest value,
while values for l and ts are more in the middle of the range. The results themselves
are in the usual order, where aad performs the worst, hid is about 0.01 better and
finally the earth mover’s distance again is 2 percent better. For the separate parameter
combinations, emd2 with 19 clusters performs the best. If we compare the chosen values
to those of the overall best emd settings, we see, that they are relatively close together
with l lowered from 4 to 2 and ts from 3.0 to 2.5. Only in number of clusters a larger
difference arises, with emd working best on 9 clusters and emd2 on 19. From this
it follows that emd2 has a lower precision and higher recall than the absolute best
settings.

Overall we see that in respect to F1 score the multi-reference extension improves
AdaMS OD’s results. In all cases, moderate numbers of clusters in the region between 8
and 27 clusters provide the best results. This does support the assumption formulated
in Section 4.4, that the right amount of aggregation is important. If very little aggre-
gation is used, i.e. a very high number of clusters is used, mostly precision suffers while

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 83

dist l ts tw k FH

aad 1 3.0 0.25 22 0.5367
hid 1 3.5 1.25 16 0.5646
emd 1 4.5 0.25 25 0.5924
aad1 2 3.5 1.5 17 0.5085
hid1 1 3.5 1.25 16 0.5646
emd1 1 4.5 0.25 16 0.5918
aad2 2 1.5 0.5 24 0.4126
hid2 2 2.0 0.25 9 0.4669
emd2 2 4.0 0.25 25 0.5901

Table 6.11: Best combined parameter sets for FH score on both test sets.

recall on average improves. If a strong aggregation in the form of only one reference
silhouette or very few clusters is used, recall suffers but precision is improved.

Since Section 6.2 shows a strong distinction between the common F1 score and the
FH score introduced in that section, in the following we will discuss the influence of the
multi-reference approach on that measure as well. Similarly to Table 6.10, Table 6.11
shows the parameter sets for each distance function that retrieved the best results on
both data sets, aad, hid, emd, as well as parameter combinations that lead to the best
results on the single training sets, marked with 1 and 2, respectively. All FH scores
given in the table are computed for both test sets. Overall we see a similar effect on
the choice of parameters as with the F1 score. In general, the values of ts resulting in
the best outlier detection are between those for Test Set 1 and Test Set 2, with Test
Set 1 preferring higher values than Test Set 2. Interestingly, FH supports higher values
for tw in some cases, which were 0.25 in all cases for F1 score. As already mentioned in
the evaluation of the base algorithm, this is a consequence of the fact, that in order to
declare an outlier as hit – and therefore execute a resegmentation of that part of the
silhouette in context of the AdaMS framework – does not depend on the size of the
overlap. This leads to higher values for tw in some where an additional size for outliers
does not help finding further outliers that would not have been hit otherwise.

In terms of FH score, Test Set 1 seems to be more relevant to the overall results
than Test Set 2. We can see this from the fact, that for the histogram intersection
distance the chosen parameters for these two cases are identical, while for the earth
mover’s distance only the number of clusters deviates. Only the above average distance
shows higher values for all parameters apart from the number of clusters for Test Set
1. Apart from emd2 where very similar values to the other cases where chosen and a
very similar result overall to the other emd parameter sets was achieved, we see that
the parameter sets optimised on Test Set 2 are performing poorly on both datasets
combined. The results for the earth mover’s distance’s parameter sets are all very
similar, ranging from 0.5901 to 0.5924 and are the best results, being 0.03 better than
the histogram intersection distance with the overall best parameter set that is equal
to the best parameter set on Test Set 1. The overall best parameter set for the above
average distance is another 0.03 worse than that at 0.5367. This is then followed by
the aad2 parameter set. Finally, hid2 and especially aad2 with an FH score of 0.4669
and 0.4126, respectively, represent the worst presented choices.

84 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0 10 20 30 40 50 60

F
H

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.22: Maximum FH score over the number of clusters on Test Set 1.

Apart from hid2, where a value of k = 9 was chosen, all used numbers of clusters
lie in the range of 16 to 25. By this we see that the number of clusters for the optimal
parameter sets is closer together than when trying to improve F1 score and also that
the average optimal number of clusters is slightly larger. Overall the results presented
show once again, that clustering of reference data has a positive impact on the results
of the algorithm as in all cases numbers of clusters in the middle range yield better
results than the results without clustering presented in the previous section.

In order to further investigate the influence of the number of clusters on the outlier
detection, Figure 6.22 shows the maximum FH score for each number of clusters and
distance function. We see that for the earth mover’s distance the number of clusters
has a greater influence on the FH score than on the F1 score, even if there are strong
oscillations for huge parts of the graph. In fact the values only start to stabilise at
about 45 clusters and then on a relatively low level compared to the numerous high
points especially in the lower half, i.e. up to 30 clusters. The best value, as already has
been shown in Table 6.11 is reached for 16 clusters. The lowest value by some margin
is reached for 1 reference silhouette, that is for the base algorithm. Apart from this
occurrence the lowest values overall are reached in some spikes and at the stabilised
end with a high number of clusters.

The histogram intersection distance behaves similar to the earth mover’s distance
though on a lower level of performance. Again, the worst result is achieved for one
cluster, even if in this case by a smaller margin, and the best value is reached for 16
clusters in an area with strong deviations. In case of the hid the stabilisation of the
values is reached even later than in case of the earth mover’s distance beginning at 53
clusters. In contrast to the emd and also the above average distance, the hid stabilises
at values that are only slightly below the mean of the spectrum.

For the above average distance, the last values, starting at 39 clusters also mark

6.3. TESTING THE MULTI-REFERENCE ENHANCEMENT 85

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 10 20 30 40 50 60

F
H

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.23: Maximum FH score over the number of clusters on Test Set 2.

the lowest values, together with similar values earlier on. Overall, we see the usual
behaviour of the above average distance, i.e. huge steps between different values but
overall a low number of different reached scores. There are four high spikes between
17 and 38 clusters, that reach relatively good values and a slightly lower one for 10
clusters. Apart from these the scores are about the quality of the hid for up to ten
clusters and are lower from then on. Interestingly, the value for k = 1 is the best of all
three distance functions, as discussed in the previous section. In that sense it could be
counted as one of the high points of the aad.

Overall it is noteworthy that for all three distance functions the best values on Test
Set 1 are worse than the FH scores over both datasets as shown in Table 6.11 for the
same parameter combinations. This is a contrast to the results regarding F1 score. If
we take the number of outliers of certain lengths, as given in Table 6.2, into account,
we see that for Test Set 1 65 of 101 used outliers have a length of less than 20 points.
These outliers are represented more strongly by the FH score than the F1 score, which
is more of a point-wise measure.

Figure 6.23 shows the same evaluation for Test Set 2 as Figure 6.22 does for Test
Set 1. First of all we see much higher results for this data set, thus supporting our
assumption that larger outliers are easier to detect. Another apparent observation is
the fact that all three curves are much smoother than in case of Test Set 1, which
indicates that a wider variety of parameters perform decently on this set. The best
results are once more reached by the earth mover’s distance with the best value reached
at k = 25. The worst value the earth mover’s distance reaches is once again with one
cluster and values stabilise beginning at k = 34 at an FH score of about 0.725. Between
k = 1 and k = 11 the scores rise on average, and begin to plateau after that.

The histogram intersection distance starts about 0.04 lower than the earth mover’s
distance and then falls further until k = 5. The highest peak is then reached for 9

86 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0 10 20 30 40 50 60

F
H

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.24: Best FH scores over the number of clusters on both test sets.

clusters with a value of 0.7 which is followed by a period of oscillations until 31 clusters
are reached. From there on the FH score stabilises at around 0.67. The above average
distance in this case starts with the lowest value for one cluster at an FH score of 0.6
and then quickly rises to its first maximum of about 0.68 at eight clusters. This is
then followed by a huge drop in results and then some steps upwards until a plateau is
reached for 22 clusters. Apart from three smaller drops the values stabilise here, with
three values that are minimal better at k = 24, 31, and 38. The last of the three drops
happens at k = 41. This behaviour leads to the fact that the stabilised value of the
aad is reached the earliest of all three distance functions and it also is slightly better
than that of the histogram intersection distance.

In Figure 6.24 the best parameter sets from Table 6.11 are plotted over the number
of clusters. In contrast to the figures before we here only change the number of clusters
per series instead of choosing the best parameter combination for each distance function
and number of clusters. For all three distance functions huge oscillations are noticeable
especially up to the thirty clusters mark. In case of both the earth mover’s distance
and the histogram intersection distance also the best overall values are reached in this
part. For the above average distance, as before with the F1 score, the best values are
reached for multiple values, the first of which is k = 8. The same value is then again
reached multiple times beginning from k = 22 and finally also stabilises there. It is
noteworthy at this point that these oscillations while close in terms numbers of clusters
to the oscillations we noted with the aad in Figure 6.18 are for different numbers of
clusters. The other two distance function show lower oscillations for values larger than
30 clusters and stabilise at rather low values compared to the best values, especially
for the earth mover’s distance. For both the histogram intersection distance as well
as the above average distance, the final values are significantly better than those for
only one cluster. However, in case of the emd this is not the case. Here, the results for

6.4. EVALUATION WITH OUTLIER-TYPE DISTINCTION 87

one cluster are about half a percent better than those of the stabilised values, though
beginning at k = 7 clusters the first value is bettered.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

N
um

be
r

of
P
ar

am
et

er
C

om
bi

na
ti

on
s

Number of Clusters

best
worst

(a) F1 score

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

N
um

be
r

of
P
ar

am
et

er
C

om
bi

na
ti

on
s

Number of Clusters

best
worst

(b) FH score

Figure 6.25: Best and worst values per number of clusters.

Tables 6.10 and 6.11 already showed that neither for F1 nor for FH score the best
parameter combination uses only one clustering. For every number of clusters, Figure
6.25 shows the number of parameter combinations in regard to l, ts, and tw in which
that number of clusters performed best or worst. It is obvious that especially for
one cluster the number of worst results is extremely high. In respect to F1 measure as
Figure 6.25a, the majority of worst results is located for a number of clusters between 1
and 5. The number of best clusters is more evenly spread. As is noticeable from Figure
6.25b the spreading in respect to FH score is more even as that for F1 score though
the main characteristics are the same. Again k = 1 has the highest number of worst
results and the majority of worst results spreads to to about 10 clusters. However, in
this case, k = 1 also has the highest number of best results.

In terms of quality of feature combinations however it holds that the best feature
combination using one cluster in respect to F1 is only the 774th best and the 410th best
regarding FH score. This further supports our claim that a clustering of the reference
histograms in order to get a better trade-off between aggregation and detailing improves
the outlier detection quality.

6.4 Evaluation with Outlier-type Distinction

In this section we will discuss the results of the second proposed enhancement for the
outlier detection algorithm. The basic idea of this approach is to use a different set
of features for miscellaneous kinds of outliers. In the following, we will first evaluate
the results of the contrast features, separately. Then, we show the performance of the
combined algorithm.

The assumption that forms the basis for this enhancement is the idea, that segmen-
tation errors and obstacles have different properties regarding the positional as well as
contrast-wise features. More specifically, we suspect that obstacle have high contrast
values as obstacles are part of the foreground but unusual overall forms. Otherwise,

88 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.26: Maximum F1 scores with contrast features on Test Set 1.

segmentation errors can have usual forms as well as unusual ones, but have lower con-
trast values at least in parts as their borders are either in the sky or in the foreground.
If these assumptions hold, the results for the contrast features alone should be strong
on Test Set 1, as this consists of segmentation errors, only, and worse on Test Set 2, as
this set includes both segmentations errors and obstacles.

However, Figure 6.26 shows overall bad results for Test Set 1, especially for the
histogram intersection and earth mover’s distances, that in most cases have results
below an F1 score of 0.2. The above average distance performs significantly better,
mostly reaching F1 scores between 0.4 and 0.6. If we compare these values to the F1

scores of the positional features on Test Set 1 as shown in Figure 6.18, we see that
the best values of the contrast features are slightly better than those of the positional
ones, although the positional features are much more robust to parameter choice. The
best value for the contrast features is reached with the above average distance at 15
clusters with a F1 score of 0.5886, while for the positional parameters a maximal F1

score of 0.5795 for 9 clusters is reached under the earth mover’s distance.
One of the reasons for this behaviour lies in the fact that the images in Test Set

1 were scaled down from higher resolutions to a resolution of 1024 × 768 pixels using
ImageMagick in its standard settings which uses linear colour interpolation. Thus, by
resizing the images the contrast at the borders between foreground and background gets
reduced. This makes the detection of segmentation errors in this dataset particularly
difficult. By only comparing the frequent bins in the histograms, the above average
distance implements an effect similar to a sharpening filter, which effectively increases
contrast. This explains the better scores in comparison to the other two distance
functions. The same argumentation also gives an explanation to the fact that the
histogram intersection distance works better than the earth mover’s distance: While
the hid works on all bins of the histograms, it only compares bins that have the same

6.4. EVALUATION WITH OUTLIER-TYPE DISTINCTION 89

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.27: Maximum F1 scores with contrast features on Test Set 2.

borders. The earth mover’s distance additionally applies a softening to this by taking
bins in a closer proximity into account.

The results for Test Set 2, presented in Figure 6.27, are similar to those for Test Set
2, albeit on an overall higher standard. In fact, this change is higher than the increase
in F1 scores we saw in the positional features on Test Set 2 in comparison to Test Set 1.
Apart from this, the above average distance outperforms the hid and emd again, this
time with values that surpass the best values on the positional parameters. There are
also less jumps in F1 score for the different numbers of clusters for the above average
distance in contrast to Test Set 1. The largest jump for the above average distance
happens from two clusters to three clusters, with an F1 increase of 0.2.

While still trailing the aad by a huge margin, the histogram intersection distance
performs about twice as good om Test Set 2 than on Test Set 1. Apart from some
jumps between five and 14 clusters it performs very stable on this dataset. The earth
mover’s distance, too, performs about twice as good on this dataset than on Test Set.
The best results reach a F1 score of about 0.35, which is in the region of the best scores
of the hid. However, with a stabilized F1 score of about 0.2 for 23 and more clusters,
it still produces very weak results.

These results support our thesis that relative to each other, the different distance
functions implement a varying degree of softening respectively sharpening. While this
also happens when applying the distance functions to positional features, the effects
are contrary: On the positional features, a softer comparison yields better results than
a sharper comparison, while on contrast features, a sharper comparison improves the
results over a softer approach.

Figure 6.28 shows the FH score for the contrast features on Test Set 1. Overall, the
FH scores behave similar to the F1 scores. Again, the above average distance shows
the best results, with maximum scores surpassing 0.6. The best result is reached for 10

90 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
H

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.28: Maximum FH scores with contrast features on Test Set 1.

clusters and surpasses all results of the positional features as given in Section 6.3. The
histogram intersection distance reaches FH scores of about 0.25, that are stable except
for some oscillations between five and 14 clusters. Finally, the earth mover’s distance,
again, proves to be the worst choice in case of the contrast features. Its result never
surpass a FH score of 0.1.

As the FH score for both the aad and the hid are higher than the corresponding
F1 scores, we conclude that precision in these cases is higher than recall. For the
outlier detection on mountain silhouettes, this behaviour is desired, as we described
argued in previous chapters. Since the adaptive algorithm re-evaluates a larger section
of a silhouette than only the detected outlier, a complete detection of the outlier is not
necessary. While higher recall values could be produced by lowering tw, this could cause
a higher false positive rate. This, in turn, would instantiate unnecessary corrections of
silhouettes and could in fact induce errors to parts of silhouettes that were fault-free
in the first place.

For the earth mover’s distance, however, the FH score is lower than the F1 score.
This shows, that the outliers that are detected by the emd are detected in a large
portion, but only few outliers are detected overall. This result shows, that the general
characteristic of the earth mover’s distance, that shows a higher ratio of recall to
precision than the other two distance functions, is invariant of the underlying features.

The FH scores for Test Set 2 are depicted in Figure 6.29. Here, the above average
distance reaches very high and stable FH scores, that surpass 0.8 for a multitude of
cluster numbers for 30 clusters and less. After that, the values stabilise at about 0.75.
The FH scores of the earth mover’s distance are improved, too. They are now slightly
more than 0.2 in most cases with some spikes that lead to scores in the region of
0.3. Still, the performance of the earth mover’s distance is very weak on the contrast
features.

6.4. EVALUATION WITH OUTLIER-TYPE DISTINCTION 91

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
H

sc
or

e

Number of Clusters

aad
hid

emd

Figure 6.29: Maximum FH scores with contrast features on Test Set 2.

The performance of the histogram intersection distance is somewhat surprising, as
it reaches the highest overall scores, with a maximum of 0.8679 at 11 clusters, and
also the highest stabilised score. Between five and 18 clusters, there are some heavy
oscillations, with a lowest values of 0.1437 at five clusters and some other values that
go below 0.4 as well. The value at five clusters interestingly is the worst value achieved
by all three distance functions. In contrast to the erratic behaviour with less than 20
clusters, FH scores then stabilize quickly at about 0.85. This stabilized value, as well
as the above average distance’s stabilised value, is higher than all values reached by
positional features on both datasets.

At first view, the good results of contrast features on Test Set 2 are surprising,
as this set contains obstacles as well as segmentation errors. Before the experiments,
we expected the contrast features to be especially proficient on segmentation errors,
due to the general changes in contrast that occur in these situations. However, as
the results in Figures 6.28 and 6.29 show, these features are able to detect obstacles as
well. An explanation for this is due the fact, that the contrast features contain a certain
amount of positional information as well, namely in the contrast in x direction and in
the contrast in y direction. The quality of the results on Test Set 2 lets us hypothesise
that the contrast directions of obstacles deviate from the contrast directions of normal
mountain silhouettes far enough to be distinguishable by AdaMS OD.

To test our assumption, in the following we separate the outliers in Test Set 2 by
their class, i.e. we evaluate obstacles and segmentation errors on their own. First,
we look at the F1 scores for the obstacles, that are depicted in Figure 6.30a. The
results we see here, are extremely low in all cases, although the above average distance
shows significantly better values for the range of three to eight clusters than the other
distance functions. The main reason for these results lies in the fact, that the precision
values are extremely low in this case. This is because of the 61 outliers in Test Set 2,

92 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

(a) Obstacles

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

(b) Segmentation Errors

Figure 6.30: Maximum F1 scores with contrast features of Test Set 2 separated by
outlier class.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

al
l

Number of Clusters

aad
hid

emd

(a) Obstacles

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

al
l

Number of Clusters

aad
hid

emd

(b) Segmentation Errors

Figure 6.31: Maximum recall with contrast features of Test Set 2 separated by outlier
class.

only 11 are obstacles. As segmentation errors in this case are not considered but there
are outliers detected where those occur, precision is predictably low. The F1 scores for
the segmentation errors are shown in Figure 6.30b. As these are the majority of the
outliers, the resulting curve is very similar to that of the F1 scores for all outliers.

In order to get more meaningful results for these separately, we also look at the
recall values for both types of outliers. These are shown in Figure 6.31. It is noticeable
from these figures that the results for both types of outliers are much more similar for
the recall metric. While the earth mover’s distance results in overall worse recall values
for segmentation errors than for obstacles, we see, that both the histogram intersection
distance and the above average distance yield better results for segmentation errors
than for obstacles, which is expected for the contrast features as discussed earlier.

The above average distance shows the best values in all four tests, resulting in
the best results as presented previously. Especially recall on the segmentation error
set shown in Figure 6.31b is impressive, where scores greater than 0.8 are reached for
most clusters. Recall on the obstacle set is noticeably worse, where most values are

6.4. EVALUATION WITH OUTLIER-TYPE DISTINCTION 93

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

(a) Obstacles

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
1

sc
or

e

Number of Clusters

aad
hid

emd

(b) Segmentation Errors

Figure 6.32: Maximum F1 scores with positional features of Test Set 2 separated by
outlier class.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

al
l

Number of Clusters

aad
hid

emd

(a) Obstacles

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

al
l

Number of Clusters

aad
hid

emd

(b) Segmentation Errors

Figure 6.33: Maximum recall with positional features of Test Set 2 separated by outlier
class.

in the range between 0.7 and 0.5. The histogram intersection distance shows similar
behaviour, but on a weaker level. It has better recall on the segmentation set as well,
however precision, especially on the obstacles is very low. This can be seen as the hid’s
recall on the obstacles is higher than that of the earth mover’s distance, while the F1

scores are worse, as Figure 6.30a shows.
In contrast to the other two histogram distance functions, the earth mover’s distance

has a lower recall on segmentation errors than on obstacles. Again, it seems likely that
this has to do with the softening properties of the emd that have more influence on
the segmentation errors than on the obstacles. However, as recall and subsequently F1

scores are very weak in both cases, coincidently better detected obstacles could be the
reason as well.

Figures 6.32 and 6.33 show evaluations for F1 scores and recall for the positional
features used in Section 6.3, separated by outlier type. As expected from the results
shown in Figure 6.19 on this data set, all three distance functions perform more or
less the same. Also, there are no large differences in between the different number of

94 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

metric dist l ts tw k score
seg. F1 aad 5 4.0 0.25 10 0.6804
seg. FH aad 4 3.0 1.00 7 0.8132
obs. F1 emd 2 3.5 0.75 7 0.3176
obs. FH hid 1 3.0 2.00 1 0.2879

Table 6.12: Best parameter combinations for different target metrics.

Setting Strategy F1 FH

F1 Merge 0.7231 0.6584
F1 Merge to Seg. 0.7231 0.6584
F1 Split & Merge 0.8304 0.7251
FH Merge 0.6350 0.7840
FH Merge to Seg. 0.6350 0.7840
FH Split & Merge 0.6482 0.8116

Table 6.13: Combined results on Test Set 2.

clusters. In all evaluations the earth mover’s distance performs slightly better than the
other two distance functions. More interesting at this point, we notice in Figures 6.32a
and 6.32b that the F1 scores for segmentation errors are better for segmentation errors
than for obstacles. However, the difference between both outlier types is much smaller
for the positional features than for the contrast features shown in Figure 6.30.

As Figure 6.33 shows, the reason for this lies again in the fact that the number
of obstacles in the test set is much lower than the number of segmentation errors,
which results in bad precision for the obstacle detection. In contrast to this, recall for
obstacles is in the region of 0.8 for the emd for all clusters and marginally worse for
the other distance functions. For segmentation errors, recall is at about 0.55 for all
three distance functions over all clusters. Overall, these results show that our initial
intuition was right: Contrast features are indeed better suited to detect segmentation
errors, at least with the above average distance, while positional features show better
recall on obstacles.

In order to evaluate the combined outlier detection, we use the parameters that yield
the best F1 scores and FH scores on the corresponding outlier classes. This means, for
the contrast features we choose the two sets of parameters that have the best scores on
the segmentation error set, while for the positional features, we look for the parameters
that give the best results on the obstacles. In detail, the results are shown in Table
6.12.

For the combined results, we combine the settings from seg. F1 and obs. F1 from
Table 6.12 to detect segmentation errors and obstacles with a high F1 score, as well as
the seg. FH and obs. FH settings. In the following, we refer to the first combination
as F1 settings and to the second as FH settings.

The results of all combinations of parameter settings and merge strategies are shown
in Table 6.13. Unsurprisingly, the combinations with the F1 settings result in a higher
F1 score than the combinations with FH settings, that achieve higher FH scores than the

6.4. EVALUATION WITH OUTLIER-TYPE DISTINCTION 95

Setting Strategy Obstacles Segmentation Errors Total
F1 Merge 0.6364 0.0000 0.1148
F1 Merge to Seg. 0.4545 0.3000 0.3279
F1 Split & Merge 0.6364 0.2200 0.2951
FH Merge 0.3636 0.7200 0.6557
FH Merge to Seg. 0.3636 0.8200 0.7377
FH Split & Merge 0.6364 0.8000 0.7705

Table 6.14: Correctly classified outliers by class over all outliers.

F1 combinations. It is noteworthy though, that the split and merge strategy results
in higher scores than the two merge strategies. The reason for this are two effects.
First, with this strategy the number of outliers becomes larger than with the other two
strategies. Therefore, a higher chance of hitting outliers, i.e. parts of the silhouette
that are detected as an outlier and intersect with an actual one, rises. Second, some
of the outliers produced by this variant are shorter than ten points. In this case, as
described in the beginning of this chapter, these outliers are ignored.

In general, we see that the combined results are better than the best single setting
results, thus we can conclude, that using different outlier detection strategies for dif-
ferent kinds of outliers is benevolent. Next, we look into the classification quality that
comes with the outlier-type distinction model.

Table 6.14 shows the ratios of correctly classified outliers for each type of outlier and
in total. In order to achieve the results in the table, an outlier is counted as correctly
classified if the algorithm outputs an intersecting outlier with the right class. This
means, that outliers that have not been detected at all are not counted as correctly
classified. It is also noteworthy that the number of outliers of each type is different.
As mentioned above the test set contains 11 obstacles and 50 segmentation errors.

Overall the results show that the parameter settings are more important to the
quality of the classification than the merging strategy. For the parameters that ensure
the best F1 scores we see very low numbers of correctly classified outliers, especially
in regard to segmentation errors. As the obstacles in the test set are larger than the
segmentation errors, this is reflected by the parameter settings and thus the detected
outliers. The result of this are detected obstacles, that are larger than the segmentation
errors on average. In cases of overlaps, this results to many of the detected outliers
labelled as obstacles. Another point that leads to the low classification results is the
fact, that for settings that optimise the F1 scores, many of the shorter segmentation
errors are not detected at all. In case of the F1 merge to segmentation error strategy
noted in the second line of the table this becomes especially clear: Despite the fact that
an outlier is classified as segmentation error as long as a single segmentation error is
detected as part of the overlapping set, less than one third of the segmentation errors
are correctly classified.

When changing the settings to the parameters that result in good FH scores, we see
drastic improvements in the overall number of correctly classified outliers. While the
number of obstacles that are detected, suffers for the merge and merge to segmentation
error strategies, it stays on the same level for the split and merge strategy, compared to
the F1 optimised settings. At the same time, the classification of segmentation errors

96 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

is greatly improved with the FH parameter settings. As discussed above, this is mostly
due to the case that more segmentation errors have been found at all. In case of the
split & merge strategy for the FH parameters, 77 percent of all outliers have been
correctly classified. For these settings, 51 of the 61 outliers in the test set have been
detected by the algorithm. Taking this into account, the ratio of correctly classified
detected outliers for this setting is 0.9216.

6.5 OutlierNet
This section discusses the results of the outlier detection with convolutional neural
networks as introduced in Chapter 5. Both architectures have been trained with the
same 61 training images that have been used to train the Adams Outlier Detection
algorithms. Additional, wrong segmentations have been generated as described in
Section 5.1. In all cases we trained the networks for 2000 epochs and compare the
results with the training status after 1000 epochs, at which point training accuracy
was already very stable.

All results have been computed on Test Set 1 as introduced in Section 6.2. It
consists of 46 images that have been segmented by the AdaMS segmentation algorithm
that has been introduced in Chapter 3 and includes 101 outliers that are considered
in the evaluation. In order to evaluate the performance of the neural network driven
outlier detection, three evaluation metrics are taken into account, namely the receiver
operator characteristic, the precision and recall curve, and the F1 score for different
thresholds. All three of these metrics rely on the fact that the output of the classifier is
a score from the interval pred(vi) ∈ [0, 1] for each vertex vi in the silhouette. We have
to chose a threshold t ∈ [0, 1] such that a vertex vi is regarded as part of an outlier if
and only if pred(vi) ≥ t. By selecting different values of t, obviously different parts of
the silhouette are regarded as outliers and thus the mentioned metrics are influenced.

We first analyse the receiver operator characteristic (ROC) curve as presented in
Figure 6.34. The ROC curve shows the false positive rate that has to be accepted to
achieve a certain true positive rate. The false positive rate is influenced by the choice of
the threshold t, i.e. the lower t is chosen the more points that are not parts of outliers
are regarded as outliers vice versa. For t = 0 every point is considered as an outlier
which results in a false positive rate of one as well as a true positive rate of one, while
for t = 1 no point is regarded as an outlier and such both rates are zero. A higher run
of the curve represents a better performance as we have to accept less false positives
to be able to detect a certain ratio of true positives. A weighted random process is
expected to result in a curve close to the diagonal in the plot.

Figure 6.34 shows that all four variants are well below the diagonal, which means
that the produced results are better than a random process. It is also noteworthy that
the curves of the two network architectures behave different up to a false positive rate
of about 0.6. The second network architecture achieves steeper slopes in the first part
of the curve for both training states and stay noticeably higher than the corresponding
curves of the first network architecture up to a false positive rate of about 0.5. Only
then, the first – smaller – network architecture is able to catch up with the larger
network.

A similar effect can be attributed to the number of training epochs, where we see
an earlier slump of the curves in both cases for the training state after 1000 epochs

6.5. OUTLIERNET 97

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

P
os

it
iv

e
R

at
e

False Positive Rate

Net 1 epoch 1000
Net 1 epoch 2000
Net 2 epoch 1000
Net 2 epoch 2000

Figure 6.34: Receiver Operator Characteristics of OutlierNet.

compared to that after 2000 epochs. In fact, for a false positive rate in the interval of
about 0.05 to 0.1, the curves of the first network architecture with 2000 epochs and of
the second network with 1000 epochs are nearly identical.

Next, we look at the precision and recall curve. Here, the y axis shows the achieved
recall value while the x axis shows the corresponding precision. Again, the higher the
run of the curve is, the better is the performance of the classifier. As in most case high
precision is detrimental to high recall and contrariwise, the curves usually decline in
precision with increasing recall. For a recall of zero, no points are detected as outliers
and thus by definition precision is one.

All in all, we see somewhat similar results to the ROC curve. Again, the larger
network results in better scores up to a recall of 0.8, at which point all precision scores
are bad. Training time also makes a difference again, with 2000 epochs staying on
a higher level for larger recall values. In case of Net 1 with 1000 training epochs,
precision drops around a reached recall value of 0.2. With 2000 training epochs, the
drop happens slightly after a recall of 0.3 has been reached. The same applies for
the Net 2 architecture with 1000 training epochs, albeit on a higher precision level,
while the second network architecture even reaches a recall of more than 0.5 while
maintaining a precision of over 0.6.

Similar effects of training epochs and network architecture also show in regards
to the F1 score with varying threshold parameter t. This is depicted in Figure 6.36.
Again, the second network architecture with 2000 training epochs performs best, as it
reaches a maximum F1 score of about 0.52. None of the other combinations is able to
surpass a F1 score of 0.45. Interestingly, though, all four combinations achieve their
best scores for values of t of about 0.9. This means, that the detection works best if
the network is very sure of the vertices being outliers.

98 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Net 1 epoch 1000
Net 1 epoch 2000
Net 2 epoch 1000
Net 2 epoch 2000

Figure 6.35: Precision and recall curve of OutlierNet.

6.6 Summary

In this chapter all outlier detection techniques, that have been presented in this thesis
have been evaluated. In Section 6.1 we described the training sets and showed some
differences between the distance functions used with the AdaMS outlier detection.

The actual evaluation of the different variants of the outlier detection algorithms
that have been introduced in Chapter 4, is in the next three sections. Section 6.2 shows
the results for the base algorithm. After a detailed exploration of the consequences to
changes of the parameters of the outler detection algorithm, this section shows that
the base algorithm works best with the earth mover’s distance. In this case, F1 scores
of 0.56 and 0.58 were reached on Test Set 1 and 2, respectively. The earth mover’s
distance also yielded the best FH scores on average, namely 0.53 on Test Set 1 and
0.69 on Test Set 2. On Test Set 1 the above average distance performed slightly better,
reaching an FH score of 0.54.

In Section 6.3 the mutli-reference enhancement was benchmarked. Here, it showed
that using multiple reference silhouettes indeed enhances the quality of the outlier
detection. Overall, again the earth mover’s distance performed the best with F1 scores
of 0.58 on both test sets and FH scores of 0.57 and 0.74. This section also showed that
in most cases the best results were reached for about ten clustered reference silhouettes.

Section 6.4 showed the results of the outlier-type distinction enhancement. Inter-
estingly, even the contrast features alone bettered the results of the positional features
on both test sets, with the above average distance the best performer with F1 scores
of 0.59 and 0.68, as well as FH scores of 0.62 and 0.87. The combined strategies where
only tested on Test Set 2, as only this set included both obstacles and segmentation
errors. In this setup, the results are even more impressive, as a F1 score of 0.83 is
reached. The FH score though suffers as it reduces to 0.81 in order to provide a better

6.6. SUMMARY 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

F
1

sc
or

e

Threshold

Net 1 epoch 1000
Net 1 epoch 2000
Net 2 epoch 1000
Net 2 epoch 2000

Figure 6.36: F1 score over thresholds.

outlier classification. In this, a maximum ration 0.77 correctly identified and classified
outliers is reached.

The previous section showed the results of the OutlierNet as introduced in Chapter
5. The evaluation showed that the simple approach presented here cannot compete with
the specialised algorithms from the previous section, as the best reached F1 score is only
0.52. However, we have seen that larger network architectures and a higher number of
training epochs leads to better results, so there is still room for improvements.

100 6. EXPERIMENTS WITH ADAMS OUTLIER DETECTION

7
Conclusion

In this chapter we summarise the work on outlier detection on sequences presented
in this thesis. Afterwards, we give a brief outlook on how to pursue on this topic by
future work.

7.1 Summary
As discussed in the introduction the main motivation to this thesis is the detection of
obstacles and segmentation errors that occur when detecting the silhouettes of moun-
tains in photos. Similar problems may arise in other segmentation applications as
well, for example in more generic skyline detection applications, object recognition
approaches that require the detection of precise edges, or in the analysis of medical
imaging methods such as CT scans or magnetic resonance images. Depending on the
task at hand and the amount of data that has to be computed, outlier detection on
the segments’ edges can be used to either automatically improve the segmentation by
adaptive approaches like AdaMS or by notifying unusual findings to human experts
that then can concentrate on a smaller fraction of the data.

During the thesis we first introduce the adaptive segmentation part of AdaMS
in Chapter 3. The basic segmentation algorithm uses a region growing approach to
compute an initial segmentation. In order to accommodate the adaptive improvements
the picture gets partitioned into grid cells. If an outlier is detected the segmentation
parameters of adjacent grid cells are adjusted and this part of the image gets segmented
again to correct segmentation errors. For obstacles, a new segmentation is not valuable
since the image does not hold information about parts concealed by the obstacle. In
those cases, the silhouette can be approximated by straight lines or splines.

Chapter 4 presents the outlier detection algorithms developed during the work on
this thesis. We start by defining outliers as subsequences of the polygonal chains
that form the silhouettes. Each outlier must contain at least a subsequence of l strong
anomalies, that is, at least l adjacent points that are clearly unusual in their properties.
We also introduce a number of histogram distances to be able to compute the anomaly

101

102 7. CONCLUSION

scores. Notably, we introduce the above average distance, which is a new distance
measure and prove that it is a pseudometric. Based on these definitions, the first and
most basic version of the AdaMS outlier detection algorithm is presented which only
uses one reference histogram and positional features.

The remainder of Chapter 4 also raises two possibilities to improve on the basic
version mentioned above. The multi-reference enhancement introduces multiple refer-
ence histograms instead of using a single one. In order to accommodate this change,
we use the minimal reference distance defined as

distmr(H,Href) = min{aad(H,Href)|Href ∈ Href}.

By using this approach, we get a more granular presentation of normal mountain
silhouettes. This is supposed to help the outlier detection as a great variety of forms
in mountains exists.

Secondly, the outlier-type distinction extension uses different sets of features for
the detection of different kinds of outliers, namely positional features for the detec-
tion of obstacles and contrast based features for the detection of segmentation errors.
Essentially, the idea of this approach is similar to other ensemble methods, however,
the combination of the results is a bit more difficult than in many other cases. The
reason for this lies in the fact that the results in our case are not class labels as in
classification ensemble methods, but outliers, that can overlap. Therefore, we propose
three different merging algorithms that are able to solve this problem.

An approach to outlier detection with the help of artificial neural networks is pro-
posed in Chapter 5. In the past, convolutional neural networks have yielded very good
results in classification problems without the need for feature extraction. We argue that
outlier detection tasks can be reduced to classification problems if training data for the
outlier class can be produced. Therefore, we first concentrate on the creation of train-
ing data by describing how training samples for outlier-free are generated. Then we
describe the creation of training data for the outliers, which is generated by deviating
from the correct silhouettes of the training images.

Afterwards we give an overview of convolutional neural networks and how their
main layer types work, before we describe the two architectures we utilise for the outlier
detection networks. Both are heavily influenced by the VGG structure, however, due
to the small size of the input image patches, we opt for a much swallower design.
Finally, we also describe how the output of the network should be interpreted. For
every image patch the classifier returns the probability of that patch being an outlier,
however, outliers in silhouettes can consist of more than one patch. Because of this, we
compute outlier probabilities for each single silhouette point and then find sequences
with outlier probabilities that are higher than a certain threshold.

Finally, Chapter 6 evaluates the outlier detection algorithms presented in this thesis.
The chapter starts with an exploration of the training data set, which consists of 61
error free images and corresponding silhouettes. We note that the usage of different
distance functions leads to highly different mean distances. Also it is noteworthy, that
the above average distance’s mean is most sensitive to a higher number of clusters.
However, we see that a number of clusters higher than 15 does not lead to any reduction
of mean or changes in the standard deviation for any of the distance functions. Next,
we conducted an in-depth analysis of the parameters of the base algorithm, starting
of with the two thresholds τs and τw. Those thresholds determine whether a point is

7.2. FUTURE WORK 103

regarded as a strong anomaly or a weak anomaly, respectively. Overall we note that
for the base algorithm, relatively high values for the inner threshold τs and low values
for the outer threshold τw yield the best results overall in respect to F1 scores, while
slightly higher values for τw result in better FH scores. In terms of the minimal length
of the inner outlier, values for l of 1 or 2 lead to the best results.

Next, we concentrate on the evaluation of the multi-reference enhancement, that
introduces an additional parameter for the number of reference silhouette clusters. On
the test sets, the distances’ means and standard deviations for the different distance
functions behave similar to those of the training data. Overall, this high level analysis
hints that the best separation of normal and outlier data is achieved by the earth
mover’s distance. This is then confirmed by the total evaluation of both trainings sets,
where the emd yields the best results for both the F1 and the FH scores.

This is followed by the evaluation of the outlier-type distinction. There are two
types of outliers that exist in the silhouettes: Segmentation errors, that are usually
characterised by weaker contrast on the silhouette, and obstacles, which have unusual
forms. By introducing a separate set of features that concentrates on the strength of
contrast and its direction we aim to better identify segmentation errors. We opt to
implement this set of features by an additional outlier detection step that in order to
keep the number of bins in the reference histograms low enough for meaningful results.
This gives us the additional benefit of getting an implicit outlier-type classification.
By this, we get a ratio of 77% of correctly classified outliers, including those that have
not been detected at all, and a combined outlier detection with an FH score of 0.81 in
the best case.

Lastly, the neural networks that have been introduced in Chapter 5 are evaluated.
Overall the results are on the same level as those of the base algorithm. With the
larger networks and 2000 training epochs, an F1 score of 0.52 is reached. However, we
have shown, that larger network architectures and longer training times result in more
precise outlier detection.

7.2 Future Work
There are several areas that allow for future work. Regarding the AdaMS outlier
detection, one drawback of the current solution with multi-reference and outlier-type
distinction extensions lies in the fact that many parameters have to be chosen. While
Chapter 6 showed that the ideal combination of distance functions is the earth mover’s
distance for the positional features and the above average distance for the contrast
features, we have also seen that the best settings for the other parameters change
between both test sets. Thus, in order to improve the ease of use of the algorithm an
additional module that chooses good settings for those parameters can be developed.
A promising way to implement this could be to look at the properties of the silhouettes
in the images in terms of positional and contrast attributes. Based on these and stored
settings for the parameters, a classification algorithm such as k nearest neighbours
could be used to choose a good set of parameters.

Another way to automate the parameter settings, that could be explored in addition
to the one mentioned previously, is to search for dependencies between parameters.
Obviously there are dependencies between the type of distance function that is used
and the other parameters, especially the thresholds. Given the related nature of the

104 7. CONCLUSION

threshold parameters τs and τw it does not seem unlikely that some kind of functional
dependency for good settings between those two exists as well.

The usage of artificial neural networks for outlier detection also contains additional
research opportunities. As we already discovered, networks with more layers yield
better results, so some future research can be dedicated to exploring a good size for
those. Sizing up the networks too much, however, not only results in much longer
training times, but also more possibilities of overfitting the training data. The creation
of the training data for the outlier class could be refined, too. Currently, this is a
somewhat random process since we only ensure that the silhouettes used for this deviate
from the true silhouettes. However, we know that the detection of the spot where a
detected silhouette deviates from the correct silhouette is the key for identifying and
correcting outliers. Therefore, an approach that creates branches of outlier off the true
silhouettes and uses those for training the network could also lead to better results.

Bibliography

[ABKS99] Ankerst, Mihael ; Breunig, Markus M. ; Kriegel, Hans-Peter ;
Sander, Jörg: OPTICS: Ordering Points to Identify the Clustering
Structure. In: ACM Sigmod record Bd. 28, 1999

[Aiz64] Aizerman, Mark A.: Theoretical Foundations of the Potential Function
Method in Pattern Recognition Learning. In: Automation and Remote
Control 25 (1964)

[Alt92] Altman, Naomi: An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression. In: The American Statistician 46 (1992), Nr. 3

[Ans60] Anscombe, Frank J.: Rejection of Outliers. In: Technometrics 2 (1960),
Nr. 2

[AY01] Aggarwal, Charu C. ; Yu, Philip S.: Outlier Detection for High Di-
mensional Data. In: CM Sigmod Record Bd. 30, 2001

[BA11] Buu, Huynh Tran Q. ; Anh, Duong T.: Time Series Discord Discov-
ery Based on iSAX Symbolic Representation. In: Third International
Conference on Knowledge and Systems Engineering, 2011

[BČES11] Baboud, Lionel ; Čadík, Martin ; Eisemann, Elmar ; Seidel, Hans-
Peter: Automatic Photo-to-terrain Alignment for the Annotation of
Mountain Pictures. In: Proc. of the 2011 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2011

[BDVJ03] Bengio, Yoshua ; Ducharme, Réjean ; Vincent, Pascal ; Jauvin,
Christian: A Neural Probabilistic Language Model. In: Journal of Ma-
chine Learning Research 3 (2003)

[BGV92] Boser, Bernhard E. ; Guyon, Isabelle M. ; Vapnik, Vladimir N.: A
Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, 1992 (COLT
’92)

[BKNS00] Breunig, Markus M. ; Kriegel, Hans-Peter ; Ng, Raymond T. ;
Sander, Jörg: LOF: Identifying Density-based Local Outliers. In: ACM
Sigmod Record Bd. 29, 2000

105

106 BIBLIOGRAPHY

[BL+07] Bengio, Yoshua ; LeCun, Yann u. a.: Scaling Learning Algorithms
towards AI. In: Large-scale Kernel Machines 34 (2007), Nr. 5

[BLPL07] Bengio, Yoshua ; Lamblin, Pascal ; Popovici, Dan ; Larochelle,
Hugo: Greedy Layer-wise Training of Deep Networks. In: Advances in
neural information processing systems, 2007

[BS15] Braun, Daniel ; Singhof, Michael: Automated Silhouette Extraction
for Mountain Recognition. In: GI GvDB Workshop 2015, 2015

[BSC16] Braun, Daniel ; Singhof, Michael ; Conrad, Stefan: AdaMS: Adap-
tive Mountain Silhouette Extraction from Images. In: Proc. of the MLDM
2016, 2016

[BSCB00] Bertalmio, Marcelo ; Sapiro, Guillermo ; Caselles, Vincent ;
Ballester, Coloma: Image Inpainting. In: Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, 2000

[BSKP12] Baatz, Georges ; Saurer, Olivier ; Köser, Kevin ; Pollefeys, Marc:
Large Scale Visual Geo-Localization of Images in Mountainous Terrain.
In: Computer Vision - ECCV 2012. 2012

[BTG06] Bay, Herbert ; Tuytelaars, Tinne ; Gool, Luc V.: Surf: Speeded Up
Robust Features. In: European Conference on Computer Vision, 2006

[Can86] Canny, John: A Computational Approach to Edge Detection. In: Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on PAMI-8
(1986), Nov, Nr. 6

[CMS12] Ciregan, Dan ; Meier, Ueli ; Schmidhuber, Jürgen: Multi-column
Deep Neural Networks for Image Classification. In: 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012

[CS01] Chan, Tony F. ; Shen, Jianhong: Nontexture Inpainting by Curvature-
driven Diffusions. In: Journal of Visual Communication and Image Rep-
resentation 12 (2001), Nr. 4

[CV95] Cortes, Corinna ; Vapnik, Vladimir: Support-vector Networks. In:
Machine Learning 20 (1995), Nr. 3

[DLR77] Dempster, Arthur P. ; Laird, Nan M. ; Rubin, Donald B.: Maximum
Likelihood from Incomplete Data via the EM Algorithm. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1977)

[EKSX96] Ester, Martin ; Kriegel, Hans-Peter ; Sander, Jörg ; Xu, Xiaowei:
A Density-based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In: Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining Bd. 96, 1996

[Fer61] Ferguson, Thomas S.: On the Rejection of Outliers. In: Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Prob-
ability Bd. 1, 1961

BIBLIOGRAPHY 107

[FFT14] Fedorov, Roman ; Fraternali, Piero ; Tagliasacchi, Marco:
Mountain Peak Identification in Visual Content Based on Coarse Dig-
ital Elevation Models. In: Proc. of the 3rd ACM International Workshop
on Multimedia Analysis for Ecological Data, 2014

[GBQG09] Gammeter, Stephan ; Bossard, Lukas ; Quack, Till ; Gool, Luc V.:
I Know What You Did Last Summer: Object-level Auto-annotation of
Holiday Snaps. In: IEEE 12th International Conference on Computer
Vision, 2009

[GD04] Grauman, Kristen ; Darrell, Trevor: Fast Contour Matching Using
Approximate Earth Mover’s Distance. In: Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on Bd. 1, 2004

[GDDM14] Girshick, Ross ; Donahue, Jeff ; Darrell, Trevor ; Malik, Jitendra:
Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014

[Gir15] Girshick, Ross: Fast R-CNN. In: Proceedings of the IEEE International
Conference on Computer Vision, 2015

[GKVL06] Gardner, Andrew B. ; Krieger, Abba M. ; Vachtsevanos, George
; Litt, Brian: One-class Novelty Detection for Seizure Analysis from
Intracranial EEG. In: Journal of Machine Learning Research 7 (2006),
Nr. Jun

[Gru50] Grubbs, Frank E.: Sample Criteria for Testing Outlying Observations.
In: The Annals of Mathematical Statistics (1950)

[Güm58] Gümbel, Emil J.: Statistics of Extremes. 1958

[HA91] Haddad, Richard A. ; Akansu, Ali N.: A Class of Fast Gaussian
Binomial Filters for Speech and Image Processing. In: IEEE Transactions
on Signal Processing 39 (1991), Nr. 3

[Haw80] Hawkins, Douglas M.: Identification of Outliers. 1980

[HOT06] Hinton, Geoffrey E. ; Osindero, Simon ; Teh, Yee-Whye: A Fast
Learning Algorithm for Deep Belief Nets. In: Neural computation 18
(2006), Nr. 7

[JH99] Jaakkola, Tommi ; Haussler, Davis: Exploiting Generative Models in
Discriminative Classifiers. In: Advances in Neural Information Processing
Systems, 1999

[Jon72] Jones, Karen S.: A Statistical Interpretation of Term Specificity and its
Application in Retrieval. In: Journal of Documentation 28 (1972), Nr. 1

108 BIBLIOGRAPHY

[KA12] Khanh, Nguyen Dang K. ; Anh, Duong T.: Time Series Discord Dis-
covery Using WAT Algorithm and iSAX Representation. In: Proceedings
of the Third Symposium on Information and Communication Technology,
2012

[KB14] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic
Optimization. In: CoRR abs/1412.6980 (2014)

[Kla17] Klassen, Gerhard: Classification of Edges in Images, Master’s Thesis,
2017

[KLF04] Keogh, Eamonn ; Lin, Jessica ; Fu, Ada: HOT SAX: Finding the
Most Unusual Time Series Subsequence: Algorithms and Applications.
In: Proc. of the 5th IEEE Int’l Conf. on Data Mining, 2004

[KLF05] Keogh, Eamonn ; Lin, Jessica ; Fu, Ada: HOT SAX: Efficiently Finding
the Most Unusual Time Series Subsequence. In: Fifth IEEE International
Conference on Data Mining (ICDM’05), 2005

[KSH12] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet
Classification with Deep Convolutional Neural Networks. In: Advances
in Neural Information Processing Systems 25. 2012

[KSZ08] Kriegel, Hans-Peter ; Schubert, Matthias ; Zimek, Arthur: Angle-
based Outlier Detection in High-dimensional Data. In: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008

[KYM07] Kawahara, Yoshinobu ; Yairi, Takehisa ; Machida, Kazuo: Change-
point Detection in Time-series Data Based on Subspace Identification. In:
Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference
on, 2007

[LBD+90] LeCun, Yann ; Boser, Bernhard E. ; Denker, John S. ; Hender-
son, Donnie ; Howard, Richard E. ; Hubbard, Wayne E. ; Jackel,
Lawrence D.: Handwritten Digit Recognition with a Back-propagation
Network. In: Advances in Neural Information Processing Systems, 1990

[LBOM98] LeCun, Yann ; Bottou, Léon ; Orr, Genevieve B. ; Müller, Klaus-
Robert: Efficient Backprop. In: Neural Networks: Tricks of the Trade.
1998

[LHL08] Lee, Jae-Gil ; Han, Jiawei ; Li, Xiaolei: Trajectory Outlier Detection: A
Partition-and-detect Framework. In: IEEE 24th International Conference
on Data Engineering, 2008

[LKLC03] Lin, Jessica ; Keogh, Eamonn ; Lonardi, Stefano ; Chiu, Bill: A
Symbolic Representation of Time Series, with Implications for Streaming
Algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, 2003

BIBLIOGRAPHY 109

[LLLH05] Lie, Wen-Nung ; Lin, Tom C-I ; Lin, Ting-Chih ; Hung, Keng-Shen: A
Robust Dynamic Programming Algorithm to Extract Skyline in Images
for Navigation. In: Pattern recognition letters 26 (2005), Nr. 2

[LM14] Le, Quoc ; Mikolov, Tomas: Distributed Representations of Sentences
and Documents. In: Proceedings of the 31st International Conference on
Machine Learning, 2014

[Low04] Lowe, David G.: Distinctive Image Features from Scale-invariant Key-
points. In: International Journal of Computer Vision 60 (2004), Nr.
2

[LSD15] Long, Jonathan ; Shelhamer, Evan ; Darrell, Trevor: Fully Con-
volutional Networks for Semantic Segmentation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015

[Mac67] MacQueen, James: Some Methods for Classification and Analysis of
Multivariate Observations. In: Proceedings of the fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, 1967

[MAKK+11] Masud, Mohammad M. ; Al-Khateeb, Tahseen M. ; Khan, Latifur
; Aggarwal, Charu ; Gao, Jing ; Han, Jiawei ; Thuraisingham,
Bhavani: Detecting Recurring and Novel Classes in Concept-drifting
Data Streams. In: Data Mining (ICDM), 2011 IEEE 11th International
Conference on, 2011

[MP03a] Ma, Junshui ; Perkins, Simon: Online Novelty Detection on Temporal
Sequences. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003

[MP03b] Ma, Junshui ; Perkins, Simon: Time-series Novelty Detection Using
One-class Support Vector Machines. In: Neural Networks, 2003. Proceed-
ings of the International Joint Conference on Bd. 3, 2003

[MSC+13] Mikolov, Tomas ; Sutskever, Ilya ; Chen, Kai ; Corrado, Greg S.
; Dean, Jeff: Distributed Representations of Words and Phrases and
their Compositionality. In: Advances in Neural Information Processing
Systems, 2013

[NH10] Nair, Vinod ; Hinton, Geoffrey E.: Rectified Linear Units Improve
Restricted Boltzmann Machines. In: Proceedings of the 27th International
Conference on Machine Learning, 2010

[NMMI97] Naval Jr, Prospero C. ; Mukunoki, Masayuki ; Minoh, Michihiko
; Ikeda, Katsuo: Estimating Camera Position and Orientation from
Geographical Map and Mountain Image. In: 38th Research Meeting of
the Pattern Sensing Group, Society of Instrument and Control Engineers,
1997

[NS06] Nister, David ; Stewenius, Henrik: Scalable Recognition with a Vo-
cabulary Tree. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Bd. 2, 2006

110 BIBLIOGRAPHY

[OFL07] Ozuysal, Mustafa ; Fua, Pascal ; Lepetit, Vincent: Fast Keypoint
Recognition in Ten Lines of Code. In: IEEE Conference on Computer
Vision and Pattern Recognition, 2007, 2007

[Orl97] Orlin, James B.: A Polynomial Time Primal Network Simplex Al-
gorithm for Minimum Cost Flows. In: Mathematical Programming 78
(1997), Nr. 2

[PBV+14] Porzi, Lorenzo ; Buló, Samuel R. ; Valigi, Paolo ; Lanz, Oswald ;
Ricci, Elisa: Learning Contours for Automatic Annotations of Moun-
tains Pictures on a Smartphone. In: Proceedings of the International
Conference on Distributed Smart Cameras, 2014

[PCC+07] Poultney, Christopher ; Chopra, Sumit ; Cun, Yann L. u. a.: Efficient
Learning of Sparse Representations with an Energy-based Model. In:
Advances in Neural Information Processing Systems, 2007

[Pic85] Picard, Dominique: Testing and Estimating Change-points in Time
Series. In: Advances in applied probability 17 (1985), Nr. 4

[PKGF03] Papadimitriou, Spiros ; Kitagawa, Hiroyuki ; Gibbons, Phillip B.
; Faloutsos, Christos: Loci: Fast Outlier Detection Using the Local
Correlation Integral. In: Proceedings of the 19th International Conference
on Data Engineering, 2003

[PLD10] Pham, Ninh D. ; Le, Quang L. ; Dang, Tran K.: HOT aSAX: A Novel
Adaptive Symbolic Representation for Time Series Discords Discovery.
In: Asian Conference on Intelligent Information and Database Systems,
2010

[PLSP10] Perronnin, Florent ; Liu, Yan ; Sánchez, Jorge ; Poirier, Hervé:
Large-scale Image Retrieval with Compressed Fisher Vectors. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010

[Pre70] Prewitt, Judith M.: Object Enhancement and Extraction. In: Picture
Processing and Psychopictorics 10 (1970), Nr. 1

[PSF05] Papadimitriou, Spiros ; Sun, Jimeng ; Faloutsos, Christos: Stream-
ing Pattern Discovery in Multiple Time-series. In: Proceedings of the 31st
International Conference on Very Large Data Bases, 2005

[PW08] Pele, Ofir ; Werman, Michael: A Linear Time Histogram Metric for
Improved Sift Matching. In: Computer Vision–ECCV 2008, 2008

[PW09] Pele, Ofir ; Werman, Michael: Fast and Robust Earth Mover’s Dis-
tances. In: 2009 IEEE 12th International Conference on Computer Vi-
sion, 2009

[Qui86] Quinlan, J. R.: Induction of Decision Trees. In: Machine learning 1
(1986), Nr. 1

BIBLIOGRAPHY 111

[RC15] Rischka, Magdalena ; Conrad, Stefan: Image Landmark Recognition
with Hierarchical K-Means Tree. In: BTW 2015, 2015

[RDS+15] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ;
Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, An-
drej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ;
Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In:
International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3

[RHGS15] Ren, Shaoqing ; He, Kaiming ; Girshick, Ross ; Sun, Jian: Faster
R-CNN: Towards Real-time Object Detection with Region Proposal Net-
works. In: Advances in Neural Information Processing Systems, 2015

[Rob63] Roberts, Lawrence G.: Machine Perception of Three-dimensional
Solids, Massachusetts Institute of Technology, Diss., 1963

[Ros61] Rosenblatt, Frank: Principles of Neurodynamics. Perceptrons and the
Theory of Brain Mechanisms. 1961. – Forschungsbericht

[RTG98] Rubner, Yossi ; Tomasi, Carlo ; Guibas, Leonidas J.: A Metric for Dis-
tributions with Applications to Image Databases. In: Computer Vision,
1998. Sixth International Conference on IEEE, 1998

[RTG00] Rubner, Yossi ; Tomasi, Carlo ; Guibas, Leonidas J.: The Earth
Mover’s Distance as a Metric for Image Retrieval. In: International Jour-
nal of Computer Vision 40 (2000), Nr. 2

[SB91] Swain, Michael J. ; Ballard, Dana H.: Color Indexing. In: Interna-
tional Journal of Computer Vision 7 (1991), Nr. 1

[SBC16] Singhof, Michael ; Braun, Daniel ; Conrad, Stefan: Finding Trees
in Mountains – Outlier Detection on Polygonal Chains. In: Proc. of the
Conference LWDA 2016, 2016

[Sch00] Scharr, Hanno: Optimale Operatoren in der digitalen Bildverarbeitung,
Diss., 2000

[SJ08] Shirdhonkar, Sameer ; Jacobs, David W.: Approximate Earth
Mover’s Distance in Linear Time. In: Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, 2008

[SK08] Shieh, Jin ; Keogh, Eamonn: iSAX: Indexing and Mining Terabyte
Sized Time Series. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining ACM, 2008

[SKBC17] Singhof, Michael ; Klassen, Gerhard ; Braun, Daniel ; Conrad,
Stefan: Detection and Implicit Classification of Outliers via Different
Feature Sets in Polygonal Chains. In: BTW, 2017

[Sob90] Sobel, Irvin: An Isotropic 3× 3 Image Gradient Operator. In: Machine
Vision for Three-dimensional Scenes (1990)

112 BIBLIOGRAPHY

[SZ14] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional
Networks for Large-scale Image Recognition. In: CoRR (2014)

[Tar97] Tarjan, Robert E.: Dynamic Trees as Search Trees via Euler Tours, Ap-
plied to the Network Simplex Algorithm. In: Mathematical Programming
78 (1997), Nr. 2

[Vas69] Vaserstein, Leonid N.: Markov Processes over Denumerable Prod-
ucts of Spaces, Describing Large Systems of Automata. In: Problemy
Peredachi Informatsii 5 (1969), Nr. 3

[VC64] Vapnik, Vladimir ; Chervonenkis, Alexey: A Note on One Class of
Perceptrons. In: Automation and Remote Control 25 (1964), Nr. 1

[VSNI+14] Van der Walt, Stefan ; Schönberger, Johannes L. ; Nunez-
Iglesias, Juan ; Boulogne, François ; Warner, Joshua D. ; Yager,
Neil ; Gouillart, Emmanuelle ; Yu, Tony: scikit-image: Image Pro-
cessing in Python. In: PeerJ 2 (2014)

[Wu83] Wu, CF J.: On the Convergence Properties of the EM Algorithm. In:
The Annals of Statistics (1983)

List of Figures

2.1 Example for a trace in form of a sequence and as spatial data. 9

3.1 Flow diagram of the AdaMS framework 13
3.2 Examples for brightness differences between different kinds of sky and

ground. 15
3.3 Segmentation on the left and added silhouette in red on the right. . . . 16
3.4 An example for the silhouette extraction process. 17
3.5 Low contrast between sky and foreground leads to foreground classified

as sky. 19
3.6 Grid cells in the proximity of an outlier. 20

4.1 Different contexts for weak anomalies. 24
4.2 Sets for proof of subadditivity. 28
4.3 Flow diagram of the outlier detection pipeline. 33
4.4 Example for the mapping of a two dimensional histogram onto a one

dimensional histogram. 35
4.5 Different errors in a silhouette. 41
4.6 Flow diagram of the outlier detection pipeline with type distinction. . . 42

5.1 Image on the top with first image patches below. 49
5.2 Parallel execution of multiple convolutions in a convolutional layer. . . 51
5.3 Max pooling example. 53
5.4 Smaller proposed network architecture. 53
5.5 Larger proposed network architecture. 54

6.1 Mean normalised window distance µ on reference data over number of
clusters. 59

6.2 Normalised standard deviation σ/µ on reference data over number of
clusters. 60

6.3 Influence of tw and ts on precision without clustering and l = 1 on Test
Set 1. 62

6.4 Influence of tw and ts and τout on recall without clustering and l = 1 on
Test Set 1. 63

6.5 Influence of tw and ts on F1 score without clustering and l = 1 on Test
Set 1. 64

6.6 Influence of l on F1 scores on Test Set 1. 66

113

114 LIST OF FIGURES

6.7 Influence of l on precision and recall on Test Set 1. 67
6.8 Influence of tw and ts on the fraction of hit reference outliers without

clustering and l = 1 on Test Set 1. 68
6.9 Influence of tw and ts on the fraction of hitting detected outliers without

clustering and l = 1 on Test Set 1. 69
6.10 Influence of tw and ts on the harmonic mean of hit reference outliers and

hitting detected outliers without clustering and l = 1 on Test Set 1. . . 70
6.11 Influence of tw and ts on F1 scores without clustering and l = 1 on Test

Set 2. 72
6.12 Influence of tw and ts on precision and recall without clustering and l = 1

on Test Set 2. 72
6.13 Influence of tw and ts on FH scores without clustering and l = 1 on Test

Set 2. 73
6.14 Normalised mean and standard deviation over the number of clusters k

for aad. 75
6.15 Normalised mean and standard deviation over the number of clusters k

for hid. 75
6.16 Normalised mean and standard deviation over the number of clusters k

for emd. 76
6.17 Normalised standard deviation σ/µ for test data over the number of

clusters. 76
6.18 Maximum F1 score over the number of clusters on Test Set 1. 78
6.19 Maximum F1 score over the number of clusters on Test Set 2. 79
6.20 Best F1 scores over the number of clusters on Test Set 1. 80
6.21 Best F1 score over the number of clusters on Test Set 2. 81
6.22 Maximum FH score over the number of clusters on Test Set 1. 84
6.23 Maximum FH score over the number of clusters on Test Set 2. 85
6.24 Best FH scores over the number of clusters on both test sets. 86
6.25 Best and worst values per number of clusters. 87
6.26 Maximum F1 scores with contrast features on Test Set 1. 88
6.27 Maximum F1 scores with contrast features on Test Set 2. 89
6.28 Maximum FH scores with contrast features on Test Set 1. 90
6.29 Maximum FH scores with contrast features on Test Set 2. 91
6.30 Maximum F1 scores with contrast features of Test Set 2 separated by

outlier class. 92
6.31 Maximum recall with contrast features of Test Set 2 separated by outlier

class. 92
6.32 Maximum F1 scores with positional features of Test Set 2 separated by

outlier class. 93
6.33 Maximum recall with positional features of Test Set 2 separated by out-

lier class. 93
6.34 Receiver Operator Characteristics of OutlierNet. 97
6.35 Precision and recall curve of OutlierNet. 98
6.36 F1 score over thresholds. 99

List of Tables

4.1 Effects of point types and conditions during the outlier detection. . . . 37

6.1 Mean µ and standard deviation σ for the different distance functions
without clustering. 58

6.2 Number of outliers by outlier length. 61
6.3 Best results regarding F1 score for each l on Test Set 1. 65
6.4 Number of detected outliers over ts for tw = 0.25 and l = 1 on Test Set 1. 69
6.5 Maximum and minimum FH scores per distance function for l = 1 on

Test Set 1. 71
6.6 Best results regarding FH score for each l on Test Set 1. 71
6.7 Maximum and minimum FH scores per distance function for l = 1 on

Test Set 2. 73
6.8 Best results regarding FH score for each l on Test Set 2. 74
6.9 Choice of parameters for best results. 80
6.10 Best combined parameter sets for F1 score on both test sets. 82
6.11 Best combined parameter sets for FH score on both test sets. 83
6.12 Best parameter combinations for different target metrics. 94
6.13 Combined results on Test Set 2. 94
6.14 Correctly classified outliers by class over all outliers. 95

115

116 LIST OF TABLES

A
List of Publications

This chapter lists the publications of Michael Singhof. The first section gives an
overview of publications that contributed to the dissertation as well as the contri-
butions of the author. The second section shows additional publications that did not
contribute directly to this work.

Publications Used in the Dissertation
1. M. Singhof, G. Klassen, D. Braun, S. Conrad:

Detection and Implicit Classification of Outliers via Different Feature Sets in
Polygonal Chains
In: Datenbanksysteme für Business, Technologie und Web (BTW 2017), 2017
Contributions: Michael Singhof contributed the idea for the outlier detection
with two different sets of features. The implementation of this algorithm was
carried out jointly with Gerhard Klassen. The annotation of the outliers for
the test set and the evaluation was carried out jointly with Daniel Braun. The
manuscript was prepared jointly with Gerhard Klassen.

2. M. Singhof, D. Braun, S. Conrad:
Finding Trees in Mountains – Outlier Detection on Polygonal Chains
In: Proceedings of the Conference Lernen, Wissen, Daten, Analysen (LWDA
2016), 2016
Contributions: The multi-reference-enhancement for the outlier detection was
invented and implemented by Michael Singhof, as well as the proof showing that
the above average distance is a pseudometric. The annotation of the outliers for
the test set and the evaluation was carried out jointly with Daniel Braun. The
manuscript was also prepared together with Daniel Braun.

3. D. Braun, M. Singhof, S. Conrad:
AdaMS: Adaptive Mountain Silhouette Extraction from Images

117

118 A. LIST OF PUBLICATIONS

In: Machine Learning and Data Mining in Pattern Recognition (MLDM 2016),
2016
Contributions: The idea and implementation of the outlier detection and clas-
sification are by Michael Singhof. The preparation of the manuscript and the
evaluation where carried out jointly with Daniel Braun.

4. D. Braun, M. Singhof, S. Conrad:
An Adaptive Grid Segmentation Algorithm for Mountain Silhouette Extraction
from Images
In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB,
2015
Contributions: The idea of the outlier detection and classification parts are by
Michael Singhof. The manuscript was prepared with Daniel Braun.

5. D. Braun, M. Singhof:
Automated Silhouette Extraction for Mountain Recognition In: Proceedings of
the 27th GI-Workshop on Foundations of Databases, 2015
Contributions: The idea and implementation of the silhouette cleaning are by
Michael Singhof. The manuscript was written in conjunction with Daniel Braun.

Other Publications
1. D. Braun, M. Singhof, M. Tatusch, S. Conrad:

Convolutional Neural Networks for Multidrug-resistant and Drug-sensitive Tu-
berculosis Dinstinction
In: CLEF2017 Working Notes, 2017

2. G. Klassen, M. Singhof:
Shape Based Outlier Detection in SLIC Superpixels
In: Proceedings of the 29th GI-Workshop on Foundations of Databases, 2017

3. M. Singhof:
Analysis of DDoS Detection Systems
In: Proceedings of the 25th GI-Workshop on Foundations of Databases, 2013

B
Data Sets

The Switzerland data set consists of 203 images and is provided with [BSKP12]. The
whole set of images is available for download at

http://cvg.ethz.ch/research/mountain-localization/

While 196 pictures are licensed under the creative commons license, seven photos are
not covered by this license and are therefore not shown in this appendix.

B.1 Training Data Set
The Training Data Set consists of a portion of 61 of the images of the Switzerland
Dataset, for which the segmentation algorithm was able to compute fault-free silhouette
out of the box. Of those 61 photos, two are not covered by the creative commons license
and are therefore excluded here.

119

http://cvg.ethz.ch/research/mountain-localization/

120 B. DATA SETS

B.2. SWITZERLAND DATA SET / TEST SET 2 121

B.2 Switzerland Data Set / Test Set 2
The Switzerland data set as described in the evaluation in Chapter 6, consists of 14
of the photos from the whole data set published with [BSKP12]. On these photos
we manually annotated 70 outliers on the silhouettes computed by the segmentation
algorithm of which the 61 that are longer than four silhouette points have been used
in the evaluation:

Length Number of outliers
1 – 4 9
5 – 9 41

10 – 19 24
20 – 99 31
≥ 100 6

Total used 61

The following image are used:

122 B. DATA SETS

B.3 Our Data Set / Test Set 1
This data set consists of 46 images taken by Michael Singhof. The images have been
manually segmented by Daniel Braun. If the computed silhouette differs more than
two pixels from the manually detected one, this part of the silhouette is defined as an
outlier. By this approach, we get the following outliers:

Length Number of outliers
1 – 4 1213
5 – 9 135

10 – 19 65
20 – 99 29
≥ 100 7

Total used 101

Again only those outliers that are at least five silhouette points long have been used
in the evaluation. The following photos are used in this data set:

B.3. OUR DATA SET / TEST SET 1 123

	Introduction
	Mountain Identification
	Structure of the Thesis

	Outlier Detection
	AdaMS and Extensions
	Grid and Parameter Initialisation
	Image Segmentation
	Silhouette Extraction
	Possible Errors in Silhouettes
	Silhouette Refinement

	Outlier Detection in AdaMS
	Outlier Definition on Polygonal Chains
	Above Average Distance
	Basic Algorithm
	Silhouette Conversion
	Anomaly Score Computation
	Outlier Detection
	Outlier Classification

	Multi-Reference Enhancement
	Outlier-type Distinction
	Generalisation of the Algorithm

	Outlier Detection with Neural Networks
	Generation of Training Data
	Network Architecture
	Network Output Interpretation

	Experiments with AdaMS Outlier Detection
	Training
	Testing of the Base Algorithm
	Testing the Multi-Reference Enhancement
	Evaluation with Outlier-type Distinction
	OutlierNet
	Summary

	Conclusion
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Publications
	Data Sets
	Training Data Set
	Switzerland Data Set / Test Set 2
	Our Data Set / Test Set 1

