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Summary

Summary

Prokaryotes thrive in all known habitats on earth. They have important industrial
values and a significant impact on human health. In this thesis, I interrogate
recently published (meta-)genomic sequences generated by high-throughput
sequencing techniques to identify key factors that contribute to the fitness of

prokaryotes and the impacts on their genomes.

We first explored intrinsic factors. A previous study of our group identified
that efficient resource usage shapes nucleotide usage in coding regions of
prokaryotic genomes. In this study, we further revealed that efficient resource
usage could also drive genes to be preferably located on the leading strand, an
observation known as strand-biased gene distribution (SGD). The leading strand
is synthesized in the same direction as the movement of the replication fork, while
the lagging strand is synthesized in the opposite direction. The transcription and
replication machineries collide head-to-head on the lagging strand, leading to
longer exposure time of single-stranded DNA to chemical modifications. Lagging
strand genes thus accumulate more deleterious mutations. Mutational biases
introduced energetically cheaper nucleotides on the lagging strand, resulting in
more expensive protein products, which consequently drove genes to the leading
strand. We tested our mutagenesis/energy efficiency model in 1,552 prokaryotic
genomes and found that mutational biases in non-transcribed regions can explain
~71% of the variation in SGDs; consistently, the difference between averaged
amino acid costs of proteins encoded by genes on the two strands explained ~50%
of the variance in SGDs.

We next explored external factors such as bacteriophages. Phages invade
microbes, accomplish host lysis, and are of vital importance in shaping the
community structure of environmental microbiota. Phage-mediated horizontal

gene transfer is known to have a significant impact on the formation, evolution,



Summary

and host range transition of virulence factors of pathogenic bacteria. We first
identified 26,572 interactions between 18,608 viral clusters (complete and
fragmented phage genomes) and 9,245 prokaryotes (i.e., bacteria and archaea).
Based on these interactions, we calculated the host range for each of the phage
clusters, and accordingly grouped them into subgroups such as species-, genus-,
and family-specific phage clusters. We also calculated the size and GC-content of
bacteria for the gut metagenome, which contains a variety of bacteriophages,
plasmids, and CRISPRs. We found that both phages and plasmids contribute
significantly to genome expansion, i.e., genomes with phages and/or plasmids are
significantly larger than those without; the genome sizes were increased with
increasing numbers of associated phages/plasmids. Conversely, we found that
CRISPR systems have a negative impact on genome size, i.e., genomes with
CRISPRs are significantly smaller in size than those without. These results
confirmed that on an evolutionary timescale, phages and plasmids facilitated
genome expansions while CRISPR impaired such processes in prokaryotes.
Furthermore, our results also revealed a striking yet expected preference of
CRISPR systems against phages over plasmids, consistent with the typical
consequences of phage and plasmid infection to the hosts and the roles of CRISPR
as a defence system.

Finally, we constructed an MVP database (microbe-phage interaction
database) using the results of our microbe-phage interaction analysis. Phages can
be used as antibiotic agents for pathogenic prokaryotes and/or a tool to
specifically “knockdown” target prokaryotes without affecting others. Therefore,
such a resource will be useful in (meta-)genomic studies and of potential clinical

importance.



2 Introduction

2 Introduction

Prokaryotes are everywhere around us. The microbiome plays crucial roles in
human health (1-3), diseases (3-9), development (10-12), and in many other
aspects of human life (5-8). In the work reported in this thesis, I interrogated
recently published (meta-)genomic sequences generated by high-throughput
sequencing techniques; my goal was to identify key factors that contribute to the

genomic adaptation of prokaryotes.

2.1 Brief introduction to prokaryotes

2.1.1 Prokaryotes thrive in all known habitats with high abundance

Escherichia coli, the most widely studied prokaryote, has a genome about 700
times smaller than a human genome (13). Prokaryotes are considered to be the
earliest organisms on earth (14). Their cells possess a cytoskeleton that is much
more primitive than that of eukaryotes (15). Most prokaryotes are unicellular
organisms. They lack a nuclear membrane, mitochondria, or any other membrane-
bound organelles (16). However, some prokaryotes contain intracellular
structures that could be seen as primitive organelles (17). All in all, the lack of a
nuclear membrane makes it easier for prokaryotes to incorporate foreign DNA
into their own genomes, a phenomenon known as horizontal gene transfer (HGT)
(18-20). Recent analyses revealed that HGT may contribute more to the
expansion of prokaryotic genomes than gene duplication (21,22). Prokaryotes
frequently adapt to new environments by acquiring foreign genes, often from
organisms living in the same habitats, through HGT (23,24). However, despite
the adaptive advantages that may come with foreign DNA, the integration of
foreign genetic material is risky: for this reason, more than half of all prokaryotic
genomes encode CRISPR-CAS systems that can recognize and degrade invading

-3-
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foreign DNA (25-27).

Prokaryotes are classified into two domains: bacteria and archaea (28).
Both bacteria and archaea can thrive in practically all habitats on earth, including
those that are cold, hot, salty, acidic, or alkaline (29). Prokaryotes can be found
in human lungs and guts and on human skin (1,30,31). Even in rocks two miles
below the surface of the earth, prokaryotes have been discovered (32).

Prokaryotes are highly abundant: their biomass has been estimated to
outweigh that of all eukaryotes combined by at least tenfold (15). The total
number of bacterial and archaeal cells in the human gut can be up to ten times

more than that of the human cells (33).

2.1.2 Availability of large amounts of (meta-) genomic data

facilitated large-scale comparative analyses of prokaryotic genomes

Next generation sequencing (NGS) has emerged as a cost-effective and
convenient approach for addressing many microbiological questions,
dramatically transforming this field. Metagenomic assembly of short sequencing
reads facilitates functional insights. Compared to culture-based and single-cell
methods, metagenomics provides a more convenient and unbiased way of
obtaining genomic information for environmental microbes (34,35); accordingly,
having access to genomic information has revolutionized fundamental research
in microbiology (36).

With an increasing amount of sequencing data, the number of microbial
species and genes discovered grows rapidly. This allowed me and my
collaboration partners to use larger and more comprehensive samples than

previous researchers to examine some controversial issues.
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2.1.3 Aims of this dissertation and efforts towards their

accomplishment

This thesis describes how I and my collaboration partners interrogated recently
published metagenomic sequences to identify intrinsic and external key factors
that contribute to the fitness of prokaryotes, and our examination of their impact
on prokaryotic genomes. We first focused on intrinsic factors. We studied how
basic cellular activities such as replication, transcription, and translation can
change base composition, i.e., the relative frequencies of the four nucleotides of
the genome. We found that this consequently drove protein-coding genes onto the
leading strand, on which the DNA replication and the transcription machineries
move in the same direction. We then looked at the external factors, studying how
horizontal gene transfers, especially those facilitated by phages and plasmids, can
drive genome expansions at evolutionary timescales. Prokaryotic cells may
impair such processes using genome-encoded CRISPR-CAS systems, a wide-
spread adaptive immune system of prokaryotes. Our results unveiled some
interesting interactions between internal and external factors. Finally, taking
advantage of the huge amount of data we collected for the two projects, especially
the (pro)phage sequences and their interactions relationships with their host
genomes, we constructed a microbe-phage interaction database. Phages can be
used as antibiotic agents for pathogenic prokaryotes and/or a tool to specifically
“knockdown” target prokaryotes without affecting others. Therefore, such a
resource may contribute to (meta-)genomic studies and is of potential clinical

importance.
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2.2 Intrinsic and external factors shaping prokaryotic

genomes

2.2.1 Mutational biases and selection for effective energy usage

drives protein coding genes to the leading strand

Prokaryotes spend a substantial fraction of their cellular resources on making
nucleotides — about 13% of glucose consumption in Escherichia coli is used to
make nucleotides (37). Efficient energy usage is a trait under strong selection (38),
and thus parsimonious resource usage has been observed in various genomic
aspects: for example, highly expressed proteins are shorter than lowly expressed
proteins (39,40) and preferentially use cheaper amino acids (37,41-43), microbes
predominantly use energetically cheaper amino acids in secreted proteins (44),
and prokaryotic genomes tend to use cheaper nucleotides in transcribed than in
untranscribed sequences, as the former are often amplified thousand-fold
compared with the latter (45). Moreover, transcription-related selection generally
favours the cheaper nucleotides U and C at synonymous sites (45).

In most prokaryotes, protein-coding gene locations are biased to the leading
strand (46), on which replication is continuous (47,48). Over 90% of 1,552
analysed prokaryotic genomes located their coding genes preferentially on the
leading strand (49), a phenomenon called strand-biased gene distribution (SGD)
(50). It has long been suspected that SGDs are caused by natural selection
favouring the avoidance of collisions between the replication and transcription
machineries (46,50-52). These two machineries share the same DNA template but
move with different speed (53) and, importantly, in different directions on the
lagging strand. Thus, collisions could happen either co-directionally (on the
leading strand) or head-on (on the lagging strand) (54). Some results suggest that

collisions are deleterious (55), and that head-on collisions are more deleterious
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than co-directional collisions (56). The elevated deleterious effects of genes
encoded on the lagging strand were believed to be stronger for highly expressed
and for functionally important genes (e.g., essential genes), consistent with the
observation that these two types of genes are underrepresented on the lagging
strand (50,57).

Despite the mechanistic insights, a quantitative model that explains the
variation of SGDs across different species is still lacking. For example, the
expression-driven (50) and essentiality-driven (57) hypotheses are not
quantitative; it is difficult to quantify their contributions to the SGD, i.e., they
offer no explanation why in different genomes the SGDs are different, and how
much of the variations can be explain by essential or highly expressed genes.
Recently, Mao et al. (49) proposed a very sophisticated model to explain ~74%
of the variance of the SGDs in 725 prokaryotic genomes. Although their work
represents arguably one of the best quantitative models so far, no causal
relationship has been inferred from their results.

In our study, we proposed a mutagenesis/energy efficiency model for SGDs
and tested it on a dataset of 1,552 prokaryotic genomes. We showed that due to
elevated mutational biases on the lagging strand (48), the energetically cheaper
nucleotides 7'is introduced over G, so is C over 4 and C over G; proteins encoded
by lagging-strand genes are slightly more expensive than those encoded by
leading-strand genes, and subsequently drive genes to the leading strand.
Consequently, genes, especially those that are highly expressed, are preferably
located on the leading strand. Highly expressed genes code for cheaper products,
even when they are located on the lagging strand; thus not all highly expressed
genes, and certainly not all genes, are expected to be moved to the leading strand.
Our model is quantitative, compatible with many existing hypotheses (37,41-

43,45), and can explain more than two thirds (~71%) of the variance in SGDs.
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2.2.2 Genome expansion is facilitated by the plasmids and phages,

and is impaired by CRISPR-CAS systems

Gene duplication and/or horizontal gene transfer (HGT) play important roles in
functional innovation and species adaptation, and are the main sources of genome
expansions (23,24,58-60). While many prokaryotic genes have been acquired by
horizontal transfer at some point in their evolutionary history, not all genes are
equally likely to be transferred (61-63). HGT is also the one of main sources of
genome expansions (23,24,58-60). Mobile DNA elements such as phages and
plasmids can infect their hosts and introduce foreign DNAs into the host genomes.
HGT occurs through three main mechanisms: transformation, conjugation, and
transduction. The latter two mechanisms are related to plasmids and phages,
respectively.

Mobile DNA elements such as bacteriophages (referred to as phages below)
and plasmids can infect their hosts and introduce novel DNA into the host
genomes (64-67). Plasmids that contain resistance genes from resistant donors
can make previously susceptible bacteria express resistance, encoded by these
newly acquired resistance genes (68). The acquisition of foreign DNA can have
diverse fitness consequences: many adaptations are facilitated by HGT (69), but
in other cases the DNA being shared is neutral or even harmful (70). Phages are
pathogens that often lead to the lysis of their hosts (71). In transduction, the
transfer of bacterial DNA is under the control of the phage’s genes rather than
bacterial genes (72). Phages often have a very narrow range of hosts; but under
certain conditions, such as antibiotic stress, phages and plasmids can expand their
host ranges (73). Overall, phages and plasmids are important sources of HGT and
of prokaryotic innovations, and consequently contribute to bacterial evolution and
adaptation (19,20,73). Accordingly, we hypothesized that the number of
plasmids/phages may be related to the genome size of their host.

Over the evolution history of prokaryotes, they developed various defence
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systems against phages and other invading genetic elements (74). CRISPR
(clustered regularly interspaced short palindromic repeats), the adaptive immune
system of prokaryotes, is a recently recognized player in the ongoing arms race
between viruses and hosts, and plays an important role in the dynamic process by
which the genomes of prokaryotes and mobile elements coevolve (75). CRISPR
is wide-spread in prokaryotes, present on chromosomes, genomic islands,
plasmids, and even mimiviruses (76), and has been distributed via HGT between
different prokaryotic taxa (25-27). In 1987, a CRISPR-Cas system was first
recognized in Escherichia coli; such systems are now known to occur in 90% of
archaea and 40% of bacteria (25-27,77). CRISPR loci continuously acquire new
spacers; this facilitates a partial reconstruction of the history of past selfish-
element infections (78-81). In the absence of parasitic elements, spacers could be
easily lost because of the deletion bias of prokaryotic genome evolution (82) and
the presumed cost of maintaining CRISPR systems (83). The balance between
spacer gain and loss could thus be affected by the relative selective pressures
exerted (84). It is reasonable to speculate that over the course of evolution, phages
and plasmids — as sources of HGT — may contribute to the expansion of
prokaryotic genomes, while CRISPR systems — which prevent HGT — may impair
such a process.

However, controversial observations on this issue have been reported
recently. For example, Gophna and colleagues did not observe the expected
negative correlation between CRISPR activity in microbes with three
independent measures of recent HGT, leading them to conclude that the inhibitory
effect of CRISPR against HGT is undetectable (85). Furthermore, a recent study
revealed that CRISPR-mediated phage resistance can even enhance HGT by
increasing the resistance of transductants against subsequent phage infections
(86). These observations appear surprising, as the restricted acquisition of foreign
genetic material is believed to be one of the sources of the maintenance fitness
cost of CRISPR systems and may be one of the reasons for the patchy distribution

of CRISPR among bacteria (87,88). Thus, it is currently unclear what long-term
-9-
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effects CRISPR, phages, and plasmids have on genome expansions.

In this study, we first collected a comprehensive dataset of prokaryotes and
their associations with phages, plasmids, and CRISPR systems. We then applied
a generalized linear model to evaluate the contributions of phages, plasmids, and
CRISPR to genome size. After controlling for genome GC (guanine+cytosine)
content, which is known to correlate significantly with genome size (45,89), we
found that both phages and plasmids are associated with larger genomes, while
the presence of a CRISPR system is associated with small genome sizes. Genome
sizes increase with increasing numbers of associated phages and plasmids. Our
results thus indicate that in the long run, phages and plasmids facilitate genome
expansions, while CRISPR impairs such a process in prokaryotes. Furthermore,
our results also reveal a striking preference of CRISPR systems for targeting
phages rather than plasmids, consistent with the typical consequences of phage

and plasmid infections to the hosts and the roles of CRISPR as a defence system.

2.2.3 A comprehensive catalog of phage-microbe interactions

It has been increasingly recognized that the microbiome can play crucial roles in
human health (1-3), diseases (3-9), responses to drugs and treatments (90,91), and
other processes (10,12,92,93). However, due to limited experimental conditions
and the lack of general purpose tools, it is difficult to directly infer causal
relationships from the correlated alterations in microbial community structures
and host phenotypes (e.g., health statuses) under different conditions (20-23), or
to even directly pinpoint the causal species.

During the course of our data collection for the previous two projects, we
assembled a large set of phage-microbe interactions. It is known that phages are
key members of the environmental microbiota and could play important roles in
shaping the population structure. Most importantly, they tend to have specific
hosts (96) and are able to decrease the fitness of their host prokaryotes. Therefore
phages can be used as a tool to specifically “knock-down” prokaryotes from an

-10 -
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environmental microbiota without affecting others in the same environment,
providing us with an ideal tool to precisely manipulate prokaryotes of interests at
the species level. Recently, Yen et al. successfully reduced Vibrio cholerae
infection and colonization in the intestinal tract and prevented cholera-like
diarrhea, by orally administrating V. cholera-specific phages in model animals
(94). Therefore, knowledge about phage-microbe interactions can be particularly
useful for researchers who are interested in environmental microbiota studies. We
thus want to provide researchers with a comprehensive catalogue of phage-
microbe interactions and to assist them to select phages that can target (and thus
help to manipulate) specific microbes of interest.

In addition to experimental methods, microbe-phage interactions can be
identified by taking advantage of large-scale genomic and metagenomic
sequencing efforts. For example, it is known that many phages insert their
genomes into that of their hosts; the integrated phages are known as prophages
(95,96). Many computational tools exist and are able to identify prophages from
complete prokaryotic genomes and/or assembled metagenomic contigs (97-99).

In this study, we first collected 50,782 viral sequences from published
datasets, public databases, and re-analysis of genomic and metagenomic
sequences, and clustered them into 33,097 unique viral clusters based on
sequence similarity. We then identified 26,572 interactions between 18,608 viral
clusters and 9,245 prokaryotes; we established these interactions based on 30,321
evidence entries that we collected from various sources. Based on these
interactions, we calculated the host range for each of the phage clusters, and
accordingly grouped them into subgroups such as species-, genus-, and family-
specific phage clusters. All results are integrated into the MVP, a microbe-phage
interaction database, which allows users to effortlessly explore all contents and
to efficiently find interactions of interest to them. We expect that this resource
will be useful in (meta-)genomic studies, and will be of potential clinical

importance.

-11-
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the leading strand, an observation known as strand-biased gene distribution (SGD). Despite of this

mechanistic understanding, a satisfactory quantitative model is still lacking. Replication-transcription-

. collisions induce stalling of the replication machinery, expose DNA to various attacks, and are followed

i by error-prone repairs. We found that mutational biases in non-transcribed regions can explain ~71% of

: the variations in SGDs in 1,552 genomes, supporting the mutagenesis origin of SGD. Mutational biases
introduce energetically cheaper nucleotides on the lagging strand, and result in more expensive protein

. products; consistently, the cost difference between the two strands explains ~50% of the variance in

SGDs. Protein costs decrease with increasing gene expression. At similar expression levels, protein

products of leading-strand genes are generally cheaper than lagging-strand genes; however, highly-

: expressed lagging genes are still cheaper than lowly-expressed leading genes. Selection for energy

. efficiency thus drives some genes to the leading strand, especially those highly expressed and essential,

but certainly not all genes. Stronger mutational biases are often associated with low-GC genomes; as

low-GC genes encode expensive proteins, low-GC genomes thus tend to have stronger SGDs to alleviate

¢ the stronger pressure on efficient energy usage.

In most prokaryotic genomes, protein-coding genes are preferably located on the leading strand’, on which the
¢ replication is continuous”. For example, in contrast to randomly expected 50% if there were no strand preferences,
i over 90% of the 1,552 bacterial and archaeal genomes we surveyed in this study show preferred location of their
i coding genes on the leading strand (see also®). This phenomenon, which is known as biased-strand gene distribu-
tion (SGD), has been intensively investigated in the past decades and many hypotheses have been proposed*-'*.

It has long been suspected that SGDs are caused by collisions between the replication and transcription
machineries" % ' 1417 The latter two share the same DNA template but move with different speede: in addi-
tion, they move in different directions on the lagging strand of the genome. Thus, collision can happen either
i co-directionally (on leading strand) or head-on (on lagging strand)'®. Collisions can cause replication stall-
ing, abortive transcription, and expose single-stranded DNAs to chemical modifications and other damages'™.
Collisions are thus deleterious. Recent experimental results suggest that genes on the lagging strand accumulate
more mutations than those on the leading strand', due to head-on collisions or the discontinuous nature of the
DNA synthesis of the lagging strand, or both. This indicates that head-on collisions are more deleterious than
co-directional collisions. The elevated deleterious effects on the lagging strand are believed to cause a higher bur-
den on fitness for highly expressed genes and functionally important genes (e.g., essential genes), consistent with
the observations that these two types of genes are underrepresented on the lagging strand™ %,

Despite the mechanistic insights, a quantitative model that explains the variation of SGDs in different species
is still lacking. For example, the expression-driven” and essentiality-driven' hypotheses are not quantitative;
: more importantly, after highly expressed and essential genes were removed, SGDs were decreased but nat com-
pletely removed (see Figs 1 and 2). In addition, it is difficult to quantify their contributions to SGD: it is unclear
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Figure 1. Removing highly expressed genes does not eliminate strand-biased gene distribution in selected
species. Gene expression data were downloaded from NCBI GEO database® for the three model bacteria,
Escherichia coli”, Bacillus subtilis*® and Mycup[ﬂsmapneumunin?"; the number of datasets for each species
is indicated in the parenthesis of the panel title. For each gene in a genome, we calculated the max, mean and
median expression values across the expression datasets we collected, and then ranked all genes in a genome
accordingly.

why SGDs are different in different genomes, and how much of the variations can be explained by essential or
highly expressed genes. Recently, Mao et al.” proposed a very sophisticated model; using data on the enrichment
and depletion of genes in 25 Gene Ontology (GO) categories on the leading strand, they were able to explain
~74% of the variance of SGDs across 725 prokaryotic genomes; the authors argue that genes of certain functions
prefer different strands and consequently drive SGD. Although it represents arguably one of the best quantita-
tive models so far, ref. 3 blurs the cause and consequences of this issue. For example, one may argue that it is
the head-on collisions between replication and transcription machineries that drive the highly-expressed and
essential genes to the leading strand, and consequently cause the biased functional categories in the genes on the
leading strand, rather than the other way round.

Here, we propose a mutagenesis/energy efficiency model for SGDs and test it on 1,552 prokaryotic genomes.
In previous work, we showed that strand-specific mutational biases, observed as nucleotide compositional biases
in inter-operonic regions, can be recapitulated using coding sequences from leading and lagging strands™. These
results suggested that mutational biases in coding regions are of similar nature to that in non-transcribed regions
but are inflated, likely due to the longer exposure time of single-stranded DNA during transcription®’, which
causes increased DNA damage and error-prone repair. Mutational biases introduce the energetically cheaper
nucleotides T and C over their complementary nucleotides A and G, respectively, as well as C over G on the lag-
ging strand. Due to a trade-off between nucleotide and amino acid costs inherent in the codon translation table,
the bias towards cheaper nucleotides results in more expensive protein products for genes on the lagging strand,
driving genes to the leading strand.

Qur model - which we develop in quantitative form below — makes the following predictions. First,
strand-specific mutational biases observed in interoperonic regions should be able to predict the extent of SGD
ina given genome: stronger mutational biases should lead to stronger SGD. Second, previous studies have shown
that costs per protein decrease with increasing gene expression?’~2%; therefore, highly expressed genes on the
lagging strand should still be cheaper than lowly expressed genes on the leading strand. We thus expect selection
for energy efficiency to drive some genes to the leading strand, especially those highly expressed and essential,
but not all genes.

Results and Discussion

Removing highly expressed or essential genes does not eliminate SGD. Avoidance of head-on
collisions between replication and transcription machineries could drive (some) highly-expressed and/or essen-
tial genes to the leading strand, However, we hypothesized that other factors such as mutagenesis could also
contribute significantly to SGDs. We thus removed highly expressed or essential genes from selected species and
recalculated SGDs. As expected, SGDs remain in most species, especially in genomes with strong SGDs to begin
with, suggesting that highly expressed or essential genes could only explain a small part of SGD (Figs 1 and 2).
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Figure 2. Removing essential genes does not eliminate strand-biased gene distribution in selected species.
Tested essential and nonessential genes were obtained from OGEE - an online gene essentiality database®. “all
genes” (dark blue bar): when all genes were used to calculate the SGD; “all excluding tested essential genes”
(blue bar): when genes that were tested as nonessential genes and those were not tested in gene essentiality
experiments were used; “tested non-essential genes” (light blue bar): when only genes that were tested as
nonessential were used.

Gene expression abundances vary between different experimental conditions. We thus also tested whether the
same trend could be observed in individual gene expression experiments. From each of the expression datasets
we collected for the selected organisms, we ranked genes according to their expression abundance, removed the
highly-expressed ones and recalculated the SGD. Figure 3 summarized the results as boxplots; as expected, we
observed the same trend that SGDs decrease but remain after removing highly expressed genes.

Gene essentiality statuses can also be environment-/experiment-dependent. We thus further tested our
hypothesis in species whose essential genes had been tested under different experimental conditions, As shown in
Supplementary Figure 1, in all four bacteria (namely Salmonella enterica subsp. enterica serovar Typhimurium str.
SL1344, Pseudomonas aeruginosa UCBPP-PA14, Escherichia coli K12 and Mycobacterium tuberculosis H37Rv) for
which multiple essentiality datasets are available in OGEE v2*, removing essential genes did not eliminate SGD.

Gene essentiality can also be measured quantitatively (e.g., as Fitness scores) instead of qualitatively; it has
been previously shown that quantitatively measured gene essentiality contributes significantly to SGD in bacterial
species®. To further test the robustness of hypotheses on this type of data, we obtained predicted “fitness scores”
for 2,074 species from IFIM, a database of Integrated Fitness Information for Microbial genes”. Fitness scores in
IFIM were predicted using Geptop?® based on orthology and phylogeny; the scores range from 0 to 1, with lower
scores representing greater fitness decreases and thus higher likelihood of being essential. A cutoff of 0.65 was
recommended to classify genes into essential (those with fitness scores <= 0.65) and non-essential”*, In total,
1,410 genomes overlapped with the 1,552 genomes used in this study. As shown in Fig. 4, when all genes were
included, ~94.18% of the 1,410 genomes had SGDs larger than 50; excluding genes with lower fitness scores could
reduce this percentage, but only to a very limited extend. For example, after excluding genes with fitness scores
less than 0.7 from all genomes and re-calculating SGD, 92.62% of the genomes still had SGDs larger than 50.

Together, these results further confirmed that highly expressed or essential genes could only explain part of
SGD in prokaryotes.

Replication skews can explain ~71% of the variance in 5GDs in 1,552 prokaryotic genomes.
Qur previous results showed that mutational biases, i.e. strand-specific usage of A versus T, and of G versus C
(also known as AT and GC skews respectively; see Methods) observed in interoperonic regions can be reca-
pitulated using coding sequences from leading and lagging strands, with a certain inflation®. For example,
mutational skews estimated by contrasting genes on the leading strand and on the lagging strand correlate sig-
nificantly with the interoperonic skews, with correlation coefficients of 0.78 and 0.90 for AT and GC skews,
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Figure 3. SGDs decrease but remain after removing highly expressed genes in selected species. The same data
from Fig. 1 were also used here. For each expression dataset, we ranked genes according to their expression
abundances, removed the highly-expressed ones and recalculated the SGD. We summarized the results as
boxplots.

respectively. Interoperonic regions are either non-transcribed or only casually transcribed®”, and their skews
are thus predominantly due to mutational biases and not to natural selection (see also ref. 20). These results
indicate that mutational biases in coding regions are of a similar nature as those in non-transcribed regions;
the inflation was likely due to the prolonged exposure time of single-stranded DNA during transcription and
replication-transcription-collisions®”, followed by increased DNA damage and error-prone repair.

Tthas long been suspected that there isa connection between SGDs and the mutational biases*°. For example,
Tu and colleagues found that the nucleotide skews at fourfold-synonymous (4s) sites of the coding regions and in
intergenic regions correlate significantly with SGD (Pearson’s correlation coefficients R > 0.7 in both cases)’. One
problem with this calculation is the inclusion of transcribed regions. It is known that the overall nucleotide skews
of the transcribed regions consists of at least two parts, one part is attributed to replication (i.e. mutational biases),
while the other is attributed to transcription®. The replication skews in transcribed regions are proportional to
that in interoperonic regions but slightly inflated, with the inflation rate being proportional to expression abun-
dance®. Genes on the leading strand are often more abundantly expressed; the stronger the SGDs, the stronger
the differences in expression abundances between strands, and the stronger the differences in nucleotide skews.
Therefore, the inclusion of coding/transcribed regions in Hu's calculation will inflate the correlation by partially
correlating SGD with its consequences (Methods).

By using a simple nonlinear regression model (Multivariate adaptive regression splines, MARS; Methods)
on the interdependence of SGD and mutational bias (Fig. 5), we estimated that ~71% of the variation in SGDs
in 1,552 prokaryotic genomes can be explained by the nucleotide skews from interoperonic regions that are pre-
sumably only subjected to replication (we hence refer them as replication skews; see also the discussions below)
(Fig. 5). Our model has similar predictive power as the model proposed by Mao and colleagues (Pearson’s R* 71%
versus 74%) but uses much fewer variables as input (2 versus 28)% more importantly, SGD and replication skews
in our model were derived from non-overlapping datasets. Our model thus clearly indicates that SGD and repli-
cation skews may have a common origin, i.e., the factors that drive replication skews also drive SGD; the stronger
the replication skews, the stronger the SGD (Fig. 5). Consistent with our expectations, the inclusion of coding /
transcribed regions into the calculation indeed inflated the correlation: we estimate that over ~78% of variations
in SGDs could be explained by the overall nucleotide skews (Supplementary Figure 3).

Mutational biases cause the use of slightly more expensive amino-acids in genes on the lag-
ging strand.  The synthesis of the four nucleotides A, C, G, T requires different amounts of energy: de-novo
production costs are A > T, G > C,and G+ C > A + T%. Replication skews are strand-specific; the leading strand
is biased towards the more expensive nucleotide G over C in almost all prokaryotic genomes (93.9%), while on
the lagging strand the opposite is found. Although only a small proportion of prokaryotes (36.1%) preferentially
use the more expensive nucleotide A over T, a majority (87.6%) of the collected genomes prefer the use of the
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Figure 4. Excluding essential genes does not eliminate SGDs using quantitative measurements of gene
essentiality (Fitness scores) obtained from IFIM, a database of Integrated Fitness Information for Microbial
genes?. Genes with lower fitness scores more likely to be essential.
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Figure 6, correlation between strand-biased gene distribution (SGD; x-axis) and the difference of average costs
per amino acid of gene products encoded by genes on the lagging and leading strand.

maore expensive purines (G and A) over pyrimidines (T and C) on the lagging strand in interoperonic regions
(Supplementary Table 1).

Replication skews also exist in coding regions, where they are inflated as a function of expression abundance®.
Due to an intrinsic tradeoff in the codon table, more expensive nucleotides code for cheaper amino acids and vice
versa®; we thus expect that the replication skews would cause slightly cheaper protein products on the leading
strand. This is indeed the case: we found that 91% of the genomes with positive purine skews (that is, purines
are preferred over pyrimidines) encode cheaper protein products on their leading strand; interestingly, 62.5%
of genomes with negative skews (that is, pyrimidines are preferred over purines) also encode cheaper protein
products on their leading strand, indicating that additional factors such as GC-content also contribute to these
observations, In addition, we found that the protein cost differences between lagging and leading strands (i.e.,
average cost per amino acid of the lagging strand minus that of the leading strand) correlate significantly with
replication skews (Pearson’s R=0.56, 0.47 and 0.61 for AT, GC, and the overall Purine-skews, respectively; see
Methods) as well as with SGD (R=10.701, Fig. 6).

Mutations are also known to be biased towards AT in bacteria’, Recent experimental results suggested
that due to head-on collisions, lagging-strand genes tend to accumulate more mutations than leading-strand
genes" and thus have lower GC-contents and code for more expensive proteins than leading-strand genes. A
nonlinear regression analysis using MARS revealed that both the replication skews and the overall differences
in GC-content between leading and lagging strand genes contribute significantly to the amino acid differences,
with the replication skews as the most important factor, followed by GC-differences. Similarly, a linear regression
model implemented in the R package ‘relaimpo’ reported that the replication skews contributed twice as much as
the GC-differences (Methods). These results suggest that the protein cost difference between the two strands can
be mostly attributed to replication skews.

Selection forenergy efficiency drives some, but not all highly expressed genesto theleading strand.
As shown in Fig. 7, when expression abundances (proxied by tAL, tRNA adaptation index™>**) are similar, protein
products are always slightly more expensive on the lagging strand; however, as the per protein costs decrease with
increasing expression abundance due to increasing skews* and GC-contents (see also Supplementary Figure 4),
the protein products of lowly expressed leading strand genes could be more expensive than those of highly
expressed lagging strand genes. These results have two important implications. First, for the purpose of energy
efficiency, there is a tendency for highly expressed genes, especially those that are also universally expressed, to
move to the leading strand through the fixation of local chromosomal inversions. This would explain why genes
such as those involved in transcription, translation, and replication are preferably located on the leading strand;
this would also increase the ratio of essential genes on the leading strand because these genes are more likely to
be essential. Second, there is no need to move all genes to the leading strand. In fact, it might be beneficial to
distribute genes onto different strands, e.g., to avoid possible “transcriptional leakage” if transcription termi-
nation fails accidentally. This is consistent with a previous observation that more “unbalanced genomes”, i.e.,
those with strong SGDs, tend to have longer intergenic regions” in order to give more space or harbor necessary
cis-regulatory elements and sequence signatures for the transcription machinery to terminate properly.

Relationships between mutational bias, GC-content, and genome size. Interestingly, we found
that the genomic GC-content correlates significantly with both AT and GC replication skews (R=—0.32 and
—0.54 for AT and GC skews, respectively, P<2 2.2 x 10~ '%; AT and GC skews are also significantly correlated with
each other, consistent with recent studies™). Because G + C are more expensive than A + T and encode cheaper
amino acids, high-GC genomes spend propaortionally more energy on nucleotide production than low-GC
genomes, while the latter spend relatively more energy on the production of amino acids; in other words, genomic
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Figure 7. average costs in amino acid synthesis as a function of leading/lagging strand and expression
abundance. Genes in each genome were ranked according to their expression abundance (proxied by tAl tRNA
adaption index) from low to high, divided into five equal-sized bins (so that each bin contains roughly the same
number of genes) and then divided into two sub-groups according to their strand (leading versus lagging).

GC-content is an indicator of relative energy investment into nucleotides and amino acids®®, GC content also
correlates with genome size™*'. As amino acids are relatively more expensive than nucleotides (Supplementary
Table 2, see also ref. 20), the selection for energy efficiency is stronger in low-GC genomes. The negative correla-
tion between the replication skews and genomic GC indicates that stronger (more positive) replication skews are
preferentially found in low-GC genomes and could result in cheaper encoded amino acids, thus partially allevi-
ating the strong selection pressure due to low GC. These results suggest that replication skews are also influenced
by selection for energy efficiency.

Intracellular pathogens and symbionts spend their entire life cycle inside the cells of other organisms that are
often much larger in size; in other words, they live in extremely nutrient-rich environments and thus experience
weaker selection on efficient resource usage®’. Excluding 126 previously identified intracellular pathogens and
symbionts (Table $2) from our analyses improved the correlation between genome-GC and replication skews
(R=—0.35and —0.57 for AT and GC skews respectively). These results further supported our conclusion that
selection for energy efficiency constrain replication skews.

Relationship between our model and existing theories. Our model is compatible with many exist-
ing hypotheses. For example, similar to the head-on collisicn model, our model predicts that highly-expressed
and essential genes are o be over-represented on the leading strand, consistent with previous observations” '
However, although the head-on collision model is not quantitative, it also predicts that important non-coding
genes such as tRNA and rRNA genes should be preferably located on the leading strand. In addition, the head-on
collisions alone could drive genes to the leading strand, by either causing abortive transcription of genes that
should be stably expressed at all times (e.g., ribosomal genes), or introducing more deleterious mutations into the
regulatory regions of genes, or both. Our model does not explicitly cover these situations.

A recent study by Paul et al. proposed that some lagging-strand genes take advantage of the increased
mutagenesis resulting from the head-on collisions and are thus adaptively encoded on the lagging strand'’. This
model is the opposite to our model, and has been recently rebutted by Chen and Zhang®. Chen and Zhang
reanalyzed the data in ref. 17 and found no evidence for adaptive evolution of the lagging-strand genes; instead,
they argue that SGD can be explained by a mutation-selection balance model, where deleterious chromosomal
inversions move genes from the leading to the lagging strand and purifying selection purges such mutants®, a
view compatible with our model.

In this study, we proposed an energy efficiency theory for strand-biased gene distributions (SGD) and tested
it on prokaryotic genomes. We showed that due to elevated mutational biases on the lagging strand, proteins
encoded by lagging-strand genes are slightly more expensive than those encoded by leading-strand genes.
Consequently, genes, especially those that are highly expressed, are preferentially located on the leading strand.
Highly expressed genes code for cheaper products, even when they are located on the lagging strand; thus not all
highly expressed genes, and certainly not all genes would be moved to the leading strand. Our model is compati-
ble with many existing hypotheses and can explain more than two-third (~71%) of the variance in SGDs.
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Methods

Gene expression data were downloaded from NCBI GEO database™ for the three model bacteria Escherichia
coli”?, Bacillus subtilis*® and Mycoplasma pnewmoniae™, Gene essentiality data for selected model organisms were
downloaded from OGEE - an online gene essentiality database®.

Genome sequences and annotation for all completely sequenced prokaryotes were downloaded from NCBI
Genbank™”. Genomic coordinates for replication starts were downloaded from DoriC'; replication ends were
obtained by adding % genome lengths to the starts. This working definition of replication termination was
inferred from the work of Hendrickson and Lawrence®, in which the authors found that replication in E. coli is
more likely to terminate near the % genome length to the oriC site, instead of the multiple 7er sites in the genome
(Fig. 1 of ref. 41). 1,552 genomes covered by all three databases were used in this study (Table S1). The division of
a genome into leading and lagging strands is shown in Supplementary Figure 2. Coding genes located on the first
half of the plus strand (blue solid line) and on the second half of the complementary strand (purple solid line)
were assigned to the leading strand, as their transcription proceeds in the same direction as the replication fork;
the remaining genes were assigned to the lagging strand.

Operon predictions were downloaded from DOOR'. Because the predictions only cover coding regions, we
added other annotated regions including tRNAs and rRNAs from the GFF (General Feature Format) annotations
downloaded from NCBI, so that we could extract interoperonic regions, which are presumably non-transcribed.
To extract regions that are presumably only subject to replication, interoperonic sequences longer than 100 base-
pairs were retained after removing 60bp from the regions adjacent to the 5'-end of genes/operons. If an inter-
operonic region was located in the second half of the genome (blue dashed line in Supplementary Figure 2), its
sequence was reverse-complemented. Replication skews are denoted as v,y (for AT skew) and 7 (for GC skew)
and were calculated using extracted interoperonic regions using the equations below:

. A-T

= AT (n
and

L_6-¢C

e+ @

where A, T, G, C are the numbers of the corresponding bases. The overall purine skews were also calculated sim-
ilarly using the equation below:

= _A=THE-€
e Ak TG € 3)

The costs of de novo amino acid synthesis were obtained from?! (Table S2). The costs of de novo nucleotide
synthesis were obtained from*” and are 21.12, 13.42, 20.37, 15.77 ATPs for A, T/U, G, C respectively; please note
these numbers were calculated for E. coli and might be different for other organisms.

tAI (tRNA adaptation index)**** was used as a proxy for gene expression level. For each protein-coding gene
in a given genome, tAl is defined as the average of LRNA availability values over all its codons. The availability of
tRNAs for a codon considers not only the copy number of perfectly matched anticodons in the corresponding
genome, but also that of imperfectly matched anticodons; the contribution of the imperfectly matched anticodons
will be weighted accordingly. For more details on the definition of tAl see refs 32, 33. For each of the selected
1,552 genomes, we obtained a list of LRNA genes using the tRNAscan-SE* program on the genome sequences.
The tRNA genes were sorted into 61 groups according to their anticodons, We then used the R scripts for tAl
calculation written by the authors of refs 32, 33 (obtained from http://people.cryst bbk.ac.uk/~fdosr01/tAlf, with-
out modifications) to calculate tAl scores for all protein-coding genes in this genome. Higher tAl scores indicate
higher expression levels.

Within each genome, coding genes were ranked according to their tAI scores from low to high and then
divided into five equal-sized bins (quantiles), denoted 1 to 5; 1 contains the genes with the lowest, and 5 contains
the genes with the highest tAl scores. Genes in each bin were then further divided into two groups according to
the strands (leading versus lagging) they are located on.

Fitness scores (i.e. quantitative measurements of gene essentiality) for 2,074 prokaryotic genomes were down-
loaded from IFIM, a database of Integrated Fitness Information for Microbial genes®. Fitness scores in IFIM were
predicted using Geptop® based on orthology and phylogeny; the scores range from 0 to 1, with lower scores rep-
resenting greater fitness decreases and thus the corresponding genes are highly likely to be essential. A cutoff of
0.65 was recommended to classify genes into essential (those with fitness scores <= 0.65) and non-essential* %,
In total, 1,410 genomes overlapped with the 1,552 genomes used in this study.

All data was analyzed in R*. Non-linear regression analyses were carried out using the MARS (multivariate
adaptive regression splines) function implemented in the ‘earth’ package of R (available at: https://cran.r-project.
orgfweb/packages/earth/index html); linear modeling was done with the ‘relaimpo’ package*. All plots were gen-
erated using the ggplot2*® package.
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Abstract

Bacteriophages and plasmids can introduce novel DNA into bacterial cells,
thereby creating an opportunity for genome expansion; conversely, CRISPR, the
prokaryotic adaptive immune system, which targets and eliminates foreign DNAs,
may impair genome expansions. Recent studies presented conflicting results over
the impact of CRISPR on genome expansion. In this study, we constructed a
comprehensive dataset of prokaryotic genomes and identified their associations
with phages and plasmids. We found that genomes associated with phages and/or
plasmids were significantly larger than those without, indicating that both phages
and plasmids contribute to genome expansion. Genomes were increasingly larger
with increasing numbers of associated phages or plasmids. Conversely, genomes
with CRISPR systems were significantly smaller than those without, indicating
that CRISPR has a negative impact on genome size. These results confirmed that
on evolutionary timescales, bacteriophages and plasmids facilitate genome
expansion, while CRISPR impairs such a process in prokaryotes. Furthermore,
our results also revealed that CRISPR systems show a preference for targeting

phages over plasmids.

Keywords: Prokaryotic genome expansion, Bacteriophages, Plasmids, CRISPR,
Horizontal gene transfer
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Introduction

Gene duplication and/or horizontal gene transfer (HGT) play important roles in
functional innovation and species adaptation, and are the main sources of genome
expansions (Isambert and Stein, 2009;Schonknecht et al., 2013;Nyvltova et al.,
2015;Smith et al., 2016;Tsai et al., 2018). In prokaryotes, it has been shown that
the importance of HGT for genome expansions can even outweigh that of gene
duplication (Pal et al., 2005;Treangen and Rocha, 2011).

Mobile DNA elements such as bacteriophages (viruses that infect archaea
and bacteria (8)(8), referred to as phages below) and plasmids can introduce novel
DNAs into the host genomes (Yamaguchi et al., 2001;Jensen and Lyon,
2009;Lindsay, 2010;Malachowa and DeLeo, 2010). They often have a very
narrow range of hosts; but under certain conditions, such as antibiotic stress,
phages and plasmids can expand their host ranges (Modi et al., 2013). Therefore,
phages and plasmids are important sources of HGT and of prokaryotic
innovations, and consequently drive bacterial evolution and adaptation (Koonin
and Wolf, 2008;Nogueira et al., 2009;Argov et al., 2017).

Phages and plasmids are widely distributed in prokaryotes. Unlike plasmids,
phages are pathogens that often lead to lysis of their hosts (Deresinski,
2009;Wernicki et al., 2017). Over the course of prokaryotic evolution, bacteria
and archaea developed various defense systems against phages, plasmids, and
other invading genetic elements (Luk et al., 2014). CRISPR (clustered regularly
interspaced short palindromic repeats), the adaptive immune system of
prokaryotes, is a recently recognized player in the ongoing arms race between
prokaryotic viruses and hosts, and plays an important role in the dynamic process
by which the genomes of prokaryotes and mobile elements coevolve. CRISPR
systems are widespread in prokaryotes, exists in about 40% of bacteria and 90%
of archaea (Godde and Bickerton, 2006;Makarova et al., 2011;Seed et al.,

2013;Huang et al., 2016), or ~10% as revealed by a recent study (Burstein et al.,

-32-



3 Manuscripts

2016). CRISPR systems can also target plasmids (Marraffini and Sontheimer,
2008), although plasmids are not necessarily detrimental to their host’s fitness but
instead often carry a diverse range of antimicrobial and biocide resistance genes
that may help their hosts to survive under certain conditions (McCarthy and
Lindsay, 2012;Shabbir et al., 2016).

Based on the above observations, it is reasonable to speculate that over the
course of evolution, phages and plasmids may contribute to the expansion of
prokaryotic genomes, while CRISPR systems may impair such a process. These
speculations are consistent with recent observations that CRISPR limits HGT by
targeting foreign DNAs (Marraffini and Sontheimer, 2008;Bikard et al., 2012).
However, controversial observations have also been reported recently. For
example, Gophna and colleagues did not observe the expected negative
correlation between CRISPR activity in microbes with three independent
measures of recent HGT, leading them to conclude that the inhibitory effect of
CRISPR against HGT is undetectable (Gophna et al., 2015). Furthermore, a recent
study revealed that CRISPR-mediated phage resistance can even enhance HGT
by increasing the resistance of transductants against subsequent phage infections
(Watson et al., 2018). These observations appear surprising, as the restricted
acquisition of foreign genetic material is believed to be one of the sources of the
maintenance fitness cost of CRISPR systems and may be one of the reasons for
the patchy distribution of CRISPR among bacteria (Frost et al., 2005;Baltrus,
2013). Thus, it is currently unclear what long-term effects CRISPR, phages, and
plasmids have on genome expansion.

In this study, we first collected a comprehensive dataset of prokaryotes and
their associations with phages, plasmids, and CRISPR systems. We then
evaluated the contributions of phages, plasmids, and CRISPR to genome size.
After controlling for genome GC (guanine+cytosine) content, which is known to
correlate significantly with genome size (Chen et al., 2016a;Chen et al., 2016b),
we found that both phages and plasmids are associated with larger genomes, while

the presence of a CRISPR system is associated with small genome size. Genome
-33-



3 Manuscripts

sizes increase with increasing numbers of associated phages and plasmids. Our
results clearly indicate that in the long run, phages and plasmids facilitate genome
expansions, while CRISPR impairs such a process in prokaryotes. Furthermore,
our results also reveal a striking preference of CRISPR systems for targeting
phages rather than plasmids, consistent with the typical consequences of phage

and plasmid infections to the hosts and the roles of CRISPR as a defense system.

Materials and Methods

Data
We obtained data from three sources. Microbe-phage interaction data was
collected from the MVP database, which we described in a previous publication
(Gao et al., 2018). MVP is one of the latest and largest databases about microbe-
phage interactions, which supplied 26,572 interactions between 9,245
prokaryotes and 18,608 viral clusters based on 30,321 evidence entries (Gao et
al., 2018).

The basic genome information from complete archaeal and bacterial
genomes, including the number of associated plasmids, was downloaded from the

NCBI Genome database (https://www.ncbi.nlm.nih.gov/genome/; accessed on

June 28, 2018) (Coordinators, 2018). The genome size and GC-content from
10,686 complete prokaryotic genomes (287 archaeal and 10,279 bacterial
genomes) were identified. 2,827 prokaryotes were associated with plasmids.

The CRISPRs data was obtained from the CRISPRdb database (Grissa et al.,
2007) (http://crispr.i2bc.paris-saclay.fr/; last update May 09, 2017). 202 archaeal
and 3,059 bacterial genomes were associated with CRISPR systems. 77 of these
encode CRISPR on both plasmids and genome, while only 36 encode CRISPR
exclusively on plasmids. The 77 genomes which contained plasmid-encoded

CRISPR systems were removed from all analyses.
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In total, 5,994 prokaryotes were found in both of the first two datasets;
among these, 1,950 contained plasmids, 2,758 contained phages, and 2,056
contained CRISPRs on their chromosomes. Detailed information on the dataset

can be found in Supplementary Table 1.

Statistical analysis

All data were analyzed using R v3.4 (Team, 2017). All pair-wise comparisons
between two groups of numeric data (genome sizes or genomic GC-contents)
were performed by Wilcoxon rank-sum tests. Linear model (LM) analysis was
performed with the R function glm(). Relative importance analysis was
performed with the calc.relimp() function available from the R package

‘relatimpo’ (U, 2006).

Results

Prokaryotic genomes and their associations with phages, plasmids and
CRISPRs

To systematically investigate the impacts of phages, plasmids, and CRISPRs on
genome expansion, we constructed a list of 5,994 completely sequenced
prokaryotic genomes and obtained their associations with phages, plasmids, and
CRISPRs; for details please consult the Materials and Methods section and
Supplementary Table 1

As shown in Figure 1A, we found that 53.98% of prokaryotes had no known
associations with infecting phages. 14.88%, 16.68%, and 14.46% of prokaryotes
were associated with one, two to three, and more than three phages, respectively
(Figure 1A). In addition, we found that 67.46% of prokaryotes did not associate
with plasmids, while 14.75%, 11.68%, and 6.12% of the genomes associated with
one, two to three, and more than three plasmids, respectively (Figure 1B).
Previous studies suggested that the genomic GC-contents as well as nucleotide

frequencies of phages and plasmids often closely resembles that of their hosts
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(Hiroshi Nakashimal*, 2015;Ahlgren et al., 2017;Ren et al., 2017); consistent
with these previous observations, we obtained correlation coefficient values of
0.972 and 0.970 between the GC-contents of the host genomes and their
associated phages and plasmids, respectively (Supplementary Figure 1),
confirming the high quality of our association data. We found that in total 42.58%
of genomes collected in this study contained either phages or plasmids but not

both, while 17.98% of genomes contained both phages and plasmids.

A B
Number of (313] (11.68%)
ted 1<y i ° Number of
1(14.88%) assocd : ‘
[2,3] (16.68%) PhE'Q:S 1 (14.75%) plasm:s
1 1
[2,3] 2]
[ =
0 (53.98%) 0 (67.46%)
c D
Prokaryotes 1,684 (28.09%)
w/ CRISPR (34.31%) CRISPRs

680
(11.34%)

w/o CRISPR (65.69%)

Figure 1. 5,994 prokaryotic genomes and their associations with phages (A),
plasmids (B), and CRISPRs (C). The Venn diagram (D) shows the overlap of their
distributions in prokaryotes. 1,684 genomes (28.09%) were not found to be
associated with phages, plasmids, or CRISPRs; 455 (7.59%) genomes were

associated with all three elements.
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As shown in Figure 1C, we found CRISPR systems in 34.31% of the
prokaryotic genomes (Figure 1C); this percentage is within the range of
previously reported numbers (Godde and Bickerton, 2006;Makarova et al.,
2011;Seed et al., 2013;Burstein et al., 2016;Huang et al., 2016). We found that
CRISPRs were significantly enriched in phage-associated compared to non-
phage-associated genomes (odds ratio OR=1.43, P=1.7x10'* from Fisher’s exact
test) but not in plasmid-associated compared to non-plasmid-associated genomes
(OR=0.96, P=0.47). In addition, we found that CRISPRs were more enriched in
phage-associated compared to plasmid-associated genomes (OR=2.62, P=
9.0x10%, excluding genomes containing both phages and plasmids), suggesting

a strong target preferences of CRISPRs toward phages (Table 1).

Table 1. Estimated enrichment of CRISPR in phage-associated and plasmid-
associated genomes compared to other genomes, and enrichment of CRISPR in

phage-associated compared to plasmid-associated genomes.

Comparison Odds ratio” P-value®
Phage-associated vs. others 1.43 1.75x10°4
Plasmid-associated vs. others 0.96 0.47
Phage- vs. plasmid-associated 1.49 6.62x10!!
Phage-associated vs. others? 1.45 3.77x10M
Plasmid-associated vs. others ? 0.56 1.01x10"2
Phage- vs. Plasmid-associated® 2.62 8.97x102¢

 excluding genomes contained both phages and plasmids.

®odds ratio OR > 1 indicates enrichment of CRISPR in the first group, while OR
<1 indicates depletion.

¢ P-values indicate whether CRISPR is significantly enriched or depleted in the

first group as compared with the second according to Fisher’ exact test.

Phages and plasmids are associated with larger genomes, while CRISPR is
associated with smaller genomes
We next investigated which factors contribute significantly to genome size.

Previous results have shown a strong correlation between genomic GC content
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and genome size (Chen et al., 2016a); GC content may even play a causal role in
shaping genome size (Chen et al., 2016b). Applying a linear model (LM, see
Materials and Methods for details), we found that GC content was indeed the
strongest predictor of genome size (Table 2). The LM analysis also revealed that
the presence/absence of phages, plasmids, and CRISPR all significantly
influenced genome size; the presences of phages and of plasmids were associated
with increased genome sizes, while CRISPR was associated with decreased
genome sizes (Table 2). We estimated that the relative importance of these factors
for genome size were 89% for GC-content, 5.8% for phage presence, 4.4% for
plasmid presence, and 0.38% for CRISPR presence. Interestingly, we found that
the presence of both phages and plasmids in the same genome was associated
with a smaller genome size than expected (i.e., the interaction term
phages*plasmids was negative, Table 2). Unless stated otherwise, we thus limit
our further analyses to prokaryotes that contained either phages or plasmids but
not both. Note that our conclusions on the influence of phages, plasmids, and
CRISPR systems on genome size remain unchanged if we perform separate
analyses on genomes containing no phages and on genomes containing no

plasmids (Table 2).

Increasing numbers of phages and plasmids are associated with increased
genome sizes

We next investigated the impact of the numbers of phages and plasmids on
genome size. Phages and plasmids often have very narrow host ranges (Haruo
Suzuki, 2014;Gao et al., 2018); the number of known associations with phages
may indicate the ability of the prokaryotic host to acquire external novel DNA.
Consistent with our expectation, we found that genomes associated with more
phages had larger overall genomes (Figure 2A). We observed similar results with

plasmids (Figure 2B).
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Table 2. Relative importance of various factors for genome size in a linear model

(LM).
Dataset Factor Coefficient P-value . Relative
importance
GC% 0.089 <2x1071¢ 89.51%
plasmid 0.754 <2x101¢ 5.77%
All phage 0.598 <2x107¢ 4.35%
CRISPR -0.158 2.0x10* 0.38%
phage*plasmid -0.216 0.012 -
GC% 0.09 <2x107'¢ 93.93%
plaI:rflids phage 0.596 <2x107 5.65%
CRISPR -0.164 1.1x10° 0.41%
GC% 0.093 <2x1016 93.76%
phljzes plasmid 0.743 <2x107 6.01%
CRISPR -0.145 0.024 0.28%

Note: The equation of “All” dataset used in the linear model (LM) is size ~ GC%

+ plasmid + phage + CRISPR + phage*plasmid. Here, size represents the genome

size; GC% represents the genomic GC-content of the host genome; plasmid,

phage, and CRISPR represent whether the host genomes are associated with

plasmids, phages, and CRISPR, respectively. The “Coefficient” column contains

estimated regression coefficients calculated by ordinary least squares. Relative

importance was calculated using the ‘relaimpo’ package ; the equation of “No

plasmids™ dataset is size ~ GC% + phage + CRISPR; and the equation of “No

phages” dataset is size ~ GC% + plasmid + CRISPR.
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Figure 2. Increasing numbers of phages and plasmids are associated with
increased genome sizes, while phage-associated genomes with CRISPR systems
are smaller than those without CRISPR systems. A) Boxplot of genomes size as
a function of the number of associated phages. Genome sizes are larger with
increasing numbers of associated phages, regardless of whether genomes encode
CRISPR systems. B) Boxplot of genomes size as a function of the number of
associated plasmids. The impact of plasmids on genome size is similar to that of
bacteriophages. C) Boxplot of genome size as a function of the presence/absence
of CRISPRs in genomes associated with phages. Phage-associated genomes with
CRISPR systems are significantly smaller in size than those without CRISPR,
regardless of the number of phages they are associated with. D) Boxplots of
genome sizes in genomes associated with plasmids as a function of the
presence/absence of CRISPRs. CRISPRs have no significant impact on genome
sizes in genomes associated with plasmids. Wilcoxon rank sum tests were used
to compare between groups. Level of significance: *** P<0.001; ** P<0.01; *

P<0.05; NS. P>0.05.
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Consistent with the results from the LM analysis, we found that phage-
associated genomes are statistically significantly smaller when they encode a
CRISPR system compared to when they do not (Figure 2C). However, we did not
find a corresponding trend in plasmid-associated genomes (Figure 2D). These
results are consistent with the different fitness consequences of phage and plasmid
invasions to the prokaryotic hosts. Both phages and plasmids can bring exogenous
DNA to prokaryotes and decrease the fitness of their hosts, for example by
increasing the burden on the host’s transcription and translation apparatus.
However, phages typically cause substantial additional fitness decreases through
virion production and assembly and eventually host lysis, while plasmids often
carry genes that are beneficial to the survival of their hosts under certain
circumstances (Dionisio et al., 2005;Jiang et al., 2013). It is thus likely that the
CRISPR systems in prokaryotes are more sensitive to phages than to plasmids.
This line of argument is also consistent with our results that the presence of
CRISPRs is more enriched in phage-associated than in plasmid-associated

genomes.

The influence of associated phages, plasmids, and CRISPR on genome GC-
content
We then investigated which factors contribute significantly to genome GC-
content. Consistent with our previous results (LM analysis, Table 2), we found
that genome size was indeed the most significant predictor of GC-content, with a
relative importance of almost 99% (LM analysis, Table 3). The presence of
plasmids also had a significant influence on GC-content, with a relative
importance of 1% (Table 3). The presence/absence of phages and CRISPR had
no significant influence on GC-content by themselves; surprisingly, however, the
presence of phages reduced the influence of plasmid presence on GC content.
We also investigated whether these factors contribute significantly to GC-
content when genomes contain no phages/plasmids. As expected, genome size

remained the most significant factor for the prediction of genome GC-content, as
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shown in Table 3, with a relative importance of around 99%. Analysis of genomes
without phage-associations confirmed an important influence of plasmid presence
on GC content (Table 3). In addition, analysis of genomes without plasmid-
associations revealed a small but no statistically significant influence of phage
presence on GC-content (Table 3).

As shown in Supplementary Table 2, we find that the number of associated
phages and plasmids contribute significantly to GC-content, but we don’t find
clear and consistent trends in GC-content as a function of the number of

associated phages or plasmids (Supplementary Figure 3).

Table 3. Relative importance of various factors for GC-content (GC%) in a LM.

Dataset Factors Coefficient P-value . Relative
importance

size 4.12 <2x101¢ 98.91%
plasmid -1.135 7.29x1073 1.03%
All phage -0.007 0.983 0.06%
CRISPR -0.056 0.846 0.00%

phage*plasmid -1.247 0.033 -

No size 4.17 <2x10'° 100%
plasmids phage -0.074 0.829 0.00%
CRISPR 0.066 0.847 0.00%

No size 4.16 <2x101¢ 99.39%
phages plasmid -1.108 0.017 0.28%
CRISPR 1.108 0.011 0.32%

Note: The equation of “All” dataset used in the linear model (LM) is GC% ~ size
+ plasmid + phage + CRISPR + phage*plasmid; the equation of “No plasmids”
dataset 1s GC% ~ size + phage + CRISPR; and the equation of “No phages”
dataset is GC% ~ size + plasmid + CRISPR.

Discussion
We expected that phages and plasmids could facilitate genome expansions

because they can bring novel DNAs (genes or fragments) into prokaryotic cells
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that can be integrated into the host genome, while CRISPR immune systems
could impair such a process by targeting and eliminating foreign DNAs. However,
recent studies presented inconsistent results regarding this topic (Marraffini and
Sontheimer, 2008;Makarova et al., 2011;Bikard et al., 2012;Gophna et al.,
2015;Watson et al., 2018).

To address this issue, we constructed a comprehensive dataset of prokaryotic
genomes and their associations with phages and plasmids. By dividing genomes
into distinct groups according to whether they associated with phages and/or
plasmids and/or contained CRISPRs, we revealed that genomes with phages or
with plasmids were significantly larger than those without, and genome sizes
increased with increasing numbers of associated phages/plasmids. Conversely,
phage-associated (but not plasmid-associate) genomes with CRISPRs were
significantly smaller in size than those without, regardless of the number of
associated phages. These results confirm that in the long run, bacteriophages and
plasmids facilitate genome expansions while CRISPR impairs phage-driven
genome expansions.

Genome size evolution has previously been reported to be associated with
that of genomic GC-content (Gao et al., 2017). Thus, it appeared possible that
phage- and/or plasmid-association has a direct effect not only on genome size but
also on GC-content. However, in this study, we found only minor influences of
phages and plasmids on genomic GC-content (Table 3 and Supplementary Table
1).

Our results also imply that CRISPR immune systems might be more sensitive
towards invading phages than plasmids, consistent with the differential fitness
burdens brought by the two types of foreign invaders to the hosts (Canchaya et
al., 2004;Weinberger et al., 2012;Jiang et al., 2013;Pleska and Guet, 2017).

Our results differ significantly from several previous studies (Gophna et al.,
2015;Watson et al., 2018). For example, Gophna ef al. reported that the inhibitory
effect of CRISPR against HGT is undetectable using three independent measures

of recent HGT (Gophna et al., 2015). However, it is known that CRISPR spacers
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— which were used by Gophna et al. to assess CRISPR activity (Gophna et al.,
2015) — have very high turnover rates, on the time-scale of days (Deveau et al.,
2008;Horvath et al., 2008;Tyson and Banfield, 2008), while HGT genes may take
a very long time to be incorporated into existing gene networks (Lercher and Pal,
2008), suggesting that it is only possible to look at the impacts of CRISPRs on
HGTs at evolutionary scales. Interestingly, Gophna et al. also studied spacer
acquisition and concluded there was a bias toward frequently encountered
invasive exogenous genetic elements, especially infecting viruses (Gophna et al.,
2015); this is consistent with our conclusion that CRISPRs tend to be more
sensitive towards invading phages than plasmids. Recently, Watson et al. reported
that the CRISPR system of the bacterium Pectobacterium atrosepticum enabled
the host to resist phage infection, but that this enhanced rather than impeded HGT
by transduction (Watson et al., 2018). However, it is yet to be seen whether or not

this phenomenon is unique to P. atrosepticum.
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Boxplot of genome GC-content as a function of the number of associated phages.
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B) Boxplots of genome GC-content as a function of the presence/absence of
CRISPRs in genomes associated with phages. The GC-content of phage-
associated genomes with CRISPRs are significantly lower than without,
regardless of the number of associated phages. In contrast, in genomes without
phage-associations, CRISPR-containing genomes are significantly higher in GC-
content than genomes without CRISPRs. C) Boxplot showing the genome GC-
content as a function of associated plasmids. D) Boxplots of genome GC-content
in genomes associated with plasmids as a function of the presence/absence of
CRISPRs. Wilcoxon rank sum tests were used to compare between groups. Level

of significance: *** P<(0.001; ** P<0.01; * P<0.05; NS. P>0.05.

Supplementary Table 1. The dataset of prokaryotic genomes and their

associations with phages and plasmids (part).

Taxon Size (mb) GC% Phage Plasmid Crispr

9 0.456703 28.258 No Yes No
24 4.38446 44.4 Yes No No
43 12.3497 68.5 No No No
48 12.4894 69.4 No No Yes
52 11.3881 68.7 Yes No Yes
56 14.5576 71.7 No No No
63 3.78755 63.4916 No Yes No
69 6.09602 69.4 No No No
114 8.99889 67.4 No No No
139 1.30155 28.5082 No Yes No
159 3.03465 27.0438 No Yes No

Note: Taxon represents NCBI taxon ID of prokaryotes; Size is the genomic size
of prokaryote; GC% represents the genomic GC-content of the host genome;
Phage, Plasmid and CRISPR represent whether the host genomes are associated

with plasmids, phages, and CRISPR, respectively.
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Supplementary Table 2. Relative importance of various factors for GC-content

(GC%) in a LM.
Relati
Dataset Factors Coefficient P-value . clative
importance
size 4.134 <2x1071¢ 98.10%
All plasmidNumber -0.638 4.3x10" 1.67%
phageNumber -0.037 3.4x10° 0.23%
CRISPR -0.131 0.646 0.01%
N size 4.179 <2x101¢ 99.84%
0
lasmids phageNumber -0.029 0.042 0.16%
P CRISPR 0.097 0.774 0.00%
N size 4.219 <2x1071® 98.57%
0
phages plasmidNumber -0.636 9.7x107 1.15%
CRISPR 1.048 0.015 0.28%

Note: The equation used in the linear model (LM) is GC% ~ size +

plasmidNumber + phageNumber + CRISPR. Here,

plasmidNumber and

phageNumber represent the number of plasmids and phages in genomes,

respectively.
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ABSTRACT

Phages invade microbes, accomplish host lysis and
are of vital importance in shaping the community
structure of environmental microbiota. More impor-
tantly, most phages have very specific hosts; they
are thus ideal tools to manipulate environmental mi-
crobiota at species-resolution. The main purpose of
MVP (Microbe Versus Phage) is to provide a com-
prehensive catalog of phage-microbe interactions
and assist users to select phage(s) that can target
(and potentially to manipulate) specific microbes of
interest. We first collected 50 782 viral sequences
from various sources and clustered them into 33 097
unique viral clusters based on sequence similarity.
We then identified 26 572 interactions between 18 608
viral clusters and 9245 prokaryotes (i.e. bacteria and
archaea); we established these interactions based
on 30 321 evidence entries that we collected from
published datasets, public databases and re-analysis
of genomic and metagenomic sequences. Based on
these interactions, we calculated the host range for
each of the phage clusters and accordingly grouped
them into subgroups such as ‘species-’, ‘genus-’ and
‘family-’ specific phage clusters. MVP is equipped

with a modern, responsive and intuitive interface,
and is freely available at: http://mvp.medgenius.info.

INTRODUCTION

It has been increasingly recognized that microbiome can
play crucial roles in human health (1-3), diseases (4-10), re-
sponses to drugs and treatments (11,12), development (13
15) and many other aspects of human life (16-19). However,
due to limited availability of tools that enable rescarchers
to manipulate microbiome, it is often difficult to directly
infer causal relationships from the correlated alterations in
microbial community structures and host phenotypes (e.g.
health statuses) under different conditions (20-23). Experi-
mental procedures such as fecal microbiota transplantation
(24.25) and/or the use of germ-free mice (3,26) can be used
to identify and validate causal factors, but they are neither
casy nor cheap. Furthermore, due to the lack of general pur-
pose tools that could manipulate microbiota at species level,
it is difficult to directly pinpoint the causal species.

Phages are known to be key players in microbial com-
munities; they could invade microbes, accomplish host ly-
sis and are of vital importance in shaping the community
structure of human and environmental microbiota (27 29).
More importantly, phages could provide potential tools for
the precision manipulation of environmental microbiota:
it is known that phages have rather narrow host ranges,
mostly at the species or genes levels (30): they are thus ideal
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tools to target (and eliminate) specific microbes at species-
resolution while avoid potential ‘off-target” effects. A recent
study provided us with a great example for such an appli-
cation; Yen er. al. successfully reduced Vibrio cholerae in-
fection and colonization in the intestinal tract and prevents
cholera-like diarrhea, by orally administrating V. cholera-
specific phages in model animals (31).

We thus developed M V'P—a microbe-phage interaction
database (M VP stands for Microbe Versus Phage), with the
main aims being to provide researchers with a comprehen-
sive catalog of phage microbe interactions and assist them
to select phage(s) that can target (and potentially to manip-
ulate) specific microbes of interest.

In addition to experimental methods, microbe-phage in-
teractions can be identified by taking advantage of the large-
scale genomic- and metagenomic sequencing efforts. For ex-
ample, it is known that many phages insert their genomes
into that of their hosts; the integrated phages are known
as prophages (32,33). Many computational tools exist and
are able to identify prophages from complete prokaryotic
genomes and/or assembled metagenomic contigs (34-36).
In addition, CRISPR spacer sequences can also be used to
infer host-phage interactions (37,38), although their short
lengths (usually 24-50 bp) in nature make it difficult to re-
liably determine their source phages (27,37).

In this study. we obtained in total 50 782 viral sequences
from various sources and assembled them into 33 097
unique viral clusters. We identified 26 572 interactions be-
tween 18 608 viral clusters and 9245 prokaryotes, and cal-
culated the host range for each of the phage clusters accord-
ingly. We presented these data and related information in an
online database MVP (Microbe Versus Phage); we designed
MVP to be a modern website with a responsive and intuitive
interface, and incorporated many widgets (i.c. functional el-
ements of a web page that serve specific purposes) that en-
ables users to effortlessly explore all contents and find what
they are interested in.

DATA GENERATION
Viral sequences and clustering them into viral clusters

We obtained viral sequences from the following four
sources.

First, we downloaded all available viral sequences from
the NCBI viral genomes resource (39).

Second, we identified putative prophage sequences from
complete bacterial and archaeal genomes downloaded from
the NCBI prokaryotic reference genome database (40) and
EMBL proGenomes database (41).

Third, we identificd putative prophage sequences [rom
assembled metagenomic sequences derived from the human
gut. We included in the current version of M VP two hu-
man gut metagenomic datasets containing 124 (1) and 1267
(42) human fecal samples respectively that we downloaded
from the EBI metagenomic database (43). Prophage identi-
fication was carried out using a phage_finder (34) tool v2.1
(last updated: 26 Oct 26 2011) with default parameters.

Last, we included viral and prophage sequences from
several published datasets (44,45), including those from a
‘Uncovering Earth’s virome™ project, and the International
Committee on Taxonomy of Viruses (https://talk.ictvonline.

d from hteps le
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org; ICTV). Worth to mention is the recent work by Roux
et al; by using a virus/prophage identification tool Vir-
Sorter that they developed (36), they identified in total 12
498 high-confidence viral genomes by scanning the publicly
available bacterial and archaeal genomic sequences. These
newly identified viral sequences were either prophages or
un-incorporated viral sequences that were previously anno-
tated as plasmids (45).

In total we collected 50 782 viral sequences from these
sources. We next used a cd-hit-est program (46) to clus-
ter them into clusters based on sequence similarities. As
previously suggested (27), the following options of cd-hit-
est were used: -¢ 0.95 and -aS 0.85. The "¢’ option speci-
fies the sequence identity threshold and is calculated as the
number of identical nucleotides in alignment divided by the
full length of the shorter sequence, while the *-a$’ option
specifies alignment coverage threshold and is defined as the
proportion of shorter sequence covered by the alignment.
Sequences in alighments with measurements above these
thresholds are clustered; the longest sequences in a cluster is
chosen as representative ol the cluster. Please note that the
much relaxed parameter “~a$ 0.85" for clustering may not
be used as a general-purpose threshold for viral studies be-
cause it could result in very inclusive cluster, but it suits our
purpose nicely: with MVP we aimed to facilitate users to
select phages that can specifically target a bacterium, there-
fore any phages with (putative) broad host-ranges should
be marked and removed from the candidate list. A further
relaxed threshold of *-¢ 0.8 —a$ 0.85" was also tested and re-
sulted in ~3% few clusters, suggesting that the viral clusters
we obtained in this study were relatively stable.

In sum, we obtained 33 097 clusters from the 50 782 viral
sequences.

We checked the overlap in phages from different sources,
We found only a small proportion (~19.5%) of phages were
covered by multiple evidence (i.c. the same prophage se-
quence can be identified from multiple (meta-) genomic se-
quences); even lower proportion (~9%) of the total phage
clusters were covered by multiple data-sources. However,
within a data source, the phage overlap ratios vary signif-
icantly; more importantly, they seem to correlate with the
number of samples taken from the same niche environ-
ment (Table 1). For example, 57.4% of the identified phages
are covered multiple times in the ‘Uncovering Earth’s vi-
rome’ (44), which collected over 3000 samples around the
world; this ratio is followed by 18.67% in the human gut,
which in total ~1700 samples were used to identified the
phages (1,42). Conversely, the overlap ratio in the EMBL
proGenomes database is only ~0.6%, mainly due to the
fact that only ‘representative’ genomes were presented in the
dataset we used and the ‘redundant’ genomes were excluded
(41). Thus the low overlap ratios in some data sources are
mainly because of the diverse environments from which the
genomes were sampled. These results further confirmed that
phages indeed could have very narrow host range.

Interactions between viral clusters and microbes

In this study we focused on prokaryotes (i.e. bacteria
and archaea), and used prokaryotes and microbes inter-
changeably, although the latter can also include eukary-
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Table 1. Overlaps in phages within data-sources

Data source # clusters % overlap * Notes

“Earth’s virome™ project (44) 5412 57.4% Over 3000 samples were sequenced: most are
environmental samples

Predicted prophages in human gut (1.42) 1505 18.67% ~1700 fecal samples from two gut metagenomic studies
(1,42)

Predicted viral and prophage sequences [rom 7 18.07%

complete and draft genomes (36)

Predicted prophages from NCBI complete 6964 15.4% All available complete prokaryotic genomes (as of May

genomes (40) 2017)

NCBI reference viral genome database (39) 776 0.64%

Predicted prophages from EMBL proGenomes 3275 0.61% Representative complele prokaryotic genomes (as of

database (41) May 2017)

ICTV 668 0 Data obtained from the International Committee on

Taxonomy of Viruses (https:/talk.ictvonline.org; ICTV)

* within each data-source, the overlap ratio is defined as proportion of phage clusters containing multiple sequences from the data source, out of the total
phage clusters containing any number of sequences [rom the same dala source.

loaded from hreps:
g University

Table 2. Overlaps in host prokaryotes

Data source # hosts % overlap with other data sources™
ICTV 11 100%

‘Earth’s virome’ project (44) 1247 79.4%

Predicted prophages from EMBL proGenomes database (41) 2549 78.6%

Predicted prophages from NCBI complete genomes (40) 4398 68.18%

Predicted prophages in human gut (1.42) 210 67.61%

NCBI reference viral genome database (39) 282 56.73%

Predicted viral and prophage sequences from complete and draft genomes (36) 6388 56.6%

* the overlap ratio is defined as proportion of hosts in a data source that could also found in any of the other data sources.

otic microbes. We also used viral- and phage- clusters in-
terchangeably, under the circumstances that a virus invades
a prokaryotic microbe.

We inferred interactions between viral-/phage- clusters
and microbes from the following four sources.

First, we established phage-host relationships by extract-
ing the ‘host” ficlds from the annotation files downloaded
from the NCBI reference viral genome database (39).

Second, we could easily establish the phage-host rela-
tionships for prophages identified in reference prokaryotic
genomes.

Third, for prophages identified from assembled metage-
nomic contigs, their host information are not readily avail-
able. Therefore for each of the identified prophages, we
first extracted the two flanking sequences from the contig,
and submitted them as queries for BLAST searches (47)
against prokaryotic reference genomes. We required that
each flanking sequence should be at least 200 bp in size
and at least 50 bp apart from the putative prophage. Pre-
dicted phages with flanking sequences shorter than 250 bp
on cither sides were discarded. We filtered out BLAST hits
that had sequence similarity less than 0.95 or covered <80%
of the query sequences. If there was only one hit left for a
query, we used the corresponding species of the hit sequence
as the putative host. For queries that matched multiple hits
above the thresholds, we calculated the last common ances-
tor (LCA) of all hits in the NCBI taxonomic database using
an in-house Perl script; we kept LCAs that had taxonomic
ranking of genus or species according to the NCBI taxon-
omy database (40). Metagenomic sequences are a mixture of
multiple species and are often highly fragmented. In addi-
tion, lateral gene transfers frequently occur and contribute
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significantly to the expansion of gene repertoire in prokary-
otes (48). Together these factors make it technically chal-
lenging to accurately assemble metagenomic sequences (49—
51). Therefore to reduce possible false-positive results, at the
end we only kept the host phage relationships if the iden-
tified hosts met the two following criteria: (1) both Aanking
sequences should match to some relerence genomes, and (ii)
the taxonomy ranks of the BLAST hits of the two flanking
sequences should be the same.

To determine the error rate in host species identifica-
tion using metagenomic data, we run the following sim-
ulations: we took randomly two fragments from a host
genome, searched them against the NCBI prokaryotic se-
quence database using BLAST (47), and run the above anal-
ysis pipeline to determine the their species identity. We did
this ten times for each of the complete prokaryotic genomes.
At the species level, we obtained an overall accuracy rate of
95% with ~90% sensitivity. However, when we removed the
‘source’ genome (i.e. the genome from which the two frag-
ments were taken) from the analysis, the overall accuracy
rate dropped to ~79% at the species level with ~30% sen-
sitivity (i.e. about half of the queries were removed because
of no significant BLAST hits in the genome, or the species
assignment was ambiguous).

Last, we also obtained phage-host associations from pub-
lished datasets (44,45) and databases such as the Interna-
tional Committee on Taxonomy of Viruses (ICTV: https:
/ltalk.ictvonline.org).

In total, we identified 30 321 host phage associations,
corresponding to 26 572 unique interactions between 18 608
viral clusters and 9245 prokaryotes. We summarized in Fig-
ure 1 the distribution of the 9245 prokaryotic hosts across

adva cle-abstract/dei/10.1083/rar/gkx1124/4643372



3 Manuscripts

4 Nucleic Acids Research, 2017

MVP stats (as of Aug 2017)

. number of species
= number of associated phage clusters

Figure 1. Distribution of the 9245 prokaryotic hosts across the bacterial and archacal phylogeny at the genus level according to NCBI taxonomy and
their assoclated phage clusters. For each bacterial and archaeal genus-level group, the number daughter species collected in M VP and the corresponding
number of associated virial clusters (unique count) are indicated with light-green and red bars. Bacterial and archaeal species that are not collected in
M VP are not shown. Bar heights are log-transformed. The tree and the datasets were visualized using Evolview, an online visualization and management
tool for customized and annotated phylogenetic trees (55). An interactive version of the tree can be found at: http://www.evolgenius.infolevolview/#shared/

mvp2017_stats/462.

the bacterial and archaeal phylogeny at the genus level and
their associated phage clusters.

We also check the overlap of prokaryotic hosts among
different data sources. We found that 44.35% of the hosts
were found in at least two data sources. We summarized in
Table 2 the overlaps between each data source with all oth-
ers,
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In addition, 61.09% hosts associate with multiple phage
clusters.

Calculation of host ranges of phage clusters

One of the main aim of MV'P is to provide researchers with
a list of phages that can specifically target certain bacteria
of interests while avoid any ‘off-target” effects. To achieve
this, we calculated the host range for each of the phage clus-

Downloaded from https://academic.oup.cen/nar/advance-article-abstract/dei/10.1093/rar/okx1124/4643372
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Figure 2. Most phage clusters have rather narrow host ranges. For phage clusters with at least two hosts, their host ranges were calculated as the LCAs in
the NCBI taxonomic database (see ‘Data Generation’ for more details). (A) X-axis: host range of phage clusters, Y-axis: percentage of phage clusters (out
of total) with their LCAs in the taxonomic groups. The Y-axis has been log-transformed. (B) X-axis: number of hosts (i.e. phage clusters were grouped
into bins according to the numbers of hosts they have); *(5,10) specifies a subgroup in which phage clusters have =5 and <10 hosts. Y-axis, percentage of
phage clusters (in each bin) that have host ranges at the “species” or “genus’ levels in each subgroup.

2 al
—
Phages associated with microbes
In total 18,608 phages were found to be associate with collected micrabes.
Search toble: 3 | Cioar search |
Exceptfor.. () | Search term Q
Viral cluster L. Scientific name (of the representative #interacting
(L0 members seq) prokaryote(s) Hast range =
4
B Cluster 12605 1 Clostridium phage phiMMPO4 - species (% 136 species - specific { Clostridioides difficile ', calculated from
136 hosts)
@ Cluster 7154 2 Clostridium phage phiCD38-2 - species @ 116 species - specific ( Clostridioides difficile &', calculated from
116 hosts)
@ Cluster 9200 1 Clostridium phage phiCDE356 - species & 116 species - specific (C difficile (7, from
116 hosts)
@  Cluster 604 114 NA 110 family - specific ( Entercbacteriaceas (7, calculated from 110
hosts)

Figure 3. A screenshot of the “Phages’ page; highlighted are built-in widgets (i.e. functional elements of a web page that serve specific purposes) that
enables users to casily find what they are interested. (1) a navigation toolbar that floats on top of the page, allowing users to access our data in pre-
organized categories (i.e. ‘microbes’, ‘phages’ and ‘interactions’ and etc.); (2) a global search widget that enables uses to search for microbes and virtal
clusters with any information, including the taxonomy IDs, scientific names and taxonomic ranks, and then redirect to the corresponding page that the
users choose: (3) a set of widgets allowing users to search for (or filter out when the “Except for... " checkbox is selected) the contents of the table below
(a list of phages in M VP in this case) with any keywords: (4) a widget allowing users to filter for phage clusters according to the values in the column of
‘Host range’.
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Viral cluster 11075 with host range of : species
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Figure 4. A screenshot of the interaction network (only partial) visualized with our built-in visualization tool. Microbes and phage clusters are visualized as
light green and pink/reddish circles, respectively, with their sizes (diameters) being propositional to the numbers of the interacting partners (including also
those that may not be shown in the visualization). Two colors, namely pink and reddish are used for phages. in order to distinguish those that infect only
one host (pink) from those that infect multiple hosts (reddish). Click the text-labels next to the circles, users will be redirect the page for the corresponding
microbe or phage cluster. In addition to the canvas, two additional widgets are also provided. The first is the selector at the top of the canvas, from which
users can browse or search for a node of interests, select it from the drop-down menu and highlight it and bring it into the middle of the canvas. The other
includes two buttons that can be used to expert the visualization to an external file in either SVG or PNG format. For more information please consult

the Interactions page (http:/myp.medgenius.infofinteractions),

ters collected in M V7P. For a phage cluster that infects only
one host, we defined the host range as the taxonomic rank
of the host in the NCBI taxonomy database; for a cluster
that infects multiple hosts, we defined the host range as the
taxonomic rank of the LCA of all its hosts in the NCBI tax-
onomic database.

As shown in Figure 2, we found that more than 99%
phage clusters have host range at the ‘species” or ‘genus’
levels. Excluding those with only one host (Figure 2A), or
considering phage clusters with certain numbers of hosts
(Figure 2B), the results remained largely the same, 1.e. more
than 90% of the remaining clusters have host range at the
‘species’ or ‘genus’ levels. These results are consistent with
previous findings that phages often have very narrow host
range (30), and further confirmed the high-quality of our
data.

WEB INTERFACE OF MVP

We provided M VP with a modern, responsive and intuitive
interface. As explained in Figure 3, the design of the web

queun, nology us
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pages, especially the use of a few powerful search widgets
would allow users to easily find what they are interested in.

We also incorporated into M VP a powerful network visu-
alization tool that allows users to interactively visualize, in-
teract and explore phage-host associations collected in our
database. Please consult the Interactions page (http://mwvp.
medgenius.info/interactions) for details; shown in Figure 4
is a screenshot of the interaction network.

DATA ACCESS

All data are freely accessible to all academic users. This
work is licensed under a Creative Commons Attribution
3.0 Unported License (CC BY 3.0). Users can download
combined data from the ‘DOWNLOAD’ page. Users can
also download data for individual viral clusters from the
‘PHAGES’ page.

FUTURE DIRECTIONS

During the development of MFP we came across numer-
ous resources and tools that would make our database

> /advanc c-abstract/dei/10.1083/rar/okx1124/4643372
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more complete and better. Also due to limitations of cur-
rent methods, we wish to thoroughly test and benchmark
existing tools/analysis pipeline before we include their re-
sults into MVP. Therefore our plans for the near future
will include: (i) to use more tools, especially those that
were recently developed for the identification of prophage
and viral sequences, including virFinder (52), PHASTER
(35) and VirSorter (36); (ii) to include more metagenomics
datasets from the EBI Metagenomic database (43), (iii) to
infer and include putative host-phage interactions from
CRISPR-spacer sequences; the latter can also be used to
infer bacterial-/archaeal- resistance to phages. and is a vi-
tally important player in the phage-host interaction net-
work and (iv) to compile sets of microbes according to
their niche environments (i.e. soil or human gut), and re-
calculate host-ranges for phage clusters that could interact
with them. Finally, it has been shown that virus and their
host genomes often share certain similar genomic features
such as oligonucleotide frequency patterns (53,54). We will
thus also include such measurements for the phage-host in-
teractions in MFP calculated from existing tools such as
VirHostMatcher (54).
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