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chapter 1

INTRODUCTION

The analysis and design of procurement mechanisms and auctions in general
has become an important topic in economic research over the last decades.
With a volume of 17% of the European GDP in 2007 in public procurement
alone, this interest is not purely academic.1 Especially in private procure-
ment, small improvements relative to the total procurement costs can lead
to large increases in the profit margins. This is confirmed by the consulting
company Oliver Wyman. They report that suppliers are responsible for
roughly 60% of the value added of a car.2 For public procurement on the
other hand, the objective is usually an efficient allocation. But efficiency
can also be important in private procurement, since the relations are often
long-term.

It is therefore interesting to pursue research that is either motivated by
observations of real-life procurement or to look for well-studied behavioral
biases in the economic literature and to give advice on how a buyer could
exploit these biases with a suitable procurement mechanism. The essays in
this dissertation therefore always pursue the goal of including a pertinent
management implication besides being academically relevant.

In the first three chapters, we consider such a behavioral bias, namely
loss aversion. In Chapter 2 titled Procurement Design with Loss Averse
Bidders, which is joint work with Nicolas Fugger and Tobias Riehm, we show
that it is beneficial for a buyer to conduct a multi-stage mechanism if bidders
are loss averse. In such a multi-stage mechanism, bidders participate in a
fixed number of stages and submit a bid in each one of them. The rules of
the mechanism include how many stages are conducted and which bidders

1Internal Market Scoreboard, no 19, July 2009
2https://www.oliverwyman.com/our-expertise/industries/automotive/

procurement.html
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1. INTRODUCTION 2

advance at each stage. Also, a payment rule is specified which determines
what participants have to pay after the mechanism concludes.

First, we derive a revenue equivalence principle. For a fixed multi-stage
structure, the auctioneer’s revenue is not dependent on the payment rule
she chooses. This result considerably simplifies the analysis and allows us
to concentrate on the structure of multi-stage mechanisms.

The main result and management implication of this paper is the in-
troduction of a simple and easily implementable two-stage mechanism, the
tournament. This mechanism always leads to a decrease in procurement
costs compared to any (standard) single-stage auction. Bidders are sorted
into two separate groups in a first stage, the semifinals. The lowest bidder
of each group then advances to the final. The bidder submitting the lowest
offer in the final wins the award process.

Finally, we derive the optimal efficient two-stage mechanism. Taking
into account the bidders’ degree of loss aversion, the optimal mechanism
induces a level of risk that optimally exploits the bidders’ loss aversion.

Chapter 3 with the title Auction Experiments with a Real Effort Task,
which is joint work with Nicolas Fugger and Tobias Riehm, aims to develop
a novel experimental tool set to increase the external validity of auction
experiments. We propose and test a simple experimental design based on
money and effort. When investigating auctions in the laboratory, economic
researchers usually rely on induced values experiments. While this gives
the researcher a lot of control, it abstracts from two well-known phenomena
that both can potentially limit the external validity of results from the lab:
Two-dimensional outcome evaluation and common values.

There is ample evidence in the economic literature that both these phe-
nomena are present in most real world auctions, and that both are impor-
tant drivers of bidding behaviour. Therefore, one has to be cautious when
giving practitioners advice based on induced values experiments. Our de-
sign aims to account for these phenomena. In a first step, bidders familiarize
themselves with the real-effort task we chose, the slider task. In an incen-
tivized test round lasting four minutes, bidders solve as many slider tasks
as possible and are remunerated per solved unit. We then let subjects bid
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on a monetary prize. They submit a bid that expresses the number of slider
tasks they would maximally solve in case of winning the auction, i.e. how
much effort they are willing to spend in order to receive this prize.

We then implemented a between-subjects design with a varying number
of bidders between treatments. If subjects were one-dimensional utility
maximizers with a purely private valuation, they would determine the level
of effort they are maximally willing to spend for the monetary prize, and bid
exactly that amount, independent of the number of competitors. On the
other hand, agents that act according to two-dimensional prospect theory
bid more aggressively when the number of bidders is low, as a high winning
probability leads to an increased attachment to the prize. The same applies
if there is a common value component in conducting the slider task. When
bidding against a high number of bidders, winning is ’bad news’ with a
higher probability since a higher number of other bidders estimated a lower
common value component.

In line with the reference dependent two-dimensional prospect theory
and common value predictions, we observe significantly higher bids if the
number of competitors is low. We hence argue that our design enables re-
searchers to increase the external validity of auction experiments. Moreover,
the slider task allows experimenters to control for participants’ abilities,
while at the same time having the advantages of real effort tasks.

Chapter 4 with the title Preferences and Decision Support in Competi-
tive Bidding3, which is joint work with Nicolas Fugger, Alexander Rasch and
Christopher Zeppenfeld, aims to understand a discrepancy between theory
and real life. The paper is motivated by the observation that the theoretical
strategic equivalence between the static first-price sealed-bid auction and
the dynamic Dutch auction breaks down empirically.

The three prevalent explanations for the empirically robust difference
are opportunity costs, preferences, and complexity of bidding. In a lab-
oratory experiment, we investigate the role of (non-standard) preferences

3Financial support from the German Research Foundation (DFG) through the re-
search unit Design & Behavior is gratefully acknowledged. We also want to thank the
Center for Social and Economic Behavior (C-SEB) at the University of Cologne. An
earlier version of this work is published in Zeppenfeld (2015).



1. INTRODUCTION 4

and complexity while controlling for opportunity costs. In line with the
experimental literature, we find significant differences between both auc-
tion formats if decision support is absent. However, the difference between
the formats becomes insignificant once we provide decision support regard-
ing the winning probability. If the differences were driven by preferences,
they should be independent of this level of decision support. This indicates
that the non-equivalence is caused by differing complexity rather than non-
standard preferences.

Staying in a procurement context, but moving away from behavioral
models, in Chapter 5 with the title Commitment in First-Price Auctions4,
I study the role of commitment in a first-price auction environment. I com-
pare a standard first-price auction with commitment to a first-price auction
where renegotiation is possible. In the first-price auction with renegotia-
tion, bidders submit an initial offer that the auctioneer can observe. In
the second stage, the auctioneer selects a winner and makes a counteroffer.
There is no commitment on the auctioneer’s side to accept an offer as is
or to choose the lowest bidder. I show theoretically that this implies that
bidders pool on bids that reveal no information about their costs. This
means that, in equilibrium, the auctioneer has to implement the ex-ante
optimal take-it-or-leave-it offer. In the standard first-price auction on the
other hand, the auctioneer has to choose one of the offers. In that case, a
unique, separating equilibrium exists.

I then take both mechanisms into the laboratory. Contrary to theoretical
predictions, I observe no significant difference in the offers between the
setting with renegotiation and the standard first-price auction. Also, I find
evidence that first-stage offers are correlated with the private information of
the bidders in both settings. Still, auctioneers are not able to fully exploit
the information in theses offers.

In Chapter 6 with the title Pre-Auction or Post-Auction Qualification?5,
which is joint work with Vitali Gretschko and Alexander Rasch, we com-

4Financial support from the German Research Foundation (DFG) through the re-
search unit Design & Behavior is gratefully acknowledged.

5This chapter is published as Gillen et al. (2017).
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pare auctions with bidder qualification before or after the bidding process.
Bidder qualification plays an important role in real-life auctions and pro-
curement procedures. Verifying the qualification of a bidder is costly for
the buyer and the potential sellers. Interestingly, in most procurement pro-
cesses, the bidders are required to undergo qualification before the actual
awarding of the project. Typically, this is explained by the risk of qualifi-
cation failure. However, there are many situations where this risk is not an
issue but where qualification requirements are nevertheless in place.

We address this puzzling observation by constructing a model as sim-
ple as possible without the risk of qualification failure. We then analyze
whether an auctioneer should demand proof of bidders’ qualification before
or after the auction. Under pre-auction qualification, there is an exclusion
effect. Depending on the cost realization of the bidder, his expected surplus
could still be below the qualification costs every bidder has to pay. Under
post-auction qualification, only the winner has to undergo costly qualifica-
tion. Still, the bidder will keep in mind that he has to pay the qualifica-
tion costs after the auction and therefore increases his offer by exactly this
amount.

We show that interestingly, pre-auction qualification is more profitable
if the qualification cost is sufficiently high. If qualification costs rise, the
cost of participation increases. However, less bidders participate which
means that the winning probability increases. This increase in the winning
probability dampens the increase of the exclusion effect and the marginal
increase goes to zero. With post-auction qualification, bids increase linearly
with the increase in qualification costs and the marginal increase is one for
all cost levels. Thus, pre-auction qualification yields higher revenues.

Finally, in Chapter 7 with the title Bid Pooling in Reverse Multi-Unit
Dutch Auctions – An Experimental Investigation6, which is joint work with
Alexander Rasch, Peter Werner and Achim Wambach, we move from single-
unit to multi-unit auctions. We experimentally investigate reverse multi-

6This chapter is published as Gillen et al. (2016). Financial support of the German
Research Foundation (DFG) through the Gottfried Wilhelm Leibniz Prize awarded to
Axel Ockenfels and through the Research Unit “Design & Behavior” (FOR 1371) is
gratefully acknowledged.
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unit Dutch auctions in which bidders compete to sell their single unit to a
buyer who wants to purchase several objects. We show that this auction
format is prone to higher prices than predicted by standard theory and is
characterized by bid pooling. Furthermore, we set up a theoretical frame-
work to show that these experimental results can be organized by boundedly
rational bidding strategies. We distinguish between myopic bids consisting
of a simple backward-looking heuristic and sophisticated bids where agents
anticipate the behavior of others and choose their optimal bids according
to their expectations but may make mistakes.

Our study yields three insights. (i) Bids are substantially higher than
Nash equilibrium bids predicted by standard economic theory; (ii) these
higher-than-predicted prices gradually decline in later periods; and (iii) bid
pooling (or simultaneous bidding) is frequently observed – the majority of
bidders submit their bids immediately after the first bidder has sold his
unit.





chapter 2

PROCUREMENT DESIGN WITH LOSS AVERSE
BIDDERS

Abstract

We show that it is beneficial for a buyer to conduct a multi-
stage mechanism if bidders are loss averse. In a first step, we derive
a revenue equivalence principle. Fixing the multi-stage structure,
the revenue is independent of the chosen payment rule. Secondly,
we introduce a simple two-stage mechanism which always leads to a
decrease in procurement costs compared to any single-stage auction.
Finally we derive the optimal efficient two-stage mechanism.

2.1 INTRODUCTION

Procurement plays an important role both in the public and private sec-
tor. In Europe public procurement represented around 17% of the GDP in
2007.1 In many sectors of the industry the role of procurement is even more
pronounced. The consulting company Oliver Wyman reports that suppliers
are responsible for roughly 60% of the value added of a car.2 Hence, small
savings in average procurement costs translate to a substantial increase in
overall profit margins.

In the past few decades reverse auctions have been established as one of
the main tools to select suppliers and to determine prices in many industries.
Depending on factors like size or complexity of a project, the procurement
designer usually commits to a certain auction format. In the academic
literature on auctions, it is typically assumed that the auction designer
chooses between a first-price or second-price payment rule and decides if

1Internal Market Scoreboard, no 19, July 2009
2 https://www.oliverwyman.com/our-expertise/industries/automotive/

procurement.html
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2. PROCUREMENT DESIGN WITH LOSS AVERSE BIDDERS 8

she wants to conduct a static or dynamic auction. In the static formats,
each bidder submits a sealed bid and the lowest bidder gets the contract.
The dynamic formats typically considered are the Dutch auction and the
English auction. In the English auction the price is decreased over time and
bidders can drop out. It ends when the second-last bidder drops out. The
winner is the last active bidder and he is paid the last displayed price. In
the English auction the price increases over time and the first bidder who
accepts the current price receives the contract and is paid the accepted price.
In addition to the four auction formats described, the auction designer could
also determine the number of stages.

In single-stage auctions, suppliers hand in an offer once and the con-
tract is allocated based on these offers. In multi-stage auctions, the first
rounds are usually conducted to reduce the set of suppliers that can partic-
ipate in the final round.3 Talks with practitioners suggest that especially
in strategically important projects, multi-stage auctions are the preferred
choice.

Interestingly, economic theory suggests that the use of multi-stage mech-
anisms cannot increase revenues above those that are achievable by one-
stage mechanisms4 when agents have standard preferences. However, if
bidders are loss averse, the auction designer can increase her revenue by
conducting multi-stage mechanisms. Proceeding to the next stage affects
a bidder’s winning probability and he therefore adjusts his reference point.
The auction designer can exploit her influence on the bidders’ reference
points. Following Kőszegi and Rabin (2006), we assume reference points
are based on rational expectations.5

A supplier who proceeds to the final stage of the multi-stage mechanism
updates his winning probability. He knows that winning is now more likely

3Note that in these mechanisms, suppliers are typically restricted to hand in (weakly)
more attractive offers in subsequent rounds.

4We consider settings in which the time between the different stages is rather short
and suppliers cannot adjust their product during the auction.

5There is an ongoing debate on how the reference point is formed. Some studies
suggest that it is mainly driven by expectations, whereas others hold that it is mostly
given by the status quo. For a discussion, see Heffetz and List (2014) and references
therein.



2. PROCUREMENT DESIGN WITH LOSS AVERSE BIDDERS 9

than before. Loss aversion implies that such a bidder gets more attached to
winning and is willing to make a more attractive offer, since losing in the
final round would cause a high disutility. These additional gains and losses
are anticipated by the agent before the auction and factored into his first-
round bid. A straightforward way of implementing such a mechanism is by
conducting a two-stage tournament. Suppliers compete in two semifinals
and only the best supplier of each semifinal proceeds to the final stage.6

In line with von Wangenheim (2019), we assume that bidders evaluate
outcomes in two dimensions, a money dimension and a good dimension.7

Consider a key account manager working for a supplier of a car manufac-
turer. When competing for a strategically important contract, he thinks in
two independent dimensions: In the money domain, all monetary details
such as his own costs, negotiated piece prices, investments etc. are cap-
tured. Independent of these details, the manager evaluates his chances of
winning the contract and therefore getting a high level of recognition within
his company. If this is the case, the buyer of the car manufacturer could
exploit this behavior when designing her procurement mechanism.

In this paper, we first derive a revenue equivalence principle for bidders
that are loss averse in the good domain. For a fixed multi-stage structure,
meaning which and how many bidders advance in the individual stages,
the auctioneer’s revenue is not dependent on the payment rule she chooses.
This result considerably simplifies the analyses and allows us to concentrate
on the structure of multi-stage mechanisms. Furthermore, as a side result,
this entails that all single-stage static auctions lead to the same expected
costs.

The main result of this paper is that the symmetric two-stage tour-
nament always leads to a decrease in procurement costs compared to any
(standard) single-stage auction. This result is robust, as it does not require

6If the number of suppliers is odd, one can conduct semifinals that are symmetric in
expectation.

7Lange and Ratan (2010) compare how the consideration of a one-dimensional ref-
erence point differs from the consideration of a two-dimensional reference point. They
show that it can strongly affect predictions and argue that in most real world settings
the consideration of a two-dimensional reference point is more reasonable.
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knowledge about bidders’ loss aversion. Hence, by conducting such a mech-
anism, the procurement designer’s revenue strictly improves compared to
all standard auctions if agents are loss averse, and makes no difference if
not.

Finally, we derive the optimal efficient two-stage mechanism. When
conducting two-stage mechanisms the procurement designer is confronted
with a trade-off: On the one hand, she wants to maximize the attachment to
winning the contract, and hence induce large winning probabilities to low-
cost types. On the other hand, she cannot neglect high-cost types, either.
If high-cost types have an already very low chance of winning the project,
they might insure themselves from a deviation from their expectation by
bidding even lower. Taking into account the bidders’ degree of loss aversion,
the optimal mechanism thus creates the level of uncertainty that optimally
solves this trade-off.

2.2 RELATED LITERATURE

Our paper contributes to the literature on expectations-based loss aversion.
The concept of loss aversion has been studied since the seminal paper of
Kahneman et al. (1990). In their paper, they introduce the endowment
effect and experimentally show that a subjects’ valuation for a certain good
increases when they are physically endowed with the good. According to
this strand of literature subjects have a reference point and a deviation from
this reference point in direction of losses has a larger impact on utility than
a deviation in direction of gains.

A discussion around the formation of these reference points has risen in
the literature. Kőszegi and Rabin (2006) suggest that the reference point is
based on rational expectations. In an auction, this means that bidders have
a certain probability of winning in mind and feel losses and gains compared
to these expectations. As a consequence, a bidder expecting to win a good
with a high probability suffers more from not winning than if he gauged his
chances of winning as slim.
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Our paper is most closely related to von Wangenheim (2019), who com-
pares a sealed-bid second-price auction to an English auction assuming that
bidders are loss averse and that their reference point is given by rational ex-
pectations. While both formats are strategically equivalent in independent
private value settings if bidders have standard preferences, he shows that
the second-price sealed-bid auction dominates the English auction if bidders
are loss averse. The intuition is as follows: At the beginning of the English
auction a bidder has the same chance of winning as in the second-price
sealed-bid auction. However, during the course of the English auction the
winning probability decreases and the bidder becomes less attached to the
good. As a consequence, his willingness to pay decreases and he will drop
out before the price is reached that he would have bid in the second-price
sealed-bid auction.

Similar to von Wangenheim (2019), Ehrhart and Ott (2014) compare two
standard auction formats for bidders with reference-dependent preferences.
Comparing the Dutch auction to the English auction they show that the
Dutch auction outperforms the English auction. The intuition is closely
related to von Wangenheim (2019) and to our paper. For a given valuation
a bidder has the same winning probability at the beginning of the Dutch
auction and the English auction. However, while the winning probability
decreases during the course of the English auction, it increases during the
course of the Dutch auction. Hence, the attachment to the good is larger
in the Dutch auction and bidders are thus willing to bid more aggressively.
Similarly, a bidder who advances a stage in our setting also updates his
winning probability and therefore his attachment to the good increases.
This, in return, increases the bid he is willing to submit.

Banerji and Gupta (2014) and Rosato and Tymula (2019) provide evi-
dence for the effect of expectations-based loss aversion in auction environ-
ments. In a setting in which participants compete in a second-price auction
for a real good, they observe that bidders bid less when their winning prob-
ability was smaller. This observation stands in contrast to the predictions
of standard theory which implies that subjects have a dominant strategy
of bidding their true valuation independent of their winning probability. In
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contrast to that, loss aversion implies that a bidder with a higher chance of
winning is more attached to the good and, hence, willing to bid more.

In contrast to the existing paper on auctions with loss averse bidders, we
do not concentrate on comparing standard auction formats but investigate
the following question: How can an auctions designer exploit bidders’ loss
aversion to increase her revenue?

Given this research question our work is also related to Maskin and
Riley (1984) who also investigate how the auction designer can increase
her revenue if bidders have a behavioral bias, in their case risk aversion.
Similar to us, they present an optimal mechanism that needs to be fine-
tuned to bidders’ risk preferences and seems too complex to be implemented
in practice. While our management implication is that simple two-stage
mechanisms outperform one-stage auctions if bidders are loss averse, they
show that first-price auctions outperform second-price auctions if bidders
are risk averse.

Another related paper is Engelbrecht-Wiggans and Katok (2007). They
analyze how the auction designer can exploit regret aversion of bidders.
They show that the right information design, namely revealing the best bid
but concealing all other bids, allows the auction designer to increase her
revenue.

2.3 MODEL

In this section, we introduce the formal model. We consider n ≥ 2 ex-
ante symmetric bidders competing for one indivisible good. The value vi

of bidder i ∈ {1, . . . , n} for the good is privately drawn from a distribution
F , vi

iid.∼ F [0, 1]. F is assumed to have a differentiable density f which is
strictly positive on its support [0, 1]. Moreover, F is common knowledge.
Bids are placed after learning the value for the good.

For loss aversion we follow Kőszegi and Rabin (2006). We assume that
bidders are loss averse in the good domain g representing the item the
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winner of the auction receives.8 Furthermore, we assume bidders to be
narrow-bracketers, following the definition of von Wangenheim (2019). Let
xm be the price a bidder pays if he wins and xg a binary variable that is
equal to one if the bidder wins the good and zero else. For an outcome
x = (xc, xg), valuation v for the good, and the reference consumption rg ∈
{0, 1}, agent’s utility is given by

u(x
∣∣∣rg) = xc + vxg + μg(vxg − vrg). (1)

Following Kőszegi and Rabin (2006), we assume μg to be a piecewise linear
function with a kink at zero,

μg(y) =

⎧⎪⎨
⎪⎩

ηgy if y ≥ 0

λgηgy if y < 0.
(2)

Here μg denotes the gain-loss utilities in the good dimension, where ηg > 0
and λg > 1. We assume non-dominance-of-gain-loss-utility, which means for
a multi-stage mechanism with k stages ηg(λg − 1) ≤ 1/k.9 The importance
of the non-dominance-of-gain-loss-utility bounds on ηi and λi are laid out in
Herweg et al. (2010). To summarize, if ηg(λg − 1) > 1/k, a decision maker
might choose stochastically dominated choices because he ex-ante expects
to experience a net loss. For example, such a decision maker might choose
a payment of zero over a lottery with slim chances of winning a strictly
positive amount of money to avoid the disappointment, should he lose.

The interpretation of this gain-loss utility is that bidders perceive, in
addition to their classical utility, a feeling of gain or loss, depending on the
deviation from their reference consumption.

The reference point in our paper is assumed to be determined by rational
expectations following Kőszegi and Rabin (2006).

8We assume that bidders are not loss averse in the money domain. This assumption
is in line with Horowitz and McConnell (2003), who argue that the endowment effect is
”highest for non-market goods, next highest for ordinary private goods, and lowest for
experiments involving forms of money.”

9This bound for non-dominance-of-gain-loss-utility is derived in Section 2.4.1.
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2.3.1 EQUILIBRIUM CONCEPT

Following von Wangenheim (2019), we adapt Kőszegi and Rabin (2006)’s
equilibrium concept under uncertainty, according to which bidders form
their strategy after learning their valuation. We apply the concept of un-
acclimated personal equilibria, which is, as argued by Kőszegi and Rabin
(2006), the appropriate concept in auction settings. Fixing the opponents’
strategies, let H(b, vi) denote i’s payoff distribution given his draw vi from
a continuous distribution F (v) and his bid b. A bid b∗ constitutes an unac-
climated personal equilibrium (UPE), if for all b

U [H(b∗, vi)
∣∣∣H(b∗, vi)] ≥ U [H(b, vi)

∣∣∣H(b∗, vi)]. (3)

That means, given your reference point is determined by the payoff distri-
bution resulting from an (exogenous) bid b∗, it is a best response to bid
b∗.

2.3.2 MULTI-STAGE MECHANISMS

In a multi-stage mechanism, bidders participate in k stages and submit a
bid in each one of them. The rules of the mechanism include how many
stages there are and which bidders advance to the next stage. Bids are
binding and cannot be lowered in subsequent stages.

As an example, consider four bidders and a mechanism with two stages.
In the first stage, the semi-final, all four bidders submit an offer. The
two bidders with the highest offers then advance to the final, where they
submit another offer. The highest offer in the final is then the winner of
the auction.10

In this section, we introduce the formal notation for multi-stage mecha-
nisms. To completely characterize a multi-stage structure, we need to define
the number of stages k and for each of the k stages, which of the bidders ad-
vance to the next stage. For N bidders, let B = {jB1, jB2, . . . , jBN} be the
set of bids for each bidder in a stage j ≤ k. We restrict ourselves to multi-
stage mechanisms that are symmetric in expectation. This means that in

10We call this mechanism the “play-offs”, it is analysed in section section 2.4.1.
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some stage j of the mechanism, each bidder has the same expectation of
number of opponents he is facing even if there are asymmetric groups.11

Borrowing from order statistics notation, a multi-stage mechanism is then
defined by

(
μ,M

)
, with μ the payment rule and

M =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎧⎨
⎩o1,

set of bidders
advancing to

stage 2︷ ︸︸ ︷
a1⋃

i=1

{
1B

(o1)
i

}⎫⎬
⎭︸ ︷︷ ︸

Stage 1

,

⎧⎨
⎩o2,

a2⋃
i=1

{
2B

(o2)
i

}⎫⎬
⎭︸ ︷︷ ︸

Stage 2

, . . . ,

⎧⎨
⎩ok,

highest bidder
wins the good
in final stage︷ ︸︸ ︷{

kB
(ok)
1

} ⎫⎬
⎭︸ ︷︷ ︸

Stage k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭.

(4)
Here the oj are the number of bidders per subgroup in stage j and aj the
number of bidders advancing from stage j to j + 1.12 It must hold that
ai ≤ oi and oj ≤ N where N is the total number of bidders.

11If there are asymmetric groups, the probability of being matched to a specific group
has to be stated.

12This implies that only the highest oj+1 bidders of each subgroup advance from stage
j to j + 1.
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2.4 ANALYSIS

The theory section is structured as follows. In Section 2.4.1 we derive
general properties of the equilibrium bidding behavior in one- and multi-
stage mechanisms. In Section 2.4.2 we show that fixing the multi-stage
structure implies a revenue equivalence principle: the chosen payment rule
does not affect the expected revenue of a mechanism. We then present a
robust, easily implementable improvement over one-stage mechanisms in
Section 2.4.3 and finally derive the optimal efficient two-stage mechanism
in Section 2.4.4.

2.4.1 BIDDING BEHAVIOR

One-Stage Mechanisms

Assume that the bidders have standard preferences and let bidders partici-
pate in a standard auction A.13 Further assume that the other bidders bid
according to an increasing and absolutely continuous bidding function βA.
The payment rule of the auction is denoted by μA(bi, b−i) and the expected
payment by mA(bi). Define G(b) := F

(N−1)
1 ◦ βA−1(b) the winning probabil-

ity with a bid b in the auction. Then the expected utility of bidder i having
value vi and bidding b is given by

uA
i (vi, b) = G(b)v − mA(b). (5)

We now introduce loss aversion with bidders being loss averse only in the
good domain. Given a reference bid b∗, the expected utility is then given

13Krishna (2009) defines a standard auction as an auction where the person who bids
the highest amount is awarded the object.
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by

uA
i (vi, b|b∗) = G(b)v − mA(b)

feeling of gain, good domain + G(b)(1 − G(b∗))μg(v − 0) (6)
feeling of loss, good domain + (1 − G(b))G(b∗)μg(0 − v)

= G(b)v − mA(b)
+ G(b)(1 − G(b∗))ηgv (7)
+ (1 − G(b))G(b∗)ηgλg(−v)

Bidders optimize uA
i with respect to b.

Multi-Stage Mechanisms

As a first step, we show that in equilibrium, bidders submit the same bid in
every stage of the mechanism if non-dominance-of-gain-loss-utility holds.

Proposition 1. In a multi-stage mechanism, bidders submit the same bid
in every stage.

Proof. Consider bidder i. Assume the other bidders bid according to an
increasing, absolutely continuous bidding function βMS

j , where j denotes
the stage. The structure of the multi-stage mechanism, i.e. how many
bidders advance in the individual stages and how many opponents they face
in each stage, is then encoded in the probabilities to reach the individual
stages of the mechanism. Let φj be defined such that φj ◦ F ◦ βMS−1

j is the
probability of reaching stage j + 1 given the bidder reached stage j. 14 Let
�b = (b1, b2, . . . , bk) be the vector of bids of bidder 1. This means that the
ex-ante probability to win the auction is given by

Probex-ante(win with b) =
k∏

j=1
φj(bj) =: H

(
�b
)

. (8)

Note that to simplify the notation, we define that advancing to stage k + 1
means winning the auction.

14The φj ◦ F are expressions of probability and thus inherit the properties of the
original distribution functions.
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It is useful to define the probability to reach stage l, given that the
bidder reached stage i. Let i < l. Then Φl

i is given by

Prob
(

get to l with �b
∣∣∣ get to i with �b

)
(9)

=
Prob

(
get to l with �b & get to i with �b

)

Prob
(

get to i with �b
) (10)

=
Prob

(
get to l with �b

)

Prob
(

get to i with �b
) =

l−1∏
j=i

φj(bj) := Φl
i

(
�b
)

(11)

The probability to win the auction given the bidder reached stage i is given
by

Prob(win with �b | reached i) = Φk+1
i

(
�b
)

. (12)

For each stage l, given a reference bid b∗
l , the bidder experiences a gain-loss

utility in expectation. On one hand, the bidder might win with his bid bl

but has expected to lose with the reference bid b∗
l . He then experiences a

gain in the good domain with respect to the reference outcome. On the
other hand, the bidder might lose in one of the stages with his bid bl but
has expected to win with the reference bid b∗

l . He then experiences a loss
in the good domain. This holds true for every stage.

Consider a standard auction based payment rule, μMS. The expected
payment of the multi-stage mechanism composed by the expected amount
a bidder has to pay and the probability of him having to pay it,

mMS
(
�b
)

= Prob
(
having to pay with �b

)
E

[
μMS

∣∣∣∣ �b,�b−i

]
(13)

=: P pay
(
�b
)
E

[
μMS

∣∣∣∣ �b,�b−i

]
. (14)

For the first-, second-, . . . -price auction, we have P pay
(
�b
)

= H
(
�b
)
, while

for the all-pay auction we have that P pay
(
�b
)

= 1. Generally, P pay
(
�b
)

either depends linearly on the φi for i ∈ {1, . . . , k} or is constant.15 This
15The fringe case where E

[
μMS

∣∣∣ �b,�b−i

]
consists of a lottery that explicitly depends

on a φi with i ∈ {1, . . . , k − 1} is excluded here. The lottery may depend on �b.
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means that it holds for all j < k,

∂ mMS
(
�b
)

∂
(
φj

(
�b
)) ≤ mMS

(
�b
)

φj

(
�b
) . (15)

Combining the results from above, we arrive at the following utility function
for loss averse bidders in multi-stage mechanisms,

uMS(vi,�b | �b∗) = H
(
�b
)

vi − mMS
(
�b
)

+
k∑

i=1
Φk+1

1

(
�b
) (

1 − Φi+1
i

(
�b∗) )μg(v − 0)

︸ ︷︷ ︸
expecting to win with �b, to lose with �b∗

(16)

+
k∑

i=1
Φi

0

(
�b
) (

1 − Φi+1
i

(
�b
) )

Φk+1
i

(
�b∗)μg(0 − v)

︸ ︷︷ ︸
expecting to lose with �b, to win with �b∗

= H
(
�b
)

vi − mMS
(
�b
)

+
k∑

i=1
Φk+1

1

(
�b
) (

1 − Φi+1
i

(
�b∗) )ηgv (17)

+
k∑

i=1

(
Φi

0

(
�b
)

− Φi+1
0

(
�b
) )

Φk+1
i

(
�b∗) ηgλg(−v).

Note that we can bound mMS from above depending on vi and �b∗ since a
bidder will not submit bids that result in a negative expected utility,

uMS(vi,�b | �b∗) !
> 0

⇒ mMS
(
�b
) !

< H
(
�b
)

vi

+
k∑

i=1
Φk+1

1

(
�b
) (

1 − Φi+1
i

(
�b∗) )ηgv

+
k∑

i=1
Φi

0

(
�b
) (

1 − Φi+1
i

(
�b
) )

Φk+1
i

(
�b∗) ηgλg(−v).

(18)

Also note that the right-hand side does not contain bj outside of φj for all j ∈
{1, . . . , k−1}. This means that for the first k−1 stages, a bidder can directly
optimize over the probability of advancing to the next stage instead of
optimizing over the bids that induce probabilities. Our equilibrium concept
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is UPE, this implies that the first-order condition for i ∈ {1, . . . , k − 1}, is
given by

∂uMS(vi,�b | �b∗)
∂ (φi(bi))

∣∣∣∣∣∣
�b∗=�b

=

k∏
j=1

φj(bj)

φi(bi)
vi − ∂mMS

(
�b
)

∂ (φi(bi))
(19)

+ ∂

∂ (φi(bi))

k∑
l=1

k∏
j=1

φj(bj)
(
1 − Φl+1

l

(
�b∗) )ηgvi

∣∣∣∣∣∣
�b∗=�b

(20)

+ ∂

∂ (φi(bi))

k∑
l=1

l−1∏
j=0

φj(bj)Φk+1
l

(
�b∗) ηgλg(−vi)

∣∣∣∣∣∣
�b∗=�b

(21)

− ∂

∂ (φi(bi))

k∑
l=1

l∏
j=0

φj(bj)Φk+1
l

(
�b∗) ηgλg(−vi)

∣∣∣∣∣∣
�b∗=�b

. (22)

We now rearrange the terms. (20) simplifies to

k∑
l=1

∏k
j=1 φj(bj)
φi(bi)

(
1 − φl(bl)

)
ηgvi. (23)

For (21), we get

k∑
l=i+1

∏l−1
j=1 φj(bj)
φi(bi)

k∏
j=l

φj(bj)ηgλg(−vi) =
k∑

l=i+1

∏k
j=1 φj(bj)
φi(bi)

ηgλg(−vi) (24)

=
∏k

j=1 φj(bj)
φi(bi)

ηgλg(−vi)(k − i). (25)

For (22), we get

−
k∑

l=i

∏l
j=1 φj(bj)
φi(bi)

k∏
j=l

φj(bj)ηgλg(−vi) = −
k∑

l=i

∏k
j=1 φj(bj)
φi(bi)

φl(bl)ηgλg(−vi).

(26)
Define

α :=
∏k

j=1 φj(bj)
φi(bi)

. (27)
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We arrive at

∂uMS(vi,�b | �b∗)
∂ (φi(bi))

∣∣∣∣∣∣
�b∗=�b

= −∂mMS
(
�b
)

∂ (φi(bi))

+ αvi + ηgviα
k∑

l=1
(1 − φl(bl)) (28)

− ηgλgviα(k − i) + ηgλgvi

k∑
l=i

φl(bl)

≥ −mMS
(
�b
)

φi(bi)
+ αvi + ηgviα

k∑
l=1

(1 − φl(bl)) (29)

− ηgλgviα(k − i) + ηgλgvi

k∑
l=i

φl(bl)

≥ −

⎡
⎢⎢⎢⎣H

(
�b
)

vi +
k∑

i=1
Φk+1

1

(
�b
) (

1 − Φi+1
i

(
�b∗) )ηgvi

+
k∑

i=1
Φi

0

(
�b
) (

1 − Φi+1
i

(
�b
) )

Φk+1
i

(
�b∗) ηgλg(−vi)

⎤
⎥⎥⎥⎦

�b∗=�b

(30)

+ αvi + ηgviα
k∑

l−1
(1 − φl(bl))

− ηgλgviα(k − i) + ηgλgvi

k∑
l=i

φl(bl)

= −αvi + ηg(λg − 1)viα
k∑

l=1
(1 − φl(bl))

+ αvi + ηgviα
k∑

l−1
(1 − φl(bl)) (31)

− ηgλgviα(k − i) + ηgλgvi

k∑
l=i

φl(bl)

= ηgλgviα(i −
i−1∑
l=1

φl) > 0. (32)
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Note that we need to make sure that the expression in the brackets in step
(30) is positive for all φj. This means it needs to hold that

αvi − ηg(λg − 1)viα
k∑

l=1
(1 − φl(bl))

!≥ 0 (33)

⇔ −ηg(λg − 1)
!≥ −1

k∑
l=1

(1 − φl(bl))
(34)

⇔ ηg(λg − 1)
!≤ 1

k∑
l=1

(1 − φl(bl))
(35)

⇔ ηg(λg − 1)
!≤ min

φ

1
k∑

l=1
(1 − φl(bl))

(36)

⇒ ηg(λg − 1)
!≤ 1

k
. (37)

For every stage, a bidder experiences gain-loss utility. All-in-all, this means
that the non-dominance of gain-loss utility has to hold for every stage, in
total ηg(λg − 1)

!≤ 1
k
.

Interpreting φj as the distribution of bids that a bidder needs to beat in
expectation to order to advance to stage j + 1, (32) implies that a bidder
will always want to induce the highest possible probability to advance to
the final stage with his bid �b. This implies that a bidder will cap his bids in
stages 1 to k − 1 by the bid he submits in the final, pay-off relevant stage.
A bidder therefore optimizes

uMS(vi, b|b∗) = G(b)vi − mMS(b)

+
k∑

i=1
Φk+1

1 (b)
(
1 − Φi+1

i (b∗)
)
ηgv

+
k∑

i=1

(
Φi

0(b) − Φi+1
0 (b)

)
Φk+1

i (b∗)ηgλg(−v)

(38)

over b.
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Figure 2.1: The first-price sealed-bid play-offs.

Example: First-Price Sealed-Bid Play-Offs

To get an idea what such a multi-stage mechanism can look like and of how
to apply what we have derived so far, let us take a look at the following
multi-stage mechanism with four bidders. As can be seen in Figure 2.1, the
FPSB play-offs consists of 2 stages.

1. Out of the four bidders, the two highest bidders are advancing to the
second stage.

2. Out of the two remaining bidders, the highest bid wins.

We can write MP O as

MP O =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎧⎨
⎩4,

{
B

(4)
1 , B

(4)
2

}⎫⎬
⎭︸ ︷︷ ︸

Stage 1

,

⎧⎨
⎩2,

{
B

(2)
1

}⎫⎬
⎭︸ ︷︷ ︸

Stage 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (39)

The payment rule μ is given by the first-price auction payment rule. With
proposition 1, we can assume bidders to bid the same in every stage. Assume
the other bidders bid according to an increasing, absolutely continuous
bidding function βP . In the first stage, bidder i advances if he beats at
least the second highest opponent. This yields

φ1 ◦ F = F
(3)
2 = 3F 2 − 2F 3. (40)
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Given that the bidder reached stage two, the bidder wins if he beats his
strongest opponent,

φ2 ◦ F ◦ βP −1(b) = Prob
(

b > βP
(
v

(3)
1

) ∣∣∣∣ b > βP
(
v

(3)
2

) )
(41)

=
F
(
βP −1(b)

)3

3F (βP −1(b))2 − 2F (βP −1(b))3 . (42)

The underlying auction format is the first-price auction, the expected pay-
ment is given by mT (b) = G(b)b. The utility is then given by

uP (vi, b|b∗) = G(b (vi − b)

+F
(3)
1

(
βP −1 (b)

)⎛⎝1 − F
(3)
2

(
βP −1 (b∗)

)⎞⎠ηgv

︸ ︷︷ ︸
win but would have lost in stage 1 with b∗

+F
(3)
1

(
βP −1 (b)

)⎛⎝1 − F
(3)
1

(
βP −1 (b∗)

)
F

(3)
2 (βP −1 (b∗))

⎞
⎠ηgv

︸ ︷︷ ︸
win but would have lost in stage 2 with b∗

+
(

1 − F
(3)
2

(
βP −1 (b)

) )
F

(3)
1

(
βP −1 (b∗)

)
ηgλ(−v)︸ ︷︷ ︸

don’t advance to 2nd stage but would have won with b∗

+F
(3)
2

(
βP −1 (b)

)⎛⎝1 − F
(3)
1

(
βP −1 (b)

)
F

(3)
2 (βP −1 (b))

⎞
⎠F

(3)
1

(
βP −1 (b∗)

)
F

(3)
2 (βP −1 (b∗))

ηgλ(−v)
︸ ︷︷ ︸

get to 2nd stage & lose but would have won with b∗

.

(43)
We are interested in finding the equilibrium bidding function for this multi-
stage auction. Our equilibrium concept is UPE, this implies that the first-
order condition is given by⎛

⎝∂uP (vi, b|b∗)
∂b

⎞
⎠
∣∣∣∣∣∣
b∗=βP (vi)

!= 0. (44)
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In equilibrium it holds that b = βP (vi). To simplify notation, let F (3)
m =: Fm.

The resulting ordinary differential equation admits a closed form solution,

βP (vi) = 1
F1(vi)

∫ vi

0
s

⎛
⎝f1(s) + ηgλg

⎛
⎝f2(s)F1(s) −

(
f2(s) − f1(s)

)
F1(s)
F2(s)

⎞
⎠

+ ηgf1(s)
(

2 − F1(s)
F2(s) − F2(s)

)⎞⎠ds.

(45)

2.4.2 REVENUE EQUIVALENCE PRINCIPLE

In this section, we show that once we fix the multi-stage structure of the
procurement mechanism, a revenue equivalence principle holds. This means
that an auctioneer does not need to worry about the payment rule of her
mechanism.16

Proposition 2 (Revenue equivalence principle for loss averse bidders).
Suppose that values are independently and identically distributed and that
bidders are loss averse in the good domain. Fix the multi-stage structure M.
For every standard auction payment rule μ, any symmetric and increasing
equilibrium such that the expected payment of a bidder with value zero is
zero, yields the same expected revenue to the seller.

Proof. Consider multi-stage mechanism MS =
(
μ,M

)
, with μ some stan-

dard auction payment rule, and fix a symmetric, strictly increasing equi-
librium bidding function βMS. Let mMS(vi) be the equilibrium expected
payment in the mechanism by bidder i with value vi. Suppose that βMS is
such that mMS(0) = 0. Define the ex-ante expected gain-loss utility in the
good domain Θg such that

Θg(b| b∗) :=
k∑

i=1
Φk+1

1 (b)
(
1 − Φi+1

i (b∗)
)
ηgv

+
k∑

i=1

(
Φi

0(b) − Φi+1
0 (b)

)
Φk+1

i (b∗)ηgλg(−v),
(46)

16We consider payment rules based on standard auctions as defined by Krishna (2009).
A standard auction is an auction where the highest bidder wins.
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yielding
uMS(vi, b|b∗) = G(b)vi − mMS(b) + Θg(b| b∗). (47)

Consider bidder i and suppose other bidders are following the equilibrium
strategy βMS. Consider the expected payoff of bidder i with value vi de-
viating from the equilibrium bidding strategy. βMS is bijective, meaning
that every sensible bid b can be expressed such that b = βMS(z). The
bidding function βMS constitutes a UPE if and only if the utility function
uMS

i (vi, b|βMS(vi)) attains its maximum at b = βMS(vi) for all vi. Bidder
i’s expected payoff is given by

uMS
(
vi, βMS(z)|βMS(vi)

)
= G(βMS(z))vi − mMS(z)

+ Θ
(
βMS(z)| βMS(vi)

)
.

(48)

The first-order condition is given by

∂uMS
(
vi, βMS(z)|βMS(vi)

)
∂z

= f
(N−1)
1 (z)vi − ∂

∂z
mMS(z)

+ ∂

∂z
Θ
(
βMS(z)| βMS(vi)

) != 0.

(49)

In equilibrium it is optimal to report z = vi and it holds that b∗ = βMS(vi),
so we obtain that for all y,

∂

∂y
mMS(z) = f

(N−1)
1 (y)y +

⎛
⎝ ∂

∂y
Θ
(
βMS(y)| βMS(z)

)⎞⎠
∣∣∣∣∣∣
z=y

. (50)

This means that

mMS(vi) = �����mMS(0) +
∫ vi

0
f

(N−1)
1 (y)ydy

+
∫ vi

0

⎛
⎝ ∂

∂y
Θ
(
βMS(y)| βMS(z)

)⎞⎠
∣∣∣∣∣∣
z=y

dy.
(51)

While the right-hand side depends on the multi-stage structure M, it does
not depend on the payment rule μ.

The result holds for k ≥ 1 stages, so one-stage mechanisms are included.
A first application of the RET for loss averse bidders is to rank the English
auction with loss averse bidders.
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Proposition 3. All static standard auction formats yield higher expected
revenues with loss averse bidders than the English auction.

Proof. From von Wangenheim (2019) we know that the English auction
performs worse than the second-price auction revenue-wise. We can apply
Proposition 2 to complete the proof.

2.4.3 A ROBUST IMPROVEMENT OVER ONE-STAGE
MECHANISMS

A mechanism that is to be implemented in real-life and that exploits bid-
ders’ loss aversion should not depend on the parameters for loss aversion.
An auctioneer cannot hope to be able to accurately estimate these param-
eters in a way that would help her design a mechanism. We will show
that for a parameter space that includes the empirically found loss aversion
parameters, it is beneficial for the seller to implement a simple two-stage
mechanism for every value realization of every distribution function if there
are more than two bidders.17

For an even number of bidders, 2N , consider randomly pairing two
groups of N bidders and then advance the highest bidder of each pairing to
the final. For an odd number of bidders, 2N +1, consider randomly pairing
of one group of N bidders and one group of N + 1 bidders. Bidders do not
know in which group they are selected, they only know the a priori proba-
bility of being in the group with N bidders is 0.5. Again, the highest bidder
of each pairing advances to the final. We call this multi-stage structure a
tournament, it can be seen in figure 2.2. We can write MT as

MT,even =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎧⎨
⎩N,

{
B

(N)
1

}⎫⎬
⎭︸ ︷︷ ︸

Stage 1

,

⎧⎨
⎩2,

{
B

(2)
1

}⎫⎬
⎭︸ ︷︷ ︸

Stage 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (52)

17See Gächter et al. (2007) for an empirical study on individual-level loss aversion.
They present evidence that λg lies around 2.
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MT,odd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎧⎨
⎩{NP = 1

2
, N + 1P = 1

2
},
{

B
(N

P = 1
2

,N+1
P = 1

2
)

1

}⎫⎬
⎭︸ ︷︷ ︸

Stage 1

,

⎧⎨
⎩2,

{
B

(2)
1

}⎫⎬
⎭︸ ︷︷ ︸

Stage 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭.

(53)
As shown in Proposition 2, the payment rule we choose is not relevant for
the revenue. For the proof, we choose the first-price auction payment rule.

Figure 2.2: The tournament multi-stage structure MT for four bidders.

Proposition 4. Assume an even number of bidders 2N ≥ 4 that are loss
averse in the good domain. Assume that λ ≤ 2N−1

N−1 . Then for all η ≥ 0 the
revenue is higher in the tournament than in any one-stage mechanism.

Corollary 1. Assume an even number of bidders 2N ≥ 4 that are loss
averse in the good domain. Assume that λ ≤ 2N−1

N−1 . In the case of the first-
price, second-price or all-pay auction as underlying auction format, bids are
higher in the tournament than in the corresponding one-stage mechanism
for all types.

Proposition 5. Assume an odd number of bidders 2N +1 ≥ 3 that are loss
averse in the good domain. Assume that λ ≤ 4N

2N−1 . Then for all η ≥ 0 the
revenue is higher in the tournament than in any one-stage mechanism.
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Corollary 2. Assume an even number of bidders 2N + 1 ≥ 3 that are loss
averse in the good domain. Assume that λ ≤ 4N

2N−1 . In the case of the first-
price, second-price or all-pay auction as underlying auction format, bids are
higher in the tournament than in the corresponding one-stage mechanism
for all types.

Proposition 6. For λg ≤ 2, the tournament yields higher bids than the
respective one-stage auction for all types.

Proof of Proposition 4. Consider the first-price auction payment rule. We
start with the one-stage mechanism. Assume the other bidders bid accord-
ing to an increasing, absolutely continuous bidding function βF P and let
G(b) = F

(N−1)
1

(
βF P −1 (b)

)
. The expected payment is given by

mF P (b) = G(b)b. (54)

The utility function is given by

uF P
i (vi, b|b∗) = G(b)(v − b)

+ G(b)(1 − G(b∗))ηgv

+ (1 − G(b))G(b∗)ηgλg(−v).

(55)

The bidding function βF P constitutes a UPE if and only if the utility func-
tion uF P

i (vi, b|βF P (vi)) attains its maximum at b = βF P (vi) for all vi. Dif-
ferentiating uF P with respect to b and plugging in the equilibrium condition
b = βF P (vi) yields the ODE,

βF P ′(vi)F1(vi) + βF P (vi)f1(vi) != vif1(vi)
(

1 + (1 − F1(vi)) ηg + F1ηgλg
)

(56)
This ODE admits a closed form solution,

βF P (vi) = 1
F1(vi)

∫ vi

0
sf1(s)

(
1 + ηg + F1(s)ηg(λg − 1)

)
ds (57)

= 1
F1(vi)

∫ vi

0
sf1(s)

(
1 + ηg

(
1 − F1(s)

)
+ ηgλgF1(s)

)
ds. (58)

The equilibrium bidding function for the tournament can be derived explic-
itly, too. With Proposition 1, we can assume bidders bid the same in every
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stage. Assume that the other bidders bid according to an increasing, abso-
lutely continuous bidding function βT . In the first stage, bidder i advances
if he beats his N − 1 opponents. This yields

φ1 ◦ F = F
(N−1)
1 . (59)

This implies that advancing to the second stage is not informative in any
way about the value of the remaining opponent. The intuition behind this
can be understood by considering the mechanism with four bidders. Given
the bidder won the first round, he may have beaten his toughest opponent
already. But he also might have beaten the second or third highest bidding
one,

Prob(get to 2nd round with b) (60)

= 1
3F1(βT −1(b)) + 2

3

(1
2F2(βT −1(b)) + 1

2F3(βT −1(b))
)

(61)

= F (βT −1(b)). (62)

Given that the bidder reached stage two, the bidder wins if he beats the
winner of the second group given he got there,

φ2 ◦ F ◦ βT −1(b) = Prob
(

b > βT
(
v

(N)
1

) ∣∣∣∣ b > βT
(
v

(N−1)
1

) )
(63)

=
F

(N−1)
1

(
βT −1(b)

)
F

(N)
1

(
βT −1(b)

)
F

(N−1)
1 (βT −1(b))

(64)

= F
(N)
1

(
βT −1(b)

)
. (65)

As mentioned before, we have mT (b) = F
(2N)
1

(
βT −1(b)

)
b. Then the utility

is given by

uT (vi, b|b∗) = F
(2N−1)
1

(
βT −1(b)

) (
v − b

)
+ F

(2N−1)
1

(
βT −1(b)

) (
1 − F

(N−1)
1

(
βT −1(b∗)

))
ηgvi

+ F
(2N−1)
1

(
βT −1(b)

) (
1 − F

(N)
1

(
βT −1(b∗)

))
ηgvi

+
(
1 − F

(N−1)
1

(
βT −1(b)

))
F

(2N−1)
1

(
βT −1(b∗)

)
(−ηgλgvi)

+
(
F

(N−1)
1

(
βT −1(b)

)
− F

(2N−1)
1

(
βT −1(b)

))
F

(N)
1

(
βT −1(b∗)

)
(−ηgλgvi).

(66)
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We are interested in finding the equilibrium bidding function for this multi-
stage auction. Our equilibrium concept is UPE, this implies that the first-
order condition is given by⎛

⎝∂uT (vi, b|b∗)
∂b

⎞
⎠
∣∣∣∣∣∣
b∗=βT (vi)

!= 0. (67)

We have
∂

∂b
uT (vi, b|b∗)

∣∣∣∣
b∗=βT (vi)

= f
(2N−1)
1

(
βT −1(b)

) (
v − b

) 1
βT ′(βT −1(b))

− F
(2N−1)
1

(
βT −1(b)

)
+ f

(2N−1)
1

(
βT −1(b)

) (
1 − F

(N−1)
1 (vi)

)
ηgvi

1
βT ′(βT −1(b))

+ f
(2N−1)
1

(
βT −1(b)

) (
1 − F

(N)
1 (vi)

)
ηgvi

1
βT ′(βT −1(b))

+ f
(N−1)
1

(
βT −1(b)

)
F

(2N−1)
1 (vi) ηgλgvi

1
βT ′(βT −1(b))

− f
(N−1)
1

(
βT −1(b)

)
F

(N)
1 (vi) ηgλgvi

1
βT ′(βT −1(b))

+ f
(2N−1)
1

(
βT −1(b)

)
F

(N)
1 (vi) ηgλgvi

1
βT ′(βT −1(b)) .

(68)

In equilibrium it holds that b = βT (vi). The resulting ordinary differential
equation for βT admits a closed-form solution,

βT (vi) = 1
F

(2N−1)
1 (vi)

∫ vi

0
s

⎡
⎣f

(2N−1)
1 (s)

+ ηgf
(2N−1)
1 (s)

(
2 − F

(N−1)
1 (s) − F

(N)
1 (s)

)

+ ηgλg

⎛
⎝f

(N−1)
1 (s)F (2N−1)

1 (s)

− f
(N−1)
1 (s)F (N)

1 (s)

+ f
(2N−1)
1 (s)F (N)

1 (s)
⎞
⎠
⎤
⎦ds.

(69)

For βT (vi) ≥ βF P (vi) to hold for all vi, a sufficient condition is that we
can rank the arguments of the integrals. As a reminder, βF P (vi) is given by

βF P (vi) = 1
F1(vi)

∫ vi

0
sf1(s)

(
1 + ηg

(
1 − F1(s)

)
+ ηgλgF1(s)

)
ds, (70)
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with F1 = F
(2N−1)
1 and f1 = f

(2N−1)
1 . Note that the first term stemming

from the standard preferences equilibrium bidding function is identical in
both bidding functions. What is left are the gain-loss utility terms. This
means it has to hold that

ηgf
(2N−1)
1 (s)

(
2 − F

(N−1)
1 (s) − F

(N)
1 (s)

)
−ηgf

(2N−1)
1 (s)

(
1 − F1(s)

)

+ηgλg

⎛
⎝f

(N−1)
1 (s)F (2N−1)

1 (s) − f
(N−1)
1 (s)F (N)

1 (s)

+f
(2N−1)
1 (s)F (N)

1 (s)
⎞
⎠

−ηgλgηgf
(2N−1)
1 (s)F1(s)

!≥ 0.

(71)

Note that all terms, except the third one, include f
(2N−1)
1 (s) = (2N −

1)F 2N−2(s)f(s). Using the definition of the first-order statistic density for
distribution functions, we have

f
(N−1)
1 (s)F (2N−1)

1 (s) = (N − 1)F N−2(s)f(s)F 2N−1(s) (72)

= N − 1
2N − 1(2N − 1)F 2N−2(s)f(s)F N−1 (73)

= N − 1
2N − 1f

(2N−1)
1 (s)F (N−1)

1 . (74)

Similarly, we can write the third term as

f
(N−1)
1 (s)F (2N−1)

1 (s) − f
(N−1)
1 (s)F (N)

1 (s) + f
(2N−1)
1 (s)F (N)

1 (s) (75)

= f
(2N−1)
1 (s)

⎛
⎝ N − 1

2N − 1F
(N−1)
1 (s) − N − 1

2N − 1 + F
(N)
1 (s)

⎞
⎠. (76)
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With this, (71) simplifies to

(λg − 1)F (N)
1 (s)

���������(
1 − F

(N−1)
1 (s)

)
−
⎛
⎝ N − 1

2N − 1λg − 1
⎞
⎠
���������(

1 − F
(N−1)
1 (s)

) !≥ 0

(77)

⇔ (λg − 1)F (N)
1 (s) − N − 1

2N − 1λg + 1
!≥ 0

(78)

⇒ N − 1
2N − 1λg − 1

!≤ 0

(79)

⇔ λg
!≤ 2N − 1

N − 1 .

(80)

To prove the corollary, we define

γOS(s) = s
(

1 + ηg
(
1 − F1(s)

)
+ ηgλgF1(s)

)
. (81)

Note that γOS is given by the argument of the integral of βF P . Similarly,
define γT as the argument of the integral of βT . Note that we have shown
under which conditions it holds that γOS(s) ≤ γT (s). It is straightfor-
ward to compute that in the case of the second-price auction payment rule,
bidding functions are given by

βSP (v) = γOS(v) (82)
βT (v) = γT (v). (83)

In the case of the all-pay auction, the bidding functions are given by

βSP (v) =
∫ v

0
γOS(s)f1(s)ds (84)

βT (v) =
∫ v

0
γT (s)f1(s)ds. (85)

Combining the results from this section concludes the proof to the corollary.
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Proof of Proposition 5. Again, we consider the first-price auction payment
rule. We derive the equilibrium bidding function for the tournament with
an odd number of bidders in a similar way as for an even number of bidders.

With proposition 1, we can assume bidders bid the same in every stage.
Assume the other bidders bid according to an increasing, absolutely contin-
uous bidding function βT . In the group with N bidders, a bidder advances
if he beats his N − 1 paired opponents. This yields

φ1 ◦ F = F N−1. (86)

Given that the bidder reached stage two, the bidder wins if he beats the
winner of the second group with N + 1 bidders, given he got there,

φ2 ◦ F ◦ βT −1(b) = F
(N+1)
1

(
βT −1(b)

)
. (87)

In the group with N +1 bidders, a bidder advances if he beats his N paired
opponents. This yields

φ1 ◦ F = F N . (88)

Given that the bidder reached stage two, the bidder wins if he beats the
winner of the second group with N bidders, given he got there,

φ2 ◦ F ◦ βT −1(b) = F
(N)
1

(
βT −1(b)

)
. (89)
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Again we have mT (b) = F
(2N)
1

(
βT −1(b)

)
b. Then the utility is given by

uT (vi, b|b∗) = F
(2N)
1

(
βT −1(b)

) (
v − b

)

+1
2

⎡
⎣F

(2N)
1

(
βT −1(b)

) (
1 − F

(N−1)
1

(
βT −1(b∗)

))
ηgvi

+ F
(2N)
1

(
βT −1(b)

) (
1 − F

(N+1)
1

(
βT −1(b∗)

))
ηgvi

+
(
1 − F

(N−1)
1

(
βT −1(b)

))
F

(2N)
1

(
βT −1(b∗)

)
(−ηgλgvi)

+ F
(N−1)
1

(
βT −1(b)

)
F

(N+1)
1

(
βT −1(b∗)

)
(−ηgλgvi)

− F
(2N)
1

(
βT −1(b)

)
F

(N+1)
1

(
βT −1(b∗)

)
(−ηgλgvi)

⎤
⎦

+1
2

⎡
⎣F

(2N)
1

(
βT −1(b)

) (
1 − F

(N)
1

(
βT −1(b∗)

))
ηgvi

+ F
(2N)
1

(
βT −1(b)

) (
1 − F

(N)
1

(
βT −1(b∗)

))
ηgvi

+
(
1 − F

(N)
1

(
βT −1(b)

))
F

(2N)
1

(
βT −1(b∗)

)
(−ηgλgvi)

+ F
(N)
1

(
βT −1(b)

)
F

(N)
1

(
βT −1(b∗)

)
(−ηgλgvi)

− F
(2N)
1

(
βT −1(b)

)
F

(N)
1

(
βT −1(b∗)

)
(−ηgλgvi)

⎤
⎦.

(90)

The bracketed expression starting in the second line accounts for the case
the bidder is sorted into the N -bidder group, the bracketed expression start-
ing in the seventh line accounts for the case the bidder is sorted into the
N + 1-bidder group. We are interested in finding the equilibrium bidding
function for this multi-stage auction. Our equilibrium concept is UPE, this
implies that the first-order condition is given by⎛

⎝∂uT (vi, b|b∗)
∂b

⎞
⎠
∣∣∣∣∣∣
b∗=βT (vi)

!= 0. (91)
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Leaving out the arguments of the functions for the sake of readability, we
have

βT ′(βT −1) · ∂

∂b
uT (vi, b|b∗)

∣∣∣∣
b∗=βT (vi)

= f
(2N)
1

(
v − b

)
− F

(2N−1)
1 βT ′(βT −1)

+1
2

⎡
⎣f

(2N)
1

(
1 − F

(N−1)
1

)
ηgvi + f

(2N)
1

(
1 − F

(N+1)
1

)
ηgvi

+ f
(N−1)
1 F

(2N)
1 ηgλgvi −

(
f

(N−1)
1 − f

(2N)
1

)
F

(N+1)
1 ηgλgvi

⎤
⎦

+1
2

⎡
⎣f

(2N)
1

(
1 − F

(N)
1

)
ηgvi + f

(2N)
1

(
1 − F

(N)
1

)
ηgvi

+ f
(N)
1 F

(2N)
1 ηgλgvi −

(
f

(N)
1 − f

(2N)
1

)
F

(N)
1 ηgλgvi

⎤
⎦.

(92)
In equilibrium it holds that b = βT (vi). The resulting ordinary differential
equation for βT admits a closed form solution,

βT (vi) = 1
F

(2N)
1 (vi)

∫ vi

0
s

⎡
⎣f

(2N)
1 (s)

+ ηg

2 f
(2N)
1 (s)

(
4 − F

(N−1)
1 (s) − F

(N+1)
1 (s) − 2F

(N)
1 (s)

)

+ ηgλg

2

⎛
⎝f

(N−1)
1 (s)F (2N)

1 (s) + f
(N)
1 (s)F (2N)

1 (s)

−
(
f

(N−1)
1 (s) − f

(2N)
1 (s)

)
F

(N+1)
1 (s)

−
(
f

(N)
1 (s) − f

(2N)
1 (s)

)
F

(N)
1 (s)

⎞
⎠
⎤
⎦ds.

(93)

Again, as a sufficient condition we want to show that we can rank the
arguments of the integrals. The equilibrium bidding function of the first-
price auction is now given by

βF P (vi) = 1
F

(2N)
1 (vi)

∫ vi

0
sf

(2N)
1 (s)

(
1 + ηg

(
1 − F

(2N)
1 (s)

)
+ ηgλgF

(2N)
1 (s)

)
ds.

(94)
As before, the first term stemming from the standard preferences equilib-
rium bidding function is identical in both bidding functions. What is left
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are the gain-loss utility terms. This means it has to hold that,
ηg

2 f
(2N)
1 (s)

(
4 − F

(N−1)
1 (s) − F

(N+1)
1 (s) − 2F

(N)
1 (s)

)
−ηgf

(2N)
1 (s)

(
1 − F

(2N)
1 (s)

)

+ηgλg

2

⎡
⎣f

(N−1)
1 (s)F (2N)

1 (s) + f
(N)
1 (s)F (2N)

1 (s)

−
(
f

(N−1)
1 (s) − f

(2N)
1 (s)

)
F

(N+1)
1 (s)

−
(
f

(N)
1 (s) − f

(2N)
1 (s)

)
F

(N)
1 (s)

⎤
⎦

−ηgλgηgf
(2N)
1 (s)F (2N)

1 (s)
!≥ 0.

(95)

Note that all terms, except the third one, include f
(2N)
1 (s) = 2NF 2N(s)f(s).

Using the definition of the first-order statistic density for distribution func-
tions and leaving the arguments of the functions out, we can write the third
term as

f
(N−1)
1 F

(2N)
1 + f

(N)
1 F

(2N)
1 −

(
f

(N−1)
1 − f

(2N)
1

)
F

(N+1)
1

−
(
f

(N)
1 − f

(2N)
1

)
F

(N)
1

= f
(2N)
1

⎛
⎝N − 1

2N
F

(N−1)
1 +1

2F
(N)
1 − N − 1

2N
+ F

(N+1)
1 − 1

2 + F
(N)
1

⎞
⎠.

(96)

This inequality can be solved analytically for three bidders and has to be
solved numerically for more than three bidders. For three bidders the in-
equality simplifies to

1
2 − F + 1

2F 2 + λg
(

− 1
4 + 3

4F − 1
2F 2

)
!

> 0. (97)

Since only F appears, but not its argument, we can solve the inequality
without inverting F . The extremum of the left-hand side is attained at
F = 3λ−4

4(λ−1) , but since the coefficient of the F 2-terms is given by 1
2(1 − λ),

this is a maximum. This means that the minimum for valid valued of F is
at F = 0 or F = 1. For F = 1, the left-hand side is always equal to zero.
For F = 0, we have

2 − λ

4
!

> 0. (98)
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N 1 2 3 4 5 6
Total bidders 3 5 7 9 11 13

λcrit 2.0 2.6484 2.3995 2.2856 2.2222 2.1818

4N
2N−1 4.0 2.6667 2.4000 2.2857 2.2222 2.1818

Table 2.1: Critical λg values for different number of bidders.

This is fulfilled for all λ ≤ 2. For N > 1, meaning 5, 7, 9 . . . bidders, an
analytic solution is not tractable. The inequality can however be solved
numerically. The results can be found in Table 2.1, the code to compute
the critical lambdas can be found in Appendix 2.6.

From the proof of the case with an even number of bidders, one might
expect that the critical λg-values are given by the expression for an even
number of bidders plus half a bidder per group in expectation,

2(N + 1
2) − 1

N + 1
2 − 1 = 4N

2N − 1 . (99)

While this expression closely approximates the critical λgs for more than
four bidders, the actual λg-values are somewhat smaller than this, as can
be seen in Table 2.1. This is due to the fact that the order statistics for the
N + 1- and N -bidder groups depend non-linearly on the number of bidders.

The corollary is proven the exact same way as in the case for an even
number of bidders.

Proof of Proposition 6. The minimal critical λg is given by λg = 2. To-
gether with Proposition 4 and Proposition 5, this means that for N ≥ 3
bidders, an auctioneer is always better off if she conducts a tournament
instead of the corresponding one-stage mechanism.

Note that we derived the critical λg-values such that every type bids
higher in the tournament than in the corresponding one-stage mechanism.
If the auctioneer is solely interested in expected revenue, then the critical
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λg-values are significantly higher but depend on the distribution function
and generally need to be determined numerically.

An exception is the case for N = 4 bidders and the uniform distribution.
Here, the difference between the expected payment in tournament vs the
corresponding one-stage mechanism is given by

E

[
mT − mF P

]
= 1

840ηg(λg + 27). (100)

This expression is strictly positive for all admissible λg and ηg, meaning
that the tournament always yields higher revenues than the corresponding
one-stage mechanism in this setting. The same result can be derived for
a total of three bidders in the case of uniformly distributed values. For
N > 4, the critical λg-values have to be determined numerically, even for
the uniform distribution.

2.4.4 OPTIMAL EFFICIENT TWO-STAGE MECHANISM

We have already shown that the tournament poses a strict improvement
over one-stage mechanisms if the auctioneer is facing loss averse bidders.
Restricting ourselves to two stages, one might ask what the optimal efficient
mechanism looks like. In this section we derive and discuss the optimal
efficient two-stage mechanism.

Proposition 7. Assume bidders are loss averse in the good domain and
assume a general two-stage mechanism

(
μ,M

)
that induces ϕ1(s) = φ1 ◦

F (s) and ϕ2(s) = φ2 ◦ F (s). Then the expected payment of a bidder with
value v is given by

mT S(v) =
∫ v

0
s
(

f1(s) + ηgf1(s)
[
2 − ϕ1(s) − ϕ2(s)

]
+ ηgλg

[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

])
ds.

(101)

Proof. We start the proof by choosing the first-price payment rule. We will
then use Proposition 2 to show that we can choose any standard payment
rule after we have derived the two-stage structure M. With proposition 1,
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we can assume bidders bid the same in every stage. Assume the other bid-
ders bid according to an increasing, absolutely continuous bidding function
βT S. Note that

ϕ1
(
βT S−1(b)

)
ϕ2

(
βT S−1(b)

)
= F1

(
βT S−1(b)

)
(102)

Then the utility is given by

uT S(vi, b|b∗) = F1
(
βT S−1(b)

)
(vi − b)

+ F1
(
βT S−1(b)

)⎛⎝1 − ϕ1
(
βT S−1(b∗)

)⎞⎠ηgv

+ F1
(
βT S−1(b)

)⎛⎝1 − ϕ2
(
βT S−1(b∗)

)⎞⎠ηgv

+
⎛
⎝1 − ϕ1

(
βT S−1(b)

)⎞⎠F1
(
βT S−1(b∗)

)
ηgλ(−v)

+
⎛
⎝ϕ1

(
βT S−1(b)

)
− F1

(
βT S−1(b)

)⎞⎠ϕ2
(
βT S−1(b∗)

)
ηgλ(−v).

(103)

The bidding function βT S constitutes a UPE if and only if the utility func-
tion uT S

i (vi, b|βT S(vi)) attains its maximum at b = βT S(vi) for all vi. Differ-
entiating uT S with respect to b and plugging in the equilibrium condition
b = βF P (vi) yields the ODE

F1 (s) βT S(s)+f1 (s) βT S′(s) = s

⎛
⎝f1(s) + ηgf1(s)

[
2 − ϕ1(s) − ϕ2(s)

]

+ ηgλg
[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

]⎞⎠.

(104)
It follows that

βT S(v) = 1
F1(v)

∫ v

0
s

⎛
⎝f1(s) + ηgf1(s)

[
2 − ϕ1(s) − ϕ2(s)

]

+ ηgλg
[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

]⎞⎠ds

(105)
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and

mT S(v) =
∫ v

0
s

⎛
⎝f1(s) + ηgf1(s)

[
2 − ϕ1(s) − ϕ2(s)

]

+ ηgλg
[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

]⎞⎠ds.

(106)

Proposition 8. Assume bidders are loss averse in the good domain and
assume a general two-stage mechanism that induces ϕ1(s) = φ1 ◦ F (s) and
ϕ2(s) = φ2 ◦ F (s). Then the expected revenue for the auctioneer is given by

E[R] = N
∫ 1

0
s(1 − F (s))

(
f1(s) + ηgf1(s)

[
2 − ϕ1(s) − ϕ2(s)

]
+ ηgλg

[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

])
ds.

(107)

Proof. Again, assume the other bidders bid according to an increasing,
absolutely continuous bidding function βT S and use the interim results of
Proposition 7. Define

Γ(s) =s
(

f1(s) + ηgf1(s)
[
2 − ϕ1(s) − ϕ2(s)

]
+ ηgλg

[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

])
.

(108)

The expected revenue is given by

E[R] = N
∫ 1

0

∫ v

0
Γ(s)ds f(v)dv. (109)

Partial integration yields

∫ 1

0

∫ v

0
Γ(s)ds f(v)dv =

⎡
⎣ ∫ v

0
Γ(s)ds F (v)

⎤
⎦v=1

v=0

−
∫ 1

0
Γ(s) F (s)ds (110)

=
∫ 1

0
Γ(s)ds −

∫ 1

0
Γ(s) F (s)ds (111)

=
∫ 1

0

(
1 − F (s)

)
Γ(s)ds. (112)



2. PROCUREMENT DESIGN WITH LOSS AVERSE BIDDERS 42

Proposition 9 (Optimal two-stage structure). Assume bidders are loss
averse in the good domain. Then the optimal two-stage structure is given
by

Stage 1: With probability 1
λ

bidders get to the second stage with probability 1.
With probability λ−1

λ
only the strongest bidder advances to stage 2 and

has thus won the auction.

Stage 2: If bidders got to stage 2 with probability 1, the strongest bidder wins
the auction.

Bidders are left unaware whether the branch in which everyone advances
to the second stage was selected or if the auction took place in the first stage.
The only information they receive is whether they have reached stage two
or not and after the second stage, whether they have won the auction or
not. The interpretation here is that this mechanism induces just the right
amount of risk, a bidder in stage 2 does not know whether he beat his
opponents already or if the “real” auction is yet to come. This takes care of
lower types who do not need to insure themselves against their expectations
by bidding even lower, while it encourages strong bidders to bid even higher.

Proof. The proof is structured in two parts. In a first step we optimize
the expected revenue functional for general distribution functions and ϕ1

and ϕ2. In the second step, we show that the optimal ϕi-functions are
equivalent to admissible ϕi, meaning that they satisfy the conditions from
section 2.3.2. Assume the other bidders bid according to an increasing,
absolutely continuous bidding function βT S and use the interim results of
Proposition 7.

We have

E[R] = N
∫ 1

0

(
1 − F (s)

)
Γ(s)ds =: N

∫ 1

0
J(s, ϕ1, ϕ′

1, ϕ2)ds, (113)

with

Γ(s) =s
(

f1(s) + ηgf1(s)
[
2 − ϕ1(s) − ϕ2(s)

]
+ ηgλg

[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

])
.

(114)
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We need to find ϕ1 and ϕ2 that maximize the functional
∫ 1

0
J(s, ϕ1, ϕ′

1, ϕ2)ds. (115)

A candidate for the optimal ϕi is given by solving the constrained Euler-
Lagrange equations for our functional. We will nonetheless begin with the
unconstrained Euler-Lagrange equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂ϕ1
J(s, ϕ1, ϕ′

1, ϕ2) − d

ds

⎛
⎝ ∂

∂ϕ
′
1
J(s, ϕ1, ϕ′

1, ϕ2)
⎞
⎠ = 0

∂

∂ϕ2
J(s, ϕ1, ϕ′

1, ϕ2) − d

ds

⎛
⎝ ∂

∂ϕ
′
2
J(s, ϕ1, ϕ′

1, ϕ2)
⎞
⎠ = 0

ϕ1(1) = 1
ϕ2(1) = 1.

(116)

The initial values of the ϕi are the only natural choice: For reasons of ef-
ficiency, the highest possible type should always advance with certainty.
The probability that two bidders are of the highest possible type is zero.
Prescribing values for ϕi(0) could lead to distortions since it might be op-
timal to have an atom on 0. Note that J does not depend on ϕ′

2, so the
Euler-Lagrange equations simplify to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂ϕ1
J(s, ϕ1, ϕ′

1, ϕ2) − d

ds

⎛
⎝ ∂

∂ϕ
′
1
J(s, ϕ1, ϕ′

1, ϕ2)
⎞
⎠ = 0 (a1)

∂

∂ϕ2
J(s, ϕ1, ϕ′

1, ϕ2) = 0 (b1)

ϕ1(1) = 1 (a2)
ϕ2(1) = 1. (b2)

(117)

This system of ordinary differential equations is closed-form solvable for
general distribution functions. We begin with the initial value problem
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(b1), (a2), (b2).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s(1 − F (s))
[

− ηgf1(s) + ηgλg
(
f1(s) − ϕ′

1(s)
)]

= 0 (b1)

ϕ1(1) = 1 (b2)
ϕ2(1) = 1 (b2)

(118)

⇔
⎧⎪⎨
⎪⎩

ϕ′
1(s) = f1(s)(λg − 1)

λ
(b1)

ϕ1(1) = 1 (b2)
(119)

⇒ ϕ1(s) = 1 + F1(s)(λg − 1)
λg

. (120)

For the second initial value problem (a1), (a2), (b2), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(1 − F (s))
[

− ηgf1(s) − ηgλg
(
f1(s) − ϕ′

2(s)
)]

−ηgλg
(

1 − F (s) − sf(s)
)(

F1(s) − ϕ2(s)
)

= 0 (b1)

ϕ1(1) = 1. (b2)
ϕ2(1) = 1. (b2)

(121)

Note that the ODE only depends on ϕ2, as was the case with (b1), (a2), (b2)
and ϕ1. After rearranging and applying the product rule, we arrive at

ϕ2(s) = F1(s) − 1
s(1 − F (s))

∫ 1

s

y(1 − F (y))f1(y)
λg

dy. (122)

This means that for the unconstrained optimization problem, the solution
is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕ1(s) = 1 + F1(s)(λg − 1)

λg

ϕ2(s) = F1(s) − 1
s(1 − F (s))

∫ 1

s

y(1 − F (y))f1(y)
λg

dy.
(123)

Note that ϕ1(s)ϕs(s) 	= F1(s), meaning that these do not satisfy the con-
ditions from section 2.3.2. We now show that choosing ϕ1(s) and ϕ2(s)
according to the solutions of the unconstrained Euler-Lagrange equations
is equivalent to choosing ϕ2(s) = F1(s)

ϕ1(s) .
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Choosing ϕ1(s) according to (123), the expressions of
∫ 1

0 J(s, ϕ1, ϕ′
1, ϕ2)ds

that involve ϕ2(s) are given by
∫ 1

0
s(1 − F (s))ηgϕ2(s)

[
− f1(s) + λgf1(s) − λgϕ′

1(s)
]
ds (124)

=
∫ 1

0
s(1 − F (s))ηgϕ2(s)

[
f1(s)(λg − 1) −��λg f1(s)(λg − 1)

��λg

]
ds (125)

= 0. (126)

This implies that once we have chosen ϕ1(s) as the solution of the un-
constrained optimization problem and therefore independent of ϕ2(s), it
does not matter which ϕ2(s) we choose, as long as it remains measurable.
Therefore our final ϕi are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1(s) = 1 + F1(s)(λg − 1)
λg

ϕ2(s) = λgF1(s)
1 + F1(s)(λg − 1) .

(127)

This two-stage structure optimizes the revenue for the seller. We can
even show that bids of all types are higher than in the one-stage variants
of the mechanism and not just overall revenue.

Proposition 10. Assume bidders are loss averse in the good domain and
consider either the first-price auction, the second-price auction or the all-
pay auction. Equilibrium bids in the optimal two-stage structure are higher
than in the corresponding one-stage mechanism.

Proof. First note that replacing the ϕi in Γ by (127) yields

Γ(s) =s
(

f1(s) + ηgf1(s)
[
2 − ϕ1(s) − ϕ2(s)

]
+ ηgλg

[
F1(s)ϕ′

1(s) + f1(s)ϕ2(s) − ϕ′
1(s)ϕ2(s)

])

= sf1(s)
⎛
⎝1 + ηg

(
2 − 1

λg

)
+ ηg (λg − 1)2

λ
F1(s)

⎞
⎠.

(128)
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Define

γOS(s) = s
(

1 + ηg
(
1 − F1(s)

)
+ ηgλgF1(s)

)
(129)

γOpt(s) = s

⎛
⎝1 + ηg

(
2 − 1

λg

)
+ ηg (λg − 1)2

λ
F1(s)

⎞
⎠. (130)

We have

γOpt(s)
!≥ γOS(s) (131)

⇔ 2 − 1
λg

+ (λg − 1)2

λ
F1(s)

!≥ 1 − F1(s) + λgF1(s) (132)

⇔ F1(s) − 1
!≤ 0, (133)

which is always true. This means that the ranking holds for the first-price
auction. One can easily compute that in the case of the second-price auction
as underlying mechanism, bidding functions are given by

βSP (v) = γOS(v) (134)
βOpt(v) = γOpt(v). (135)

In the case of the all-pay auction, the bidding functions are given by

βSP (v) =
∫ v

0
γOS(s)f1(s)ds (136)

βOpt(v) =
∫ v

0
γOpt(s)f1(s)ds. (137)

This concludes the proof.
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2.5 CONCLUSION

In this paper we investigate how a buyer should design her procurement
mechanism when bidders are loss averse. Loss aversion implies that the
willingness to pay of a bidder depends on the probability he assigns to
winning the auction. We show that a simple two-stage mechanism, the
tournament, outperforms any one-stage mechanism revenue-wise if bidders
are not too loss averse. As a robustness-check, we show that the buyer’s
revenue is not dependent on the payment rule she implements. Once the
structure of the multi-stage mechanism is fixed, a revenue equivalence prin-
ciple holds. Finally, we derive the optimal, efficient two-stage mechanism.
This mechanism is, in contrast to the tournament, dependent on the de-
gree of loss aversion of the bidders and therefore difficult to implement in
real-life procurement.

Our analysis opens the door to further research. On the one hand, it
might be interesting to investigate whether a buyer could further improve
her revenue if she were to implement a three-stage (or even more stages)
mechanism. Numerical simulations suggest that the answer is no, but the
problem quickly becomes untractable even for a fixed cost distribution like
the uniform distribution. On the other hand, one could expand the model
to include bidders that are loss averse in the money domain, too. The
revenue equivalence principle that we derived fails in that case, as shown
by Eisenhuth and Ewers (2012). In their paper, they show that the all-
pay auction yields higher revenues than the first-price auction in a setting
similar to ours. This implies that the optimal mechanism for two or more
stages will depend on the payment rule the buyer implements, making the
optimization problem a lot harder.
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2.6 APPENDIX

MATHEMATICA CODE

The code takes a starting value an then shoots λ-values until the minimum
of the function Func crosses 0.
Func
N�, l�� :�1 � x^�N � 1�  2 � x^�N � 1�  2 � x^�N� � x^�2 N� � l � ��N � 1� � �4 N�� � x^�N � 1� �

x^N  4 � ��N � 1� � �4 N�� � 1 � 4 � x^�N � 1�  2 � x^N  2 � x^�2 N�
a � 1;
step � 0.0001;
temp � 0;
startvalue � 2.153;
While
a 	 0,
sumsteps � temp;
a � FindMinimum
Func
7, startvalue � sumsteps�, 0 � x � .3�, x�

1��;
temp � sumsteps � step;
If
a � 0,
Print
"lambda�" �	 ToString
NumberForm
startvalue � sumsteps � step, 10�����





chapter 3

AUCTION EXPERIMENTS WITH A REAL-EFFORT
TASK

Abstract

We propose a novel design for auction experiments based on effort
and money. Participants bid a number of sliders in order to win a
monetary prize. If successful, a participant has to solve a real-effort
task, namely the slider task. The design allows us two capture two-
dimensional prospect theory and common value effects. In a second
step, we test our design in the laboratory. We find evidence for both
loss-aversion and common values.

3.1 MOTIVATION

When investigating auctions in the laboratory, economic researchers usually
rely on induced values experiments. This means that each participant is as-
signed a value v for a (hypothetical) good. A participant’s payoff associated
with getting the good is given by the difference between his induced value
v and the price p he has to pay for the good. Induced values experiments
grant the researcher a lot of control, which is an advantage when for example
hypotheses about a specific bidding function are tested in the laboratory.
However, compared to real world auctions, this design choice abstracts from
two well-known phenomena that both can potentially limit the external va-
lidity of results from the lab: Two-dimensional outcome evaluation and
common values. We propose and test a simple experimental design based
on money and effort that can account for both these phenomena.

In the vast majority of economic research, agents are assumed to evalu-
ate their outcomes in one dimension. Indeed, assuming a one-dimensional
outcome evaluation is without loss of generality if agents have standard pref-
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erences, in the sense that ‘[they] maximize a global utility function over life-
time consumption U(x|s)’ (DellaVigna, 2009). However, Lange and Ratan
(2010) show that theoretical predictions differ between one-dimensional (in-
duced values auctions) and two-dimensional settings (real good auctions),
e.g., if agents are loss averse. Furthermore, Abeler et al. (2011) provide ex-
perimental evidence for a multidimensional evaluation in a setting in which
participants perform a real effort task and earn money.

Consider the following situation: You discover that a certain good you
always wanted to own is offered in an eBay auction. A day before the
auction ends you have determined your willingness to pay and bid exactly
that amount. If you have standard preferences and a private valuation for
the good, your bid should be equal your willingness to pay. After submitting
your bid, you learn that you are currently the highest bidder, which stays
the case until one minute before the auction ends. Then you learn that
another person outbid you.

If agents have standard preferences, nothing else would happen. Bidding
above your predefined private valuation cannot be rationalized by any one-
dimensional, standard-preferences model, in which your payoff is simply
v − p. The same applies to induced values experiments, where paying more
than the induced valuation would lead to negative payoffs.

However, if you compare outcomes to expected outcomes in multiple
dimensions, you might increase your bid. One minute prior to the end of
the auction, your expected outcome is “I will receive the good” in the good
dimension, and “I will spend the second-highest bid” in the money dimen-
sion. Losing the auction in the last second would imply a large deviation in
the good dimension. As a result, you’d rather deviate a little in the money
dimension and bid above your valuation.

Kahneman et al. (1990) showed experimentally that the valuations for
goods are not exogenous. In line with them, we argue that the willingness
to pay for a good depends on the selling mechanism. When you believe
the probability of winning a good is high, you become more attached to it,
which in turn leads to a higher willingness to pay.
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In addition to two-dimensional outcome evaluation, in most real-world
auctions bidders are confronted with some common value component in the
auctioned good, meaning that there is information on my own valuation
in the bids of my competitors. Take again procurement as an example:
Suppliers usually have some uncertainty about their actual cost. This might
stem from future commodity prices, wages, or changes in the specification
after the sourcing process. Hence a very low bid of competitors might mean
that I overestimated these future costs. Even when consumption goods are
auctioned off, some common value component might be present. Other
bidders might e.g. have better (or different) information on the availability
and prices of the good in other outlets. In addition, there is a large strand of
literature showing that common value auctions lead to different predictions
than pure private value auctions (for an extensive review, see Kagel and
Levin (2002)).

To summarize, induced values experiments do not account for two-
dimensional outcome evaluation and common value components. Since both
these phenomena are present in most real world auctions, and both are im-
portant drivers of bidding behaviour, one has to be very cautious when
giving practitioners advice based on induced values experiments.

We propose a novel design to increase external validity of auction exper-
iments, based on effort and money. In a first step, bidders can familiarize
themselves with the real-effort task, the slider task, in an incentivized test
round lasting four minutes. In that time, bidders solve as many slider tasks
as possible and are remunerated per solved unit. We then let subjects bid
on a prize of 10 Euros. We asked participants to submit bids that express
the number of slider tasks they would maximally solve in case of winning
the auction, i.e. how much effort they are willing to spend in order to re-
ceive 10 Euros. We implemented a between-subjects design with a varying
number of bidders between treatments (N = 2 vs. N = 8). Moreover,
we chose the second-price auction. It has the desirable property that with
standard preferences, the dominant strategy is independent of beliefs about
the number of bidders, their valuations, or their strategies. In our design, if
subjects were one-dimensional utility maximizers with a purely private valu-



3. AUCTION EXPERIMENTS WITH A REAL-EFFORT TASK 52

ation, they would determine the level of effort they are maximally willing to
spend for 10 Euros, and bid exactly that amount. Based on standard theory
and experiments with induced values, we would thus expect no difference
in behavior between the treatments. However, as we show in Chapter 2,
theoretical predictions differ when agents act according to two-dimensional
prospect theory. Bids are higher when the number of bidders is low, as
a high winning probability leads to an increased attachment to the prize
of 10 Euros. The same applies if there is a common value component in
conducting the slider task. When bidding against seven bidders, winning is
’bad news’ with a higher probability since seven other bidders estimated a
lower common value component.

In line with the reference dependent two-dimensional and common value
predictions, we observed significantly higher bids for N = 2. On average,
subjects were willing to solve roughly 30% more slider tasks when they had
one instead of seven opponents. This result is robust to regressions where we
control for demographic characteristics as well as participants’ test scores,
i.e. the amount of sliders they were able to solve in an incentivized test
round. We hence argue that (in contrast to induced value experiments) our
design enables researchers to increase external validity of auction experi-
ments. Moreover, as pointed out by Gill and Prowse (2019), the slider task
allows experimenters to control for participants’ abilities, while at the same
time having the advantages of real effort tasks.

In addition, we conducted three treatments to investigate the main
driver behind our results: To isolate two-dimensional loss aversion from
common values, we let bidders bid against computerized competitors. Evi-
dence from these treatments is mixed: On the one hand, we did not observe
a significant difference in bids depending on the ex-ante winning probability
of bidders bidding against computers. On the other hand, we didn’t ob-
serve a significant difference between bids against computerized and human
competitors, either. While the former result is in favor of common values
as main driver, the latter opposes this hypothesis.

Our results are in line with Rosato and Tymula (2019), who investigate
bidding behavior in second-price auctions. They auction off several real
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goods sequentially and find that subjects bid more if they face less compe-
tition and hence have a higher probability of getting the good. Banerji and
Gupta (2014), find that participants bid less aggressively when they faced
stronger computerized competitors. They employ a BDM mechanism in
which participants bid against a computerized opponent in a second-price
auction.

Notably, compared to real good auctions of Rosato and Tymula (2019),
our design has three important advantages: Firstly, we do not observe a
concentration of bids at very low values, which is often the case when real
goods are sold. Students might have the expectation to leave a laboratory
experiment with a certain amount of money, not with a good. Secondly,
due to the incentivized test round our design enables researchers to control
for valuations of participants, i.e. a participant’s pace in solving slider
tasks. Thirdly, we argue that experiments with the proposed design are
less expensive than real good experiments. In real good experiments all
participants are usually endowed with a certain amount of money which
at the same time serves as upper bound for bids. In order to allow all
participants to express their true willingness to pay for certain goods, these
upper bounds need to be quite high. Alternatively, experimenters have to
use goods with low values, which in turn aggravates the problem of bid
concentration around zero. Using our design, one does not have to define
and endow all participants with that artificial upper bound.

Finally, due to remarkable analogies to practices in industry, especially
in procurement, our design adds additional realism to the existing exper-
imental literature. When bidding on a procurement contract, suppliers
usually have a good idea of their true costs, based on internal calculations
and estimations on future developments, e.g. in commodity markets. Fur-
thermore, they tend to have some beliefs about their competitors, i.e. a
supplier might know whether they are a high- or a low-cost supplier. Yet
they do not know their exact costs, as well as the exact distribution that
their competitors draw their costs from. The same holds true for partici-
pants in our experiment. They know how the task works and how long it
would take them to fulfill a certain amount of tasks given that they keep
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their initial pace. They also might have an idea on how well they perform,
or how high their opportunity costs of staying in the lab are compared to
other participants. Yet they are faced with similar uncertainties as suppli-
ers in procurement: On the one hand, there are uncertainties with regards
to the actual costs of effort (resulting from changes in pace or an unex-
pected evolvement of marginal pain in each slider task) and on the other
hand, there is no common distribution function that all bidders draw their
valuation from.

3.2 THEORY

3.2.1 MODEL

In this section, we introduce the formal model. We consider n ≥ 2 bidders
competing for one indivisible good in a second-price auction. The value vi

of bidder i ∈ {1, . . . , n} for the good is privately drawn from a distribution
F , vi

iid.∼ F [0, 1]. F is assumed to have a differentiable density f which is
strictly positive on its support [0, 1]. Moreover, f is common knowledge.
Analogous to the standard setting, where the value of the good is measured
in monetary units, i.e. in the dimension bidders submit their bids, we
assume that the value is measured in slider tasks. Hence bidders draw the
amount of slider tasks they are willing to solve in order to receive 10 Euros.

Bids are placed after learning the value for the good. The bidder sub-
mitting the highest bid is awarded the good and has to pay the second
highest bid.

Bidders are assumed to be loss-averse following Kőszegi and Rabin
(2006). We assume two distinct dimensions of loss aversion, a currency
domain c in which bidders submit their bids, and a prize domain g repre-
senting the item the winner of the auction receives. Furthermore, we assume
bidders to be narrow-bracketers, following the definition of von Wangenheim
(2019). This means that the bidders’ gain-loss utility is evaluated separately
for each dimension. Summarizing, for outcome x = (xc, xg), valuation v for
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the good, and reference consumptions rc and rm, agent’s utility is given by

u(x
∣∣∣rg, rc) = xc + vxg + μg(vxg − vrg) + μc(xc − rc).

Following Kőszegi and Rabin (2006), we assume μi to be a piecewise linear
function with a kink at zero,

μg(y) =

⎧⎪⎨
⎪⎩

ηgy if y ≥ 0

λgηgy if y < 0,
μc(y) =

⎧⎪⎨
⎪⎩

ηcy if y ≥ 0

λcηcy if y < 0.

The μi denote the gain-loss utilities in the respective dimension, with ηi >

0, λi > 1 and ηi(λi − 1) ≤ 1 for i ∈ {g, c}. The interpretation is that
bidders perceive, in addition to their classical utility, a feeling of gain or
loss, depending on the deviation from their reference consumption.

The reference point in our paper is assumed to be determined by rational
expectations following Kőszegi and Rabin (2006).

3.2.2 EQUILIBRIUM CONCEPT

We follow Kőszegi and Rabin (2006)’s and von Wangenheim (2019)’s equi-
librium concept under uncertainty, according to which bidders form their
strategy after learning their valuation. We apply the concept of unaccli-
mated personal equilibria, which is, as argued by Kőszegi and Rabin (2006),
the appropriate concept in auction settings. Fixing the opponents’ strate-
gies, let H(b, vi) denote i’s payoff distribution given his draw vi from a
continuous distribution F (v) and his bid b. A bid b∗ constitutes an unac-
climated personal equilibrium (UPE), if for all b

U [H(b∗, vi)
∣∣∣H(b∗, vi)] ≥ U [H(b, vi)

∣∣∣H(b∗, vi)].

That means, given your reference point is determined by the payoff distri-
bution resulting from an (exogenous) bid b∗, it is a best response to bid
b∗.

3.2.3 ANALYSIS

It is well-known that if agents are loss averse only in the prize domain,
bidders in second-price auctions bid more aggressively when the number
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of bidders is low. Yet, in our setting it is arguable that loss aversion in
the currency domain, i.e. the amount of slider tasks participants have to
solve, also plays a role. Still it seems very plausible that students in the
lab are more concerned about receiving money than solving slider tasks,
and hence face a higher degree of loss aversion in the prize domain. In
this section, we hence derive and analyze bidding behavior in second-price
auctions, showing that when agents are more loss averse in the price domain
the result above still holds true.

Assume all bidders except bidder i bid according to a strictly increasing
bidding function β. Let G(x) := F n−1(x). The utility of bidder with value
v, who is loss averse in both the good and the currency domain, bids b and
has a reference point of b∗, is given by

ui(vi, bi|b∗) = G
(

β−1(bi)
)

v −
∫ bi

0
sβ(s)dG

(
β−1(s)

)
+ G

(
β−1(bi)

)(
1 − G

(
β−1(b∗)

))
μg(v − 0)

+
(

1 − G
(

β−1(bi)
))

G
(

β−1(b∗)
)

μg(0 − v)

+
∫ b

0

⎛
⎝∫ b∗

0
μc(t − s)dG

(
β−1(t)

)

+
∫ ∞

b∗
μc(0 − s)dG

(
β−1(t)

)⎞⎠dG
(
β−1(s)

)

+
∫ ∞

b

⎛
⎝∫ b∗

0
μc(t − 0)dG

(
β−1(t)

)

+
∫ ∞

b∗
μc(0 − 0)dG

(
β−1(t)

)⎞⎠dG
(
β−1(s)

)

(138)
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As shown by von Wangenheim (2019), the equilibrium bidding function for
n bidders is given by

βII
n (v) =1 + ηg + ηg (λg − 1) F n−1(v)

1 + ηcλc

v

+
∫ v

0

⎡
⎣ηc (λc − 1) (1 + ηg + ηg (λg − 1) F n−1(s))

(1 + ηcλc)2 s

exp
⎛
⎝ηc (λc − 1)

1 + ηcλc

(
F n−1(v) − F n−1(s)

)⎞⎠
⎤
⎦dF (s).

(139)

Theorem 1. If bidders are loss averse in both the currency (subscript c)
and the prize domain (subscript g), and it holds that bidders are more loss
averse in the prize domain in the sense that

λg ≥ λc
ηc(1 + ηg)
ηg(1 + ηc)

+ ηg − ηc

ηg(1 + ηc)
, (140)

then βII
n (v) > βII

m (v) for all v and n < m. Sufficient conditions are given
by ⎧⎪⎨

⎪⎩
Λg ≥ Λc if ηg ≤ ηc

λg ≥ λc if ηg > ηc.
(141)

Proof. We need to show that

Δ(v; n, m) := βII
n (v) − βII

m (v) > 0 (142)

if m > n. Define

a(x, y; n, m) := exp (c̃ (xn − yn)) − exp (c̃ (xm − ym)) (143)
b(x, y; n, m) := yn exp (c̃ (xn − yn)) − ym exp (c̃ (xm − ym)) , (144)

where
c̃ := ηc (λc − 1)

1 + ηcλc

. (145)
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With this, we have

Δ(v; n, m) =ηg (λg − 1) v

1 + ηcλc

(
F n−1(v) − F m−1(v)

)

+
∫ v

0

ηc (λc − 1)
(1 + ηcλc)2

⎡
⎣(1 + ηg)a (F (v), F (s); n, m)

+ Λgb (F (v), F (s); n, m)
⎤
⎦sdF (s)

>
∫ v

0

ηc (λc − 1)
(1 + ηcλc)2

⎡
⎣(1 + ηg)a (F (v), F (s); n, m)

+ Λgb (F (v), F (s); n, m)
⎤
⎦sdF (s).

(146)

A sufficient condition for Δ(v; n, m) > 0 to hold is that

(1 + ηg)a (F (v), F (s); n, m) + Λgb (F (v), F (s); n, m) > 0. (147)

Following the definitions of a and b and because F and exp are strictly
increasing, we have, for s ≤ v

(1 + ηg)a (F (v), F (s); n, m) + Λgb (F (v), F (s); n, m) !
> 0 (148)

⇔ (1 + ηg)a (v, s; n, m) + Λgb (v, s; n, m) !
> 0 (149)

⇔ (1 + ηg)a (1, s; n, m) + Λgb (1, s; n, m) !
> 0. (150)

Note that a (1, s; n, m) ≤ 0 and b (1, s; n, m) ≥ 0 for all s. Also note that
b (1, s; n, m) > −a (1, s; n, m) for all s ∈ (0, 1). This means there exist
q̃ ∈ (0, ∞) such that q̃ a (1, s; n, m) + b (1, s; n, m) = 0 for one or multiple
s ∈ (0, 1). Let q = min{q̃}. Then

q a (1, s; n, m) + b (1, s; n, m) ≥ 0 (151)

for all s ∈ [0, 1]. Let s̃ ∈ (0, 1) be such that

q a (1, s̃; n, m) + b (1, s̃; n, m) = 0. (152)

For inequality (147) to hold, it then needs to hold that
1 + ηg

Λg

= 1 + ηg

ηg(λg − 1)
!

< q. (153)
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Rearranging yields

λg

!
> λ∗

g(ηg, q) := 1 + ηg + ηgq

ηgq
. (154)

We have that
∂

∂q
λ∗

g(ηg, q) = −1 + ηg

(ηgq)2 < 0. (155)

This means if q increases, the inequality for (154) admits smaller λg. The
“worst case” to check is therefore the smallest q.

Note that
∂

∂s
q = ∂

∂s

−b (1, s; n, m)
a (1, s; n, m) < 0. (156)

Since s̃ ∈ (0, 1), and q strictly decreasing in s, we need to check the limit
case s → 0,

lim
s→1

q = 1
c̃

− 1 = 1 + ηc

ηc(λc − 1) =: q∗. (157)

We can now plug this q∗ into λ∗
g from (154), yielding

λ∗
g(ηg, q∗) = λc

ηc(1 + ηg)
ηg(1 + ηc)

+ ηg − ηc

ηg(1 + ηc)
. (158)

Concerning the sufficient conditions, let us first consider the case ηg ≤ ηc.
Assume it holds that Λc < Λg, meaning ηc(λc − 1) < ηg(λg − 1). With
λi > 1 and 0 < ηi < 1 for i ∈ {g, m}, this is equivalent to

λg > λc
ηc

ηg

+ ηg − ηc

ηg

. (159)

For ηg ≤ ηc, we have that

λc
ηc

ηg

+ ηg − ηc

ηg

− λc
ηc(1 + ηg)
ηg(1 + ηc)

− ηg − ηc

ηg(1 + ηc)

=
(

λc − 1
)

ηc(ηc − ηg)
ηg(1 + ηc)

≥ 0.

(160)

Therefore it follows that if ηg ≤ ηc and Λg ≥ Λc, then λg ≥ λ∗
g. For the

second case where ηg ≥ ηc, we have that

λc > λc
ηc(1 + ηg)
ηg(1 + ηc)

+ ηg − ηc

ηg(1 + ηc)
, (161)

so λg > λc is sufficient in the case ηg ≥ ηc.
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3.3 EXPERIMENT

In this section, we introduce our experimental design and state our hy-
potheses for the experiment.

3.3.1 DESIGN

In each experimental treatment all subjects participated in a second-price
sealed-bid auction. In this auction bidders competed for a fixed payment
of 10 Euros and bid how many slider tasks they were willing to solve. The
bidder who placed the highest offer won. The number of sliders the winner
had to solve was equal to the second highest bid.

After the auction took place the winner had a total of 90 minutes to solve
the slider task. Only if the winner managed to solve the required number
of sliders the winner received 10 Euros, otherwise the winner received no
payment.1 Losing bidders left the laboratory before winners started to solve
the slider tasks.

The auction stage was preceded by a first stage in which participants
familiarized with the slider task. In this stage participants had 4 minutes
to solve slider tasks. For each slider solved they received 4 Cents. At this
point in time they did not yet receive the instructions for the auction stage.

We conducted a total of 5 different treatments. We had 2 treatments in
which all bidders were human, in one of the treatments we conducted an
auction with 2 bidders (H2) and in the other treatment we conducted an
auction with 8 bidders (H8). In our 3 treatments with computerized com-
petitors we had one treatment with one computerized competitor (C2000

2 )
and one treatment with 7 computerized competitors (C2000

8 ). In both treat-
ments the bids of the computerized competitors were uniformly distributed
between 0 and 2000. In the remaining treatment (C4000

2 ) participants bid
against a single computerized competitor with bids uniformly distributed
between 0 and 4000.

Screenshots of the experiment can be found in the appendix.
1All winners managed to solve the required numbers of sliders.
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3.3.2 ORGANIZATION

The experiments were conducted in the Cologne Laboratory for Economic
Research (CLER) at the University of Cologne, Germany. Using the re-
cruiting system ORSEE (Greiner, 2015), we invited a random sample of the
CLER’s subject pool via email. Our participants were mostly undergrad-
uate students from the University of Cologne, with different beackground
with regards to their major. The whole experiment was computerized using
the programming environment oTree (Chen et al., 2016). Upon their arrival
at the laboratory, participants were randomly assigned to one of two rooms
to either the two-bidder or the eight-bidder treatment. Both treatments
were conducted simultaneously and are described in section 4.2. Partici-
pants were grouped into cohorts of two and eight respectively. Moreover,
participants were seated in visually isolated cubicles and read instructions
on their screens (see Appendix 5.5.1) describing the rules of the game.

In total, 112 subjects participated in the experiment, with 48 subjects
participating in the two-bidder second-price auctions and 64 subjects par-
ticipating in the eight-bidder second-price auctions. An overview on par-
ticipants and their demographics can be found in Table 1.

Payoffs were stated in EUR. Participants were paid out in private after
the completion of the experiment. All 112 participants were paid their total
net earnings. The average payoff for the entire experiment was 9.59 EUR
corresponding to approx. 10.84 USD at the time of the payment.

In order to prevent selection effects as much as possible, we conducted
the treatments we primarily want to compare in parallel. Participants were
invited to the same experimental session and randomly assigned to one of
two treatments that ran simultaneously. Table 3.1 displays which treat-
ments were conducted in parallel.

3.3.3 HYPOTHESES

Standard theory predicts that bidders behave the same in both treatments.
That is, agents determine their ”valuation”, i.e. the amount of slider tasks
they are maximally willing to solve in order to receive 10 EUR, and then bid
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Table 3.1: Experimental sessions

Sessions Treatment 1 Treatment 2
1 H2 H8
2 C2000

2 C2000
8

3 C2000
2 C4000

2

Table 3.2: Descriptive statistics and summary

H2 H8 C2000
2 C2000

8 C4000
2

Age 24.75 26.25 24 23 24.5
Share of females 0.33 0.32 0.51 0.47 0.41
Lab experience 15 − 20 10 − 15 15 − 20 10 − 15 15 − 20
Observations 48 64 84 47 41

Test score 51.9 50.4 55.1 54.9 63.8
Bid 736 551 784 707 934

exactly that amount. Bidding one’s true valuation is a dominant strategy
in the second-price auction with private values, independent of risk-aversion
or beliefs about others, and therefore the bids should not depend on the
number of bidders present in the auction. This leads to the following hy-
pothesis:

Hypothesis 1. We observe no difference in the bids between the treatments.

When agents are loss-averse, a relatively high ex ante winning proba-
bility leads to a relatively strong attachement to the prize of 10 Euros. A
strong attachement to the prize increases agents’ willingness to work and
hence lets them bid more aggressively as compared to a situation where the
ex ante winning probability is low. This leads to the following alternative
hypthesis:

Hypothesis 2. We observe higher bids in the “2 bidder” treatments than
in the “8 bidder” treatments.
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3.3.4 SUMMARY

A summary of our data can be found in Table 3.2. We denote partic-
ipants experienced if they have participated in more than 10 laboratory
experiments. Test score denotes how many sliders the participant solved
during the initial, incentivized four-minute test. Participants do not exhibit
a significant difference in this score between the two treatments. Bids are
distributed between 10 and 4000.

3.3.5 RESULTS

We start the analysis of our experiment by comparing the bidding behavior
in the treatments that were conducted in parallel. This is most similar to the
analyses conducted by Banerji and Gupta (2014) and Rosato and Tymula
(2019). Afterwards, we will also take into consideration data generated
in the first part of the experiment, in which participants got used to the
slider-task, and demographic information. Since computerized bidders in
treatments C2000

2 and C2000
8 could not bid above 2000, we censored bids at

2000. Six out of 284 bids were larger than 2000.

Result 1. When two human bidders competed (H2) they bid more aggres-
sively than in the case in which eight human bidders (H8) competed (Mann-
Whitney-U test, p = 0.0329).

This result is in line with Rosato and Tymula (2019) who find that
increasing the number of bidders decreases average bids. Possible explana-
tions are loss-averse bidders or a common-value effect. While the former
explanation predicts a similar effect in treatments with computerized com-
petitors, meaning that lower winning probability implies lower bids, the lat-
ter explanation implies that no effect should be observable when comparing
treatments in which participants bid against computerized competitors.

Result 2. Bids do not differ between C2000
2 and C2000

8 as well as between
C2000

2 and C4000
2 (MW, p = 0.4597 and p = 0.3590)2.

2Significance does not change if we consider all C2000
2 sessions.
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Figure 3.1: Cumulative bid distributions

(a) Human competitors (b) Computerized competitors

Looking at the treatments with computerized competitors, we do not
find further evidence for loss-aversion. This result is in contrast to Banerji
and Gupta (2014) who find that participants bid less aggressively when
they faced stronger computerized competitors. Figure 3.1 displays the cu-
mulative bid distributions for the different treatments.

Table 3.3 compares bidding behavior in between treatments with human
and computerized competitors. Sessions in which competitors were human
serve as a baseline. Computer is a dummy variable that is equal to one if
the competitors were computerized and zero otherwise. Similarly, Female
is a dummy variable indicating the gender of the participant. Age indicates
participants’ age and Lab experience how often a subject participated in
lab experiments before. The regression shows that the performance in the
first part of the experiment is a good predictor of the bid. At the same
time we find no evidence that it makes a difference for participants whether
they bid against a human or a computerized competitor. In case of a strong
common value effect, one would expect a significant difference given that
the computer bid is uninformative. Furthermore, demographics have no
significant influence on bids.

Table 3.4 compares bidding behavior in treatments with human competi-
tors taking into account the performance in the first part of the experiment
and demographics. The treatment H2 serves as a baseline and H8 is a
dummy variable, being equal to one for the H8 treatment and zero other-
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Table 3.3: Regression comparing bidding against human and computerized
competitors

(I) (II)
Bid Bid

Test score 18.97∗∗∗ 19.28∗∗∗

(11.91) (11.58)
Computer 59.29 44.93

(1.09) (0.81)
Female -9.380

(-0.17)
Age 6.330

(1.92)
Lab experience -7.648

(-0.89)
Constant -319.8∗∗∗ -452.3∗∗

(-3.50) (-3.18)
Observations 284 2753

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.0001

wise. The analysis confirms the former result, showing that it is not driven
by different abilities or demographic factors.

Table 3.5 compares bidding behavior in treatments with computerized
competitors taking into account the performance in the first part of the
experiment and demographics. The C2000

2 treatment serves as a baseline
and C4000

2 and C2000
8 are dummy variables indicating the treatment. The

analysis confirms the former result, showing that the result is not driven by
different abilities or demographic factors. However, it suggests that older
participants bid more aggressively.
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Table 3.4: Regression comparing in treatments with human competitors

(I) (II)
Bid Bid

Test score 14.77∗∗∗ 14.56∗∗∗

(4.05) (3.49)
H8 -205.1∗ -201.9∗

(-2.35) (-2.19)
Female -82.95

(-0.82)
Age 2.941

(0.47)
Lab experience -2.218

(-0.14)
Constant 216.9 218.3

(0.90) (0.63)
Observations 112 1104

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.0001
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Table 3.5: Regression comparing in treatments with human competitors

(I) (II)
Bid Bid

Test score 19.44∗∗∗ 19.70∗∗∗

(11.15) (10.98)
C2000

8 80.50 103.0
(0.99) (1.25)

C4000
2 -73.27 -50.58

(-0.96) (-0.65)
Female 10.23

(0.15)
Age 8.337∗

(2.15)
Lab experience -16.55

(-1.60)
Constant -286.2∗∗ -461.2∗∗

(-2.69) (-2.90)
Observations 172 1655

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.0001
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3.4 CONCLUSION

In this paper we propose and test a novel design for auction experiments. In
our design, bidders submit bids in terms of slider tasks they are willing to
solve in order to receive a certain amount of money. By using different di-
mensions for bids and good, our design can be exploited to increase external
validity of auction experiments. Notably, our design can capture two prac-
tically important phenomena that induced values auctions abstract from:
Two-dimensional outcome evaluation and common value components. As
auction theorists have shown, the existence of either of these two phenom-
ena can lead to qualitatively different predictions as compared to predic-
tions based on induced values experiments (for the former see e.g. Lange
and Ratan (2010) and for the latter see e.g. Kagel and Levin (2002)).

Testing our design, we conduct second-price auctions with a varying
number of bidders. If agents are either loss-averse and evaluate their out-
come in multiple dimensions, or if the auctioned good has a common value
component, theory predicts that bids in second-price auctions are decreas-
ing in the number of bidders. This has already been confirmed experi-
mentally Banerji and Gupta (2014) or Rosato and Tymula (2019) in real
good experiments. By conducting additional treatments where agents bid
against computers, we investigate if our results are mainly driven by two-
dimensional loss aversion or common values (which do not play a role when
playing against a computer). However, based on these treatments we can-
not confirm nor reject common values as a driver behind our results. On
the one hand, bids do not differ significantly if the ex-ante probability of
winning against a computer is varied, which is in favor of common values
as main driver. On the other hand, bids do also not differ significantly be-
tween treatments with computerized and human competitors, contradicting
the hypothesis of common values as main driver. We however argue that, by
manipulating information about the slider task and other bidders, scholars
can exploit our design to choose the extent to which common values play a
role.
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Our contribution is hence that when conducting auction experiments,
the design choice should depend on the relevant environment that is inves-
tigated. If agents are bidding on objects that have only monetary value to
them (e.g. for resale or pure investments), induced values experiments are
a natural and appropriate choice. Yet, whenever outcomes are evaluated in
multiple dimensions or the auctioned good has a common value component,
our design or, if applicable, real good experiments should be preferred.
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3.5 APPENDIX

3.5.1 INSTRUCTIONS

H2 Treatment

Figure 3.2: Instructions page 1 and 2 for the H2 treatment
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Figure 3.3: Instructions pages 3 and 4 for the H2 reatment
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H8 Treatment

Figure 3.4: Instructions page 1 and 2 for the H2 treatment
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Figure 3.5: Instructions page 3 for the H8 reatment
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C2000
2 Treatment

Figure 3.6: Instructions page 1 and 2 for the C2000
2 treatment
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Figure 3.7: Instructions page 3 for the C2000
2 reatment



3. AUCTION EXPERIMENTS WITH A REAL-EFFORT TASK 76

C2000
8 Treatment

Figure 3.8: Instructions page 1 and 2 for the C2000
8 treatment
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Figure 3.9: Instructions page 3 for the C2000
8 reatment
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C4000
2 Treatment

Figure 3.10: Instructions page 1 and 2 for the C4000
2 treatment
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Figure 3.11: Instructions page 3 for the C4000
2 reatment





chapter 4

PREFERENCES AND DECISION SUPPORT IN
COMPETITIVE BIDDING

Abstract

We examine bidding behavior in first-price sealed-bid and Dutch
auctions, which are strategically equivalent under standard prefer-
ences. We investigate whether the empirical breakdown of this equiv-
alence is due to (non-standard) preferences or due to the different
complexity of the two formats (i.e., a different level of mathemat-
ical/individual sophistication needed to derive the optimal bidding
strategy). We first elicit measures of individual preferences and then
manipulate the degree of complexity by offering various levels of
decision support. Our results show that the equivalence of the two
auction formats only breaks down in the absence of decision support.
This indicates that the empirical breakdown is caused by differing
complexity between the two formats rather than non-standard pref-
erences.

4.1 INTRODUCTION

The first-price sealed-bid auction (FSPBA) and the Dutch auction (DA) are
two of the most frequently used auction formats. In an FPSBA, bidders
simultaneously submit “sealed” bids to the seller and the highest bidder re-
ceives the object and pays his bid. In a DA, the seller starts at a high initial
ask price and gradually decreases the ask price until the first bidder stops
the auction, receives the item, and pays the stop price. With slight varia-
tions, both the FPSBA and the DA generate billions of dollars in revenue
each year. Governments and private firms frequently use the FPSBA for
procurement in construction and to subcontract with suppliers. Variants of
the FPSBA are also used to organize online labor markets for freelancers

80
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(Hong et al., 2016). The DA is traditionally used to sell flowers in the
Netherlands and, for example, the annual sales of the seven Dutch flower
auctions exceeded 2.9 billion dollars in 1996 (Kambil and Van Heck, 1998).
Federal banks and firms use variants of the DA to sell securities and refi-
nance credit.1 Furthermore, the DA can be found on fish and fresh-produce
markets (e.g., Cassady, 1967).

With regard to the actual implementation of auctions, offline auctions as
a mechanism to buy and sell goods is not a new phenomenon, but the spe-
cific use of online auctions has experienced tremendous growth in the new
media era (Hennig-Thurau et al., 2010).2 According to Ariely and Simonson
(2003), the popularity of online auctions is due to the following three par-
ticular features: First, online auctions overcome geographical limitations,
such that people from all over the world have the opportunity to submit
their bids in any auction. Second, electronic auctions on the Internet allow
for more flexibility among sellers and bidders, because the duration of an
auction can be several days (or even weeks), and there is the possibility of
asynchronous bidding. Third, auctions can be organized at substantially
lower costs, which translates into lower commission fees and hence higher
participation rates among sellers and buyers.
The increase in the use of Internet-based auctions has led to a rise in the
demand for expert services. Indeed, there is an increasing number of con-
sulting firms specializing in auctions (e.g., Market Design Inc.) and major
economic consulting companies offer services regarding auctions and bid-
ding (e.g., The Brattle Group, NERA). These services typically include all
aspects relevant for setting up and participating in auctions (e.g., bid track-
ing, bidding strategy, auction rules and design, training, provision of input
to regulators). Moreover, the design of decision support systems (DSS)
has also attracted considerable interest (e.g., Hass et al., 2013; Park et al.,
2010; Kayande et al., 2009; Todd and Benbasat, 1991). For example, several

1Note, however, that these examples typically auction off multiple units and that the
auctions are then modified such that they usually do not discriminate between different
bidders but apply a uniform-pricing rule.

2See also Haruvy and Popkowski Leszczyc (2009), who provide an overview of the
implications of economically relevant aspects that are characteristic of Internet auctions.
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patents have been filed for (automated) bid-advising systems that account
for the auction structure and risk attitudes of rival bidders based on histori-
cal data among other things (see, e.g., Guler et al., 2002, 2003, 2009; Zhang
and Guler, 2013). At the same time, technological advances and the use
of Internet auctions means that relevant information can be provided more
easily and faster in the course of an online auction. We take these obser-
vations as a starting point to address the implications of decision support
systems in different formats of (online) auctions.3

Theory suggests that the FPSBA and the DA yield the same revenue as
both formats are strategically equivalent. However, this strong theoretical
result breaks down empirically. Previous research suggests three possible
explanations: opportunity costs (Carare and Rothkopf, 2005; Katok and
Kwasnica, 2007), preferences (Weber, 1982; Nakajima, 2011; Lange and
Ratan, 2010; Belica and Ehrhart, 2013; Ehrhart and Ott, 2014), and com-
plexity of the decision (Cox et al., 1983). We analyze the role of preferences
and complexity while controlling for opportunity costs. Our results indi-
cate that the non-equivalence is driven by the difference in complexity of
competitive bidding in the two auction formats rather than by individual
(non-standard) preferences.

The empirical breakdown of this equivalence is a robust observation in
experimental settings both in the laboratory and in the field. However, the
direction of the deviation is non-conclusive. On the one hand, Coppinger
et al. (1980) and Cox et al. (1982) find that the FPSBA yields higher revenue
than the DA in a controlled laboratory setting. On the other hand, in a
field experiment on an Internet auction platform, Lucking-Reiley (1999)
finds that the DA generates higher revenue than the FPSBA.

Differences in opportunity costs can explain these differences. In a DA,
bidders have an incentive to accept a high price and stop the auction early,
because they have to frequently monitor the price clock or even have to
physically return to the auction site to check for updates in prices as long

3Adomavicius et al. (2013) and Bichler et al. (2017) who analyze the role of decision
support systems in combinatorial auctions.
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as the auction is running. Such costs do not occur in the (static) FPSBA
which ends immediately after the (simultaneous) submission of bids.

Carare and Rothkopf (2005) show theoretically that such increased op-
portunity costs increase the optimal bid. In a DA, Cox et al. (1983) and
Katok and Kwasnica (2007) analyze the trade-off between opportunity costs
and additional utility from suspense, i.e., from a joy of gambling. Both arti-
cles provide evidence that increasing opportunity costs by increasing payoffs
or by decreasing the clock speed, respectively, increases bids in a DA.4 In
contrast to their approach, our goal is to assess the predictive power of differ-
ent preference-based theories for observed bidding and to analyze the effect
of complexity. Hence, we eliminate confounding differences in opportunity
costs by holding the time per auction format and thus the opportunity costs
from participation constant. In addition, we hold the action set, i.e., the
set of feasible bids, constant across the two formats which allows a direct
comparison of the two auctions.

In the absence of opportunity costs, the strategic-equivalence result rests
on the assumption that bidders have standard preferences, i.e., they derive
utility only from realized personal payoffs. In addition, the utility function
is global in the sense that the effect of wealth changes does not depend
on whether such changes occur in the gain or loss domain or whether they
are certain or generated by a lottery. With regard to the departures from
standard preferences, we study expectations-based reference-dependent and
Allais-type preferences. We focus on these two specifications, because they
are frequently used to explain decision making under uncertainty.5

Under reference dependence, the bidder compares gains and losses in
wealth relative to a reference point (Kahneman and Tversky, 1979). In this
comparison, the bidder is assumed to be loss averse and puts more weight

4In contrast to the observation by Katok and Kwasnica (2007), there is anecdotal
evidence from the Dutch flower auctions that faster clock speeds result in higher prices
(Kambil and Van Heck, 1998).

5Reference dependence as proposed by Kahneman and Tversky (1979) is the most
cited theory on risky decision making (Kim et al., 2006). Allais-type preferences are an
early critique of expected utility theory (EUT) (Allais, 1953) and are empirically very
robust in explaining deviations from predictions under standard preferences (Kahneman
and Tversky, 1979; Camerer, 1989; Weber, 2007).
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on negative deviations from this reference point (losses) than on equiva-
lent positive deviations (gains). Loss aversion contradicts the global-utility
assumption of standard preferences because the bidder considers changes
in wealth with respect to a local reference point. The specification of the
reference point is subject to debate. Kőszegi and Rabin (2006, KR) pro-
pose expectations-based reference dependence, i.e., the reference point is
stochastic and given by the rational expectations that the individual holds
over the outcomes of a risky decision. In the following, we will denote
expectations-based reference-dependent preferences as KR preferences.

Individuals with Allais-type (AT) preferences prefer outcomes that are
generated with certainty to the same outcomes that are generated by a
risky lottery (e.g., Andreoni and Sprenger, 2010). This difference is most
prevalent in the Allais paradox (Allais, 1953). Here, subjects prefer a de-
generate lottery over a risky one with a higher expected value but reverse
their choice if both lotteries are monotonically transformed and become
both risky (the so-called common-ratio effect, CRE). This reversal is in-
consistent with standard preferences as it violates the crucial independence
axiom of EUT (Savage, 1954; Anscombe and Aumann, 1963). According to
this axiom, decisions between lotteries should not depend on consequences
that do not differ between the lotteries.

We make use of data from a two-stage experiment in which we first elicit
the preferences of all subjects that participate in our experiment. In this
first stage, we utilize the procedure of Abdellaoui et al. (2007) and elicit
individual preferences in a fully non-parametric procedure, i.e., without
imposing any assumption on the functional form of utility. Furthermore
we measure to what extent participants exhibit Allais-type preferences by
utilizing a metric version of the CRE (e.g., Beattie and Loomes, 1997; Dean
and Ortoleva, 2014; Schmidt and Seidl, 2014).

Preference theories assume Bayesian rationality in the sense that bidders
derive and process probabilities correctly. However, bidding in auctions can
be a demanding problem. In deriving the optimal bid, the bidder faces a
trade-off between increasing his winning probability by submitting a higher
bid and increasing his winning profit by submitting a lower bid. Individual
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preferences determine the optimal bid that balances these diametric effects.
However, this optimization requires a certain level of mathematical sophis-
tication. It is thus possible that the observed differences between bidding
behavior is due to different levels of complexity of the two auction formats.
In other words, bidders can make mistakes, e.g., in deriving the winning
probability associated with their bid, and these mistakes might differ be-
tween the two formats.

We design a DSS to reduce the complexity and assist bidders in deriv-
ing the optimal bid that corresponds to their individual preferences. We
vary the auction format within-subjects and the level of decision support
between-subjects. Subjects either have no decision support (No DSS treat-
ment) or they have medium (Medium DSS treatment) or full support (Full
DSS treatment) to assist bidding. The decision support system is a com-
puterized overlay displaying additional information. Medium DSS shows
the winning probability whereas Full DSS additionally provides expected
profits. Although this information is redundant for fully rational decision
makers, it is non-trivial to derive and providing such information greatly
reduces the complexity of optimal bidding.6, 7

Our results highlight the role of decision support systems. In line with
the literature, we find significant differences between auction formats when
bidders do not receive decision support. However, differences vanish be-
tween participants once we provide decision support. This indicates that
the observed differences in bidding behavior between the FPSBA and the
DA are due to different levels of complexity rather than non-standard pref-

6As such, this is different, for instance, from setups in which bidders get information
which is not readily available and must be acquired at a cost (see, e.g., Gretschko and
Wambach, 2014, for a model with heterogenous prior information and Gretschko and
Rajko, 2015, for an experimental treatment), or in which bidding by rival bidders in
multi-object auctions conveys important information (see, e.g., Gretschko et al., 2014).

7Our implementation of decision support is primarily a mean to analyze the role of
complexity in competitive bidding, the design of such DSS is also of interest in itself.
Several patents have been filed for (automated) bid-advising systems that take into
account, for example, the auction structure and risk attitudes of rival bidders based on
historical data (see, e.g., Guler et al., 2002, 2003, 2009; Zhang and Guler, 2013). Our DSS
implementation resembles such automated bidding advice that estimates competitors’
bidding behavior in a given auction format.



4. PREFERENCES AND DECISION SUPPORT IN COMPETITIVE
BIDDING 86

erences. In addition, our tests show that bidding behavior strongly depends
on participants’ risk aversion. The influence of individual loss aversion and
Allais-type preferences is not significant and cannot explain differences in
bidding behavior. Our results thus highlight that from a consulting per-
spective, it seems to be more important to support decision makers in the
derivation of optimal bidding strategies than to focus on the choice of the
auction format.

The paper proceeds as follows. The next section introduces the model
environment and theoretically analyzes the effect of different preference
specifications on optimal bidding in the FPSBA and the DA. Section 4.3
presents our experimental design and our implementation of decision sup-
port. We report our results in Section 4.4. Section 4.5 concludes.

4.2 THEORY

In this section, we first describe the two auction mechanisms. We then
characterize the equilibria in both auction formats for standard preferences
(SP), Kőszegi-Rabin (KR) preferences, and Allais-type (AT) preferences.
We analyze the optimal bidding behavior of one bidder given a bidding
strategy of the competitor.

In both auction formats, two bidders compete for one indivisible item
and the highest bidder wins. Let P = {p1, . . . , pn} be a discrete price grid.
In the FPSBA, each bidder places a bid b ∈ P at which he is willing to
buy the item. In the DA, each bidder decides for every ask a ∈ P whether
to accept it or not. In the FPSBA, the price corresponds to the highest
bid, whereas in the DA, it corresponds to the highest accepted ask. The
winning bidder receives the item and pays the price. If the bidder does not
win the auction, he does not receive the item and does not pay anything.8

In both auction formats bidders face a trade-off between improving their
probability of winning and increasing their profit in case of winning.

To derive the equilibrium bidding strategy in the discrete FPSBA, we
follow Cai et al. (2010). For the dynamic course of the DA, we adopt the

8Ties are broken at random with equal probability to receive the item.
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modeling approach of Bose and Daripa (2009). In the DA, the seller starts
the auction with the highest ask pn. She then approaches each bidder
sequentially asking whether or not the bidder accepts that ask. Which
bidder is asked first is randomly determined at the beginning of each offer.
Each bidder has the same chance to be asked first. In case that the bidder
who is asked first rejects the offer, the seller offers the same ask to the other
bidder.

4.2.1 STANDARD PREFERENCES

The term standard preferences covers all preferences that are purely outcome-
based and only consider the own payoff. This means an individual has stan-
dard preferences if the utility function is global and only depends on one’s
own payoff DellaVigna (2009) .

Proposition 1 (Standard Preferences). The FPSBA and the DA are strate-
gically equivalent, which implies that they yield the same revenue (Vickrey,
1961).

The crucial observation to this result is that the information revealed
during the descending of the price clock in the DA does not change the
trade-off between a bidder’s winning probability and his profit in case of
winning. Suppose a bidder bids b = pk in an FPSBA. This bidder enters a
DA with the plan to accept the ask a = pk, because the ex-ante problem
is identical for the two formats. As the price clock is approaching pk, two
things may happen. First, the competitor accepts an ask greater than pk. In
this case, the auction ends and the bidder cannot react to this information.
Second, the price continues to fall which increases the probability to win.
However, the marginal trade-off stays the same. This is due to the fact that
a bidder derives his optimal bidding strategy under the assumption that he
has the highest valuation. Hence, the bidder sticks to his plan and waits
for the ask pk.
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4.2.2 EXPECTATIONS-BASED REFERENCE POINTS

In contrast to individuals with standard preferences, an individual with
reference-dependent preferences does not only care about his absolute pay-
off, but also compares the outcome to a reference point. Therefore, the
utility function of such a bidder consists of two parts. First, the term u(x)
corresponds to utility derived from payoff x as under standard preferences.
Second, the term n(x, r) corresponds to gain-loss utility that evaluates the
outcome x against a reference level r (Kahneman and Tversky, 1979). Fol-
lowing the approach of Kőszegi and Rabin (2006) the gain-loss utility is
defined piece-wise as

n(x, r) = μ (u(x) − u(r)) ,

where

μ(z) :=

⎧⎪⎨
⎪⎩

ηz if z > 0

ηλz if z ≤ 0.

Here η > 0 determines how important the relative component is compared
to the absolute payoff. Furthermore, λ represents the level of loss aversion
which weighs negative deviation from the reference point (losses) relative
to positive deviations (gains). If λ > 1, the bidder is loss averse, i.e., losses
hurt him more than equally sized gains please him. If λ = 1, the agent
is loss-neutral, and if λ < 1, the agent is gain-seeking. Total utility is the
sum of both parts and given by uKR(x, r) = u(x) + n(x, r). We follow the
literature and focus on the effect of loss aversion by assuming that utility
of payoff u(x) is linear. Hence, gain-loss utility n(x, r) is a two-piece linear
function.

Kőszegi and Rabin (2006) assume that the reference point is stochastic
and formed by the rational expectations of the bidder. They introduce the
concept of a personal equilibrium which requires that the bidder has ratio-
nal expectations about his own behavior and behaves consistently with his
plans. Specifically, they propose that the bidder evaluates each possible
outcome x under the winning probability Pr(x|b) against all other possi-
ble outcomes under this distribution. This modification has recently been
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successful in describing various empirical observations from laboratory en-
dowment effects to labor supply in the field (e.g., Sprenger, 2010; Ericson
and Fuster, 2011; Crawford and Meng, 2011).

Proposition 2 (Expectations-based reference point). A revenue ranking
of the FPSBA and the Dutch auction is not possible.

In the FPSBA, loss aversion implies that bidders want to reduce the
difference between the payoff in case of winning and in case of losing the
auction. As a consequence, subjects with a higher degree of loss aversion
place higher bids than less loss-averse subjects. In the FPSBA, there ex-
ists an almost everywhere unique optimal bidding strategy (Eisenhuth and
Ewers, 2012).

In contrast to the FPSBA, there might be several consistent bidding
strategies in the DA. For example, it may be optimal for a subject to ac-
cept a high offer p if it planned to do so, whereas it is optimal for the
same subject to wait for a smaller offer p′ if her initial plan was to ac-
cept only a small offer p′. Different plans induce different reference points
and thereby different optimal bidding strategies. Since several reasonable
reference points can exist in the DA, we do not get a unique bidding pre-
diction but a set of optimal bidding strategies. Applying a refinement and
identifying the bidding strategy with the highest expected utility might not
be possible as the optimality of a bidding strategy can change during the
dynamic course of the auction (Ehrhart and Ott, 2014).

As shown in the Appendix 4.6.2, it may well be the case that for a given
valuation the lowest optimal bid in the DA is lower than the optimal bid
in the FPA, whereas the highest optimal bid in the DA is higher than the
optimal bid in the FPA. As a consequence, a revenue ranking is not possible
in general.

4.2.3 ALLAIS-TYPE PREFERENCES

Allais-type preferences violate the independence (or substitution) axiom,
which is essential for EUT (Allais, 1953; Savage, 1954; Anscombe and Au-
mann, 1963). The independence axiom states that an individual who is
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indifferent between two lotteries should also be indifferent between these
lotteries if the probabilities of both lotteries are multiplied by ρ ∈ (0, 1].
That is, if one scales the probabilities of both lotteries by a common ra-
tio, the preference ordering is not affected under EUT. Grimm and Schmidt
(2000) show that this independence requirement is a necessary and sufficient
condition for strategic equivalence between the FPSBA and the DA.

Kahneman and Tversky (1979) report that subjects have a preference
for certainty, i.e., outcomes in a degenerate lottery. In their experiment,
a majority of individuals reveals that they prefer a degenerate lottery over
a risky one but reverse this choice if both lotteries are scaled by ρ such
that both now become risky. Thus, participants violate the independence
requirement. This so-called “Allais paradox” (Allais, 1953) is empirically
very robust, although reverse Allais-type preferences (i.e., a preference for
risky outcomes if a certain outcome is available) have also been observed
experimentally (Camerer, 1989; Weber, 2007).

Proposition 3 (Allais-type preferences). The DA yields higher revenue
than the FPSBA if bidders have Allais-type preferences. The FPSBA gen-
erates higher revenue if bidders have reverse Allais-type preferences (Weber,
1982; Nakajima, 2011).

The intuition is that the current price in the DA is augmented by a
psychological premium for certainty for individuals with Allais-type pref-
erences. This premium makes it more attractive to accept a high price in
the DA than in the FPSBA in which all bids imply uncertainty. In other
words, the DA offers a certain payoff in the given round against a risky
lottery (prices in future rounds), whereas the FPSBA only offers a risky
lottery.9

9We note that this overbidding only works given our organization of the DA, because
we resolve the order in which the seller approaches the two bidders at the beginning of
each period. If we had broken ties at random after each round, which is frequently done
in DA implementations, the current price would actually be risky as well and Allais-type
preferences would coincide with standard preferences.
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4.3 EXPERIMENT

In this section, we first introduce our experimental design and then review
previous research that examines the equivalence of the first-price sealed-bid
auction and the Dutch auction experimentally.

4.3.1 DESIGN

Each subject participated in 18 FPSBA and 18 DA. Each auction consists
of one participant and one bidding robot as bidders. The valuations of the
participant are drawn from the set {6, 10, 14, 18, 22, 26, 30, 34, 38} EUR. In
each format, every participant is assigned each valuation twice in order
to make participants’ bidding behavior as comparable as possible. The
bidding robot draws one price from P = {0, 1, . . . , 21} EUR according to
a uniform distribution. This realization is the robot’s bid in the FPSBA
and its stopping price in the DA. We use a bidding robot as the competitor
for three reasons. First, we do not want our results to be confounded
by other-regarding preferences that are not considered in any of the models
presented in Section 4.2. Second, we effectively reduce the strategic problem
to a decision problem by fixing the strategy of the competitor. This makes
it easier for subjects to focus on their optimal strategy by breaking the
dynamics of higher-order beliefs.10 Third, we are able to precisely calculate
the winning probability and the expected profit. The provision of this
information depends on the DSS treatment status.

Auction formats

In our experiment, we analyze the following two auction formats:

• FPSBA In the FPSBA, the computer screen informs the participants
about their valuation and features a testing area. In this area, par-
ticipants can explore the consequences of a particular bid on their

10Note that most work that analyzes strategic interaction in auctions assumes that
subjects’ preferences are common knowledge and that only valuations are private infor-
mation. However, one cannot ensure common knowledge in reality.
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profit and, depending on the DSS treatment, on the winning prob-
ability and the expected profit (see below). Participants are further
informed about the remaining time of the current round. Finally, they
enter their actual bid and submit this bid by pressing a button. After
submitting their bid, participants are immediately informed whether
they have won the auction and about the remaining time the current
auction lasts. When the round has timed out, a feedback screen in-
forms the subjects about their valuations, the winning bid, whether
or not they received the item, and their profit for the this round.

• DA In the DA, the computer screen informs participants about their
valuation and displays the current price, the time until the next price,
and the next price. As in the FPSBA, participants are informed about
their profit given both the current and the next price. Depending on
the DSS treatment, participants are also informed about the probabil-
ity to be offered the current price and the next price as well as the as-
sociated expected profits (see below). Finally, participants can accept
the current price by pressing a button. After either the participant or
the computer bidder has accepted the current price, participants are
immediately informed whether they have won the auction and about
the remaining time the current auction lasts. When the round has
timed out, participants receive the same feedback as in the FPSBA.

Decision support system

The theoretical analysis on the role of preferences in Section 4.2 highlights
the fact that deriving the optimal bid depends on the following aspects: (i)
the profit from winning with the chosen bid, vi−bi, (ii) the probability to win
with the chosen bid, Pr (win|bi), and (iii) the expected utility derived from
the combination of the former two. The latter depends on the individual
preferences whereas the former two are identical across all theories. Hence,
we design a DSS that assists the bidder by providing (i) the profit from
winning, (ii) the winning probability, and (iii) the expected profit which is
the product of (i) and (ii).
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Any deviation from bidding predictions can result from two sources: an
omitted preference specification or problems in deriving the optimal bid.
Our DSS allows us to disentangle the role of preferences from the impact
of a lack of mathematical sophistication (complexity). This is because in
the experiment, we fix the bidding strategy of the competitor and hence
reduce the strategic problem of finding mutual best responses to the prob-
lem of finding a one-sided best response (i.e., an optimization or decision
problem). We can thus objectively state expected profits and winning prob-
abilities that should help participants derive the bid that maximizes the
expected utility based on their actual preference specification. In other
words, we implement the DSS to analyze whether observed bids are due to
the underlying preferences or the complexity of the auction.

Specifically, the DSS varies between participants regarding the informa-
tion a bidder receives during an auction. There are three nested levels of
DSS: No, Medium, and Full DSS. In the FPSBA, the information is given
for the current test bid. In the DA, the information is given for both the
current and the next price. We vary the information content of the DSS
between participants. The information content in each condition is as fol-
lows:

• No DSS In the FPSBA, subjects see the profit if bid is successful
which is the profit their test bid would generate given that they won
the auction. In the DA, subjects see the profit at given price which is
the profit they would make if they accept the current price or if they
now decide to accept the next price.

• Medium DSS Subjects have the same information as in No DSS.
In addition, in the FPSBA, they also see the winning probability of
their test bid which is the probability of having a higher bid than
the competitor plus the probability of having the same bid and being
selected as winner by the tie-breaking rule. In the DA, subjects receive
the probability to be offered the given price for both the current and the
next price. The probability to receive the current price pk is trivially
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given by 1. However, the probability to be offered the next ask, H i
k,

is highly non-trivial to derive (see Section 4.6.2 for details).

• Full DSS Subjects have the same information as in Medium DSS.
In addition, in the FPSBA, they also see the expected profit of their
test bid. In the DA, subjects see the expected profit of the next price.
In the FPSBA, the expected profit is the product of the winning
probability and the profit if the bid is successful. In the DA, the
expected profit is the product of the probability to be offered the
given price and the profit at the given price.

We are not aware of any other work that incorporates decision support
in auctions. Armantier and Treich (2009) elicit both subjective probabilities
and risk preferences in an attempt to find an explanation for overbidding
in experimental first-price auctions. The authors report that participants
underestimate their winning probability and overbid. Furthermore, they
investigate the effect of a feedback system regarding winning probabilities.
The feedback is implemented as follows. Participants are asked to predict
their winning probability and they are given feedback regarding the preci-
sion of their prediction at the end of each round. As such, their feedback
system is designed to induce learning whereas learning is not necessary in
our setup as participants are given support before (FPSBA) or during (DA)
the auction. They show that overbidding is reduced if their feedback system
is in place.

Subjects

Table 4.1 provides an overview of participants characteristics in the different
treatments.

Risk aversion is measured as the are under the curve on the gain domain,
i.e. the integral of the estimated utility function on the gain domain. We
normalize the domain of utility to [0,1] by dividing each elicited gain by
the maximum gain. We interpolate linearly between the elicited points and
use a geometric approach to calculate the area. In case of risk aversion the
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measure is smaller 0.5. A risk seeking individual has a measure larger than
0.5 and a risk neutral subject has a measure equal to 0.5.

Loss aversion relates the slope of utility in the gain domain to its slope
in the loss domain. Kahneman and Tversky (1979) define loss aversion by
−u(−x) > u(x) for every x > 0. We measure the coefficient of loss aversion
as the mean of −u(−x)/u(x) for all elicited values x.

Allais-type preferences are measured by metric measure of the common-
ratio effect (CRE) to assess the preference reversal due to violations of the
independence axiom. Participants exhibiting the common-ratio effect show
a preference reversal such that, they have a preference for certain outcomes.
Participants with a CRE of 0 are consistent with expected utility theory, a
CRE larger zero indicates Allais-type preferences and subjects with a CRE
smaller zero have reverse Allais-type preferences.

Subjects’ numeracy is rated according to a combination of the Schwartz
et al. (1997) and the Berlin Numercy Test that assess the understanding of
fundamental concepts of probability. Subjects have to answer seven ques-
tions and the variable numeracy reflects how many of these questions were
answered correctly.

Table 4.1: Summary statistics by treatment

Treatment No DSS Medium DSS Full DSS
First format FPSBA DA FPSBA DA FPSBA DA p-value
Risk aversion 0.461 0.466 0.499 0.528 0.441 0.526 0.52

(0.167) (0.105) (0.106) (0.140) (0.143) (0.103)
Loss aversion 1.842 1.396 1.673 1.352 2.088 1.407 0.08

(0.860) (0.474) (0.713) (0.506) (0.842) (0.450)
Allais-type 2 2.714 3.857 3.667 4.333 2.267 0.90

(13.90) (2.301) (4.605) (6.199) (9.566) (18.25)
Numeracy 4.333 4.714 3.929 4.833 4.167 4.867 0.24

(1.291) (2.199) (1.141) (1.267) (1.403) (0.990)
Participants 15 14 14 12 12 15

Notes: Reported are means of each variable with standard deviation in paren-
theses. The last column presents the results of a Kruskal-Wallis tests for the
equality of populations.
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Organization

The auctions were the second stage of the experiment. In the first stage,
which was conducted one week before the second, participants’ preferences
were elicited. Detailed results are reported in Zeppenfeld (2015).11 Both
stages of the experiment were conducted in the Cologne Laboratory for Eco-
nomic Research (CLER) at the University of Cologne, Germany.12 Using
the recruiting system ORSEE (Greiner, 2015) , we invited a random sample
of the CLER’s subject pool via email. The whole experiment was comput-
erized using the programming environment z-tree (Fischbacher, 2007).

In both stages, payoffs were stated in Euros (EUR). Participants were
paid out in private for the entire course of experimentation after the com-
pletion of the second stage. In the second stage, one auction of each auction
format was randomly chosen to be payoff-relevant. All 82 participants were
paid their total net earnings, i.e., their earnings from the auctions and their
earnings from first stage of the experiment. The average payoff for the en-
tire experiment was 36.63 EUR corresponding to approx. 45.54 USD at the
time of the payment.13

4.3.2 OPPORTUNITY COSTS AND ACTION SETS

Previous research argues that differences between the two mechanisms come
from the heterogeneous organization of the two auctions. The FPSBA is
faster, as it only requires to place simultaneous bids and the winner can be
announced immediately after all bids are collected. The DA, on the other
hand, requires a certain time interval for the clock to reach the desired price
level of an individual bidder. Hence, a bidder in a DA faces substantial
waiting costs. Carare and Rothkopf (2005) analyze the effect of transaction

11The first stage of the experiment was the same for all participants and participants
only learned their earnings of the first part until the very end of the entire experiment,
i.e., after they completed the second stage.

12See www.lab.uni-koeln.de.
13The first stage elicited preference parameters across gains and losses. Total net

payoffs across the entire experiment range from −3.00 EUR (−3.73 USD) to 98.45 EUR
(122.41 USD). The one subject who accumulated negative payoffs paid in cash at the
end of experiment.
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costs that accrue from the necessity to return to the auction site to check
whether the desired price level has been reached. Not surprisingly, facing
these additional costs, a bidder is willing to stop the auction at a higher
price to avoid the need to return to the auction site.

Cox et al. (1983) and Katok and Kwasnica (2007) analyze the following
trade-off experimentally. Despite the fact that bidders face transaction
and/or opportunity costs from slow DA’s, they also enjoy the “waiting
game”, as it implies a certain level of suspense. Cox et al. (1983) do not
find that tripling payoffs, and therewith increasing the opportunity costs of
playing the waiting game, significantly increases bids in a DA. Hence, they
reject the hypothesis of “suspense utility”. Katok and Kwasnica (2007) find
that increasing the clock time, i.e., the time between consecutive price ticks,
significantly increases bids in a DA. Slow clocks increase opportunity costs
which have to be paid no matter if the bidder wins the auction or not.
Katok and Kwasnica (2007) note that in the laboratory, these opportunity
costs correspond most likely to participants’ value of leaving the laboratory
earlier. Hence, a bidder is willing to accept a higher ask to reduce the time
to complete the experiment and save opportunity costs.

We account for opportunity costs in two ways. First, we hold opportu-
nity costs constant across treatments. We follow Turocy et al. (2007) and
keep the time per mechanism constant. This means that we fix the absolute
time per mechanism irrespective of how fast participants decide (FPSBA)
or how early they stop (DA). One round of bidding in the FPSBA always
lasts 60 seconds.14 One round of bidding in the DA always lasts 220 seconds,
i.e., ten seconds per price tick (see below for a motivation). If a participant
accepts a current ask, he wins the auction, but the next round does not
start before the 220 seconds are over.15 Second, all subjects play both the
FPSBA and the DA.

14If participants do not enter a valid bid by the end of this time limit, they do not
participate in the auction in that round.

15In both mechanisms, after the auction has ended, participants see a screen showing
the remaining time until the round is completed and whether or not they have won the
auction.
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Katok and Kwasnica (2007) show that the clock speed has great impact
on the bids in a DA due to the implied differences in opportunity costs.
Because we hold opportunity costs constant, this is not an argument in our
experiment. Participants in the FPSBA have 60 seconds to arrive at a bid
that balances the trade-off between the winning probability and the profit
in case of winning. We determine the clock speed in the DA based on two
considerations. On the one hand, the trade-off between two consecutive
price ticks in a DA is easier to compute and participants should need less
time. On the other hand, we have to provide some time for the reference
point to form. We therefore decide on a clock speed of ten seconds. This
is the same clock speed as in the middle treatment in Katok and Kwasnica
(2007). However, in contrast to their experiment subjects cannot reduce the
duration of the DA in our experiment, as each DA lasts for 220 seconds.

In addition to controlling opportunity costs, we also hold action sets
constant across the two mechanisms. In Cox et al. (1983), participants’
bids are rounded to the next feasible bid in the DA. Participants can then
either confirm or alter this rounded bid. In Katok and Kwasnica (2007),
participants can bid integers in the FPSBA, whereas price decrements in the
DA were five tokens. In contrast, in our design, participants in the FPSBA
face the same set of possible prices as in the DA. This is a direct transfer of
our model environment to the laboratory and ensures strict comparability
between the two mechanisms.

4.4 RESULTS

In this section, we report the results of the second stage of our laboratory
experiment and focus on the comparison of the FPSBA and the DA. We
only consider winning bids, because we only observe a participant’s bid in
the DA if a participant stopped the auction and won. In order to derive a
one-dimensional measure of individual bidding behavior, we first conduct
OLS regressions without constants for each participant. Regressing without
a constant corresponds to the assumption that a bidder with a valuation
of zero behaves rational and places a bid of zero. This gives us the average
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slope of a subjects bidding function. The steeper the slope the more ag-
gressive is the subject’s bidding behavior. Each participant represents one
independent observation, because there was no interaction between partic-
ipants. We report results of non-parametric Wilcoxon signed rank (SR),
Mann-Whitney-Wilcoxon (MWW), or Kruskal-Wallis (KW) tests.

In line with the observations by Coppinger et al. (1980) and Cox et al.
(1982), we find that individuals place higher bids in the FPSBA than in
the DA (MWW: p = 0.0183). However, a closer look reveals that bidders
only place higher bids in the FPSBA than in the DA if they get no deci-
sion support (MWW: p = 0.0046). The No DSS treatment is comparable
to standard experimental auction designs. If bidders get (some) decision
support, the differences vanish (MWW: Medium DSS p = 0.1498 and Full
DSS p = 0.6256). Table 4.4 complements these tests controlling for bidder
characteristics. It confirms the observation that bids in the DA are substan-
tially lower than in the FPSBA in absence of decision support (p < 0.001)
and that this differences vanish once support is provided (Medium DSS
p = 0.1628, Full DSS p = 0.8044).

In the FPSBA, the provision of decision support changes the bidding
behavior significantly (KW: p = 0.0704). Bidders who receive decision
support (Medium DSS, Full DSS) place lower bids than bidders without
decision support (No DSS; MWW: p = 0.0214). In contrast, the influence
of decision support is overall not significant in the DA (KW: p = 0.1224).
However, we find some evidence that the effect of decision support works
in the opposite direction compared to the FPSBA, i.e., bidders who only
receive limited decision support (No DSS, Medium DSS) place smaller bids
than those bidders who get full decision support (Full DSS; MWW: p =
0.0424).

Figure 4.1 illustrates the bidding behavior and Table 4.2 presents the
results of Tobit panel regressions analyzing the influence of elicited prefer-
ences and of decision support in the FPSBA and the DA. Controlling for
individual characteristics, the regressions support the results of our non-
parametric tests. The provision of decision support (Medium DSS, Full
DSS) decreases bids in the FPSBA. In contrast to that, in the DA the pro-
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vision of Medium DSS does not influence bidding behavior (p = 0.679) and
the influence of Full DSS is also not significant (p = 0.106).

The regressions further show that risk-averse bidders place higher bids,
which is in line with other experimental studies (See for example Bichler
et al., 2015). Our measures of individual loss aversion and Allais-type pref-
erences have no or only marginal influence on bidding behavior. Theories
based on Allais-type preferences predict higher bids in the DA than in the
FPSBA, something we do not observe. In the DA we find some indication
that subjects with a higher numeracy score place lower bids. However, the
significance vanishes if we do not control for risk aversion.

Table 4.3 complements Table 4.2 and examines if the elicited preferences
(risk aversion, loss aversion, Allais-tpye preferences) and characteristics (nu-
meracy) have different effects on bidding behavior in the two auction for-
mats. We only find weak evidence that a higher numeracy score leads ceteris
paribus to lower bids in the DA than in the FPSBA, but no indication that
any of the elicited preferences can explain differences in bidding behavior.
Cox et al. (1983) argue that differences between the two mechanisms result
from violations of Bayes’ rule and indirectly test this conjecture by tripling
individual payoffs which increases opportunity costs from miscalculations.
In contrast, our design is a direct test of the impact of cognitive limitations
and we find additional evidence for this conjecture.

Similar to the other experimental papers that compare bidding behavior
in the FPSBA to bidding behavior in the DA (Cox et al., 1983; Katok and
Kwasnica, 2007), participants in our experiment first played 18 rounds in
the DA and then another 18 rounds in the FPSBA.16 In contrast to the
findings of Cox et al. (1983); Katok and Kwasnica (2007), we find that nei-
ther subjects who first participate in the FPSBA nor subjects who start
in the DA change their bidding behavior when the auction format changes
(SR: FPSBA → DA, p = 0.3888; DA → FPSBA, p = 0.1973). This within-
participant consistency is in contrast to the literature and we relate this
finding to the strict comparability of the two formats in our experiment.

16In order to control for order effects, about half of the participants played in reverse
order.
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(a) No DSS.
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(b) Medium DSS.
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(c) Full DSS.
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Notes: Depicted are medians of the winning bids for each valuation and for-
mat separated by decision support. The reference line is the risk-neutral Nash
equilibrium (RNNE) given by Linear SP (L-SP). Participants in No DSS do not
receive additional information. In treatment Medium DSS, participants receive
information about the winning probability (FPSBA) or the probability to re-
ceive the next price (DA). In treatment Full DSS, participants receive the same
information as in Medium DSS and, in addition, the expected profit associated
with their bid.

Figure 4.1: Median winning bids across decision support.

Hence, our bidding data indicates that a constant action set and fixed op-
portunity costs are necessary for consistency between the two formats.17

The other cited experiments that also vary the order of the two formats do
not find a similar consistency in bidding even in absence of decision support.
We think that the consistency in our data stems from the direct compa-

17Opportunity costs include, e.g., monitoring costs (Carare and Rothkopf, 2005) or
costs from participating in the experiment (Katok and Kwasnica, 2007).
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Table 4.2: Tobit panel regressions of the influence of preferences on winning
bids in periods 1 to 18.

Winning bid
(1) (2) (3) (4)

FPSBA DA FPSBA DA
Valuation 0.523∗∗∗ 0.479∗∗∗ 0.524∗∗∗ 0.479∗∗∗

(0.0134) (0.0154) (0.0134) (0.0154)
Allais-type -0.0222 0.00507 -0.0156 0.00747

(0.0374) (0.0289) (0.0347) (0.0275)
Risk aversion 6.101∗∗ 10.02∗∗∗ 6.202∗∗ 9.533∗∗∗

(2.974) (2.983) (2.754) (2.928)
Loss aversion 0.488 -0.468 0.441 -0.536

(0.508) (0.745) (0.475) (0.709)
Numeracy 0.200 -0.469∗∗ 0.115 -0.472∗∗

(0.300) (0.233) (0.280) (0.222)
midDSS -2.007∗∗ -0.329

(0.786) (0.795)
fullDSS -1.670∗∗ 1.218

(0.812) (0.753)
Period 0.0865∗∗∗ 0.0336 0.0859∗∗∗ 0.0338

(0.0237) (0.0267) (0.0237) (0.0267)
Constant -2.553 -0.00274 -1.005 0.00709

(2.652) (2.199) (2.520) (2.096)
Observations 443 448 443 448
Participants 41 41 41 41
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: Reported are results of tobit panel regressions with an up-
per limit at the highest possible bid of 21.

rability of the two formats in our design by using the same price grid and
holding opportunity costs constant. Only bidders in the No DSS treatment
who start bidding in the FPSBA change their bidding behavior and place
lower bids when the auction format changes to a DA (SR: p = 0.0995).
This observation might indicate that, in absence of decision support, the
FPSBA is more complex than the DA.
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4.5 CONCLUSION

We examine the role of decision support and preferences in first-price sealed-
bid and Dutch auctions. In a laboratory experiment, we elicit participants’
preferences and vary the degree of decision support to account for the com-
plexity in deriving the optimal bid. We confirm the frequently observed
non-equivalence of the first-price and Dutch auction under the absence of
decision support. In addition, we observe that any differences in bidding
behavior between the two mechanisms vanish once we provide decision sup-
port, which indicates that differences in bidding behavior are due to differ-
ent levels of complexity. Differences between the two auction formats based
on preferences should be independent of the level of decision support. We
use the elicited individual preferences of all participants to explain bidding
behavior. We find no indication that non-standard preferences explain the
empirical differences. Our results thus indicate that the empirical break-
down of equivalence is primarily caused by the complexity of the bidding
decision rather than by bidders’ preferences. This observation should be
taken into account in real-world business interactions involving auctions.

In the experiment, the implemented DSS is perfect in the sense that
we can precisely calculate the respective probabilities and expected values
due to the fixed bidding strategy of a bidding robot. Obviously, this is
not directly implementable in real auctions. However, the availability of
historical bid data promotes the design of decision support systems similar
to our implementation. Thus, our findings on the differences in auction
formats indicate that the higher revenue in the FPSBA is less relevant in
real auctions in which bidders are likely to have such support.
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4.6 APPENDIX

4.6.1 TABLES
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Table 4.3: Tobit panel regression of the influence of preferences and nu-
meracy on differences between winning bids in the FPBSA and the DA in
periods 1 to 18.

Winning Bid
Valuation 0.501∗∗∗

(0.0103)
Period 0.0577∗∗∗

(0.0181)
Constant -1.730

(2.548)
Risk aversion 6.053∗∗

(2.873)
Loss aversion 0.490

(0.490)
Allais-type -0.0225

(0.0360)
Numeracy 0.216

(0.290)
DA 0.843

(3.358)
DA × Risk aversion 3.914

(4.217)
DA × Loss aversion -0.937

(0.913)
DA × Allais 0.0280

(0.0469)
DA × Numeracy -0.672∗

(0.377)
Observations 891
Participants 82
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The upper limit in the Tobit regression is the maximum
bid of 21. It was placed in 174 out of 891 observations. DA is a
dummy variable that is zero if the auction format is a FPSBA and
is one in case of a DA.
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Table 4.4: Tobit panel regression of the influence of decision support in the
FPSBA and the DA in periods 1 to 18.

Winning bid
Valuation 0.502∗∗∗

(0.0103)
Period 0.0581∗∗∗

(0.0181)
Constant 1.417

(1.682)
Allais-type -0.00370

(0.0220)
Risk aversion 6.498∗∗∗

(1.973)
Loss aversion 0.169

(0.388)
Numeracy -0.159

(0.172)
midDSS -2.245∗∗∗

(0.786)
fullDSS -1.729∗∗

(0.815)
DA -3.251∗∗∗

(0.794)
DA × midDSS 2.088∗

(1.131)
DA × fullDSS 3.041∗∗∗

(1.130)
Observations 891
Participants 82
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The upper limit in the Tobit regression is the maximum
bid of 21. It was placed in 174 out of 891 observations. DA is a
dummy variable that is zero if the auction format is a FPSBA and
is one in case of a DA.
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Table 4.5: Average winning bids for periods 1 to 18.

No DSS Medium DSS Full DSS KW test
Valuation FPSBA DA p-value FPSBA DA p-value FPSBA DA p-value p-value p-value

FPSBA DA
6 4.25 7.42 0.8710 4.25 4.00 0.5541 4.25 3.67 0.4450 0.9905 0.9191
10 6.67 6.00 0.3417 7.31 5.93 0.1234 7.38 6.57 0.6310 0.5114 0.6148
14 10.20 8.35 0.0397 10.38 10.50 0.9575 8.67 8.55 0.7575 0.1396 0.1450
18 14.39 11.04 0.0042 12.57 10.91 0.1105 11.25 11.80 0.1498 0.2347 0.7103
22 15.29 12.05 0.0740 14.54 13.83 0.5108 14.67 13.42 0.2008 0.7910 0.6215
26 18.88 14.50 0.0022 15.18 15.71 0.6428 17.09 17.15 0.8142 0.0150 0.0878
30 19.71 16.14 0.0019 17.96 15.73 0.3084 18.00 18.20 0.786 0.0189 0.1328
34 20.20 17.65 0.0062 18.68 17.04 0.1268 18.83 19.17 0.6750 0.0219 0.1285
38 20.20 17.86 0.0190 19.35 18.42 0.4404 18.50 19.77 0.1287 0.0265 0.1372

Average 15.87 13.33 - 14.57 13.86 - 14.93 15.01 - - -

Notes: Reported are the average winning bids for periods 1 to 18
and the probability that bids in the different formats are drawn
from the same distribution based on the Wilcoxon-Mann-Whitney
U-test. The Kruskal-Wallis (KW) test reports whether there is any
significant difference across decision support systems for a given
auction format.
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4.6.2 THEORY

We consider a situation in which the bidder faces one (non-strategic) com-
petitor either in a FPSBA or in a DA. Let P = {p1, p2, · · · , pn} be the
common price grid, i.e. the set of possible bids in the FPSBA and the set
of possible offers in the DA. Let pk denote the kth- smallest possible price
in this price grid. Let the price grid be uniformly spaced, with pk −pk−1 = δ

for all k.
The probability that the competitor places a bid smaller or equal pk in

the FPSBA is given by F (pk). F (pk) also denotes the probability that the
highest price offer the competitor is going to accept in a DA is smaller or
equal pk.

For large η and λ the utility of a bidder is mainly driven by the rela-
tive outcomes, i.e. by his gain loss utility, and not by absolute outcomes.
Consequently, it may be the case that a bidder who has a strictly posi-
tive chance of making strictly positive profits and faces no risk of a loss
prefers not to participate in the auction. In the following we assume that
bidder’s expected utility is increasing in his valuation, which rules out such
implausible predictions and guarantees monotone bidding functions. This
assumption is referred to as no dominance of gain-loss utility in Herweg
et al. (2010).

First-Price Sealed-Bid Auction

In the FPSBA both participants place a bid bi ∈ P and the participant who
places the higher bid wins. In case of a tie both participants have a winning
probability of one half. The expected profit of a bidder with valuation v

bidding bk is given by

Π(bk, v) =
[
F (bk−1) + F (bk) − F (bk−1)

2

]
· (v − bk) (162)

= F (bk) + F (bk−1)
2 · (v − bk) (163)

=: P k
ω · (v − bk). (164)
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When relative outcomes are evaluated as

μ(x) :=

⎧⎪⎨
⎪⎩

ηx x ≥ 0

ηλx x < 0,
(165)

the expected utility of a bidder with KR preferences bidding bk is given by

U(bk, v) = P k
ω · (v − bk)

+P k
ω · (1 − P k

ω ) · μ(v − bk) (166)
+P k

ω · (1 − P k
ω ) · μ(bk − v)

and optimal bids are given by

b∗
F P (v) = arg max

b∈P
{U(b, v)} . (167)

As the price grid starts at 0, bidders can always place bids smaller their
valuation. For this reason the relevant part of the piece-wise defined utility
function is given by

U(bk, v) = P k
ω · (v − bk) − P k

ω · (1 − P k
ω ) · (v − bk) · η(λ − 1). (168)

Let vk be the valuation for which a bidder is indifferent between bidding
pk and pk+1. Given that these vk are increasing in k the optimal bidding
strategy βF P (v) is monotone and it is optimal for bidders to bid pk for all
bidders with a valuation between vk−1 and vk. These indifference values are
given by

U(bk, vk) != U(bk+1, vk) (169)

⇔ vk = bk + δ

:=Ωk+1︷ ︸︸ ︷
P k+1

ω − P k+1
ω (1 − P k+1

ω )η(λ − 1)
P k+1

ω − P k
ω − η(λ − 1)

(
P k+1

ω (1 − P k+1
ω ) − P k

ω (1 − P k
ω )
)

︸ ︷︷ ︸
:=Λk=Ωk+1−Ωk

(170)
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The no dominance of gain-loss utility assumption implies a restriction
on values for η and λ:

∂U(b, v)
∂v

= P k
ω − P k

ω · (1 − P k
ω )η(λ − 1)

!≥ 0

⇔ η(λ − 1)
!≤ min

k∈{1,...,n}

{
1

1 − P k
ω

}

⇔ η(λ − 1)
!≤ 1

1 − P 1
ω

, (171)

(171) implies that Ωk ≥ 0 and Λk ≥ 0 for all k and we get

vk − vk−1 =
=δ︷ ︸︸ ︷

bk − bk−1 +δ

[
Ωk+1

Λk

− Ωk

Λk−1

]

= δ

ΛkΛk−1
[ΛkΛk−1 + ΩkΛk − Ωk+1Λk−1]

= δ

ΛkΛk−1
[Λk−1(λk − Ωk+1) + ΩkΛk]

= δΩk

ΛkΛk−1
[Λk − Λk−1] > 0.

The bidding strategy is then given by

βF P (v) =

⎧⎪⎨
⎪⎩

0 if v ∈ [0, v1]

bk if v ∈ (vk, vk+1],
(172)

with vn+1 = 1 if vk ≤ 1. Else if vk > 1 for any k, βF P is adjusted accordingly.

Dutch Auction

In the DA participants sequentially receive decreasing offers aj ∈ P starting
with pn. A participant who receives an offer can either accept or reject it.
In case of acceptance the auction ends immediately. If the participant who
receives the offer pk first rejects, the other participant will also receive the
offer pk. If the other participant rejects pk, too, the new offer will be pk−1.
Which participant receives the offer pk−1 first is randomly determined. This
modeling approach is also used by Bose and Daripa (2009).
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Every time the bidder receives an offer he has the choice between accept-
ing or waiting for a lower offer. Let Hk be the probability that the bidder
will receive an offer pk−1 given that he rejects offer pk. The probability Hk

can be split in two parts. First, ρk denotes the probability that the price
step pk−1 is reached, i.e. the probability that the good is not sold at pk.
Second, φk denotes the probability that the bidder receives an offer pk−1

given that the price step pk−1 is reached. Consequently, Hk = ρk · φk.

COMPUTATION OF ρK In order to derive the probability ρk of reach-
ing the next price step pk−1 we first determine how likely it is that the bidder
receives the first offer at pk given that he receives an offer pk. First, denote
by #i

k ∈ {1, 2} the position of the bidder in period k. Second, denote by
Ak the event that the bidder receives the offer pk.

Pr{#k = 1|Ak} = Pr{#k = 1} · Pr{Ak|#k = 1}
Pr{#k = 1} · Pr{Ak|#k = 1} + Pr{#k = 2} · Pr{Ak|#k = 2}

(173)

=
1
2

1
2 + 1

2 · F (pk)
F (pk+1)

(174)

= F (pk+1)
F (pk+1) + F (pk) . (175)

Consequently, the probability that the bidder is asked second at pk given
that he is asked at pk is given by

Pr{#k = 2|Ak} =1 − Pr{#k = 1|Ak} (176)

= F (pk)
F (pk+1) + F (pk) . (177)

Given that the bidder is asked second, #k = 2|Ak, his rejection of the offer
pk directly implies that the price step pk−1 is reached. However, if the
bidder is asked first, #k = 1|Ak, his rejection only implies that the price
step pk−1 is reached if the competitor also rejects pk given that she already
rejected pk+1, which happens with probability F (pk)/F (pk+1). Hence, the
probability ρk that price step pk−1 will be reached given that the bidder
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rejects the offer pk is given by

ρk = Pr{#k = 2|Ak} · 1 + Pr{#k = 1|Ak} · F (pk)
F (pk+1)

(178)

= 2 · F (pk)
F (pk+1) + F (pk) . (179)

COMPUTATION OF φK Given that the price step pk−1 is reached
the probability of being asked first is one half. In this case the bidder
receives an offer with certainty. If the opponent is asked first, which also
happens with a probability of one half, the bidder receives the item only if
the competitor refuses the offer pk−1. The probability that the competitor
refuses the offer pk−1 given that she refused pk is given by F (pk−1)/F (pk).
Hence, the probability of receiving an offer pk−1 given that price step pk−1

is reached is given by
φk = 1

2 + 1
2 · F (pk−1)

F (pk) . (180)

COMPUTATION OF HK Combining the probability ρk of reaching
the next price step pk−1 with the probability φk of receiving an offer given
that the price step pk−1 is reached, gives us the probability Hk of receiving
another offer when rejecting pk.

Hk =ρk · φk (181)

=F (pk) + F (pk−1)
F (pk) + F (pk+1)

. (182)

BIDDING Let R (pj|pk) denote the probability that the bidder will be
receive (or has received) an offer pj given that he is currently offered pk,

R (pj|pk) :=

⎧⎪⎨
⎪⎩

F (pj)+F (pj+1)
F (pk)+F (pk+1) j ≤ k

1 j > k.
(183)

Note that for some a < b < c,

R (a|b) R (b|c) = R (a|c) .
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The expected profit of a bidder with valuation v planning to accept offer pj

who is currently offered pk ≥ pj is given by

Π(pj, v|pk) = R (pj|pk) · (v − pj). (184)

A bidder with KR preferences conceives a plan at the beginning of the
auction, namely accepting the offer r ∈ {p1, ..., pm} and evaluates his profit
compared to a reference outcome determined by his plan. The utility of such
a bidder with valuation v who planned to accept offer r from accepting the
current offer pk is given by

uk = v − pk + (1 − R (r|pk)) · μ (v − pk) + R (r|pk) · μ (r − pk) . (185)

Defining

u(x, r|y) = v − x + (1 − R (r|y)) · μ (v − x) + R (r|y) · μ (r − x) , (186)

We now analyze two cases:

1. pj < r < pk:

Then, the expected utility from waiting for an offer pj is given by,

U(pj, v, r|pk) = R(r|pk)
[
(1 − R(pj|r))[μ(r − v)] + R(pj|r) [v − pj + μ(r − pj)]

]
.

(187)

2. r < pj < pk:

Then, the expected utility from waiting for an offer pj is given by,

U(pj, v, r|pk) = R(pj|pk)
[
(1 − R(r|pj))[v − pj + μ(v − pj)] + R(r|pj) [v − pj + μ(r − pj)]

]
.

(188)

The bidder prefers to accept now over waiting if and only if

uk,r ≥ max
pj<pk

{U(pj, v, r|pk)} (189)
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Determining the indifference values vk,r gives us the bidding function,

βr(v) =

⎧⎪⎨
⎪⎩

0 if v ∈ [0, v1]

pk if v ∈ (vk, vk+1],
(190)

with vm+1 = 1.
These strategies define best responses to the distribution of competitor’s

bids F (x). It is easy to see that bidding strategies depend on the reference
point r, i.e. the bidders plan when to accept an offer. As a consequence
multiple personal equilibria are possible.

First-Price Sealed-Bid Auction vs. Dutch Auction

For subjects with KR preferences it is not possible to make a general state-
ment about the revenue ranking of the FPSBA and the Dutch auction. In
the following we provide examples that prove this statement.
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Figure 4.2: Equilibrium bids in Dutch auctions and FPSBA

Minimum PEs
Maximum PEs

FPSBA

v

bids

1
b1

b2

b3

b4

b5

b6

Notes: This figure shows the lowest and the highest personal equilibrium bids in the DA
and the unique equilibrium bidding strategy in the FPSBA for λ = 2.5 and η = 0.5. The
revenue ranking of the two auction format depends on the equilibrium selection in the
DA.
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4.6.3 INSTRUCTIONS

This section provides the instruction in German (original) and English
(translated) separated by parts 1 and 2. Each part consists of part A and
part B. Part B was always distributed after part A had been conducted.
Experiment 1 was identical for each participant. Experiment 2 was coun-
terbalanced, i.e., half of the participants received the first-price sealed-bid
auction in part A followed by the Dutch auction in part B. The other half
faced the reversed order. We present the instructions for the full-DSS treat-
ment where subjects had full information. The instructions for the other
treatments are the same and only exclude parts of the decision support
which is reported in parentheses within the instructions.
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4.6.4 SCREENS IN THE LAB EXPERIMENT

Notes: Depicted is the computer interface used in the first-price
sealed-bid auction. The individual valuation is depicted at the
very top. Participants have a test button Test-Gebot (Test bid)
that allows to enter a bid. Depending on the decision support, the
following information is calculated from the test bid: Profit falls
Test-Gebot erfolgreich (Profit if bid was successful) (No, Medium,
and Full DSS), Gewinnwahrscheinlichkeit (Winning probability)
(Medium and Full DSS), and Erwarteter Profit (Expected profit)
(Full DSS). A timer displays the remaining time to submit a real
bid that can be entered in the text field in the lower right corner
and submitted by pressing the button Gebot abgeben (Submit bid).

Figure 4.3: Computer Interface: FPSBA.
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Notes: Depicted is the computer interface used in the Dutch auc-
tion. The individual valuation is depicted at the very top. The
screen shows the current price, the time until the next price,
and the next price. Depending on the decision support, the
following information is calculated automatically: Gewinn bei
gegebenem Preis (Profit at given price) (No, Medium, and Full
DSS), Wahrscheinlichkeit, Preis angeboten zu bekommen (Proba-
bility to be offered the given price) (Medium and Full DSS), and
Erwarteter Gewinn (Expected profit) (Full DSS). The current price
can be accepted by pressing the button Preis annehmen (Accept
price).

Figure 4.4: Computer Interface: DA.





chapter 5

COMMITMENT IN FIRST-PRICE AUCTIONS

Abstract

We study the role of commitment in a first-price auction envi-
ronment. We devise a simple two-stage model in which bidders first
submit an initial offer that the auctioneer can observe and then make
a counteroffer. There is no commitment on the auctioneer’s side to
accept an offer as is or even to choose the lowest bidder. We compare
this setting to a standard first-price auction both theoretically and
experimentally. While theory suggests that the offers and the auc-
tioneer’s revenue should be higher in a standard first-price auction
compared to the first-price auction with renegotiation, we cannot
confirm these hypotheses in the experiment.

5.1 INTRODUCTION

The question whether to commit to clear rules when selecting the win-
ner plays a large role in most real-life procurement processes. The multi-
attribute nature of the goods or services to be procured makes a binding
price-only auction a suboptimal choice. In this type of auction, the buyer
cannot account for factors that she deems relevant for her awarding deci-
sion in the auction itself. From her perspective, a non-binding negotiation
format where she chooses the winner after having seen all the offers might
seem attractive. This non-commitment to rules on how a winner is chosen
allows for flexibility when taking other, non-price attributes, into account.
To support this, Jap (2002) points out that many auctions in procurement
are carried out in a non-binding fashion.

This paper investigates the role of commitment in a concise setting and
examines whether participants react to commitment, or a lack thereof, in a

127
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first-price auction. We compare a standard first-price auction with commit-
ment to a first-price auction where renegotiation is possible, while varying
as little as possible between the two settings. In our simple two-stage mech-
anism, bidders first submit an offer that the auctioneer can observe. In the
second stage, the auctioneer then selects a winner and can make a coun-
teroffer. There is no commitment on the auctioneer’s side to accept an
offer as is or to choose the lowest bidder.1 In theory and considering that
the auctioneer makes a counteroffer, this means that bidders pool on bids
that reveal no information about their costs. This means, in equilibrium,
bids are uninformative and the auctioneer implements the ex-ante optimal
take-it-or-leave-it offer.

We then take these mechanisms into the laboratory where we benchmark
the theoretical model of step two against a standard first-price auction.
Contrary to theoretical predictions, we observe no significant difference in
the offers between the setting with renegotiation and the standard first-
price auction. Also, we find evidence that first-stage offers are correlated
to the private information of the bidders in both settings.

There is evidence in the literature that having a binding auction, or
an auction with commitment, is an important factor when designing the
procurement process. The most related study was conducted by Fugger
et al. (2016). They show that conducting auctions without commitment
can lead to non-competitive prices. In their study, a quality component
is introduced that is unknown to the auctioneer before the auction. The
authors then compare two settings of a dynamic reverse auction: with and
without commitment. The auctioneer conducts either a price-only auction,
where the lowest bid wins, or a buyer-determined auction. In the latter,
she chooses the winner after having seen all the offers and qualities. Since
bidders do not know their quality ranking, they cannot be sure that a re-
duction in price leads to a higher winning probability. Therefore, bidders
lack an incentive to submit competitive offers and collusion on high prices
prevails. They show theoretically that these non-competitive offers become

1Even if the auctioneer did commit to choosing the lowest offer, the offers would still
be uninformative.



5. COMMITMENT IN FIRST-PRICE AUCTIONS 129

profitable once the auctioneer does not commit to clear rules on how the
winner is chosen. This theoretical finding is then confirmed via a laboratory
experiment. Our study is focussed on keeping the mechanism as simple as
possible to isolate the role of commitment. There exists one type of equi-
libria in both our settings with clear predictions, collusion is not profitable.
While offers in the standard first-price auction are competitive, theory pre-
dicts that bidders pool on offers that reveal no information about their type
in the first-price auction with renegotiation.

Commitment has been studied mainly in the multi-attribute literature
and the optimal mechanism-design without commitment literature. Che
(1993) analyzes the role of commitment in multi-attribute auctions. If the
auctioneer is able to commit to a scoring rule, then the optimal scoring
rule undervalues quality with respect to the auctioneer’s utility. If not, the
only scoring rule she can implement is given by her utility. In contrast
to this paper, their perspective is to derive optimal buyer behavior in the
presence and absence of commitment power. They also theoretically show
the importance and benefits of commitment. We, on the other hand, focus
on bidder behavior in settings with and without commitment.

In the optimal mechanism-design literature Vartiainen (2013) shows that
if a sequentially rational auctioneer cannot commit to the mechanism rules,
the only mechanism she can implement is a variant of the English auction.
Mechanisms in which offers directly depend on a bidder’s type are generally
not possible. The English auction has the property that the winner of the
auction does not reveal his offer (and type), while in our first-price auction,
this is not the case. Also, in our paper, the auctioneer cannot choose the
procurement mechanism and is bound, depending on the setting, to either
a standard first-price auction or a first-price auction with renegotiation.
McAfee and Vincent (1997) assume more structure. The auctioneer sets a
reserve price but cannot commit to not reauction the good if the reserve-
price is not met. They show that in this case, the revenue of the auction
drops to the static auction without reserve price. This is related to our
setting, where in the first-price auction with renegotiation, the buyer can
enforce a reserve-price via take-it-or-leave-it offer if the offers do not meet
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her expectations. This is possible because the buyer still wields some com-
mitment power, namely that reauctioning is not possible. Once the chosen
bidder has declined the counteroffer, no deal is made.

Related to commitment in auctions is Tan (1996). The author studies
a procurement setting where a buyer is privately informed about her own
demand. If the buyer is able to commit a reserve price, it is always in
her interest to do so. This means that she reveals her private information.
In our setting, the auctioneer does not possess private information. Also,
communication is only possible from the suppliers to the auctioneer in the
form of offers.

The paper is organized as follows. In section 5.2, we develop the model
and analyze it. In section 5.3, we describe our experimental setting and
present the results.

5.2 MODEL

In this section, we introduce the formal model. We consider an auctioneer
and n bidders that compete for one indivisible good in a two-stage mech-
anism.2 We assume that both bidders and the auctioneer are risk-neutral
profit maximizers.

Bidders’ values for the good are independently and identically distributed
according to a cumulative distribution function F over the set V = {

¯
v, . . . , v̄},

¯
v ≥ 0 and V ⊂ N

0.3 The auctioneer assigns zero value to the good.
In the first stage, bidders send an offer to the auctioneer. Offers are

binding, the auctioneer may acquire the good for any offer that was sub-
mitted. The set of possible offers is given by B = N

0.
In the second stage, the two settings we compare differ. In the first-price

auction with renegotiation, there is no commitment on the auctioneer’s side.
She observes the offers and can choose the winner arbitrarily. She then

2We write our model as a selling rather than a procurement mechanism, since our
experiment is framed as a selling auction, too. This has the advantage that we have con-
sistency in notation throughout the paper. This is, of course, without loss of generality.

3The exact spacing between types and bids is not important, as long as the spacing
in the bid and type spaces stays constant.
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makes a counteroffer to the chosen bidder or accepts the offer as-is. The
bidder can accept or decline the counteroffer. In the standard first-price
auction, the auctioneer observes the offers and chooses one of them.

Utilities are identical in both settings. For the auctioneer, her utility
is given by the price paid by the winner of the auction if the trade takes
place. The utility of the chosen bidder with value v winning with a price of
p is given by

ub(v; p) = v − p. (191)

The bidder that was not chosen has a utility of zero. If no trade takes place,
the utility of everyone is zero.

5.2.1 ANALYSIS

We show that there exists a continuum of equilibria in the no-commitment
setting. Each equilibrium is characterized by bidders mixing over a subset
Uo ⊂ B such that max{Uo} ≤

¯
v. Note that Uo may contain only one

element, po. In that case, bidders pool on po. For
¯
v = 0, the equilibrium is

unique.

Proposition 1. The equilibria are characterized by

1. Bidders: randomize over a subset Uo ⊂ B such that max{Uo} ≤
¯
v in

the first stage

2. Auctioneer:

i) observes that all offers are ∈ Uo: she chooses a bidder at random
and makes a counteroffer. The counteroffer pco is equal to the
ex-ante optimal take-it-or-leave-it offer, pco = arg max

p∈{̄v,...,v̄}
(1 −

F (p))p.

ii) observes one or multiple offers /∈ Uo: she chooses a deviating
offer and makes a counteroffer that is equal to v̄.

Proof. We start by showing that the proposed behavior indeed forms an
equilibrium. Bids are binding, so every bidder submitting offers above his



5. COMMITMENT IN FIRST-PRICE AUCTIONS 132

value has an incentive to deviate to a lower offer. This means for any value
larger than

¯
v, there is a non-zero possibility that the bidder cannot make

that offer. This means bidders cannot pool on any value larger than
¯
v and

it follows that bidders pool by mixing over a subset Uo ⊂ B such that
max{Uo} ≤

¯
v. Off-equilibrium beliefs of the auctioneer are given by μ(vi =

v̄|oi /∈ Uo) = 1, meaning that if she observes any signal /∈ Uo in the first
stage, she assumes that the bidder is of the highest type. Hence, deviating
always yields a revenue of zero for the bidder, he receives a counteroffer of
v̄. The intuition behind these off-equilibrium beliefs comes from how an
auctioneer would eliminate possible types.

Suppose there are n + 1 types, V = {0, 1, . . . , v̄} and let 0 < pco <

v̄. If the auctioneer observes an offer of 1, this bidder must be of type
v ∈ {1, . . . , v̄}. Bidders of type v = 1 can send offers of 0 or 1. But
the smallest counteroffer an auctioneer could commit to after observing 1
would be 1. This means bidders of value v = 1 are indifferent and submit
only offers of 0. Bidders of type v = 2 can send offers of 0, 1 or 2. Since
bidders of type v = 1 do not send offers of 1, the smallest counteroffer an
auctioneer could commit to after observing 1 or 2, would be 2. Therefore,
the expected profit of a bidder of type v = 2 who submits an offer of 1 or
2 is 0 and 1

2 max{2 − pco, 0} if he submits an offer of 0. It follows that, like
the type-v = 1 bidders, bidders of type v = 2 will only submit offers of 0.
This argument can be chained n times until only the bidder of type v̄ is
left. The best response of the auctioneer facing these uninformative offers
is setting the optimal reserve price, pco = arg max

p∈{̄v,...,v̄}
(1 − F (p))p.

We will now show that this is the unique type of equilibrium. Bidders
are assumed to be profit maximizers. This means they will accept any coun-
teroffer that is larger or equal than their value. Assume the bidders submit
offers according to a separating equilibrium bidding function.4 A separating
equilibrium bidding function implies that the auctioneer can infer the value
of each bidder from the offer. She would then make a counteroffer to the
bidder with the highest and extract full surplus in the second stage equal to

4This equilibrium bidding function does not need to be monotone.
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his value for the good. The bidder would then accept this counteroffer and
make a profit of zero. This means bidders would always prefer to imitate a
lower type. This rules out the existence of any separating equilibrium. The
same logic can be applied over any subset of V .

It is left to show that there exist no partial pooling equilibria where
bidders pool on multiple offers in V \{

¯
v}. Consider a setting with m pooling

offers si ∈ V \{
¯
v} with i ∈ {1, 2, ..., m}. W.l.o.g., let vi ∈ V be the lowest

type that sends si. Let pi, i ∈ {1, 2, ..., m}, be the respective prices an
auctioneer sets after observing that the highest bid is si. W.l.o.g., let p1 <

p2 < · · · < pm. The auctioneer cannot commit to any pi ≤ vi since she
knows that the lowest type sending the signal si has a value of vi. On the
other hand, a bidder having a value of vi will never send a signal that results
in a price p ≥ vi since deviating to a lower signal would earn him a strictly
positive expected payoff. This is a contradiction to the assumption that vi

is the lowest type sending signal si, meaning that no pooling equilibrium
with one or multiple offers in V \{

¯
v} can exist.

In the standard first-price auction, bidders send an offer to the auc-
tioneer in the first stage. The set of possible offers is the same as before,
B = N0. The auctioneer then observes these offers and has to choose one
of the offers. She cannot make a counteroffer. This setting is equivalent
to a first-price auction: A profit maximizing auctioneer will always select
the highest offer. First-price auctions are well-studied in the literature, see
for example Krishna (2009), for the discrete case see Chwe (1989) and Cai
et al. (2010). The equilibrium bidding function for a bidder with value v

bidding against n − 1 other bidders is approximated well by the continuous
equilibrium bidding function if there are a sufficient number of bid steps,

βI(v) = 1
F

(n−1)
1 (v)

∫ v

0
yf

(n−1)
1 (y)dy. (192)

Proposition 2. Bids in the standard first-price auction are higher or equal
than in the first-price auction with renegotiation.

Proposition 3. The standard first-price auction is more efficient than the
first-price auction with renegotiation.



5. COMMITMENT IN FIRST-PRICE AUCTIONS 134

Proof. From Chwe (1989) and Cai et al. (2010), we know that for any
type, bids are higher or equal than

¯
v. This is in contrast to the first-price

auction with renegotiation where every submitted offer is smaller or equal
to

¯
v, proving Proposition 2. In the standard first-price auction, the good is

always sold in equilibrium. In the first-price auction with renegotiation, the
bidder might reject the counteroffer, making this format inefficient. This
proves Proposition 3.

5.2.2 QUANTAL RESPONSE EQUILIBRIUM

The predictions for the first-price auction with renegotiation are extreme
in the sense that for any deviation from the equilibrium, the auctioneer’s
counteroffer jumps from the optimal take-it-or-leave-it offer to v̄. Bidders
are assumed to perfectly understand that the auctioneer can infer their type
in any separating bidding strategy and that their bid should not contain
any information about their type. In comparison to the standard first-price
auction, where small errors only lead to small changes in winning probability
and expected payment, the first-price auction with renegotiation leaves no
room for errors. Still, in real-life situations, bidders and the auctioneer
might err due to, for example, cognitive limitations. In this section, we
are interested in what happens when we relax the assumption that players’
choices are always optimal and allow them to make mistakes.

One equilibrium concept choice to account for these type of deviations
is the quantal response equilibrium (QRE) (McKelvey and Palfrey, 1995).
In this section we model both the first-price auction with renegotiation
and the standard first-price auction settings and derive the corresponding
response functions. We begin with the first-price auction with renegotiation.
Consider n = 2 bidders. Let T = {0, ..., 10} be the set of possible types.5

The action space of the bidders is given by AB = T = {ti}i∈{0,...,10}. The
5We consider a reduced version with eleven types of the experiment that has 101

types. This is due to computational limitations when numerically solving the QRE.
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auctioneer’s action space is given by

AA = {(t0, b1), (t1, b1), . . . , (t10, b1), (t0, b2), . . . , (t10, b2)} = {aA
i }i∈{0,...,21},

(193)
where the first eleven entries denote a counteroffer of ti to bidder one while
the other entries denote the counteroffers to bidder two. Note that both
offers and counteroffers are capped by the highest possible type. In QRE,
every action of every player is chosen with a positive probability depending
on the expected utility of said action and on a precision parameter, λ ∈
[0, ∞). We use the logit QRE concept described in Goeree et al. (2016) in
chapter 3.3.

Consider bidder 1. Let σB
ij be the probability that a bidder of type ti

submits an offer of tj. Let σA
ijk be the probability that, given the bids of

bidder one and two, b1 = ti and b2 = tj, the auctioneer chooses the action
aA

k . The weighting function depends on the expected utilities. Then the
expected utility of bidder 1 being of type ti and submitting an offer of tj is
given by

UB
1 (ti, tj, σB, σA) =

10∑
k=0

k∑
l=0

σB
kl︸ ︷︷ ︸

bidder 2: b2

21∑
m=0

σA
jlm︸ ︷︷ ︸

auction.: aA
m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ti − tm aA
m ∈ (·, b1) & m ≤ i

0 aA
m /∈ (·, b1)

0 aA
m ∈ (·, b1) & m > i

(194)

=
10∑

k=0

k∑
l=0

σB
kl

i∑
m=0

σA
jlm(ti − tm) (195)

:= UB
1,ij(σB, σA). (196)
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Analogously, the expected utility of the second bidder being of type ti and
submitting an offer of tj is given by

UB
2 (ti, σB, σA) =

10∑
k=0

k∑
l=0

σB
kl

21∑
m=0

σA
jlm

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ti − tm aA
m ∈ (·, b2) & m ≤ i + 11

0 aA
m /∈ (·, b2)

0 aA
m ∈ (·, b2) & m > i + 11

(197)

=
10∑

k=0

k∑
l=0

σB
kl

i+11∑
m=11

σA
jlm(ti − tm−11) (198)

:= UB
2,ijk(σB, σA). (199)

The expected utility of the auctioneer having received the offers b1 = ti and
b2 = tj and taking action aA

k is given by

UA
ijk(σB, σA) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

10∑
m=0

σB
mi

⎧⎪⎨
⎪⎩

tk m ≥ k

0 m < k
ak ∈ (·, b1)

10∑
m=0

σB
mj

⎧⎪⎨
⎪⎩

tk m + 11 ≥ k

0 m + 11 < k
ak ∈ (·, b2)

(200)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10∑
m=k

σB
mitk ak ∈ (·, b1)

10∑
m=k−11

σB
mjtk ak ∈ (·, b2).

(201)

The logit QRE response function to determine the σ’s in the quantal re-
sponse equilibrium is generally of the form

σi = eλU(σi)∑
σj

eλU(σj) . (202)

In our case, we have the following system of equations,

σB
ij = eλUB

1,ij(σB ,σA)∑i
k=0 eλUB

1,ik
(σB ,σA) ∀ ti, tj ∈ T

σB
ij = eλUB

2,ij(σB ,σA)∑i
k=0 eλUB

2,ik
(σB ,σA) ∀ ti, tj ∈ T

σA
ijk = eλUA

ijk(σB ,σA)∑21
m=0 eλUA

ijm(σB ,σA) ∀ ti, tj ∈ T and ∀ aA
k ∈ AA.

(203)
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We make some assumptions on the behavior of both the bidders and the
auctioneer. The bidders cannot submit bids strictly higher than their type,
so σB

ij = 0 for all j > i. The auctioneer takes this into account and forgoes
strictly dominated choices when submitting the counteroffer. Therefore, she
does not make counteroffers lower than the highest of offers she has received.
This means σA

ijk = 0 for all k < max{i, j} and 11 < k < max{i, j} + 11.
Additionally, we assume that the auctioneer chooses the highest of the two
bidders for the counteroffer, σA

ijk = 0 for k < 12 if i < j and σA
ijk = 0 for

k > 11 if i > j. While this assumption increases the pressure on prices,
it does not change the results qualitatively and makes the presentation of
the results easier. This is due to the fact that the probability of an action
aA

k then depends only on the highest bid, which yields a probability matrix
that is easier to interpret. The standard first-price auction is modeled
analogously, see Appendix 5.5.2.

In Goeree et al. (2016) it is shown that for λ → ∞, the QRE converges to
the unique Bayes-Nash-equilibrium derived in the last section. This means
QRE gives us three predictions for the behavior of bidders and auctioneer:

Proposition 4. For the limit case λ → ∞, bids are lower in the first-price
auction with renegotiation than in the standard first-price auction.

Proof. As shown in Goeree et al. (2016) section 3, the logit QRE converges
to the unique Bayes-Nash-equilibrium derived in the last section. Then the
results derived in that section apply.

Proposition 5. For the limit case λ → 0, bids are identical in the first-price
auction with renegotiation and the standard first-price auction. Bidders
are unresponsive to expected payoffs and submit all valid offers with equal
probability.

Proof. For λ → 0, the system (203) simplifies to

σB
ij = 1

i + 1 ∀ ti, tj ∈ T

σB
ij = 1

i + 1 ∀ ti, tj ∈ T

σA
ijk = 1

22 ∀ ti, tj ∈ T and ∀ aA
k ∈ AA.

(204)
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Proposition 6. In contrast to the unique Bayes-Nash-equilibrium derived
in the last section, for any λ > 0, there is correlation between the offers
submitted by the bidders and the counteroffer submitted by the auctioneer.

Proof. For λ > 0, bidders submit all offers larger than zero and smaller
or equal than their type with strictly positive probability. The auctioneer
then conditions her counteroffer on the bids she received and forgoes strictly
dominated actions, namely those counteroffers smaller than the highest of
offers. This means that there exists a correlation between the offers and
the counteroffer.

We can numerically compute the equilibrium probability weights as de-
scribed in Goeree et al. (2016) for different λ values. The results can be
found in Figure 5.1 – Figure 5.3.

The QRE of the standard first-price auction can be found in Figure 5.1.
As expected, for the higher λ-value, the offers are less “washed out” around
the standard equilibrium bidding strategy of around v/2.

The QRE of the first-price auction with renegotiation can be found in
Figure 5.2 and Figure 5.3. For the bidders, one can still see some pressure
to pool offers in the λ = 15 case, while in the more error-prone λ = 3 case,
offers start resembling those of the first-price auction. For the counteroffers,
the auctioneer makes use of the information she gets from the bidders and
mixes her response.

In conclusion, we might observe offers in the first-price auction with
renegotiation that are closer to the offers in the standard first-price auction
than standard theory would predict.
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Figure 5.1: Numerical QRE of the standard first-price auction for two dif-
ferent values of λ. The rows represent the probability a certain offer is
submitted for each of the types (rows). A darker shade represents a higher
probability. The red line marks the offer with the highest probability for
each type.
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Figure 5.2: Numerical QRE of the first-price auction with renegotiation
for the bidders for two different values of λ. The rows represent the
probability a certain offer is submitted for each of the types (rows). A
darker shade represents a higher probability. The red line marks the offer
with the highest probability for each type.
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Figure 5.3: Numerical QRE of the first-price auction with renegotiation
for the auctioneer for two different values of λ. The rows represent the
probability a certain counteroffer is submitted after a certain highest offer
(columns) was observed. A darker shade represents a higher probability.
The red line marks the counteroffer with the highest probability for each
highest offer.

5.3 EXPERIMENT

In this section, we introduce our experimental design and state our hy-
potheses for the experiment.

5.3.1 EXPERIMENTAL DESIGN

We conducted three different treatments: the standard first-price auction
(FPA), the first-price auction with renegotiation (FPR) and the first-price
auction with renegotiation and feedback (FPRF). In all settings, the valua-
tions of the bidders are drawn from the set {0, 1, ..., 100} ECU, all valuations
are equally likely. In the FPA treatment, both bidders can submit offers
∈ {0, 1, ..., 100} in a first stage. The auctioneer than observes these offers
and chooses one of them at will. In the FPR treatment, the auctioneer
can additionally make a counteroffer. The counteroffer is automatically
accepted if it is below or equal to the value of the chosen bidders, and is
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rejected if it is higher than his value. This is done to reduce noise from an
additional decision of the participants.

The FPRF treatment includes additional feedback for the auctioneer:
After each round finishes, the offers and values of the two bidders are re-
vealed to her. With standard preferences, this does not have any implica-
tions on the equilibrium bidding strategies derived in 5.2.1.

5.3.2 ORGANIZATION

The experiments were conducted in the Cologne Laboratory for Economic
Research (CLER) at the University of Cologne, Germany. Using the re-
cruiting system ORSEE (Greiner, 2015), we invited a random sample of
the CLER’s subject pool via email with cash as the only incentive offered.
Our participants were mostly students at the University of Cologne, mostly
undergraduates, from a variety of majors, and they therefore represent the
larger university community. The whole experiment was computerized us-
ing the programming environment oTree (Chen et al., 2016). Upon their
arrival at the laboratory, participants were seated in visually isolated cubi-
cles and read instructions on their screens (see Appendix 5.5.1) describing
the rules of the game. Following this, they were handed control questions
which they had to answer correctly to proceed.

In total, 138 subjects participated in the experiment, with 36 subjects
participating in the FPA treatment, 48 subjects participating in the FPR
treatment and 54 subjects participating in the FPRF treatment.

Payoffs were stated in ECU, the conversation rate used was 1ECU =
0.01 EUR. Participants were paid out in private after the completion of the
experiment. All 138 participants were paid their total net earnings. The
average payoff for the entire experiment was 16.17 EUR corresponding to
approx. 18.95 USD at the time of the payment.

Participants were randomly assigned to one of two rooms where two dif-
ferent treatments were conducted simultaneously. We randomly assigned
one of the two roles, bidder and auctioneer, to every participant. Partici-
pants kept their assigned role for the whole experiment. Participants were
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grouped into cohorts of six where two auctioneers and four bidders were
matched randomly in each of the 50 rounds within a cohort.

5.3.3 HYPOTHESIS

Our theory predicts that offers in the FPR and FPRF treatments are not
correlated with the value of the respective bidder, they submit offers of zero
in equilibrium. With this, we can state the following hypotheses:

Hypothesis 1. There is no correlation between the value and the offers in
the FPR and FPRF treatments.

Hypothesis 2. Offers are lower in the FPR and FPRF treatments than in
the FPA treatment.

When we compare offers between the FPR and the FPRF treatment,
the difference in feedback could improve learning in the FPRF treatment.
The equilibrium bidding strategy in this setting requires a certain depth
of reasoning, a bidder needs to understand that any separating bidding
strategy leads to full surplus extraction. The additional feedback allows the
auctioneer to see how much money she “left on the table” in each round.
This, in turn, should lead to higher counteroffers which should lead bidders
to adjust their offers downwards. Thus, we expect that the additional
feedback pushes bidders closer to the equilibrium bidding strategy. This is
also related to our QRE results from Section 5.2.2: The additional feedback
could lead to less errors, or a higher λ value.

Hypothesis 3. Offers in the FPRF treatment are lower than in the FPR
treatment.

Theory predicts that counteroffers of the auctioneer do not depend on the
offers received in the first stage.

Hypothesis 4. There is no correlation between the offer of the chosen
bidder and the counteroffer of the auctioneer in the FPR and FPRF treat-
ments.
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The next hypothesis concerns the revenue of the auctioneer. In the FPA
treatment, the competition between bidders helps the auctioneer while in
the FPR and FPRF treatments, she can only propose the ex-ante optimal
take-it-or-leave-it offer to one of the bidders. A numerical simulation con-
firms this intuition. We can also approximate the revenues with continuous
types, since our bid grid is fine enough. For uniformly distributed values,
F = U [0, 100], the bidding strategy simplifies to

βI(v) = v

2 . (205)

The expected revenue for the first-price auction for the uniform distribution
over the interval [0, 100] is given by

E

[
R
]

= 100
3 . (206)

The optimal take-it-or-leave-it offer in the same setting is given by 50.
Offering this to one of the bidders at random results in an expected revenue
of 100

4 = 25.

Hypothesis 5. The auctioneer’s revenue is strictly higher in the FPA treat-
ment than in the FPR and FPRF treatments.

If the additional feedback of the FPRF really leads to less errors and
with that to a QRE that is closer to the unique Bayes-Nash equilibrium,
than revenue should be lower in the FPRF treatment.

Hypothesis 6. The auctioneer’s revenue is lower in the FPRF treatment
than in the FPR treatment.

Related to Proposition 3, the FPA should be efficient, while theory
predicts that the FPR and the FPRF are not.

Hypothesis 7. The FPA is more efficient, in the sense that the bidder
with the highest value is more often the winner, than in the FPR and FPRF
treatments.

For the FPA treatment, we should observe that bidders bid according
to the equilibrium bidding strategy (205).
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Mean Std. Dev. Min Max
FPA

Participants 36 – – –
Values 50.56 29.41 0 100
Offers 34.56 21.46 0 95
FPR

Participants 48 – – –
Values 49.58 28.97 0 100
Offers 36.81 23.19 0 98

Counteroffers 53.08 18.24 1 100
FPRF

Participants 54 – – –
Values 50.52 28.99 0 100
Offers 34.25 21.73 0 99

Counteroffers 53.49 18.66 1 99

Table 5.1: Summary statistics for the treatments.

Hypothesis 8. Bidders submit offers according to the equilibrium bidding
function of βI(v) = v/2 in the FPA treatment.

5.3.4 RESULTS

We begin with the hypotheses concerning the bidding strategy of the bidders
in FPR and FPRF treatments and the comparison with the FPA treatment,
Hypothesis 1 and Hypothesis 2.

As a reminder, the equilibrium offers are given by zero in these two
settings. However, we observe only four out of 68 bidders who submit an
offer of zero when their value is larger than five and of these, only three do
so more than once. Also as can be seen in table 5.2, value has a significant
influence on the offers in the FPR and FPRF treatments. Thus, we must
reject Hypothesis 1.

In the FPR treatment, the average offer is given by 36.82, while in the
FPRF treatment, it is given by 34.25, see table 5.1. In the FPA treatment,
the average offer is given by 34.56. While the treatment dummy for the
FPR treatment has a significant effect on the offers (see Table 5.3), it is
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Figure 5.4: Offers and the corresponding linear regressions in the FPR
(left), the FPRF (right) and the FPA treatment (below).

positive, contrary to Hypothesis 2. We find no significant difference in the
offers between the FPRF and the FPA treatments. Thus, we must reject
Hypothesis 2 as well.

Result to Hypothesis 1 Offers are correlated with the respective
values in the FPR and FPRF treatments (p=0.000, linear regression).

Result to Hypothesis 2 There is no significant difference between
the offers in the FPA and the FPRF treatment (linear regression,
p = 0.6897). Offers are significantly higher in the FPR treatment
than in the FPA treatment (linear regression, p = 0.097).

However, offers in the FPR are significantly higher than in the FPRF
treatment (students’ t-Test p = 0.06). This can also be seen in Table 5.3.
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Result to Hypothesis 3 Offers in the FPRF treatment are signifi-
cantly lower than in the FPR treatment (students’ t-Test p = 0.0587).

The average counteroffer is given by 53.08 in the FPR treatment and
53.49 in the FPRF treatment, which are both slightly higher than the ex-
ante optimal take-it-or-leave-it offer of 50 in the unique equilibrium. A
regression of the counteroffer on the offer of the chosen bidder suggests
a high correlation between the two in both treatments (see Table 5.4).
Therefore me must reject Hypothesis 4, as predicted by our analysis of the
QRE (Proposition Proposition 6) in the FPR setting.

Result to Hypothesis 4 Counteroffers in the FPR and FPRF treat-
ments are correlated with the offer of the chosen bidder. (linear re-
gression p=0.000).

The revenues for the auctioneer are very similar in all three treatments
(means: FPA: 46.47 FPR: 47.96 FPRF: 45.37). All three average revenues
are higher than expected from theory but with a prediction of around 33
ECU in the first-price auction setting and around 25 ECU in the FPR
and FPRF treatments (numerical simulations), we can conclude that the
auctioneers were able to exploit some of the private information shared by
the bidders.

Result to Hypothesis 5 There is no significant difference between
the revenues in the FPR and FPRF treatments with respect to the
FPA treatment (students’ t-Test: FPA-FPR: p = 0.6883; FPA-
FPRF: p = 0.3652).

The difference between the FPR and the FPRF treatment is indeed
significant.

Result to Hypothesis 6 The revenue in the FPRF treatment is
significantly lower than in the FPR treatment (students’ t-Test: p =
0.0757).
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Regarding the efficiency, we observe no significant differences between
the treatments.

Result to Hypothesis 7 There is no significant difference concern-
ing the efficiency between the FPA and the FPR, and the FPA and
the FPRF (students’ t-Test, FPA-FPR: p = 0.6310; FPA-FPRF:
p = 0.2929).

Summary statistics for the FPA treatment can be found in table 5.1. We
observe overbidding in line with the experimental literature, the average
offer is given by 34.56, the median offer is 33. From table 5.2, we must
reject Hypothesis 5. The slope is significantly different from 0.5.

Result to Hypothesis 8 Bidders bid significantly higher than pre-
dicted in the FPA treatment (students’ t-Test p = 0.000).

Dependent variable: Offer
Treatment: FPA FPR FPRF

Value 0.66∗∗∗ 0.66∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.66∗∗∗ 0.66∗∗∗

(22.35) (22.33) (31.16) (31.14) (28.78) (28.88)

β0 0.85∗ 1.20 -0.24 0.30 0.88 1.92∗∗

(1.66) (1.16) (-0.44) (0.26) (1.47) (2.00)

Period -0.01 -0.02 -0.04
(-0.36) (-0.56) (-1.46)

Observations 1200 1600 1800
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 5.2: Panel regression estimates for the offers in the FPR, FPRF and
FPA treatments
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Offer
Value 0.689∗∗∗

(46.24)

Period -0.0146
(-0.38)

FPR 3.249∗

(1.66)
FPRF 0.751

(0.40)

FPR × Period -0.00612
(-0.11)

FPRF × Period -0.0282
(-0.58)

Constant -0.232
(-0.17)

Observations 4600
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5.3: Panel regression estimates for the effect of the treatment variables
on the offers of the bidders
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Dependent variable: Counteroffer
FPR FPRF

Offer of chosen bidder 0.798∗∗∗ 0.919∗∗∗

(53.39) (72.56)

Period 0.00582 0.0576∗∗∗

(0.29) (3.58)

Constant 12.75∗∗∗ 9.089∗∗∗

(9.02) (8.45)
Observations 800 900
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5.4: Panel regression estimates for the effect of the treatment variables
on the counteroffers of the auctioneers
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5.4 CONCLUSION

In this paper, we investigate how bidders react to commitment in first-price
auctions in a simple and concise setting. While theory clearly predicts that
the offers of the bidders should be higher in the standard first-price auction
than in the first-price auction with renegotiation, we cannot verify this ex-
perimentally. The same holds true for the revenue of the auctioneer and the
efficiency of the mechanisms, however, we find evidence for neither hypoth-
esis. Offers are informative of the bidders’ type in the first-price auction
with renegotiation but the auctioneers are not able to lever this information
into profit. This could reduce the pressure to pool of the bidders, as the
quantal response equilibrium analysis insinuates. For real-life procurement,
this would mean that a buyer does not need to focus on the commitment
of her mechanism and can expect competitive offers, even when the rules
on how a winner is selected are not clear. On the other hand, there have
been studies that show a strong reaction to a lack of commitment by labo-
ratory participants. This opens the door for further research. For example,
it would be interesting to understand how a mechanism can convey com-
mitment in a way that bidders understand and react to varying amounts of
it.
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5.5 APPENDIX

5.5.1 INSTRUCTIONS

FPA Treatment

Figure 5.5: Instructions page 1 and 2 for the FPA treatment
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Figure 5.6: Instructions pages 3 and 4 for the FPA reatment
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FPR Treatment

Figure 5.7: Instructions page 1 and 2 for the FPR treatment
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Figure 5.8: Instructions pages 3 and 4 for the FPR treatment
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FPRF Treatment

Figure 5.9: Instructions page 1 and 2 for the FPRF treatment
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Figure 5.10: Instructions pages 3 and 4 for the FPRF treatment
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5.5.2 LOGIT QRE FOR THE FPA

The action space of the bidders is given by AB = T = {ti}i∈{0,...,10}. The
auctioneer’s action space is given by AA = {b1, b2} = {aA

i }i∈{1,...,2}, either
she chooses the offer of bidder one or the offer of bidder two. The expected
utility of bidder 1 being of type ti and submitting an offer of tj is given by

UB
1 (ti, tj, σB, σA) =

10∑
k=0

k∑
l=0

σB
kl︸ ︷︷ ︸

bidder 2: b2

2∑
m=1

σA
jlm︸ ︷︷ ︸

auction.: aA
m

⎧⎪⎨
⎪⎩

ti − tj aA
m = b1

0 aA
m 	= b1

(207)

=
10∑

k=0

k∑
l=0

σB
klσ

A
jl1(ti − tj) (208)

:= UB
1,ij(σB, σA). (209)

Analogously, the expected utility of bidder 2 being of type ti and submitting
an offer of tj is given by

UB
2 (ti, tj, σB, σA) =

10∑
k=0

k∑
l=0

σB
kl

2∑
m=1

σA
jlm

⎧⎪⎨
⎪⎩

ti − tj aA
m = b2

0 aA
m 	= b2

(210)

=
10∑

k=0

k∑
l=0

σB
klσ

A
jl2(ti − tj) (211)

:= UB
2,ij(σB, σA). (212)

The expected utility of the auctioneer having received the offers b1 = ti and
b2 = tj and taking action aA

k is given by

UA
ijk(σB, σA) =

⎧⎪⎨
⎪⎩

ti ak = b1

tj ak = b2
(213)

This yields the following system of equations,

σB
ij = eλUB

1,ij(σB ,σA)∑i
k=0 eλUB

1,ik
(σB ,σA) ∀ ti, tj ∈ T

σB
ij = eλUB

2,ij(σB ,σA)∑i
k=0 eλUB

2,ik
(σB ,σA) ∀ ti, tj ∈ T

σA
ijk = eλUA

ijk(σB ,σA)∑2
m=1 eλUA

ijm(σB ,σA) ∀ ti, tj ∈ T and ∀ aA
k ∈ AA.

(214)





chapter 6

PRE-AUCTION OR POST-AUCTION QUALIFICATION?

Abstract

We compare auctions with bidder qualification before or after the
bidding process. We show that although post-auction qualification is
more efficient, the auctioneer prefers pre-auction qualification when
bidders’ qualification costs are high.

6.1 INTRODUCTION

Bidder qualification plays an important role in real-life auctions and pro-
curement procedures; however, verifying the qualification of a bidder is
costly for both the buyer and potential sellers. For example, it may in-
volve product testing, the inspection of production facilities, or the acqui-
sition of industry-norm qualifications.1 Interestingly, in most procurement
processes, bidders are required to undergo qualification before the actual
awarding of a project, which results in significant costs even for bidders who
fail to win the project. Typically, this is explained by the risk of qualifica-
tion failure. That is, if the bidder who wins the auction does not qualify,
the procurement procedure will have to be repeated.

However, there are many situations in which the risk of qualification
failure is not an issue, but qualification requirements are nevertheless in
place. First, in real-life auctions, buyers often deal with a limited set of
known suppliers, and qualification failure is relatively rare.2 Second, the
auctioneer may feel obligated or be required to document the fact that

1See Wan and Beil (2009) for details.
2For example, in the automotive industry, buyers and engineers are highly reluctant

to include unknown suppliers in procurement processes. As a result, usually only a few
well-known suppliers participate, but each supplier’s product is still extensively tested
before the procurement process starts.

158
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bidders meet certain standards (e.g., a DIN certification requirement by
the government, environmental obligations) for the benefit of less-informed
third parties (e.g., authorities, courts, superiors). Third, if the buyer’s
requirements for the qualification are known to potential bidders, they may
decide to invest in the assets that are needed to achieve qualification. In
this case, qualification costs in our model can be reinterpreted as necessary
investment costs. Our question then reduces to whether the auctioneer
should require bidders to invest prior to the auction or after the winner
is known. Fourth, our model also applies to a setting in which the sellers
know for certain (e.g., from previous experience or for technological reasons)
whether they will achieve qualification or not. In this situation, it does not
make sense for a bidder who would eventually fail qualification to participate
in the auction. As a consequence, every bidder who participates in the
auction will be qualified. Note that qualification is still necessary to deter
unqualified suppliers from participating. Absent the risk of qualification
failure, it is puzzling that the cost advantages of qualifying only the winner
of the procurement process are rarely realized.

We address this observation by constructing a simplistic model without
the risk of qualification failure. We then analyze when an auctioneer should
demand proof of bidders’ qualification: before or after the auction.3 Under
pre-auction qualification, all bidders must become qualified before they can
participate in the auction. Thus, there is an exclusion effect. Given that
the cost of qualification must be paid prior to participation and qualified
bidders may fail to win the auction, the expected surplus of bidders with val-
uations above but close to the qualification cost is negative. These bidders
therefore refrain from participation even if their valuation is higher than
the qualification cost. Under post-auction qualification, only the winner
must undergo costly qualification, resulting in a bid-shading effect. During
the bidding procedure, bidders will keep in mind that upon winning they
will have to pay the cost of qualification. Consequently, bidders will shade
their bids by an amount that is equal to the qualification cost. The ex-

3Even though typically both the buyer and the sellers bear the cost of qualification,
it is convenient to assume that bidders incur all such costs.
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clusion effect reduces revenues from pre-auction qualification, whereas the
bid-shading effect reduces revenues from post-auction qualification.

We show that, interestingly, pre-auction qualification is more profitable
if the qualification costs are sufficiently high. With pre-auction qualifica-
tion, each bidder decides whether to enter the auction based on the incurred
cost and his or her winning probability. If qualification costs rise, the cost
of participation increases. At the same time, however, fewer bidders partic-
ipate, which means that the winning probability increases. This increase in
the winning probability dampens the increase in the exclusion effect, and
the marginal increase eventually goes to zero for very high qualification
costs. With post-auction qualification, the bid-shading effect increases lin-
early with the increase in qualification costs, and the marginal increase is
one for all cost levels. Thus, as qualification costs increase, the bid-shading
effect becomes more important and pre-auction qualification yields higher
revenues.

This result is somewhat surprising, as previous studies have focused
on the risk of project failure (due to bankruptcy, lack of expertise, etc.)
in order to explain the prevalence of pre-auction qualification in real-life
procurement settings (see below). Without the risk of project failure, as
in our model, the superiority of post-auction qualification might appear
self-evident. However, our analysis highlights that pre-auction qualification
may be beneficial for the auctioneer even in the absence of the risk of project
failure.

Wan and Beil (2009) show that when the buyer can delay part or all of
qualification until after the auction, his or her expected payments can in-
crease due to the fact that bids from unqualified bidders will be discarded.
However, in their setting, delaying some or all qualification saves costs.
Thus, the authors conclude, the standard practice of pre-auction qualifica-
tion screenings can be improved upon by the judicious use of post-auction
qualification. In their model, when the risk of qualification failure disap-
pears, post-auction qualification becomes unambiguously dominant. This
is not true in our case, as even without the risk of qualification failure,
we show that pre-auction qualification may be desirable. In their setting,
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the auctioneer draws suppliers from an infinite pool, and pre-qualification
implies that the auctioneer will pre-qualify suppliers until he or she finds n

suppliers that pass the pre-qualification threshold. Thus, if the risk of qual-
ification failure disappears, auctioneers still bear the costs of pre-qualifying
n potential bidders if they insist on using full or partial pre-qualification.
In our setting, only bidders that have sufficiently high valuations enter the
auction and pay the qualification costs. Moreover, in their setting, the risk
of qualification failure has different effects on the bidding behavior in the
two qualification scenarios. When there is no risk of qualification failure
and the auctioneer picks the same number of bidders in both scenarios, this
difference disappears and bidders submit the same bids in the two qualifi-
cation regimes. In contrast, in our setting, bidders never submit identical
bids in the two scenarios due to the diverging exclusion and bid-shading
effects. Overall, pre-qualification may become more attractive compared to
the setting found in Wan and Beil (2009).

Wan et al. (2012) consider a setting in which a potentially unqualified
entrant competes in an open descending reverse auction with a qualified
incumbent. They find that, in the case of post-auction qualification, the
incumbent will hold back on bidding in the auction. This is due to the fact
that when the entrant fails qualification, the incumbent will be asked to
deliver the project even if he or she lost the auction in the first place. Again,
when the risk of qualification failure disappears, post-auction qualification
becomes unambiguously dominant.4

6.2 MODEL

There are N risk-neutral bidders competing in a second-price sealed-bid
auction for one indivisible object (with N ≥ 2). Before the auction starts,
each bidder privately observes his or her valuation vi ∈ [0, 1], where i ∈

4Both Wan and Beil (2009) and Wan et al. (2012) assume that the auctioneer bears all
the costs of qualification. However, they also point out that who bears the qualification
costs does not change the results. Thus, the only difference compared to the assumptions
in the present setup is the fact that suppliers may fail qualification.
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{1, . . . , N}.5 Valuations are independently distributed according to a com-
mon distribution function F that is assumed to be absolutely continuous
and to have a density f with supp f = [0, 1] and f(1) < ∞. The seller’s val-
uation is assumed to be equal to zero. In order to be selected as the winner
of the auction, the bidders must be qualified. Qualification comes at a cost
c that must be borne by bidders and that is common knowledge among all
bidders (with c ∈ [0, 1]). We explicitly abstract from the possibility that
any of the bidders may fail to become qualified.6

We compare the following two scenarios. Under pre-auction qualifica-
tion, all bidders decide simultaneously whether to invest in qualification
after they have learned their valuation but before the auction starts.7 Un-
der post-auction qualification, a bidder must invest in qualification only if
he or she wins the auction.

6.3 EQUILIBRIUM BIDDING

Finding a symmetric equilibrium bidding strategy under pre-auction quali-
fication is equivalent to finding a symmetric equilibrium bidding strategy in
an auction with participation or bidding costs.8 For the case of post-auction
qualification, the decision problem of the bidder with valuation v is equiva-
lent to the decision problem of a bidder in an auction without qualification
costs and an ex-post valuation of v − c. Thus, equilibrium bidding in the
second-price auction can be characterized as follows.

Proposition 1. In the pre-auction scenario, there exists a symmetric equi-
librium in which only bidders with v ≥ v

¯
(c) are qualified, where v

¯
(c) is

5We frame the setting as a selling rather than a procurement auction. This is without
loss of generality and has the advantage that most readers are more familiar with the
notation.

6This is due to the fact that we are interested in determining whether the requirement
of pre-auction qualification has positive effects other than minimizing the risk that a
bidder may fail qualification.

7We assume that bidders who enter the auction do not observe the number of com-
petitors. However, as the second-price auction is dominance solvable, relaxing this as-
sumption does not change the results.

8See, e.g., Menezes and Monteiro (2000), Kaplan and Sela (2006), Tan and Yilankaya
(2006), and Celik and Yilankaya (2009).
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implicitly defined by
v
¯

(c)F (v
¯

(c))N−1 = c.

The increasing equilibrium bidding function βpre(v) : [v
¯

(c), 1] → [0, 1] is
then given by

βpre(v) = v.

In the post-auction scenario, only bidders with v ≥ c undergo qualifica-
tion. The symmetric and increasing equilibrium bidding function βpost(v) :
[c, 1] → [0, 1] is given by

βpost(v) = v − c.

Bidding under pre-auction qualification is driven by what we call the ex-
clusion effect. As v

¯
(c) ≥ c, there are bidders who have valuations that are

greater than the qualification costs but who nevertheless do not participate
in the auction.9 With post-auction qualification, bidders take into account
that upon winning they will have to pay the qualification cost. Conse-
quently, bidders shade their bids, resulting in what we call the bid-shading
effect. The trade-off between this bid-shading effect and the exclusion effect
is what will drive our results concerning revenue.10

6.4 EFFICIENCY AND REVENUE

Conditional on the object being sold, the allocation in both qualification
regimes is efficient.11 Moreover, with post-auction qualification, only win-
ners pay for qualification, and they do so if and only if their valuation is

9Note that as F (v
¯
(c))N−1 ≤ 1 ∀c ∈ [0, 1], it follows immediately that v

¯
(c) ≥ c.

10For the comparison of the two qualification regimes, we only consider symmetric
equilibria. However, with post-auction qualification, the symmetric equilibrium is the
unique equilibrium in undominated strategies. With pre-auction qualification, the sym-
metric equilibrium is also unique if F (c) is concave (see Tan and Yilankaya, 2006, for
details). If F (c) is not concave, asymmetric equilibria (in the sense that bidders use
different cut-offs when they decide whether to participate in the auction) may exist.

11In fact, in all standard auctions, the allocation of the object is efficient among those
bidders who entered the auction when the bidders use symmetric cut-offs. Moreover, in
a symmetric equilibrium, the decision of whether to enter the auction is the same for
all auction types, as the borderline entrant only wins against those bidders who do not
enter. Overall, revenue equivalence is preserved in our setting. Thus, the results from
this section apply to all standard auction formats.
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greater than or equal to c. Thus, from an ex-ante point of view, post-
auction qualification is always more efficient than pre-auction qualification,
not only in terms of allocative efficiency, but also in terms of overall surplus
taking into account the qualification costs. We summarize this finding in
the following proposition, which also comments on the optimal mechanism:

Proposition 2. In the equilibrium of the second-price auction with post-
auction qualification described in Proposition 1, ex-ante and ex-post effi-
ciency is maximized for all mechanisms in which the winning bidder needs
to be qualified.12

Proof. See Appendix A.

Interestingly, despite the higher efficiency, revenues can be lower in the
scenario with post-auction qualification, as the following proposition shows:

Proposition 3. Post-auction qualification yields higher revenues than pre-
auction qualification whenever

c < Pr
(
Y

(N)
2 ≤ v

¯
(c)

∣∣∣Y (N)
2 ≥ c

)
E

[
Y

(N)
2

∣∣∣c ≤ Y
(N)

2 ≤ v
¯

(c)
]

, (215)

where Y
(N)

2 denotes the second order statistic of N draws from F .

Proof. See Appendix B.

Revenues in both scenarios depend on the second-highest value of the
bidders. The bid-shading effect in the post-auction qualification regime
lowers the second-highest value by c. The exclusion effect implies that if
the second-highest value is between c and v

¯
(c), the bidder with this value

chooses not to participate, and thus the revenue is zero in the pre-auction
qualification scenario. The same bidder would participate in the auction

12In particular, the efficiency of the setting with post-auction qualification is higher
than that of any symmetric or asymmetric equilibrium of the auction with pre-auction
qualification. Note that Blume and Heidhues (2004) show that in a second-price auction
with more than two bidders an effective reserve price implies the uniqueness of the
equilibrium. Thus, if N > 2, the second-price auction with post-auction qualification
has a unique equilibrium in which the ex-ante and ex-post efficiency is maximized. If
N = 2, other asymmetric equilibria may exist. However, in this case, the described
equilibrium is the unique symmetric equilibrium.
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with post-auction qualification, yielding a positive revenue. Thus, the left-
hand side of inequality (215) corresponds to the revenue loss due to the
bid-shading effect, whereas the right-hand side corresponds to the revenue
loss due to the exclusion effect.13

Unfortunately, the right-hand side of inequality (215) is not monotone
either in the number of bidders N or in the qualification cost c. This makes
comparative statics somewhat difficult. However, some general results can
still be derived:

Proposition 4. For each N , there exists a cutoff value c′ such that revenues
from pre-auction qualification are strictly higher than revenues from post-
auction qualification for all c ≥ c′.

Proof. See Appendix C.

This surprising result indicates that when qualification costs are high,
the seller benefits from asking each bidder to undergo qualification before
entering the auction. This is due to the fact that with pre-auction qualifica-
tion, each bidder decides whether to enter the auction based on the incurred
cost and his or her winning probability. As qualification costs rise, the cost
of participation increases. However, fewer bidders participate, and thus
the winning probability also increases. This increase in winning probability
mitigates the increase in the exclusion effect, and the marginal increase goes
to zero. Under post-auction qualification, the bid-shading effect increases
linearly with the increase in qualification costs, and the marginal increase is
one for all cost levels. Thus, the bid-shading effect becomes more important,
which eventually results in higher revenues under pre-auction qualification.

For lower levels of the qualification cost, the revenue ranking depends
on the distribution of the valuations, as highlighted in the following propo-
sition:

13Our comparison of revenue is valid only for symmetric equilibria in the scenario with
pre-auction qualification. However, as noted in footnote 10, asymmetric equilibria may
exist under pre-auction qualification. Such asymmetric equilibria might generate higher
revenues than the symmetric equilibrium considered in the present paper (see Celik and
Yilankaya, 2009, for details).
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Proposition 5. Suppose the limit

lim
v→0

F (v)
vf(v) (216)

exists. Then, if

lim
v→0

F (v)
vf(v) < N2 − 2N + 1 =: k(N), (217)

there exists a cutoff value c′′ such that revenues from post-auction qualifica-
tion are higher than revenues from pre-auction qualification for all c ≤ c′′.

If
lim
v→0

F (v)
vf(v) > k(N),

then there exists a cutoff value c′′′ such that revenues from pre-auction qual-
ification are higher than revenues from post-auction qualification for all
c ≤ c′′′.

Proof. See Appendix D.

Condition (217) can be easily verified for a large class of distribution
functions. In particular, condition (217) holds true for all convex distribu-
tion functions. Thus, if F is convex or if N is relatively high, post-auction
qualification yields higher revenues for low qualification costs. This is due
to the fact that convex distributions assign a relatively small winning prob-
ability to low valuations. In such a case, a bidder deciding whether to
invest in qualification faces a relatively unfavorable probability of winning
the object and thus does not enter even if the cost of qualification is low.
This is also true when the number of bidders is relatively high. In such
cases, therefore, the exclusion effect outweighs the bid-shading effect when
the qualification costs are small.14

To illustrate our results, we provide three examples.
14When the auctioneer has more degrees of freedom in designing the auction than only

choosing the timing of the qualification, post-auction qualification dominates pre-auction
qualification in terms of revenue for any initial value of the qualification costs. This is
due to the fact that the optimal auction with pre-auction qualification involves subsidies
to all losing bidders. This can be replicated with post-auction certification without cost.
See Menezes and Monteiro (2000) for details.
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Uniform distribution

For the uniform distribution, we have limv→0 F (v)/vf(v) = limv→0 v/v = 1.
Since N2 − 2N + 1 > 1 for all N > 2, post-auction qualification yields
higher revenues for low qualification costs and N > 2. Note that the case
in which N = 2 is not covered by Proposition 5, as N2 − 2N + 1 = 1, but
it is easily verified that post-auction qualification will yield higher revenues
for all qualification costs in this situation. The results are illustrated in
Figure 6.1a. Figure 6.2a identifies when an auctioneer prefers to employ
pre-auction or post-auction qualification, depending on the qualification
costs and the number of bidders.

F (v) = v2

In this case, limv→0 F (v)/vf(v) = limv→0 v2/2v2 = 1/2. Since N2−2N+1 >

1/2 for all N > 1.7, post-auction qualification will yield higher revenues for
any number of bidders and low qualification costs. The difference in revenue
between pre-auction and post-auction qualification for N = 2 in this case
is illustrated in Figure 6.1b.

F (v) =
√

v

In this case, we have limv→0 F (v)/vf(v) = limv→0 2
√

v
√

v/v = 2. Because
N2 − 2N + 1 > 2 for all N > 2, post-auction qualification yields higher rev-
enues for low qualification costs and N > 2. Figure 6.2b identifies when an
auctioneer would prefer to employ pre-auction or post-auction qualification,
depending on the qualification costs and the number of bidders.
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Figure 6.1: Difference in expected revenue ΔR (where ΔR = E[Rpost] −
E[Rpre]).
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Figure 6.2: Optimality of qualification regimes from the auctioneer’s point
of view (where the black circles indicate identical revenues in both qualifi-
cation settings).

6.5 APPENDIX

6.5.1 PROOF OF PROPOSITION 2

Proof. An efficient mechanism has the following three properties: (i) it allo-
cates the object if and only if v ≥ c; (ii) if the object is allocated, it goes to
the bidder with the highest valuation; and (iii) only the winner is qualified.
The monotonicity of the equilibrium described in Proposition 1 implies that
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the object is allocated to the bidder with the highest valuation, i.e., prop-
erty (ii) is satisfied. The fact that bidders only become qualified if v ≥ c

ensures that the object is allocated if and only if the winner’s valuation
is greater than the qualification cost. Hence, property (i) is fulfilled. Fi-
nally, post-auction qualification implies that in equilibrium only the winner
undergoes qualification, which means that property (iii) is satisfied.

6.5.2 PROOF OF PROPOSITION 3

Proof. An auctioneer can expect to generate revenue (denoted by R)

E [Rpre] = Pr
(
Y

(N)
2 > v

¯
(c)

)
E

[
Y

(N)
2

∣∣∣Y (N)
2 > v

¯
(c)

]
from pre-auction qualification and revenue

E [Rpost] = Pr
(
Y

(N)
2 > c

) (
E

[
Y

(N)
2

∣∣∣Y (N)
2 > c

]
− c

)
from post-auction qualification. Note that it holds that

Pr
(
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2 > c

)
E
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∣∣∣Y (N)
2 > c

]
= Pr
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)
E

[
Y

(N)
2

∣∣∣v
¯
(c) ≥ Y

(N)
2 ≥ c

]
.

Using this, we now consider the difference in the expected revenue between
the two qualification regimes,

ΔR := E [Rpost] − E [Rpre] ≥ 0
⇔ Pr
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) (
E

[
Y

(N)
2

∣∣∣Y (N)
2 > c

]
− c

)
− Pr

(
Y

(N)
2 > v

¯
(c)

)
E

[
Y

(N)
2

∣∣∣Y (N)
2 > v

¯
(c)

]
≥ 0

⇔ Pr
(
Y

(N)
2 > v

¯
(c)

)
E

[
Y

(N)
2

∣∣∣Y (N)
2 ≥ v

¯
(c)

]
+ Pr

(
v
¯
(c) ≥ Y

(N)
2 ≥ c

)
E

[
Y

(N)
2

∣∣∣v
¯
(c) ≥ Y

(N)
2 ≥ c

]
− c Pr

(
Y

(N)
2 > c

)
− Pr

(
Y

(N)
2 > v

¯
(c)

)
E

[
Y

(N)
2

∣∣∣Y (N)
2 > v

¯
(c)

]
≥ 0

⇔ Pr
(
v
¯
(c) ≥ Y

(N)
2 ≥ c

)
Pr

(
Y

(N)
2 > c

) E

[
Y

(N)
(2)

∣∣∣v
¯
(c) ≥ Y

(N)
2 ≥ c

]
− c ≥ 0

⇔ Pr
(
v
¯
(c) ≥ Y

(N)
2

∣∣∣Y (N)
2 > c

)
E

[
Y

(N)
2

∣∣∣v
¯
(c) ≥ Y

(N)
2 ≥ c

]
≥ c.

Because 0 ≤ Pr
(
v
¯
(c) ≥ Y

(N)
2

∣∣∣Y (N)
2 > c

)
E

[
Y

(N)
2

∣∣∣v
¯
(c) ≥ Y

(N)
2 ≥ c

]
≤ 1,

this inequality is well defined and the proposition holds.
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6.5.3 PROOF OF PROPOSITION 4

Proof. As the revenue is equal to zero for c = 1 in both scenarios, we will
show that the difference in revenue ΔR has a local maximum at c = 1.
Consider the following derivatives:15
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Then,
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and
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The second limit is a strict inequality because we assumed f(1) < ∞ which
means that limc→1 v

¯c > 0. Finally note that expression (218) provides the
possible extremum in c = 1 whereas expression (219) confirms that it is
a local maximum. Thus, in a neighborhood U = (c′, 1), ΔR < 0 for all
c ∈ U .

6.5.4 PROOF OF PROPOSITION 5

Proof. As the difference in revenue ΔR is equal to zero for c = 0 (revenue
equivalence), we will show that the first derivative of ΔR is positive or

15We write F
(N)
k to denote the distribution of the k-th order statistic of N draws and

f
(N)
k to denote its density.
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negative, respectively. Observe that
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Now there are two possible scenarios:
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which means that the second case is the relevant one. Because we are
dealing with a rational function, and since the limits on both sides exist,
we can write
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We can therefore identify three possible scenarios:
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For the first two scenarios,
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For m = 0, this results in limc→0
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ΔR = N − 1. For m > 0, this leaves us
with the condition

m < N2 − 2N + 1 = k(N)
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ΔR > 0.
In the third scenario, ∂
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ΔR = −1 < 0.





chapter 7

BID POOLING IN REVERSE MULTI-UNIT DUTCH
AUCTIONS – AN EXPERIMENTAL INVESTIGATION

Abstract

In this paper, we experimentally investigate reverse multi-unit
Dutch auctions in which bidders compete to sell their single unit to
a buyer who wants to purchase several objects. Our study yields
three insights. (i) Bids are substantially higher than Nash equilib-
rium bids predicted by standard economic theory; (ii) these higher-
than-predicted prices gradually decline in later periods; and (iii) bid
pooling (or simultaneous bidding) is frequently observed—the ma-
jority of bidders submit their bids immediately after the first bidder
has sold his unit. A model that distinguishes between myopic and
sophisticated bidding strategies helps to organize these patterns both
on the aggregate and on the individual level.

7.1 INTRODUCTION

Multi-unit Dutch auctions and their procurement counterparts are imple-
mented in a variety of real-world markets. In these settings, bid pooling
(also known as bidding frenzy), i.e., many bidders submit bids at the same
time/clock price, and crashes, i.e., situations where bidders withhold bids,
are frequently observed phenomena (see Bulow and Klemperer, 1994). One
example for the use of multi-unit Dutch auctions in practice is the sale of
new securities by US underwriters. There, an initial price is maintained
or supported as long as either an issue is sold out or demand turns out so
low such that a significant price decrease is necessary. Moreover, multi-unit
Dutch auctions are also used in commodity markets such as fish markets or
markets for fresh produce (see Cassady, 1967; Romeu, 2000). Furthermore,
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tickets for concerts, shows, etc. are typically sold on a first-come-first-serve
basis which can be interpreted as a multi-unit descending auction.1

Despite the practical importance of multi-unit Dutch procurement auc-
tions in reality and the (potentially) detrimental effects of bid pooling for
buyers resulting from an allocative inefficiency as products are not necessar-
ily supplied by the most efficient sellers, related empirical and experimental
evidence on the basic multi-unit Dutch auction is scarce.2 Our study con-
tributes to the literature by showing that this auction format is prone to
higher prices than predicted by standard theory and is characterized by
bid pooling. Furthermore, we set up a theoretical framework to show that
these experimental results can be organized by boundedly rational bidding
strategies.3

In the auction that we analyze, each subject can sell at most one unit
and faces the same commonly known costs to produce it. In many envi-
ronments where inputs are procured through reverse auctions, transparent
information about costs seems to be a plausible assumption. For example,
cost structures are transparent for industry sectors such as for raw material
as well as standardized and upstream products. These products are typ-
ically characterized by a relatively small value added or sunk R&D costs.
More generally, as Haruvy and Katok (2013) point out, bidder-specific at-
tributes may be well known in markets where a relative small number of
bidders repeatedly interact with each other.

1In these auction-like settings, all buyers pay the same price but they may incur
different opportunity costs depending on the point in time they decide to purchase their
tickets. Another application is the problem of how to deal with stranded passengers
when flights are overbooked. The use of auctions as a solution to the airline-overbooking
problem was suggested by Simon (1968) (see also Simon, 1994).

2There are several contributions on Dutch multi-unit auctions (see McCabe et al.,
1990; Katok and Roth, 2004; Goeree et al., 2006; Kwasnica and Sherstyuk, 2007) which
all analyze different environments (heterogeneous units, externalities between units, etc.)
compared to the present study.

3Sherstyuk (1999, 2002) analyzes multi-unit English auctions and shows that collu-
sion (without bid pooling) occurs if bidders can match their offers. This is in accordance
with standard theoretical predictions as she allows for bid matching which means that
competitors may immediately match any deviating bid rendering deviation unprofitable.
Contrary to that, our observations in a multi-unit Dutch auction cannot be explained
by standard theory.
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In every round of our game, a buyer starts the price clock at some low
price and the selling price is increased continuously. At any price, four
bidders can decide to sell their product or remain in the auction and wait
for a higher price. As soon as the buyer has obtained the desired number of
objects, the auction ends. In this setup, standard economic theory predicts
that all bidders accept to sell the good either at a price equal to costs or
at the start price if the start price is above costs. Therefore, our design
shares important features of Bertrand-style competition. At the same time,
bidders prefer higher bids to increase revenues.

Indeed, we find that bids in our experiment are substantially above the
Nash equilibrium price with rational bidders and only gradually approach
it over the periods. Bid pooling is a predominant pattern—the majority of
bids within an auction occur immediately after the first supplier submitted
a bid. Also, bidders seem to focus on reference prices equal to the highest
successful bids in the previous auction when they decide about accepting
the clock price.

We propose a framework that integrates bounded rationality into the
derivation of bidding functions by assuming that bids are heterogeneous
with respect to their strategic sophistication. In this framework, we distin-
guish between myopic bids consisting of a simple backward-looking heuristic
and sophisticated bids where agents anticipate the behavior of others and
choose their optimal bids according to their expectations but may make
mistakes. This approach can organize our experimental observations on the
aggregate, suggesting that on the individual level, about half of the bids
are sophisticated whereas the other half are myopic.

Bidding behavior in descending multi-unit auctions has been theoret-
ically analyzed in Bulow and Klemperer (1994), Mart́ınez-Pardina and
Romeu (2011), as well as Gretschko et al. (2014) . These articles show
that any symmetric equilibrium in this auction format is inefficient as bid
pooling occurs under standard assumptions with bidder heterogeneity. In
the present setting, however, bidders are homogeneous with respect to their
costs so that simultaneous bidding should only be observed at the start
price. Yet, under the assumption that subjects are boundedly rational, bid
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pooling is predicted at prices substantially above the start price. Moreover,
in our framework, sophisticated bidders maximize their profit if they just
preempt bid pooling, i.e., accept the price clock just before all others do.
As these subjects will not enter the auction immediately if the highest price
in the previous period is sufficiently far away from the minimum price but
aim at undercutting it gradually, prices will decline over time and eventually
converge to the starting price.

Our experimental design can be linked to other classes of experiments.
With its equilibrium of placing a bid equal to the lowest possible price, our
design is related to investigations of Bertrand competition with homoge-
nous products in which participants have to decide about the price they
charge for the goods. Experimental studies in this area have found that
the realized prices typically range above the equilibrium prices of rational
profit-maximizing players—at least when the number of competitors is suf-
ficiently low (see, for example, Dufwenberg and Gneezy, 2000, Muren and
Pyddoke, 2006, Hinloopen and Soetevent, 2008, and Fonseca and Normann,
2012).

At the same time, there are important design aspects that distinguish
our setting from Bertrand competition. First and foremost, the sequence of
the price increases in our setting makes bidding a dynamic decision problem
from the subjects’ perspective. Due to the continuous price increase in the
course of each auction, bidders in our experiment can react to the bids of
others and bids are potentially placed in sequences rather than simultane-
ously as it is the case in Bertrand markets. Related to this, competitors in
Bertrand markets face a constant demand whereas in our case, the demand
for the objects may shrink during an auction and bidders may adapt their
strategies to changes in the demand. Second, competitors in Bertrand ex-
periments typically pick one price from an interval of possible prices whereas
bidders in our setting face a repeated binary decision. This is due to the fact
that for each price step, they have to choose whether to enter the auction or
to wait. Third, aiming at higher prices in Bertrand markets is rather risky
for the firms. If one firm is underbid by a competitor, it earns zero profits
as the competitor serves the whole market. On the contrary, if one supplier
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in our setting has not yet entered the auction at the time a competitor has
already sold the object, there is still the chance to make positive profits
when the object is sold later in the auction.

In addition, our design shares important features with centipede games
due to its complete information structure and the sequential decision-making
of subjects (McKelvey and Palfrey, 1992). In the standard version of the
centipede game, two players repeatedly choose whether to exit the game
or to pass the decision to the other player. Whereas total payoffs increase
with the number of times the decision is passed on, each player has the
incentive to exit at every stage. Under standard assumptions, rational
players immediately exit. Yet, most experimental variations of this game
find strong deviations from the Nash equilibrium predictions, with a sub-
stantial probability that players pass the decision to others even in later
stages of the game (see, for example, Rapoport et al., 2003, Murphy et al.,
2006, Palacios-Huerta and Volij, 2009, Levitt et al., 2011, and the references
cited therein).4 Our setup differs from “classic” centipede games in several
important aspects. First, in the present setting, more than two players
interact with each other who decide simultaneously at each stage whether
or not to sell their items. Second, as our game does not end once a single
player has moved, the relation of bidders and goods in our design does not
produce one winner and n−1 losers (as in centipede games), but n−1 win-
ners and one loser. Third, depending on the bids placed in the auctions,
winners in our auction may obtain substantially different payoffs.

Finally, our experiment is related to clock games as introduced by Brun-
nermeier and Morgan (2010). In a clock game, several players have to decide
when to sell an asset whose value increases exponentially over time. If a
player does not sell the asset, he receives an “end of game” payoff that
is stochastically determined and relevant for all players. At some point in
time, each player receives a private signal that the value of the asset exceeds
the “end of game” payoff. If the decisions to sell the asset are observable,

4Moreover, in a recent article, Cox and James (2012) compare Dutch auctions and
centipede games with private information about payoffs and highlight that the mode of
presentation (clock or tree structure) has a decisive impact on behavior.
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the model predicts that players initially wait but that there is “herding”
after the first asset has been sold. This pattern is confirmed in experimental
tests. Similar to the theoretical papers on descending multi-unit auctions,
the pooling of bids is explained by strictly rational behavior.

The paper proceeds as follows. First, we describe the experimental de-
sign and derive the theoretical prediction given standard assumptions (Sec-
tion 2 ). We then proceed with reporting our experimental results (Section
3 ) and suggest a behavioral model of the interaction between sophisticated
and myopic bidding strategies to organize the observed patterns in our data
(Section 4 ). The last section discusses our findings and concludes.

7.2 EXPERIMENTAL DESIGN AND THEORETICAL
PREDICTIONS

Our experimental auction was conducted as follows. K = 4 subjects in the
role of sellers were endowed with one item they could sell in a reverse Dutch
auction. A maximum of G = 3 goods could be sold in a single auction (the
items were sold to the experimenter; there was no human buyer involved).
The selling price started at 20 Experimental Currency Units (ECU) and
was increased by 5 ECU every five seconds as long as less than three sellers
had sold their good at any of the previous price steps. A participant who
wanted to sell at the current price could do so by clicking a ‘Sell’ button
on the screen. If the number of bids exceeded the number of requested
items, sellers were randomly chosen.5 During the auction, active bidders
were informed at each price step how many items were still to be sold. The
auction automatically stopped at a price cap of 100 ECU. After the auction
ended, all bidders were given full information about the prices paid for each
of the three objects and about unsuccessful bids (if any). The experiment
included 20 repetitions of this reverse Dutch auction. We implemented a

5This feature is similar to some treatments of the oral auction studies by Sherstyuk
(1999) and (2002) where, after observing the bid of a competitor at a given price, a bidder
could decide to match it. The possibility of matching bids strongly facilitated collusion.
In our design, a subject can realize only after a given bid price that a competitor has
entered the auction, thereby running the risk that all items have already been sold.
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partner matching where four subjects were randomly assigned to each other
prior to the experiment and interacted with the same participants through-
out the 20 rounds. The partner matching was chosen for two reasons. First,
the real-world motivation for our study—procurement auctions with trans-
parent cost structures of the competitors—applies in particular for markets
where a relatively small number of bidders repeatedly interact with each
other. Second, as we assume that bounded rationality may have an impact
on bidding patterns and realized prices, a partners matching should be a
challenging environment to test this conjecture as the repeated interaction
with the same competitors should provide better opportunities to gain ex-
perience and to learn optimal behavior than in a strangers matching. This
is true in particular because in our setting, bidders receive full informa-
tion about all bids in every round.6 Finally, to reduce complexity for the
participants, costs for the item were normalized to zero which was public
knowledge.

The experimental sessions were run in the Cologne Laboratory for Eco-
nomic Research. Subjects were recruited with Greiner’s online recruit-
ment system ORSEE (Greiner, 2004). The experimental software was
programmed with z-Tree (Fischbacher, 2007). We conducted three ses-
sions with a total of 88 subjects yielding 22 statistically independent bidder
groups. The majority of the participants were students with a major in eco-
nomics, business administration, or related fields. Subjects arrived at the
laboratory, were randomly assigned to a cubicle, and received written in-
structions.7 After the experiment, subjects were privately paid out and left
the laboratory. Experimental payoffs were converted at a rate of 100 ECU
= 1e. The average payoff was 14.63e (including a show-up fee of 7.50e8)

6At the same time, we acknowledge that repeated game effects may arise in our
setting. Therefore, an interesting extension of our experiment would be to investigate
the bidding patterns and market prices that emerge if subjects are matched with new
competitors in every period.

7Instructions translated from German can be found in Appendix A.
8Given that the expected payoff resulting from equilibrium play accounted for only

3/4 × 0.2e × 20 = 3.00e, the high show-up fee was chosen to ensure that the average
payoff in our experiment would not be significantly below the typical level.
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with a standard deviation of 2.44e. Each session lasted approximately one
and a half hours.

In the above setup where the costs of all sellers are fixed to zero and
known to all bidders, standard economic theory predicts Bertrand-style
competition among bidders who try to undercut each other to win the
contract. As a result, we should observe that under standard behavioral
assumptions, every bidder immediately presses the ‘Sell’ button at the start
price of 20 ECU.9

7.3 EXPERIMENTAL RESULTS

In a first step, we present the aggregate outcomes of the experimental auc-
tions. As will become clear, bidding behavior significantly departs from
standard predictions.

Calculated over all auctions, the average bid accounts for 48.0 ECU and
is thus substantially higher than the Nash equilibrium bid under standard
assumptions. Figure 7.1 displays the time trend for average bids and the
corresponding standard deviations. Initially, the average bid equals 65.6
ECU but bids decline over time. This negative time trend is confirmed if
we calculate Spearman rank correlation coefficients between average bids
and the number of rounds for each bidder group and perform a Sign-test
for the 22 statistically independent correlation coefficients (p < 0.001, two-
sided Sign-test). In the last rounds, average bids approach the equilibrium
bid of 20 ECU. Yet, bids are still higher than the equilibrium bids for a
substantial share of bidder groups. Even in the final round, the lowest bid
is above 20 ECU in 7 out of 22 bidder groups.

We can thus state the first result:

Result 1. Average bids are substantially higher than the start price and
gradually approach it over time.

Table 7.1 confirms that prices decrease only slowly throughout our ex-
periment. Here we compare the dynamics of the highest prices achieved

9We choose a start price of 20 ECU in order to get a unique equilibrium under
standard assumptions.
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Figure 7.1: Average bid prices over all auctions (in ecu)
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The figure displays the time trend of the mean bid price at which sellers entered an
auction and the corresponding standard deviations.

within a bidder group. Realized prizes are rather stable as calculated over
all 20 rounds, the highest price in an auction is identical to the previous
period in more than 40% of the cases. Also, if the highest selling price
declines from one round to the next, it only decreases by 5 ECU (= 1 price
step) in the large majority of the cases. Moreover, auctions where prices
drop by more than two price steps are rare. In some 11% of the cases,
the highest selling price even increases in the present round. Finally, the
patterns concerning price dynamics do not seem to be vary strongly across
time intervals.10

If we consider bidding dynamics within one particular auction by calcu-
lating the bid spread (defined as the difference in price steps between the
highest and the lowest realized selling price), we find substantial evidence
for bid pooling. From rounds 3–15, the median bid spread equals exactly
one price step (i.e., 5 ECU). Calculated over all periods, more than 85% of
all “subsequent” bids—i.e., bids that follow the initial bid in a particular

10The exception is the final time interval (periods 16–20) where the share of auctions
where the highest prices stay constant rises by about 20 percentage points which is due
to the fact that many auctions have already reached the minimum price of 20 by then.
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auction—are exactly one price step above the price of the first bidder. From
round 16 on, the median price spread equals zero as the majority of auctions
reach or approach the minimum price of 20 ECU. Table 7.2 separately lists
the percentage shares of auctions with bid spreads of a given number of
price steps for each five-period interval. Indeed, if we calculate Sign-tests
separately for each time interval, we find that median bid spreads across
bidder groups are always significantly smaller than 10 ECU or two bid steps
(all p-values are smaller than p < 0.001). These results further illustrate
the pattern that in the large majority of cases, the last successful bidder in
an auction enters at most one price step after the first bidder.

We therefore arrive at our second result.

Result 2. Once the first object is sold, the majority of the bids are exactly
one price step above the initial bid (bid pooling).

In the next step, we aim at gaining more insights into the path depen-
dency of bidding behavior. Our conjecture is that bidders focus on the
outcomes from the past auction when they decide at which price they enter
a given auction. The highest price achieved in the preceding auction is the
obvious candidate for the reference price as it reflects the bidders’ common

Table 7.1: Distribution of changes in the highest price achieved in two
consecutive auctions

Price steps < 0 0 1 2 > 2
All rounds 10.8% 44.5% 35.6% 4.5% 4.5%
2–5 19.3% 36.4% 28.4% 6.8% 9.1%
6–10 9.1% 40.9% 42.7% 5.5% 1.8%
11–15 11.8% 40.0% 41.8% 3.6% 2.7%
16–20 4.5% 59.1% 28.2% 2.7% 5.5%

The table lists the percentage shares of auctions in which the highest achieved price in
round t + 1 is either smaller than (by 1, 2 or >2 price steps), equal to (0 price steps),
or larger than (< 0 price steps) the highest achieved price in round t. One price step
equals 5 ECU.
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Table 7.2: Distribution of bid spreads over all auctions

Price steps 0 1 2 > 2
All rounds 30.5% 60.7% 4.1% 4.8%
1–5 10.9% 64.5% 10.0% 14.5%
6–10 24.5% 73.6% 1.8% 0.0%
11–15 27.3% 66.4% 4.5% 1.8%
16–20 59.1% 38.2% 0.0% 2.7%

The table lists the percentage shares of auctions with bid spreads of 0, 1, 2, and > 2.
The bid spread is defined as the difference of price steps between the lowest and the
highest successful bid; one price step equals 5 ECU.

goal to maximize revenues.11 To test this conjecture, we calculate simple
Tobit models with the individual bid as the dependent variable to account
for the fact that bids in our setting cannot be lower than 20 ECU, clustering
standard errors on the level of the experimental bidder group.

The results are listed in Table 7.3. Model 1 includes the number of
periods and the highest winning bid in the previous period. Here, the
variable for periods enters with a negative and significant sign which is in
line with the general downward trend in prices. Importantly, the coefficient
of Highest price (t-1) is positive and highly significant, suggesting that
it is indeed an important focal point for bidders. This effect is robust
also in alternative specifications. In Model 2, we additionally include the
second-highest and the third-highest bid from the previous period, which,
however, are both insignificant. In particular, the first winning bid of the
previous period (or the lowest price one or more bidders accepted) which
might be interpreted as a signal for the competitiveness of the bidders in
the auction (variable Third highest price (t-1)) does not have an additional
impact on bidding decisions. In Model 3, we add a dummy variable equal
to one if a particular bidder was not able to sell his good in period t − 1
and therefore ended up with zero profits for this auction (Did not sell (t-
1)). The coefficient of this dummy variable is negative and significant,

11A somewhat related argument is made by Suetens and Potters (2007) to explain
dynamic behavioral patterns in Bertrand settings. When information about previous
behavior is provided, subjects might imitate the best performer in the last round.
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Table 7.3: Determinants of individual bids

Model No. 1 2 3
Dependent variable Price bid (t) Price bid (t) Price bid (t)

Period -0.257*** -0.231*** -0.230***
(0.063) (0.073) (0.073)

Highest price (t-1) 0.980*** 1.218*** 1.218***
(0.032) (0.264) (0.264)

Second highest price (t-1) -0.214 -0.213
(0.281) (0.281)

Third highest price (t-1) -0.025 -0.026
(0.097) (0.098)

Did not sell (t-1) -0.853***
(0.326)

Constant -1.095 -1.764 -1.561
(2.089) (2.094) (2.102)

Observations 1,532 1,532 1,532
Log-Pseudolikelihood -4,645 -4,641 -4,640

Tobit models are calculated to account for the fact that bids cannot be smaller than 20
ECU. Robust standard errors clustered on experimental matching groups are listed in
parentheses. *** indicates a significance level of p < 0.01. The variable Period denotes
the number of the particular period.

indicating more aggressive subsequent bidding behavior after a bidder was
not successful. At the same time, the effect of Highest price (t-1) remains
significant.

Hence, our third result is the following.

Result 3. The highest winning bid in the previous auction is significantly
correlated with individual bids in a given auction.

We can thus conclude from our experimental results that (i) bids deviate
substantially from standard predictions, (ii) bid pooling is pervasive, and
(iii) the highest winning bid from the preceding period appears to be an
important focal point for bidding behavior in the present period. In the
next section, we model the impact of players’ strategic sophistication in our
setting.
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7.4 STRATEGIC SOPHISTICATION

In this section, we argue that our experimental results can be organized by
the notion that bids differ in the degree of sophistication and can largely
be categorized into two classes of bidding strategies.

Myopic and sophisticated bidding

In the following, we develop a model of bidding behavior to organize the
main findings from our experiment. In particular, bidding may be charac-
terized by (i) a myopic bidding strategy (denoted by subscript m) or (ii) a
sophisticated strategy (denoted by subscript s). Whereas the myopic bid-
ding strategy is a simple heuristic which requires less intellectual effort, the
sophisticated bidding strategy anticipates the existence of myopic and other
sophisticated bids and aims at playing a best response to a composition of
different bids.

In the first auction, bidders have no anchor to which they can adjust
their bids. Under the assumption that bidders who follow a myopic bid-
ding strategy randomize over the {20, 25, . . . , 100} interval and given that
bidders using a sophisticated strategy play best responses, prices above the
minimum price can be explained.12

From the second round on, we assume that bidders take the auction
outcomes realized in the previous round into account when deciding about
their current bid. In particular, we hypothesize that even a myopic bidding
strategy does not completely ignore the history of the game but takes the
accepted bids as reference points. As shown in the last section, the highest
price achieved in the preceding auction is positively related to bids in the
present auction so that this price seems to serve as a reference point for
bidding behavior.

Applying this idea to our setting, we assume that the myopic strategy
consists of bidding exactly the highest realized price for which the last object
was sold in the last auction. This is näıve in the sense that the strategy
does not take into account that other bidders have an incentive to enter

12We formalize this idea in Appendix 7.6.2.
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the current auction earlier. By focussing on the last object sold, a bidder
pursuing a myopic bidding strategy would furthermore, once an object is
sold in the current auction, react to the resulting reduction in demand by
accepting the next possible price to still realize a sale. As a result, we can
summarize the myopic bidding strategy bm

(
g, b̄t−1

)
from the second auction

onward as follows

bm

(
g, b̄t−1

) ∣∣∣
t≥2

=

⎧⎪⎨
⎪⎩

b̄t−1 if g = 3

20 if g < 3.
(220)

Here g ∈ {1, 2, 3} denotes the number of objects the buyer still wants to
purchase and b̄t−1 denotes the highest price achieved in the previous auction.

The sophisticated bidding strategy depends on the share of myopic and
sophisticated bids. Let x ∈ [0, 1] denote the share of sophisticated bids.
Remember that bidders have full information about winning bids at the
end of the auction. A bidder following the sophisticated bidding strategy
assumes that the myopic bids are equal to b̄t−1. Thus, in order to ensure
that he can sell his good, this bidder should enter the auction at a price
lower than b̄t−1. The best answer for a share x of sophisticated bids is to
bid one price step below b̄t−1 if

b̄t−1 − 10
!≤
(

1 − x3 + 3
4x3

) (
b̄t−1 − 5

)
⇔ 5

!≥ 1
4x3

(
b̄t−1 − 5

)
. (221)

The left-hand side of inequality (221) is the additional reduction in profits
if the bidder were to bid two price steps ahead of b̄t−1 instead of one. The
right-hand side is the potential loss when bidding b̄t−1−5. A loss occurs if all
other bids in the group are sophisticated (which happens with probability
x3) and the bidder does not win the resulting lottery (which happens with
probability 1/4).13 Finally, if one or more units have already been sold, the
bidding strategy consists of accepting the clock price immediately as the

13For example, if the share of sophisticated bids is 50%, then it is optimal for a bidder
following the sophisticated bidding strategy to enter exactly one price step below b̄t−1
for any b̄t−1 ∈ {20, ..., 100}.
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bidders with the myopic strategy do so as well. If the share of sophisticated
bids is not too large, i.e., x � 0.6, which holds true in the auctions we
observe,14 the sophisticated bidding strategy is given by

bs

(
g, b̄t−1, x

)
|t≥2 =

⎧⎪⎨
⎪⎩

max
{
20, b̄t−1 − 5

}
if g = 3

20 if g < 3.
(222)

In the following, we extend the analysis and allow for mistakes. Here,
we assume that errors occur only in the sophisticated bidding strategy.15

This means that, although a bidder would prefer to follow the sophisticated
bidding strategy, he might err and place a different bid. Due to fact that
in our model myopic bids will be placed at b̄t−1, mistakes by sophisticated
bidders can only occur downwards, i.e., before the price reaches b̄t−1 − 5.
Let ε be the probability of making an error at all. Then, with probability
1 − ε the sophisticated bidding function is given by

bs

(
g, b̄t−1, x, ε

)
|t≥2 =

⎧⎪⎨
⎪⎩

max
{
20, b̄t−1 − 5

}
if g = 3

20 if g < 3.
(223)

With probability ε, the bidder makes a mistake and the bidding function is
given by

bs

(
g, b̄t−1, x, ε

)
|t≥2 =

⎧⎪⎨
⎪⎩

max
{
20, b̄t−1 − 5F (a) a

}
if g = 3

20 if g < 3.
(224)

Here F denotes the probability to tremble by a steps where a ∈ N≥2.16

The bidding behavior characterized by expressions (220) and (223)–
(224) implies that in presence of sophisticated bids, realized prices will
decline over time as sophisticated players underbid the prices achieved in
previous auctions.17

14For higher values of x, there may be unraveling to the minimum price.
15This assumption seems plausible, because bidders need to perform elaborate com-

putations to follow the sophisticated strategy. On the contrary, following the myopic
strategy, a bidder simply copies a price in the next period.

16Assuming that the mistakes are distributed according to the Poisson distribution,
one can even derive a trembling-hand perfect equilibrium (Selten, 1975). This can be
found in Appendix 7.6.3.

17The term “realized price” here refers to the initial price at which one or more bidders
enter the auction. Note that whether the prices at which subsequent bids are submitted
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Observation 1. Prices decrease from the second period on if the share of
sophisticated bids is larger than zero.

Moreover, as long as the bidders following a sophisticated bidding strat-
egy do not err by to many price steps, we expect that initial bids do not
decrease strongly in subsequent rounds.

Observation 2. Prices decline slowly and gradually converge toward the
minimum price over time.

These two predictions of our model match the qualitative patterns found
in the data.

The idea that the interaction between sophisticated and näıve strategies
influences outcomes has been applied in related settings. For example, in the
context of Bertrand games, Dufwenberg and Gneezy (2000) show how the
presence of “noise bidders” might lead to prices above the Nash equilibrium
under standard assumptions. Also, the basic intuition that bids can be
attributed to one of the two strategies in our auction setting is similar to
the idea behind level-k models of bounded rationality (see Crawford et al.,
2013, for an overview of the literature) and related approaches (see, e.g., the
cognitive hierarchy model by Camerer et al., 2004). These models assume
that players maximize payoffs on the basis of simplified beliefs over other
players’ actions. Optimal choices are derived by iterated best response, with
more sophisticated players applying a higher number of steps of iterative
reasoning. Moreover, similar to our model, optimal actions are determined
anticipating the behavior of less sophisticated players.18

are equal to or lower than the highest price achieved in the previous round depends on
the initial bid in the present round.

18Many studies (see, for example, Duffy and Nagel, 1997, Ho et al., 1998, Bosch-
Domènech et al., 2002, Kocher and Sutter, 2005, Costa-Gomes and Crawford, 2006 and
the references cited therein) have provided empirical support for level-k models. A
robust phenomenon is that the majority of choices is in line with one or two steps of
iterated reasoning; the share of more sophisticated players is typically small. For recent
discussions on the general validity of the level-k approach, see, e.g., Penczynski (2011)
and Georganas et al. (2015). Investigations on the empirical relevance of level-k thinking
in static auction settings yielded mixed results (see Crawford and Iriberri, 2007, Ivanov
et al., 2010, Georganas, 2011, and Kirchkamp and Reiss, 2011). More generally, other
studies showed the importance of boundedly rational bidding strategies in auctions (see,
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Empirical fit of the model

In the next step, we have to check whether our proposed model of hetero-
geneous bidding behavior makes reasonable predictions for the distribution
of bids and errors across auctions. To do so, we first consider every initial
bid from auctions t ≥ 2. For these auctions and bids, we can unambigu-
ously determine whether the particular bid is sophisticated or myopic. The
sophisticated, mistake-afflicted, bidding strategy consists of entering one or
more steps ahead of the myopic bids (the highest price achieved in the pre-
ceding auction). Contrary to that, follow-up bids in auctions t ≥ 2 where
the initial bid was more than one price step below b̄t−1 cannot be attributed
to the sophisticated or the myopic strategy.19 For instance, in an auction
where the initial bid is placed two price steps below the highest bid in the
previous auction, the bids that immediately follow the first bid can be ei-
ther sophisticated or myopic. We therefore choose an indirect approach and
implicitly derive the underlying distribution of bid types.

To do so, we can derive the ex-ante probabilities of observing between
one and four bids (as four bidders interact) at a given number of steps below
the highest previous bid in each auction. As stated above, first bids below
the highest bid in the previous round are attributed to the sophisticated
bidding strategy. Table 7.5 in the appendix lists all corresponding ex-ante
probabilities that n players submit either myopic or sophisticated bids and
also gives the number of observations per case from period t ≥ 2 for the
325 out of the 418 auctions (77.8%) which can be used for the following
analysis.20

for example, Cooper and Fang, 2008, Shachat and Wei, 2012, and Kirchkamp and Reiß,
2014).

19The exception are auctions where the initial bid is placed one price step below the
highest price achieved in the previous period. Bidders who do not enter at this price are
sure to follow the myopic strategy according to our definition.

20We cannot use data from auctions in the first round because it is not possible here
to separate sophisticated and myopic bids from each other. Due to the assumption
that without a bidding history, the myopic strategy consists of randomizing over the
strategy space, every observed bid in the first auction could in principle be sophisticated
or myopic. Moreover, initial bids exceeding the highest previous level in any auction in
periods t ≥ 2 or initial bids at b̄t−1 by less than four bidders are not captured by our
approach and therefore excluded (altogether 43 auctions). Finally, we have to exclude 50
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We use the input from Table 7.5 to specify a system of equations that
define the distance between the ex-ante and the observed probabilities of n

initial bids of myopic and sophisticated type in an auction. We capture the
errors made by sophisticated types by assuming that these are distributed
according to a discrete probability mass function. We then assume that the
error is Poisson-distributed, P (y; λ) = λye−λ/y!, where λ specifies where the
probability mass function has its peak, i.e., which erroneous step is most
likely. By comparing the ex-ante probabilities with the observed number
of auctions for a given number of initial bids, we can calculate the share of
sophisticated bids that best fits this system and λ.21

Our results are summarized in Table 7.4. First of all, we observe that
the shares of myopic and sophisticated players are roughly equal. The large
share of myopic bids (47.1% calculated over auctions 2–20) follows from the
fact that the majority of initial bids are submitted at one price step below
the highest previously achieved price. This finding illustrates that a large
share of bids follow the heuristic of remaining in the auction until the highest
price of the previous period is reached. If we take the dynamics of the game
into account by breaking the calculation down to five-period intervals, we
observe that the shares of sophisticated and myopic bids constantly range
at around one half throughout the rounds. Only in the last five rounds of
the game, the share of sophisticated bids increases and accounts for some
65%. This suggests a small shift towards more sophisticated strategies at
the end of the game.

Concerning bidders’ proneness to making errors, our estimation suggests
that the bidders are rather accurate in their bidding behavior. Given that
a player bids less than b̄t−1, the overall probability to bid exactly one price
step below b̄t−1 accounts for 78%. Moreover, if bidders make mistakes, it is
very likely that the mistakes are only small.22 Conditional on underbidding
auctions from the analysis where goods are sold for prices near or at the Nash equilibrium
under standard assumptions. In these cases, a distinction between sophisticated and
myopic bids and equilibrium play is no longer possible.

21The exact approach, functions and derivation can be found in Appendix D.
22We acknowledge that with our estimation strategy, we may understate the propen-

sity of making mistakes. As prices successively approach the Nash equilibrium bid for
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Table 7.4: Estimated distribution of bid types and errors

Periods # of auctions Myopic Sophisticated λ

2–20 325 47.1 52.9 0.26
2–5 73 50.5 49.5 0.36
6–10 100 47.3 52.7 0.19
11–15 92 49.9 50.1 0.26
16–20 60 34.9 65.1 0.21

The table lists the estimated distribution of bid types and the parameter λ of the Poisson
distribution for auctions 2–20 and for four separate time intervals.

by more than one price step, the probability of erring by exactly one bid
step (i.e. bidding b̄t−1 − 10) is 88%. If we consider time dynamics, we
find that bidders tend to make mistakes more often in the beginning of
the experiment (periods 2–5 where the corresponding probability is around
30%) than in later rounds of the game—in the last time interval (rounds
16–20), the probability decreases to some 19%.

All in all, the estimated distribution of sophisticated and myopic bids
corroborates our observation from the descriptive statistics that the con-
vergence to minimum bids is driven by gradual responses to the bidding
history and not by some kind of “eureka” learning such that some bidders
switch to Nash equilibrium play from some period on.

7.5 DISCUSSION AND CONCLUSION

We have conducted a procurement experiment in which subjects acted as
sellers in repeated reverse multi-unit Dutch auctions. Empirical and ex-
perimental evidence on this auction format is scarce despite its practical
importance and despite the (potentially) detrimental effects of bid pooling
for buyers. In our setting, we observe that bids are substantially above the
rational players, bidders have less and less possibility to underbid by may price steps.
Yet our results do not change substantially if we restrict our analysis to auctions in
which the highest previous bid was 40 ECU or higher. For these auctions, sophisticated
bidders still can erroneously underbid by three steps. Repeating our estimation for the
restricted sample, 52.1% (47.9%) of the bids are classified as sophisticated (myopic); of
the sophisticated bids, 75.7% are estimated to be exactly one price step below the highest
bid from the previous round.
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Nash equilibrium prediction under standard assumptions and that bid pool-
ing is a predominant pattern. Moreover, bidding behavior reacts strongly
to the highest prices achieved in the previous auction. We explain these
results with a bidding model that distinguishes between sophisticated and
myopic bidding strategies.

Our model can capture the qualitative patterns found in the data. Aver-
age prices achieved in the auctions are substantially above the Nash equilib-
rium price in the beginning of the game. In nearly all auctions, the variance
of bids is only small. The difference between most bids is only one price step
and prices only slowly converge to the equilibrium level for rational, profit-
maximizing bidders. Moreover, based on our estimates roughly half of the
bids seem to result from myopic bidding whereas the other half applies a
more sophisticated strategy.

Hence, our experiment indicates the importance of boundedly rational
bidding strategies. At the same time, learning processes among the bid-
ders in our setting seem to be limited. As our estimation of the underlying
bidder behavior reveals, the shares of myopic and sophisticated strategies
are roughly constant over the rounds. Only at the end of the game, we
observe a moderate shift toward more sophisticated strategies. Yet, recent
studies on level-k thinking suggest the importance of learning for strategic
sophistication and, in particular, that subjects are heterogenous concerning
these learning processes. Gill and Prowse (ming) find a systematic connec-
tion between the cognitive ability of subjects and the levels of reasoning
exhibited in a repeated beauty-contest game. Moreover, subjects with a
high cognitive ability are also able to learn from the strategic interaction
with other subjects as their observed level of reasoning responds to the level
of reasoning of the subjects they are matched with. Agranov et al. (2012)
observe in one-shot beauty contest games that the degree of sophistication
some players show crucially depends on exogenously manipulated beliefs on
how other subjects play. In the light of these results, learning processes
in general and especially the way how sophisticated players respond to the
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(perceived or observed) sophistication of others would be an interesting next
step to investigate in auction settings.23

An important related question is how this insight can be utilized from a
market-design perspective. In the procurement setting we explore, bids are
substantially above minimum bids and converge only slowly over time as a
substantial part of the bidders adhere to the simplest possible heuristic—
bidding the highest observed price in the previous auction. In our case,
the auctioneer would substantially benefit from higher levels of sophistica-
tion on the aggregate as this would countervail the observed inflation of
prices. Any institutional change fostering the strategic sophistication of
bidders that prevents simple bidding heuristics would be highly desirable.
For example, the results by Haruvy and Katok (2013) suggest that the
transparency of different procurement auction formats may influence the
auctioneer’s payoffs. A deeper understanding of the interaction between
bidder sophistication and the market environment is a promising avenue
for further research.

23In classic level-k models, subjects are assumed to stick to the strategy associated
with their types. In a recent approach to modeling level-k-thinking, Ho and Su (2013)
assume that players may change their strategy after observing unexpected behavior of
others. In their model, players are in principal capable of playing according to any
level-k-thinking type but choose their behavior as to maximize payoffs given their beliefs
about the distribution of the thinking types of the other players.
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Table 7.5: Ex-ante probabilities for specific bids and actual observations
over auctions 2–20

Bid type # of bidders Probabilities # of observations
N

{n}
k

Myopic 4 (1 − x)4 2

Sophisticated

1 4P (0; λ)x(1 − x)3 73
2 6 (P (0; λ)x)2 (1 − x)2 55
3 4 (P (0; λ)x)3 (1 − x) 51
4 (P (0; λ)x)4 18

1

4 (1 − P (0; λ)x) (1 − x)3

113+12 (1 − P (0; λ)x) (1 − x)2P (0; λ)x
+12 (1 − P (0; λ)x) (1 − x) (P (0; λ)x)2

+4 (1 − P (0; λ)x) (P (0; λ)x)3

Sophisticated
2

6 (1 − P (0; λ)x)2 (1 − x)2

9with +12 (1 − P (0; λ)x)2 (1 − x)P (0; λ)x
errors +6 (1 − P (0; λ)x)2 (P (0; λ)x)2

3 4 (1 − P (0; λ)x)3 (1 − x) 4
+4 (1 − P (0; λ)x)3 P (0; λ)x

4 (1 − P (0; λ)x)4 0

In the third column, the table lists the ex-ante probabilities that n ∈ {1, 2, 3, 4} bidders
have submitted a myopic, sophisticated or erroneous sophisticated bid in an auction.
The last column lists the corresponding, observed number of experimental auctions for
these bids. We cannot capture bidding behavior by subjects in auctions in which 1, 2 or
3 first bids were placed at b̄t−1 (12, seven, and five cases) because the bidders who have
not entered by then are not classified by our approach.

7.6 APPENDIX

7.6.1 INSTRUCTIONS

Below we include a translation from German of the instructions that we
used in the experiment.

Welcome to our experiment! In this experiment you can earn money. How
much you will get depends on your own decisions and on the decisions of
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the other participants. From now on please do not communicate
with other participants. If there are any questions, please raise
your hand! We will come to you and answer your question. If you break
this rule, we will have to exclude you from this experiment and all payments.

In this experiment ECU is used as the currency. At the end of the ex-
periment, your ECU-payoffs will be converted to Euro and paid
out in cash. The conversion rate is 100 ECU = 1 Euro.

Procedures

The experiment consists of 20 auctions in total. In each auction you
have the opportunity to sell a fictitious good.

At the beginning of the experiment four sellers are randomly chosen and
randomly assigned to each other. These sellers will interact in each of
the 20 auctions.

At most three goods are sold in each auction. Thus, not every seller will
be able to sell her good. An auction proceeds as follows:

The price starts at 20 ECU. The sellers then have 5 seconds to decide
whether they want to sell their goods at this price by clicking on the
button “Sell the good at this price”. The remaining time is displayed
in the upper right corner of the screen.

Sellers who do not want to sell their good at this price do not have to do
anything. After 5 seconds, the experiment proceeds automatically.

If all sellers have made their decisions and not all three goods were
sold, the price will be raised by 5 ECU to 25 ECU and all remaining
sellers in the auction have 5 seconds to decide whether they want to sell
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their goods at the new price.

If not all three goods are sold at this price, the price will again be raised
by 5 ECU to 30 ECU and all remaining sellers in the auction decide again.

The price will be raised by 5 ECU-steps until either the three goods
are all sold or the price reaches the upper limit of 100 ECU, with-
out three sellers having sold at this price.

If more sellers want to sell their goods at a certain price than goods
are demanded in the auction, it will be randomly determined which
seller is allowed to sell her good.

The sellers have no costs. This means that sellers who sell their goods
in the auction receive a payoff equally to their selling prices. Sell-
ers who did not sell their good in an auction do not receive a payoff from
this auction.

After each auction, the sellers will be informed about all prices that were
realized in this auction.

Concluding remarks

At the end of the experiment, the sum of payoffs from all 20 auctions
will be converted into Euro and paid to you. In addition, you will re-
ceive an amount of 7.50 Euro for your participation irrespective of the
decisions in the experiment.
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7.6.2 A MORE ELABORATE APPROACH TO
MODELING FIRST-ROUND BIDDING

We consider the simplest case where a bidder following the sophisticated
bidding strategy expects the three other bidders to pursue the myopic strat-
egy. In the first auction, as there is no information on bidding behavior
from earlier periods available, a sophisticated bidder optimizes his bidding
behavior under the assumption that myopic bids follow a discrete uniform
distribution on the interval {20, 25, . . . , 100}.24 In our case, this assumption
reflects that in the very first auction, there is no anchor to which players can
adjust their bids. To determine the optimal sophisticated bidding behavior
at the current price b, we need to distinguish between three cases depending
on the number of products that have already been sold during the auction.

Suppose none of the competing bidders has submitted a bid at price b−5.
Now let p := (b−(b−5))/(100−(b−5)) = 5/(105−b) be the probability that
a competing bidder bids at the current price b > 20. Then, the expected
payoff of a player with the sophisticated strategy from submitting a bid at
b is given by

E

[
πbid

s

]
= b

(
1 − p3 + 3

4p3
)

= b

(
1 − p3

4

)
. (225)

Note that 1−p3 is the probability that at most two other competitors bid at
the same time which means that the bidder sells his product with certainty.
Similarly, p3 represents the probability that all other bidders simultaneously
submit bids in which case the bidder has a winning probability of only 3/4.

Let p̃ := (b + 5 − b)/(100 − b) = 5/(100 − b) be the probability that the
myopic bid is b + 5. Similar to the case where the bidder submits a bid, the
expected payoff from waiting at the current price b then amounts to

24Note that this is also a typical assumption in the literature on auction settings that
explain bidding behavior with level-k models of bounded rationality (see Crawford and
Iriberri, 2007, as well as Kirchkamp and Reiss, 2011).
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E

[
πwait

s

]
= (b+5)

((
1 − p̃ + 1

2 p̃
)

3p2 (1 − p) +
(

1 − p̃2 + 2
3 p̃2

)
3p (1 − p)2

+
(

1 − p̃3 + 3
4 p̃3

) (
1 − p3 − 3p2 (1 − p) − 3p (1 − p)2

))
. (226)

Solving E[πbid
s ] = E[πwait

s ] gives b ≈ 85.07 as the (relevant) solution.
Hence, if no product has been sold, the sophisticated strategy consists of
accepting a clock price of 90 (where E[πbid

s ] > E[πwait
s ]).

Suppose next that one of the competing bidders has already sold his
product at a price lower than b − 5. Then, the expected payoff for a bidder
following the sophisticated strategy and submitting a bid at b is given by

E

[
πbid

s

]
= b

(
1 − p2 + 2

3p2
)

= b

(
1 − p2

3

)
.

Analogously, waiting for another tick of the price clock yields an ex-
pected payoff of

E

[
πwait

s

]
= (b + 5)

×
((

1 − p̃ + 1
2 p̃
)

2p (1 − p) +
(

1 − p̃2 + 2
3 p̃2

) (
1 − p2 − 2p (1 − p)

))
.

Again, solving E[πbid
s ] = E[πwait

s ] gives b ≈ 76.33 as the (relevant) solu-
tion. Hence, if one product has been sold, the sophisticated bid is 80.

Last, consider the case where only one more product can be sold to the
buyer. Then, the expected payoffs amount to

E

[
πbid

s

]
= b

(
1 − p + 1

2p
)

= b
(

1 − p

2

)
.

Analogously, waiting for another tick of the price clock results in an
expected payoff of

E

[
πwait

s

]
= (b + 5)

(
1 − p̃ + 1

2 p̃
)

(1 − p) .

From E[πbid
s ] = E[πbid

s ] ⇔ b = 48.75, it follows that the sophisticated
bid is 50.
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The bidding behavior by the two strategies in the first round is the given
by

bm(g, b̄t−1, x)
∣∣∣
t=1

∼ U [20, 100]

and

bs(g, b̄t−1, x, ε)
∣∣∣
t=1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

90 if g = 3

80 if g = 2

20 if g = 1.

This bidding behavior implies that actual bids in the first period of
the reverse multi-unit Dutch auction are significantly higher than the one
predicted by standard economic theory which equals 20 ECU.

Note that although we only covered the case where one player applies
a sophisticated strategy, the above argument also holds for the case where
two to four players follow the sophisticated bidding strategy. This is due
to the fact that if the bidder applying the sophisticated bidding strategy
expects three other players following a sophisticated strategy as well, he is
going to enter the auction at a price of 20 for g ∈ {1, 2, 3}. As the bidding
strategy continuously depends on the distribution of bid types and given
the intermediate value theorem, sophisticated bids higher than 20 can be
supported for certain ranges of shares x.

7.6.3 TREMBLING-HAND EQUILIBRIUM

Denote the highest winning bid in the previous round by b̄t−1. Assume
a share of x bidders follow the sophisticated bidding strategy of bidding
b̄t−1 − 5 but might err in doing so. Assume the errors are distributed
according to the Poisson distribution P (λ, k) where k is the number of
steps of deviation and λ the variance/expected value of the distribution.
The share 1 − x follow the myopic strategy. A best response to this setup
might be to bid b̄t−1 − 5 depending on x and λ. This is the case if the
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following holds:

b̄t−1 − 10 ≤(1 − (P (λ, 0)x)3)(b̄t−1 − 5) + 3
4 (P (λ, 0)x)3 (b̄t−1 − 5)

+ (1 − (1 − x)3)
b̄t−1

5 −5∑
i=1

P (λ, i)2
3(b̄t−1 − 5i)

+ (1 − (1 − x)2)
b̄t−1

5 −5∑
i=1

P (λ, i)2 1
2(b̄t−1 − 5i)

The left-hand side is the reduction in profits if one were to bid b̄t−1 − 10
instead of b̄t−1 − 5. The first line of the right-hand side is the probability
that there is at least one bidder following the myopic bidding heuristic plus
the probability that all other bids are sophisticated and non-erring which
leads to a winning probability of 3/4. The second line is the probability
that there is one trembling bidder who follows the sophisticated bidding
strategy and submits an initial bid strictly smaller than one step below b̄t−1

times the resulting winning probability and profit when everyone enters at
the next step. The third line follows the same logic given that there are
two sophisticated trembling bids at the same bid step strictly smaller than
one step below b̄t−1. This can be rearranged to

5 ≥1
4 (P (λ, 0)x)3 (b̄t−1 − 5)

− (1 − (1 − x)3)
b̄t−1

5 −5∑
i=1

P (λ, i)2
3(b̄t−1 − 5i)

− (1 − (1 − x)2)
b̄t−1

5 −5∑
i=1

P (λ, i)2 1
2(b̄t−1 − 5i).

This is satisfied for large ranges of λ and x. In particular, it is fulfilled
for all combinations of λ, x, and b̄t−1 that we find empirically in Section 7.4.
The only exception here are the periods 16–20, where x and λ are such that
bidding b̄t−1 −5 is not trembling-hand perfect for the whole support of b̄t−1.
However, in these five periods, the observed values for b̄t−1 are low enough



7. BID POOLING IN REVERSE MULTI-UNIT DUTCH AUCTIONS –
AN EXPERIMENTAL INVESTIGATION 201

that together with x ≈ 0.65 and λ ≈ 0.208, they form a trembling-hand
perfect equilibrium again.
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7.6.4 ESTIMATION PROCEDURE

In what follows, we first characterize the estimation procedure (Subsec-
tion 7.6.4) and then show that it is a valid approach (Subsections 7.6.4–
7.6.4).

Procedure and Intuition

We can derive the ex-ante probabilities of observing between one and four
bids (as four bidders interact) at a given number of steps below the high-
est previous bid in each auction. Table 7.5 lists all corresponding ex-ante
probabilities that n bids are of either myopic or sophisticated type. By
comparing the ex-ante probabilities with the observed number of auctions
with a given number of initial bids, we can estimate the distribution of
sophisticated and myopics strategies that fits our data best.

We capture the errors in the sophisticated bidding strategy by assuming
that these are distributed according to a discrete probability mass function.
High price undercuts are rare and our model shows that underbidding by
exactly one price step is a trembling hand perfect equilibrium for large pa-
rameter spaces. Transferring this idea to our formulation of the error term,
we need a distribution function that allows for relatively high probabilities
for small errors and vice versa. For this reason, we assume that the er-
rors are Poisson-distributed, P (y; λ) = λye−λ/y!, where y is the number of
steps under b̄t−1, and estimate λ, the parameter that measures the expected
probability of placing a bid based on erroneous beliefs in our case.

Let x denote the share of sophisticated bids. The functions in Table 7.5
minus the observed shares define the distance between the ex-ante and
the observed probabilities of n initial bids of either type. Let us denote
these functions f

{n}
j where n is the number initial bids of either type and

j ∈ {m, s, se} for myopic, sophisticated or sophisticated with error. Take
the example where exactly n = 2 initial bids is classified as type j = s in
55 of all 325 auctions. This means that according to the above definition,
we have a function

f
{s}
2 = 6 (P (0; λ)x)2 (1 − x)2 − 55

325 .
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From the table it becomes clear that we are looking at an over-determined
system of equations. To estimate the probabilities given the number of ob-
servations per case (i.e., the values for x and λ), we transform the system
into a minimization problem by defining a function f : R2 → R

9 with equa-
tions f

{n}
j as components.25 For a classical solution x̃ =

(
x̃, λ̃

)
, it holds

that
‖f(x̃)‖2 = 0.

In combination with the positive homogeneity of a norm, one can minimize
the norm of f under the constraints

0
!≤ x

!≤ 1.

With x = (x, λ), this problem can be written as:

min
x∈[0,1]×R+

{‖f(x)‖2}

Thus, we look for those ex-post probabilities x in the model functions
such that the distance between x and the observed share is minimized.

We use our approach—rather than a maximum likelihood estimation
conducted with individual data—because based on our model assumption
concerning bidding behavior, each initial bid in an auction below the highest
price in the previous auction is unambiguously assigned to the sophisticated
bidding strategy so that the observed distribution of initial bids is deter-
ministic. Hence, our method finds the best estimate for the underlying
distribution of sophisticated and myopic individual bids. In addition, our
approach provides us with an estimate of the distribution of errors among
the share of sophisticated bids.

Choice of Norm

In the minimization problem, we use the Euclidean (or 2-)norm. Since one
could also minimize the L1 or even an Lp norm, this choice may not be clear
but actually follows naturally from the problem. One can only minimize a

25We provide a formal proof concerning the validity of this procedure below.
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function f : K �→ R with K ⊂ R
n but in our case, the function maps to R

9

so one would minimize
〈fᵀ, f〉

where 〈·, ·〉 is the standard inner product in R. The norm induced by 〈·, ·〉
is the 2-norm

‖x‖2 =
√

〈x, x〉
and therefore, the choice of the norm follows directly from the problem.

Existence and Uniqueness of the Minimum

The existence of a minimum (and not just an infimum) is guaranteed be-
cause ‖f(x)‖2 continuous. The constraints require x to be in the compact
space [0, 1]. λ represents the expected value of the Poisson distribution and
is therefore bounded by λmax = 15 because that is the maximum number
of steps a bidder can erroneously deviate (given b̄t−1 = 100). Continuous
functions attain a minimum on compact spaces (Theorem of Weyerstraß).

Every norm is a convex function because by the triangle inequality and
the positive homogeneity, it holds that

∀Θ ∈ (0, 1) ∀x, y ∈ K

‖Θx + (1 − Θ)y‖ ≤ Θ ‖x‖ + (1 − Θ) ‖y‖ .

Therefore, the worst-case scenario is that ‖f(x)‖ is constant for a small
space S ⊂ [0, 1] around a critical point. However, it can be easily check
that for every critical point x found, the Hessian matrix is strictly positive
definite. It follows that the minimum is unique.
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