
 
 

 
 
 
 
 
 
 
 

Development of a novel method for purity 
assessment of nucleic acid samples  

 
 
 
 
 
 
 

Inaugural dissertation 
 
 

for the attainment of the title of doctor 
in the Faculty of Mathematics and Natural Sciences 

at the Heinrich Heine University Düsseldorf 
 
 
 
 
 
 

presented by 
 
 

Conny Rosella Unger 
from Kol. Neuland (Paraguay) 

 
 
 
 
 
 

Düsseldorf, June 2019 



 
 

  



 
 

from the Institute of Synthetic Microbiology 

at the Heinrich-Heine-University of Düsseldorf 

 

 

 

Published by permission of the 

Faculty of Mathematics and Natural Sciences at 

Heinrich Heine University Düsseldorf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondents: 

 

1. Jun.-Prof. Dr. Ilka Maria Axmann 

 

2. Prof. Dr. Markus Kollmann 

 

Date of the oral examination: November 15th 2019 





 

 
 

Statement of authorship 

 

 

I hereby declare that this dissertation is the result of my own work. No other person’s work 

has been used without due acknowledgment. This dissertation has not been submitted in 

the same or similar form to other institutions. I have not previously failed a doctoral 

examination procedure. 

 

 

Düsseldorf, June 4th 2019 

 

 

 

Conny Unger 

  



 
 

Summary 

Standard methods for research, applied testing and molecular diagnostics, like quantitative 

Polymerase Chain Reaction (qPCR) or Next Generation Sequencing (NGS) require the 

application of high quality nucleic acids to obtain reliable and reproducible results. Nucleic 

acid quality is defined by concentration, integrity and purity. Methods for nucleic acid 

concentration and integrity determination have advanced over the past decades. In 

contrast, the current method for nucleic acid purity assessment, using A260/A280 and 

A260/A230 absorbance ratios, was first introduced in 1942 and its validity has been 

controversially discussed by the scientific community. In this study, a novel method for DNA 

purity assessment was developed using mathematical data modelling to predict the 

influence of possible DNA sample impurities on enzyme activities, by analyzing their 

absorbance spectra. After establishment of polymerase and ligase activity assays, influence 

of possible DNA sample impurities on absorbance spectra and enzyme activities was 

recorded and obtained data were used for algorithm training and testing. It was 

demonstrated, that a K-nearest-neighbor algorithm, assigning absorbance spectra into five 

classes, representing increasing DNA purity defined by measured enzyme activities, could 

predict DNA purity with higher accuracy compared to A260/A280 and A260/A230 absorbance 

ratios. Although the algorithm failed to correlate with qPCR outcome, this study shows that 

using mathematical data modelling to analyze absorbance spectra is a promising approach 

to develop a novel method for nucleic acid purity assessment.  

  



 

 
 

Zusammenfassung 

Qualitativ hochwertige Nukleinsäuren sind essentiell für den Erhalt vertrauenswürdiger 

und reproduzierbarer Ergebnisse bei der Anwendung von Standardmethoden in der 

molekularbiologischen Forschung, der Molekulardiagnostik und für angewandte 

Testverfahren, wie die quantitative Polymerase-Kettenreaktion (qPCR) oder Hoch-

durchsatzsequenzierung. Dabei wird die Qualität von Nukleinsäuren mittels Konzentration, 

Integrität und Reinheit beschrieben. Die Methoden zur Bestimmung von Nukleinsäure 

Konzentration und Integrität wurden in den letzten Jahrzehnten weiterentwickelt. Im 

Gegensatz dazu, wurde die aktuelle Methode zur Bestimmung der Reinheit einer 

Nukleinsäure Probe, basierend auf die A260/A280 und A260/A230 Absorptionsverhältnisse, 

schon 1942 eingeführt und ihre Aussagekraft wurde in der Wissenschaft über die Jahre 

kontrovers diskutiert. In dieser Arbeit wurde eine neue Methode zur Bestimmung der 

Reinheit von DNA entwickelt. Sie basiert auf die Verwendung mathematischer Modelle, die 

anhand von Absorptionsspektren den Einfluss möglicher Unreinheiten in DNA Proben auf 

Enzymaktivitäten vorhersagen. Dafür wurden nach der Etablierung von Polymerase und 

Ligase Aktivitätstest der Einfluss von möglichen Unreinheiten in DNA Proben auf 

Absorptionsspektren und Enzymaktivitäten gemessen und die erhaltenen Daten wurden 

angewandt um verschiedene Algorithmen zu trainieren und zu testen. Es wurde gezeigt, 

dass die K-nearest-neigbor Klassifikation, die die Absorptionsspektren in fünf Klassen 

unterteilte, die unterschiedliche DNA Reinheitsgrade basierend auf gemessene 

Enzymaktivitäten beschrieben, die Reinheit einer DNA Probe mit einer höheren 

Genauigkeit vorhersagen konnte als die A260/A280 und A260/A230 Absorptionsverhältnisse. 

Obwohl ein Zusammenhang zwischen den Ergebnissen der K-nearest-neigbor 

Klassifikation mit den Ergebnissen einer qPCR nicht nachgewiesen werden konnte, zeigt 

diese Arbeit, dass die Anwendung mathematischer Modelle zur Analyse von 

Absorptionsspektren eine vielversprechende Herangehensweise ist, um eine neue Methode 

zur Bestimmung der Reinheit von Nukleinsäure Proben zu entwickeln.  

  



 
 

Table of Contents 

1 Introduction ................................................................................................................................................... 1 

1.1 Nucleic acid purity in molecular biological methods ................................................... 1 

1.2 Enzymes in molecular biological applications ............................................................ 2 

1.3 Detection of impurities in nucleic acid samples .......................................................... 4 

1.4 Application of mathematical modelling in biology ...................................................... 4 

1.5 Aim of this thesis ....................................................................................................... 7 

2 Results .............................................................................................................................................................. 9 

2.1 Selection of possible contaminants ............................................................................ 9 

2.1.1 Absorbing and non-absorbing contaminants .................................................................................... 9 

2.1.2 Influence of possible contaminants on DNA concentration ..................................................... 13 

2.2 Measurement of polymerase inhibition .................................................................... 15 

2.2.1 Phi-Inhibition-Assay to measure Taq DNA polymerase activity ............................................ 15 

2.2.2 Establishment of Taq DNA polymerase standard curve ............................................................ 16 

2.2.3 Influence of contaminants on Taq DNA polymerase activity ................................................... 18 

2.3 Measurement of ligase inhibition ............................................................................. 19 

2.3.1 Gel electrophorese based assay to measure T4 DNA Ligase activity ................................... 19 

2.3.2 Establishment of T4 DNA Ligase standard curve .......................................................................... 23 

2.3.3 Influence of contaminants on T4 DNA Ligase activity ................................................................ 25 

2.4 Measurement of kinase inhibition ............................................................................ 26 

2.4.1 Radiometric assay to measure T4 PNK actvity .............................................................................. 26 

2.5 Purity assessment of DNA samples .......................................................................... 27 

2.5.1 Absorbance ratios for evaluation of DNA sample purity ........................................................... 29 

2.5.2 Development of novel method for assessment of DNA purity ................................................ 32 

2.5.2.1 Multiclass logistic regression for DNA purity estimation .......................................................... 34 

2.5.2.2 K-nearest-neighbor classification for DNA purity estimation ................................................. 38 

2.6 K-nearest-neighbor algorithm testing ...................................................................... 41 

2.6.1 Classification of pure DNA samples with varying concentration ........................................... 41 

2.6.2 Classification of qPCR samples and correlation with qPCR results ...................................... 43 

3 Discussion ..................................................................................................................................................... 49 

3.1 Enzyme inhibition by nucleic acid sample impurities ............................................... 49 

3.2 Application of mathematical data modelling ............................................................ 51 

3.3 Outlook and future perspectives .............................................................................. 55 

4 Materials & Methods ................................................................................................................................. 57 

4.1 Materials ................................................................................................................. 57 



 

 
 

4.1.1 Chemicals and reagents ............................................................................................................................ 57 

4.1.2 Enzymes .......................................................................................................................................................... 59 

4.1.3 Oligonucleotides .......................................................................................................................................... 59 

4.1.4 Consumables ................................................................................................................................................. 59 

4.1.5 Instruments ................................................................................................................................................... 60 

4.1.6 Software and online tools ........................................................................................................................ 61 

4.1.7 Manuals ........................................................................................................................................................... 61 

4.2 Methods ................................................................................................................... 62 

4.2.1 Preparation of possible contaminants ............................................................................................... 62 

4.2.2 Preparation of contaminant pre-dilutions for DNA samples ................................................... 63 

4.2.3 DNA sample preparation with contaminants ................................................................................. 63 

4.2.4 Recording absorbance spectra for data modelling ...................................................................... 64 

4.2.5 Determination of DNA concentration ................................................................................................ 64 

4.2.6 Dilution buffer for Taq polymerase and T4 DNA ligase ............................................................. 65 

4.2.7 Master mix preparation for Phi-Inhibition-Assay ........................................................................ 66 

4.2.8 Master mix preparation for ligase activity assay .......................................................................... 66 

4.2.9 Volume of DNA and water applied in enzyme activity assay .................................................. 67 

4.2.10 Enzyme activity assay reaction mix setup ....................................................................................... 67 

4.2.11 Temperature profiles and detection of enzyme activity assays ............................................. 68 

4.2.12 Data collection for enzyme activity assays ...................................................................................... 68 

4.2.13 Statistical comparison of measured enzyme activity means ................................................... 70 

4.2.14 Primer design for plasmid PCR for ligase activity assay............................................................ 70 

4.2.15 Plasmid PCR for ligase activity assay ................................................................................................. 71 

4.2.16 Restriction digest of dsDNA template for ligase activity assay .............................................. 71 

4.2.17 DNA purification and PCR for radiometric kinase assay ........................................................... 72 

4.2.18 PCR product and restriction fragments purification ................................................................... 72 

4.2.19 Gel electrophoresis of PCR products and restriction fragments ............................................ 72 

4.2.20 Radiometric kinase assay for T4 PNK activity measurement ................................................. 72 

4.2.21 Preparation of DNA dilution series for algorithm testing ......................................................... 73 

4.2.22 qPCR for algorithm testing ...................................................................................................................... 73 

4.2.23 Feature selection using near zero variance ..................................................................................... 74 

4.2.24 Feature selection with principal component analysis ................................................................ 75 

4.2.25 Multiclass logistic regression for DNA purity estimation ......................................................... 76 

4.2.26 K-nearest-neighbor for DNA purity estimation ............................................................................. 77 

Bibliography ………………………….…………………………………………………………………………..……………... 79 

Appendix ……………………..…………………………………………………………..…………………………………….…. 90 





 

 
 

Abbreviations 

PhiX DNA PhiX 174 DNA 

DTT dithiothreitol 

dNTPs deoxy-nucleoside triphosphate 

EDTA ethylenediaminetetraacetic acid 

Hb human hemoglobin 

HSA  human serum albumin 

IgG Immunoglobulin G 

SA sodium azide 

GITC guanidine isothiocyanate  

SC sodium citrate dihydrate 

% NA percentage normalized area  

PCR polymerase chain reaction  

qPCR quantitative PCR 

NGS next generation sequencing 

MOPS 3-(N-morpholino)propanesulfonic acid 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

nzv near zero variance 

PCA principal component analysis 

MLR multiclass logistic regression 

KNN K-nearest-neighbor 

Cq quantification cycle 

Taq Thermus aquaticus 

E. coli Escherichia coli 

T4 PNK T4 Polynucleotide Kinase 

ATP adenosine triphosphate 

tRNA transfer RNA 

DNA deoxyribonucleic acid 

RNA ribonucleic acid 

OD optical density 

RIN RNA integrity number 

mRNA messenger RNA 

rRNA ribosomal RNA 

RNases Ribonucleases 

UV/Vis ultraviolet visible  

SCP spectral content profiling 

dPCR digital PCR 





   Introduction 

1 
 

1 Introduction 

1.1 Nucleic acid purity in molecular biological methods 

Using high quality nucleic acids is critical for the successful application of modern molecular 

biological methods, like quantitative Polymerase Chain Reaction (qPCR) or Next Generation 

Sequencing (NGS), that have become standard methods for research, applied testing and 

molecular diagnostics [1]–[4]. Therefore, quality control of nucleic acids has become 

increasingly important in recent years. Efforts have been made to identify sample quality 

metrics and improve quality and reproducibility of results of labor intensive, time-

consuming, and highly expensive downstream applications [3], [5]. As studies have shown, 

inaccurate or irreproducible results can be caused by impurities and contaminations from 

starting material or cleanup procedure of nucleic acid samples [6]–[12]. 

Common impurities in nucleic acid samples include proteins, such as Immunoglobulin G 

(IgG) and hemoglobin from sample material, or phenol, proteins, and salts from cleanup 

procedure [8]. These sample impurities inhibit or hamper downstream applications in a 

concentration dependent manner through different mechanisms [8], [13]. IgG from sample 

material for example, binds to single-stranded DNA inhibiting amplification thereof by 

polymerases, whereas hemoglobin affects polymerase activity by reacting with its cofactor 

and quenching the fluorescence signal in qPCR [8], [14]. Proteins, like proteases, from 

nucleic acid purification chemistry inhibit downstream reactions by degradation of applied 

enzymes. Phenol and salts, which are often used to remove nucleases during nucleic acid 

purification, lead to inhibition by denaturation of enzymes [6], [13], [15], [16]. 

Sample impurities in NGS workflow can cause poor library quality, which in turn leads to 

poor quality of sequencing results [17]. In qPCR, complete inhibition of polymerase by 

sample impurities or insufficient nucleic acid template lead to failed amplification and 

consequently to false negative results or no detection of a PCR product [3], [18] Partial 

inhibition of polymerase in qPCR or interaction of impurities with DNA template can lead 

to false results in form of quantification cycle (Cq) shifts. The Cq is used for relative 

quantification of PCR product and describes the qPCR cycle at which the fluorescence signal 

of a sample reaches a threshold. If less PCR product is detected, due to less template input 

in qPCR reaction or partial inhibition of polymerase, the threshold is reached in a later cycle 

and the Cq value is higher. For relative quantification within one qPCR run, the Cq value of 

an unknown sample is compared to the Cq value of a control sample; if Cq values differ from 

each other, a Cq shift or delta Cq values  greater or smaller zero are observed [19]. 
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In summary, impurities in nucleic acid samples can interact with DNA template applied in 

downstream applications or inhibit enzymes catalyzing different steps of molecular 

biological methods. 

 

1.2 Enzymes in molecular biological applications 

Many standard molecular biology methods like PCR and NGS are based on the amplification 

of nucleic acids by polymerases. Polymerases are enzymes that catalyze template-directed 

synthesis of DNA and are essential in all organisms for DNA replication and repair. The DNA 

polymerase was first discovered in 1955 [20], [21]. The isolation of thermostable DNA 

polymerase from thermophilic bacterium Thermus aquaticus (Taq polymerase) [22], the 

introduction of PCR by Kary Mullis [23] and further development to quantitative real-time 

PCR (qPCR), enabling real-time monitoring of amplification and more accurate 

quantification of a nucleic acid sequence in a sample, have led to a revolution of biological 

research and molecular diagnostics [7], [23], [24].  

DNA Ligases are nucleotidyltransferases (NTases) and catalyze the formation of a 

phosphodiester by joining the 3’-hydroxyl and 5’-phosphate ends of DNA fragments. They 

are widely used in cloning assays as well as in the preparation steps of NGS libraries. Ligases 

are essential for DNA repair mechanisms, such as single strand breaks, and replication, to 

join Okazaki fragments  [25]–[28]. DNA ligases were first discovered nearly simultaneously 

by five independent laboratories in 1967 in uninfected and T4 bacteriophage infected 

Escherichia coli (E. coli) [29]–[33]. Since their purification, ligation using the T4 DNA ligase 

for instance, has become an important tool for the development of molecular cloning and 

many molecular biology methods for nucleic acid editing in vivo and in vitro based on 

generation of recombinant DNA by ligation of two different DNA fragments [34], [35]. 

Besides standard methods like NGS, many less known methods like Ligase Chain Reaction 

(LCR) [36], [37] or Multiplex Ligation-dependent Probe Amplification (MLPA) [38] depend 

on ligase reaction.  

Ligases are often applied in combination with a kinase. Kinases belong to the enzyme class 

of phosphotransferases and catalyze the transfer of a phosphate from a donor, usually ATP, 

to a substrate [39]. The T4 Polynucleotide Kinase (T4 PNK) is a Nucleotidekinase and 

transfers the γ-Phosphate from ATP to the 5’-OH termini of a nucleic acids [40]. The T4 PNK 

was first extracted from E. coli, that was infected with a T4 bacteriophage [41]. In T4 

bacteriophages, the T4 PNK serves to restore transfer RNAs (tRNA) degraded by host 

enzymes by phosphorylation of 5’-ends for following ligation by phage RNA ligase [42], [43]. 
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The ability of T4 PNK to support DNA or RNA repair is also used for molecular biology 

applications [44]. Thereby T4 PNK is often applied in combination with ligases, for example 

in molecular cloning protocols and NGS, to assure phosphorylation of 5’-termini of nucleic 

acids fragments that are to be joined by a ligase [45], [46].  

With the development of molecular biology methods based on nucleic acid amplification by 

polymerase, ligation, or phosphorylation by kinases, assays have been developed to test and 

quantify the activity of these enzymes. Polymerase, ligase and kinase activity was first 

measured using radioactive labeled nucleotides or phosphate [34], [45], [47]. This 

approach is time-consuming, discontinuous and includes safety and health hazards due to 

work with radioisotopes [48], [49]. Thus, over the past decades, numerous non-radioactive 

enzyme activity assays have been developed. Polymerase activity is now quantified by 

measuring signal of fluorescence dyes binding double-stranded DNA [48], [50] or 

fluorescence signal of a molecular beacon [51], instead of incorporation of radiolabeled 

nucleotides [47]. 

For ligases, radioisotope-free assays were suggested by replacing radioactive labeled 

phosphate, detected by denaturing gel electrophoresis or autoradiography [34], by a 

fluorophore [52], or using two DNA fragments with sticky ends, labeled either with a 

fluorophore or a quencher, resulting in quenching upon ligation [53]. Tang and colleagues 

developed a real-time assay to continuously monitor ligase reaction, using a molecular 

beacon (MB) [54]. The majority of alternative kinase activity assays for T4 PNK, avoiding 

radioactive labeled phosphate, are coupled to a second enzyme, such as a nucleotidase 

coupled assay, using malachite green for detection of free phosphate generated as side 

product from ATP [55]. Kleman-Leyer et al. described an antibody based fluorescence 

polarization method to detect ADP as a side product of T4 PNK reaction [56]. Furthermore, 

many different assays coupled to λ exonuclease cleavage using diverse detection methods 

have been suggested [57]–[59]. Interestingly, according to citation numbers and 

manufacturer websites, none of these more recent assays have been able to replace the 

radioactive based approach to measure ligase or T4 PNK activity as standard methods. 

Enzyme activity assays are generally used to test different assay parameters such as 

concentration in enzyme, substrate, salt, etc. on the enzymatic reaction. They can however, 

also be used to quantify the inhibition of different compounds on tested enzymes, such as 

potential sample impurities contaminating biological samples eventually having an impact 

on PCR, NGS or other downstream assays.  
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1.3 Detection of impurities in nucleic acid samples 

Performing enzyme activity assays for each sample before its application on PCR or NGS to 

detect possible contaminants in nucleic acid samples, would be too expensive, tedious and 

time-consuming. Some authors report or recommend using qPCR assays for detection of 

possible contaminants in nucleic acids [3], [9], [60], [61], but purity of nucleic acid samples 

is usually determined using A260/A280 and A260/A230 ratios of a UV/Vis absorbance 

measurement. In molecular biology laboratories, classical UV/Vis spectrometers are 

primarily used to determine the concentration of proteins or nucleic acid samples based on 

the Lambert-Beer law stating that the absorbance intensity of a substance is proportional 

to its concentration [62]. The absorbance maximum for nucleic acids is at 260 nm 

wavelength, and an OD value of 1 corresponds to 50 ng/µL dsDNA. Salts, proteins or phenol 

show absorbance peaks at 230, 280 or 230 and 270 nm, causing a deformation of the 

absorbance spectrum of nucleic acid samples when those contaminants are present (Ref. 

[63], [64] and Figure 1). A260/A280 ratio of ~2.0 and A260/A230 ratio in the range of 1.8 – 2.2 

are assumed to indicate pure nucleic acids. Contamination of salts in nucleic acids lowers 

the A260/A230 ratios, and protein contamination results in lower A260/A280 ratios [64]–[66].  

   

Figure 1: Absorbance spectra of DNA with (left) protein, (center) salt, and (right) phenol. Salts, proteins 
and phenol show absorbance peaks at 230, 280 or 230 and 270 nm, respectively, causing a deformation of DNA 
absorbance spectrum.  

The A260/A280 was first introduced by Warburg in 1942 to detect nucleic acid contamination 

in a protein solution [67] and its validity to assess nucleic acid purity has been 

controversially discussed in the scientific community over time [12], [62], [65], [68], [69]. 

However, no other method has been able to replace the ratios for detection of impurities in 

nucleic acid samples, even after several decades.  

 

1.4 Application of mathematical modelling in biology 

The application of complex mathematical data models or algorithms has become a powerful 

tool to get more information out of biological data. An example for the successful application 
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of algorithms to analyze available data to set new standards is the RNA Integrity Number 

(RIN).  

RNA, as key molecules for protein biosynthesis, are important indicators for cell activities 

and cell stages, since cells respond to external or internal stimuli by translating information 

stored on their genome into proteins. Messenger RNA (mRNA), is the transcript of the 

genomic DNA transporting the nucleotide sequence that is translated into the amino acid 

sequence of the protein. Thus, the extraction and analysis of mRNA is an important tool in 

biomedical research to study changing gene expression associated with differentiation, 

transformation, or development of cells. Unfortunately, RNA molecules can also be quickly 

degraded by, elevated temperatures or ubiquitous Ribonucleases (RNases). Therefore, 

measurement of RNA integrity or fragmentation is essential before gene expression 

analysis to ensure integrity of RNA sequence of interest.  

Although mRNA is usually the molecule of interest, total RNA is used to determine the 

integrity of extracted RNA, since about only 5% of total RNA consists of mRNA, while 

ribosomal RNA (rRNA), which embodies the main part of the ribosome that translates the 

mRNA into a protein, represents about 80% [70]. Ribosomal RNA consists of three sub-

units defined by their molecular weight: the 5S, 18S and 28S RNA in eukaryotic cells. RNA 

integrity or fragmentation was traditionally determined by visual comparison of the 18S 

and 28S rRNA sub units, obtained after separation by traditional gel electrophoresis (Figure 

2 left). This method is based on the observation that the 28S RNA is degraded faster than 

the 18S RNA, leading to a decreasing intensity ratio [71], [72]. Although authors of several 

studies have shown that the rRNA ratio does not always correlate with downstream assay 

success [2], [71], [73], this was the standard method for RNA integrity assessment for 

decades. The introduction of an electrophoresis system allowing digital data acquisition in 

the form of electropherograms in 1999 (Figure 2 right) allowed the development and 

training of an algorithm, developed to analyze electropherogram features, including areas 

before and between the 18S and 28S peak, to objectively assess integrity i.e. of RNA samples 

[74]. The RIN algorithm, provides users with an easy-to-use number ranging from one to 

ten that allows standardization of RNA samples’ integrity both inter- and intra-laboratory 

and, has become the new standard for RNA integrity assessments and its validity has been 

shown by various authors [2], [3], [73], [75].  
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Figure 2: (left) Intact vs. Degraded RNA. (right) Agilent 2100 Bioanalyzer Data. (left) Two µg of degraded 
total RNA and intact total RNA were run beside Ambion's RNA Millennium Markers™ on a 1.5% denaturing 
agarose gel. The 18S and 28S ribosomal RNA bands are clearly visible in the intact RNA sample. The degraded 
RNA appears as a lower molecular weight smear. (right) Electropherogram of a high quality, eukaryotic, total 
RNA sample. The 18S and 28S peaks are clearly visible at 39 and 46 seconds, respectively. The microchannels 
of the Bioanalyzer are filled with a sieving polymer and fluorescence dye. Samples are detected by their 
fluorescence and translated into electropherograms or into gel-like images (data not shown). Reprinted from 
[76]. 

UV/Vis absorbance spectra of DNA samples have been recorded in a digital format for 

decades and over time instruments have been developed to use less sample volume or 

achieve accurate measurements with lower DNA concentrations. In 1999, Saurina and 

colleagues described a method to detect different nucleic acids components such as 

different nucleotides in a mixture by using multivariate curve resolution-alternating least 

squares (MCR-ALS) to analyze UV/Vis spectra between 230 and 350 nm wavelength [77]. 

Boonefaes and Luyssaert claimed a patent in 2011 for an approach to detect nucleic acids 

and other substances in complex mixtures by analysis of absorption spectra. The method 

was called Spectral Content Profiling (SCP) and consists of mathematically fitting reference 

spectra of possible components of a measured sample that absorb in the UV/Vis range, such 

as nucleic acids, salts, proteins, and phenol to the total measured UV/Vis spectrum [78], 

[79]. With resulting artificial spectra representing sample components and the Lambert-

Beer law for mixtures, the abundance of these components in a sample can be quantified 

[80]. SCP was implemented as on board algorithm onto commercially available 

spectrophotometer, called Lunatic (Unchained Labs) and QIAxpert (QIAGEN). Although it 

has been shown that the results of SCP correlate with the amount of a contaminant added 

to a nucleic acid sample [12], a limitation of SCP is its inability to distinguish contaminants 

with similar absorbance spectra. Various salts or different proteins for example have very 

similar absorbance spectra, while their effect on downstream applications, on which nucleic 

acid samples are applied, vary significantly. Therefore, the quantity of detected impurities 

by SCP cannot be used to predict success of downstream assay or reliability of downstream 

assay results.  
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1.5 Aim of this thesis  

The underlying hypothesis of this thesis was that, similar to the RIN, which categorizes RNA 

samples from one to ten according to their degradation level, absorbance spectra of nucleic 

acid samples could be categorized into several levels of purity using absorbance spectra. In 

addition, these purity levels should correlate with the success of different downstream 

applications. Therefore, the aim was to generate a novel method for purity assessment of 

nucleic acid samples based on UV/Vis absorbance spectra that correlates with quality of 

downstream assay results. Therefore, three steps were aimed: 

I. Assays to measure activity of polymerase, ligase, and kinase should be established 

and used to investigate the influence of possible impurities on enzyme activity, by 

contaminating pure nucleic acid samples with known concentrations of possible 

impurities (Figure 3 A). 

II. The resulting enzyme activities should be used as target value to develop a 

mathematical data model that would be able to predict enzyme activity based on 

the UV/Vis spectra or results of spectral content profiling of applied nucleic acid 

sample (Figure 3 A). 

III. The best data model should be tested with data from real life samples applied to 

qPCR, to demonstrate the usefulness of the established algorithm (Figure 3 B).  

 

 

 

Figure 3: Schematic overview of strategy. (A) First, clean DNA should be spiked with defined contaminants 
and submitted to UV/Vis measurement and enzyme activity assays for polymerases, ligases and kinases. Second, 
results of step one should be used to generate a mathematical model able to predict enzyme activity based on 
UV/Vis measurement. (B) Third, real life DNA samples should be utilized to demonstrate usefulness of novel 
method for purity assessment of nucleic acid samples by comparing determined purity for each sample with 
delta Cq (ΔCq) values. 

A 

B 
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The novel method for purity assessment could enable researchers and clinicians to identify 

sample impurities before the nucleic acid sample is applied to a downstream assay and 

obtain more reliable results. Furthermore, it would allow inter- and intra-laboratory 

comparison and standardization of nucleic acid sample purity, and thus help to improve 

reproducibility in research. 
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2 Results 

2.1 Selection of possible contaminants 

As described in chapter 1.5, step one was to define possible contaminants or impurities, 

whose influence on UV/Vis absorbance spectra and enzyme activities were tested to collect 

data for algorithm development. Therefore, a pre-selection of substances found in cleanup 

or assay buffers and reagents was prepared and extended with further possible 

contaminants from sample origin or working environment. 

  

2.1.1 Absorbing and non-absorbing contaminants 

First, the absorbance in UV/Vis range was measured by recording UV/Vis spectra of 

possible contaminants diluted in RNase-free water on DropSense96 or QIAxpert, using the 

General UV/Vis or UV/Vis application. The absorbance spectra served to select final list of 

possible contaminants, since only contaminants absorbing light in UV/Vis range can be 

detected by absorbance measurement and consequently be used for development of novel 

method for purity assessment of nucleic acids based on absorbance spectra.  

Figure 4 shows absorbance spectra of 12 discarded possible contaminants from 26 

pre-selected substances from literature: 3-(N-morpholino)propanesulfonic acid (MOPS), 

sucrose, urea, glycerol, diluted isopropanol, guanidine hydrochloride (GuHCl), trizma base, 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), β-mercaptoethanol, DNase 

1, proteinase K, and RNase A. Chloroform and ethanol were part of pre-selected substances 

from literature and were not presented in Figure 4, although they were excluded from final 

list of possible contaminants, since they could not be loaded into the measurement chip due 

to their hydrophobicity. Chloroform is used in combination with phenol for denaturation of 

proteins during nucleic acid extraction and facilitates separation of aqueous and organic 

phase [81], while ethanol is used to precipitate nucleic acids [82]. 

MOPS, sucrose, urea, glycerol, isopropanol, and guanidine hydrochloride (GuHCl) showed 

no absorbance between 230 and 350 nm wavelength (Figure 4) and therefore were 

removed from final list of possible contaminants. MOPS is a buffering compound for 

near-neutral pH commonly used for gel electrophoresis [83], [84]. The sugar sucrose is 

added to cell lysis buffers to increase osmotic pressure outside cells, aiding cell rupture 

[85]. Cell lysis buffers for nucleic acid purification can also contain urea or GuHCl to 
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denature proteins [45], [86].  Isopropanol, like ethanol, is used to precipitate nucleic acids 

during purification [87].  

The absorbance spectra of trizma base, HEPES, and β-mercaptoethanol had a peak at 

≤ 230 nm, followed by a steep decline of absorbance, also called an A230 shoulder (Figure 4). 

Trizma base is a component of buffer solutions used for nucleic acid purification or gel 

electrophoresis, usually applied in concentrations between 10 and 100 mM in DNA samples 

[88]. Since a 1 M solution showed an absorbance maximum of only ~0.3 OD, it would not be 

detectable at working concentrations and was not added to the final list of possible 

contaminants. HEPES is widely used in as buffer system in cell culture or during nucleic acid 

purification to maintain a pH between 6.8 and 8.2 [83]. During RNA isolation, 

β-mercaptoethanol, showing high absorbance at low concentration, is often used for 

denaturation of ribonucleases by reducing their bisulfide bonds to prevent degradation of 

RNA [89]. However, this thesis focuses on DNA and therefore β-mercaptoethanol was not 

applied as possible DNA contaminant. 

DNase 1, proteinase K, and RNase A, had an A230 shoulder and a second absorbance 

maximum at A280 (Figure 4). The proteins DNase I, Proteinase K and RNase A are used 

during cleanup procedure of RNA and DNA to degrade unwanted DNA, nucleases or RNA. 

They were not added to final list of possible contaminants, since they would degrade DNA 

or enzymes in enzyme activity assays, resulting in no detectable enzyme activity. 
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Figure 4: Absorbance spectra of measured pre-selected possible contaminants that were discarded from 
final list of possible contaminants.  

Remaining 12 pre-selected substances from literature were added to the final list of 

possible contaminants: sodium citrate, betaine, sodium azide, EDTA, DTT, GITC, glycogen, 

dNTPs, phenol, HSA, IgG, and hemoglobin (Figure 5). 

The absorbance spectra of sodiumcitrate (SC), betaine, sodiumazide (SA), EDTA, DTT, and 

guanidine isothiocyanate (GITC) had an A230 shoulder and were added to the final list of 

possible contaminants (Figure 5). Sodium citrate (SC) is used during DNA purification to 

neutralize negative charge of DNA for dissociation from water [90], [91], whereas betaine 

is often used in PCR reactions to enhance amplification of GC-rich sequences by denaturing 

secondary structures of DNA [92] and can be carried over from one step of a workflow to 
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another. During DNA purification or in elution buffers sodium azide (SA) is applied as 

preservative preventing the microbial growth [93]. Another substance found in nucleic acid 

elution buffers is EDTA, binding metal ions to inhibit nucleases and prevent nucleic acid 

degradation [94], [95]. DTT is found in enzyme solutions and reaction buffers to stabilize 

enzymes [96], while GITC is a salt applied for denaturation of nucleases in lysis buffers to 

prevent nucleic acid degradation during cleanup procedure [97].  

Furthermore, glycogen, dNTPs and phenol were to be used as possible contaminants in this 

thesis. Glycogen showed a broad absorbance range from 230 – 350 nm wavelength (Figure 

5). During ethanol precipitation of DNA, it can be used to trap DNA creating a visible pellet 

for easier handling [98]. As expected, dNTPs and phenol had absorbance maxima at 260 or 

270 nm, respectively (Figure 5). For nucleic acid amplification with polymerases, dNTPs are 

used as single building blocks, while phenol is often used during purification of nucleic acids 

for denaturation of nucleases [99].  

Like DNase 1, proteinase K, and RNase A, the proteins human serum albumin (HSA), IgG, 

and human hemoglobin (Hb) had an A230 shoulder and a second absorbance maximum at 

A280. In addition, Hb showed a third absorbance peak at 410 nm wavelength (Figure 5). HSA, 

IgG and hemoglobin were applied as representative proteins, since they can be carried over 

from sample material.  
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Figure 5: Absorbance spectra of 12 substances added to final list of possible DNA contaminants. Note 
different wavelength range on X-axis of Hb 1mg/mL.  

Twelve selected possible contaminants were added to pure DNA samples, in four 

decreasing concentrations, between common working concentration and UV/Vis 

absorbance maximum above 0.03 OD, to record UV/Vis absorbance spectra, measure DNA 

concentration of contaminated sample, and quantify enzyme activities for algorithm 

development.  

 

2.1.2 Influence of possible contaminants on DNA concentration 

Different concentrations of possible contaminants were added to DNA samples and 

measured with DNA QIAsymphony application of the QIAxpert to determine volume of 

contaminated DNA to be applied on enzyme activity assays. Target DNA concentrations for 
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polymerase and ligase inhibition assay were 45 or 30 ng/µL, respectively. Measured DNA 

concentrations were plotted for each enzyme activity assay and means of all samples for 

each contaminant and enzyme assay were compared using ANOVA and Tukey-Kramer HSD 

test.  

Results showed that betaine, and EDTA had no influence on measured DNA concentrations. 

DNA concentrations for polymerase assay samples with SA were constantly and 

independent of contaminant concentration higher than 45 µL, indicating a pipetting error 

during preparation of DNA pre-dilution. SA had no influence on DNA concentration of 

kinase assay samples (Figure 6 A - C).  

GITC and sodium citrate (SC) at highest concentration led to lower DNA concentration 

detected for DNA samples of polymerase and higher DNA concentrations for kinase assay 

samples (Figure 6 D - E). The addition of DTT had no influence on measured DNA 

concentrations for polymerase assay samples, but led to increasing DNA concentrations 

estimated for kinase assay DNA samples (Figure 6 F). DTT can cause single stranded breaks 

in double stranded DNA [96], which in turn could lead to denaturation of double stranded 

DNA and higher UV/vis absorbance. 

All other contaminants applied on enzyme activity assays, glycogen, hemoglobin, IgG, HSA, 

phenol, and dNTP, had a significant influence (p < 0.05) on DNA concentration estimation 

and led to increased DNA levels detected for higher contaminant concentrations (Figure 

6 G - L). Overestimation of DNA concentration led to lower DNA volume added to enzyme 

activity assays as described in chapter 4.2.9.  
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Figure 6: Measured DNA concentrations of contaminated DNA samples for enzyme activity assays. 
Measured nucleic acid concentrations [ng/µL] of contaminated ssDNA for polymerase assay in white and those 
of contaminated dsDNA fragments for ligase assay in black. Target concentrations were 45 ng/µL or 30 ng/µL, 
respectively. N = 6 measurement replicates, error bar = standard deviation.    

 

2.2 Measurement of polymerase inhibition  

2.2.1 Phi-Inhibition-Assay to measure Taq DNA polymerase activity  

The Phi-Assay, used to determine activity of polymerases by comparing their activity to a 

reference enzyme was developed at QIAGEN. It is based on measurement of fluorescence 

intensity, resulting from a linear amplification of the ssDNA PhiX 174 plasmid (PhiX DNA) 
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using only 1 primer and EvaGreen as intercalating dye to detect double stranded DNA 

(dsDNA) (Figure 7). Polymerase activity is determined, using decreasing concentrations of 

a reference enzyme to create a standard curve by plotting theoretical enzyme activity of 

dilutions as function of slope of fluorescence signal over several cycles. The slope of 

fluorescence signal of tested enzyme was then used to calculate its activity. 

 
Figure 7: Schematic drawing of Phi-Inhibition-Assay principle. 

To determine the effect of different contaminants on Taq polymerase activity, it was 

decided to use the Phi-Inhibition-Assay, adapted from Phi-Assay. A standard curve of 

decreasing enzyme concentrations was created with Taq polymerase.  The influence of a 

contaminant on Taq polymerase was determined by adding contaminated PhiX DNA to 

standard with highest enzyme concentration and calculating relative enzyme activity based 

on standard curve.  

 

2.2.2 Establishment of Taq DNA polymerase standard curve  

To quantify polymerase activity in presence of contaminants (chapter 2.2.3), first a 

reproducible standard curve consisting of four decreasing concentrations of Taq 

polymerase and a no-enzyme negative control was established. The theoretical enzyme 

activity of dilutions (based on enzyme activity claimed by manufacturer) was plotted 

against slope of fluorescence signal over cycles 10 to 25 (Figure 8).  

 

 



   Results 

17 
 

  
Figure 8: Representative example of fluorescence signal recorded for Phi-Inhibition-Assay standard 
curve (A) and plot of slope of fluorescence signal vs. theoretical enzyme activity in U/µL (B). (A) Standard 
1 to 4 are presented in dark to light blue, and negative control in grey. N = 4 technical replicates on one Phi-
Inhibition-Assay run. 

At first 0.0019, 0.0016, 0.0012, and 0.0008 U/µL Taq polymerase used in Phi-Assay for 

reference enzyme were tested. Over all, results of all four runs were similar and 

comparable. In Figure 8, the fluorescence signal over time for standards and negative 

control of run 1 are presented as representative results. Looking at the fluorescence 

intensity of standards, a clear decrease of slope was observed with decreasing enzyme 

concentration. The resulting standard curves of all 4 runs had R²s ≥ 0.99 (Supplementary 

Table 1).  After calculation of actual activity, using standard curve, mean of slopes, and 

dilution factor all standards had activities of 5 ± 0.3 U/µL, resulting in a standard 

deviation ≤ 0.2 U/µL around expected theoretical activity of 5 U/µL (Figure 9). 

 
Figure 9: Calculated enzyme activities of standards and negative control. Presented are mean enzyme 
activities calculated using standard curve and slope of fluorescence signal. N = 4 independent runs, error bar = 
standard deviation. Grey lines indicate expected values of 5 U/µL for all standards and 0 U/µL for negative 
control.  
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2.2.3 Influence of contaminants on Taq DNA polymerase activity 

To investigate the influence of possible impurities on polymerase activity, PhiX DNA was 

combined with four decreasing concentrations of each contaminant or buffer EB for clean 

DNA control and applied on Phi-Inhibition-Assay. UV/Vis absorbance spectra and DNA 

concentrations to calculate DNA input volume of same contaminated DNA samples in 

Phi-Inhibition-Assay were beforehand recorded on QIAxpert (Figure 6). 

Mean percentage of six replicates of measured Taq polymerase activity was plotted against 

contaminant concentration in PhiX DNA. Using one-way Analysis of Variance (ANOVA) and 

Tukey-Kramer Honest Significant Difference (Tukey-Kramer HSD) test, significant 

differences in average enzyme activities of different contaminant concentrations were 

identified. Results showed that overall standard deviation (StDev) of replicates was ≤10% 

for measured Taq activity, except for 12 samples were StDev was between 10 and 15% 

(Figure 10 and Supplementary Table 2). Betaine and DTT had no influence on Taq 

polymerase activity in applied concentrations (Figure 10 A - B). Decreased Taq polymerase 

activity was observed for increasing concentration of dNTPs, EDTA, human hemoglobin 

(Hb), HSA, and IgG; whereby for IgG and Hb second highest concentration resulted in 

complete inhibition of enzyme, whereas lowest concentration of dNTPs, EDTA, and Hb had 

no effect on enzyme activity (Figure 10 C - G). Figure 10 H and I show that only highest 

concentration applied for sodium azide (SA) and GITC had inhibitory effect on enzyme and 

all concentrations applied of glycogen reduced Taq polymerase activity by about 30%. 

Sodium citrate (SC) led to complete Taq inhibition for all applied concentrations (Figure 

10 K). Interestingly, lowest concentration of phenol led to improved Taq activity, whereas 

all other concentrations showed increasing inhibition with increasing phenol concentration 

(Figure 10 L). 
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Figure 10: Mean percentage of Taq activity plotted against contaminant concentration in DNA. Presented 
are results for all tested contaminants: (A) Betaine, (B) DTT, (C) dNTPs, (D) EDTA, (E) human hemoglobin, (F) 
HAS, (G) IgG, (H) sodium azide, (I) GITC, (J) glycogen, (K) sodium citrate, and (L) phenol. N = 6 replicates from 
independent Phi-Inhibition-Assay runs, error bar = standard deviation, note different y-axis scale for (G) IgG.  

 

2.3 Measurement of ligase inhibition  

2.3.1 Gel electrophorese based assay to measure T4 DNA Ligase activity  

To measure T4 DNA Ligase activity in presence or possible contaminants, an assay was 

designed to measure T4 DNA Ligase activity based on amount of ligated fragment detected 

by capillary gel electrophoresis, using the QIAxcel Advanced as detection instrument. The 

region flanking XhoI restriction site on plasmid pCMVbeta was selected to serve as template 

A B C 

D E F 

I H G 

J K L 



Results    
 

20 
 

for PCR to obtain dsDNA fragments for gel electrophoresis based ligase assay.  Restriction 

digest of PCR product with XhoI would result in a 4 nt 5’ overhang, which would 

subsequently be ligated by T4 DNA ligase (Figure 11). 

 
Figure 11: Schematic drawing of ligase assay workflow and experimental setup.  

First, primers were designed flanking the XhoI restriction site and resulting in a PCR 

product of 549 bp. Results of first run through the experimental workflow (Figure 11), 

showed that selected primers generated a specific PCR product of about 549 bp (Figure 

12 A). Subsequently, restriction digest with XhoI was carried out and resulted in two 

fragments of about 271 and 274 bp, although only one band was observed in digital gel 

image due to resolution (Figure 12 B).  
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Figure 12: Digital Gel image of (A) PCR product and (B) restriction fragments after cleanup. Presented 
were in (A): Size marker (A7) 3 lanes showing purified 549 bp PCR product (A1 - A3), and (B): Size marker (A7), 
diluted PCR product (A1), and 3 lanes of purified XhoI digested fragments (A2 – A4). Gel images were recorded 
with QIAxcel Advanced, using a High Resolution Cartridge, Alignment Marker 15bp – 3kb, Size Marker FX 
174/HaeIII, and Method OM500. 

To investigate, whether XhoI digested dsDNA fragments could be ligated by T4 DNA Ligase 

and whether different concentrations of the enzyme would lead to different amounts of 

ligated and non-ligated fragments detected on QIAxcel, a T4 DNA Ligase dilution series 

containing 1.2, 0.5, 0.4, 0.3 or 0.2 U/µL, and a Ligase negative control were prepared and 

incubated with restriction fragments.   

The restriction site for XhoI on the 549 bp PCR product was near the middle, resulting in a 

271 bp and a 274 bp fragment with 4 nt symmetrical overhangs (Figure 11). In theory, 

ligation of these fragments would lead to three possible fragments: 546 bp, 549 bp, or 

552 bp. With the QIAxcel High Resolution Kit a distinct detection of these fragments would 

be possible, but if analysis parameter in ScreenGel Software were set to detect peaks with 

a minimum distance of three seconds, ligated and un-ligated fragments would be 

summarized in one peak each. As expected, the QIAxcel gel image, presented in Figure 13 A, 

showed one band for ligated and one for un-ligated DNA fragments, while the 

electropherogram showed that each gel-band was composed of at least two peaks (Figure 

13 B). Furthermore, gel image showed that decreasing Ligase concentration led to 

decreasing amount of ligated DNA fragments (Figure 13).  
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Figure 13: Digital Gel image of ligation reactions (left) and corresponding electropherogram of lane A1 
(right). Presented in gel image were 1 representative lane for each of applied enzyme concentration, diluted 1 
in 3 in RNase-free water, and recorded immediately after reaction. 

 

The amount of ligated and un-ligated fragments based on evaluation of percent normalized 

area (% NA) values were compared in Figure 14. The % NA value describes the percentage 

of the area under the curve of each peak in an electropherogram, where the sum of the areas 

under the curve of all detected peaks, excluding alignment markers, equals 100%. As 

expected, results showed that with decreasing T4 ligase concentration, the % NA of peaks 

representing un-ligated fragments increased, while % NA of peaks representing ligated 

fragments decreased. 

 
Figure 14: Mean % NA values detected for different T4 ligase concentrations. Ligated and un-ligated DNA 
was quantified using % NA values for detected long or short DNA fragments after incubation with decreasing 
concentrations of T4 ligase. N = 3 replicates applied on QIAxcel, error bar = standard deviation.  
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2.3.2 Establishment of T4 DNA Ligase standard curve  

To investigate whether applied enzyme concentrations could be used as standard curve to 

quantify T4 ligase activity in presence of contaminated DNA, enzyme concentrations were 

plotted against percentage normalized area of ligated fragments. The resulting standard 

curve had an R² = 0.98 (Figure 15 A). Mean enzyme activities of standards, after subtracting 

dilution factor, were expected to be 120 U/µL and measured values were in range of 

116 - 130 U/µL, with standard deviation ≤ 14 U/µL (Figure 15 B).    

  
Figure 15: (A) Standard curve for T4 DNA Ligase on gel electrophorese based ligase assay and (B) 
activities of standards after subtraction of dilution factor. (A) Standard curve was generated by plotting 
measured % NA values of ligated fragments against applied T4 DNA Ligase dilutions. (B) Standard curve and 
dilution factor were used to calculate enzyme activity of standards. Grey lines indicate expected values of 
120 U/µL for all standards and 0 U/µL for ligase negative control. N = 3 technical replicates applied on real-time 
ligase assay, error bar = standard deviation. 

The standard curve was repeated in 3 runs with 1.2, 0.8, 0.5, and 0.3 or 0.2 U/µL T4 DNA 

ligase dilutions as well as a ligase negative control to test reproducibility. The 0.4 U/µL 

dilution was exchanged for a 0.8 U/µL dilution to obtain an even distribution over the whole 

range of applied concentrations. On each run, three replicates were applied of each sample. 

The results showed that standard curve of first run had an R² or 0.99 (Figure 16 A). The 

ligase dilution with 1.2 U/µL was below regression line in run 2 and 3, indicating that it was 

beyond linear range. R² values for these runs were 0.95 or 0.96. When highest ligase 

concentration was excluded from evaluation for run 2 and 3, R² values were 0.99 for both 

runs (Figure 16 B and C).  
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Figure 16: Standard curves for T4 DNA ligase of 3 independent runs (A) run 1, (B) run 2, and (C) run 3. 
Measured percentage normalized area of ligated DNA fragments was plotted against applied enzyme dilution. 
N = 3 replicates on each run.  

To optimize the standard curve for T4 DNA ligase activity quantification, another 4 standard 

curves were prepared using enzyme concentrations of 1.0, 0.8, 0.5, 0.3, and 0.2 U/µL, 

representing Standard 1 – 5, as well as a no ligase control. R² values for all runs were ≥ 0.97. 

After subtraction of dilution factor, mean ligase activities of 4 independent runs were 

expected to be 120 U/µL and measured values were between 113 and 134 U/µL with 

standard deviation ≤ 7 U/µL (Figure 17).  

 

 
Figure 17: Calculated T4 DNA ligase activities of standards and negative control. Presented are mean 
enzyme activities calculated using standard curve and percentage normalized area for ligated DNA fragments. 
Grey lines indicate expected values of 120 U/µL for all standards and 0 U/µL for ligase negative control. N = 4 
independent runs, error bar = standard deviation. 

Based on presented results, the enzyme dilutions with 1.0, 0.8, 0.5, 0.3, and 0.2 U/µL T4 

DNA ligase were chosen for standard curve to test influence of possible contaminants on 

ligase activity. 
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2.3.3 Influence of contaminants on T4 DNA Ligase activity  

In order to investigate the influence of contaminants on T4 DNA Ligase activity, four 

decreasing concentrations of contaminants or buffer EB for clean DNA control were added 

to restriction fragments. Before contaminated DNA samples were applied on gel 

electrophoresis based ligase assay, same contaminated DNA samples were applied on 

QIAxpert to measure DNA concentration to calculate DNA input volume in ligase assay 

(Figure 5), and to record UV/Vis absorbance spectra for data modelling.  

Mean percentage of T4 ligase activity measured for each sample in six replicates, were 

plotted against contaminant concentration in DNA (Figure 18). Overall results showed 

StDev of replicates ≤10%, except for 6 samples with StDev between 10 and 15%, and 1 

sample with StDev of 20% (Figure 18 and Supplementary Table 2). To determine significant 

differences in mean ligase activities, ANOVA and Tukey-Kramer HSD test were applied. 

EDTA had no influence on T4 DNA Ligase activity (Figure 18 A), whereas betaine in highest 

concentration applied had a positive effect, leading to about 120% activity (Figure 18 B). 

Interestingly, low concentrations of human hemoglobin (Hb) and HSA also had a positive 

effect on ligase activity, leading to about 140% or 150% activity measured. Low 

concentrations of these contaminants were comparable to control without contaminant 

(Figure 18 C and D). Highest concentration of sodium azide (SA) led to inhibition of T4 

ligase by about 20%, while all other concentrations of same contaminant had no influence 

(Figure 18 E). Results for GITC and DTT showed increasing inhibition with increasing 

concentration, with a maximum inhibition of about 30% for the highest concentrations 

(Figure 18 F and G). For glycogen, all applied concentrations led to an inhibition of about 

20% (Figure 18 H). IgG, dNTPs, sodium citrate (SC), and phenol caused decreased activity 

for increasing contaminant concentration, with complete inhibition of T4 ligase for second 

lowest concentration of IgG, and highest two concentrations of dNTPs, sodium citrate, and 

phenol (Figure 18 I - L).  
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Figure 18: Mean percentage of T4 ligase activity plotted against contaminant concentration in DNA. 
Presented are results for all tested contaminants: (A) EDTA, (B) Betaine, (C) human hemoglobin, (D) HSA, (E) 
sodium azide, (F) GITC, (G) DTT, (H) glycogen, (I) IgG, (J) dNTPs, (K) sodium citrate, and (L) phenol. N = 6 
replicates from independent ligase inhibition assay experiments, error bar = standard deviation, note different 
y-axis scale for (C) human hemoglobin, (D) HSA, and (J) dNTP.  

 

2.4 Measurement of kinase inhibition 

2.4.1 Radiometric assay to measure T4 PNK actvity 

The radiometric kinase assay, based on a transfer of radioactive labeled phosphate and first 

described by Sambrook et al. [45], was selected to measure activity of T4 PNK in presence 

of possible contaminants. To determine enzyme activity, the amount of radioactive P³² 
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transferred by the enzyme from [γ-³²P]ATP to the 5’end of a dsDNA fragment was 

measured, using a Beckman LS 6500 scintillation counter. A purified PCR product was 

applied as dsDNA fragment (Figure 19).  

 

Figure 19: Schematic drawing of radiometric T4 PNK assay principle. 

For relative quantification, a standard curve was to be established as previously done and 

described for polymerase and ligase assay. Therefore, T4 PNK was applied in 200, 150, 100, 

and 50 U/µL to reaction mix containing reaction buffer, dsDNA fragments, and [γ-³²P]ATP. 

Measured counts per minute (CPM) were plotted against theoretical enzyme activities of 

dilutions. 

Results for measured CPM varied strongly between independent runs and showed poor 

correlation with enzyme activity of T4 PNK dilutions (Figure 20). 

   

Figure 20: Standard curves for T4 PNK of 3 independent runs. Measured counts per minute (CPM) were 
plotted against applied enzyme dilution. N = 3 replicates on each run. 

Due to poor correlation between measured CPM and applied T4 PNK concentrations, 

enzyme activity data investigating the influence of possible contaminants on T4 PNK were 

not recorded.  

 

2.5 Purity assessment of DNA samples 

For purity assessment of DNA samples 5 classes were created to be used as target values 

for data evaluation and algorithm training and testing, based on measured enzyme 
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activities [%], with c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5, where DNA was 

considered pure, when measured enzyme activity was >80%. From here on, classes based 

on enzyme activities will be referred to as “actual classes”. For evaluation of different 

methods for purity assessment, actual classes will be considered true and will be plotted 

against values describing nucleic acid purity to visualize results.  

If purity values are continuous, actual classes will be plotted against box plots, representing 

the distribution of measured purity values for each class. In an ideal case, where actual class 

and purity values correlate perfectly with each other, the median of purity values would 

climb for increasing actual class and variance of purity values would not overlap between 

different classes (Figure 21).  

 

Figure 21: Demonstrative plot of actual class vs. continuous purity value. Presented are data for a fictive 
case, where purity value and actual class correlate perfectly with each other. Actual classes were based on 
measured enzyme activities [%], with c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5 

When purity values were predicted as classes resulting from classification algorithms, 

confusion matrices will be used as performance measurement. A confusion matrix is 

presented as a table with four different combinations of predicted and actual values (Figure 

22): 

- True positives (TP): a predicted 11positive value is an actual positive value 

- False positive (FP): a predicted positive value is an actual negative value 

- False negative (FN): a predicted negative value is an actual positive value 

- True negative (TN): a predicted negative value is an actual negative value 

These four categories are used to determine performance measures such as Recall, 

Precision, F-measure, and Accuracy. Recall describes how many instances were predicted 

correctly out of all actual positive values (Figure 22 yellow), whereas precision is a measure 

for how many values were predicted correctly out of all predicted positive values (Figure 

22 green). The F-measure combines Recall and Precision by building their harmonic mean. 
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The proportion of overall correctly predicted values is defined by the Accuracy (Figure 

22 red). Higher values for all performance values indicate better results.  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

𝐹𝐹-𝑚𝑚𝑅𝑅𝑅𝑅𝑃𝑃𝑚𝑚𝑃𝑃𝑅𝑅

=  
2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

𝐴𝐴𝑅𝑅𝑅𝑅𝑚𝑚𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹
𝑡𝑡𝑃𝑃𝑡𝑡𝑅𝑅𝑅𝑅  

Figure 22: (left) Schematic presentation of confusion matrix and (right) performance measures with 
formulas. Formulas to determine performance measures and areas of confusion matrix representing 
performance measures were color-coded. Adapted from [100]. 

 

2.5.1 Absorbance ratios for evaluation of DNA sample purity 

A260/A280 and A260/A230 absorbance ratios are commonly used to determine sample purity 

of nucleic acid samples. Absorbance values at A230, A260, and A280 were recorded for all 

samples of development dataset using the QIAxpert UV/Vis application, ratios were 

calculated and plotted against actual classes. The results showed no correlation between 

actual class and absorbance ratios. For A260/A280 ratios, median of ratios were ~ 1.7 for all 

actual classes, whereas median of A260/A230 ratios were highest for class 3 and went down 

towards class 1 and class 5 (Figure 23).  

Interestingly, A260/A280 ratios above 2 in class 3 to 5 and A260/A230 ratios greater 2.2 in all 5 

actual classes were observed (Figure 23). Absorbance ratios above approximately 2.0 or 2.2 

are unusual for nucleic acid samples, since absorbance maximum of nucleic acids is at A260, 

while impurities have absorbance maxima at A230, A270, or A280 (Ref. [63], [64], Figure 1, and 

Figure 5). Therefore, elevated impurity concentration in nucleic acid samples would lead to 

higher denominator values of absorbance ratios and thus to lower overall ratio values.  
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Figure 23: Actual classes plotted against box plots of (A) A260/A280 and (B) A260/A230 ratios. Actual classes 
were created based on enzyme activities [%], with c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5, absorbance 
ratios were calculated using measurements of QIAxpert UV/Vis application, and outlier box plots were 
generated with JMP, showing median, 1st /3rd quartile and 1st /3rd quartile -/+ 1.5*interquartile range. Grey lines 
indicate A260/A280 = 2.0 or A260/A280 = 2.2.   

Inspection of samples with A260/A280 ratios above 2 revealed that they contained sodium 

azide (SA) or DTT, which are both possible contaminants with an absorbance maximum at 

≤ A230. Representative UV/Vis absorbance spectra of these samples and their control 

samples without contamination were plotted and showed that indeed the right shoulder of 

the absorbance peak shifted to the right, resulting in an increased A260 absorbance with 

increasing concentration of SA or DTT, while A280 values were not affected (Figure 

24 A and B). A260/A230 ratios > 2.2 in classes 1 through 4, were observed for samples 

contaminated with dNTPs. Representative absorbance spectra of DNA samples 

contaminated with increasing concentrations of dNTPs showed that absorbance at A260 

climbed faster than absorbance at A230, resulting in higher A260/A230 ratios (Figure 24 C).  

   

Figure 24: UV/Vis absorbance spectra of samples with (A and B) A260/A280 ratios > 2.0 or (C) A260/A230 
ratios > 2.2. Presented were representative spectra of DNA contaminated with (A) sodium azide, (B) DTT, or 
(C) dNTP recorded with QIAxpert UV/Vis application.   

For easier comparison of absorbance ratios with classification algorithms, ratios were also 

divided into 5 classes, with class 5 representing pure DNA with A260/A280 values between 

1.8 and 2.0, and A260/A230 ratios in range of 1.8 – 2.2, based on reference [64]. Sample purity 

A B C 

A B 
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and classes were assumed to decrease with increasing or decreasing ratios in both 

directions (Figure 25). 

 

Figure 25: Classes generated using absorbance ratios. Class 5 was defined as recommended in literature 
and guidelines.  

All samples were then assigned to classes based on A260/A280 or A260/A230 ratios from UV/Vis 

absorbance measurements as described above (Figure 25). The overall class based on both 

absorbance ratios was then determined for each sample by choosing the lower of both 

classes, since purity of a DNA sample would be considered poor, if one of both ratios was 

below expected range. The classes based on absorbance ratios were then plotted against 

actual classes in a confusion matrix, displayed in Figure 26. The result showed that with 

classes based on absorbance ratios, an accuracy of 17% was achieved and 570 of 684 were 

misclassified (Figure 26). 

 

Figure 26: Accuracy and color encoded confusion matrix for classes predicted based on absorbance 
ratios vs. actual classes. Actual classes were created based on enzyme activities [%], with c1 ≤ 20% < c2 ≤ 40% 
< c3 ≤ 60 < c4 ≤ 80% < c5, and predicted classes based on absorbance ratios were determined as described in 
Figure 25.  Color scale of heat map on right. 
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2.5.2 Development of novel method for assessment of DNA purity 

To investigate whether whole spectra between A230 and A410 of contaminated DNA, 

recorded with UV/Vis spectrometer, could be used to predict enzyme activities of same 

samples and consequently, predict nucleic acid sample purity, mathematical data modelling 

methods were applied. Therefore, recorded absorbance spectra were used as input data in 

three different variations and an example for each variation was presented in Figure 27 to 

demonstrate differences between different input spectra.  

• raw spectra: These minimally processed spectra recorded on QIAxpert should be 

comparable to minimally processed spectra of same samples recorded on other 

instruments (Figure 27 A). The resulting data model would be able to use raw 

spectra directly from the instrument, without any further manipulation.  

• A260 normalized spectra: Named raw spectra from QIAxpert were normalized to 

A260 = 1 OD (Figure 27 B). Therefore, the resulting algorithm considered ratio of 

DNA and contaminant concentration. The A260 normalization would be done for 

sample spectra that were to be analyzed with the resulting data model.  

• delta spectra: By spectral content profiling generated nucleic acids spectra, 

through integrated spectral content profiling (SCP) on QIAxpert DNA QIAsymphony 

application, were subtracted from raw spectra. Consequently, delta spectra 

represented absorbance of sample impurities only (Figure 27 C), and resulting data 

model would be independent of DNA concentration. Delta spectra would be 

calculated for all sample spectra that were to be analyzed with resulting algorithm 

and thus require Spectral Content Profiling (SCP).  
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Figure 27: Absorbance spectra of DNA contaminated with human hemoglobin (HB). (A) Raw, (B) 
A260 normalized, and (C) delta spectra of 1 representative measurement replicate for five different DNA samples 
with or without human hemoglobin.  

Datasets with different input spectra were each divided into three subsets for data model 

training and testing with same proportion of samples belonging to actual class one through 

five in each subset (for class description see chapter 2.5). The (1) trainings dataset 

consisted of 70% of instances and was used to train algorithms. The (2) development 

dataset, containing 15% of instances, was applied to test and optimize different data 

pre-processing and algorithm parameter settings. Finally, the (3) test dataset, containing 

remaining 15% of instances, was used to compare optimized algorithms using different 

input spectra.  

A 

B 

C 
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The input spectra showed high collinearity, meaning that various input variables had 

similar values throughout the complete dataset, due to the similar shape of absorbance 

spectra of many possible contaminants (Figure 5). These input variables carried redundant 

information that could lower the performance measures of algorithms using absorbance 

spectra to predict actual classes. Therefore, data were pre-processed, using principal 

component analysis (PCA) or near zero variance (nzv), to eliminate redundant input 

variables and reduce the number of input data for subsequent algorithm. In PCA new, 

abstract values are generated from original input data, that explain the variance of input 

data using less features. These values are called principal components and serve as input 

data for subsequently applied classification algorithm. The nzv method reduces the count 

of input variables by eliminating original input values with variances smaller than a defined 

value, called threshold. If for example threshold is set to 0.1 OD, only wavelengths with a 

variance ≤ 0.1 OD over all instances of trainings dataset will be discarded. Therefore, 

increasing thresholds lead to reduced number of input data for algorithms. The optimal 

threshold should reduce the amount of input data without affecting algorithm performance. 

Multiclass logistic regression (MLR) and K-nearest-neighbor (KNN), were applied as 

classification methods to predict purity of sample based on spectra. The F-measures and 

accuracies were used to evaluate performance of resulting data models (Figure 28).  

 

Figure 28: Overview of mathematical data modelling process.  

 

2.5.2.1 Multiclass logistic regression for DNA purity estimation 

Logistic regression is a probabilistic classification model, which is commonly utilized for 

datasets with binary target values. In this study, the goal was to assign absorbance spectra 

as input data to 1 out of 5 classes, representing DNA sample purity, defined by measured 

enzyme activities: c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5. For such cases with 

multiple categorical target values, multiclass logistic regression (MLR) can be applied. The 

approach used here is called one-over-rest, where the probability for five binary problems 
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were determined for each observation or input spectrum, where one binary problem had 

two possible outcomes, for example “class 1” or “not-class 1”.  

Before multiclass logistic regression (MLR) was applied to classify measured absorbance 

spectra to predict enzyme activity, the input data were pre-processed to reduce input 

features. The unprocessed input data consist of 181 wavelength values or features for each 

absorbance measurement between A230 and A410. The goal of data pre-processing was to 

reduce the number of features to accelerate algorithm calculation time without losing 

accuracy of algorithm outcome. Two methods were applied for data per-processing, 

principal component analysis (PCA) and near zero variance (nzv). Each pre-processing 

method was optimized for three different versions of input spectra, since the distribution 

of their OD values varied. For data pre-processing with PCA, default parameters were 

applied, where several principal components were generated that retained 99, 97.5, 95 or 

90% variance of unprocessed input data. The threshold for nzv pre-processing was set to 0, 

0.01, 0.02, 0.03, 0,06, 0.1, 0.2, 0.3, 0.6, 1, 2, 3, 6, 10 or 20 OD. With nzv threshold set to 0, 

input data were used without data pre-processing. Resulting input data with reduced 

number of features were then submitted to MLR algorithm with default parameters and 

best results were summarized in Table 1. In addition, all obtained accuracies and 

F-measures of development datasets were plotted against threshold for nzv or retained 

variance for PCA (Supplementary Figure 3 and Supplementary Figure 4).   

Overall, results showed similar performance for MLR after data pre-processing using nzv 

or PCA, and slightly better results for raw spectra compared to A260 normalized or delta 

spectra (Table 1). Best results for raw spectra were obtained with accuracy and F-measure 

of 69% and 43% for nzv threshold at 0.03 OD and 99% variance retained in PCA (Table 1, 

Supplementary Figure 3, and Supplementary Figure 4). After nzv, 140 of 181 features were 

retained (Supplementary Figure 3 A), and 6 principal components were generated with PCA 

(Supplementary Figure 4 A). 

For A260 normalized spectra, best accuracy and F-measure obtained for nzv pre-processing 

were 63% and 35% (Table 1 and Supplementary Figure 3 B). Interestingly, these results 

were obtained for nzv threshold set to 0 OD, were all wavelengths were retained as input 

features for MLR algorithm, except A260, which was 1 OD for all measurements due to 

normalization (Supplementary Figure 3 B). With PCA, best MLR performance results were 

found where 99% or 97.5% of variance were retained, resulting in 6 or 5 principal 

components, 63% accuracy, and a F-measure of 34% (Table 1 and Supplementary Figure 

4 B).  
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MLR with delta spectra after nzv pre-processing, showed best performance results where 

nzv threshold was set to 0 OD and all 181 absorbance wavelengths were used as input 

features. The resulting accuracy and F-measure were 67% and 41% (Table 1 and 

Supplementary Figure 3 C). When 6 input features for MLR were generated with PCA, 

containing 99% of variance form original input data, best performance results with PCA 

pre-processing were obtained with 63% accuracy and a F-measure of 36% (Table 1 and 

Supplementary Figure 4 C). 

Table 1: Summary of multiclass logistic regression performance for development datasets with 
optimized data pre-processing, using nzv and PCA. MLR with different input spectra were run with 
non-weighted classes and C = 1 as default settings, after feature reduction with increasing thresholds for nzv or 
decreasing variance retained in PCA. “t” indicates threshold, and “v” retained variance. 

input spectra pre-processing accuracy F-measure 

raw spectra nzv, with t = 0.03 OD 69% 43% 

 PCA, with v = 99% 68% 42% 

A260 normalized spectra nzv, with t = 0 OD 63% 35% 

 PCA, with v = 99% or 97.5% 63% 34% 

delta spectra nzv, with t = 0 OD 67% 41% 

 PCA, with v = 99%  63% 36% 

 

In order to further optimize the performance of MLR algorithms, all actual classes of the 

trainings set were weighted with one (non-weighted) or inversely proportional to class 

frequencies (balanced). Since the dataset used for this study had more observations 

assigned to actual class 5 compared to other actual classes, weighting or balancing classes 

could lead to better MLR algorithm performance, by compensating the imbalance of the 

input data. In addition, the inverse regularization factor C, in default settings 1.0, was set to 

0.01, 0.05, 0,1.0, 0.5, 1, 5, 10, 50, 100. Smaller values specify stronger regularization and 

avoid overfitting. To find the best parameter settings for MLR algorithms with different 

input spectra, the algorithms were tested with best obtained nzv pre-processing 

parameters. Tested MLR parameter settings with best performance results for 

development datasets were summarized in Table 2.  

The results showed, that accuracy and F-measure of MLR algorithms could overall be 

improved by adjusting regularization strength. The comparison of non-weighted classes in 

default settings and balanced classes, showed no improvement for balanced classes. MLR 

algorithms based on raw and A260 normalized spectra showed best performance for C = 50, 

with accuracies of 70% and 65% and F-measures with 43% and 42%. Performance of MLR 
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algorithm using delta spectra showed highest accuracy and F-measure of 72% and 47% for 

C = 5 (Table 2).  

Table 2: Summary of MLR classification performance for non-weighted and balanced classes with 
optimized C for development datasets. MLR algorithms with different input spectra were run after feature 
reduction with optimized nzv thresholds of 0.03 OD for raw, and 0 OD for A260 normalized as well as delta 
spectra. Non-weighted and balanced classes were applied and the inverse regularization factor C was set to 0.01, 
0.05, 0,1, 0.5, 1, 5, 10, 50, 100. 

input spectra class  C accuracy F-measure 

raw spectra non-weighted  50 70% 43% 

 balanced 5 63% 40% 

A260 normalized spectra non-weighted 50 65% 42% 

 balanced 0.1 54% 41% 

delta spectra non-weighted 5 72% 47% 

 balanced 50 62% 49% 

 

Finally, the results obtained from three different input spectra, raw, A260 normalized and 

delta spectra, were compared. Therefore, best thresholds for nzv, non-weighted classes, and 

best C were applied to test datasets. The results showed accuracies between 68% and 72% 

for MLR algorithms using test data of different input spectra. Accuracies and confusion 

matrices were presented in Figure 29.  

The results showed overall somewhat better performance results for MLR algorithm using 

A260 normalized spectra, compared to raw or delta spectra. However, none of the three 

algorithms correctly classified any samples of actual class 2 or 3, whereas most correctly 

classified samples by all three algorithms belonged to actual class 5. In total, 65 and 58 out 

of 204 samples were misclassified for raw and A260 normalized spectra, while 32 out of 102 

samples were misclassified for delta spectra by MLR algorithms (Figure 29).  
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Figure 29: Accuracies and color encoded confusion matrices for MLR algotihms based on (left) raw 
spectra, (center) A260 normalized spectra and (right) delta spectra. Actual classes were created based on 
enzyme activities [%], with c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5, and predicted classes represent 
outcome of MLR algorithms, which were run using nzv threshold 0.03 OD for raw spectra, or 0 OD for A260 
normalized and delta spectra, non-weighted classes, and C = 50, 50, or 5, respectively.  Color scale of heat map 
on right. 

 

2.5.2.2 K-nearest-neighbor classification for DNA purity estimation 

The K-nearest-neighbor (KNN) method is a supervised machine learning algorithm for 

classification. To learn a function for prediction of unknown data, it needs labeled input 

data. For this thesis, 5 classes based on measured enzyme activities: c1 ≤ 20% < c2 ≤ 40% 

< c3 ≤ 60 < c4 ≤ 80% < c5, were used as labels or target values, also called “actual class”. 

The data used to predict these classes were different versions of measured UV/Vis 

absorbance spectra. 

As described in chapter 2.5.2.1 for multiclass regression, input data were pre-processed to 

reduce input features, before the KNN algorithm was applied to classify measured 

absorbance spectra to predict enzyme activity. Same parameters were applied for data 

pre-processing using principal component analysis (PCA) and near zero variance (nzv) and 

resulting input data with reduced number of features were then submitted to KNN 

algorithm with default parameters. Obtained results with best accuracies and F-measures 

of development datasets were summarized in Table 3. In addition, all obtained accuracies 

and F-measures were plotted against threshold for nzv (Supplementary Figure 1) or 

retained variance for PCA (Supplementary Figure 2). 

For raw spectra, best F-measure and accuracy with 67% and 81% for development dataset 

were obtained when threshold for nzv was set to 0.1 OD (Supplementary Figure 1 A). 

Instead of 181 wavelengths between A230 and A410, only 93 wavelength values of raw spectra 

were retained as input data after all wavelengths with variance ≤ 0.1 OD were discarded 

(Supplementary Figure 1 A). With PCA, best F-measure and accuracy with 65% and 80% 
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were obtained when 99% of variance from unprocessed data were retained, resulting in 4 

principal components as KNN input features (Supplementary Figure 2 A).  

A threshold of 0.03 OD led to 56 input features and best performance results for KNN 

algorithm using development dataset with A260 normalized spectra with F-measure at 78% 

and an accuracy of 85% (Supplementary Figure 1 B). For data pre-processing with PCA, best 

performance results were obtained when 3 principal components were created retaining 

99% variance on unprocessed data, leading to F-measure and accuracy of 72% and 83% 

(Supplementary Figure 2 B).  

In comparison, performance of KNN algorithm using delta spectra was inferior to results of 

KNN algorithms using raw or A260 normalized spectra. The best performance for 

development dataset was obtained at threshold 0.02 OD, when 23 of 181 wavelength values 

were discarded from input data, resulting in F-measure and accuracy of 66% and 75%, 

respectively (Supplementary Figure 1 C). When PCA was applied for feature reduction, 

highest F-measure and accuracy with 60% and 72% were obtained when 3 principal 

components were created retaining 97.5% or 95% variance of unprocessed delta spectra 

(Supplementary Figure 2 C). 

Overall, somewhat higher accuracies and F-measures were obtained for KNN algorithm 

when using nzv for data pre-processing compared to PCA (Table 3). Therefore, feature 

reduction with PCA was excluded from further KNN algorithm testing.  

Table 3: Summary of KNN classification performance for development datasets with optimized data 
pre-processing, using nzv and PCA. KNN algorithms with different input spectra were run with non-weighted 
distances and k = 5 as default settings, after feature reduction with increasing thresholds for nzv or decreasing 
variance retained in PCA. “t” indicates threshold, and “v” retained variance.  

input spectra pre-processing accuracy F-measure 

raw spectra nzv, with t = 0.1 OD 81% 67% 

 PCA, with v = 99% 80% 65% 

A260 normalized spectra nzv, with t = 0.03 OD 85% 78% 

 PCA, with v = 99% 83% 72% 

delta spectra nzv, with t = 0.02 OD 75% 66% 

 PCA, with v = 97.5% or 95% 72% 60% 

 

To further optimize the outcome of a KNN algorithm for presented input spectra, the 

algorithms were tested with different neighbor counts as well as with weighted and 

non-weighted distances. The distances between and unknown sample and a classified 

sample were calculated as Euclidean distance (equation (19)). For non-weighted distance, 

only the calculated Euclidean distances were used, whereas the order of distances for 
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classified neighbors was considered for weighted distances, giving higher influence to 

closer neighbors compared to more distant neighbors (see chapter 4.2.26). The “k” in a KNN 

algorithm is the number of classified neighbors used to classify an unknown sample. To find 

the best neighbor count for KNN algorithms with different input spectra, the algorithms 

were tested with best obtained nzv pre-processing parameters, and weighted or 

non-weighted distances, using k in range of 1 to 15. Tested KNN parameter settings with 

best performance results for development datasets were summarized in Table 4.  

Overall, by adjusting the neighbor count and comparing non-weighted and weighted 

distances, accuracy and F-measure could be improved for KNN algorithms with different 

input spectra. KNN algorithms with raw and A260 normalized spectra showed better 

performance with weighted distances. Highest accuracy and F-measure with 84% and 71% 

for KNN with raw spectra was obtained for k = 4. KNN algorithm using A260 normalized 

spectra showed overall best performance with accuracy of 88% and F-measure of 82% with 

k = 6. Performance of KNN algorithm using delta spectra showed highest accuracy and 

F-measure of 81% and 76% for weighed and non-weighted distances and k = 1 or 2, 

respectively (Table 4).  

Table 4: Summary of KNN classification performance for non-weighted and weighted distances with 
optimized neighbor count for development datasets. KNN algorithms with different input spectra were run 
after feature reduction with optimized nzv thresholds of 0.1 OD for raw, 0.03 OD for A260 normalized and 
0.02 OD for delta spectra. Non-weighted and weighted distances were applied and k was set from 1 through 15.  

input spectra distance  neighbor count accuracy F-measure 

raw spectra non-weighted 3 82% 70% 

 weighted 4 84% 71% 

A260 normalized spectra non-weighted 4 87% 82% 

 weighted 6 88% 82% 

delta spectra non-weighted 1 81% 76% 

 weighted 2 81% 76% 

 

To compare results obtained from three different input spectra, best thresholds for nzv, 

weighted distances, and best k were applied to test datasets. Results for KNN algorithms, 

showed accuracies between 75% and 89% for test data using different input spectra. 

Accuracies and confusion matrices showed better results for KNN data models using raw 

or A260 normalized spectra, compared to delta spectra (Figure 30).  

When using raw spectra as input values for KNN, 29 of 204 instances were misclassified, 

and for 4 instances actual and predicted class varied more than 1 class from each other 

(Figure 30 left). For KNN data model trained and tested with A260 normalized spectra, 23 
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instances were misclassified and 5 of 204 instances differed more than 1 class from actual 

value (Figure 30 center).  Using delta spectra as input values for KNN data model led to 

overall less accurate results, with 25 of 102 instances classified too low or too high. Of 

misclassified instances, 8 differed more than 1 class from actual value (Figure 30 right). 

 

   

Figure 30: Accuracies and color encoded confusion matrices for KNN data models based on (left) raw 
spectra, (center) A260 normalized spectra and (right) delta spectra. Actual classes were created based on 
enzyme activities [%], with c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5, and predicted classes represent 
outcome of KNN algorithms, which were run using nzv threshold 0.1 OD for raw spectra, 0.03 OD for A260 
normalized spectra, or 0.02 OD for delta spectra, weighted distances, and k = 4, 6, or 1, respectively.  Color scale 
of heat map on right.  

 

2.6 K-nearest-neighbor algorithm testing 

Of applied methods, the KNN algorithm led to best results for classification of DNA 

absorbance spectra according to sample purity. To evaluate the usefulness of the 

established data model, additional test datasets were recorded and spectra were classified 

using the KNN algorithm.  

 

2.6.1 Classification of pure DNA samples with varying concentration 

In order to test whether KNN data models trained and tested with three different input 

spectra were able to correctly classify pure DNA samples with varying concentrations, since 

DNA was applied at 30 ng/µL of 45 ng/µL for all measurements of enzyme activity dataset, 

a DNA dilution test dataset was recorded and classified with KNN algorithms. The test 

dataset consisted of 30 spectra obtained from a dilution series of 10 decreasing 

concentrations of calf thymus DNA. Raw, A260 normalized, and delta spectra were 

determined for DNA dilution test dataset and presented in Figure 31 to demonstrate the 

differences between different input spectra for KNN algorithms. Raw spectra of DNA 
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dilution series showed increased peak at A260 with increasing concentration (Figure 31 A). 

The A260 peak for A260 normalized spectra was 1 OD for all samples. However, for lower 

concentrations, the A260 normalized absorbance below and above A260 increased with 

decreasing DNA concentration (Figure 31 B). As expected, delta spectra showed no 

absorbance, independent of DNA concentration (Figure 31 C).  

 

 

 

Figure 31: (A) Raw, (B) A260 normalized, and (C) delta spectra of DNA dilution series. Presented were 1 
representative measurement replicate of 8 decreasing DNA concentrations.  

Raw, A260 normalized, and delta spectra were then used to test the corresponding KNN 

algorithm and predicted classes were plotted against DNA concentration obtained from 

QIAxpert DNA QIAsymphony application (Figure 32). Since pure DNA was used for all 

measurements, all samples were expected to be in class 5, defined as samples containing 

impurities that inhibit enzyme activities by ≤ 20% (see chapter 2.5). Results showed that, 

A 

B 

C 
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as expected, KNN algorithms trained with raw classified all or all but 2 samples containing 

≤ 50 ng/µL DNA as class 5, and classes decreased with increasing DNA concentrations. As 

seen in Figure 31 A, the shape of raw spectra changes with increasing DNA concentration. 

Interestingly, results for classification of pure DNA with KNN based on A260 normalized 

spectra were similar to those of raw spectra; DNA samples with high DNA concentrations 

were assigned to lower classes (Figure 32), although A260 normalized spectra of DNA 

samples with high concentrations had typical shape of pure DNA (Figure 31 B). By 

comparing A260 normalized spectra of DNA dilution series to those of enzyme assay 

trainings dataset, it was found that DNA samples contaminated with dNTPs had similar 

shapes: with decreasing concentrations of dNTPs in DNA samples, absorbance below and 

above A260 increased, whereas high concentrations of dNTPs in DNA samples were 

comparable to high DNA concentrations of DNA dilution series (Supplementary Figure 5). 

Results of enzyme activity assays had shown that increasing concentrations of dNTPs in 

DNA samples led to reduced enzyme activity and thus to decreasing actual classes (Figure 

10, Figure 18, and Supplementary Figure 5). The KNN model trained and tested with delta 

spectra, recognized all but 4 DNA samples as class 5, independent of their concentration 

(Figure 32). 

 

Figure 32: Predicted class of pure DNA samples obtained with KNN algorithms plotted against DNA 
concentration. KNN algorithms were run using near zero variance threshold 0.1 OD for raw spectra, 0.03 OD 
for A260 normalized spectra, or 0.02 OD for delta spectra for feature reduction, weighted distances, and k = 4, 6, 
or 1, respectively.  Higher predicted classes indicate better DNA sample purity. DNA concentrations were 
obtained from DNA QIAsymphony application on QIAxpert.  

 

2.6.2 Classification of qPCR samples and correlation with qPCR results 

To investigate, whether novel method for DNA purity assessment correlated with the 

outcome of a downstream application, a qPCR was performed using DNA from human saliva 

samples showing impurities in absorbance spectra. Absorbance spectra were recorded, 

classified with KNN algorithm to assess DNA purity and compared to outcome of qPCR. 
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To record absorbance spectra of saliva DNA samples the DNA QIAsymphony application on 

QIAxpert was used and raw, A260 normalized and delta spectra were determined for all 

measurements. In Figure 33, 4 representative raw absorbance spectra were displayed, 

showing different DNA concentrations and high absorbance values at 230 nm wavelength, 

indicating sample impurities (Figure 33 black and grey spectra, and ref. [64]–[66]). For 

comparison, an absorbance spectrum of clean calf thymus DNA was added, showing 

expected DNA absorbance, with lower absorbance at A230 and an absorbance peak at A260 

(Figure 33 red spectrum).  

 

Figure 33: Raw absorbance spectra of a clean calf thymus DNA sample and four representative DNA 
samples from human saliva.  DNA concentrations in legend were calculated by multiplying absorbance at A260 
of raw spectra with 50.  

In addition, the absorbance ratios A260/A280 and A260/A230, currently used to assess DNA 

purity, were plotted for each sample (Figure 34). DNA is considered pure, when A260/A280 

values are between 1.8 and 2.0, and A260/A230 ratios range from 1.8 to 2.2 [64]. The results 

showed poor DNA purity for all saliva DNA samples, with A260/A280 values ranging from 1.1 

to 1.8, with only 1 measurement replicate of 1 sample at 1.8, and A260/A230 ratios between 

0.4 and 1.1 (Figure 34).  
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Figure 34: Absorbance ratios (top) A260/A280 and (bottom) A260/A230 for each saliva DNA sample. Sample 
IDs were assigned to saliva DNA samples without specific order. Absorbance ratios were calculated from raw 
spectra. Presented were mean values or 3 measurement replicates with error bar = standard deviation. Blue 
lines indicate range of pure DNA.   

After absorbance measurement and determination of DNA concentrations, all samples were 

submitted to a qPCR targeting the human β-actin gene. Therefore, 10 ng DNA per PCR 

reaction were applied in triplicates of each sample. For relative quantification of DNA with 

qPCR, a standard curve with 0.1, 1, 10 or 100 ng DNA per PCR reaction was applied on same 

qPCR run. The hypothesis was that sample impurities would lead to inhibition of qPCR 

reaction, resulting in lower DNA concentrations detected by qPCR, although 10 ng DNA per 

reaction were applied for all samples. Detection of lower DNA concentration would be 

indicated by higher delta Cq values. To determine delta Cq values, the mean Cq values of 

standard with 10 ng DNA per reaction, representing clean DNA, was subtracted from mean 

Cq value of each sample. The delta Cq values for each sample were plotted in Figure 35 and 

showed variability between samples, indicating that sample impurities seen in absorbance 

spectra indeed led to inhibition of qPCR and lower DNA concentrations detected by qPCR.  
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Figure 35: Delta Cq values of saliva DNA samples obtained with qPCR. Sample IDs were assigned to saliva 
DNA samples without specific order. Delta Cq values were obtained by subtracting mean Cq value of standard 
with 10 ng DNA per reaction, representing clean DNA, from mean Cq values obtained for each sample.  

In order to test whether novel method for DNA purity assessment using KNN algorithm to 

classify DNA absorbance spectra according to sample purity, raw, A260 normalized and delta 

spectra of all absorbance measurements from saliva DNA samples were used to test the 

corresponding KNN algorithm. The class predicted by KNN algorithm for each absorbance 

spectrum was then plotted against delta Cq value of corresponding sample (Figure 36). 

Saliva DNA samples with high delta Cq values were expected to be assigned to a low purity 

class, while samples with low delta Cq values were expected to be assigned to a high purity 

class. 

The results showed that classes predicted by KNN algorithm, describing purity of DNA 

samples, failed to correlate with delta Cq values obtained from qPCR. For purity classes 

predicted by KNN algorithms based on raw or delta spectra, all classes contained high and 

low delta Cq values. When A260 normalized spectra were used to predict purity classes, most 

samples were in class 5, considered pure DNA, independent of their delta Cq values (Figure 

36).  

 

Figure 36: Predicted class of saliva DNA samples obtained with KNN algorithms plotted against delta Cq 
values. KNN algorithms were run using near zero variance threshold 0.1 OD for raw spectra, 0.03 OD for A260 
normalized spectra, or 0.02 OD for delta spectra for data pre-processing, weighted distances, and k = 4, 6, or 1, 
respectively. Higher predicted classes indicate better DNA sample purity. Delta Cq values were obtained by 
subtracting mean Cq value of standard with 10 ng DNA per reaction, representing clean DNA, from mean Cq 
values obtained for each sample.  



   Results 

47 
 

To compare the usefulness of novel method with current method for DNA purity 

assessment, delta Cq values were plotted against classes based on absorbance spectra 

(Figure 37). Classes based on absorbance spectra were generated as described in chapter 

2.5, with c1 ≤ A260/A280 or A260/A230 ratio 0.6 < c2 ≤ A260/A280 or A260/A230 ratio 

1.1 < c3 ≤ A260/A280 or A260/A230 ratio 1.5 < c4 ≤ A260/A280 or A260/A230 ratio 1.8 < 

c5, using raw spectra to calculate absorbance ratios. Similar to classes based on KNN 

algorithms, higher delta Cq values were expected to have lower classes and vice versa.  

The results showed no correlation between classes based on absorbance spectra and 

delta Cq values. All but 3 samples were in class 2, since their A260/A230 ratios were between 

0.6 and 1.1 (Figure 37 and Figure 34). 

 

Figure 37: Classes based on absorbance spectra of saliva DNA samples plotted against delta Cq values. 
Absorbance ratios were calculated from raw spectra and classes of absorbance ratios were generated as 
described in chapter 2.5, with c1 ≤ ratios 0.6 < c2 ≤ ratios 1.1 < c3 ≤ ratios 1.5 < c4 ≤ ratios 1.8 < c5. Delta Cq 
values were obtained by subtracting mean Cq value of standard with 10 ng DNA per reaction, representing clean 
DNA, from mean Cq values obtained for each sample. 

 





   Discussion 

49 
 

3 Discussion 
The goal of this thesis was to develop a novel method for purity assessment of DNA, using 

absorbance spectra to predict whether a DNA sample was suitable for a downstream 

application. Since all downstream applications consist at least partially of enzyme reactions, 

the influence of possible DNA sample impurities on absorbance spectra and enzyme 

activities were recorded. Therefore, (1) enzyme activity assays to measure polymerase, 

ligase, and kinase activity were established, DNA was contaminated with possible 

impurities, absorbance spectra of contaminated DNA were recorded for DNA concentration 

estimation and data modelling, and contaminated DNA samples were applied on enzyme 

activity assays, using previously determined DNA concentration to adjust DNA template 

volume on assays. (2) Recorded data were used to train and test different algorithms to 

predict enzyme activity based on absorbance spectra, and (3) the usefulness of novel 

method for purity assessment of DNA was tested with qPCR data.  

 

3.1 Enzyme inhibition by nucleic acid sample impurities 

In order to measure the influence of possible contaminants on enzyme activities, 

polymerase, ligase, and kinase activity assays were established. However, high variability 

of radiometric kinase assay results and irreproducible standard curves, led to exclusion of 

T4 PNK activity data from further analysis and data modelling. Higher concentrations of 

[γ-³²P]ATP or lower concentrations of unlabeled ATP might have led to reproducible 

results, but due to lack of time this could not be tested. The effect of possible contaminants 

on Taq polymerase and T4 DNA ligase activities were analyzed, before obtained data were 

applied to train and test different algorithms to predict enzyme activity based on 

absorbance spectra. Results showed that of twelve applied contaminants, some had no 

influence on Taq polymerase and T4 DNA ligase activity, whereas others had an inhibiting 

or enhancing effect on either one or both enzymes.  

As expected, betaine and DTT had no influence on polymerase activity. Betaine is a PCR 

additive denaturing secondary structures of DNA and therefore making the template more 

accessible for polymerase [92], while DTT is used to stabilize enzymes in enzyme solutions 

and reaction mixtures [96].  

Surprisingly, dNTPs, added to amplification reactions as single DNA building blocks, led to 

lower polymerase activity with increasing concentrations. Part of this effect could be due to 

an imbalance of the reaction or oversaturation of dNTPs in reaction mix, but the larger part 
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was probably due to low DNA template input applied to reaction because of an 

overestimation of the DNA concentrations measured on QIAxpert. As described in sections 

2.1.2 and 4.2.9 concentration of contaminated DNA was measured on QIAxpert and used to 

calculate volume of DNA applied on enzyme activity assays. Since dNTPs are the building 

blocks of DNA, the SCP algorithm of DNA QIAsymphony App is not able to distinguish 

between enzyme activity assay DNA template and dNTPs, leading to higher DNA 

concentration results for DNA samples contaminated with dNTPs. To circumvent the 

influence of DNA overestimation on enzyme activities, only contaminants with reference 

spectra in SCP algorithm could be used, either by testing only those possible contaminants 

for which reference spectra are already present in SCP algorithm, or by adding reference 

spectra of more contaminants to SCP algorithm. Another option could be to drop DNA 

concentration estimation of contaminated DNA samples and use target concentration of 

samples to calculate DNA input volume in enzyme activity assays; or to determine DNA 

concentration with another method such as fluorescence dyes that specifically bind nucleic 

acids, and therefore perform robustly in the presence of DNA sample impurities [101], 

[102]. 

EDTA, hemoglobin, HSA, and IgG all led to reduced polymerase activity with increasing 

concentrations. EDTA is a chelator, binding metal ions like Mg2+, which is an essential 

cofactor for Taq polymerase. Thus inactivation of polymerase by EDTA was expected, 

similar to hemoglobin, which is also known to inhibit PCR reaction by interaction with the 

polymerase cofactor [14]. The inhibition of polymerase by HSA was unexpected, since 

bovine serum albumin (BSA), the same protein from bovine is a commonly added to PCR 

reactions for stabilization [103], and was probably caused by lower template input due to 

higher DNA concentrations measured on QIAxpert. The DNA QIAsymphony application 

does not recognize proteins as impurities, therefore the absorbance of proteins at A260 leads 

to higher DNA concentrations estimated by the SCP algorithm. IgG led to stronger inhibition 

of polymerase compared to HSA; partially it was probably due to overestimation of DNA 

concentration by QIAxpert as explained for HSA, but IgG is also known to inhibit PCR by 

binding ssDNA and hindering polymerase access to template DNA [14]. 

Interestingly, sodium azide (SA) and guanidine isothiocyanate (GITC) both led to about 20% 

inhibition of polymerase at highest applied concentration, while SA was expected to have 

no inhibiting effect on polymerase, whereas GITC was expected to lead to complete enzyme 

inhibition. However, highest concentration of  SA applied in Phi-Inhibition-Assay reaction, 

was 0.05% and thus higher than the common concentration of 0.04%, in elution buffers 

[104]. GITC on the other hand was applied at a highest concentration of 10 mM in enzyme 
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assays due to its high absorbance, although it’s usually applied in much higher 

concentrations of 4 M in lysis buffers for denaturation of nucleases during purification [97]. 

The polymerase inhibition observed for glycogen, was probably partially due to 

overestimation of DNA concentration and partially due to glycogen binding to DNA 

template [98]. As described for proteins above, the SCP algorithm of DNA QIAsymphony 

application does not recognize glycogen as impurity. Similar results were obtained for 

phenol; increasing concentrations of phenol led to reduced polymerase activity, although it 

has been shown, that inhibition of PCR reactions by phenol starts at a concentration above 

0.01% [12], [13]. Sodium citrate (SC) led to complete inhibition of polymerase at all 

concentrations. It neutralizes the negative charge of DNA and lead to dissociation of DNA 

from water [90], therefore the template would not be accessible for polymerases.  

In T4 DNA ligase activity assay, EDTA showed no influence on enzyme activity, since T4 

DNA ligase is independent of metal ions as cofactor. Interestingly, betaine led to improved 

ligase activity at highest concentration. Betaine has a denaturing effect on DNA [92] and 

short non-ligated dsDNA fragments separate into single strands faster compared to long 

ligated dsDNA fragments. Ethidium bromide used for detection in gel electrophoresis 

specifically binds dsDNA. Therefore, denaturation of short non-ligated dsDNA fragments by 

betaine could result in lower detection of non-ligated compared to ligated dsDNA 

fragments, indicating higher ligase activity. Hemoglobin and HSA also had positive effects 

on T4 DNA ligase activity. Possibly these proteins have a stabilizing effect on ligation 

reaction, comparable to that of BSA on PCR [103].  

Results for influence of sodium azide (SA), guanidine isothiocyanate (GITC), glycogen, IgG, 

dNTPs, sodium citrate (SC) and phenol on ligase were similar to those on polymerase, as 

described above. DTT is used to stabilize T4 DNA ligase and reduce its activity in storage 

solution and led to reduced ligase activity with increasing concentration. 

In conclusion, observed influences of possible contaminants on enzyme activities were due 

to either direct interaction of contaminant with enzymes or DNA in enzyme activity assays, 

or influence of contaminant on DNA concentration estimation.  

 

3.2 Application of mathematical data modelling 

To train and test different algorithms for novel method of purity assessment for DNA 

samples, recorded absorbance spectra and enzyme activities were used. Absorbance 

spectra served as input variables to predict enzyme activities as target values. Based on 
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obtained enzyme activities, five classes were created, where higher classes represented 

higher enzyme activities indicating higher DNA purity. Instead of two classes or a simple 

“pure” or “not pure” classification, five classes were chosen to enable distinction between 

downstream applications that are to a greater or lesser extend susceptible to DNA sample 

impurities. It has for example been shown that digital PCR (dPCR) less affected by inhibitors 

that might be present nucleic acid samples compared to qPCR [105], [106], therefore 

reliable results for a DNA sample with a purity of class 4 might still be obtained for dPCR 

but not for qPCR.  

At first, actual classes based on measured enzyme activities were plotted against 

absorbance ratios, to investigate whether the current method for nucleic acid purity 

assessment correlated with the results of enzyme activity assays. The results showed no 

correlation between actual classes and absorbance ratios, indicating that absorbance ratios 

are insufficient for nucleic acid purity evaluation. Although their validity has been 

controversially discussed over half a century [62], [65], [68], [69], and various recent 

publications have shown that they fail to correlate with downstream assay success [12], 

[17], they are still the standard method for purity assessment of nucleic acid samples. 

Absorbance ratios use 3 out of over 100 wavelengths recorded in a UV/Vis absorbance 

measurement, A230, A260 and A280, to estimate nucleic acid sample purity. Therefore, a lot of 

information contained in UV/Vis absorbance spectra remains unused.  

The goal of this thesis was to develop a novel method for nucleic acid purity assessment, 

using all wavelengths between A230 and A410 of absorbance spectra to estimate purity of 

DNA samples. Multiclass logistic regression and K-nearest-neighbor were applied to classify 

absorbance spectra of contaminated DNA samples according to enzyme activity measured 

for same samples. Overall performance of KNN algorithm was better and less samples of 

test dataset were misclassified when using KNN compared to MLR.  

Reducing the number of input features by near zero variance or PCA and adjusting 

regularization strength, led to improved MLR algorithm performance. However, a large 

number of samples were misclassified by MLR and none of the samples in actual class 2 or 

3 were recognized as such, indicating that MLR algorithm with applied parameter settings 

was probably not the appropriate mathematical approach to create a novel method for DNA 

purity assessment, as described in this study.  

Performance of KNN algorithm was improved by reduction of input features, applying 

weighted distances and adjusting neighbor count used for classification of unknown 

samples. After KNN optimization, the algorithm was applied to three test datasets: the 

enzyme activity test dataset, a dilution series of pure DNA samples, and saliva DNA samples 
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applied on qPCR. As input data, three different versions of absorbance spectra were applied: 

raw, A260 normalized, and delta spectra. Delta spectra represented absorbance spectra of 

sample impurities only. Performance of KNN algorithm varied for different test datasets 

and input spectra. For enzyme activity test dataset, best results were obtained with 

A260 normalized spectra, whereas delta spectra led to lowest KNN performance measures. 

Results for enzyme activity test datasets were promising with accuracies between 75% and 

89%, when delta or A260 normalized spectra were used as input data for KNN algorithms. In 

other words, between 25% and 11% of samples were misclassified. Compared to current 

purity evaluation with absorbance ratios, where 83% of samples were misclassified, this 

was a notable improvement. 

Inferior performance results for enzyme activity test dataset using delta spectra compared 

to raw or A260 normalized spectra, could be due to variation from spectral content profiling 

(SCP) algorithm of DNA QIAsymphony application on QIAxpert. Absorbance spectra of 

nucleic acids were detected in a contaminated DNA sample by SCP. Delta spectra were 

obtained by subtracting nucleic acid spectra from raw spectra. To detect absorbance 

spectra of single components of a complex sample, SCP algorithm uses reference spectra 

[78], [79]. Therefore, SCP is only able to accurately identify all components of a complex 

sample, when reference spectra of all components are available. The DNA QIAsymphony 

application on QIAxpert however, contains a limited number of reference spectra. Analysis 

of DNA samples with absorbing contaminants, for which there is no reference spectrum 

available to the SCP algorithm, leads to inaccurate results with higher or lower DNA 

concentrations detected in a sample or detection of absent impurities with a similar 

absorbance spectrum. For enzyme activity assays, several absorbing contaminants were 

used, for which reference spectra in DNA QIAsymphony application are missing. Therefore, 

nucleic acid absorbance spectra detected by DNA QIAsymphony application could be 

inaccurate for various samples, leading to inaccurate and varying delta spectra.  

Ideally, novel method for purity assessment of DNA should be able to determine DNA purity 

over a wide range of DNA concentration. To test the ability of KNN algorithm to recognize 

pure DNA of varying concentrations as pure, absorbance spectra of a DNA dilution series 

were recorded and classified with KNN algorithms. However, pure DNA samples applied as 

controls in enzyme activity assays, used to generate data for algorithm training, were 

applied in 45 or 30 ng/µL. Consequently, as expected, the KNN algorithm based on raw 

spectra was unable to recognize pure DNA with higher concentrations, since the shape of 

absorbance spectra of high DNA concentrations varied from those used as clean DNA 

controls in trainings dataset. To overcome this issue without recording more or different 
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trainings data, A260 normalized and delta spectra were calculated from raw spectra and 

used as input data for KNN algorithm.  

The absorbance at A260 is used to calculate DNA concentration from an absorbance 

measurement, since DNA has an absorbance peak at this wavelength. A260 normalized 

spectra had an absorbance of 1 OD at 260 nm wavelength, independent of DNA 

concentration. Therefore, KNN algorithm based on A260 normalized spectra was expected 

to recognize pure DNA of varying concentrations. Interestingly, results showed that 

samples with higher DNA concentrations were assigned to lower purity classes by KNN 

algorithm. The similarity of A260 normalized spectra from DNA dilution series to DNA 

contaminated with dNTPs, used for enzyme activity assays, and resulting lower enzyme 

activities obtained for those samples could explain these results.  

Delta spectra, as described above, were obtained by subtracting absorbance spectra of 

nucleic acids, detected in a contaminated DNA sample by SCP, from raw spectra. Thus, delta 

spectra represented absorbance of impurities only and KNN algorithm trained with delta 

spectra should be independent of DNA concentration. Since control DNA samples and DNA 

dilution series consisted of pure DNA samples, SCP results of DNA QIAsymphony should be 

accurate. As expected, classification of pure DNA samples with increasing concentrations 

using KNN based on delta spectra, resulted in recognition of all but 4 DNA samples as class 

5, representing pure DNA. 

The aim of this study was to develop a novel method for purity assessment of DNA that 

correlates with outcome of downstream applications. To investigate whether this goal was 

achieved and to test the usefulness of the KNN algorithms, absorbance spectra of DNA 

samples containing impurities were recorded and DNA samples were applied on qPCR. 

Subsequently, the absorbance spectra were classified with KNN algorithms to predict DNA 

purity and compared to delta Cq values obtained from qPCR. The results showed no 

correlation between KNN and qPCR outcome, and failed to prove usefulness of novel 

method for purity assessment of DNA samples developed in this thesis. DNA samples 

extracted from human saliva in class 5 predicted by KNN were expected to lead to low 

delta Cq values, whereas samples in class 1 were expected to inhibit qPCR and lead to high 

delta Cq values. Samples with high delta Cq values and high class predicted by KNN could 

have high delta Cq values due to overestimation of DNA concentration in these samples by 

DNA QIAsymphony application. Overestimation of DNA concentration could occur due to 

sample impurities unknown to SCP algorithm and would lead to less DNA template input in 

qPCR reactions and consequently higher delta Cq values, even if impurities had no 

inhibiting effect on qPCR. Samples with low delta Cq values and low class predicted by KNN, 
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could contain impurities that led to inhibition of enzyme activity assays, but had no 

inhibiting effect on qPCR, due to higher polymerase concentration or stabilizing additives 

in qPCR reaction mix such as BSA. These results suggest that an algorithm trained and 

tested with enzyme activity data might be unable to correctly determine purity for qPCR 

assays. Therefore, novel methods for DNA purity assessment might have to be developed 

for specific downstream applications, by using data obtained from each downstream 

application for algorithm training and testing.  

In conclusion, by application of mathematical data modelling for development of a novel 

method for DNA purity assessment, it was found that KNN algorithm can be used to predict 

enzyme activities based on absorbance spectra with higher accuracy than current method 

using absorbance ratios. The comparison of three different input spectra for KNN 

algorithms, using three different test datasets led to inconclusive results. A260 normalized 

spectra led to best KNN performance for enzyme activity test dataset, while KNN based on 

delta spectra was able to most accurately classify pure DNA with varying concentrations. 

Interestingly, none of the KNN algorithms trained with enzyme activity data correlated with 

qPCR outcome.  

 

3.3 Outlook and future perspectives 

Using high quality nucleic acids is critical to obtain reliable and reproducible results for 

modern molecular biological methods, like qPCR and NGS [1]–[4], and a recent nature 

survey has shown that only 50% of biological research is considered reproducible [107]. 

Standardization and guidelines for quality control can improve reproducibility [3]. Three 

key elements of nucleic acids quality control are concentration, integrity and purity. Various 

methods such as UV/Vis absorbance measurement [62], fluorescence measurement [102], 

or gel electrophoresis [108] are available for nucleic acid concentration estimation. Nucleic 

acid integrity used to be determined by visual inspection of slap gel electrophoresis, until 

the RIN was introduced in 2004, combining digital gel electrophoresis and an algorithm 

analyzing various regions of the electropherogram to describe RNA integrity [73]. The RIN 

is an example for successful application of mathematical data modelling to analyze 

biological data and set new standards.  

Nucleic acid purity is currently determined based on UV/Vis absorbance measurements, 

using the A260/A280 and A260/A230 ratios. While the validity of absorbance ratios has been 

controversially discussed over decades [12], [62], [65], [68], [69] and a survey taken at the 

2005 London qPCR meeting revealed that only 4% of researchers rely on absorbance ratios 
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for nucleic acid purity assessment [47], no alternative has been introduced to replace this 

method. In this study, a novel method for nucleic acid purity assessment was developed, 

using mathematical data modelling to predict DNA purity based on absorbance spectra 

between 230 and 410 nm wavelength. Therefore, DNA purity was defined by using 

measured enzyme activities under the influence of possible nucleic acid contaminants. It 

was successfully demonstrated that novel method for nucleic acid purity assessment could 

predict enzyme activities with a higher accuracy compared to currently applied absorbance 

ratios. Although the algorithm trained and tested in this study failed to correlate with qPCR 

outcome, this study shows that using mathematical data modelling to analyze absorbance 

spectra is a promising approach to develop a novel method for nucleic acid purity 

assessment.  

Being able to reliably assess nucleic acid purity would lead to new standards for nucleic 

acid quality control and could contribute to improving reproducibility in biological science.  
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4 Materials & Methods 

4.1 Materials 

4.1.1 Chemicals and reagents 

Table 5: Substances collected to be measured as possible contaminants of nucleic acid samples.  

Contaminant CAS No. Supplier  Catalog / Material No. 
Betaine 107-43-7 Sigma-Aldrich B2754 
Cells /Debris Pellet of frozen Jurkat cells from cell culture 
Chloroform 67-66-3 Merck 102431 
Dithiothreitol (DTT) 3483-12-3 Sigma-Aldrich DTT-RO   Roche 
DMEM, cell culture medium - ThermoFischer  
DNase I 9003-98-9 QIAGEN 79254 
dNTP Mix (10 mM each) - ThermoFisher R0191 
Ethanol 64-17-5    
Glycerol 56-81-5 Merck 356352 
Glycogen 9005-79-2 Roche 10901393001 
Guanidine Hydrochloride (GuHCl) 50-01-1 Sigma Aldrich G 4505 Sigma  
HEPES 7365-45-9  Sigma-Aldrich H4034 
Isopropanol 67-63-0 

 
  

MOPS free acid 1132-61-2  AppliChem  A2947 
Proteinase K 39450-01-6 QIAGEN 19131 
RNase A  9001-99-4 QIAGEN 19101 
RPMI, cell culture medium - ThermoFischer  
Tri-Sodiumcitrate-dihydrate (SC) 6132-04-3 VWR 567446-5 
guanidine thiocyanate (GITC) 540-72-7 Merck 106627 
ß-Mercaptoethanol 60-24-2 Calbiochem 444203 
Sucrose 57-50-1 Sigma Aldrich S 7903 
Trizma® base 77-86-1 Sigma Aldrich T8524 
Urea 57-13-6 Merck 108487 
Human Serum Albumin (HSA) 70024-90-7 Sigma-Aldrich  A9511 
IgG from bovine serum (IgG) - Sigma-Aldrich  I9640 
Human Hemoglobin (Hb) 9008-02-0 Sigma-Aldrich H7379-1G 
EDTA 6381-92-6 Sigma-Aldrich E5134-5KG 
Sodium Azide (SA) 26628-22-8 Merck 1066880100 
Phenol 108-95-2 Sigma-Aldrich P1037-25G 
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Table 6: Reagents applied in enzyme activity assays and to record additional test datasets for algorithm 
testing. DNA and cells marked with * were obtained as donations from other groups at QIAGEN.  

Reagents Manufacturer  Catalog No.  
PhiX174 Virion DNA NEB N3023 L 
PCR Buffer, 10x QIAGEN 1005481 
Tween 20 QIAGEN 1006170 
NP40 QIAGEN 1004973 
BSA 20mg/ml NEB B9000S 
dNTP-Mix, 10 mM QIAGEN 1005631 
EvaGreen 20.000x in DMSO  Biotium 31002 
pCMVbeta plasmid* n/a n/a 
HotStarTaq Master Mix QIAGEN 1010023 
CutSmart® Buffer NEB B7204S 
10x Ligase reaction buffer enzymatics B6030L 
Alignment Marker 15bp / 10kb QIAGEN 929523 
Alignment Marker 15bp / 3kb QIAGEN 929522 
Size Marker FX 174/HaeIII QIAGEN 929551 
Jurkat cells* n/a n/a 
ATP Solution (100 mM) Sigma R0441 
ATP, [γ-32P]- 6000Ci/mmol PerkinElmer NEG502Z250UC 
10x T4 Polynucleotide Kinase Buffer enzymatics B9040 
UltraPure™ Calf Thymus DNA Solution Thermo Fisher Scientific 15633-019 
DNA from human saliva* n/a n/a 
Buffer TE QIAGEN 1044246 
Buffer EB QIAGEN 1014612 
RNase-free water QIAGEN 1018017 
Ice   

 

Table 7: Kits applied for preparation of or enzyme activity assays.  

Kit Manufacturer  Catalog No.  
QIAxcel DNA High Resolution Kit QIAGEN 929002 
DyeEx 2.0 Spin Kit QIAGEN 63206 
MinElute PCR Purification Kit QIAGEN 28004 
QIAamp DNA Mini QIAcube Kit QIAGEN 51326 
QuantiNova Multiplex PCR Kit QIAGEN 208452 
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4.1.2 Enzymes 

Table 8: Enzymes applied for preparation of or enzyme activity assays. 

Enzyme Manufacturer  Catalog No.  
DNA Taq Polymerase NEB M0320 
XhoI NEB R0146S 
T4 DNA Ligase enzymatics L6030-LC-L 
T4 PNK enzymatics Y9040L 

 

 

4.1.3 Oligonucleotides 

Table 9: Primers and probes applied for enzyme activity assays and qPCR.  

Name Manufacturer  Sequence (5’-3’) 
Primer PhiX174 IDT or Biolegio ACGACGTTTGGTCAGTTCCATCAACATCATAGC 
Fwd pCMVbeta Biolegio CGGTTTGACTCACGGGGATT 
Rev pCMVbeta Biolegio GACCGGCAACGAAAATCACG 
Fwd T4 PNK assay IDT TGGAGGTGGTAAGGTGAT 
Rev T4 PNK assay IDT CCAACTTTCTTTCCCTCACAT 
Fwd β-actin qPCR IDT TCACCCACACTGTGCCCATCTACGA 
Rev β-actin qPCR IDT CAGCGGAACCGCTCATTGCCAATGG 
TaqMan probe β-actin qPCR IDT FAM-ATGCCCTCCCCCATGCCATCCTGCG-BHQ1 

 

 

4.1.4 Consumables 

Table 10: Consumables used for enzyme activity assays and additional experiments to record test 
datasets for algorithm testing.  

Consumables Manufacturer  

QIAxpert Slide-40 QIAGEN 

MinElute Spin Columns QIAGEN 

QX 0.2 ml 12-Tube Strip Caps QIAGEN 

QX 0.2 ml 12-Tube Strip QIAGEN 

0.2 ml Thin-walled 12 Tube and Domed Cap Strips Thermo Scientific  

Pipette tips 10 µl Sarstedt  

Pipette tips 100 µl Sarstedt  

Pipette tips 1000 µl GILSON  

Pipette tips 20 µl Eppendorf  

Pipette tips 200 µl GILSON  
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Consumables Manufacturer  

Rotor Adapters QIAGEN  

RotorGene 4-Strip tubes and caps QIAGEN 

SafeSeal micro tube 1,5 ml Sarstedt 

SafeSeal micro tube 2 ml Sarstedt  

SafeSeal micro tube 5 ml Eppendorf 

Gloves  Unigloves 

Spatula  VWR 

Scintillation tubes and caps, 18 mL Beckman Coulter 

 

 

4.1.5 Instruments 

Table 11: Instruments used to record data for enzyme activity assays and additional test datasets for 
algorithm testing.  

Instrument Manufacturer 

QIAxpert QIAGEN 

QIAxcel Advanced QIAGEN 

T100TM Thermal Cycler BioRad 

Centrifuge 5430 eppendorf 

Centrifuge 5417C Eppendorf  

Centrifuge 5418R Eppendorf  

Galaxy Ministar VWR  

QIAcube QIAGEN  

QIAgility QIAGEN  

QIAxcel Advanced QIAGEN  

Rotilabo®-Block-Heater H250 Carl Roth  

Rotor-Gene Q QIAGEN  

StripSpin 12 Benchmark Scientific  

Thermomixer Comfort Eppendorf  

Vortex Genie 1 Touch-Mixer Scientific Industries  

Vortex Genie 2 Scientific Industries  

Beckman LS 6500 Beckman Coulter 

Clean Spot PCR Workstation MIDSCI 

Excellence Plus scale  Mettler Toledo 

LCexv 4010 refrigerator Liebherr 

Premium NoFrost freezer Liebherr 
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4.1.6 Software and online tools 

Table 12: Software tools applied for this study.  

Software Version Provider 
QIAxpert Software 2.2.0.21 or higher QIAGEN 
DropQuant 1.5.0 Trinean N.V. 
cDrop 1.3.0 or 3.1.0.89 Trinean N.V.  
Rotor-Gene Q Series Software 2.3.1 (Build 49)  QIAGEN 
Q-Rex 1.0.0 or higher QIAGEN 
QIAxcel ScreenGel 1.5 QIAGEN 
MS Excel 2016 Microsoft 
JMP 12.1.0 or higher SAS Institute Inc.  
Python 3.6.1 (Anaconda3 4.4.0) Continuum Analytics, Inc.  
MS Word 2016 Microsoft  
Zotero 5.0.61 Corporation for Digital Scholarship 

 

 

Online tools:  

- NCBI Primer BLAST: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ 

- NCBI Nucleotide BLAST: https://blast.ncbi.nlm.nih.gov/Blast.cgi 

- Multiple Primer Analyzer : 

https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-

biology/molecular-biology-learning-center/molecular-biology-resource-

library/thermo-scientific-web-tools/multiple-primer-analyzer.html 

- Find unique restriction sites: www.addgene.org 

 

4.1.7 Manuals 

Table 13: Manuals and handboods applied for this study. 

Manual Edition Publisher 
DyeExTM Handbook May 2002 QIAGEN 
JMP® Software: ANOVA and Regression 04Apr2014 SAS Institute Inc. 
JMP® Software: Data Exploration 04Feb2014 SAS Institute Inc.  
MinElute Handbook 03/2008 QIAGEN 
QIAxpert® User Manual  12/2015 QIAGEN 
QIAxcel DNA Handbook November 2014 QIAGEN 
Scintillation System LS 6500 Manual 247971 Beckman Coulter 

 

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html
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4.2 Methods  

4.2.1 Preparation of possible contaminants 

Substances were collected in powdered form and solved in RNase-free water to obtain stock 

concentrations, or obtained in liquid form. Stock concentrations of powdered substances 

were prepared in 1 mL final volumes by adding RNase-free water to the amount of 

substance listed in Table 14. To record absorbance spectra of possible contaminants, stock 

concentrations were either applied directly to measurement chip or diluted in RNase-free 

water.  

Table 14: Concentrations of possible contaminants prepared for first or second measurement. All 
substances marked with a * were obtained in liquid form.  

Contaminant Added to 1 mL 

final volume 

Stock 

concentration  

Measurement 

concentration 

Betaine 1000 mg 1 g/mL 100 mg/mL 

Cells /Debris1 - n/a same as stock 

Chloroform * 1 mL unknown same as stock 

Dithiothreitol * 1 mL 1 M 100 mM 

cell culture medium DMEM * 1 mL n/a same as stock 

DNase I * 1 mL unknown same as stock 

dNTPs* 1 mL 10 mM 2 mM 

Ethano l* 0.1 mL 100% 10% 

Glycerol * 0.1 mL 99% 9.9% 

Glycogen * 1 mL 20 mg/mL same as stock 

Guanidine Hydrochloride (GuHCl) 190 mg 2 M same as stock 

HEPES 238 mg 1 M same as stock 

Isopropanol * 1 mL 100% 10% 

MOPS free acid 210 mg 1 M same as stock 

Proteinase K * 1 mM unknown same as stock 

RNase A * 1 mL unknown  1 in 10 diluted 

cell culture medium RPMI * 1 mL n/a same as stock 

Sodium Citrate, Dihydrate (SC) 295 mg 1 M same as stock 

guanidine thiocyanate (GITC) 118 mg 1 M same as stock 

ß-Mercaptoethanol * 1 mL 99% 9.9% 

Sucrose 324 mg 1 M same as stock 

Trizma® base 121 mg 1 M same as stock 

Urea 130 mg 2 M same as stock 

Human Serum Albumin (HSA) 20 mg 20 mg/mL 5 mg/mL 
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Contaminant Added to 1 mL 

final volume 

Stock 

concentration  

Measurement 

concentration 

IgG from bovine serum (IgG)* 1 mL 12 mg/mL 5 mg/mL 

human Hemoglobin (Hb) 13 mg 13 mg/mL 1 mg/mL 

EDTA² 10 mM 500 mM 10 mM 

Sodium Azide (SA) 100 mg 10% 0.1% 

Phenol 70 mg 750 mM 7.5 mM 
1 For Cells / Debris, 1x107 thawed Jurkat cells in a pellet were solved in RNase-free water and vortexed for 30 s. 

² EDTA was solved in 3 M NaOH since it was insoluble in RNase-free water.  

 

4.2.2 Preparation of contaminant pre-dilutions for DNA samples 

To investigate the influence of possible contaminants on DNA absorbance spectrum and 

enzyme activities, contaminant dilution series in buffer EB were prepared. These 

pre-dilutions, summarized in Table 15, had 10fold concentration of target concentration in 

DNA sample.  

Table 15: Concentrations of pre-dilutions and dilution factor for contaminant dilution series. 
Contaminant Dilution 

factor 

Concen-

tration 1 

Concen-

tration 2 

Concen-

tration 3 

Concen-

tration 4 

Sodiumcitrate [mM] 1.6 400 250 156 97.7 

Betaine [mg/µL] 2 1 0.5 0.25 0.13 

EDTA [mM] 1.7 20 11.8 6.9 4.1 

Sodiumazide 

[% (w/v)] 

2 1 0.5 0.25 0.13 

Hemoglobin [mg/mL] 3.3 10 3 0.9 0.27 

Phenol [mM] 3 75 25 8.33 2.78 

GITC [mM] 4 200 50 12.5 3.13 

Glycogen [mg/mL] 1.25 15 12 9.6 7.68 

DTT [mM] 2 100 50 25 12.5 

dNTPs [mM] 4 1.2 0.31 0.08 0.02 

HSA [mg/mL] 2 11 5.5 2.75 1.38 

IgG [mg/mL] 2 3.6 1.8 0.9 0.45 

 

4.2.3 DNA sample preparation with contaminants  

Pure DNA was spiked with possible contaminants to record absorbance spectra and 

investigate the influence of contaminants on enzyme activity assays. A sample series was 

prepared for each contaminant, consisting of four contaminated DNA samples with 



Materials & Methods     
 

64 
 

decreasing contaminant concentrations and one clean DNA control, containing buffer EB 

instead of contaminant. All samples were vortexed and shortly spun down before pipetting. 

PhiX DNA for Phi-Inhibition-Assay or dsDNA restriction fragments for gel electrophorese 

based ligase assay were adjusted to 33.3 ng/µL in buffer EB. Samples with 108 µL 

pre-diluted DNA were combined with 12 µL pre-diluted contaminant (chapter 4.2.2). 

 

4.2.4 Recording absorbance spectra for data modelling 

UV/Vis absorbance spectra of pre-selected possible contaminants were measured on 

DropSense96 (Trinean) with General UV/Vis application or QIAxpert (QIAGEN) with 

UV/Vis application, using RNase-free water as blank. For each sample, 4 replicates of 2 µL 

were applied according to manufacturer’s instructions.  

For enzyme activity assays and data modelling, absorbance spectra of contaminated and 

clean DNA controls were recorded on QIAxpert (QIAGEN), using DNA QIAsymphony and 

UV/Vis application, following manufacturer’s instructions. Duplicates of each sample were 

measured with each application. DNA QIAsymphony and UV/Vis application measurements 

were used to extract spectra for data modelling. 

Raw spectra were extracted with Troubleshoot export application (version 3.2.0.1) of 

cDrop software, while nucleic acid spectra from SCP of DNA QIAsymphony application were 

obtained with QIAxpert Binary Reader. Both were QIAGEN internal software tools.  

 

4.2.5 Determination of DNA concentration 

DNA concentration at several working steps was determined on QIAxpert, applying 2 µL 

sample, varying applications and blanks, summarized in Table 16. All samples were 

vortexed and shortly spun down before pipetting.  
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Table 16: QIAxpert application and blank used for determination of DNA concentration for different 
working steps. DNA marked with * was single stranded; conversion of dsDNA concentration to ssDNA 
concentration was done by application of equation (1).  

DNA Use / working step QIAxpert application Blank 

PhiX174 DNA  Phi-Inhibition-Assay DNA QIAsymphony None (autoblank) 

pMCVbeta plasmid  
template preparation for 

ligase activity assay 
A260 dsDNA buffer TE 

PCR product  
template preparation for 

ligase activity assay 
PCR QIAquick None (autoblank) 

PhiX174 DNA*  Phi-Inhibition-Assay DNA QIAsymphony None (autoblank) 

Restriction fragments  ligase activity assay DNA QIAsymphony None (autoblank) 

Jurkat DNA 
template preparation for 

kinase assay 
DNA QIAamp None (autoblank) 

PCR product  
radiometric kinase 

assay 
DNA QIAsymphony None (autoblank) 

calf thymus DNA DNA dilution series DNA QIAsymphony None (autoblank) 

saliva DNA 
qPCR for algorithm 

testing 
DNA QIAsymphony None (autoblank) 

 

For quantification of single stranded PhiX DNA, concentration results of DNA QIAsymphony 

application for double stranded DNA were converted to ssDNA concentration using 

equation (1).  

 

 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑡𝑡𝑃𝑃𝑅𝑅𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑠𝑠𝐹𝐹𝐴𝐴 = �
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑡𝑡𝑃𝑃𝑅𝑅𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑃𝑃𝑠𝑠𝐹𝐹𝐴𝐴

50
� × 33 (1) 

 

with concentration dsDNA being the concentration obtained from QIAxpert measurement.  

 

4.2.6 Dilution buffer for Taq polymerase and T4 DNA ligase 

The polymerase dilution buffer used to dilute Taq polymerase was prepared in a large batch 

(Table 17), aliquoted and stored a -20°C. Before use it was taken from the freezer and 

equilibrated to room temperature.  
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Table 17: Composition of polymerase dilution buffer for Phi-Inhibition-Assay.  
component  stock concentration final concentration volume 

PCR buffer 10 x 1 x 5 mL 

BSA 10 mg/mL 10 µg/mL 25 µL 

Tween 20 100 % 0.5 % 250 µL 

Nonidet P 40 100 % 0.5 % 250 µL 

RNase-free water             -            -                                        44.475 mL 

Total volume   50 mL 

To dilute T4 DNA Ligase, 100 µg/mL BSA were freshly added to 1x ligation buffer, just 

before enzyme dilutions were prepared.  

 

4.2.7 Master mix preparation for Phi-Inhibition-Assay 

For master mix preparation, EvaGreen was pre-diluted from 20,000x to 20x, and primer 

from 100 mM to 10 mM in RNase-free water. Subsequently, master mix was prepared 

containing reaction buffer, primer, dNTPs, and fluorescence dye (Table 18).  

Table 18: Reaction mix composition of Phi-Inhibition-Assay. Components marked with a * were not added 
to master mix.  
component stock 

concentration 

final  

concentration 

volume per 

reaction 

PCR buffer 10 x 1 x 2 µL 

Primer PhiX174 10 µM 0.1 µM 0.2 µL 

dNTPs 10 mM 150 µM 0.3 µL 

EvaGreen 20 x 1 x 1 µL 

PhiX DNA* 30 ng/µL 15 ng/µL    varying 

Taq dilution* - 
 

- 
 

1 µL 

RNase-free water* - 
 

- 
 

   varying  

Total volume         20 µL 

PhiX DNA, different polymerase dilutions, and RNase-free water were added directly into 

reaction mix.  

 

4.2.8  Master mix preparation for ligase activity assay 

Master mix for gel electrophoresis based ligase assay was ligation buffer only. RNase-free 

water, T4 DNA Ligase and dsDNA fragments were added directly to final reaction mix, 

described in Table 19.  
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Table 19: Reaction mix composition of gel electrophoresis based ligase assay. Components marked with 
a * were not added to master mix, but directly to reaction mix.   
Component Stock concentration Final concentration Volume / reaction 

Ligation Buffer 10 x 1 x 2 µL 

dsDNA fragments* 30 ng/µL  15 ng/µL 10 µL 

T4 DNA Ligase* 
    

1 µL 

RNase-free water*     7 µL 

Total volume 
    

20 µL 

 

4.2.9 Volume of DNA and water applied in enzyme activity assay  

The volume of DNA and RNase-free water added to reaction mix, varied depending on 

measured DNA concentration (chapter 4.2.5). Therefore, the DNA volume was calculated 

using the equation (2). 

 𝑅𝑅1  × 𝑣𝑣1 = 𝑅𝑅2  × 𝑣𝑣2 (2) 

where 𝑅𝑅1 was DNA concentration of contaminated sample measured on QIAxpert, 𝑅𝑅2 was 

the final DNA concentration in reaction mix, and 𝑣𝑣2 the final reaction volume.  

The amount of RNase-free water added was determined with the equation (3) 

 𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 𝑤𝑤𝑅𝑅𝑤𝑤𝑅𝑅𝑓𝑓 = 𝑣𝑣𝑤𝑤𝑡𝑡𝑤𝑤𝑅𝑅𝑡𝑡 − 𝑣𝑣𝑀𝑀𝑅𝑅𝑅𝑅𝑤𝑤𝑅𝑅𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 −  𝑣𝑣𝐷𝐷𝑅𝑅𝐷𝐷 (3) 

where 𝑣𝑣𝑤𝑤𝑡𝑡𝑤𝑤𝑅𝑅𝑡𝑡 was the total reaction volume.  

 

4.2.10 Enzyme activity assay reaction mix setup 

All standard, samples and controls on enzyme activity assays were applied in four 

replicates, if not noted otherwise in the result section. The reaction mix for all four 

replicates was prepared in one tube by adding master mix, RNase-free water, DNA and 

enzyme in this order, mixed, spun down and divided into four single reaction tubes.  

For Phi-Inhibition-Assay, four standards with same amount of pure DNA and varying 

concentrations of enzyme, as well as five samples for two contaminants with varying 

amount of contaminated DNA and highest enzyme concentration were applied on each run. 

In addition, a negative control with DNA but without enzyme was added.   

For gel electrophorese based ligase assay, five standards and five samples for three 

contaminant series, as well as a ligase negative control were applied on each run.  
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4.2.11 Temperature profiles and detection of enzyme activity assays 

Phi-Inhibition-Assay was carried out in 4-Strip tubes and 72-Well Rotor Disk on RotorGene 

Q, using Q-Rex Software. The cycler was set to run a 2 min hold at 95°C for initial 

denaturation, followed by 30 cycles of 5 s primer annealing at 55°C, and 32 s amplification 

at 72°C. Fluorescence signal was acquired on green channel after amplification.  

The reactions of gel electrophoresis based ligase assay were placed in a BioRad thermal 

cycler set to run 60 min ligation at 16°C and 5 min ligase inactivation at 70°C, before 

reactions were cooled to 4°C until further processing. For detection of ligated and un-ligated 

dsDNA fragments, 80 µL RNase-free water were added to each ligation reaction and tubes 

were transferred to QIAxcel Advanced. Gel image and electropherograms were recorded 

using 15 bp – 5 kb alignment marker, 5 ng/µL FX174 size marker, and method OM 500. 

Analysis parameter in QIAxcel ScreenGel Software were set to standard settings, except:  

Minimum Distance:   3.00 s 

Threshold:    Start: 0.00 min   Value: 10.00 S/N 

Start: 4.50 min   Value: 2.50 S/N 

Alignment Marker Threshold: 10 S/N 

To determine the amount of ligated vs. non-ligated fragments after ligation reaction, the 

“NAPercentage” (percent normalized area, % NA) value was chosen. This value gives the 

percentage of the area under the curve of each peak in an electropherogram, where the sum 

of the areas under the curve of all detected peaks between, but without alignment marker 

peaks equals 100%. 

 

4.2.12 Data collection for enzyme activity assays 

For Phi-Inhibition-Assay, fluorescence signal of intercalating dye was recorded and slope of 

measured relative fluorescence intensity (RFI) was calculated using equation (4). 

 𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
∆𝑅𝑅𝑅𝑅𝑅𝑅
∆𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑅𝑅

 (4) 

  

The 𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 was calculated for each measurement replicate using RFI values of cycle 

10 – 25.  

For gel electrophoresis based ligase assay, normalized area percentage (NA %) values were 

read out from ScreenGel Software for each measurement replicate.  
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To detect and exclude maximum one outlier of four replicate measurements, Nalimov 

outlier test (5) was applied. Remaining values, after deletion of outliers, were called valid 

𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values. The outlier test was applied twice in a row and if two outliers were 

detected, all replicates of the sample were excluded from further evaluation and 

corresponding value was treated as missing value.  

 𝑞𝑞 =  �
𝑥𝑥1 −  𝑥𝑥𝑥 
𝑃𝑃𝑛𝑛

�  ×  �
𝑃𝑃

𝑃𝑃 − 1
 (5) 

where 𝑃𝑃𝑛𝑛 is standard deviation, 𝑃𝑃 the number of replicates, 𝑥𝑥1 is the tested value, and 𝑥𝑥𝑥 the 

arithmetical mean.  

The valid 𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values of standards for Phi-Inhibition-Assay were plotted as 𝐴𝐴 against 

applied enzyme concentration of standards as 𝑥𝑥 to obtain standard curve described by    

 𝐴𝐴 =  𝑚𝑚𝑥𝑥 + 𝑏𝑏 (6) 

where  

 𝑚𝑚 =  
∑(𝑥𝑥 − 𝑥𝑥𝑥)(𝐴𝐴 −  𝐴𝐴�)

∑(𝑥𝑥 − 𝑥𝑥𝑥)2
  (7) 

and 𝑏𝑏 =  𝐴𝐴� −𝑚𝑚𝑥𝑥𝑥 (8) 

𝑥𝑥𝑥 and 𝐴𝐴�  are arithmetical means of four replicates for corresponding values. Furthermore, 

the coefficient of determination was determined as   

 𝑅𝑅2 =  
∑(𝑥𝑥 − 𝑥𝑥𝑥) (𝐴𝐴 −  𝐴𝐴�)

�∑(𝑥𝑥 − 𝑥𝑥𝑥)2 ∑(𝐴𝐴 −  𝐴𝐴�)2
 (9) 

 

The standard curve or each run was then used to calculate the enzyme activity of 

contaminated DNA samples, using mean values of valid 𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .  

For gel electrophoresis based ligase assay, valid % NA values of standards were used 

instead of valid 𝑃𝑃𝑅𝑅𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values to create standard curve as described in equation (6), (7), 

and (8). Subsequently, valid % NA of contaminated DNA samples were applied to determine 

enzyme activity in presence of defined contaminant concentration.  

Each run with same enzyme and samples was carried our six times to obtain six biological 

replicates for each enzyme and contaminant concentration combination. If R² of standard 

curve was < 0.975 (9), the complete run was excluded from further evaluation and all values 
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from this run were treated as missing values, or run was repeated to obtain at least four 

valid values of six biological replicates.   

To calculate enzyme activity in percent, a second standard curve, as described in equation 

(6), (7), and (8), was created for each contaminant series and enzyme, where measured 

enzyme activities in U/µL were 𝑥𝑥 and enzyme activity in percent were 𝐴𝐴. Thereby, enzyme 

activities of clean DNA controls were set to 100% and measured activities of no enzyme 

controls were set to 0%. Percent enzyme activity values were used for data modelling.  

 

4.2.13 Statistical comparison of measured enzyme activity means 

One-way Analysis of Variance (ANOVA) and Tukey-Kramer Honest Significant Difference 

(Tukey-Kramer HSD) test were applied to compare means of enzyme activities. A p-value 

< 0.05 was considered a statistically significant difference between the samples with 

different contaminant concentrations. 

 

4.2.14 Primer design for plasmid PCR for ligase activity assay 

The NCBI Primer BLAST was used to find Primers flanking the XhoI restriction site, using 

default setting with following alterations:  

- PCR Template: pMCVbeta FASTA sequence [109] 

- Range Forward Primer From “300” To “400” 

- PCR Product size Min “400” Max “600” 

- Specificity check Database: “Custom” with pMCVbeta FASTA sequence 

Of 10 suggested results, a primer pair for a PCR product of 549 bp, flanking the XhoI 

restriction site, and ranging from position 370 to 918 on the plasmid template, was selected 

and the NCBI Nucleotide BLAST was used to assure specificity, using default settings 

entering the following search criteria:  

- Enter query sequence: Sequence of selected forward and corresponding reverse 

primer 

- Organism: “Cloning vector pCMVbeta (taxid: 31798)” 

The selected primer pair resulted to be specific with binding sites of maximum 8 bp on 

off-target sequences, without leading to any product. Furthermore, no primer dimer 

formation was found, using the Multiple Primer Analyzer form Thermo Fisher Sientific. 

 



   Materials & Methods 

71 
 

4.2.15 Plasmid PCR for ligase activity assay 

A standard PCR setup was used to generate a PCR Product, flanking XhoI restriction site. 

The PCR setup described in Table 20  was used to prepare three replicates.  

Primer were obtained in lyophilized form, diluted according to manufacturer’s instructions 

to obtain 100 µM concentration in Buffer TE, and further diluted in Buffer TE to obtain 

20 µM stock concentrations. The pMCVbeta plasmid was diluted from 600 ng/µL to 5 ng/µL 

in Buffer EB.  

Table 20: Setup for plasmid PCR. 
Component Stock concentration Final concentration Volume / reaction  

HotStarTaq MM 2 x 1 x 25 µL 

Fwd primer 20 µM 0.25 µM 1.25 µL 

Rev primer 20 µM 0.25 µM 1.25 µL 

pMCVbeta DNA 5 ng/µL 10 ng 2 µL 

RNase-free water        20.5 µL 

Total volume 
    

50 µL 

PCR reactions were placed in BioRad Cycler, set to perform a 15 min polymerase activation 

at 95°C, followed by 35 cycles of 30 s denaturation at 94°C, 30 s primer annealing at 56°C, 

and 60 s extension at 72°C.  The run ended with a 10 min final extension at 72°C and a cool 

down to 4°C.  

 

4.2.16 Restriction digest of dsDNA template for ligase activity assay 

Restriction enzyme digest was setup according to NEB recommendations and as described 

in Table 21 for XhoI digest of PCR product.  

Table 21: Reaction setup for XhoI restriction digest using Time-SaverTM Protocol. 
Component Stock concentration Final concentration Volume / reaction  

CutSmart buffer 10 x 1 x 5 µL 

XhoI 20000 Units/mL 20 Units 1 µL 

PCR product 420 ng/µL 1 µg 2.4 µL 

RNase-free water        41.6 µL 

Total volume 
    

50 µL 

Reactions were prepared and transferred to BioRad cycler, set to run 15 min at 37°C and 

cool down to 12°C.  
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4.2.17  DNA purification and PCR for radiometric kinase assay 

DNA was extracted from Jurkat cells, cultured in RPMI medium with 10% FCS, 

1% Pen/Strep and 1% L-Glutamine, with the DNA QIAamp Kit on QIAcube according to 

manufacturer’s protocol and eluted in buffer EB. DNA stock concentrations and purity were 

measured with RNA RNeasy application on QIAxpert.  

In order to generate a PCR product without 5’-phosphorylation as dsDNA substrate for 

radiometric kinase assay, a standard PCR setup was applied as described in Table 20 using 

Jurkat DNA as template, primer for T4 PNK assay, and annealing temperature set to 58°C 

instead of 56°C.  

 

4.2.18 PCR product and restriction fragments purification  

PCR products and digested dsDNA fragments were purified using MinElute PCR Purification 

Kit as described in the MinElute Handbook 03/2008 page 19-20, to remove PCR template 

DNA, enzymes and buffer components. Purified PCR product and dsDNA fragments were 

eluted in 10 µL Buffer EB. 

 

4.2.19 Gel electrophoresis of PCR products and restriction fragments  

After PCR or restriction digest dsDNA fragments were diluted 1 in 10 with QIAxcel Dilution 

Buffer and applied on QIAxcel Advanced, using a High Resolution cartridge, 15 bp – 3 kb 

alignment marker, and FX174 or HaeIII size marker in combination with method OM 500.  

 

4.2.20 Radiometric kinase assay for T4 PNK activity measurement 

Before reaction mix setup for kinase assay, T4 PNK was diluted in 1x Polynucleotide Kinase 

buffer with freshly added 100 µg/mL BSA, and 0.5 mM ATP and 240 µCi/mL radioactive 

labeled [γ-³²P]ATP were added to 10x PNK buffer. Therefore, volume of [γ-³²P]ATP was 

adjusted daily based on radioactive activity obtained from PerkinElmer’s Radioactive Decay 

Calculator.  

The 10x reaction buffer with ATP, RNase-free water, T4 PNK dilutions and dsDNA 

fragments were then combined as described in Table 22 to obtain 25 µL reaction mix in 

single reaction tubes. Per run, four standards and one no enzyme control were applied in 

single replicates.  



   Materials & Methods 

73 
 

Table 22: Reaction mix composition of gel electrophoresis based ligase assay. Components marked with 
a * were not added to master mix, but directly to reaction mix. 
Component Stock concentration Final concentration Volume / reaction 

PNK buffer with ATP 10 x 1 x 2.5 µL 

dsDNA fragments 30 ng/µL  15 ng/µL 12.5 µL 

T4 DNA Ligase 
    

2.5 µL 

RNase-free water     7.5 µL 

Total volume 
    

25 µL 

Prepared reaction mix was transferred to BioRad thermal cycler and incubated for 30 min 

at 37°C before cool down to 4°C. Subsequently dsDNA fragments from reaction mix were 

purified using DyeEx 2.0 Spin columns and 20 µL reaction volume, according to 

manufacturer’s protocol. After centrifugation, spin columns containing free [γ-³²P]ATP 

were discarded, whereas collection tubes with flow through containing unlabeled and 

radioactive labeled dsDNA fragments were transferred to scintillation tubes. Counts per 

minute (CPM) were recorded on Beckman LS 6500 scintillation counter and measured CPM 

were used as 𝑥𝑥 to to create standard curve using equations (6), (7), and (8).  

 

4.2.21 Preparation of DNA dilution series for algorithm testing 

Calf thymus DNA at a stock concentration of 1000 ng/µL was diluted to 750, 500, 250, 100, 

50, 25, 10, 5, and 2.5 ng/µL in Buffer EB. Absorbance spectra were recorded as described in 

4.2.4 and DNA concentration was determined as described in chapter 4.2.5, Table 16.  

 

4.2.22 qPCR for algorithm testing 

DNA extracted from human saliva samples were obtained as donation from the PAX group 

at QIAGEN, and applied on a probe based qPCR targeting the human β-actin gene. Therefore, 

absorbance spectra of 38 samples were recorded (chapter 4.2.4), DNA concentrations were 

determined (chapter 4.2.5, Table 16) and all samples were diluted in Buffer EB to obtain 

5 ng/µL DNA. Subsequently, DNA samples were applied in triplicates on qPCR with reaction 

mix described in Table 23 prepared at room temperature in RotorGene 4-strip tubes. In 

addition to saliva DNA samples, a standard curve with 4 standards containing 100, 10, 1, or 

0.1 ng clean Jurkat DNA as final concentration, as well as a no template control (NTC) were 

applied in triplicates.  
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Table 23: Reaction mix for probe based qPCR. 
Component Stock concentration Final concentration Volume / reaction 

QN Multiplex MM 4 x 1 x  5 µL 

Fwd primer 10 µM  0.4 µM 0.8 µL 

Rev primer 10 µM  0.4 µM 0.8 µL 

TaqMan probe 10 µM  0.25 µM 0.5 µL 

saliva DNA 5 ng/µL 10 ng  2 µL 

RNase-free water     11 µL 

Total volume 
    

20 µL 

PCR reactions were placed in 72-well RotorDisk and transferred to RotorGene Q. The Q-Rex 

software was set to run an initial activation step at 95°C for 2 min, followed by 35 cycles of 

denaturation for 5 s at 95°C and combined annealing and extension for 30 s at 60°C. Data 

acquisition on green channel was performed after annealing and extension step.  

To obtain Cq values of saliva DNA samples, standard curve was evaluated using the Absolute 

Quantification plug-in and auto threshold function in Q-Rex software. Delta Cq values of 

saliva DNA samples were calculated by subtracting mean Cq value of standard with 10 ng 

DNA final concentration from mean Cq value of each sample.  

 

4.2.23 Feature selection using near zero variance 

The near zero variance (nzv) algorithm removes all features or variables, here wavelengths 

of UV/vis absorbance spectra, that had a variance lower than a selected threshold within 

the trainings dataset. Feature selection with nzv was performed using the 

sklearn.feature_selection.VarianceThreshold for python [110], [111], with threshold set to 

0.01, 0.02, 0.03, 0,06, 0.1, 0.2, 0.3, 0.6, 1, 2, 3, 6, 10 or 20 OD. All other parameters were set 

to default settings. 

The variance is the average of squared differences from the mean and could be determined 

for each wavelength using equation (10), where 𝑥𝑥 is a specific wavelength of UV/Vis 

absorbance spectrum and 𝑃𝑃 is the total number of observations for each wavelength.   

 𝑉𝑉𝑅𝑅𝑃𝑃(𝑥𝑥) =
1

𝑃𝑃 − 1
�(𝑥𝑥𝑀𝑀 − 𝑥𝑥𝑥)²
𝑛𝑛

𝑀𝑀=1

 (10) 

 

Subsequently, all wavelengths with 𝑉𝑉𝑅𝑅𝑃𝑃(𝑥𝑥)  ≤ 𝑡𝑡ℎ𝑃𝑃𝑅𝑅𝑃𝑃ℎ𝑃𝑃𝑅𝑅𝑑𝑑 would be eliminated from input 

features.  
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4.2.24 Feature selection with principal component analysis 

The goal of principal component analysis (PCA) is to reduce the number of input variables 

consisting of many correlated variables such as the wavelengths of UV/vis absorbance 

spectra, while retaining as much of the variation present in the data set as possible. This is 

accomplished by an orthogonal linear transformation of the original input variables to a 

new set of uncorrelated and ordered variables in a new coordinate system, called the 

principal components. The order is such, that the first few principal components retain 

most of the variation present in all the original input variables [112].  

For this thesis, the principal components were computed using the 

sklearn.decomposition.PCA for python [110], [113].  All parameters were set to default 

settings, except n_components, which was set to 0.9, 0.95, 0.975 or 0.99 to retain 90, 95, 97.5 

or 99% of variance from original input data.  

The mathematical steps behind the applied code can be described as follows: To obtain the 

principal components from UV/vis absorbance spectra, they were arranged into a d 

dimensional design matrix A, where each column x was a wavelength between 230 and 

410 nm and each row n was a measurement instance corresponding to an enzyme activity 

or label.  

 𝐴𝐴𝑛𝑛𝑀𝑀 = �
𝑅𝑅11 … 𝑅𝑅1𝑀𝑀
⋮ ⋱ ⋮
𝑅𝑅𝑛𝑛1 … 𝑅𝑅𝑛𝑛𝑀𝑀

� (11) 

 

First, the mean of each column x was determined, giving the mean of matrix A:  

𝐴𝐴𝑥 =  �
𝑅𝑅11 + 𝑅𝑅21 + ⋯+ 𝑅𝑅𝑛𝑛1

𝑃𝑃
𝑅𝑅12 + 𝑅𝑅22 + ⋯+ 𝑅𝑅𝑛𝑛2

𝑃𝑃
…

𝑅𝑅1𝑀𝑀 + 𝑅𝑅2𝑀𝑀 + ⋯+ 𝑅𝑅𝑛𝑛𝑀𝑀
𝑃𝑃

� (12) 

 

The mean of matrix A was then used to calculate the variance-covariance matrix, which 

contains the variance for each n in the diagonal and the covariance between different ns in 

the off-diagonal elements. The variance-covariance matrix of matrix A was computed using 

the following formula:  

 𝐵𝐵 =  𝑅𝑅𝑃𝑃𝑣𝑣(𝐴𝐴,𝐴𝐴′) =
1

𝑃𝑃 − 1
� (𝐴𝐴𝑀𝑀 − 𝐴𝐴𝑥) (𝐴𝐴𝑀𝑀 − 𝐴𝐴𝑥)′

𝑛𝑛

𝑀𝑀=1
 (13) 

 

were 𝑨𝑨′ was the transpose of the matrix A. The result was a square matrix B, of which in a 

next step, the eigenvectors and corresponding eigenvalues were determined. The 
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eigenvector 𝒗𝒗 is a non-zero vector of the square matrix B, such that for some scalar λ the 

equation 

 𝐵𝐵𝑣𝑣 =  𝜆𝜆𝑣𝑣 (14) 

  

is satisfied. The scalar λ is called an eigenvalue of matrix B. Each eigenvalue has its set of 

eigenvectors. Therefore, the eigenvalues were determined in order to find their 

eigenvectors, by stating the equation (14) as   

 (𝐵𝐵 −  𝜆𝜆𝜆𝜆)𝑣𝑣 = 0 (15) 

 

where I was the n by n identity matrix an 0 was the zero vector. The equation (15) had a 

non-zero solution 𝒗𝒗 and the eigenvalues λ of B could be computed, if:  

 det(𝐵𝐵 −  𝜆𝜆𝜆𝜆) = 0 (16) 

 

The result of computing the determinant was an equation that was used to obtain the 

eigenvalues by solving it for λ. The eigenvalues were then used to determine the 

eigenvectors, which defined the directions of the axis in the new coordinate system with 

the unit length 1. The eigenvalues contained the information about the variation of the data, 

with higher eigenvalues containing higher variance of the original input data. Thus, the 

eigenvectors were sorted by decreasing eigenvalues, and the k number of eigenvectors with 

corresponding eigenvalues containing 90, 95, 97.5 or 99% of variance from original input 

data represented the wanted principal components and were kept. All remaining 

eigenvectors and corresponding eigenvalues were dropped. The saved principal 

components were added to a new d×k dimensional eigenvector matrix C, which was used 

to transform the measurements onto a new coordinate system via the equation 

 𝐴𝐴 = 𝐶𝐶′ ×  𝑥𝑥 (17) 

 

were 𝑪𝑪′ was the transpose of the matrix C, and served as new input data for classification 

algorithms.  

 

4.2.25 Multiclass logistic regression for DNA purity estimation 

Multiclass logistic regression (MLR) is a classification method derived from logistic 

regression, which is commonly used to predict the probabilities of a binary output. In MLR 
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the output has more than two possible categorical outcomes that are predicted using a set 

of independent variables [114]. In this study, 5 classes based on measured enzyme activities 

in percentage: c1 ≤ 20% < c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5, also called “actual class”, 

were used as categorical outcome, and independent variables used to predict actual classes 

were different versions of measured UV/Vis absorbance spectra. 

The sklearn.linear_model.LogisticRegression for python with solver “lbfgs” was applied to 

compute the MLR algorithm [110], [115]. All parameters were set to default settings, except 

class_weight set to “None” or “balanced” and the inverse regularization strength C set to 

0.01, 0.05, 0.1, 0.5, 1.0, 5, 10, 50, or 100 for optimization of MLR performance.  

Mathematically, multiclass logistic regression uses a softmax function (18) to determine the 

probability for an observation 𝒙𝒙 to belong to each of 𝒌𝒌 actual classes. It takes the input 

vector 𝒛𝒛, containing all outputs of a linear regression, and converts all values to be positive 

values between 0 and 1, and add up to 1. Thus, they can be interpreted as probabilities.   

 𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡𝑚𝑚𝑅𝑅𝑥𝑥(𝑧𝑧) =  
𝑅𝑅𝑧𝑧

∑ 𝑅𝑅𝑧𝑧𝑖𝑖𝑘𝑘
𝑀𝑀=1

 (18) 

 

Observation 𝒙𝒙 is then assigned to the class with the highest probability [116], [117].  

 

4.2.26 K-nearest-neighbor for DNA purity estimation 

The K-nearest-neighbor method is a supervised machine learning algorithm for 

classification. To learn a function for prediction of unknown data, it needs labeled input data 

[110], [116]. Here 5 classes based on measured enzyme activities in percentage: c1 ≤ 20% < 

c2 ≤ 40% < c3 ≤ 60 < c4 ≤ 80% < c5 were used as labels or target values, also called “actual 

class”. The data used to predict these classes were different versions of measured UV/Vis 

absorbance spectra.  

The KNN algorithm was computed using the sklearn.neighbors.KNeighborsClassifier for 

python [110], [118].  All parameters were set to default settings, except n_neigbors and 

weights. 

To apply the KNN algorithm, it was assumed that all observations or measured UV/Vis 

absorbance spectra, assigned to an “actual class”, were lying within a multi-dimensional 

Euclidean space. Therefore, the distance between each observation and all other 

observations could be determined using the Euclidean distance function:  
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 𝑑𝑑(𝑥𝑥, 𝑥𝑥′) =   �(𝑥𝑥1 −  𝑥𝑥′1)2 +  (𝑥𝑥2 −  𝑥𝑥′2)2 + ⋯+  (𝑥𝑥𝑛𝑛 −  𝑥𝑥′𝑛𝑛)2  (19) 

 

The KNN algorithm calculates the distance 𝒅𝒅 between an unknown observation 𝒙𝒙 and all 

trainings observations N. To classify the unknown observation 𝒙𝒙, a sphere is drawn 

centered on 𝒙𝒙 containing k neighbors from the trainings set independent of their class. A is 

the subset of k nearest neighbors lying within this sphere and the algorithm determines the 

probability for 𝒙𝒙 falling within any of the classes, in which are k nearest neighbors in, using 

equation (20)  

 𝑇𝑇(𝐴𝐴 = 𝑗𝑗|𝐹𝐹 = 𝑥𝑥) =
1
𝑘𝑘
�𝜆𝜆(𝐴𝐴(𝑀𝑀) = 𝑗𝑗)
𝑀𝑀𝑖𝑖𝐷𝐷

 (20) 

 

where I(x) is the indicator function, evaluating membership of an observation in a subset A 

of N and resulting in 1 for all observations of A and 0 for all observations of N not in A. 

Finally, the unknown observation 𝒙𝒙 is assigned to the class with the highest probability 

[116], [119].   

To optimize the performance of KNN algorithm, the number of k nearest neighbors 

n_neigbors was set to 1 through 15, and weights were set to ‘uniform’ or ‘distance’, with 

‘uniform’ being the Euclidean distance described in equation (19) and ‘distance’ being the 

inverse of the Euclidean distance in equation (19). 
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Appendix 

 

  

  

  

Supplementary Figure 1: (left) KNN performance and (right) number of retained wavelengths for 
development dataset after data pre-processing with increasing nzv thresholds using (A) raw, (B) 
A260 normalized, or (C) delta spectra.  KNN algorithms were run using different thresholds for nvz for feature 
reduction, with development dataset and default parameter settings:  k = 5 and non-weighted distances. On left, 
accuracy was presented in black and F-measure in grey. 
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Supplementary Figure 2: (left) KNN performance and (right) number of principal components for 
development dataset after data pre-processing with decreasing variances retained in PCA using (A) raw, 
(B) A260 normalized, or (C) delta spectra.  KNN algorithms were run using PCA for feature reduction, with 
development dataset and default parameter settings:  k = 5 and non-weighted distances. On left, accuracy was 
presented in black and F-measure in grey. 
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Supplementary Figure 3: (left) MLR performance and (right) number of retained wavelengths for 
development dataset after data pre-processing with increasing nzv thresholds using (A) raw, (B) 
A260 normalized, or (C) delta spectra.  MLR algorithms were run using different thresholds for nvz for feature 
reduction, with development dataset and default parameter settings:  C = 1 and non-weighted classes. On left, 
accuracy was presented in black and F-measure in grey. 
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Supplementary Figure 4: (left) MLR performance and (right) number of principal components for 
development dataset after data pre-processing with decreasing variances retained in PCA using (A) raw, 
(B) A260 normalized, or (C) delta spectra.  MLR algorithms were run using PCA for feature reduction, with 
development dataset and default parameter settings:  C = 1 and non-weighted classes. On left, accuracy was 
presented in black and F-measure in grey. 
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Supplementary Figure 5: A260 normalized spectra of DNA samples contaminated with dNTPs. Presented 
were 1 measurement replicate of 5 DNA samples with or without dNTPs. Samples were applied on enzyme 
activity assay and actual classes were assigned based on measured enzyme activities [%], with c1 ≤ 20% < c2 ≤ 
40% < c3 ≤ 60 < c4 ≤ 80% < c5. 

 

Supplementary Table 1: R² values of standard curves from 4 independent runs of Phi-Inhibition-Assay. 
On each run, 4 standards with decreasing polymerase concentration were applied in 4 measurement replicates.  

Run R² 

1 1.00 

2 1.00 

3 1.00 

4 0.99 
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Supplementary Table 2: Mean polymerase and ligase activity measured after contamination of DNA 
samples, and corresponding standard deviations. N = 6 independent runs. 

Contaminant Concentration polymerase activity [%] ligase activity [%] 

   mean  StDev mean  StDev 

betaine 

 

0.1 mg/µL 93.5 9.3 117.7 7.5 

0.05 mg/µL 96.4 7.1 108.3 4.3 

0.025 mg/µL 99.1 8.9 103.1 6.1 

0.013 mg/µL 102.4 6.8 95.6 7.9 

0 mg/µL 99.5 5.1 99.1 9.4 

dNTPs 

 

0.6 mM 11.7 4.0 -0.1 2.2 

0.16 mM 25.3 3.2 -0.1 2.2 

0.04 mM 56.7 3.9 51.6 4.3 

0.01 mM 96.4 10.8 86.4 7.9 

0 mM 98.6 11.1 102.9 4.3 

DTT 

 

10 mM 98.5 11.6 73.4 1.9 

5 mM 101.3 11.0 80.8 5.2 

2.5 mM 102.2 8.1 88.4 4.6 

1.25 mM 102.5 9.9 93.9 4.4 

0 mM 107.9 6.3 99.8 4.4 

EDTA 

 

2 mM 0.9 3.0 99.1 3.8 

1.18 mM 33.8 14.4 99.0 8.4 

0.69 mM 78.0 13.4 103.4 6.2 

0.41 mM 93.2 6.1 104.9 10.4 

0 mM 99.1 9.3 99.4 7.4 

glycogen 1.5 mg/mL 64.7 5.8 71.7 10.1 
 

1.2 mg/mL 67.5 5.4 77.3 8.5 

0.96 mg/mL 69.7 7.1 74.9 8.6 

0.77 mg/mL 73.7 6.9 77.2 7.0 

0 mg/mL 99.0 9.5 98.2 13.2 

GITC 

 

20 mM 71.2 10.0 69.1 7.0 

5 mM 97.1 9.5 86.0 10.6 

1.25 mM 104.3 14.7 83.1 7.1 

0.31 mM 101.1 11.5 89.2 6.9 

0 mM 99.5 6.2 99.0 10.2 

HB 

 

1 mg/mL 3.3 3.8 123.3 10.4 

0.3 mg/mL 11.2 3.9 134.2 20.6 

0.09 mg/mL 50.3 10.5 140.2 11.4 

0.027 mg/mL 93.5 14.4 109.6 7.2 

0 mg/mL 99.1 8.9 99.7 4.9 
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Contaminant Concentration polymerase activity [%] ligase activity [%] 

   mean  StDev mean  StDev 

HSA 

 

5.5 mg/mL 42.1 6.2 110.7 9.4 

2.75 mg/mL 55.3 7.8 129.4 7.3 

1.38 mg/mL 63.2 5.4 147.4 12.4 

0.69 mg/mL 81.1 9.1 151.0 14.7 

0 mg/mL 99.5 6.8 94.6 6.8 

IgG 

 

1.8 mg/mL -0.1 2.7 4.1 2.2 

0.9 mg/mL -2.6 3.7 4.1 2.2 

0.45 mg/mL 36.5 2.8 2.5 2.2 

0.23 mg/mL 75.6 4.9 81.8 8.0 

0 mg/mL 99.4 6.8 101.6 12.9 

NA 

 

0.1 % (w/v) 73.2 10.6 82.4 6.7 

0.05 % (w/v) 86.1 6.0 88.0 4.5 

0.025 % (w/v) 90.3 6.2 93.1 8.4 

0.013 % (w/v) 90.7 8.9 94.6 6.3 

0 % (w/v) 99.1 8.7 92.7 5.5 

Na-Citrat 

 

40 mM 0.5 2.8 6.1 0.3 

25 mM 0.8 2.9 12.0 3.7 

15.6 mM 0.9 3.1 30.6 3.5 

9.7 mM 0.9 3.0 61.3 4.3 

0 mM 99.2 8.4 82.1 3.5 

Phenol 

 

7.5 mM 22.5 4.4 5.6 0.3 

2.5 mM 49.0 7.6 4.7 2.7 

0.83 mM 85.5 11.1 58.6 4.4 

0.28 mM 112.8 9.8 67.1 3.8 

0 mM 99.7 4.9 82.6 3.9 
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