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A note to the readers

In order to quickly access relevant details, I would like to kindly invite readers to first have a look

at this note before further reading.

The general introduction Section 1.1 gives the basic concepts about modeling, complexity proper-

ties of modeling biological systems and the differences between mechanistic modeling and machine

learning in biology.

The thesis includes six publications or submitted manuscripts:

• AnOperator-theoretic Approach to Synchronization of Dynamically Coupled Biological Rhythms,

published in Chinese Control Conference 2016, P. 45-52

This paper relied on control theory and dynamical systems. Though it is hard to cover

all technical details in the paper for general audience, the essentials of dynamical systems

representations and stability analysis are introduced in Section 1.2.

• Information integration and decision making in flowering time control, submitted to Plos One,

P. 55-86

The manuscript involves probability theory (Section 1.3.1, 1.3.3), particle swarm optimiza-

tion (Section 1.5), and artificial neural networks (Section 1.4.3).

• Predicting gene expression level in E. coli from mRNA sequence information, IEEE CIBCB 2019,

P. 89-118

Themanuscript involves gradient boosting trees (Section 1.4.4) andmodel selection (Section

1.4.5). The biological background was introduced in Section 1.6.

• Predicting eukaryotic protein secretion without signals., BBA-Proteins and Proteomics 2018, P.

121-129

This is a review paper on different computational tools for predicting protein secretions

without clear signals from protein sequences.

• OutCyte: a novel tool for predicting unconventional protein secretion, accepted by Scientific

Reports, P. 130-160
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The manuscript used gradient boosting trees (Section 1.4.4) and convolutional neural

networks (Section 1.4.3). The biological background is in Section 1.6.

• Automated computer-based detection of encounter behaviours in groups of honeybees, 2017,

Scientific Reports, P.163-172

The paper relied on a previously published interactive machine learning framework, which

relied on decision trees (Section 1.4.4).

From Chapter 2 to Chapter 6, the manuscripts are presented with a short summary at the

beginning of each chapter. The publication status and my contributions are stated before each

manuscript.

Finally, Chapter 7 summarizes the whole thesis.



Contents

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Dynamical system representations . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Stability of dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Probability and distributions . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Probability generating functions . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Logistic regression and cross-entropy as loss . . . . . . . . . . . . . . . . 20

1.4.3 Neural networks and error backpropagation . . . . . . . . . . . . . . . . 23

1.4.4 Gradient boosting methods and gradient boosting trees . . . . . . . . . . 26

1.4.5 Error decomposition and model selection . . . . . . . . . . . . . . . . . . 29

1.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.2 Gradient free optimization methods . . . . . . . . . . . . . . . . . . . . . 35

1.6 Molecular Biology 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6.1 The general picture of information flow . . . . . . . . . . . . . . . . . . 37

1.6.2 Transcription, translation and gene regulatory networks . . . . . . . . . 37

1.6.3 Genomics, transcriptomics and proteomics . . . . . . . . . . . . . . . . . 40

1.6.4 Biological data for machine learning . . . . . . . . . . . . . . . . . . . . 41

2 Synchronization Analysis of Complex Networks 43

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 An Operator-theoretic Approach to Synchronization of Dynamically Coupled

Biological Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Analytical and Data-driven Analysis of Flowering Time Determination 53

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Information integration and decision making in flowering time control . . . . . . 55

4 Data-driven modeling of the regulation in mRNA translation 87

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Predicting translational efficiency from mRNA sequences . . . . . . . . . . . . . 89

5 Predicting unconventional protein secretions 119

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

ix



5.2 Review: Predicting eukaryotic protein secretion without signals . . . . . . . . . . 121

5.3 OutCyte: a novel tool for predicting unconventional protein secretions . . . . . . 130

6 Data-driven Automatic Annotations for Honeybee Behavior 161

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Automated computer-based detection of encounter behaviours in groups of hon-

eybees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Summary 173

Bibliography 177



1Introduction

„Wir müssen wissen, wir werden wissen.

— David Hilbert
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1.1 General introduction
What is modeling?

Supposing we want to know how fast the enzymes in our stomach catalyze the digestion of the

proteins in our food, we first need to understand in general how enzymatic reactions work. As

early as 1903, Henri [Hen03] discovered that the enzymatic reactions were initiated by a binding

interaction between enzymes and substrates. Later in 1913, Michaelis andMenten [MM13] extended

Henri’s discovery and mathematically described the kinetics of the enzymatic reactions. According

to their findings, the enzymes (E) in the stomach bind to the proteins (S) to form the complexes (ES)

which in turn produce peptides as the products (P) [Wike]. In reaction form, it can be represented

as

E + S
kf�
kr

ES
kcat−−→ E + P, (1.1)

where kf , kr and kcat denote the forward rate, reverse rate and catalytic rate respectively.

Due to the law of mass action, which says that the reaction rate is proportional to the product of

the concentrations of the reactants [VMO15], the reaction (1.1) can be described in mathematical

equations as

d[E]
dt

= −kf [E][S] + kr[ES] + kcat[ES]

d[S]
dt

= −kf [E][S] + kr[ES]

d[ES]
dt

= −(kr + kcat)[ES] + kf [E][S] (1.2)

d[P ]
dt

= kcat[ES],

where [·] denotes the concentration of the corresponding chemical substance, and the derivative

d[·]/dt represents the change rate of the substance with respect to time. The positive terms on

the right-hand side of the equations increase the change rates while the negative terms decrease

them.

Up to now, the digestion process of proteins in our stomach has been modeled in reaction

form (1.1) and mathematical equations (1.2). Essentially, modeling is to abstract the essentials from

“real world” objects or phenomena to build their representations [Uni; MP12]. Models enable us

to investigate ideas for generating scientific hypotheses [Mar17; BL16; MP12]. The models (1.1)

and (1.2) have captured the key steps in enzymatic catalysis, without considering other non-essential

facts such as how the enzymes have been produced, what proteins are present and so on. More

specifically, the model (1.2) is a mathematical model which uses mathematics to describe the system

of digesting proteins in the stomach, which involves proteins as the system input and peptides as

the output.

In order to obtain the production rate d[P ]/dt from (1.2), further mathematical analyses require

assumptions related to the system details. This is because the system of equations (1.2) is nonlinear

due to the product terms [E][S] and a direct solution is difficult to obtain. The key assumption is the

steady state approximationwhich states that the concentration of the complex ES will rapidly reach
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its steady state. Thus, [ES] is regarded as a constant. And note that the total enzyme concentration

is [E]T = [ES] + [E]. Consequently, the production rate can be derived as

d[P ]
dt

= Vmax[S]
KM + [S] , (1.3)

where Vmax = kcat[E]T is the maximum reaction rate and KM = (kr + kcat)/kf is the Michaelis

constant. Equation (1.3) is the well-known Michaelis-Menten Equation, which states that the

production rate d[P ]/dt depends only on the concentration of the input substrates [S]. [P ] and
[S] are system variables and KM and Vmax are system parameters. To determine the real value of

production rate, not only the independent variable [S] need to be measured, but also the values of

the parameters Vmax and KM should be determined. To determine the parameters of a system of

equations is often termed parameterization or parameter fitting, which is a key step in mathematical

modeling methods.

The Michaelis-Menten equation was reported in 1913. Earlier than that, the use of mathematics

to model biological systems can arguably [Hof15; Pea96; Mue79; Deu] date back to 1879 when

Fritz Müller’s used mathematics for his discovery of Müllerian mimicry [Mue79; Wikg] which

describes phenomena such as the bees have evolved similar looking and stings as the wasps to

avoid predators. Last decades have seen rapid growth of application of modeling in biological

systems [Wikh; Hop95; May04; Hof15; Nob02; Kit02a; Mar17]. Especially with the massive data

produced by high-throughput genomics and proteomics studies, systems can be investigated on

much larger scales, for instance, systems with a large number of interconnected components.

Systems biology and computational biology are fields that extensively use mathematical models

to study complex biological systems. For example, a series of enzymatic reactions can form a

metabolic pathway and then all the pathways will constitute the metabolic network which involves

numerous reactants, enzymes and products. Modeling the metabolic network systematically can

help understanding, for example, the causes of human diseases like obesity and diabetes [Lee+08;

Ros+00], and the regulation of sugar utilization in yeast [Ide+01].

Why modeling biological systems is hard?

Biological systems are complex. A complex system is composed of a large number of interacting

components that have a collective behavior as a whole [MP12; RHS07]. For example, the human

brain is a complex system with billions of neurons connected with trillions of synapses (inter-

connections), giving the brain functionalities which individual neurons do not possess. Complex

systems are examples of nonlinear dynamical systems whose states evolve over time according to

certain rules [RHS07; Bod]. They are not linear because of not satisfying the superposition principle

which characterizes linear systems. The superposition principle says that if A and B are solutions

of a system, so is the sum A + B, which implies that a linear system can be solved by combining

solutions of its subsystems. Clearly, the human brain and metabolic network violate this principle.

The study of complex systems usually involves large number of variables for describing the system

components, which lead to the high dimensionality of biological systems. The nonlinearity and

high dimensionality are common characteristics of biological systems.

To tackle the difficulties in modeling biological systems, it is of key importance to recognize

in general the complexity features of them. Besides the aforementioned nonlinearity and high

dimensionality, biological systems involves different temporal and spatial scales [BC11; Kit02a].

For example, on the temporal scale, the turnover time of Adenosine triphosphate (ATP), the energy

storage units of life systems, is around 1s, while it is 4 months for red blood cells [Mil+09]. The
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spatial scales can span from water molecules with size of 10−9nm to e. coli with size of 10−6μm

to the large mammals. Though these biological objects or phenomena should obey certain physical

laws, it is different from the well-defined approach in physics. Different areas in physics are based

on the characteristic lengths of objects or characteristic time of phenomena [MP12]. Modeling

on the Intracellular scale involves molecules or compartments within a cell. The translation

from messenger RNA (mRNA) to proteins is a typical intracellular mechanism, whose dynamics

involves a big protein complex called ribosome to bind and move along the mRNA. Systems

on the cellular or intercellular level consist of large number of interacting cells and molecules.

For example, the quorum sensing in bacterial cultures describes the phenomenon that individual

bacteria produce and release molecules to culture medium to sense population density in order

to regulate intracellular physiological activities [MB01]. The study of biological systems usually

requires multiscale approach. Though creating a model of ecosystem dynamics may not need to be

grounded on the molecular dynamics of the cell, the structure of macroscopic tissues depends on

the intracellular dynamics like the gene expressions [BC11].

Another essential feature of biological systems is their robustness to maintain their states and

functions under different environmental conditions. It usually involves systems control, redundancy,

structural stability and modularity [Kit02b]. For example, the bacteria E. coli are able to reply on

different carbon sources to survive in different environments. When switching from a glucose-rich

environment to a fructose-rich one, E. coli need to sense the changing of environment and adapt

their genetic regulatory network to such changes. Keeping some redundant genes can help E. coli’

survival in different environments. And in terms of system control, the chemotaxis mechanism can

guide them to move towards the place with high concentration of food and away from poisonous

chemicals [WA04].

Biological Heterogeneity is also common and has been speculated as a fundamental property of

biological systems [AW10; Rub90]. Generally, the heterogeneity can be stated as the differences

among biological entities which belong to the same biological structure. There are many different

levels of heterogeneities. For example, mutations in different genes in human may lead to the same

disorder [MK10], which is referred to as genetic heterogeneity. On the contrary, the genetically

identical cells often show significant differences in gene expression and phenotypic traits, which is

referred to as phenotypic heterogeneity [Ack15]. Further, differences on the basis of molecules and

cells can be termed molecular and cellular heterogeneities respectively. The heterogeneities are

potentially beneficial for the biological systems to cope with fluctuating environments, to increase

biological diversity and to increase survival or growth through natural selection [Ack15]. To model

biological systems, it is important to understand the possible causes and effects of heterogeneities

and to determine if the individual differences contain meaningful biological information. For

instance, the plant Arabidopsis thaliana can have different flowering times for the same accession

type in very close regions, which may be caused by climate or geographical differences. In this

case, environmental data and flowering data need to be collected analyze the information processes

for plants’ flowering behaviors.

The nonlinearity, high-dimensionality, multiscales, robustness and heterogeneities are the most

recognized complex features of biological systems [Orz12; BC11; MP12; Ree04]. Though they pose

difficulties on mathematical modeling, understanding them can be helpful for reducing complexities.

For example, the models can be on the proper scale for certain problems of interest to cope with the

multiscale feature, on different functional subsystems to reduce dimensionality and nonlinearity,

or based on sensible biological assumptions to reduce overall complexities.
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Mechanistic modeling and machine learning modeling

Suppose the following question is investigated: Does chocolate reduce blood pressure? In terms

of modeling, its answer can be approached in two ways.

The first is the mechanistic modeling. Like modeling the enzymatic reactions, all components

involved in the system which facilitates the reduction by chocolates and their mechanistic inter-

connections need to be understood. Based on that, the causal relations between chocolates and the

reduction of blood pressure can be mathematically formulated. Then with existing relevant data

or dedicated experimental data, the model can be used to make deductions and draw conclusions.

However, such a mechanistic model is hard to obtain due to many unknown details. For example,

the high blood pressure can be resulted from disorders of different organs, of which the mechanisms

are probably different. Then detailed steps of chocolates to reduce blood pressures become hard to

determine.

The second is the statistical modeling which counts uncertainties in system variables and aims at

capturing the relationships between the variables without involving details of system components.

Bymeta analysis, a statistical analysis by combining data from multiple studies [Hai10], researchers

found that different dosages of dark chocolates were indeed correlated with the reduction of blood

pressures [Rie+10]. Essentially, statistical models are models of data, of which the objective is to

mathematically approximate the truth of the data generating process so as to make predictions.

For example, if the regression model in [Rie+10] approximated the truth well, for a given dosage

of dark chocolate, the model should be able to predict to what extent the blood pressure can be

reduced. However, due to the quality and quantity of data and the complexity of the problem, such

models are usually far from accurate to make reliable predictions.

Machine learning is a discipline closely related to statistical modeling, with focus on building

computer systems to make predictions. Tom Mitchell [Mit17] provided a widely accepted definition

by describing machine learning as a computer program which learns from experience with respect

to some tasks and performance measures. For example, to build learning models to recognize cats

(task) from images, a huge number of images (experience) are needed for the models to capture

the general patterns of cats such that the learned models are able to recognize cats in unseen

images (performance). Machine learning has been widely used for decades [Mit17; Mur12], and

is becoming more and more popular due to the success of its subfield, deep learning, in a wide

range of applications [LBH15a]. Deep learning are the machine learning algorithms for learning

multiple levels of representations from the data. For example, for recognizing cats in images, deep

learning models do not require human-engineered characteristics of cats, but learn first the basic

representations like the curves of ears and eyes and then assemble them to next levels of higher

representations [Le+11; Qin+18].

Statistical modeling and machine learning are largely overlapped but have slight distinction

in emphasis and terminology [Sha; Ros; BAK18; Mur12]. They are both concerned with the same

question: how do we learn from data [Was]? For example, given measured expression levels of a set

of genes, the primary concern is what regulatory factors underlying the gene sequences are related

to the expression levels. Statistics emphasizes formal inferences about which the regulatory factors

are associated with a specific probability model, while machine learning emphasizes predicting the

expression levels of unseen gene sequences using general purpose algorithms to find patterns from

the measured sequences. Though the emphases are different, they are both concerned with trying to

find out how the gene expressions work and what will happen next. One notable distinction is that
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specific statistical models usually rely on problem-specific assumptions whereas machine learning

makes minimal assumptions about data generating systems [BAK18]. Due to this distinction, the

use of “machine learning” in this thesis is more suitable as the modelings without mechanistic

relations in later chapters used general purpose algorithms to learn patterns from data. Another

reason for the favor of “machine learning” is the rapidly growing mass of data from high-throughput

techniques, which requires efficient and powerful general-purpose learning algorithms to learn

patterns out of the massive data.

The rest of this chapter will introduce the basic principles and knowledge related to methods

and results but not explicitly explained in the manuscripts of later chapters.
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1.2 Dynamical systems

“
System dynamics provides a common foundation that can be applied wherever we want

to understand and influence how things change through time.

Jay W. Forrester”
Dynamics is the subject dealing with changes in systems over time [Str18]. Dynamical systems

are ubiquitous, for instance, chemical kinetics, mechanical systems, growing cell cultures and

cardiovascular cycles. Formally, a dynamical system is a system whose state evolves with time

over a state space according to fixed rules [Nyk]. The state space is the collection of all possible

configurations of the system. For instance, if an oak tree is regarded as a dynamical system for the

interest of modeling its height, then depending on different environmental conditions, all possible

growth curves over time are the state space of the system.

In this section, the representations and stability of dynamical systems are introduced for Chapter

2 and the stochastic modeling in Chapter 3.

1.2.1 Dynamical system representations
Differential equations

The simple harmonic oscillator, a mass attached to a spring without any other driving or

damping forces (Fig. 1.1), is used as an example to introduce the notions about dynamical systems.

Fig. 1.1: A simple harmonic oscillator consists of a mass on a smooth surface and a spring with
one end fixed on the wall.

The rules for governing the oscillator are Newton’s second law and Hooke’s law. Newton’s

second law states that an object’s acceleration depends on its mass and the forces acted on it, and

Hooke’s law states that the deforming force from the relative small deformation of an object is

proportional to the displacement of the deformation. According to the two laws, the dynamics of a

simple harmonic oscillator can be modeled as

F = ma = m
d2x

dt2 = −kx, (1.4)

where F denotes spring force, x the displacement, m the mass, a the acceleration and t the time.

By denoting the second derivative d2x/dt2 as ẍ, Eq. (1.4) can be written as

mẍ + kx = 0, (1.5)

1.2 Dynamical systems 7



which is a second-order ordinary differential equation, because the derivatives is only with respect

to time t. A harmonic oscillator is a linear system because of the constant coefficients m and k,

and (1.5) can be solved analytically as

x(t) = A cos(
√

k

m
t + φ) (1.6)

which shows the oscillation frequency is
√

k/m. To get the displacement x(t1)for a given time

t1, we ought to determine the oscillation amplitude A and phase constant φ. The amplitude A is

determined by the total energy in the system, for instance, the work has been done to pull the

spring at the beginning. The phase constant is determined by the system states at the initial time

t = 0.

Real systems, especially life systems, are usually high-dimensional and nonlinear, leading to

more complex differential equation representations. The analytical way like dealing with simple

harmonic oscillator is usually difficult. Another two examples of more complex systems, the toggle

switch [GCC00] and repressilator [EL00] can be found in the paper of Chapter 2.

State Space representation

The state space representation of a dynamical system is reformalizing a single higher-oder

differential equation to a group of first-order ones by introducing extra state variables. Suppose

the simple harmonic oscillator is perturbed by an external force u(t), the new dynamics can be

modified from (1.5) as

mẍ + kx = u. (1.7)

If the displacement x is denoted as x1, and the velocity ẋ is denoted as x2, then the acceleration is

ẋ2 and (1.7) can be rewritten as

ẋ1 = x2 (1.8)

ẋ2 = − k

m
x1 + 1

m
u

The state space representation is made up of the dynamics of displacement and velocity, which are

both first-order differential equations. It becomes easy to see that the oscillator is a linear system

as the terms at right hand side contain only first-order power. And further Eq. (1.8) can be written

in matrix format as

ẋ =
[

ẋ1

ẋ2

]
=

[
0 1

− k
m 0

] [
x1

x2

]
+

[
0
1
m

]
u, (1.9)

If we measure the displacement x1 as system output y, then

y =
[
1 0

] [
x1

x2

]
(1.10)

The equations (1.9) and (1.10) together define a linear time-invariant system (LTI) with single input

u and single output y (SISO). A system is termed time-invariant when the relation between input

and output are time-independent. [DB11; K. 09]

Though the perturbed SISO oscillator system is used to illustrate state space representations, its

advantage is actually that it can be used for analyzing multiple input and multiple output (MIMO)
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systems in the time domain [DB11; K. 09]. The paper in Chapter 2 factorized the toggle switch and

the repressilator models to state space form for analyzing their behaviors in a network.

Transfer function representation

For linear systems, transfer function is derived from the ratio of the Laplace transforms of

the output to the input with all initial conditions assumed to be zero, which is instrumental for

studying the relation between input and output [DB11; K. 09].

For real time function f(t), i.e. t > 0, the one-sided Laplace transform is defined as

F (s) =
∫ ∞

0
f(t)e−stdt. (1.11)

Following this definition and assuming zero initial conditions, Eq. (1.7) can be transformed as

s2mX(s) + kX(s) = U(s) =⇒ G(s) = X(s)
U(s) = 1

ms2 + k
, (1.12)

with G(s) the transfer function denoting the relation between output displacement X(s) and input
external force U(s) in frequency domain. In control theory the stability and response analyses

based on transfer function were well-developed for SISO systems [K. 09]. For MIMO systems, state

space representations are more popular.

1.2.2 Stability of dynamical systems
The stability of dynamical systems is critical in engineering as perturbations or noises are

usually presented, which impose challenges on system design to sustain the stability under different

circumstances. The term stability in dynamical system can be referred to as either the stability of

motion or the stability of the equilibrium. The stability of motion is concerning the changes of

system trajectories if the initial state or input is perturbed. If the system is settled at equilibrium

(stationary state), it is a particular motion and the stability analysis is to investigate system behaviors

after the equilibrium is perturbed.

Consider a generic dynamical system [Mel]

ẋ = f(x, u) (1.13)

y = g(x, u)

where x ∈ R
n, u ∈ R

m and y ∈ R
k denote the state vector, input vector and output vector

respectively. The relations among them are characterized by function f(·) and g(·). Note that all
the vector variables are time dependent.

Motion Stability

To define the motion stability, the reference motion is introduced as

x̃(t) = ψ
(

t, t0, x̃(t0), ũ(·)
)

, (1.14)

for initial time t0. Then the motion difference resulted from the initial state perturbations can be

written as

Δx1(t) = ψ
(

t, t0, x̃(t0) + Δx1(t0), ũ(·)
)

− x̃(t), (1.15)
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and the difference resulted from input perturbations is

Δx2(t) = ψ
(

t, t0, x̃(t0), ũ(·) + Δũ(·)
)

− x̃(t). (1.16)

The system (1.13) motion is stable with respect to the initial state perturbations if

∀t0, ∀ε, ∃η > 0 =⇒ ‖Δx1(t)‖ < ε, ∀t ≤ t0 if ‖Δx1(t0)‖ < η (1.17)

and is stable with respect to input perturbations if

∀t0, ∀ε, ∃η > 0 =⇒ ‖Δx2(t)‖ < ε, ∀t ≤ t0 if ‖Δu(t)‖ < η. (1.18)

Note that the equilibrium or stationary state of the system is a special case of (1.14).

Equilibria Stability

An equilibrium x∗ is attracting if the perturbed equilibrium x̃∗ is guaranteed to eventually

converge back to x∗. Mathematically, if ∃δ such that limt→∞ x(t) = x∗ if ‖x(0) − x∗‖ <

δ [Str18].

x∗ is Lyapunov stable if the perturbed equilibrium x̃∗ is close to and stays close to x∗ for all

future time. For example, a simple harmonic oscillator is Lyapunov stable.

x∗ is neutrally stable if it is Lyapunov stable but not attracting. And furthermore x∗ is asym-

totically stable if it is both Lyapunov stable and attracting. For example, a damped harmonic

oscillator is asymtotically stable after a perturbation, it will eventually converge to steady state

due to friction.

Stability analysis of linear systems

For the simplicity of illustration and without loss of generality, consider a two-dimensional

linear dynamical system

x′ = Ax, (1.19)

where the constant matrix

A =
(

a b

c d

)
and state vector x =

(
x1

x2

)
.

According to the superposition principle, if the eigenvalues and eigenvectors of A are λ1, λ2 and v1,

v2 respectively, then the general solution can be written as [Str18]

x(t) = c1eλ1tv1 + c2eλ2tv2 (1.20)

where c1 and c2 are constants depending on the initial conditions of the system. For real valued

λ1 and λ2, if either of them is positive, then x(t) is exponentially growing as t → ∞. Hence the

equilibria of such systems are unstable.

In the case of complex eigenvalues, λ1,2 = α ± iω and by Euler’s formula, eiωt = cos ωt +
i sin ωt, x(t) is combination of terms involving eαt cos ωt and eαt sin ωt. It can be seen that if

α > 0 then x(t) is growing as t → ∞.
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To sum up and generalize the stability conditions of n-dimensional linear system, if 
(λi) ≤
0, i = 1, · · · , n, then the system is stable; if 
(λi) < 0, i = 1, · · · , n, then the system is

asymtotically stable, where 
 stands for the real part of a complex number.

Lyapunov function method

A Lyapunov function a scalar continuous differentiable function defined on the state space of a

dynamical system, which can be used to prove the stability of an equilibrium [Kha; Str18; Mat].

Consider a dynamical system of the form

ẋ = f(x), x = (x1, · · · , xn) (1.21)

with an equilibrium at x∗.

Given a domain D ⊂ R
n including the equilibrium, if V (x), D → R, a continuously differentiable

function, has the following properties:

• V (x) > 0 for all points in D except x∗, and V (x∗) = 0; (V is positive definite.)

• V̇ ≤ 0 for all points in D; (V̇ is seminegative definite.)

then the equilibrium x∗ is stable. Moreover, if V̇ < 0 for all points in D except x∗ (V̇ is negative

definite.), then x∗ is asymtotically stable.

The given stability criteria using Lyapunov function is the so-called Lyapunov function method,

which is not intuitive. But for mechanical or electrical systems, a Lyapunov function can be

interpreted as an energy storage function. If the stored energy is neither decreasing or increasing,

then the system stays near the equilibrium (Lyapunov stable). If the stored energy is dissipated,

the system eventually converges to its equilibrium (asymtotically stable). For instance, a simple

harmonic oscillator is Lyapunov stable, and a dampened harmonic oscillator is asymtotically stable.

The simple harmonic oscillator in Eq. (1.7) can be written as

ẋ1 = x2

ẋ2 = − k

m
x1,

with the equilibrium at (0, 0). The total mechanical energy consists of the potential energy of the

spring and the kinetic energy of the mass, then the Lyapunov function can be taken as

V (x1, x2) = 1
2

k

m
x2

1 + 1
2x2

2. (1.22)

It is obvious that V (0, 0) = 0 and V (x1, x2) > 0 for (x1, x2) �= (0, 0). And further

V̇ (x1, x2) = ∂V

∂x1
ẋ1 + ∂V

∂x2
ẋ2

= k

m
x1x2 + x2(− k

m
x1) = 0

Therefore, according to the Lyapunov function method, the simple harmonic oscillator is stable.

And for the dampened harmonic oscillator, a damping term renders the differentiation V̇ negative,

which asserts that the dampened oscillator is asymtotically stable.
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The Lyapunov method has the advantage of not requiring detailed solution of the systems

to determine the stability, but the disadvantage is that there is no systematic way to construct a

Lyapunov function for a specific system. Despite the disadvantage, Lyapunov function played a

crucial role in stability analysis of dynamical systems, especially nonlinear systems where solutions

are usually hard to obtain.

The input-output stability of dynamical systems

Given an input to a dynamical system, if its output falls in a range confined by the input, then

the system can be defined as a stable one without requiring the knowledge of the internal structure

of the system. The stability from the perspective of input-output relations is formally introduced

in this section. Its relation to Lyapunov function method will also be shown.

Consider a dynamical system of the form

y = Hu, (1.23)

where H denotes an operator specifying output y in terms of input u. The signals u and y are

functions that map the time interval [0, +∞) to Euclidean space. For example, the input signal u(t)
can be defined as [0, +∞) → R

m which maps the time interval to m dimensional vector spaces.

Typical spaces for signal u include the Lm
∞ space, which is the space of continuous, bounded

functions with their norms defined as

‖u‖L∞ = sup
t≥0

‖u(t)‖ < +∞ (1.24)

and the Lm
2 space, which is the space of piecewise continuous, square-integrable functions with

their norms defined by

‖u‖L2 =

√∫ ∞

0
uT (t)u(t)dt < +∞ (1.25)

and more generally the Lm
p space, which is the space of all piecewise continuous functions with

their norms defined by

‖u‖Lp
=

( ∫ ∞

0
‖u(t)‖pdt

) 1
p

< +∞. (1.26)

For example, the signal u(t) = t does not belong to the space L∞ as it is not upper bounded in

the time interval [0, +∞). However, its truncation

uτ (t) =
{

t 0 ≤ t < τ

0 t > τ

}

belongs to L∞ for every finite τ . To cope with signals like u(t) = t, the extended space Lm
e of u is

introduced as

Lm
e = {u : uτ ∈ Lm, ∀τ ∈ [0, +∞)} (1.27)

where

uτ =
{

u(t) 0 ≤ t < τ

0 t > τ

}

and Lm is the abbreviation of Lm
p for 1 ≤ p < ∞. It can be seen that Lm

e is equivalent to Lm when

τ goes to +∞.
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With above definitions the input-output stability of systems (1.23) can be defined as follow-

ing [Kha]:

A mapping H : Lm
e → Lq

e is L stable if there exists a class κ function α and a constant β ≥ 0
such that

‖(Hu)τ ‖L ≤ α(‖uτ ‖L) + β (1.28)

for all u ∈ Lm
e and τ ∈ [0, +∞). It is finite L-gain stable if there exists γ, β ≥ 0 such that

‖(Hu)τ ‖L ≤ γ‖uτ ‖L + β. (1.29)

The class κ function α is strictly increasing and α(0) = 0.

For simplicity, the relation of input-output stability to Lyapunov function is shown for linear

systems and L2 signals [Isi]. The relation also holds for nonlinear systems [DZK12; HM80].

Consider a linear system of the form

ẋ = Ax + Bu
y = Cx + Du, (1.30)

with state x ∈ R
n, input u ∈ R

m and output y ∈ R
q .

Suppose the linear system is asymtotically stable, then there exists a positive definite matrix P

such that the quadratic Lyapunov function V (x) = xT Px satisfied the dissipation inequality

∂V

∂x ẋ ≤ −ε‖x‖2 + γ2‖u‖2 − ‖y‖2. (1.31)

For u = 0 this inequality reduced to

∂V

∂x Ax ≤ −ε‖x‖2 < 0 (1.32)

which is consistent with the asymtotical stability assumption. The dissipation inequality is origi-

nated from the fact that for a physical system supplied with external energy, its energy storage

rate should be bounded by the supply rate.

Integration of (1.31) on the interval [0, T ] leads to

V (x(T )) ≤ V (x(0)) + γ2
∫ T

0
‖u‖2dt −

∫ T

0
‖y‖2dt (1.33)

for any initial state x(0). Moreover, since V (x) ≥ 0, assuming x(0) = 0 yields

∫ T

0
‖y‖2dt ≤ γ2

∫ T

0
‖u‖2dt. (1.34)

According to the definition of L2, (1.34) can be written as

‖y‖L2 ≤ γ‖u‖L2 . (1.35)

Then according to the definition of input-output stability, the linear system (1.30) is finite L2 gain

stable. Thus, the connection between input-output stability and Lyapunov function method has

been established.
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1.3 Probability Theory

“
Probability theory is nothing but common sense reduced to calculation.

Pierre-Simon Laplace”
The concept of uncertainty was said to be as old as civilization [DS12] as humans have always

had to deal with uncertainties from weather forecast and food supply to potential dangers. Life

systems ought tomake correct decisions in reacting to uncertainties in their environments in order to

survive and reproduce. For instance, plants in temperate regions need to fight against the uncertain

weather conditions in spring from year to year in order to make correct flowering decisions.

Probability theory provides a consistent and solid mathematical foundation for quantifying and

analyzing uncertainties. Paradigms as machine learning and stochastic modeling heavily rely on

probability theory.

1.3.1 Probability and distributions
Concepts of probability

Interestingly, despite of the fundamental importance of probability in a wide range of disciplines,

there is no consensus concept for it [DS12]. The relative frequency view of probability, i.e., probability

as the ratio of number of occurrence of an event to the total number of trials, requires that the

process should be repeated a large number times under similar conditions. This is usually referred

to as frequentist view of probability. However a Bayesian would ask frequentists what is the

probability of sun explosion tomorrow which cannot be repeated. Instead he interprets probability

as degree of belief or plausibility. Besides frequentist and Bayesian, the third interpretation is based

on the equally likely outcomes [DS12]. For example, each coin has only tail or head sides so the

probability of tail is 0.5.

Different interpretations have their application cases but also drawbacks in other cases. The

relative frequency of view is well rooted in some repeated control biological experiments but

is not suited for unrepeatable events such as the death of a person or the explosion of the sun.

The Bayesian interpretation is subjective and the degree of belief can be updated by observations.

Meanwhile the subjectiveness renders it not able to maintain its consistency in experiments with

high dimensional sample space.

Though different people can hold different interpretations of probability, the calculus of proba-

bility theory applies universally.

Mathematical formulation of probability

Closely related to set theory, the sample space Ω is defined as the set of all possible events

from an experiment. For instance, the sample space for tossing a coin is {head, tail}. With

the foundation on set theory, the set operations can be applied to events and the mathematical

definition of probability can be stated as

The probability measure on a sample space Ω is the realization of numbers p(A) for all events A

such that the following axioms are satisfied:

Axiom I: p(A) ≥ 0 for all A
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Axiom II: p(Ω) = 1

Axiom III: if events {A1, A2, A3, · · · } are disjoint, then

p
( ∞⋃

i=1
Ai

)
=

∞∑
i=1

p(Ai). (1.36)

Random variables and distributions

A random variable is real-valued function that quantifies the sample space by mapping the

experiment outcomes to real numbers. Random variables can be discrete or continuous. Given a

discrete random variable X , the set of all possible values {x1, x2, · · · }, the probability mass function

is defined as

fX(xi) = p(X = xi), i ∈ {1, 2, · · · }. (1.37)

For continuous random variable X , the probability of X falling a certain range of values (x1, x2)
is derived by integrating the probability density function fX(x) over the range, that is

p(x1 < X < x2) =
∫ x2

x1

fX(x)dx. (1.38)

When a dice is rolled, the sample space is six different sides so that the random variable X

can take the values of {1, 2, 3, 4, 5, 6}. Then the probability mass function can be written as

fX(i) = 1/6, i = {1, 2, 3, 4, 5, 6}. It is worthy of noting the difference between events and random

variables. The probability is defined on events while probability distributions are defined in terms

of random variables. X assigns numbers to each elementary outcome (each of six sides), while an

event can be a set of outcomes, which is a subset of sample space. For example, the event can be ∅
which is an impossible event, or “the sums of rolling dices adding up to 3”.

Conditional probability and independence

When flipping a coin, the event A “the first trial showing tail” and the event B “the second

trial showing head” are independent. Formally, two events A and B are independent if p(A, B) =
p(A)p(B). Obviously the relation holds for A and B, thus they are independent. Similarly, two

random variables X and Y are independent if

p
(

X = x, Y = y
)

= p(X = x)p(Y = y), ∀x, y. (1.39)

Though the probability definition does not involve conditional probability, in a more rigorous

sense probabilities are conditioned on what is known. For example, the probability of showing

each face of a dice is 1/6, because it is known that a dice has six faces and it is assumed to be a fair

dice. Therefore it is of utmost importance to have conditional probability in probability theory. It

can be defined as

If p(B) > 0 then the conditional probability of A given B is

p(A | B) = p(A, B)
p(B) . (1.40)

The independence can be defined in terms of conditional probability as
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A and B are independent if and only if p(A | B) = p(A).

1.3.2 Maximum likelihood
Maximum Likelihood Estimate (MLE), introduced by Fisher in 1920s [Ald+97; Sti07], is a method

for estimating parameters of statistical models to best fit the observed data under certain model

hypothesis. In other words, in order to model observed data, MLE presumes the fixed certain

models, then seeks for the optimal parameters which make the models best fit the present data.

MLE lays the probabilistic foundation for a wide range of machine learning algorithms (e.g.Section

1.4.2, 1.4.2).

Assume the given data x1, x2, · · · , xn are values of a random sample drawn from some

distribution (continuous or discrete) with probability density (or mass) function fX(x | θ) with
unknown parameter θ. Then the probability of observing the random sample is

fX(x1, x2, · · · , xn | θ) = L(θ | x1, x2, · · · , xn), (1.41)

where L(θ | x1, x2, · · · , xn) is the likelihood function. The likelihood function, as a function

of the parameter θ, can be interpreted as the probability of observing the given data from the

distribution parameterized by θ.

A common assumption for statistical modeling is that x1, x2 · · · , xn are identically indepen-

dently distributed (i.i.d.), which leads to

L(θ | x1, x2, · · · , xn) =
n∏

i=1
fX(xi | θ) (1.42)

In order to maximize the likelihood function, the common trick to simplify the calculation is to

take the logarithm of it because of the monotonic increasing of logarithm functions

log L(θ | x1, x2, · · · , xn) =
n∑

i=1
log fX(xi | θ). (1.43)

As a simple example, suppose three Heads are observed from tossing a coin three times, one

needs to estimate the probability p for the Bernoulli experiment. It is reasonable to believe that the

three tosses are independent, then the likelihood function is

L(p) = p3, (1.44)

which is monotonically increasing with p ∈ [0, 1]. It is obvious that if one wants to find the value

of p which gives highest likelihood to observe the three Heads in three trials, then L(p) should be

maximized. And p = 1 maximizes L(p), which means that the MLE would result in that we will

observe Heads for ever.

In the context of machine learning algorithms, the negative logarithmic likelihood function

is taken as loss function for measuring the error between the model fits and given data. Then

maximizing likelihood is equivalent to minimizing the loss function, which connects the MLE to

building machine learning models.
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However, as seen from the above simple example, MLE can easily lead to overparameterization

and poor generalization, which is known as over-fitting to the given data. To apply the “Occam’s

Razor” principle which promotes simple but working models, adding regularization in machine

learning algorithms is used to prevent the overfitting (details in Section 1.4.1 and 1.4.5), especially

the extreme estimate of p in the coin tossing example.

1.3.3 Probability generating functions
Probability generating function (PGF) provides a power series based representation of probability

mass of discrete random variables, which is closely related to concepts like z-transform [Wei] and

momentum generating functions [Wikf]. PGF can serve as a useful tool for deriving expectations

and variances of probability distributions, it also played an important role in obtaining the analytic

solution of master equation modeled in Chapter 3. In this section, we briefly introduce the essence

of PGF.

The term “generating function” is usually referred to as ordinary generating function, which is

defined as

G(s) =
∞∑
i

ais
i (1.45)

for a given sequence {a1, a2, · · · , ai · · · }. Intuitively, the generating function can be seen as a

clothesline for hanging the series of numbers {ai}[Wil05]. When the sequence {ai} is specified

by a probability distribution of a discrete random variable X with probability mass function

pi = p(X = i), i = 1, 2, · · · , we have probability generating function

G(s) =
∞∑
i

pis
i = E[sX ]. (1.46)

Note that |s| ≤ 1, G(1) = 1. By differentiating the generating function, it yields

G′(s) =
∞∑
i

i · pi · si−1 =⇒ G′(1) = E[X]. (1.47)

And taking the second derivative of G(s) gives rise to

G′′(s) =
∞∑
i

i · (i − 1) · pi · si−2 =⇒ G′′(1) = E[X(X − 1)] = E[X2] − E[X]. (1.48)

The derivatives of G(s) at s = 1 can promptly lead to the derivation of the variance of X as

V ar[X] = E[X2] − (E[X])2

= G′′(1) + G′(1) − (G′(1))2. (1.49)

The relations (1.47) and (1.49) provide a neat way of deriving expectations and variances of distri-

butions. For instance, the generating function of Poisson distribution is derived as

G(s) =
∞∑
i

λk

k! e−λsk = e−λ
∞∑
i

(λs)k

k! = eλ(s−1). (1.50)
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Then as a comparison to the derivation in [Pro], the expectation and variance of Poisson distribution

can be computed as following

E[X] = G′(1) = λeλ(s−1) |s=1= λ (1.51)

and

V ar[X] = G′′(1) + G′(1) − (G′(1))2 = λ2eλ(s−1) |s=1 +λ − λ2 = λ. (1.52)
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1.4 Machine Learning

“
A theory with mathematical beauty is more likely to be correct than an ugly one that

fits some experimental data.

Paul Dirac”
The term machine learning can be interpreted as “a computer program which learns from

experience with respect to some tasks and performance measures.”. Statistically speaking, it can be

translated as “fitting a parametric or nonparametric model to data in order to make predictions”.

Based on the data which directly related to the problems to be solved, different machine learning

subfields are commonly categorized to supervised learning, unsupervised leaning and reinforcement

leaning[JM15; Mur12]. In this section, the focus is on supervised learning which served as one

of the major methods throughout the thesis. The core elements of supervised learning, namely

labeled data, hypothetical function (or approximation function), loss function and optimization,

are first introduced along with a real life analogy.

1.4.1 Supervised Learning
Machine learning tasks which are supervised by given input-output pairs and learn the mapping

function from the input to the output are intuitively named as supervised learning, which are

further divided into tasks of classifications and regressions. As a real life analogy, supposing that a

pupil learner sitting in a classroom tries to learn arithmetic operations, he is supervised by the

teacher who gives him many examples such as 1 + 1 = 2, 1 + 2 = 3 and so on and needs to do

exercises to master the operations. At the very beginning, the learner knows nothing and makes a

lot of mistakes so that the teacher tells him where goes wrong and learner needs to rewire his brain

neurons in order to make less mistakes. When coming to examine how well he learns, the learner

has to solve the exam questions not seen before without supervision. The exam grade indicates

the goodness of learning. The analogy is not perfect but sensible since learning arithmetics is

actually empirical as the teacher cannot explicitly explain why 1 + 1 = 2 and 1 + 2 = 3 to

pupils but show that putting one items together with another two items makes in total three items.

Machine learning is aimed at automating extractions of patterns from data, without writing explicit

algorithms to describe all details about the patterns. This is like the pupil learns the arithmetic

addition by counting and exercising without knowing all the algebraic reasoning for proving why

1 + 1 = 2. At the beginning of learning, machine learning models are not better than random

guesses therefore criteria indicating goodness of learning are needed for improving them, which

are termed loss functions that are defined as the total distance between all model outputs and the

real outputs. The learning procedure is repeatedly showing the data pairs to train the models such

that the loss functions are minimized. A learned model should be tested by new data pairs to show

its performance.

To put all these formally, given N data pairs (xi, yi), i = 1, 2, · · · , N with xi ∈ R
d the inputs

with d dimensional features, yi ∈ R
m the m dimensional outputs which is usually also called the

targets. f(·) : Rd → R
m denotes the hypothesis function learned from the data to approximate

the underlying truth. Then the prediction from the model is given by

ŷi = f(xi, θ), (1.53)

1.4 Machine Learning 19



with ŷi the model estimation for yi, θ as the model parameters. Intuitively, the learning goal is to

make ŷi as close as possible to yi. However this is usually not practically favored due to overfitting,

a problem that an overly complex model is deployed such that it fits well on the training data

but predicts badly in application on unseen data. The performance gap is due to the fact that the

training data is usually either corrupted with certain level of noises or not fully representative

for the true relation between input features and output targets. On the contrary, if an overly

simple model is fitted to the training data, it lacks the capacity to capture the input-output relation,

which is usually termed underfitting. The overfitting and underfitting problem is often examined as

variance-bias tradeoff, which will be elaborated in more details by error decomposition in Section

1.4.5. When training a model, one needs to find the sweet spot where variance and bias are well

balanced such that the performance gap between training and predicting is as small as possible.

A natural question arises as that how one can find the good tradeoff between variance and bias.

For answering that, it should be noted that it is easy to increase the complexity of models to fit

well the training data, for instance, as reported in [Zha+16], deep neural networks with enough

capacity (complexity) can easily fit data with random labels to have zero training error, but not

easy to control the model complexity in order to discover real pattern underlying the training data.

Regularization techniques play a prominent role in preventing overfitting, which add regularizers

to the training objective in order to punish overly complex models.

With all that said, the training objective in a supervised learning task can be defined in general

as

Loss(θ) =
N∑

i=1
E(yi, f(xi, θ)) + Ω(θ), (1.54)

which is referred to as the loss or cost function, with E(·) as the error function defining the

distance between model estimations and the targets for the entire training data, Ω(·) the regularizer
parameterized by θ. Essentially all supervised learning tasks converge to optimizing the loss

function.

Up to now, the core principles of supervised learning have been introduced. It shall be seen later

that different machine learning algorithms only differ in specifying f(·), E(·), Ω(·) and optimization

techniques to minimize the loss functions. For example, backpropagation and stochastic gradient

decent algorithms are widely employed in neural networks to optimize weights [LBH15b], and

additive training is used in gradient boosting trees to grow optimal trees [CG16].

In practice, popular libraries like Scikit-Learn[Ped+11] in Python implemented various classifi-

cation, regression and clustering algorithms, which makes a wide range of algorithms out-of-box

for application. However, insights of algorithm details are helpful to choose suitable models, loss

function, regularizations and optimization routines for solving particular problems.

1.4.2 Logistic regression and cross-entropy as loss
Given the task of assigning input data to classes {0, 1}, where class 0 is usually referred to as the

negative class and 1 as the positive class, logistic regression provides a simple and straightforward

solution for the binary classification. Logistic regression algorithm uses logistic function as the

hypothetical function to approximate the true mapping between the labeled classes and data. For

the sake simplicity and illustration, the logistic function with independent variable x with its

weight w can be written as

y = f(x, w) = 1
1 + e−wx

, (1.55)
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which is sketched in Fig1.2 for different values of w. The sigmoidal curves all intersect at (0, 0.5)
and the value of f(x, w) has the property of

⎧⎨
⎩0.5 < y < 1 if wx > 0

0 < y ≤ 0.5 if wx ≤ 0,
(1.56)

which can be interpreted as the conditional probability P (class = 1 | x, w) of being in class of 1 for

the given x and w. Based on this probability, decision boundary can be set to make classifications.

If the boundary is taken to be 0.5, then any x leading to y < 0.5 is classified as a negative instance,

and vice versa. The boundaries for negative examples and positive examples can be set differently

in order to increase the classification confidence. For example, to diagnose if patients have diabetes,

the blood sugar level of two hours after the meals can be used to make decisions. Due to variances

in sugar levels among different people, a single boundary for diagnosing is not practical. The

2-hour glucose in the blood of a healthy person is less than 140mg/dl, but only people with 2-hour

glucose level higher than 200mg/dl are diagnosed as diabetes [Org+06].

Fig. 1.2: The sigmoidal curves of logistic function for different weights.

In real applications, x is mostly multidimensinal, which will be denoted as x, and a bias b is

introduced for shifting the sigmoidal curve positions. Consequently the logistic function becomes

f(x, w, b) = 1
1 + e−(wT x+b) , (1.57)

where w is the vector form of w.

With the general form of logistic regression model (1.57), the derivation of the error function

is shown in the following from a probabilistic perspective. Given the dataset D: xi ∈ R
d, yi ∈

{0, 1}, i ∈ {0, 1, · · · , N}, the probability for observing a positive or negative instance can be

written as

p(yi | xi, w, b) = [f(xi, w, b)]yi [1 − f(xi, w, b)]1−yi . (1.58)

With the assumption that the data is i.i.d., the likelihood of having the data is

L(w, b) =
N∏

i=1
[f(xi, w, b)]yi [1 − f(xi, w, b)]1−yi . (1.59)
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Taking the negative logarithm of the likelihood leads to the error function

E(w, b) = − log L(w, b) = −
N∑

i=1
yi log f(xi, w, b) + (1 − yi) log(1 − f(xi, w, b)), (1.60)

which is the cross entropy[SJ80] of target distribution in data D and the model estimated target

distribution.

Intuitively, Kullbach-Leibler(KL) divergence which quantifies the distance between two dis-

tributions can be taken as the error function, but why the cross entropy arises for classification

problems? First recall that entropy is used to measure the uncertainty of a system, which is defined

as

S(v) = −
∑

i

p(vi) log p(vi), (1.61)

for p(vi) as the probabilities of different states vi of the system. From an information theory point

of view, S(v) is the amount of information is needed for removing the uncertainty. For instance, the

event A “I will die eventually” is almost certain (the aging problem might be solved for including the

word “almost”), therefore it has low entropy which requires only the information of “might solve

the aging problem” to make it certain. However, the event B “The president will die in 50 years” is

much more uncertain than A, thus it needs more information to remove the uncertainties.

Now look at the definition of KL divergence between events A and B

DKL(A ‖ B) =
∑

i

pA(vi) log pA(vi) − pA(vi) log pB(vi), (1.62)

where the first term of the right hand side is the entropy of event A, the second term can be

interpreted as the expectation of event B in terms of event A. And the DKL describes how different

B is from A from the perspective of A.

To relate cross entropy to entropy and KL divergence, the cross entropy in (1.60) needs to be

reformalized in terms of events A and B as

H(A, B) = −
∑

i

pA(vi) log pB(vi). (1.63)

From (1.61), (1.62) and (1.63), it can be seen that

H(A, B) = DKL(A ‖ B) + SA. (1.64)

From (1.64), the fact that if SA is a constant, then minimizing H(A, B) is equivalent to minimizing

DKL(A ‖ B) can answer why the cross entropy error function arises from the likelihood function

of the model. A further question follows naturally as how the entropy can be a constant. A machine

learning task is started with a dataset (denoted as P (D)) which represent the problem to be solved,

and the learning purpose is to make the model estimated distribution (denoted as P (model)) as
close as possible to true distribution of the problem (denoted as P (truth)). P (truth) is unknown
and represented by P (D). Therefore in an ideal world, one expects

P (model) ≈ P (D) ≈ P (truth) (1.65)
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and minimize DKL(P (D) ‖ P (model)). And luckily, in practice D is given, which means its

entropy S(D) is fixed as a constant. Now it is clear that the equivalence of minimizing cross

entropy and KL divergence in a classification problem for given dataset, which shows the cross

entropy can be the proper error function.

Without loss of generality, the regularizer is specified as L2 norm of weight vector w. Therefore

the loss function can be summed up as

Loss(w | x, y) = E(w, b) + Ω(w) (1.66)

= −
N∑

i=1
yi log f(xi, w, b) + (1 − yi) log(1 − f(xi, w, b))+ ‖ w ‖2 (1.67)

The training of a logistic regression model is cast into searching the optimal w in the parameter

space as

f∗ = f(w∗) = arg min
w

Loss(|x, y) (1.68)

The optimization procedure is introduced in Section 1.5.1.

1.4.3 Neural networks and error backpropagation
Neural network algorithms have been growing from the simple perceptrons[Ros62] in 1950s and

1960s to nowadays deep learning as one of the most influential fields in machine learning [Sch15;

Nie15]. As a tip of an iceberg, a dense fully connected neural network with two feedforward layers

is used to introduce the basic elements of a neural network. Then a powerful type of network

named convolutional neural networks is illustrated. Further the soul of training neural networks,

error backpropagation, is introduced via a simple but representative network.

Feedforward dense neural networks

A feedforward neural network with two layers is illustrated in Fig. 1.3, which can be mathe-

matically described as

Fk(x, W ) = f

⎛
⎝ M∑

j=1
w

(2)
kj h

(
d∑

i=1
w

(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

⎞
⎠ , (1.69)

where Fk(x, W ) denotes the kth output, d, M denote the dimension of input x (number of

nodes in the input layer) and number of nodes in the hidden layer (second layer) respectively.

W =
{

W (1), W
(2)
k

}
where W (1) is the weight matrix with w

(1)
ji connecting ith input to jth node

in the hidden layer, W
(2)
k is the weight matrix with w

(2)
kj connecting jth hidden node to kth output

node. In the context of regression, the output is usually one-dimensional, the index k can be

dropped.
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Fig. 1.3: A fully connected feedforward neural network.

For a given i.i.d. dataset D: xi ∈ R
d, yi ∈ R, i ∈ 1, 2, · · · , N , assuming that the targets y have

a Gaussian distribution centered on F (x, W ) gives rise to

p(y | x, W ) = N (y | F (x, W ), β), (1.70)

with β the variance of Gaussian noise. With defining the mean squared error between the targets

and their model estimates as

E(W ) = 1
N

N∑
i=1

‖F (xi, W ) − yi‖2, (1.71)

the likelihood function can be written as

L(W ) = p(y | x, W ) =
N∏

i=1
p(yi | xi, W, β) = exp(−βE(W ))

Z(β) (1.72)

where Z(β) = (2π/β)N . Taking negative logarithm of (1.72) gives

− ln L(W ) = E(W ) + c, (1.73)

where c is a constant related to β which can be neglected for the purpose of minimizing negative

logarithm likelihood. The equation (1.73) shows that minimizing error function is equivalent to

maximizing the likelihood function.

Consequently adding L2 norm regularization leads to the final loss function as

Loss(W | x, y) = E(W ) + Ω(W ) (1.74)

= 1
N

∑
i

‖F (xi, W ) − yi‖2+ ‖ w ‖2 . (1.75)

Convolutional neural networks

Convolutional neural networks are a special type of multilayer neural networks, each layer of

which typically consists of convolution, pooling and nonlinear activation.
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Mathematically, given two functions g and f , a convolution is defined as the integral of the

product of the two functions with one reversed and shifted:

f ∗ g :=
∫ +∞

−∞
f(τ)g(t − τ)dτ. (1.76)

To have a better visualization of the convolution, the first layer in Fig. 1.4a shows a two-dimensional

vector (a filter or a kernel) of weights w := (w1, w2) convolves with a six dimensional input vector

x := (x1, · · · , x6), which yields five dimensional vector. When comparing to the structure of

dense fully connected layers, the number of weights in each convolution has been greatly reduced.

This is usually referred to as the weight sharing property of convolutional neural networks.

Fig. 1.4: Convolutional neural networks. (a). A simple illustration of weight sharing in convolu-
tional neural networks, adapted from Colah’s blog [Ola]; (b). The 2 × 2 → 1 mapping
shows a maximum pooling, i.e., taking the maximum value of the 2 × 2 cell in the left to
the corresponding cell in the right.

As the primary application of convolutional neural networks is image recognition with images

numerically stored as matrices, the pooling operation can not only reduce the image dimension

but also extract image features and reduce invariance. As shown in Fig. 1.4b, the pooling reduced

the matrix from 4 × 4 to 2 × 2, which can largely reduce computational complexity for large input

images. For images, as neighbouring pixels are related, the max pooling can extract extreme local

features, for example, the edges of objects. Similar to fully connected layers, the pooling output is

then taken as the input of activation functions to be transformed nonlinearly or linearly.

The basic components of convolutional neural networks have been introduced. In real practice,

the filter sizes, the number of filters, types of pooling and pooling sizes are all problem-dependent

and regarded as hyperparameters during the network training.

Error backpropagation

Fig. 1.5: Illustration of error backpropagation by the simplest neural net with scalar input and
output
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A simple but informative model is shown in Fig. 1.5, with scalar input x and output z, with

scalar weights w1 and w2 to elaborate the well-known error backpropagation algorithms for

training neural networks. Intermediate computing steps are explicitly shown, where ⊗ denotes

the multiplication with p1, p2 as the multiplication products, and f1, f2 are activation functions.

The squared error function is taken as the loss function E(w|x, d) = 1
2 (z − d)2 with d the target

values. Start with calculating the first order derivatives of E(w) with respect to w1 and w2

∂E
∂w2

= ∂E
∂z

∂z

∂p2

∂p2
∂w2

= (d − z) ∂z

∂p2
y

∂E
∂w1

= ∂E
∂z

∂z

∂p2

∂p2
∂y

∂y

∂p1

∂p1
∂w1

= (d − z) ∂z

∂p2
w

∂y

∂p1
x

Then the derivatives are written in vector form as

g = ( ∂E
∂w1

∂E
∂w2

)T . (1.77)

According to steepest gradient descent (Section 1.5.1), the weight vector can be updated at step k

by

wk+1 = wk − αg. (1.78)

This simple model is informative since calculation of gradients g can be directly extended to higher

dimensions and the chain-rule based propagation of the errors is intuitive in the scalar input-output

case.

1.4.4 Gradient boosting methods and gradient boosting
trees

Ensemble algorithms combine a collection of hypothetical functions as the approximation

function in order to form a better hypothesis for approximating the underlying true mapping

between inputs and targets. Boosting is one of such algorithms to sequentially combine multiple

weak learners which perform poorly on learning to form a single powerful hypothesis. The weak

learners in principle can be broadly different models, for example, linear models or decision trees.

The gradient boosting methods follow the idea of iteratively using weak hypothesis which points

the negative gradient directions to optimize an differentiable loss function [Bre97; Fri01; Mas+99;

Fri02]. Gradient boosting trees, as the most popular gradient boosting algorithm, has been used in

later chapters. Explicitly, gradient boosting trees are ensembles of Classification and Regression

Trees (CART) which are growing sequentially to fit pseudo-residues (explained in next paragraph).

The advantage of CART over a normal decision tree is that it assigns scores for tree leaves in order

to provide richer interpretations beyond classification while the latter gives only decision values

to each leaf. Gradient boosting methods are conceptually and mathematically introduced with a

focus on gradient boosting trees.

To grab the intuition of the core idea underlying gradient boosting methods, we start with

the simple scenario of assuming that y is the target to be fitted with from independent variable x.
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The first hypothesis is F1 which gives rises to the first residue e1 = y − F1(x). Usually e1 is not

satisfying for being too large, therefore a further hypothesis F2 is deployed to fit e1 as the target,

which leads to a new residue e2 = e1 − F2(x). The errors e1, e2 are referred to as pseudo-residues.

The procedure is continued until the final pseudo-error falls in an acceptable range. For a well

defined loss function, at step i, the hypothesis Fi points into the direction of the negative gradient

of the loss function, which connects the boosting trees to gradient descent of a loss function.

To formally elaborate gradient boosting trees (GBT), assuming dataset D: xi ∈ R
d, yi ∈

{0, 1}, i ∈ {0, 1, · · · , N}, the ensemble trees as hypothesis function F approximating the relation

between x and y is given by

ŷi = F (xi) =
K∑

k=1
fk(xi), fk ∈ F . (1.79)

This notation is actually a general definition for a broad range of algorithms which consist of

multiple basis hypothses (functions), with F denoting the hypothesis space. In terms of GBT,

F = {f(x) = wq(x)} is the space of CARTs, with q : Rd → T denoting the structure of CART

which has T leaves. The leaf values w ∈ R are usually named as leaf weights or scores. The loss

function can be accordingly defined as

Loss(y, F (x)) =
N∑

i=1
E(ŷi, yi) +

K∑
k=1

Ω(fk), (1.80)

with the first term at right characterizes the distance between ŷi and yi and second term regularizes

the complexity of trees in the ensemble. The training of GBT to obtain the optimal mapping F is

then summarized as

F (x) = arg min
fj ,j=1, ··· ,K

Loss(y, F (x))

= arg min
fj ,j=1, ··· ,K

N∑
i=1

E
( K∑

k=1
fk(xi), yi

)
+

K∑
k=1

Ω(fk). (1.81)

This equation might look tedious but it is mainly to show that the training is actually optimizing

the loss in function space for finding the optimal hypothesis sequence f1, f2, · · · , fK. The training
procedure follows an additive strategy which optimizes one new tree at a time given the preceding

optimized trees and add newly optimized tree to existing trees to form an updated ensemble.

Next the gradient of the loss function is connected to the additive training by specifying the

error function as squared errors

Loss(y, F (x)) = 1
2

N∑
i=1

(F (xi) − yi)2 +
K∑

k=1
Ω(fk). (1.82)

Assuming at step t, one ought to optimize tree ft to optimize the loss (1.80) given that all preceding

steps 1, · · · , t − 1 have obtained optimized CARTs. Taking the derivatives of (1.80) at step t − 1
yields

∂Losst−1
∂Ft−1(xj) = Ft−1(xj) − yj + ∂Ω(Ft−1(xj))

∂Ft−1(xj) , (1.83)
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which can be rearranged as

yj − Ft−1(xj) = −
(

∂Losst−1
∂Ft−1(xj) + ∂Ω(Ft−1)

∂Ft−1

)
. (1.84)

It shows that the residue Ft−1(xj) − yj after accomplishing step t − 1 is the regularized negative

gradient of the loss with respect to Ft−1. Then at step t, for finding the optimal ft, one needs only

to fit it to this negative gradient. In the case of squared errors in loss function, the close form of

residue is perfectly the negative gradient. However, the flexibility of gradient boosting methods

allows arbitrary differentiable loss functions, for which the negative gradient is more proper as

the targets of tree ft than the pseudo-residue. Now the update rule for the ensemble hypothesis

update rule can be written as

Ft ← Ft−1 + αft, (1.85)

where α denotes the shrinkage rate which is similar to the learning rate in steepest gradient descent

algorithm, providing an extra way for regularizing the ensemble hypothesis. The update rule

continues until certain criteria are satisfied for convergence, for example, the number of steps

and gradient value threshold. In one word, the main principle ideas underlying gradient boosting

methods is to update the ensemble hypothesis by adding new basis hypothesis associated with the

negative gradient of the hypothesis.

Next the searching of optimal tree ft is shown for the algorithm XGBoost [CG16] which is a

popular variant of GBT with improved scalability and efficiency comparing the standard GBT. At

step t, the optimal tree ft should minimize the loss

Losst(y, Ft(x)) =
N∑

i=1
E(yi, Ft−1(xi) + αft(xi)) + Ω(ft(xi)). (1.86)

To efficiently optimize (1.86), the second-order approximation of E can be used by expanding it

around Ft−1 − ft as

E(yi, Ft−1(xi) + αft(xi)) = E(yi, Ft−1(xi)) + giαft(xi) + 1
2hiα

2f2
t (xi) (1.87)

with gi = ∂Ft−1E(yi, Ft−1) and hi = ∂2
Ft−1

E(yi, Ft−1). As for now, only ft is concerned therefore

F − 1 is a constant and can be removed for optimizing Losst. The regularizing function Ω can

be specified as λT + γ
∑T

j w2
j to restrict the number of leaves and the leaf scores simultaneously.

Consequently

Losst(y, Ft(x)) =
N∑

i=1

(
giαft(xi) + 1

2hiα
2f2

t (xi)
)

+ λT + γ
T∑
j

w2
j (1.88)

Reformalizing the equation (1.88) in terms of scores w(t) in ft as

Losst(y, w(t)) =
T∑

j=1

⎛
⎝αwj

∑
i∈Ij

gi + 1
2α2w2

j (
∑
i∈Ij

hi + γ)

⎞
⎠ + λT (1.89)
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where Ij = {i | q(xi) = j} as the instance set of leaf j over the whole dataset, the problem of

hypothesis optimization (optimize ft) is transformed to parameter optimization (optimize w(t)).

For a fixed tree structure q(x), the optimal w∗
j of leaf j can be obtained from (1.89) as

w∗
j = −

∑
i∈Ij

gi

α(
∑

i∈Ij
hi + γ) . (1.90)

And the optimal Losst becomes

Loss∗
t = −1

2

T∑
j=1

(
∑

i∈Ij
gi)2

α(
∑

i∈Ij
hi + γ) + λT (1.91)

which can be used as the criterion for estimating the structure quality of ft. To further search the

space of all possible tree structures for ft, XGBoost [CG16] used a greedy algorithm of optimizing

one level of the tree at a time. By assuming IL and IR as left and right nodes respectively after

splitting, Losst is transformed to splitting score as

score = 1
2

(
(
∑

i∈IL
gi)2

α(
∑

i∈IL
hi + γ) +

(
∑

i∈IR
gi)2

α(
∑

i∈IR
hi + γ) − (

∑
i∈I gi)2

α(
∑

i∈I hi + γ)

)
− λ (1.92)

By each splitting, the score is maximized to have optimal split candidates.

Thus far the principle idea of updating the ensemble hypothesis sequentially by the associated

gradient has been introduced for gradient boosting methods. Specifically, the searching of optimal

trees at each step for XGBoost completes the introduction of full gradient boosting algorithm.

1.4.5 Error decomposition and model selection
Bias and variance trade-off

To measure the efficacy of machine learning models is of fundamental importance as fallacious

conclusions can be easily drawn due to underfitting or overfitting. It is intuitive from the name to

accept that underfitting is fitting a too simple model to the data while overfitting is fitting a overly

complex model, both of which lead to high prediction errors.

To unravel the full details of different sources of misfitting, the trade-off between bias and

variance is introduced, whichwill be addressed both conceptually andmathematically. Conceptually,

the predictive errors caused by bias is due to difference between the expected prediction from a

set of models and the true targets, and errors caused by variance is due to the variance of a set of

model predictions for a given data point. A high bias model would miss the true relation between

input features and their target in the data, and a high variance model would mistake the random

noises in the data as true signals. As illustrated in Fig. 1.6, generating a few data points from a sin

function g(x) = sin(2πx) and corrupting them by Gaussian noises, a straight line fitting leads to

high bias as it is underfitting the data, whereas a 10th order polynomial tries to fit exactly each data

points, which leads to an overfitting model with high variance. An intuitive bulls-eye definition of

bias and variance predictive models can be found in [FR]
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(a) (b)

Fig. 1.6: Example illustration of underfitting and overfitting, reproduced from [Bis06].

The prediction error can be decomposed into variance and bias in terms of squared error

between predictions and targets. Assume the dataset D = {(xi, yi) | i = 1, · · · , N} is generated

from the relation

yi = f(xi) + εi (1.93)

where f is the true relation between xi and yi, εi is the irreducible error (e.g. measurement errors)

with E[ε] = 0. And yi is estimated by ŷi from an arbitrary model. For the sake of notation

simplicity, the index i is neglected for calculation and f ← f(xi). Then the expected mean sqaured

errors at xi can be written as

E[(y − ŷ)2] = E[(y − f + f − ŷ)2]
= E[(y − f)2] + E[(f − ŷ)2] + 2E[(y − f)(f − ŷ)]

Note that ε = y − f , f is deterministic, E[y] = f , and ε is independent from the model estimation

ŷ, then

E[(y − f)2] = E[ε2];

E
[
(y − f)(f − ŷ)

]
= E[yf ] − E[f2] + E[fŷ] − E[yŷ]

= f2 − f2 + E[fŷ] − E[(f + ε)ŷ]
= E[ε]E[ŷ]
= 0;

E[(f − ŷ)2] = E
[
(f − E[ŷ] + E[ŷ] − ŷ)2

]
= E[(f − E[ŷ])2] + E[(E[ŷ] − ŷ)2] + 2E

[
(f − E[ŷ])(E[ŷ] − ŷ)

]
= Bias2(ŷ) + V ar(ŷ).

Now

E[(y − ŷ)2] = E[ε2] + Bias2(ŷ) + V ar(ŷ), (1.94)

which shows that the total error consists of the variance of irreducible errors E[ε2], the bias which
describes how far off the predictions are from the truth, and the variance which describes the
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spread of the predictions from truth. From the decomposition, one can easily see that to minimize

the total error, the errors due to bias and variance should be minimized. This is not that trivial due

to the trade-off between bias and variance. In the example of fitting sin function with polynomials,

a 10th order polynomial model with high capacity, which can fit the data well, would result in

low bias but high variance in a long run. However, a simple straight line leads to high bias and

low variance. Therefore, one needs to find a model with relatively both low bias and low variance,

i.e. with suitable model complexity. Unfortunately, in practice, there is no analytical ways to find

the optimal model complexity. Instead one needs accurate error metrics for measuring model

performances with different complexities to find the optimal complexity of the model of interest.

The metrics are usually used together with data sampling technique cross validation for evaluating

different models.

Cross Validation

To obtain the optimal model from the given data, accurately estimating the prediction errors is

of central interest. The common treatment is to split the whole dataset into training, validating,

and testing data sets. Training and validating data sets are used during training procedure for

preventing overfitting by techniques such as early stopping, while testing data is absolutely blind

for the model during training to mimic the real predicting scenario. However, the given data

generally does not perfectly represent the problem to be solved due to measurement noises and

its limited size. In order to avoid biases caused by single splittings, cross validation is usually a

necessary procedure for estimating testing errors, especially for small datasets.

As an example, the leave-one-out cross validation is illustrated. Given that the model f(x) is
learned from D = {xi, yi, i = 1, · · · , N}, the error for data point i is measured by E(f(xi), yi),
assume data point j is selected for testing the model fj(x) which is trained on the data set

excluding (xj , yj). Then the unbiased error can be taken from the average of the errors from

applying leave-one-out cross validation on the whole dataset as

Ê = 1
N

N∑
j=1

E
(

fj(xj), yj

)
. (1.95)

This procedure makes the model predict on all data points without seeing them during training.

The averaged error estimate can avoid claiming the low error on a certain single split as the final

model performance, which is probably biased. Thus the models selected from this procedure would

have better generalization in future predictions.

k-fold cross validation is also widely used in practice, which divides the whole data set evenly

into k groups and each group is iteratively used as the testing data, the rest k − 1 is used as the

training data. The averaged error from k iterations is used as the metric for training one models.

It is worthy of noting that in practice if the testing data is involved in any way of optimizing

either model parameters or hyperparameters, nested cross validation would be needed to have an

unbiased metric for the selected model. Thus the overestimate of performance can be avoided.
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1.5 Optimization
Optimization is a key step in machine learning and has been involved in later chapters. In

this section, the details of steepest gradient descent and stochastic gradient are introduced for

illustrating the concepts of optimization and understanding the training of neural networks. Particle

swarm as a global optimization routine which played a key in Chapter 3 is also introduced.

1.5.1 Gradient descent
Concepts of steepest gradient descent

For minimizing a differentiable multivariable function f(x) with initial value of x1, the fastest

decreasing would be the direction of negative gradient of f(x) since its gradient points to fastest

ascending direction. The updating rule

xt+1 = xt − η∇f(xt), t = 1, 2 · · · (1.96)

with sufficiently small η leads to f(xt+1) < f(xt). The scalar constant η is the step size determining

how far the updating moves in the negative gradient direction, which is usually called learning rate

in machine learning model training. This iterative procedure attempts to make f(x) converge to
local or global minimum. The convergence is not guaranteed due to possible reasons like improper

step size, complex function surface or initial conditions.

A graphical illustration of gradient descent searching with initial values of x1 and y1 is shown

in Fig 1.7 for the non-convex surface of a nonlinear function. The searching converges to the

respective local minimum. However, for an initial point at the saddle ridge between two valleys, the

gradient at each direction is small which can potentially trap the searching such that the minima

cannot be reached.

x1

x2
x3

y1

y2
y3

Fig. 1.7: Steepest gradient descent on non-convex surface.

Gradient descent as a first-order iterative optimization method
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To gain the mathematical interpretation of why negative gradient is chosen for the updating,

assume the general context of

min
x

f(x), x ∈ R
m (1.97)

with initial condition x = x0.

The goal of first updating is to find x1 = x0 + Δx such that

f(x1) ≤ f(x0), (1.98)

where Δx is the updating vector.

First f(x1) is approximated with its first-order Taylor expansion as

f(x1) = f(x0 + Δx) = f(x0) + ΔxT ∇f(x0), (1.99)

which leads to

f(x1) − f(x0) = ΔxT ∇f(x0). (1.100)

Now to ensure the semi-negative definite of f(x1) − f(x0), one can simply choose

Δx = −η∇f(x0) (1.101)

and then we have

f(x1) − f(x0) = −η‖∇f(x0)‖2 ≤ 0, (1.102)

for some scalar constant η, and ‖∇f(x0)‖2 = 0 if and only if f(x0) is already the minimum.

To sum up and generalize to arbitrary step t, the updating rule

xt+1 = xt − η∇f(xt) (1.103)

drives the searching towards the minimum given that the proper value of η can ensure that xt+1

is close enough to xt such that the first-order approximate is a valid approximate with tolerable

error.

Stochastic gradient descent

Now in the context of minimizing loss function for a machine learning algorithm, the objective

is

min
w

J (w, D), (1.104)

with w ∈ R
m as the model parameters, and D = {xi, yi|i = 1, · · · , N} the dataset.

The term “batch gradient descent” is used when the entire dataset is used to compute J (w, D).
The parameters are repeatedly updated using the complete information from the dataset with the

updating rule

w := w − η∇J (w, D). (1.105)

The disadvantages of batch gradient descent include the expensive computing of the gradient of

the loss function over entire dataset for each update, and the slow convergence caused by improper

choices of learning rate of η.
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Different from batch gradient descent, stochastic gradient descent (SGD) uses single examples

from the dataset for computing the loss function of each update as

w := w − η∇J (w, Di), (1.106)

for Di = {xi, yi|i ∈ {1, · · · , N}}. The single example based updating leads to light computation

of the loss function’s gradient but also high variance of parameter search. The high variance is

due to the stochastic nature, which comes from the single-example approximation of the true loss

function.

SGD is an unbiased approximation of the batch gradient descent. By the definitions, the relation

between J (w, D) and J (w, Di) can be derived as

J (w, D) = 1
N

N∑
i=1

J (w, Di). (1.107)

For the simplicity of notation, it is rewritten as

J = 1
N

N∑
i=1

Ji. (1.108)

In stochastic gradient descent, the gradient of J is approximated by the gradient of Ji of a single

example Di

∇̃J := ∇Ji. (1.109)

Then expectation of the approximation

E
(

∇̃J
)

= 1
N

N∑
i=1

∇Ji = ∇ 1
N

N∑
i=1

Ji = ∇J (1.110)

is truly the gradient of J , which shows that the approximation is not biased.

The advantage of SGD is the stochasticity introduced by the single-example loss function,

which makes SGD has the potential to jump out of one minimum to another and possibly result in

a better local optimum. However, it also usually slows down the convergence. It requires good

strategy of adapting the learning rate to converge the optimizing, and many variants of SGD are

available [Rud16].

Mini-batch gradient descent is improved from SGD, but is also usually referred to as SGD, of

which a subset of dataset is used for each updating as

w := w − η∇J (w, Di,n+i), (1.111)

for Di,n+i = {xj , yj |j ∈ {i, · · · , i + n} ⊂ {1, · · · , N}}.

This way of updating leads to not only efficiently computing loss function but also reducing

the searching variance. However, the subset size is empirical and problem dependent. To this date,

there is no systemic way of finding it. It is usually suggested to be between 50 and 256, which is

shown to be effective in practice.
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1.5.2 Gradient free optimization methods
The premise of gradient descent methods is the differentiability of objective functions, which

makes them not applicable to non-differentiable objective functions which can be discrete, discontin-

uous or noisy. Many gradient free methods are available, for example, exhaustive search, simulated

annealing, genetic algorithms and particle swarm. In this section, particle swarm optimization

(PSO) used in Chapter 3 is introduced.

Concepts of particle swarm optimization

PSO is a stochastic optimization method with a population of particles searching for the optima

through the solution space, where each particle is a candidate solution. The concept of PSO

originated from studying collective behavior of social animals like ants, bees and birds, of which

the individuals interact with the environment and each other. The simulations of simplified social

systems from bird flock or fish schools were found to be useful for optimization [ESI01; PV02;

MW15]. The principle idea of PSO is that, for example, a bird in a flock searching for the food

source will constantly adjust its direction and velocity according to its best position so far and the

best position within the flock, and eventually all birds end up at the position of the food source.

The basic particle swarm algorithm and improvements

In the context of

arg min
x

f(x) (1.112)

where objective function f(x) is usually referred to as fitness function, PSO is initialized as a

population of n random particles (solutions) {xi|i ∈ {1, 2, · · · n}, x ∈ R
m}. The updating rule of

ith particle at step t is

xt+1
i = xt

i + vt+1
i , (1.113)

where the velocity vt+1
i is determined by its previous velocity, the personal (cognitive) best position

pi so far and the global (social) best or neighbourhood best position gi as

vt+1
i = vt

i + c1(pi − xt
i)R1 + c2(gi − xt

i)R2, (1.114)

where c1, c2 are accelerating constants named as cognitive coefficient and social coefficient

respectively, R1 and R2 are diagonal matrices with uniformly distributed entries in [0, 1] for
adding stochasticity to the influences from personal and social behaviors.

One important constraint on the updating rule is that the velocities should not exceed a

threshold of vmax such that the velocities would not explode and the searching is confined in the

fitness resolution i.e. the region between present position and best position. Large values of vmax

encourage global exploration and small values lead to exploitation. However, a too small vmax

leads to insufficient exploration in the solution space while a too large vmax may result in skipping

of optima. An empirical suggestion for the value of vmax is

vmax = α
xmax − xmin

2 (1.115)

where xmax, xmin are the searching upper and lower boundaries of all xi.
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To better control the exploration and exploitation, an inertia weight w was introduced for the

velocity

vt+1
i = wtvt

i + c1(pi − xt
i)R1 + c2(gi − xt

i)R2. (1.116)

As suggested in [ESI01], w is usually linearly decreasing from 0.9 to 0.4 to have a good tradeoff

between exploration and exploitation.

To better ensure the convergence, constriction factor K as a function of the cognitive coefficient

c1 and social coefficient c2 was introduced for the updating rule

vt+1
i = K

(
wtvt

i + c1(pi − xt
i)R1 + c2(gi − xt

i)R2

)
. (1.117)

The further details and proofs of constriction method can be found in [Cle99]
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1.6 Molecular Biology 101

1.6.1 The general picture of information flow
The central dogma of molecular biology is as simple as

DNA T ranscription−−−−−−−−−→ RNA T ranslation−−−−−−−−→ Protein.

DNAs are double strands of 4-letter (“ATCG”) sequences which are the instructions for building all

known living organisms and many viruses [Hiy+11; Wika]. Genes are slices of DNA, which will be

transcripted to messenger RNAs. Messenger RNAs are sequences consisting of “AUCG”s, which in

turn will be translated to proteins. Proteins are the building blocks of life systems, which carry out

different functionalities for fulfilling different biochemical activities.

The complexity and mystery of either the translation or transcription processes level up

drastically when the system details are investigated. For example, the whole life-cycle dynamics

of an mRNA involves questions like how the secondary structure is formed, how its structure

incorporates the elongation of the translation machines, ribosomes, how it knows the cell locations

it should go. When life systems are studied on the whole genome scale, more complicated and

challenging problems can emerge. For instance, E. coli’ genome includes in total around 4000 genes

which encode proteins [Bla+97]. The ∼4000 genes make up a large genetic network for maintaining

the life activities of E. coli, which enables them live under different environment conditions. When

the E. coli are moving from a glucose rich environment to a lactose rich one, they first need to

sense the changing. On the molecular level, the information should trigger the lac genes which are

capable of catalyzing and transporting lactose, meanwhile the production of proteins which deal

with glucose is reduced. In the case of eukaryotes, for example, plants and humans, the genome

sizes are usually larger than bacteria and many more complicated mechanisms are involved.

The information flow in life systems makes them interact with and adapt to their environments.

Essentially, a genome, the complete set of DNA in an organism, is the blueprint of the organism.

The information underlying this blueprint is transformed on different molecular layers, involving

RNA and proteins [LH16]. The information transformations interact with their environments which

turn the blueprint to specific phenotypes on cellular, tissue and organism levels. The phenotypes in

turn influence the organism’s survival and reproduction in specific environments. The robustness

of life systems is determined by their ability to adapt to the current environment and flexibility

to adjust to environmental changes. For example, plants in temperate regions usually make use

of the memory of cold winter for determining the upcoming spring and then decide when is the

best time to flower. The primary information from the environment includes temperature and day

length. The temperate plants developed a genetic regulatory mechanism for processing the signals

from temperature and day length and accordingly producing the signaling molecules to trigger the

transition of plants from growing to reproducing.

1.6.2 Transcription, translation and gene regulatory
networks

In biology, the transcription is a process of transferring information from a gene on DNA to a

RNAwhich is also usually called a transcript; the translation is a process of encoding the information
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on an mRNA to a chain of amino acids, which is a polypeptide or a protein. As mentioned in

the last section, many explicit details of the processes are still under intensive investigations. For

simplicity, an introductory overview of transcription and translation are presented for bacteria.

The hierarchical relationships among associated regulators and targeted genes in the processes of

transcription and translation constitute the gene regulatory networks (GRN), which govern the levels

of RNA and proteins within a cell [SD18; Wikb]. GRN is illustrated by the example of flowering

time regulation in plant model Arabidopsis thaliana.

Fig. 1.8: A simplified illustration of the general picture of the transcription and translation. The
plot is adapted from [Aca].

Transcription

The transcription, which copies the information on a gene to a RNA, has three phases: initiation,

elongation and termination. The enzyme RNA polymerase plays a central role in transcription.

For initiation, it binds to a segment of DNA sequence at the upstream of the gene, which is

termed promoter, then separates the DNA double strands to make a single-stranded template for

transcription. The binding of RNA polymerase can be activated or repressed by transcription factors

which are proteins for controlling the rate of transcription. At elongation, the RNA polymerase

moves along the single-stranded gene sequence to synthesize RNA. As transcription moves on to

the terminating part, the sequence signal called terminator causes the stopping of transcription

and then a complete RNA molecule is produced. The RNA has the same information as another

strand except that thymine (T) is replaced with uracil (U).

Translation

The translation process of mRNA also consists of initiation, elongation and termination. Two

types of molecules with central roles in the processes are transfer RNA (tRNA) and ribosomes.

Different tRNAs with different anti-codons carry the corresponding amino acids to the ribosomes.

Ribosomes are complex molecular machines which give slots for different tRNAs to match the right

codons onmRNA and move alongmRNA to form amino acid chains. The initiation takes place at the

untranslated region (UTR) of an mRNA, where the ribosomes dock on. More technically speaking,

a subregion called ribosomal binding site at UTR is where the ribosomes actually land on mRNA.

Once the binding is ready, the first tRNA carries methionine to match the starting codon “AUG”.

After the drop of methionine from the tRNA, the ribosome moves on to next codons. Therefore, the

elongation produces a chain of amino acid, which can be a polypeptide or a complete protein. The
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termination of translation happens when the ribosomes encounter one stop codon (“UAG”, “UAA”,

or “UGA”).

The transcription and translation were superficially introduced to give a general picture such

that when facing a problem, one knowswhich part of the central dogma it belongs to. For instance, in

the case of translational efficiency regulation, the entangled regulatory factors on mRNA sequences,

including codon bias, special motifs, secondary structures and other potential regulators, need to

incorporate with cellular resources and requirements to produce the desired amount of proteins.

Gene regulatory networks

The flowering regulatory networks is extended with details to illustrated the concepts of gene

regulatory networks in general.

Fig. 1.9: The example for gene regulatory networks. (a). Taken from [BDJ15], it showed the known
genetic interactions for regulating flowering time in Arabidopsis thaliana. The details are
made invisible on purpose for not only showing the scale and complexity of the network
but also for the credits of the original authors of the plot. (b). The core of the flowering
regulatory network, adapted from [AC12].

The goal of gene regulatory networks is to regulate the synthesis of gene products at proper rate

such that certain biological functions can be sustained. The produced protein from one gene can

be a regulator of another gene to either activate or repress its expression. In Arabidopsis thaliana,

the gene FLOWERING LOCUS T (FT) acts as the converging point of signals from both the day

length and temperature, and its product eventually induces the flowering [BT15]. The expression

of FT genes is promoted by the proteins produced from the gene CONSTANS (CO), which are

instable in the dark and only being produced about 12 hours after the dawn [BT15; AC12]. Thus the

condition that day length is long enough to produce stable CO proteins is necessary for initiating

the flowering of these long-day plants [TFC08; AC12; BT15]. Another necessary condition is the

turn-off of the inhibitor, FlOWERING LOCUS C (FLC), of FT, which is fulfilled by a process called

vernalization. It involves the exposure of plants in a prolonged period of cold temperature, which

induces a histone modification reaction on the molecular level [Cso+14; Ang+11; Ang+15]. Once

the number of modified histone sites exceed a certain threshold, the expression of FLC will be

repressed (turned off) and then in turn, FT can be expressed. Thus, to activate the expression of

FT in the right time, plants of this type need to incorporate the signals of both day length and

temperature for determining flowering seasons.

As can be seen from the example network, biological entities need sophisticated biochemical

interactions among network components and their environments to achieve certain biological

functions.
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1.6.3 Genomics, transcriptomics and proteomics
Genomics is the study of the genome which is the complete DNA set of a cell or an organism.

For example, the genome of e. coli K-12 consists of 4,639,221 DNA nucleotides, of which 4288

protein-coding genes are annotated [Bla+97]. To make sense of the genome, genomics aims at

systematic characterization and understanding of the structure, functions, mapping and editing

of it [HK11; Wikc]. Similarly, the terminology can be applied to RNA and proteins as shown in

Fig. 1.10.

Fig. 1.10: The relationships of -ome and -omics on the levels of DNA, RNA and proteins.

The advances of technologies in omics have brought the studies to a level that they are able to

produce system-wide quantitative and qualitative data of DNA, RNA and proteins [LH16]. The

large amount of data shed light on the system-wide understanding of biology, for instance, the

mapping from genotypes to phenotypes. Sophisticated algorithms for handling the massive data

became fundamental [Mar17; HK11; Kit02a]. For example, efficient computational alignment

played a central in assembling the DNA fragments from sequencing [Con+01]. And Next Generation

Sequencing completely rely on the advances in computational biology to analyze enormous amount

of short DNA reads [FB09; Mar17].

As an example of proteomics, the study of secretome (the entire set of secreted proteins) in

muscle cells [Gru+18] is introduced to show the typical workflow of mass-spectrometry based

proteomics. The data generated from this study has also been used in Chapter 6. As shown in

Fig. 1.11, the cell culture has been divided into the medium and cell, from which the proteins

were collected and processed to have the secretome and cellular proteome. The cellular proteome

here was specifically referred to as all the proteins staying inside the cell. The obtained protein

samples were then digested by enzymes to small fragments before fed into the mass spectrometer.

The spectra of detected peptides were further analyzed by computational tools for identifying

and quantifying the detected proteins. A few challenges exist in such proteomics studies. For

example, the sample preparation had to make cell lysate in the medium as less as possible to have a

good separation of secretome and cellular proteome; the computational tools had to make false

discovery rate (FDR) as small as possible. FDR is the expected proportion of incorrectly reject the null

hypothesis, or the number of false positives in all of the rejected hypotheses [Col14], which is often

used as a measure of protein identification and quantification in mass spectrometry [Bur17].

Fig. 1.11: The workflow of studying secretome using mass spectrometry techniques, adapted
from [Gru+18].
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Fig. 1.12: The illustration of one-hot-key scheme for DNA sequences. The blue squares represent
‘1’s, and white ones represent ‘0’s.

1.6.4 Biological data for machine learning
The huge amount of available “omics” data including genomics, transcriptomics, and proteomics

pave the way for machine learning to succeed in solving biological problems. Making sense of

the increasing data in order to understand more about life systems becomes the central interest of

fields of computational biology and bioinformatics. In terms of data preprocessing for machine

learning, omics data can be used in the following ways.

The primary sequences as learning features

As the instructions of life systems, DNA sequences have the complete information for guiding

biological processes. For example, to regulate the expression of a certain gene, the instructions

should include how many mRNAs it produces in unit time and in turn how many proteins will be

encoded in unit time. To conserve the information in DNA sequences, a natural way of representing

sequences is to convert them to numerical vectors such that computers are able to comprehend.

One-hot-coding is the most straightforward and common way to convert a character sequence

to numerical vectors. The technique is also commonly used in natural language processing, for

example, the vocabulary of a given document includes 5000 different words which are sorted

by alphabetic order, then each word can be represented by a 5000 dimensional vector where the

position the word sits is 1 and the rest are 0’s. Similarly, an illustration for encoding DNA sequences

is shown in Fig. 1.12, each letter is represented by a four dimensional vector. Then a DNA sequence

with nbp can be represented by a 4×n matrix, which can be used as the feature matrix for properly

designed model.

Features generated by biological prior knowledge

Imagining a 100bp long sequences, the number of possible sequences is 4100 which is an

enormous space for a machine learning model to search for the right pattern. To reduce the

search complexity, it is of great benefit to incorporate biological prior knowledge into either model

building, e.g. neural networks structures, or feature generation.

For example, in a simplified procedure, the first step in translating anmRNA is that the ribosomes

find the right position on the sequence to dock on. The positions are termed ribosome binding sites

(RBS). It was found that special motifs, e.g. Shine-Dalgano sequence “ AGGAGGU”, exist in RBS to

accelerate the binding process of ribosomes. Therefore, features can be constructed to represent the

Shine-Dalgano motif. One simple way of doing that is to obtain matching scores of the consensus

motif “ AGGAGGU” to the actual mRNA sequences by sliding the motif over each position of the
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mRNA. Without knowing this knowledge, when building models for investigating the regulatory

factors of translation efficiency, one needs more efforts to make the model to capture it.

Generating features by prior knowledge to represent the problems of interest actually falls

into the traditional way of applying machine learning methods, which requires less data than

deep learning models which tend to learn the feature representation instead of encoding prior

knowledge manually.
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2Synchronization Analysis of
Complex Networks

2.1 Summary
Inspired by quorum sensing, a machinery of individuals to sense the state of the population

in bacteria [MB01], the paper presented in Section 2.2 studied the synchronization conditions

of a network system which was made up of a population of biological compartments coupled

by a dynamical common medium. Each compartment was assumed to be a biological oscillator

consisting of a number of system components. The network system was then an adaptation of

quorum sensing networks in such a way that all components of individual compartments are able

to diffuse among compartments and the common medium. As an illustration, four compartments in

Fig. 2.1 are interconnected through the commonmedium, each of which consists of four components

M1, M2, M3 and M4 in a cyclic structure.

The synchronization of the proposed networks was influenced by the dynamical properties of

the components of individual compartments and the couplings on two levels: the interconnections

among compartment components and the interconnections between the compartments and the

common medium. It was shown that individual compartments should satisfy the following stability

criteria: the bounded input and output relation and the diagonal stability for multi-dimensional

systems to assure either stable oscillations or equilibria. And condition imposed on the dynamical

coupling is determined by both the coupling strength and input-output properties of individual

compartments. In the case of compartments being oscillators, the input-output dynamical properties

and the couplings conditions ensured the synchronization of networked oscillators. Further, the

synchronization characteristics were specified for biological systems formulated by the state-space

representation, where the individual compartments were factorized into relations among system

states, and the relation between output and systems states. The main results were presented as a

theorem, stating that if the conditions were satisfied, the asynchronous rates between individual

compartments were bounded by the external perturbations.

The derived theorem was applied to a group of coupled repressilators as a case study. The

repressilator is a synthetic biological oscillator [EL00], consisting of three genes which form a

repressing cyclic structure as shown in Fig. 2.2a. Fig. 2.2b shows the oscillation of a single repressi-

lator. When the repressilators form a network structure as shown in Fig. 2.1, the simulation result

(Fig. 2.2c) verified that satisfying the conditions of the theorem guaranteed the synchronization of

the repressilators.

The results in Section 2.2 extended the input-output approach reported by Scardovi et.al [SAS10]

for the quorum-sensing inspired networks. However, this particular extension limited the generality

of the derived results to oscillators that do not possess a cyclic structure and networks which do

not form a structure as shown in Fig. 2.1.
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Fig. 2.1: Four compartments interconnected by a common medium and each consisting of four
components forming a cyclic structure. In this illustration, the component M1 is diffusing
through the network. The way of constructing the network system also fixed the network
structure.

(a) The repressilator, reproduced from [EL00].

(b) The oscillation of a single repressilator.

(c) Synchronization of a group of repressilators.

Fig. 2.2: Application of the main theorem in Section 2.2 to repressilator networks. (a) The syn-
thetic oscillator, repressilator, consists of three genes (tetR, lacI, cl) in a cyclic repressing
structure. (b) It shows the oscillation of three mRNA levels of a single repressilator. (c) 50
repressilators which formed a network structure as shown in 2.1 achieved synchronization
when the conditions in the main theorem were satisfied.

44 Chapter 2 Synchronization Analysis of Complex Networks



2.2 An Operator-theoretic Approach to
Synchronization of Dynamically Coupled
Biological Rhythms
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such that synchronization can be achieved.

3. Applied the extended theorems to the state space formalism of repressilators and Goodwin
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4. Carried out the proofs and simulations, with help and discussions from the coauthor Dong

Xue and Dr. Luca Scardovi.
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Abstract: This paper studies synchronization mechanisms for networks of biological rhythms. The network is made up of
compartments (e.g., E. coli in a cell culture) which consist of heterogeneous subsystems (e.g., reaction pathways) interconnected
by internal signaling. The compartments are, in turn, interrelated through common medium. Based on this structural foundation,
synchronization conditions are provided from operator-theoretic view of point, which involve the input-output properties of
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paper also provides synchronization criterion for the networks modeled in the formalism of state-space. Finally, the proposed
theory finds bio-chemical applications in the networks of toggle switches and repressilators, respectively.
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1 Introduction

Biological rhythms are central to life and social commu-

nity as well as generalized large complex systems [1]. The

natural phenomenon covers a wide range of diverse physio-

logical processes, for example cardiac system [2], circadian

rhythms [3] etc.

The rhythms in nature usually interact with each other by

various mechanisms, and also subject to external fluctuating

due to exposing in noisy environment. Additionally, syn-

thetic genetic circuit usually involves nonlinear components

such as toggle switches [4] and oscillators [5]. Hence, to

investigate the network-induced behavior, fully understand-

ing of isolated individual dynamics is inadequate. Due to the

complex nature of biological rhythms, researchers in many

disciplines impose much effort on theoretical and experi-

mental studies of gene regulatory networks, obtaining nu-

merous profound results on modeling and analyzing such

rhythms[4–10]. Among the studies in this area, synchro-

nization is of fundamental significance in the coordination

of rhythmic behavior among individual subsystems in a large

networks.

The analysis of synchronization phenomena in networks

has become an important topic in systems and control theory,

motivated by diverse applications in physics, biology, and

engineering[11–13]. However, in studying the literature on

the synchronization analysis of biochemical network, one is

stuck by the level of sophistication and technical complexity.

To avoid involving the internal modeling complex, the input-

output method has been applied to biological systems, which

turns out to rely hardly on the knowledge of the intrinsic

physical laws regulating the systems, and hence is fairly ad-

equate to deal with systems with parameter and structural un-

certainties [14]. Motivated by this pioneering work, we de-

velop the analysis of biologically synchronous pattern from

the input-output perspective associated with operator theory.

In particular, we generalize differential passivity [15] to the

operator field and then connect the synchronization property

This work is supported by CSC scholarship

to energy-based concepts.

our motivation The seminal work of Bassler et. al unrav-

els the underlying machinery of quorum sensing and its im-

portance for communication in bacteria[16]. Inspired by the

machinery where each cell secrets auto-inducers to a com-

mon medium then in turn individual cells sense the density

of auto-inducer in the medium to monitor the state of the

whole population, we extend it in such a way that all com-

ponents of individual compartments are able to diffuse be-

tween compartments and the common medium. In case of

compartments being oscillators, the synchronization condi-

tions are heavily influenced by the interaction. Therefore a

sound theoretical analysis for synchronization in such a sce-

nario is needed. Theoretically armed with the input-output

approach, in addition by exploring internal coupling within

compartments (intracellular) and external interconnected in

a common medium (intercellular), we are able to attain the

conditions for synchronization.

main contribution In this work, we study the synchro-

nization problem of biological rhythms with dynamical cou-

plings in both intracellular and intercellular levels. Aim-

ing at characterizing synchronization conditions, a network

model is first proposed under the consideration that interac-

tion of species attributes to internal signaling and intercellu-

lar signaling is accomplished by a common medium rather

than directed cell-to-cell communication. Then, an input-to-

output approach is employed to study synchronization prop-

erties of compartments. It is shown that the synchronization

behaviors depend not only on input-output characteristics of

the compartments, but also the diffusive coupling between

the common medium and compartments. In addition, we

also specify the synchronization characteristics of biologi-

cal systems with models in state-space, as such is terminus

a quo for utilization of theoretic and experimental tools de-

rived on the basis of the state-space representation in control

engineering.

The organization of the paper is as follows. In Section II,
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some necessary notations and the model formulation are pre-

sented; In the Section III, we provide the main results based

on the proposed model. And the main results are shown to

be applicable to networks modeled in the formalism of state

space. In Section IV, It is shown that biological model with

very general interconnections can be applied with diagonal

stability test and synchronization conditions for networks of

these biological rhythms which are dynamically coupled are

obtained. Finally the simulation results verify the conditions

numerically.

2 Preliminaries and Notations

In this section, some preliminary knowledge and neces-

sary notations are presented for later illustration. For a given

signal a: [0,∞)→ R in the extended space L2e, the restric-

tion aT = a|[0,T ] belongs to L2(0,T ), for any T > 0. Given

any a ∈ L2e and any T > 0, let ‖a‖T denote the L2 norm of

the restriction aT , and let the inner product of aT and bT be

denoted by 〈a,b〉T for given a,b ∈ L2e and any T > 0.

Bacterial cells in a cell culture exchange information with

each other through the growing environment by sensing cer-

tain chemicals or nutrients. Different components within a

cell also exchange information or energy through cytoplasm.

We consider a network consisting n compartments, each

composed of N subsystems which are called species[14],

communicate with each other through a common medium.

Assuming the kth species of all compartments are diffus-

ing through the network, the input-output behavior of the jth
compartment can be written as

yk, j = Mkuk, j (1)

uk, j = zk, j +
N

∑
i=1

ak,iyi, j +bk(sk − yk, j), (2)

where k = 1,2, · · · ,N, j = 1,2, · · · ,n and uk, j is input of

mapping Mk. Exogenous signal is denoted by zk, j , and

∑N
i=1 ak,iyi, j describes the interaction among different species

in the jth compartment, which is referred to species inter-

action, and bk describes the diffusive interaction strength

between each species and the common medium. The co-

efficients ak,i ∈ R, k, i = 1,2, · · · ,N, represent the inter-

connection among different species, and are identical in

each compartment. The interconnection matrix for species

within each compartment can be written as A := [ak,i], k, i =
1,2, · · · ,N. sk represents the concentration of the corre-

sponding species of kth species in the common medium,

whose dynamics can be formulated as

sk = Fkwk (3)

wk =
n

∑
i=1

ck(yk,i − sk), (4)

where wk is the input of mapping Fk. It is assumed that the

common medium is equally connected to all compartments,

i.e. interaction strength between the medium and all com-

partments is the same. For instance, for species k, the dif-

fusive strength from the medium to each compartment is bk,

from each compartment to the medium ck. The mechanism

can be illustrated by the graph as Figure 1.

From a biochemical point of view, the network model (1)-

(4) can describe as a population of cells living in a common

Fig. 1: Four compartments interconnect by a common

medium and each consists of four species forming a cyclic

structure

medium and such medium can be considered as a large cell

which is adjacent to all normal cells. Assuming the volumes

of the cell and the medium are Xc, Xm respectively and defin-

ing constant ε = Xc/Xt , the relation between coefficients bk
and ck is ck = εbk, of which the related work can be found

in [17–20].

Grouping the outputs of species k in n compartments into

vector form gives rise to Yk = (yk,1,yk,2, · · · ,yk,n)
T . Simi-

larly, inputs and external signals of them can be denoted

as Uk = (uk,1,uk,2, · · · ,uk,n)
T , Zk = (zk,1,zk,2, · · · ,zk,n)

T re-

spectively. The output of the medium sk diffuses to kth

species of all n compartments as their inputs, thus we write

Sk = (sk,sk, · · · ,sk)
T . Using those notations, the intercon-

nections (2) can be rewritten as

Uk = Zk +
N

∑
i=1

ak,iYi +bk(Sk −Yk), k = 1,2, · · · ,n. (5)

The coefficients ak,i ∈R,k, i= 1,2, · · · ,N represent the in-

terconnection between different species. The interconnec-

tion matrix of each compartment can be written as A :=
[ak,i],k, i = 1,2, · · · ,N.

The differences among the outputs of the same species

in different compartments, which can be defined by Y Δ
k :=

[yk,1 − Ȳk, · · · ,yk,n − Ȳk]
T where the average of all outputs of

species k is Ȳk := 1
n 1T

n Yk, characterize the synchronization of

the network system (1)-(2). The same notation is used to

define ZΔ
k and XΔ

k . Further we introduce the operator ψ as

ψ = QT Q = In − 1

n
1n1T

n ,n ∈ Z+,

where

Q =

⎡
⎢⎢⎢⎢⎣

−1+(n−1)ν 1−ν −ν · · · −ν

−1+(n−1)ν −ν 1−ν
. . .

...
...

...
. . .

... −ν
−1+(n−1)ν −ν · · · −ν 1−ν

⎤
⎥⎥⎥⎥⎦

n×(n−1)

with ν = n−√
n

n(n−1) . From a straightforward calculation, one

can see that ψYk = QT QYk = Y Δ
k , which means the operator
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ψ measures the disagreement between each element and the

average of the elements in a vector. Moreover we define

Ŷk := QYk, and the same for Ûk, Ẑk, Ŝk.

Before moving on proceeding, we need the notion of co-

coercivity and a critical lemma from [14] which provided as

follows.

Definition 2.1. Let M : L m
2e → L m

2e. Then M is relaxed co-
coercive if there exists some θc ∈ R such that in every pair
of inputs u1,u2 ∈ L m

2e

θc‖Mu1−Mu2‖2
T ≤ 〈Mu1−Mu2,u1−u2〉T , ∀T ≥ 0. (6)

If (6) holds with θc ≥ 0, then M is called monotone. If (6)

holds with θc > 0, then M is cocoercive.

Lemma 2.1. Consider the open-loop system yk, j = Mkuk, j .
If the mappings Mk,k = 1,2, · · · ,N are relaxed cocoercive
then

θk‖Ŷk‖2
T ≤ 〈Ŷk,Ûk〉T , k = 1,2, · · · ,N, (7)

for each T > 0 and every Xk ∈ Ln
2e.

Without interactions between the medium and compart-

ments, i.e. bk = 0,k = 1,2, · · · ,N, the n compartments are

isolated and their stability depends on the interactions among

the internal species. The notion of dissipativity matrix is in-

troduced to characterize stability [21], [22], [23], which is

defined as

Eb := A−Θb,

where Θb := diag(b1,b2, · · · ,bN), b := col(b1, · · · ,bN) and A
is the interconnection matrix [ak,i]. The dissipative matrix Eb
is dianogally stable if there exists diagonal matrix D> 0 such

that ET
b D+DEb < 0. The stability of Eb implies stability of

the isolated systems.

When isolated compartments are connected by a common

medium to form a quorum-sensing-like network, dynamic

of each compartment is influenced by the network in such

a way that the diagonal entries of its dissipativity matrix

are augmented with network properties. In bacterial colony

where bacteria sense the information from the environment

and detect the density of the population by secreting auto-

inducer, whereas in our network model, each species in indi-

vidual compartments is allowed to diffuse through the com-

mon medium which is a more general scenario.

3 Synchronization results for networks with dy-
namical coupling

In this section it is shown that input-output properties of

subsystems of each compartment and the diffusing strength

are key ingredients of synchronization conditions.

3.1 Main results
We now consider that the common medium displays the

same dynamics to all compartments such that the input from

the medium to each compartment is identical. The common

medium is influenced by all the compartments and the output

of the medium dynamic diffuses back to compartments.

Theorem 3.1. Consider the close loop system (1)-(4) and
suppose the following assumptions:

1) Each mapping Mk are θk-relaxed cocoercive, k =
1,2, · · · ,N;

2) For k = 1,2, · · · ,N, θ̂k = θk + bk > 0, where bk is the
compartment coupling strength of species k;

3) The dissipativity matrix Eθ̂k
, defined as

Eθ̂k
= A−Θθ̂k

.

where A = [ak,i], k, i = 1,2, · · · ,N and Θ =

diag(θ̂1, θ̂2, · · · , θ̂N) is diagonally stable.
Then for all zk, j , yk, j , k = 1,2, · · · ,n that satisfy (1)-(4) we
have

‖Y Δ‖T ≤ η‖ZΔ‖T .

for some η > 0, and all Z ∈ L Nn
2e .

Proof. Consider inputs Uk =Vk +bk(Sk −Yk), then

Ûk = V̂k +bkQSk −bkŶk.

Since QSk = 0, we obtain

Ûk = V̂k −bkŶk. (8)

Mappings Mk,k = 1,2, · · · ,n are θk-relaxed cocoercive,

therefore using Lemma 2.1 and (8) yields

θk‖Ŷk‖2
T ≤ 〈Ŷk,Ûk〉T

= 〈Ŷk,V̂k −bkŶk〉T

= 〈Ŷk,V̂k〉T −bk‖Ŷk‖2
T .

It follows that

θ̂k‖Ŷk‖2
T ≤ 〈Ŷk,V̂k〉T , (9)

with θ̂k = θk +bk.

We define

Wk = Zk +
N

∑
i=1

ak,iYi. (10)

By stacking vectors and using Kronecker product, (10) can

be rewritten as

W = Z +(A⊗ In)Y. (11)

Assumption 3 states the dissipativity matrix Eθ̂k
= A−Θθ̂k

is

diagonally stable with Θ = diag(θ̂1, θ̂2, · · · , θ̂N). Thus there

exists D = diag(d1,d2, · · · ,dN) satisfying

DEθ̂k
+ET

θ̂k
D < 0, (12)

such that DEθ̂k
+ET

θ̂k
D < −2β holds for some small β > 0.

Noticing that

〈Dv,Eθ̂ v〉T =
1

2

∫ T

0
vT (t)(DEθ̂k

+ET
θ̂k

D)v(t)dt

≤−β‖v‖2
T

and combining with (9) we have 〈dkŶk,Ŵk − θ̂Ŷk〉T ≥ 0 for

k = 1,2, · · · ,k. Stacking the vectors gives

〈
(D⊗ In−1)Ŷ ,Ŵ − (Θθ̂ ⊗ In−1)Ŷ

〉
T ≥ 0. (13)

Substituting (11) into (13) leads to

〈
(D⊗ In−1)Ŷ , Ẑ +(Eθ̂ ⊗ In−1)Ŷ

〉
T ≥ 0 (14)

48 Chapter 2 Synchronization Analysis of Complex Networks



Consequently we have

α‖Ẑ‖T‖Ŷ‖T ≥ 〈
(D⊗ In)Ŷ ,Z

〉
T

≥ 〈
(D⊗ In)Ŷ ,(Eθ̂ ⊗ In)

〉
T

≥ β‖Ŷ‖2
T

for some α > 0. Directly it comes to

‖Ŷ‖T ≤ η‖Ẑ‖T , ∀T > 0, (15)

where η = α/β .

It is worthy of noting that no constraints are imposed on

the dynamic of the medium since the species are diffusive

and the dynamic of the medium is heavily influenced by the

dynamics of individual compartments. And also the assump-

tions have no requirements about the structural properties of

network.

3.2 Applications to state space formalism
Theorem 1 is applicable to synchronization of networked

systems formulated in state space.

ẋk, j = fk(xk,vk, j)

yk, j = hk(xk, j) (16)

ẇk = gk(wk,ξk)

sk = pk(wk),

where

vk, j = zk, j +
N

∑
i=1

ak,iyi, j +bk(sk − yk, j) (17)

ξk =
n

∑
i=1

ck(yk,i − sk) (18)

for all k = 1,2, · · · ,N, and all j = 1,2, · · · ,n. The state of the

medium with respect to species k is denoted by wk. And

fk, hk, gk, pk are continuous functions. The following

corollary concludes the synchronization conditions of the

networked system.

Corollary 3.1. Consider system (16) and assume the map-
pings Mj, j = 1, · · · ,n and Fk, k = 1,2, · · · ,N with zero ini-
tial conditions are well defined. Consider the closed loop
system defined by (16) with inputs as in (2) and (4). If 1)
θ -relaxed cocoercive mapping Mk from vk, j to yk, j can be
factorized into two functions fk and hk, and the mapping Fk
from ξk to sk can be factorized into gk and pk, and 2) the dis-
sipativity matrix Eθ̂ as defined in assumption 3 of Theorem
1 is diagonally stable. Then, there exists λ > 0, such that

‖Y Δ‖T ≤ λ‖ZΔ‖T ,

If Z = 0, the outputs asymptotically synchronize.

Due to the assumption that θ -relaxed cocoercive mapping

Mk can be factorized to function fk and hk, the proof follows

the same reasoning of the proof of Theorem 1.

Remark: For the biological rhythms of interest, in order to

obtain the synchronization conditions using our input-output

method, a primary assumption on the dynamics of the sys-

tem is the subsystems are required to be relaxed cocoercive.

However, biological systems in general possess high com-

plexity which leads to high nonlinearity in mathematical for-

mulations. In turn, many realistic systems can hardly satisfy

the assumption directly. To tackle this sophistication, we can

usually decompose the systems in order to obtain the cocoer-

civity. For instance, ẋ1 =−x1 +1/(1+ xn
2), i.e. a subsystem

containing a Hill function of the state of another subsystem

will render it not relaxed cocoercive. Without any alteration

to the dynamic of the subsystem, once we separate the non-

linearity out, the equation can be factorized as ẋ1 =−x1 +u,

which is relaxed cocoercive with gain 1, and u = 1/(1+xn
2),

which is also relaxed cocoercive with gain 4n
n2−1

n
√

n−1
n+1 . This

technique will be utilized in case study.

3.3 Dissipativity Matrix and Diagonal stability
Besides relaxed cocoercivity of mappings and algebraic

connectivity, another key ingredient for concluding synchro-

nization of interconnected systems is the diagonal stability

of the corresponding dissipativity matrix which incorporates

information of cocoercivity of subsystems, interconnection

of compartments and signs of interconnection terms. The

work in [23] proposed a result for proving diagonal stability

of interconnected systems with cactus structures that can be

interpreted as combinations of arbitrary numbers of cyclic

sub-structures. Therefore systems with more general struc-

tures become easy to tackle based on framework of diago-

nal stability and secant criterion. To analyze interconnected

systems with general interconnection such as networked re-

pressilator(see the following application), we introduce the

following lemma from the results of [23].

Lemma 3.1. Consider a matrix with the form of

Ê =

⎡
⎢⎢⎢⎢⎣

−1 0 · · · e1n

e21 −1
. . .

...
...

. . .
. . . 0

0 · · · en,n−1 −1

⎤
⎥⎥⎥⎥⎦ , (19)

which consists of a single loop. A matrix E that can be
brought to the form of Ê in (19) upon a permutation is di-
agonally stable if and only if:

|γ|Φ(sgn(γ),n)< 1,

where

Φ(sgn(γ),n) =
{

cosn(π/n) if γ < 0

1 if γ > 0.

In the classic cyclic structures, e21 · · ·en,n−1 are required

to be positive while e1n to be negative. However for many

practical biological interconnections where repressions usu-

ally exist in intermediate reactions, the cyclic structure is not

suitable to characterize them. Lemma 3.1 does not require

specific signs for terms of e21 · · ·en,n−1,e1n but only concerns

the sign of their product. Therefore it is applicable to a wide

range of biological models.

4 Further Discussions and Applications

In this section, we apply the proposed theory to analyze

synchronization in networks of genetic regulatory systems:
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toggle switches and repressilators. The networked switches

or oscillators interact with each other through a common dy-

namical medium where each species is allowed to diffuse

into.

4.1 Case 1: toggle switches
A genetic toggle switch is constructed by means of mu-

tual inhibition using two repressors and two promoters [4].

To generate bistability of the toggle switch, each promoter is

inhibited by the repressor which is transcribed the opposing

promoter. To illustrate the cyclic mechanism, take a natural

switch from the bacteriophage λ for example [6], two re-

pressors cl and cro, two promoters PR and PRM , the promoter

PRM controls expression of the gene cl, and protein CI re-

presses PR, whereas PR controls expression of the gene cro,

and protein Cro represses PRM .

A dimensionless model was proposed in [4] to understand

and approximately describe the biological dynamics of the

toggle switch:

ẇ =
a1

1+ vb −w (20)

v̇ =
a2

1+wc − v, (21)

where w is the concentration of the first repressor, v is the

concentration of the second repressor, a1, a2 are the effec-

tive rate of synthesis of the first repressor, b is the coop-

erativity of repression of second promoter and c is the co-

operation of repression of first promoter. The first term in

each equation models the cooperative repression of constitu-

tively transcribed promoters and the second term represents

the degradation.

Now we use Lemma 3.1 to obtain sufficient condition for

the diagonal stability of toggle switches. Separating out two

nonlinearities, input-output form of (20), (21) can be written

as

M1 : ẋ1 =−x1 +α1u1, u1 =−y4 (22)

M2 : y2 =− 1

1+ub
2

, u2 = x1 = y1 (23)

M3 : ẋ3 =−x3 +α2u3, u3 =−y4 (24)

M4 : y4 =− 1

1+uc
4

, u4 = x3 = y3 (25)

where x1 is the concentration of the first repressor corre-

sponding to w in (20), x3 is the concentration of the sec-

ond repressor corresponding to v in (21), y2,y4 are separated

nonlinearities from (20), (21) and are also considered as

two species, u1-u4 are the associated inputs of four species.

Therefore the original toggle switch model is recomposed to

a cyclic-like loop as

M1
+−→ M2

−−→ M3
+−→ M4

−−→ M1

From the relation between inputs and outputs of four

species, we have the interconnection matrix of the modified

toggle switch model as

A =

⎡
⎢⎢⎣

0 0 0 −1

1 0 0 0

0 −1 0 0

0 0 1 0

⎤
⎥⎥⎦.

By a straightforward calculation(section V of [14]), we

have cocoercive gains of M1,M2,M3,M4 as θ1 = 1/a1,θ2 =
4c

c2−1
c
√

c−1
c+1 ,θ3 = 1/a2,θ4 = 4b

b2−1
b
√

b−1
b+1 respectively. The

dissipativity matrix associated with (22) is

E = A−diag{θ1,θ2,θ3,θ4}=

⎡
⎢⎢⎣
−θ1 0 0 −1

1 −θ2 0 0

0 −1 −θ3 0

0 0 1 −θ4

⎤
⎥⎥⎦ .

By Lemma 3.1, dissipativity matrix E is diagonally stable if

θ1θ2θ3θ4 > 1, (26)

since E can be brought to the form of Ê in (19) by permu-

tation PE where P = diag{ 1
θ1
, 1

θ2
, 1

θ3
, 1

θ4
} and obviously the

product of the off-diagonal elements of PE is positive.

Now we consider a network of n toggle switches which

are dynamically coupled. In each toggle switch, M2,M4 are

separated nonlinearities and only M1,M3 can diffuse through

the network. Then, the dynamics of the networked system

can be modeled as provised in Table 1.

Table 1: Toggle switches

dynamics input

M1 ẋ1, j =−x1, j +a1u1, j +b1(s1, j − x1, j) u1 =−y4

M2 y2, j =− 1
1+uc

2, j
u2 = x1 = y1

M3 ẋ3, j =−x3, j +a2u3, j +b3(s3, j − x3, j) u3 =−y4

M4 y4, j =− 1
1+ub

4, j
u4, j = x4, j = y4, j

F1 ṡ1, j =−s1, j + c1

n
∑

i=1
(x1,i − s1, j)

F3 ṡ3, j =−s3, j + c3

n
∑

i=1
(x3,i − s3, j)

The dissipativity matrix Ê should be constructed follow-

ing the assumption 3 in Theorem 1. The sufficient condition

for diagonal stability is

(θ1 +b1)(θ3 +b3)>
1

θ2θ4
. (27)

To determine values of cocoercive gains, parameters in (20)-

(21) has to be chosen to assure the existence of bistability

of toggle switches. The dynamical analysis of (20), (21) in

[4] showed that the bistability of toggle switch is favoured

by b,c > 1 that are cooperative repressions of transcription

and balanced rates of synthesis, that is, difference between

a1 and a2 cannot be too large. Thus we choose the parameter

set as b = 4,c = 3,a1 = 10,a2 = 20.

From the discussion in section V of [14], straightfor-

ward calculation of cocoercive gains gives rise to θ1 =
0.1,θ2 = 1.2,θ3 = 0.05,θ4 = 0.9 and substituting them into

(27) yields

(0.1+b1)(0.05+b3)> 1 (28)

Therefore, the validity of (28) and discussion above result in

synchronization of the networked switches by Theorem 1.
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4.2 Case 2: repressilators
In this part, we analyze the synchronization of repressi-

lators which share the common dynamical medium and as-

sume the medium displays the same dynamic to all repressi-

lators.

The seminal work of Elowitz et. al [5] gave rise to the

model of repressilator as

ẇi =−wi +
a

1+ zp
j
+a0 (29)

żi =−b(zi −wi), (30)

where w represent mRNA concenstrations, z represent the

corresponding protein concenstrations (i = lacI, tetR,cl, j =
cl, lacI, tetR); a0 is the leakiness of the given type of pro-

moter in the presence of saturating repressors and a+ a0 in

the absence; b is the lifetime ratio of mRNA and protein; p
is the Hill coefficient.

Table 2: Repressilator Network

dynamics input

M1 ẋ1, j =−x1, j +av1, j u1, j =−y9, j

M2 ẋ2, j =−bx2, j +bv2, j u2, j = y1, j

M3 y3, j =− 1
1+vp

3, j
u3, j = y2, j

M4 ẋ4, j =−x4, j +av4, j u4, j =−y3, j

M5 ẋ5, j =−bx5, j +bv5, j u5, j = y4, j

M6 y6, j =− 1
1+vp

6, j
u6, j = y5, j

M7 ẋ7, j =−x7, j +av7, j u7, j =−y6, j

M8 ẋ8, j =−bx8, j +bv8, j u8, j = y7, j

M9 y9, j =− 1
1+vp

9, j
u9, j = y8, j

Fk ṡk =−csk +
n

∑
i=1

ck(xk,i − sk)

The repressilator model determines the kinetics of a syn-

thetic oscillatory network consisting of three repressor genes

cI, tetR, and lacI. The protein of the first repressor cI, CI, in-

hibits the transcription of the second gene lacI, whose prod-

uct protein in turn inhibits cI’s expression. In this cycle, one

gene is the repressor for another, and without repressor, it

will continuously produce protein. The ideal case is that in

the presence of saturating repressors, there will be no prod-

uct from the repressed gene. The corresponding determinis-

tic model can be described as (29)-(30) with α0 = 0 which is

the case considered in this section. Due to different param-

eter choices and initial conditions, the repressilator model

has at least two dynamical behaivors: limit-cycle oscillations

or stable steady state. Large value of a, low leakiness with

small a0, and proper b are beneficial for oscillatory behavior

of repressilators.

We modify the model (29)-(30) into input-output form

that is given in Table 2 in which j = 1,2, · · · ,n, yk, j, k =
3,6,9, xk, j, k = 1,2,4,5,7,8 and vk, j, k = 1,2, · · · ,9 deter-

mine the input-output relations between subsystems. Fk, k =
1,2 · · · ,9 define the same dynamic of the medium to all com-

partments, with ck, k = 1,2, · · · ,9
By the similar tracking as the case of toggle switches,

we have cocoercive mappings Mk, k = 1, · · · ,9 with co-

Fig. 2: Synchronization of 50 repressilators which are dy-

namically coupled by the common medium.

coercive gains (a,1, 1
θh
,a,1, 1

θh
,a,1, 1

θh
) respectively, where

θh =
4p

p2−1
p
√

p−1
p+1 . Similarly the sufficient condition for diag-

onal stability of dissipativity matrix Ê is

∏
k
(θk +bk)>

1

θ3θ6θ9
cos9(

π
9
),k = 1,2,4,5,7,8. (31)

Substituting the gains (a,1, 1
θh
,a,1, 1

θh
,a,1, 1

θh
) into (31),

it follows that

(
1

a
+b1)(1+b2)(

1

a
+b4)(1+b5)(

1

a
+b7)(1+b8)

>
1

θ 3
h

cos9(
π
9
) (32)

with θh =
4p

p2−1
p
√

p−1
p+1 which can be verified as an decreasing

function with Hill coefficient p. Now one has to chooose

proper values for a and p in such a way that the oscillation

of repressilators is certain.

Following the discussion in [5], we choose values for pa-

rameters as a = 10,b = 1, p = 2 to ensure sustained oscilla-

tion of repressilators. Consequently we have

(0.1+b1)(1+b2)(0.1+b4)(1+b5)(0.1+b7)(1+b8)

>
1

θ 3
h

cos9(
π
9
) := c

(33)

Then if we only allow the first species in each compart-

ment can diffuse into the medium and assume the coupling

strength is ε , i.e. bk = ε, f or k = 1 and bk = 0, f or k =
2,4,5,7,8. It follows the condition

0.1+ ε > 100c

The simulation results are shown in Figure 2, where a net-

work of 50 repressilators are interconnected based on the

model (1)-(4). Under the condition of ε > 16, synchroniza-

tion of repressilators is achieved.

5 Conclusion and Future work

Based on input-output approach, synchronization condi-

tions for networks with dynamical coupling are presented in

the paper. The conditions rely heavily on input-output prop-

erties of subsystems, diffusive strength between the common
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medium and each compartment, and diagonal stability of the

dissipativity matrix corresponding to the compartments. The

case that biological rhythms which possess complex inter-

connections are coupled dynamically by a common medium

is applied with the proposed theoretical results to obtain syn-

chronization conditions. The simulation results shows the

effectiveness the results.
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3Analytical and Data-driven
Analysis of Flowering Time
Determination

3.1 Summary
In order to successfully reproduce, plants must sense changes in their environment and flower

at the correct time. Many plants in temperate regions utilize day length and vernalization, a process

of exposing plants in prolonged cold, to determine when to flower. On the molecular level of the

model plant Arabidopsis, vernalization accelerates flowering by down-regulating the protein FLC

which prevents flowering. The down-regulation involves histone modifications on the FLC locus.

When the expression of FLC is silenced, the flowering signal FT is produced to trigger flowering.

Based on this qualitative understanding of flowering regulation in Arabidopsis, the manuscript

in Section 3.2 investigated the regulatory mechanism from an information point of view using

temperature and day length data.

First, it was assumed that the prolonged cold winter contains sufficient information for con-

structing robust switch-behaviors of FLC. And for different climates, due to the differences in

temperature dynamics, vernalization requires different memory spans of cold winter. The tempera-

ture dynamics was first dissected by decomposing them into seasonal changes and temperature

fluctuations due to weather changes. It was found that temperature fluctuations of temperate

climates such as Cologne and Auckland have exponentially decaying autocorrelations. The auto-

correlation means that the fluctuation in one day is correlated with neighbouring days. Therefore,

the plants should detect the seasonal changes and avoid the influences from the autocorrelations

in temperature fluctuations. Based on the molecular basis of vernalization, a simple stochastic

model was established for the histone modification reaction to incorporate the temperature dy-

namics. The model is mathematically described as a master equation and shown in reaction form

in Fig. 3.1a. To model the temperature sensitive behavior of the reaction, the production rate

βT (t) was temperature-dependent and the degradation rate λ of modifications was temperature

independent. The probability of having n histone modifications was only dependent on its neigh-

bouring states. Due to the exponential decay of correlations in temperature fluctuations, the master

equation was analytically solved for climates such Cologne. Solving the master equation yielded

the probability distribution of having different modification states with the parameters β and λ.

With such a setting, a flowering decision objective was optimized to obtain the optimal β and λ

which specified the probability distribution which is shown in Fig 3.1b. Further, it was shown

in Fig 3.1c that the switch behavior of FLC can be reconstructed. The simple stochastic model

was only applicable to temperate climates as they have exponentially decaying correlations in

temperature fluctuations.

Secondly, to relax the restriction on climate properties and system details, artificial neural

networks were deployed to learn the idealized expression pattern of FLC from temperatures and

day lengths of different climates. It was shown in Fig 3.1d that, using data from Cologne, the
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neural network models trained solely on temperature memory roughly reconstructed the idealized

expression patterns of FLC but with a local optimum in September due to seasonal similarity

between Spring and Autumn. This local minimum might lead to wrong flowering decisions.

Interestingly, the addition of short-term day length signal eliminated the local optimum, which

indicated that the combined signal led to more precise decisions (Fig 3.1e). However, for climates

with less seasonal changes such as Kahului and San Francisco, the expression patterns could not be

reconstructed from the temperature memory. These findings suggested that the plants in temperate

region may use long-term cold temperatures to determined the season and short-term day lengths

to trigger the flowering.

(a)Modeling the temperature dependent histone modifications.

(b) The probability distributions of two time points

in a year.
(c) Switch behavior of the core regulatory gene FLC.
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(d) Predictions with only temperature
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(e) Predictions with temperature and day length.

Fig. 3.1: Decision making in flowering time. (a) The histone modification is simplified as birth-
death process. n stands for the number of modified histones, the production rate βT (t)
depends on the temperature T (t) and λ is the degradation rate. Solving the model led to
the distribution p(n, t) which is parameterized by β and λ; (b) With optimal β and λ, the
probability distribution p(n, t) over number of modifications n (in total 60 sites) for two
time points: 1st January and 15th April; (c) The FLC expression switching behavior was
constructed from p(n, t) of having less than 30 modification sites over two years, with
green areas for potential flowering seasons. (d) Cologne, prediction result of the idealized
FLC (in red) expressions using 42 days of temperature as the input features gave a local
minimum due to similarity between spring and autumn; (e) Cologne, the local minima
were eliminated by adding 2 days of day lengths as extra features.
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Abstract

In order to successfully reproduce, plants must sense changes in their environment and
flower at the correct time. Many plants utilize day length and vernalization, a
mechanism for verifying that winter has occurred, to determine when to flower. Our
study used available temperature and day length data from different climates to provide
a general understanding how this information processing of environmental signals could
have evolved in plants. For climates where temperature fluctuation correlations decayed
exponentially, a simple stochastic model characterizing vernalization was able to
reconstruct the switch-like behavior of the core flowering regulatory genes. For these and
other climates, artificial neural networks were used to predict flowering gene expression
patterns. For temperate plants, long-term cold temperature and short-term day length
measurements were sufficient to produce robust flowering time decisions from the neural
networks. Additionally, evolutionary simulations on neural networks confirmed that the
combined signal of temperature and day length achieved the highest fitness relative to
neural networks with access to only one of those inputs. We suggest that winter
temperature memory is a well-adapted strategy for plants’ detection of seasonal changes,
and absolute day length is useful for the subsequent triggering of flowering.

Introduction 1

Plants must make correct flowering time decisions in a noisy environment in order to 2

successfully reproduce. As key environmental signals, day length and temperature are 3

processed by plants’ genetic networks for detecting seasonal changes. The core genes 4

and their interplays have been well understood in the model plant, Arabidopsis 5

thaliana [1, 2], as shown in Fig 1. The gene FLOWERING LOCUS T (FT) merges 6

signals from both day length and temperature, and its encoded protein eventually 7

induces the flowering [3]. The expression of FT genes is promoted by the expression of 8

the gene CONSTANS (CO), whose gene products are produced about 12 hours after 9

dawn and quickly degrade in the dark [1, 3]. Thus, the condition that day length is long 10

enough to produce stable CO proteins is necessary for initiating the flowering of the 11

so-called long-day plants [1, 3, 4]. In particular, for winter annuals of Arabidopsis 12

thaliana [5, 6], vernalization is required to cease expression of FlOWERING LOCUS C 13

(FLC), the inhibitor of FT. Vernalization involves the exposure of plants to a prolonged 14
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period of cold temperature, which induces histone modifications on the epigenetic level 15

for silencing FLC [7–9]. The repressed FLC allows FT to be expressed under long days. 16

Similarly, in perennial Arabis alpina, the orthologs of FLC, PERPETUAL 17

FLOWERING 1 (PEP1), downregulates the orthologs of FT, AaFT1 and AaFT3, and 18

needs to be silenced by vernalization in order for the perennials to flower in the right 19

time [6]. Moreover, for perennial Arabidopsis halleri, Nagano et.al [10] demonstrated the 20

role of cooperation between the oscillations of temperature and day length in adaptation 21

to seasonal changes. Thus, the integration of signals from temperature and day length is 22

crucial for both annual and perennial plants to make flowering decisions. Despite the 23

qualitative understanding of the genetic regulation of flowering time, it is unclear from 24

an information point of view why plants have evolved vernalization from fluctuating 25

winter temperatures and how it relates to day length in flowering decisions.

Fig 1. Flowering time regulation in Arabidopsis thaliana. In Arabidopsis
Thaliana, long days promote the expression of FLOWERING LOCUS T (FT). The
vernalization process also promotes its expression by turning-off its repressor
FLOWERING LOCUS C (FLC).

26

Many theoretical studies have contributed to the understanding of the vernalization 27

mechanism. It was shown to be an inheritable and stable epigenetic switch for the 28

expression of FLC [11–15]. Dodd et.al [15] developed a stochastic model for 29

Schizosaccharomyces pombe showing that gene expressions bistability can be established 30

by accumulating histone modifications, which acted as an epigenetic memory. The work 31

of Angel et al. [9] extended their approach by incorporating histone modifications of 32

FLC in Arabidopsis thaliana and investigating how the different epigenetic states could 33

be controlled. Several studies have reported that FLC repression was cell-autonomous 34

and that cold temperature memory was encoded by the fraction of cells with repressed 35

FLC [8,9, 16, 17]. Due to the positive feedbacks that lead to adding more of the same 36

type of histone modifications, a particular cell would mostly have one type of 37

modifications at FLC. To understand how plants utilize fluctuating temperature in 38

vernalization, Antoniou-Kourounioti et al. developed a model by incorporating 39

thermosensing on multiple timescales and suggested that the sensing was broadly 40

distributed in plants [18]. 41

Investigations of flowering time regulation in Arabidopsis exploited mathematical 42

modeling and experiments. Wilczeck et al. developed a model to incorporate the 43

impacts of temperature, day length, and vernalization on flowering initialization in 44

different accessions of Arabidopsis thaliana [5, 19]. Their analyses yielded a 45

photothermal measure of plant states which was able to accurately predict flowering 46

time of Arabidopsis Thaliana field plants. Another dynamic model described interplays 47
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between FT and FLC in Arabidopsis halleri to study impacts of temperature on 48

flowering decisions [20]. It was able to reproduce the observed seasonal expression 49

changes and estimate the climate change-induced reduction of flowering season. 50

Hepworth et al. reported that the spikes of temperatures above 15◦C may have 51

deleterious consequences for vernalization [21]. These studies have significantly refined 52

our understanding of the effects of temperature and day length on Arabidopsis 53

flowering, but the mechanisms employed by a variety of plants in various environments 54

cannot be described by the same processes [23]. A method leading to a more general 55

understanding of climate information processing would promote understanding of 56

flowering-time decision making for a greater variety of plants. 57

Our study focuses on the extraction of available information from climate data 58

(temperature and day length) and its usefulness in making precise flowering decisions. 59

We first established a simple stochastic model for vernalization in perennials, which 60

showed that the idealized expression patterns of FT or FLC can be reconstructed for 61

temperate climates due to exponentially decaying correlation in temperature 62

fluctuations. The stochastic model does not apply to other climates where temperature 63

fluctuations correlate differently. To relax this restriction on climate properties, we 64

employed artificial neural networks to learn idealized gene expression patterns from 65

several climate datasets. We showed that, in temperate city Cologne, the neural 66

network models trained solely on temperature memory roughly reconstructed the 67

idealized expression patterns of FLC. However day length data was required to resolve 68

the danger of incorrect flowering time decisions based on a local optimum in September 69

rather than April. Further, to simulate the evolutionary adaptation to environmental 70

conditions, individual neural networks were used in a simulation of evolution for plants 71

with access to temperature, day length, or both. Simulations with different mutation 72

rates and population sizes showed a persistent selective advantage for the neural 73

networks with access to the combined temperature and day length data. 74

Materials and methods 75

Datasets 76

The temperature and day length data of several climate regions (Table 1) were retrieved 77

from NOAA [24] and PTAFF [25]. Temperatures were recorded as the daily maximum 78

and minimum, and data from different stations are considered distinct. The mean of 79

daily maximum and minimum is regarded as the daily average temperature. To account 80

for the effect of noise in daily light quantity [26–28] on the day length, Gaussian noise 81

was used to corrupt the day length data and simulate real variations due to weather 82

conditions.

Table 1. Selected regions and cities for collecting climate data.

Cold Regions Obvious Seasonal Changes Less Seasonal Changes

Oslo Cologne Kahului
Auckland San Francisco

83

Master Equation and Hermite polynomial 84

Chemical master equations are used to model the probabilistic states of chemical 85

reactions over time [29–31]. Following the previous work of modeling birth-death 86

process [32], for the reaction φ
β−⇀↽−
λ

B, the probability p of having n molecules of B can 87
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be described as Eq. (1) for time t. 88

∂tp(n, t) = β
(
p(n− 1, t)− p(n, t)

)− λnp(n, t) + λ(n+ 1)p(n+ 1, t) (1)

In equilibrium, p(n) is Poisson distributed (see Supplement Section 3.1). In our 89

study, a modified form of this model was used with B representing the cellular state of 90

having active modifications at the FLC locus. Different from the basic model, the 91

production rate is adapted to be temperature dependent. Since the temperature 92

recordings are time series, the temperature dependence of the model make it able to 93

integrate temperature properties. This modification necessitates the use of Hermite 94

polynomials [33, 34] to solve the master equation (see Supplement Section 3.1). 95

The original daily average temperature from different regions have been used for the 96

analytical deductions based on the master equation. 97

Neural network models and data features 98

Artificial neural networks was used as a complementary method to extract information 99

from temperature and day length. A feedforward neural network is comprised of a 100

number of neurons to transmit information in only one direction, from the input data 101

through hidden neurons to output neurons. Each neuron can be regarded as either a 102

computing node or a decision maker which outputs a decision by weighing and 103

transforming the information it receives from upstream neurons. A detailed formal 104

description of neural networks is in Supplementary section 4. 105

Fully connected feed-forward neural networks with one hidden layer were used to 106

classify different time windows in each year and regression of the idealized expression 107

patterns of FT and FLC in Arabidopsis perennials. 108

For the classification, each year was shrank to 360 days for simplicity. For example, 109

it will be divided into 12 windows corresponding to 12 months if the window size is set 110

to 30 days. The neural networks then need to determine which month the input window 111

belongs to, given 30 days of temperatures within the window. The daily temperatures 112

were summarized by daily maximum and minimum. 113

For the regression, without loss of generality, FT ’s idealized pattern is characterized 114

by a normal distribution p(t), peaked in April every year as shown in Fig 2, where t 115

denotes certain day of a year. Whereas the FLC is featured as an upside-down normal 116

distribution centered at March 15th [35], which is 15 days earlier than the peak of 117

FT [20]. To learn the expression patterns from the climate data, the input features 118

consist of daily temperature maxima and minima and day lengths of the past days. 119

That is, the expression level on a specific day is determined by the plant’s memory of 120

temperature and day length of the past days. 121

The Neural Networks Toolbox in Matlab [36] was used to build the classification and 122

regression models. 123

Evolution of individual neural networks 124

Plant selection pressure and evolution were simulated using neural networks to represent 125

individual plants, with weights of individual networks analogous to plant genotypes (see 126

details in Supplement Section 5). A group (population) of networks trained on distinct 127

subsets of the same climate data were used to evaluate the flowering decision-making 128

strategies of plants based on climate information. There were three populations in each 129

simulation, each with access to only temperature, only day length, or both. Each 130

generation of individuals was trained on randomly selected subsets of climate data from 131

Cologne. At the end of each reproductive cycle, fitness was measured by the 132

Kullbach-Leibler distance between target and neural network-predicted gene expression 133
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Fig 2. Idealized gene expressions. The idealized expression level of FT is
characterized by a normal distribution peaked at April 1st, and that of FLC is a flipped
normal distribution centered at March 15th.

level, and mutations (in the form of neural network weight perturbations) were 134

introduced at specific rates which varied across simulations for the next generation. The 135

simulation procedure is summarized in Fig. S8. It was implemented in Python 2.7, and 136

the Theano package [37] was used to optimize individual networks. The results of each 137

simulation were reported as the proportion of individuals from each of the three 138

populations throughout the entire simulation, which would be greater for neural 139

networks with higher fitness leading to better reproductive odds. 140

Results 141

Expression patterns reproduced from modeling key reactions 142

Plants need to avoid the disastrous effect of flowering at the wrong time as a reaction to 143

sudden and sustained temperature fluctuations. We hypothesize that long-cold based 144

vernalization is not only for capturing the winter cold temperature but also for 145

canceling this effect and sensing the winter robustly. The vernalization machinery can 146

be interpreted that plants have evolved biochemical processes to capture and 147

accumulate the information in cold temperature that is a reliable signal in temperate 148

regions. Inspired by the machinery, we modeled the which is driven by real temperature 149

to reconstruct the idealized expression patterns of FLC/FT of Arabidopsis perennials. 150

In the following, we denoted daily average temperature as T (t) for day 151

t ∈ [1, · · · , 365]. To investigate the seasonal changes and fluctuations in real 152

temperature, it is decomposed into three parts as T (t) = T̄ + 〈T (t)〉+ δT (t) with T̄ 153

denoting the average yearly temperature, 〈T (t)〉 the seasonal temperature changes, and 154

δT (t) the remaining temperature fluctuations. The temperature dynamics comprising of 155

〈T (t)〉 and δT (t) are shown in Fig 3 for Cologne. The Fourier fitting of 〈T (t) was 156

detailed Supplementary section 2. The temperature fluctuation on a specific day 157

typically correlates with its neighboring days. And the longer periods of unseasonally 158

cold or warm temperatures may confuse the plants more than the shorter periods. 159

Therefore, we analyzed the autocorrelation times, which quantify the correlation length 160

in a time series, in the fluctuations of temperature from five different regions (Table 1). 161

The autocorrelation times in Cologne, Auckland and Oslo decay exponentially, and 162

decay faster in Auckland than in Cologne and Oslo (Supplementary Section 2, Fig S3a, 163

S3b). This is consistent with experimental observations that some plants in Auckland 164

required only two weeks of vernalization [38], while vernalization requires typically 165

around 6 weeks in Cologne [5] and even three months in North Sweden [39]. Having 166
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verified the exponential decay of temperature fluctuations, without loss of generality, we 167

used the climate data of Cologne for the successive modeling, where the autocorrelation 168

in averaged yearly-cycle temperature fluctuations decays exponentially with an 169

approximate half life of 4 days (Fig 4b) To further evaluated the exponential fitting of 170

the fluctuation decay, the bootstraping of temperature data with block length of 50 171

showed that the fitted coefficients of the exponential function indeed located in the 172

bootstrapped confidence interval(further details in supplementary Section 2). 173

Fig 3. Temperature dynamics in Cologne. The temperature dynamics consist of
the seasonal changes and the daily temperature fluctuations, which were fitted by a
second order Fourier series. The dynamical data were obtained by averaging 93 years of
temperatures in temperate city Cologne. The first day in the plot was January 1st.

To investigate the effect of temperature dynamics on vernalization, we modeled the 174

number of cells which have their histones all with active modifications as a death-birth 175

process. The assumption of having all active modifications in a cell relied on the fact 176

that the fraction of histones in one state affects modifications in their own vicinity, 177

which makes histone modification a relative fast process. As shown in Fig. 4B, the 178

probability of having n active cells at time t is denoted as p(n, t): 179

∂tp(n, t) = βT (t)
(
p(n− 1, t)− p(n, t)

)− λnp(n, t) + λ(n+ 1)p(n+ 1, t), (2)
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(a)

(b)

(c) (d)

Fig 4. Reconstruct the switch behavior of FLC (a): The vernalization was
simplified as birth-death process for actively modified cells. n stands for the number of
modified histones, the production rate βT (t) depends on the temperature T (t) and λ is
the degradation rate. Solving the model led to the distribution p(n, t) which is
parameterized by β and λ; (b): For the data from Cologne, the autocorrelation in daily
temperature decays exponentially, the bootstraping was performed by using block
length of 50 days; (c): The probability p(n, t) distribution over number of active
modifications (in total 60 sites) on 1st January and 15th April; (d): The switching FLC
expression behavior was constructed from the probabilities of having less than 30
modification sites over two years, with green areas for potential flowering seasons.

with βT (t) the temperature dependent production rate and λ the 180

temperature-independent degradation rate. Due to the fact that the autocorrelation 181

time of temperature fluctuations decays exponentially, the stochastic differential 182

equation has a concise form of solution given by 183

p(n, t) = ea−bα
n

n!
Hn

(b+ 2α2

2α

)
. (3)

with a := β2σ2

2λ(λ+τ−1) and b = T̄ β
λ + βD(λ, t). Here, we denoted by 184

D(λ, t) =
∫ t

−∞〈T (t)〉e−λ(t−t′)dt′ the expected memorized temperature. The parameters 185

σ2 and τ denote the averaged variance and autocorrelation time of temperature 186

fluctuations respectively. Hm(·) denotes the mth Hermite polynomial. The 187

parameterization for a, b, and α is detailed in the supplementary. 188

To reconstruct the expression patterns, we need to define an objective for getting the 189

optimal reaction rates based on the probability p(n, t). We assumed that the unit of the 190
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number of cells n was scalable for the simplicity of computation. Due to the limited 191

cellular resources, it was further assumed that Nmax cells were available and Nc cells 192

was sufficient to turn off the expression of FLC on the plant level. The objective 193

function of flowering probability in time window between March and June and 194

non-flowering probability between July and next February can be defined as 195

F (β, λ) =

∫ Jun

Mar

Nmax∑
n=Nc

p(n, t)dt+

∫ Feb

Jul

Nc−1∑
n=0

p(n, t)dt (4)

Maximizing this objective is equivalent to maximizing the probability of flowering (i.e. 196

having at least Nc active cells) in flowering season and non-flowering (i.e. having at 197

most Nc active cells) during non-flowering season. The optimal reaction rates which 198

maximized the objective led to time dependent optimal probability sequences which 199

were capable of reproducing the idealized expression pattern of FLC that is switched off 200

during flowering season. In Fig. 4C, two different time points are chosen to show the 201

typical probability distributions in flowering and non-flowering seasons. On 1st January, 202

the most density (99.2%) of the probability located below the critical value of 30 unit of 203

cells, whereas on 15th April most density (92.2%) was distributed above the critical 204

value. As shown in Fig 4D that the probability of having at least Nc unit of active cells 205

at different time of a yearly cycle preserved the idealized expression pattern of FLC, 206

which was active during the non-flowering season and then gradually switched off in 207

flowering season. 208

Under the condition that the autocorrelation length of temperature fluctuations in 209

time decays exponentially, it was shown that the idealized expression patterns of FLC 210

could be rebuilt from the stochastic model. By relaxing the autocorrelation condition, 211

we would also like to investigate the effect of climate information on flowering time 212

decision using machine learning, which is typically not requiring great details of the 213

system thus can be more broadly applied to different climates. 214

Long-term cold temperature and short-term day lengths 215

together as a robust signal 216

To make flowering time decisions upon environmental cues such as temperatures and 217

day lengths, plants are essentially information processing units for extracting critical 218

environmental signals in order to survive by making correct reproduction transit. We 219

employed artificial neural networks to approximate the information processing in plants 220

by predicting the flowering season. The networks were trained to learn the idealized 221

expression pattern of FLC from temperatures and day length from different climates, 222

and the results relied on climate data in Cologne. The approach was broken into two 223

tasks: to determine the effective memory length of determining season and to 224

reconstruct the idealized expression pattern of FLC of Arabidopsis perennials. 225

The first step was to determine the number of days in the past that the plants need 226

to remember in order to recognize the current season. It was cast into a classification 227

problem as for given consecutive L days of temperature, the neural networks learned to 228

classify which time window the temperature belonged to. The results showed that for 229

Cologne, the prediction achieved MCC score of 0.964 for temperature memory of over 230

40 days. And increasing the memory length did not increase the score accordingly. The 231

result was consistent with experimental result [5]. This reflected an expected tradeoff 232

between sufficiently long memory to reduce the fluctuations of temperature signal 233

(variance) and the loss of season specific averaged temperature if the memory stretches 234

beyond the length of the season (bias). The detailed classification result can be found in 235

Supplementary. 236
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Fig 5. Three years of test temperatures Three years of temperatures were used to
test the regression models. In the second year, one can observe a long temperature spike
starts from late October to early November. This is in correspondence with a predicted
local minimum in Fig 6a.

Having determined the effective memory length, we were able to construct the input 237

features of the neural networks for fitting the idealized expression pattern of FLC of 238

Arabidopsis perennials. With only the temperature memory fed into the neural 239

networks, the trained neural network was tested on three years of temperature as shown 240

in Fig 5. Local minima arose in autumn as shown in Fig 6A, which resulted from the 241

temperature similarity between spring and autumn. Especially for the second test year, 242

a clear local minimum was observed in October, which has a correspondence to the high 243

temperature spike in October as indicated in Fig 5. The local minima could potentially 244

give a high chance of making wrong flowering decision in autumn. In order to remove 245

the local minima and have a robust detection of spring, two days of day-length signal 246

were added to the input features. It can be seen from Fig 6B that the local minima are 247

eliminated, leading to more precise regression of the FLC expression pattern. The 248

precise and robust reconstruction of the FLC signal was critical for precise flowering 249

decisions in the right season. As a comparison, the climate data from Kahului, Hawaii 250

was used as well to learn the FLC pattern. Fig 6C showed that the temperature 251

memory only features led to a high-error fitting, which probably due to both the flat 252

seasonal changes and the long autocorrelation in temperature fluctuations as shown in 253

Supplementary Fig S4e. The integration of two days of day lengths increased the 254

regression but still being noisy. The result may provide an explanation that 255

vernalization in natural tropical climates was not established. 256

The neural networks based method was broadly applicable to different climates (the 257

results for other climates were shown in supplementary), unlike the stochastic model 258

which required more system details and climate properties. Its fitting results from the 259

climates data reflected that for temperate regions, long-term temperature and 260

short-term day length together were deployed as a robust signal for determining the 261

flowering transition, while for other regions, merely temperature and day length signals 262

were not sufficient to have a mechanism such as the interplay between FLC and FT. 263
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(a) (b)

(c) (d)

Fig 6. Predicted expression patterns by neural networks (a): Cologne , fitting
result of the idealized FLC expressions using 42 days of temperature as the input
features gave a local minimum in September due to similarity between spring and
autumn; (b): Cologne, fitting result from 42 days of temperature and 2 days of day
lengths with eliminated local minima; (c): Kahului, fitting result from 42 days of
temperatures; (d): Kahului, fitting result from 42 days of temperature and 2 days of day
lengths.

Evolutionary simulation favors integration of temperature and 264

day length 265

To investigate the possible effects of evolution on the role of temperature and day length 266

in achieving the idealized expression pattern of FT, we conducted simulations using 267

neural networks as plants’ agents. In each simulation, three groups of virtual plants 268

were given access to either temperature, day length, or both. The Kullbach-Leibler 269

Divergence (KLD) between the fitted and idealized expression patterns was used as the 270

fitness measure. Fitnesses were calculated for individuals from each group and 271

normalized to the population of each generation to have a fitness probability for each 272

individual. Individuals then reproduced according to their fitness probability, that is, 273

individuals with higher fitnesses had more offspring accordingly. Multiple offspring were 274

possible for each individual, and offspring had access to the same input type as their 275

parents (temperature, day length, or both). For each reproduced generation, a fixed 276

number of mutations, represented by randomly selected neural network weights, were 277

applied to each individual. Reproduction continued until 500 cycles were simulated or 278

until all surviving individuals were the offspring of only one of the three groups. Each 279

simulation was repeated 50 times, and the proportion of offspring per group throughout 280

the entire simulation were tallied to estimate fixation probability. 281

To simulate the effects of strongly or weakly deleterious mutations, simulations were 282

run with various numbers of mutations per generation. To investigate the effects of 283

population size and genetic drift, the number of individuals per group was varied. The 284

results of the simulations are shown in Fig.7, as violin plots of group offspring 285

proportions under different mutation rates and population sizes. 286

The group with access to both temperature and day length generally had the most 287

offspring, and the group with access to day length alone had the least. The 288

temperature-only group performed somewhere between the two others. Consistent with 289

the basic principles of genetic drift, larger population sizes resulted in less variance in 290
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Fig 7. Evolution simulation. Distributions of group offspring proportions for
mutation rates of 0, 0.05, and 0.2, for group sizes of 10, 50, and 200 individuals. “B”
stands for group with access to both temperature and day length, “T” for temperature
and “D” for day length.

the fixation probability. Possibly due to the small number of input variables in the 291

neural network, the group with access to day length alone performed notably worse as 292

the mutation rate increased. 293

Conclusion 294

Our study verified that the temperature and day length in temperate regions like 295

Cologne have the information premise for plants such as Arabidopsis to establish the 296

epigenetic switch vernalization. For different climates, the vernalization requires 297

different memory spans due to different temperature seasonal properties. The memory 298

spans depended on the autocorrelations in temperature fluctuations, which decayed 299

differently from climate to climate. For regions with flat temperature dynamics like San 300

Fransisco and Hawaii, the autocorrelations decay slower than regions like Cologne, and 301

have autocorrelation length above 100 days, which might be the reason to fail the 302

establishment of vernalization. Our stochastic model, describing the dynamics of the 303

number of cell with repressed FLC, was able to integrate the temperature dynamics as 304

well as the temperature fluctuations. For regions with exponential decays in 305

temperature fluctuation autocorrelations, the switch behavior of FLC in Arabidopsis 306

perennials can be reconstructed. Further, without requirements on climate properties 307

October 25, 2019 11/15

66 Chapter 3 Analytical and Data-driven Analysis of Flowering Time Determination



and system details, our machine learning approach showed that the idealized expression 308

patterns of FLC can be robustly reconstructed by the combination of prolonged cold 309

and short term of day length. The strategy of combining long-term cold and short-term 310

day length is proven to be also favored by an evolution simulation where neural 311

networks were regarded as the agents of plants for processing climate information. 312

Although in natural environments, temperate plants need to cope with other signals 313

such as ambient temperature using additional genes like FLM [40], it might indicate the 314

backbone of flowering mechanism is that the plants utilized long-term temperature to 315

detect seasonal changes and used absolute day lengths to decide the eventual flowering 316

days. The reason is that, for temperate climates, a cold winter is guaranteed and it is 317

easier to track the absolute day length than the variations in day lengths which is 4min 318

in maximum from day to day. It could also be a good strategy for cold regions like 319

Norway since the autocorrelation decays similarly to Cologne, but due to lower 320

temperature and shorter summer, the fast life cycles such as summer annuals of 321

Arabidopsis was adapted [5]. In this case, ambient temperature and light intensity 322

might play a more important role in plants’ vegetative or reproductive timing. In 323

tropical regions where locate the most diverse and abundant plant species on earth, 324

more factors have to be taken into consideration and merely temperature and day 325

length are not sufficient for flowering decision making. For instance, flowering is mostly 326

rain-season dependent, which might play a more critical role than the temperature and 327

day length as they contain less seasonal information than that of temperate regions. 328

By investigating flowering decision making from an information point of view, our 329

study suggested that, for temperate regions, cold winter memory and short term of day 330

length can serve as a robust strategy for plants to determine flowering season. 331

Supporting information 332

Supplementary.pdf Details of data preprocessing, proofs of analytical solution to 333

stochastic model, regression of the idealized FLC expressions based on different 334

climates. 335

code.zip It includes the code autocorrelation.py for analyzing temperature data, 336

optimization.py for optimizing the flowering objective, evolution.py for the evolutionary 337

simulations and neuralnets.m for cleansing temperature data and training neural 338

networks. 339

data.zip It includes csv files for the temperature and day length data of Cologne, 340

Norway, Auckland, Kahului and San Francisco. 341
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Fig 1. Flowering time regulation in Arabidopsis thaliana.

Fig 2. Idealized gene expressions.
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Fig 3. Temperature dynamics in Cologne.

(a)

(b)

(c) (d)

Fig 4. Reconstruct the switch behavior of FLC
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Fig 5. Predicted expression patterns by neural networks
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Fig 6. Evolution simulation.
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1 Data preprocessing

1.1 Source data cleaning

The data preparation is illustrated by using data from Cologne. The retrieved temper-
ature data from NOAA includes recordings of daily maximal and minimal temperatures
of 2 stations in Cologne. A snapshot of the customized CSV data file is shown in Fig. S1.
Each station independently recorded daily temperatures. Thus, for Cologne, we have 98
years of daily temperature summaries (Table S1).

Noises of different sources are presented in the temperature data, for instance, missing
dates or missing records in a day. We refer to the missing values as “holes” of the data.
The dataset was cleansed as follows:

• For the simplicity of computation, each year was trimmed to 360 days and each
month was modified to 30 days for the neural networks based models. For the
stochastic model, yearly cycle of 365 days was used;

• The holes were filled by averaging neighbouring two days or just copying the neigh-
bouring date if the hole was less than 10 days. For holes larger than 10 days, they
were filled with the same dates from a nearby station;

1
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Figure S1: A snapshot of the customized CSV file retrieved from NOAA with 4 columns.

Data from the stations which have more than 20% of holes were discarded.
The day length data of Cologne were downloaded from ptaff.ca. The orbit of the

earth around the sun is stable such that the day length variation remains the same from
year to year. Thus we just replicated the yearly day length for Cologne to 98 years.
Meanwhile, to count influence of weather conditions on day lengths, Gaussian noises
with adjustable strength were added to different years.

The same cleaning procedure was applied to other climates. The datasets of all re-
trieved climates are summarized in Table S1.

Table S1: Number of Years temperature for different regions
Regions Cologne Oslo Kahului Auckland San Francisco

Number of Years 98 57 237 421 154

2 Time series of temperature data

2.1 Decomposing and analyzing temperature data

The temperature data from Cologne were analyzed. The consecutive daily recordings
of temperatures are time series data where neighbouring days of temperatures are cor-
related. For instance, a storm brings rains as well as temperature drops. The dropped
temperatures are usually correlated for a few days. The changes in temperatures due to
weather conditions are termed temperature fluctuations and the seasonal temperature
changes are termed deterministic temperature dynamics. The temperature fluctuation
on day t can be mathematically described as

δT (t) = T (t)− (T̄ + 〈T (t)〉)
where T (t) denotes the real temperatures, 〈T (t)〉 is the deterministic temperature dy-
namics with period of 365 days and T̄ is the arithmetic average of temperature. The daily
average temperature is obtained by averaging the maximal and minimal temperatures.
The 98 years of temperature recordings from Cologne as

Temperature fluctuations of each year = Each of 98 years − (〈T (t)〉+ T̄ ).

2
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Figure S2: The real temperature is obtained from averaging 98 years of temperatures in
Cologne. The fitted temperature curve is based on a second order Fourier
series.

Fourier series based regression for 〈T (t)〉
To mimic the long term adaptation of plants to local climates, the average of 98 years

of temperature over one-year period gives an estimate of temperature dynamics and
averaged temperature fluctuations. The temperature dynamics was fitted by a second-
order Fourier series as

〈T (t)〉 = a0 + a1 cos(wt) + b1 sin(wt) + a2 cos(2wt) + b2 sin(2wt) (1)

with determined parameters

(a0, a1, b1, a2, b2, w)T = (0,−7.775,−2.669,−0.1552, 0.4052, 0.0172). (2)

The fitted result is shown in Fig. S2.

The exponential decay in temperature time series
The autocorrelation in temperature fluctuations is defined as

R(t) =
1

n− k

n−k∑
t=1

δTtδTt+k, (3)

where n is the total number of days, and k is the presumed maximal correlated number
of days, which was set as 80 in our calculation. It is shown in Fig. S3a that the auto-
correlations in temperature fluctuations follow an exponential decay which can be fitted
as

autocorrelation(t) = σ2e−t/τ , (4)
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where σ2 = 12.67 and τ−1 = 0.22 with a fitting R2 score of 0.934. In addition, we per-
formed a bootstrap analysis to estimate the confidence interval of the fitted coefficients.
Since the fluctuations are correlated, in order to preserve the correlation, the sampling
used a block length of 50 days. From the bootstrap with 10000 samples, the confidence
intervals for σ2 and τ were estimated as (11.90, 13.42) and (0.199, 0.253) respectively.
The fitted coefficients indeed located in the confidence interval. The bootstrapped fit-
ting results are shown in Fig S3b.

(a) (b)

Figure S3: The real decay of autocorrelations exhibits random fluctuations after about
15 days. The exponential decay fitting smoothed these fluctuations to zero.

2.2 Autocorrelation analysis for other climates

Similar to the calculation of autocorrelation in temperature fluctuations for Cologne, the
procedure was applied to other selected climates as shown in Fig S4. It can be observed
that the autocorrelations for Cologne, Oslo and Auckland showed exponential decays but
with different lower bounds, which may be due to different noise levels in temperatures.
And for regions with less seasonal changes like Hawaii and San Francisco, exponential
decays were not observed.
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(a) (b)

(c) (d)

(e)

Figure S4: The autocorrelation time decays for different climates.
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3 Modeling the simplified histone modification reaction

Figure S5: Temperature-driven histone modification. n stands for the number of modified
histones, the production rate βT (t) depends on the temperature T (t) and λ
is the degradation rate of histones.

3.1 The master equation and its analytical solution

Following the previous work of modeling simple birth-death process for one species [2, 3,

1], the histone modification reaction is simplified as φ
βT (t)−−−⇀↽−−−

λ
M which is further illustrated

in Fig. S5. The production rate of active modification of histones βT (t) depends on
the temperature T (t) and λ is the degradation rate of active modifications. And the
maximal number of required modification sites is N . The master equation for describing
the reaction can be written as

∂tp(n, t) = βT (t)
(
p(n− 1, t)− p(n, t)

)− λnp(n, t) + λ(n+ 1)p(n+ 1, t). (5)

To solve the partial differential equation, we first need to introduce the time-dependent
probability generating function G(s, t) =

∑∞
n=0 s

np(n, t). Then multiplying sn to the
equation (5) and summing over n can transform the equation to

∂tG(s, t) = βT (t)(s− 1)G(s, t)− λ(s− 1)∂sG(s, t). (6)

First neglecting the time dependence of the temperature, the solution of the equation (6)
is

G(s, t) = (1 + (s− 1)e−λt)NeβT (s−1)
∫ t
0 e−λt′dt′ (7)

(the derivation of the solution can be found in chapter 7 of [3]). Now considering the
time dependence of T , we can assume the solution becomes

G(s, t) =
(
1 + (s− 1)e−λt

)N
eβ(s−1)F (t). (8)

To find F (t), substituting (8) into (6) yields

F ′(t) + λF (t) = T (t). (9)
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By solving the differential equation (9), we have

F (t) = ce−λt + e−λt

∫ t

0
T (t′)eλt

′
dt′. (10)

Under the assumptions of c = 0 and T (t) = d + 〈T (t)〉 + δT (t) where d is the constant
for converting temperature in Celsius to Kelvin, 〈T (t)〉 is the temperature average over
years and δT (t) is the temperature fluctuation, the equation (8) can be written as

G(s, t) =
(
1 + (s− 1)e−λt

)N
eβ(s−1)e−λt

∫ t
0

(
d+〈T (t′)〉+δT (t′)

)
eλt

′
dt′ . (11)

Considering the stationary state of G(s, t), which follows a yearly cycle and is still time
dependent, we have

G∗(s, t) = e
dβ
λ
(s−1)

〈
eβ(s−1)e−λt

∫ t
−∞ δT (t′)eλt

′
dt′〉eβ(s−1)e−λt

∫ t
−∞〈T (t′)〉eλt′dt′ (12)

Noise-free temperature
Now, starting with the simple scenario, we assume temperature dynamics are noise-

free, which means δT (t) = 0. Consequently, the steady state solution becomes

G∗(s, t) = e
dβ
λ
(s−1)eβ(s−1)e−λt

∫ t
−∞〈T (t′)〉eλt′dt′ (13)

Zooming into the equation (13), we need to deal with the part related to temperature
dynamics: e−λt

∫ t
−∞〈T (t′)〉eλt′dt′. For the simplicity of notation, we define

D(λ, t) := e−λt

∫ t

−∞
〈T (t′)〉eλt′dt′. (14)

In the case of temperatures from Cologne, the temperature dynamics 〈T (t)〉 can be nu-
merically approximated by a second-order Fourier series (Fig. S2). Using the parameters
fitted in the approximation (1), we have

D(λ, t) =
a0
λ

+
a1

w2 + λ2
(λ cos(wt) + w sin(wt)) +

b1
w2 + λ2

(λ sin(wt)− w cos(wt))+

a2
(2w)2 + λ2

(λ cos(2wt) + 2w sin(2wt)) +
b2

(2w)2 + λ2
(λ sin(2wt)− 2w cos(2wt)) ,

where t ∈ [0, 2L] with 2L the period of temperature cycle. By further defining b :=
dβ
λ + βD(λ, t), the stationary generating function becomes

G∗(s, t) = eb(s−1), (15)

which is a generating function for a Poisson distribution. Therefore, in the case of noise-
free temperatures, the stationary solution to the master equation (5) is

p(n, t) =
bn

n!
e−b. (16)

7

80 Chapter 3 Analytical and Data-driven Analysis of Flowering Time Determination



Noisy real temperature
Now considering the real noisy temperature, we need to deal with the part caused by

temperature fluctuations:
〈
eβ(s−1)e−λt

∫ t
−∞ δT (t′)eλt

′
dt′〉. Since the fluctuations has been

shown to have an exponential decay in autocorrelations for temperatures in Cologne, by
Doob’s theorem [4], they follow a Gaussian Markovian Process. Therefore, we have

〈
eβ(s−1)e−λt

∫ t
−∞ δT (t′)eλt

′
dt′〉 = e

1
2
β2(s−1)2

∫ t
−∞

∫ t
−∞

〈
δT (t1)eλ(t1−t)δT (t2)eλ(t2−t)

〉
dt1dt2 (17)

= e
1
2
β2(s−1)2

∫ t
−∞

∫ t
−∞

〈
δT (t1)δT (t2)

〉
eλ(t1+t2−2t)dt1dt2 (18)

= e
1
2
β2(s−1)2

∫ t
−∞

∫ t
−∞ σ2e−

|t2−t1|
τ eλ(t1+t2−2t)dt1dt2 (19)

= e
β2σ

2λ(λ+A)
(s−1)2

. (20)

With a := β2σ2

2λ(λ+τ−1)
and b = dβ

λ + βD(λ, t), the stationary G(s, t) (12) can be written in
a closed form as

G∗(s, t) = ea(s−1)2+b(s−1). (21)

Due to the quadratic term in the exponential of (21), finding the associated probability
density function requires the introduction of an auxiliary generating function which can
be expanded in terms of Hermite Polynomial

Ga(x, t) = e−t2+2xt =

∞∑
n=0

Hn(x)
tn

n!
. (22)

By changing variables a = −α2, t = αs and x = b+2α2

2α , we have the following deduction

G∗(s, t) = eb(s−1)+a(s−1)2 = ea−be−α2s2+(b+2α2)s = ea−be−t2+2xt = ea−b
∞∑
n=0

Hn(x)
tn

n!
.

(23)
In short, the generating function (21) becomes

G∗(s, t) = ea−b
∞∑
n=0

Hn(x)
tn

n!
. (24)

Substituting the variables a and b to (24), we have

G∗(s, t) = ea−b
∞∑
n=0

Hn(
b+ 2α2

2α
)
(αs)n

n!
=

∞∑
n=0

snp(n, t). (25)

Finally the probability density function is derived as

p(n, t) = ea−bα
n

n!
Hn(

b+ 2α2

2α
). (26)

8

3.2 Information integration and decision making in flowering time control 81



3.2 Optimization

The model parameters can be uniquely determined by optimizing a proper decision func-
tion in such a way that the signal-to-noise ratio determines the degradation rate and
the decision boundary determines the production rate. If the degradation rate λ is very
small, then in order to have a reasonable distribution over all modification states, the re-
action rate has to be very small. In this slow reaction scenario, the effect of temperature
dynamics is diluted, which make the reaction hard to capture the useful information in
temperatures. On the contrary, if λ is very large and β should be very large to maintain
a certain number of active histone modifications. In the fast production and degradation
scenario, every single fluctuation in temperatures would drive the reaction in an undesir-
able manner. Both extreme cases are not practical for plants to rely on. Therefore, λ has
to be tuned by the signal-to-noise ratio in temperature to a reasonable level. Meanwhile,
the optimal value of β, λ can be determined by setting the decision boundary to the
required amount of modified histone sites.

With the obtained parameters d = 283.3K, τ−1 = 0.22, σ2 = 12.67 for the exponential
decay in temperature fluctuations and the parameters for the Fourier fitting of tempera-
ture dynamics in (2), the probability distribution p(n, t) (26) has only the undetermined
reaction rates β, and λ. By optimizing the following objective

F (β, λ) =

∫ Jun

Mar

Nmax∑
n=Nc

p(n, t)dt+

∫ Feb

Jul

Nc−1∑
n=0

p(n, t)dt, (27)

the optimal β and λ were obtained as

β = 6.45, λ = 2.94.

4 Classification for estimating memory length

The input features are (xl1, · · · , xlk, xh1, · · · , xhk), where k is window length, xli and
xhi, i = 1, · · · , k, stand for daily lowest and highest temperatures respectively. For
example, when the window length is set to be k = 30 (i.e. a month), without loss of
generality, April is set to be class “1”, the rest months are set to be class “0”. Then for
the temperatures of each year, the corresponding targets are (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0).
The same configuration can be applied to other window lengths. We have tested lengths
k ∈ {28, 42, 60} by using a repeated cross validation routine, that is, for each model
training, 80 years was randomly selected for training and the rest 18 years was used
for testing. The averaged testing results were shown in Fig.S6. For length k = 30, the
false positive rate is 26.3%, although the overall accuracy is 93.3%. When the length is
increased to k = 42, the false positive rate dropped to zero, indicating that this length
provides sufficient information for determining the season, which can be used as the
effective memory length of plants for recognizing seasons.
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Figure S6: The confusion matrices for different window sizes.

Regression of idealized expression patterns for various

climates

In this section, different climates information was used to fit the idealized expression
pattern of FLC. Based on the classification results, the input features and targets for
regression were constructed as following. Each day of a year has a corresponding ex-
pression value from the idealized expression curve as the target. The features for that
day comprised of the temperatures (daily maxima and minima) and/or day lengths of its
precedent days. The number days for temperatures was taken as the effective memory
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length from the classification. For temperate region, long term memory of temperatures
played a key role in the regression and the addition of day lengths significantly improved
the regression.
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(a) Auckland, Temperature only
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(b) Auckland, Temperature and day lengths
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(c) Oslo, temperature only
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(d) Oslo, temperature and day lengths

Figure S7: The regression results of using different input features combinations of tem-
perate regions.
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(a) San Francisco, 42 days of temperatures as
input feature.
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(b) San Francisco, 42 days of temperatures and
2 days of day lengths.
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(c) Kahului, 42 days of temperatures as input
features.
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(d) Kahului, 42 days of temperatures and 2 days
of day lengths.

Figure S8: The regression results by using data from regions with less seasonal changes.

Regions as San Francisco and Kahului have very similar temperature every year, which
means very few information can be extracted from their temperature. This also led to the
poor generalization in predicting the idealized expression patterns (Fig S8). Moreover
the predicting results showed no significant differences for different temperature memory
lengths, e.g. 7 days, 20 days and 40 days. The results agree with that plants in tropical
region, which do not rely on long term memory of temperature for flowering decision
making. In order to better fit FLC expression patters of regions such as San Francisco
and Kahului, temperature memory was reduced to at most one and longer term of day
lengths were added as input features. For both San Francisco and Kahului, it was seen
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Figure S9: Evolutionary simulations for each group of the population.

that the trained models with only temperatures as features generalized poorly. But the
fitting accuracy can be improved by adding day lengths.

5 Evolution Simulation

The simulation flowchart is shown in Fig. S9. And the simulation results are shown in
Fig. S10.
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0.1 0.20.050

Figure S10: The proportion of survived individuals for different groups. The vertical axis
of the plot represents the group sizes, and the horizontal axis represents the
mutation rates. Each subplot has three boxplots which corresponding to
the distribution of the proportions of survived individuals with accesses to
temperatures, day lengths or both.
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4Data-driven modeling of the
regulation in mRNA translation

4.1 Summary
RNA translation is an energy-intensive and resource-demanding process in any cell. During

evolution, organisms evolved sophisticated regulatory mechanisms to optimize the translation

efficiency and accuracy to maintain the translation fidelity while minimize the cost [CGA18; GP11].

As the blueprint of translation, RNA sequences carry the relevant information for translation

regulations. The increasing available data due to the advances in next-generation-sequencing

paved the way for machine learning to help investigating of the regulatory patterns underlying

sequences. For simplicity, the manuscript in Section 4.2 focused on the mRNA translation in E. coli,

which is also the focus of the rest of the summary.

The known regulatory factors mainly include codon bias due to redundant genetic codes, special

sequence motifs, secondary folding structures and contents of different nucleotides [CGA18; GP11].

Beside direct influences of these factors on translation, their interplays and their cooperations with

cellular resources, such as the abundance of transfer RNA, may also play a key role in translation

regulations. It was crucial to represent the sequences to incorporate the known factors such that

machine learning models can find the correct patterns. Various ways of representations were

explored, and eventually it was hypothesized that the global and local secondary structures of

mRNA sequences and special motifs like the Shine-Dalgarno motif [SD73] were the key regulatory

factors. Other factors such as the codon bias and nucleotide contents may be caused by structural

needs. Based on the hypothesis, a gradient boosting trees based predictive model was developed to

capture the regulatory patterns based on features generated frommRNA sequences. The framework

was shown in Fig. 4.1a. In the consideration of global and local structures, each sequence was

divided into ribosome binding sites (RBS), coding sequences near the starting codon (C33), and

the rest of coding sequences (CC), where the concatenation of C33 and CC was the whole coding

sequence (CDS). Theminimum free energies, characterizing the structure signals, and the anti-Shine-

Dalgarno hybridization free energies, characterizing the Shine-Dalgarno motifs, were calculated

for the sequence segments and their combinations.

The model evaluation was done through gene-based 10 fold cross validation based on the

dataset [GCK13] which included 13 variants of 137 essential genes in E. coli. The evaluated

performance of the model achieved correlation coefficient of 0.57 for regression and area under the

curve (AUC) score of 0.80 for classifying genes with high or low expressions (Fig. 4.1b). Moreover,

to verify the prediction of the model, from the 10 sequences generated by the model, the predictions

of 9 sequences were verified by the in-house experiments.

87



(a) Representation of the predictive algorithm. The input is a 12-elements vector composed by the predicted

RNA secondary structure (Ef ) and anti-Shine-Dalgarno hybridization (Eh) free energies per nucleotide.

Each sequence is divided into 3 blocks: the Ribosome Binding Site (RBS), the first 33 nucleotides of the

coding sequence (C33) and the remaining part of the coding region starting from nucleotide 34 (CC). The

whole coding sequence (CDS) is obtained joining C33 and CC.

(b) The performances of models. The final model PGExpress was built on all generated features. The BFoldBind

method was built on most discriminative RNA folding and anti-SD hybridization free energies. The

Folding6 and Binding6 were built on 6 folding and 6 hybridization energies respectively.

Fig. 4.1
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4.2 Predicting translational efficiency from mRNA
sequences

Publication status

Linlin Zhao, Nima Abedpour, Christopher Blum, Petra Kolkhof, Mathias Beller, Markus Koll-

mann and Emidio Capriotti, “Predicting gene expression level in E. coli from mRNA sequence

information”, accepted by IEEE CIBCB 2019 (International Conference on Computational Intelli-

gence in Bioinformatics and Computational Biology)

Linlin Zhao’s contributions

1. Conducted exhaustive literature review for sorting out most relevant features which charac-

terized mRNA sequences.

2. Generated features which represented the secondary structures, binding affinity between

ribosomes and ribosomal binding sites and special motifs within coding regions of mRNA

sequences. This part has been done with help and discussions from other coauthors.

3. Besides the final model used in the paper, some more complex models were obtained which

achieved similar prediction performances. For example, I trained a convolutional neural

network based multi-task model on several independent published datasets. According to

Occam’s Razor principle, we have kept the simplest working model. The final model was

obtained in such a way that I first discussed with Emidio Capriotti and then we both trained

the model simultaneously to assure the rigor of our results.

4. Generated 10 sequences by the predictive model for in-house experiment.

5. I wrote the introduction, conclusion and the section 2.7 and 3.8 of the manuscript.
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Predicting gene expression level in E. coli from mRNA  
sequence information 
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Abstract 
Motivation: The accurate characterization of the translational mechanism is crucial for enhancing 
our understanding of the relationship between genotype and phenotype. In particular, predicting the 
impact of the genetic variants on gene expression will allow to optimize specific pathways and 
functions for engineering new biological systems. In this context, the development of accurate 
methods for predicting the translation efficiency and/or protein expression from the nucleotide 
sequence is a key challenge in computational biology.  
Methods: In this work we present PGExpress, a new regression method for predicting the log2-fold-
change of the translation efficiency of an mRNA sequence in E. coli. PGExpress algorithm takes as 
input 12 features corresponding to the predicted RNA secondary structure and anti-Shine-Dalgarno 
hybridization free energies. The method was trained on a set of 1,772 sequence variants (WT-High) 
of 137 essential E. coli genes. For each gene, we considered 13 sequence variants of the first 33 
nucleotides encoding for the same amino acids followed by the superfolder GFP. Each gene variant 
is represented sequence blocks that include the Ribosome Binding Site (RBS), the first 33 
nucleotides of the coding region (C33), the remaining part of the coding region (CC), and their 
combinations.  
Results: Our gradient-boosting-based tool (PGExpress) was trained using a 10-fold gene-based 
cross-validation procedure on the WT-High dataset. In this test PGExpress achieved a correlation 
coefficient of 0.57, with a Root Mean Square Error (RMSE) of 1.4. When the regression task is cast 
as a classification problem, PGExpress reached an overall accuracy of 0.73 a Matthews correlation 
coefficient 0.47 and an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.80. 
When compared with RBSCalculator, PGExpress results in better performance in the prediction of 
the log2-fold-change of the translational efficiency and its variation on the WT-High dataset. Finally, 
we validated our method by performing in-house experiments on five newly generated mRNA 
sequence variants. The predictions of the expression level of the new variants are in agreement with 
our experimental results in E. coli.  
Availability: http://folding.biofold.org/pgexpress    
Contact: markus.kollmann@hhu.de, emidio.capriotti@unibo.it 
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1 Introduction  
The ability to predict translation efficiency in bacteria is important to define the relation between 
genotype and phenotype, and to engineer new organisms optimized for producing biomaterials 
(Kyle, et al., 2009), fuels (Toone and de Winde, 2013) and natural products (Krivoruchko and 
Nielsen, 2015). The information to regulate the translation process is encoded in the mRNA 
nucleotide sequence. The preference for specific combinations of nucleotides in the coding region, 
which refers to codon bias, has a strong effect on protein expression and formation (Li, et al., 2012; 
Mortimer, et al., 2014; Plotkin and Kudla, 2011; Pop, et al., 2014). Changes in the nucleotide 
sequence and codon usage can affect the mRNA folding process, which is a key determinant of 
protein expression. The ability of RNA strands to fold and form stable structures influences all the 
steps of the translation process: the structures at untranslated regions (UTR), especially at ribosome 
binding sites (RBS), act as a barrier for the ribosome to dock on the transcripts, then slow down the 
translation initiation (Duval, et al., 2013); the local structures in coding sequences (CDS) interplays 
with tRNA abundance to smoothen the translation elongation (Gorochowski, et al., 2015); structures 
also affect mRNA localization and turnover (Mortimer, et al., 2014). The Shine-Dalgarno (SD) 
sequence encoded in the mRNA is another key factor for translation regulation. Indeed, when the 
SD sequence is located in untranslated regions (UTRs), it promotes the binding of ribosomes and 
accelerates translational initiation (Kozak, 2005; Shine and Dalgarno, 1974; Shultzaberger, et al., 
2001). Contrarily, its presence in the coding region can reduce the translational elongation rate in 
bacteria (Li, et al., 2012). Thus, the understanding of the mechanism of bacterial translation will 
result in accurate predictions of protein expression from mRNA sequence (Gingold and Pilpel, 
2011). In this work we primarily considered the measure of translation efficiency, which provides a 
quantitative estimation of the of translation process, independent from the transcription. The 
translation efficiency is defined as the ratio of protein to mRNA abundance, which corresponds to 
the amount of protein produced by a single molecule of mRNA (Tuller, et al., 2010a; Tuller, et al., 
2010b). 
In the past, many studies and software tools have been developed for predicting protein expression 
based on mRNA sequence. Tools to tailor the untranslated region (UTR) to achieve a desired 
protein expression level were also introduced (Na and Lee, 2010; Reeve, et al., 2014; Rodrigo and 
Jaramillo, 2014; Seo, et al., 2014). For instance, the RBS calculator (Salis, 2011), UTR designer 
(Seo, et al., 2014), and RBS designer (Na and Lee, 2010) which are statistical models considering 
free energies for key molecular interactions in translation initiation and the formation of mRNA local 
structures provided an estimation of the translation efficiency. In general, the predictions from these 
methods show good correlation with their experimental data respectively. Recently Bonde and 
colleagues (Bonde, et al., 2016) studied the relationship between SD sequences and protein 
expression by measuring expression levels of ~3,000 UTRs in the presence of different SD variants. 
Their empirical method (EMOPEC) was able to predict the protein expression level of newly 
designed sequences in 91% of the cases. Focusing on the UTR regions, the available tools limit our 
understanding of the general picture of translational mechanism and our ability to engineer the 
whole mRNA molecule. Recently, Goodman and colleagues (Goodman, et al., 2013) measured the 
expression level of more than 14,000 synthetic gene variants in E. coli to quantify the effects of N-
terminus codons as well as different combinations of promoter and Ribosome Binding Sites (RBSs). 
They found that rare codons in the N-terminus increased the stability of the RNA structure resulting 
in decreased gene expression level. The gene variants tested by Kosuri and co-workers (Goodman, 
et al., 2013) included variations in both UTR and coding sequences, which made the data suitable 
for investigating the effects from coding sequences as well. We make use of their data to capture 
regulatory factors from both the UTR and coding region of the mRNA molecule. 
For estimating the contributions of different RNA regions on gene expression, we represented the 
sequences by the predicted global and local RNA folding free energies to define the main features 
contributing to the translation efficiency. Since mRNA structure impacts each step of translation 
(Kozak, 2005; Mortimer, et al., 2014), it represents one of the most important features to consider. 
The RNA folding free energy is a classical scoring function used for the prediction of RNA 
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secondary structure. Indeed, different tools for predicting RNA secondary structure implement 
dynamic programming algorithm for minimizing the free energy (Capriotti and Marti-Renom, 2008). 
Recent experimental studies showed that different regions of mRNA preserve specific structural 
preferences (Kudla, et al., 2009; Mortimer, et al., 2014). Kudla and colleagues found that the 
predicted folding free energy of the first ∼40 nucleotides of the mRNA significantly correlates with 
the GFP protein abundance (Kudla, et al., 2009). Furthermore, it was observed that structures at the 
end of 5′ UTR and the beginning of 3′UTR are well conserved and the coding region is more 
structured than UTRs (Mortimer, et al., 2014). Thus, the free energy associated to the formation of 
local structures is also an important predictive feature. Since the SD sequence shows different 
regulating effects, we also predicted the hybridization free energy (also referred as binding energy) 
between the anti-SD sequence and different regions of the mRNA. The predicted folding and 
hybridization free energies were combined to represent the translational features of the mRNA. 
In this work we present PGExpress (Predicting Gene Expression), a new gradient boosting-based 
algorithm predicting translation efficiency of mRNA sequences. PGExpress is a regression method 
that predicts the log2-fold-change of translation efficiency with respect to the median value observed 
experimentally. Our method relies on the calculation of the minimum RNA secondary structure free 
energy as representations of the local and global mRNA structures and the minimum free energy of 
hybridization between anti-SD sequence and mRNA, which corresponds to the binding affinity of the 
ribosome with different strands of mRNA. The performance of PGExpress has been tested on 
previously published datasets and new experimental data generated in-house. 
 
 

2 Methods 

2.1 Datasets 
The data used in this work consists of protein expression and/or translation efficiency measures of 
genes and their variants in E. coli. The data was collected both from the literature (Goodman, et al., 
2013) and experimental tests in our lab. The data from Kosuri and collaborators (Kosuri-All) is a 
collection of protein expression (PE) and translation efficiency (TE) measures from ∼14,000 gene 
variants (Goodman, et al., 2013). More information about the gene expression measures considered 
in this work is reported in section 1 of the Supplementary Materials. Each variant is a combination of 
the Promoter with high and low strength (High, Low), the Ribosome Binding Site (Wild-Type, Weak, 
Mid and Strong RBSs) and the first 33 nucleotides of the coding region (C33) of 137 essential E. coli 
genes followed by the superfolder GFP (sfGFP) coding sequence (see Supplementary Materials, 
section Experimental data). From the Kosuri-All dataset we extracted five subsets (WT-High, WT-
Low, Weak-High, Mid-High, Strong-High) with sequence variants composed by four Ribosome 
Binding Sites (RBS) and two Promoters. The main dataset (WT-High), which has been used for 
training and testing our method, collects the expression measures of 1,722 sequences formed by 
the High affinity promoter, the Wild-Type RBSs and 13 variants (including wild-type) of the C33 
region of each gene. The Weak-High, Mid-High and Strong-High subsets, which have been used 
only in the testing phase, differ from the WT-High for the sequence of the Ribosome Binding Site, 
which has Weak, Mid and Strong binding affinities respectively. The WT-Low and WT-High differ for 
the sequence of the promoter regions, which have low and high strength respectively. The WT-Low 
dataset has been used only in the preliminary analysis of the data. 
For training and testing the regression algorithm the values of the protein expression and translation 
efficiency are converted in log2-fold-change with respect to their median values in the WT-High 
dataset (2,988 and 2,355 respectively). For evaluating the performance of the method as a binary 
classifier, the previous median values are used as classification thresholds. Finally, to test the 
performance of PGExpress, we measured in our lab the protein expression level of five randomly 
selected variants from the Kosuri-All dataset (Exp-Set). We used the Exp-Set to check the 
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agreement between the data in Kosuri-All and our measures. Then, we generated a validation set, 
namely Exp-Mut, which is composed of new variants derived from the five sequences in Exp-Set. 
The sequences of the ten gene variants are reported in Table S1. 

The Kosuri-All dataset analyzed in this work is provided in Supplementary File 1.  A summary of 
its composition is reported in Table S2.  

2.2 Algorithm description 
Here we present a regression method (PGExpress) to predict the log2-fold-change of the gene 

translation efficiency (L2TE) from sequence information. PGExpress is based on gradient boosting 
regression algorithm that takes in input a 12-elements vector composed by six predicted RNA 
folding and six anti Shine-Dalgarno (SD) hybridization free energies per nucleotide. In detail, each 
gene variant is divided in three sequence blocks: the Ribosome Binding Site (RBS), which consists 
of ~25 nucleotides preceding the coding sequence, the first 33 nucleotides of the coding region 
(C33) and the remaining part of the coding sequence starting from nucleotide 34 (CC). Thus, each 
gene is represented by six sequence fragments including the three blocks previously defined (RBS, 
C33 and CC), and the combinations of RBS with C33 (RBS+C33), C33 with CC (CDS) and RBS 
with the whole coding sequence (RBS+CDS). For each block we predicted the RNA secondary 
structure and the anti-Shine-Dalgarno (anti-SD) hybridization free energies using respectively 
RNAfold and RNAduplex tools from the ViennaRNA package (Lorenz, et al., 2011), which 
automatically replace Thymine (T) with Uracil (U). We used an 8-nucleotides anti Shine-Dalgarno 
sequence (CCTCCTTA) as reported by Kosuri and coworkers (Goodman, et al., 2013). Both free 
energies have been rescaled to a temperature of 30°C, which is the temperature at which the 
experiment in the Kosuri study was carried out. PGExpress return in output the predicted log2-fold-
change of the translational efficiency with respect its median value on the WT-High subset (2355). A 
representation of PGExpress algorithm and its 12 input features is provided in Fig. 1.  

2.3 Feature analysis 
To estimate the predictive power of each feature, we calculated the linear regression between the 

RNA folding and anti-SD hybridization free energies of the five sequence blocks (RBS, C33, 
RBS+C33, CDS and RBS+CDS) and the log2-fold-change of the translation efficiency in the WT-
High dataset. In this analysis we did not consider the C-terminal region of the coding sequence (CC) 
because it corresponds to the sfGFP for all the variants in the Kosuri-All dataset. Furthermore, we 
compared the performance of our best approach (PGExpress) against five methods including 
different combinations of the 12 input features. These methods are:  

• BFolding: the most discriminative RNA folding free energy  
• BBinding:the  most discriminative anti-SD hybridization free energy  
• Folding6: RNA folding free energies of the six blocks  
• Binding6: anti-SD hybridization free energies of the six blocks 
• BFoldBind: the most discriminative RNA folding and anti-SD hybridization free energies 

2.4 Algorithm optimization 
PGExpress is based on a gradient boosting regression algorithm (GradientBoostingRegressor) 

implemented in the scikit-learn package (Pedregosa, et al., 2011). It has been optimized considering 
different numbers of estimators (10, 50, 100, 200 and 500) and maximum depth values for the 
regression estimator (1, 3, 5, and 7). The scikit-learn GradientBoostingRegressor class was run 
using the least squares regression as loss function and the default values for all the remaining 
parameters. 
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2.5 Training and testing 
To estimate the performance of PGExpress and the alternative methods, we performed several 

tests. First, we tested PGExpress using a gene-based 10-fold cross-validation approach on the WT-
High dataset to keep all the variants belonging to the same gene in the same subset. For each test 
we calculated the performance using the evaluation measures defined in section 2 of the 
Supplementary Materials. The reported scores represent the average values obtained over five 10-
fold cross-validation tests. The results obtained on the Kosuri-All (Weak-High, Mid-High and Strong-
High) and Experimental (Exp-Set, Exp-Mut) datasets were calculated after removing from the 
training set all the data related to the genes present in the testing set. This procedure reduced the 
overfitting due to the presence of data from sequences with high similarity both in training and 
testing sets. To check for this source of bias, we also performed the all-against-all global alignments 
(1,558,513) among the RBS+C33 regions of all the gene variants. The global alignments of the 
nucleotide sequences were calculated using the align0 algorithm from the fasta2.0 package (Myers 
and Miller, 1988).  

2.6 Comparison with RBS Calculator 
For assessing the quality of our predictions we compared our results with those obtained by 
RBSCalculator (Salis, et al., 2009). For the comparison we calculated the performances of the 
methods both in predicting the value (regression mode) and sign function (binary classifier) of the 
log2-fold-change of the translation efficiency. The predictions of RBSCalculator were scaled by 
calculating the log2-fold-change with respect to the median value of the translation efficiency on 
WT-High dataset (L2TE). A further comparison of the methods evaluated their performance in 
predicting the log2-fold-change with respect to the wild-type (L2TEwt). For this task we scored the 
performance of PGExpress and RBSCalculator as binary classifiers excluding gene variants with 
absolute L2TEwt close to zero. More details about this test are reported in section 2.4 
Supplementary Materials. 

2.7 Engineering new testing sequences 
For validating our algorithm, we generated new sequences and measured their protein expression 

level. In this case, considering the protein expression level, we reduced the complexity of the 
experiment that did not require to measure the mRNA expression. Thus, we selected a subset of 
gene variants either with positive or negative log2-fold-change of protein expression (L2PE) with 
respect to its median value of the High-WT dataset (2,988). For checking the similarity between our 
experiments and those performed by Kosuri and colleagues (Goodman, et al., 2013), we measured 
the expression level of five randomly selected gene variants (Exp-Set) from High-WT dataset. In the 
next step, we generated five new sequences not included in the Kosuri-All dataset mutating at most 
one nucleotide in RBS or three codons in coding region. Finally, we randomly selected a set of five 
gene variants (Exp-Mut), three of which show a significant variation of the predicted L2PE 
(|L2PEwt|≥3) either from positive to negative (dapB and lpxK) or negative to positive (zipA) and two 
cases (lgt and murF) where the expression level remains in the same class. The sequences of the 
ten tested gene variants are reported in Table S1. 

2.8 Experimental protein expression measure  
DNA sequences consisting of promoter, Ribosome Binding Site (RBS), and 33 coding nucleotides 

(including ATG start site) of five different genes were synthesized (Genscript, Piscataway, USA) with 
flanking AscI and NdeI restriction sites. The DNA fragments were excised from the shuttle vector 
and directionally cloned into the pJ251-GERC vector obtained from Addgene (Kosuri, et al., 2013). 
A unique EcoRI restriction site was engineered in between the 5′ region of the AscI site and the 
respective promoter sequence. Using the EcoRI site we identified the positive clones. Final gene 
variants were verified via Sanger sequencing. The correct variants were transformed in MG165 E. 
coli cells and starter cultures were grown over night at 37 °C. The next day cultures were diluted 
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1:1000 in 100 μL LB medium in optical quality black walled 96-well plates (PerkinElmer, Waltham, 
MA, USA) in quadruplicate and overlayed with 40 μL mineral oil. Bacteria were grown at 30 °C. 
Bacterial growth was followed by measuring the optical density at 600 nm (OD600) as proxy. The 
different combination of promoter, RBS, and coding region regulate the expression levels of the 
superfolder green fluorescent protein (sfGFP). Expression of the red fluorescent protein (mCherry) 
was controlled by a constitutive promoter (PLtetO-1) shared by all gene variants (Kosuri, et al., 
2013). sfGFP and mCherry fluorescence levels were measured with a monochromator equipped 
BioTek Synergy Mx (BioTek, Winooski, USA) plate reader. Every five minutes a fluorescence 
measurement was performed.  

3 Results 

3.1 Regression and input features 
The selection of the data from Kosuri and co-workers allowed us to develop a machine learning 

method (PGExpress) for predicting the log2-fold-change of the translation efficiency based on 
sequence information. Before performing our tests, we analyzed the Kosuri-All dataset focusing on 
the gene variants in the WT-High subset. This set is composed by sequences with promoter with 
high binding affinity (BBaJ23100) and wild-type RBSs (Ribosome Binding Sites). The choice of WT-
High dataset is supported by the observation that the correlation between the level of protein and 
RNA expression is higher than in WT-Low dataset (Fig. S1). Indeed, the correlation coefficients 
between RNA and protein expression levels are 0.72 and 0.51 for the WT-High and WT-Low sets 
respectively. Thus, we selected the WT-High as the main reference set for estimating the predictive 
power of our machine learning approach. To avoid the overestimation of the performance we 
performed a gene-based 10-fold cross-validation test. Keeping the variants from the same gene in 
the same subsets, we excluded the presence of sequences with high level of identity in training and 
testing. Thus, we calculated the distribution of the percentage of identity (PID) between the first two 
blocks (RBS+C33) of the different gene variants. The Fig. S2 shows that only ∼4% of the cases the 
PID achieved a value between 50% and 60%.  

To estimate the predictive power of the input features used in PGExpress, we performed a linear 
regression analysis and calculated the correlation coefficients between each feature and the log2-
fold-change of the translation efficiency (L2TE). The Tables S3 and S4 report the correlation 
coefficient (r), the root mean square error (RMSE) and the mean absolute error (MAE) obtained 
fitting the experimental L2TE with the predicted values of RNA secondary structure and anti-Shine-
Dalgarno (anti-SD) hybridization free energies. This analysis revealed that overall the free energies 
of the RBS+C33 sequence resulted in the highest correlation with the log2-fold-change of translation 
efficiency (L2TE) while, the anti-SD hybridization free energy of the RBS shows the lowest negative 
correlation among the binding features (Table S4). 

3.2 Performance with different features 
In a second step, we calculated the performance of PGExpress and five alternative methods 

including a reduced number of features. The input features for the BFolding, BBinding, Folding6, 
Binding6 and BFoldBind were described in the section Feature Analysis. In Table 1 we reported the 
scores of the previous six methods on the WT-High dataset using the gene-based 10-fold cross-
validation procedure. The results revealed that the RNA folding free energy corresponding to the 
RBS+C33 portion of the gene variant is the most informative feature. Indeed the BFolding method 
with only one feature reached a correlation coefficient (r) of 0.39. When regression values are 
converted in binary classification predictions BFolding method achieved an overall accuracy (ACC) 
of 0.67 a Matthews Correlation Coefficient (MC) of 0.35 and Area Under the Receiver Operating 
Characteristic Curve (AUC) of 0.72. 
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The discriminative power of the anti-Shine-Dalgarno (anti-SD) binding free energy is much lower. 
This is evident by measuring the performance of the BBinding method that resulted in lowest r and 
MC. The analysis of the results of the Folding6 and Binding6 methods, which include six features of 
the same free energy type, do not show any substantial increase in the performances with respect 
to the BFolding and BBinding methods. An improvement in the performance is obtained combining 
the RBS+C33 RNA secondary structure free energy with the RBS anti-SD hybridization free energy. 
Indeed the BFoldBind method, which takes in input two features, reached a correlation coefficient 
0.5 and AUC 0.76.  
In PGExpress we merged the six RNA folding and six anti-SD hybridization free energies. The 
results in Table 1 show that PGExpress achieved a correlation coefficient 0.57, ACC 0.73, MC 0.47 
and AUC 0.80 improving the r value and the Matthews correlation coefficient of 0.07, and the AUC 
of 0.04 with respect to BFoldBind. The Receiver Operating Characteristic (ROC) curves for all 
methods are plotted in Fig. 2.  The PGExpress method also resulted in lowest values of root mean 
square error and mean absolute error with are 1.38 and 1.08 respectively. The optimal performance 
of the PGExpress algorithm is obtained considering a maximum depth 5 and 50 estimators (see 
section 2.4). The results of the optimization procedure are summarized in Table S5. 

3.3 Performance on the Kosuri-All subsets 
In the next test we focused on the performance of PGExpress on three datasets (Weak-High, Mid-
High and Strong-High), which contain gene variants with the same 33 starting nucleotides in the 
coding regions (C33) but three different RBSs (Ribosome Binding Sites). Analyzing the three new 
datasets, we observed that the distribution of the translation efficiency (TE) in Weak-High and WT-
High are similar while Mid-High and Strong-High are strongly unbalanced toward TE values higher 
than 2,355 (Figure S3). A summary of the performance of PGExpress on 4 datasets is reported in 
Table 2. Thus, comparing the performance on WT-High with those on the three new datasets, we 
observed that PGExpress achieved higher performance in terms of correlation coefficient (r) overall 
accuracy (ACC) and Matthews correlation coefficient (MC) on the Weak-High. Indeed on this 
dataset PGExpress reached r, MC and AUC of 0.66, 0.55 and 0.85 respectively. Due to the dataset 
unbalance, lowest r and highest ACC are obtained on the Strong-High dataset (Table 2).  
 
3.4 Selecting high-quality predictions 

To better characterize the performance of PGExpress, we scored our method filtering-out the less 
reliable training data and predictions in WT-High dataset. We assumed that gene variants with 
translation efficiency near the median (M(TE)=2,355) constitute the noisy part of the dataset. Thus, 
we filtered-out progressively the subset of data with absolute log2-fold-change value below a 
selected threshold (see section 2.3 in Supplementary Materials). The performances of PGExpress in 
binary classification mode after removing the data close to the median value are reported in Fig. 3 
and Table S6. We observed that removing 42% of the gene variants with absolute log2-fold-change 
of the TE lower than 1, PGExpress reached an overall accuracy of 0.81 and an AUC of 0.87.  

3.5 Comparison with RBSCalculator 
We compared the performance of PGExpress with RBSCalculator on the WT-High dataset. The 
results showed that PGExpress reached higher correlation coefficient (r) and Matthews correlation 
(MC) than RBSCalculator (see Table 3). Small difference is observed in terms of Area Under the 
ROC Curve which is ~0.8 for both methods.  
PGExpress with RBSCalculator were also compared calculating their performance in predicting the 
log2-fold-change with respect to the wild-type sequence (L2TEwt) removing gene variants with 
absolute L2TEwt value below a given threshold. The results showed that PGExpress reaches an 
higher AUC and Matthews Correlation coefficient than RBSCalculator on the subset of gene variants 
with |L2TEwt|≤0.5 (see Fig 4). 
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3.6 Test on in-house experimental dataset 
To test the ability of PGExpress to predict the gene expression we performed in-house experiments 
with five gene variants each in the Exp-Set and Exp-Mut datasets (see methods section) and 
measured the protein expression using the protocol introduced by Kosuri and co-workers (Goodman 
et al., 2013). In Fig. S4 we plotted the measures of the fluorescence associated to each gene 
variant normalized by the maximum level of OD600. To make a fair comparison between our results 
and those reported by Kosuri and collaborators, we used the median value of the protein expression 
level in Kosuri data as threshold for discriminating between low and high expressed gene variants. 
Thus, we compared the maximum value of the re-scaled fluorescence (Table S8 and Fig. S5) 
obtained in our experiment with the median protein expression level in the WT-High dataset (2,998). 
According to this assumption, we verified that for four gene variants over five (Exp-Set), our 
experiments match those performed by Kosuri and colleagues (Table 4). The only difference is 
observed for a gene variant of the lgt gene (lgt-23), which is classified to have a protein expression 
higher than the median value in the Kosuri-All dataset, whereas our experiments revealed a low 
protein expression level. Nevertheless the prediction of PGExpress agrees with the results reported 
in Kosuri-All dataset. Finally we evaluate the accuracy of PGExpress predictions in classification 
mode on the Exp-Mut dataset, verifying that our predictions are correct for all the five new gene 
variants.  

 
A dubious prediction is represented by the variant lpxK-Mut, which is predicted to have low protein 
expression level and, our in-house measure of protein expression (2,996), is only few digits below 
the median value of protein expression (2,998).  Comparing the experimental and predicted value of 
the log2-fold-change of protein expression, PGExpress achieved a correlation coefficient 0.82 and 
0.85 when the predictions on Exp-Mut dataset are merged respectively with the predictions on 
Kosuri-All (Figure 5A) and Exp-Set (Figure 5B) datasets. Our result showed a strong correlation 
between PGExpress prediction and the experimental data in both cases. For this specific task we 
trained the PGExpress algorithm on the log2-fold-change of protein expression with respect to its 
median valued (L2PE) from Kosuri’s dataset. The results of the optimization procedure for the 
prediction of the log2-fold-change of protein expression are summarized in Table S9.  

4 Discussion  
In this work we presented PGExpress, a gradient boosting regression method for predicting the 
log2-fold change of the translation efficiency of mRNA from predicted free energy features. The 
method uses the folding free energy of six sequence blocks, which represent the local and global 
stability of the mRNA structures. The six sequence blocks include RBS, C33, CC sequence and 
their combinations. Among them, the predicted folding free energy of the RBS+C33 block is the 
most informative feature. This is in agreement with previous findings showing that the formation of 
stable RNA structures around starting codon has a strong effect on translation. Our analysis shows 
that by adding the folding free energies of the remaining blocks, the performance of the prediction 
increased. This might indicate that, although other regions of the gene have an impact on 
translation, the structure of the 5’ region constitutes the main contribution to the translation rate. For 
instance, the presence of a folded SD sequence near a starting codon might slow down the 
translation process reducing the probability of the ribosomes to bind or elongate. Accordingly, the 
minimum hybridization free energies were used to represent the effect of the SD sequence 
predicting the hybridization energy between the mRNA and the anti-SD sequence. Although the 
minimum hybridization free energy itself shows a weak correlation with the translation efficiency, the 
combination of all folding and hybridization free energies allowed to improve the performance of our 
predictor. This indicates that the formation of the mRNA secondary structures and the presence of 
SD sequences regulate translation process in a cooperating manner.  
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Thus, our results show that optimized version of PGExpress reaches a correlation coefficient of 0.57 
in regression mode and an AUC of 0.80 as binary classifier. A comparative assessment of 
predictions revealed that PGExpress achieved better performances than RBSCalculator in the 
prediction of the log2-fold-change of the translation efficiency and its variation with respect to the 
wild-type,   
Finally, we test the sensitivity of PGExpress to small changes in the nucleotide sequences. For this 
purpose we measured the expression level of five gene variants that differ in few nucleotides from 
the original sequences from Kosuri-All dataset. Our analysis show that PGExpress is able to 
correctly predict the expression level of the new gene variants, most of which (4/5) resulted in an 
opposite expression level with respect to the original sequence. Strikingly, is the case of the dapB 
variant which achieved >15-fold lower protein expression with only 2 synonymous mutations (see 
Tables S1 and S8). This observation confirms the robustness of our method, which supports its 
practical application in biotechnology. Compared with other methods that are merely focusing on the 
effects of UTRs, we integrated the main effecting factors from the perspective of whole sequence, 
which enabled us to predict translation efficiency accurately and to engineer new sequences at the 
whole sequence level.  
Future directions of our work will include the analysis of new features to improve the prediction of 
the translation efficiency of wild-type genes in E. coli, and the development of tools for identifying 
key nucleotides to control protein expressions. We believe that our in-silico approach can have 
strong impact on biotechnological applications reducing the experimental effort to engineer 
optimized organisms. 
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Tables 

 
Table 1.  Performance of the methods using alternative input features.  

Method r RMSE MAE ACC MC AUC N 
BFolding 0.39 1.53 1.23 0.67 0.35 0.72 1
BBinding 0.10 1.67 1.40 0.51 0.01 0.52 1
Folding6 0.40 1.54 1.22 0.67 0.35 0.72 6
Binding6 0.08 1.73 1.43 0.52 0.04 0.54 6
BFoldBind 0.50 1.44 1.14 0.70 0.40 0.76 2
PGExpress 0.57 1.38 1.08 0.73 0.47 0.80 12

 

r, RMSE, MAE, ACC, MC and AUC are defined in Supplementary Materials. N is the number of input features. 
The input features of BFolding, BBinding, Folding6, Binding6, BFoldBind and PGExpress are defined in the 
section Features analysis.  

 

 
Table 2.  Performance of the PGExpress on the Kosuri-All subsets. 

 

 

 

 

 

r, RMSE, MAE, ACC, MC and AUC are defined in Supplementary Materials. In the High column is reported 
the fraction of gene variants with translation efficiency higher than its median value (L2TE>0) on the WT-High 
dataset.  

 
 
 

Table 3.  Comparison between PGExpress and RBSCalculator. 

 

 

 

r, RMSE, MAE, ACC, MC and AUC are defined in Supplementary Materials.  

  

Dataset r RMSE MAE ACC MC AUC High 
WT-High 0.57 1.37 1.08 0.73 0.47 0.80 0.50 
Weak-High 0.66 1.16 0.94 0.77 0.55 0.85 0.53 
Mid-High 0.58 1.33 1.02 0.85 0.41 0.84 0.81 
Strong-High 0.49 1.40 1.10 0.92 0.47 0.81 0.89 

Method r RMSE MAE ACC MC AUC 
PGExpress 0.57 1.37 1.08 0.73 0.47 0.80
RBSCalculator 0.53 2.62 2.02 0.71 0.44 0.79
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Table 4.  Prediction of the protein expression level for the gene variants (ID) in the Exp-Set and Exp-Mut 
datasets.  

Dataset ID Kosuri-All Experiment Prediction Class 
Exp-Set dapB-28 3.8 0.8 1.7 ↑ 

lgt-23* 2.3 -0.8 2.0 ↑º 
lpxK-30 6.1 3.9 4.2 ↑ 
murF-21 -0.7 -1.9 -1.1 ↓ 
zipA-23 -1.5 -3.2 -0.8 ↓ 

Mut-Set dapB-Mut - -3.3 -1.2 ↓ 
lgt-Mut - 1.9 3.2 ↑ 
lpxK-Mut - 0.0 -0.3 ↓* 
murF-Mut - -0.9 -1.0 ↓ 

  zipA-Mut - 0.2 3.0 ↑ 
 
Kosuri-All: log2-fold-change of protein expression (L2PE) with respect to its median value (2,988) from 
Kosuri’s dataset (Goodman, et al., 2013).  Experiment: log2-fold-change calculated from protein expression 
levels from our in-house experiments. Prediction: predicted L2PE of protein expression from PGExpress. 
Class: Sign function of the log2-fold-change of protein expression. ↑ and ↓ represent respectively the positive 
and negative values of the L2PE. *Our experimental measure of the protein expression for the lgt-23 gene 
variant is in disagreement with data from Kosuri dataset. º The prediction of log2-fold-change of protein 
expression for the lgt-23 variant is in agreement with the experimental measure from Kosuri’s dataset. * The 
experimental value of L2PE for lpxK-Mut is slightly negative (-1e-4). The sequences of all variants are 
reported in Table S1. The results of the optimization procedure for predicting L2PE are reported in Table S9. 
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Figures 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Representation of the PGExpress algorithm. PGExpress input is a 12-elements vector composed 
by the predicted RNA secondary structure (Ef) and anti-Shine-Dalgarno hybridization (Eh) free energies per 
nucleotide. Each sequence is divided in 3 blocks: the Ribosome Binding Site (RBS), the first 33 nucleotides of 
the coding sequence (C33) and the remaining part of the coding region starting from nucleotide 34 (CC). The 
whole coding sequence (CDS) is obtained joining C33 and CC. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  ROC curves of the predictors. ROC curves PGExpress and alternative methods with reduced input 
features on the WT-High dataset.  
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Fig. 3. Performance of the method as a function of the absolute L2TE. |L2TE|, ACC, MC and AUC are defined 
in Supplementary Materials. DBs the fraction of the dataset after filtering out less reliable training data. 

 
 
 
 
 
  

 

 

 

 

 

 

 

 

 
 
 
Fig. 4. Comparison of PGExpress and RBSCalculator in the prediction of the log2-fold-change with respect to 
the wild-type sequence (L2TEwt). We reported the accuracy (A) the Matthews Correlation Coefficient (B) and 
the Area Under the ROC Curve (C) at different threshold of absolute L2TEwt values. In panel D we plotted the 
fraction of the dataset (DB) and the variants with positive L2TEwt values (High) at different thresholds. The 
data of the plot are reported in Table S7. 
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Fig. 5. Comparison of the predicted and experimental protein expression levels. In the panel A are merged the 
data from Exp-Mut and Kosuri-All datasets. In the panel B are shown the results on our experimental datasets 
(Exp-Mut and Exp-Set). The values of the root mean square error (RMSE) between predicted and 
experimental protein expression levels in panels A and B are 1.5 and 1.7 respectively. 
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1. Gene expression measures 
 
In this work we referred to different measures of gene expression. In general our method 
consider the Translation Efficiency (TE) as the main measure for estimating the gene 
expression level. The Translation Efficiency measures the level of protein expression (PE) 
for RNA molecule.   In particular our method (PGExpress) has been trained to predict log2-
fold-change of the translational efficiency (L2TE) with respect to its median value on the 
WT-High dataset (median(TE)= 2,355). 
For making a fair comparison between PGExpress and RBSCalculator and reducing the 
possible differences derived from the training sets, we calculated the log2-fold-change of the 
translational efficiency with respect to wild-type gene sequence (L2TEwt). 
Finally, for comparing the prediction of PGExpress with the experimental data generated in-
house we predicted the log2-fold-change of the protein expression (L2PE) with respect to its 
median value on the WT-High dataset (median(PE)= 2,988). The use of L2PE is justified by 
the reduced experimental effort that excludes RNA Seq experiments.  

 
 
2. Performance evaluation measures 

 
2.1 Performance in regression mode 
For evaluating the performance of our regression algorithm we compared the predicted and 
experimental values of the log2-fold-change of the translation efficiency (L2TE) with respect 
to its median value (2,355) using a regression analysis. 
The standard scoring values calculated in our analysis are the correlation coefficient (r), the 
root mean square error (RMSE) and the mean absolute error (MAE). They are defined as 
follows: 
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[Eq. 3]

 
 

 

where yi and yi are the predicted and experimental values respectively. 

 
2.2  Performance of the binary classifier 
Our regression method can be converted in binary classification algorithm dividing the 
dataset in two classes corresponding to positive and negative log2-fold-change of the 
translation efficiency with respect to its median value.    
Then, we can calculated the standard performance measures for a binary classifier - 
assuming that positives indicate values of L2TE>0 and negatives measures with L2TE≤0 - 
TP (true positives) are correctly predicted gene variants with L2TE>0, TN (true negatives) 
are correctly predicted gene variants with L2TE≤0, FP (false positives) gene variants low 
translation efficiency predicted with L2TE>0, and FN (false negatives) are gene variants with 
high translation efficiency predicted with L2TE≤0.  
Predictor performance was evaluated using the following metrics: true and false positive 
rates (TPR, FPR) and overall accuracy (ACC) 

FPR =
FP

FP +TN
   TPR =

TP

TP +FN

ACC =
TP +TN

TP +FP +TN +FN

  [Eq. 4] 

We computed the Matthew’s correlation coefficient MC (Eq. 5) as: 

MC =
TP×TN −FP×FN

(TP +FP)(TP +FN )(TN +FP)(TN +FN )
  [Eq. 5] 

We also calculated the area under the receiver operating characteristic (ROC) curve (AUC), 
by plotting the True Positive Rate as a function of the False Positive Rate at different 
probability thresholds of predicting a gene variants with L2TE>0. 

 

2.3  Performance of the binary classifier excluding noisy data 

The performance of PGExpress is calculated removing possible noisy data. Thus, we 
filtered-out from our dataset the gene variants with absolute L2TE below a selected 
threshold.   The absolute value is calculated as follows 
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L2TE = log2
TE

median(TE)High−WT

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟       [Eq. 6] 

where TE is the translation efficiency and its median of the High–WT dataset is 2,355,  

 

2.4  Comparison with RBSCalculator 

To compare the performance of PGExpress with RBSCalculator we converted the output of 
RBSCalculator calculating the log2-fold-change of the translation efficiency (L2TE). The first 
test consisted in the comparison of the scoring measures reported above (r, RMSE, MAE, 
ACC, MC, AUC). The second test evaluated the performance of PGExpress with 
RBSCalculator in predicting the sign of variation of L2TE with respect to the wild-type 
sequence  

L2TEwt = log2
TE

TEwt

⎛

⎝
⎜

⎞

⎠
⎟         [Eq. 7] 

Similar to the analysis described in the previous section, we calculated the performance of 
the both methods as binary classifiers removing variants with absolute L2TEwt value below a 
given threshold. 

 
 

 
3. Experimental data 

 
Our Exp-Set and Exp-Mut datasets (see Table S2) consist of five gene variants each.  The 
gene variants are composed by the Ribosome Binding Sites (RBSs) and first 33 nucleotides 
of the coding region (C33) reported in the following table. 
 
 

ID RBS C33 

dapB-28 TTAATATTAAAGAGGAGAAATACTAG ATGCATGATGCCAACATCCGCGTTGCCATCGCC 

dapB-Mut TTAATATTAAAGAGGAGAAATACTAG ATGCATGATGCCAACATCCACGTTGGCATCGCC 

lgt-23 TTAATATTAAAGAGGAGAAATACTAG ATGACGTCGAGTTATCTGCATTTTCCTGAATTT 

lgt-Mut TTAATATTAAAGAGGAGAAATACTAG ATGACGTCGAGTTACCTGCATTTTCCTGAATTT 

lpxK-30 TTAATATTAAAGAGGAGAAATACTAG ATGATCGAAAAAATTTGGAGCGGTGAATCTCCG 

lpxK-Mut TTAATATTAAAGAGGAGAAATACTAG ATGATCGAAAAAATTTGGTCTGGTGAATCTCCG 

murF-21 TTAATCGTCTGCTGGGGGTGATTGC ATGATTAGCGTGACGTTAAGTCAGCTTACCGAT 

murF-Mut TTAATGGTCTGCTGGGGGTGATTGC ATGATTAGCGTGACGTTAAGTCAGCTTACCGAT 

zipA-23 TTAATATTAAAGAGGAGAAATACTAG ATGATGCAGGATCTCCGCCTGATCCTGATCATC 

zipA-Mut TTAATATTAAAGAGGAGAAATACTAG ATGATGCAGGATCTCCGGTTAATCTTAATCATC 

 
Table S1. Ribosome Binding Site (RBS) and the first 33 nucleotides of the coding region (C33) of 
the ten tested gene variants. Identifiers (ID) labeled with Mut (gray rows), which belongs to 
the Exp-Mut dataset, are variants of the sequences in the Exp-Set dataset (white rows).  
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All the gene variants are completed with the sfGFP coding sequence reported below 
 
>sfGFP|superfolder GFP 
CATATGCGTAAAGGCGAAGAGCTGTTCACTGGTTTCGTCACTATTCTGGTGGAACTGGAT 
GGTGATGTCAACGGTCATAAGTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAAT 
GGTAAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCCGGTACCTTGGCCGACT 
CTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCACATGAAG 
CAGCATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCC 
TTTAAGGATGACGGCACGTACAAAACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTG 
GTAAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGGCAATATCCTGGGCCAT 
AAGCTGGAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAAT 
GGCATTAAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCT 
GATCACTACCAGCAAAACACTCCAATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCAC 
TATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGATCACATGGTT 
CTGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAATAA 
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4. Supplementary Figures 
 
 
 

 
 
Figure S1. Correlation between RNA and Protein in the subset of gene variants including 
promoters with High (panel A) and Low (panel B) binding affinity. RNA and Protein levels 
for high and low binding affinity promoters can be extracted from Supplementary File 1. 
 

 

 
 
Figure S2. Distribution of the Percent of Identity between RDS+C33 regions from 
different genes. Total alignments: 1,558,513  
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Figure S3. Distribution of the Translation Efficiency for the gene variants with WT, Weak, 
Mid and Strong Ribosome Binding Sites. The Translation Efficiency values are reported 
in Supplementary File 1. 
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Figure S4. Experimental protein expression measures of the five gene variants in the 
Exp-Set dataset (black lines) and their mutants in the Exp-Mut dataset (red lines). The 
blue line, which represents the Fluorescence classification threshold, is set to 2,998. This 
threshold is the median value of the protein expression in the WT-High dataset. 
Florescence measures were performed each five minutes.  
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5. Supplementary Tables 
 
 
Dataset RBS Promoter N L2TE>0 L2TE≤≤0 
Kosuri-All All High/Low 14,234 12,002 2,232 
High-WT Wild-Type High 1,772 861 861 
High-Weak Weak High 1,771 946 825 
High-Mid Mid High 1,766 1,438 328 
High-Strong Strong High 1,750 1,562 188 
Low-WT Wild-Type Low 1,763 1,761 2 
Exp-Set* Wild-Type/Strong High 5 3(2) 2(3) 
Exp-Mut Wild-Type/Strong High 5 2 3 

 
Table S2. Datasets composition. The number of gene variants with negative (L2TE≤0) 
and positive (L2TE>0) log2-fold-change in Kosuri-All dataset (Goodman et al., 2013) and 
its subset are based on median value of the translation efficiency (2,355).  On the 
remaining datasets the classification is performed using as a threshold the median values 
of the protein. *For Exp-Set dataset we included in parenthesis the number of variants 
with high and low protein expression levels - with respect to the median value of the 
protein expression in the High-WT subset (2,988) - of common mRNA sequences in 
Kosuri-All dataset  
 
 
 
 

Folding r RMSE MAE 
RBS 0.21 1.69 1.36 
C33 0.28 1.71 1.36 
RBS+C33 0.42 1.71 1.35 
C33+CC 0.30 1.79 1.40 
RBS+CDS 0.42 1.79 1.39 

 
Table S3. Linear regression between the predicted RNA secondary structure free energy 
and the log2-fold-change of the experimental translation efficiency. r, RMSE and MAE are 
defined above  in the section Evaluation measures. 

  
 
 
 

Binding r RMSE MAE 
RBS -0.21 2.00 1.52 
C33 -0.13 1.88 1.46 
RBS+C33 -0.03 2.33 1.80 
C33+CC -0.07 2.33 1.80 
RBS+CDS -0.07 2.33 1.80 

 
Table S4. Linear regression between the predicted hybridization free energy with the 
anti-Shine-Dalgarno RNA sequence and the log2-fold-change of the experimental 
translation efficiency. r, RMSE and MAE are defined above in the section 2.1. 
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Depth Estimators r RMSE MAE ACC MC AUC 

1 10 0.45 1.55 1.28 0.62 0.30 0.75 
1 50 0.52 1.43 1.16 0.71 0.44 0.78 
1 100 0.54 1.39 1.13 0.72 0.46 0.79 
1 200 0.54 1.40 1.13 0.72 0.45 0.79 
1 500 0.53 1.42 1.14 0.71 0.44 0.78 
3 10 0.54 1.44 1.17 0.71 0.43 0.79 
3 50 0.55 1.39 1.10 0.73 0.46 0.79 
3 100 0.54 1.41 1.11 0.72 0.44 0.79 
3 200 0.52 1.44 1.13 0.70 0.41 0.77 
3 500 0.49 1.49 1.17 0.69 0.38 0.76 
5 10 0.57 1.39 1.12 0.72 0.46 0.80 
5 50 0.57 1.38 1.08 0.73 0.47 0.80 
5 100 0.56 1.39 1.09 0.73 0.46 0.80 
5 200 0.55 1.41 1.11 0.72 0.45 0.79 
5 500 0.53 1.44 1.13 0.71 0.42 0.78 
7 10 0.54 1.40 1.13 0.72 0.44 0.78 
7 50 0.55 1.40 1.10 0.73 0.46 0.79 
7 100 0.55 1.41 1.11 0.72 0.45 0.79 
7 200 0.54 1.43 1.12 0.72 0.44 0.78 
7 500 0.54 1.44 1.13 0.72 0.44 0.78 

 
Table S5. Performances achieved by PGExpress in the prediction of the log2-fold-
change of translation efficiency obtained with different Depth and Estimators values. r, 
RMSE, MAE, ACC, MC, and AUC are defined in sections 2.1 and 2.2 of the 
Supplementary Materials. 
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|L2TE| ACC MC AUC DB 
0.00 0.73 0.47 0.80 1.00 
0.50 0.77 0.54 0.84 0.79 
1.00 0.81 0.60 0.87 0.58 
1.50 0.85 0.65 0.90 0.38 
2.00 0.90 0.67 0.91 0.24 
2.50 0.91 0.58 0.89 0.15 

 
Table S6 Performance of the PGExpress as a function of the absolute log2-fold-change 
of the translation efficiency (|L2TE|), which is defined in the section 2.3 of the 
Supplementary Materials. ACC, MC and AUC are defined in the sections 2.1 and 2.2 of 
the Supplementary Materials. DB is the fraction of the dataset remaining after filtering-out 
data close to the median of the translation efficiency. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Table S7. Predicting the sign function of L2TEwt with PGExpress and RBSCalculator 
|L2TEwt|: is the threshold of the absolute log2-fold-change of the translation efficiency with 
respect to the wild-type sequence as described above in section 2.4. ACC, MC and AUC 
are defined in sections 2.1 and 2.2 of the Supplementary Materials. DB is the fraction of 
the WT-High dataset. High is the fraction of gene variants increasing translation efficiency 
(L2TEwt>0). 
 
 
 
 

Dataset ID MF MOD600 MF/MOD600 
Exp-Set dapB-28 4820 0.896 5382 
 lgt-23 1595 0.917 1739 
 lpxK-30 42183 0.927 45530 
 murF-21 745 0.915 814 
 zipA-23 294 0.923 318 
Exp-Mut dapB-Mut 283 0.929 305 
 lgt-Mut 10103 0.925 10928 
 lpxK-Mut 2725 0.909 2996 
 murF-Mut 1432 0.899 1592 
 zipA-Mut 2364 0.688 3438 

 
Table S8. In house experimental measures of the Maximum Fluorescence (MF), 
maximum OD600 (MOD600) and their ratio (MF/MOD600) for each gene variant (ID).  

 RBSCalculator PGExpress   
|L2TEwt| ACC MC AUC ACC MC AUC DB High 

0.0 0.66 0.26 0.68 0.66 0.28 0.69 1.00 0.38 
0.5 0.71 0.33 0.74 0.73 0.40 0.77 0.67 0.33 
1.0 0.76 0.42 0.79 0.77 0.44 0.81 0.43 0.26 
1.5 0.80 0.43 0.82 0.83 0.54 0.87 0.29 0.22 
2.0 0.81 0.38 0.85 0.86 0.57 0.92 0.20 0.18 
2.5 0.81 0.31 0.82 0.87 0.57 0.92 0.13 0.16 
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Depth Estimators r RMSE MAE ACC MC AUC 

1 10 0.51 2.16 1.85 0.54 0.17 0.76 
1 50 0.60 1.93 1.60 0.69 0.43 0.80 
1 100 0.62 1.87 1.52 0.71 0.46 0.81 
1 200 0.62 1.88 1.51 0.72 0.47 0.81 
1 500 0.60 1.91 1.53 0.71 0.45 0.81 
3 10 0.60 1.98 1.67 0.67 0.41 0.80 
3 50 0.62 1.88 1.48 0.73 0.48 0.81 
3 100 0.60 1.91 1.49 0.72 0.47 0.81 
3 200 0.58 1.96 1.53 0.72 0.45 0.80 
3 500 0.55 2.04 1.60 0.70 0.42 0.78 
5 10 0.60 1.94 1.61 0.71 0.46 0.81 
5 50 0.60 1.91 1.48 0.73 0.47 0.81 
5 100 0.59 1.95 1.51 0.72 0.45 0.80 
5 200 0.57 2.00 1.54 0.71 0.44 0.80 
5 500 0.56 2.03 1.57 0.71 0.42 0.79 
7 10 0.59 1.95 1.60 0.71 0.44 0.80 
7 50 0.60 1.94 1.49 0.72 0.46 0.81 
7 100 0.59 1.97 1.51 0.72 0.45 0.80 
7 200 0.58 1.98 1.52 0.72 0.44 0.80 
7 500 0.58 1.98 1.52 0.71 0.44 0.80 

 
Table S9. Performances achieved by PGExpress in the prediction log2-fold-change of 
protein expression obtained with different Depth and Estimators values. r, RMSE, MAE, 
ACC, MC, and AUC are defined in the sections 2.1 and 2.2 of the Supplementary 
Materials. 
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6. Supplementary Files 
 
 
Supplementary File 1: File with all Kosuri datasets. The file include the sequence code 
(SeqCode), the dataset, the Sequence of the Ribosome Binding Site with 5 upstream 
nucleotides (RBS), the 33 nucleotides of the coding sequence (CDS33), the RNA, Protein 
Expression and the Translation Efficiency (TranslationEfficiency).   
 
URL: http://folding.biofold.org/pgexpress/pages/data/supplementary_file_1.txt.gz  
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5Predicting unconventional protein
secretions

5.1 Summary
Many cells secrete proteins into the extracellular space for fulfilling different biochemical

processes. One group of secreted proteins carry a signal peptide as their first part (N-Terminus),

which directs the whole proteins to go through the Endoplasmic Reticulum (ER) – Golgi pathway

to reach the extracellular space. Those proteins are termed as classical secretory proteins and

can be computationally identified with high confidence due to the general patterns of signal

peptides. However, some proteins without signal peptides were found to be secreted by different

unconventional mechanisms. The lack or unawareness of clear sequence patterns of unconventional

protein secretions (UPS) and the low number of known UPS make the building of predictive model

difficult.

In Section 5.2, the existing computational tools for predicting UPS were reviewed. The tools

which were dedicated to predict UPS were based on the hypothesis that all secretory proteins share

common features, which enabled them to make use of the classical secretory proteins by removing

their signal peptides. Other tools which were designed to predict the localizations of all proteins

can also be used to predict UPS. That is, if a protein is destined to go to extracellular space and

does not have a signal peptide, it is probably an UPS.

In Section 5.3, different from the existing tools, data sets from in-house experiments of mass

spectrometry based secretomics were used to build the prediction tool OutCyte. As shown in

Fig. 5.1a, it has two parts: the OutCyte-SP was established based on convolutional neural networks

to distinguish proteins with or without N-terminus signal (either signal peptides or transmembrane

domain); the OutCyte-UPS further classified if the proteins without N-terminus signals to be UPS or

intracellular proteins. OutCyte-SP and OutCyte-UPS were benchmarked with their existing state-

of-the-art counterparts. As shown in Fig. 5.1b and 5.1c, OutCyte-SP reached similar performances

with SignalP [Pet+11] and DeepSig [Sav+17] on two independent datasets, and OutCyte-UPS

outperformed its counterpart SecretomeP [Ben+04] which was the gold standard in predicting UPS

on the known UPS. OutCyte was applied to screen human proteome for potential UPS (Fig. 5.1d).

The first step was to filter the proteins which do not possess a N-Terminus signal with OutCyte-SP.

Those proteins were further classified by OutCyte-UPS.

OutCyte is publicly available as a web tool at outcyte.com.
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(a) OutCyte Framework

(b) OutCyte-SP VS SignalP and DeepSig.
(c) OutCyte-UPS VS SecretomeP

(d) OutCyte applied to human proteome

Fig. 5.1: The OutCyte framework is an integrated predictive tool for predicting unconventionally
secreted proteins. (a). OutCyte-SP classifies input proteins into three categories: with a
signal-peptide, with transmembrane-domain in the N-terminus, or none of the two classes.
The proteins without N-terminal signals were further analysed by OutCyte-UPS, which
has been trained on experimentally determined secreted proteins and classifies input
proteins to be intracellular or unconventionally secreted. (b).The Matthews Correlation
Coefficients (MCC) for signal peptides identifications of three datasets were shown in
the left panel. In the right panel, micro-averaged MCC were calculated for OutCyte-SP
and DeepSig on the two evaluation datasets. *SignalP5.0 training dataset overlapped
with SignalP4.0’s benchmark set, thus two MCCs were not included. (c). An independent
data set was used for performance comparison between OutCyte-UPS and SecretomeP;
(d).The OutCyte pipeline was applied on all 20170 proteins from the human proteome:
OutCyte-SP classified 6077 proteins to contain either an N-teminal signal peptide or
transmembrane domain. The remaining 14,254 proteins were passed to OutCyte-UPS
prediction of unconventional secreted proteins. Finally, 3,475 human proteins were
predicted to be unconventionally secreted.
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5.2 Review: Predicting eukaryotic protein secretion
without signals

Publication status

Henrik Nielsen, Eirini I. Petsalaki, Linlin Zhao, and Kai Stühler. “Predicting eukaryotic protein se-

cretion without signals.” Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics (2018).

Linlin Zhao’s contributions

1. Reviewed the existing tools SPRED [Kan+10], Sec-GO [Hua12], and [Hun+10].

2. Summarized the data sources and availabilities of the tools dedicated to predict unconven-

tional protein secretion.

3. Benchmarked the available tools on known unconventional protein secretions.
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A B S T R A C T

Predicting unconventional protein secretion is a much harder problem than predicting signal peptide-based

protein secretion, both due to the small number of examples and due to the heterogeneity and the limited

knowledge of the pathways involved, especially in eukaryotes. However, the idea that secreted proteins share

certain properties regardless of the secretion pathway used made it possible to construct the prediction method

SecretomeP in 2004. Here, we take a critical look at SecretomeP and its successors, and we also discuss whether

multi-category subcellular location predictors can be used to predict unconventional protein secretion in eu-

karyotes. A new benchmark shows SecretomeP to perform much worse than initially estimated, casting doubt on

the underlying hypothesis. On a more positive note, recent developments in machine learning may have the

potential to construct new methods which can not only predict unconventional protein secretion but also point

out which parts of a sequence are important for secretion.

1. Introduction

Prediction of classical signal peptide-based protein secretion has a long

history in bioinformatics, with the earliest methods being published in the

1980's [1–3]. The secretory signal peptide is probably the best known and

most well-described protein sorting signal, and the large interest in signal

peptide prediction is reflected by the high number of citations to the pa-

pers describing the SignalP method [4–6], which has been available online

since 1996 and is currently in version 4.1 [7].

SignalP is an example of a signal-based method for protein sorting

prediction, where the computational model recognizes the actual

sorting signal. The two other approaches are global property-based

methods and homology-based methods [8]. Global property-based

methods exploit the fact that proteins in different compartments have

different physicochemical properties, which is reflected in e.g. different

amino acid compositions, especially regarding the surfaces of the pro-

teins [9]. The earliest method for distinguishing between intra- and

extracellular proteins based on amino acid and amino acid pair com-

positions was published in 1994 [10]. Homology-based methods, on the

other hand, exploit the fact that proteins tend to stay in the same

compartment during the course of evolution, meaning that subcellular

location can often be inferred by homology to proteins with known

location [11].

However, not all secreted proteins follow the “classical” signal

peptide-dependent pathway. An increasing number of eukaryotic

proteins have been found to be released without passing the en-

domembrane system, including proteins with very important functions

like cytokines [12]. Such proteins will go undetected by signal peptide-

dependent prediction methods such as SignalP.

When attempting to predict which proteins are secreted by un-

conventional “non-classical” signal peptide-independent routes, espe-

cially in eukaryotes, one is faced with two obstacles. First, the signal-

based approach is not available, since it is generally not known where

in the sequence the signals for secretion occur. Second, the number of

experimentally confirmed data from which to build a training set is

extremely small.

In bacteria, the situation is different, since there are many more

examples known of signal peptide-independent secretion (rarely termed

“non-classical” in bacteria). In Gram-negative bacteria, the type I, III,

IV, and VI secretion pathways function without signal peptides, and in

some cases, there is evidence of N-terminal or C-terminal sorting signals

[8,13]. In Gram-positive bacteria, there are also a few known pathways

(Wss, holin, and SecA2) [13,14]. This paper will discuss prediction of

non-classical secretion in eukaryotes only; prediction in bacteria has

been described elsewhere [8,14].

2. The SecretomeP method

SecretomeP is a method from 2004 [15] for predicting non-classi-

cally secreted proteins from Mammalia. It was published by our former
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colleagues in the Center for Biological Sequence Analysis, which later

was transformed into Department of Bio and Health Informatics. Se-

cretomeP 2.0, published in 2005 [16], added the possibility for pre-

diction in Gram-positive and Gram-negative bacteria; the mammalian

part was not modified or retrained.

The authors chose a novel way to deal with the two obstacles

mentioned in the introduction. The method is built upon the hypothesis

that extracellular proteins share certain features regardless of the

pathway used to secrete them. If this is true, it must be possible to use

the large number of known classically secreted proteins to define these

features and use them for prediction. Accordingly, the authors extracted

a positive training set of extracellular proteins with annotated signal

peptides and removed the signal peptide part of the sequence. A ne-

gative training set was extracted with subcellular location annotated as

cytoplasm and/or nucleus. Both datasets included mammalian proteins

only. In addition, a small additional test set of 13 human proteins

known to be secreted without a signal peptide was used to evaluate the

prediction.

The features were selected from a set of 16 features that were either

directly calculated from the sequence (such as number of atoms, the-

oretical isoelectric point, or number of positively charged residues) or

predicted from the sequence (such as secondary structure or phos-

phorylation sites). Some degree of position-specific information in

features such as secondary structure or phosphorylation sites was pre-

served by dividing the sequence into a number of equal-sized sub-

sequences (bins) and using the average predicted value within each bin

as feature values.

The features were subsequently used as inputs to artificial neural

networks, which were constructed in a “bottom-up” fashion, inspired by

the ProtFun protein function prediction method [17]. First, one net-

work was trained on each feature in isolation; then, the most promising

features were combined in pairs; and again, the most promising feature

pairs were selected to build up progressively larger feature combina-

tions, until performance did not improve further. During this process,

performance was always measured using five-fold cross-validation on a

data set that had been homology partitioned so that no sequence in the

test set had>26% identity to any sequence in the training set.

The final network has six input features: (1) number of atoms, (2)

number of positively charged residues, (3) low-complexity regions as-

signed by SEG [18] (in five bins), (4) transmembrane helices predicted

by TMHMM [19] (in five bins), (5) subcellular localization predicted by

PSORT [20], and (6) propeptide cleavage sites predicted by ProP [21]

(in five bins).

That the number of atoms has predictive information is not sur-

prising, since extracellular proteins are on average shorter than cyto-

plasmic and nuclear ones (Fig. 1 of the SecretomeP paper [15]). The

number of positively charged residues is strongly correlated with the

number of atoms; but it makes sense that it was precisely this and not

the number of negatively charged residues that was selected by the

network training procedure, if you consider the “positive-inside” rule of

transmembrane proteins which states that positively charged residues

are more frequent in the cytoplasmic loops than in the extracellular

loops [22]. Accordingly, the SecretomeP authors report that the Argi-

nine plus Lysine content is higher in intracellular than in secreted

proteins.

Concerning the third feature, low-complexity regions seem to be less

prevalent in secreted proteins than in intracellular proteins. This was

apparently a novel observation by the SecretomeP authors.

The last three input features are more surprising. Proteins with

transmembrane helices predicted by TMHMM were explicitly removed

from the negative set in order to keep the network from learning the

trivial fact that transmembrane proteins are not extracellular, so there

should be no positive predictions by TMHMM in the data. However, the

network has apparently utilized the probabilities for “inside” and

“outside” given by TMHMM to help classify extracellular proteins –

even though the TMHMM authors write in the instructions on their

website: “Do not use the program to predict whether a non-membrane

protein is cytoplasmic or not” [23].

That PSORT should be selected is also surprising, since that method

by itself is not able to classify any of the 13 known human examples of

non-classical secretion correctly. There are two old signal peptide pre-

dictors built into PSORT [2,3], so it is designed to predict classical se-

cretion. But apparently, cytoplasm probability is after all slightly lower

for extracellular proteins without their signal peptides than it is for

cytoplasmic and nuclear proteins. The PSORT feature showed high

correlation to the TMHMM feature.

Finally, the propeptides predicted by ProP are of the type re-

cognized by members of the subtilisin/kexin-like proprotein convertase

family, which is active in the secretory pathway. The surprising aspect

here is that the number of predicted propeptide cleavage sites is actu-

ally lower in secretory proteins than in intracellular proteins. This might

reflect the fact that the majority of the recognized cleavage sites are

dibasic, leading to a higher number of false positive predictions in in-

tracellular proteins due to the higher Lys+Arg content described

above.

The predictive performance of SecretomeP is summarized in a

Receiver Operating Characteristic (ROC) curve (Fig. 3 of the

SecretomeP paper [15] – note that the curve shows false positive rate as

a function of sensitivity where the convention is the exact opposite). As

is remarked in the text, at a false positive rate of 5%, 40% of the po-

sitive examples are predicted. However, it is not clear whether this

point on the curve corresponds to the recommended cutoff of 0.6. The

reason for choosing 0.6 is unknown, and the false positive rate at this

cutoff is not given.

Among the 13 known human examples of non-classical secretion,

ten were positively predicted using the recommended cutoff of 0.6. A

smoothed curve of the score distribution for these 13 sequences over-

laps nicely with the score distribution of the positive training set (Fig. 4

of the SecretomeP paper [15]). These two observations together are

taken as a confirmation of the underlying hypothesis that secreted

proteins share characteristics regardless of the pathway used to secrete

them.

3. Other dedicated methods

Besides SecretomeP, we are aware of five other published methods

specifically designed to predict secretion without signal peptides in

eukaryotes. These predictive tools have been summarized in Table 1.

Table 1

Summary of predictive tools dedicated for predicting unconventional protein secretion in eukaryotes.

Method Year Model Availability Link

SecretomeP 2004 [15] ANN Web and Standalone http://www.cbs.dtu.dk/services/SecretomeP/

SRTpred 2008 [24] SVM, homology Web http://crdd.osdd.net/raghava/srtpred/

SecretP (v1) 2010 [26] SVM Web (Error) http://cic.scu.edu.cn/bioinformatics/secretP/ (Internal Server Error)

SPRED 2010 [31] Random Forest Standalone http://www.inb.uni-luebeck.de/tools-demos/spred/spred

Hung et al. 2010 [36] SVM No –

Sec-GO 2012 [34] SVM, GO-annotations Web (not accessible) https://iclab.life.nctu.edu.tw/secgo (404)

Abbreviations used: ANN, Artificial Neural Network; SVM, Support Vector Machine.
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Interestingly, all these methods, like SecretomeP, focus on mam-

malian proteins alone; no method is available for non-mammal eu-

karyotes. However, none of the papers actually argue for that choice or

cite any references showing that non-classical secretion in mammals

differs from the process in, e.g., birds, insects, fungi, or plants.

3.1. SRTpred

SRTpred from 2008 [24] used the SecretomeP dataset. In contrast to

SecretomeP, the goal was not explicitly to make a predictor for non-

classical secretion, but an overall predictor for secretion that did not

rely on signal peptides. As the authors correctly remark, large scale

genome sequencing projects sometimes assign the 5′-end of coding re-

gions incorrectly, which can easily lead to missed signal peptides. Ac-

cordingly, the authors used a set of features that should be independent

of signal peptides: 33 physicochemical properties averaged per se-

quence, amino acid composition, dipeptide (ungapped amino acid pair)

composition, and sequence similarity to known proteins from the data

set, measured by BLAST or PSI-BLAST [25].

However, the SRTpred authors chose to use the entire sequences

instead of cutting off the predicted signal peptides like the SecretomeP

authors did. This means that especially for short proteins, the signal

peptides are allowed to influence the composition and physicochemical

properties, making a direct comparison to SecretomeP performance

problematic.

The SRTpred authors first tried artificial neural networks (ANNs),

but found support vector machines (SVMs) to perform better. The final

SRTpred method is an SVM integrating amino acid composition, di-

peptide composition, and PSI-BLAST, so it is partly a homology-based

method. The sensitivity of this hybrid method at a 5% false positive rate

is 60%. Without the PSI-BLAST input, the corresponding rate is re-

ported to be 44% – only slightly better than SecretomeP.

Keep in mind that when the focus is on predicting non-classically

secreted proteins, the PSI-BLAST module is expected to be of little

value, since the database of known proteins does not contain such

proteins.

SRTpred is available as a web server, but it has the drawback of only

being able to process one sequence per submission (where SecretomeP

can process up to 100).

3.2. SecretP

Parallel to the development in SecretomeP, SecretP version 1 [26] is

for mammalian proteins, while version 2 [27] is for bacteria. SecretP

version 1 from 2010 aims to distinguish between three groups of pro-

teins: classically secreted, non-classically secreted and non-secreted.

For the first and last groups, the SecretomeP datasets were used. Un-

fortunately, the description of how the dataset of non-classically se-

creted proteins were extracted is lacking in detail. Two approaches are

mentioned, where the first one is simply described thus: “Firstly, 864

mammalian proteins confirmed to route in non-classical secretory

pathways were collected from Swiss-Prot through data mining”. 149

human proteins were put aside as a test set. In the second approach, a

“secreted” keyword plus the absence of a signal peptide annotation was

used in the selection. Using an absence of an annotation as a criterion is

always risky, since the absence might simply reflect an incomplete

annotation instead of a real absence of the feature.

The two approaches together gave a data set of 1248 non-classically

secreted proteins. After homology reduction to 25% identity, there were

230 proteins left in the cross-validation set, and 92 in the exclusively

human test set. Unfortunately, it is not clear whether homology re-

duction was only done within the two sets, or also between the cross-

validation and the test set.

The features used in SecretP are amino acid composition and auto-

covariance of seven physicochemical properties, fused into what is

known as pseudo-amino acid composition [28]. In addition, five more

features are used: signal peptides (predicted by SignalP 3.0 [5]), sec-

ondary structure content (predicted by SSCP [29] from amino acid

composition alone), number of positively charged residues, isoelectric

point, and subcellular localization (predicted by WoLF PSORT [30]). No

selection process is described; these five features are apparently chosen

manually. All the features are then used as inputs to an SVM.

The cross-validated performance of SecretP is reported to be 88.79%

correct in the three categories. In the “independent” human test set, 76

out of 92 were correctly predicted to be non-classically secreted (83%).

SecretomeP only predicted 50 of these 92 correctly (54%). The reason

for the scare quotes around “independent” is that we are not sure

whether there were homologous sequences in the human test set

with> 25% identity to sequences in the cross-validation set.

Like SRTpred, the SecretP web server can process only one sequence

per submission. In addition, SecretP is currently broken, reporting an

“internal server error” when a sequence is submitted.

3.3. SPRED

SPRED [31] is a random forest classifier for predicting both con-

ventional and unconventional protein secretion in mammals. The au-

thors extracted 780 extracellular proteins and 1980 intracellular pro-

teins from UniProt by keyword searching and similarity reduction. 180

extracellular and 1380 intracellular proteins were kept as testing data.

Just like in SecretomeP, the signal peptides of the proteins in the ex-

tracellular group were removed.

In total, 119 features were constructed for representing proteins,

which include frequencies of amino acids in 10 functional groups and 7

physicochemical properties (hydrophobic, hydrophilic, neutral, posi-

tively charged, negatively charged, polar and non-polar amino acids),

frequencies of structural elements and frequencies of short peptides and

dipeptides and finally 31 physicochemical features selected from

AAIndex [32]. The frequencies of amino acids were calculated both on

the whole sequence level and within various structural elements. An

information gain-based criterion was used to select top features for

building SPRED. The top 10 features achieved 80.38% accuracy on the

test data. Adding more features up until a set of 75 increased the ac-

curacy to 82.31%. Due to the limited dataset size, keeping on adding

features increased the model complexity and overfitting emerged.

The authors also constructed a set of 19 proteins which were ex-

perimentally confirmed to be non-classically secreted for comparing the

predictive power of SPRED to that of SRTPred and SecretomeP. SPRED

correctly predicted 15 of them to be unconventionally secreted;

SecretomeP predicted 13 whereas SRTPred predicted 5 proteins. The 19

proteins are an extension of the 13 proteins used in the SecretomeP

paper, however, one of the 19 proteins (CALR_HUMAN) was later found

to carry a signal peptide [33]. The remaining 18 proteins and their

predictions are listed in Table 2.

SPRED [31] is available as a downloadable program, but in our

experience, it does not work “out of the box”. It took some guidance,

kindly provided by the first author, before we could make it run.

3.4. Sec-GO

Sec-GO [34] followed a totally different approach for the prediction

of unconventional protein secretion for both mammals and Gram-po-

sitive bacteria by using gene ontology (GO) annotations [35]. In order

to train the GO-based SVM models and benchmark with other existing

methods, the author made use of the SPRED dataset with more stringent

similarity reduction of 25% identity as training and test data for

mammals. Each protein was represented by 60,020 GO terms, which

were encoded as a large sparse vector. A dimension reduction of GO

feature space was applied due to the small dataset size. The author used

the frequency difference of the same GO term between positive and

negative datasets as the score for this term. This score stood for the

discriminative power of the corresponding term for the positive and
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negative datasets. Then all terms were ranked according to their scores

and eventually 436 GO terms were used for the mammalian data set.

The top scoring GO-terms were vectorized and fed directly to an SVM

for optimizing the model. The author reported that by analyzing feature

contributions, the GO term “extracellular” was the most important,

which was straightforward and intuitive; however, the approach did

not give indications of what factors of sequences might lead to the

extracellular location, which is of central interest for predicting protein

secretion.

Sec-GO achieved for all manually or automatically GO annotated

proteins an accuracy of 96.7% of mammal testing data compared to that

of 82.2% from SPRED. Furthermore, a benchmark among SecretomeP,

SRTpred, SPRED and Sec-GO on the 19 unconventionally secreted

proteins from SPRED showed that Sec-GO remained the top one (see

Table 2). However, the requirement for already existing GO terms

makes it hard to use the approach for novel proteins.

The Sec-GO web server is no longer found at the address given in the

paper, which makes it hard to evaluate Sec-GO's efficacy on other da-

tasets.

3.5. Hung et al. [36]

In this study [36], the authors made use of SecretomeP 1.0's dataset

for training SVM models on 30 features which were selected from

physicochemical properties summarized in AAIndex. The feature se-

lection and model parameter tuning were encoded as binary genes in an

inheritable bi-objective genetic algorithm, which made this work dif-

ferent from others. The prediction accuracies for non-secretory proteins

and secretory proteins were 90.16% and 76.17%, respectively. How-

ever, the authors imposed a more stringent sequence similarity reduc-

tion to<25% identity, which made a direct comparison of perfor-

mance to SecretomeP difficult. This unnamed method has never been

made available as a web server or a downloadable program.

4. Multi-location predictors

Besides methods that predict whether or not a protein is secreted,

there are also several methods available which predict a larger number

of subcellular locations, including “secreted” or “extracellular”. Such

multi-location predictors could potentially also be used to predict se-

cretion without signal peptides. However, since the majority of secreted

proteins have signal peptides, some kind of signal peptide prediction

will usually be built into such methods, either implicitly or explicitly. If

signal peptide prediction is essential for predicting the “secreted” or

“extracellular” category, chances are not very high that the method will

be useful for predicting unconventional protein secretion.

On the other hand, several of the multi-location predictors include

some homology-derived features. The simplest approach is taken by the

LocTree3 method [37] which directly uses the annotated subcellular

location of the best hit in a PSI-BLAST search [25], while other methods

use derived features of retrieved database hits such as Gene Ontology

(GO) terms [35]. Such approaches could be useful in identifying non-

classically secreted proteins, if they have close homologues that are

known to be secreted. However, homology-based methods offer no new

insights into the secretion signals or specific properties of non-classi-

cally secreted proteins, and they will have very limited chance of being

able to predict the consequences of mutations affecting sorting signals

because the wild-type and the variant would probably pick up the same

homologues in a database search.

The predictors mentioned here are summarized in Table 3. In con-

trast to Table 1, this list is not meant to be complete; we have selected

the most important and most used methods.

WoLF PSORT [30] is a successor to PSORT/PSORT II [20] for eu-

karyotic proteins. It is based on a combination of sequence-derived

features and amino acid composition, integrated via a weighted version

of the k nearest neighbours classifier. There are three features explicitly

referring to signal peptides: the two old signal peptide predictors built

into PSORT [2,3] and the signal peptide probability from iPSORT [38].

MultiLoc2 [39] is an SVM-based method integrating various se-

quence-derived features with amino acid composition, GO terms of

homologues, and phylogenetic profiles. It also has explicit signal pep-

tide prediction built into the model via the SVMTarget feature.

SherLoc2 [40] extends the MultiLoc2 model by integrating also text

mining of PubMed abstracts linked to the Swiss-Prot entries of retrieved

homologues.

YLoc [41] is based on feature selection from a very large set of in-

itial sequence-derived features. The selected features are subsequently

Table 2

The prediction results on 18 experimentally confirmed human non-classically

secreted proteins. There were originally 19 proteins in the list in the SPRED

paper, but one (CALR_HUMAN) has a signal peptide with experimental evi-

dence in UniProt and has therefore been removed. Numerical output scores are

given for SecretomeP and SRTpred. “+” and “−” indicate true positive or false

negative predictions of unconventional secretion, respectively.

UniProt ID UniProt AC SecretomeP SRTpred SPRED Sec-GO

FGF1_HUMAN P05230 0.847 (+) −0.81 (−) + +

FGF2_HUMAN P09038 0.239 (−) 0.80 (+) + +

IL1B_HUMAN P01584 0.610 (+) 0.96 (+) + +

IL1A_HUMAN P01583 0.551 (−) −0.2 (−) + +

LEG3_HUMAN P17931 0.770 (+) −1.16 (−) + −

MIF_HUMAN P14174 0.776 (+) −0.91 (−) + +

S10A4_HUMAN P26447 0.724 (+) −0.55 (−) + +

GSTP1_HUMAN P09211 0.545 (−) −0.7 (−) + +

PRDX1_HUMAN Q06830 0.528 (−) −0.94 (−) + +

IL18_HUMAN Q14116 0.634 (+) −1 (−) + +

H4_HUMAN P62805 0.408 (−) −1.12 (−) + +

S10A2_HUMAN P29034 0.324 (−) −0.48 (−) + +

LEG1_HUMAN P09382 0.345 (−) −0.62 (−) + +

THIO_HUMAN P10599 0.370 (−) 0.71 (+) + +

CNTF_HUMAN P26441 0.653 (+) 0.02 (+) − +

HME2_HUMAN P19622 0.727 (+) −1.39 (−) − +

THTR_HUMAN Q16762 0.616 (+) −1.2 (−) − +

HMGB1_HUMAN P09429 0.068 (−) −1.2 (−) − +

Table 3

Summary of selected predictors for multi-category protein localization in eukaryotes.

Method Year Model Availability Link

CELLO 2006 [43] SVM Web http://cello.life.nctu.edu.tw/

WoLF PSORT 2007 [30] k-NN Web https://wolfpsort.hgc.jp/

MultiLoc2 2009 [39] SVM, homology Web (not accessible) https://abi.inf.uni-tuebingen.de/Services (temporarily disabled)

SherLoc2 2009 [40] SVM, homology Web (not accessible) https://abi.inf.uni-tuebingen.de/Services (temporarily disabled)

YLoc 2010 [41] SVM, homology (optional) Web (not accessible) https://abi.inf.uni-tuebingen.de/Services (temporarily disabled)

iLoc-Euk 2011 [42] k-NN, homology Web http://www.jci-bioinfo.cn/iLoc-Euk

LocTree3 2014 [37] Homology, profile kernel SVM Web and Standalone https://rostlab.org/services/loctree3/

SubCons 2017 [45] Consensus Web and Standalone http://subcons.bioinfo.se/

DeepLoc 2017 [46] Deep ANN Web and Standalone http://www.cbs.dtu.dk/services/DeepLoc/

Abbreviations used: ANN, Artificial Neural Network; k-NN, k Nearest Neighbours; SVM, Support Vector Machine.
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combined via a naïve Bayes model, which makes it possible to indicate

for each prediction which features were important. Certain of the se-

lected features are clearly correlated to signal peptides. YLoc can op-

tionally include GO terms of homologues.

iLoc-Euk [42] is a k nearest neighbours-based method mainly using

GO terms of homologues, with additional evolutionary profiles used

only in those cases where no homologues are found, or when the found

homologues do not have GO annotation.

CELLO [43] is an SVM-based method that neither uses homology

information nor has a built-in signal peptide model. It uses amino acid

composition, amino acid pair composition, and n-peptide composition

with reduced alphabets. However, it does also use partitioned amino

acid composition, where the sequence is divided into a number of

subsequences of equal length (like the bins of SecretomeP) and amino

acid composition is calculated separately in each partition; a measure

which could be influenced by the presence of signal peptides.

LocTree3 [37], as already mentioned, uses a direct transfer of sub-

cellular location annotation from the best PSI-BLAST hit, if the sig-

nificance of the hit is better than a certain E-value threshold. If this is

not the case, it reverts to LocTree2 [44], which is an SVM-based method

using a so-called profile kernel, a kind of string kernel based on se-

quence profiles found in a PSI-BLAST search. It is not easy to say

whether the profile kernel approach recognizes signal peptides.

SubCons [45] is a consensus method incorporating predictions from

CELLO, LocTree2, MultiLoc2 and SherLoc2. Its performance has been

optimised on a set of human proteins, but it can be used for other eu-

karyotes also.

Finally, DeepLoc [46] is a method based on deep learning (con-

volutional and recurrent neural networks) without using annotation of

homologues. It does not have an explicit signal peptide model, but it is

apparent from the attention score output that it does seem to look

specifically at the signal peptide region when predicting extracellular

proteins.

5. A critical re-evaluation of SecretomeP performance

In the years since SecretomeP was first developed a lot more data

has become available for protein sequences that are secreted in a non-

classical manner. In addition, one common question addressed to the

curators of the SecretomeP web service is whether it performs equally

well for all eukaryotic sequences as it does for mammalian sequences.

As such, an opportunity has presented itself for a critical reevaluation of

SecretomeP's performance.

We collected two data sets from UniProt, one with mammalian

protein sequences and one with eukaryotic sequences excluding mam-

malian. For each data set, the positive sub-set consisted of manually

reviewed secreted sequences that lacked signal peptide annotation, and

the negative sub-set consisted of protein sequences experimentally

verified to be located in the cytoplasm or the nucleus, also lacking

signal peptide annotation. Additional filtering was performed by ex-

cluding protein sequences that appeared to be fragments (not starting

with a methionine) and sequences that were predicted to have a signal

peptide by SignalP-3.0. The final data sets consisted of 543 non-clas-

sically secreted and 5997 non-secreted mammalian protein sequences,

and 236 non-classically secreted and 7262 non-secreted eukaryotic

(excluding mammalian) protein sequences.

In Table 4 you can see the performance of SecretomeP on these two

data sets when using the recommended threshold (0.6) for the NN-

score. As expected, SecretomeP performs better for mammalian se-

quences than other eukaryotic sequences, although the differences are

not very significant. The most surprising is the low sensitivity and high

false positive rate (> 20%) in both cases.

This is underlined by their Receiving Operating Characteristic

(ROC) curves (Fig. 1). A ROC curve is made by varying the threshold for

regarding a prediction as positive and plotting the ensuing sensitivity as

a function of the false positive rate. The area under the curve (AUC) can

then be used as a threshold-independent measure of predictive perfor-

mance. The AUC can be directly interpreted as the probability that a

randomly chosen positive example will score higher than a randomly

chosen negative example. A perfect prediction will have AUC=1,

Table 4

Performance of SecretomeP, SRTpred, and SPRED on two data sets comprising

mammalian proteins and other eukaryotic proteins, respectively. AUC could not

be calculated for SRTpred and SPRED since they do not provide numeric output

values. The value marked by “*” is an estimate based on a subset of the negative

data, since we had technical problems running SRTpred on the whole dataset.

For the same reason, the TNR could not be calculated for the other eukaryotic

proteins (marked “N/A*”).

Data Method TPR TNR AUC

Mammalia SecretomeP 42.9% 78.7% 0.61

SRTpred 38.3% 86.7%* –

SPRED 48.6% 86.0% –

Eukaryota (excl. Mammalia) SecretomeP 35.6% 75.0% 0.60

SRTpred 35.2% N/A * –

SPRED 52.5% 80.0% –

Abbreviations used: TPR, True Positive Rate (Sensitivity); TNR, True Negative

Rate (Specificity); AUC, Area Under the receiver operating characteristic Curve.

(a)

(b)

Fig. 1. ROC curves (true positive rate vs. false positive rate) for SecretomeP

predictions on new datasets. Panel A: mammalian protein sequences; panel B:

eukaryotic protein sequences, excluding Mammalia. The dashed lines represent

the theoretical performance of a random guess.
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while a random guess will give AUC=0.5. The AUC of the SecretomeP

ROC curves in Fig. 1 is for both around 0.6, indicating a low dis-

criminatory ability, only slightly better than a random classifier.

It should be noted that the performance was significantly better

when truncated proteins were included (i.e. proteins not starting with

methionine), with the ROC AUC equal to 0.67 and 0.78 for mammalian

and other eukaryotic sequences respectively. This suggests that these

proteins are in fact secreted in a classical manner, but the signal peptide

in the N-terminus has been removed. It also leads to the conclusion that

there are faults in the initial hypothesis behind the design of the

SecretomeP, and that proteins that are secreted in a non-classical

manner do not share as many features with the classically secreted

proteins as initially considered.

The performances of SRTpred and SPRED are also shown in Table 4.

SRTpred predicts slightly fewer mammalian non-classically secreted

proteins than SecretomeP, but at a lower false positive rate. SPRED

seems to be a bit better than the other two, detecting around half of the

positive examples, but it still has a false positive rate of 14% for

mammalian and 20% for non-mammalian proteins. It was not possible

to draw ROC curves and calculate AUC values for SRTpred and SPRED,

since they don't provide numeric output.

In addition to the three dedicated servers, we also benchmarked

three of the multi-location predictors discussed in the previous section.

In this analysis, we did not divide the data into Mammalia and other

eukaryotes, since the predictors are trained on all eukaryotes together.

The results are shown in Table 5.

From the table, it is apparent that CELLO and DeepLoc, using their

default output, identify fewer non-classically secreted proteins than

SecretomeP at the default threshold, but at a much lower false positive

rate. DeepLoc thus identifies 11% of the secreted proteins practically

without false positives. If we instead of using the most probable class

from the methods use the numerical score for the “Extracellular” ca-

tegory, we can calculate ROC curves (shown in Fig. 2), which show that

CELLO and DeepLoc are actually better than SecretomeP in predicting

non-classically secreted proteins.

Judged from the table, iLoc-Euk is even better, identifying almost

half of the non-classically secreted proteins at a false positive rate

of< 2%. This is surprising, since DeepLoc is reported to be better than

iLoc-Euk in general [46]. However, it should be kept in mind that iLoc-

Euk is a homology-based method, retrieving GO terms of homologues

from a UniProt-derived database, and there may be a considerable

overlap between that database and our test set. For the same reason, we

did not benchmark LocTree3, since many of the predictions from that

tool would be simple database retrievals of the annotations contained in

our test set.

We would have liked to benchmark more methods, but time con-

straints and technical difficulties did not allow it. As an example, all the

University of Tübingen servers (MultiLoc2, SherLoc2 and YLoc) were

temporarily down at the time of writing, and although the text on the

website says “We'll be back in a few days”, this was still the case at the

time of revision.

6. Discussion

SecretomeP version 1 was, for its time, a bold and innovative sug-

gestion for how to construct a predictor for secretion without signal

peptides. It has been cited>800 times according to Google Scholar,

and it is still being used extensively. However, its performance, mea-

sured on new independent data, is not nearly as good as we thought it

would be, and the underlying hypothesis that extracellular proteins

share features independent of the secretion pathway must be called into

question.

SRTpred and SPRED do not represent real alternatives for predicting

non-classical secretion, as they are built on the same questionable hy-

pothesis and only perform marginally better. The small performance gain

shown by SRTpred may even be attributed to the fact that the signal

peptides were not removed in the training. SPRED seems to represent a

more genuine performance gain, but is still limited by the constraints of

the “common feature” hypothesis. Sec-GO represents an interesting ana-

lysis, but is not applicable in practice to the situation where a predictor

would be most important, namely newly sequenced genomes.

SecretP, on the other hand, might be significantly better than

SecretomeP, SRTpred and SPRED, but it is difficult to say how much

Table 5

Performance of three multi-category localization predictors on our new set of

non-classically secreted proteins. Data were eukaryotic sequences (mammalian

and non-mammalian combined). AUC could not be calculated for iLoc-Euk since

it does not provide numeric output values. The value marked by “*” is an es-

timate based on a subset of the negative data, since we had technical problems

running iLoc-Euk on the whole dataset.

Method TPR TNR AUC

CELLO 18.0% 97.2% 0.73

DeepLoc 10.9% 99.8% 0.72

iLoc-Euk 48.4% 98.6%* –

Abbreviations used: TPR, True Positive Rate (Sensitivity); TNR, True Negative

Rate (Specificity); AUC, Area Under the receiver operating characteristic Curve.

(a)

(b)

Fig. 2. ROC curves (true positive rate vs. false positive rate) for those multi-

location predictors where it was possible to get numeric scores. Data were

eukaryotic sequences (mammalian and non-mammalian combined). Panel A

shows results for CELLO, while panel B shows results for DeepLoc. The dashed

lines represent the theoretical performance of a random guess.
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confidence should be put in their data set. Given more time, the set of

864 mammalian proteins, available from the SecretP website, should be

critically examined. Unfortunately, it was not possible for us to

benchmark SecretP due to the restrictions on the website (1 sequence

per submission, 50 sequences per day) and the fact that the webserver

reports an error when you attempt to run it.

The three multi-location predictors that we benchmarked performed

better than SecretomeP, even though they were not made with non-

classical secretion in mind, but the performance is still not high. The

best of them, iLoc-Euk, may have an inflated performance due to

overlap between its database and our benchmark dataset. All in all, it is

fair to say that prediction of non-classical (signal peptide-independent)

secretion in eukaryotes is an unsolved problem.

However, the novel deep learning techniques (convolutional and

recurrent neural networks) used in DeepLoc [46] has shown promising

results for predicting signal peptide-independent secretion in bacteria

(E. I. Petsalaki, J. J. Almagro Armenteros, O. Winther and H. Nielsen,

unpublished results). In the future, we will apply this approach to eu-

karyotic non-classical secretion as well. The networks in DeepLoc have,

in addition to the convolutional and LSTM (long short-term memory)

recurrent layers, a so-called attention layer which calculates a relative

weight for each position in the sequence. These attention weights can,

for each prediction, point out which parts of the sequence were im-

portant for reaching that particular prediction. In this way, a deep

neural network trained on non-classically secreted proteins could not

only give a prediction of secretion but also help localizing possible

signals for non-classical secretion in the sequence.
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5.3 OutCyte: a novel tool for predicting
unconventional protein secretions

Publication status

Linlin Zhao, Gereon Poschmann, Daniel Waldera-Lupa, Nima Rafiee, Markus Kollmann, and

Kai Stühler. “OutCyte: a novel tool for predicting unconventional protein secretion”, accepted by

Scientific Reports

Linlin Zhao’s contributions

1. Processed the protein data by merging data from different mass spectrometry experiments,

homology reduction and preparing training and testing datasets.

2. Generated sequence-based features for the proteins by understanding secretion mechanisms,

literature mining, and discussions with Dr. Kai Stühler, Dr. Gereon Poschmann and Dr.

Daniel Waldera-Lupa.

3. Developed the model OutCyte-UPS based on the sequence features using XGBoost algo-

rithms.

4. Developed the model OutCyte-SP for predicting proteins with N-terminus signals based on

convolutional neural networks.

5. Applied the established models to different independent datasets for benchmarking.

6. Designed the frontend and partly developed the backend of the OutCyte web server.

7. Wrote the manuscript draft.
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Fig. S1 Feature importance ranking 
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Fig. S2 Drifting ranking for features 
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Fig. S3 The FGF2-Human’s features (the red horizontal line) compare to the boxplot of 
features in different data sets. The y-axes stand for the values of the features on x-axes.  
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Fig. S4 The H4-Human’s features (the red horizontal line) compare to the boxplot of features 
in different data sets 
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Fig. S5 Predictions of signal peptides within human proteins using different tools and 

databases (HP-SP-NoTM = signal peptide annotated in the UniProt database)..  
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Fig. S6. The Venn diagram for SecretomeP prediction’s intersection with three human 

proteome subgroups.  

 

 

 

 

 

 

 

 

 

 

 

Fig. S7 The Venn diagram for OutCyte prediction’s intersection with three human proteome 

subgroups. 
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Fig. S8. Length distributions for datasets related to OutCyte-UPS 

 

 

 

Fig. S9. Human proteome subgroups.  
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Fig. S10. The length distribution of human classical secretory proteins and human proteome, 
which showed the favor of smaller molecular in terms of secretion.  

 

 

 

Fig. S11 Segmentations of sequences for generating positional physicochemical features 
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Fig. S12. The correlations of 61 features generated for building OutCyte-UPS. 
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Fig. S13. The proteins without an N-terminal signal predicted by OutCyte-SP intersect with 
other human proteome subgroups. It shows the ability of OutCyte-SP to filter away proteins 
with N-terminal signals. 
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Table S1 List of 61 features for representing sequences 

Size Feature Names Abbreviations 

1 Molecular Weights MW 

20 Amino acid frequencies of entire sequence Met, Cys, Trp, Phe … 

3 Small amino acid frequencies of entire 
sequence, N- and C-terminus 

FSAA, SAAN, SAAC 

3 Positively charged amino acid frequencies 
of entire sequence, N- and C-terminus 

FPAA, PAAN, PAAC 

3 Negatively charged amino acid frequencies 
of entire sequence, N- and C-terminus 

FNAA, NAAN, NAAC 

3 Polar amino acid frequencies of entire 
sequence, N- and C-terminus 

FPoAA, PoAAN, PoAAC 

3 Hydrophobic amino acid frequencies of 
entire sequence, N- and C-terminus 

FHyAA, HyAAN, HyAAC 

5 Positively charged amino acid frequencies 
of 5 sequence segments 

PAA1, PAA2, …, PAA5 

5 Negatively charged amino acid frequencies 
of 5 sequence segments 

NAA1, NAA2, …, NAA5 

5 Polar amino acid frequencies of 5 sequence 
segments 

PoAA1, PoAA2, …, PoAA5 

5 Hydrophobic amino acid frequencies of 5 
sequence segments 

HyAA1, HyAA2, …, HyAA5 

5 Small amino acid frequencies of 5 
sequence segments 

SAA1, SAA2, …, SAA5 
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Table S2 Predictions on known UPS 

Protein UniProt ID OutCyte-UPS SecretomeP SRTpred 

FGF1-Human P05230 0.616(+) 0.847(+) -0.81(-) 

FGF2-Human P09038 0.066(-) 0.239(-) 0.8(+) 

IL1B- Human P01584 0.598(+) 0.610(+) 0.96(+) 

IL1A- Human P01583 0.615(+) 0.551(-) -0.2(-) 

LEG3-Human P17931 0.618(+) 0.770(+) -1.16(-) 

MIF-Human P14174 0.584(+) 0.776(+) -0.91(-) 

S10A4-Human P26447 0.614(+) 0.724(+) -0.55(-) 

GSTP1-Human P09211 0.598(+) 0.545(-) -0.7(-) 

PRDX1-Human Q06830 0.618(+) 0.528(-) -0.94(-) 

IL18-Human Q14116 0.614(+) 0.634(+) -1(-) 

H4-Human P62805 0.065(-) 0.408(-) -1.12(-) 

S10A2-Human P29034 0.614(+) 0.324(-) -0.48(-) 

LEG1-Human P09382 0.598(+) 0.345(-) -0.62(-) 

THIO-Human P10599 0.617(+) 0.370(-) 0.71(+) 

CNTF-Human P26441 0.571(+) 0.653(+) 0.02(+) 

HME2-Human P19622 0.525(+) 0.727(+) -1.39(-) 

THTR-Human Q16762 0.066(-) 0.616(+) -1.2(-) 

HMGB1-
Human 

P09429 0.499(-) 0.068(-) -1.2(-) 
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Table S3 Statistics of datasets for training and evaluating OutCyte-SP 
 SP TM N/C Globular 

Training 1361 913 4491  

Evaluation-SignalP4 609 939 1001  

Evaluation-DeepSig 46 323 688  

Evaluation-SignalP5 211   7248 

 

 

 
 
 
 

Table S4 Signal peptide prediction benchmarks 
 OutCyte-SP DeepSig SignalP4.0 UniProt 

OutCyte-SP 3512 3021 3339 2983 

DeepSig  3102 3021 2739 

SignalP 4.0   3556 3009 

UniProt    3323 
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6Data-driven Automatic
Annotations for Honeybee
Behavior

6.1 Summary
Honeybees are social insects, forming societies with a queen, thousands of workers and a

few male drones. The thousands of members collectively function as a single unit, of which the

collaborative features are regulated by individual behaviours. The systematic understanding of

honeybee societies requires information of simultaneous and continuous annotations of individual

behaviours. Manual tracking of various behaviours for thousands of bees is not feasible. Therefore,

automatic annotations of behaviours are needed to enable deep insights of collaborative features of

honeybee colonies.

The paper in this chapter established Bee Behavior Annotation System (BBAS), a system that

can automatically classify stereotypical behaviours of individual workers in a group of honeybees.

The system first makes use of a tracking device [MCK13] to obtain the continuous information on

workers’ positions and orientations over time by simultaneously tracking 100 bees. The tracking

device as shown in Fig. 6.1a consists of a high resolution camera (Cam), an infrared lighting system

(LS) and the observation hive (OH). Each each bee is attached with a 2D barcode for the tracking

device to recognize (Fig. 6.1b,c,d). The obtained information is then used to calculate behavioural

and social features which are in turn used to train behaviour classifiers by an interactive machine

learning framework JAABA [Kab+13].

BBAS accurately classified encounter behaviours between worker bees, which are head-to-head

quick contacts among bees (Fig. 6.1d). As is shown in Table 6.1, of the encounter behaviours that

were manually annotated, 93% were accurately detected. Even though the trained classifier may not

detect 7% of the encounter behaviours, the large number of behaviours of the many worker bees that

can be detected over multiple days of observation produces a reliable test sensitivity. This statistical

power will support the identification of even tiny differences between internal physiological states

or the effects of experimental manipulation. According to the manual annotations, the system

falsely classified other behaviours as encounter behaviours. Of these false detections, 13% had no

similarity to encounter behaviours, whereas 15% had a close similarity to encounter behaviours,

possibly suggesting that the classifier can detect a broader spectrum of encounter and encounter-

related behaviours than can be manually annotated. These borderline cases may have a similar

biological function and require further investigation.
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Fig. 6.1: Setup of the tracking device. (a) The tracking device consisted of a high-resolution camera
(Cam), an infrared lighting system (LS) and the observation hive holding one “Deutsch
Normal” comb (OH). The entire device was placed under a cardboard box in a laboratory.
(b) Examples of 2D barcodes. (c) Beemarkedwith a tag bearing a 2D barcode. (d) Encounter
behaviour between two worker bees defined by the head to head orientation and the
antennal contact of the interacting bees.

Tab. 6.1: The result of the automatic detection of encounter behaviours by BBAS.

Automatic annotations by "encounter classifier"

Encounter (%) Non-encounter (%)

Training set
Encounter 100 0

Non-encounter 0 100

Test set
Encounter 93 7

Non-encounter 28(1) n.d. (2)

(1)Percentage of falsely annotated encounter behaviors to all annotations
(2)Not determined (n.d.) since non-encounter behaviors were not manually labeled.
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6.2 Automated computer-based detection of
encounter behaviours in groups of honeybees

Publication status

Blut, Christina, Alessandro Crespi, Danielle Mersch, Laurent Keller, Linlin Zhao, Markus Koll-

mann, Benjamin Schellscheidt, Carsten Fülber, and Martin Beye. “Automated computer-based

detection of encounter behaviours in groups of honeybees.” Scientific reports 7, no. 1 (2017): 17663.

Linlin Zhao’s contributions

1. Adapted the published program JAABA [Kab+13] originally for flies to be capable of applying

to bees.

2. Processed the tracking data from the tracking device to generate input data for JAABA.

3. Generated extra features which were unique for bee societies.

4. Processed the continuous annotation results from JAABA.
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Automated computer-based 
detection of encounter behaviours 
in groups of honeybees
Christina Blut , Alessandro Crespi , Danielle Mersch , Laurent Keller , Linlin Zhao ,  
Markus Kollmann , Benjamin Schellscheidt , Carsten Fülber  & Martin Beye

Honeybees form societies in which thousands of members integrate their behaviours to act as a 
single functional unit. We have little knowledge on how the collaborative features are regulated by 
workers’ activities because we lack methods that enable collection of simultaneous and continuous 
behavioural information for each worker bee. In this study, we introduce the Bee Behavioral Annotation 
System (BBAS), which enables the automated detection of bees’ behaviours in small observation 
hives. Continuous information on position and orientation were obtained by marking worker bees 

annotating behaviours may allow for the examination of individual behaviours of worker bees in 
the social environments of small observation hives. We envisage that BBAS will be a powerful tool 

pesticides on behaviour.

Honeybees, like other eusocial insects, form societies in which their members integrate their behaviours to form a 
single functional unit (often described as ‘superorganisms’)1. In honeybee colonies, for example, the brood is col-
lectively reared by the worker bees under constant temperature conditions in worker-made and well-structured 
wax combs2. We still have little knowledge on how the collaborative features are regulated within the colony by 
single workers’ task engagements, worker-worker interactions and environmental cues.

A honeybee may engage in many behavioural tasks, for example, cell cleaning, brood feeding, comb building, 
pollen and nectar storing, and foraging3. The many in-hive tasks are usually performed within the first three weeks 
of their life, whereas foraging tasks are performed later3. Individual task engagements are flexible and are adapted 
according to the colony’s needs4,5. Differences in individuals’ internal response thresholds for task-specific stim-
uli (response threshold model)6–8, actively seeking for tasks (foraging for work model)9, repeatedly performing 
the same task when being successful at it (self-reinforcement models)8,10 and information transferred by social 
partners through direct contact11 may play an important role in the organisation of task engagements within the 
colony.

Gaining continuous behavioural information on each single worker, their direct contacts (encounters) to 
other worker bees and their interactions with the local environment would facilitate the further characterization 
of the underlying mechanisms of colony organization. However, we currently lack methods that enable the collec-
tion of simultaneous and continuous behavioural information for each individual worker bee in the environment 
of a colony12. In current methods, behaviours are manually detected by an observer either from video recordings 
of small observation hives or from direct observations3,13–15. These manually detected behaviours represent only 
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a fraction of the behaviours that the many worker bees can display in a colony, especially when the behaviour is 
frequently performed, for example, in the case of encounter behaviours.

In honeybees, encounter behaviours between workers are characterized by the following: the two worker bees 
face each other head to head and their moving antennae are repeatedly in contact. Encounter behaviours sum-
marize different worker-worker interaction behaviours that display constant antennal contact and can be further 
grouped into the following behaviours: (i) antennation behaviour, which is required to initialize and maintain a 
contact16, whereby the antennae of two worker bees are in constant contact but no other features of the following 
behaviours are displayed; (ii) begging behaviour, in which a worker bee begs for food from another nestmate;16,17 
(iii) offering behaviour, in which a worker bee offers food to another nestmate;17 and, (iv) trophallaxis behaviour, 
in which nectar from the crop is exchanged between two bees18,19.

Worker bees may perform begging behaviour to gain information about the quality and source of nectar 
offered by the incoming forager bees18,20–22. Incoming forager bees perform offering behaviour to unload the col-
lected nectar to a recipient in-hive worker bee via trophallaxis20,23–25. Returning foragers presenting high-quality 
nectar show increased offering behaviour as well as increased dancing behaviour26. They more often find a recipi-
ent bee and will more often return with nectar to the colony. Effects of different nectar qualities on worker-worker 
interaction establish a control mechanism for the workers’ foraging engagement, performance and the influx of 
high-quality nectar27. Despite their role in regulating workers’ foraging engagement and performance23,28, we 
have little knowledge on other possible roles that these encounter behaviours may have in task engagements and 
colony organization.

In this study, we introduce the Bee Behavioral Annotation System (BBAS), which enables the automated clas-
sification of worker-worker encounters within a group of honeybees. We obtained continuous information on 
workers’ positions and orientations over time by simultaneously tracking 100 bees tagged with a 2D barcode 
by adapting a tracking device that was developed for ants29. From this tracking information, behavioural and 
social features were computed, and a behaviour classifier was trained based on machine learning using the Janelia 
Automatic Animal Behavior Annotator (JAABA) program30. Our study demonstrates that we can automatically 
and accurately classify encounter behaviours within a group of bees. This system has the prospect of automatically 
obtaining quantitative and continuous behavioural information on hundreds of bees at once in small colonies.

Results
To automatically 

classify worker behaviours in a small observation hive, we developed the BBAS. We obtained tracking infor-
mation from individual worker bees in a small group and computed behavioural features (per-frame features), 
which were utilized to classify behaviours. Per-frame features represented parameters calculated from the track-
ing information that provided information on the bees’ behavioural properties in each frame. Such properties 
included, for example, a bee’s speed or orientation towards a nestmate (see Kabra et al.30 for a detailed listing of 
per-frame features). We applied the per-frame features to manually labelled behaviour classes to train a machine 
learning-based system and thus generate an automatic behaviour classifier.

First, we adapted a tracking device developed for ants29 to obtain information on the position and orientation 
of individually tagged bees at a rate of four frames per second. In our setting, we tracked 100 newly emerged 
worker bees for two days. Bees were individually tagged with 2D barcodes from the AprilTags library31 printed 
on 2 × 2 mm tags and housed in a small observation hive on a single comb providing food (Fig. 1a–c). We chose a 
rate of four frames per second to ensure that we obtained sufficient information on the bees’ position and orienta-
tion for subsequent use in automatic behaviour classification. To test whether the chosen rate captured sufficient 
information we determined the average change in posiotion and orientation of bees (see Supplementary infor-
mation online). On average, bees’ positions changed by 0.9 mm (SD ± 0.9 mm) from one frame to another, which 
corresponds to ~0.06% of an Apis mellifera worker size. Bees’ average change in orientation from one frame to 
another was 6° (SD ± 4°). These small changes in position and orientation suggest that we can capture sufficiently 
detailed information on the bees’ movements with the chosen rate. The AprilTag system was chosen because it is 
an actively maintained open source project and provides a robust system to minimize inter-tag confusion. It also 
has better performance on images taken under non-uniform lighting conditions as compared to several other 
similar systems31.

The results of the detection rate and positional accuracy of the tracking device of immobile tags glued to a 
comb and tags attached to moving and resting worker bees are summarized in Table 1. On average, resting bees 
were detected in 98.2% of the frames, whereas moving bees were detected in 90.8% of the frames. The orientation 
accuracy of immobile tags glued to a comb was 1.5° and the positional accuracy was 0.04 mm. The high detection 
rate and positional accuracy suggest that we can obtain a considerable amount of detailed information on the 
movement of each single worker in a group of bees.

Second, to generate an automatic behaviour classifier, we computed per-frame features from the tracking 
information using the JAABADetect program30. Computing the per-frame features for the tracking information 
on 100 worker bees required a high-performance computing cluster. We used the social per-frame features to 
train a classifier for honeybee encounter behaviours30. The social per-frame features are a set of per-frame features 
providing information on an individual’s state in each frame in relation to its nearest nestmates. For example, the 
distance, orientation and speed towards another worker may be described by these features (see Kabra et al.30 for 
a detailed listing of social per-frame features).

Third, we determined whether we could automatically classify encounter behaviours between workers using 
an automatic behaviour classifier generated with the JAABA program. The automatic behaviour classifier was 
expected to classify the four different behaviours - antennation, begging, offering and trophallaxis - as a single 
class, which have the behavioural features of head to head orientation and antennal contact of two worker bees 
in common (Fig. 1d). To train the automatic behaviour classifier, we manually labelled 76 encounter behaviours 
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and 77 non-encounter behaviours from 105 minutes of video recording and corresponding tracking information 
of the 100 tracked bees. We only labelled encounter behaviours of which we were highly confident that encounter 
behaviour was truly displayed. The 76 encounter behaviours (EBs) comprised a sample of 28 antennation, 8 beg-
ging, 6 offering and 34 trophallaxis behaviours (see Supplementary Videos V1-V4 online for examples of the four 
encounter behaviours). The non-encounter behaviours (NEBs) represented a sample of 46 sitting, 20 walking, 7 
self-grooming, 1 social grooming and 3 sitting with subsequent walking behaviours. We trained the classifier by 
entering the 76 EBs and 77 NEBs (training set) bit by bit into the JAABA program in five training rounds until we 
observed no further improvement in the cross-validation estimates (see Supplementary information online for 
details on cross-validation). Cross-validation estimates were obtained by randomly splitting the EBs and NEBs 
from the training set into testing and training subsets. The training subset was used to train the classifier while 
the testing subset was used to subsequently estimate the classifier’s error rate on classifications30. Table 2 presents 
the final cross-validation estimates from 10 cross-validation rounds for our trained ‘encounter classifier’. The esti-
mates represent the percentage of frames automatically classified as EB* and NEB* by the ‘encounter classifier’ 
(asterisks indicate automatically classified behaviours; see Supplementary information online for details on cal-
culation of estimates). Of the EB frames, 77.3% were correctly classified by our ‘encounter classifier’ (SD ± 1.3%, 
Table 2), whereas 73.7% of the NEB frames were correctly classified (SD ± 1.2%, Table 2). The false positive rate 
was 26.3% (NEB frames falsely classified as EBs*), whereas the false negative rate was 22.7% (EB frames falsely 
classified as NEBs*; Table 2).

Next, we examined whether our classifier was able to correctly classify all 76 manually labelled EBs from 
our training set. Since the training set included the different behaviour classes - antennation, begging, offering 
and trophallaxis - we examined whether the classifier could correctly classify these four different behaviours as 
encounter behaviour. We determined the classification rate and observed that all manually labelled encounter 
behaviours of the training set were correctly detected by our classifier (training set in Table 3; Supplementary 
Table S1).

Figure 1. Setup of the tracking device. (a) The tracking device consisted of a high-resolution camera (Cam), an 
infrared lighting system (LS) and the observation hive holding one “Deutsch Normal” comb (OH). The entire 
device was placed under a cardboard box in a laboratory. (b) Examples of 2D barcodes from the AprilTags 
library. (c) Bee marked with a tag bearing a 2D barcode. (d) Encounter behaviour between two worker bees 
defined by the head to head orientation and the antennal contact of the interacting bees. This specific encounter 
shown is trophallaxis.

No. of 
tracked tags

No. of frames analysed 
(sequence duration)(3)

Detection 
rate(4) (%)

x/y position accuracy(5) 
(mm ± SD)

Orientation accuracy(5) 
(degrees ± SD)

Tags glued to 
a comb immobile 100 1200 (5 min) 99.9 0.04(6) ± 0.03 1.5 ± 0.8

Tags glued to 
a bee

resting(1) 10 240 (1 min) 98.2 n.d.(7) n.d.(7)

moving(2) 30 240 (1 min) 90.8 n.d.(7) n.d.(7)

Table 1. Detection rate and positional accuracy of the tracking device. (1)Bee sits in one position without 
moving for ≥ 5 seconds. (2)Bee walks across the comb without interacting with other bees, inspecting cells or 
performing any other task. (3)Duration of the tracking. (4)The percentage of frames in which tags were detected. 
(5)Accuracy of the tracking device for the detected x/y centre position and the orientation. (6)i.e., ~0.003% of an 
Apis mellifera worker size. (7)Not determined (n.d.) because changes could result from the bees’ behaviours.
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We then determined the accuracy of our ‘encounter classifier’ by comparing manual annotations and auto-
matic classifications of behaviours that were not included in our initial training set. We manually annotated 43 
encounter behaviours comprising 4 trophallaxis, 8 begging, 12 offering and 19 antennation behaviours (testing 
set; see Supplementary Table S1). Our ‘encounter classifier’ detected 93% of the manually annotated encoun-
ter behaviours in this testing set. The false negative rate was 7%, whereas 28% of the automatically detected 
behaviours were falsely classified as EBs* (testing set in Table 3; Supplementary Table S1). We re-examined the 
falsely classified EBs* and found that 15% of the 28% falsely classified EBs* displayed similar features to those of 
encounter behaviours, i.e. head to head orientation and proximity of two bees. However, these falsely classified 
EBs* collectively lacked antennal contact. Of the behaviours falsely classified as encounters, 13% were unrelated 
to encounter behaviour, i.e. displayed no features characterizing encounter behaviours. The results on the high 
classification rates suggest that the BBAS can be used to automatically and accurately annotate encounter behav-
iours in groups of honeybees.

We 
demonstrated that we could automatically classify the different encounter behaviours, antennation, begging, 
offering and trophallaxis, as a single behavioural class with our ‘encounter classifier’. Next, we considered whether 
we could use the duration of the different encounter behaviours to distinguish these from each other. In 105 min-
utes of the 22 hours of video recording, we measured the frequency and duration of antennation, begging, offering 
and trophallaxis behaviours in the group of 100 worker bees.

We manually detected 658 encounter behaviours from which 57% were antennation behaviours, 26% were 
offering behaviours, 9% were begging behaviours and 8% trophallaxis behaviours (Table 4; Supplementary 
Videos V1-V4 online). The median duration of the trophallaxis behaviours was 8 seconds (75% percentile: 13 sec-
onds; range of duration: 5–30.5 seconds; Table 4; Fig. 2a). The median duration of antennation, offering and 
begging behaviours was much shorter, ranging from 1 to 2 seconds with a considerable overlap in the 75% percen-
tile (range of durations: antennation: 0.25–9.25 seconds, offering: 0.25–4.5 seconds, begging: 0.75–6.75 seconds; 
Table 4; Fig. 2b-d). There was a significant difference between the duration of the four different encounter behav-
iours (One Way ANOVA on Ranks: N = 658, α = 0.05, H = 175, d.f. = 3, P =  < 0.001). Post hoc tests showed that 
pairwise comparisons were significantly different except for begging vs. antennation behaviours (Dunn’s Method, 
α = 0.05: trophallaxis vs. offering: N = 222, Q = 13, P < 0.001; trophallaxis vs. antennation: N = 427, Q = 10.7, 
P < 0.001; trophallaxis vs. begging: N = 109, Q = 6.7, P < 0.001; begging vs. offering: N = 231, Q = 5.3, P < 0.001; 
antennation vs. offering: N = 549, Q = 5.2, P < 0.001; begging vs. antennation: N = 436, Q = 2.3, P = 0.138). This 
result suggests that the duration of encounter behaviours could be utilized to distinguish the different encounter 
behaviours from each other.

Next, we tested whether encounter behaviours could be accurately classified as antennation, begging, offering 
or trophallaxis based solely on their duration. Therefore, we analysed the ranges of duration of the 658 encounters 
from the four behaviour classes to determine whether duration thresholds could be used as classifier for the different 

Automatically detected by the ‘encounter classifier’
Encounter (EB*)(6) 
(±SD) (%)(2)

Non-encounter (NEB*)(6) 
(±SD) (%)(2)

Manually annotated(1)
Encounter (EB) 77.3 (±1.3)(3) 22.7 (±1.3)(5)

Non-encounter (NEB) 26.3 (±1.3)(4) 73.7 (±1.2)(3)

Table 2. The accuracy of the trained ‘encounter classifier’ estimated through cross-validation on the labelled 
frames for EBs and NEBs. (1)The manually labelled high-confidence behaviours (EBs and NEBs) used to train 
the classifier. (2)Mean estimates with standard deviation (SD) of the 10 rounds of cross-validation. Estimate 
values are given as percentage of frames correctly or falsely classified as EBs or NEBs using the classifier. 
(3)Frames correctly classified as EB or NEB (true positives). (4)NEB frames falsely classified as EB* (false 
positives). (5)EB frames falsely classified as NEB* (false negatives). (6)Asterisks indicate automatically classified 
behaviours.

Automatically detected by the 
‘encounter classifier’
Encounter 
(EB*) (%)

Non-encounter 
(NEB*) (%)

Training set(1)
Encounter (EB) 100 0
Non-encounter (NEB) 0 100

Testing set(2)
Encounter (EB) 93 7
Non-encounter (NEB) 28(3) n.d.(4)

Table 3. Comparison of manually annotated behaviours (EBs and NEBs) and automatically classified 
behaviours (EBs* and NEBs*). (1)The manually labelled high-confidence behaviours (EBs and NEBs) used to 
train the classifier (2)Manually annotated behaviours not used to train the classifier (3)Automatically detected 
behaviours falsely classified as EB* by the ‘encounter classifier’ (4)not determined (n.d.) because we did not 
manually annotate NEBs for the testing set and thus could not determine the automatic classification rate.
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encounter behaviours. Hereby, we attempted to find thresholds above which behaviours could be reliably classi-
fied as one of the four behaviour classes. We observed that duration thresholds could not be utilized as classifiers 
for begging, offering and antennation behaviours since their ranges of duration overlapped too strongly (Table 4; 
Fig. 2). When considering only behaviours with duration of 5 and more seconds, we observed that all trophallaxis 
behaviours could be correctly classified (100%; Table 5). Non-trophallaxis behaviours (i.e. begging and antennation 
behaviours), however, were falsely classified as trophallaxis behaviours with a false positive rate of 8% (Table 5).

We then tested whether trophallaxis behaviours could be automatically classified based on their duration. We 
applied the duration threshold of ≥ 5 seconds to the automatically classified EBs* from the testing set comprising 
43 encounter behaviours. We observed that 100% of the trophallaxis behaviours were automatically classified 
(Table 5). However, 28% of the detected behaviours were falsely classified as trophallaxis (false positive rate; 
Table 5). These classification rates suggest that we can automatically classify the vast majority of trophallaxis 
behaviours in a group of worker honeybees using our ‘encounter classifier’ together with the duration threshold 
of ≥5 seconds.

Encounter 
behaviour

No. of 
encounters

Relative 
proportion (%)

Min. duration 
(sec)

Max. duration 
(sec)

Median 
(sec)

75% percentile 
(sec)

Antennation 377 57 0.25 9.25 1.8 2.5
Offering 172 26 0.25 4.5 1 1.9
Begging 59 9 0.75 6.75 2 3
Trophallaxis 50 8 5 30.5 8.4 12.9

Table 4. Frequency and duration of the different manually detected encounter behaviours.

Figure 2. Number of encounter behaviours observed for the different duration of encounter behaviours from 
the four behaviour classes. (a) Trophallaxis, (b) Begging, (c) Offering, (d) Antennation.
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Discussion
We introduced the BBAS, a system that can automatically classify stereotypical behaviours of individual workers 
in a group of honeybees. Our results show that the BBAS can be reliably used to automatically detect encounter 
behaviours.

Current behavioural observation methods usually require the manual detection of behaviours by an 
observer12. Manual detection limits the number of observable behaviours, especially when the behaviour is fre-
quently displayed by the many worker bees in a colony, as is the case for encounter behaviours. In this study, we 
accurately classified encounter behaviours between worker bees using automatic classification. Of the encounter 
behaviours that were manually annotated, 93% were accurately detected. Even though our classifier may not 
detect 7% of the encounter behaviours, the large number of behaviours of the many worker bees that can be detect 
over multiple days of observation produces a reliable test sensitivity. This statistical power will support the identi-
fication of even tiny differences between internal physiological states or the effects of experimental manipulation. 
According to the manual annotations, our classifier falsely classified other behaviours as encounter behaviours. 
Of these false detections, 13% had no similarity to encounter behaviours, whereas 15% had a close similarity to 
encounter behaviours, possibly suggesting that our classifier can detect a broader spectrum of encounter and 
encounter-related behaviours than can be manually annotated. These borderline cases may have a similar biolog-
ical function and require further investigation.

In this study, the duration of the four different classes of encounter behaviours – trophallaxis, begging, offering 
and antennation - was obtained from 100 same-aged bees kept in a one-frame observation hive without a queen 
and brood. Our results showed that trophallaxis behaviours lasted between 5 and 30.5 seconds. The duration of 
offering and begging behaviours ranged from 0.25 to 6.75 seconds while antennation lasted 0.25 to 9.25 seconds. 
These measurements correspond to previous reports on the duration of trophallaxis, begging and offering behav-
iour that were obtained under more natural conditions (queenright colonies in one - or two-frame observation 
hives17,19,26). Trophallaxis behaviours of different aged worker bees in these small queenright colonies lasted 4 
to 30 seconds while begging and offering lasted less than 0.5 to 10 seconds17,19,26. This constancy under different 
conditions suggests that duration can possibly be used as a predictive parameter to distinguish among the behav-
ioural classes of encounters.

Our survey of manually annotated encounter behaviours suggests that a duration threshold of ≥ 5 seconds 
for an encounter behaviour can be used to accurately separate trophallaxis behaviour from the other encounter 
behaviours (begging, offering and antennation). When we applied our ‘encounter classifier’ together with the 
duration threshold, we were able to classify 100% of the manually annotated trophallaxis behaviours. However, 
the false positive rate was relatively high (28%), suggesting that we may need further adjustments of the behaviour 
duration parameter to reduce false classifications.

It has been proposed that encounter behaviours and the transmission of food are ways for worker bees to 
gather information about their colony’s state and thus can adjust their behaviours according to the colony’s 
needs32–35. So far, we have detailed knowledge on the role of trophallaxis, begging and offering behaviours 
between incoming foragers and worker bees inside the colony in accessing information about the quality and 
source of nectar and the honey stores of the colony. Foraging worker bees usually unload the nectar from the 
honey crop to the in-hive worker bees via trophallaxis18,23,36. The recipient worker bees store the nectar within 
the wax cells or further reduce the water content. Offering behaviour is performed by the returning nectar forag-
ers, which are willing to unload their crop contents to a recipient worker bee17. Inside the nest, worker bees beg 
incoming forager bees to receive nectar17,22,23,37. The rate of begging behaviour is affected by the colony’s state and 
the amount of stored honey in the colony38. Antennation behaviour is essential in making and maintaining the 
contact between encountering bees16,20. We envisage that with more classifiers trained for other behaviours, we 
can further examine the possible effects of encounter behaviours on subsequent task engagement.

For training the classifier and for measuring the accuracy of detection, we used 100 tagged worker bees in this 
study. However, with the current setup the BBAS can track up to 1000 worker bees on a brood comb in a small 
observation hive (preliminary data). It can be further scaled up to over 2000 worker bees by adding an additional 
camera, lighting system and cluster of five computers. Hence, we suggest that the BBAS will enhance our ability 
to gather knowledge on worker bees’ individual and collective behaviours. With more classifiers trained to detect 

Manually classified by duration among the 
658 manually detected behaviours(1)

Automatically classified by duration among the 
EBs* from the testing set(2)

Trophallaxis (%)(3) Non-trophallaxis (%)(3) Trophallaxis* (%)(4) Non-trophallaxis* (%)(4)

Trophallaxis(5) 100 0 100 0
Non-trophallaxis(5) 8 92 28 72

Table 5. The classification of trophallaxis behaviours of manually detected and automatically detected 
encounter behaviours using the duration threshold of ≥ 5 seconds. (1)We manually classified trophallaxis 
behaviours from the 658 manually detected encounter behaviours using the duration threshold of ≥ 5 seconds. 
(2)We applied the ‘encounter classifier’ with the duration threshold of ≥ 5 seconds to the 43 manually annotated 
encounter behaviours not used for training. (3)Percentage of the manually detected trophallaxis and non-
trophallaxis behaviours that were manually classified as trophallaxis using the duration threshold of ≥ 5 seconds. 
(4)Percentage of the manually annotated trophallaxis and non-trophallaxis behaviours from the testing set that 
were automatically classified as trophallaxis* and non-trophallaxis* (asterisks indicate automatic classification) 
using the duration threshold of ≥ 5 seconds. (5)Trophallaxis and non-trophallaxis behaviours that were manually 
annotated by the observer.
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different behaviours in honeybees, the BBAS can be used to examine single-worker behavioural phenotypes and 
worker-worker interactions within small observation hives. We envisage that the BBAS will be a powerful tool 
to detect the experimental effects of genetic and physiological manipulations on single workers39,40. Additionally, 
we propose that the BBAS can be an accurate method for measuring the sub-lethal effects of pesticides on behav-
iour41. The key to understanding the effects of pesticides on honeybee colonies is gaining knowledge on how 
these influence individual behaviour. With the BBAS we will be able to analyse the effects of pesticides on indi-
vidual behaviour because we can continuously and simultaneously quantify the in-hive behaviours of hundreds 
of worker bees under standardized conditions with computer-based classifiers. For encounter behaviours, for 
example, we can analyse the effects of pesticides on the duration of encounters or their quantity.

In conclusion, we foresee that the BBAS will be beneficial in various research areas for honeybee researchers 
who need to obtain detailed behavioural information of hundreds of individual bees.

Methods
Tracking device and procedure. Video recordings of worker bees on a comb and tracking information 
were obtained with a tracking device that was developed for ants by Mersch et al.29 and modified for tracking 
honeybees (see Supplementary information online). The honeybee tracking device consisted of a monochrome 
high-resolution camera, a cluster of five desktop computers, an infrared lighting system and an observation hive 
holding a single “Deutsch Normal” comb (Fig. 1a). The infrared light was provided in flashes synchronized with 
the images taken every quarter second (4 frames per second) by the camera. To omit daylight exposure, both the 
observation hive and the camera stood in a laboratory covered by a cardboard box that was lined with infrared-re-
flecting foil, which intensified the infrared illumination of the comb area. The cardboard box was equipped with 
a ventilation device that kept the temperature at approximately 29 °C (±1 °C).

We used 2 × 2 mm tags bearing 2D barcodes from the AprilTags library (Fig. 1b)31 to tag and track honey-
bee workers. These 2D barcodes consisted of a square outline with a 36-bit code word encoded in the interior, 
which could generate up to 2320 unique identification (ID) numbers. An experiment on mortality and behav-
ioural observations of tagged bees showed that bees bearing tags survived and behaved as untagged bees did (see 
Introductory experiments and observations in Supplementary information online). The tracking information 
obtained by the tracking software29 contained (after postprocessing) the tag’s ID number, the x- and y-coordinates 
of its centre and its orientation with the corresponding frame number and timestamp in UNIX time (with a pre-
cision of 1/100 seconds).

From the tracking informa-
tion, we used the JAABADetect program30 to compute social per-frame features to provide information on the 
bees’ properties in relation to their nearest nestmate in each frame (for example, the distance, speed, and orienta-
tion to the closest bee; see Kabra et al.30 for a detailed listing of social per-frame features).

To produce the ‘encounter classifier’, we labelled examples of encounter and non-encounter behaviour in 
105 minutes of tracking information and video material using the graphical user interface of the JAABA pro-
gram30. We only labelled encounter and non-encounter behaviours for which we had high confidence in clas-
sification. Thus, for encounter behaviours we only labelled those for which we could confidently identify that 
behavioural features characterizing encounter behaviours were displayed. Information about the social per-frame 
features that were computed from the tracking information was used to train the ‘encounter classifier’ via machine 
learning implemented in the JAABA program30.

The classifier’s accuracy was determined using the cross-validation method implemented in the JAABA pro-
gram30. We used JAABA’s default settings for the cross-validation and performed 10 cross-validation rounds to 
obtain an average estimate on the classifier’s accuracy (see Supplementary information online for more details on 
calculation of accuracy and cross-validation).

Manual annotation of encounter behaviours and further analysis. We manually examined the 
video recordings to detect all encounter behaviours. We determined the duration in seconds and the type of 
encounter behaviour: i) antennation behaviour, ii) begging behaviour, iii) offering behaviour, iv) trophallaxis 
behaviour.

Statistical analyses were performed using the SigmaPlot 13 software.

Bee handling. We used newly emerged honeybees that originated from a colony of western honeybee Apis 
mellifera from our bee yard at the Heinrich-Heine University of Düsseldorf, Germany. A sealed brood comb 
was taken from the source colony and incubated at 34 °C. Emerging worker bees were collected when they were 
0–24 hours old. One hundred bees were marked with hand-cut tags by gluing these centrally on the thorax of the 
bees with glue (“Opalith Zeichenleim”, Heinrich Holtermann KG, Brockel, Germany).

The bees were tracked from May 3rd to May 4th, 2016 on a comb comprising 40 capped cells filled with honey. 
Bees were restricted to one side of the comb without a queen. As worker-worker encounters were the interest of 
this study, neither a queen nor drones were included in the group. The comb did not contain brood because we 
used newly emerged worker bees for tracking, and it is known that brood rearing first begins at an age of two to 
three days3,24.

To ensure that sufficient encounter behaviours occurred during the tracking process, a proportion of the bees 
were either fed ad libitum with a sugar solution (Ambrosia Bienenfutter-Sirup, Nordzucker AG, Braunschweig, 
Germany) or starved before tracking was started. On the first day of tracking, 16 bees were fed with the sugar 
solution before starting the tracking experiment, whereas the remaining bees were starved for approximately an 
hour. For sustenance, we provided the bees with a sugar pastry (Apifonda Futterteig, Südzucker AG, Mannheim, 
Germany) two hours after tracking was started. On the second day of tracking, we removed the sugar pastry and 
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fed 15 of the 100 bees again with the sugar solution. The other 85 bees were starved for three hours. The 15 bees 
were reintroduced into the observation hive before tracking began. In total, information from 22 hours of track-
ing was generated for 96 bees. Four bees lost their tags during tracking.

Data availability. The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request. Programs developed for this study will be shared and can be requested 
from the corresponding author.
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7Summary

This thesis is devoted to studying various biological systems through different modeling strate-

gies, from mechanistic modeling to machine learning. The complex nature of biological systems

imposes difficulties on both experimental data collection and theoretical modeling. The main

contribution is twofold. First, with emphasis on the system components and their interconnections,

it was shown that mechanistic modeling led to significant understandings of investigated systems.

Second, with emphasis on learning directly from data, machine learning was deployed to study

biological problems frommRNA translation to automated annotations of high throughput biological

data.

The biological systems studied in the thesis include networks of general biological oscillators,

flowering regulations in plants, mRNA translation regulations and bee behavior annotations. Both

mechanistic and machine learning modelings played in a central role in describing the systems and

deriving results. According to the modeling approaches, the systems are categorized into these

groups:

1. Systems were mechanistically modeled.

In Chapter 2, a network system was modeled to derive conditions for the synchronization of

its subsystems based on the understanding of quorum sensing and diffusive systems and

assumptions to simplify the system but keep essential properties. The mechanism of quorum

sensing involves the sensing molecules released by individual subsystems connected by

a common medium. Subsystems in the network were mathematically described by input-

output operators and then were interconnected by the common medium. The successive

deductions and analyses led to the conclusion that synchronization of the subsystems can

be achieved if they were stable oscillators and the interconnection strength cooperates with

input-output properties of the subsystems.

2. Systems were modeled by both approaches.

In Chapter 3, the flowering-time decision making in plants Arabidopsis Thaliana is modeled.

The modeling aim was to understand the flowering decision-making procedure from the

perspective of available information from the climates which plants should adapt to.

Firstly, a mechanistic model was developed based on the understanding of a core mech-

anism vernalization which involved a biochemical reaction to turn off the expression of

the gene FLOWERING LOCUS C (FLC), the repressor of flowering. The model described

the biochemical reaction using a master equation to incorporate stochasticity in environ-

mental signals like temperature. The master equation is a differential equation over time

of the probabilities of the reaction states [Wikd]. The successive deductions and analyses

concluded that the reaction was able to capture useful information from temperature to

robustly determine flowering seasons. And moreover, it required certain assumptions on

the temperature properties to reach the conclusions.
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Artificial neural networks as the machine learning model was employed to approximate

the processing of climate information as the plants can be regarded as climate information

processing units in terms of making flowering decisions. Neural networks (NN) were trained

on datasets of the temperature and day length from different climates to learn the idealized

expression patterns of FLC. The NN models did not impose any assumptions on the systems

or data properties such that they were applicable to model all climates types. And due to fact

that the target expressions of FLC were suitable only for temperate plants, the NN models

could fit well on the temperate climates. The learning results complemented the results

from mechanistic modeling by that extra signals from day length can make the detection of

flowering seasons more robust.

The modelings in this chapter showed although machine learning models limits our ability

to reveal the causality among system components, they are more broadly applicable due to

general-purpose nature.

3. Systems were exclusively modeled by machine learning.

In Chapter 4, the correlation between mRNA sequences and their translational efficiencies

were modeled by gradient boosting trees, another machine learning model, in order to

investigate the translational mechanism and to make predictions. As general-purpose

learning algorithms take only numerical values as input, the mRNA sequences which consists

of a series of “AUCG” letters need to be represented by numerical features. Therefore, the

primary task of the modeling procedure was to incorporate biological understandings of

mRNA regulations to numerically represent the sequences. In this sense, the features

generation procedure did require a high level of understandings on the biological systems.

Once the features were available, the actual building of learning models did not require

any systems details or assumptions. Based on a published dataset [GCK13], a predictive

model was built using the gradient boosting trees for predicting translational efficiencies of

unknown sequences. Nine predictions on ten new sequences were experimentally verified

to be correct. However, the settings of the new sequences followed the sequences in the

dataset [GCK13], which limits the generalizability of the predictive power of the model

to more general sequences. Due to the limited understanding of the complex dynamics of

translations and limited variability in existing data, the picture of translational regulation

was far from complete. More quantitative data and more powerful models such as deep

learning can further promote the understanding of the translational mechanism.

InChapter 5, a machine learning frameworkOutCytewas developed to predict unconventional

protein secretions (UPS). The term “unconventional” is used to include the protein secretions

not following the classical secretion mechanism [Rab17; DN18]. The classical secretions

require a signal peptide which is a short amino acid segment at the starting part of the

protein sequences (N-terminus). The signal peptides direct the whole protein molecules

going through the Endoplasmic Reticulum (ER) – Golgi pathway to reach the extracellular

space. For decades it had been believed that all secreted proteins followed the ER-Golgi

pathway [Rab17; DN18]. However, since 1980s, a dozen of proteins going through alternative

secretion routes have been reported [Cha+97; MS+16; Nic11; MSS15; Kli+16]. Following the

success of computationally identifying signal peptides [Nie17; Sav+17], efforts have also

been paid to build predictive tools for UPS [Nie+18; Kan+10; Yu+10; Ben+04]. The central

challenge of predicting UPS is the imbalance between small number of known UPS and the

problem complexity. The existing tools for predicting UPS relied on the hypothesis that all
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secreted proteins share common features to make use of the large amount classical secretions.

Different from that, OutCyte has relied on the experimental datasets from studying secretome

by mass spectrometry. OutCyte has achieved the state of the art accuracy for predicting a

set of known UPS. Further a model based on convolutional neural network for identifying

signal peptides was integrate to OutCyte for annotating proteomes.

InChapter 6, an interactive machine learning frameworkwas set up to automatically annotate

behaviors in bee societies. A bee society typically has thousands of members, to manually

annotate all behaviors even for one minute is a tedious task for humans. The interactive

framework consisted of a tracking device, adapted from an ant tracking device [MCK13],

for recording the continuous position and orientation information of a group of bees and

a published interactive machine learning program JAABA [Kab+13]. Then for annotating

each behavior, JAABA requires moving trajectories of individual bees and the monitoring

video as input. A short clip of the video then needs to manually annotated to make JAABA

be able to learn general patterns of that behavior. The framework was able to correctly

annotating 93% of the encounter behaviors which are head-to-head quick contacts among

bees. Though annotating all of bee’s behaviors was a complex problem, the annotations can

lead to significant understandings of social behaviors within a bee community.

Through the course of study and research by modeling biological systems, the highly inter-

disciplinary area has brought me both great challenges and joys, with challenges from applying

mathematics and computation techniques to biological systems and understanding complex bio-

logical phenomena, with joys from thoroughly understanding biological systems and successfully

solving relavant problems. As a final remark, in the case of modeling, the most elegant research re-

sult would be to obtain simple models which can both fit the present data best and more importantly

can predict new data best.
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