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Abstract

The study of active matter concerns physical systems that take up energy from
their environment and use it to drive themselves out of equilibrium, e.g., self-
propelled particles. This work specifically focuses on microswimmers, i.e., force-
and torque-free particles that are suspended in a viscous fluid and induce fluid
flows in order to propel themselves. For this purpose, we here model individual
swimmers by introducing an extended force dipole consisting of two discrete force
centers that co-move with the spherical swimmer body. Both pushers (extensile
microswimmers) and pullers (contractile microswimmers) can be described. The
resulting motion is determined in the limit of far-field hydrodynamics at low
Reynolds numbers. On this premise, minimal models for straight-propelling and
circle-swimming microswimmers, as well as similar active rotators are created.
Additionally, pairwise hydrodynamic interactions between swimmers are described.

The corresponding minimal models are then taken as an input to develop statis-
tical descriptions for (semi)dilute suspensions of straight-propelling microswimmers
and circle swimmers. Here, also the influences of external potentials and thermal
noise, as well as pairwise steric and hydrodynamic interactions between the swim-
mers, are included in the resulting dynamical density functional theory (DDFT)
that describes the temporal evolution of the one-swimmer density. As a test, the
DDFT for straight-propelling microswimmers is applied to a planar arrangement of
swimmers in a circularly symmetric external trapping potential, for which results
qualitatively compare with those of particle-based computer simulations. In partic-
ular, the self-propulsion leads to a high-density ring structure of radially oriented
swimmers, when hydrodynamic interactions are neglected. With them included,
the swimmers can aggregate into a single high-density spot at one spontaneously
chosen position on the ring. Our numerical evaluations show a further instability
of this spot against reorientations of the swimmers away from the radial direction,
which leads to movement of the spot along the circular trap. In contrast to that,
for circle swimmers, a sufficiently strong curvature of their trajectories leads to
localizations near the center of the trap.

Additionally, our DDFT serves as the basis for a statistical theory describ-
ing, for planar swimmer systems, the possible onset of collective orientational
order due to hydrodynamic interactions. We here obtain approximations for the
swimmer–swimmer pair distribution function by combining our DDFT with a newly
introduced adaptation of Percus’ equilibrium test-particle method to active systems.
These results are taken as an input for a linear stability analysis of the disordered
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state against collective polar orientational order. We find that (pure) puller sys-
tems can develop such order on the considered length scale if their hydrodynamic
couplings can overcome rotational diffusion, while pushers do not spontaneously
develop such order from a linear instability. We derive a quantitative criterion for
the onset of ordering, which compares qualitatively with existing particle-based
computer simulations of microswimmer systems in periodic boxes.

A further extension of our statistical framework to binary mixtures of microswim-
mers is presented. In particular, this multi-species DDFT for microswimmers is
applied to the previously mentioned trap, showing that, typically, one species trans-
fers its behavior onto the other species, if two species are considered that only differ
by their type of propulsion mechanism (pusher vs. puller). Moreover, unconfined
pusher–puller mixtures in large periodic boxes are shown to spontaneously develop
orientational order through a linear instability, if there are enough, sufficiently
strong pullers in the system. Additionally, we introduce a circular shear-cell model,
in which a microswimmer species is confined within a ring of externally driven
passive particles. Here, the driving induces a fluid flow that consistently rotates the
swimmers on the inside. Thus, the swimmers can propel less efficiently against the
trapping potential and tend to be localized further towards the center of the trap.

Next, in terms of a discrete-particle model, simple three-sphere swimmers that
propel by shape changes (relative distance changes between the spheres) are
discussed in two special cases. First, the behavior of a “neutral” (i.e., neither pusher
nor puller) swimmer near a hard wall is described, with thermal noise neglected.
Depending on its initial orientation and distance from the wall, the swimmer either
escapes, gets trapped by the wall, or undergoes a perpetual oscillatory gliding
motion. When an additional relative mutual rotation of the spheres is included, the
swimmer starts circling if it is close to the wall, which mimics behavior reported for
some flagellated bacteria. Additionally, the dynamics of a three-sphere swimmer
between two parallel hard walls is discussed. For this purpose, approximate mobility
tensors for this setup are derived. In addition to neutral swimmers, also variants
that have pusher or puller signatures are considered. Depending on the initial
parameters, either trapped, sliding, or (oscillatory) gliding states are reached.

Finally, interactions of (active) particles with elastic interfaces are studied. We
introduce a simple model membrane and discuss, e.g., under which circumstances
an approaching active particle penetrates it, in the absence of induced fluid flows.
Furthermore, the interplay between hydrodynamic interactions and the elastic
response of an interface is discussed in two cases. First, a passive particle within
an elastic spherical cavity is driven in a non-axisymmetric setup, which leads to
non-trivial dynamics of the particle and the cavity. Second, an infinite planar
interface influences the behavior of a general microswimmer that is represented
by different terms of a force multipole expansion. In particular, we find that the
contribution of a rotlet dipole leads to circling motions, theoretically underpinning
the behavior of the modified three-sphere swimmer mentioned above.
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microswimmer in a channel, J. Phys.: Condens. Matter 30, 254004 (2018).

• P7 A. Daddi-Moussa-Ider, S. Goh, B. Liebchen, C. Hoell, A. J. T. M. Mathijssen,
F. Guzmán-Lastra, C. Scholz, A. M. Menzel, and H. Löwen, Membrane penetration
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Chapter 1

Introduction

In this chapter, starting in Sec. 1.1, active microswimmers are discussed with regard
to their prospective importance in biological, medical, and technical applications,
as well as how they fit into the context of (active soft matter) physics, see Sec. 1.2.
Additionally, Sec. 1.3 emphasizes the importance of statistical theories for describing
the collective behavior in suspensions of microswimmers, which motivates the
interest in this topic. A short review over previous studies on self-propelled
particles with neglected hydrodynamic interactions is given in Sec. 1.4, which later
allows us to compare our results for microswimmers to that simpler case.

1.1 Why we care about microswimmers

A working definition of microswimmers follows from listing their characteristic
properties [1]. Specifically, a typical microswimmer is an approximately micrometer-
sized physical object suspended in a viscous fluid medium, e.g., water. Taking
up energy from its environment, such a swimmer creates its own self-propulsion,
with the direction of locomotion determined by the orientation of the swimmer.
The underlying self-propulsion mechanism induces fluid flows in the background
medium, which can lead to interactions between the swimmer and nearby objects,
including other swimmers, so-called hydrodynamic interactions.

Due to the underlying processes and the possible applications, the study of
microswimmers is an interdisciplinary scientific field that includes aspects of biology,
medicine, engineering, chemistry, and physics. In particular, this interest is rooted in
the existence of biological microswimmers in nature, and in the idea to use (artificial)
microswimmers as workhorses in diverse medical and technical applications.

Specifically, biological microswimmers exist in a plethora of aqueous environments
on our planet [2–10]. This includes bacteria that live in the human body (particularly
in the colon), constituting an estimated average fraction of 3 × 10−3 of the human
body mass [11, 12]. Prototypical examples for biological microswimmers are motile
types of the common Escherichia coli (E. coli) bacterium species, which move by
rotating a bundle of flagella [6].

Additionally, artificial microswimmer have been realized [13–18]. Here, a typical
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design is to take a colloidal sphere and to coat its half-spheres unequally, creating
Janus particles (named with reference to a two-faced Roman deity). Under suitable
external stimuli (e.g., introduction of reactants [16–18], irradiation with light [15]),
such Janus particles may create around themselves a corresponding gradient of,
e.g., the concentration of a chemical, which can lead to the creation of fluid flows
and thus self-propulsion.

In principle, colloidal Janus particles can be imparted with a choice of desired
properties by including appropriate steps in their synthesis, leading to wide-ranging
possibilities in their use. Possible (future) applications of such designed active
agents could be medical, e.g., precise delivery of pharmaceutical drugs to exactly
those sites in the human body where they are needed [19–23], use in non-invasive
surgery [21, 24, 25], or the guidance of sperm cells [26]. Additionally, they could
also power microengines in further technical contexts [27–29].

1.2 Microswimmers in a physical context

In this work, I consider, in general, microswimmers in the following sense:

“Microswimmers are force-free and torque-free objects capable of self-
propulsion in a (typically) viscous environment and, importantly, exhibit
an explicit hydrodynamic coupling with the embedding solvent via flow
fields generated by the swimming strokes they perform.” [1, p. 6]

Step by step, this definition renders microswimmers distinct from several adjacent
types of physical objects, as detailed below.

First, even as the net force and the net torque that are directly related to its
active motion vanish, a microswimmer can still achieve self-propulsion by creating,
e.g., fluid flows, as detailed in Secs. 2.2 and 4.1 for specific swimmer models. A given
orientation of the swimmer at a certain time then determines its swimming direction
at that moment. This distinguishes microswimmers from driven matter [30], which
moves, in general, along an externally specified direction.

Second, the “(typically) viscous environment” defines the surrounding of a
microswimmer. Generally, the motion of a microswimmer is considered to be
overdamped, i.e., its inertia can be neglected [1, 2]. The quality of this assumption
can be quantified via the dimensionless Reynolds number [31]

Re =
ρf a vs
η

, (1.1)

where ρf is the mass density of the fluid, η denotes its dynamic viscosity, a stands for
the size of the hydrodynamic swimmer body, and vs represents the (free-)swimming
speed. Inserting specific values for motile E. coli bacteria leads to Re ≈ 3 · 10−5 [1].
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For Re ≪ 1, the resulting creeping flow of the fluid is mathematically described
by the Stokes equation (as detailed in Sec. 2.1), for which a whole theoretical
apparatus is at hand [31–33]. For example, Re ≪ 1 is valid for typical swimmers
of sizes a ∼ 1µm and speeds vs ∼ 10µm/s that are suspended in water [2]. Small
Re can be achieved for larger objects as well, when, e.g, highly viscous silicone
oil is used as a surrounding medium [34]. Inertial effects have to be considered
for Re & 1, as is the case for underdamped self-propelled particles (also called
microflyers) [35–37], which could be realized in, e.g., complex plasma systems [38].

Third, the second half of the above quote (after “importantly”) defines a certain
“wetness” of microswimmers, i.e., the self-propulsion mechanism of one swimmer
can affect its environment and thus also other swimmers. This distinguishes mi-
croswimmers from the simpler “dry” self-propelled particles for which hydrodynamic
interactions mediated by the background medium are neglected [1]. Additional
complexity beyond the concept of microswimmers, and thus beyond the scope of
this work, is introduced, e.g., by chemically active colloids [13,14,18,39], for which
phoretic interactions may also have to be considered [40].

Microswimmers, microflyers, dry self-propelled particles, and chemically active
colloids all are covered by the more general term active matter [1,41]. Per definition,

“[a]ctive matter systems are able to take energy from their environment
and drive themselves far from equilibrium.” [1, p. 2]

In principle, but beyond the scope of this work, such activity can also manifest
itself via other means than self-propulsion, e.g., by cell division [42–45].

Since active matter systems are inherently out of equilibrium, their behavior can
vary widely from equilibrium physics. For example, planar arrangements of self-
propelled particles with orientational alignment interactions can show long-range
orientational order (concerning their propulsion directions) [46, 47], which had
previously been proven to be impossible for planar passive equilibrium systems [48].

Moreover, in non-equilibrium systems, hydrodynamic interactions can change
even static properties of steady-state solutions, e.g., the one-body density. This
stands in contrast to (ergodic) passive equilibrium systems, for which static prop-
erties are determined by the partition function, which in turn is independent of
hydrodynamic interactions [49].

1.3 Importance of statistical theories

Setting out to find suitable statistical descriptions for suspensions of microswimmers,
our work involves, in particular, the development of a corresponding statistical
theory in the form of a dynamical density functional theory (DDFT) [P1–P4]. As
discussed in Chapter 3, this versatile framework can be used in diverse situations. In
the following, the importance of statistical theories in physics is briefly illustrated.
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Given a system of N (interacting) particles, there are two routes that we refer
to. The first one is to treat them individually as discrete particles, the overall
motion of which is described by Ndf coupled ordinary differential equations (each
particle featuring df degrees of freedom) that are, in general, only solvable via
numerical methods. For self-propelled particles, a typical choice here is to employ
(overdamped) Brownian dynamics computer simulations [50].

However, the discrete-particle path can have disadvantages. For example, numer-
ical evaluations may scale unfavorably with N , for instance as thermal noise can
limit computational efficiency when hydrodynamic interactions are included [51],
or many different realizations of the system must be performed to achieve statisti-
cally sound results. Starting analytical arguments based on the particle picture is
frequently less convenient when compared to the density picture described below.

Specifically, a second route concerning many-body systems is to instead regard
the probability densities with which the particles occupy the different phase-space
configurations. However, the full N -particle probability distribution is typically too
complicated for direct evaluations. Fortunately, many of the physical properties
can be described via the coarse-grained one-body or two-body probability densities,
even in non-equilibrium.

Accordingly, one switches to such reduced n-body probability densities. Mathemat-
ically, for identical particles this can be achieved by starting from an appropriate
dynamical equation for the N -particle distribution and integrating out the corre-
sponding degrees of freedom for all except for n particles, as is discussed in Sec. 3.1.1
within our theoretical framework. This way, a (dynamical) statistical theory is
obtained, the evaluation of which directly leads to statistically relevant results.
The strength of different influences affecting the system can then be thoroughly
checked with relative ease, e.g., by comparing the associated probability density
currents or by performing corresponding (approximate) analytical calculations.

Nevertheless, a (frequently necessary) approximate statistical theory should be
compared with simulations (and/or experiments) to test whether the chosen level
of description is sufficient. For example, Ref. 51 and Publication P4, as well as
Sec. IV B of Publication P3, examined similar situations and were enriched by
the possibility to crosscheck the results qualitatively. Sometimes, the discrete-
particle picture is more intuitive than the frame provided by statistical theories.
Consequently, statistical and discrete-particle-based approaches complement each
other and enable us to consider physical problems from diverse points of views.

1.4 Dry self-propelled particles: a short review

This section gives a brief summary regarding previous studies on dry self-propelled
particles, for individual (single) particles and for many-particle systems, allowing
for a later comparison with our results. The corresponding prototypical model is
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given by the active Brownian particle (ABP) [1, 52]. Here, the well-established
overdamped Langevin equations of motion for passive colloidal particles are modified
by inserting effective forces [53] that correspond (in the absence of noise) to a
propulsion in the direction of the particle orientation. Specifically, the resulting
velocity v and angular velocity ω of one spherical ABP are given by [1,54]

v = vsn̂ + ξt + µtF, (1.2a)

ω = ξr . (1.2b)

Here, vs is the free-swimming speed, the unit vector n̂ represents the current
orientation of the particle, µt is its mobility, and F denotes the (optional) force acting
on the particle. This force can be induced externally and/or via steric interactions
between particles. Additionally, the vectors ξt and ξr (for the translational and,
respectively, rotational degrees of freedom) are zero-mean Gaussian noise terms,
with variances chosen such that thermal Brownian motion is reproduced in the
limit of passive systems involving vs = 0 [1].

For F = 0, a free self-propelled particle is obtained. The motion of a single ABP
can be described qualitatively as follows: after a ballistic part at very small times
[that is not covered by Eqs. (1.2)], the particle undergoes diffusive motion at small
times, then a ballistic motion in the approximate direction of n̂ at intermediate
times, again transforming into diffusive motion when the direction of motion is
lost due to rotational diffusion. In particular, this leads to an effective long-time
translational diffusion, which can be modeled as a random walk with step length vsτr
and time step τr = (Dr)

−1, where Dr is the thermal rotational diffusion constant [1].
More generally, the first four moments of the probability distributions of the position
(at arbitrary times) that result from the above coupled Langevin equations have
been analytically determined [55] (also for ellipsoidal self-propelled particles [56]).

Maybe surprisingly, even single-particle (or non-interacting many-particle) sys-
tems can show interesting properties. For example, ABPs tend to spend elevated
times at repulsive walls [57–59], breaking the detailed balance found in equilib-
rium passive systems [49]. Moreover, it can take significant mathematical effort
to describe even seemingly simple ABP problems, e.g., the sedimentation of self-
propelled particles, for which non-trivial, locally polarized steady states have been
found [60–62]. The motion of single self-propelled particles even in complicated flow
fields can often be well-described via only small adjustments to Eqs. (1.2) [63, 64].

A major breakthrough in the study of active matter has been provided by the
observation that spherical self-propelled particles (with sufficiently strong short-
ranged repulsive steric interactions between each other) can spontaneously form
clusters that are surrounded by gas-like regions [54,65]. This is commonly known
as motility-induced phase separation (MIPS) [66–71]. The basic mechanism for the
growth of such clusters is a long-time local mutual blockade of colliding ABPs, with
additional incoming particles being hindered in their propulsion by these blocked
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clusters [65]. While a full statistical theory from first principles for MIPS is still
missing, several helpful approaches have been carried out [66,67,72–74].

On a more coarse-grained level, ABPs have also been treated in scalar field
theories [75, 76] and via effective equilibrium approaches [77–79]. Moreover, under
some circumstances, the behavior of ABPs can be mapped on Ornstein-Uhlenbeck
processes [80–83].

Furthermore, the model of ABPs can be generalized to circle swimmers when
neglecting the possible influence of a surrounding fluid, which feature an additional
self-rotation term in Eq. (1.2b) [84], see also the wet equivalent in Sec. 2.2. Another
model similar to ABPs are run-and-tumble self-propelled particles that replace the
smooth rotational diffusion of Eq. (1.2b) with discrete reorientation events (that are
triggered randomly) [85], which mimics the swimming behavior of wild-type motile
E. coli bacteria [6]. The addition of explicit orientational alignment interactions
between particles following the famous Vicsek model can trigger orientational
ordering and the formation of moving density bands [46,47,86–88].

Next, we transition from dry self-propelled particles to active microswimmers.
Chapter 2 presents our force-dipole-based model of microswimmers, including its
theoretical foundation via low-Reynolds-number hydrodynamics.
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Chapter 2

Force-dipole-based microswimmers

Historically, an early theoretical description of a microswimmer has been the now-
standard squirmer model [89–91]. It assumes that the swimmer prescribes a velocity
field on its surface to achieve self-propulsion, as is conceivable for cilia-covered
microorganisms. Another simple model are three-sphere swimmers [92,93]. The
behavior of a such a swimmer in the vicinity of hard walls [P5, P6] is described
in Sec. 4.1.2. Furthermore, the possibility of more abstracted models based on an
appropriate driving force dipole had previously been mentioned in Refs. 94–97.

In this section, our discrete force-dipole-based minimal model of a microswimmer
is discussed. Specifically, Sec. 2.1 lays the ground for the mathematical description
of fluid flows at low Reynolds numbers. On this premise, minimal models for
straight-propelling (sometimes: linear) microswimmers [P1], circle swimmers [P2],
and active rotators are introduced in Sec. 2.2. In Chapter 3, the first two of these
models are taken as input for corresponding statistical theories [P1–P4].

2.1 Fluid flow at low Reynolds number

A (simple) fluid consists of incredibly many small particles, e.g., a typical glass
of water contains 1025 water molecules. Appropriately, one does not account for
each molecule by itself, but instead transitions to a continuum description of the
fluid (and its internal flows). In particular, this type of description is also valid for
fluid flows around a suspended mesoscopic colloidal particle [31–33], which includes
microswimmers [1]. Furthermore, the motion of colloidal particles of such size in,
e.g., water is typically characterized by the overdamped regime, as the Reynolds
number introduced in Eq. (1.1) is significantly smaller than 1 [2].

In this case, the famously hard-to-solve Navier-Stokes equations for the fluid flow
reduce to the much simpler equations

−η∇2
r u(r) + ∇r p(r) = fb(r), (2.1a)

∇r · u(r) = 0, (2.1b)

which describe the Stokes flow that results from the bulk force density fb(r) applied
to an incompressible fluid [31, 32]. Here, η is the dynamic viscosity of the fluid,
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∇r denotes the spatial gradient with respect to the position r, u(r) stands for the
flow field, and p(r) represents the local (scalar) pressure field of the fluid.

Equations (2.1) are instantaneous in time and linear in their response to the
force density fb(r). The latter property implies that if the force density consists
of a sum of discrete point-like force centers (mathematically described by delta
distributions), the effects of these force centers can be regarded separately and
afterwards be superimposed.

This procedure is facilitated by the knowledge of the corresponding Green’s
function to Eqs. (2.1). For an unbounded three-dimensional fluid that is quiescent
(i.e., non-moving) infinitely far away from the origin, this fundamental solution is the
well-established Oseen tensor O(r) that connects a delta-distributed force density
fb(r

′) = F0 δ(r′) located at the origin to the resulting fluid flow field by [31–33]

u(r) = O(r) · F0 :=
1

8πη

1 + r̂ r̂

r
· F0, (2.2)

where 1 is the unity matrix, r = |r| denotes the norm of r, and r̂ = r/r stands for
the corresponding unit vector.

The response of a rigid particle to an existing surrounding fluid flow is described
by Faxén’s laws. For a spherical particle of radius a that enforces a no-slip boundary
condition on the fluid flow at its surface, these laws read [31]

v =

(︃
1 +

a2

6
∇2

r

)︃
u(r), (2.3a)

ω =
1

2
∇r × u(r), (2.3b)

where v is the resulting translational velocity of the sphere and ω is its resulting
angular velocity. Together with the above framework, we can now introduce our
force-dipole-based microswimmer models in Sec. 2.2.

As an aside, it should be mentioned that not all hydrodynamic processes regarding
microswimmers take place in the overdamped regime. For example, a recent study
discusses intermediate-Reynolds-number fluid waves that microorganisms of the
species Spirostomum ambiguum generate to communicate with each other [98].

2.2 Construction of minimal microswimmer models

As a result of the conservation of momentum and angular momentum of the
compound system consisting of a microswimmer and the surrounding fluid in
the overdamped regime, any corresponding model has to effectively render the
self-propelling swimmer force- and torque-free [1, 53]. Thus, the induced fluid flow
due to self-propulsion does not result from a force monopole (and not from a torque
monopole), but could (typically) be described to leading order as caused by a force
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dipole [1]. However, additional external potentials, e.g., due to gravity, can still
lead to force and torque monopoles. Depending on the nature of the resulting fluid
flows, a force-dipole swimmer is classified as either a pusher (which pushes away
the fluid along the axis of self-propulsion, and draws it in from the perpendicular
axes), or a puller (for which these flows are inverted) [94,99], see also Fig. 2.1.

Below, we introduce corresponding minimal force-dipole-based microswimmer
models [P1, P2]. As detailed in Chapter 3, we have also used them throughout
Publications P1–P4 as input for our statistical theories to describe (semi)dilute
suspensions of microswimmers. Additionally, the same model was applied in
many-swimmer particle-based computer simulations [51]. This allowed to qualita-
tively compare results from the statistical theory in Publications P3 and P4 with
corresponding simulation results to support our approach.

2.2.1 Straight-propelling microswimmer

As detailed in Publication P1, we have constructed a minimal microswimmer model
by rigidly attaching two discrete force centers f± to a spherical swimmer body (of
hydrodynamic radius a), see also Fig. 2.1. Specifically, they are parameterized as

f± = ±f n̂ (2.4)

and are anchored at

r+ = r + αL n̂, (2.5a)

r− = r− (1 − α)L n̂, (2.5b)

respectively. Here, r stands for the position of the swimmer body, L > 2a is
a constant length, α (with a/L < α ≤ 1/2) denotes a dimensionless parameter
characterizing the asymmetry of the swimmer, and the unit vector n̂ describes
the orientation of the swimmer. Additionally, the sign of the force parameter f
distinguishes between pushers (f > 0) and pullers (f < 0). By construction, this
model is force- and torque-free [P1].

The force centers now create a fluid flow, which is calculated by multiplying
the Oseen tensor, see Eq. (2.2), with f± and superimposing the results. Applying
Eqs. (2.3), the motion of the swimmer is calculated . For α ̸= 1/2, a non-vanishing
self-propulsion velocity parallel to n̂ is achieved, while the self-rotation is zero due
to the axial symmetry of the setup. Shakers [94, 96], which do not self-propel but
still stir the surrounding fluid, follow by choosing α = 1/2 [P1].

From an abstracted physical point of view, the force centers can be seen as repre-
sentations of an averaged (extended) force dipole that a microswimmer exerts [P1].
For example, the flow field around an E. coli bacterium contains a component
resulting from a pusher-type force dipole [100]. The alga Chlamydonas reinhardtii,
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αL(1−α)L

L

σ/2

a f+f−

n̂

(a) straight pusher
 (f> 0) 

αL(1−α)L

L

σ/2

a f+f−

n̂

(b) straight puller
 (f< 0) 

Figure 2.1: Sketch of our minimal microswimmer model [P1]. Two oppositely-
oriented force centers co-move with the spherical swimmer body, as
described in the main text. (a) For f > 0, a pusher is constructed,
while (b) a puller follows for f < 0. Streamlines indicate the flow field,
with color intensity representing its local strength. Dashed circular
lines display the effective steric interaction radius of the swimmer.

however, has the signature of a puller, when the strokes of its two flagella are
averaged over time [101].

Beyond a single swimmer, hydrodynamic interactions between swimmers are of
utmost interest in many-body systems. For our model, we can develop pairwise
“active mobility tensors” connecting the f± of one swimmer to corresponding contri-
butions to the velocity and angular velocity of a second swimmer, see also Eq. (3.2).
For this purpose, Faxén’s laws are applied, at the position of the second swimmer,
to the flow field induced by the force dipole exerted by the first swimmer.

Concerning the fluid flows induced by f±, one should here, in principle, include
corrections due to the finite radius of the no-slip swimmer body [33]. As a
consequence, this rescales the leading-order contribution to the above pairwise active
mobility tensors, as has been explicitly calculated for a similar force-dipole-based
swimmer model [102]. The necessary changes make the mathematical description
less tractable. In Publications P1–P4, we have neglected these corrections.

We require that both αL and (1 − α)L are significantly larger than the radius a.
For practical reasons, the singularities of the flow at r± have to be shielded from
other swimmers. We therefore introduce a repulsive steric interaction between
the swimmers with an effective radius σ/2 ≫ max{αL, (1 − α)L} and a sufficiently
high energy barrier [P1–P4], see also Fig. 2.1. This way, the swimmers are kept at
large-enough distances from each other, even when they are heading for collision.

One advantage of our model is that we can extend it with relative ease to describe
more complicated microswimmers. A corresponding model for circle swimmers is
discussed next in Sec. 2.2.2, and one for only-rotating active particles in Sec. 2.2.3.
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2.2.2 Circle swimmer

We now switch to swimmers that also self-rotate (with a constant angular velocity
in the absence of any disturbances). In three dimensions, this potentially leads to
helical trajectories, which become circular when planar confinement is introduced.
Hence, these microswimmers are called circle swimmers [84,103–107]. Typically,
dry circle swimmers are modeled as ABPs (see Sec. 1.4) with an additional effective
torque contributing to Eq. (1.2b) [84]. Rod-shaped circle swimmers can show
consistent motion along a wall when their self-rotation is hindered by the wall due
to steric interactions [108]. A more complicated model is the Brownian spinning top,
which can feature a coupling between its translational and rotational motion [109].
In Publication P2, we introduce a minimal model for “wet” circle swimmers.

Here, the main change relative to the model for a straight-propelling microswim-
mer of Sec. 2.2.1 is that the extended force dipole now is positioned away from
the previous symmetry axis, in a direction û that is perpendicular to n̂, see also
Fig. 2.2 (a). Specifically, Eqs. (2.4) and (2.5) are replaced by [P2]

f± = ± f n̂, (2.6a)

r+ = r + αL n̂ + γL û, (2.6b)

r− = r− (1 − α)L n̂ + γL û, (2.6c)

where the number γ quantifies the biaxiality of the swimmer and the straight-
propelling microswimmer model is recovered for γ = 0, cf. Fig. 2.2 (a). The
condition of vanishing net torque is maintained [P2].

For γ ̸= 0, a microswimmer results that, if swimming freely, self-propels and
self-rotates with an angular velocity ωs ∥ (n̂ × û) [P2]. This leads to circular
trajectories, the radius of which is given by Rs = |vs|/|ωs|. As both vs and ωs

scale linearly with f , this swimming radius Rs is independent of f . The swimming
radius can be tuned, however, by changing the geometrical parameters α and γ, as
demonstrated in Fig. 2 of Publication P2.

The above circle swimmer propels on circular trajectories even if not confined
to a plane, in contrast to many biological microswimmer which, when unconfined,
rather self-propel on helical trajectories. In our approach, the latter behavior could
be modeled by adding a second force dipole f ′±, with, e.g., n̂′ = n̂× û and γ′ = 0.

2.2.3 Active rotator

Dry active rotators (see also their externally driven counterparts [110,111]) are self-
rotating particles that can be described by setting vs = 0 in Eq. (1.2) and adding
an effective torque acting on each particle to Eq. (1.2b). In analogy to the models
in Secs. 2.2.1 and 2.2.2, wet active rotators are introduced below, i.e., particles that
actively induce fluid flows leading to self-rotation, but not to self-propulsion.
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αL(1−α)L

L

σ/2

a

f+f−

n̂

(a) circle swimmer
 (f> 0) 
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αL(1−α)L
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σ/2

a

n̂

(b) active rotator
 (f> 0) 

γL

f ′+ f ′−

f+f−

Figure 2.2: Force-dipole-based minimal models for two other types of microswimmer.
(a) Circle swimmer [P2]. (b) Wet active rotator. Again, streamlines
indicate the flow field and dashed lines the effective steric radius. Both
objects are force- and torque-free. The circle swimmer self-propels and
self-rotates, creating circular trajectories (in the absence of noise), while
the active rotator only self-rotates.

For this purpose, the force dipole defined by Eqs. (2.6) is subjected to a point
reflection with respect to the particle center r. This creates a second pair of forces
f ′± at r′± given by

f ′± = − f± = ∓ f n̂, (2.7a)

r′+ = r− αL n̂− γL û, (2.7b)

r′− = r + (1 − α)L n̂− γL û, (2.7c)

see also Fig. 2.2 (b) for a sketch of the complete object. Due to the linearity of
Eqs. (2.1), the (total) swimming velocity vtot

s and angular velocity ωtot
s of the

combined new object result from superposition of the respective contributions of
the two force dipoles, i.e., vtot

s = vs + v′
s and ωtot

s = ωs + ω′
s.

In particular, the swimming velocity is a true vector, while the angular velocity
is an axial vector. Thus, their different symmetry properties under point reflection
lead to vtot

s = vs + v′
s = vs − vs = 0 and ωtot

s = ωs + ω′
s = 2ωs. The latter is

non-vanishing for γ ̸= 0 ∧ α < 1/2 [P2].
This way, a wet active rotator has been constructed, which is force- and torque-

free. In principle, this model could now also be used as an input to a dynamical
statistical theory similar to the ones discussed next in Chapter 3.
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Chapter 3

Dynamical statistical theory for
many-swimmer suspensions

As detailed in Sec. 1.3, (microscopic) statistical theories are versatile tools for
describing many-particle systems. In particular, we have developed and applied
a dynamical density functional theory (DDFT) for (semi)dilute suspensions of
hydrodynamically interacting microswimmers [P1–P4]. Before discussing this new
theory, I now briefly give an overview of the general concept of DDFT.

Historically, DDFT [112–122] is the non-equilibrium offspring of the classical
density functional theory (DFT) that characterizes colloidal systems in equilib-
rium [123–127], which itself is the classical equivalent of the quantum mechanical
density functional theory that is used to describe probability densities of electrons
on the atomic scale [128–130]. In broad terms, DDFT acts as if the one-body
density at a given time had been produced by a virtual external potential under
the influence of which the system is in (instantaneous) equilibrium [P1]. Via
this adiabatic approximation, detailed later in Sec. 3.1.2, DDFT transfers exact
equilibrium relations to non-equilibrium situations in order to obtain the approxi-
mate dynamical evolution of the corresponding one-body densities. This procedure
provides a quite powerful approach in many situations.

Formally, DDFT can be embedded in more general theories that additionally
take into account non-adiabatic probability currents [131–134]. Instances of more
coarse-grained descriptions, partially supported by DDFT, are phase-field crystal
models [75, 135–139] or more-macroscopic hydrodynamic equations [140–142].

For (passive) overdamped colloidal particles, DDFT was first introduced as a semi-
phenomenological extension of the (one-body-density) Smoluchowski equation [112].
Later, a firmer foundation was laid via diverse theoretical frameworks [114–118].
Conceptually, our statistical approach for microswimmers combines two previous
DDFT strands that describe dry self-propelled particles [121, 143] and hydrody-
namically interacting passive colloidal particles [144–149].

Next, in Sec. 3.1, I sketch the derivation (and application) of our DDFT for the
basic case of straight-propelling microswimmers with a spherical body shape. Then,
circle swimmers and mixtures of different microswimmer species are discussed as
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incrementally more complex cases in Sec. 3.2. An adaptation of our statistical theory
that probes the possible onset of orientational order on larger scales is described
in Sec. 3.3, introducing a test-particle method to obtain swimmer–swimmer pair
distribution functions on the way. Finally, Sec. 3.4 discusses possible further
extensions of our DDFT approach.

3.1 DDFT for straight-propelling microswimmers

A suspension of identical straight-propelling microswimmers, based on the model
described in Sec. 2.2.1, is the simplest of the system that we set out to describe and
thus has been the starting point of our work on this topic in Publication P1. In
this section, I sketch how a dynamical density functional theory (DDFT) describing
the collective behavior of interacting swimmers is developed in a two-step process.
Specifically, a hierarchy of equations is derived from first principles in Sec. 3.1.1.
Then, the associated dynamic equation for the one-body density is closed via DDFT
methods in Sec. 3.1.2. Furthermore, Secs. 3.1.3 and 3.1.4 discuss the application of
our DDFT to exemplary planar arrangements.

3.1.1 From conservation of probability to a hierarchy of
equations

In Publication P1, we consider N straight-propelling microswimmers of the kind
introduced in Sec. 2.2.1. At time t, the system is described by the probability density
function P = P (X1, . . . ,XN , t) of finding the system in a certain configuration,
where Xi = (ri, n̂i) denotes the configuration of the ith swimmer, i = 1, . . . , N , and
comprises its position ri and its orientation n̂i. Assuming overdamped dynamics
(i.e., a low Reynolds number) and local conservation of probability, the many-
particle Smoluchowski equation [150]

∂P

∂t
= −

N∑︂

i=1

(︂
∇ri · (P vi) + ∇or

i · (P ωi)
)︂

(3.1)

follows, on which we base our approach, in analogy to the derivation in Ref. 116.
Here, ∇or

i = n̂i ×∇n̂i
is the orientational gradient operator for uniaxial particles,

while vi denotes the velocity and ωi the angular velocity of the ith swimmer. For
pairwise hydrodynamic interactions between swimmers, vi and ωi are given by [P1]

[︄
vi

ωi

]︄
=

N∑︂

j=1

(︄[︄
µtt

ij µtr
ij

µrt
ij µrr

ij

]︄
·
[︄
Fj

Tj

]︄
+

[︄
Λtt

ij 0

Λrt
ij 0

]︄
·
[︄
f n̂j

0

]︄)︄
, (3.2)

where we call the different µ··
·· passive mobility tensors and the different Λ··

·· active
mobility tensors. Additionally, f is the force parameter according to Eq. (2.4).
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In Eq. (3.2), the force Fj and the torque Tj acting on swimmer j comprise
the effects of thermal noise (via of an effective entropic potential [150]), external
potentials, and pairwise steric interactions between swimmers [P1]. The mobility
tensors have been determined on the basis of the microswimmer model introduced
in Sec. 2.2.1 and inserted accordingly [P1–P4]. For the passive mobility tensors,
we have used the Rotne-Prager level of hydrodynamic interactions [151,152], which
beyond the Oseen tensor includes corrections resulting from the non-vanishing
size a of the swimmer body up to the order ∼ (a/rij)

−3, with rij being the distance
between the two corresponding swimmers i and j [P1].

To explicitly solve for the full probability density P (X1, . . . ,XN , t) in Eq. (3.1) is,
in general, not possible in non-equilibrium. Therefore, we at this point start focusing
on the one-swimmer density ρ(1)(X, t), with the reduced n-swimmer densities being
defined via [123]

ρ(n)(X1, . . . ,Xn, t) =
N !

(N − n)!

∫︂
dXn+1 . . .

∫︂
dXN P (X1, . . . ,XN , t). (3.3)

Here, the prefactor arises because the swimmers are identical and we do not
distinguish between them. Accordingly, the argument of the above n-swimmer
density depends on the coordinates of “any” first swimmer, “any” second swimmer,
and so on, so that we from now on denote them as X,X′, . . . ,X(n) instead of the
numbering of the original swimmers.

The next step consists of reducing Eq. (3.1) by integrating out the coordinates
of all swimmers except for those for one swimmer. The result reads [P1]

∂ρ(1)(X, t)

∂t
= −∇r ·

(︁J tt + J tr + J ta
)︁
− (n̂×∇n̂) ·

(︁J rt + J rr + J ra
)︁
, (3.4)

where each current density J ·· corresponds to one of the mobility tensors in Eq. (3.2),
with J ·a referring to the respective Λ·t. The concrete J ’s, given by Eqs. (32)–(37)
of Publication P1, involve two- and three-swimmer densities, so that Eq. (3.4) is
not closed at this level of the description. In principle, similar dynamical equations
could now be derived for those densities, but these would again depend on densities
of even-higher order [P1]. Neglecting hydrodynamic interactions and setting f = 0
in our framework, this escalating sequence of equations becomes the usual BBGKY
hierarchy that is well-established in the theory of liquids [123,153–157].

In order to obtain a closed dynamical equation for ρ(1)(X, t), approximations
must be introduced. First, DDFT suggests to transfer equilibrium relations to the
non-equilibrium situation at hand, providing partial closure, as explained below in
Sec. 3.1.2. Second, known relations between the remaining two-swimmer densities
and the one-swimmer density can be inserted via pair distribution functions. The
latter route is chosen in Publication P4, as discussed in Sec. 3.3.1.
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3.1.2 An appropriate closure: the adiabatic approximation

As detailed in the preceding section, a dynamical equation for the one-swimmer
density can be derived by integrating the many-body Smoluchoswki equation over
the phase-space coordinates for all swimmers except for one swimmer. However,
this equation still features dependencies on two- and three-swimmer densities,
which prevents (numerical) evaluations. In this section, I explain how DDFT
methods [112–122] can be used to overcome this problem, as has been discussed
and applied in Publications P1–P4.

The central step here is the adiabatic approximation. In particular, DDFT acts
as if the density at time t had been created by a virtual external potential Φext(X, t)
under the influence of which the system is in (instantaneous) equilibrium, leading to
the one-swimmer density observed at time t [114–116, P1]. In effect, this transfers
exact equilibrium density correlations to the present non-equilibrium situation.
Instead of determining the virtual quantity Φext(X, t) explicitly, two different expres-
sions containing it can be derived using properties of thermodynamic equilibrium,
as detailed below. Combining these two relations then eliminates Φext(X, t) from
the mathematical description, and we obtain a closed set of equations.

First, we employ Yvon-Born-Green (YBG) relations, which result from the
equilibrium limit of the BBGKY hierarchy [123,158]. Their nth level can be derived
by taking into account the definition of the n-swimmer density in Eq. (3.3) under
the assumption of [158, P2]

P ∝ exp(−βH), (3.5)

with β = (kBT )−1, kB denoting the Boltzmann constant, T the temperature, and H
the (virtual) Hamiltonian

H =
N−1∑︂

k=1

N∑︂

l=k+1

Uint(|rk − rl|) +
N∑︂

k=1

Φext(Xk, t). (3.6)

At this point, the virtual external potential Φext(X, t) takes the role of the actual
physical external potential and Uint(|rk−rl|) denotes the steric interaction potential
acting between swimmers k and l. As an example, one corresponding formula
(needed to eliminate some two-swimmer densities) reads

kBT ∇r ρ
(1)(X, t) = − ρ(1)(X, t)∇r Φext(X, t) −

∫︂
dX′ ρ(2)(X,X′, t)∇r Uint(|r− r′|)

(3.7)

For the second route, the corresponding virtual grand potential functional Ω[ρ(1)]
is considered, which is minimal for the equilibrium (one-swimmer) density. By
splitting the functional Ω[ρ(1)] into the contribution of Φext(X, t), the (exactly
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known) ideal gas part, and the (generally unknown) interaction-induced excess
free-energy functional Fexc[ρ

(1)], the relation

− Φext(X, t) = kBT ln
(︁
λ3ρ(1)(X, t)

)︁
+

δFexc
δρ(1)(X, t)

(3.8)

is obtained from the minimization condition that is here transferred to the present
non-equilibrium situation [P1], with λ being the thermal de Broglie wavelength.
While the unique existence of an exact Fexc is proven for all suitable systems [117],
its concrete form is unknown for most cases and has to be approximated. For, e.g.,
soft repulsive steric interactions, a mean-field ansatz, later introduced as Eq. (3.11),
is well-accepted.

As an example, Eqs. (3.7) and (3.8) can be combined to eliminate Φext(X, t)
and corresponding two-swimmer densities from our mathematical formalism. An
analogous process for the terms featuring the three-swimmer density can also
be performed, reducing the corresponding terms to contain only two-swimmer
densities [P1].

Following the above route, all higher-order densities related to steric interactions
are reduced by one order. However, the terms resulting from hydrodynamic
interactions still contain two-swimmer densities [P1]. Accordingly, an additional
assumption has to be introduced to express the remaining instances of ρ(2)(X,X′, t)
in terms of ρ(1)(X, t).

In Publication P1, a mean-field approximation was chosen for this purpose,
assuming ρ(2)(X,X′, t) = 0 for r− r′ → 0 to avoid hydrodynamic divergences. For
a smoother treatment of the mobility tensors, the more refined Onsager-like [159]
ansatz ρ(2)(X,X′, t) = ρ(1)(X, t) ρ(1)(X′, t) exp (−βUint(r, r

′)) for |r− r′| > 2a and
ρ(2)(X,X′, t) = 0 otherwise was used in Publications P2–P4. This completes our
presentation of a closed, (numerically) solvable set of equations [P1].

3.1.3 Reduction to planar arrangements

Together with the approximations introduced in Sec. 3.1.2, Eq. (3.4) describes the
dynamical evolution of ρ(1)(X, t). In general, this one-swimmer density depends on
the five-dimensional phase-space coordinate X = (r, n̂). To reduce the complexity
of numerically solving the corresponding higher-dimensional partial differential
equations, we restrict our evaluations to planar arrangements of microswimmers.

For this purpose, the microswimmers are confined to the xy-plane in the bulk
fluid. Furthermore, the orientation of each swimmer is analogously constrained and
can thus be parameterized by a single angle φ measured relatively to the x-axis,
with n̂ = (cosφ, sinφ, 0) and n̂×∇n̂ = ẑ ∂φ. Accordingly, ρ(1)(X, t) thus depends
only on the three-dimensional phase-space coordinate X = (x, y, φ). Such a setup
could possibly be realized, e.g., by introducing corresponding optical trapping fields
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or by constraining the swimmers to the interface between two immiscible fluids of
the same viscosity [P1].

The resulting partial differential equation has proven to be well-solvable [P1–
P4]. For Publications P2–P4, the corresponding equations were solved using
the numerical partial differential equation solver FiPy [160]. An equidistant
numerical grid allowed to use Fast Fourier Transformation methods to calculate
the convolution terms that emerge from the hydrodynamic interactions [P2–P4].

A first application of this general setup, considering microswimmers in an external
trapping potential, is described next in Sec. 3.1.4. Planar arrangements are also
discussed in the more complex situations addressed in Sec. 3.2.

3.1.4 Application to radial external trapping potentials

In Publications P1 and P2, we further let an external potential act on the swimmers
in the basic planar arrangement described above in Sec. 3.1.3. Namely, this was a
quartic radial trapping potential

Uext(r) = V0

(︂ r
σ

)︂4
. (3.9)

Additionally, the steric interaction between two swimmers (which are located at
positions r and r′) has been modeled via a soft, repulsive GEM-4 potential, which
has the functional form [161,162]

Uint(|r− r′|) = ϵ0 exp

(︄
−
(︃ |r′ − r|

σ

)︃4)︄
, (3.10)

where ϵ0 > 0 is the (finite, but typically high) interaction energy at complete
overlap. We further use the mean-field excess free energy functional

Fexc =

∫︂
dX

∫︂
dX′ ρ(1)(X, t) ρ(1)(X′, t)Uint(r, r

′), (3.11)

which has previously been found to be appropriate when considering the above
interaction potential [162].

For this general setup, we could qualitatively compare our results with those
from existing particle-based computer simulations that included hydrodynamic
interactions as well [85,163]. The favorable agreement between the results described
below stresses the success of our approach [P1].

Specifically, for vanishing active drive f = 0, the behavior of passive particles
is recovered, i.e., a center-heavy density distribution is formed in the radial trap.
Switching on the active drive, but neglecting the hydrodynamic interactions, leads
to an off-center ring-like pattern, with the direction of self-propulsion pointing
radially outwards [P1]. Along this ring, which had previously been reported in
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several studies [85,163–165], the outward self-propulsion approximately balances
the restoring force exerted by the trapping potential.

When now the hydrodynamic interactions are reintroduced, the fluid flows
induced by the trapping potential acting on the microswimmers can lead to the
collapse of the above radially symmetric density distribution to one off-center
high-density spot [P1–P3]. (Please note that the results shown in Publication P1
here typically featured two of these spots, which we later could attribute to the fact
that the applied cut-off distance of the hydrodynamic interactions was too short
when compared to the diameter of the ring distribution.) The swimmers organized
in the high-density spot feature some degree of polar orientational order. Thus, they
collectively pump the surrounding fluid. The formation of this hydrodynamic fluid
pump (with broken radial symmetry) had previously been reported in corresponding
particle-based computer simulations [85, 163].

The above effect can in principle be observed for pushers and for pullers. However,
for appropriate system parameters, differences can be observed. For the parameters
chosen in Publication P2, pushers generally favor a collapse to a high-density spot,
while puller systems show a symmetric ring-like density distribution [P2].

3.2 Increasing the complexity

Beyond the basic case of (semi)dilute suspensions of straight-propelling swimmers
discussed above in Sec. 3.1, we have also worked on DDFTs for more complex
systems. In particular, this included (semi)dilute suspensions of hydrodynamically
interacting circle swimmers [P2], see Sec. 3.2.1, and situations in which multiple
species of swimmers are present [P3], see Sec. 3.2.2.

3.2.1 DDFT for circle swimmers

In contrast to the straight-propelling microswimmers discussed above in Sec. 3.1,
circle swimmers additionally show active self-rotation. Beyond initial one-swimmer
studies [84, 104, 106, 108], several particle-based computer simulations involving
many “dry” circle swimmers have been performed in recent years [103,166–168].

We here discuss suspensions of “wet” circle swimmers, on the basis of the model
introduced in Sec. 2.2.2. In Publication P2, a corresponding DDFT has been
derived in analogy to the one reviewed in Sec. 3.1. Only slight modifications were
necessary for this purpose. Specifically, one additional term enters the current
density J ra and the locations of the active force centers need to be adjusted [P2].

Again, we have numerically evaluated our theory for a planar configuration of
active circle swimmers under the influence of a radial external trapping potential.
We find that an increased curvature of trajectories of our circle swimmers generally
lets the swimmers self-propel less effectively against the external trapping force.



20 Chapter 3 Dynamical statistical theory for many-swimmer suspensions

Accordingly, the corresponding steady-state density distributions become more
localized towards the center of the trap [P2]. In particular, when varying the
biaxiality parameter γ, we find a smooth transition between an off-center ring-like
distribution and a center-heavy one, approximately around the value of γ for which
the swimming radius Rs is equal to the ring size [P2].

For small γ, the general structure of the steady-state solution for spherical
microswimmers, as discussed in Sec. 3.1.4, is maintained. That is, for a certain
(large) parameter range, pusher microswimmers form a high-density spot with
aligned radial orientation. Nevertheless, even a small self-rotation (for 0 < |γ| ≪ 1)
can here induce a consistent movement of that spot along the rim of the external
trapping potential [P2].

3.2.2 Mixtures of microswimmers

Another natural extension of the DDFT for one-species microswimmer systems is to
allow for mixtures of distinct species of active swimmers (and also passive particles).
This could find application in the description of biological systems, which often
many species exposed to complex environments, and in medical contexts, in which
artificial microswimmers are supposed to interact, e.g., with human cells of similar
size. As an additional benefit, such multi-species statistical descriptions can enable
to develop certain test-particle methods that determine correlation functions in
one-component systems [169,170].

Consequently, a multi-species DDFT for microswimmers was developed in Publi-
cation P3. There, we were able to build on existing DDFT descriptions for mixtures
of passive particles [171–175], in combination with our DDFT for one-species mi-
croswimmer suspensions [P1].

The corresponding theoretical derivation starts once more from the many-particle
Smoluchowski equation, see Eq. (3.1), in combination with a mobility-matrix
formalism as in Eq. (3.2). Here, we now allow the swimmers to differ from each
other in their model parameters, constituting multiple species [P3]. Then, in close
analogy to the one-species case [P1], two coupled DDFT equations are derived to
describe a binary mixture. They quantify the dynamical evolution of the respective
one-swimmer densities of the two constituents [P3]. Subsequently, the theory has
been applied to three different exemplary situations [P3], as detailed below.

First, a radial external trapping potential, similar to the situation described in
Sec. 3.1.4, is populated with a pusher–puller binary mixture, with the two species
only differing in the sign of the active force parameter f . It is found that in these
systems, under the chosen system parameters, the majority species imposes its
behavior onto the minority species [P3]. For an approximately equal number of
pushers and pullers, the hydrodynamic currents induced by the self-propulsion of
the two species feature similar magnitudes, but are oppositely oriented, and thus
nearly cancel each other. Nevertheless, fluid flows that are induced by the action
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of the external trapping potentials can still lead to the formation of a high-density
spot, if this effect overcomes thermal diffusion [P3].

Second, mixtures of pushers and pullers in a planar arrangement in the absence
of the trapping potential have been studied with regard to the possible onset of
orientational ordering due to hydrodynamic interactions between the swimmers,
using the general method described below in Sec. 3.3. In reasonable agreement with
corresponding results from particle-based computer simulations [51], it is found
that a system of pullers can spontaneously develop orientational order on a larger
scale even when it is doped with pushers [P3]. For a system in which pushers and
pullers only differ by the sign of the force parameter f , we obtain a quantitative
criterion necessary for the onset of polar orientational order. Specifically, it requires
that more pullers than pushers are present and that the hydrodynamic ordering
effects overcome the rotational diffusion of the swimmers [P3].

Third, we have constructed a shear cell model. For this purpose, one species of
passive particles (f = 0) is confined to a ring by an external potential. Driving those
particles with an appropriate external force field along the contour of the ring then
creates an internal circular flow field [P3]. When we now confine straight-propelling
microswimmers as a second species to the plane inside this ring, the induced shear
flow continuously rotates them. This prevents an efficient swimming towards the
boundary of the confinement [P3], similarly to the situation of circle swimming
that we have investigated in Publication P2.

The successful application to these three examples shows the rich possibilities
of description that our DDFT for mixtures of microswimmers offers. In principle,
it could also be combined with the ideas of Publication P2 to describe mixtures
including circle swimmers.

3.3 Refinement of the theory for untrapped planar
systems

Publication P4 was inspired by previous particle-based simulations that showed ori-
entational ordering due to hydrodynamic interactions for microswimmers endowed
with mutually repulsive steric interactions [51,176]. We have thus considered a sim-
ilar situation in the context of our statistical theory. For this purpose, we followed
a somewhat modified route including an additionally determined expression for
the pair distribution function, see Sec. 3.3.1, obtained from a test-particle method
for active particles, see Sec. 3.3.2. This more refined procedure became necessary
because our previous mean-field treatment in the context of DDFT [P1–P3] turned
out to be too simplified to answer the questions mentioned below [P4].

In particular, we find that the interplay of the active motion and the steric
interactions between the swimmers creates pair distribution functions that depend
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on the swimmer orientations in a non-trivial way [P4]. Using corresponding
functional forms as an input to our statistical framework, the linear stability of the
disordered state against uniform orientational order resulting from hydrodynamic
interactions has been tested, as discussed below in Sec. 3.3.3. For (semi)dilute
suspensions of our puller microswimmers, it is found that hydrodynamic interactions
between swimmers can establish polar orientational ordering on larger scales through
linear order, in contrast to our pusher microswimmers [P4]. In further works, this
method has been extended to multi-species mixtures of microswimmers [P3], as
indicated in Sec. 3.2.2.

3.3.1 Involving the pair distribution function

In Sec. 3.1.1, Eq. (3.4) constitutes the first order of a BBGKY-like hierarchy of
equations and still contains two- and three-swimmer densities [P1]. Applying the
adiabatic approximations of DDFT, see Sec. 3.1.2, the three-swimmer densities can
be replaced, which involves two-swimmer densities. The remaining two-swimmer
densities can then be approximated in terms of one-swimmer densities, e.g., via
the dilute limit of the pair distribution function, as described in Sec. 3.1.2. In the
following, we skip the adiabatic approximation and instead sketch another route
directly involving the pair distribution function.

In Publication P4, untrapped planar arrangements are studied with regard to
the possible onset of global collective orientational ordering resulting from the
hydrodynamic interactions induced by the swimming mechanisms. For a large
periodic box of area A, we assume spatial homogeneity and introduce ρ(1)(φ, t) =
Aρ(1)(X, t), with X = (x, y, φ). Then, Eq. 3.4 reduces to approximately

∂ρ(1)(φ, t)

∂t
= Dr ∂

2
φ ρ

(1)(φ, t)−f∂φ

[︃∫︂
dr

∫︂
dX′ ẑ ·

(︁
Λrt

r,X′ n̂′)︁ ρ(2)(X,X′, t)

]︃
, (3.12)

for sufficiently small overall densities [P4], with the rotational diffusion constant Dr.
Here, the two-swimmer density can be rewritten using the pair distribution function
g(X,X′, t), which is defined via [123]

ρ(2)(X,X′, t) = ρ(1)(X, t) ρ(1)(X′, t) g(X,X′, t). (3.13)

This is particularly useful when considering fully disordered states, for which the
one-body densities are of trivial forms [P4].

In general, knowledge of g(X,X′, t) is important because it allows the direct
calculation of many physical quantities in a system, e.g., the total average interaction
energy caused by pairwise interactions between the particles [177]. Additionally,
the pair distribution function can be used to easily differentiate between distinct
states of matter [123]. Furthermore, g(X,X′, t) can be related to several other
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(spatial) correlation functions, e.g., to the (static) structure factor accessible from
light-scattering experiments [123].

Previous studies on ABPs determined typical forms of g(X,X′, t) [67,178,179].
The interplay between steric repulsive interactions and active self-propulsion creates
front-back asymmetries and non-trivial variations as a function of the orientations of
the swimmers [178]. First steps of calculating swimmer–swimmer pair distribution
functions from computer simulations including hydrodynamic interactions have
been performed [51, 180]. Our scope was to use an easily applicable method to
determine pair distribution functions in active systems to an approximation degree
sufficient for purposes.

Section 3.3.2 describes our test-particle method to find corresponding (orientation-
dependent) swimmer–swimmer pair distribution functions. Taking these results
as an input, the linear stability of Eq. (3.12) against the onset of collective polar
orientational ordering is discussed in Sec. 3.3.3.

3.3.2 Active test-particle method

Our strategy has been to adapt a relation that is exact for passive equilibrium
systems for the description of our active systems. Specifically, in equilibrium
liquids, the pair distribution function is determined from the density around one
particle that is fixed and treated as an (externally imposed) obstacle [123,181]. For
particles featuring an isotropic interaction potential Uint(|r′ − r|) in a liquid state
with average density ρ̄, the pair distribution function follows as [123]

ρ̄ g(r) = ρ(r)|obstacle , (3.14)

where the right-hand side represents the density distribution that the system forms
around the one fixed particle, here located at r0 = 0. The influence of this one
particle on the other particles is taken into account in the form of an external
potential Uext(r) = Uint(|r− r0|) = Uint(r). These relations can be evaluated using
classical equilibrium density functional theory [182].

As Eq. (3.14) is exact in equilibrium [123], we consider it to be a reasonable
starting point for obtaining a first-order approximation of the swimmer–swimmer
pair distribution function in active systems, as detailed in Publication P4 (and
used in one of the applications discussed in Publication P3). Here, some ad-
hoc adaptations are involved for active particles. Specifically, the position and
orientation of one swimmer are fixed at r0 and, respectively, as n̂0. Then, in order
to account for the active self-propulsion of the fixed swimmer, we stream the other
swimmers against the fixed swimmer with its free-swimming velocity v0 [P4]. The
resulting (orientation-dependent) density distribution, stemming from the interplay
between this streaming and the repulsive steric interaction between the swimmers,
appears to lead to a reasonable approximation for the swimmer–swimmer pair
distribution function [P4].
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Hydrodynamic interactions have not been taken into account in this proce-
dure [P4]. It is still unclear how they, also in combination with the thermal
fluctuations of the fixed swimmer, could be included in the above method. Ac-
cordingly, the obtained pair distribution functions are, strictly speaking, valid
approximations only for dry ABPs in a non-aligned state. However, our method
should also provide reasonable approximations for cases in which hydrodynamic
interactions do not overly affect the swimmer–swimmer pair distribution function.
For different systems, hydrodynamic interactions might nevertheless significantly
influence the pair distribution function [180].

3.3.3 Application to collective polar orientational ordering

In Publication P4, we have combined the reasoning of Sec. 3.3.1 with the Percus-
type test-particle method described in Sec. 3.3.2. This way, a priori predictions
are made for the onset of orientational order on larger scales in (semi)dilute
suspensions of our model microswimmers, in the absence of additional external
trapping potentials. In particular, using correspondingly determined forms of the
pair distribution function and performing a first-order harmonic fit for an expression
that involves it, cf. Fig. 2 of Publication P4, Eq. (3.12) leads to a partial differential
equation of the form [P4]

∂ρ(1)(φ, t)

∂t
= Dr ∂

2
φ ρ

(1)(φ, t) − Cf∂φ

[︃
ρ(1)(φ, t)

∫︂
dφ′ρ(1)(φ′, t) sin(φ− φ′)

]︃
, (3.15)

with C > 0 being a positive constant.

This functional form is further supported by a two-swimmer scattering approach
(valid for very dilute suspensions) that is described in Appendix B of Publication P4.
Additionally, Appendix C of the same article identifies a minimal orientation-
dependent functional form of the pair distribution function leading to C ̸= 0 on
the right-hand side of Eq. (3.15). In particular, this minimal contribution describes
an enhanced probability to find in the vicinity of the fixed swimmer other particles
that propel in the approximately same direction [P4].

A linear analysis of the above equation for the stability of the orientationally
disordered, spatially homogeneous state against the onset of large-scale polar
orientational order has been performed [P4]. We find that orientational order
in (semi)dilute suspensions, emerging from a linear instability, can only develop
for sufficiently strong pullers, and not for (pure) pusher systems [P4]. This is
in qualitative agreement with the results obtained from previous particle-based
computer simulations using the same swimmer model [51]. In the future, our
approach may be useful to characterize ordering effects in other systems as well,
e.g., in (semi)dilute suspensions of rod-shaped swimmers.
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3.4 Outlook

In the following, I provide an outlook concerning related physical situations that
could be investigated via statistical theories similar to ours in the future. Some of
these are, at least in principle, in the reach of the present framework, see Sec. 3.4.1,
while others go well beyond it, see Sec. 3.4.2.

3.4.1 Extensions in the reach of our theory

I now present several additional situations the description of which is within reach
of our theoretical framework. Moreover, I describe possible pathways to adjust our
theory for the respective physical situations.

A first possible modification would be to use another model microswimmer,
e.g., three-sphere swimmers or squirmers. Additional higher-order hydrodynamic
singularities (e.g., force quadrupole, source dipole, rotlet dipole) could be included
with corresponding model parameters extracted from experimental measurements
on real microswimmers. If the hydrodynamic swimmer bodies remain spherical,
solely the active mobility tensors that contribute to the corresponding J ·a in
Eq. (3.4) would have to be changed. In the same manner, near-field corrections to
the mobility tensors could be incorporated.

Further changes in the hydrodynamic mobility tensors arise if nearby obstacles
constrain the background fluid flow. For example, the Blake tensor replaces the
Oseen tensor when a force is exerted in the vicinity of a planar no-slip boundary [183].
For microswimmers self-propelling near a wall or in a small-width channel, see
also the corresponding studies of single three-sphere swimmers in Publications P5
and P6, active and passive mobility tensors could be calculated and inserted into our
formalism. Such a procedure could be combined with existing DDFT concepts for
particles under confinement [184,185]. Furthermore, the effects of elastic interfaces,
as regarded in Publications P8 and P9, could be included accordingly.

Another modification concerns different potentials for the steric interactions
between the swimmers. Typically, such a change involves identifying an appropriate
form of the excess free energy functional Fexc. For example, hard spheres are
often treated using fundamental measure theory [186–191]. This method has also
been generalized to anisotropic particle shapes [192–197]. The use of short-ranged
hard steric interactions in our theoretical framework might affect the accuracy of
our far-field treatment of hydrodynamic interactions, in particular if the swimmer
bodies closely approach each other. However, this is avoided if the effective ranges
of these interactions are significantly larger than the hydrodynamic radii of the
swimmers. Another example could be strong but significantly screened repulsive
electrostatic interactions (for instance, based on the typical Yukawa interaction
potential [198–200]). Corresponding particle-based “dry” computer simulations for
hard self-propelled particles have been performed, employing event-driven Brownian



26 Chapter 3 Dynamical statistical theory for many-swimmer suspensions

dynamics [179,201,202] or kinetic Monte-Carlo algorithms [203,204].
The hydrodynamic mobility tensors in our framework could, in principle, be re-

placed to account for other, e.g., non-spherical, shapes of the swimmer body. While
the corresponding low-Reynolds-number hydrodynamic theory is most straight-
forward for spherical particles [31, 33], extensions to non-spherical bodies exist.
A particular example are (rod-like) prolate spheroids, for which analytic singularity
solutions are at hand [33]. Moreover, at least the passive self mobility tensor
[i.e., µ··

ij for i = j in Eq. (3.2)] can be determined for a large variety of rigid body
shapes [205]. In particular, this can, for non-orthotropic bodies, lead to a coupling
between translational and rotational components, e.g., a force exerted on that body
could result in an angular velocity [32, 109]. Pair mobility tensors (both passive
and active) for such arbitrarily-shaped particles, however, would probably need to
be calculated numerically before evaluations of our DDFT equations and would
there need to be inserted as a tabulated input.

In order to extend the statistical theory into another direction, it might be
interesting to include Vicsek-type effective alignment interactions [46, 47, 86–88]
between the microswimmers. Similarly, one could incorporate phoretic interactions
between swimmers [206], which should be feasible when these are mapped to
effective pairwise interactions [40].

An additional generalization could be to allow for varying motility fields [207,208].
However, it is yet unclear how to extend the proof of existence for an exact excess
free energy functional in DDFT [117] to such a system. Nevertheless, an effective
DDFT for a corresponding coarse-grained model has already been proposed [209].
One could also allow for local variations of the viscosity of the background fluid,
which indeed can induce interesting effects already for a single swimmer [210].
Furthermore, anisotropic background fluids might be taken into account [211,212].

Another possible extension would concern feedback-controlled motility [213,214].
Then the self-propulsion of the microswimmers is (externally) tuned according to
prescribed rules. Conceptually, this problem is related to driven particles with
(time-delayed) feedback, for which a DDFT has recently been formulated [215].

In biological microswimmer systems, death and reproduction play a role in the
long-time dynamics and might be interesting to be incorporated into our framework.
Such effects have already been treated via DDFT in the context of the growth
of tumors [45]. Additionally, the transition of bacteria between, e.g, motile and
non-motile states, might be included via coupled source and sink terms in the
multi-species approach of Publication P3.

Our present numerical evaluations have been confined to relatively small systems,
but can, in principle, be extended to truly periodic systems by corresponding
periodic boundary conditions. Then, the hydrodynamic interactions between the
periodic images of particles must be incorporated, see, for instance, the long-range
nature of the Oseen tensor in Eq. (2.2). Here, a standard method is based on the
Ewald summation technique [216], which separates short-range from long-range
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contributions and treats the latter in Fourier space. Corresponding results for
passive mobility tensors are well-known [217–220] and could be considered for the
different µ··

·· in Eq. (3.2). In the case of the force-dipole-based microswimmer model
of Ref. 102, corresponding Ewald summations have been carried out for the active
parts as well [221]. Thus, it is to be expected that such calculations can also be
performed for our model (and similar microswimmer models).

An addition extension could be to include externally imposed fluid flows [56,
222–228]. For example, it has been found that pusher microswimmers under shear
at low densities can induce a strong decrease in the effective overall viscosity of
the suspension [229, 230]. In our formalism, external flows call for two different
adjustments beyond the limit of our shear cell in Publication P3 (where the
imposed flow is primarily inducing angular velocities of the confined microswimmers).
First, increased fluctuations between particles in, e.g., shear flows, may induce
changes in the one-swimmer density, as has been described by introducing a
corresponding term in existing DDFT approaches [231–235]. Second, hydrodynamic
interactions between particles/swimmers are changed when external flows are
present [31,33,236,237]. This could be accounted for by using adjusted mobility
tensors in Eq. (3.2).

3.4.2 Further open problems

Our theory treated the influence of induced fluid flows on the basis of far-field pair-
wise hydrodynamic interactions, which is considered to be sufficient for (semi)dilute
suspensions [238–242]. This approach is supported by the steric shielding that we
have introduced to ensure large-enough distances between the individual swimmers.
Nevertheless, hydrodynamic interactions are, in general, many-particle interactions
and can feature significant near-field contributions [31–33], which is particularly
important if swimmers come close to each other. In particle-based computer simula-
tions, hydrodynamic near-field interactions can be included by explicitly taking into
account fluid flows of the background medium at a corresponding computational
cost, e.g., via multiparticle collision dynamics [91,222,243–246] / stochastic rotation
dynamics [90, 247] or via Lattice-Boltzmann methods [85,176,248–250]. A future
task might be to investigate how such many-particle effects can be treated in a
statistical approach like ours, for active microswimmers or even only for passive
colloidal particles. The main, yet unsolved problem would be to reduce the descrip-
tion in a way that leads to a closed equation for the dynamical evolution of the
one-body density.

Another highly non-trivial task is the ongoing quest for a statistical description
of motility-induced phase separation (MIPS) [54,65–71], see also Sec. 1.4, from first
principles, which would complement the existing theoretical approaches [66, 67,72–
74]. In addition to the description of similar MIPS-like effects in active–passive
mixtures [74, 139, 251–253], the effect of hydrodynamic interactions on this kind of
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phase separation forms an interesting aspect [91].
One promising approach in this regard has been the extension of power functional

theory (PFT) to describe systems of self-propelled particles [254–256]. The further
inclusion of hydrodynamic interactions in PFT has not been realized yet and might
require input similarly to our DDFT approaches for microswimmers discussed in
Publications P1–P4.

In principle, it should also be possible to derive dynamical statistical descriptions
for systems of many microflyers, i.e., underdamped active particles [35–37]. There,
it would be particularly interesting to include hydrodynamic fluid flows as well.
For this purpose, one could maybe build on existing DDFTs for passive particles
with hydrodynamic interactions and inertia [147–149].

Real background media, e.g., complex fluids in the human body, can feature
viscoelastic properties, which can heavily change the behavior of microswim-
mers [257–263]. The thus-introduced memory effects mediated by the background
fluid might be incorporated using concepts of statistical approaches that were
developed for systems with time-delayed feedback [215,264].

Our DDFT principally is valid only for (semi)dilute suspensions of active mi-
croswimmers, i.e., for not-too-high swimmer densities [P1]. Alternatively, mode-
coupling theories for systems of self-propelled particles describe the behavior in
very dense suspensions [265, 266], with applications to, e.g., active glasses [267].
Detailed comparison between the two approaches may determine which one works
better at intermediate densities, and if there is a need for a crossover theory. Here,
the answer might depend on the specific microswimmer system that is investigated.

In a much broader picture, one might look for applications beyond condensed
matter physics. Our dynamical statistical approach for non-equilibrium active
agents was developed from Eq. (3.1), which expresses the local conservation of
probability. Such general conservation laws might also hold to good approximation
for a variety of processes studied by different disciplines, e.g., for the flux of goods
in economic systems. Consequently, related problems might be studied by similar
methods.
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Chapter 4

Discrete-particle models

In this chapter, different discrete models for single (active) particles and microswim-
mers are introduced and evaluated to study their behavior when confined by explicit
boundaries. Specifically, the motion of a three-sphere swimmer near rigid walls
is described in Sec. 4.1 and the interaction between (active) particles and elastic
interfaces is discussed in Sec. 4.2. It is to be remarked that the corresponding
works [P5–P9] are independent of our statistical investigations of many-swimmer
suspensions [P1–P4] discussed in Chapter 3.

4.1 Three-sphere swimmers

One standard model for a microswimmer is the three-sphere swimmer consisting of
three connected spheres that perform prescribed periodic relative motions [92]. The
general concept is briefly discussed in Sec. 4.1.1. For correctly chosen parameters,
the induced fluid flows lead to a self-propelled net “forward” motion. As described
in Sec. 4.1.2, we have described the behavior of a single such swimmer near a
planar no-slip boundary [P5] and inside a channel consisting of two parallel no-slip
walls [P6].

4.1.1 General concept

In the following, I briefly establish the principle of a three-sphere swimmer as
introduced by Najafi and Golestanian [92, 268–271]. Specifically, three colloidal
particles are placed along a line and linked via rigid connections, the lengths of
which can be tuned dynamically in a controlled way. As in Sec. 2.1, a low Reynolds
number [and thus Stokes fluid flow as described by Eqs. (2.1)] is assumed so that one
moving sphere leads, via hydrodynamic interactions, to an instantaneous motion of
the other spheres. For the moment, it is assumed that this swimmer is situated in
a three-dimensional bulk viscous fluid.

As the next step, periodic relative motions between the outer spheres and the
central sphere are prescribed. If a phase difference between these two motions is
present, each periodic cycle can lead to a net translation of the central sphere along
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the direction of the symmetry axis (but, in this free-swimming case, a change of
the orientation of the swimmer is not present) [92, P5]. Dividing this translated
distance by the duration of one period, we obtain the effective swimming velocity vs.

When evaluating the corresponding equations under the assumption that the
net force and net torque acting on the three spheres vanish and averaging over one
cycle of the prescribed motion, vs can be calculated analytically for the current
situation of a free swimmer suspended in a bulk fluid [92, P5]. The three-sphere
model is versatile with diverse variants, e.g., circle swimmers [93]. Furthermore,
experimental realizations have been outlined [269,270]. Next, I discuss how three-
sphere swimmers behave near one [P5] or two [P6] planar no-slip boundaries that
constrict the fluid flow.

4.1.2 In the vicinity of planar walls

Addressing three-sphere swimmers near walls, we again need to start with the
Stokes equations in Eqs. (2.1). The fundamental solution of a partial differential
equation generally depends on the specific boundary conditions. In the presence
of one infinitely-extended planar wall, the Oseen tensor is replaced by the Blake
tensor, which is derived by introducing appropriate “mirror images” that ensure
that the no-slip boundary condition at the surface of the wall is met [183]. From
this, the hydrodynamic self and pair mobility tensors describing the translational
and rotational response to forces applied to one sphere can be obtained [272,273] so
that, again, a full physical description of the dynamics of a low-Reynolds-number
three-sphere swimmer is possible [274, P5]. In Publication P5, we have studied
swimmers composed of three equally sized spheres. This symmetry lets the force-
dipole term of the (averaged) induced hydrodynamic flow field vanish. Accordingly,
a neutral swimmer, being neither a pusher nor a puller, is constituted.

Considering vanishing thermal noise, we have found via numerical simulations
using the above hydrodynamic input that, depending on its initial orientation and
height above the wall, the dynamics of a neutral three-sphere-swimmer falls into one
of three categories [P5]. First, the swimmer can escape from the wall, particularly
when its swimming direction initially points away from the wall. Second, it can
move towards a trapped state, in which the orientation points straight towards the
wall and the swimmer hovers at a fixed height above the wall. Third, the swimmer
can perform a gliding motion parallel to the wall, with coupled oscillations of its
height above the wall and its orientation.

Furthermore, we introduced an additional relative rotation between the spheres
[P5], which we consider as a coarse-grained model for the rotating flagella and
counter-rotating head of, e.g., motile E. coli bacteria [6]. For these bacteria, a
previous experimental study reported a circling motion near a wall [275], with
the hydrodynamic coupling to the wall providing a plausible explanation [276].
We indeed find that the modified three-sphere swimmers show this behavior, with
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the sense of the circling flipping when the sense of the imposed relative rotations
is switched [P5], indicating the suitability of our approach. In retrospect, this
behavior seems to be closely related to the effect of a rotlet dipole near a wall,
which is commented on in Sec. 4.2.2 and Publication P9.

In Publication P6, we have built upon the above framework to describe the
behavior of a three-sphere swimmer inside a prototypical microfluidic channel
consisting of two parallel planar no-slip-boundary walls. In contrast to the one-wall
case, the Green’s function connected to Eqs. (2.1) for the channel geometry cannot
be provided in real-space coordinates by a closed formula. However, approximations,
either using Fourier transforms [277] or via a formally infinite sum using the method
of images [278], are available and have both been employed here, leading to consistent
results [P6].

In addition to the “neutral” swimmers composed of three equally sized spheres,
also the behavior of pushers (pullers) featuring an enlarged sphere at the front (rear)
of the three-sphere chain [279] was investigated. The corresponding state diagrams
of trajectories showed trapped, sliding, and (oscillatory) gliding states [P6].

4.2 Interactions with elastic interfaces

Typically, microswimmers in reality exist and operate in complex and confined
environments [1]. One such complication, which is very interesting with regard to
possible medical applications, results from the interaction of swimmers with elastic
interfaces and, especially, membranes.

In Sec. 4.2.1, I discuss the one-dimensional minimal membrane model that we
have introduced in Publication P7 to describe its reaction to an approaching active
particle. Section 4.2.2 concerns, first, hydrodynamic interactions between an active
microswimmer and an elastic spherical cavity it is surrounded by [P8]. Second,
the changes to the velocity and angular velocity of a swimmer that propels near an
infinitely-extended planar elastic interface are discussed on the basis of a multipole
decomposition of the fluid flows generated by the swimmer [P9].

4.2.1 Response of an elastic membrane to an approaching
active particle: trapping and penetration

Biological cells are typically shielded from their environment via an elastic cell
membrane that can hold back potentially harmful influences [280–282]. However,
medical applications involving microscopic drug delivery may rely on active agents
intruding into a cell to transport their medical cargo [283–285], so that strategies
to overcome the cell membrane have to be developed. In Publication P7, a simple
model membrane is introduced. We study under which circumstances an active
particle can penetrate it.
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The model membrane consists of a one-dimensional chain of spherical particles
in two-dimensional space. The two particles on each end of the chain are fixed at
positions (±L/2, 0), with chain length L. Each particle i is endowed with a dipole
moment mi (of magnitude m = |mi| for all i), which is assumed to be fixed to the
orientation of the particle [P7]. Thus, m can be rewritten as mi = m (cosφi, sinφi),
where the angle φi parameterizes the particle orientation and is measured relatively
to the x-axis. In addition to the resulting dipolar interactions, further short-ranged
repulsive steric interactions and nearest-neighbor elastic interactions in form of
harmonic springs (with a non-vanishing rest length) act between the membrane
particles and keep them at finite distances from each other [P7]. Here, possible
effects of thermal noise, hydrodynamic interactions, and changes in the propulsion
direction of the active particle are neglected and left to future works.

By construction, the ground state of the above model membrane is a straight
chain with all dipole moments oriented parallel to the chain axis [P7]. This
particular arrangement is taken as the initial configuration. Assuming overdamped
motion, the (perpendicular) approach of an active particle towards the center of
the chain and the resulting response of the model membrane are investigated via
Brownian dynamics simulations and analytical calculations. Depending on, e.g.,
the free-swimming self-propulsion speed of the active particle and the magnitude
m of the dipole moment, either the membrane is able to hold back the active
particle or the active particle can overcome the membrane and penetrate it, see
also the corresponding state diagrams for different elasticity of the springs between
neighboring membrane particles in Fig. 2 of Publication P7.

For only small deformations of the membrane, a linearized theoretical description
is possible for a discrete-particle and for a continuum version of the model [P7]. In
the latter case, the dynamical evolution of the local transverse displacement ρ(x, t)
of the membrane and its local (dipole) orientation φ(x, t) is specified by

1

A
∂tρ = ∂ 2

x ρ−
1

2
∂xφ + P0 δ(x), (4.1a)

1

B
∂tφ = ∂xρ− φ, (4.1b)

with Dirichlet-type boundary conditions ρ(x = ±L/2, t) = 0 at all times t, assuming
the chain to be fixed at its two ends [P7]. Additionally, A ∝ m2 has the dimension
of a diffusion constant, B ∝ A is an inverse time, P0 relates to the free-swimming
speed of the active particle, and the initial conditions for a chain located at its
undisturbed rest position read ρ(x, t = 0) = φ(x, t = 0) ≡ 0 for all x∈ [−L/2, L/2].

Under the assumption that the dipole orientation φ(x, t) relaxes faster than the
transverse displacement ρ(x, t), we set ∂tφ = 0 in Eq. (4.1b). This implies φ = ∂xρ
so that Eq. (4.1a) reduces to

1

A
∂tρ =

1

2
∂ 2
x ρ + P0 δ(x), (4.2)
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which has the formal structure of the diffusion/heat equation, with a single source
term at x = 0. The solution of this partial differential equation (with the above
boundary conditions) is known and can be expressed via Jacobi theta functions [286].
At long times t, the result reproduces a triangular shape of the chain, which is also
found from the full numerical solution [P7].

Publication P7 constitutes a proof of concept that the above-described approach
to a model membrane via particles featuring mutual steric, elastic and dipolar
interactions is feasible and mathematically sufficiently facile. As an extension, a
subsequent paper has introduced a more realistic two-dimensional model membrane
spanned in three-dimensional space, again focusing on the question, under which cir-
cumstances an active particle can pass (and, possibly, damage) the membrane [287].
Further open problems that could be studied in future works are listed in Sec. 4.3.
Next, Sec. 4.2.2 discusses (active) particles hydrodynamically interacting with
elastic interfaces.

4.2.2 Hydrodynamic interactions with elastic interfaces

An elastic interface can constitute a hindrance to fluid flows, with typically time-
dependent effects. For sufficiently simple models of elasticity, corresponding prop-
erties, e.g., the flow field resulting from a force acting on a nearby passive particle,
can be obtained numerically via boundary integral methods [288]. Additionally,
analytical calculations are feasible for suitable geometries [288–295]. In the past,
Daddi-Moussa-Ider et al. have performed such studies on particles near infinitely ex-
tended [288,290,293] and finite [295] planar interfaces, between two parallel infinite
planar interfaces [289], and near, but outside of, a spherical interface [291,292]. Here,
all stated geometries refer to the initial undisturbed shape of the corresponding
interface, which typically changes in response to the fluid flows.

Furthermore, the problem of hydrodynamic fluid flows resulting from a force
exerted on a particle inside an elastic spherical cavity had been solved for the
axisymmetric case, in which the force is oriented parallel to the distance vector
between the centers of the cavity and the particle [294]. In Publication P8, we
have additionally determined the complementing solution for the asymmetric case
of a perpendicular force.

Technically, the analytic calculation is performed using an appropriate set of
orthonormal basis functions, namely spherical harmonics [P8]. The respective
resistances of the elastic interface towards shear and bending are incorporated using
standard models of membrane elasticity [296,297]. Analytical results are derived
that compare favorably with the full numerical results obtained via boundary
integral methods [P8]. In addition to the full fluid flow field, we obtain the
resulting velocity of the encapsulated particle, the deformation of the elastic
spherical interface, and the movement of the cavity in response to the application of
the force. In particular, the cavity starts rotating due to the asymmetric force [P8].
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Publication P8 concerns an external force driving a passive particle and thus
only constitutes a first step towards the description of a (force-free) microswimmer
in the same situation. In Publication P9, we have performed a corresponding
study for microswimmers in a simpler geometry, namely near an infinitely extended,
initially planar elastic interface. To address the possible effect of the presence of the
microswimmer, we formally perform a force multipole expansion and analyze the
consequences resulting from applying a force dipole (with a bulk flow field decaying
∝ r−2, where r is the distance from the microswimmer), a force quadrupole, a
source dipole, and a rotlet dipole (all featuring bulk fluid flows decaying ∝ r−3) [P9].
Additionally, corresponding treatments have also been performed for force and
torque monopoles [P9], which might arise in the presence of external potentials, e.g.,
when gravitation acts on algae of the species Volvox carteri, the density of which is
typically not closely matched to the surrounding fluid [100]. Since the superposition
of appropriate terms of this multipole expansion can approximate arbitrary flow
fields to the lower orders in the hydrodynamic far field, our description should be
versatile in its adaption to a multitude of different microswimmers [P9].

Again, the resulting time-dependent changes to the velocity and angular velocity
of the swimmer in the presence of an elastic interface have been calculated. As is
typical for hydrodynamic interactions with an infinitely extended, initially planar
elastic interface [288], the contributions of the resistance towards shear and bending
can be treated separately here [P9].

In particular, the rotlet-dipole contribution was found to lead to a spontaneous
rotation and thus to a circling motion of the swimmer when it is near the elastic
interface [P9], in analogy to what we have observed for our modified three-sphere
swimmer in Publication P5. For hard walls and only-shear-resistant interfaces, we
find the same sense of rotation, which, however, is flipped for only-bending-resistant
interfaces [P9]. We thus conclude that the rotlet dipole can be used as a minimal
description of interface-induced circling [P9], which is an effect that has been
reported for, e.g., motile E. coli bacteria [275]. Previously, this had been explained
using specific microswimmer models [276,298, P5].

In Sec. 4.3, I list related questions that could be addressed in future works. This
includes possible extensions of the approaches described in Secs. 4.1 and 4.2.1.

4.3 Outlook

It should be stressed that most results of Publications P5–P9 can be tested in
possible experiments, indicating one very important next step. Apart from that,
this section provides a brief outlook on possible further studies concerning the
three-sphere swimmer near rigid walls introduced in Sec. 4.1 and the (active)
particles interacting with elastic interfaces that are discussed in Sec. 4.2.

Biological microswimmers in nature and artificial microswimmers in possible
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medical applications often are confined by or propelling close to interfaces, e.g.,
sperm cells in the female reproductive tract or drug-carrying Janus particles in
blood vessels. Typically, these interfaces are not planar so that the approaches
discussed in Publications P5–P7 and P9 should be extended to arbitrary (or
at least to more complex) geometries. Similarly, the elastic spherical cavity in
Publication P8 could be replaced by a cavity of, e.g., ellipsoidal shape.

The one-dimensional model membrane discussed in Sec. 4.2.1 has already been
extended to a planar two-dimensional case (spanned in three-dimensional space) in
a recent study [287]. The next step could now be to further transition to cell-like
closed model membranes, e.g., of a spherical shape as a starting point. Moreover,
the introduction of hydrodynamic interactions into the description might provide
further connections to realistic situations.

Concerning our studies of interactions between particles and elastic interfaces, we
have employed simple models for the resistance towards shear and bending by the
interface [P8, P9]. Here, experiments could clarify when this level of description
is sufficient. In any case, one might think about using more adjusted models,
especially when modeling materials with very specific elastic properties.

Publications P5–P9 discuss, in general, the behavior of single particles. This
could be extended to many-particle systems, in particular for the three-sphere
swimmers in the vicinity of rigid walls. Apart from treating this situation via
discrete-particle-based simulations, one could also employ, for (semi)dilute mi-
croswimmer suspensions (and maybe using other swimmer models), the DDFT
approach discussed in Chapter 3.
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Dynamical density functional theory (DDFT) has been successfully derived and applied to describe
on one hand passive colloidal suspensions, including hydrodynamic interactions between individual
particles. On the other hand, active “dry” crowds of self-propelled particles have been characterized
using DDFT. Here, we go one essential step further and combine these two approaches. We establish
a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswim-
mers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion.
They hydrodynamically interact with each other through their actively self-induced fluid flows and via
the common “passive” hydrodynamic interactions. An effective soft steric repulsion is also taken into
account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested
and applied by characterizing a suspension of microswimmers, the motion of which is restricted to
a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially
symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking
in combination with the formation of a “hydrodynamic pumping state,” which has previously been
observed in the literature as a result of particle-based simulations. An additional instability of this
pumping state is revealed. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939630]

I. INTRODUCTION

Microswimmers1–4 are abundant in nature in the form
of self-propelling microorganisms; moreover, they can be
generated artificially in the laboratory. Prominent examples are
sperm cells, usually propelling along helical paths,5 bacteria
like E. coli moving forward by a rotational motion of their
spiral-shaped flagella,6 or synthetic Janus colloids catalyzing
a chemical reaction on one of their hemispheres.7

In recent years, there have been intense research activities
on the individual as well as on the collective properties of
such active particles.1–4,8–10 As a central difference between
active systems and conventionally driven passive ones, the
active systems are driven locally on the individual particle
level, whereas in passive cases an external field acts on
the system from outside. This feature, together with the
interactions between active particles, can result in highly
correlated collective motion and intriguing spatiotemporal
patterns, see, e.g., the transition from disordered motion
to a state of collective migration,11–17 the emergence of
propagating density waves,18–24 or the onset of turbulent-
like behavior25,26 and vortex formation.27 Further collective
phenomena comprise dynamic clustering and motility-induced
phase separation,28–38 crystallization,39–41 as well as lane
formation.42–46 Novel experimental techniques, such as
automated digital tracking47,48 or the realization of active
granular and artificial colloidal systems49–53 are taking
a major role in this research area. Often in modeling

a)Electronic address: menzel@thphy.uni-duesseldorf.de
b)Electronic address: arnab@thphy.uni-duesseldorf.de
c)Electronic address: hlowen@thphy.uni-duesseldorf.de

approaches, self-propulsion is implemented for “dry” objects
by effective active forces acting on the particles.54 In the
present work, we explicitly take into account self-induced
fluid flows of individual microswimmers, which they employ
for propulsion. These self-induced fluid flows represent a
significant contribution to the particle interactions.

Describing the collective behavior of many inter-
acting self-propelled particles calls for statistical ap-
proaches.17,21,55–60 These comprise Boltzmann theories15,16,22

and master equations.61 As a major benefit, it is typically
relatively systematic to coarse-grain the resulting statistical
equations. In this way, hydrodynamic-like equations to
characterize the systems on a macroscopic level are obtained
with specified expressions for the macroscopic system
parameters. Alternatively, macroscopic equations can directly
be derived from symmetry principles,12–14,62,63 yet leaving the
expressions for the macroscopic parameters undetermined.

The statistical approach that we introduce in the following
to describe suspensions of interacting active microswimmers
is dynamical density functional theory (DDFT).64–66 It has
turned out as highly effective to characterize passive systems
that are determined by overdamped relaxation-type dynamics.
Examples are spinodal decomposition,66 phase separation
of binary colloidal fluid mixtures,67 nucleation and crystal
growth,68 colloidal dynamics within polymeric solutions,69

mixtures exposed to a temperature gradient,70 dewetting
phenomena,71 liquid-crystalline systems,72 and rheology under
confinement.73,74

In the past, on one hand, DDFT has been successfully
extended for passive colloidal suspensions to include
hydrodynamic interactions.75–77 On the other hand, DDFT has
been amended to model active self-propelled particle systems,

0021-9606/2016/144(2)/024115/13/$30.00 144, 024115-1 © 2016 AIP Publishing LLC
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yet by directly assigning an effective drive to the individual
constituents.40,41,78,79 What is missing at the moment is
a DDFT that brings together these two approaches and
addresses suspensions of active microswimmers. This means,
a DDFT that contains active propulsion via self-induced
fluid flows, including the resulting hydrodynamic interactions
between the swimmers. We close this gap in the present
work.

For this purpose, as a first step, a simple minimum
model microswimmer must be introduced that propels via
self-induced fluid flows. This step is performed in Sec. II.
Moreover, the resulting hydrodynamic and additional soft
steric interactions between these swimmers are clarified,
together with a confining trapping potential. In Sec. III, we
derive our statistical theory in the form of a DDFT. Our starting
point is the microscopic Smoluchowski equation for the
interacting individual model microswimmers. Next, in Sec. IV,
details of a two-dimensional numerical implementation
are listed together with the numerical results presented
for a system under spherically symmetric confinement. In
agreement with previous particle-based simulations80,81 we
observe a rotational symmetry breaking in certain parameter
ranges, which can be identified as a “hydrodynamic fluid
pump.” An additional novel instability of this state is identified.
Finally, we conclude in Sec. V.

II. MODEL

To derive our theory, we consider a dilute suspension of
N identical self-propelled microswimmers at low Reynolds
number.82 In particular, hydrodynamic interactions between
these swimmers are to be included. The self-propulsion of
a microswimmer is concatenated to self-induced fluid flows
in the surrounding medium. This represents a major source
of hydrodynamic interaction between different swimmers. To
capture the effect, it is necessary to specify the geometry of the
individual microswimmers, which sets the self-induced fluid
flows. We proceed by first introducing a maximally reduced
model microswimmer and then formulating the resulting
interactions between pairs of such swimmers.

A. Individual microswimmer

To keep the derivation and presentation of the theory in the
Secs. II and III as simple as possible, we introduce a minimum
model microswimmer as depicted in Fig. 1. Similar setups
were mentioned in Refs. 56 and 83–85. Each microswimmer
consists of a spherical body of hydrodynamic radius a. The
swimmer body is subjected to hydrodynamic drag with respect
to surrounding fluid flows. In this way, the swimmer can be
convected by external flow fields. One way of self-convection
is to generate a self-induced fluid flow. For this purpose,
each microswimmer features two active force centers. They
are located at a distance L from each other on a symmetry
axis that has orientation n̂ and runs through the center of the
swimmer body. The two force centers exert two antiparallel
forces +f and −f, respectively, onto the surrounding fluid
and set it into motion. Summing up the two forces, we find

FIG. 1. Individual model microswimmer. The spherical swimmer body of
hydrodynamic radius a is subjected to hydrodynamic drag. Two active point-
like force centers exert active forces +f and −f onto the surrounding fluid.
This results in a self-induced fluid flow indicated by small light arrows. L
is the distance between the two force centers. The whole setup is axially
symmetric with respect to the axis n̂. If the swimmer body is shifted along
n̂ out of the geometric center, leading to distances αL and (1−α)L to the
two force centers, it feels a net self-induced hydrodynamic drag. The mi-
croswimmer then self-propels. In the depicted state (pusher), fluid is pushed
outward. Upon inversion of the two forces, fluid is pulled inward (puller).
We consider soft isotropic steric interactions between the swimmer bodies of
typical interaction range σ, implying an effective steric swimmer radius of
σ/2.

that the microswimmer exerts a vanishing net force onto the
fluid. Moreover, since f∥n̂, there is no net active torque.86

The force centers are point-like and do not experience any
hydrodynamic drag.

Self-propulsion is now achieved by shifting the swimmer
body along n̂ out of the geometric center. We introduce a
parameter α to quantify this shift, see Fig. 1. The distances
between the body center and the force centers are now αL and
(1 − α)L, respectively. We confine α to the interval [0,0.5].
For α = 0.5, the body is symmetrically located between the
two force centers, and no net self-induced motion occurs. This
geometry is called shaker.56,84 For α , 0.5, the symmetry is
broken. The swimmer body feels a net self-induced fluid
flow due to the proximity to one of the two force centers.
Due to the resulting self-induced hydrodynamic drag on the
swimmer body, the swimmer self-propels. In the depicted
state of outward oriented forces, the swimmer pushes the fluid
outward and is called a pusher.56 Inverting the forces, the
swimmer pulls fluid inward and is termed a puller.56

B. Hydrodynamic interactions

We now consider an assembly of N interacting identical
self-propelled model microswimmers, suspended in a viscous,
incompressible fluid at low Reynolds number.82 The flow
profile within the system then follows Stokes’ equation:87

− η∇2v(r, t) + ∇p(r, t) =
N
i=1

fi(ri, n̂i, t). (1)

Here, t denotes time and r any spatial position in the
suspension, while, on the left-hand side, v(r, t) gives the
corresponding fluid flow velocity field. η is the viscosity of
the fluid and p(r, t) is the pressure field. On the right-hand
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side, fi denotes the total force density field exerted by
the ith microswimmer onto the fluid. ri and n̂i mark the
current position and orientation of the ith swimmer at time t,
respectively.

Obviously, on one hand, each microswimmer contributes
to the overall fluid flow in the system by the force density it
exerts on the fluid. On the other hand, we have noted above
that each swimmer is dragged along by the induced fluid
flow. In this way, each swimmer can transport itself via active
self-propulsion. Moreover, all swimmers hydrodynamically
tear on each other via their induced flow fields. That is, they
hydrodynamically interact, which influences their positions ri
and orientations n̂i.

Progress can be made due to the linearity of Eq. (1) and
assuming incompressibility of the fluid, i.e., ∇ · v(r, t) = 0.
We denote by F j and T j the forces and torques, respectively,
acting directly on the swimmer bodies ( j = 1, . . . ,N), except
for frictional forces and frictional torques resulting from the
surrounding fluid. The non-hydrodynamic body forces and
torques may, for example, result from external potentials or
steric interactions and will be specified below. From them, in
the passive case, i.e., for f = 0, the instantly resulting velocity
vi and angular velocity ωi of the ith swimmer body follows
as



vi

ωi


=

N
j=1

Mi j ·


F j

T j


=

N
j=1



µtt
i j µtr

i j

µrt
i j µrr

i j


·


F j

T j


. (2)

Here, Mi j are the mobility matrices, the components of which
(µtt

i j, µtr
i j, µrt

i j, µrr
i j) likewise form matrices. They describe

hydrodynamic translation–translation, translation–rotation,
rotation–translation, and rotation–rotation coupling, respec-
tively.

This formalism is the same as for suspensions of passive
colloidal particles.88,89 We consider stick boundary conditions
for the fluid flow on the surfaces of the swimmer bodies. The
microswimmers are assumed to be suspended in an infinite
bulk fluid, where the fluid flow vanishes at infinitely remote
distances. Then, there are several methods to determine the
mobility matrices, e.g., the so-called method of reflections88,90

or the method of induced force multipoles.91 In general, for
N interacting suspended particles, there is no exact analytical
solution to the problem. Yet, the mobility matrices can be
calculated in the form of a power series in a/ri j. Here, ri j is the
distance between the centers of the ith and jth swimmer body,
i.e., ri j = |ri j | with ri j = r j − ri. The denser the suspension,
the higher the orders in a/ri j that need to be taken into account
for a reliable characterization. In the following, we confine
ourselves to relatively dilute and semi-dilute systems, taking
into account pairwise hydrodynamic interactions up to and
including order (a/ri j)3. In contrast to this, see, for example,
Refs. 92–94 for simulation approaches to dense suspensions
of microswimmers.

To the order of (a/ri j)3, hydrodynamic coupling is
calculated in the following standard way. Since our system
is overdamped, the forces F j and torques T j acting on the
swimmer bodies are directly transmitted to the surrounding
fluid. The fluid flow induced by each spherical swimmer body
of hydrodynamic radius a is calculated on the Rodne-Prager

level.88 At the position of the ith swimmer, the flow field
induced by swimmer j , i reads88

v(ri) = 1
6πηa

( 3a
4ri j

�
1 + r̂i jr̂i j

�
+

a3

4r3
i j

(1 − 3r̂i jr̂i j)
)
· F j

+
1

8πηr3
i j

ri j × T j, (3)

where 1 is the unity matrix and r̂i j = ri j/ri j. The velocity vi

and angular velocity ωi resulting due to this flow field for the
ith swimmer of hydrodynamic radius a follows from Faxén’s
laws88,95

vi =

(
1 +

a2

6
∇2
i

)
v(ri), (4)

ωi =
1
2
∇i × v(ri). (5)

Due to the linearity of Stokes’ equation, Eq. (1), the
overall velocities and angular velocities are obtained by
superimposing the influence of all other swimmer bodies
j , i. In addition to that, the direct effect of Fi and Ti on the
motion of the ith swimmer is given by Stokes’ drag formulae88

vi =
1

6πηa
Fi, (6)

ωi =
1

8πηa3 Ti. (7)

Combining all these ingredients, the motion resulting for
f = 0 can be conveniently summarized in the form of Eq. (2)
by setting88,89

µtt
ii = µt1, µrr

ii = µr1, µtr
ii = µrt

ii = 0, (8)

for entries i = j (no summation over i in these expressions)
and

µtt
i j = µt

( 3a
4ri j

(
1 + r̂i jr̂i j

)
+

1
2

( a
ri j

)3(
1 − 3r̂i jr̂i j

))
, (9)

µrr
i j = −µr

1
2

(
a

ri j

)3 �
1 − 3r̂i jr̂i j

�
, (10)

µtr
i j = µrt

i j = µr
(

a
ri j

)3

ri j×, (11)

for entries i , j. Here, we have introduced the abbreviations

µt =
1

6πηa
, µr =

1
8πηa3 . (12)

In this notation, the matrices µtr
i j = µrt

i j in Eq. (11) repre-
sent operators with “×” the vector product.89

So far, only the influence of the passive swimmer bodies
has been included. We now take into account the active
forces. Again, because of the linearity of Eq. (1), their effect
can simply be added to the swimmer velocities and angular
velocities on the right-hand side of Eq. (2).

The concept to include the influence of the active
forces is the same as summarized above for the passive
hydrodynamic interactions. There is only one difference. We
consider the active force centers as point-like, and not of
finite hydrodynamic radius. Moreover, they do not transmit
torques to the fluid. Thus, instead of Eq. (3), their induced
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flow fields are readily described on the Oseen level.88 The
flow fields induced by the two force centers of the jth
microswimmer at the position of the ith swimmer body
read

v+(ri) = 1
8πηr+i j

(
1 + r̂+i jr̂

+
i j

)
· f n̂ j, (13)

v−(ri) = − 1
8πηr−i j

(
1 + r̂−i jr̂

−
i j

)
· f n̂ j . (14)

These expressions are valid also for i = j, which leads
to self-propulsion of a single isolated swimmer. We have
defined

r+i j = ri j + αLn̂ j, (15)

r−i j = ri j − (1 − α)Ln̂ j (16)

to refer to the distance vectors between the active force centers
of the jth swimmer and the center of the ith swimmer body.
Moreover, we have parameterized

f j = f n̂ j (17)

so that the sign of f now determines the character of the
swimmer (pusher or puller).

In analogy to the passive case, the velocities and angular
velocities of the swimmer bodies of finite hydrodynamic
radius a that result from the active flow fields Eqs. (13) and
(14) are calculated from Faxén’s laws, Eqs. (4) and (5). The
result can be written using mobility matrices

µtt±
i j =

1
8πηr±i j

(
1 + r̂±i jr̂

±
i j

)
+

a2

24πηr±i j
3

(
1 − 3r̂±i jr̂

±
i j

)
, (18)

µrt±
i j =

1

8πηr±i j
3 r±i j × . (19)

Within this framework, the corresponding active forces on
the right-hand side of Eq. (2) have to be inserted as ± f n̂ j.
Since there are no active torques, we may set µtr±

i j = µrr±
i j = 0.

Altogether, passive and active hydrodynamic interactions,
including the self-propulsion mechanism, are now formulated
up to third order in a/ri j.

C. Body forces and torques

We now specify the non-hydrodynamic forces F j and
torques T j acting directly on the swimmer bodies. In our case,
these forces can be written as

F j = −∇ jU − ∇ j ln P. (20)

Here, ∇ j denotes the partial derivative ∂/∂r j. Throughout
this work, we measure energies in units of kBT with kB

the Boltzmann constant and T the temperature of the fluid.
Variations in temperature due to the non-equilibrium nature
of our system are ignored. In Eq. (20), the first contribution
results from a potential

U
�
rN

�
=

1
2

N
k,l=1
k,l

u(rk,rl) +
N
l=1

uext(rl), (21)

where we use the abbreviation rN = {r1,r2, . . . ,rN}. Accord-
ingly, we will abbreviate n̂N = {n̂1, n̂2, . . . , n̂N} below. For
simplicity and as a first step, we confine ourselves to soft
pairwise steric interactions of the form

u(rk,rl) = ϵ0 exp *
,
−

r4
kl

σ4
+
-
. (22)

ϵ0 sets the strength of this potential and σ an effective
interaction range, see Fig. 1. Such soft interaction potentials
are frequently employed to describe effective interactions in
soft matter systems, e.g., between polymers, star-polymers,
dendrimers, and other macromolecules in solution.96 One task
for the future is to clarify more precisely the nature of the effec-
tive steric interactions between individual microswimmers, for
instance, for self-propelling microorganisms featuring agitated
cilia and flagella.97 We prefer the so-called GEM-4 potential
in Eq. (22) to a simple Gaussian interaction, because it
can describe both liquid and solid phases within mean-field
approximation, in contrast to the Gaussian potential.98 The
phase behavior depends on the parameter ϵ0 as well as on
the average density of the suspended particles. Here, we fix
the parameters such that our system remains in the liquid
phase. Moreover, the density is adjusted to avoid overlap
of the swimmers. Properties of crystallized systems may be
investigated in a later study.

In addition to that, we consider the microswimmers to
be confined to a rotationally symmetric external trapping
potential. It constitutes the second contribution on the right-
hand side of Eq. (21) and reads

uext(rl) = k |rl |4. (23)

k sets the strength of the trap. We choose the quartic potential
instead of a more common harmonic trap due to its lower
gradient at smaller radii. Overlap of individual swimmers is
reduced in this way.

The quantity P ≡ P(rN , n̂N , t) in Eq. (20) denotes the
probability distribution to find the N microswimmers at time
t at positions rN with orientations n̂N . Via the contribution
involving ln P, we consistently include entropic forces into our
statistical characterization.99 This term represents the effect of
thermal forces acting on each swimmer as a result of thermal
fluctuations.

Due to the spherical shape of the swimmer bodies, and
for simplicity, we assume in the present work that non-
hydrodynamic torques acting on the swimmer bodies solely
result from thermal fluctuations. They can be included into
our statistical formalism by setting99

T j = −n̂ j × ∇n̂ j
ln P. (24)

Further contributions to the torques, e.g., resulting from steric
alignment interactions between different swimmers, may be
considered in future studies.

III. DERIVATION OF THE DDFT
FOR MICROSWIMMERS

Our starting point to derive the DDFT for active
microswimmers including hydrodynamic interactions is
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the microscopic Smoluchowski equation99 for N identical
interacting swimmers. This continuity equation for the time
evolution of the probability distribution P(rN , n̂N , t) reads

∂P
∂t
= −

N
i=1

(
∇i · (viP) + �n̂i × ∇n̂i

�
· (ωiP)

)
. (25)

On the basis of Sec. II, we insert

vi =

N
j=1

(
µtt
i j · F j + µtr

i j T j + Λ
tt
i j · n̂ j f

)
, (26)

ωi =

N
j=1

(
µrt
i j F j + µrr

i j · T j + Λ
rt
i j n̂ j f

)
, (27)

where we have introduced the abbreviations

Λtt
i j = µtt+

i j − µtt−
i j , (28)

Λrt
i j = µrt+

i j − µrt−
i j . (29)

Thus, the hydrodynamic interactions enter via the
configuration-dependent expressions for vi and ωi. For a
single, isolated microswimmer, i.e., for N = 1, the self-
propulsion velocity becomes v1 = Λ

tt
11 · n̂1 f , which is directed

along the swimmer axis and vanishes in the case of a shaker,
where α = 0.5.

Our scope is to derive from Eq. (25) a dynamic equation
for the swimmer density ρ(1)(r, n̂, t). In general, the n-
swimmer density ρ(n)(rn, n̂n, t) for n ≤ N is obtained from
the probability distribution P(rN , n̂N , t) by integrating out the
degrees of freedom of N − n swimmers,

ρ(n)(rn, n̂n, t) = N!
(N − n)!


drn+1


dn̂n+1 . . .


drN


dn̂N P(rN , n̂N , t). (30)

Accordingly, we obtain a dynamic equation for ρ(1)(r, n̂, t) by integrating out from Eq. (25) the degrees of freedom of N − 1
swimmers. This leads us to

∂ρ(1)(r, n̂, t)
∂t

= −∇r · (J 1 +J 2 +J 3) − (n̂ × ∇n̂) · (J 4 +J 5 +J 6), (31)

with the abbreviations

J 1 = −µt
(
∇r ρ

(1)(r, n̂, t) + ρ(1)(r, n̂, t)∇r uext(r) +


dr′dn̂′ρ(2)(r,r′, n̂, n̂′, t)∇ru(r,r′)
)

−


dr′dn̂′ µtt
r,r′ ·

(
∇r′ρ

(2)(r,r′, n̂, n̂′, t) + ρ(2)(r,r′, n̂, n̂′, t)∇r′uext(r′)

+ ρ(2)(r,r′, n̂, n̂′, t)∇r′u(r,r′) +


dr′′dn̂′′ρ(3)(r,r′,r′′, n̂, n̂′, n̂′′, t)∇r′u(r′,r′′)
)
, (32)

J 2 = −


dr′dn̂′ µtr
r,r′(n̂′ × ∇n̂′)ρ(2)(r,r′, n̂, n̂′, t), (33)

J 3 = f
(
Λtt

r,r · n̂ρ(1)(r, n̂, t) +


dr′dn̂′Λtt
r,r′ · n̂

′ρ(2)(r,r′, n̂, n̂′, t)
)
, (34)

J 4 = −


dr′dn̂′µrt
r,r′

(
∇r′ρ

(2)(r,r′, n̂, n̂′, t) + ρ(2)(r,r′, n̂, n̂′, t)∇r′uext(r′)

+ ρ(2)(r,r′, n̂, n̂′, t)∇r′u(r,r′) +


dr′′dn̂′′ρ(3)(r,r′,r′′, n̂, n̂′, n̂′′, t)∇r′u(r′,r′′)
)
, (35)

J 5 = −µrn̂ × ∇n̂ρ
(1)(r, n̂, t) −


dr′dn̂′ µrr

r,r′ · (n̂′ × ∇n′)ρ(2)(r,r′, n̂, n̂′, t), (36)

J 6 = f


dr′dn̂′Λrt
r,r′ n̂

′ρ(2)(r,r′, n̂, n̂′, t). (37)

Eq. (31) represents the dynamic equation for our
searched-for quantity ρ(1). However, as a consequence
of the inter-swimmer interactions within our system, the
equation contains the unknown two- and three-swimmer
densities ρ(2) and ρ(3). Dynamic equations for these higher-n
swimmer densities can likewise be derived from Eq. (25) by

integrating out the degrees of freedom of N − n swimmers.
Yet, this only shifts the problem to higher n. It is found
that the dynamic equation for ρ(n) contains ρ(n+1) and
ρ(n+2) for 1 ≤ n ≤ N − 2. Therefore, a reliable closure
scheme is needed to cut this hierarchy of coupled dynamic
partial differential equations, typically referred to as the
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Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy.100 DDFT provides such closure relations. In the
following, we employ this approach to break the hierarchy
already at n = 1. Thus, we derive a decoupled dynamic
equation for ρ(1)(r, n̂, t).

DDFT uses as an input the concepts from equilibrium
density functional theory (DFT).64–66,100–104 Most importantly,
DFT implies that a certain observed equilibrium density
ρ
(1)
eq (r, n̂) can only result from one unique external potential
Φext(r, n̂) acting on the system. As a consequence, Φext(r, n̂)
is set by an observed ρ

(1)
eq (r, n̂) and, moreover, the grand

canonical potential Ω and the free energy F can be
expressed as functionals of ρ(1)(r, n̂). In our case, we may
write

Ω

ρ(1)


= Fid


ρ(1)


+ Fexc


ρ(1)


+ Fext


ρ(1)


. (38)

Here,

Fid


ρ(1)


=


dr dn̂ ρ(1)(r, n̂) (

ln
(
λ

3ρ(1)(r, n̂)) − 1
)

(39)

is the entropic contribution for an ideal gas of non-interacting
particles with λ the thermal de Broglie wave length.72 We
recall that energies are measured in units of kBT throughout
this work. Next, the excess free energy Fexc contains all
particle interactions, i.e., contributions beyond the limit of an
ideal gas. Fexc is generally not known analytically and must
be approximated. The third term reads

Fext


ρ(1)


=


dr dn̂Φext(r, n̂)ρ(1)(r, n̂), (40)

where here we have included the effect of a chemical potential
into Φext(r, n̂). In this form, DFT reduces to a variational

problem to determine the equilibrium density,

δΩ

δρ(1)(r, n̂)
�����ρ(1)(r,n̂)=ρ(1)eq (r,n̂)

= 0. (41)

Inserting Eq. (38) leads to

ln
(
λ

3ρ
(1)
eq (r, n̂)

)
+ Φext(r, n̂)

= − δFexc

δρ(1)(r, n̂)
�����ρ(1)(r,n̂)=ρ(1)eq (r,n̂)

. (42)

The central approximation of DDFT is to transfer
equilibrium relations to the non-equilibrium case. For this
purpose, at each time t and for the corresponding ρ(1)(r, n̂, t),
one assumes an instantaneous external potential Φext(r, n̂, t)
that satisfies the above relations. In particular, we assume that
Eq. (42) still holds with ρ

(1)
eq (r, n̂) and Φext(r, n̂) replaced by

ρ(1)(r, n̂, t) and Φext(r, n̂, t), respectively, i.e.,

ln
(
λ

3ρ(1)(r, n̂, t)) + Φext(r, n̂, t) = − δFexc

δρ(1)(r, n̂, t) . (43)

In combination with that, to close our dynamic equation
for ρ(1)(r, n̂, t), we use relations that would follow from
Eqs. (32)–(37) in static equilibrium. In this case, f = 0
and J 3 = J 6 = 0. Moreover, our interaction potentials and
the external potential uext do not depend on the swimmer
orientations. Then, in equilibrium, it follows that n̂ × ∇n̂ρ

(n)
= 0 for all n and therefore J 2 = J 5 = 0. The remaining
translational and rotational currents J 1 and J 4 must vanish
independently of each other in static equilibrium. From these
conditions, and replacing in the resulting expressions uext(r) by
Φext(r, n̂, t), which manifests the central DDFT approximation,
we obtain

0 = ∇rρ
(1)(r, n̂, t) + ρ(1)(r, n̂, t)∇rΦext(r, n̂, t) +


dr′dn̂′ρ(2)(r,r′, n̂, n̂′, t)∇ru(r,r′) (44)

and

0 = ∇r′ρ
(2)(r,r′, n̂, n̂′, t) + ρ(2)(r,r′, n̂, n̂′, t)∇r′

�
Φext(r′, n̂′, t) + u(r,r′)� +


dr′′dn̂′′ρ(3)(r,r′,r′′, n̂, n̂′, n̂′′, t)∇r′u(r′,r′′). (45)

Here, Eq. (45) was used to eliminate a major part in Eq. (44) that followed from the expression for J 1. In fact, Eqs. (44) and
(45) are the first two members of a series of hierarchical relations, the so-called Yvon-Born-Green (YBG) relations, that can be
derived in static equilibrium.100

Now, inserting Eq. (43) into Eqs. (44) and (45) to eliminate the unknown potential Φext(r, n̂, t), we find
dr′dn̂′ρ(2)(r,r′, n̂, n̂′, t)∇r′u(r,r′) = ρ(1)(r, n̂, t)∇r

δFexc

δρ(1)(r, n̂, t) (46)

and

∇r′ρ
(2)(r,r′, n̂, n̂′, t) + ρ(2)(r,r′, n̂, n̂′, t)∇r′u(r,r′) +


dr′′dn̂′′ρ(3)(r,r′,r′′, n̂, n̂′, n̂′′, t)∇r′u(r′,r′′)

= ρ(2)(r,r′, n̂, n̂′, t)
(
∇r′ ln

(
λ

3ρ(1)(r′, n̂′, t)) + ∇r′
δFexc

δρ(1)(r′, n̂′, t)
)
. (47)

As a major benefit of this procedure, the three-swimmer density ρ(3) can be eliminated from the currents in Eqs. (32)–(37) by
inserting Eq. (47). Moreover, one occurrence of ρ(2) is eliminated using Eq. (46). The currents then reduce to
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J 1 = −µt
(
∇rρ

(1)(r, n̂, t) + ρ(1)(r, n̂, t)∇ruext(r) + ρ(1)(r, n̂, t)∇r
δFexc

δρ(1)(r, n̂, t)
)

−


dr′dn̂′µtt
r,r′ ·

(
ρ(2)(r,r′, n̂, n̂′, t)

(
∇r′ ln

(
λ

3ρ(1)(r′, n̂′, t)) + ∇r′uext(r′) + ∇r′
δFexc

δρ(1)(r′, n̂′, t)
))

, (48)

J 2 = −


dr′dn̂′ µtr
r,r′ (n̂′ × ∇n̂′)ρ(2)(r,r′, n̂, n̂′, t), (49)

J 3 = f
(
Λtt

r,r · n̂ρ(1)(r, n̂, t) +


dr′dn̂′Λtt
r,r′ · n̂

′ρ(2)(r,r′, n̂, n̂′, t)
)
, (50)

J 4 = −


dr′dn̂′µrt
r,r′

(
ρ(2)(r,r′, n̂, n̂′, t)

(
∇r′ ln

(
λ

3ρ(1)(r′, n̂′, t)) + ∇r′uext(r′) + ∇r′
δFexc

δρ(1)(r′, n̂′, t)
))

, (51)

J 5 = −µrn̂ × ∇n̂ρ
(1)(r, n̂, t) −


dr′dn̂′ µrr

r,r′ · (n̂′ × ∇n′)ρ(2)(r,r′, n̂, n̂′, t), (52)

J 6 = f


dr′dn̂′Λrt
r,r′ n̂

′ρ(2)(r,r′, n̂, n̂′, t). (53)

In effect, we have replaced ρ(3)(r,r′,r′′, n̂, n̂′, n̂′′, t) and one
instance of ρ(2)(r,r′, n̂, n̂′, t) by their equilibrium expressions
that would apply, if the equilibrium one-swimmer density
were given by ρ(1)(r, n̂, t). This procedure works best when
ρ(3) and ρ(2) relax significantly quicker than ρ(1). It is therefore
referred to as adiabatic elimination.105 In our case, the
overdamped nature of the microswimmer dynamics supports
this procedure.

Finally, we need to express Fexc and ρ(2) as functionals
of ρ(1) to close the dynamical equation for ρ(1)(r, n̂, t). For
moderate interaction strengths ϵ0 . 1 in our soft GEM-4
interaction potential Eq. (22), the classical mean-field
approximation provides a reasonable and simple closure
scheme.98 It is given by

Fexc =
1
2


dr dr′dn̂ dn̂′ρ(2)(r,r′, n̂, n̂′, t)u(r,r′), (54)

for the excess free energy and the approximation

ρ(2)(r,r′, n̂, n̂′, t) = ρ(1)(r, n̂, t) ρ(1)(r′, n̂′, t), (55)

for the two-swimmer density.
Overall, Eqs. (31) and (48)–(53) together with Eqs. (54)

and (55) complete our derivation of a DDFT for dilute
to semi-dilute suspensions of active microswimmers. We
included hydrodynamic and soft steric interactions. Inserting
the mobility tensors listed in Eqs. (8)–(12), (15), (16), (18),
(19), (28), and (29), it applies for a suspension of our model
microswimmers within a bulk viscous fluid in three spatial
dimensions.

IV. PLANAR TRAPPED MICROSWIMMER
ARRANGEMENTS

As a first application of the above DDFT, we are interested
in the effect that the self-propulsion forces have on a confined
assembly of microswimmers. In particular, this concerns
the time evolution towards a final steady state when self-
propulsion is suddenly switched on in an initially equilibrated
system. Such a behavior could, for instance, be realized in
experiments using light-activated microswimmers.35,36,106–110

Here, we present numerical results for two-dimensional
arrangements. That is, the density field ρ(1)(r, n̂, t) is calculated
in the Cartesian x-y plane, with the direction n̂ likewise
confined to that plane and parameterized by one orientational
angle. Concerning hydrodynamic interactions, the presence
of a surrounding three-dimensional bulk fluid is still taken
into account, as introduced in Sec. II. Such a system could
be realized approximately, for example, by confining the
microswimmers to a plane using external laser potentials.
Another realization could be microswimmers confined to
the liquid–liquid interface between two immiscible fluids of
identical viscosity.

The partial differential equation resulting from our DDFT,
i.e., Eq. (31) together with Eqs. (48)–(53), was discretized
using a finite-difference scheme on a regular grid. The grid
points were separated by distances ∆x = 0.1 in the spatial and
∆φ = π/10 in the angular direction, where we measure all
lengths in units of σ. In each spatial direction, the numerical
box length was 8. ρ(1)(r, n̂, t) was iterated forward in time
by employing a second-order Runge-Kutta scheme with fixed
time step ∆t = 10−5. Here, we measure all times in units
of the Brownian time scale τB = 1/µt, where we recall that
energies are given in units of kBT (and lengths in units of σ).
For simplicity and for practical purposes, periodic boundary
conditions were used and the long-ranged hydrodynamic
interactions were truncated at a cut-off radius of rc = 1.875.

Typically, self-propulsion is quantified by the Péclet num-
ber Pe. Here, Pe corresponds to the ratio between the strength
of self-propulsion and the strength of thermal fluctuations.
In our units, we have Pe = | f |. We choose fixed numer-
ical values for all other system parameters, a = L = 0.75,
α = 0.15, ϵ0 = 2, and k = 30, unless stated otherwise.

To study the time evolution of the confined system after
switching on self-propulsion, we adhere to the following
numerical protocol. First, we initialize the system by a random
density profile and let it equilibrate with self-propulsion being
switched off, i.e., Pe = f = 0. After equilibration, we turn on
the active forces to f , 0 and let the system find its new
steady state, if existent, in non-equilibrium. Our results are
presented in terms of the density profile
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FIG. 2. Microswimmer density (color map) under confinement in equilib-
rium, i.e., for Pe= | f | = 0. In this situation, the density profile is rotation-
ally symmetric, while the orientations are completely disordered. (a) Steric
swimmer interactions switched off, ϵ0= 0, showing a maximum density in the
center of the confinement. (b) Steric swimmer interactions turned on, ϵ0= 2,
leading to a depletion of the swimmer density in the center.

ρ(r, t) =


dn̂ ρ(1)(r, n̂, t), (56)

shown as color maps in the subsequent figures, as well as the
orientational vector field

⟨n̂⟩(r, t) =


dn̂ n̂ ρ(1)(r, n̂, t), (57)

depicted as white arrows in the figures. In the following, we
first describe our equilibrated initial state for f = 0. Then we
switch on self-propulsion to moderate values setting f , 0,
but we neglect hydrodynamic interactions between different

swimmers. After that, we additionally include hydrodynamic
interactions.

First, for f = 0, the system is in equilibrium. In
our case, there are no orientation-dependent equilibrium
interactions. Indeed, we find from Eqs. (31) and (48)–(53)
that the swimmer orientations completely disorder. The
equilibrium densities become independent of the swimmer
orientations. Moreover, the system reaches a steady state,
in which the entropic, steric inter-swimmer, and trapping
forces balance each other. Hydrodynamic interactions do
not affect these equilibrium states. As a result, the situation
becomes rotationally symmetric in accordance with the
rotational symmetry of the confinement. Fig. 2 shows two
situations, one with the steric swimmer interactions switched
off, ϵ0 = 0, see Fig. 2(a), where the maximum swimmer
density is found in the center of the confinement; and one
with the steric interactions switched on, ϵ0 = 2, see Fig. 2(b),
which leads to a weak depletion of the density at the center
point.

We now turn on the active drive, f , 0, yet to moderate
magnitudes. Hydrodynamic interactions between different
swimmers still remain switched off for the moment. Due
to the active forces, the self-propelling microswimmers have
an additional drive to work against the confining potential. In
this way, they spread out and reach locations further separated
from the center of the confinement. A time series is depicted
in Figs. 3(a) and 3(b).

FIG. 3. Time evolution of the density profiles (color maps) and orientation profiles (white arrows) of our confined microswimmer systems starting from the
equilibrated states of f = 0 depicted in Fig. 2. At time t = 0, the active force is switched on to f = 8. (a) Snapshots without any steric (ϵ0= 0) and without
any hydrodynamic interactions between the swimmers at times t = 0.05, t = 0.1, t = 0.15, and t = 0.4. (b) Snapshots with steric (ϵ0= 2) but still without any
hydrodynamic interactions between the swimmers at times t = 0.02, t = 0.06, t = 0.08, and t = 0.4. (c) Snapshots with both steric (ϵ0= 2) and hydrodynamic
interactions between the swimmers at times t = 0.05, t = 0.15, t = 0.25, and t = 0.4.
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Still, the situation apparently remains rotationally
symmetric and finally reaches a steady state. Yet, the density
in the center is now depleted, while a density ring forms at
finite distance from the center as has been observed before in
statistical and in particle-based approaches.81,110,111 From the
white arrows in Fig. 3, we find that the active forces drive the
swimmers outwards against the confining potential barrier. In
this sense, the potential blocks the swimmer motion in the
final steady state.112 It takes a typical rotational diffusion time
scale until a swimmer can reorient and leave the trapping
location, before it propels towards another location on the
high-density ring.110,111

The typical radius r̃ of the density ring in Fig. 3(a), where
different swimmers do not interact with each other, can readily
be estimated. In this case, the n-swimmer densities for n ≥ 2
do not play a role. Consequently, in Eqs. (32)–(37) we find
J 2 = J 4 = J 6 = 0. The remaining orientational part in J 5
decouples from the translational contributions and leads to
free rotational diffusion. Finally, the remaining translational
contributions in J 1 and J 3 must balance each other to
allow for a steady state. This implies that the sum of the
contributions from translational diffusion, confinement, and
active forces must cancel. Assuming that at r = r̃ the density
becomes maximum and exploiting the radial symmetry, we
find

r̃ ≈
�����
3g(α)

8

�����

1/3�����
f
k

�����

1/3

, (58)

where we have introduced the function

g(α) =
(

1 − 2α
α(1 − α)

) (
1 − 1 − α + α2

3α2(1 − α)2
)
, (59)

for our special case of a = L. For harmonic confinement,
this radius has been calculated in Refs. 81 and 111. It is
conceivable that switching on an effective repulsion between
the swimmers in the form of our soft steric interactions,

ϵ0 = 2, adds to the spreading. This can be observed by the
slightly larger diameter of the final density ring in Fig. 3(b)
when compared to the diameter in Fig. 3(a).

In addition to the steric interactions between the
microswimmers, we now also include the hydrodynamic
interactions between them. At low to moderate magnitudes
of the active forces, here 0 < Pe = | f | . 10, we still
observe qualitatively the same scenario as described above
in the absence of hydrodynamic interactions between the
swimmers. At the end of our numerical simulation, see
Fig. 3(c), we again observe a density ring and a radial
orientation of the swimmer axes. Due to the hydrodynamic
interactions, however, the diameter of this density ring
increases when compared to the case without hydrodynamic
interactions between the swimmers, see the final states
in Figs. 3(b) and 3(c). Apparently, via the hydrodynamic
interactions, the swimmers support each other in their
collective propulsion against the confining potential. The
presented snapshots were obtained for pushers ( f > 0),
yet the results are qualitatively the same for pullers
( f < 0).

From now on, we include both steric and hydrodynamic
interactions between the microswimmers. We next consider
increased values of the Péclet number of 10 < Pe = | f | . 50.
When switching on this active force, the swimmers initially
propel outwards from the center of the confinement as before.
Although the system still appears to reach a steady state,
the latter is not rotationally symmetric any more. We depict
corresponding time evolutions in Fig. 4 for f = ±50, i.e., for
pushers and for pullers, respectively.

Pushers propel into the direction of the axis vector n̂,
while pullers propel into the opposite direction, see Fig. 1.
That is why the white arrows point outward in Fig. 4(a) and
inward in Fig. 4(b). Since the rotational symmetry in the
trapping plane is broken, a net fluid flow results in this plane.
Therefore, the system can be viewed as a self-assembled

FIG. 4. Time evolution of the density profiles (color maps) and orientation profiles (white arrows) of our microswimmer systems at (a) f = 50 for pushers and
(b) f =−50 for pullers. Both steric and hydrodynamic interactions between the swimmers are included. We observe rotational symmetry breaking within the
plane. It corresponds to the formation of a “hydrodynamic fluid pump” consisting of self-assembled microswimmers. The snapshots were obtained at times
t = 0.05, t = 0.1, t = 0.2, and t = 0.8.
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FIG. 5. Time evolution of the density
profiles (color maps) and orientation
profiles (white arrows) of pushers at
f = 100. Both steric and hydrodynamic
interactions between the swimmers are
included. This system does not reach a
steady state any more within our numer-
ically observed time window. The snap-
shots are obtained at times t = 0.02,
t = 0.1, t = 0.25, t = 0.3, t = 1.25, t
= 2.5, t = 2.7, t = 3.0, and t = 3.5.

“hydrodynamic fluid pump,” which has been observed and
interpreted before using particle-based lattice Boltzmann and
Brownian dynamics simulations.80,81

Upon further increase of Pe = | f |, the system does not
enter a state of a steady hydrodynamic fluid pump any longer.
Instead, the system becomes very dynamic. High density areas
of localized orientational order of the swimmer axes form and

continuously swap around within the spherical confinement.
Examples for the time evolution are shown in Figs. 5 and 6
for pushers and pullers, respectively. As far as we could test
numerically, the system for these strong active forces does not
reach a steady state any more.

We briefly comment on the factors that lead to the
observed destabilization effects. The first one breaks the

FIG. 6. Time evolution of the density
profiles (color maps) and orientation
profiles (white arrows) of pullers at
f =−100. Both steric and hydrody-
namic interactions between the swim-
mers are included. Again, this system
does not reach a steady state any more
within our numerically observed time
window. The snapshots are obtained
at times t = 0.02, t = 0.1, t = 0.25, t
= 0.3, t = 1.25, t = 2.5, t = 2.7, t = 3.0,
and t = 3.5.
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initial rotational symmetry of Fig. 3. It induces the formation
of the hydrodynamic fluid pump, see Fig. 4. In Refs. 80
and 81, it was explained that rotational diffusion stabilizes
the rotationally symmetric states of Fig. 3. However,
hydrodynamic interactions can lead to a destabilizing feedback
mechanism that supports the rotational symmetry breaking.
In brief, one has to realize that swimmers in the blocked
state within the density ring transmit the confining forces
to the surrounding fluid. As a consequence, fluid flows are
induced. If a density fluctuation along the ring occurs, with
a higher density at a certain spot, its induced fluid flow
can reorient neighboring swimmers. The mechanism leads
to positive feedback, i.e., the neighboring swimmers are
reoriented such that they propel towards the high density
region. In our formalism, a corresponding rotation–translation
coupling to the influence of the confinement, introduced via
uext, is contained in the current J 4 in Eq. (51).

The second destabilization occurs when at very high
Pe = | f | a persistent hydrodynamic fluid pump as in Fig. 4
cannot be observed any more and the system becomes truly
dynamic, see Figs. 5 and 6. This effect can be traced back to
the rotation–translation coupling between swimmer rotations
and the active point forces. Aligned and concentrated active
forces can induce rotations of neighboring swimmer bodies,
which in turn can lead to rotational instabilities. This effect
is proportional to the strength of the active forces | f |. At
high Pe = | f |, it apparently cannot be stabilized any longer. In
our formalism, this contribution is represented by the current
J 6 in Eq. (53). We have numerically tested our assertion by
deactivating this current.

V. CONCLUSIONS

In this work, we have derived a statistical characterization
of dilute to semi-dilute suspensions of identical self-propelled
microswimmers in the form of a DDFT. Our simple
model microswimmers consist of a body that experiences
hydrodynamic drag from the surrounding fluid, plus two
separated active point-like force centers. Two antiparallel
active point forces of equal magnitude are exerted by these
force centers onto the surrounding fluid and set it into motion.
Pushing and pulling swimming mechanisms can easily be
distinguished. We include both hydrodynamic and steric
interactions between the swimmers, as well as the effect
of an external trapping potential. Hydrodynamic interactions
result both from the active forces as well as from steric and
external forces acting on the swimmer bodies. At this time,
axially symmetric model microswimmers are considered, thus
active torques do not arise. Moreover, only isotropic steric
interactions are taken into account.

Our DDFT describes the overdamped time evolution of
the microswimmer density, both concerning positions and
orientations of the swimmers. As a first application and test of
the theory, we consider a crowd of microswimmers restricted
to planar motion within a three-dimensional bulk fluid. Such
an arrangement could be achieved, for instance, using external
trapping laser potentials, or by confining the swimmers to an
interface between two immiscible fluids of equal viscosity.
Moreover, an additional radially symmetric trapping potential

was taken into account. Within this framework, the theory was
evaluated numerically.

The numerical calculations started from an initial state in
which a crowd of microswimmers is concentrated in the center
of the spherical trap. At low Péclet numbers, which means
low magnitude of the active forces, the microswimmers propel
outwards, where in a final stationary state they form a ring-
like density profile. This effect remains when hydrodynamic
interactions are switched off in the numerical calculations
as reported in different frameworks previously.110,111,113

Increasing the Péclet number and including hydrodynamic
interactions, the numerical evaluation of the DDFT shows
a breaking of rotational symmetry. The ring-like density
profile observed for lower Péclet numbers now is replaced by
concentrated density spots. Likewise, this effect has been
observed before by different approaches, both for lattice
Boltzmann as well as for Brownian dynamics simulations.80,81

Due to the polar order of the swimmers within the concentrated
spots and the resulting fluid flows, this state was identified as a
hydrodynamic fluid pump. Obviously, our DDFT reproduces
these previously identified effects, which stresses its potential.
Finally, upon further increase of the Péclet number, the
numerical evaluation shows a persistently dynamic state of
migrating density clouds.

As common for DDFT approaches, our description
partially leans on equilibrium concepts. However, the situation
under consideration is an intrinsically non-equilibrium one.
For instance, we used a temperature variable to measure
energies and to define the Péclet number. We identified this
variable with a constant temperature of the background fluid.
It might be stabilized by coupling to an external heat bath.
Strictly speaking, the energy input due to self-propulsion can
lead to local changes in the temperature. On one hand, this
issue may become relevant for thermally driven artificial
microswimmers in the form of externally heated Janus
particles.36,106–108 On the other hand, temperature changes only
due to induced motion of the surrounding fluid are considered
negligible. Effective temperatures were introduced to correctly
describe deviations from equilibrium temperatures in driven
systems.114,115 The issue may be investigated in a profound
analysis, but is not addressed here. As noted before, we only
remark that the translational and rotational diffusion behaviors
[represented by the terms containing ln P in Eqs. (20) and
(24)] may need to be modified if local deviations from the
heat bath temperature become perceptible. Our framework of
hydrodynamic interactions remains basically unaffected, as
long as local deviations of the viscosity or density remain
approximately unaltered.

In the derivation of the statistical theory, conservation
of the probability to find the particles somewhere in phase
space [Eq. (25)] remains, of course, unaltered by the non-
equilibrium nature of our system. Therefore, apart from the
points mentioned above, no equilibrium approximations are
involved in our initial statistical equations [Eqs. (25)–(37)].
The situation changes when formulae that were derived
exactly in the context of equilibrium DFT are adapted
[(38)–(53)] to close our hierarchy of non-equilibrium
statistical equations. This crucial step is generic for DDFTs but
needs to be tested by numerical evaluation of the full statistical
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equations or by particle-based simulations. In our case, we
do reproduce corresponding results of previous particle-based
simulations. This stresses the power of our newly derived
DDFT in describing the complex behavior of microswimmer
suspensions. As a side remark, we note that mainly the steric
inter-particle interactions are directly concerned by the DFT
approximation [see the presence of the u(r,r′) terms on the
left-hand sides of Eqs. (46) and (47)]. Further analysis may
be necessary when such interactions form the central focus of
a quantitative DDFT approach.

Naturally, future applications and extensions of our theory
are manifold. It should be further compared to particle-based
simulations and possible experiments to learn more about the
range of its predictive power. As indicated above, an obvious
next step is to extend the theory to include active torques
and anisotropic steric interactions. Moreover, the influence
of different effective steric interactions, for instance, hard-
body interactions, may be investigated.116 Other variations
include, for example, the hydrodynamic effect of confining
boundaries2 or external magnetic alignment fields acting onto
magnetic microswimmers.117 In the longer term, an extension
of the investigations to denser crystallized systems as well as
three-dimensional numerical implementations are desirable.
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Abstract
Themajority of studies on self-propelledparticles andmicroswimmers concentrates onobjects that do
not feature a deterministic bending of their trajectory.However, perfect axial symmetry is hardly found
in reality, and shape-asymmetric activemicroswimmers tend to showapersistent curvature of their
trajectories. Consequently,wehere present a particle-scale statistical approach to circle-swimmer
suspensions in terms of a dynamical density functional theory. It is basedon aminimalmicroswimmer
model and, particularly, includes hydrodynamic interactions between the swimmers. After deriving the
theory, wenumerically investigate a planar example situationof confining the swimmers in a circularly
symmetric potential trap. There,wefind that increasing curvature of the swimming trajectories can
reverse the qualitative effect of active drive.More precisely,with increasing curvature, the swimmers less
effectively pushoutwards against the confinement, but instead formhigh-density patches in the center
of the trap.We conclude that the circularmotion of the individual swimmers has a localizing effect, also
in the presence of hydrodynamic interactions. Parts of our results could be confirmed experimentally,
for instance, using suspensions of L-shaped circle swimmers of different aspect ratio.

1. Introduction

On the scales of active colloidal particles and self-propelled biologicalmicroswimmers [1–10], thermal
fluctuations and other perturbations play a prominent role. They lead to continuous reorientation of the self-
propelling objects and therefore to stochastically shaped trajectories [2, 3, 11]. Evenmore extreme events are
given by stochastic run-and-tumblemotions. For instance, certain bacteria or alga cells are observed to stop their
migration, reorient basically on the spot, and then continue their propulsion [1, 12]. Such events lead to kinks on
the trajectory. The statistics of both types of buckledmotion has been studied in detail, both in experiment and
in theory [1, 3, 11, 13–19]. Yet, in the absence of any noise,fluctuations, and perturbations, the self-propelling
agents considered inmost theoretical analyses would show a deterministic straightmotion.

Here, we concentrate on activemicroswimmers that feature a different behavior. Their individual
trajectories are systematically curved. Such a situation can arise only, if for each swimmer the axial symmetry
around its propulsion direction is broken.

On the one hand, the symmetry breaking can be induced fromoutside. For instance, ifmicroswimmers are
exposed to local surrounding shearflows, the rotational component of the fluid flow can couple to the
orientation of the suspended swimmer [15, 20–25]. Continuous reorientation of the propulsion direction leads
to curved trajectories. Similarly, the symmetry is broken in the presence of a nearby surface. If during propulsion
a swimmer shows rotations of its body around its axis, these rotations can on one side hydrodynamically interact
with the surface. Via such hydrodynamic surface interactions the self-rotation couples to the propulsion
direction and the trajectory bends. Also steric interactions can support or induce the effect. Thus circular
trajectories are observed formany sperm cells and bacteria close to a substrate [26–30].

On the other hand, real swimmers often bring along a broken axial symmetry by themselves [31]. Hardly any
object is really perfectly axially symmetric in shape.On purpose, L-shaped activemicroswimmers have been
fabricated and their persistently curved trajectories were analyzed [32–35]. If the trajectories, including their
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persistent bending, are confined to a plane, then circular paths arise. This is what we understand by circle
swimmers [36]. Apart from that, for deformable self-propelled particles and self-propelled nematic droplets, the
symmetry breaking in shape or structuremay also occur spontaneously [37–39].Moreover, imperfections in the
self-propulsionmechanism can lead to the symmetry breaking and thus to bent trajectories. An example are cells
of the algaChlamydomonas reinhardtii. If one of the two beating flagella generating self-propulsion is weaker or
absent, the cellular paths curve [40, 41]. Apart from that, near surfaces bent self-propelled objects tend to follow
circular trajectories [42, 43]. Inmodeling approaches, circle swimmers are often realized by simply imposing an
effective torque or rotational drive in addition to the self-propulsionmechanism [15, 31, 35, 44–59].

We havementioned above that studies on circle swimmers are relatively rarely encounteredwhen compared
to the numbers of works on objects propelling straight ahead. Even less frequent are studies on the collective
behavior of circle swimmers [29, 43, 50, 52, 54]. Particularly, this applies when hydrodynamic interactions in
crowds of suspendedmicroswimmers are to be included.

When the collective properties ofmany interacting agents are investigated, such statistical approaches
become important [60–66]. Recently, we have derived and evaluated amicroscopic statistical description for
straight-propellingmicroswimmers in terms of a classical dynamical density functional theory (DDFT) [66].
Microscopic heremeans that the description is based and operates on the length scales of the individual agents.
Thus, for instance, when classical density functional theory (DFT) or its variants are used to describe the
properties of crystalline structures [67–80], individual crystal peaks can be resolved in the statistical density field.

In equilibrium, i.e., for passive systems, DFT [81–85] is, in principle, an exact theory. It can be extended to
overdamped relaxational dynamics in terms ofDDFT [85–88] by assuming at each instant an effective
equilibrium situation to evaluate the involved potential interactions. For example, solidification processes are
addressed in this way [71, 72, 74, 78]. Sincemicroswimmers by construction operate at lowReynolds numbers
[89], their dynamics is overdamped. ThismakesDDFT a promising candidate to study their statistical behavior.

ExtendingDFT to intrinsically non-equilibrium systems, DDFTs for ‘dry’ self-propelling agents had already
been developed before [90–92] and tested against agent-based simulations [90, 92].Moreover, to characterize
passive colloidal particles in suspensions, hydrodynamic interactions had been incorporated intoDDFT [93–99]
and agreementwas foundwith explicit particle-based simulations [93, 94, 96, 97]. Our recently developedDDFT
formicroswimmers incorporates and combines all the central previous ingredients, i.e., self-propulsion, steric
interactions between the swimmers, hydrodynamic interactions between the swimmers, as well as exposure to
and confinement by external potentials [66]. Aswe have demonstrated and as further detailed below, this
dynamical theory qualitatively reproduces previous simulation results [100, 101] inwhich combined action of
all these ingredients determines the overall behavior.

Here, we proceed by an additional step forward.We extend ourmicroscopic statistical characterization
(DDFT) to circle swimmers. In this way, we can now characterize the collective behavior of such non-straight-
propelling agents, including the effect of hydrodynamic interactions. Only then, for instance and aswewill show
below, can the symmetry breaking induced by hydrodynamic interactions in a radial confinement be described
qualitatively correctly.

Wefirst introduce ourminimalmodel for circle swimmers in section 2.Next, in section 3, we list the
extension of the theory. It is evaluated numerically in section 4 to study the behavior of circle swimmers under
radial confinement as a function of the bending of their trajectory. A short summary and outlook are given in
section 5.

2.Minimalmodel circle swimmer

As outlined above, our goal is to establish amicroscopicDDFTof circle-swimmer suspensions. The term
‘microscopic’here refers to the length scales of an individualmicroswimmer. To base ourDDFTon such scales,
we need tofirst introduce an explicitminimalmodel for amicroscopic circle swimmer.

Our statistical theory will apply to (semi)dilute suspensions ofmicroswimmers based on their far-field
hydrodynamic interactions. Therefore, aminimalmodelmicroswimmer is needed that shows the correct
leading-order far-field hydrodynamic fluid flows together with a self-consistent description of its self-
propulsion. Yet, at the same time, itmust be simple enough to still be efficiently included into the statistical
description. Figure 1 represents our corresponding swimmermodel. The unit vector n̂ identifies the principal
swimmer axis and orientation.

Any activemicroswimmer exerts forces onto the surrounding fluid. Amongst them are the spatially
distributed active forces that initiate self-propulsion. They are generated, for instance, by the rotation offlagella
or beating of cilia [12, 14, 40, 41]. In ourmodel, all these active forces are thought to be gathered and
concentrated in one spot. Infigure 1, this leads to the active point force-f acting on the surrounding fluid.
Instantly, due to the nature of the considered low-Reynolds-numbermotion, see below [89], for a freely
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suspendedmicroswimmer all these active forces are balanced by frictional forces distributed over its body.We
consider all these counteracting frictional forces to be concentrated in another spot, leading to the point force
+f infigure 1. These two spots in general do not coincide, depending on the actual swimmer geometry.Here,
they are separated by a distance L, see figure 1.However, since no net force nor torquemay act on a freely
suspendedmicroswimmer, the two forcesf need to be of samemagnitude but oppositely oriented, located
and aligned along a common axis.Wemay thus parameterize them as =  ˆf f n. They act onto thefluid and
set it intomotion as indicated by the small arrows in the background offigure 1. In analogy to straight-
swimming terminology [4], for >f 0, i.e., the depicted case, we call the object a pusher. For <f 0, we term it a
puller.

Next, we place a spherical swimmer body of effective hydrodynamic radius anearby the two force centers.
Thewhole construct is a rigid object, i.e., the force centers and forces have to rigidly translate and rotate together
with the sphere,maintaining theirmutual distances and orientations. The role of the sphere is purely to realize
self-propulsion of thewhole object. Since all forces exerted by the swimmer onto the fluid have already been
concentrated into the two force centers (ignoring all forces that lead to higher-order contributions to the
hydrodynamic far-field) the sphere is considered not to exert any remaining force onto thefluid any longer. Its
sole role is to be convected by the self-induced fluid flow, leading to the overall self-propulsion. Unless it is
positioned into the exact point of symmetry between the two force centers, a net transport of the swimmer
results in the induced fluid flow. For a shift of the sphere along n̂ out of the symmetry plane between the two
force centers, thewhole object propels into the direction of one of the two forces. This shift is quantified by the
parameterα, with a = 1 2 marking the symmetric configuration.

In addition to our swimmermodel in [66], we now consider an extra shift of the spherical swimmer body
into a direction perpendicular to n̂. The parameter γ quantifies this shift, see figure 1, so that the axial symmetry
is broken for g ¹ 0. Consequently, for a ¹ 1 2 and g ¹ 0, the swimmer in the absence of anyfluctuations
starts to circle, as quantified below.Moreover, it is nowbiaxial, with the additional axismarked as û, see figure 1.

Sincewe consider the hydrodynamic interactions at a far-field level, we need to hinder themicroswimmers
from coming too close to each other. Therefore, we consider spherically symmetric soft steric interactions
between the swimmer bodies of effective radius s a a g> - +[( { }) ] L2 max , 1 2 2 1 2 tomaintain an effective
distance between them.Altogether, thewhole rigid swimmer object infigure 1 is force- and torque-free, as
mandatory for amicroswimmer suspended in a bulkfluid, see also the appendix.

2.1.Hydrodynamic interactions
Wenow considerN identical circlemicroswimmers suspended in the fluid and use indices i= 1,K,N to label
them.As described above, for ¹f 0, each circle swimmer sets the surrounding fluid intomotion due to its active
forces exerted by the active force centers. In addition to that, the swimmer bodiesmay be subjects to forces Fi

and torques Ti. Thesemay, for instance, be stochastic in nature, result from steric interactions between the circle
swimmers, or be imposed fromoutside. Since the dynamics ofmicroswimmers is usually determined by low
Reynolds numbers [89], it is described by the linear Stokes equation [102]. That is, their dynamics is
overdamped, and the forces Fi and torques Ti are directly transmitted to the surrounding fluid, setting it into

Figure 1.Minimalmodel of a circlemicroswimmer. Two active force centers separated by a distance L exert the active forces
 =  ˆf f n onto thefluid, where n̂ marks the direction of the principal swimmer axis. The resulting fluidflow is indicated by the small
light arrows that are rescaled to identical length for visualization. A spherical swimmer body of effective hydrodynamic radius a is, in
general, asymmetrically placed between the force centers. Its shift along n̂ out of the symmetry center, quantified by a ¹ 1 2, leads to
forward (or backward) propulsion. An additional transversal shift, quantified by γ, implies circular trajectories for a ¹ 1 2 and
g ¹ 0. This circle swimmer is biaxial, the secondary axis denoted by û.We impose spherically symmetric steric interactions between
the swimmers, with an effective interaction radius s 2.
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motion.Moreover, since the swimmers are suspended in thefluid, they are translated and rotated by the induced
fluid flows. The instantly resulting swimming velocities vi and angular velocities wi are calculated from amatrix
equation as [66]
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In (1), the first product on the right-hand side includes the influence of the passive swimmer bodies.mij

tt,mij
tr,

mij
rt, andmij

rr are the familiarmobilitymatrices that express how swimmer i is translated and rotated due to the

forces and torques transmitted by the swimmer body j onto thefluid [66, 102–104]. These expressions are the
same as for suspended passive colloidal particles and result from an expansion in the inverse separation distance
between the swimmer bodies, where herewe proceed up to the third order, i.e., the Rotne–Prager level.

Then, for i=j, we have [66, 102–104]
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Here, η is the viscosity of the fluid.
For ¹i j, themobilitymatrices read [66, 102–104]
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where = -r r rij j i, with ri and rj marking the swimmer positions, = ∣ ∣rrij ij , =ˆ r rrij ij ij, and ‘×’ is the vector
product.

The second product on the right-hand side of (1) arises because of the active forces that the swimmers exert
onto thefluid.Naturally, these actively induced fluid flows likewise contribute to the velocities vi and angular
velocities wi of all swimmer bodies.Lij

tt andLij
rt are the correspondingmobilitymatrices. The entries 0 in these

expressions arise because our swimmers do not exert active torques onto the suspending fluid.
More precisely, themobilitymatricesLij

tt andLij
rt describe how the active forces exerted by the two force

centers of swimmer j onto thefluid influence the velocity vi and angular velocity wi of swimmer i, respectively.
Since swimmer j carries two active force centers exerting the two forces =  ˆf f nj j, bothLij

tt andLij
rt split into

two contributions [66],
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In contrast to the passive swimmer bodies, the active force centers are point-like. Therefore, the expressions for
the fourmobilitymatricesm 

ij
tt andm 
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rt are slightlymodifiedwhen compared to the corresponding expressions

for the hydrodynamic interactions between the passive swimmer bodies in (4) and (6) [66],
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Here, rij are thedistance vectors between thepassive bodyof swimmer i and the active force centers of swimmer j,

exerting the forces =  ˆf f nj j onto thefluid, respectively.Again, = ∣ ∣rrij ij and =  ˆ r rrij ij ij . In contrast to [66],
where straight-propellingmicroswimmerswere investigated,weheremust take into account the additional
transversal shift of the active force centerswith respect to the swimmerbodies, seefigure 1. Therefore,wenowobtain

a g= + ++ ˆ ˆ ( )r r L Ln u , 11ij ij j j
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a g= - - +- ( ) ˆ ˆ ( )r r L Ln u1 . 12ij ij j j

Naturally, the values ofα and γmust assure that the force centers of each swimmer are located outside the
hydrodynamic radius a of the swimmer body, i.e., a a g- + >[( { }) ] L amin , 1 2 2 1 2 .

We consider our spherical swimmer body to exclusively act as a probe particle. Therefore our activemobility
matrices for interactions between different swimmers ( ¹i j) are given to lowest order in a -( )/1 2 and/or
a/L. In a next step, the distortion of the flowfield by the rigid swimmer body could be included by considering
the image systemwithin a rigid sphere [105, 106].

Moreover, for i=j, (1) togetherwith (7)–(12) describe the self-propelledmotion of one individual circle
swimmer. At themoment not considering any fluctuations, one such isolatedmicroswimmer (N = 1) keeps
self-propellingwith constant translational speed vs and constant angular speed ws along a closed circular
trajectory of radius w=R vs s s for all times. Since both vs and ws depend on the position of the swimmer body
relative to the two force centers,Rs can smoothly be tuned between almost zero and infinity by altering the
parametersα and γ; seefigure 2.Moreover, bothLii

tt andLii
rt are independent of f. Thus, both vs and ws scale

linearly with f, see (7)–(12). Therefore,Rs is independent of the active force f. Swimming faster does not change
the radius of the circle.

Technically, ourmobilitymatrices represent the solutions to the underlying Stokes equation for the flowof
the suspending fluid at lowReynolds number [102]. In this way, the role of the fluid is implicitly included in our
description.

2.2. Stochastic forces, external forces, and steric interactions
Our remaining task is to specify the forces Fi and torques Ti acting on the swimmer bodies in (1). The forces are
set to

= -  -  ( )F k T P Uln . 13i i iB

Here, thefirst contribution represents the effective influence of the stochastic forces due to thermalfluctuations
[107]. kB is the Boltzmann constant,T the temperature,  = ¶ ¶ri i, and = ¼( ˆ ˆ ˆ ˆ )r rP P tn u n u, , , , , , ,N N N1 1 1

is the probability density tofind at a certain time t the swimmers at positions ri with orientations n̂i and ûi,
i=1,K,N. From this form, the correct diffusional behavior is reproduced in the statistical approach, see
below.

The overall potential in the second part of (13) reads
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In this expression, thefirst termdescribes the steric interactions between the swimmer bodies.We here choose a
soft GEM-4 potential of the form [78, 108]

Figure 2.RadiusRs of the circular trajectory at vanishingfluctuations for one single isolated circlemicroswimmer as introduced in
figure 1 ( =L a 3). The colormap indicatesRs as a function ofα and γ. For g  0,  ¥R as and the swimmer self-propels
straight ahead.We donot allow a force center to be placedwithin the hydrodynamic radius a from the center of the swimmer body,
reflected by thewhite area on the top right.
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where 0 sets the strength of the interactions. uext is an external potential acting on each swimmer body and
further addressed below.

Finally, the only torques that we consider to act on our spherically symmetric swimmer bodies are stochastic
ones,

= -  ( )T k T Pln . 16i iB
or

Here, the operator i
or contains the derivatives with respect to the particle orientations. If the swimmers and

their orientations are confined to aflat plane, for instance, the xy plane inCartesian coordinates, one angleji is
sufficient to characterize the orientation of each swimmer i. Then the operator reduces to j = ¶ ¶ẑi i

or ,
where ẑ is the (oriented)Cartesian unit vector perpendicular to the xy plane in a three-dimensional Euclidean
space. In three dimensions, explicit expressions using Eulerian angles exist [91, 109].

3.DDFT for circle swimmers

Based on ourminimalmicroswimmermodel, we can nowderive amicroscopic statistical description in terms of
aDDFT for suspensions of identical circle swimmers. The derivation follows the same lines as in our previous
work on straight-propellingmicroswimmers [66]. However, several changes result from the present biaxiality of
the individual swimmers.

We start from themicroscopic Smoluchowski equation
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which states the conservation of the overall probability density. Here, we have to insert the swimmer velocities vi

and angular velocities wi as given by (1)–(16). Although vi and wi depend on Pln via (13) and (16), it is
important to stress that (17) is still linear inP. Using the chain rule in (13) leads to  = ( )P P Plni i , which in
combinationwith the factorP in (17) leads to the linear contribution Pi . The same argument applies to the
term i

or Pln in (16)when inserted into (17).
To obtain from (17) the n-swimmer density offinding n of the identicalN circle swimmers at a certain time

at certain positionswith certain orientations, wemust integrate out from (17) all but the degrees of freedomof n
swimmers.We denote by Xi all degrees of freedomof the ith swimmer. Then, the n-swimmer density is obtained
from the overall probability density P as
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In the special case of all swimmers and their orientations being confined to aflat plane, j= ( )X r ,i i i
and j=X rd d di i i.

Our goal is to obtain an equation for the dynamics of the one-swimmer density r ( )( ) X t,1 tofind a circle
swimmer at time twith position and orientation X . However, the integration scheme in (18) leads to a non-
closed equation for the time derivative of r( )1 . Because of our pairwise hydrodynamic and steric interactions, r( )1

couples to the pair density r( )2 , and, in combination of both interactions, also to r( )3 [66, 93, 94]. This starts a
whole hierarchy of coupled dynamical equations, called BBGKYhierarchy [81]. To close the dynamical equation
for r( )1 , we need to express the densities r( )2 and r( )3 in this equation as a function of r( )1 . DDFTprovides a
strategy bymapping each state of the system instantaneously to a corresponding equilibrium situation [85–88].

For this purpose, we recall that an external potential enters the dynamical equation via (14). At eachmoment
in time, DDFT assumes that the instant state of the system is caused by an effective external potential Fext. This
Fext intermittently takes the place of our physical external potential uext.

In equilibrium,DFT implies that Fext is uniquely determined by the density r( )1 [81–88]. It follows by
minimizing the grand canonical potential functionalΩ

  r r r rW = + +[ ] [ ] [ ] [ ] ( )( ) ( ) ( ) ( ) 191
id

1
exc

1
ext

1

with respect to r( )1 . Here,

 òr r l r= -[ ] ( )( ( ( )) ) ( )( ) ( ) ( )X X Xk T d ln 1 20id
1

B
1 3 1

is the entropic free-energy functional for ideal non-interacting particles, withλ the thermal de Broglie wave
length [110]. An exact expression for the excess free-energy functional  r[ ]( )

exc
1 , which contains all particle

interactions beyond the idealized non-interacting limit, is typically not known and needs to be approximated.
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The third functional

 òr r= F[ ] ( ) ( ) ( )( ) ( )X X Xd , 21ext
1

ext
1

describes the interactionswith the external potential, where the effect of a chemical potential is implicitly
included into Fext.MinimizingΩwith respect to r( )1 leads to the equilibrium relation


l r

d
dr

F = - -( ) ( ( ))
( )

( )( )
( )X X

X
k T ln . 22ext B

3 1 exc
1

In equilibrium the swimmers are inactive ( f = 0). Then, wemay further argue that the correspondingN-
swimmer probability density Peq solely depends on the overall potential = ¼( )X XU U , , N1 as in (14), but with
Fext taking the place of uext. Thus, Peq should follow the Boltzmann form

bµ -( ) ( )P Uexp , 23eq

with b = -( )k TB
1. Applying to this relation the positional gradient for the ith swimmer, we obtain

åb = -  F + 
¹

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )r r rP P u , . 24r r ri

k i

N

k i
eq eq

exti i i

We then follow (18) and integrate out all coordinates from this relation except for those of the ith swimmer.
Since all swimmers are identical, this leads to the so-called YGB relations offirst order [81, 109],

òr r r = - F - ¢ ¢  ¢( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )X X X X X X r rk T ud , , . 25r r rB
1 1

ext
2

TheYGB relations of second order are obtained by integrating out from (24) all coordinates but those of the ith
and one other swimmer [81, 109], resulting in

ò
r r r

r

 ¢ = - ¢  F ¢ - ¢  ¢

-  ¢   ¢ 

¢ ¢ ¢

¢

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

X X X X X X X r r

X X X X r r

k T u

u

, , , ,

d , , , . 26

r r r

r

B
2 2

ext
2

3

We then eliminate Fext from the last two equations by inserting (22). The resulting relations


ò r r

d
dr

¢ ¢  ¢ = ( ) ( ) ( )
( )

( )( ) ( )
( )X X X r r X

X
ud , , 27r r

2 1 exc
1

and



ò r r r

r l r

r
d

dr

 ¢   ¢  = -  ¢ - ¢  ¢

+ ¢  ¢

+ ¢ 
¢

¢ ¢ ¢

¢

¢
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( )

( ) ( ) ( )

( ) ( )
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, ln ,
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r r r

r

r

3
B

2 2

B
2 3 1

2 exc
1

have the same structure as the corresponding ones in [66].
DDFT assumes that these relations are still instantly satisfied in non-equilibrium at eachmoment in time. All

contained quantities are then assumed to be dynamical and non-equilibriumones. In this way, they are inserted
into the dynamical equation for r( )1 , which eliminates the dependence on r( )3 . Our assumption implies that the
higher-order swimmer densities relax quickly when compared to the lower-order ones [111]. Since ourmotion
at lowReynolds numbers is overdamped, it is conceivable that this adiabatic approximation leads to reasonable
results. Previous comparisonwith particle simulations has confirmed this assertion qualitatively [66].

Altogether, we obtain from this procedure

     r¶
¶

= - + + -  + +
( ) · ( ) · ( ) ( )

( ) X t

t

,
, 29r

1

1 2 3
or

4 5 6

where ¼, ,1 6 are current densities. Overall, they are of similar structure as the corresponding quantities in
[66], but particularly the active current densities3 and6 differ in the present case because of the transversal
shift of the active force centers, seefigure 1,

 



ò m

m r r r
d

dr

r l r

d
dr

=-  +  + 

- ¢ ¢  ¢ +  ¢

+ 
¢

¢ ¢ ¢

¢
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⎛
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⎞
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⎛
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⎛
⎝

⎞
⎠⎟
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( ) ( ) ( )
( )
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,
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1
t
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,
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B
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 ò m r= - ¢  ¢¢
¢ ( ) ( )( )X X Xk T td , , , 31r r2 ,

tr
B

or 2

 òr rL L= + ¢ ¢ ¢¢( )· ˆ ( ) · ˆ ( ) ( )( ) ( )X X X Xf t tn n, d , , , 32r r r r3 ,
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r
B
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 òr rL L= + ¢ ¢ ¢¢( )ˆ ( ) ˆ ( ) ( )( ) ( )X X X Xf t tn n, d , , . 35r r r r6 ,
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,
rt 2

Wenote that, in our case, = 02 in (31), and also the integral containing r( )2 in (34) vanishes. The reason is the
spherical shape of our passive swimmer bodies, resulting in passive hydrodynamic interactions that do not
depend on the swimmer orientations.

For the excess functional, we choose amean-field approximation

 ò r r= ¢ ¢ ¢( ) ( ) ( ) ( )( ) ( )X X X X r rt t u
1

2
d d , , , , 36exc

1 1

which is reasonable in our case of soft GEM-4 steric interaction potentials. Still, some pair densities r( )2 remain
in (30)–(35). They are expressed in terms of r( )1 using a dilute-limit Onsager-like approximation [112]

r r r b¢ = ¢ - ¢( ) ( ) ( ) ( ( )) ( )( ) ( ) ( )X X X X r rt t t V, , , , exp , . 372 1 1

Here, ¢ = ¢( ) ( )r r r rV u, , , if ¹ ¢r r . For - ¢ r r 0, we let b  ¥V to avoid the hydrodynamic divergence
that appears in the unphysical situation of two swimmers being located at the same position. This corresponds to
setting b- ( )exp 00 for - ¢ r r 0. (For our typical choice of parameters, we obtain

b- = -( ) ( )exp exp 100 . Thus the procedure represents a relatively smallmodification).
In this way, our dynamical equation for r( )1 is derived and finally closed. To demonstrate the power of our

DDFT for circle swimmers, we now address the confinement in a spherically symmetric trap. In particular, we
focus on the effect of an increasing curvature of the swimming paths.

4. Circle swimmers in a spherically symmetric trap

To address planar geometries, we confine the center ofmass of each swimmer i aswell as its two orientation
vectors n̂i and ûi to theCartesian xy plane so that ´ =ˆ ˆ ˆn u zi i . Then, one angleji is sufficient to parameterize
the swimmer orientation, see our remarks below (16).Wemeasureji relatively to the x axis. Still, three-
dimensional hydrodynamic interactions apply. One possible realization of this geometry are swimmers confined
to the interface between two immiscible fluids of identical viscosity.

Next,we specify the spherically symmetric confining external potential in (14). As in [66],weuse aquartic potential

s
= ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )ru V

r
, 38k

k
ext 0

4

centered in the origin, where = ∣ ∣rrk k . This potential ismore shallow around the center and then shows a steeper
increase than a harmonic trap, which partially emphasizes the effects that we address in the following. Yet the
precise functional form is not relevant for their qualitative nature.

To evaluate ourDDFTnumerically, thefinite-volume-methodpartial-differential-equation solver FiPy [113]
is employed.Our numerical grid is regular, quadratic in the xy space, and typically consists of ´ ´80 80 16 grid
points for the x, y, andj coordinates, respectively. (Non-orthogonalmeshesmight produce significant numerical
errors due to the assumption of orthogonality by the solver [114, 115].Weavoid this byusing anorthogonal grid.)

Weonly analyze the behavior in one single isolated trap.Nevertheless, for the numerical solution, periodic
boundary conditions are imposed in all directions for technical reasons to allow for fast Fourier transformation.
To avoid unphysical feedback between particles through thewalls of the box, long-ranged hydrodynamic
interactions are cut at distances larger than half a box length. Care is taken that the extension of the density
cloud, before it basically decays to zero due to the external potential, is smaller than half a box length. In this way,
the density cloud does not interact with itself through the periodic box boundaries. However, the box is large
enough to account for all hydrodynamic interactions within the effective confinement by the spherical trap. The
steric interactions in (15) are not cut as they quickly decaywith increasing distance. If, instead of one single
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isolated trap, an array of periodically placed trapswere to be regarded, onewould have to account for the long-
ranged hydrodynamic interactions between the individual traps including the periodic images of the system,
e.g., via Ewald summation techniques [116–118].

To display our results, we extract the spatial swimmer density

òr j r j=( ) ( ) ( )( )r rt t, d , , 391

and the orientational vector field

ò j j r já ñ =ˆ ( ) ˆ ( ) ( ) ( )( )r rt tn n, d , , 401

fromour calculations. These twofields are indicated by color plots and bywhite arrows, respectively, in the
figures referred to below. In these plots, the spatial density r ( )r t, is normalized by the density r̄ averaged over
thewhole simulation box.

As an initial condition, we start from randomized density distributions. The system is then equilibrated in
the trapwith self-propulsion switched off, f=0. The density quickly relaxes into a radially decaying distribution
with a small central dip stemming from steric repulsion, see figure 3.Wemeasure time t in units of s m( )k Tt

2
B .

At t=0, self-propulsion is switched on. Such a process could be achieved in reality, for instance, using light-
activated synthetic swimmers [11, 16, 34, 119–121]. If, for example, activation of self-propulsion is sensitive to
thewavelength of the irradiated light [119], confinementmight be achieved simultaneously by optical trapping
using light of a different frequency.

To characterize the relative strength of self-propulsion, often the dimensionless Péclet number Petr is
introduced [101]. In our context, itmeasures the ratio of active to diffusive passivemotion on a relevant length
scale, here set byσ. Therefore,

s
m

= ( )v

k T
Pe . 41tr

s
t

B

In the following, we concentrate onmicroswimmers of significant activity, Pe 1tr .Moreover, wemay in the
case of circle swimming analogously define a rotational Péclet number,

w
m s

= = ( )
k T

a

R
Pe

4

3
Pe . 42rot

s
r

B

2

s
tr

For »Pe 0rot , the curvature of the swimmer trajectory is negligible. In our numerical scheme, we directly set the
parameters determining the geometry of the swimmers infigure 1. The corresponding Péclet numbers can then
be extracted by calculating vs and ws from (1) and (7)–(12) for i=j.

It turns out that increasing the character of circle swimming, i.e., decreasing the radius of the unperturbed
swimming path, see figure 2, has a qualitative effect on the appearance of the trapped swimmer suspension. To
demonstrate this, we first further analyze some results of straight swimming [66] obtained by ourmodified
simulation scheme and then compare with the results for circle swimming.

4.1. Straight swimming
Straightmotionof the individual swimmers is enforced inour approachby setting g = 0, seefigure 1 [66]. For
straight propelling objects under spherical confinement, the formationof ahigh-density ringhas been reported
several times [66, 100, 101, 122, 123]. In agreementwithprevious studies, the formationof a high-density ring canbe
reproduced after switchingon the active drive inour simulations. This ring is particularly symmetricwhenwe switch

Figure 3.Equilibrated initial state for the numerical evaluation of ourDDFT formicroswimmer suspensions, with a trapping strength
=V k T0.10 B . In this state, the active forces are still switched off, f=0. (a) Steric interactions not included,  = 00 . (b) Steric

interactions includedwith strength  = k T100 B . Brighter color reflects higher density as given by the scale bars, wherewe used a
logarithmic scale for illustration. The local density r ( )r is normalized by themean density r s= ´ - -¯ 2.78 10 2 2 in thewhole
simulation box.
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off thehydrodynamic interactions between the swimmers, seefigure 4(a). Its approximate radius is determinedby
balancing the active forwarddriveof the swimmerswith the confining external potential force, leading
to s s m s~ =( ) ( )R v V k T V4 Pe 4ring s

t
0

1 3
tr B 0

1 3.
In thenext two rows,figure4 shows thebehaviorwhenhydrodynamic interactions between the swimmers are

included as prescribedbyourDDFT.Theyhave a qualitative impact. Thehigh-density ring at the investigated
propulsion strengthsdevelops a tangential instability and the circular symmetry is broken.Also this effect has been
describedbefore [66, 100, 101]. The swimmers tend topolarly order in the emerginghigh-density spotwhile
propagating against the confiningpotential.Consequently, they collectively pump the surroundingfluid into the
opposite direction.Thus the configurationwas referred to as a ‘hydrodynamicfluidpump’ [66, 101].Here,we
observe that the effect is stronger infigure 4(b), whichdepicts the result for pushers, >f 0. In contrast to that,
figure 4(c)wasobtainedwith the signof the active forcesflipped to <f 0, describing a suspensionof pullers, yetwith
all otherparameters unchanged.Obviously, the tangential symmetry breaking is restricted in the latter case.

The cause of this spontaneous symmetry breakingwas attributed in [101] to a positive feedbackmechanism.
If a spot of higher density appears on the ring, with the swimmers collectively pushing against the external
potential, the resulting oppositely oriented fluidflow rotates nearby swimmers towards the high-density area.
Consequently, they join the spot of higher concentration. In ourDDFT, this effect is included by the
contribution m~  ¢¢ ¢ ( )u rr r r,

rt
ext to the current density4 in (33). Additionally, pushers actively generate inward

flows from their sides, seefigure 1.When the swimmers are pointing outward on the ring, this further supports
their lateral concentration, see the illustration infigure 5(a). Here, these active contributions are represented by
the second term in the current density3 in (32). In contrast to that, for pullers, the actively induced flowfields
are inverted. This in effect repels outward pointing swimmers on the ring from each other, see also our
schematic illustration infigure 5(b). The qualitative schematics infigures 5(c)–(f) indicate that also the curvature
of the high-density ringmay have a significant impact via the current density6 and lead to differences between
pushers and pullers. The relativemagnitudes of all these different contributions basically involve all system

Figure 4.Each row represents a time series (from left to right) for a suspension of straight-propelling swimmers in a quartic external
trapping potential for the spatial density r ( )r normalized by themean density r s= ´ - -¯ 7.56 10 3 2 in the simulation box (color
plots, brighter color indicating higher density, logarithmic scale) and for the local swimmer orientation á ñˆ ( )rn (white arrows). Our
parameters are set to s=a 0.25 , s= =L a3 0.75 , a = 0.4, g = 0,N=4, =V k T0.10 B , and  = k T100 B . For each row, the system
was pre-equilibratedwith self-propulsion switched off, f=0. Then, self-propulsion is turned on at time t=0, with timesmeasured
in units of s m( )k Tt

2
B . (a) s= >f k T250 0B for pushers, implying »Pe 53tr , with hydrodynamic interactions between the

swimmers switched off. Snapshots provided for times =t 0.01, 0.05, 0.1, 0.3, where the last image already shows the steady state. (b)
Same as in (a), now including hydrodynamic interactions. The latter destabilize the high-density ring and lead to the formation of a
high-density spot. Over time, for the chosen parameters, the self-propulsion directions in this spot lean towards one side by another
spontaneous symmetry breaking. The spot then starts tomove along the ring contour, smearing out in the process. Times:
=t 0.01, 0.5, 1.4, 1.8. (c) Same as in (b), but for pullers s= - <f k T250 0B , which restricts the spot formation. Times:
=t 0.01, 0.05, 0.1, 0.3. Inverting fmakes the swimmers propel into the opposite direction-n̂, see figure 1, whichmakes thewhite

arrows point inward in the case of pullers. As in (a), the last picture shows the steady state of the system.
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parameters, i.e., temperatureT, the viscosity η of the fluid, the strength of the active force f, the nature of the
swimmer (pusher versus puller) togetherwith themagnitudes of the parameters that determine the swimmer
geometry, the strength and radius of the steric interactions, the overall density, and the strength of the
confinement.

After the formation of the high-density spot, see figure 4(b), at strong enough active drive >f 0, we observe
yet another spontaneous symmetry breaking. In the rightmost snapshot offigure 4(b), the averaged self-
propulsion directions do not point radially outward anymore. Instead, they have tilted to one side towards the
tangent of the previous high-density ring. For straight swimming objects, the selection of one of the two tilting
directions depends solely on small variations in the initialization of the system.

As a result of the tilting, the high-density spot starts to circle around the trap, smearing out the faded ring to
some extent. Depending on the parameters, wemay nearly recover a high-density ring, however, nowwith the
swimmer orientations not pointing outward. Interestingly, for suspensions of pullers at elevated ∣ ∣f , we so far
have not observed this behavior. Instead, again a ring of radially oriented swimmers emerges, seefigure 4(c). It
appears approximately in the sameway as for the case without hydrodynamic interactions infigure 4(a). This
behavior is in linewith our interpretation of the role of the current density ~ f3 of repelling pullers from each
other.

We note that the active current density6 in (35) has the potential to drive the secondary spontaneous
symmetry breaking observed in the rightmost snapshot offigure 4(b). Comparing the strength of6 with the
one of4 may also explain the initial formation of the high-density spot as afirst instability and then the
observed secondary instability. First, on the high-density ring, the swimmers on average feature a largermutual
separation, in the second snapshot offigure 4(b). Then, at these larger interswimmer distances rij, the
contribution in the current density4 driving the spot formation scales as m~ ~ -∣ ∣ rij ij

rt 2. In contrast to that, in

the active current density6, we find a scaling~ -rij
3 at large interswimmer distances (the two oppositely

oriented active forces of each swimmer together appear as a force dipole at larger distances, which reduces the
exponent in the scaling ofLij

rt to~ -rij
3). Therefore4 dominates and can drive the spot formation. At reduced

separation in the high-density spot, the active forces are resolved individually and the influence of6 can
become substantial when comparingwith4. Nowboth scale as~ -rij

2, but for elevated ∣ ∣f the importance of6

grows.

4.2. Circle swimming
Wenow turn to increasingly biaxial swimmers for g ¹ 0, see figure 1.Depending on the values of both
parametersα and γ, the unperturbed individual swimmers then show circular trajectories, see figure 2.

Figure 5.Effects that can contribute to the observed varying tendency of forming a high-density spot for pushers and pullers in
figures 4(b) and (c), respectively. Large straight arrows of the same color as the swimmer bodies represent the active forces, while the
thinner curved arrows of the same color indicate the corresponding flow fields. (a)Due to their actively induced transversal inflowof
fluid, see figure 1, pushers laterally attract each other hydrodynamically. This supports spot formation in figure 4(b)when the
swimmers are aligned next to each other on a high-density ring. (b) In contrast to that, pullers laterally repel each other
hydrodynamically, which counteracts a spot formation, seefigure 4(c). Both effects are described by the contribution L~ ¢r r,

tt to the
current density3 in (32). (c)–(f)Different effects are possible for the active rotation–translation coupling described by the
contribution L~ ¢r r,

rt to the current density6 in (35). (c) For pushers next to each other on a high-density ring of high curvature, the
inward pointing force center of one swimmer is in close vicinity of the body of the other swimmer, and vice versa. This leads to actively
induced rotations of the swimmers and their propulsion directions towards each other, supporting the formation of a high-density
spot. (d)The situation is reversed for pullers, leading to effective rotations away from each other. (e) In contrast to the configuration in
(c), for low curvature of the high-density ring, the outward pointing active force of one swimmer is closer to the body of the other
swimmer, and vice versa. In this way, the swimmers tend to turn away from each other. (f)Along the same lines, pullers also for low
curvature of the high-density ring turn away from each other, again counteracting the formation of a high-density spot.

11

New J. Phys. 19 (2017) 125004 CHoell et al

P2 New J. Phys. 19, 125004 (2017) 67



Particularly, we analyze the changes in the behavior of the suspensionwhenwe stepwise increment γ. For each
value of γ, we again start from an equilibrated passive initial system and then switch on self-propulsion at t=0,
as before.

By and large, we do not observe abruptmodifications in the overall behavior. Instead it changes rather
gradually with increasing γ. For small g ¹ 0, the behavior of the straight swimming objects is reproduced

Figure 6. Influence of a (small)biaxiality, quantifiedby the parameterγ, on themotionof the high-density spot formedbypushers
( >f 0). The type of presentation is identical tofigure 4, but the parameters are given by s=a 0.5 , s= =L a8 4 , a = 0.4,N=4,

=V k T0 B ,  = k T50 B , and s=f k T100 B . In the plot, the local density r ( )r is normalizedby themeandensity r s= ´ - -¯ 6.47 10 2 2

in thewhole simulationbox. Self-propulsion is switchedon at t=0, the snapshots in each row are taken at =t 2, 2.3, 2.6, 2.9. (a) For
straight-swimming pushers (g = =0, Pe 23tr ) the high-density spot only slowlymigrates around the trap, the senseofmotion resulting
fromspontaneous symmetrybreaking. (b) Forweak circle swimmers (g = = =0.01, Pe 23, Pe 0.61tr rot ) the high-density spot
persistentlymoves around the trap,with the sense ofmotion affected by the sense of circle swimming.

Figure 7. Long-term behavior for different strengths of circle swimming, namely g = 0, 0.01, 0.02, 0.04 from left to right in each
row. The other parameters and the type of presentation are the same as infigure 4. In all depicted cases, a localizing effect of circle
swimming becomes obvious. Pronounced circle swimming leads to concentration of the swimmers around the center of the trap, see
the rightmost column. (a) Switching off hydrodynamic interactions supports the localization around the center of the trap. (b) For
pushers ( >f 0), we observewith increasing γ thatfirst the high-density spot smears out to a high-density ring that broadens and for
high γ collapses towards the center. (c) For pullers ( <f 0) the high-density ring appears a bitmore stable at lower values of γ, but
again a concentration around the center occurs at high γ.
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qualitatively. Only for pushers of stronger active drive >f 0, we note an illustrative alteration.While the sense
of circling of the high-density spot around the trap as illustrated in the rightmost snapshot offigure 4(b) resulted
from spontaneous symmetry breaking for g ¹ 0 and could be clockwise or counterclockwise, it is now
increasingly dictated by the sense of the circular swimming trajectory. A comparison between straight swimmers
andweak circle swimmers is included by figure 6.

Remarkably, the overall appearance of the suspension changes qualitatively when the nature of circle
swimming becomesmore pronounced. In our set of parameters we achieve this by increasing γ. The bending of
the swimmer trajectories has a localizing effect, as illustrated infigure 7. There, all snapshots show the long-term
behavior of the corresponding suspension. From left to right in each row, the strength of circle swimming grows.
Due to their persistent self-rotation, the outward propagation of the swimmers against the confining trapping
potential is restricted. As a consequence, the concentration of the swimmers in the center of the trap increases.
At high enough γ, the density is again peaked around the center of the trap. Comparing figure 7(a), where
hydrodynamic interactions have been switched off, tofigures 7(b) and (c), we infer that hydrodynamic
interactions significantly delay the localization around the center of the trapwith increasing γ. Yet, at high
enough values of γ (rightmost column in figure 7) the localization dominates in all cases. Comparing pushers
and pullers infigures 7(b) and (c), respectively, we note themore persistent nature of the high-density ring in the
case of pullers at smaller values of γ, before the collapse towards the center of the trap occurs.

To quantify themodified appearance of the suspensionwith increasing γ, we introduce the following order
parameters. First, we evaluate

ò j J r j=( ) ( ) ( ) ( )( )r rK t
N

t
1

d d exp i , , , 431

where in this expression spatial positions r are parameterized by polar coordinates J= ( )rr , .K(t) becomes
non-zerowhen a tangential instability occurs that breaks the circular symmetry of a high-density ring, leading to
an off-center high-density spot.

Figure 8.Order parametersK, measuring the degree of off-center density concentration in a high-density spot, as well asMr andMt,
measuring the degrees of swimmer orientations along the radial and one of the tangential directions, respectively, for the systems in
figure 7with increasing biaxiality parameter γ. Again, the situationwithout hydrodynamic interactions between the swimmers
(‘noH.I.’), the case of >f 0 (‘pusher’), and the case of <f 0 (‘puller’) are depicted. Generally, with increasing γ, off-center
concentration in non-rotationally symmetric structures diminishes (drop ofK ) and the swimmers tilt away from the radial direction
(decreasingMr).Wefind smooth intermediate transitions forMr andMt around the value of γ that leads to =R Rs ring, as indicated by
the vertical gray lines. For the parameters chosen here,K drops to zero already at very lowbiaxiality. Other parameter combinations
lead to less abrupt decrease inK, see, e.g., figure 6.
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Next, we define

ò j r j=( ) (ˆ · ˆ) ( ) ( )( )r rM t
N

tv r
1

d d , , , 44r s
1

with v̂s for each swimmer denoting the hypothetical instantaneous unperturbed direction of self-propulsion.
For g = 0, v̂s points alongn̂ according to the sign of f, but it becomes slightly tilted towards û for g ¹ 0.

( )M tr quantifies the overall degree of swimmer orientations along the radial direction.
In analogy to that, to quantify the ordering of the swimmer orientations along one of the two tangential

directions, the order parameter

ò j r j= ´( ) (ˆ · (ˆ ˆ)) ( ) ( )( )r rM t
N

tv r z
1

d d , , 45t s
1

is evaluated. In the absence of any local orientational order, both ( )M tr and ( )M tt vanish. For steady-state
systems, all three of the above order parameters no longer depend on time in the long-term limit.

Figure 8 shows the long-term values of the order parametersK,Mr, andMt with increasing biaxiality and
degree of circle swimming γ.When hydrodynamic interactions are switched off, for g = 0 a high-density ring is
formedwith the swimmers radially aligned, see figure 4(a). Therefore,K andMt are low, whileMr is high.

Including hydrodynamic interactions, pullers ( <f 0) here behave in a very similar way, see alsofigure 7(c).
In contrast to that, pushers ( >f 0) show a concentration in high-density spots for g = 0, see figures 6 and 7(b),
leading to an elevated value ofK.Moreover, the self-propulsion directions in this high-density spot by
spontaneous symmetry breaking can lean towards one of the two tangential directions, see figures 4(b) and 6.
Therefore,Mr andMt are reduced and elevated, respectively, when compared to the other systems infigure 8.

As the degree of circle swimming increaseswithγ and the swimmers tilt away from the radial outwarddirection,
Mr generallydecreases.Mtfirst increases as the orientational order shifts fromradial to tangential. It then saturates
and again slightly decays for highγ, i.e., for small swimming radii. The latter slowdecay is supported by the
increasing localization in the center of the trapwhere orientational order vanishes by the overall rotational
symmetry. The smooth changes ofMr andMt infigure 8 indicate that the transition fromoff-center high-density
rings or spots to centrally localized distributionswith increasingγ is rather continuous. This transition shouldoccur
when the radiusRs of the unperturbed swimmer trajectories and the characteristic radius of the trapRring become
approximately identical.Wehave indicated the corresponding value ofγ infigure 8by the vertical gray lines.

To also quantify the depletion of the swimmer density in the center of the trapwhen high-density rings or
off-center high-density spots occur, in contrast to the central accumulationwhen the localizing effect of circle
swimming becomes strong, we introduce additional order parameters

ò j r j=n n( ) ( ) ( ) ( )( )r rO t J r R td d , , 46ring
1

for n = 0 and 1.Here, Jν are the Bessel functions offirst kind. By construction, ( )O t0 is largewhen the density is
concentrated in the center of the trap, while ( )O t1 is elevated for off-center distributions.

Figure 9. Same as in figure 8, but for the order parametersO0 andO1 thatmeasure the degree of near-center and off-center
concentration, respectively. At smaller values of the biaxiality parameter γ,O0 is low andO1 is highwhen a high-density ring or a high-
density off-center spot has formed. In contrast to that, highO0 and lowO1 signal a localization of the density around the center of the
trap for pronounced circle swimming at high values of γ (see also the rightmost column in figure 7). Again, the vertical gray lines
indicate the value of γ implying =R Rs ring. Apparently, hydrodynamic interactions slightly counteract the concentration around the
center. For strong circle swimming, pullers appearmore concentrated around the center than pushers.
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As demonstrated by figure 9, the transitions as a function of the biaxiality parameter γ are again smooth. Yet,
the increasing localization in the center of the trap for increasing γ is obvious. Particularly in the transitional
regime, that is, for intermediate values of γ, hydrodynamic interactions apparently counteract localization in the
center of the trap.Moreover, for our set of parameters and at large γ, the central concentration of pushers is
slightly lower than the one for pullers, if only the sign of f is inverted and all other parameters are kept the same.

5. Conclusions

In summary, we have presented amicroscopic statistical approach in the framework ofDDFT for active circle
swimmers. Hardly any realmicroswimmer is a perfectly symmetric straight swimmer. Therefore, investigations
on the effect of bentmigration trajectories aremandatory.

Our theory captures self-propulsion along swimming paths of different preferred curvature, steric and
hydrodynamic interactions between themicroswimmers, as well as confinement by an external potential. In
contrast tomany previous descriptions, the curvedmotion in our case is not directly imposed by an effective
torque or angular frequency on the swimmer body.Here, it naturally follows from the geometric structure of our
microscopicminimal swimmermodel and resulting hydrodynamic effects.

Persistently bent swimming trajectories reduce the globalmobility of the swimmers. To study this localizing
effect, we analyzed the behavior ofmicroswimmer suspensions in a circularly symmetric trapping potential for
increasing degree of circle swimming.Moreover, we distinguished between pusher and puller circle swimmers,
and also studied the effect of hydrodynamics by comparisonwith switched-off hydrodynamic interactions
between the swimmers.

Straight swimming objects tend to spread out towards the confinement until their active drive is balanced by
the confining potential [66, 100, 101, 122, 123]. This leads to high-density rings. Such ringsmay get unstable due
to hydrodynamic interactions, particularly for pusher swimmers, leading to the formation of off-center high-
density spots [66, 100, 101].We have further investigated and quantified this scenario.

Circle swimming can qualitatively affect the behavior. Increasing the degree of circular self-propulsion
supports a persistent circlingmotion of the high-density spots around the trap. At high degrees of circle
swimming, the swimmers become localized around the center of the trap, while hydrodynamic interactions
seem to slightly counteract this effective confinement. The transition from the off-center towards the centered
density distributions appears to be smooth, andwe quantified it by introducing several corresponding order
parameters.

A long-term goal to extend the present theory would be the characterization ofmotility-induced phase
separation into a dense clustered state and a surrounding low-density gas-like state [119, 120, 124–145]. This
phenomenonwas observed in particle-based simulations of active Brownian particles [120, 125, 127, 130,
133–136, 138, 142, 144, 145] and described by different statistical or continuum approaches [126, 128, 129, 131,
132, 136, 137, 141]. So far, the effect of hydrodynamic interactions on this scenario has only rarely been
addressed [134, 138]. OurDDFTby construction contains self-propulsion driving the phase separation, steric
interactions to avoid a collapse of the clustered state, and hydrodynamic interactions. In previous theoretical
approaches, input for the density dependence of the swimming speed [128] or for the front-back imbalance of
the pair-correlation function [126, 131, 141]was required to capture the phenomenon. An interesting question
for statistical theories andDDFT iswhether such an inputwill further be necessary in the future, or whether the
theories will provide it in a self-consistent way, as encouraged by a recent theoretical study [146].Moreover, one
could then analyze how the clustering behavior is influenced by the circular swimming paths.

We note that, in a different context, the consequences of reorienting the swimmingmotion, e.g., by external
fields, have been analyzed for the translational behavior as well as for the swim stress and pressure [147, 148].
Possibly, the latter quantities could also be extracted using our approach and explicit swimmermodel. Apart
from that, in the future also the dynamic behavior of pure active swimming rotors [149–151] could be
considered in an analogous statistical approach, including the induced hydrodynamic interactions between the
rotors. Another extension concerns the treatment of crystallization effects [78] for activemicroswimmers taking
into account hydrodynamic interactions.
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Appendix

In ourmodel, each swimmer consists of two force centers in the fluid in the vicinity of the swimmer body as
shown infigure 1. To constitute a realisticmicroswimmer, no net force and no net torquemay be exerted on
thefluid.

Since the two anti-parallel forces have the samemagnitude f, the net force vanishes by construction. The
individual torques = ´ 

 ( ˆ )T r f n caused by the two force centers of the swimmer can be calculated from the
distance vectors r defined in (11) and (12). Thus, they read

a g g= ´ + ´ = ´+ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )T f L L f Ln n u n u n, A.1

a g g= - - - ´ + ´ = - ´- ( ( ) ˆ ˆ ˆ ˆ ) ˆ ˆ ( )T f L L f Ln n u n u n1 , A.2

and cancel upon summation so that the net torque vanishes, as required.
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ABSTRACT
Microswimmers typically operate in complex environments. In biological systems, often diverse species are simultaneously present and inter-
act with each other. Here, we derive a (time-dependent) particle-scale statistical description, namely, a dynamical density functional theory,
for such multispecies systems, extending existing works on one-component microswimmer suspensions. In particular, our theory incorpo-
rates not only the effect of external potentials but also steric and hydrodynamic interactions between swimmers. For the latter, a previously
introduced force-dipole-based minimal (pusher or puller) microswimmer model is used. As a limiting case of our theory, mixtures of hydro-
dynamically interacting active and passive particles are captured as well. After deriving the theory, we apply it to different planar swimmer
configurations. First, these are binary pusher–puller mixtures in external traps. In the considered situations, we find that the majority species
imposes its behavior on the minority species. Second, for unconfined binary pusher–puller mixtures, the linear stability of an orientationally
disordered state against the emergence of global polar orientational order (and thus emergent collective motion) is tested analytically. Our
statistical approach predicts, qualitatively in line with previous particle-based computer simulations, a threshold for the fraction of pullers and
for their propulsion strength that lets overall collective motion arise. Third, we let driven passive colloidal particles form the boundaries of a
shear cell, with confined active microswimmers on their inside. Driving the passive particles then effectively imposes shear flows, which per-
sistently acts on the inside microswimmers. Their resulting behavior reminds of the one of circle swimmers although with varying swimming
radii.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5099554., s

I. INTRODUCTION

From a fundamental point of view, the study of active
microswimmers1–6—i.e., micronsized self-propelling particles sus-
pended in a fluid—is interesting already because of the inherent
nonequilibrium nature of self-propelling particles.7–10 Unusual col-
lective behavior arises from this feature, e.g., motility-induced phase
separation (MIPS)11–17 and laning.10,18–22 Moreover, on the applied
side, natural biological microswimmers1,23–30 occur in almost all
locations on Earth, including the human body, and artificial
microswimmers31–36 may in the near future be used in medical
and technical applications on the microscale, e.g., for precise drug

delivery,37–41 for noninvasive surgery,39,42,43 when guiding sperm
cells,44 and to power microengines.45–47

Both biological and artificial microswimmers typically operate
under complex conditions.6 For example, the complexity can arise
from steric confinement of the swimmers48–53 or be induced by a
complex dispersion medium.54–59 Here, we consider the comple-
menting case of complexity caused by interactions between different
swimmer species as can occur in a diverse set of situations.

In medical contexts, active multispecies systems (including
both active–active and active–passive mixtures) appear when active
agents, e.g., pathogenic bacteria or cargo-delivering microrobots,
interact with (similar-sized) human cells. Furthermore, real-world
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microorganisms can change between motile and nonmotile (i.e.,
active and passive in our notation) behavior during their life with the
organization in many-particle biofilms60,61 and active carpets62,63 as
examples for extreme cases. Also, different mutant lines of the same
bacterial species can show different motility properties; see, e.g.,
motile and nonmotile strains of E. coli bacteria.26 More in general,
subgroups of swimmers may be identified if a strong polydisper-
sity, e.g., of swimming speeds, is present inside a system. Finally, at
least two species of swimmers are necessary to construct “heteronu-
clear” (i.e., composed of different building blocks) microswimmer
molecules.64–66

Despite these manifold possible applications, studies on mix-
tures of microswimmers (and active particles, in general) are still
relatively rare. The problems regarded thus far include predator–
prey dynamics,67,68 mixtures of active rotors with opposite senses
of rotation69,70 (see also the corresponding macroscale equivalent
in Ref. 71), transport of passive V-shaped cargo particles by active
rods in the bulk72–75 and by circle swimmers in channels,76 depletion
interactions between passive particles induced by an active bath,77,78

segregation effects in mixtures of Taylor-line swimmers propelling
by self-deformation,79 mixtures in which the activity is introduced
by an effective colored noise,80 mesoscale transport phenomena
in multispecies microorganism systems,81 and MIPS-like phase
separation in active–passive mixtures.82–86 Furthermore, collective
behavior in mixtures of straight-propelling particles87,88 and those
migrating on circular trajectories89,90 has been studied assuming
Vicsek-type91–93 effective alignment interactions between the swim-
mers. In addition to that, particle-based computer simulations of
binary mixtures of microswimmers with different types of propul-
sion mechanisms, subject to mutual hydrodynamic interactions,
have been performed to quantify the effect on the overall collective
alignment behavior.94

In the present work, we cover multicomponent microswim-
mer suspensions subject to external potentials. Different species
here are mutually interacting, both via steric interaction potentials
and via (far-field) hydrodynamic interactions. The latter may, fol-
lowing classical statistical mechanics (for passive particles), affect
the dynamic behavior but, in general, not the appearance of static
equilibrium systems. Microswimmer suspensions, however, are
inherently out of equilibrium so that even steady states may be sig-
nificantly altered by hydrodynamic interactions, calling for their
incorporation in the physical description. Additionally, interesting
phenomena can appear when hydrodynamic effects interplay with,
e.g., magnetic interactions.64,95

Generally, supplementing experiments and many-body
particle-based simulations with statistical descriptions, e.g., density-
field equations, allows for thorough theoretical analysis. Ideally,
the observed phenomena are explained in this way and new types
of behavior are predicted, leading to a better understanding of
the underlying physical effects. A well-established way of finding
such density-field equations in nonequilibrium colloidal systems is
dynamical density functional theory (DDFT).48,96–108 Accordingly,
we successfully derived a DDFT for one-species microswimmer
systems and applied it to several example situations in previous
works.106–108 In other contexts, DDFTs for mixtures of passive col-
loidal particles have been developed before.109–113 Here, we com-
bine these two approaches and explicitly allow for different species
of active microswimmers (and/or passive particles). In addition to

the applications listed above, such a DDFT might in the future
help to find dynamic correlation functions in one-component sys-
tems via “test-particle” methods.108,114,115 We remark that multi-
species DDFT approaches can also be used to describe the dynamics
of other kinds of active matter, e.g., the growth of tumors in cell
tissues.116

Below, the employed microswimmer model—introduced in
previous works94,106–108—and its implications for hydrodynamic
interactions are overviewed in Sec. II. It is then used in Sec. III
as an input to derive the statistical theory, namely, the multi-
species dynamical density functional theory for microswimmers.
Subsequently, several applications of the theory are discussed
in Sec. IV, where we confine ourselves to planar arrange-
ments within three-dimensional fluids. First, extending the one-
component case analyzed previously,106,107 we explore binary mix-
tures of microswimmers in an external trap and find additional
steady states resulting from interspecies interactions. Second, the
possibility of emergent overall orientational order due to hydro-
dynamic interactions in binary mixtures of microswimmers is dis-
cussed. Third, microswimmers confined inside an externally driven
ring of passive colloidal particles are investigated. The passive par-
ticles induce a shear flow that the enclosed active swimmers are
exposed to. Finally, a short summary and an outlook are given in
Sec. V.

II. SWIMMER MODEL AND THE RESULTING
HYDRODYNAMIC INTERACTIONS

Before a particle-scale statistical description can be devel-
oped in Sec. III, an appropriate discretized swimmer model must
first be defined. In particular, the hydrodynamic interactions
between individual swimmers are specified below. For this pur-
pose, we briefly review the previously introduced minimal swimmer
model.94,106–108

Since a microswimmer cannot exert a net force on the sur-
rounding liquid,1,117 the far-field fluid flow around a swimmer (to
lowest order) can typically be described as if it were caused by
a force dipole acting on the fluid. (Exceptions are “neutral-type”
swimmers with a vanishing time-averaged force-dipole contribu-
tion,118–121 which only feature higher-order multipole terms in the
far-field flow caused, e.g., by an effective force quadrupole.) Here, we
explicitly resolve the force dipole by two oppositely oriented forces
of equal magnitude.

Depending on whether the forces push out or pull in the fluid
along the axis of self-propulsion, one distinguishes between pusher
(extensile) and puller (contractile) microswimmers.122,123 Conse-
quently, pushers draw in the fluid from the transverse directions,
while pullers expel it along them. Our model can cover both cases,
as detailed below.

Low Reynolds numbers—as are typical for microswimmers1—
and incompressibility of the fluid are henceforth assumed. Particu-
larly, this means that the response of the fluid to a force is linear,
overdamped, and instantaneous. In the bulk, the analytically known
Oseen tensor then explicitly connects the effect of a pointlike force
center to the resulting fluid flow.124–126 For finite-sized spherical par-
ticles subject to net forces and torques, the way to find (approximate)
expressions for the induced hydrodynamic interactions between
them is well-established.125,126
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This said, we now detail our minimal microswimmer model,
see Fig. 1, referring to one swimmer labeled by i. In this model, a no-
slip boundary encloses the spherical swimmer body, the latter being
centered at position ri and being of radius ai. Below, vi and ωi denote
the velocity and angular velocity of the sphere, respectively.

Additionally, two oppositely oriented forces

fi± = ±fi n̂i (1)

of equal magnitude are exerted by the swimmer onto the surround-
ing fluid at positions

ri+ = ri + αi Li n̂i, (2)
ri− = ri − (1 − αi)Li n̂i, (3)

respectively, relative to its body center. They move and rotate along
with the sphere and create the fluid flow that (self-)propels the swim-
mer. Here, n̂i is the unit vector describing the orientation of the
axially symmetric swimmer, Li > 2ai is the distance between the two
force centers, and |f i| sets the magnitude of the forces. Depending on
the sign of f i, either pusher (f i > 0) or puller (f i < 0) microswimmers
are constructed. Furthermore, the real number αi (with ai/Li < αi <

FIG. 1. Force-dipole-based minimal microswimmer model.106 Around a central
sphere of radius ai , two antiparallel equal-magnitude forces fi± = ±fin̂i are
exerted asymmetrically onto the fluid. The sphere is transported by the resulting
fluid flow [streamlines are shown, with dark (red) line segments corresponding to
high magnitudes and light (yellow) ones to low magnitudes of the local fluid flow] for
αi ≠ 1/2. A dashed circle of diameter σ i indicates the effective swimmer size due to
steric interactions between the swimmers. (a) For f i > 0, a pusher microswimmer
is constructed, which expels fluid along its symmetry axis and draws fluid in from
the sides. (b) For a puller microswimmer (f i < 0), the directions of the fluid flow are
inverted.

1/2) is a geometric parameter, see Fig. 1, that quantifies the break-
ing of the front–rear symmetry, which implies self-propulsion. The
swimmer self-propels in the direction of n̂i for pushers, see Fig. 1(a),
and −n̂i for pullers, see Fig. 1(b).

Moreover, an isotropic steric interaction between the swim-
mers is assumed that avoids unphysical overlap between force cen-
ters and bodies of different swimmers. As indicated in Fig. 1 and fur-
ther detailed later, the effective center-to-center range of the steric
interactions is denoted by σi.

Next, we specify the hydrodynamic interactions in a system of
N potentially different such model swimmers, labeled by i = 1, . . ., N.
For shorter notation, we furthermore define the phase-space coordi-
nate Xi = {ri, n̂i} of each swimmer i. In our overdamped system
of microswimmers in suspension, vi and ωi follow instantaneously
from the microstate XN

= {X1, . . . ,XN}.
In principle, hydrodynamic interactions are many-body inter-

actions.124–126 Yet, already the lowest-order contributions beyond
pairwise interactions are of fourth order in the ratio of body size
to swimmer distance125 and can be neglected when one is primarily
interested in the effect of far-field hydrodynamic interactions, e.g.,
in semidilute suspensions.127–131 This is further supported by our
use of repulsive steric interactions between swimmers, as detailed
below, that keep them at distances from each other that are signifi-
cantly larger than their hydrodynamic radii ai; see also Fig. 1. Thus,
here we only account for pairwise interactions and restrict ourselves
to an expansion up to (including) the third order, also known as the
Rotne-Prager level.132,133

Following this idea, vi and ωi are connected to the (nonhydro-
dynamic) forces Fj and torques Tj acting on the swimmer bodies
j = 1, . . ., N and the self-propulsion forces that the swimmers exert
via106

⎡
⎢
⎢
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⎤
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⎥
⎥
⎦
=

N

∑
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+
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⎥
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⎦
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⎠
. (4)

Here, the mobility tensors representing the passive hydrody-
namic interactions between two swimmer bodies i ≠ j are given
by106,125,132,133

μttij =
1

6πη
(

3
4rij
(1 + r̂ijr̂ij) +

a2
i + a2

j

4
(

1
rij
)

3

(1 − 3 r̂ijr̂ij)), (5)

μrrij = −
1

8πη
1
2
(

1
rij
)

3

(1 − 3 r̂ijr̂ij), (6)

μtrij = μ
rt
ij =

1
8πη
(

1
rij
)

3

rij×, (7)

where η is the dynamic viscosity of the fluid, “×” denotes the outer
vector product, 1 represents the identity matrix, rij = rj − ri is the
distance vector, rij = |rij| denotes its absolute value, and r̂ij = rij/rij is
the corresponding unit vector. Additionally, the passive “self ” (i.e.,
i = j) mobilities read (no summation over repeated indices in these
expressions)

μtt
ii = μ

t
i 1, μrr

ii = μ
r
i 1, μtr

ii = μ
rt
ii = 0, (8)

with
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μt
i = 1/(6πηai), μr

i = 1/(8πηa3
i ). (9)

Next, the active contribution to Eq. (4) is given by the tensors106

Λtt
ij = μ

tt+
ij − μ

tt−
ij , (10)

Λrt
ij = μ

rt+
ij − μ

rt−
ij , (11)

with

μtt±
ij =

1
8πηr±ij

(1 + r̂±ij r̂
±
ij ) +

a2
i

24πη(r±ij )
3 (1 − 3 r̂±ij r̂

±
ij ), (12)

μrt±
ij =

1

8πη(r±ij )
3 r±ij×, (13)

and

r+
ij = rij + αj Lj n̂j, (14)

r−ij = rij − (1 − αj)Lj n̂j. (15)

As can be seen, there is only little change to the one-species case
(ai = aj ≡ a)106 at this order of the expansion in ak/rij, k = i, j, namely,
only in Eq. (5).

Setting i = j in Eqs. (10) and (11), the velocity and angular
velocity of a free swimmer i are obtained as94

v0i =
ai

2Li
1 − 2αi

αi(1 − αi)
(3 −

a2
i

L2
i

1 − αi + α2
i

α2
i (1 − αi)2 )μ

t
i fi n̂i (16)

and, respectively, ω0i = 0. Thus, in the absence of thermal noise and
outer influences, this kind of swimmer self-propels along a straight
trajectory. Corresponding circle swimmers of axial asymmetry and
a nonvanishing ω0i were considered in a previous work.107

We remark that, for simplicity, we here do not account for the
distortions caused by the finite spherical swimmer bodies on the flow
field induced by the active force centers.126,134 That is, when dis-
cussing the active mobility tensors Λtt

ij and Λrt
ij for i ≠ j, in effect, we

only consider terms in aj/Lj to the leading order.
Finally, the forces and torques in Eq. (4) remain to be defined.

First, we set the overall potential in our system of N swimmers as

U(r1, . . . , rN) =
N

∑
k=1

ukext(rk) +
N

∑
k, l=1; k<l

ukl(∣rk − rl∣). (17)

Here, the external potentials ukext can differ for different parti-
cles k. Additionally, pairwise steric interactions are introduced via
ukl(|rk − rl|), which we specify for the applications in Sec. IV as the
GEM-4 potential135,136

ukl(∣rk − rl∣) = 𝜖
kl
0 exp(−(

∣rk − rl∣
σkl

)

4

), (18)

with the potential strength 𝜖kl0 and the effective diameter σkl = (σk
+ σ l)/2 being set for each pair k and l.

The forces Fj in Eq. (4) then read

Fj = −kBT∇rj lnP −∇rjU(r1, . . . , rN), (19)

where the effect of thermal forces enters via the first term based
on the effective entropic potential,137 which involves the microstate
probability density P = P(XN , t), the Boltzmann factor kB, and the
temperatureT of the system. This expression ensures that the correct
(translational) diffusion terms eventually appear in the statistical
description in Sec. III.

Similarly, the torques in Eq. (4) are given by

Tj = −kBT n̂j ×∇n̂j lnP. (20)

Again, this expression correctly reproduces (rotational) diffusion in
the statistical description; see Sec. III.

III. DERIVATION OF THE DYNAMICAL DENSITY
FUNCTIONAL THEORY

In this section, we derive the partial differential equations
describing the dynamical microscopic statistics of a multicompo-
nent microswimmer system via dynamical density functional the-
ory (DDFT), building on the derivations of the one-component
case.106,107 For this purpose, the hydrodynamic swimmer model
overviewed in Sec. II is used as an input. The resulting theory
covers, combines, and extends several previously considered theo-
ries for systems of, e.g., one-species microswimmer suspensions,106

“dry”—i.e., not hydrodynamically interacting—self-propelled parti-
cles,48,105 hydrodynamically interacting passive colloidal particles,138

and binary mixtures of dry passive colloidal particles.109

First, we specify our system, which contains two different
species of microswimmers suspended in a surrounding bulk fluid.
For these species, the number of corresponding swimmers in the
system is given by NA and NB, respectively, adding up to a total of
N = NA + NB swimmers. Here, we order the swimmers by species,
such that swimmers 1, . . ., NA belong to the first species and swim-
mers NA + 1, . . ., N to the second species. Additionally, a constant
temperature T of the fluid and a constant volume of the system are
assumed. We adhere to the swimmer model introduced in Sec. II,
with all swimmers of species ν ∈ {A, B} featuring the same parame-
ters aν, f ν, αν, Lν, and σν. Setting f ν = 0, also passive particles can be
described accordingly, i.e., active–passive mixtures are covered by
our theory as well.

Our starting point to derive the statistical description is the
many-body Smoluchowski equation137

∂P
∂t
= −

N

∑
i=1
(∇ri ⋅ (viP) + (n̂i ×∇n̂i) ⋅ (ωiP)) (21)

for the overdamped dynamics of our microswimmers. Here,
P = P(X1, . . ., XN , t) denotes the microstate probability density of
the corresponding configuration at time t. The velocities vi and the
angular velocities ωi are again related to the forces, torques, and the
self-propulsion mechanisms via Eq. (4).

Next, we introduce Xm
A = {X1, . . . ,Xm} and Xn

B
= {XNA+1, . . . ,XNA+n} as short notations for the sets containing the
phase-space coordinates of the first m swimmers of species A and,
respectively, the first n swimmers of species B in the system. Since
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all swimmers are identical, we now define, for m ≤ NA and
n ≤ NB, the reduced (m, n)-swimmer density ρ(m,n)

(Xm
A ,Xn

B, t) of
finding (any) m swimmers of species A and (any) n swimmers of
species B at the coordinates indicated in the argument. It is obtained
from the full probability distribution P(XNA

A ,XNB
B , t) by integrating

out the degrees of freedom of NA − m swimmers of species A and
NB − n swimmers of species B, reading

ρ(m,n)
(Xm

A ,Xn
B, t) =

NA!
(NA −m)!

NB!
(NB − n)! ∫

dXm+1⋯∫ dXNA

× ∫ dXNA+n+1⋯∫ dXNA+NB P(X
NA
A ,XNB

B , t).

(22)

Here, the prefactors result from the considered indistinguishabil-
ity between swimmers of the same species. Particularly, we define
the one-swimmer densities ρA(X, t) ∶= ρ(1,0)(X, t) and ρB(X, t)
∶= ρ(0,1)(X, t). Instead of referring to one specific swimmer, the
coordinates X now simply identify “a swimmer” of the corre-
sponding species. Furthermore, reduced densities with m + n
= 2 (m + n = 3) will be referred to as two-swimmer (three-swimmer)
densities below.

Our aim is to derive a physically well-grounded, closed set of
coupled dynamical equations for the two one-swimmer densities.
Thus, eventually, there shall be no remaining explicit dependence on
the (generally unknown) higher-order densities. The starting point
for our derivation is the many-body Smoluchowski equation given
in Eq. (21). We first integrate out all swimmer coordinates except
for those of one swimmer of species A. Second, we integrate out
in the initial Eq. (21) all swimmer coordinates except for those of
one swimmer of species B. As a result, we obtain one dynamical
equation for ρA(X, t) and one for ρB(X, t), respectively. These equa-
tions (given below) form a coupled set but at this point still contain
higher-order densities and thus require an additional closure, as will
be addressed afterward via methods of dynamical density functional
theory.

The corresponding equation for species A reads

∂ρA(X, t)
∂t

= −∇r ⋅ (J tt
A + J tr

A + J ta
A + K tt

AA + K tr
AA + K ta

AA + K tt
AB

+Ktr
AB + Kta

AB) − (n̂ ×∇n̂) ⋅ (J rt
A + J rr

A + J ra
A + K rt

AA

+Krr
AA + Kra

AA + Krt
AB + Krr

AB + Kra
AB). (23)

In this expression, the current densities labeled as J ⋅⋅⋅ do not involve
hydrodynamic interactions between swimmers. These current den-
sities are given by

J tt
A = − μ

t,A
(kBT∇r ρA(X, t) + ρA(X, t)∇r uA

ext(r)

+ ∫ dX′ρ(2,0)
(X,X′, t)∇ruAA

(∣r − r′∣)

+ ∫ dX′ρ(1,1)
(X,X′, t)∇ruAB

(∣r − r′∣)), (24)

J ta
A = fAΛ

tt,AA
r,X ⋅ n̂ ρA(X, t), (25)

J rr
A = − kBT μr,A n̂ ×∇n̂ ρA(X, t), (26)

J tr
A =J rt

A = J ra
A = 0. (27)

In contrast to that, the current densities involving hydrodynamic
interactions between pairs of swimmers of species A follow as

Ktt
AA= −∫ dX′ μtt,AA

r,r′ ⋅ (kBT∇r′ρ(2,0)
(X,X′, t)

+ ρ(2,0)
(X,X′, t)∇r′(uA

ext(r
′
) + uAA

(∣r − r′∣))

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)), (28)

Ktr
AA= −∫ dX′ kBT μtr,AA

r,r′ (n̂
′
×∇n̂′)ρ

(2,0)
(X,X′, t) = 0, (29)

Kta
AA= fA∫ dX′Λtt,AA

r,X′ ⋅ n̂
′ρ(2,0)

(X,X′, t), (30)

Krt
AA= −∫ dX′ μrt,AA

r,r′ (kBT∇r′ρ(2,0)
(X,X′, t)

+ ρ(2,0)
(X,X′, t)∇r′(uA

ext(r
′
) + uAA

(∣r − r′∣))

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)), (31)

Krr
AA= −∫ dX′ kBT μrr,AA

r,r′ ⋅ (n̂
′
×∇n̂′)ρ

(2,0)
(X,X′, t) = 0, (32)

Kra
AA=fA∫ dX′Λrt,AA

r,X′ n̂′ρ(2,0)
(X,X′, t). (33)

Third, the current densities associated with hydrodynamic effects of
swimmers of species B on swimmers of species A are

Ktt
AB= −∫ dX′ μtt,AB

r,r′ ⋅ (kBT∇r′ρ(1,1)
(X,X′, t)

+ ρ(1,1)
(X,X′, t)∇r′(uB

ext(r
′
) + uAB

(∣r − r′∣))

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)), (34)

Ktr
AB= − ∫ dX′ kBT μtr,AB

r,r′ (n̂
′
×∇n̂′)ρ

(1,1)
(X,X′, t) = 0, (35)

Kta
AB= fB∫ dX′Λtt,AB

r,X′ ⋅ n̂
′ρ(1,1)

(X,X′, t), (36)

Krt
AB= −∫ dX′ μrt,AB

r,r′ (kBT∇r′ρ(1,1)
(X,X′, t)

+ ρ(1,1)
(X,X′, t)∇r′(uB

ext(r
′
) + uAB

(∣r − r′∣))

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)), (37)

Krr
AB= −∫ dX′ kBT μrr,AB

r,r′ ⋅ (n̂
′
×∇n̂′)ρ

(1,1)
(X,X′, t) = 0, (38)

Kra
AB= fB∫ dX′Λrt,AB

r,X′ n̂′ρ(1,1)
(X,X′, t). (39)
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Here, the tensors μ⋅⋅⋅⋅ and Λ⋅⋅⋅⋅ follow from the definitions in Eqs. (5)–
(15) by inserting the parameters corresponding to the (phase-space)
coordinates given in the subscripts and the combination of species
referred to in the superscripts. The current densities Ktr

AA, Krr
AA,

Ktr
AB, and Krr

AB vanish for spherical swimmer bodies because the cor-
responding mobility tensors are independent of n̂′; see Eqs. (6)
and (7). Integrating the remaining gradient expressions over the
closed surface of the unit sphere yields zero in each case. For
nonspherical swimmer bodies, however, these current densities
(as well as J tt

A , J rt
A , and J ra

A ) could be nonzero. Moreover, we
remark that all Ks become zero if hydrodynamic interactions are
neglected.

An analogous dynamical equation for ρB(X, t) follows by
replacing A → B, B → A, and ρ(m ,n)

→ ρ(n ,m). Moreover, because of
our convention of ordering species coordinates by first A and then
B, we need to replace

ρ(1,1)
(X,X′, t) → ρ(1,1)

(X′,X, t),

ρ(1,2)
(X,X′,X′′, t) → ρ(2,1)

(X′,X′′,X, t),

ρ(2,1)
(X,X′,X′′, t) → ρ(1,2)

(X′′,X,X′, t),

ρ(2,1)
(X,X′′,X′, t) → ρ(1,2)

(X′,X,X′′, t).

Obviously, Eqs. (24)–(39) depend on unknown higher-order
densities. In principle, one can now find dynamical equations for
these quantities by applying corresponding integral operations on
Eq. (21), but the resulting equations again contain unknown densi-
ties of even higher order. This escalating loop is typical for BBGKY-
like hierarchies139 and must be truncated and closed by appropriate
approximations of the higher-order densities, e.g., as functions of
the one-swimmer densities. In the following, DDFT methods will be
employed for this purpose.

The main step in DDFT96–105 is the adiabatic approximation.
It transfers equilibrium closure relations established in (classical)
density functional theory (DFT) to the nonequilibrium case. Par-
ticularly, DDFTs imply that the higher-order densities relax faster
than the one-swimmer densities102 as is conceivable for typical over-
damped systems of colloidal particles (i.e., at low Reynolds numbers)
and thus also for microswimmers.106

In equilibrium, DFT states that each observed density pro-
file results from exactly one, uniquely specified external potential
working on the corresponding particles.97–101,104,140 We call these
potentials Φν

ext(X), ν = A, B, for the two species in our case. DDFT
assumes these relations to hold at any time t. Thus, the external
DFT potentials become time-dependent, and we denote them by
Φν

ext(X, t). We remark that the equilibrium relations strictly hold
only for f ν = 0, ν = A, B, i.e., for passive particles. This limits the
applicability of the theory when activity-induced correlation effects
in the higher-order densities dominate the behavior of the sys-
tem. Nevertheless, the overdamped nature of the systems favors the
DDFT approach. Previously, bulk swimmer–swimmer pair distribu-
tion functions have been determined108 by combining DDFT with a
Percus-like141 test-particle protocol.

We now discuss the above-introduced virtual external poten-
tials, which may (and generally will) differ for the two species. In
contrast to the “real” external potential introduced in Eq. (17), a
dependence on the orientations of the swimmers here is allowed

and indeed even needed when the distributions of the orientations
become nonuniform.

It must be stressed that these virtual potentials do not need
to be determined explicitly. Repeating usual steps in derivations of
DDFTs, we will in the following show two different ways of express-
ing Φν

ext(X, t) so that they can be eliminated from the mathematical
description. Accordingly, we obtain expressions that help us to close
the above BBGKY-like set of equations.

We start from the equilibrium grand potential as a functional
of the one-swimmer densities, which is minimal for the equilibrium
density distributions. The general ansatz for this functional can be
written as109

Ω[ρA, ρB] =∑
ν=A,B
(F ν

ext[ρν] + F ν
id[ρν]) + Fexc[ρA, ρB]. (40)

Here, all terms on the right-hand side except for the last one are
known analytically. Namely,

F ν
id[ρν] = kBT∫ dX ρν(X)( ln(λ3

νρν(X)) − 1), (41)

ν = A, B, is the ideal gas part, with λν being the corresponding ther-
mal de Broglie wavelength λν. The contributions due to the external
DFT potentials read

F ν
ext[ρν] =∫ dX ρν(X)Φν

ext(X), (42)

ν = A, B. For our purposes, we may assume the chemical potentials
to be combined with the external potentials.

Finally, the third contribution Fexc includes interactions
between the particles and represents the excess free energy beyond
the ideal gas part. In almost all situations, an exact expression for
Fexc is not known analytically, and it must be approximated by
an appropriate functional depending on the case at hand. Typi-
cally, this assumption needs to be carefully tested against experi-
mental and simulational results. Nevertheless, the general theoret-
ical framework up to this point applies to any interaction potential,
here independent of the orientations of the swimmers (in principle,
this restriction could be lifted, e.g., when describing rodlike active
particles48,142).

In equilibrium, the actual magnitude of the grand potential is
found by minimizing the grand potential functional over all possi-
ble density distributions. Thus, the equilibrium density fields ρeq

ν (X)
satisfy

0 =
δΩ

δρν(X)
∣

ρν≡ρeq
ν

(43)

for ν = A, B. Inserting Eqs. (40)–(42) leads to

−Φν
ext(X) = kBT ln(λ3

νρ
eq
ν (X)) +

δFexc

δρν(X)
∣

ρν≡ρeq
ν

(44)

for ν = A, B.
Second, we employ standard equilibrium statistical mechan-

ics.143 In equilibrium, the static system properties are set completely
by the temperature and the overall potential U = U(X1, . . ., XN)
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as defined in Eq. (17), writing Φν
ext(X) instead of uνext(r). Thus, the

microstate probability density is given by

P ≡ Peq
∝ exp( − βU), (45)

where β = (kBT)−1.
Applying the gradient with respect to the position of the first

swimmer, which is of species A, leads to

∇r1P
eq
= − βPeq⎛

⎝
∇r1Φ

A
ext(X1) +∇r1

NA

∑
j=2

uAA
(∣r1 − rj∣)

+∇r1

NA+NB

∑
j=NA+1

uAB
(∣r1 − rj∣)

⎞

⎠
. (46)

Since swimmers of the same species are considered to be identical
and indistinguishable, we may write

kBT∇rρeq
A (X) = − ρ

eq
A (X)∇rΦA

ext(X)

−∫ dX′ ρ(2,0),eq
(X,X′)∇ruAA

(∣r − r′∣)

− ∫ dX′ ρ(1,1),eq
(X,X′)∇ruAB

(∣r − r′∣) (47)

after integrating over the coordinates of all but the first swimmer of
species A and using Eq. (22). This constitutes a lowest-order mem-
ber of the binary-mixture translational Yvon-Born-Green (YBG)
relations.139,143 Combining Eqs. (44) and (47), ΦA

ext(X) is eliminated
and

∫ dX′ ρ(2,0)
(X,X′, t)∇ruAA

(∣r − r′∣)

+ ∫ dX′ ρ(1,1)
(X,X′, t)∇ruAB

(∣r − r′∣)

= ρA(X, t)∇r
δFexc

δρA(X, t)
(48)

is obtained. Here, we now applied the adiabatic approximation
and also switched to a time-dependent description. This equation
is inserted into Eq. (24) on our way of closing our dynamical
equations.

Based on Eqs. (22), (44), and (45), i.e., again applying the
adiabatic approximation, we find two further helpful relations,
namely,

kBT∇r′ρ(2,0)
(X,X′, t) + ρ(2,0)

(X,X′, t)∇r′uAA
(∣r − r′∣)

+ ∫ dX′′ρ(2,1)
(X,X′,X′′, t)∇r′uAB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(3,0)
(X,X′,X′′, t)∇r′uAA

(∣r′ − r′′∣)

= kBT ρ(2,0)
(X,X′, t)∇r′ ln(λ3

A ρA(X′, t))

+ ρ(2,0)
(X,X′, t)∇r′

δFexc

δρA(X′, t)
(49)

and

kBT∇r′ρ(1,1)
(X,X′, t) + ρ(1,1)

(X,X′, t)∇r′uAB
(∣r − r′∣)

+ ∫ dX′′ρ(1,2)
(X,X′,X′′, t)∇r′uBB

(∣r′ − r′′∣)

+ ∫ dX′′ρ(2,1)
(X,X′′,X′, t)∇r′uAB

(∣r′ − r′′∣)

= kBT ρ(1,1)
(X,X′, t)∇r′ ln(λ3

B ρB(X′, t))

+ ρ(1,1)
(X,X′, t)∇r′

δFexc

δρB(X′, t)
. (50)

Analogs for species B follow after applying to Eqs. (48)–(50) the
replacements listed below Eq. (39).

Inserting the above relations into Eqs. (24), (28), (31), (34), and
(37) yields

J tt
A = − μ

t
A(kBT∇rρA(X, t) + ρA(X, t)∇r uA

ext(r)

+ ρA(X, t)∇r
δFexc

δρA(X, t)
), (51)

Ktt
AA = −∫ dX′ ρ(2,0)

(X,X′, t) μtt,AA
r,r′ ⋅ jA(X

′, t), (52)

Krt
AA = −∫ dX′ ρ(2,0)

(X,X′, t) μrt,AA
r,r′ jA(X

′, t), (53)

Ktt
AB = −∫ dX′ ρ(1,1)

(X,X′, t) μtt,AB
r,r′ ⋅ jB(X

′, t), (54)

Krt
AB = −∫ dX′ ρ(1,1)

(X,X′, t) μrt,AB
r,r′ jB(X

′, t), (55)

respectively, where we defined the vector fields

jν(X
′, t) = kBT∇r′ ln(λ3

ν ρν(X
′, t)) +∇r′(uνext(r

′
) +

δFexc

δρν(X′, t)
).

(56)

This way, the two-swimmer density in Eq. (24) and all three-
swimmer densities have been eliminated. Again, analogous relations
apply to the dynamical equation for ρB(x, t) and are obtained by
considering the replacements introduced below Eq. (39).

Still, the remaining two-swimmer densities in the K⋅⋅⋅⋅ current
densities must be addressed. For this purpose, as in a previous
work,107 we employ the Onsager-type144 approximations

ρ(2,0)
(X,X′, t) = ρA(X, t) ρA(X′, t) exp(−βuAA

(∣r − r′∣)), (57)

ρ(1,1)
(X,X′, t) = ρA(X, t) ρB(X′, t) exp(−βuAB

(∣r − r′∣)), (58)

ρ(0,2)
(X,X′, t) = ρB(X, t) ρB(X′, t) exp(−βuBB

(∣r − r′∣)). (59)

Here, for |r − r′| smaller than the sum of the radii of the involved
swimmer bodies, we furthermore set the pair densities to zero
to avoid the otherwise-appearing unphysical hydrodynamic diver-
gences. Strictly speaking, this leads to a discontinuity, but typically
the jump is vanishingly small, e.g., exp(−5 exp(−1/16)) ≈ 0.009≪ 1
for 𝜖⋅⋅0 = 5kBT and a⋅ = σ⋅/4; see Eq. (18). This order of magnitude
is sufficiently low to treat the function as basically “smooth” in the
numerical evaluation.
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Equations (57)–(59) implicitly assume gμν(X,X′, t)
≈ exp(−βuμν(∣r − r′∣)) for the pair distribution functions, with μ,
ν ∈ {A, B}. Using these relations is exact for passive equilibrium
systems in the low-density limit139 as the expressions are based on
the assumption that the two involved particles interact only with
each other (and with no third particles). Adapting these relations
to describe semidilute active suspensions thus constitutes a rea-
sonable first-order approximation beyond assuming a constant pair
distribution function. More generally, one could at this point also
insert another reasonable approximation for the pair distribution
function.

Similarly, our (pairwise) treatment of hydrodynamic inter-
actions between the swimmers, see Eqs. (4)–(15), requires suf-
ficiently large distances between the swimmer bodies. First, this
is ensured by the steric interaction between the swimmers when
half of its effective range, i.e., σμν/2 in Eq. (18), is larger than
aκ, ακLκ, and (1 − ακ)Lκ, with μ, ν ∈ {A, B} and κ ∈ {μ, ν}. The
larger the mean distances are between the swimmers, the higher
the accuracy of our description of hydrodynamic interactions will
be. Together with the assumptions involved in Eqs. (57)–(59), we
thus expect our DDFT for multispecies systems of microswimmers
to perform best for (semi)dilute suspensions of swimmers, within
which our steric interaction potentials maintain a significant dis-
tance between the swimmer bodies, even when they are heading for
collisions.

Finally, the excess functional Fexc involving the effective steric
interactions between the swimmers needs to be specified. As appro-
priate for GEM potentials,136 we from now on use a mean-field
approximation, here for our case of binary mixtures, reading

Fexc =
1
2∫

dX∫ dX′ ρμ(X, t) ρν(X′, t) uμν(∣r − r′∣), (60)

with μ, ν ∈ {A, B} and summing over repeated indices. In this way,
our set of coupled dynamical equations for ρA(X, t) and ρB(X, t)
is closed. We remark that, along the same lines, a theory for more
than two different species can be derived as well, leading to a corre-
spondingly further increased number of terms. Here, we continue
by applying the above theory to concrete example situations in
Sec. IV.

IV. APPLICATIONS
In this section, the DDFT derived in Sec. III is applied to sev-

eral illustrative cases. Specifically, for simplicity, these will be setups
in which the positions and orientations of the swimmers are con-
stricted to the xy-plane. Still, a surrounding bulk fluid is considered
with the planar swimmer ensemble embedded therein, allowing for
three-dimensional fluid flows. Possible methods to experimentally
realize this situation could be the confinement of microswimmers to
the interface between two immiscible fluids of identical viscosity η
or the use of optical trapping fields.

In such a setup, the orientation of a swimmer is described by
a single angle ϕ (measured from the x-axis) via n̂ = (cosϕ, sinϕ, 0).
The orientational gradient operator then reduces to n̂ × ∇n̂ = ẑ∂ϕ,
where ẑ is the oriented Cartesian unit vector pointing (upwards) out
of the xy-plane. Furthermore, the phase-space coordinate X in this
situation becomes X = {x, y, ϕ}.

The numerical solution of the coupled set of partial differen-
tial equations derived in Sec. III is then performed on an equidistant
Nx × Ny × Nϕ grid using the finite-volume-method solver FiPy.145

Formally, numerical periodic boundary conditions are imposed on
all coordinates x, y, and ϕ, but hydrodynamic and steric interactions
are cut at a distance chosen such that no (unphysical) interactions
across the boundaries occur. As nevertheless all physical interactions
inside the system should, of course, be accounted for, we further
always set the length of the simulation box in both spatial directions
to at least twice the largest relevant interparticle distance.

Since the orientation-dependent densities ρν(X, t) at time t are
still a function of x, y, and ϕ, they cannot be easily plotted even for
our planar configurations. For displaying our results, we thus further
define the (orientation-integrated) spatial swimmer densities

ρν(r, t) =
2π

∫

0

dϕ ρν(X, t) (61)

and the orientational vector fields

⟨n̂⟩ν(r, t) =
2π

∫

0

dϕ n̂(ϕ) ρν(X, t), (62)

where ν ∈ {A, B}. Moreover, the overall (average) one-species densi-
ties are described by ρ̄ν = A−1

∫Adr ρν(r, t), where A is the area of the
regarded system.

A. Trapped binary swimmer system
While restricting the binary microswimmer configuration to

two spatial dimensions as detailed above, we now additionally intro-
duce radially symmetric quartic trapping potentials given by

uνext(r) = V
ν
0(

r
σ
)

4
, (63)

with potential strengths Vν
0 , distance r = |r| to the center of the

trap, and ν = A, B. As in previous works,106,107 we use a quar-
tic potential—instead of, e.g., a harmonic one (∝r2)—to observe
more pronounced differences between activity-induced off-center
density distributions (see below) and center-heavy equilibrium dis-
tributions for passive particles. Previously reported results for har-
monic traps146,147 showed qualitative agreement with our results for
a quartic potential.106,107 For simplicity, we furthermore from now
on assume that all species-related parameters are the same for both
species, except for f A = −f B > 0. Thus, species A is formed by pushers
and species B represents pullers (of the same strength).

In analogous one-component suspensions,106,107 without any
active drive, the external potential leads to center-heavy distribu-
tions following standard equilibrium statistics. When the active
drive is switched on in the one-component systems, but hydrody-
namic interactions are still neglected, the self-propelled particles
start forming a radially symmetric high-density ring, along which
the outward self-propulsion is balanced by the restoring trapping
force.106,148,149 With hydrodynamic interactions incorporated, this
ring of microswimmers can become unstable against collapsing to
one spot on this ring, which is induced by the hydrodynamic cou-
pling through the resulting fluid flows.106,107,146,147 In parts of the
parameter space, pushers and pullers were observed to behave quite
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differently, with pushers showing a significantly more pronounced
destabilization of the high-density ring and formation of a high-
density spot, while pullers showed a much weaker density variation
along the ring.107

We are now interested in pusher–puller mixtures. There is a
crucial competition between hydrodynamic effects resulting from
the external potential acting on the swimmer bodies and from the
actively introduced forces exerted by the microswimmers them-
selves. We here concentrate on a parameter range for which the
hydrodynamic interactions induced by the self-propulsion mecha-
nism dominate those induced by the external potential force. Con-
cerning our current densities, we thus always check that ∣Kra

⋅⋅ ∣ > ∣Krt
⋅⋅ ∣,

see, e.g., Eqs. (37) and (39), for our chosen parameters.
Numerical results for (steady-state) distributions of pusher–

puller mixtures are shown in Fig. 2, for varying overall densi-
ties of the two species. In strong contrast to the corresponding
one-component systems, for which the (steady-state) distributions
strongly differed between pure pusher and pure puller systems,107

we here frequently observe the same qualitative behavior when both
species are present simultaneously. For instance, in Fig. 2(a), push-
ers transfer their “spot-forming” tendency onto the pullers, which
in the absence of the pushers would show a ringlike arrangement
instead of the spot. However, the plots in Fig. 2 indicate the rough
relation ρA(r, n̂, t)/ρ̄A ≈ ρB(r, − n̂, t)/ρ̄B. Choosing, e.g., |f A| ≠ |f B|,
this approximate relation breaks down as the two species aggregate
at different distances from the origin, but for sufficiently small devi-
ations, we still observe a qualitatively similar collective behavior for
both species.

In Fig. 2, the overall density ρ̄B of pullers increases from left
to right, while the overall density ρ̄A for pushers decreases from
the top row to the bottom row. We observe clear spot forma-
tion in Figs. 2(a) and 2(b), while Fig. 2(c) shows less-pronounced
instabilities of the high-density ring. Thus, we may conclude that
the dominating species imposes its behavior onto the other species.

For Figs. 2(c) and 2(e), where ρ̄A = ρ̄B and therefore
ρA(r, n̂, t) ≈ ρB(r,−n̂, t) holds, the probability currents associated
with the rotation due to the active forces approximately cancel each
other by symmetry, e.g., Kra

AA ≈ − Kra
AB, so that only the currents

Krt
⋅⋅ can lead to spot formation. The latter starts to outperform the

rotational diffusion for the case depicted in Fig. 2(c) but not for the
lower overall densities in Fig. 2(e). The instability of the ring here
seems to be a question of high-enough overall density because, e.g.,
∣Krt

AA∣ ∝ ρ̄2
A and ∣Jrr

A ∣ ∝ ρ̄A.
The bottom row of Fig. 2 shows the corresponding density dis-

tributions for a smaller ρ̄A. Thus, a decreased density of pushers leads
to an increased stability of the high-density ring against aggregation
in one spot. When (significantly) more pullers than pushers are in
the system, as in Fig. 2(f), they dominate the overall behavior and
restabilize the high-density ring.

In summary, the majority species seems to dominate the over-
all behavior of the system. A similar conclusion has recently been
drawn for the unconfined motion in pusher–puller mixtures,94

which we will treat as the next example using our theoretical
approach.

At this point, we include a short remark on the perfor-
mance of our theory. We can remove the second species from
our DDFT equations derived in Sec. III by setting ρB(X, t) ≡ 0.
Then, the present set of equations reduces to the previous DDFT
for monodisperse microswimmers.106 In that case, likewise, the sta-
tistical theory was evaluated by exposing the system of swimmers
to a radial external trapping potential, in analogy to the above
consideration for a pusher–puller mixture. There, hydrodynamic
interactions lead to the formation a high-density spot of aligned
swimmers as well, resulting in overall flow fields.106,107 This “hydro-
dynamic fluid pump” had previously been reported in particle-
based computer simulations,146,147 using different swimmer models.
Thus, a qualitative comparison shows that our DDFT reproduces
corresponding general phenomena. Adding another microswimmer

FIG. 2. Steady-state density distribution for binary mixtures of pusher (A) and puller (B) microswimmers in an external trapping potential, see Eq. (63), for varying overall
densities ρ̄A (pushers) and ρ̄B (pullers). All other parameters are held constant at aA = aB = 0.25σ, LA = LB = 0.75σ, αA = αB = 0.4, VA

0 = VB
0 = 0.5 kBT, 𝜖A

0 = 𝜖B
0 = 10 kBT,

and f A = −f B = 600kBT /σ, with σA = σB ≡ σ. The simulation box is of size 18σ × 18σ (only the inner 12σ × 12σ are on display), and the numerical evaluations were performed
on (80 × 80 × 16)-grids. Each pair of plots shows on the left-hand side the results for species A (pushers) and on the right-hand side the corresponding distribution for species
B (pullers). In each plot, the color encodes the (reduced) spatial density profile ρν(r, t)/ρ̄ν (reduced by the average density ρ̄ν), with brighter color corresponding to higher
density, and white arrows indicate the orientational vector field ⟨n̂⟩ν(r, t), as defined in Eqs. (61) and (62), respectively. The overall densities (ρ̄A, ρ̄B) are given (in units of
σ−2) by (a) (0.0123, 0.006 17), (b) (0.0123, 0.009 26), (c) (0.0123, 0.0123), (d) (0.009 26, 0.006 17), (e) (0.009 26, 0.009 26), and (f) (0.009 26, 0.0123). The systems in (a),
(b), and (d) do not reach steady states in a strict sense as the spot formation there is unstable against (spontaneous) movement of the density profile along the rim of the
trap.
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species to the same framework, we expect a similarly successful
performance of the present theory. A direct quantitative compari-
son could be carried out in the future by implementing a suitable
particle picture into many-swimmer computer simulations includ-
ing hydrodynamic interactions and thermal fluctuations, e.g., via
multiparticle collision dynamics150–155/stochastic rotation dynam-
ics.156,157 Then, also higher swimmer densities could be addressed
numerically. Another way to explicitly take into account the induced
hydrodynamic fluid flows in computer simulations could be Lattice-
Boltzmann methods.146,158–161

B. Emergence of polar orientational order
and collective motion in pusher–puller mixtures

In the absence of the spherical trapping potential consid-
ered in Sec. IV A, previous particle-based computer simulations
of planar arrangements of microswimmers with periodic bound-
ary conditions and using the same swimmer model have iden-
tified a tendency of puller microswimmers to develop (global)
collective polar orientational order.94 Related observations were
made in simulations of analogous three-dimensional configura-
tions of squirmer microswimmers.159 Such order in the swim-
mer orientations naturally leads to collective motion, maintain-
ing a common average propulsion direction. Moreover, we have
performed a corresponding linear stability analysis of our DDFT
for planar pure (one-species) pusher or puller systems, with spon-
taneous ordering identified beyond a threshold active drive for
pullers,108 in contrast to pushers. We now address the correspond-
ing two-species situation. In related computer simulations for mix-
tures of pushers and pullers using the same swimmer model,94 it
was found that collective orientational order only develops if the
fraction of pushers is sufficiently small. As we demonstrate, our
DDFT reproduces these results and leads to a more quantitative
insight.

For this purpose, the external potential in our planar arrange-
ment is now set to uext(r) ≡ 0. For simplicity, we assume
that the one-swimmer densities are spatially homogeneous, i.e.,
ρν(X, t) = ρν(ϕ, t)/A, with A denoting the area (considered to be
large) of the periodic plane containing the swimmers and ν ∈ {A, B}.
Then, integrating Eq. (23) over all positions r in the periodic box
leads to

∂ρA(ϕ, t)
∂t

= − ẑ ⋅∫ dr
∂

∂ϕ
(J rr

A +∑
ν=A,B
(Krt

Aν+Kra
Aν)), (64)

with the probability current densities defined in Eqs. (24)–(39).
Following Ref. 108, the current densities Krt

⋅⋅ are neglected for
sufficiently dilute suspensions as all the contained nonvanish-
ing terms scale with three-swimmer densities. Thus, Eq. (64)
reduces to

∂ρA(ϕ, t)
∂t

= kBT μr,A ∂2
ϕρA(ϕ, t)

− fA ∂ϕ∫ dr∫ dX′ ẑ ⋅ (Λrt,AA
r,X′ n̂′)ρ(2,0)

(X,X′, t)

− fB ∂ϕ∫ dr∫ dX′ ẑ ⋅ (Λrt,AB
r,X′ n̂′)ρ(1,1)

(X,X′, t). (65)

Here, the two-swimmer densities are related to the pair distribution
functions via

ρ(2,0)
(X,X′, t) =

ρA(ϕ, t) ρA(ϕ′, t) gAA(X,X′, t)
A2 , (66)

ρ(1,1)
(X,X′, t) =

ρA(ϕ, t) ρB(ϕ′, t) gAB(X,X′, t)
A2 . (67)

Thus, Eq. (65) becomes

∂ρA(ϕ, t)
∂t

= kBT μr,A ∂2
ϕρA(ϕ, t)

− fA ∂ϕ[ρA(ϕ, t)∫ dϕ′ ρA(ϕ′, t)GAA(ϕ − ϕ′, t)]

− fB ∂ϕ[ρA(ϕ, t)∫ dϕ′ ρB(ϕ′, t)GAB(ϕ − ϕ′, t)], (68)

where the hydrodynamic interactions are comprised by the coupling
functions

Gμν(ϕ − ϕ′, t) ∶=∫ dr∫ dr′
ẑ ⋅ (Λrt,μν

r,X′ n̂
′
) gμν(X,X′, t)
A2 , (69)

with μ, ν ∈ {A, B}. An analogous dynamical equation for species B is
obtained by replacing A→ B and B→ A. In the following, species A
again represents pushers, and species B represents pullers.

To allow for further analytical treatment, we include additional
simplifying assumptions. Considering systems in which all active
agents propel with the same amplitude of the active drive and fur-
ther are identical in all other microscopic parameters, the coupling
and pair distribution functions, see Eq. (69), were determined in
Ref. 108 by a modified Percus test-particle method. For this pur-
pose, hydrodynamic interactions were neglected and only the inter-
play of self-propulsion and steric interactions was evaluated. As
a result, we had extracted and approximated the basic functional
form as108

Gμν(ϕ − ϕ′) = C̃μν sin(ϕ − ϕ′), (70)

where C̃AA = C̃BB = C̃/A > 0 is positive for same-species coupling
and C̃AB = C̃BA = − C̃/A. This distinction follows from the fact
of our puller microswimmers propelling into the direction of − n̂
and/or − n̂′; see Fig. 1. Since ϕ and ϕ′ parameterize the orienta-
tions of n̂ and n̂′, respectively, the swimming direction of a puller
is shifted by an additional angle π relatively to ϕ and/or ϕ′. If only
one of the angles ϕ and ϕ′ refers to a puller, the additional shift of
ϕ − ϕ′ by π requires a minus sign in the prefactor of sin(ϕ − ϕ′)
in Eq. (70).

The value of C̃ > 0 generally depends on the overall density and
the microscopic parameters. (Some further positive constant param-
eters are here incorporated by the coefficient C̃ when compared to
the amplitude C in Ref. 108.) Since a similarly simple analytically
treatable expression is still missing for hydrodynamic interactions
included on the level of pair distribution functions, we use Eq. (70)
as an input for our further calculations.

We assume that, if collective order arises, there is only one com-
mon direction of polar ordering, i.e., in this case, species A and B
collectively propel along a common direction. This assumption is
motivated by previous simulation results.94 We now test the lin-
ear stability of the uniform distributions ρν(ϕ, t) ≡ Nν/(2π) against
the emergence of collective orientational ordering. To this end, the
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ansatz ρA(ϕ, t) = NA/(2π) + 𝜖A(t) cos(ϕ − ϕ0) and ρB(ϕ, t) = NB/(2π)
+ 𝜖B(t) cos(ϕ − ϕ0 + π), with an arbitrary angle ϕ0 and |𝜖ν(t)|≪ Nν
for ν ∈ {A, B}, is inserted into Eq. (68) and the equivalent equa-
tion for species B. This leads to the coupled ordinary differential
equations

d
d t
[
𝜖A(t)
𝜖B(t)

] =M ⋅ [
𝜖A(t)
𝜖B(t)

], (71)

with the coefficient matrix

M = −
⎡
⎢
⎢
⎢
⎣

kBTμr,A + mAA mAB

mBA kBTμr,B + mBB

⎤
⎥
⎥
⎥
⎦

, (72)

where mμν ∶= NμfνC̃/(2A).
We recall that species A (pushers) and species B (pullers)

are considered to have the same amplitude of their active drive,
i.e., f A = −f B > 0. Additionally, we keep NA + NB = N con-
stant, i.e., only the ratio of pushers to pullers is varied. More-
over, all other parameters are assumed to be identical for the
two species. Then, the eigenvalues of M are determined as
(− kBTμr,A, − kBTμr,A + fAC̃N(χB − 1/2)/A). Here, the first eigen-
value is always negative, but the second one becomes positive if

kBTμr,A
< fAC̃

N
A
(χB − 1/2), (73)

with χB ∶=NB/N denoting the fraction of pullers. The corresponding
eigenvector is (NA, NB).

Our system can thus be linearly unstable against polar orien-
tational ordering only if the right-hand side of Eq. (73) is positive.
Since f A > 0, this implies that the pullers must outnumber the push-
ers (χB > 1/2). If this condition is satisfied, the active drive addi-
tionally needs to be strong enough, i.e., Eq. (73) sets a threshold
strength for f A = −f B. Particularly, the effect of the active drive and
the hydrodynamic interactions need to outperform rotational dif-
fusion. Furthermore, as indicated by the corresponding eigenvector
(NA, NB), if orientational order arises, it does so simultaneously for
both species.

Our results roughly agree with those in the previous simulation
study.94 We stress that our theory only tests linear instability with
respect to polar orientational ordering and that the above approx-
imations were involved. In particular, the influence of hydrody-
namic interactions on the pair distribution function was neglected.
To address this question, possibly the results of particle-based com-
puter simulations could be used as an input to the theory in the
future.94,162 Since our previous theoretical analysis for single-species
systems indicated polar orientational ordering for puller suspen-
sions but not for pushers,108 we again find that the majority species
imposes its behavior onto the minority species as observed already
for the confined (trapped) mixtures in Sec. IV A.

C. Shear cell
As a third example, we now address a planar circular config-

uration which effectively represents a shear cell. We compose this
shear cell of passive colloidal particles forming an effective circu-
lar rim and active microswimmers trapped inside. The passive par-
ticles are continuously driven along the circular rim of the trap,

inducing a shearlike circular fluid flow inside. In a very loose anal-
ogy, this geometry is similar to setups of Taylor-Couette flow163 but,
of course, here in the limit of low Reynolds numbers. In fact, driving
passive colloidal particles along ringlike trajectories can be realized
experimentally via optical trapping potentials.164

Considering the driven particles (that hydrodynamically inter-
act with the interior microswimmers) as one component of a
binary mixture naturally induces fluid flows to which the enclosed
microswimmers are exposed. This avoids explicitly imposing such
flows as an external flow field.165–168 However, we do not account
in the present work for possible effects of shear banding, which
have been addressed in the context of DDFT as well.166–168 Our
one-body density, particularly for passive particles within the cell,
remains basically unchanged by the translational effects of the
shear flow as expected in the limits of our current theory regard-
ing shear.169,170 Instead, for active microswimmers within the cell,
the induced rotation of the swimmer orientations, coupling to the
directions of self-propulsion, can lead to changes in the spatial
density.

In the context of our theory, the active microswimmers repre-
sent the first species A, while the driven colloidal particles are treated
as species B. Consequently, f B = 0, but we also define an effective
potential of confinement

uB
ext(r) = V

B
0
⎛

⎝
erf(

r − R0 −
1
2σR

σR
) − erf(

r − R0 + 1
2σR

σR
)
⎞

⎠
(74)

for the passive particles, based on the error function erf(s)
= (2/

√
π)∫s0du exp(−u2

). For VB
0 ≫ kBT and R0≫ σR, this potential

effectively anchors the particles on a (small-width) ring of radius R0.
Additionally, the nonconservative driving force

Fd(r) = ωd
ẑ × r
μt,B (75)

is taken into account to describe the continuous circular driving of
the passive particles. Technically, we include it by adding −Fd(r) to
∇ruB

ext(r) in the corresponding equations. Here, ωd is the (signed)
magnitude of the imposed (spatial) angular velocity with which the
passive particles are driven along the ring.

For species A, we again choose the external trapping poten-
tial defined in Eq. (63) but take care when adjusting the potential
strength that (even with f A ≠ 0) it at all times hinders the majority of
the swimmers from reaching the passive particles on the outer ring.
This way, species A and B mainly interact with each other hydrody-
namically, as described by, e.g., the current densities in Eqs. (54) and
(55).

The driven ring of passive colloidal particles of species B is
shown in Fig. 3. For typical parameters, (a) the corresponding den-
sity profile and (b) the hydrodynamic influences on the microswim-
mers of species A are depicted. For the latter, we define for species
A the contribution to the velocity resulting from the fluid flows
induced by species B as

vAB
(r, t) =

Ktt
AB(X, t)
ρA(X, t)

, (76)

and the corresponding contribution to the z-component of the
angular velocity as
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FIG. 3. Density ring of driven passive particles (species B) that impose a flow field on confined microswimmers (species A) on the inside (the density of the latter not
explicitly shown here). The system parameters are aA = aB = 0.25σB, 𝜖BB

0 = 10 kBT, R0 = 11.5σB, σR = 3σB, VB
0 = 50 kBT, NB = 10, and ωdτb = 20 [with Brownian time

τb = σ2
B/(μt,BkBT) and σA = σB ≡ σ]. Numerically, the evaluation is performed on a 256 × 256 grid (in x and y), for a simulation box of size 20σ × 20σ. (a) Ringlike

density distribution of species B (passive particles), reduced by the average density ρ̄B. Brighter colors represent higher densities. (b) Illustration of the resulting steady
hydrodynamic flows exerted on species A (microswimmers) by species B. White arrows indicate the magnitude and direction of vAB(r) according to Eq. (76). The color
code quantifies ωAB(r) according to Eq. (77). (c) Radial distribution of ωAB(r), as extracted from the full numerical evaluation [blue line, the same data as in (b)] and via the
semianalytical approximation (red dashed line) given in Eq. (78).

ωAB
(r, t) = ẑ ⋅

Krt
AB(X, t)
ρA(X, t)

. (77)

Here, the current densities, as defined in Eqs. (54) and (55) in com-
bination with Eqs. (56) and (58), are proportional to ρA(X, t) so
that the above expressions do not diverge when the denominator
vanishes.

The resulting density distribution of species B depicted in
Fig. 3 is basically circularly symmetric and after initial equili-
bration does not vary over time any longer. Still, it represents
the moving passive particles driven by the (tangential) exter-
nal force defined in Eq. (75). The latter is the main source of
the fluid flows induced by particles of species B. Resulting flow
fields can be approximated inside the cell by evaluating the cor-
responding terms in Eqs. (76) and (77) under the assumption of
ρB(X′, t) ≡ NB(2π)−2R−1

0 δ(r′ − R0). Considering the contribu-
tion of Fd(r′) as dominant, ignoring steric interactions between
species A and B, and introducing b = r/R0 < 1, we obtain from
Eq. (77)

ωAB
(r) ≈

3
4

a
R0

ωdNB
1

2π

π

∫
−π

dψ
1 − b cosψ

(1 − 2b cosψ + b2)
3/2

≈
3
4

a
R0

ωdNB(1 +
3
4
b2 +

45
64

b4 + O(b6
)) (78)

for the angular velocity. As shown in Fig. 3(c), there is good quantita-
tive agreement between this approximation [the integral expression
in Eq. (78) is plotted as the dashed line] and the full numerical solu-
tion (solid line). For positions close to the outer ring of the driven
particles of species B, the curve drops, most likely because of the
decreased probability of finding the swimmers and the driven par-
ticles within close distances from each other, formally introduced
by the Onsager-like terms in Eqs. (57)–(59). To leading order in
a, the flow field induced by the driven species B can be similarly
obtained as

vAB
(r) ≈

3
4
aωdNB(ẑ × r̂)

1
π

π

∫
−π

dψ
cosψ

(b2 − 2b cosψ + 1)1/2

≈
3
4
aωdNB(ẑ × r̂)(b +

3
8
b3 +

15
64

b5 + O(b7
)). (79)

We now concentrate on species A that is confined inside the
shear cell. For f A = 0, passive particles are recovered. As seen in
the steady states shown in Figs. 4(a) and 4(b), the distribution
of the inner passive particles remains virtually unaffected by the
external driving of the outer passive particles, except for possible
small deviations that cannot be resolved within the precision of our
numerical discretization scheme. But when the enclosed swimmers
are active (f A ≠ 0), see Figs. 4(c)–4(j), the effects of the induced
shear flows become significant. Figures 4(c) and 4(d) show the sit-
uation of the enclosed swimmers for pushers and pullers without
the external drive, i.e., ωd = 0. Here, for the chosen parameters,
the microswimmers form high-density rings with average orienta-
tions tilted relatively to the outward direction for pushers (c)107 and
radially oriented for pullers (d). The directional sense of the tilt for
pushers is spontaneously chosen by the system as either counter-
clockwise or clockwise (depicted here), depending on the initial-
ization of our numerical evaluation. In contrast to these cases of
vanishing external driving of species B, Figs. 4(e)–4(j) demonstrate
that for ωd ≠ 0, the externally induced shear flows can lead to a
collapse of the steady-state density distributions toward the center
of the confinement. Moreover, with increasing external driving ωd,
both pushers and pullers furthermore show an increasing tendency
of their locally averaged swimming direction to be reoriented by the
externally imposed fluid flow [see Fig. 3(b)]. This explains the dif-
ferent sense indicated by the white arrows for increased ωd from
Figs. 4(c)–4(e).

As a source of this behavior, the shear flow induced by the
external driving of the outer ring persistently rotates the orienta-
tions of the internal swimmers so that the latter are hindered from
efficiently swimming radially outwards against the trapping force.
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FIG. 4. Steady-state density distributions of species A inside the externally
driven ring of passive particles (species B, not shown here). In addition to the
parameters (for species B) given in Fig. 3, we have used ρ̄Aσ2 = 0.001 88,
aA = 0.25σ, LA = 0.75σ, αA = 0.4, VA

0 = 0.1 kBT, 𝜖AA
0 = 𝜖AB

0 = 10 kBT, with
σA = σB = σ, and only the inner area of 16σ × 16σ is shown. Again, brighter
colors indicate higher spatial densities and white arrows reflect the average ori-
entation vector fields, as defined in Eqs. (61) and (62), respectively. [(a) and (b)]
Densities of internally confined passive particles (f A = 0) at magnitudes of the
external driving (a)ωd = 0 and (b)ωdτb = 80 [with Brownian time τb = σ2/(μt,BkBT)].
Within the precision of our numerical discretization scheme, the distributions are
identical. [(c)–(j)] Confined active microswimmers (|f A| = 400kBT /σ) subject to
external driving strengths acting on the outer particles [(c) and (d)] ωdτb = 0,
[(e) and (f)] ωdτb = 40, [(g) and (h)] ωdτb = 80, and [(i) and (j)] ωdτb = 120.
Here, the cases of pushers are depicted on the left-hand side, while those for
pullers are shown on the right-hand side. The induced shear flows lead to an
increased localization toward the center of the cell, together with an induced tilt-
ing of the swimmer orientation, which is more pronounced for pushers than for
pullers.

FIG. 5. Averaged radial component of the external force acting on the trapped
microswimmers vs angular driving speed ωd of the outer passive particles, for
pushers (red squares) and pullers (blue circles), resulting from the steady-state
density distributions displayed in Figs. 4(c)–4(j). Here, r̂ = r/∣r∣ is the spatial unit
vector pointing radially outward. With increasing ωd, the swimmer orientations are
rotated by the induced flow, which hinders the outward self-propulsion. This leads
to increasingly centered density distributions, reducing the exposure to the external
trapping in magnitude.

In this way, the behavior of species A becomes comparable to that of
circle swimmers, i.e., self-propelled particles that additionally feature
an active self-rotation.171–175 Actually, we have observed a similar
phenomenology as in Fig. 4 for increasing inherent curvature of
the trajectories of circle swimmers in Ref. 107. In the present case,
however, the (externally induced) rotation varies with the distance r
from the origin so that the local radius of induced circle-swimming
Rcs(r) ∶= |v0A/ωAB(r)|, determined from the definitions in Eqs. (16)
and (78), is nonconstant. It reaches a maximum at the origin and
decreases with increasing r. For Figs. 4(e)–4(h), the length scale of
Rcs(r) is comparable to the radius of the effective trap so that a
high-density ring is still visible. However, the average orientations
are significantly tilted from the radial direction (especially for pusher
microswimmers). Further increasing the external driving strength,
see Figs. 4(i) and 4(j), leads to more localized density profiles and
circling around the center of confinement.

The increasing localization can be quantified by the (negative)
radial component of the averaged external trapping force experi-
enced by the microswimmer ensemble, as given in Fig. 5 for the
same (steady-state) data as in Figs. 4(c)–4(j). For vanishing angu-
lar driving speed ωd of the outer passive particles, we find a higher
value for pullers (blue circles) than for pushers (red squares), cor-
responding to the more off-center density distribution of pullers
caused by their stronger tendency to show radial orientation. Both
curves drop for increasing ωd. The reason is again the induced shear
flow increasingly hindering the swimmers from self-propelling effi-
ciently against the radial external trapping potential. The drop is
somewhat delayed for our pullers, in accordance with a similar effect
previously seen for circle swimmers in an external trap, where the
pullers also showed a stronger tendency of maintaining a ring of
outward-oriented swimmers.107

In related works, rosettelike trajectories have been reported
for (single) circle swimmers with explicitly time-dependent
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self-propulsion velocities.176,177 Beyond the scope of the present
work, when genuine circle swimmers are confined (as species A)
in our setup, again high-density rings might be observed with aver-
age swimmer orientations along the local radial direction. For this
purpose, the induced rotation ωAB should balance the inherent
self-rotation of the circle swimmers.

V. CONCLUSIONS
In this work, we have presented a dynamical density functional

theory (DDFT) for multispecies suspensions of microswimmers. We
have included (pairwise) hydrodynamic and effective steric interac-
tions between swimmers. In this way, we conceptually extended the
previous one-component equivalent.106–108 The theory is based on
a discrete force-dipole minimal microswimmer model, which has
already been used successfully in several previous works.58,94,106–108

We then applied our theory to three illustrative example situations
of planar swimmer configurations inside a three-dimensional bulk
fluid.

First, binary pusher–puller mixtures in external spherically
symmetric trapping potentials have been discussed. For the two
species only differing in their pusher/puller signature, we found that
the majority species imposes its behavior on the minority species.
For example, pushers at the considered propulsion strength on their
own tend to form concentrated spots on the rim of the trap. There-
fore, if pushers represent the majority species, this spot formation
is conveyed to simultaneously present pullers. Conversely, pullers
by themselves rather tend to form a roughly spherically symmetric
high-density ring on the rim of the trap. Thus, if they represent the
majority in a pusher–puller mixture, also pushers tend to organize
themselves in a corresponding ring structure.

Second, in the absence of any external trapping potential,
pusher–puller mixtures in large periodic boxes have been consid-
ered. In an analytical treatment analogous to the previously stud-
ied one-component case,108 pullers are found to be able to estab-
lish the onset of the collective polar orientational order of the
whole mixture. Accordingly, pullers can induce oriented collective
motion. For this purpose, they need to represent the majority species
and show a sufficiently large magnitude of their active drive. Our
results are qualitatively in line with previous agent-based computer
simulations.94

Third, a microswimmer species is confined inside a circu-
lar ring of externally driven passive particles. The induced shear
flow persistently rotates the confined swimmers and thus can hin-
der them from forming the high-density rings that are typically
observed for sufficiently quick self-propelled particles in radial trap-
ping potentials. Instead, the swimmer densities tend to collapse
toward the center of the confinement. Similar mechanisms have pre-
viously been found for circle swimmers (featuring an inherent self-
rotation) without externally induced shear flows. One future task
could be to focus further on the role of shear flows in our statistical
theory.169,170

In the numerical examples, we have restricted our evaluations
for hydrodynamically interacting microswimmers to small confined
systems that suitably fit into the corresponding simulation box. Nev-
ertheless, in the future, our set of partial differential equations could
be solved numerically as well for (basically infinitely extended) bulk
situations. For this purpose, (true) periodic boundary conditions

are applied to a finite simulation box. Then, because of the long-
range nature of the hydrodynamic interactions, the influence of
all periodic images on the density distribution in the simulation
box must be accounted for. Mathematically, this can be achieved
by applying Ewald summation techniques178 to the mobility ten-
sors. Corresponding results have been derived for passive parti-
cles179–181 but could, in principle, also be calculated for our active
microswimmers, as has recently been demonstrated for a similar
force-dipole-based microswimmer model.182 For quantitative tests
of our theory in the future and for extensions to higher densities,
particle-based computer simulations (that include hydrodynamic
flows of the surrounding fluid and thermal fluctuations explicitly)
can be performed.

One very interesting question is whether our DDFT could be
extended to describe the aforementioned motility-induced phase
separation. In this context, existing statistical theories involved a
density-dependent effective swimming speed and/or an anisotropic
pair distribution function as additional inputs.11,13,85,183,184 It would
thus be interesting to study in the future the effect of at least one
similar activity-induced term in our theory. Another promising sta-
tistical approach beyond the adiabatic approximation of DDFT is the
power functional theory for “dry” self-propelled particles, which has
recently been formulated and evaluated semianalytically.185–187

The present work derives the multispecies DDFT for the case
of uniaxial straight-swimming microswimmers with spherical bod-
ies. However, only a few changes transfer it to the case of (inher-
ently biaxial) circle swimmers.107 Even more generally, changes will
allow to describe swimmers with less-symmetric body shapes, e.g.,
rodlike bodies. Nevertheless, we remark that more work is needed
in the future regarding situations of still higher complexity. Exam-
ples are cases in which, for instance, additional phoretic chemical-
or temperature-based interactions between swimmers become sig-
nificant.188 Moreover, effects of the fluctuations of the propulsion
mechanism itself could be taken into account.189

Beyond the direct numerical evaluations performed in this
work, DDFTs can serve as a foundation to derive correspond-
ing phase-field-crystal models86,190–193 and more macroscopic con-
tinuum theories194–196 of microswimmer suspensions. The latter
allow for connections toward still-larger length scales of theoreti-
cal descriptions. Altogether, we thus expect our DDFT to provide
a powerful tool for the statistical characterization of dynamic mul-
tispecies systems of suspended microswimmers of future relevance
both in fundamental physics and concerning the corresponding
biological, technical, and medical applications.
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Previous particle-based computer simulations have revealed a significantly more pronounced tendency
of spontaneous global polar ordering in puller (contractile) microswimmer suspensions than in pusher
(extensile) suspensions. We here evaluate a microscopic statistical theory to investigate the emergence
of such an order through a linear instability of the disordered state. For this purpose, input concerning
the orientation-dependent pair-distribution function is needed, and we discuss the corresponding
approaches, particularly a heuristic variant of the Percus test-particle method applied to active systems.
Our theory identifies an inherent evolution of polar order in planar systems of puller microswimmers, if
mutual alignment due to hydrodynamic interactions overcomes the thermal dealignment by rotational
diffusion. In our theory, the cause of orientational ordering can be traced back to the actively induced
hydrodynamic rotation–translation coupling between the swimmers. Conversely, disordered pusher
suspensions remain linearly stable against homogeneous polar orientational ordering. We expect that
our results can be confirmed in experiments on (semi-)dilute active microswimmer suspensions,
based, for instance, on biological pusher- and puller-type swimmers. Published by AIP Publishing.
https://doi.org/10.1063/1.5048304

I. INTRODUCTION

Microswimmers1–6—both biological7–11 and artifi-
cial12–15—have been studied widely and can be considered
as an archetype of active soft matter.16–18 Since these self-
propelled particles are inherently in non-equilibrium with their
surroundings, their study has led to rather unexpected findings,
e.g., motility-induced phase separation,19–26 laning,27–31 vari-
ous kinds of “taxes”32 by implicit steering,33–38 and bacterial
turbulence.27,39–43 Establishing a physical description of the
observed collective phenomena calls for the development of
new methods in statistical physics.44–51 Furthermore, there is a
huge amount of biological and medical problems for which the
knowledge about microswimmers and their physical behav-
ior is key,33,34,52–57 warranting strong research interest in this
topic.

Approaching the scientific field of microswimmers as an
extension of the study of colloidal suspensions58 allows both
experimentalists and theoreticians to carry over methods and
ideas. An important example is hydrodynamics: microswim-
mers typically operate in low-Reynolds-number regimes.1 In
this context, a whole apparatus of physical theory58–60 is
at hand as a toolkit for, e.g., the investigation of hydrody-
namic interactions between swimmers and the influence of
these interactions on the collective behavior of microswimmer
suspensions.

As a consequence of the swimming at low Reynolds num-
bers, no net force may be exerted by a model microswimmer
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on its environment.1,45 To the lowest order, the induced flow
field of a typical swimmer in general can thus be described as
generated by a force dipole (we here disregard “neutral-type”
swimmers with a vanishing averaged force-dipole contribution
to the flow field like, e.g., the famous Najafi-Golestanian three-
sphere swimmer61–64). Depending on the orientation of the
forces (outwards/inwards) of that dipole, one can distinguish
“pusher” (also called extensile) microswimmers—for which
fluid is pushed outwards along the axis of motion and sucked
in from the transverse axes—and “puller” (also termed con-
tractile) microswimmers—for which the inverse is true.65,66

Since the direction of swimming is given by the orientation of
the swimmer, interactions affecting the rotational degrees of
freedom are of utmost interest.

A breakthrough in the study of orientational self-
organization of self-propelled particles has been the Vicsek
model, introducing simple effective local alignment rules.
They can lead to emergent long-range orientational order in
these active systems, even in two spatial dimensions.67–72

Such an effective alignment mechanism can be interpreted
either as being social in nature, e.g., when applied to flocks
of birds,67,68,70 or as a coarse-grained model represent-
ing underlying physical interactions, e.g., steric alignment
interactions.73 In the present work, we focus on the ques-
tion, to which extent hydrodynamic interactions can provide
sufficient alignment to result in polarly ordered collective
motion.

Previously, corresponding computer simulations have
found that indeed hydrodynamic interactions between
microswimmers can lead to collective alignment in pure puller
microswimmer suspensions,74 also when doped with pusher
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microswimmers.75 Typically, the degree of observed orienta-
tional order in pure pusher suspensions is notably lower.74,75

In the current work, we analyze a microscopic statistical
theory to understand reasons for these differences in polar
ordering observed for pushers and pullers. For this purpose,
we extend our previously developed dynamical density func-
tional theory (DDFT) of microswimmers,76,77 built on the
force-dipole-based minimal swimmer model introduced in
Refs. 75–77.

A brief recapitulation of the theoretical background fol-
lows in Sec. II. The theory is then applied to a (semi-)dilute
swimmer configuration confined to a plane in Sec. III. Next,
to theoretically analyze the emergence of collective polar
alignment from hydrodynamic interactions, some microscopic
details of the (orientation-dependent) pair distribution func-
tion are needed as an input. A reasonable approximation
for this pair distribution function is discussed in Sec. IV.
As the central step, a linear stability analysis probing the
emergence of collective alignment out of the isotropic dis-
ordered state is performed in Sec. V. There, indeed we find
that hydrodynamic interactions can induce polar ordering in
(semi-)dilute suspensions of sufficiently strong puller
microswimmers. In contrast to that, a linear stability of dis-
order is found for the corresponding spatially homogeneous
pusher suspensions. Finally, a short conclusion and outlook
are given in Sec. VI.

II. THEORY

As just mentioned, this section repeats the central parts of
the statistical theory of microswimmers developed in our previ-
ous studies.76,77 At the end of the section, a dynamical equation
for the one-swimmer density (as defined below) is listed. It
is the starting point for our investigation of possibly emerg-
ing polar ordering in planar (semi-)dilute microswimmer
configurations in Secs. III–V.

We consider a suspension of N (identical) axially symmet-
ric microswimmers in a volume V. Inertial effects are neglected
in the investigated low-Reynolds-number regime. The state of
each swimmer i = 1, . . ., N is characterized by a phase space
coordinate Xi = (ri, n̂i) that comprises its spatial position ri

and its orientation, described by the unit vector n̂i. We recur
to the minimal swimmer model introduced in Ref. 76, see
Fig. 1.

There, two opposing force centers, exerting forces
±f B ±f n̂ on the fluid, rigidly move and rotate together
with a spherical swimmer body of hydrodynamic radius a.
In terms of the swimmer coordinates, the force centers are
located at positions r+

i B ri + αLn̂ and r−i B ri − (1 − α)Ln̂,
respectively, with a/L < α ≤ 1/2 a positive number and L
the fixed distance between the two force centers. The rigid
spherical swimmer body of no-slip surface condition is located
at position ri in the generated flow of the surrounding fluid.
This configuration of the sphere and the two force centers
is treated as a rigid entity that translates and rotates as one.
For α , 1/2, net self-propulsion in the direction of sign(f )n̂
results. Accordingly, a pusher (puller) microswimmer66 is con-
structed for f > 0 (f < 0). Furthermore, a steric interaction
potential between different swimmers with sufficiently large

FIG. 1. Minimal microswimmer model, as introduced in Ref. 76. A sphere
of radius a constitutes a no-slip boundary for the flow of the surrounding fluid
and represents the hydrodynamic swimmer body. Two force centers exerting
opposite forces ±f = ±f n̂ of equal magnitude on the fluid are placed nearby
in an axially symmetric configuration. They generate the flow indicated by
the small arrows, which propels the swimmer. This force-sphere combination
is rigidly kept in its internal (body-frame) configuration. (a) For f > 0, a
pusher microswimmer is created, while (b) a puller microswimmer results
for f < 0. Other swimmers are exposed to the flow, too, but are kept at a
distance by a repulsive interaction potential of characteristic range σ. The
resulting effective steric extension of the swimmer is indicated by the dashed
line.

effective diameter σ is introduced to counteract unphysical
overlap. By construction, no net force and no net torque are
exerted by the swimmer on the fluid, a necessary condition for
microswimmers.1,45

In the following, a statistical description of the
microswimmer suspension is employed. We start our approach
from the (time-dependent) microstate probability density
P = P(XN , t) to find the system in microstate XN at time t,
with XN = {X1, . . ., XN}. For our overdamped low-Reynolds-
number system,1,58 the dynamical evolution of P is described
by the many-body Smoluchowski equation

∂P
∂t
= −

N∑
i=1

[
∇ri · (viP) +

(
n̂i × ∇n̂i

)
· (ωiP)

]
, (1)

where vi is the velocity of swimmer i and ωi is its angular
velocity, both of which generally depend on the configuration
XN of the system.

We only take into account pairwise additive hydrody-
namic interactions between the swimmers on the Rotne-Prager
level.58 Neglecting many-body hydrodynamic interactions is
a good approximation at low to intermediate densities78–82 as
regarded here. Thus, in the discrete particle picture, vi and ωi
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of swimmer i follow from the forces Fj and torques Tj acting
on all swimmers j via76,77



vi

ωi


=

N∑
j=1
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)
, (2)

i = 1, . . ., N, exploiting the linearity of the underlying Stokes
equation in the low-Reynolds-number regime.58 The viscosity
η of the background fluid is assumed to be constant, and the
well-known hydrodynamic mobility expressions for passive
rigid spheres on the Rotne-Prager level83,84 are used. This way,
the self mobilities are given by

µtt
ii = µ

t1, µrr
ii = µ

r1, µtr
ii = µ

rt
ii = 0, (3)

with 1 denoting the identity matrix and

µt = 1/(6πηa), µr = 1/(8πηa3), (4)

while the pair mobilities (j , i) read

µtt
ij = µ

t
( 3a

4rij

(
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)
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rij
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)3

rij×, (7)

with the distance vector rij = rj − ri, rij = |rij | its absolute
value, and r̂ij = rij/rij. The additional contributions due to
the presence of the active force centers (derived from the pre-
viously introduced minimal microswimmer model) are given
by76,77

Λtt
ij = µ

tt+
ij − µ

tt−
ij , (8)

Λrt
ij = µ

rt+
ij − µ

rt−
ij , (9)

with

µtt±
ij =

1
8πηr±ij

(
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ij

)
+
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24πη
(
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ij
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µrt±
ij =

1

8πη
(
r±ij

)3
r±ij×, (11)

and

r+
ij = rij + αLn̂j, (12)

r−ij = rij − (1 − α)Ln̂j. (13)

We neglect the distortion of the self-induced flow field that
would result from the presence of the rigid spheres.60,85,86

Next, we specify the forces on the sphere representing the
passive body of swimmer j as

Fj = − ∇rj uext(rj) − ∇rj

∑
k,j

u(rj, rk) − kBT ∇rj ln P, (14)

where uext(r) may include the effect of an external poten-
tial, u(rj, rk) is a pairwise additive interaction potential, and
the last term constitutes an entropic force that eventually
leads to the correct diffusional parts of our statistical descrip-
tion. As usual, kB denotes the Boltzmann constant and T
denotes the temperature. The corresponding passive torques
read

Tj = − kBT n̂j × ∇n̂j ln P, (15)

consisting of only an entropic part, which likewise in the end
correctly reproduces (rotational) diffusion.

To reduce the multi-dimensional nature of the probability
density P containing all N swimmer coordinates Xi, we intend
to derive a dynamical equation only involving the reduced
n-swimmer densities,

ρ(n)(Xn, t) =
N!

(N − n)!

∫
dXn+1 . . . dXN P(XN , t). (16)

Particularly, we are interested in a dynamical equation for the
one-swimmer density ρ(1)(X, t). As the swimmers are identical
and, e.g., X in ρ(1)(X, t) stands for the coordinate of “one swim-
mer” and not of “swimmer 1”, the enumeration X, X′, X′′, . . .
is used throughout this work when discussing arguments of
n-swimmer densities.

Integrating out the degrees of freedom Xi for all swimmers
but one in Eq. (1), we obtain76,77

∂ρ(1)(X, t)
∂t

= − ∇r · (J tt + J tr + J ta)

− (n̂ × ∇n̂) · (J rt + J rr + J ra), (17)

with current densities76,77

J tt = − µt
(
kBT∇r ρ

(1)(X, t) + ρ(1)(X, t)∇r uext(r) +
∫

dX′ρ(2)(X, X′, t)∇ru(r, r′)
)

−

∫
dX′ µtt

r,r′ ·

(
kBT∇r′ ρ

(2)(X, X′, t) + ρ(2)(X, X′, t)∇r′uext(r′)

+ ρ(2)(X, X′, t)∇r′u(r, r′) +
∫

dX′′ρ(3)(X, X′, X′′, t)∇r′u(r′, r′′)
)
, (18)

J tr = −

∫
dX′ kBTµ tr

r,r′(n̂
′
× ∇n̂′)ρ

(2)(X, X′, t), (19)
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J ta = f

(
Λtt

r,r · n̂ρ
(1)(X, t) +

∫
dX′Λtt

r,X′ · n̂
′ρ(2)(X, X′, t)

)
, (20)

J rt = −

∫
dX′µrt

r,r′

(
kBT∇r′ ρ

(2)(X, X′, t) + ρ(2)(X, X′, t)∇r′uext(r′)

+ ρ(2)(X, X′, t)∇r′u(r, r′) +
∫

dX′′ρ(3)(X, X′, X′′, t)∇r′u(r′, r′′)
)
, (21)

J rr = − kBT µrn̂ × ∇n̂ρ
(1)(X, t) −

∫
dX′ kBTµrr

r,r′ · (n̂
′
× ∇n′)ρ

(2)(X, X′, t), (22)

J ra = f
∫

dX′Λrt
r,X′ n̂

′ρ(2)(X, X′, t). (23)

It is important to keep in mind that Eqs. (17)–(23) form
a non-closed set of equations, as the unknown higher order
densities ρ(2) and ρ(3) are needed as an input. When a similar
procedure is applied to Eq. (1) to find dynamical equations
for, e.g., the two-swimmer density ρ(2), next-higher orders
appear, constituting an escalating loop typical for BBGKY-
like hierarchies of equations.87 Therefore, a closure is needed
by expressing the interaction terms in Eqs. (18)–(23) con-
taining the two- and three-swimmer densities as functionals
of only the one-swimmer density. Dynamical density func-
tional theory (DDFT)88–97 provides a well-established means
for this purpose, where an approach for the present system was
outlined in previous studies.76,77

Yet, our previous mean-field approach76,77 seems not
to be sufficient to address the question below, namely, the
question under which circumstances the swimmers develop
collective polar orientational order. Particularly, the interplay
between the hydrodynamic interactions and the two-swimmer
density in the equations above appears to be insufficiently
resolved at the level of our previous mean-field- and Onsager-
type formulation. Thus, a more refined version is needed, see
below.

III. APPLICATION TO MICROSWIMMERS
CONFINED TO A PLANE

In the following, we consider microswimmers in suspen-
sion, yet with their positions ri and orientations n̂i, i = 1,
. . ., N, confined to the flat xy-plane. The surrounding fluid
is still treated as three-dimensional. Then, the orientation of
each swimmer in Eqs. (17)–(23) can be fully described by
one angle φi, and the orientational gradient operator becomes
n̂ × ∇n̂ = ẑ∂φ . Such a system could possibly be realized, e.g.,
by using optical trapping fields or by placing the swimmers
at the interface between two immiscible fluids of identical
viscosity.

Several further assumptions are introduced. First, the
external potential shall vanish, i.e., uext = 0. Next, the system
is confined to a two-dimensional box of area A with periodic
boundary conditions, containing our N identical microswim-
mers. We further assume that the one-swimmer density
ρ(1)(X, t), now with X = (r, φ), is spatially homogeneous.98

Thus, only variations as a function of the orientation variable
φ are considered, i.e., ρ(1)(X, t) =: A−1ρ(1)(φ, t), where the
one-swimmer orientational density ρ(1)(φ, t) has been defined.

Equation (17) is now integrated over all spatial positions
r in the area A. Then the currents J tt, J tr, J ta disappear from
the equation, and the set of Eqs. (17)–(23) is simplified to

∂ρ(1)(φ, t)
∂t

= − ∂φ

∫
dr (ẑ · J rt + ẑ · J rr + ẑ · J ra). (24)

For spherical swimmer bodies, the integral term in Eq. (22)
vanishes77 so that only the direct rotational diffusional part
remains. Thus, Eq. (24) can be rewritten as

∂ρ(1)(φ, t)
∂t

= Dr∂2
φ ρ

(1)(φ, t) − f ∂φ

∫
dr

∫
dX′ ẑ

·
(
Λrt

r,X′ n̂
′
)
ρ(2)(X, X′, t) − ∂φ

∫
dr ẑ · J rt,

(25)

where the last term approximately vanishes as detailed in
Appendix A and Dr = kBT µr is the rotational diffusion constant
for passive particles.

The remaining task is to find a reasonable approxima-
tion for ρ(2)(X, X′, t). Generally, the two-swimmer density
is related to the one-swimmer density via ρ(2)(X, X′, t)
= ρ(1)(X, t) ρ(1)(X′, t) g(2)(X, X′, t), where g(2)(X, X′, t)
is the pair distribution function. Since we assume
that the one-swimmer density does not depend on
the spatial position, this simplifies to ρ(2)(X, X′, t)
= A−2ρ(1)(φ, t) ρ(1)(φ′, t) g(2)(X, X′, t). Furthermore, the
pair distribution function in a spatially homogeneous system
depends on only the relative distance vector between the two
particles, so that g(2)(X, X′, t) = g(2)(R, φ, φ′, t) holds, with
RB r′ − r denoting the distance vector. Thus, the second term
on the right-hand side of Eq. (25) becomes

I1 B −f ∂φ

∫
dr

∫
dr′

∫
dφ′ ẑ ·

(
Λrt

r,X′ n̂
′
)
ρ(2)(X, X′, t)

= −A−2f ∂φ
(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

∫
dr

∫
dR ẑ

·
(
Λrt

r,X′ n̂
′
)

g(2)(R, φ, φ′, t)
)
, (26)

where the spatial integral over r′ has been shifted to R.
To leading order in R−1, with R = |R| denoting the absolute

value of the distance vector, the approximation

ẑ ·
(
Λrt

r,X′ n̂
′
)
≈ −3µra3L cos(φ′ − θ) sin(φ′ − θ)R−3 (27)
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144902-5 Hoell, Löwen, and Menzel J. Chem. Phys. 149, 144902 (2018)

holds, where θ is the angle between R and x̂, i.e., R = R(cos θ,
sin θ). The orientation-dependent pair distribution function in
the isotropic disordered state features a global rotational sym-
metry; i.e., it stays the same when we rotate the system by
subtracting a common angle from all angles θ, φ, and φ′.
We select φ as that angle. In other words, following stan-
dard arguments, we may address the function in one particular
frame of reference,99 for which we now choose the frame of
φ = 0. In the following, ḡ(2)(R, θ − φ, φ′ − φ) denotes the
pair distribution function in this frame. Moreover, the integral

over r is now trivial, yielding the area A. In combination, this
leads to

I1 ≈
3µra3Lf

A
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

∫
dR

∫
dθ

×
cos(φ′ − θ) sin(φ′ − θ)

R2
ḡ(2) (R, θ − φ, φ′ − φ, t

))
. (28)

The starting point for all the following considerations is
thus the equation

∂ρ(1)(φ, t)
∂t

= Dr∂2
φ ρ

(1)(φ, t) +
3µra3Lf

A
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

×

∫
dR

∫
dθ

cos(φ′ − θ) sin(φ′ − θ)

R2
ḡ(2) (R, θ − φ, φ′ − φ, t

))
=: Dr∂2

φ ρ
(1)(φ, t) − 3µra3Lf

ρ0

N
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)K(φ − φ′, t)

)
, (29)

where we have introduced the global density ρ0 = N /A and
further defined the function

K(φ − φ′, t) B −
∫

dR
∫

dθ
cos(φ′ − θ) sin(φ′ − θ)

R2

× ḡ(2) (R, θ − φ, φ′ − φ, t
)
, (30)

which represents a weighted integral of the pair distribution
function over the distance vector. If ḡ(2)(R, θ − φ, φ′ − φ, t) is
known, K(φ − φ′, t) can be calculated. In case this input is
available, Eq. (29) can serve as the starting point of a sta-
bility analysis of the isotropic disordered state, see Sec. V
below.

From symmetry, it follows that the simplest guess g(2) ≡ 1
lets the second term on the right-hand side of Eq. (29) vanish
and is thus not sufficient to study the possible development of
alignment. As shown later, an ansatz only featuring a spatial
front–rear asymmetry, as previously used for a minimal math-
ematical description of motility-induced phase separation,21

also leads to a decay of any weak initial orientational order in a
linear stability analysis of the isotropic disordered state. Thus,
our next step is to address more carefully the pair distribution
and to find approximate expressions in order to investigate the
emergence of possible alignment.

IV. APPROXIMATION OF THE PAIR DISTRIBUTION
FUNCTION IN THE ISOTROPIC DISORDERED
STATE: DDFT AND THE PERCUS METHOD

Our goal in this section is to identify a reasonable
approximation for the pair distribution function of microswim-
mers in an isotropic disordered suspension to enable our
subsequent study of the linear stability of the disordered
state in Sec. V. For this purpose, we here adapt the Percus
method,100 which is exact in equilibrium isotropic systems.
Yet, it should at least qualitatively hint at the basic shape of the
pair distribution in our inherently non-equilibrium system of
self-propelled microswimmers. Since a coarse knowledge of

the general shape is sufficient for our objective, as well as for
technical reasons detailed below, hydrodynamic interactions
are neglected throughout the present section for simplicity.
That is, approximations for the pair distribution function of
“dry” self-propelled particles are determined. For strong force
dipoles and in aligned systems, deviations from these reduced
expressions will occur.75

A. The Percus method

In the Percus method for fluids in equilibrium,100 one par-
ticle is declared a test particle and fixed in (phase) space, e.g.,
at position r. Then its effect on the remaining particles is effec-
tively described as an external potential. Percus showed that
in a homogeneous fluid the resulting inhomogeneous density
distribution of the other particles at positions r′ around the
first particle is connected to the pair distribution function via
the exact relation ρ(r′ − r) = ρ0g(2)(r′ − r), where ρ0 is the
(constant) overall density of the bulk fluid. This way, the pair
distribution function of a liquid equilibrium system can be
obtained.

A recent equilibrium classical density functional theory
study shows that employing the Percus method can lead to
good approximations of pair distribution functions, even if
using a simple mean-field approximation for the excess func-
tional.101 In the past, some studies have addressed dynamical
test-particle methods for passive particles.102,103 Nevertheless,
it is still an open question how good of an approximation this
method is for an active non-equilibrium system (as ours). This
should be examined in detail in future work and compared to
other approaches.104,105

For a reasonable description of the pair distribution func-
tion, we additionally need to account for the orientational
degree(s) of freedom and the self-propulsion of the test parti-
cle. The latter can be achieved by switching to the body frame
of the test particle and “streaming” all other particles oppo-
sitely to the (fixed) swimming direction of the test particle
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with its effective swimming speed vs. In a non-dilute system,
interactions between the “non-test” particles can be included
via DDFT.76,88–97 By definition, 0 < vs ≤ v0 holds in our “dry”
system, with v0 denoting the free swimming speed of an uncon-
stricted single swimmer. In very dense cases of swimming
being blocked by the presence of other particles, vs→ 0 is also
possible (over a certain interval, vs will decline approximately
linearly with increasing local density21,106).

We select the orientation of the fixed particle as φ = 0.
The sign of f then determines the angle ψ of swimming given
by ψ = φ for pushers and ψ = φ + π for pullers. Thus,
vstB− sign(f )vsx̂ is the additional velocity with which the
other particles are streamed against the first, fixed parti-
cle. Here, we choose vs = v0, which is appropriate for dilute
systems.

B. Evaluation using DDFT

Now we follow our previous studies76,77 for (numerically)
implementing the DDFT (neglecting hydrodynamic interac-
tions as mentioned above).107 Formally, this means that the
tensors µtt

r,r′ , µ
tr

r,r′ , Λ
tt
r,X′ , µ

rt
r,r′ , µ

rr
r,r′ , and Λrt

r,X′ in Eqs. (18)–
(23) are all set to zero. Without hydrodynamic interactions, the
only difference between pusher and puller microswimmers is
that a corresponding swimmer propels into the direction of n̂
or, respectively, − n̂, see Fig. 1. The steric interaction poten-
tial between swimmers i and j is now specified as the GEM-4
potential108,109 with

u(ri, rj) = V0 exp

(
−

( rij

σ

)4
)
, (31)

where V0 describes the strength of the potential.
Consequently, the potential u(0, r) following from

Eq. (31) is used as the external potential uext(r) in Eq. (18)
when evaluating our DDFT. It represents the fixed particle at
the origin used in the Percus method. Furthermore, the stream-
ing of all other swimmers, as described above, is enforced by
applying an additional constant force ∇ruext(r) = −vst/µt in
Eq. (18), which continuously drives the particle density against
the test particle and across the periodic boundaries. At this
point, it also becomes obvious why including the hydrody-
namic interactions in this method would lead to challenging
problems. If hydrodynamic interactions were present, simply
including the streaming velocity vst as indicated above would
neglect the hydrodynamic interactions resulting from the flow
fields that the test swimmer and the other swimmers gener-
ate during their active motion. Moreover, driving swimmers
toward each other by net forces to mimic their mutual approach
during self-propulsion would induce unphysical fluid flows.
The hydrodynamic interactions resulting from such net forces
(force monopoles) are different from the actual ones resulting
from force dipoles. Clearly, this opens the way for additional
studies in the future to address these issues. At our present
level of searching for the leading-order angular dependence
of the pair distribution function, neglecting the hydrodynamic
interactions appears viable, see below.

For consistency, the interaction strength V0 must be suf-
ficiently high to hinder other particles from swimming or
being streamed through the fixed particle. Repeating the choice

of our previous studies, again the mean-field functional is
employed to specify the corresponding excess free energy in
the DDFT. Then, the DDFT equations are solved numerically
using a finite-volume method solver110 until a steady state is
reached. This steady state describes the orientation-dependent
particle distribution function (with φ = 0) that we searched
for.

C. Resulting functional form

Figure 2(a) shows a typical pair distribution function
obtained in this way for non-hydrodynamically interacting
pushers in the isotropic disordered state. We find qualita-
tive agreement with previous (orientationally averaged) pair
distribution functions of self-propelled agents determined by
particle-based computer simulations,21,75 e.g., concerning the

FIG. 2. (a) Swimmer–swimmer orientation-dependent pair distribution func-
tion, obtained via DDFT in combination with our adapted Percus test-particle
method for active agents as described in the main text. Brighter colors indi-
cate a higher magnitude of the pair distribution function integrated over all
orientations; i.e., we define g̃(2)(R, θ − φ) B ∫ dφ′ḡ(2)(R, θ − φ,φ′ − φ).
Thus, brighter colors imply a higher probability to find a nearby swimmer.
White arrows mark the average orientations of nearby swimmers, calculated
from ∫ dφ′n̂′(φ′ −φ)ḡ(2)(R, θ −φ,φ′ −φ). The large arrow at the center dis-
plays the orientation n̂(φ = 0) of the fixed particle. Parameter values are set to
ρ0 = 0.0313σ−2, L = 1.5σ, a = 0.5σ,α = 0.4, V0 = 20kBT, and f = 50kBT /σ.
The dimension of the square simulation box here is 8σ × 8σ, and the DDFT
equations are solved on a 128 × 128 × 16 numerical grid for the discretiza-
tion of x, y, and φ coordinates, respectively. Periodic boundary conditions
were applied in all directions. (b) Extracted function K(φ − φ′), defined
in Eq. (30), for the same parameters as in (a). Fitting with the function C
sin(φ − φ′) (dashed line) here leads to C ≈ 1.11 × 10−4σ−1.
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front–rear asymmetry. The extracted function K(φ − φ′) is
displayed in Fig. 2(b). For pullers of identical |f |, an anal-
ogous picture is found (as mentioned above, hydrodynamic
interactions are not taken into account at the moment). In the
end, an identical K(φ − φ′) is obtained.

Figure 2(b), determined in this way, demonstrates a dom-
inant sinusoidal first-harmonic contribution in K(φ − φ′). We
thus approximate K(φ − φ′) to lowest order as

K(φ − φ′) ≈ C sin(φ − φ′), with C > 0. (32)

The amplitude C has the dimension of inverse length and
depends in a non-trivial way on vs, ρ0, and the microscopic
parameters in the swimmer model.

Since the anisotropy of the pair distribution function is
most pronounced near the surface of the fixed particle, see
Fig. 2(a), this angular dependence of K(φ − φ′) seems to
be effectively caused by the short-range steric interaction.
Thus, point particles may not show the type of behavior
identified in Sec. V below.111 A corresponding dominance
of the steric interactions at least supports neglecting the
hydrodynamic interactions in the treatment above to lowest
order.

Moreover, the functional form of K(φ− φ′) in Eq. (32) can
also be motivated in a different way for dilute systems as ours,
see Appendix B. Accordingly, our result above is supported by
an independent approach. A further confirmation of the form
in Eq. (32) is given in Appendix C.

V. LINEAR STABILITY ANALYSIS

Finally, we now test for the linear instability of the
isotropic disordered microswimmer system. For this purpose,
we turn back to Eqs. (17)–(29) that explicitly include hydro-
dynamic interactions via the hydrodynamic mobility tensors.
Nevertheless, in the absence of a more sophisticated approxi-
mation, we assume the functional form in Eq. (32) found for
neglected hydrodynamic interactions and use it as an input
to these equations to check whether collective orientational
order spontaneously arises from a linear instability of the state
of absent orientational order.

As further elucidated in Appendix D, the static uniform
distribution ρ(φ, t) = N(2π)−1 is always a solution of Eq. (29).
However, as shown in the following, it is either linearly sta-
ble or unstable, depending on the system parameters. If it is
linearly stable, the system remains in the isotropic disordered
state for that set of parameter values, at least in the absence of
larger fluctuations, perturbations, and spatial inhomogeneities.
If it is linearly unstable, it will develop a different state, e.g.,
one of collective polar order. To test for linear stability, a small
harmonic fluctuation is superimposed onto the uniform distri-
bution, i.e., ρ(φ, t) = N(2π)−1 + ε(t) cos(φ − φ0), with small
ε(t)� N(2π)−1 and arbitrary φ0.

This ansatz is inserted into Eq. (29). Through Eq. (32), two
terms vanish due to symmetry upon performing the integration,
one term can be neglected via ε2(t) � ε(t), and we arrive
at

ε̇(t) cos(φ − φ0) = − Drε(t) cos(φ − φ0) + Ĩ1ε(t) (33)

with a dot denoting a time derivative and

Ĩ1 B −
3µra3Lf ρ0

2π
∂φ

(∫
dφ′ cos(φ′ − φ0)K(φ − φ′)

)
. (34)

Using Eq. (32), this simplifies to

Ĩ1 = −
3
2
µra3LCf ρ0 cos(φ − φ0). (35)

Combining Eqs. (33) and (35) leads to the ordinary differential
equation

ε̇(t) =

(
−Dr −

3
2
µra3LCρ0f

)
ε(t). (36)

Its solution for the amplitude ε(t) of the perturbation is an
exponential function that decays in time when the bracketed
term is negative, and grows otherwise. For pushers (f > 0), the
fluctuation thus always decays (µr, a, L, C, ρ0 are all positive).
In contrast to that, strong pullers with

fL < −
2
3

Dr

µra3ρ0C
= −

2
3

kBT

a3ρ0C
(37)

show exponential growth of fluctuations involving polar ori-
entational order; i.e., the isotropic disordered state is linearly
unstable against initial polar ordering.

We remark that, while an increased density ρ0 in Eq. (37)
seems to support the emergence of orientational order, it is to be
noted that C heavily depends on the system parameters, includ-
ing ρ0, and can overshadow that effect. For instance, at high
densities, the swimmers may mutually disturb and block their
motion. Then, the global orientational dependence of the pair
distribution function should change, possibly implying C→ 0.
This would counteract the emergence of a global polar order-
ing via the mechanism described in this work. However, spatial
variations would then certainly become important and should
be included into the theoretical consideration as a possible
future extension.

VI. CONCLUSIONS

In summary, we have presented a microscopic statistical
approach to describing and predicting the emergence of col-
lective polar ordering in (semi-)dilute suspensions of active
force-dipole microswimmers. We found that such a polar order
can arise in systems of pullers of strong enough activity to
overcome thermal dealignment caused by rotational diffu-
sion. Our statistical approach traces back the self-ordering of
the system to the actively induced hydrodynamic rotation–
translation coupling between the swimmers. To find a rea-
sonable approximation for the involved pair distribution func-
tion, a technique combining DDFT and the Percus method
(pinning one swimmer and treating it as an obstacle for the
other swimmers) for an active system has been proposed, as
well as intuitive arguments of broken symmetry. As the cen-
tral result, disordered suspensions of pushers in our approach
were always found to be linearly stable against initial devel-
opment of collective polar orientational order. In contrast to
that, suspensions of strong pullers were observed to be linearly
unstable against polar orientational ordering. It will be inter-
esting to further challenge our adapted test-particle method
by quantitative comparison with simulations or other theo-
retical methods21,75,104,105,112 in the future. Additionally, it
would be intriguing to test the applicability of our approach
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and results as an input for further studies on the mesoscale
hydrodynamic behavior of microswimmer suspensions, pos-
sibly even concerning mesoscale turbulence.113,114

We wish to remark that our system when taken to the
thermodynamic limit (N →∞ and A→∞, while the average
density is kept constant) might still develop overall orienta-
tional order, against the Mermin-Wagner theorem.115 This is
because of its inherently non-equilibrium nature.68,116 Never-
theless, additional spatially resolved investigations would be
very interesting as they could be able to discern between local
and global ordering and show their interplay.

Furthermore, the theory can also be generalized to binary
mixtures of different swimmer species, resulting in two cou-
pled equations similar to Eq. (29). Each of them contains an
additional coupling term including the one-swimmer density
of the other swimmer species. The results could then be com-
pared with previous particle-based computer simulations of
binary pusher–puller mixtures.75 Apart from that, an exten-
sion to systems of hydrodynamically interacting self-propelled
rods117 is conceivable as well.
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APPENDIX A: FURTHER DETAILS ON EVALUATING
THE LAST TERM IN EQ. (25)

In this appendix, we briefly demonstrate that the last
term in Eq. (25) vanishes approximately. Regarding the cur-
rent density J rt defined in Eq. (21), the second contribution
drops out because we here set uext = 0. The third contribution
vanishes for all isotropic central-force interaction potentials
u(r, r′) = u(|r′ −r|) because the gradient of such a potential is
parallel to the distance vector. However, µrt

r,r′ in Eq. (21) intro-
duces the vector product with this distance vector, see Eq. (7),
which then vanishes. Finally, the contribution containing
ρ(3)(X, X′, X′′, t) in Eq. (21) is neglected for sufficiently dilute
systems as it scales with a higher order in ρ0 than the other
contributions. Together, this reduces the last term of Eq. (25)
to

I2 B −∂φ

∫
dr ẑ · J rt ≈ kBT∂φ

∫
dr

∫
dX′ ẑ

·

(
µrt

r,r′∇r′ ρ
(2)(X, X′, t)

)
, (A1)

which vanishes as is shown in the following.
Using ρ(2)(X, X′, t) = ρ(1)(X, t) ρ(1)(X′, t) g(2)(X, X′, t)

and ρ(1)(X, t) = A−1ρ(1)(φ, t) as before, Eq. (A1) can be
rewritten as

I2 ≈
kBT

A2
∂φ

(
ρ(1)(φ, t)

∫
dr

∫
dφ′ρ(1)(φ′, t)

×

∫
dr′µra3 |r′ − r|−3 ẑ

·
(
(r′ − r) × ∇r′−r g(2)(r′ − r, φ, φ′, t)

))
. (A2)

The inner spatial integral is then transformed into the
polar coordinates (R, θ), with R = r′ − r =: R(cos θ, sin θ),
yielding

I2 ≈
Dra3

A2
∂φ

(
ρ(1)(φ, t)

∫
dr

∫
dφ′ρ(1)(φ′, t)

∫
dR R−2

×

∫
dθ ẑ ·

(
R × ∇R g(2)(R, θ, φ, φ′, t)

))
. (A3)

Through the relation ẑ · (R × ∇R) = ∂θ and the inherent peri-
odicity of the pair distribution function with respect to the
angular variables, the integral over θ leads to I2 ≈ 0.

APPENDIX B: WEAK SCATTERING

Equation (32) can further be motivated for dilute systems
as ours via a “weak scattering” approach, effectively includ-
ing hydrodynamic interactions to an approximate extent. Here,
we suppose that two microswimmers are located at arbitrary
phase space positions X and X′. We disregard all diffusional
processes and any disturbing hydrodynamic interactions for
almost all times so that the swimmers move along straight
paths, with initial orientations n̂ and n̂′. In effect, their hydro-
dynamic interactions are considered to occur only once in time,
at the moment when they come closest to each other. Further-
more, we use the leading-order expansion of ẑ ·

(
Λrt

r,X′ n̂
′
)

as
given in Eq. (27). Then, the effective angular shift of the first
swimmer due to the mutual hydrodynamic interaction between
the swimmers is approximated as

δφ B −3µra3Lf |R0 |
−3δt cos(φ′ − θ0) sin(φ′ − θ0), (B1)

with a typical interaction time δt assumed to be the same for all
configurations. Additionally, R0 is the closest distance vector,
with R0 =: |R0|(cos θ0, sin θ0).

For this vector, R0 · (n̂′ − n̂) = 0 applies, which leads to
θ0 = (φ + φ′)/2. Inserting this relation into Eq. (B1) leads to

δφ =
3
2
µra3Lf δt |R0 |

−3 sin(φ − φ′), (B2)

which again implies mutual dealignment for pushers (f > 0)
and mutual alignment for pullers (f < 0). We remark that
Eq. (B2) is compatible with Eq. (32), i.e., with K(φ − φ′)
≈ C sin(φ − φ′), C > 0.

APPENDIX C: ADDITIONAL COMMENTS
ON APPROXIMATING THE PAIR
DISTRIBUTION FUNCTION

In the following, we consider some more aspects concern-
ing the angular dependence of the pair distribution function
ḡ(2)(R, θ − φ, φ′ − φ) in the regarded isotropic disordered state,
leading to Eq. (32). From Eq. (30), it is obvious that homoge-
neous terms in ḡ(2)(R, θ − φ, φ′ − φ) do not contribute to
K(φ − φ′). Moreover, since the hydrodynamic interactions
decrease with increasing swimmer–swimmer distance, atten-
tion is now focused on the high-density ring the radius of which
is approximately equal to the effective particle diameterσ, see
Fig. 2(a).

The pair distribution function shown in Fig. 2(a) features
a front–rear asymmetry in the spatial distribution, which can
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be phenomenologically addressed to lowest order by a term
∼cos(θ − ψ), where ψ denotes the angle of the swimming
direction as before. Furthermore, the orientational distribution
of nearby swimmers around the central swimmer seems to
point inward, see the innermost white arrows in Fig. 2(a). An
orientational distribution peaked at ψ ′ = θ + π would reflect
this and can be modeled by a contribution ∼−cos(ψ ′ − θ).
Eventually, we notice that in the high-density area at the front

of the central swimmer in Fig. 2(a), the surrounding swimmers
are preferably oriented in the propulsion direction of the cen-
tral swimmer. This can be represented by a term ∼cos(θ − ψ)
cos(ψ ′ − θ). At the rear of the central swimmer, this term still
maintains the preferred inward orientation of the surrounding
swimmers in Fig. 2(a).

Taking into account the different terms described above,
we investigate the ansatz

ḡ(2)(R, θ − φ, φ′ − φ) ≈ 1 + δ(R − σ)
(
c1 + c2 cos(θ − ψ) − c3 cos(ψ ′ − θ) + c4 cos(θ − ψ) cos(ψ ′ − θ)

)
, (C1)

with c1, c2, c3, c4 > 0. Inserting it into Eq. (30), only the
contribution ∼c4 does not vanish but indeed is in agreement
with Eq. (32) for K(φ − φ′).

APPENDIX D: THE UNIFORM DISTRIBUTION
AS A SOLUTION OF EQ. (29)

We here argue that the uniform distribution ρ(1)(φ, t)
= N /(2π) is indeed an exact solution of Eq. (29). For f = 0,
the equilibrium case of passive spherical particles is recov-
ered. It is readily seen that in this case ρ(1)(φ, t) = N /(2π)
solves Eq. (29). Otherwise, for f , 0, the only remaining term
in Eq. (29) is the activity-induced one stemming from J ra in
Eq. (23).

Evaluating this term in Eq. (29) for ρ(1)(φ, t) = ρ(1)(φ′, t)
= N(2π)−1 and disregarding all constants reduce our task to
show that

W B ∂φ

( ∫
dφ′

∫
dR

∫
dθ

cos(φ′ − θ) sin(φ′ − θ)

R2

× ḡ(2) (R, θ − φ, φ′ − φ
))

(D1)

vanishes. If the integrals over the angles φ′ and θ are now
shifted to the angles φ′ − φ and θ − φ, respectively, no formal
dependence on φ remains after integration. Thus, W indeed
vanishes. We remark that this result still holds when taking
into account all orders in R−1, e.g., starting from Eq. (26).
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The hydrodynamic flow field generated by self-propelled active particles and swimming microor-
ganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple
model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall
reveal various scenarios of motion depending on the initial orientation and the distance separating
the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely
escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using
a far-field approximation, we find that, at leading order, the wall-induced correction has a source-
dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer
decay as inverse third and fourth powers with distance from the wall, respectively. The resulting
equations of motion for the trajectories and the relevant order parameters fully characterize the tran-
sition between the states and allow for an accurate description of the swimming behavior near a
wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first
order discontinuous, whereas the transition between the trapping and escaping states is continuous,
characterized by non-trivial scaling exponents of the order parameters. In order to model the circular
motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo
rotational motion around the swimming axis. We show that the general three-dimensional motion can
be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the
order parameters governing the transition between the swimming states. Published by AIP Publishing.
https://doi.org/10.1063/1.5021027

I. INTRODUCTION

Swimming microorganisms use a variety of strategies
to achieve propulsion or stir the suspending fluid.1 To cir-
cumvent the constraint of time reversibility of the Stokes
equation governing the small-scale motion of a viscous fluid,
known as Purcell’s scallop theorem,2 many of them rely on
the non-reciprocal motion of their bodies. To understand the
nature of this process, a number of artificial designs have
been proposed to construct and fabricate model swimmers
capable of propelling themselves in a viscous fluid by inter-
nal actuation. Among these, a particular class is simplis-
tic systems with only few degrees of freedom necessary to
break kinematic reversibility, as opposed to continuous irre-
versible deformations or chemically powered locomotion.3–8

A famous example of such a design is the swimmer of Najafi
and Golestanian9 encompassing three aligned spheres; their
distances vary in time periodically with phase differences,
thus leading to locomotion along straight trajectories.10–13

This system has been also realized experimentally using opti-
cal tweezers.14,15 Notably, a number of similar designs have
been proposed: with one of the arms being passive and
elastic,16 both arms being muscle-like17 or using a

a)Electronic mail: ider@thphy.uni-duesseldorf.de
b)Electronic mail: hlowen@hhu.de

bead-spring swimmer model.18–20 Variations of this idea lead-
ing to rotational motion have been proposed: a circle swimmer
in the form of three spheres joined by two links crossing at
an angle,21 linked like spokes on a wheel,22 or connected in
an equilateral triangular fashion.23 An extension to a collec-
tion of N > 3 spheres has also been considered.24 Further
investigations include the effect of fluid viscoelasticity,25–31

swimming near a fluid interface32–34 or inside a channel,35–39

and the hydrodynamic interactions between two neighboring
microswimmers near a wall.40 Intriguing collective behavior
and spatiotemporal patterns may arise from the interaction
of many swimmers, including the onset of propagating den-
sity waves41–48 and laning,49–52 the motility-induced phase
separation,53–57 and the emergence of active turbulence.58–64

Boundaries have also been shown to induce order in collective
flows of bacterial suspensions,65–67 leading to potential appli-
cations in autonomous microfluidic systems.68 A step towards
understanding these collective phenomena is to explore the
dynamics of a single model swimmer interacting with a
boundary.

The long-range nature of hydrodynamic interactions in
low Reynolds number flows results in geometrical confine-
ment significantly influencing the dynamics of suspended par-
ticles or organisms.69 Interfacial effects govern the design
of microfluidic systems,70–72 they hinder translational and
rotational diffusion of colloidal particles73–81 and play an

0021-9606/2018/148(13)/134904/15/$30.00 148, 134904-1 Published by AIP Publishing.
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important role in living systems, where walls have been shown
to qualitatively modify the trajectories of swimming E. coli
bacteria82–87 or microalgae.88,89 Simplistic two-sphere near-
wall models of bacterial motion have revealed that the dynam-
ics of a bead swimmer can be surprisingly rich, including
circular motion in contact with the wall, swimming away from
the wall, and a non-trivial steady circulation at a finite distance
from the interface.90 This diverse phase behavior has also been
corroborated in systems of chemically powered autophoretic
particles,91–98 leading to a phase diagram also includes trap-
ping, escape, and a steady hovering state. Swimming near a
boundary has been addressed using a two-dimensional singu-
larity model combined with a complex variable approach,99

a resistive force theory,100 and a multipole expansion tech-
nique.101 It has further been demonstrated that geometric
confinement can conveniently be utilized to steer active col-
loids along arbitrary trajectories.102 The detention times of
microswimmers trapped at solid surfaces have been studied
theoretically, elucidating the interplay between hydrodynamic
interactions and rotational noise.103 Trapping in more com-
plex geometries has particularly been analyzed in the context
of collisions of swimming microorganisms with large spher-
ical obstacles104,105 and scattering on colloidal particles.106

The generic underlying mechanism is thought to play a role
in a number of biological processes, such as the formation of
biofilms.107,108

In order to analyze the dynamics of a neutral three-sphere
model swimmer near a no-slip wall, Zargar et al.109 calculated
the phase diagram, finding that the swimmer always orients
itself parallel to the wall. In their calculation, they expand the
hydrodynamic forces in the small parameter ε = L/z, where
L is the length of the swimmer and z is the wall-swimmer
distance, arriving at the conclusion that the dominant term is
proportional to z�2. In this contribution, we revisit this prob-
lem and demonstrate that the dominant term in the swimming
velocities scales rather as z�3. This allows us to calculate the
full phase diagram that shares qualitative features seen in the
aforementioned artificial microswimmers, that is, steady glid-
ing, trapping, and escaping trajectories, based on the initial
conditions of the swimmer.

The paper is organized as follows. In Sec. II, we intro-
duce a theoretical model for the swimmer and derive the
governing equations of motion in the low-Reynolds-number
regime. We then present in Sec. III a state diagram of swim-
ming near a hard wall and introduce suitable order parameters
governing the transitions between the states. In Sec. IV, we
present a far-field theory that describes the swimming dynam-
ics in the limit far away from the wall. We then discuss in
Sec. V the effect of the rotation of the spheres on the swim-
ming trajectories and show that the general 3D motion can be
mapped onto a 2D generic model by properly redefining the
order parameters. Finally, concluding remarks are contained in
Sec. VI.

II. THEORETICAL MODEL
A. Stokes hydrodynamics

We consider the (sufficiently slow) motion of a swim-
mer moving in the vicinity of an infinitely extended planar

hard wall. Since systems of biological or microfluidic rele-
vance are typically micrometer-sized, the Reynolds number is
low, and the dynamics are dominated by viscosity. For small
amplitude and frequency of motion, the fluid flow surround-
ing the swimmer is governed by the steady incompressible
Stokes equations,110 which for a point force acting on the
fluid at position r0 relate the velocity v and pressure field,
p, by

η∇2v(r) − ∇p(r) + Fδ(r − r0) = 0, (1)

∇ · v(r) = 0, (2)

where η denotes the dynamic viscosity of the fluid.
In an unbounded fluid, the solution of this set of equa-

tions for the velocity field is expressed in terms of Green’s
function

vα(r) = Gαβ(r, r0)Fβ , (3)

for α, β ∈ {x, y, z}, referred to as the Oseen tensor, and given
by

GO
αβ(r, r0) =

1
8πη

(
δαβ

s
+

sαsβ
s3

)
, (4)

where summation over repeated indices is assumed following
Einstein’s convention. Moreover s B r � r0 and s B |s|. The
flow due to a point force, called a Stokeslet, decays with the
distance like 1/s.

The solution of the forced Stokes equations in the pres-
ence of an infinitely extended hard wall can conveniently be
determined using the image solution technique111 and contains
Stokeslets and higher-order flow singularities—force dipoles
and source dipoles. The corresponding Green’s function sat-
isfying the no-slip boundary conditions at the wall is given in
terms of the Blake tensor and can be presented as a sum of
four contributions110,111

G(r) = GO(s) − GO(R) + 2z2
0GD(R) − 2z0GSD(R), (5)

wherein r0 = (0, 0, z0) is the point force position, R B r − r0

with r0 = (0, 0,−z0) is the position of the Stokeslet image with
respect to the wall. Moreover, r B |r| and RB |R|. Here GD is
the force dipole given by

GD
αβ(R) =

(1 − 2δβz)

8πη

(
δαβ

R3
−

3RαRβ
R5

)
, (6)

and GSD denotes the source dipole given by

GSD
αβ(R) =

(1 − 2δβz)

8πη

( δαβRz

R3
−
δαzRβ

R3

+
δβzRα

R3
−

3RαRβRz

R5

)
. (7)

The translational and rotational motion of the particles is
related to the forces F and torques L acting upon them via the
hydrodynamic mobility tensor. In the presence of a background
flow with velocity v0 and vorticity 2ω0, this relation takes the
form (

V − v0

Ω − ω0

)
=

(
µtt µtr

µrtµrr

) (
F
L

)
. (8)

110 Chapter 5 Scientific publications



134904-3 Daddi-Moussa-Ider et al. J. Chem. Phys. 148, 134904 (2018)

The indices indicate the translational (tt), rotational (rr),
and translation-rotation coupling (tr, rt) parts of the mobil-
ity tensor. The mobility tensor contains contributions relative
to a single particle (self-mobilities), in addition to contri-
butions due to interactions between the particles (hereafter
approximated by pair mobilities). Owing to the linearity of
the Stokes equations and the reciprocal theorem, the hydro-
dynamic mobility tensor is always symmetric and positive
definite.112–114

B. Swimmer model

In low-Reynolds-number hydrodynamics, swimming
objects have to undergo non-reciprocal motion in order to
achieve propulsion. In the present work, we use a simple
model swimmer, originally proposed by Najafi and Golesta-
nian,9 which is made of three aligned spheres. The spheres
are connected by rod-like elements of negligible hydrody-
namic effects in order to ensure their alignment. This system
is capable of swimming forward when the mutual distances
between the spheres are varied periodically in such a way that
the time-reversal symmetry is broken (see Fig. 1 for an illus-
tration of the linear swimmer model). In the present article,
we focus our attention on the behavior of a neutral swimmer
for which the three spheres have equal size. The behavior of a
general three-sphere microswimmer with different sphere radii

FIG. 1. (a) The frame of reference associated with a neutral three-linked
sphere low-Reynolds-number microswimmer, relative to the laboratory frame.
The swimmer is oriented along the unit vector t̂ defined by the azimuthal angle
φ and polar angle θ. The spheres are connected to each other by dragless rods
where the instantaneous distances between the spheres 2 and 3 relative to the
sphere 1 are denoted g and h, respectively. The side and top views are shown
in the subfigures (b) and (c), respectively, where t̂‖ stands for the projection
of orientation vector t̂ on the plane z = 0. Here ψ B θ � π/2.

to discriminate between pushers and pullers will be reported
elsewhere.115

1. Mathematical formulation

Assuming that the fluid surrounding the swimmer is at
rest, the translational velocity of each sphere relative to the
laboratory (LAB) frame of reference is related to the internal
forces Fλ and torques Lλ via the hydrodynamic mobility tensor
as [c.f. Eq. (8)]

Vγ =
drγ
dt
=

3∑
λ=1

(
µtt
γλ · Fλ + µtr

γλ · Lλ
)

, (9)

for γ ∈ {1, 2, 3}. These internal forces and torques can be actu-
ated, e.g., by imaginary motors embedded between the spheres
along the swimmer axis. Analogously, the angular velocity of
each sphere with respect to the LAB frame is

Ωγ =

3∑
λ=1

(
µrt
γλ · Fλ + µrr

γλ · Lλ
)

. (10)

We note that µtr
γλ = µrt

λγ as required by the symmetry of the
mobility tensor.

Since the swimmer has to undergo autonomous motion,
its body has to be both force-free and torque-free in total.
Accordingly,

3∑
λ=1

Fλ = 0,
3∑
λ=1

(
(rλ − rR) × Fλ + Lλ

)
= 0, (11)

where×denotes the cross product. The moments of the internal
forces can be taken with respect to any reference point, rR, that
we chose here for convenience as the position of the central
sphere.

We now assume that the instantaneous relative distance
vectors between the spheres are prescribed at each time
as

r1 − r3 = h(t) t̂, (12a)

r2 − r1 = g(t) t̂, (12b)

where t̂ is the unit vector pointing along the swimming direc-
tion such that t̂ = sin θ cos φ êx + sin θ sin φ êy + cos θ êz

(c.f. Fig. 1). Here φ and θ stand for the azimuthal and
polar angles, respectively, in the spherical coordinate sys-
tem associated with the swimmer. We further define the
unit vectors θ̂ = cos φ cos θ êx + sin φ cos θ êy − sin θ êz and
φ̂ = − sin φ êx + cos φ êy. We note that the set of vectors
(t̂, θ̂, φ̂) forms a direct orthonormal basis satisfying the relation
θ̂ × φ̂ = t̂. Throughout this work, we assume that the lengths
of the rods change periodically in time relative to a mean
value L,

g(t) = L + u10 cos(ωt), (13a)

h(t) = L + u20 cos(ωt + δ), (13b)

where ω is the frequency of motion, δ ∈ [0, 2π) is the phase
shift, and u10 and u20 are the amplitudes of the length change
such that |u10| � L and |u20| � L. For δ < {0, π} and non-
vanishing u10 and u20, this constitutes a non-reciprocal motion,
which—as noted before—is needed for self-propulsion at low
Reynolds numbers.
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By combining Eqs. (9), providing the instantaneous
velocities of the spheres with Eq. (12), we readily
obtain

3∑
λ=1

(
Gtt
λ · Fλ + Gtr

λ · Lλ
)
= ġ t̂ + g

dt̂
dt

, (14a)

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
= ḣ t̂ + h

dt̂
dt

, (14b)

where, for convenience, we have defined the tensors

Gαβ
λ B µαβ2λ − µ

αβ
1λ , (15a)

Hαβ
λ B µαβ1λ − µ

αβ
3λ , (15b)

with αβ ∈ {tt, tr, rt, rr}. The time derivative of
the unit orientation vector t̂ relative to the LAB frame
is

dt̂
dt
= θ̇ θ̂ + φ̇ sin θ φ̂. (16)

In order to model the circular trajectories observed in
swimming bacteria near surfaces, we further assume that the
spheres can freely rotate around the swimming axis at rotation
rates ϕ̇γ. The frame of reference associated with the swim-
mer can be obtained by Euler transformations,116 consisting
of three successive rotations. Accordingly, the Euler angles,
φ, θ, and ϕγ represent the precession, nutation, and intrinsic
rotation along the swimming axis, respectively. The angu-
lar velocity vector of a sphere γ relative to the LAB frame
reads

Ωγ = −φ̇ sin θ θ̂ + θ̇ φ̂ + (φ̇ cos θ + ϕ̇γ) t̂. (17)

The dynamics of the swimmer are fully characterized by
the instantaneous velocity of the central sphere in addition to
the rotation rates θ̇ and φ̇. For their calculation, we require the
knowledge of the internal forces and torques acting between
the spheres.

By projecting Eqs. (14) onto the spherical coordinate basis
vectors and eliminating the rotation rates θ̇ and φ̇, four scalar
equations are obtained. The force- and torque-free conditions
stated by Eq. (11) provide us with six additional equations.
Moreover, the projection of the angular velocities (17) along
the θ̂ and φ̂ directions yields

Ωγ · θ̂ = −φ̇ sin θ, (18a)

Ωγ · φ̂ = θ̇, (18b)

for γ ∈ {1, 2, 3}, providing six further equations. For a closure
of the system of equations, we prescribe the relative angular
velocities between the adjacent spheres as

(Ω1 −Ω3) · t̂ = ϕ̇1 − ϕ̇3 =: ω13, (19a)

(Ω2 −Ω1) · t̂ = ϕ̇2 − ϕ̇1 =: ω21. (19b)

The determination of the internal forces and torques acting
on each sphere is readily achievable by solving the resulting
linear system composed of 18 independent equations given
by (11), (14), (18), and (19), using the standard substitution
method. In the remainder of this paper, all the lengths will be
scaled by the mean length of the arms L and the times by the

inverse frequency ω�1. Finally, the swimming velocity can be
calculated as

V B V1 =

3∑
λ=1

(
µtt

1λ · Fλ + µtr
1λ · Lλ

)
(20)

and the rotation rates as

θ̇ =
1
h

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
· θ̂, (21)

φ̇ =
1

h sin θ

3∑
λ=1

(
Htt
λ · Fλ + Htr

λ · Lλ
)
· φ̂. (22)

The swimming trajectories can thus be determined by integrat-
ing Eqs. (20)–(22) for a given set of initial conditions (r0, θ0,
φ0).

2. Swimming in an unbounded domain

In an unbounded fluid domain, i.e., in the absence of
the wall, the swimmer undergoes purely translational motion
along its swimming axis without changing its orientation. In
order to proceed analytically, we assume that the radius of the
spheres a is much smaller than the arm lengths. The inter-
nal forces acting on the spheres averaged over one swimming
period are

F1 =
a2

4

(
5 +

11
2

a

)
πηK t̂, F2 = F3 = −

F1

2
, (23)

wherein
K B 〈gḣ − hġ〉 = −u10u20 sin δ, (24)

and 〈·〉 denotes the time-averaging operator over one complete
swimming cycle, defined by

〈·〉 B
1

2π

∫ 2π

0
(·) dt. (25)

Clearly, no net swimming motion is achieved if δ = 0 or π.
Moreover, the swimming speed is maximal when δ = π/2,
a value we consider in the subsequent analysis. The internal
torques exerted on the rotating spheres read

L1 =
8π
3

a3 (ω13 − ω21) t̂, (26a)

L2 =
8π
3

a3 (2ω21 + ω13) t̂, (26b)

L3 = −
8π
3

a3 (ω21 + 2ω13) t̂. (26c)

By making use of Eq. (20) and averaging over a swimming
cycle, the translational velocity up to the second order in a
reads

V1 = V0 t̂, V0 B −
a
24

(7 + 5a) K , (27)

while θ̇ = 0 and φ̇ = 0 so that the swimmer’s orientation
remains constant. Evidently, the averaged swimming speed
is a function of just the swimmer’s properties and does not
depend on the fluid viscosity.9 The fluid viscosity would nev-
ertheless have to be accounted for to calculate the power
needed to perform the prescribed motions of the three spheres.
In the following, we will address the swimming behavior
near a hard wall and investigate the possible scenarios of
motion.
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III. SWIMMING NEAR A WALL
A. State diagram

We now consider the swimming kinematics in the vicinity
of a hard wall and examine in details the resulting swimming
trajectories. For that aim, we solve numerically the linear sys-
tem of equations described in Sec. II to determine the internal
forces and torques acting between the spheres. The time-
dependent position and orientation of the swimmer are then
calculated by numerically integrating Eqs. (20)–(22) using a
fourth-order Runge-Kutta scheme with adaptive time step-
ping.117 For the particle hydrodynamic mobility functions,
we employ the values obtained using the multipole method
for Stokes flows.118,119 This method is widely used and has
the advantage of providing precise and accurate predictions
of the self-mobilities, which are reasonable even at distances
very close to the wall. The time-averaged positions and incli-
nations are determined numerically using the standard trape-
zoidal integration method. As the vertical position of one of
the spheres gets closer to the wall such that z ∼ a, an addi-
tional soft repulsive force Fz = κ(z � a)�n is introduced, where
κ = 10�5η|K | and n = 2 are taken as typical values. We have
checked that changing these values within moderate ranges
results in qualitatively similar outcomes. Moreover, we take a
= u10 = u20 = 1/10.

We begin with the relatively simple situation in which the
spheres do not rotate around the swimming axis, so we take
ω21 = ω13 = 0. In this particular case, the problem becomes
two dimensional as the swimmer is constrained to move in the
plane defined by its initial azimuthal orientation φ0. Without
loss of generality, we take φ0 = 0 for which the swimmer moves
in the (x, z) plane.

In Fig. 2, we show the swimming state diagram con-
structed in the (z0, ψ0) space, where ψ B θ � π/2 defines the
angle relative to the horizontal direction. Hence, the swimmer
is initially pointing towards (away from) the wall for ψ0 > 0
(ψ0 < 0). We observe that three different possible scenarios of
motion emerge depending upon the initial distance from the
wall and orientation. The swimmer may be trapped by the wall,

FIG. 2. State diagram illustrating the possible swimming scenarios in the
presence of a hard wall for the 2D motion, i.e., forω21 =ω13 = 0. The dashed
line corresponds to impermissible situations in which one of the spheres is in
contact with the wall. Here a = u10 = u20 = 1/10.

totally escape from the wall, or undergo a nontrivial oscilla-
tory gliding motion. In the trapping state (shown as red circles
in Fig. 2), the swimmer moves towards the wall following
a parabolic-like trajectory to progressively align perpendicu-
lar to the wall as ψ → π/2. In the final stage, the swimmer
reaches a stable state and hovers at a constant height above
the wall. This behavior occurs for large initial inclinations
when ψ0 > 0.3 and that regardless of the initial distance that
separates the swimmer from the wall. However, trapping can
also take place for ψ0 ∼ 0 if the swimmer is initially located
far enough from the wall, at distances larger than z0 = 1.5.
Notably, the swimmer is trapped by the wall if it is released
from distances z0 < 0.25 with a vanishing initial inclination
ψ0 = 0.

The escaping state (green triangles in Fig. 2) is observed
if the swimmer is directed away from the wall with ψ0

< �0.5. In this state, the swimmer moves straight away from the
wall beyond a certain height at which the wall-induced hydro-
dynamic interactions die away completely. In the oscillatory
gliding state (blue rectangles in Fig. 2), the swimmer under-
goes a sinusoidal-like motion around a mean height above the
wall. This state occurs in a bounded region of initial states
when z0 ∼ 1 and ψ0 ∼ 0.

In Fig. 3, we show the transition from the trapping to the
escaping states upon variation of the initial inclination for a
swimmer initially positioned a distance z0 = 1 above the wall.
For initial inclinationsψ0 > �0.39, the swimmer moves along a
curved path following a projectile-like trajectory before ending
up hovering at a steady height z ' 1.12 above the wall. Accord-
ingly, the swimmer velocity normal to the wall vanishes and

FIG. 3. Transition from the trapping to the escaping states upon variation of
the initial inclination angleψ0 while keeping the initial distance from the wall
constant at z0 = 1. (a) shows the averaged swimming trajectories for the 2D
motion in the plane (x, z) and (b) shows the inclination angle ψ as a function
of x.
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the inclination angle approaches the steady value correspond-
ing to ψ ' π/2. Indeed, this final state is stable and is found to
be independent of the initial orientation of the swimmer with
respect to the wall. For ψ0 = �0.39, the swimmer manages
to escape from the attraction of the wall and moves along a
straight line maintaining a constant orientation, i.e., just as it
would be the case in an unbounded fluid.

Figure 4 illustrates the swimming trajectories in the oscil-
latory gliding state for (a) ψ0 = 0 and (b) ψ0 = 0.2 and various
initial heights ranging from z0 = 0.5 to 1.25. We observe that
the amplitude of oscillations is strongly dependent on z0 and
eventually vanishes for ψ0 = 0 and z0 ' 0.75 giving rise to a
steady sliding motion at a constant velocity. The mean incli-
nation angle over one oscillation period amounts to zero and
thus the swimmer undergoes motion at a constant mean height
above the wall. We further note that the frequency of oscil-
lations has nothing to do with ω which is several orders of
magnitude larger.

For future reference, we denote by µ the magnitude of the
scaled swimming velocity parallel to the wall averaged over

one oscillation period, µ B V‖/V0 where V‖ B
(
V2

x + V2
y

)1/2

and V0 is the magnitude of the bulk swimming velocity given
by Eq. (27).

B. Transition between states

We now investigate the swimming behavior more quanti-
tatively and analyze the evolution of relevant order parameters
around the transition points between the states.

FIG. 4. Typical swimming trajectories in the oscillatory gliding state for dif-
ferent initial distances from the wall where (a) ψ0 = 0 and (b) ψ0 = 0.2. For
z0 = 1.25 and ψ0 = 0.2, the swimmer is trapped by the wall and thus the
trajectory has not been shown here. The swimmer inclination angle shows a
similar oscillatory behavior around a mean angle ψ = 0.

1. Transition between the trapping
and escaping states

In order to probe the transition between the trapping and
escaping states, we define an order parameter z−1

P as the inverse
of the peak height achieved by the swimmer before it is trapped
by the wall [c.f. Fig. 3(a)]. Additionally, we define a second
order parameter δ�1 as the inverse of the distance along the
x direction at which the peak height occurs. Clearly, both z−1

P
and δ�1 amount to zero for the escaping state and thus can
serve as relevant order parameters to characterize the transition
between the trapping and escaping states.

In Fig. 5, we present the evolution of the order param-
eters z−1

P and δ�1 around the transition point between the
trapping and escaping states along three different horizontal
[subfigures (a)–(c)] and vertical [subfigures (d)–(f)] paths in
the state diagram presented in Fig. 2. We observe that the
inverse peak height z−1

P exhibits a scaling behavior around the
transition points with an exponent of 1/3. Similar behavior
is displayed by the inverse peak position around the transi-
tion points with a scaling exponent of 5/6. We will show in
Sec. IV B that these scaling laws can indeed be predicted
theoretically by considering a simplified model based on the
far-field approximation. It can clearly be seen that even beyond
ψ � ψ0 = 0.1 from the transition points, the scaling law is
still approximatively obeyed. Despite its simplicity, the pre-
sented far-field model leads to a good prediction of the scaling
behavior of these two order parameters around the transition
points.

2. Transition between the trapping
and oscillatory-gliding states

In the oscillatory-gliding state, the swimmer remains on
average at the same height above the wall such that Vz = 0 and
translates at a constant velocity parallel to the wall. In order
to study the transition between the trapping and oscillatory-
gliding states, we utilize the scaled mean swimming velocity
parallel to the wall, averaged over one oscillation period as a
relevant order parameter, µ = Vx/V0, where again V0 is the
magnitude of the swimming velocity in an unbounded fluid
domain. Additionally, we define a second order parameter A
as the amplitude of oscillations.

In Fig. 6, we present the evolution of the order parameters
µ and A at the transition points between the oscillatory-gliding
and trapping states along three different horizontal paths in
the state diagram. The mean swimming velocity [Fig. 6(a)]
is found to be about 5% lower than the bulk velocity and is
weakly dependent on the initial orientation or distance from
the wall. In the trapping state, the swimmer points toward
the wall and remains at a constant height above the wall
to attain a stable hovering state. Therefore, in this situa-
tion, both of the two order parameters µ and A vanish. The
transition from the oscillatory-gliding and trapping states is
thus first order, characterized by a discontinuity in the rel-
evant order parameters. We further remark that the ampli-
tudes of oscillations [Fig. 6(b)] reach a maximum value of
about 1.2 around the transition points between the oscillatory-
gliding and trapping states. Moreover, for ψ0 = 0, the ampli-
tude of oscillations is minimal and eventually vanishes for
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FIG. 5. Log-log plots of order param-
eters z−1

P and δ�1 at the transition
point between the trapping and escaping
states in the 2D case forω13 =ω21 = 0,
as obtained from the numerical simula-
tions. Here zT and ψT denote, respec-
tively, the swimmer height and incli-
nation at the transition point between
the trapping and escaping states. For the
sake of readability, the curves associated
with the green and blue paths are shifted
on the vertical scale by factors of 3 and 9,
respectively. The solid lines are a guide
for the eye.

z0 ' 0.75, leading to a pure gliding motion of vanishing ampli-
tude, parallel to the wall. Both order parameters are found to be

FIG. 6. Evolution of the order parameters (b) µ and (c) A versus the initial
inclination angle ψ0 at the transition between the trapping and oscillatory
gliding states for various horizontal paths along the state diagram. (a) displays
a part of the state diagram shown in Fig. 2.

symmetric with respect to ψ0 = 0, and thus (z0, ψ0) and
(z0, �ψ0) represent identical dynamical states along these
considered paths.

In Sec. IV, we will present a far-field model for the near-
wall swimming and provide theoretical arguments for the scal-
ing behavior observed at the transition between the trapping
and escaping states.

IV. FAR-FIELD MODEL

In order to address the swimming behavior in the far-
field limit, we expand the averaged translational velocity and
rotation rate of the swimmer as power series in the ratio 1/z.
We further employ the far-field expressions of the hydrody-
namic mobility functions which can adequately be expressed
as power series in the ratio a/z. Up to the second order in a, and
by accounting for the leading order in 1/z only, the differential
equations governing the averaged dynamics of the swimmer
far away from the wall read

dx
dt
= −aK cosψ

(
7

24
+

3 sin2 ψ
(
12 − cos2 ψ

)
64z3

+ a

(
5

24
+

620 − 453 cos2 ψ + 120 cos4 ψ

1024z3

) )
, (28a)

dz
dt
= aK sinψ

(
7

24
+

3
(
8 − 16 cos2 ψ + cos4 ψ

)
64z3

+ a

(
5

24
+

158 − 111 cos2 ψ + 30 cos4 ψ

256z3

) )
, (28b)
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dψ
dt
= −

9aK

512z4
cosψ

(
56 − 52 cos2 ψ + 11 cos4 ψ

+
a
2

(
68 − 31 cos2 ψ + 8 cos4 ψ

) )
. (28c)

The wall-induced correction to the swimmer translational
velocities decays in the far field as z�3, whereas its angular
velocity undergoes a decay as z�4. Therefore, the flow field
induced by a neutral three-linked sphere swimmer near a wall
resembles that of a microorganism whose flow field is modeled
as a force quadrupole or a source dipole.

We recall that the swimming trajectories resulting from
quadrupolar hydrodynamic interactions as derived from
Faxén’s law for a prolate ellipsoid of aspect ratio γ tilted
an angle ψ and located a distance z above a rigid wall
read120

dx
dt
= cosψ *

,
V0 +

σ

16z3

(
27 cos2 ψ − 20

)+
-

, (29a)

dz
dt
= − sinψ *

,
V0 +

σ

4z3

(
9 cos2 ψ − 2

)+
-

, (29b)

dψ
dt
=

3σ cosψ

32z4

(
8(Γ − 1) + 6(Γ + 2) cos2 ψ − 3Γ cos4 ψ

)
,

(29c)

where V0 is the propulsion velocity in a bulk fluid, i.e.,
far away from boundaries and Γ B (γ2

� 1)/(γ2 + 1) is
the shape factor. In addition, σ is the quadrupole strength
(has the dimension of velocity × length3) where σ > 0 for
swimmers with small bodies and elongated flagella and σ
< 0 in the opposite situation.3,121 The equations governing
the dynamics of a swimming microorganism near a wall,
whose generated flow field is modeled as a source dipole,
read120

dx
dt
= cosψ *

,
V0 −

α

4z3
+
-

, (30a)

dz
dt
= − sinψ *

,
V0 −

α

z3
+
-

, (30b)

dψ
dt
= −

3α cosψ

16z4

(
2 + 3Γ(2 − cos2 ψ)

)
, (30c)

where α is the source dipole strength (has the dimension of
velocity × length3) such that α > 0 for ciliated swimming
organisms which rely on local surface deformation to pro-
pel themselves through the fluid3 and α < 0 for non-ciliated
microorganisms with helical flagella. Therefore, the effect
of the wall on the dynamics of a three-linked sphere swim-
mer can conveniently be modeled as a superposition of a
quadrupole of strength σ > 0 and a source dipole of strength
α < 0.

Notably, in the limit z→∞, Eqs. (28a) and (28b) reduce
to Eq. (27) providing the swimming velocity in an unbounded
bulk fluid. We further note that the asymptotic results derived
in Ref. 109 have been reported with an erroneous far field
decay that we correct here.

A. Approximate swimming trajectories

For small inclination angles relative to the horizontal plane
such that ψ � 1, the sine and cosine functions can be approx-
imated using Taylor series expansions around ψ = 0 where
sinψ ∼ ψ and cosψ ∼ 1. We have checked that account-
ing for the term with ψ2 in the series expansion of cos ψ
has a negligible effect on the swimming trajectories and thus
has been discarded here for simplicity. Further, restricting to
the leading order in a, Eqs. (28) can thus be approximated
as

dx
dt
= −

7
24

aK , (31a)

dz
dt
= aK

(
7

24
−

21
64

1

z3

)
ψ, (31b)

dψ
dt
= −

135
512

aK

z4
. (31c)

Based on these equations, we now derive approximate
swimming trajectories analytically. By combining Eqs. (31b)
and (31c) and eliminating the time differential dt, the equa-
tion relating the swimmer inclination to its vertical position
reads

ψdψ = −
405
56

dz

z(8z3 − 9)
, (32)

which can readily be solved subject to the initial condi-
tion of inclination and distance from the wall (ψ0, z0) to
obtain

exp

(
28
15

(
ψ2 − ψ2

0

))
=

z3

z3
0

8z3
0 − 9

8z3 − 9
. (33)

When the swimmer reaches its peak position, the inclina-
tion angle necessarily vanishes (provided that the swimmer is
initially pointing away from the wall such that ψ0 < 0). Solv-
ing Eq. (33) for ψ = 0, the peak height can thus be estimated
as

zP =
z0(

H + 8
9 (1 − H) z3

0

)1/3
, (34)

where we have defined the parameter H ' 1 + β ψ2
0 with

β = 28/15.

B. Order parameters
1. Inverse peak height z−1

P

We now calculate the first order parameter z−1
P gov-

erning the transition between the trapping and the escap-
ing states, defined in Sec. III B as the inverse of the peak
height,

z−1
P =

1
z0

(
H +

8
9

(1 − H) z3
0

)1/3

. (35)

At the transition to the escaping state, the order parameter z−1
P

amounts to zero. For a given initial inclinationψ0, the transition
height is estimated as

zT =
1
2

(
9H

H − 1

)1/3

. (36)
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Similarly, the inclination angle at the transition point between
the trapping and the escaping states for a given initial vertical
distance z0 reads

ψT = −
1

14
*
,

105
8
9 z3

0 − 1
+
-

1/2

. (37)

The scaling behavior of the order parameter z−1
P around

the transition point can readily be obtained by performing
a Taylor series expansion around ψ0 = ψT and z0 = zT to
obtain

z−1
P =

1
z0

(
2
−ψT

)1/3

(ψ0 − ψT)1/3 + O
(
(ψ0 − ψT)4/3

)
, (38a)

z−1
P =

(3H)1/3

z4/3
T

(zT − z0)1/3 + O
(
(zT − z0)4/3

)
. (38b)

Therefore, the transition between the trapping and escaping
states is continuous and characterized by a scaling exponent
1/3 of the order parameter.

2. Inverse peak position δ−1

We next calculate the second order parameter δ�1, defined
earlier as the inverse of the horizontal position δ corresponding
to the occurrence of the peak, i.e., z(x = δ) = zP. Combining
Eqs. (31a) and (31c) together, we obtain

dx
dψ
=

448
405

z4, (39)

where the ψ-dependence of the variable z can readily be
obtained from Eq. (33) and is expressed as

z =
r1/3z0(

1 + 8
9 (r − 1)z3

0

)1/3
, (40)

where we have defined

r ' 1 + β
(
ψ2 − ψ2

0

)
. (41)

By inserting Eq. (40) into Eq. (39), making the change of
variable r = 1 − βψ2

0v , and noting the relation between the
differentials,

dψ = −
1

2β
dr(

ψ2
0 + β−1 (r − 1)

)1/2
, (42)

the x-position corresponding to the occurrence of the peak
follows forthwith upon integration of both sides of the resulting
differential equation to obtain

δ = −
224
405

z4
0ψ0

∫ 1

0

*
,

1 − βψ2
0v

1 − 8
9 βψ

2
0z3

0v
+
-

4/3
dv

(1 − v)1/2
. (43)

Unfortunately, the latter integral cannot be solved ana-
lytically for arbitrary values of ψ0 and z0. In order to over-
come this difficulty, we may have recourse to approximate
analytical tools. Clearly, there are no issues coming from

the factor
(
1 − βψ2

0v
)4/3

(1 − v)−1/2 since it is well behaved
and integrable in the interval [0, 1]. However, difficulties

arise from the factor
(
1 − 8

9 βψ
2
0z3

0v
)−4/3

, in which, for ψ2
0z3

0

= 9/(8β), the denominator vanishes leading to a singularity
of order �4/3 in addition to �1/2 coming from the (1 − v)−1/2

factor.
In order to proceed further and probe the behavior

near the transition points, we approximate a factor which is

well behaved at the singular point and put
(
1 − βψ2

0v
)4/3

'
(
1 − βψ2

0

)4/3
since the singularity would be located at v

= 1. Accordingly, the integral in Eq. (43) can be evaluated
analytically, leading to

δ ' −
448
405

z4
0ψ0

(
1 − βψ2

0

)4/3
2F1

(
1,

4
3

;
3
2

;
8
9
βψ2

0z3
0

)
,

where 2F1 denotes the hypergeometric function122 which for
x→ 1 can conveniently be approximated as

2F1

(
1,

4
3

;
3
2

; x

)
∼

π3/2

Γ(1/6) Γ(4/3)
(1 − x)−5/6, (44)

where Γ denotes the Gamma function.122

The evolution of the second order parameter δ�1 around
the transition points reads

δ−1 ∼ −
Λ

z4
0ψ0

(
1 − βψ2

0

)−4/3
(
1 −

8
9
βψ2

0z3
0

)5/6

, (45)

with the prefactor

Λ B
405
448
Γ(1/6) Γ(4/3)

π3/2
. (46)

For a given initial distance from the wall, the transition

angle is estimated as ψT = −3/
(
8βz3

0

)1/2
and thus

δ−1 ∼ (ψ0 − ψT)5/6 , (47)

around the transition point, bearing in mind that ψ0 and ψT

are both negative quantities. Similarly, by considering a given
initial inclination ψ0, the transition is expected to occur at a

height zT =
1
2

(
9/(βψ2

0)
)1/3

and thus

δ−1 ∼ (zT − z0)5/6 , (48)

around the transition point. Indeed, these scaling behaviors of
the order parameters as derived from the far-field model are
in a good agreement with the numerical results presented in
Fig. 5.

Even though the far-field model is found to be able to cap-
ture the scaling behavior around the transition point between
the escaping and trapping states, it is worth mentioning that
this model nonetheless is not viable for predicting the swim-
ming trajectories accurately. As the swimmer gets to a finite
distance close to the wall, the far-field approximation is not
strictly valid. An accurate analytical prediction of the swim-
ming trajectories would thus require to account for the gen-
eral z-dependence of the averaged swimming velocities and
inclination.

V. EFFECT OF ROTATION
A. State diagram

Having investigated the state diagram of swimming near
a wall in the absence of rotation, and provided an analytical
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theory rationalizing our findings on the basis of a far-field
model, we next consider the situation where the spheres are
allowed to rotate around the swimming axis. For flagellated
bacteria, e.g., E. coli, which swim by the action of molecu-
lar rotary motors, the flagellum undergoes counterclockwise
rotation (when viewed from behind the swimmer) at speeds of
∼100 Hz,123,124 whereas the cell body rotates in the clock-
wise direction for the bacterium to remain torque-free, at
speeds of ∼10 Hz.125,126 Based on these observations, we
assume that the spheres 1 and 3 rotate at the same rota-
tion rate to mimic the rotating flagellum such that ω13 = 0,
whereas the sphere 2 represents the cell body that rotates
in the opposite direction. Accordingly, ω1 = ω3 < 0 and
ω2 > 0, and thus the relative rotation rate ω21 ≡ ω2 � ω1

has to be positive.
In Fig. 7, we present the state diagram of the swim-

ming behavior near a wall for two different values of the
relative rotation rate ω21. We observe that the state dia-
gram is qualitatively similar to that obtained in the 2D
case, shown in Fig. 2, where three distinct states of motion
occur depending on the initial orientation and distance from
the wall. The main difference is that the oscillatory-gliding
state found earlier is substituted by an oscillatory circling
in the clockwise direction, at a constant mean height above

FIG. 7. State diagram of swimming near a hard wall for a non-vanishing
angular velocity along the swimming axis where (a)ω21 = 1 and (b)ω21 = 4.
Hereω13 = 0. The dashed line displays the boundary at the transition between
the trapping and escaping states for the non-rotating system (ω21 =ω13 = 0).
The other parameters are the same as in Fig. 2.

the wall. Indeed, the clockwise motion in circles has been
observed experimentally for swimming E. coli bacteria near
surfaces83 and is a natural consequence of the fluid-mediated
hydrodynamics interactions with the neighboring interface
and the force- and torque-free constraints imposed on the
swimmer.126

Upon increasing the rotation rate, we observe that the
escaping state is enhanced to the detriment of the trapping
state. For instance, for ω13 = 4 [Fig. 7(b)], even though the
swimmer is initially pointing toward the wall at an angle
ψ0 = 0.05, it can surprisingly escape the wall trapping if z0

≥ 3.5. This behavior is most probably attributed to the wall-
induced hydrodynamic coupling between the translational and
rotational motions, which tends to align the swimmer away
from the wall. We further observe that increasing the rotation
rate favors the trapping of the swimmer if it is initially released
from distance close to the wall, for z0 < 0.5.

B. Transition between states
1. Transition between the trapping and escaping states

As in the 2D case, we define two relevant order param-
eters z−1

P and δ�1 quantifying the state transition between the
trapping and escaping states. We keep the definition of the
first order parameter z−1

P as the inverse of the peak height.
By considering the 2D projection of the trajectory on the
(xy) plane, we define the second order parameter δ�1 for the
3D motion as the inverse of the curvilinear distance along
the projected path, corresponding to the occurrence of the
peak.

In Fig. 8, we present a log-log plot of the order parameters
z−1

P and δ�1 versus ψ0 � ψT [subfigures (a)–(c)], and versus
zT � z0 [subfigures (d)–(f)] along example paths on the state
diagram shown in Fig. 7(a), for ω21 = 1. We observe that both
order parameters exhibit analogous scaling behavior around
the transition point as in the 2D case. We will show that the
general 3D case can approximatively be mapped into a 2D rep-
resentational model by considering the local reference frame
along the curvilinear coordinate line. Nevertheless, the power
laws predicted analytically may not be strictly obeyed as the
scaling exponents 1/3 and 5/6 derived above may not be dis-
played properly, notably along the vertical paths in the state
diagram [Figs. 8(e) and 8(f)]. This mismatch is most probably
a drawback of the simplistic approximations involved in the
analytical theory proposed here for the rotating system whose
derivation is outlined in Sec. V C 2.

2. Transition between the trapping
and oscillatory-circling states

We next consider the transition between the trapping and
oscillatory-gliding states and define in a similar way, as in the
2D case, two relevant order parameters controlling the state
transition. As before, we define the first order parameter as
the magnitude of the scaled swimming velocity parallel to the
wall averaged over one oscillation period, µ B V‖/V0. The
second order parameter A is defined in an analogous way as
the amplitude of the oscillations. The evolution of the order
parameters has basically a similar behavior to that shown in
Fig. 6 where the transition between the oscillatory-circling
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FIG. 8. Log-log plots of the first and
second order parameters at the transition
point between the trapping and escaping
states in the 3D case forω21 = 1 andω13
= 0, as obtained from the numerical sim-
ulations. The curves associated with the
green and blue paths are, respectively,
shifted for the sake of readability on the
vertical scale by factors of 3 and 9. The
solid lines are a guide for the eye.

and trapping states is found also to be first order discontin-
uous (see Fig. 1 in the supplementary material for further
details).

In the following, we present an extension of the far-
field model presented in Sec. IV in order to assess the effect
of the rotational motion of the spheres on the swimmer
dynamics.

C. Far-field model
1. Pure rotational motion

We first consider the situation where K = 0 and confine
ourselves for simplicity to the case where the swimmer is
aligned parallel to the wall for which ψ = 0. The system of
equations governing the swimmer dynamics at leading order
in a reads

dx
dt
= −a5M(z) sin φ, (49a)

dy
dt
= a5M(z) cos φ, (49b)

dφ
dt
= −a5Q(z), (49c)

dθ
dt
= 0, (49d)

where we have defined

Q(z) B
ω13 + 2ω21

24

(
1

z4
−

z

ξ5

)
+ 2M(z) (50)

and

M(z) B

(
1

24z4
−

4z

3ζ5

)
(ω13 − ω21), (51)

wherein ζ B
(
1 + 4z2

)1/2
and ξ B

(
1 + z2

)1/2
. It can be seen

that if ω13 = ω21, for which the rotation rate of the central
sphere is the average of the rotation rates of the spheres 2
and 3, the translational velocity vanishes and thus the swim-
mer undergoes a pure rotational motion around the central
sphere. For ω13 = 0, the rotation rate φ̇ has a maximum value
for z ≈ 0.2448 and exhibits a decay as z�6 in the far-field
limit.

2. Combined translation and rotation

We next combine the translational and rotational motions
and write approximate equations governing the dynamics of
the swimmer. As can be inferred from Eqs. (49), the leading-
order terms in the swimming velocities for a pure rotational
motion scale as a.5 For the translational motion (K , 0), we
have shown that at leading order, these velocities scale linearly
with a [c.f. Eqs. (31)]. Therefore, the approximated govern-
ing equations about ψ = 0 for the combined translational and
rotational motions are given by

dx
dt
= −

7
24

aK cos φ, (52a)

dy
dt
= −

7
24

aK sin φ, (52b)

dz
dt
= aK

(
7

24
−

21
64

1

z3

)
ψ, (52c)

dψ
dt
= −

135
512

aK

z4
, (52d)

dφ
dt
= −a5Q(z). (52e)
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FIG. 9. Radius of curvature versus the scaled relative rotation rate ω21.
Solid line is the analytical prediction stated by Eq. (54) and symbols are
the numerical simulations. The inset shows the same plot in a log-log
scale.

Defining the curvilinear coordinate s along the projection
of the particle trajectory on the (xy) plane such that ds2 = dx2

+ dy2, Eqs. (52a) and (52b) yield

ds
dt
= −

7
24

aK . (53)

The system of equations composed of (52c), (52d), and
(53) is mathematically equivalent to that earlier derived in the
2D case and stated by Eqs. (31). In the far-field limit, the effect
of the rotation of the spheres along the swimmer axis intervenes
only through Eq. (52e) describing the temporal change of the
azimuthal angle φ. Therefore, by appropriately redefining the
second order parameter δ�1 as the curvilinear coordinate cor-
responding to the peak height, the order parameters z−1

P and
δ�1 are expected to exhibit the same scaling behavior as in the
2D case.

Finally, we calculate the radius of curvature of the swim-
ming trajectory in the special case when ψ0 = 0 and z0 = 0.75
for which the swimmer remains typically at a constant height
above the wall. According to Eq. (52e), the azimuthal angle
changes linearly with time, and thus the swimmer performs a
circular trajectory of radius

R =
7

24
|K |

a4Q(z0)
∼ ω−1

21 , (54)

for ω13 = 0. Interestingly, the radius of curvature decays as a
fourth power with a, while it decreases linearly with the relative
angular velocityω21. Figure 9 shows a quantitative comparison
between analytical predictions and numerical simulations over
a wide range of relative rotation rates. While the numerical
results show a slightly slower decay with ω21, the agreement
is reasonable considering the approximations involved in the
analytical theory.

VI. CONCLUSIONS

Inspired by the role of near-wall hydrodynamic interac-
tions on the dynamics of living systems, particularly swim-
ming bacteria127 and the formation of biofilms,107 we have
explored the behavior of a simple model three-sphere swim-
mer proposed by Najafi and Golestanian9 in the presence
of a wall. Modeling the swimmer by three aligned spher-
ical beads with periodically time-varying mutual distances,

we have analyzed the long-time asymptotic behavior of the
swimmer depending on its initial distance and orientation
with respect to the wall. We have found that there are three
regimes of motion, leading to either trapping of the swimmer
at the wall, escape from the wall, or a non-trivial oscillatory
gliding motion at a finite distance above the wall. We have
found that these three states persist also when we allow the
beads to rotate. The rotational motion of the beads, intro-
duced to mimic to the rotation of a cell flagellum and a
counter-rotation of its body, renders the near-wall motion of
the swimmer fully three-dimensional, as opposed to the quasi-
two-dimensional motion in the classic Najafi and Golestanian
design.

Having classified the swimming behavior, we have quan-
tified the transition between different states by introducing
the appropriate order parameters and measuring their scal-
ing with the initial height and orientation. Using the far-field
analytical calculations, we have shown that the scaling expo-
nents obtained from numerical solutions of the equations of
motion of the swimmer can be found exactly from the dom-
inant asymptotic behavior of the flow field. Moreover, we
have demonstrated that in the presence of internal rotation,
the three-dimensional dynamics in the far-field approach can
be mapped onto a quasi-two-dimensional model and thus
the scalings found in both cases remain the same. We have
verified the analytical predictions with numerical solutions,
finding very good agreement. This suggests that in order to
grasp the general complex dynamics of the swimmer near
an interface, it is sufficient to include the dominant flow
field.

In view of recent experimental realizations of the three-
sphere swimmer using optical tweezers,14,15 we hope that the
findings of this paper may be verified experimentally. On
one hand, it would be interesting to see the purely trans-
lational case, varying only the distances between spheres.
It might prove more challenging to construct a swimmer
that would actually be capable of performing an internal
rotation, yet it is an exciting perspective due to the rel-
evance of this simple model to the widely used singu-
larity representations for swimming microorganisms near
interfaces.101

SUPPLEMENTARY MATERIAL

See supplementary material for the elements of the matrix
resulting from the linear system of equations governing the
generalized motion of a three-sphere swimmer near a wall
given by (11), (14), (18), and (19). In addition, we provide
the far-field expressions of the mobility functions used in the
analytical model. Finally, we present the evolution of the order
parameters A and µ in the oscillatory circling state associated
with the 3D system.

The movies 1 and 2 illustrate a swimmer initially released
from z0 = 1 atψ0 =�0.38 (trapping) andψ0 =�0.39 (escaping).
The movies 3 and 4 illustrate the oscillatory-gliding state for
ψ0 = 0, for a swimmer initially released from z0 = 0.75 and
z0 = 1. The movie 5 shows the oscillatory circling state of a
swimmer initially located at z0 = 1 above the wall, released at
an angle ψ0 = 0 for ω21 = 2 and ω13 = 0.
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Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular 
significantly alter the dynamics of swimming microorganisms in viscous media. Surface-
related effects on the motility of microswimmers can lead to important consequences in a large 
number of biological systems, such as biofilm formation, bacterial adhesion and microbial 
activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram 
of a three-sphere microswimmer under channel confinement in a slit geometry and fully 
characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-
type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers 
and pullers may further perform a gliding motion and maintain a stable navigation along 
the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork 
bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel 
height while two new stable limit cycles or fixed points that are symmetrically disposed with 
respect to the channel mid-height emerge. Additionally, we show that an accurate description 
of the averaged swimming velocity and rotation rate in a channel can be captured analytically 
using the method of hydrodynamic images, provided that the swimmer size is much smaller 
than the channel height.
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1.  Introduction

Microorganisms, particularly bacteria, constitute the bulk 
of the biomass on Earth and outnumber any other creatures. 
Despite their vast biological diversity and specific interac-
tion with their environment, the physics of microscale fluid 
dynamics provides a unifying framework of the understanding 
of some aspects of their behavior [1–4]. Swimming on the 
microscale is conceptually very different from the everyday 
macroscale experience [5–7]. Since the typical sizes and 
velocities of microswimmers are of the order of microns and 
microns per second, the Reynolds number characterizing the 
flow is Re � 1. In this case, inertial effects can be disregarded 
compared to viscous effects in flow, and the motion of the 
fluid is described by linear Stokes hydrodynamics [8, 9]. This 
has a pronounced effect on the physiology and swimming 
strategies of microswimmers [10, 11] which have to comply 
to the limitations imposed by the time reversibility of Stokes 
flows, termed the scallop theorem by Purcell [1].

One of the ways to overcome this barrier is to perform non-
reciprocal swimming strokes. This can be achieved in systems 
of artificial biomimetic swimmers by introducing only few 
degrees of freedom, sufficient to gain propulsion but simplistic 
enough to remain analytically tractable. A well-known model 
example is the three-sphere swimmer designed by Najafi 
and Golestanian [12]. It encompasses three aligned spheres 
the mutual distance of which can be varied periodically in 
a controlled way. This guarantees the breaking of kinematic 
reversibility and leads to net translation along the axis of the 
body [13–17]. The strength of this design lies in the possible 
experimental realizations involving colloids trapped in optical 
tweezers [18, 19]. Similar bead-model designs have been pro-
posed involving elastic deformations of one or both of the arms  
[20–27], non-collinear conformations leading to rotational 
motion [28–32], or new models with complex swimmer bodies 
and external propulsion forces [33, 34]. A simple model 
for free-swimming animalcules composed of beads, sub-
ject to periodic forces has further been considered [20, 35]. 
Fascinating spatiotemporal patterns and unusual macroscopic 
rheological signatures arise from the interaction of numerous 
microswimmers, including the onset of collective and cohe-
sive motion [36–40], emergence of dynamic clusters [41, 42], 
laning [43–46] and wave patterns [47–50], motility-induced 
phase separation [51–55] and active turbulence [56–62].

One of the main challenges of microfluidics has been to 
design and control the motion of fluids in microchannels, 
where the effects of confinement dominate the dynamics  
[63, 64]. The long-ranged nature of hydrodynamic interactions 
in low-Reynolds-number flows under geometrical confinement 
significantly influences the dynamics of suspended particles 
or organisms [65]. Close confinement, e.g. in channels, can 
lead to a drastic increase in the range of interactions [66, 67]. 
Thus surface effects have to be accounted for when designing 
microfluidic systems [68, 69] and affect translational and rota-
tional mobilities of colloidal particles diffusing near bounda-
ries [70–77]. In living systems, walls have been demonstrated 
to drastically change the trajectories of swimming bacteria, 
such as E. coli [78–87], or algae [88, 89]. As seen already in 

simplistic models involving two linked spheres near a wall 
[90], a surprisingly rich behavior emerges, with the presence 
of trapping states, escape from the wall and non-trivial steady 
trajectories above the surface. This behavior has also been seen 
in an analogous system of self-phoretic active Janus particles 
[91–99], where a complex phase diagram has been found, 
based on the initial orientation and the distance separating the 
swimmer from the wall. Additional investigations have con-
sidered the hydrodynamic interactions between two squirmers 
near a boundary [100], the dynamics of active particles near 
a fluid interface [101–103], swimming in a confining micro-
channel [104–115], inside a spherical cavity [116–118], near 
a curved obstacle [119, 120] and in a liquid film [121–123]. 
Meanwhile, other studies have considered the low-Reynolds-  
number locomotion in non-Newtonian fluids [124–132] where 
boundaries have been found to drastically alter the swimming 
trajectories of microswimmers [133–135].

The analysis of dynamics of a single model swimmer 
interacting with a boundary is a crucial first step towards 
the understanding of complex collective processes involving 
living systems close to boundaries. In this paper, we address 
theoretically and numerically the low-Reynolds-number loco-
motion of a linear three-sphere microswimmer in a channel 
between two parallel walls. We show that the swimmer flow 
signature (pusher, puller, neutral swimmer) determines its 
general behavior and explore the resulting phase diagrams 
discerning between the gliding, sliding and trapping modes 
of motion.

The remainder of the paper is organized as follows. In sec-
tion 2, we introduce the model microswimmer and derive the 
swimming kinematics in a channel between two planar walls 
in the framework of low-Reynolds-number hydrodynamics. 
We then present in section  3 a state diagram representing 
the various swimming scenarios for a neutral three-sphere 
swimmer and introduce a simplified analytical model valid 
in the limit where the swimmer length is small compared to 
the channel height. We discuss in section 4 the behavior of 
puller- and pusher-type swimmers, finding that the former 
can maintain a stable navigation along the channel, while 
the latter inevitably ends up trapped at the channel walls. We 
then examine the swimming stability about the mid-plane and 
show that a supercritical pitchfork bifurcation occurs beyond 
a certain transition channel height at which swimming at the 
centerline becomes unstable. Concluding remarks and sum-
mary are provided in section 5 and technical details are con-
tained in appendices A through D.

2. Theoretical model

2.1.  Hydrodynamics background

In low-Reynolds-number hydrodynamics, the flow is vis-
cosity-dominated and the fluid motion is governed by the 
steady Stokes equations [8]

η∇2v(r) − ∇P(r) + f B(r) = 0 ,� (1a)

∇ · v(r) = 0 ,� (1b)
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where η denotes the fluid dynamic viscosity, and v(r) and P(r) 
are respectively the fluid velocity and pressure fields at posi-
tion r = (x, y, z) due to a bulk force density f B(r) acting on 
the fluid by the immersed objects.

For a point-force singularity f B(r) = fδ(r − r0) acting at 
position r0 in an otherwise quiescent fluid, the solution for the 
induced velocity field and pressure is expressed in terms of the 
Green’s functions

vi(r) = Fij(r, r0) fj , P(r) = Pj(r, r0) fj ,� (2)

where repeated indices are summed over following Einstein’s 
convention. In the absence of confining boundaries, the funda-
mental solution is the Oseen tensor, F = (8πηs)−1(I + ss/s2) 
with s = r − r0 and s = |s|. The solution for an arbitrary force 
distribution can then be constructed by linear superposition.

The Green’s functions in a channel between two par-
allel planar walls was first derived by Liron and Mochon 
[136] using the image technique and a Fourier transform. 
In appendix A, we present a modified approach based on 
decomposing the Fourier-transformed vector fields into their 
longitudinal, transverse, and normal components. Upon 
inverse Fourier transformation, the Green’s functions can 
then be expressed in terms of Bessel integrals of the first kind. 
Alternatively, following the method by Mathijssen et al [121], 
the Green’s function may be expressed as an infinite series 
of image reflections. In appendix B we derive the recursion 
relations that yield the successive image systems, and provide 
explicit expressions for these. Truncation of this series can be 
computationally advantageous, provided a suitable number of 
images is chosen. In the limiting case of an infinitely wide 
channel, both Green’s functions reduce to the familiar Oseen 
expressions. The image reflection method has previously been 
employed to address the behavior of swimming bacteria near 
a hard surface [81] or an air-fluid interface [137].

2.2.  Swimmer dynamics

In the following, we consider the motion of a neutrally 
buoyant swimmer in a fluid bounded by two parallel planar 
walls infinitely extended in the planes z  =  0 and z  =  H. As 
a model swimmer, we employ the linear three-sphere micro-
swimmer originally proposed by Najafi and Golestanian [12]. 
The simplicity of the model provides a handy framework 
that allows a direct investigation of many aspects in low-
Reynolds-number locomotion. The swimmer is composed 
of three spheres of radii a1 (central), a2 (front), and a3 (rear) 
arranged colinearly via dragless rods. The periodic changes in 
the mutual distances between the spheres are set to perform 
a non-reversible sequence leading to propulsive motion (see 
figure 1 for an illustration of the model swimmer moving in a 
channel between two walls.)

The instantaneous orientation of the swimmer relative to 
the channel walls is described by the two-dimensional unit 
vector t̂ = cos θ êx + sin θ êz directed along the swimming 
axis. Under the action of the internal forces acting between 
the spheres, actuated, e.g. by embedded motors, the lengths 
of the rods connecting the spheres change periodically around 
mean values. Specifically,

r1 − r3 = h(t)̂t , r2 − r1 = g(t)̂t ,� (3)

where h(t) and g(t) are periodic functions prescribing the 
instantaneous mutual distances between adjacent spheres, 
which we choose to be harmonic,

g(t) = L1 + u10 cos (ωt) ,� (4a)

h(t) = L2 + u20 cos (ωt + δ) ,� (4b)

where ω is the oscillation frequency of motion and δ ∈ [0, 2π) 
is a phase shift necessary for the symmetry breaking. Here, 
L1 and L2 stand for the mean arm length connecting the 
central sphere to the front and rear spheres, respectively. In 
addition, u10 and u20 are the corresponding amplitudes of 
oscillation. Unless otherwise stated, we will consider con-
sistently throughout this manuscript that L1 = L2 =: L and 
u10 = u20 =: u0. We further mention that the sphere radii and 
the oscillation amplitudes should be chosen small enough 
in such a way that the inequalities a1 + a2 + 2|u0| � L and 
a1 + a3 + 2|u0| � L remain satisfied. Moreover, we scale 
from now on all the lengths by L and the times by ω−1.

We now briefly outline the main steps involved in the deri-
vation of the swimming velocity and inclination. In Stokes 
hydrodynamics, the suspended particles take instantaneously 
on the velocity of the embedding flow since inertial effects 
are negligible. Additionally, the translational velocities of the 
three spheres are linearly related to the internal forces acting 
on them via

Vγ =
dr
dt

=
3∑

λ=1

µγλ · fλ ,� (5)

where µγλ denotes the hydrodynamic mobility tensor bridging 
between the translational velocity of sphere γ and the force 
exerted on sphere λ. The mobility tensor is symmetric posi-
tive definite [138] and encompasses the effect of many-body 
hydrodynamics interactions. In this work, however, for the 
sake of simplicity we consider only contributions stemming 
from the hydrodynamic interaction between pairs of particles 

Figure 1.  Illustration of a linear three-sphere microswimmer 
moving in a channel of constant height H. The swimmer is 
directed along the unit vector ̂ t forming an angle θ relative to the 
horizontal direction. The central, front, and aft spheres composing 
the swimmer have different radii a1, a2, and a3, respectively. The 
instantaneous positions of the front and aft spheres relative to the 
central sphere are denoted by g and h, respectively. The vertical 
position of the swimmer is defined by the height of the central 
sphere z above the bottom wall. The fluid filling the channel is 
quiescent and characterized by a dynamic viscosity η.
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(γ �= λ), in addition to contributions relative to the same par-
ticle (γ = λ) designated as self-mobility functions [9].

Taking the time derivative with respect to the laboratory 
frame on both sides of equation (3) yields

V2 = V1 + ġ t̂ + gθ̇ n̂ ,� (6a)

V3 = V1 − ḣ t̂ − hθ̇ n̂ ,� (6b)

wherein dot stands for a derivative with respect to time. 
Moreover, n̂ = − sin θ êx + cos θ êz is a unit vector perpend
icular (rotated 90 degrees anticlockwise) to the unit vector t̂. 
Accordingly, the triplet (̂ey, n̂, t̂) forms a direct orthonormal 
basis in the frame of reference associated with the swimmer.

For the determination of the unknown internal forces 
acting between the spheres, a total of six equations is required. 
By projecting equation (6) onto the orientation vector t̂, two 
scalar equations are readily obtained. Projecting these equa-
tions  onto the normal direction n̂ and eliminating the rota-
tion rate yields an additional equation. Three further scalar 
equations  are obtained by enforcing the physical constraint 
that the swimmer does not exert a net force or torque on the 
surrounding fluid. Specifically

3∑

λ=1

fλ = 0 ,
3∑

λ=1

(rλ − r0) × fλ = 0 ,� (7)

where  ×  stands for the cross (outer) product and r0 denotes an 
arbitrary reference point, which we choose to be the position 
of the central sphere r1. The internal forces acting between 
the spheres follow from solving the resulting system of six 
linearly independent equations using the standard substitution 
technique.

In order to investigate the swimming behavior, we choose 
to follow the trajectory of the central sphere whose velocity 
can readily be determined from (5) upon knowledge of the 
internal forces. The instantaneous rotation rate of the swimmer 
can then be calculated from

θ̇ =
1
g

(V2 − V1) · n̂ =
1
h

(V1 − V3) · n̂ .� (8)

3.  Swimming state diagram

3.1.  Behavior near a single wall

Having outlined the general procedure for the determination 
of the equations governing the swimmer dynamics, we next 
derive approximate expressions for the swimming transla-
tional and rotational velocities. We firstly consider the lim-
iting case of an infinitely wide channel H → ∞ and derive the 
averaged equations of motion for a swimmer located at a finite 
distance above a single wall infinitely extended in the plane 
z  =  0. In addition, we restrict our attention to the particular 
case where the spheres have the same radius a as originally 
proposed in the Najafi and Golestanian design [12]. The gen-
eral case for arbitrary particle radius will be discussed in the 
following section.

The Green’s functions satisfying the no-slip boundary 
condition at an infinitely extended hard wall are expressed 
in the form of the Blake tensor [142] providing the leading-
order terms in the pair hydrodynamic interactions. Restricting 
ourselves for simplicity to the point-particle framework, the 
scaled self-mobility functions for a sphere located at height z 
above a rigid wall are given up to O

(
(a/z) 3

)
 by [8]

µ‖
µ0

= 1 − 9
16

a
z

,
µ⊥
µ0

= 1 − 9
8

a
z

,� (9)

for the translational motion parallel and perpendicular to 
the wall, respectively. Here µ0 = (6πηa) −1 denotes the 
usual bulk mobility given by the Stokes law. (In our simu-
lations, however, we use more detailed predictions obtained 
by the method of reflections incorporating nine images, and 
described in detail in appendix B.)

By performing a Taylor series expansion up to O(a3) of the 
swimming velocity and rotation rate, the approximate differ
ential equations governing the swimming dynamics above a 
single wall, averaged over one oscillation period, can be pre-
sented in the form

dx
dt

= V0 + KA(z) ,� (10a)

dz
dt

=
(
V0 + KB(z)

)
θ ,� (10b)

dθ

dt
= KC(z) ,� (10c)

where we have assumed small inclination angles relative to 
the horizontal direction such that sin θ ∼ θ and cos θ ∼ 1. 
Moreover,

V0 = −aK
24

(7 + 5a)� (11)

is the bulk swimming speed in the absence of a boundary, and

K := 〈gḣ − hġ〉 = −u10u20 sin δ = −u2
0 sin δ .� (12)

Here 〈·〉 stands for the time-averaging operator over one full 
swimming cycle, defined by

〈·〉 :=
1

2π

∫ 2π

0
(·) dt .� (13)

Evidently, a net motion over one swimming cycle occurs only 
if the phase shift δ /∈ {0, π}. In the remainder of this article, 
we take δ = π/2 for which the swimming speed is maximized.

In addition, A, B, and C are highly nonlinear functions of z 
which are explicitly provided to leading order in a in appendix 
D. In the far-field limit, in which the distance separating the 
swimmer from the wall is very large compared to the swimmer 
size (z � 1), these functions up to O

(
z−5

)
 read

A(z) = − 287
1024

a2

z3 ,� (14a)

B(z) =

(
21
64

− 77a
256

)
a
z3 ,� (14b)
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C(z) =
135

1024
a(2 + 3a)

z4 .� (14c)

Remarkably, the leading-order term in the wall-induced cor-
rection to the swimming velocity decays in the far field as z−3. 
Not surprisingly, the dipolar contribution (decaying as z−2) 
induced by a three-sphere microswimmer vanishes if the front 
and rear spheres have equal radii (see appendix C). As a result, 
the leading order in the velocity flow field possesses a quad-
rupolar flow structure that decays as inverse cube of distance. 
Approximate swimming trajectories are readily obtained by 
integrating equation (10) for given initial orientation and dis-
tance from the wall.

3.2.  Approximate swimming trajectories in a channel

We next shift our attention to the swimming motion in a 
channel bounded by two parallel infinitely extended walls. As 
already pointed out, an accurate description of the channel-
mediated hydrodynamic interactions requires the use of the 
Green’s functions that satisfy the no-slip boundary condi-
tions at both walls simultaneously. This approach, however, 
involves improper (infinite) integrals whose numerical evalu-
ation at every time step is computationally expensive. In order 
to overcome this difficulty, we use as an alternative frame-
work the successive image reflection technique. The latter 
consists of generating an infinite series of images containing 
Stokeslets and higher-order derivatives that satisfy the no-slip 
boundary conditions on both walls asymptotically. Further 
technical details on the derivation of the flow field using mul-
tiple reflections are provided in appendix B. Throughout this 
work, a total of eight reflections is consistently employed for 
the numerical evaluation of the Green’s functions.

In order to proceed analytically, we restrict ourselves for 
simplicity to the first two image systems following Oseen’s 
classical approximation [143]. This approach suggests that 
the wall-induced corrections to the hydrodynamic interactions 
between two planar parallel rigid walls could conveniently be 
approximated by superposition of the contributions stemming 
from each single wall independently. Accordingly, it follows 
from equation (10) that the averaged swimming velocities in 
a channel between two walls can adequately be approximated 
as

dx
dt

= V0 + K (A(z) + A(H − z)) ,
�

(15a)

dz
dt

=
(
V0 + K (B(z) + B(H − z))

)
θ ,

�
(15b)

dθ

dt
= K

(
C(z) − C(H − z)

)
,

�
(15c)

where again the inclination angle is assumed to vary within a 
narrow range relative to the horizontal direction.

In figure  2, we show the channel-induced corrections to 
the swimming velocities and rotation rate as functions of the 
vertical distance z for a neutral swimmer of equal sphere radii 
a  =  0.1. The simplistic superposition approximation given by 
equation (15) is shown as dashed and solid lines for channel 

heights H  =  2 and H  =  4, respectively. The corresponding 
numerical solutions obtained using a total of eight reflections 
are shown as symbols, where diamonds and squares corre-
spond to H  =  2 and H  =  4, respectively. Here we consider a 
small amplitude of oscillations u0  =  0.1.

We observe that the corrections to the swimming veloci-
ties (figure 2(a) and (b)) tend to remain about constant around 
the channel mid-height and mostly monotonically increase in 
magnitude in the proximity of the walls due to the increased 
drag exerted on the swimmer. Upon decreasing the channel 
height, the drag force resulting from the resistance of the 
channel walls and opposing the motion through the fluid 
becomes more pronounced. For instance, swimming in the 
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Figure 2.  (a) and (b) Channel-induced corrections to the 
translational swimming velocities along the x and z directions, 
respectively, and (c) rotation rate versus the vertical distance z 
about θ ∼ 0. The analytical expressions based on the superposition 
approximation given by equation (15) derived up to O(a3) are 
shown as dashed and solid lines for H  =  2 and H  =  4, respectively. 
Symbols are the numerically exact results obtained using a total 
of eight reflections for H  =  2 (diamonds) and H  =  4 (squares). 
Horizontal (gray) dashed lines are the corresponding bulk values. 
Here we consider a neutral swimmer with equal sphere radii a  =  0.1 
and an amplitude of arm oscillations u0  =  0.1.
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mid-plane of a channel of height H  =  2 leads to increased drag 
of about 13% relative to the bulk value, while this increase 
is found to be about 2% for H  =  4. The increase in the drag 
force for motion of arbitrary direction is mostly larger in the 
z direction than in the x direction since it is easier to move the 
fluid aside than to push it into or to squeeze it out of the gap 
between the swimmer and the channel walls.

Since the vertical velocity scales linearly with the inclina-
tion angle (see equation  (15b)), a swimmer that is initially 
aligned parallel to the walls and released from a height of van-
ishing rotation rate will undergo a purely gliding motion along 
the channel. By examining the variations of the rotation rate 
(figure 2 (c)) we observe that the evolution equations for the 
swimming trajectories display either one or three fixed points 
in the comoving frame translating parallel to the channel walls. 
The first fixed point is trivial and occurs at the channel mid-
height (z/H = 1/2) where both walls have the same effect 
on the orientation of the swimmer. For H  =  4, two nontrivial 
fixed points symmetrically placed with respect to the channel 
mid-height are reached at z/H � 0.2 and z/H � 0.8.

The superposition approximation is found to be in a good 
agreement with the full numerical solution along the channel. 
A small mismatch, notably for H  =  2 in the normal velocity 
(figure 2 (b)), is a drawback of the approximations pro-
posed here. A good estimate of the swimming trajectories in 
a channel can therefore be made using the first two reflec-
tions provided that the swimmer size is much smaller than the 
channel height.

Figure 3 shows the state diagram displayed by a neutral 
three-sphere microswimmer of equal sphere radii, swimming 
in a channel for two different wall separations (a) H = 2 and 
(b) H = 4. The state diagram is obtained by integrating the 
full nonlinear equations  governing the swimmer dynamics 
numerically using a fourth-order Runge–Kutta scheme with 
adaptive time stepping [144]. The hydrodynamic mobility 
functions employed in the simulations are obtained using the 
method of reflections with a total of nine images, providing a 
good accuracy even at small sphere–wall distances, as com-
pared to far-field representation. A systematic comparison 
between the expressions of the self mobilities as obtained 
from the method of reflections and the exact multipole 
method [139–141] is provided in the supporting information6. 
Depending on the initial orientation and distance along the 
channel, the swimmer may be trapped by either walls (down-
ward and upward pointing triangles) or undergoes a nontrivial 
oscillatory gliding motion at a constant mean height either at 
the channel centerline (squares in figure 3 (a)) or at a mod-
erate distance near the channel wall (half-filled blue boxes in 
figure 3 (b)).

A swimmer that is initially aligned parallel to the walls 
(θ0 = 0) and released from the trivial fixed point at the channel 
mid-height (z0  =  H/2) (blue diamond) undergoes a purely 
gliding motion without oscillations. In the trapped state, the 
swimmer moves along a curved trajectory before it attains a 

hovering state during which the inclination angle approaches 
θ = −π/2 for the lower trapping and θ = π/2 for the upper 
trapping. Only trapping occurs if initially the swimmer is suf-
ficiently oriented away from the horizontal direction at varying 
extent depending upon the channel height. Figure  4 shows 
exemplary trajectories displayed by a neutral swimmer released 
from various initial heights with orientations θ0 = −0.3 (for 
the lower trapping states) and θ0 = 0.3 (for the upper trapping 
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Figure 3.  State diagram illustrating the swimming scenarios 
displayed by a neutral three-sphere swimmer of equal sphere radii 
a  =  0.1 confined in a channel between two parallel planar walls for 
(a) H  =  2 and (b) H  =  4. Symbols represent the final swimming 
states for a given initial orientation and distance along the channel. 
Downward pointing triangles (red) indicate trapping near the lower 
wall whereas upward pointing triangles (green) stand for trapping 
near the upper wall. Filled boxes (blue) represent the oscillatory 
gliding state at the channel centerline while half-filled (blue) boxes 
correspond to the oscillatory gliding states near the corresponding 
wall. A (blue) diamond marks the trivial perpetual motion along the 
exact centerline of the channel. Solid lines correspond to forbidden 
situations in which one of the spheres is initially in contact with the 
channel walls. Here we take an amplitude of oscillations u0  =  0.1.

6 See supporting information at (stacks.iop.org/JPhysCM/30/254004/
mmedia) for approximate expressions of the self mobilities as obtained 
from the method of reflections in addition to a direct comparison with other 
approaches.
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states). After a transient evolution, the swimmer reorients 
itself perpendicular to the nearest wall and reaches a stable 
hovering state at a separation distance of about z � 1.12. The 
final height is found to be independent of the initial inclination 
or distance from the wall in a way similar to that previously 
observed near a single boundary [145]. Physically, the hov-
ering state corresponds to the situation in which the propulsion 
forces are equilibrated by the resistive viscous forces pushing 
the swimmer away from the nearest boundary.

We show in figure 5 typical swimming trajectories in the 
lower oscillatory gliding state for a swimmer that is released 
from different initial heights along the parallel direction 
(θ0 = 0) in a channel of height H  =  4. In particular, the ampl
itude of oscillations almost vanishes when z0/H � 0.1875 for 
which the swimmer undergoes a purely gliding motion at a 
constant height. Not surprisingly, we have previously shown 
in figure  2 (c) that there exist in the comoving frame two 
nontrivial fixed points symmetrically placed relative to the 
channel centerline at z/H � 0.2 and z/H � 0.8 in addition 
to the trivial fixed point at the middle of the channel. As the 

initial swimming location is shifted far away from the fixed 
points, the amplitude of oscillations grows gradually before the 
swimmer ends up trapped by the nearest wall. The swimmer 
shows an analogous behavior in the upper oscillatory state 
upon making the transformation z → H − z  due to the system 
reflectional symmetry with respect to the channel mid-plane7.

4.  Swimming puller versus pusher

Having analyzed in detail the swimming behavior of a neu-
tral three-sphere swimmer of equal sphere radii, we next con-
sider the more general situation and allow for differently sized 
spheres for which the swimming stroke is not time-reversal 
covariant [17]. For that purpose, we introduce the radii ratios 
r2 := a2/a1 and r3 := a3/a1 and use a to denote the radius of 
the central sphere a1. It should be noted that r2 and r3 must vary 
only in such a way that the inequalities (1 + r2)a + 2|u0| � L 
and (1 + r3)a + 2|u0| � L remain satisfied during a full 
swimming cycle for the above-mentioned approximations to 
be valid.

In a bulk fluid, the flow field induced by a general three-
sphere swimmer can conveniently be written in the far-field 
limit as a superposition of dipolar and quadrupolar flow fields 
(see appendix C), whose coefficients are respectively given by
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Figure 4.  Typical swimming trajectories showing in (a) the lower 
trapping for θ0 = −0.3 and in (b) the upper trapping states for 
θ0 = 0.3 for various initial distances z0 in a channel of height 
H  =  4. In the steady state, the swimmer ends up trapped by a wall 
and attains a stable hovering state at a constant height close to that 
wall. This is why the trajectories end at a certain point.

0

0.25

0.5

0 4 8 12

z/
H

x/H

z0/H = 0.1875
z0/H = 0.25

z0/H = 0.3125

Figure 5.  Exemplary swimming trajectories in the lower 
oscillatory gliding state for a separation H  =  4 between the walls. 
The swimmer is initially aligned parallel to the walls (θ0 = 0) 
and released from various initial distances z0. The amplitude 
of oscillations and frequency are strongly sensitive to the 
initial conditions. A nearly vanishing amplitude is observed for 
z0/H � 0.1875 close to the stable fixed point in figure 2 (c). The 
inclination angles show an analogous oscillatory behavior around 
a zero mean value. Here we set a  =  0.1 and an amplitude of arm 
oscillation u0  =  0.1.

7 See supporting information at (stacks.iop.org/JPhysCM/30/254004/mme-
dia) for illustrative movies showing the swimming behaviors of a neutral 
three-sphere swimmer in a channel. Movie 1 illustrates the lower trapping 
state (z0/H = 0.125, θ0 = −0.3) shown in figure 4(a) (solid blue line). 
Movie 2 illustrates the upper trapping state (z0/H = 0.125, θ0 = 0.3) shown 
in figure 4(b) (solid blue line). Movie 3 shows the lower oscillatory gliding 
(z0 = 0.3125, θ0 = 0) presented in figure 5 (short-dashed blue line). For 
illustrative purposes, the sizes of the spheres are not shown in real scale in 
the movies.
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α =
3
4

r2 − r3

a
, σ =

3
56

4(r2 + r3) − 3
a2 ,� (16)

where the swimmer is termed as pusher (extensile) if α > 0 
as it then pushes out the fluid along its swimming axis, and 
as puller (contractile) if α < 0 as in that case it pulls in the 
fluid along its swimming path [2]. The swimmer studied in 
the previous section  is a neutral swimmer, because α = 0, 
and the dominant contribution to the flow-far-field thus is a 
quadrupole.

Keeping for convenience the same notation for the approx-
imated swimming velocities and rotation rate as before, 
the averaged equations  of motion of a general three-sphere 
swimmer near a single wall about the horizontal direction, can 
be presented up to O(a3) as

dx
dt

= V0 + KA(z) ,� (17a)

dz
dt

=
(
V0 + KB(z)

)
θ + KD(z) ,� (17b)

dθ

dt
= KC(z) ,� (17c)

where the bulk swimming velocity is now given by

V0 = a (V10 + aV20) .� (18)

The coefficients V10 and V20 are functions of r2 and r3 only. 
They are explicitly given in appendix D. In particular, 
V10 = − 7K

24  and V20 = − 5K
24  when r2 = r3 directly leading to 

equation (11).
In the far-field limit, the generalized expressions for the 

functions A(z), B(z), and C(z) are

A(z) =
a2A23

z3 ,� (19a)

B(z) = a
(

B13

z3 +
aB23

z3

)
,� (19b)

C(z) = a (C14 + aC24)
1
z4 .� (19c)

In addition,

D(z) = a(r3 − r2)

(
D14

z4 +
a
z2

(
D22 +

D24

z2

))
.� (20)

The coefficients Aij, Bij, Cij, and Dij are provided in appendix 
D. The far-field equations (19) reduce to (14) in the particular 
case of r2 = r3.

By accounting only for the leading order in 1/z, the normal 
velocity in the flow-far field reads dz/dt = a2K(r3 − r2)D22z−2. 
For a pusher-like swimmer (r2 > r3), it follows that dz/dt < 0, 
and thus the swimmer is expected to be trapped by the bottom 
wall by noting that D22  <  0 and bearing in mind that K  <  0. 
For a puller-like swimmer, however, dz/dt > 0 leading to an 
escape from the wall. These observations are in agreement 
with previous studies indicating that a noiseless pusher swim-
ming parallel to a wall will be attracted whereas a puller will 
be repelled [146, 147]. It is worth mentioning that the dipolar 

flow signature neither emerges in the x-component of the 
swimming velocity nor in the rotation rate.

By considering only the first two image systems (superpo-
sition approximation), the generalized swimming velocities in 
a channel bounded by two walls can conveniently be approxi-
mated by

dx
dt

= V0 + K (A(z) + A(H − z)) ,� (21a)

dz
dt

=
(

V0 + K (B(z) + B(H − z))
)
θ

+ K (D(z) − D(H − z)) ,
�

(21b)

dθ

dt
= K

(
C(z) − C(H − z)

)
.� (21c)

Explicit analytical expressions for the functions A, B, C, and 
D for a general three-sphere swimmer are rather complex and 
lengthy, and thus have not been listed here.

4.1.  State diagram in a channel

Exemplary state diagrams for a general three-sphere swimmer 
in a channel of a height H  =  4 are shown in figure  6 for a 
pusher-like swimmer and in figure 7 for a puller-like swimmer. 
For the former case, we observed one general behavior for a 
large range of parameters, while we found in the latter case 
that the behavior changes qualitatively when the radius of the 
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Figure 6.  State diagram of swimming behavior in a channel of 
height H  =  4, for a pusher-like swimmer with a  =  0.1 and radius 
ratios r2 = 2, r3 = 1, using the same symbols as in figure 3. The 
pusher force-dipole hydrodynamics here lead to an amplification of 
the oscillations seen for neutral swimmers, which then moves the 
swimmer towards trapped states, as can be seen in the exemplary 
trajectories in figure 8 (a). The influence of the front-aft asymmetry 
was tested systematically by also varying the size of the larger 
front bead to r2  =  1.2, but the corresponding state diagram does not 
differ qualitatively from the one shown here. Due to the front-aft 
asymmetry of this three-sphere swimmer, the solid lines indicating 
forbidden configurations here are asymmetric.
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enlarged sphere is increased. As detailed below, both these 
types of non-neutral swimmers show qualitative differences 
to the state diagram for equal-sized spheres previously dis-
cussed in section 3.

For pusher-like swimmers, the oscillatory gliding state 
observed for neutral swimmers is destabilized (see figure 6, 

where r2 = 2, r3 = 1). The amplitude of any initial oscillation 
grows rapidly with time until the swimmer ceases oscillating 
to reach one of two phase-space fixed points which are sym-
metrically positioned with respect to the channel mid-height. 
After transient oscillations, the swimmer reorients itself 
towards the nearest wall and remains in a hovering state, as 
can be seen in the exemplary trajectories shown in figure 8 (a) 
for various initial heights with θ0 = 0.2.

Consequently, a pusher-like swimmer always ends up 
trapped by the channel walls with the only exception of the 
exactly symmetric perpetual motion along the centerline. 
Depending on the initial configuration, the swimmer moves 
towards either the lower or the upper phase-space fixed points. 
As before, the state diagram is symmetric with respect to 
(z0, θ0) = (H/2, 0), when ‘upper’ becomes ‘lower’ upon the 
corresponding point reflection and vice versa. We have tested 
the qualitative robustness of this state diagram by varying the 
radius of the front sphere such that r2  =  1.2, while keeping 
r3  =  1 and have found no qualitative difference between both 
cases.

For puller-like swimmers, however, the behavior depends 
strongly on the size of the enlarged aft sphere. Figure 7 (a) 
shows the swimming state diagram for r3  =  1.2 and r2  =  1 
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Figure 7.  Swimming state diagram of a puller-like swimmer in a 
channel of height H  =  4, for (a) r3  =  1.2 and (b) r3  =  2, while the 
other radius ratio r2  =  1 is held constant. Symbols indicate the final 
state of the swimmer started at the corresponding initial phase space 
position. Here half-filled (blue) boxes stand for gliding states near 
the corresponding wall, and half-filled circles stand for states in 
which the swimmer slides along one of the walls. The positions of 
the filled sides (and the corresponding colors given in the legend) 
then indicate which wall the respective final swimming state is 
nearer to. Due to the front-aft asymmetry of the regarded three-
sphere swimmers, the unaccessible phase space areas here are  
again asymmetric. (a) For small r3, the swimmer either becomes 
trapped above one of the walls or glides well above/below it.  
(b) For larger r3, a swimmer can either glide or start sliding along 
the corresponding wall, thereby maintaining a constant orientation, 
but is never trapped.
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Figure 8.  Typical swimming trajectories of three-sphere swimmers 
released at θ0 = 0.2 from different initial heights for (a) a pusher-
like swimmer with r2  =  1.2 and (b) for a puller-like swimmer with 
r3  =  1.2. The respective other radius ratios are all set to one.  
(a) Pusher-like-front-heavy swimmers can no longer perform 
perpetual gliding motions as any oscillation is amplified until a trapped 
state is reached. The end of the trajectories marks the final position 
in the trapped state. (b) Puller-like, aft-heavy swimmers undergo 
damping of their oscillations so that a straight motion parallel to the 
wall channels is approached in the steady state. In both cases, the 
initial configuration determines which of two symmetric phase-space 
fixed points a swimmer will approach. Here we set a  =  u0  =  0.1.
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resulting in a small dipolar contribution to the hydrodynamic 
flow field. In contrast to pusher-like swimmers, gliding states 
are here found to be generally compatible with puller hydro-
dynamics. As can be seen from typical trajectories depicted in 
figure 8 (b) for various initial heights with θ0 = 0.2, the oscil-
lations in the gliding states seem to dampen out apparently. A 
strictly horizontal motion near either the upper or bottom wall 
is approached, termed as lower gliding and upper gliding, 
respectively. As shown before for neutral swimmers, other 
configurations can lead to trapped states for relatively small 
dipolar coefficient. However, when r3 is further increased, 
e.g. r3  =  2 as shown in figure  7 (b), the non-oscillatory 
gliding persists, but additionally trapped states cease to 
exist and new sliding states emerge. In these latter states, 
the swimmer maintains a constant non-zero orientation and 
undergoes a translational motion along the horizontal direc-
tion at a constant height. The sliding behavior emerges fol-
lowing a state in which the propulsive forces and the viscous 
forces balance each other. For a strong front-aft asymmetry, 
the swimmer reaches a fixed point in the comoving frame for 
an angle strictly less that π/2 in magnitude and undergoes 
a purely translational motion without oscillations parallel to 
the nearest wall.

As pointed out by de Graaf et  al [114], the onset of the 
oscillatory behavior observed in neutral swimmers shown in 
figure 5 is attributed to the hydrodynamic quadrupole moment 
which tends to rotate the swimmer away from the nearest wall. 
Analogous persistent oscillations have been observed by Zhu 
et al [105] for a neutral squirmer moving in a capillary tube. 
In contrast, the dipolar contribution tends to attract a pusher 
toward the wall and retain a puller on the mid-channel plane. 
By combining both the quadrupolar and dipolar contributions, 
the swimmer undergoes an oscillatory motion characterized 
by growing and decaying amplitudes for a pusher- and puller-
type swimmer8.

4.2.  Swimming stability in the mid-plane

In the previous section, we have shown that pusher-type swim-
mers are trapped at the walls while puller-type swimmers 
undergo a gliding or sliding motion along the channel after a 
rapid decay of their oscillations. An oscillatory gliding of non-
varying amplitude at a constant mean height is displayed by 
neutral three-sphere swimmers. For symmetry considerations, 
however, all three types undergo a trivial gliding motion along 
the channel centerline for z0  =  H/2 and θ0 = 0.

We now address the question of whether or not swim-
ming on the channel centerline is a stable dynamical state. 
In order to proceed analytically, we restrict ourselves to the 
neutral swimmer case and assume for simplicity a zero initial 

orientation of the swimmer relative to the horizontal direction. 
By combining equations (15b) and (15c), eliminating the time 
variable and integrating both sides of the resulting equation, 
the orientation of the swimmer is related to the distance along 
the channel via

θ2 = θ2
0 + Q(z, z0) ,� (22)

where the integral function Q(z,z0) is given by

Q(z, z0) =

∫ z

z0

2K (C(u) − C(H − u))

V0 + K (B(u) + B(H − u))
du .

�
(23)

By evaluating the integral in equation  (23) numerically 
and substituting the result into equation (22), we obtain tra-
jectories in the (θ, z) phase space as plotted in figure  9 for 
z0 = H/2 − ε where ε is an arbitrary small distance taken 
here as 0.01. As expected from the state diagram shown in 
figure 3, the trajectory for H  =  2 corresponds to a limit cycle 
around the point with z/H  =  1/2 and θ = 0, indicating the cen-
tral oscillatory gliding motion of the swimmer. In contrast, the 
trajectories are not centered at z/H  =  1/2 anymore if values of 
H are larger than a transition value of about HT � 2.4.

It is appropriate to denote by z̄ the average value of the 
two points intersecting with the horizontal axis z/H. Around 
the channel centerline, the integrand on the right-hand side 
of equation  (23) can be Taylor-expanded around z  =  H/2. 
Integrating the resulting equation between H/2 and H/2 ± λ 
yields

θ2 = c2λ
2 + c4λ

4 + O(λ6) ,� (24)

where c2 and c4 are functions of H such that c4  <  0 and c2 
changes sign from negative to positive as the channel height 
H increases beyond the transition height HT. For H > HT, it 
undergoes an oscillatory motion around a mean height

z =
H
2

± 1
2

√
−c2

c4
.� (25)
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Figure 9.  Trajectory of a neutral three-sphere swimmer in phase 
space, derived from equation (22) for θ0 = 0 and z0 = H/2 − ε 
where ε = 0.01. The inset shows a log–log plot of the scaled mean 
height relative to the channel centerline at the transition point. 
Arrow heads show the clockwise trajectories of the swimmer in the 
upper phase space.

8 See supporting information at (stacks.iop.org/JPhysCM/30/254004/mme-
dia) for illustrative movies showing the additional swimming states observed 
for puller-type swimmers with r2  =  1. Movie 4 illustrates the lower gliding 
state (z0/H = 0.125, θ0 = 0.2) shown in figure 8(b) for r3  =  1.2 (solid blue 
line). Movie 5 illustrates the upper gliding state (z0/H = 0.3125, θ0 = 0.2) 
shown in figure 8(b) for r3  =  1.2 (dotted orange line). Movie 6 illustrates 
the lower sliding (z0/H = 0.5, θ0 = −0.3) for r3  =  2. Movie 7 illustrates the 
upper sliding (z0/H = 0.5, θ0 = 0.3) for r3  =  2. For illustrative purposes, 
the sizes of the spheres are not shown in real scale.
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The scaling exponent of the scaled mean height relative to the 
channel centerline about the transition point is readily calcu-
lated from the logarithmic derivative,

d ln
∣∣ z

H − 1
2

∣∣
d ln (H − HT)

=
1
2

d ln
(

1
H

√
− c2

c4

)

d ln (H − HT)
−→H→HT

1
2

.� (26)

Thus, the bifurcation is of a supercritical pitchfork-type. 
In the inset of figure 9, we show the evolution of 

∣∣ 1
2 − z̄

H

∣∣ as 
a function of H  −  HT to verify the scaling behavior derived 
above around the transition height. An agreement between 
the theoretical value 1/2 and the numerical results is clearly 
manifested.

If the channel height H is further increased, the curve in 
figure 9 will finally intersect with the line z  =  0, indicating 
the trapping of the swimmer. Such a behavior is in accord 
with the emergence of upper/lower trapping scenarios just  
above/below the central point corresponding to the central 
gliding motion in figure  3(b). Nevertheless, we note that a 
quantitative analysis is not available as the inclination angle 
may be large in this case, a situation that is beyond the simpli-
fied analytical theory proposed here.

We further elucidate the validity and reliability of our 
prediction by direct comparison with the numerical solution 
for a neutral swimmer as well as for a puller-type swimmer. 
As above, we also extract z̄ values and observe a bifurcation 
behavior near H � 2.25, as shown in figure 10. For a puller-
type swimmer, z̄ denotes the final height reached by the 
swimmer after the decay of oscillations. Clearly, the bifurca-
tion is of a pitchfork-like type as swimming in the mid-channel 
in the H  <  HT regime (see figure 3(a)) becomes unstable for 
H  >  HT. This corresponds to the appearance of the isolated 
points of central gliding at z0  =  0 and θ0 = 0 in figure 3(b) 
and in figure 7(a). Instead, two new limit cycles emerge for 
a neutral swimmer, indicating the lower/upper oscillatory 

gliding modes of motion. For a puller swimmer, however, 
these new states represent stable fixed points since the oscil-
lations are damped out in the steady limit. We also note that, 
in the case of the three-sphere swimmer of equal sphere 
radii with H  >  3.5, a small perturbation leads to the trapping 
dynamics of the swimmer, as already discussed above. For the 
value of the exponent, however, a slight deviation from the 
theoretical prediction is observed (see the inset). We presume 
that this is most probably due to the approximations involved 
in our simplistic analytical theory.

5.  Conclusions

The dynamics of microswimmers in confined geometries 
reveals qualitatively new behavior due to the anisotropic nature 
of hydrodynamic interactions with boundaries. In this work, 
we characterize the motion of a swimmer in the parallel-wall 
channel geometry, relevant to microfluidic and Hele-Shaw cell 
geometries. As a model swimmer, we choose the well known 
three-sphere model by Najafi and Golestanian [12]. By con-
sidering spheres of different radii, we are able to explore the 
relation between the flow signature of the swimmer (pusher, 
puller, or neutral swimmer) and the observed behavior. For 
each type we determine the phase diagram of possible final 
states as a function of the initial position and orientation of 
the swimmer in the channel. To account for the hydrodynamic 
interactions with the walls, we use the method of reflections 
[114, 121], which leads to good-quality approximations of the 
near-wall self and pair mobility for spheres.

In accord with the previously analyzed dynamics of the 
model swimmer close to a single planar no-slip boundary 
[145], for a neutral swimmer (corresponding to the classical 
design with three identical spheres) we observe three dis-
tinct types of behavior, namely trapping at the wall, escape 
from the wall, and gliding at a specific distance separated 
from the wall, determined by the size of the swimmer and 
in relation to the channel width. Here, we find that the oscil-
latory gliding state can occur both in the central area of the 
channel and closer to one of the walls. We then characterize 
the differences between puller- and pusher-type swimmer. For 
pusher-like swimmers, the oscillatory gliding state is unstable, 
and the evolution involves transient oscillations of growing 
amplitude, finally crossing into trapping in a hovering state at 
one of the walls. This observation within our numerical tests 
seems to be robust with respect to the changing properties of 
the swimmer. Puller-like swimmers, in contrast to that, exhibit 
a strong dependence of their modes of motion on their geo-
metric characteristics. We find persistent gliding states com-
patible with the general puller hydrodynamics, with initial 
oscillations apparently dying out in favor of a steady solution 
at a fixed swimmer-to-wall distance. As the parameters of the 
swimmer are varied, the trapping states can vanish and sliding 
states appear, in which the swimmers translate at a constant 
height with a fixed orientation. We have also investigated ana-
lytically the stability of swimming along the centerline of the 
channel by considering small perturbations around the sym-
metric state. We find that above a critical channel width there 

0

0.5

1

1.5

2

1 2 3 4

z/
H

H

0.03

0.1

0.4

0.04 0.1 0.3
1 2

−
z H

H − HT

r3 = 1
r3 = 1.2 Slope 1/2

Figure 10.  The scaled mean vertical position versus the channel 
height H for a neutral (r3  =  1) and puller-type swimmer (r3  =  1.2). 
The system undergoes a supercritical pitchfork bifurcation at 
HT = 2.25. Here r2  =  1 and the swimmer is initially released from 
θ0 = 0 and z0 = H/2 ± ε where ε = 0.01. Inset: Log–log plot of the 
mean oscillation height (for r3  =  1) and steady gliding height (for 
r3  =  1.2) around the transition point.
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is a pitchfork bifurcation for the motion closer to one of the 
two walls to appear, and we characterized it analytically.

We believe that our findings can be useful for the design 
and understanding of the motion of swimming microrobots 
in confined geometries. Relating the initial position in the 
channel to the final dynamical states is particularly important 
for engineering microfluidic devices to sort or accumulate 
swimmers. The presence of boundaries leads to a variety of 
complex behaviors emerging for the swimmers. Our work 
demonstrates, however, that simple analytical approximations 
can still be profitably used to characterize the dynamics in 
many cases.
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Appendices

In appendix A, we derive the Green’s functions in a channel 
between two no-slip walls using a two-dimensional Fourier 
transform technique. We then describe in appendix B the 
method of reflections and express the Green’s functions in the 
channel in terms of an infinite series of images. In appendix 
C, we provide an overview on the dynamics of a general three-
sphere swimmer in an unbounded fluid domain and show that 
the induced flow far-field can conveniently be described by a 
combination of dipolar and quadrupolar flows. Further math-
ematical details are contained in appendix D.

Appendix A.  Green’s functions

In this appendix, we use a two-dimensional Fourier transform 
technique to derive the Green’s functions in a channel between 
two no-slip walls. The solution method consists of reducing 
the partial differential equations (1) into ordinary differential 
equations in the direction perpendicular to the walls, whereas 
the spatial dependence of the hydrodynamic fields in the plane 
parallel to the wall are Fourier transformed into the wave-
number domain. Upon inverse Fourier transformation, the 

Green’s functions can conveniently be expressed in terms of 
Bessel integrals of the first kind.

We define the two-dimensional Fourier transform

F{ f (ρ)} =: f̃ (q) =

∫

R2
f (ρ)e−iq·ρ dρ ,� (A.1)

together with its inverse transform

F−1{f̃ (q)} =: f (ρ) =
1

(2π)2

∫

R2
f̃ (q)eiq·ρ dq ,� (A.2)

where ρ = (x, y) is the projection of the vector r onto the 
plane z  =  0, and q = (qx, qy) sets the coordinates in Fourier 
space.

It is more convenient to make use of the orthogonal basis 
introduced previously by Bickel [148, 149], in which the 
velocity vector field is decomposed into transverse, longi-
tudinal, and normal components. Accordingly, the Fourier-
transformed components of the velocity field in the Cartesian 
coordinate basis ṽx and ṽy are related to the longitudinal and 
transverse components in the new basis ṽl and ṽt via the 
orthogonal transformation

(
ṽx

ṽy

)
=

1
q

(
qx qy

qy −qx

) (
ṽl

ṽt

)
,� (A.3)

wherein q := |q| is the wavenumber. The longitudinal and 
transverse components of the force fl and ft follow forthwith 
using an analogous transformation matrix.

We now assume that the point force is acting inside the 
channel at location r0 = (0, 0, h), where 0  <  h  <  H. Upon 
two-dimensional Fourier transform, equations  (1) governing 
the fluid motion yield ordinary differential equations  in the 
variable z. Specifically [150]

η(−q2ṽl + ṽl,zz) − iqp̃ + fl δ(z − h) = 0 ,� (A.4)

η(−q2ṽt + ṽt,zz) + ft δ(z − h) = 0 ,� (A.5)

η(−q2ṽz + ṽz,zz) − p̃,z + fz δ(z − h) = 0 ,� (A.6)

iqṽl + ṽz,z = 0 ,� (A.7)

where a comma in a subscript stands for a partial derivative.
The velocity transverse component ṽt can directly be 

obtained by solving equation  (A.5). By combining equa-
tions (A.6) and (A.4), the pressure field can readily be elimi-
nated. As the continuity equation  (A.7) provides a direct 
relation between the longitudinal and normal components, a 
fourth-order ordinary differential equation for ṽz  is obtained, 
namely [148]

ṽz,zzzz − 2q2ṽz,zz + q4ṽz =
q2

η
fz δ(z − h) +

iq
η

fl δ′(z − h) ,

� (A.8)
wherein δ′ is the derivative of the Dirac delta function.

The Green’s functions in 2D Fourier space can thus be 
identified from
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


ṽt

ṽl

ṽz


 =




G̃tt 0 0
0 G̃ll G̃lz

0 G̃zl G̃zz







ft
fl
fz


 .� (A.9)

In the following, we present an analytical solution for the 
fluid velocity field in the channel by considering the solutions 
for the transverse and normal components independently.

A.1. Transverse velocity

The general solution of equation  (A.5) inside a channel of 
width H can be written as

ṽt = A1eqz + B1e−qz ,� (A.10)

for 0 � z � h, and

ṽt = A2eq(H−z) + B2e−q(H−z) ,� (A.11)

for h � z � H , wherein Aα and Bα, for α ∈ {1, 2}, are 
wavenumber-dependent quantities to be determined from 
the underlying boundary conditions. The no-slip condition 
at the walls yields ṽt(z = 0) = ṽt(z = H) = 0. Additionally, 
the Dirac delta function implies the discontinuity of the first 
derivative at the point-force position. Specifically

ṽt,z|z=h+ − ṽt,z|z=h− = − ft
η

,� (A.12)

by requiring the natural continuity of the transverse velocity 
at z  =  h.

Solving for the four unknown quantities yields

A1 =
ft

2qη

sinh (q(H − h))

sinh(qH)
,� (A.13)

A2 =
ft

2qη

sinh(qh)

sinh(qH)
,� (A.14)

with B1 = −A1 and B2 = −A2.

A.2.  Normal velocity

The general solution of equation (A.8) for the normal velocity 
is given by

ṽz = (C1 + D1z)eqz + (E1 + F1z)e−qz ,� (A.15)

for 0 � z � h, and

ṽz =
(
C2 + D2(H − z)

)
eq(H−z) +

(
E2 + F2(H − z)

)
e−q(H−z)

� (A.16)
for h � z � H . Here Cα, Dα, Eα, and Fα, α ∈ {1, 2}, are 
unknown wavenumber-dependent functions to be determined 
from the boundary conditions. The no-slip condition at the 
channel walls yields ṽz(z = 0) = ṽz(z = H) = 0. In addition, 
since

ṽl =
i
q

ṽz,z� (A.17)

as can be inferred from the continuity equation  (A.7), we 
further require that ṽz,z(z = 0) = ṽz,z(z = H) = 0. Moreover, 

the Dirac delta function implies the discontinuity of the third 
derivative of the normal velocity,

ṽz,zzz|z=h+ − ṽz,zzz|z=h− =
q2fz
η

,� (A.18)

while the derivative of the delta function implies the disconti-
nuity of the second derivative,

ṽz,zz|z=h+ − ṽz,zz|z=h− =
iqfl
η

.� (A.19)

By requiring the continuity of the normal and longitudinal 
velocities at the point-force position, making use of (A.17), 
and solving the resulting system of eight equations  for the 
unknown quantities, we readily obtain

C1 =
ifl

8ηqb0

(
S−(−u, −U) − S+(u, U)

)
− fz

8ηqb0

(
S−(u, U) + S+(−u, −U)

)
,

D1 =
1

4ηb0

(
S−(u, U) fz + iS+(u, U) fl

)
,

E1 = −C1 ,

F1 =
1

4ηb0

(
S+(−u, −U) fz − iS−(−u, −U) fl

)
,

where we have defined the dimensionless quantities

u = qh , U = qH , b0 = 2 + 4U2 − 2 cosh(2U) ,

in addition to

S±(x1, x2) = b1(x1, x2) ± b2(x1, x2) ,� (A.20)

where

b1(x1, x2) = 2
(
cosh(x1 − 2x2) − cosh(x1)

+ 2U(u − U) exp(−x1)
)

,
b2(x1, x2) = 4 (U sinh(x1) − u exp(x1 − x2) sinh x2) .

The wavenumber-dependent functions for the fluid domain 
h � z < H  are obtained as

C2 = −C1|h→H−h ,� (A.21)

and analogously for D2, E2, and F2.
Upon inverse Fourier transformation, the Green’s func-

tions can conveniently be written in terms of convergent infi-
nite integrals over the wavenumber q, as [151]

Gxx(r, z0) =
1

4π

∫ ∞

0

(
G̃+(q, z, z0)J0(ρq)

+ G̃−(q, z, z0)J2(ρq) cos(2θ)

)
q dq ,

�

(A.22a)

Gyy(r, z0) =
1

4π

∫ ∞

0

(
G̃+(q, z, z0)J0(ρq)

− G̃−(q, z, z0)J2(ρq) cos(2θ)

)
q dq ,

�
(A.22b)

Gzz(r, z0) =
1

2π

∫ ∞

0
G̃zz(q, z, z0)J0(ρq)q dq� (A.22c)

for the diagonal components, and

Gxy(r, z0) =
sin(2θ)

4π

∫ ∞

0
G̃−(q, z, z0)J2(ρq)q dq ,� (A.23a)
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Grz(r, z0) =
i

2π

∫ ∞

0
G̃lz(q, z, z0)J1(ρq)q dq ,� (A.23b)

Gzr(r, z0) =
i

2π

∫ ∞

0
G̃zl(q, z, z0)J1(ρq)q dq� (A.23c)

for the off-diagonal components. Here ρ2 := x2 + y2 and 
θ := arctan(y/x) is the polar angle. In addition, Jn denotes the 
Bessel function [152] of the first kind of order n. Moreover,

G̃±(q, z) := G̃tt(q, z) ± G̃ll(q, z) .

The components in Cartesian coordinates can be 
obtained from the usual transformation Gxz = Grz cos θ, 
Gyz = Grz sin θ, Gzx = Gzr cos θ, and Gzy = Gzr sin θ. Moreover, 
note that Gyx = Gxy.

Appendix B.  Images of a Stokeslet between parallel 
no-slip walls

Here we describe the flow due to a point force in a Stokesian 
liquid between two parallel no-slip boundaries, in terms 
of an infinite series of image reflections. This method is 
complementary to the one developed by Liron and Mochon 
[136], who first gave the Green’s function solution in terms 
of a Hankel transformation. A detailed comparison between 
these two methods is given by Mathijssen et  al [121] for 
Stokeslets and higher order multipoles between a no-slip 
wall and a free surface. Previous studies have also used the 
reflection method to investigate the flow produced by mobile 
colloids [153]. To connect with previous notations in [121], 
we rewrite the Stokes equation (1) into the form

∇P(x) − η∇2v(x) = f δ(x − y),� (B.1)

∇ · v(x) = 0,� (B.2)

where the fluid velocity is v(x, t), the pressure field is P(x, t), 
the fluid position is x = (x1, x2, x3) at time t, and the point 
force density is f δ(x − y) (Stokeslet) that acts on the liquid 
at position y = (y1, y2, y3 = h). The velocity field must satisfy 
the no-slip boundary condition, v(x) = 0 at the channel walls 
x3  =  0, H.

In the absence of boundaries, the flow is given by the 
Oseen tensor,

vS
i (x, y, f) = Jij(x, y) fj,� (B.3)

Jij(x, y) =
1

8πη

(
δij

r
+

rirj

r3

)
, i, j ∈ {1, 2, 3},� (B.4)

where r = x − y, r = |r|, δij is the Kronecker delta, and 
repeated indices are summed over. The pressure that com-
pletes this solution is P(x, y, f) = Pjfj with Pj = rj/4πr3. 
We now aim to solve the flow in a channel in terms of this 
Oseen tensor and derivatives thereof only, using the method 
reflections.

On the one hand, for the case of only a single boundary 
being present, i.e. H → ∞ in our system, Blake [142] first 
derived the Stokeslet flow in terms of an image system. The 
image is located at the position Y(0) = (y1, y2, −y3) = M · y, 
where the diagonal mirror matrix is M = diag(1, 1, −1). The 
image tensor is found by applying the reflection operator, B, 
of the ‘Bottom’ wall to the Stokeslet. This operator B(λ) is a 
function of the distance from the wall to the Stokeslet, which 
is λ = y3 here. Hence, we have

Bij(x, Y(0)) = B Jij(x, y(0)) ,� (B.5)

where the Blake solution can then be written in terms of the 
Oseen tensor as

Bij(x, Y(0))

= (−δjk + 2λδk3∂̃j + λ2 Mjk∇̃2)Jik(x, Y(0))

= (−δjk + 2y3δk3∂̃j + y2
3 Mjk∇̃2)Jik(x, Y(0)) ,

�

(B.6)

where the derivatives ∂̃j = ∂
∂yj

= Mjl
∂

∂Y(0)
l

 and ∇̃2 = ∂̃l∂̃l are 

with respect to the force position y. The first row of table B1 
lists this tensor Bij(x, Y(0)) as the first ‘Bottom’ reflection. The 
overall flow field is then given by

vB
i (x, y) =

[
Jij(x, y(0)) + Bij(x, Y(0))

]
fj.� (B.7)

On the other hand, if only the top wall is present at x3  =  H, the 
distance from the wall to the Stokeslet is λ = y3 − H  and the 
reflection is located at Y(−1) = (y1, y2, 2H − y3). The image 
tensor is then given by applying the reflection operator, T(λ), 
of the ‘Top’ wall to the Stokeslet,

Tij(x, Y(−1))

= T Jij(x, y(0))

= (−δjk + 2λδk3∂̃j + λ2 Mjk∇̃2)Jik(x, Y(−1))

= (−δjk − 2{H − y3}δk3∂̃j

+ {H − y3}2 Mjk∇̃2)Jik(x, Y(−1)) .

�

(B.8)

The second row of table B1 lists this result as the first ‘Top’ 
reflection. The overall flow, given by adding (B.4) and (B.8), 
satisfies the no-slip condition exactly on the top surface.

Next, when there are two parallel plates, one can con-
tinue using the method of images by computing the reflec-
tions of the reflections, and again the reflections of those, in 
order to generate an infinite series of images. Each image 
system consists of Stokeslets and derivatives thereof, thus 
satisfies the Stokes equations, and by adding more reflections 
the boundary conditions on both surfaces will be satisfied 
asymptotically. We first determine the positions of the image 
systems,

y(m) = (y1, y2, y3 − 2mH), m = 0, ±1, ±2, . . . ,� (B.9)

Y(m) = (y1, y2, −y3 − 2mH), m = 0, ±1, ±2, . . . ,� (B.10)
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where the images at Y(m) are reflected an odd number of 
times and the images at y(m) an even number of times. The 
original Stokeslet is also included here at position y = y(0). 
The resulting series of images is shown in figure B1. Then 
we must determine the functional form of the image ten-
sors, Gij(x, y(m)) and Gij(x, Y(m)). For a given image, this is 
done by replacing all the Oseen tensors Jij in the previous 
image system by the appropriate Blake tensor. The key idea 
is that the newly obtained reflection is again an expression 
in terms of Oseen tensors, and derivatives thereof, which 
can then be replaced again for the next reflection.

To see this, we explicitly consider the second (T) reflec-
tion of the first (B) image (B.6). This upward reflection 
of the image at position Y(0)

3 = −y3, located a distance 
λ = −(H + y3) from the top surface, creates a new image 

at position y(−1)
3 = 2H + y3. Its image tensor is given by 

applying the T operator linearly to all Stokeslets in the image,

Gij(x, y(−1))

= T Bij(x, Y(0))

= T
(
(−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2)Jik(x, Y(0))
)

= (−δjk + 2y3δk3∂̃j + y2
3 Mjk∇̃2)

(
T Jik(x, Y(0))

)

= (−δjk + 2y3δk3∂̃j + y2
3 Mjk∇̃2)

(
(−δkl − 2(H + y3)δl3 Mku∂̃u

+ (H + y3)
2 Mkl∇̃2)Jil(x, y(−1))

)
.

�

(B.11)

The replacement rule is listed as the 3rd entry in table  B1 
and the final expression as the 3rd entry in table  B2. This 

Table B1.  Recursion relations for the successive image systems of a Stokeslet between two parallel no-slip walls. The first image system 
of the Oseen tensor from reflection at the bottom wall is the Blake tensor, and the second image from reflection at the top interface is the 
mirrored Blake tensor. Subsequent image systems are obtained from further reflection operations with B denoting the ‘bottom’ wall and T 
the ‘top’ wall, that operate linearly on all the Oseen tensor terms Jij of the image system tensor Gij.

(n) Position Replace With

(0) y(0) — Jij(x, y(0))
(1) Y(0) B Jij(x, y(0)) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2)Jik(x, Y(0))
(2) Y(−1) T Jij(x, y(0)) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)

2 Mjk∇̃2)Jik(x, Y(−1))
(3) y(−1) T Jij(x, Y(0)) (−δjk − 2(H + y3)δk3 Mjl∂̃l + (H + y3)

2 Mjk∇̃2)Jik(x, y(−1))
(4) y(1) B Jij(x, Y(−1)) (−δjk + 2(2H − y3)δk3 Mjl∂̃l + (2H − y3)

2 Mjk∇̃2)Jik(x, y(1))
(5) Y(1) B Jij(x, y(−1)) (−δjk + 2(2H + y3)δk3∂̃j + (2H + y3)

2 Mjk∇̃2)Jik(x, Y(1))
(6) Y(−2) T Jij(x, y(1)) (−δjk − 2(3H − y3)δk3∂̃j + (3H − y3)

2 Mjk∇̃2)Jik(x, Y(−2))
(7) y(−2) T Jij(x, Y(1)) (−δjk − 2(3H + y3)δk3 Mjl∂̃l + (3H + y3)

2 Mjk∇̃2)Jik(x, y(−2))
(8) y(2) B Jij(x, Y(−2)) (−δjk + 2(4H − y3)δk3 Mjl∂̃l + (4H − y3)

2 Mjk∇̃2)Jik(x, y(2))
(9) Y(2) B Jij(x, y(−2)) (−δjk + 2(4H + y3)δk3∂̃j + (4H + y3)

2 Mjk∇̃2)Jik(x, Y(2))
(10) Y(−3) T Jij(x, y(2)) (−δjk − 2(5H − y3)δk3∂̃j + (5H − y3)

2 Mjk∇̃2)Jik(x, Y(−3))
(11) y(−3) T Jij(x, Y(2)) (−δjk − 2(5H + y3)δk3 Mjl∂̃l + (5H + y3)

2 Mjk∇̃2)Jik(x, y(−3))
(12) y(3) B Jij(x, Y(−3)) (−δjk + 2(6H − y3)δk3 Mjl∂̃l + (6H − y3)

2 Mjk∇̃2)Jik(x, y(3))
(13) Y(3) B Jij(x, y(−3)) (−δjk + 2(6H + y3)δk3∂̃j + (6H + y3)

2 Mjk∇̃2)Jik(x, Y(3))

⋮ ⋮ ⋮ ⋮

Y(2) y(2) Y(1) y(1) Y(0) y(0) Y(-1) y(-1) Y(-2) y(-2)

x
3

0 Hy
3

-y
3

2H+y
3

4H+y
3

-2H+y
3

-4H+y
3

Figure B1.  Diagram showing the image reflections of a Stokeslet, located at y3, between two parallel no-slip walls, located at x3  =  0,H. 

The images reflected an even number of times (circles) are located at y(m)
3 = y3 − 2mH and those reflected an odd number of times (stars) 

are located at Y(m)
3 = −y3 − 2mH .
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expression may be verified by adding (B.6) to (B.11) and 
ascertain that the no-slip condition holds on x3  =  H for all i, j.

Similarly, the higher-order image tensors are found by 
recursively applying the reflection operations,

Gij(x, Y(m)) = B Gij(x, y(−m)) ,� (B.12)

Gij(x, Y(−m)) = T Gij(x, y(m−1)) ,� (B.13)

Gij(x, y(−m)) = T Gij(x, Y(m−1)) ,� (B.14)

Gij(x, y(m)) = B Gij(x, Y(−m)) ,� (B.15)

where m � 1. These replacement rules are written out for the 
first few images in tables B1 and B2 that give the resulting 
expressions of the image tensors explicitly.

Finally, adding all images together we obtain the Green’s 
function for a Stokeslet between two parallel no-slip surfaces,

vi(x, y, f) = Fijfj ,� (B.16)

Fij(x, y) =

∞∑

m=−∞

[
Gij(x, y(m)) + Gij(x, Y(m))

]
.� (B.17)

Note that the no-slip condition can be satisfied exactly on the 
bottom surface by adding up the reflections to n = 1, 5, 9, 13, . . . 
from table B2, and satisfied exactly on the top surface by adding 
up the reflections to n = 3, 7, 11, 15, . . .. However, if symmetric 
flow fields are required about the channel centerline, an even 
number of images n = 2, 4, 6, 8, . . . must be employed.

Appendix C.  Flow far-field of a three-sphere  
swimmer in bulk

In this appendix, we show how the flow far-field of a three-
sphere swimmer can well be described by a combination 

of dipolar and quadrupolar flows. In the particular situation 
of the internal forces symmetrically distributed along the 
swimming axis, the dipolar contribution vanishes since the 
swimmer becomes invariant under time-reversal and parity 
transformation [154]. This type of swimmer is referred to as a 
self-T-dual swimmer whose leading term in the flow-far field 
is a quadrupole.

Firstly, we assume that the spheres have the same radius a 
but different oscillation amplitudes. The flow-far field is given 
by [17]

v =αV
(a

s

)2 (
3

(̂
t · ŝ

)2 − 1
)

ŝ

+ σV
(a

s

)3
[

3
(

5
(̂
t · ŝ

)3 − 3
(̂
t · ŝ

))
ŝ

−
(

3
(̂
t · ŝ

)2 − 1
)

t̂
]

+ O
(

1
s4

)
,

�

(C.1)

where the unit vector ŝ := s/s and the leading order swim-
ming velocity averaged over one period is V = − 7

24 aK . In 
addition, the dipolar and quadrupolar coefficients are given by

α =
27
56

u2
20 − u2

10

a
, σ =

15
56

1
a2 .� (C.2)

While the quadrupolar coefficient takes only posi-
tive values, the dipolar coefficient can be of different signs 
depending on the difference in the amplitude of the oscil-
lations. If |u20| > |u10|, then the dipole coefficient is posi-
tive, α > 0, and thus the swimmer is a pusher that pushes 
out the fluid along its swimming axis. In contrast to that, 
if |u20| < |u10|, the swimmer is a puller as it pulls the fluid 
inward along its swimming path.

It is worth noting that the aforementioned assump-
tion 2a + |u10| + |u20| � L yields that α is necessarily 
much smaller than σ. Accordingly, the ratio between the 

Table B2.  Explicit expressions of the image system tensors Gij of the first few image systems of a Stokeslet between two parallel no-slip 
walls. The indices i, j, k, l, o, p, u, v ∈ {1, 2, 3}, and repeated indices are summed over. Added together, these tensors yield the Green’s 
function of flow between two parallel no-slip walls.

(n) Image system tensor Gij(x, y(m) or Y(m)) =

(0) Jij(x, y(0))
(1) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2)Jik(x, Y(0))
(2) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)

2 Mjk∇̃2)Jik(x, Y(−1))
(3) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2) (−δkl − 2(H + y3)δl3 Mku∂̃u + (H + y3)
2 Mkl∇̃2)Jil(x, y(−1))

(4) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)
2 Mjk∇̃2) (−δkl + 2(2H − y3)δl3 Mku∂̃u + (2H − y3)

2 Mkl∇̃2)Jil(x, y(1))
(5) (−δjk + 2y3δk3∂̃j + y2

3 Mjk∇̃2) (−δkl − 2(H + y3)δl3 Mku∂̃u + (H + y3)
2 Mkl∇̃2)

(−δlo + 2(2H + y3)δo3∂̃l + (2H + y3)
2 Mlo∇̃2)Jio(x, Y(1))

(6) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)
2 Mjk∇̃2) (−δkl + 2(2H − y3)δl3 Mku∂̃u + (2H − y3)

2 Mkl∇̃2)

(−δlo − 2(3H − y3)δo3∂̃l + (3H − y3)
2 Mlo∇̃2)Jio(x, Y(−2))

(7) (−δjk + 2y3δk3∂̃j + y2
3 Mjk∇̃2) (−δkl − 2(H + y3)δl3 Mku∂̃u + (H + y3)

2 Mkl∇̃2)

(−δlo + 2(2H + y3)δo3∂̃l + (2H + y3)
2 Mlo∇̃2) 

(−δop − 2(3H + y3)δp3 Mov∂̃v + (3H + y3)
2 Mop∇̃2)Jip(x, y(−2))

(8) (−δjk − 2(H − y3)δk3∂̃j + (H − y3)
2 Mjk∇̃2) (−δkl + 2(2H − y3)δl3 Mku∂̃u + (2H − y3)

2 Mkl∇̃2)

(−δlo − 2(3H − y3)δo3∂̃l + (3H − y3)
2 Mlo∇̃2) 

(−δop + 2(4H − y3)δp3 Mov∂̃v + (4H − y3)
2 Mop∇̃2)Jip(x, y(2))

⋮ ⋮
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dipolar and quadrupolar coefficients in absolute value 
|α/σ| = 9

5 a|u2
20 − u2

10| can be even three orders of magni-
tude smaller than 1. For instance, by taking u10  =  a  =  0.1 
and u20 = 2u10, the ratio |α/σ| = 5.4 × 10−3. Even though 
the dipolar term persists for u10 �= u20, the flow field is primly 
dominated by the quadrupolar contribution, at intermediate 
distances from the swimmer.

We next assume that u10 = u20 and consider the case in 
which the spheres have different sizes, as is considered in the 
present work. The swimming velocity averaged over one full 
cycle reads [14]

V = −21K
8

a1a2a3

(a1 + a2 + a3)
2 .� (C.3)

In addition, the dipolar and quadrupolar coefficients of the 
corresponding flow field are given by

α =
3
4

a2 − a3

a2 , σ =
3
56

4 (a2 + a3) − 3a
a3 ,� (C.4)

where a is taken as the radius of the central sphere a1. 
Remarkably, the swimmer is a pusher (puller) if a2 > a3 
(a2 < a3), independently of the central sphere a. In addition, 
if a < 4

3 (a2 + a3), then the quadrupolar coefficient is posi-
tive, σ > 0, a situation which characterizes swimmers with 
small bodies and elongated flagella. The flow far-field of the 
swimmer can be dipolar- or quadrupolar-dominated at inter-
mediate distances from the swimmer, depending on the sizes 
of the spheres.

We finally assess the effect of the mean arm lengths on 
the far-field hydrodynamics. By posing L2 = βL1 = L and 
scaling the lengths by L, the averaged swimming velocity is 
given by [14]

V = −aK
6

(
1 +

1
β2 − 1

(1 + β)
2

)
,� (C.5)

and the dipolar and quadrupolar moments follow as

α =
3
8a

Nα

D
(1 − β) , σ =

3
16a2

Nσ

D
,� (C.6)

where we have defined for convenience the quantities

Nα = β
(
2 + 7β + 11β2 + 7β3 + 2β4) ,

Nσ = β
(
2 + 4β + β2 − 4β3 + β4 + 4β5 + 2β6) ,

D = 1 + 2β + β2 + 2β3 + β4 .

The swimmer is a pusher (puller) if β < 1 (β > 1). 
Moreover, σ > 0 for all positive values of the parameter β.

Appendix D.  Mathematical formulas

In this appendix, we provide explicit analytical expressions of 
the functions and coefficients stated in the main text.

D.1.  Expressions of A(z), B(z) and C(z) for a neutral  
swimmer (equal sphere radii)

Here we provide explicit analytical expressions of the func-
tions A(z), B(z), and C(z) defined in equation (10) of the main 
text, to leading order in a and as a power series in z. Defining 
w1 :=

√
1 + z2  and w2 :=

√
1 + 4z4 , we have

A(z) =
a

(w1w2)13

12∑

n=0

A2nz2n ,� (D.1a)

B(z) =
a

(w1w2)7

12∑

n=−1

Bnzn ,� (D.1b)

Table D1.  The coefficients An, Bn and Cn of the series 
functions defined in equations (D.1). Here w1 :=

√
1 + z2  and 

w2 :=
√

1 + 4z4 .

A0
7
24 − 7

24 w2w1 − w2
24 + w1

3
A2 − 35

4 w2w1 − 13
12 w2 + 14

3 w1

A4 − 931
8 w2w1 − 1159

96 w2 + 91
3 w1

A6 − 5425
6 w2w1 − 2407

32 w2 + 172 w1

A8 − 364 35
8 w2w1 − 9203

32 w2 + 977 w1

A10 − 624 75
4 w2w1 − 225 97

32 w2 + 4042 w1

A12 − 298 445
8 w2w1 − 4721

4 w2 + 105 67 w1

A14 −624 75 w2w1 − 3107
2 w2 + 173 12 w1

A16 −728 70 w2w1 − 1904 w2 + 178 12 w1

A18 − 173 600
3 w2w1 − 5768

3 w2 + 336 16
3 w1

A20 −297 92 w2w1 − 3520
3 w2 + 118 40

3 w1

A22 −8960 w2w1 − 896
3 w2 + 1792

3 w1

A24 − 3584
3 w2w1

B−1
3
32 w2w1

B0 7
24 − 7

24 w2w1 − w2
24 + w1

3
B1 45

32 w2w1

B2 − 35
8 w2w1 − 89

96 w2 + 8
3 w1

B3 261
32 w2w1

B4 − 203
8 w2w1 − 175

24 w2 + 82
3 w1

B5 735
32 w2w1

B6 − 1715
24 w2w1 − 2425

96 w2 + 208
3 w1

B7 261
8 w2w1

B8 − 203
2 w2w1 − 875

24 w2 + 197
3 w1

B9 45
2 w2w1

B10 −70 w2w1 − 91
6 w2 + 64

3 w1

B11 6 w2w1

B12 − 56
3 w2w1 − 6w2

C3 3
16 w2 − 6 w1

C5 321
64 w2 − 102 w1

C7 3699
64 w2 − 702 w1

C9 239 31
64 w2 − 2502 w1

C11 948 69
64 w2 − 4842 w1

C13 294 57
8 w2 − 4482 w1

C15 224 19
4 w2 + 198 w1

C17 4824 w2 + 4878 w1

C19 1836 w2 + 4968 w1

C21 −96 w2 + 2208 w1

C23 −192 w2 + 384 w1
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C(z) =
a

(w1w2)13

11∑

n=1

C2n+1z2n+1 .� (D.1c)

The series coefficients An, Bn, and Cn are given in table D1.

D.2.  Analytical expressions for a general three-sphere  
swimmer in the far-field limit

The explicit analytical expression of the coefficients V10 and 
V20 defined in equation (18) are

V10 = −21PK
8M2 , V20 =

9PK (18 − 27S − 6P + 11Q)

32M3 .

The coefficients Aij, Bij, Cij, and Dij defined in equa-
tions (19) and (20) are given by

A23 = −63P (9 + 25S + 88P − 12Q)

1024M3 ,

D14 =
135P
64MN

,

D22 = − 189P
256M2 ,

D24 =
135P

(
85Q − 18S + 542PS + 140P + 640P2

)

2048M2N2 ,

B13 =
63P
64M

,

B23 = −63P (9 − 6PS − 3Q + 13S + 16P)

256M3 ,

C14 =
405P
256N

,

C24 =
405P (10P + 13S)

2048MN
,

where S = r3 + r2, P = r3r2, Q = r2
3 + r2

2 , M  =  1  +  S and 
N  =  S  +  4P. We recall that r2 = a2/a1 and r3 = a3/a1.
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ABSTRACT
The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and
biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass
through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle.
In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an
effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically
calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active
particle may either get trapped near the membrane or penetrate through it, where the membrane can either be permanently
destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing us
to accurately predict most of our results analytically. This analytical theory helps in identifying the generic aspects of our model,
suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of
magnetic microparticles to lipid bilayers. Our results might be useful to predict the mechanical properties of synthetic minimal
membranes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080807

I. INTRODUCTION

Biological membranes play a crucial role in a large variety
of cellular processes and serve as a barrier to protect the inte-
rior of living cells from unwanted agents and harmful exter-
nal influences.1–7 The interaction between particles and cell
membranes is of crucial importance in a variety of biomedi-
cal applications, including targeted phototherapy, intracellu-
lar imaging, and diagnostic assays.8–10 Once injected into a
living organism, particle uptake can be achieved via passive
mechanisms11–15 or can be mediated by active processes

involving cellular energy input.16–19 Considerable research
advances have been made over the last few years in under-
standing the penetration of particles into cell membranes.
Previous studies have shown that the particle uptake by liv-
ing cells is strongly affected by the particle properties20–24
and the physicochemical and functional properties of the
membrane.25–30

As a simple framework for studying basic mechanisms of
cell penetration, artificial model membranes provide a basis
for understanding the complex interactions within living cells.
For example, the formation of a desired target membrane
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structure can be driven by an entropic mechanism31 or can
be achieved using controlled external fields.32–37 In particu-
lar, self-assembled colloidal membranes have offered a novel
framework for studying fundamental physical problems, such
as geometric frustration in artificial spin-ice systems,38–40 and
can conveniently be built from isolated microparticles with
adjustable interactions.41–49 For this purpose, various types
of interparticle interactions could be exploited, among which
magnetic attraction stands out.

One possibility is to construct membranes from col-
loidal magnetic particles that, in other situations, serve
as building blocks of magnetically self-assembled chains
and sheets. Magnetic nanoparticles (MNPs)50,51 are well-
established nanocomponents, owing to their diverse promis-
ing technological and biomedical applications. Notable exam-
ples include their potential use as drug delivery agents52–54
or as mediators to convert electromagnetic energy into heat
(hyperthermia).55 By binding MNPs to the surface of living
cells, the membrane mechanical properties can conveniently
be tuned by an external magnetic field.56–58 Furthermore,
magnetic colloidal and nanoparticles have proved to be use-
ful in the design of optical stimuli-responsive materials59–62
and in the development of artificial self-propelling active
microswimmers.63–77 Meanwhile, the dynamical properties of
self-propelled active polymers and filaments have been inves-
tigated.78–81 Additional studies include the dynamics of semi-
flexible polymer chains in the presence of nanoparticles82
and the behavior of polymers in a crowded solution of active
particles.83

Here, we develop a minimal model for a (non-fluctuating)
membrane made of dipolar (e.g., electric or magnetic) par-
ticles sterically interacting with a constantly driven “active”
particle.84–92 This particle may represent, e.g., a swimming
microorganism68,69 or a synthetic micro- or nanomachine that
can be manipulated under the action of controlled external
fields.93–96 Here, we focus on the case in which the persis-
tence length of the trajectory of the active particle is large
compared to its initial distance from the membrane, i.e., the
particle essentially moves along a straight line towards the
membrane.

In general, active particles can reach normally inaccessi-
ble areas inside living organisms and can perform delicate and
precise tasks, holding great promise for prospective biomed-
ical applications such as precision nanosurgery97–99 or trans-
port of therapeutic substances to tumor and inflammation
sites.100–102 Direct experimental observations have recently
demonstrated the self-driven motion of acoustically powered
active nanorods inside living HeLa cells.103 These nanomo-
tors have been shown to bump into cell organelles and exhibit
directional motion and spinning inside the cells. A detailed
modeling of the interactions of active particles and (cell) mem-
branes may help to shed light on our understanding of the
processes driving particle motion in living and synthetic
cell components. Additionally, a fundamental understanding
of these processes helps to improve the controllability of
micro- and nanoparticle-based agents in complex environ-
ments. Potentially, this might be relevant for novel therapeutic
drug targets for health therapy. One step in this direction

has been taken recently specifically for self-propelled par-
ticles interacting with a moving potential interpreted as a
semipermeable membrane,104 identifying an enhanced par-
ticle accumulation in front of the membrane accompanied
with an increased drag force. Experimentally, the mechani-
cal pressure exerted by a set of both passive isotropic and
self-propelled polar disks onto flexible unidimensional model
membranes has been studied.105

In the present work, we investigate a membrane
model self-assembled from dipolar spheres arranged along
a chain in the two-dimensional space. Their dipole moment
can arise either from an unscreened magnetic or electric
moment or from screened short-ranged electric interac-
tions, also arising from polar colloidal clusters.106 It has
previously been shown that a chain of magnetic particles
can exhibit intrinsic mechanical properties reminiscent of
elastic strings or rods107–112 depending on the additional
particle interactions. In colloidal suspensions, magnetic
interactions often cause flocculation due to the strong
attraction at short distances.113 Such effects are usually
counterbalanced by repulsive steric interactions that prevent
overlapping particle volumes at finite concentrations.114–116
Additional elastic interactions may be considered in the
form of harmonic springs. Particle systems subject to com-
binations of magnetic, steric, and elastic interactions have
widely been utilized as a model system for ferrofluids and
ferrogels.117–126

Using our simple model membrane as a basis to study the
penetration process by a self-driven particle (moving under
the action of a constant driving force), we obtain dynami-
cal state diagrams indicating trapping and penetration states.
We further observe penetration events with or without sub-
sequent healing of the membrane depending on the range
of the interactions between the membrane particles. Con-
sidering a chain of dipolar spheres, we derive a contin-
uum theory125,127 and we probe the particle displacement
and dipole reorientation caused by the self-driven particle
in the small-deformation regime. Good quantitative agree-
ment is found between the theoretical results and numerical
simulations.

The remaining part of the paper is organized as follows:
in Sec. II, we present the system setup and derive from the
potential energy the governing equations for the displace-
ment and orientation fields of the dipolar spheres. We then
present in Sec. III state diagrams indicating the possible steady
configurations of the system. Moreover, we probe the tran-
sition between the dynamical states. In Sec. IV, we devise a
linearized analytical theory that describes the temporal evo-
lution of the membrane and we provide solutions for the trap-
ping state in Sec. V. Concluding remarks are contained in
Sec. VI.

II. SYSTEM SETUP
We consider in two spatial dimensions a simple model

membrane composed of a chain of N identical dipolar par-
ticles of radius a and dipole moment m. Here, we assume
that the dipole moments rotate rigidly with the particles. The
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membrane is fully immersed in a Newtonian viscous fluid
of constant dynamic viscosity η. We support the chain
at its extremities such that the particles on both ends
are fixed in space. Moreover, we neglect Brownian noise,
which should play only a minor role when considering a
large membrane and large self-driven particles or systems
at low temperatures. In the resulting equilibrium configu-
ration, the dipolar particles are uniformly distributed along
the chain and aligned along the x direction (Fig. 1). We
denote by h the interparticle distance, initially set identi-
cal for all particles, and by L = hN the total length of the
chain.

A. Potential energy of the membrane
Next, we assume that the membrane particles are sub-

ject to three types of mutual interactions, namely, dipolar,
steric, and elastic interactions. Accordingly, the system poten-
tial energy governing the time evolution of the membrane can
be written as

U = UM + US + UE, (1)

where UM, US, and UE are contributions stemming from the
dipolar, steric, and elastic interactions, respectively. In this
study, we neglect for simplicity the fluid-mediated hydrody-
namic interactions between the particles.

In the following, mi denotes the dipole moment of the ith
membrane particle, i = 1, . . ., N. It is assumed that the mag-
nitudes of the dipole moments are equal and constant for all
the membrane particles, m = |mi|. Then, the dipolar part of the
potential energy may be expressed as128

UM =
µ0m2

4π

N∑
i,j=1
j<i

1
r3

ij

(
m̂i · m̂j − 3

(
m̂i · r̂ij

) (
m̂j · r̂ij

))
, (2)

where µ0 is the magnetic vacuum permeability, m̂i = mi/m
gives the orientation of the ith dipole moment, rij = ri −

FIG. 1. Illustration of the system setup. Under the action of an effective propulsion
force F0, a solid spherical particle of radius R approaches a membrane composed
of N identical magnetic spheres of radius a and dipole moment m. The membrane
particles are initially equidistant with distance h from one another. We denote by
L the total length of the membrane. The particles composing the membrane are
subject to dipolar, steric, and elastic interactions. The system is immersed in a bulk
liquid of constant dynamic viscosity η.

rj denotes the distance vector from particle j to particle i,
rij = |rij| is its magnitude, and r̂ij = rij/rij stands for the
corresponding unit vector.

In order to avoid aggregation of the dipolar particles, we
consider a repulsive Weeks–Chandler–Andersen (WCA) pair
potential. The corresponding potential energy reads129

US = 4ε
N∑

i,j=1
j<i

Nij

(
σ

rij

)6
*
,

(
σ

rij

)6

− 1+
-

+ ε , (3)

where we have defined the shorthand notation
Nij = H

(
rC − rij

)
, with H(·) being the Heaviside step function

and rC = 21/6σ denoting a cutoff radius beyond which the
potential energy is set to zero. Here, σ = 2a is the particle
diameter and ε is an energy scale associated with the hardness
of the potential.

In addition, we allow for harmonic elastic-like inter-
actions among adjacent particles. These interactions are
included such as springs of constant stiffness k and rest length
r0. The corresponding potential energy is given by

UE =
k
2

N−1∑
i=1

(ri,i+1 − r0)2. (4)

Consequently, the resulting force and torque acting on
the ith sphere are calculated from the system potential energy
as66 Fi = −∂U/∂ri and Ti = −m̂i × (∂U/∂m̂i). We obtain

Fi =
3µ0m2

4π

N∑
j=1
j,i

1
r4

ij

((
m̂j · r̂ij

)
m̂i +

(
m̂i · r̂ij

)
m̂j

+
(
m̂i · m̂j

)
r̂ij − 5

(
m̂i · r̂ij

) (
m̂j · r̂ij

)
r̂ij

)
+ 48ε

N∑
j=1
j,i

Nij

(
σ

rij

)6
*
,

(
σ

rij

)6

−
1
2
+
-

r̂ij

rij
+ k

i+1∑
j=i−1
j,i

(
r0

rij
− 1

)
rij (5)

and

Ti = −
µ0m2

4π

N∑
j=1
j,i

m̂i × cij

r3
ij

, (6)

where we have defined, for convenience, the dimensionless
vector cij = m̂j − 3

(
m̂j · r̂ij

)
r̂ij.

B. Dynamical equations
Assuming low-Reynolds-number hydrodynamics,130 the

moments of the particle velocities are related to the moments
of the hydrodynamic forces acting on them via the mobil-
ity functions.131,132 Neglecting mutual hydrodynamic interac-
tions between the particles yields

Vi = µ
(
Fi + Fext

i

)
, Ωi = γ Ti, (7)

where Vi and Ωi denote the linear and angular veloci-
ties of the ith membrane particle, respectively. Here, µ =
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1/(6πηa) and γ = 1/(8πηa3) are the translational and rota-
tional mobilities for a sphere as given by the Stokes formu-
las, respectively. Moreover, Fext

i is the external force result-
ing from the steric interaction with the self-driven particle
that is moving under the action of a constant driving force
F0 = F0 êy. Here, we assume that the self-driven spherical par-
ticle of radius R interacts with membrane particles via the
same soft repulsive WCA pair potential stated by Eq. (3) for
σ = a + R.

Then, the equation of motion for the translational degrees
of freedom reads

dri

dt
= Vi. (8)

Similarly, the equation governing the temporal evolution of the
orientation of the ith particle is given by

dm̂i

dt
= Ωi × m̂i, (9)

which can be rewritten as

dm̂i

dt
=
γµ0m2

4π

N∑
j=1
j,i

1
r3

ij

((
m̂i · cij

)
m̂i − cij

)
, (10)

by making use of Eqs. (6) and (7).
Considering now two-dimensional orientation vectors in

the (xy) plane, the particle orientations are represented in the
Cartesian basis system as m̂i = (cosφi, sinφi) with the angle
φi measured relatively to the x direction. Furthermore, the
angular velocity vector then possesses only one single com-
ponent (along the z direction). Hence, the temporal evolu-
tion of the orientation angle of the ith particle is calculated
as

dφi

dt
= Ωi · êz = γ(Ti · êz). (11)

We now introduce an additional cutoff length ` = 3h/2
for the dipolar and elastic interactions. That is, we multi-
ply a Heaviside function of the form H(` − rij) to Eqs. (5)
and (6). Accordingly, these interactions are now truncated
beyond next-nearest neighbors. Such a cutoff can be reason-
able for screened electric dipolar interactions. This assump-
tion does not significantly change our results except for the
membrane destruction state of absent-healing (see below), the
occurrence of which hinges on the cutoff.

III. STATE DIAGRAM
As an initial configuration of the membrane, the interpar-

ticle distance h is taken equal to the cutoff radius rC beyond
which the steric forces vanish. Moreover, we assume that the
rest length of the springs is equal to this initial interparticle
equilibrium distance, i.e., r0 = 27/6a.

Our parameter space has four essential dimensions. The
two dimensionless numbers

E1 =
µ0m2

4πa3ε
, E2 =

aF0

ε
(12)

quantify the importance of the attractive dipolar force
(∼µ0m2/a4) and of the active force F0 relative to the repulsive

steric force (∼ε/a) at particle contact, respectively. These two
parameters will be denominated as reduced dipole strength
and reduced activity, respectively. One additional dimension-
less number

κ =
π

6
kh5

µ0m2
(13)

corresponds to the ratio of the elastic to the dipolar interac-
tions. Moreover, we define the dimensionless number

δ =
R
a

(14)

as the ratio of the radius of the active particle relative to that
of the membrane particle. The parameters κ and δ will be
denominated as reduced stiffness and size ratio, respectively.
For future reference, we also introduce a dimensionless num-
ber quantifying the ratio of the driving and dipolar forces in
the form

P0 =
1

12

(
h
a

)4 E2

E1
. (15)

The latter will serve as our key control parameter discrimi-
nating trapped from penetrating states as detailed below. We
note that h/a = 27/6 is kept constant such that P0 is fully
determined from the ratio E2/E1.

In Fig. 2, we present state diagrams identifying the pos-
sible dynamical states of the system in the plane of the
two control parameters E1 and E2. The diagrams are con-
structed by numerical integration of the dynamical equa-
tions of motion using the 4th-order Runge-Kutta scheme
with adaptive time step.133 Results are shown for three val-
ues of the reduced stiffness κ which span a wide range of
values to be expected in various situations. Here, we set
N = 20 and δ = 1. We have tested the robustness of the
state diagrams by varying the number of membrane parti-
cles and have found no qualitative difference. Depending on
the combination of the relevant control parameters, the self-
driven particle either penetrates or remains in direct con-
tact with the membrane (trapping state). In the latter case,
the particle is essentially held back due to the steric inter-
actions with the membrane particles. Furthermore, two pen-
etration regimes are identified depending on whether the
membrane self-heals and recovers its initial undeformed
shape (red triangles) or remains damaged after the parti-
cle reaches the other side [green disks in (c)]. Qualitatively,
penetration scenarios are observed for higher values of P0
that indicate larger driving forces or smaller restoring dipolar
forces than those in the trapped state. For κ � 1, penetration
happens when

P0

κ
=

2F0

kh
& 1, (16)

i.e., when the active force is larger than the overall elas-
tic and dipolar restoring forces of a membrane particle with
its two neighbors. After membrane penetration, self-healing
always occurs for non- or weakly elastic membranes, for the
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FIG. 2. Ability of penetration or trapping as a function of elasticity. Shown are state
diagrams for (a) κ = 0, (b) κ = 1, and (c) κ = 10. Symbols represent the final
states obtained from numerical integration of the dynamical equations, given by
Eqs. (5)–(11). Here, membranes consisting of N = 20 dipolar particles have been
examined and we set the size ratio δ = 1. Depending on the values of the dimen-
sionless numbers E1 and E2, the active particle is either trapped (blue squares)
or passes through the membrane to reach the other side. After full penetrations,
the membrane either shows a self-healing ability (red triangles) or remains per-
manently damaged (green disks). The latter behavior is only observed in the
case of strongly elastic membranes shown in (c) for the present set of param-
eters. The solid lines display the estimates of the transition line between the
states.

present set of parameters. In contrast to this, the membrane
may remain permanently damaged for strongly elastic mem-
branes, see Fig. 2(c). Besides, the elastic interactions cause a
noticeable “shifting” of the transition line between the pene-
tration and trapping states. Apart from this, they do not quali-
tatively alter our results and will therefore be omitted in most
of our later calculations. It is worth noting that the detailed
form of the steric repulsion may not be important as long as
the reduced dipole strength E1 � 1. An alternative could be
the use of hard-core interactions. However, a softer poten-
tial is adopted here for numerical convenience to prevent
the interparticle forces from diverging during the evolution
dynamics.

We now describe the dynamical scenarios of the trapped
and penetrating states depicted in Fig. 3. First, we examine
the time evolution of membrane configurations. At the initial
stage of the dynamics, the active particle pushes the mem-
brane and subsequently bends the membrane, as shown in
Figs. 3(a), 3(c), and 3(e). If the active force is strong enough
(P0 � 1), such deformation persistently increases and induces
a growing distance between the two center particles of the
chain, giving rise to a weakening of their mutual dipolar attrac-
tion. Consequently, the active particle penetrates through the
membrane, see Figs. 3(c) and 3(e). Depending on the size of
the active particle relative to that of the membrane parti-
cles, the membrane either closes again to recover its ini-
tial aligned configuration [self-healing behavior shown in (c)
for δ = 1] or remains permanently deformed [as shown for
δ = 5 in (e)]. In addition, we observe that the penetration event
is also accompanied by a slight abrupt increase in the parti-
cle speed [small cusp occurring in (d) at t/tS ' 0.6 and in (f)
at t/tS ' 1.6]. This small augmentation of speed is due to the
steric interactions which support the particle motion at this
final stage when the penetrated particle is sterically repelled
by the nearby membrane particles. In sharp contrast, when
P0 � 1, the membrane develops a triangular profile, reaching a
steady state without allowing the self-driven particle to pass,
see Fig. 3(e). This trapping behavior is investigated in more
detail in Secs. IV and V. Meanwhile, both scenarios can also be
understood in terms of the velocity profiles of the self-driven
particle presented in Figs. 3(b), 3(d), and 3(f). Since the dynam-
ics are overdamped, the velocity can be interpreted as the
total net force exerted on the particle. Accordingly, membrane
penetration occurs when the external driving force remains
larger than the membrane restoring forces.

In order to explore the membrane behavior in the pen-
etration state in more detail, we present in Fig. 4 a state
diagram in the parameter space (δ, E2). Here, we keep the
other parameters fixed at κ = 0, E1 = 10−2, and N = 20. We
observe that the transition between the trapping and pene-
tration states can only be enabled by increasing the reduced
activity E2, regardless of the size ratio δ. However, the lat-
ter strongly affects the membrane behavior in the penetration
scenario. In the considered range of parameters, lower values
of δ lead to self-healing, while larger values imply permanent
damage of the membrane. The observed suppression of the
healing behavior for large enough penetrating particles can be
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FIG. 3. Membrane dynamics of trapping and penetration states. (a) Frame series in the trapping state for N = 20, κ = 0, δ = 1, E1 = 1, and E2 = 10−2. Here, the frames
are displayed every 0.2tS, where tS = ηL3/ε is the simulation time unit. (b) Time evolution of the translational velocity of the active particle in the trapping state. (c) Frame
series of the membrane conformation during the penetration state with healing, using the same set of parameters as in (a), except for E1 = 0.1. The frames are displayed
in time every 0.6tS. The black and green circles represent the positions of the membrane particles before and after the active particle (blue disk) reaches the upper side,
respectively. As shown, the membrane recovers its original conformation after the active particle has passed (red circles). Panel (d) shows the corresponding translational
velocity of the active particle versus time. (e) Frame series of the membrane shape during the penetration state without healing, using the same parameters as in (c), except
for R = 5a. The frames are displayed every 6tS in time with the same color as in (c). Circles shown in red represent the steady positions of the membrane particles. Panel
(f) displays the corresponding time evolution of the active particle. We note that the particles in (a), (c), and (e) are not plotted to scale. Accordingly, the shown circles and
disks only correspond to the positions of the centers of the particles. [The membrane particles and the driven particle in (a) are actually in contact, but the scales on the
ordinate and abscissa are pronouncedly different.] Time t = 0 in (b), (d), and (f) corresponds to the moment when the active particle and the membrane begin to mutually
interact.

understood by the fact that the mutual distance between
the two central beads becomes larger than the cutoff dis-
tance `, which could represent the average distance between
cytoskeletal cross-linkers for biological membranes. If these
links are broken by large active particles, the attractive
interactions between the membrane particles vanish. Con-
sequently, the membrane is split up and remains per-
manently destroyed, or at least until other mechanisms
help the membrane to regenerate. Without the cutoff, the

membrane because of the long-ranged forces always heals
after a penetration event.

IV. ANALYTICAL THEORY
To proceed analytically, we restrict ourselves to the

small-deformation regime. Then, we linearize the dynami-
cal equations and solve for the membrane displacement and
dipole orientation fields.
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FIG. 4. State diagram of trapping and penetration in the parameter space of size
ratio δ and reduced activity E2, while keeping the reduced stiffness κ = 0 and the
reduced dipole strength E1 = 10−2. Here, we have examined membranes con-
sisting of N = 20 dipolar particles. Symbols represent the final dynamical state
obtained from numerical integration of Eqs. (5)–(11).

A. Evolution of the membrane particles
In the deformed configuration, the position vector of each

dipolar particle in the laboratory frame of reference can be
written as ri = (di + ui)êx + ρiêy, wherein di = h(i − N/2),
i = 1, . . ., N, represents the equilibrium x positions of the
particles in the initial configuration. Without loss of general-
ity, we consider here only even numbers of N. In addition, ui
and ρi denote the membrane displacements along the x and y
directions, respectively.

We assume that the active particle has a radius compara-
ble to that of the membrane particles. For the dipolar particles
that are not at the chain ends, i.e., for i = 2, . . ., N − 1, the pro-
jection of the dynamic equations governing the translational
motion of the ith sphere, given by Eq. (8), can be presented in
a linearized form as

1
A

dui

dt
=

72εµ
Ah2

(
(ui+1 − ui)Ni,i+1 − (ui − ui−1)Ni,i−1

)
+ 2(κ − 1)

ui+1 − 2ui + ui−1

h2
−
µF‖ i

A
, (17a)

1
A

dρi

dt
=
ρi+1 − 2ρi + ρi−1

h2
−
φi+1 − φi−1

4h
+
µF⊥i

A
, (17b)

where we have defined A B 3µ0m2µ/(πh3), a parameter that
has the dimension of a diffusion coefficient. We assume that
ri ,i±1 < ` always holds in the small-deformation regime con-
sidered here. Moreover, F‖ i = Fi sinα and F⊥i = Fi cosα, where
Fi = F(δi,N/2 + δi,N/2+1) is the magnitude of the force acting on
the two central particles due to the steric interactions with
the active particle. Thus, Fi = F if i ∈ {N/2, N/2 + 1} and Fi = 0
otherwise. This implies that the active particle is exactly posi-
tioned between the central two beads of the membrane. We
have also explored the situation, where N is an odd number, in

which the external force is only exerted to the center particle
and have found quantitatively similar results. Continuing, α is
the angle formed by the y axis and the line connecting the cen-
ter of the self-driven particle to that of the closest membrane
particle (see Fig. 1). This angle is defined as negative for clock-
wise rotation from the y axis. Notably, the dipolar interactions
manifest themselves in both the longitudinal and transverse
force balance equations, whereas the steric and elastic inter-
actions are (at linear order) only involved in the longitudinal
force balance equation. This behavior resembles that of elastic
membranes, where stretching and bending effects are pre-
dominately pronounced along the tangential and normal trac-
tion jumps, respectively.134–138 Therefore, our self-assembled
chains can be used as a minimal model membrane with effec-
tive stretching and bending moduli, in analogy to purely
elastic membranes with stretching and bending deformation
modes.

Similarly, we proceed with the torque balance given by
Eq. (11), and derive an approximate equation for the rota-
tional motion of the membrane particles. Upon linearization,
we obtain

dφi

dt
=

B
2

(
ρi+1 − ρi−1

h
−
φi+1 + φi−1 + 4φi

3

)
, (18)

where we have defined a parameter B B 3A/
(
8a2

)
with the

dimension of inverse time. We also used the fact that the
translational and rotational mobilities of a sphere are related
via γ/µ = 3/(4a2).

The two particles located at the membrane extremities
remain fixed in space (zero displacement) and are not sub-
ject to any dipolar torques. The latter could be achieved, for
instance, if for the two particles at the ends of the membrane
the dipole moment can freely rotate inside the particle, rel-
atively to the particle frame. Therefore, Eqs. (17) and (18) are
subject to the boundary conditions

ui = ρi = 0 for i ∈ {1, N}, (19a)

φ2 + 2φ1 − 3
ρ2

h
= 0, (19b)

φN−1 + 2φN + 3
ρN−1

h
= 0. (19c)

B. Evolution of the active particle
The active particle is subject to the constant force F0 act-

ing along the y direction in addition to the resistive forces
due to the steric interactions with the two central particles.
Denoting by µP = 1/(6πηR) the translational mobility func-
tion of the self-driven particle, the governing equation for the
translational motion along the y direction reads

1
µP

dyP

dt
= F0 − 2F cosα. (20)

For future reference, we define r as the steady center-
to-center distance separating the self-driven particle from the
central particles in the trapping state. For an interparticle dis-
tance r . rC, the magnitude of the WCA force acting on a
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central particle can, to leading order, be approximated by

F =
36 · 22/3ε

σ

(
21/6 −

r
σ

)
, (21)

where σ = a + R.
Inserting the latter equation into Eq. (20) and setting the

left-hand side to zero, the steady-state distance separating
the self-driven particle from the central particles is given by

r =
h
2

(
1 +

R
a

)
*
,
1 −

E2

288

(
1 +

R
a

)
h

a cosα
+
-

, (22)

where we have used the constraint that h/a = 27/6.
Equations (17) and (18) form 3(N − 2) ordinary differ-

ential equations in time for the unknown displacement and
orientation fields. These equations are subject to the six
boundary conditions given by Eqs. (19) in addition to the
initial conditions of vanishing displacement and orientation
fields. In the steady state, the problem reduces to finding
the solution of a set of recurrence equations relating the
positions and orientations of adjacent spheres. In Sec. V,
we present an analytical solution of the resulting recur-
rence problem. In addition, we show that the underlying
equations for the motion of the membrane particles can
conveniently be presented in the continuous limit using par-
tial differential equations that describe the temporal and
spatial evolution of the membrane displacement and dipole
orientation.

V. SOLUTION FOR THE TRAPPING STATE
A. Steady solution of the recurrence problem

For E2 � 1, it follows from Eq. (22) that r ∼ h(1 + δ)/2,
where again δ = R/a. Assuming that |ui| � h, for i = 1, . . ., N,
yields sinα ' h/(2r). As a result, α ' arcsin(1/(1 + δ)).

Due to the symmetry of the problem with respect to
the membrane center, it is sufficient to solve the recurrence
problem for i ∈ {1, . . ., M}, where M B N/2. In the steady
state, it follows readily from the force balance Eq. (20) that

F = F0/(2 cosα), where cosα '
(
1 − 1/(1 + δ)2

) 1/2
.

1. Longitudinal displacement
The mutual distance between adjacent particles in the

trapping state is significantly larger than the cutoff distance.
Therefore, the steric interactions between membrane parti-
cles vanish, and only the elastic and dipolar interactions are
relevant.

Assuming that κ , 1, Eq. (17a) that governs the final steady-
state membrane displacement along the x direction, for
1 < i < M, can be written as

ui+1 − 2ui + ui−1 = 0. (23)

The latter expression is subject to the boundary condition
uM−1 − 3uM = Kh, which follows from setting i = M in
Eq. (17a) and using the fact that uM+1 = −uM as required by

symmetry considerations. Here, we have defined for conve-
nience the dimensionless number

K =
P0

4(κ − 1)(1 + δ)
, (24)

where we have used the approximation sinα ' 1/(1 + δ). The
solution of the resulting linear homogeneous second-order
recurrence problem satisfying the zero-displacement bound-
ary condition u1 = 0 is given by

ui

h
= −

i − 1
N − 1

K. (25)

The maximum displacement occurs for i = M and amounts to
uM = −(M − 1)Kh/(2M − 1).

For κ = 1, the dipolar forces are balanced by the elastic
forces. Consequently, the membrane to linear order primarily
undergoes motion along the transverse direction.

We further note that for κ ≤ 1 the elastic forces cannot
stabilize the system as the dipolar attraction overwhelms the
elastic repulsion. Since its ends are fixed, the membrane would
tear itself apart. The steric repulsions in this situation prevent
the collapse of the system.

2. Transverse displacement and dipole orientation
We next consider the displacement field induced along

the transverse direction and examine the rotation of the
dipoles. For 1 < i < M, Eqs. (17b) and (18) are written in the
steady trapping state as

1
h

(ρi+1 − 2ρi + ρi−1) −
1
4

(φi+1 − φi−1) = 0, (26a)

1
h

(ρi+1 − ρi−1) −
1
3

(φi+1 + 4φi + φi−1) = 0. (26b)

For the solution of the coupled recurrence relations at
hand, it is convenient to rearrange the equations in such a way
as to decouple the transverse displacement from the dipole
orientation. To this end, we define the displacement gradient
as Di = (ρi − ρi−1)/h. Accordingly, Eqs. (26) can be rewritten
as

Di+1 − Di =
1
4

(φi+1 − φi−1), (27a)

Di+1 + Di =
1
3

(φi+1 + 4φi + φi−1). (27b)

Then, Eqs. (27) can be rearranged to obtain

Di =
2
3
φi−1 +

7φi + φi−2

24
=

2
3
φi +

7φi−1 + φi+1

24
. (28)

The latter equation can further be rearranged to obtain
the following recurrence relation for the orientation field:

φi+1 − φi−2 + 9(φi − φi−1) = 0. (29)

In order to solve the resulting linear homogeneous third-
order recurrence problem and find the general term of φi,
we use the classical approach based on the distinct roots
theorem.139 Correspondingly, we search for solutions of the
recurrence relation in the form of φi = c/pi. Substituting into
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Eq. (29) yields the characteristic equation of the recurrence
problem,

p3 + 9p2 − 9p − 1 = 0, (30)

the solutions of which, often called the characteristic roots of
the recurrence relation, are p = 1 and p± B −5± 2

√
6. Then, the

general solution for the orientation field is given by

φi = C + C−pi
− + C+pi

+, (31)

where the constants C± and C are to be determined from
the boundary conditions. We note that p+ and p− are the
multiplicative inverse of each other, i.e., p+p− = 1.

Upon substitution of the expression of the orientation
field given by Eq. (31) into Eq. (28), the general solution for the
displacement gradient is obtained as

Di = C + C−
(
−1 +

√
6

2

)
pi
− + C+

(
−1 −

√
6

2

)
pi

+. (32)

For the determination of the three unknown coefficients
C and C±, we make use of the boundary conditions,

3D2 − (φ2 + 2φ1) = 0, (33a)

DM −
1
4

(φM + φM−1) =
P0

2
, (33b)

DM − φM −
φM−1

3
= 0, (33c)

after noting that ρM+1 = ρM and φM+1 = −φM. Here, P0 = µF0h/A
is the dimensionless parameter defined earlier in Eq. (15).

Next, from Eqs. (31) to (33), the unknown coefficients are
determined as

C = −W
(
12QM−1 + 117QM +

√
6(5SM−1 + 48SM)

)
,

C± =W
(
±12 + 5

√
6
)
,

where we have defined

Si = pi
+ + pi

−, Qi = pi
+ − pi

−. (34)

Moreover, W = P0/
(
3QM +

√
6SM

)
.

The transverse displacement field of the ith membrane
particle can then be calculated from the displacement gradient
as

ρi = h
i∑

j=2

Dj, (35)

which, using ρ1 = 0, reads

ρi

h
= (i − 1)C + C−

(
−1 + 5

√
6

12

) (
49 + 20

√
6 − pi+1

−

)
+ C+

(
1 + 5

√
6

12

) (
−49 + 20

√
6 + pi+1

+

)
. (36)

In the limit of M → ∞ (and thus h → 0 for fixed L), we
get C = P0 and C− = C+ = 0. Defining a continuum variable as
x/L = ((i − 1)/(M − 1) − 1)/2 for 1 ≤ i ≤ M such that x/L ∈ [−1/2,
0), Eq. (36) can be written in the continuum limit, for x notably
smaller than zero, as

lim
M→∞

φ(x) = P0, (37a)

lim
M→∞

ρ(x) = P0

(
L
2

+ x
)
. (37b)

It is worth mentioning that our approximation is valid in
the small deformation regime for which P0 � 1. From parity
considerations, consequently φ(−x) = −φ(x) and ρ(−x) = ρ(x).
Thus, the transverse displacement reaches its maximum value
at the membrane center, for x = 0.

In the following, we will approach the problem differently
by utilizing a continuum description of the governing equa-
tions to yield analytical expressions for the membrane defor-
mation not only in the steady state but also in the transient
state.

B. Continuum description
In order to obtain a continuum description of the mem-

brane deformation and dipole orientations, we present the
transverse displacement field in the form ρi+s = exp(shD)ρ(x),
and analogously for ui+s and φi+s, wherein s is a relative integer
and D B ∂/∂x denotes the differential operator with respect
to the spatial coordinate. Expanding the exponential argument
in powers of shD, we obtain for ρi+s up to second order140

ρi+s = *
,
1 + sh

∂

∂x
+

(sh)2

2
∂2

∂x2
+ · · · +

-
ρ(x), (38)

and analogously expressions for ui+s and φi+s.
Using this representation, Eqs. (17) can be written in the

continuum limit as

u,t = 2A(κ − 1)u,xx, (39a)

ρ,t = A
(
ρ,xx −

φ,x

2

)
+ µ

(
F0 −

yP,t

µP

)
h δ(x), (39b)

for −L/2 ≤ x ≤ L/2. Here, commas in the subscripts denote
partial derivative with respect to the arguments listed in the
subscripts. We have neglected the steric interactions along
the longitudinal direction as they usually have a vanishing
contribution to the force balance in the trapping state, dur-
ing which the membrane is stretched. In addition, the dis-
crete force Fi = F(δi,M + δi,M+1) has now been transformed
into a point force 2Fh δ(x) oriented along the y direction,
where the prefactor h has been introduced so as to ensure
the right physical dimension. Accordingly, α → 0 holds in the
continuum limit since a → 0 leads to δ → ∞ for R remain-
ing finite. Thus the longitudinal component of the force F‖
vanishes.

Similarly, the continuum version of the equation govern-
ing the orientation dynamics of the dipoles, given in a discrete
form by Eq. (18), reads

φ,t = B(ρ,x − φ). (40)

Equations (39) and (40) are subject to the initial conditions
at t = 0 of vanishing displacement and orientation, in addition
to the boundary conditions of zero displacement and torque at
x = ±L/2. It is worth mentioning that A and B are considered

J. Chem. Phys. 150, 064906 (2019); doi: 10.1063/1.5080807 150, 064906-9

Published under license by AIP Publishing

P7 J. Chem. Phys. 150, 064906 (2019) 159



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

here as constant membrane properties and are therefore not
affected by the limit h→ 0.

1. Steady state
We first look for analytical solutions of the contin-

uum model equations in the steady state of motion. It
follows from Eq. (39a) that the steady longitudinal displace-
ment in the trapping state satisfies u,xx = 0. Since u(x = 0)
= 0, as required by symmetry considerations, the longitudi-
nal displacement necessarily vanishes upon application of the
boundary conditions. Therefore, the membrane particles only
displace along the y direction in the considered continuum
limit.

As for the transverse displacement, Eq. (39b) simplifies in
the steady state to

ρ,xx −
φ,x

2
+ P0 δ(x) = 0, (41)

while Eq. (40) leads to φ = ρ,x. As a result, the steady orienta-
tion of the dipoles is solely given by the displacement gradient.
The present situation is analogous to that known in the con-
text of Kirchhoff–Love theory of elastic beams or plates.141
Thus, the transverse displacement of the continuous mem-
brane is governed by the following second-order differential
equation:

ρ,xx + 2P0 δ(x) = 0, (42)

the solution of which (that satisfies the boundary conditions)
is given by

ρ(x) = P0

(
L
2
− |x |

)
, (43a)

φ(x) = −P0 sgn(x), (43b)

where sgn(x) B x/|x| denotes the sign function. These results
are in full agreement with Eqs. (37) that have been obtained
for x < 0 by taking the corresponding continuum limit in the
discrete description.

The membrane undergoes a maximum deformation at its
center, which, for h = L/N and h/a = 27/6, is given by

ρMax

L
=

P0

2
= 4πc

a4F0

µ0m2
, (44)

where c = 25/3/3 ≈ 1.06 is a numerical prefactor. The latter
result indicates that the maximum deflection of the membrane
scales linearly with the magnitude of the active force but does
not depend on the nature of the steric interactions causing the
membrane to deform.

In Fig. 5, we present the steady-state profiles of (a) the
transverse displacement ρ(x) and (b) the orientation φ(x) for
various values of E2, while keeping the other parameters con-
stant at E1 = 1 and N = 20. Here, the numerical solutions
of the nonlinear equations are indicated by circles, and the
results of the corresponding recurrence solution of the linear
discrete problem—closely matching the numerical solution—
are denoted by squares. Solid lines present the continuum
solutions for the same set of parameters.

FIG. 5. Steady-state solutions in the trapping state. (a) Scaled membrane defor-
mation ρ/L and (b) local membrane orientation φ as functions of x (the self-driven
particle is located at x = 0), both for systems with E1 = 1, N = 20, and vary-
ing values of E2. Circles indicate the results of numerical simulations obtained by
solving the nonlinear dynamical equations, squares denote the solutions of the
recurrence problem given by Eqs. (31) and (36), and solid lines are the analyt-
ical predictions described by Eqs. (43) obtained from a continuum formulation.
All these approaches lead to triangular profiles for ρ(x) and square-like ones for
φ(x), showing strong quantitative agreement without the introduction of any fitting
parameters.

While the continuum description always leads to ideal
triangular and square profiles for ρ(x) and φ(x), respectively,
the numerical solution of the nonlinear problem shows devi-
ations from these shapes. The differences are most probably
due to the finite size of the active particle which has not
been taken into account in the present continuum descrip-
tion. Finally, we remark that even though no fitting parame-
ters have been introduced, the results still closely match each
other, reinforcing the applicability of our approximate ana-
lytical approach to predict the shape of our minimal mem-
brane model under the influence of a localized destroying
force.

2. Transient behavior
Having presented analytical solutions of the contin-

uum equations of motion in the steady state, assessed the
appropriateness and judged the accuracy of our linearized
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analytical theory, we next address the membrane deformation
and dipole orientation in the transient regime. The solution to
this mathematical problem can be obtained by finite Fourier
transforms in space of the governing equations and solving the
resulting ordinary differential equations in time.

For this purpose, we define the basis functions

cq(x) = cos
(
Hqx

)
, sq(x) = sin

(
Hqx

)
, (45)

where Hq = (2q − 1)π/L with q = 1, 2, . . . denoting the vari-
able that sets the coordinates in Fourier space. Then the dis-
placement and orientation fields can be expressed in terms of
Fourier series in space as142

ρ(x, t) =
2
L

∑
q≥1

ρ̂(q, t) cq(x), (46a)

φ(x, t) =
2
L

∑
q≥1

φ̂(q, t) sq(x), (46b)

where ρ̂ and φ̂ are the Fourier coefficients, defined as

ρ̂(q, t) =
∫ L

2

− L
2

ρ(x, t) cq(x) dx, (47a)

φ̂(q, t) =
∫ L

2

− L
2

φ(x, t) sq(x) dx. (47b)

The form of the Fourier representation given by Eqs. (46) fol-
lows from the boundary conditions to ensure at any time that
ρ(±L/2, t) = 0 and φ,x(±L/2, t) = 0. We note that the basis
functions cq(x) and sq(x) satisfy the orthogonality relations

∫ L
2

− L
2

cp(x)cq(x) dx =
∫ L

2

− L
2

sp(x)sq(x) dx =
L
2
δpq. (48)

Transforming Eqs. (39b) and (40) into spatial Fourier space
yields

ρ̂,t

A
= −Hq

(
Hqρ̂ +

φ̂

2

)
+ P0

(
1 −

yP,t

v0

)
, (49a)

φ̂,t

B
= −Hqρ̂ − φ̂, (49b)

where v0 = µPF0 is the bulk velocity of the active particle.
For a closure of the above set of equations, we require that

the instantaneous distance between the self-driven particle
and the membrane center remains constant during the system
evolution such that yP,t = ρ,t(x = 0, t). However, in order to be
able to make analytical progress, we further assume that after
a brief transient evolution, |yP,t| � v0 holds, and thus the term
involving yP,t can be neglected. This is equivalent to assum-
ing that the active particle instantaneously attains its termi-
nal velocity when the interaction with the membrane takes
place.

The solution of the system of differential equations
given by Eqs. (49) can more easily be obtained using
the Laplace transform technique.143 In the following, the
Laplace-transformed function pairs are distinguished only
by their argument while the hat is reserved to denote the

spatial Fourier transforms. By employing the initial conditions
ρ̂(q, t = 0) = φ̂(q, t = 0) = 0, we obtain

s
A
ρ̂(q, s) = −Hq*

,
Hqρ̂(q, s) +

φ̂(q, s)
2

+
-

+
P0

s
, (50a)

s
B
φ̂(q, s) = −Hqρ̂(q, s) − φ̂(q, s). (50b)

Solving these equations for ρ̂(q, s) and φ̂(q, s) yields

ρ̂(q, s) =
2A(B + s)P0

Q
, (51a)

φ̂(q, s) = −
2HqABP0

Q
, (51b)

where the denominator is given by

Q = s
(
2s2 + 2(B + AH2

q)s + ABH2
q

)
.

The inverse Laplace transform can readily be obtained
from the standard approach of partial fraction decomposition
and using tables of Laplace transforms, which yields

ρ̂(q, t) =
2P0

H2
q

*
,
1 − e−βt

(
cosh(τt) +

B
2τ

sinh(τt)
)
+
-
,

φ̂(q, t) = −
2P0

Hq
*
,
1 − e−βt

(
cosh(τt) +

β

τ
sinh(τt)

)
+
-
,

where we have defined the parameters τ and β, with inverse
time dimension, as

τ =
1
2

√
B2 + A2H4

q , β =
1
2

(
B + AH2

q

)
. (52)

A typical transient behavior is shown in Fig. 6 presenting
(a) the membrane transverse displacement ρ(x, t) and (b) the
dipole orientation φ(x, t) at various times t using the param-
eters E1 = 1, E2 = 10−2, and N = 20. Here, symbols indicate
the numerical solutions for a discrete membrane and solid
lines represent the analytical solutions of the continuum the-
ory outlined above. Again, without fitting parameters, there is
strong qualitative and quantitative agreement between both
approaches.

The transverse displacement profile features at early
times a small central dent, which then more and more expands
as time evolves. This leads to a significant kink at the cen-
ter and, finally, to the triangular shape in the steady state. At
all times, the symmetry ρ(−x, t) = ρ(x, t) is fulfilled. Similarly,
for the dipole orientation, smooth transitions take place from
a small “orientation jump” in the center and vanishing initial
orientations elsewhere to a full-chain square-like profile in
the steady state. The discrete case features a significantly less
pronounced change in orientation for the two central spheres
at all times.

Finally, we address the transient behavior in the particular
situation of fast orientational relaxation, for which B � Aq2.
Setting φ,t = 0 in Eq. (40) yields
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FIG. 6. Dynamic solutions for the trapping scenario. (a) Scaled transient mem-
brane deformation profile ρ(x, t)/L and (b) membrane orientation profile φ(x, t)
calculated at times t/tS = 0.001, 0.05, 10, where tS = ηL3/ε for N = 20, E1 = 1,
and E2 = 10−2. Here, symbols are numerical simulation results and solid lines give
the corresponding analytical results according to Eqs. (46). Both approaches show
qualitative and quantitative agreement in their description of the transition from the
small central perturbations at early times to the steady state for t →∞ (see also
Fig. 5 for a detailed display of the latter).

φ = ρ,x. (53)

Accordingly, the dipole orientation follows instantaneously
the slope of the membrane. Inserting Eq. (53) into Eq. (39b)
yields

ρ,t =
A
2
ρ,xx + µhF0 δ(x), (54)

where yP,t has been neglected along the same lines as dis-
cussed above.

Equation (54) has the form of a diffusion equation with a
point source localized in space, subject to the initial condition
ρ(x, t = 0) = 0, in addition to the Dirichlet-type boundary con-
ditions ρ(x = ±L/2, t) = 0. The solution of this equation has
been obtained by Sommerfeld144 and is expressed as

ρ(x, t) =
AP0

2L

t∫
0

*
,
ϑ

(
x

2L
, t′

)
− ϑ

(
x + L
2L

, t′
)
+
-

dt′, (55)

with Jacobi theta functions145

ϑ(ξ , t) = 1 + 2
∞∑

n=1

e−δnt cos(2nπξ), (56)

where we have defined

δn =
n2π2A

2L2
. (57)

This leads to the scaled displacement

ρ(x, t)
L
=

4P0

π2

∞∑
n=1

1 − e−δ2n−1t

(2n − 1)2
cos

(
(2n − 1)

πx
L

)
, (58)

which reproduces the steady-state solution given by Eq. (36)
as shown below. In particular, the long-time behavior is
dominated by the first term (n = 1), which approaches the
limit exponentially with a characteristic decay time 2L2/(π2A).
Additionally, the orientation follows forthwith from Eq. (53)
as

φ(x, t) = −
4P0

π

∞∑
n=1

1 − e−δ2n−1t

2n − 1
sin

(
(2n − 1)

πx
L

)
. (59)

In the limit t→∞, we obtain

lim
t→∞

ρ(x, t)
L
=

4P0

π2

∞∑
n=1

cos
(
(2n − 1) πx

L

)
(2n − 1)2

, (60a)

lim
t→∞

φ(x, t) = −
4P0

π

∞∑
n=1

sin
(
(2n − 1) πx

L

)
2n − 1

, (60b)

which correspond, respectively, to the Fourier series rep-
resentation of the triangle and square wave functions of
frequency 2π/L. The maximum membrane displacement is
calculated as

lim
t→∞

ρ(0, t)
L

=
4P0

π2

∞∑
n=1

1
(2n − 1)2

=
P0

2
, (61)

in agreement with the result obtained earlier from the steady
differential equations, as given by Eq. (44).

VI. CONCLUSIONS
In this article, we explored the interactions between an

active particle and a minimal model membrane. Since we con-
centrate on a two-dimensional setup, our results could, for
instance, in experiments be readily compared with the behav-
ior of a self-driven particle on a substrate, colliding with
a straightened chain of mutually attractive dipolar spheres.
We demonstrated that the particle may either get trapped
by the membrane or penetrate through it, where the mem-
brane can either be permanently damaged or recover by self-
healing. State diagrams are presented that carefully map out
which state occurs as a function of only a few generic param-
eters: membrane elasticity, bending stiffness, strength and
size of the active particle. Our analytical theory further pre-
dicts the shape and the dynamics of the membrane, in close
quantitative agreement with our numerical simulations. Our
results suggest that the microscopic details of the interactions
among membrane components (particles) are largely insignifi-
cant to the overall behavior of the membrane. Thus, our results
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might be broadly applicable to describe the experiments of
micro-swimmers interacting with membranes, such as syn-
thetic microbots colliding with a lipid bilayer or microbes
with a membrane synthesized from dipolar microparticles.
In this context, it would be interesting to extend our model
to account for Brownian noise acting on the membrane and
the self-driven particle as well. This might, for instance, sup-
port the membrane in healing after being destroyed by the
penetrating active particle.
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Abstract. An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mo-
bility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity,
the membrane of which is endowed with resistance toward shear and bending. In conjunction with the
results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104
(2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the
general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem
is formulated and solved using the classic method of images through expressing the hydrodynamic flow
fields as a multipole expansion involving higher-order derivatives of the free-space Green’s function. In the
quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent
to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size.
This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the
translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility.
Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite)
mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle,
is solely determined by membrane shear properties. Our analytical predictions are favorably compared
with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

1 Introduction

Many industrial and biological transport processes on the
microscale predominantly occur under confinement, where
hydrodynamic interactions with boundaries drastically al-
ter the diffusive behavior of microparticles in viscous me-
dia. Prime examples include particle sorting in microfab-
ricated fluidic devices [1–5], membrane separation and pu-
rification in pharmaceutical industry [6–8], as well as in-
tracellular drug delivery and targeting via multifunctional
nanocarriers, which release therapeutic agents in disease
regions such as tumor or inflammation sites [9–16]. The
uptake by cell membranes occurs via endocytosis or by
direct penetration to reach target cellular compartments.

At small length scales, fluid flows are characterized
by small Reynolds numbers, implying that viscous forces
dominate inertial forces. In these situations, the fluid-
mediated hydrodynamic interactions are fully encoded in

a e-mail: christian.hoell@uni-duesseldorf.de
b e-mail: abdallah.daddi.moussa.ider@uni-duesseldorf.

de

the mobility tensor, which linearly couples the velocities
of microparticles to the forces and torques exerted on
them [17–19]. Even for simple geometric confinements,
finding closed analytical solutions of diverse flow problems
can be challenging. Most theoretical approaches are based
on the method of images, consisting of a set of (typically
higher-order) singularities that are required to satisfy the
prescribed boundary conditions at the confining bound-
aries [20]. Using this approach, the solution of the Stokes
equations in the presence of a point force singularity act-
ing in a fluid domain bounded by a rigid spherical cavity
has been obtained by Oseen [21]. Extensions of Oseen’s so-
lution have further been proposed [22–29]. A particularly
more compliant solution that separately considers both
axisymmetric and asymmetric Stokeslets has later been
presented by Maul and Kim [30, 31]. Meanwhile, the hy-
drodynamic coupling and rotational mobilities have been
calculated for point-like particles [32]. In this context, the
low-Reynolds-number swimming inside spherical contain-
ers has also attracted some attention [33–38].

In this manuscript, we examine the slow transla-
tional motion of a small colloidal particle moving inside
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a large spherical elastic cavity (that itself is floating in
an infinitely-extended viscous fluid). This setup may be
viewed as a relevant model system for transport processes
within biological media, such as elastic cell membranes.
The cavity membrane is modeled as a two-dimensional
hyperelastic sheet, endowed with resistance toward shear
elasticity and bending rigidity. This model has previously
been employed to address the effect of elastic confinements
on the diffusive behavior of colloidal particles moving close
to planar [39,40] or curved elastic membranes [41–44].

The present article is a natural extension of a preced-
ing paper [45] (hereinafter referred to as part I), where
the axisymmetric motion was examined. The goal of the
current study is to supplement and complement our pre-
vious results by quantifying the effect of the confining
elastic cavity on the asymmetric motion of an encapsu-
lated particle located at arbitrary position within the cav-
ity. Our approach is based on the method of images em-
ployed by Fuentes and collaborators [46, 47], who exam-
ined theoretically the hydrodynamic interactions between
two unequally-sized spherical viscous drops at moderately
small separations. Our analytical investigations proceed
through the calculation of Green’s functions associated
with a point force acting inside a spherical elastic cavity.
The problem treated here does not possess the symmetry
properties of the simpler axisymmetric case considered in
part I. This makes it necessary to employ an alternative
mathematical framework to obtain the solution of the flow
problem for the asymmetric case. The calculated hydro-
dynamic flow field is used to determine the frequency-
dependent mobility functions for an enclosed point parti-
cle. This approximation is reasonable if the separation dis-
tance between the particle and the cavity surface is large
compared to the particle size. Particularly, inside our de-
formable cavity, the mobility in the quasi-steady limit of
vanishing frequency is shown to be always larger than the
one predicted inside a rigid cavity with no-slip boundary
condition. Our theoretical results favorably compare to
numerical simulations.

The remainder of the paper is organized as follows. In
sect. 2, we use the multipole expansion method to find
solutions of the elastohydrodynamic problem for the fluid
inside and outside the cavity. We then provide in sect. 3
analytical expressions of the hydrodynamic self-mobility
function for a particle moving tangent to the surface of
the cavity. In sect. 4, we assess the motion of the large
cavity and determine the deformation field induced by the
motion of the particle. We provide in sect. 5 concluding
remarks summarizing our findings. The appendix contains
explicit expressions for the series coefficients arising from
the multipole expansion.

2 Singularity solution

We examine the low-Reynolds-number motion of a small
sphere of radius b situated inside a large spherical elastic
cavity of radius a. The fluid inside and outside the cavity
is characterized by a constant dynamic viscosity η, and
the flow is assumed to be incompressible. The center of

Fig. 1. Graphical illustration of the system setup. A small
spherical particle of radius b is located at x2 = Rez inside
an elastic spherical cavity of radius a positioned at x1. The
fluid on both sides of the cavity is characterized by a constant
dynamic viscosity η. In an asymmetric configuration, the force
is directed perpendicular to the unit vector d = (x1 − x2)/R.

the cavity at x1 coincides with the origin of the spherical
coordinate system. The solid particle located at position
x2 = Rez is moving under the action of an asymmetric
external force F ⊥ ez. An illustration of the system under
consideration is shown in fig. 1.

The physical problem is thus equivalent to solving the
forced Stokes equations inside the cavity [17,18],

η∇2v(i) − ∇p(i) + F δ (x − x2) = 0, (1a)

∇ · v(i) = 0, (1b)

and homogeneous (force-free) equations for the outer fluid,

η∇2v(o) − ∇p(o) = 0, (2a)

∇ · v(o) = 0, (2b)

wherein v(i) and v(o) denote the flow velocity fields for the
inner and outer fluids, respectively, and p(i) and p(o) are
the corresponding pressure fields. Equations (1) and (2)
are subject to the regularity conditions

∣∣∣v(i)
∣∣∣ < ∞ as r → 0, (3a)

v(o) → 0 as r → ∞, (3b)

in addition to the standard boundary conditions of conti-
nuity of the velocity field and discontinuity of the hydro-
dynamic stresses at the cavity surface. In the present work,
we assume that the cavity undergoes a small deformation
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only, so that the boundary conditions are evaluated at the
undeformed surface of reference at r = a. Specifically,

v(o) − v(i)
∣∣∣
r=a

= 0, (4a)
(
σ(o) − σ(i)

)
· er

∣∣∣
r=a

= ΔfS + ΔfB, (4b)

where σ = −pI + 2ηE is the viscous stress tensor. Here,
E = (∇v +∇vT)/2 denotes the rate-of-strain tensor, the
components of which are given in spherical coordinates by

σθr = η

(
vθ,r − vθ + vr,θ

r

)
, (5a)

σφr = η

(
vφ,r +

vr,φ − vφ

r sin θ

)
, (5b)

σrr = −p + 2ηvr,r, (5c)

where φ and θ, respectively, denote the azimuthal and
polar angles, such that (φ, θ) ∈ [0, 2π) × [0, π] describes
a point on the surface of the unit sphere. Furthermore,
by convention, indices after a comma stand for the cor-
responding partial derivatives, e.g., vr,r = ∂vr/∂r. Addi-
tionally, ΔfS and ΔfB denote the traction jumps stem-
ming from shear and bending deformation modes, respec-
tively. We further remark that, if the membrane cavity
undergoes a large deformation, the boundary conditions
should rather be evaluated at the displaced membrane po-
sitions, see, e.g., refs. [48–54].

In this work, we model the elastic cavity as a spherical
hyperelastic shell of vanishing thickness, the deformation
of which is governed by the shear elasticity model pro-
posed by Skalak [55] that is commonly employed when
modeling, e.g., the membranes of red blood cells [56, 57].
Specifically, the areal strain energy density of the Skalak
model is given by [58]

E =
κS

12

(
(I2

1 + 2I1 − 2I2) + CI2
2

)
, (6)

where I1 and I2 stand for the invariants of the right
Cauchy-Green deformation tensor [59,60], and C = κA/κS

is the Skalak coefficient representing the ratio between the
area dilatation modulus κA and shear modulus κS [55]. For
C = 1, the Skalak model is equivalent to the classical Neo-
Hookean model for small membrane deformations [61].

Accordingly, the linearized traction jump due to shear
is expressed in terms of the deformation field u, and can
be split into an axisymmetric and an asymmetric part as

ΔfS = ΔfS
∣∣
Axi

+ ΔfS
∣∣
Asy

, (7)

where

ΔfS
θ

∣∣
Axi

= −2κS

3

(
2ξ−ur,θ + λ (uθ,θθ + uθ,θ cot θ)

−uθ

(
λ cot2 θ + λ − 1

) )
,

ΔfS
φ

∣∣
Axi

= 0,

ΔfS
r

∣∣
Axi

=
4κS

3
ξ− (2ur + uθ,θ + uθ cot θ) ,

and

ΔfS
θ

∣∣
Asy

=−2κS

3

(
ξ−

uφ,φθ

sin θ
+

uθ,φφ

2 sin2 θ
− ξ+

cot θ

sin θ
uφ,φ

)
,

ΔfS
φ

∣∣
Asy

=−2κS

3

(
λ

uφ,φφ

sin2 θ
+

uφ,θθ

2
+

ξ−
sin θ

(2ur,φ+uθ,φθ)

+
(
1 − cot2 θ

) uφ

2
+

uφ,θ

2
cot θ+ξ+

cot θ

sin θ
uθ,φ

)
,

ΔfS
r

∣∣
Asy

=
4κS

3

ξ−
sin θ

uφ,φ,

for the axisymmetric and asymmetric parts, respectively.
Here, the asymmetric part includes all terms that depend
on uφ or involve derivatives with respect to φ. Moreover,
we have defined

λ : = 1 + C = 1 +
κA

κS
, (8a)

ξ± = λ ± 1

2
. (8b)

In addition, we introduce a resistance toward bend-
ing following the Helfrich model [62–64]. The areal bend-
ing energy density thus is described by a curvature-elastic
continuum model of a quadratic form given by [65]

EB = 2κB (H − H0)
2
, (9)

wherein κB denotes the bending modulus, H0 stands
for the spontaneous curvature (here taken as the corre-
sponding value for the initial undeformed sphere), and
H := bα

α/2 (summing over repeated indices) is the mean
curvature, with bβ

α being the corresponding component of
the curvature tensor [66].

The traction jump equation across the membrane as
derived from this model reads [65]

Δf = −2κB

(
2(H2 − K + H0H) + Δ‖

)
(H−H0)n, (10)

where n is the outward-pointing unit normal vector to
the spherical cavity, K := det bβ

α stands for the Gaussian
curvature, and Δ‖ denotes the Laplace-Beltrami opera-
tor [67]. Accordingly, bending introduces a traction jump
along the normal direction which can be split into an ax-
isymmetric and an asymmetric part as

ΔfB
r = ΔfB

r

∣∣
Axi

+ ΔfB
r

∣∣
Asy

, (11)

where

ΔfB
r

∣∣
Axi

= κB

(
4ur + T

(
5 + T 2

)
ur,θ

+
(
2 − T 2

)
ur,θθ + 2Tur,θθθ + ur,θθθθ

)
,

ΔfB
r

∣∣
Asy

= κB

(
1 + T 2

) (
2ur,φφθθ + 2

(
3 + 2T 2

)
ur,φφ

−2Tur,φφθ +
(
1 + T 2

)
ur,φφφφ

)
,

and where we have used the shorthand notation T :=
cot θ. We note that bending as derived from Helfrich’s
model does not introduce discontinuities along the tan-
gential directions. Accordingly, ΔfB

θ = ΔfB
φ = 0. These
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traction jumps reduce to the axisymmetric case consid-
ered in part I [45] for which ΔfS|Asy = ΔfB|Asy = 0. In
this situation, uφ = 0 and all derivatives with respect to
φ drop out.

A closure of the problem is achieved by requiring a
no-slip boundary condition at the undisplaced membrane.
Accordingly, the velocity field at r = a is assumed to be
equal to that of the displaced material points of the elastic
cavity, i.e.,

v|r=a =
du

dt
, (12)

which can be written in Fourier space as

v|r=a = iω u. (13)

Our resolution methodology proceeds through writing
the solution of the elastohydrodynamic problem inside the
cavity as

v(i) = vS + v∗, (14)

where vS = G(x − x2) · F represents the velocity field
induced by a point-force singularity acting at position x2

in an unbounded fluid – i.e., in the absence of the cav-
ity – and v∗ is the complementary term that is required
to satisfy the imposed boundary conditions at the cavity.
This type of complementary solution is often termed as
the image system solution or sometimes known under the
name of reflected flow field [20,68].

We now briefly outline the main steps in our resolu-
tion approach. First, we express the Stokeslet solution in
terms of harmonics, which are then rewritten in terms of
harmonics relative to the origin via the Legendre expan-
sion [69]. Second, the reflected flow field and the solution
outside the cavity are expressed using Lamb’s general so-
lution [70] with interior and exterior harmonics, respec-
tively. This gives us a complete solution form involving a
set of unknown series coefficients. These coefficients are
determined from the underlying boundary conditions im-
posed at the cavity surface. Finally, the solution of the
flow problem can then be employed to assess the effect
of the confining cavity on the motion of the encapsulated
spherical particle.

2.1 Stokeslet representation

For the remainder of this paper, we will scale all the
lengths by the cavity radius a. In analogy with part I,
we begin by writing the Stokeslet singularity located at
position x2 as

vS = G (x − x2) · F =
1

8πη

(
1

s
+

ss

s3

)
· F , (15)

where we have defined s := x−x2 and s := |s|. Here, 1 is
the unit tensor. Using Legendre expansion, the harmonics
located at x2 can conveniently be expressed in terms of
harmonics centered at x1 as

1

s
=

∞∑

n=0

Rnϕn(r, θ). (16)

Here, ϕn are harmonics of degree n, which are related to
Legendre polynomials by [71]

ϕn(r, θ) :=
(d · ∇)n

n!

1

r
=

1

rn+1
Pn(cos θ),

where d := (x1 − x2)/R is a unit vector, r = x − x1

is the position vector in the spherical coordinate system
centered at the cavity center, and r := |r|. The dyadic
product in eq. (15) can be written as

ss

s3
= s∇2

(
1

s

)
, (17)

with ∇2 := ∂/∂x2. By making use of eq. (16), the deriva-
tives with respect to x2 can readily be taken care of by
noting that

∇2R
n = −nRn−1d, (d · ∇2) d = 0. (18)

In the present work, we focus our attention on the
asymmetric situation in which the force is purely tangent
to the membrane surface and thus F · d = 0. By taking
this into consideration, the Stokeslet stated in eq. (15) can
therefore be expressed as

8πηvS = F

∞∑

n=0

Rn ϕn − r

∞∑

n=1

Rn−1 (F · ∇) ϕn−1

−d

∞∑

n=1

Rn (F · ∇) ϕn−1.

Accordingly, the Stokeslet solution has now been ex-
pressed in terms of spherical harmonics positioned at the
origin. By defining t = F × d, we have the recurrence
relation

d(F · ∇)ϕn = (t × ∇)ϕn + (n + 1)Fϕn+1. (19)

In addition, imposing F · d = 0 yields

(2n + 1)(n + 1)Fϕn = −(2n + 3)rψn − r2∇ψn

+∇ψn−2 − (2n + 1)γn−1, (20)

where the harmonics ψn and γn are, respectively, defined
as

ψn = (F · ∇)ϕn, γn = (t × ∇)ϕn. (21)

These are related to each other via ψn = γn · d.
In the following, the functions ∇ψn, rψn, and γn are

chosen as vector basis functions to be used for expanding
the velocity and pressure fields. Accordingly, the Stokeslet
solution can be written in a final form as

8πηvS =
∞∑

n=1

(
(n − 2)Rn−1

(2n − 1)n
r2− nRn+1

(n + 2)(2n + 3)

)
∇ψn−1

− 2Rn

n + 1
γn−1 − 2(n + 1)Rn−1

n(2n − 1)
rψn−1. (22)

We next proceed to deriving analogous expansions for
the flow fields inside and outside the spherical cavity.
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2.2 The image system solution

The solution for the flow field in a spherical domain
possesses a generic form known as Lamb’s general solu-
tion [18,70]. It involves three sets of unknown coefficients
to be determined from the underlying boundary condi-
tions, and can be written for an asymmetric situation as

8πηv∗ =

∞∑

n=1

(anσn1 + bnσn2 + cnσn3) , (23)

where we have defined

σn1 =
n + 3

2n
r2n+3∇ψn−1+

(n + 1)(2n + 3)

2n
r2n+1rψn−1,

σn2 =
r2n+1

n
∇ψn−1 +

2n + 1

n
r2n−1rψn−1,

σn3 =r2n−1γn−1 + (2n − 1)r2n−3(t × r)ϕn−1.

Here, an, bn, and cn are free parameters that will be
determined from the boundary conditions. It is worth not-
ing that the present solution involves three unknown coef-
ficients for each n, while the simpler axisymmetric motion
considered in part I only involves two sets of coefficients.
Unfortunately, this also means that we are not able to
proceed as for the axisymmetric case, but have to derive
the solutions using a notably different framework.

2.3 The exterior solution

The solution on the outside of the spherical cavity can
be expressed in terms of exterior harmonics using Lamb’s
general solution as

8πηv(o) =

∞∑

n=1

(
An

(
n − 2

2(n + 1)
r2∇ψn−1 − rψn−1

)

− Bn

n + 1
∇ψn−1 + Cnγn−1

)
. (24)

The latter expression can be deduced from the solution
for the inner fluid given by eq. (23) by making use of the
substitution n ← −(n + 1).

The six unknown coefficients (an, bn, and cn for the
image system solution, and An, Bn, and Cn for the ex-
terior flow) can now be determined from the underlying
boundary conditions of continuity of the flow velocity field
and discontinuity of the hydrodynamic stress tensor across
the membrane.

2.4 Velocity projections

Before proceeding with the determination of the unknown
series coefficients, it is convenient to state explicitly the
projected expressions of the velocity field along the radial
and tangential directions.

2.4.1 Radial velocities

The radial projection of the three vector basis functions
are given by

er · ∇ψn−1 = −n + 1

r
ψn−1, (25a)

er · rψn−1 = rψn−1, (25b)

er · γn−1 = −1

r
ψn−2. (25c)

In addition to that, since er and r are collinear, the scalar
triple product er · (t × r)ϕn−1 vanishes. Moreover, the
projection of eq. (20) onto the radial direction yields

er · Fϕn =
1

2n + 1

(
ψn−2

r
− rψn

)
. (26)

By making use of eqs. (25) and (26) in the radial pro-
jection of eqs. (22), (24), and (23), the components of the
fluid velocity fields along the radial direction can thus be
expressed in terms of the harmonics ψn as

8πηvS
r =

∞∑

n=1

(
n + 3

2n + 3

R2

r2
− n + 1

2n − 1

)
Rn−1rψn−1, (27a)

8πηv∗
r =

∞∑

n=1

(
n + 1

2
anr2+bn − cn+1

)
r2nψn−1, (27b)

8πηv(o)
r =

∞∑

n=1

(
−nr

2
An +

Bn

r
− Cn+1

r

)
ψn−1. (27c)

2.4.2 Tangential velocities

As for the tangential direction, we define the projection
operator Π := 1−erer, which projects vectors on a plane
tangent to the surface of the spherical cavity. By applying
the projection operator to eq. (20), we readily obtain

(ΠF )ϕn =
1

n + 1

(
1

2n + 1

(
Ψn−2 − r2Ψn

)
− Γn−1

)
,

(28)
where we have defined the vector harmonics

Γn := Πγn, Ψn := Π∇ψn.

Additionally, the tangential projection of (t×r)ϕn can be
taken care of by noting that

Π(t × r)ϕn−1 =
1

2n − 1

(
1

n − 1

(
Ψn−4 − r2Ψn−2

)

−n − 2

n − 1
Γn−3 − r2 Γn−1

)
. (29)

Applying the projection relations stated by eqs. (28)
and (29) to eqs. (22), (24), and (23), we finally obtain

see eqs. (30) on the next page
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8πη ΠvS =

∞
X

n=1

„

(n − 2) Rn−1

(2n − 1)n
r2 − nRn+1

(n + 2)(2n + 3)

«

Ψn−1 +

∞
X

n=0

−2Rn+1

n + 2
Γn, (30a)

8πη Πv∗ =
∞
X

n=1

„

r2n+3

n + 2
cn+3 − r2n+1

n
cn+1 +

r2n+1

n
bn +

n + 3

2n
r2n+3an

«

Ψn−1 +
∞
X

n=0

−n + 1

n + 2
r2n+3cn+3 Γn, (30b)

8πη Πv(o) =
∞
X

n=1

1

n + 1

„

n − 2

2
r2An − Bn

«

Ψn−1 +
∞
X

n=0

Cn+1Γn. (30c)

2.5 Determination of the series coefficients

To determine the unknown coefficients, we have to make
recourse to the orthogonality properties of spherical har-
monics [72]. For this purpose, we introduce the follow-
ing notation to describe the average of a given quan-
tity Q(φ, θ) over the surface of a sphere. Specifically, this
means

〈Q〉 :=
1

2π

∫ 2π

0

∫ π

0

Q(φ, θ) sin θ dθ dφ. (31)

At the surface of the cavity, i.e., for r = 1, the har-
monics ϕn and ψn satisfy the orthogonality relations

〈ϕm−1ϕn−1〉|r=1 =
2

2n + 1
δmn, (32a)

〈ψm−1ψn−1〉|r=1 =
n(n + 1)

2n + 1
δmn, (32b)

where δmn denotes the Kronecker symbol, i.e., the above
terms vanish for m 	= n. Moreover, the vector harmonics
Ψn−1 and Γn satisfy at r = 1 the orthogonality properties

〈Ψm−1 · Ψn−1〉|r=1 =
n2(n + 1)2

2n + 1
δmn, (33a)

〈Γm · Γn〉|r=1 =
4(n + 1)3

(2n + 1)(2n + 3)
δmn, (33b)

〈Ψm−1 · Γn〉|r=1 =
n2(n + 1)

2n + 1
δmn. (33c)

We further note that their derivatives with respect to r
(needed in the calculation of the stress jumps) satisfy the
recurrence relations

(Ψn−1,r + (n + 2)Ψn−1)|r=1 = 0, (34a)

(Γn,r + (n + 2)Γn)|r=1 = 0. (34b)

2.5.1 Pressure field

Knowing the velocity fields on both sides of the elastic
cavity, the inner and outer pressure fields can readily be
calculated from the fluid motion equations. The solution
inside the spherical cavity, which comprises both contri-
butions from the Stokeslet and the image system solution,
can be expressed in terms of a multipole expansion as

8πp(i) =

∞∑

n=1

(
−2Rn−1 +

(n + 1)(2n + 3)

n
r2n+1an

)
ψn−1.

Outside the cavity, only the exterior harmonics that decay
at larger distances should be accounted for, thus excluding
contributions of the form r2n+1ψn−1. After some algebra,
we obtain

8πp(o) =

∞∑

n=1

−n(2n − 1)

n + 1
Anψn−1.

2.5.2 Continuity of velocity

The projections of the fluid velocity field along the radial
and tangential directions can be presented in a generic
form as

v(q)
r =

∞∑

n=1

ρ(q)
n ψn−1, (35a)

Πv(q) =

∞∑

n=1

α(q)
n Ψn−1 +

∞∑

n=0

β(q)
n Γn, (35b)

wherein q = i holds for the fluid on the inside, and q = o

for the fluid on the outside. Moreover, ρ
(q)
n , α

(q)
n , and β

(q)
n ,

for q ∈ {i, o}, are radially symmetric series functions that
can readily be obtained by identification with eqs. (27)
and (30) giving the radial and tangential velocities, re-
spectively.

The unknown coefficients inside the cavity can conve-
niently be expressed in terms of those outside thanks to
the natural continuity of the velocity field across the mem-
brane. By making use of the orthogonality properties of
the basis functions, we obtain

an =
n(2n − 1)

2(n + 1)
An − 2n + 1

n + 1
Bn +

2n + 1

n + 1
Cn+1

+Rn−1

(
(n + 3)(2n + 1)

(n + 1)(2n + 3)
R2 − 1

)
, (36a)

bn =−n(2n + 1)

4
An +

2n + 3

2
Bn − 2n + 3

2
Cn+1

−nCn−1

n − 1
+Rn−1

(
2n3 + n2 − 10n + 3

2(2n − 1)(n − 1)
− n + 3

2
R2

)
,

(36b)

cn =− (n − 1)Cn−2 + 2Rn−2

n − 2
. (36c)
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α̃n +
β̃n

n + 1

˛

˛

˛

˛

r=1

= α

  

α(o)
n +

β
(o)
n

n + 1

!

`

n(n + 1)λ − 1
´

− (2λ − 1)ρ(o)
n

!

˛

˛

˛

˛

˛

r=1

, (39a)

α̃n +
4(n + 1)2

(2n + 3)n2
β̃n

˛

˛

˛

˛

r=1

= α

 

`

n(n + 1)λ − 1
´

α(o)
n − (2λ − 1)ρ(o)

n +

„

12 + 22n + 13n2 + 2n3

2n(2n + 3)
+ λn

«

β(o)
n

!

˛

˛

˛

˛

˛

r=1

. (39b)

2.5.3 Discontinuity of stress tensor

Expressions for the unknown coefficients An, Bn, and Cn

associated with the outer fluid can be obtained from the
traction jump equations across the membrane. For the
sake of clarity, and to make the calculations traceable,
we will consider in the following the effects of shear and
bending deformation modes separately.

a) Pure shear. The tangential traction jump equations
due to shear can conveniently be cast in the form

∞∑

n=1

α̃nΨn−1 +

∞∑

n=0

β̃nΓn

∣∣∣∣∣
r=1

=

∞∑

n=1

α(o)
n Fn +

∞∑

n=0

β(o)
n Gn +

∞∑

n=1

ρ(o)
n fn

∣∣∣∣∣
r=1

, (37)

where we have defined

α̃n = α(o)
n,r − α(i)

n,r − (n + 2)
(
α(o)

n − α(i)
n

)
,

β̃n = β(o)
n,r − β(i)

n,r − (n + 2)
(
β(o)

n − β(i)
n

)
.

Here, Fn, Gn, and fn are known series vectors, the ex-
pressions of which can be obtained by identification with
eq. (4b) upon substitution of the tangential velocity field
from eq. (30). They satisfy the orthogonality relations

〈Fn · Ψm−1〉|r=1 = n(n + 1)
(
n(n + 1)λ − 1

)
Snδmn,

〈Gn · Ψm−1〉|r=1 = n
(
n(n + 1)λ − 1

)
Snδmn,

〈fn · Ψm−1〉|r=1 = −n(n + 1) (2λ − 1) Snδmn,

with the basis vector harmonics Ψm−1, and

〈Fn · Γm〉|r=1 = n
(
n(n + 1)λ − 1

)
Snδmn,

〈Gn · Γm〉|r=1 =
SnWn

2n + 3
δmn,

〈fn · Γm〉|r=1 = −n (2λ − 1) Snδmn,

with Γn, where we have defined

Sn =
αn(n + 1)

2n + 1
,

Wn = 6 + 11n +
13

2
n2 + n3 + n2(2n + 3)λ,

with

α =
2κS

3ηiω
(38)

being the shear number. Combining these equations with
the orthogonality relations given by eqs. (33) yields

see eqs. (39) above

Using our representation, the normal traction jump
due to shear reads

∞∑

n=1

(
p(o)

n − p(i)
n

)
ψn−1

∣∣∣∣∣
r=1

=

α(2λ − 1)
∞∑

n=1

(
ρ(o)

n,r − (n + 1)ρ(o)
n

)
ψn−1

∣∣∣∣∣
r=1

, (40)

which, upon using the orthogonality property of ψn−1,
yields

p(o)
n − p(i)

n

∣∣∣
r=1

= α(2λ − 1)
(
ρ(o)

n,r − (n + 1)ρ(o)
n

)∣∣∣
r=1

.

(41)
By combining eqs. (36), (39), and (41), the unknown

series coefficients for the outer fluid can be obtained and
cast in the form

An = − (n + 1)(2n + 1)

K3

(
K1 Rn+1 + K2 Rn−1

)
, (42a)

Bn =
K4

K5
An +

1

K7

(
K6 Rn+1 + K8 Rn−1

)
, (42b)

Cn = −2n + 1

K9
Rn, (42c)

where K1, . . . ,K9 are rather complex functions of α, λ and
n, the expressions of which are explicitly provided in the
appendix. In the limit iα → ∞, which physically corre-
sponds to a cavity membrane with an infinite shear elas-
ticity modulus (or equivalently to a vanishing actuation
frequency), the expressions of the series coefficients inside
the cavity reduce to

lim
α→∞

an =
(n + 3)(2n + 1)

(n + 1)(2n + 3)
Rn+1 − Rn−1, (43a)

lim
α→∞

bn =
2n3 + n2 − 10n + 3

2(n − 1)(2n − 1)
Rn−1 − n + 3

2
Rn+1,

(43b)

lim
α→∞

cn = − 2

n − 2
Rn−2. (43c)

In this limit, An, Bn, and Cn vanish except for n = 1,
where (A1, B1, C1) = (4, 2/3,−R). It is worthwhile to note
that the coefficients given by eqs. (43) correspond to the
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solution for an asymmetric point force acting inside a rigid
cavity with no-slip boundary conditions.

b) Pure bending. We now use a similar resolution pro-
cedure to determine the unknown series coefficients for a
cavity membrane with pure bending resistance, such as
that of a fluid vesicle or a liposome used as a vehicle for
pharmaceutical drugs [73–75]. Since the tangential com-
ponents of the traction are continuous, we obtain

∞∑

n=1

α̃nΨn−1 +
∞∑

n=0

β̃nΓn

∣∣∣∣∣
r=1

= 0, (44)

which, after applying the orthogonality properties given
by eqs. (33), leads to

α̃n|r=1 = β̃n|r=1 = 0. (45)

The normal traction jump due to bending as derived
from the Helfrich model reads

∞∑

n=1

(
p(o)

n − p(i)
n

)
ψn−1

∣∣∣
r=1

=

∞∑

n=1

−ρ(o)
n Hn

∣∣∣∣∣
r=1

, (46)

which, upon using the orthogonality relation

〈Hnψm−1〉|r=1 = αB
n(n + 1)(n − 1)2(n + 2)2

2n + 1
δmn, (47)

leads to

p(o)
n − p(i)

n

∣∣∣
r=1

= −αB(n − 1)2(n + 2)2ρ(o)
n

∣∣∣
r=1

, (48)

wherein
αB =

κB

ηiω
(49)

denotes the bending number.
By combining eqs. (45) and (48) with eqs. (36), the

unknown series coefficients for the fluid on the outside
can be cast in the form

An =
n + 1

Q3

(
Q1R

n+1 + Q2R
n−1

)
, (50a)

Bn =
1

Q7

(
Q4An + Q5R

n+1 + Q6R
n−1

)
, (50b)

Cn = − 2

n + 1
Rn, (50c)

where Q1, . . . , Q7 are complicated functions of αB, λ, and
n which are given in the Appendix. In the limit iαB → ∞,
corresponding to an infinite membrane bending modulus,
or to a vanishing forcing frequency, the series coefficients
are given by

lim
αB→∞

an =
(n + 3)(2n − 1)

2(n + 1)(2n + 3)
Rn+1 − Rn−1

2
, (51a)

lim
αB→∞

bn =−n + 3

4
Rn+1 +

(n + 1)(2n + 3)

4(2n − 1)
Rn−1, (51b)

lim
αB→∞

cn =0 (51c)

for the inner fluid, and

lim
αB→∞

An =
1

2n

(
(n + 3)Rn+1 − (n + 1)Rn−1

)
, (52a)

lim
αB→∞

Bn = −n + 1

4
Rn−1 +

n2 + 5n − 2

4(n + 2)
Rn+1, (52b)

lim
αB→∞

Cn = − 2

n + 1
Rn (52c)

for the outer fluid when n ≥ 2. In addition, (A1, B1, C1) =
(4, 2R2/15,−R).

c) Combined shear and bending. An analogous resolu-
tion strategy can be adopted for the determination of the
sum coefficients when the membrane is simultaneously en-
dowed with both a resistance toward shear and bending.
Analytical expressions of the coefficients can readily be ob-
tained using computer algebra systems but these are not
provided here due to their complexity and lengthiness. It is
noteworthy that, in contrast to planar elastic membranes,
a coupling between shear and bending deformation modes
has been observed for curved membranes.

3 Hydrodynamic mobility

The calculation of the flow field presented in the previ-
ous section can be utilized to assess the effect of the con-
fining cavity on the motion of the encapsulated particle.
This effect is quantified by the hydrodynamic self-mobility
function μ, which relates the translational velocity of a
colloidal particle to the force exerted on its surface.

We now assume an arbitrary time-dependent external
force F2 to be acting on the spherical particle positioned
at x2. The zeroth-order solution for the translational ve-
locity of the solid particle can readily be obtained from the

Stokeslet solution as V
(0)
2 = μ0F2, where μ0 = 1/(6πηb)

is the usual Stokes mobility for a sphere moving in an
unconfined viscous fluid. The leading-order correction to
the hydrodynamic self-mobility can be calculated from the
reflected flow field as

v∗|x=x2
= ΔμF2. (53)

The latter result is often denominated as the mobility
correction in the point-particle approximation [76, 77].
Higher-order correction terms can be obtained by em-
ploying a combination of the multipole expansion and the
Faxén theorem [78, 79]. However, we will show in the se-
quel that this approximation, despite its simplicity, can
surprisingly lead to a good prediction of the mobility cor-
rection when comparing with fully-resolved computer sim-
ulations.

By making use of the relations

∇ψn−1|r=x2
= −n(n + 1)

2Rn+2
F2, (54a)

γn−1|r=x2
= − n

Rn+1
F2, (54b)

(t × r) ϕn−1|r=x2
=

F2

Rn−1
, (54c)

rψn−1|r=x2
= 0, (54d)
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in addition to inserting eq. (23) into eq. (53), we write the
scaled mobility correction as

Δμ

μ0
=

3b

4

∞∑

n=1

(
− (n + 1)(n + 3)

4
R3an

−n + 1

2
Rbn + (n − 1)cn

)
Rn−2, (55)

where we have used the relation P ′
n(1) = n(n+1)/2 for the

derivative at the end point. We further remark that R ∈
[0, 1) because all distances have been scaled by the cavity
radius a. The general term in the latter series, which we
denote by fn(α,R), has an asymptotic behavior at infinity
that does not depend on the shear and bending properties
of the membrane. Specifically, we obtain as n → ∞

fn(α,R) =
3b

16
n2

(
1 − R2

)2
R2n−2 + O

(
nR2n

)
. (56)

In particular, for R = 0, the mobility correction sim-
plifies to

Δμ

μ0

∣∣∣∣
R=0

= −3b

4
(b1 − c2) = −5b

4

α(2λ − 1)

5 + α(2λ − 1)
, (57)

in full agreement with the result obtained in part I for
a particle concentric with the elastic cavity. We recall
that the shear number α has previously been defined by
eq. (38), and the dimensionless parameter λ associated
with the Skalak ratio has been defined by eq. (8a).

In the quasi-steady limit of vanishing frequency, the
scaled correction to the mobility reads

lim
α→∞

Δμ

μ0
=

ΔμR

μ0
+ b

(
1 +

3R2

4

)
, (58)

wherein ΔμR/μ0 is the scaled correction to the particle
mobility associated with asymmetric motion inside a rigid
spherical cavity. This correction can readily be obtained
by substituting the series coefficients given by eq. (43) into
eq. (55) to obtain

ΔμR

μ0
=

∞∑

n=1

lim
α→∞

Δμ

μ0
= − 9b

16

4 − 3R2 + R4

1 − R2
, (59)

in agreement with the results by Aponte-Rivera and
Zia [80–82], who provided the elements of the grand mo-
bility tensor for general motion inside a rigid cavity. In-
terestingly, the particle mobility in the limit of infinite
stiffness is found to be always larger than that inside a
rigid cavity with no-slip velocity boundary condition on
its interior surface. Mathematically, this behavior can be
justified by the fact that the limit and sum operators can-
not generally be swapped in every situation. In fact, using
Fatou’s Lemma [83], it can be shown that

lim
α→∞

∞∑

n=1

|fn(α,R)| ≥
∞∑

n=1

lim
α→∞

|fn(α,R)| . (60)

That is, evaluating the sum over n before taking the limit
α → ∞ (as for an elastic cavity) could lead, under some
circumstances, to a larger value in magnitude compared
to the case in which the sum is taken after taking the limit
(as it is the case for a rigid cavity). This is explained by
the fact that the dominated convergence theorem does not
apply for the series function at hand [84].

We further mention that the same limit given by
eq. (58) is obtained when the cavity membrane only pos-
sesses resistance toward shear. In the limit of infinite cav-
ity radius, the classic result for motion parallel to a planar
hard wall is recovered. Specifically,

lim
a→∞

ΔμR

μ0
= − 9

16

b

h
, (61)

wherein h = 1−R denotes the distance between the center
of the particle and the closest point of the cavity mem-
brane.

Next, we consider an idealized cavity membrane with
pure bending resistance and calculate the correction to
the self-mobility function in the limit of αB → ∞, cor-
responding to an infinite bending modulus or to particle
motion in the quasi-steady limit of vanishing frequency.
After some algebra, we obtain

lim
αB→∞

Δμ

μ0
=

ΔμD

μ0
+

3b

40

(
5 − 2R2

)2
, (62)

wherein ΔμD/μ0 is the scaled correction to the particle
mobility for motion inside a spherical drop of infinite sur-
face tension (with vanishing normal velocity on its sur-
face), given by

ΔμD

μ0
=

∞∑

n=1

lim
αB→∞

Δμ

μ0
= − 3b

32

20 − 15R2 − 3R4

1 − R2
. (63)

Again, the particle mobility in the vanishing-frequency
limit for a membrane with pure bending is found to be al-
ways larger than that inside a spherical drop. Notably,
the mobility correction vanishes in the concentric configu-
ration corresponding to R = 0 where the system behavior
is solely determined by membrane shear properties. This
is in agreement with the results of part I obtained by ex-
actly solving the fluid motion equations for an extended
particle of finite size concentric with an elastic cavity.

In the limit of infinite cavity radius, we recover the
mobility correction near a planar fluid-fluid interface,

lim
a→∞

ΔμD

μ0
= − 3

32

b

h
, (64)

in agreement with the result by Lee and Leal [85].
In the following, we assess the appropriateness and va-

lidity of our analytical calculations by direct comparison
with computer simulations based on a completed-double-
layer boundary integral method [86]. The method is per-
fectly suited for solving numerically diverse flow prob-
lems in the Stokes regime involving both rigid and elastic
boundaries. For technical details regarding the computa-
tional method and its numerical implementation, we refer
the reader to refs. [87] and [88].

P8 Eur. Phys. J. E 42, 89 (2019) 177



Page 10 of 14 Eur. Phys. J. E (2019) 42: 89

Fig. 2. Variation of the correction to the self-mobility function
inside a spherical elastic cavity (scaled by the bulk mobility)
versus the scaled frequency. The physical setup is sketched in
the inset. Squares (�) and circles (�) indicate the real and,
respectively, imaginary parts of the mobility correction as ob-
tained from the full boundary integral simulations performed
for a cavity membrane endowed with pure shear (green), pure
bending (red), or coupled shear and bending (black). Solid
and dashed lines give the corresponding analytical predictions
(as described in the main text), which closely follow the nu-
merical results. Thin black horizontal dashed lines represent
the vanishing-frequency limits. Here, b = 1/10, R = 4/5, and
κB/(κSa2) = 2/75.

To probe the effect of the confining elastic cavity on
the motion of an encapsulated particle, we present in fig. 2
the variations of the scaled correction to the self-mobility
as a function of the forcing frequency, for a cavity mem-
brane possessing only shear (green), only bending (red), or
both shear and bending deformation modes (black). Here,
the particle of radius b = 1/10 is positioned at R = 4/5
from the cavity center. We observe that the real (reactive)
part of the mobility correction (shown as dashed lines) is
a monotonically increasing function with frequency and
approaches zero for larger forcing frequencies. In contrast
to that, the imaginary (dissipative) part (shown as solid
lines) exhibits the typical bell-shaped profile which peaks
at around ω ∼ κS/(ηa). In the low-frequency regime,
the mobility correction approaches the plateau values pre-
dicted by eqs. (58) and (62) for a cavity membrane with
only shear elasticity or pure bending, respectively. Over-
all, there is strong quantitative agreement between the full
numerical solutions (symbols) and the theoretical predic-
tions. The small observed discrepancy notably for the real
part in the low-frequency regime is most probably due
to the finite size effect, because the analytical predictions
are based on the point-particle approximation, whereas
the numerical simulations necessarily account for the fi-
nite radius of the solid particle.

4 Cavity motion and membrane deformation

4.1 Pair (composite) mobility

The hydrodynamic self-mobility discussed in sect. 3 rep-
resents the particle response function to an external force.
In this regard, one can also define an analogous response
function for the whole elastic cavity and its interior, that
relates the translational velocity V1 of the cavity centroid
to the force F2 exerted on the encapsulated particle via
V1 = μP ·F2. In accordance to part I, we call the tensor μP

the pair (composite) mobility. By symmetry, V1‖F2 holds,
so that the components of μP reduce to a single entry μP

connecting the corresponding magnitudes via V1 = μPF2.
Without loss of generality, we assume in the follow-

ing that F2 is exerted along the x-direction. Accordingly,
the translational velocity of the elastic cavity can be cal-
culated by integration over the fluid domain inside the
cavity as [89]

V1(ω) =
1

Ω

∫ 1

0

dr

∫ 2π

0

dφ

∫ π

0

dθ v(i)
x (r, φ, θ, ω) r2 sin θ,

(65)
where Ω = 4π/3 is the scaled volume of the undeformed
cavity, and

v(i)
x =

(
v(i)

r sin θ + v
(i)
θ cos θ

)
cos φ − v

(i)
φ sin φ. (66)

The resulting frequency-dependent pair mobility function
is obtained as

μP = − 1

8πη

(
4R2

5
− 2 + a1 + b1 − c2

)
, (67)

so that only the term corresponding to n = 1 remains
after volume integration. Upon simplification and rear-
rangement, the result can be presented in a scaled form
as

6πημP =
3

2
− 3

5
R2 − 5 − 6R2

10

α(2λ − 1)

5 + α(2λ − 1)
, (68)

where the parameters α and λ are defined by eq. (38) and
eq. (8a), respectively.

Consequently, μP depends only on the membrane shear
properties and can be described by a simple Debye model
with a single relaxation time τ/τS = 15/(2(2λ−1)), where
τS = aη/κS is a characteristic time scale for shear. Re-
markably, the pair mobility can also become independent
of frequency for R =

√
30/6 ≈ 9/10, a value for which

6πημP = 1. Nevertheless, as R ∼ 1, it becomes essential
to ensure that the inequality R + b � 1 remains satisfied,
for the point-particle approximation employed here to be
applicable.

In fig. 3, we show the variations of the pair mobility
(scaled by 6πη) as a function of the scaled frequency. Re-
sults are shown for a cavity membrane with pure shear
(green), pure bending (red), and both shear and bend-
ing (black). The pair mobility for a bending-only mem-
brane remains unchanged upon varying the frequency and
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Fig. 3. Variation of the scaled pair mobility function (bridg-
ing between the translational velocity of the cavity and the
external force exerted on the solid particle, as sketched in the
inlet) as a function of the scaled frequency. The theoretical pre-
dictions are shown as dashed and solid lines, for the reactive
and dissipative parts, respectively. Symbols (same as fig. 2)
represent the boundary integral simulations results. The other
system parameters are the same as in fig. 2. In this plot, the
pure-shear data points (green) mostly overlap with those for
coupled shear and bending (black).

amounts to 3/2 − 3R2/5. In contrast to that, the reactive
part for a membrane possessing a shear resistance shows
a logistic sigmoid curve varying between 1 (when α → ∞)
and 3/2 − 3R2/5 (when α = 0), whereas the dissipative
part exhibits a Gaussian-like – or – bell-shaped profile.
In all cases, there is strong agreement between the series-
expansion theory (solid lines) and the full numerical so-
lutions (symbols), confirming our theoretical predictions
that the pair mobility is solely dependent on membrane
shear properties (and independent of bending properties).

In analogy to the above discussion of the translational
motion of the cavity in the presence of a force acting on the
enclosed particle, one can also consider the corresponding
rotational response. The angular velocity Ω of the cavity
is (due to symmetry) of the form Ω = Ωey and has to

fulfill v(q)(r) = Ω ×r at the surface of the cavity (r = 1),
with q ∈ {i, o}. After some algebra, one obtains

Ω =
3

4

〈
ey ·

(
r × v(q)

)∣∣∣
r=1

〉
=

FR

8πη
(69)

upon inserting our solution for the flow field, with angu-
lar brackets again denoting the surface average defined in
eq. (31). Here, we find the same value of Ω for the different
series coefficients obtained for pure shear, pure bending,
as well as combined shear and bending. Additionally, we
note that only the term ∝ Γ0 in eqs. (35) contributes to
the rotation of the cavity, while all other terms lead to
vanishing contributions. Accordingly, the angular velocity
effectively stems only from the Stokeslet solution and does
not depend on membrane shear and bending properties.

4.2 Membrane deformation

The elastic deformation of the membrane can be assessed
by calculating the displacement field u(θ, φ, ω) resulting
from the external force acting on the particle. This field
quantifies the motion of the material points of the cavity
membrane relative to their initial positions in the unde-
formed state. In the small deformation regime, the dis-
placement field can readily be obtained from the no-slip
boundary condition given by eq. (13), to obtain

8πηiω ur =
∞∑

n=1

(
−n

2
An + Bn − Cn+1

)
ψn−1,

8πηiω Πu =

∞∑

n=1

(
n − 2

2
An − Bn

)
Ψn−1

n + 1
+

∞∑

n=0

Cn+1Γn.

We now define the reaction tensor R, a frequency-
dependent tensorial quantity relating the membrane dis-
placement field of the cavity to the asymmetric point force
as [77]

u(φ, θ, ω) = R(φ, θ, ω) · F (ω). (70)

By considering a harmonic oscillation of the form F =
Keiω0t, of amplitude K and frequency ω0, the membrane
displacement in real space can readily be obtained from
inverse Fourier transform as [90]

u(φ, θ, t) = R(φ, θ, ω0) · Keiω0t. (71)

An exemplary displacement field is displayed in fig. 4
as a function of the polar angle for three different forc-
ing frequencies. The azimuthal angle φ is chosen to rep-
resent the planes of maximum deformation for the re-
spective components, as described in the figure caption.
Here, the cavity membrane is endowed with both shear
and bending rigidities. We observe that the radial com-
ponent ur vanishes at the upper pole and shows a peak
around θ/π ≈ 1/8, before decaying quasi-linearly to zero
upon increasing θ. The in-plane displacements uθ and uφ

display a maximum value at the upper pole, and monoton-
ically decay as θ increases. Our analytical predictions are
in good agreement with numerical simulations. Notably,
we observe a small deviation in the plot for ur shown
in panel (a) which is most probably due to a finite-sized
effect. In contrast to the axisymmetric case discussed in
part I, the deformation here is (in general) largest in the
tangential direction.

In typical biological situations, the forces that could
be exerted by optical tweezers on particles are of the or-
der of 1 pN [91]. The spherical cavity may have a radius of
10−6 m and a shear modulus of κS = 5 × 10−6 N/m [56].
For a scaled frequency (3ηaω)/(2κS) = 4, the membrane
cavity is expected to undergo a maximal deformation
of only about 1% of its initial undeformed radius. Con-
sequently, cavity deformations and deviations from the
spherical shape are notably small.
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Fig. 4. Scaled membrane displacement field. (a) Radial,
(b) circumferential, and (c) azimuthal components of the dis-
placement field as a function of the polar angle θ for three
scaled forcing frequencies (with β = (3ηaω)/(2κS)), evaluated
at quarter oscillation period for tω0 = π/2. The components
of the local displacement fields are shown for their respective
planes of maximum deformation (φ = 0 for ur and uθ and
φ = π/2 for uφ). Numerical results obtained for coupled shear
and bending are shown as symbols (as indicated in the leg-
end), while the solid lines represent the corresponding, closely
matching theoretical predictions.

5 Conclusions

In summary, we have presented an analytical theory to de-
scribe the low-Reynolds-number motion of a spherical par-
ticle moving inside a spherical membrane cavity endowed

with both shear elasticity and bending rigidity. Here, we
have focused on the situation in which the force exerted
on the particle is directed tangent to the surface of the
cavity. Together with the axisymmetric results obtained
in an earlier paper [45], the solution of the elastohydrody-
namic problem for a point force acting inside a spherical
elastic cavity is thus obtained.

We have expressed the solution of the flow problem
using the method of images. For this purpose, the hydro-
dynamic flow field is represented by a multipole expansion,
summing over modes in terms of spherical harmonics, in
analogy with familiar methods in electrostatics. The un-
known series coefficients associated with each mode have
been determined analytically from the prescribed bound-
ary conditions of continuity of the fluid velocity field at
the membrane cavity and discontinuity of hydrodynamic
stresses as derived from Skalak and Helfrich elasticity
models, associated with shear and bending deformation
modes, respectively.

We have then explored the role of confinement on the
motion of the encapsulated particle by calculating the
frequency-dependent mobility functions. The latter lin-
early couple the translational velocity of the particle to
the external force exerted on it. In the quasi-steady limit
of vanishing actuation frequency, we have demonstrated
that the hydrodynamic mobility inside a spherical elastic
cavity is always larger than that predicted inside a rigid
cavity of equal size with no-slip surface conditions. In ad-
dition, we have quantified the translational and rotational
motion of the confining cavity, finding that the transla-
tional pair (composite) mobility is uniquely determined
by membrane shear elasticity and that bending does not
play a role in the dynamics of the cavity. We have further
assessed the membrane deformation caused by the motion
of the particle, showing that the cavity membrane primar-
ily experiences deformation along the tangential direction.

Finally, we have assessed the appropriateness and ap-
plicability of our theoretical approach by supplementing
our analytical calculations with fully-resolved computer
simulations of truly-extended particles using the bound-
ary integral method. Good agreement is obtained between
theoretical predictions and numerical simulations over the
full range of applied forcing frequencies. The developed
method may find applications in the simulation of hy-
drodynamically interacting microparticles confined by a
spherical elastic cavity, or medical capsules that are di-
rected to a requested site by magnetic forces acting on
incorporated magnetic particles.
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Appendix A. Expression of the coefficients

In this appendix, we provide explicit expressions for the
coefficients stated in eqs. (42) and (50) of the main body
of the paper. For an idealized membrane with pure shear,
the coefficients are given by

K1 = αλn (n − 1) (n + 3) (n + 2),

K2 = (n + 1)(2n + 1)
(
αn4λ + 4αn3λ+(8 − 2α + 5αλ)n2

+(16 − 4α + 2αλ)n + 6
)
,

K3 = n
(
4αλn5 + (−α2 + 10αλ + 16 + 2α2λ)n4

+(32 + 6αλ + 4α2λ − 2α2)n3

+(α2 − 2α2λ + 8 − αλ)n2

−(4α2λ + αλ − 2α2 + 8 + 6α)n − 3 − 3α
)
,

K4 = n
(
αn3λ + (αλ + 4 − α)n2 − 2αn + 2α − 1

)
,

K5 = 2
(
αλn3+(3αλ+4−α)n2+(2αλ − 2α + 8)n+3

)
,

K6 = −(n + 1)n
(

− 2αn3 + (−8 − 15α + 8αλ)n2

+(−43α + 28αλ − 16)n − 42α + 24αλ − 6
)
,

K7 = (n + 2) (αn2 + (3α + 4)n + 6)K5,

K8 = −(n + 1) (n + 2) (2n + 1) (αn2 + (3α + 4)n + 6),

K9 =
1

4

(
αn3 + (2α + 4)n2 + (6 − α)n − 2α + 2

)
,

where we recall that α = 2κS/(3ηiω) is the shear number,
and λ = C + 1 is the dimensionless parameter associ-
ated with the Skalak ratio. For an idealized membrane
with pure bending resistance, the corresponding coeffi-
cients read

Q1 = αB n (n + 3) (n + 2)2 (n − 1)2,

Q2 = −αB n6 − 3αB n5 + αB n4 + 7αB n3 + 8n2

+(16 − 4αB) n + 6,

Q3 = n
(
2αB n6 + 6αB n5 − 2αB n4 + (8 − 14αB)n3

+12n2 + (−2 + 8αB)n − 3
)
,

Q4 = n
(
αB n7 + 10αB n6 + 17αB n5 + (4 − 20αB)n4

+(40 − 40αB)n3 + (16αB + 47)n2

+(−10 + 16αB)n − 12
)
,

Q5 = −2n (n + 1) (n + 2)
(
αB n4 + 4αB n3 − 3αB n2

−(2 + 10αB)n − 1 + 8αB

)
,

Q6 = 2 (n + 1)
(
αB n6 + 2αB n5 − 3αB n4

−(4αB + 2)n3 + (−21 + 4αB)n2 − 34n − 12
)
,

Q7 = 2 (n + 2)2
(
αB n5 + 2αB n4 − 3αB n3

+4n2 − 4αB n2 + (4αB + 8)n + 3
)
,

wherein αB = κB/(ηiω) denotes the bending number.
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The emerging field of self-driven active particles in fluid environments has recently created significant
interest in the biophysics and bioengineering communities owing to their promising future for biomedical
and technological applications. These microswimmers move autonomously through aqueous media, where
under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar
elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the
physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic
interface that features resistance toward shear and bending. We model the active agent as a superposition of
higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by
the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending
related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady
limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending
resistance are generally more pronounced than those due to shear resistance. Bending can enhance (suppress) the
velocities resulting from higher-order singularities whereas the shear related contribution decreases (increases)
the velocities. Most prominently, we find that near an elastic interface of only energetic resistance toward shear
deformation, such as that of an elastic capsule designed for drug delivery, a swimming bacterium undergoes
rotation of the same sense as observed near a no-slip wall. In contrast to that, near an interface of only
energetic resistance toward bending, such as that of a fluid vesicle or liposome, we find a reversed sense of
rotation. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active
microswimmers near elastic confinements.

DOI: 10.1103/PhysRevE.100.032610

I. INTRODUCTION

Artificial nano- and microscale machines hold great po-
tential for future biomedical applications such as precision
nanosurgery, biopsy, or transport of radioactive substances to
tumor sites [1–3]. These active particles have the ability to
move autonomously in biofluids and could reach inaccessible
areas of the body to perform delicate and precise tasks. Recent
advances in the field have provided a fundamental understand-
ing of various physical phenomena arising in active matter
systems [4–12], which exhibit strikingly different behavior
than their passive counterparts. Suspensions of active agents
display fascinating collective behavior and unusual spatiotem-
poral patterns, including propagating density waves [13–15],
motility-induced phase separation [16–20], and the emergence
of active turbulence [21–26].

While passive particles can be set into motion under the
action of an external field, active particles self-propel by

*abdallah.daddi.moussa.ider@uni-duesseldorf.de

converting energy from their environment into mechanical
work. At low Reynolds numbers, microswimmers have to
employ effective self-propulsion mechanisms that break the
time-reversal symmetry of the Stokes flow [4], a property
commonly referred to as Purcell’s scallop theorem [27–30].
For instance, many biological microswimmers perform a
nonreciprocal deformation cycle of their body via, e.g., ro-
tating flagella or beating cilia [31–34], whereas synthetic
microswimmers move via phoretic effects caused by their
asymmetric surface properties [35–43], or by nonreciprocal
deformation of their shape [44–55].

In many biologically relevant situations, motion occurs
in the presence of surfaces that significantly modify the hy-
drodynamic flows and thereby strongly affect the transport
properties, function, and survival of suspended particles and
microorganisms. Confining boundaries play an important role
in many engineering and biological processes ranging from
the rheology of colloidal suspensions [56–58] to the transport
of nanoparticles and various molecules through micro- and
nanochannels [59,60]. Moreover, microswimmers encounter
in their natural habitats a plethora of different types of

2470-0045/2019/100(3)/032610(19) 032610-1 ©2019 American Physical Society
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surfaces with various geometric and elastic properties. Ex-
amples include sperm cells in the female reproductive tract
[61], bacterial pathogens in microvasculature channels [62],
or bacteria in biofilms [63]. Thus, surface related effects on
their motility may entail important consequences for a large
number of biological systems, including biofilm formation,
bacterial adhesion, and microbial activity [64,65].

Transport properties of active agents near a no-slip rigid
planar wall reveal various interesting features [66–83], includ-
ing their escape from the wall, a stationary hovering state,
or gliding along the boundary maintaining a constant orienta-
tion during their navigation. Interestingly, flagellated bacteria
display circular swimming trajectories close to surfaces as a
consequence of hydrodynamic couplings [84]. Their swim-
ming direction can be qualitatively influenced by the nature
of the boundary conditions at the interface such that, e.g., the
circular motion is reversed at a free air-liquid interface when
compared to a no-slip wall [85]. Bacterial swimming in the
close vicinity of a boundary has been addressed theoretically
using a two-dimensional singularity model combined with
a complex variable approach [86], a resistive force theory
[87], or a multipole expansion technique [85]. Further, it
has been shown that the presence of a nearby wall can lead
to a change in the waveform assumed by actuated flagella
causing a strong alteration of the resulting propulsive force
[88]. Under applied shear flow, swimming bacteria [89–95]
and sperm cells [96–98] near surfaces may inhibit their cir-
cular motion and exhibit rheotaxis leading to motion against
imposed shear flow. Likewise, the rheotactic behavior of a
self-diffusiophoretic particle has been investigated numeri-
cally by means of boundary integral simulations [99]. Di-
rect measurements of the flow field generated by individual
swimming E. coli both far from and near a solid surface have
revealed the relative importance of fluid dynamics and rota-
tional diffusion in bacterial locomotion [100]. More recently,
it has been shown that E. coli bacteria use transient adhe-
sion to nearby surfaces as a generic mechanism to regulate
their motility and transport properties in confinements [101].
Remarkably, a nearby wall alone can enable self-phoresis
of homogeneous and isotropic active particles [102]. The
behavior of self-propelled nano- and micro-rods in a channel
has further been investigated theoretically and numerically
[103–109].

Unlike fluid-fluid or fluid-solid interfaces, elastic bound-
aries generically stand apart because they endow the system
with memory. Such an effect results in a long-lasting anoma-
lous subdiffusive behavior on nearby particles [110–113]. The
emerging subdiffusion can significantly enhance residence
time and binding rates and thus may increase the probability
to trigger the uptake of particles by living cell membranes via
endocytosis [114,115]. Moreover, theoretical investigations
of model microswimmers immersed in an elastic channel
have predicted an enhancement in swimming speed as the
swimmers deform the flexible boundaries via hydrodynamic
flows [116]. In addition, it has been demonstrated that recip-
rocal motion close to a deformable interface can circumvent
the scallop theorem and result in a net propulsion of mi-
croswimmers at low Reynolds numbers [117]. Theoretically,
the motion of a passive particle near a fluid membrane pos-
sessing surface tension [118,119], bending resistance [120],

or surface elasticity [121,122] has thoroughly been studied.
The corresponding diffusion coefficient in the steady limit is
found to be universal and identical to that predicted near a
hard wall with no-slip boundary conditions [121].

Here, we investigate the influence of nearby elastic bound-
aries possessing resistance toward shear and bending on the
dynamics of microswimmers at low Reynolds number. Our
analytical approach is based on the far-field hydrodynamic
multipole representation of active microswimmers and valid
in the small-deformation regime. We find that the shear- and
bending related contributions to the overall induced transla-
tional and rotational velocities resulting from the hydrody-
namic interactions with an elastic interface may have promo-
tive or suppressive effects. In the steady limit, the swimming
velocities are found to be independent of the membrane elastic
properties and to approach the corresponding values near a
no-slip wall.

The remainder of the paper is organized as follows. In
Sec. II, we present the governing equations of low-Reynolds-
number fluid motion and introduce, in the small deformation
regime, a relevant model for an elastic interface featuring
resistance toward both shear and bending. In addition, we
describe in terms of the multipole expansion of the Stokes
equations the self-generated flow field induced by an active
microswimmer near an elastic interface. We then evaluate in
Sec. III the induced swimming velocities due to hydrody-
namic interactions with the interface and discuss the interplay
between shear and bending deformation modes, as well as
their corresponding roles in the overall dynamics. Concluding
remarks are contained in Sec. IV. Some mathematical details,
which are not essential for the understanding of the key
messages of our analytical approach, are relegated to the
Appendices.

II. THEORETICAL DESCRIPTION

We consider the behavior of an axisymmetric micro-
swimmer near a planar elastic interface of infinite extent in
the xy plane, i.e., the z direction is directed normal to that
plane. The swimmer is modeled as a prolate spheroid of short
semiaxis a and long semiaxis c, trapped above the elastic
interface at position z = h. Here, we adopt a local coordinate
system attached to the swimmer such that θ ∈ [−π/2, π/2]
is the pitch angle and ϕ ∈ [0, 2π ) is the azimuthal orientation
in the xy plane (see Fig. 1 for a graphical illustration of the
system setup).

We model the swimming behavior in the far-field limit
(i.e., c � h) by using a combination of fundamental solutions
to the Stokes equations in the vicinity of an elastic interface
[123,124]. Further details on the swimmer model are provided
after stating the exact Green’s functions for a point-force
singularity near a planar elastic boundary and derivation of
the corresponding higher-order singularities that are obtained
via a multipole expansion (see Sec. III).

A. Low-Reynolds-number hydrodynamics:
Stokes equations

For a viscous, incompressible Newtonian fluid, the Navier-
Stokes equations in the overdamped, low-Reynolds-number
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FIG. 1. Illustration of the system setup. An axisymmetric active
microswimmer modeled as a prolate spheroid is trapped at z = h
above an elastic interface infinitely extended in the xy plane. The
lengths of the short and long semiaxes are denoted by a and c,
respectively. Setting the orientation of the swimmer, the unit vector
ê points along the symmetry axis of the swimmer. The pitch an-
gle of the swimmer relative to the horizontal plane is denoted by
θ ∈ [−π/2, π/2] (the complement of the polar angle in spherical
coordinates). On both sides of the elastic interface, the surrounding
fluid is Newtonian and characterized by the same dynamic viscosity
η. The figure shown in the inset is a top view of the local reference
frame associated with the microswimmer, where ρ0 is the radial
distance and ϕ ∈ [0, 2π ) is the azimuthal orientation.

limit simplify to the time-independent Stokes equations [6,27]

η∇2v(r) − ∇p(r) + f B(r) = 0, (1a)

∇ · v(r) = 0, (1b)

where r denotes the spatial coordinate, η is the shear viscosity,
v denotes the fluid velocity, p is the pressure field, and f B here
represents the body force density acting on the fluid domain
by the immersed objects.

The fundamental solution of the Stokes equations for a
point-force singularity f B = f δ(r − r0) (Stokeslet) placed at
position r0 in an otherwise quiescent unbounded (infinite)
fluid domain is expressed in terms of the free-space Green’s
function given by the Oseen tensor [125,126]. Assuming that
the point force is directed along the unit vector ê such that
f = f ê, the induced flow and pressure fields read

v∞
S (r) = f

8πη
G∞(r, r0; ê), p∞

S (r) = f

4π
P∞(r, r0; ê),

(2)

where the Stokeslet solution is given by G∞(r, r0; ê) =
(ê + (ê · ŝ) ŝ)/s, with s = r − r0, s = |s| denoting the distance
from the singularity position, and ŝ = s/s. Likewise, the cor-
responding solution for the pressure field is P∞(r, r0; ê) =
ê · ŝ/s2.

B. Model for the elastic interface

The interface is modeled as a two-dimensional elastic sheet
made of a hyperelastic material featuring resistance toward
both shear and bending. Shear elasticity of the interface is de-
scribed by the well-established Skalak model [127], which is
commonly utilized as a practical model for the description of
red blood cell membranes [128–131]. The interface resistance
toward bending is described by the Helfrich model [132–135].

For an elastic interface infinitely extended in the xy plane,
the linearized tangential and normal traction jumps across the
interface due to shear and bending deformation modes are
expressed in terms of the displacement field u of the interface
relative to the initial planar configuration via [110]

[σz j] = −κS

3
[
‖u j + (1 + 2C)∂ jε], j ∈ {x, y}, (3a)

[σzz] = κB
2
‖uz, (3b)

where κS is the shear modulus, C = κA/κS denotes the Skalak
parameter (with the area expansion modulus κA), and κB

is the bending modulus. Here we use the notation [σi j] =
σi j (z = 0+) − σi j (z = 0−) to denote the jump in the viscous
stress tensor across the elastic interface. In addition, ε =
∂xux + ∂yuy denotes the dilatation function, and 
‖ = ∂2

x + ∂2
y

stands for the Laplace-Beltrami operator [136]. The normal
components of the hydrodynamic stress tensor are expressed
in the Cartesian coordinate system in the usual way as σz j =
−pδz j + η(∂ jvz + ∂zv j ).

To relate the displacement of the elastic interface to the
fluid velocity field, we impose a hydrodynamic no-slip bound-
ary condition. The latter, in Fourier space, takes a particularly
simple form in the small-deformation regime. Specifically
[118],

v|z=0 = iω u, (4)

with ω being the frequency in the Fourier domain. Accord-
ingly, the components of the fluid velocity field evaluated
at the surface of reference z = 0 are assumed to coincide
with those of the material points composing the deformable
interface. The particular case of zero frequency corresponds to
the “stick” boundary condition which applies for an infinitely-
extended rigid wall [121]. It is worth mentioning that, if the
elastic interface undergoes a larger deformation, the no-slip
condition stated by Eq. (4) takes a nonlinear form because the
condition has to be applied at the deformed interface. This sit-
uation has been considered, for instance, in Refs. [137–144].
Since our attention here is restricted to the system behavior
in the small-deformation regime, for which |u| � h, applying
the no-slip boundary condition at the position of the undis-
placed interface is appropriate for our theoretical analysis.

As described in detail in Refs. [110,112], the behavior of
a particle close to an elastic interface can conveniently be
characterized in terms of the two dimensionless parameters

β = 6Bhηω

κS
, βB = 2h

(
4ηω

κB

)1/3

, (5)

where B = 2/(1 + C). Note that both β and β3
B ∝ ω, and can

thus be viewed as dimensionless frequencies associated with
shear and bending deformation modes, respectively.
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The exact Green’s functions for a point-force singularity
acting close to an elastic interface possessing shear and bend-
ing rigidities have recently been calculated by some of us
(see, e.g., Refs. [110,113] for details of the derivation). The
ê-directed Stokeslet near the elastic interface can be obtained
from the tensorial description of the Green’s function via

G(r, r0; ê) = 8πη G(r, r0) · ê. (6)

The frequency-dependent Green’s functions G associated
with a point force exerted at position r0 above an elastic
interface can be derived using a standard two-dimensional
Fourier-transform technique [118,120] and applying the un-
derlying boundary conditions at the planar surface of refer-
ence. Accordingly, the Green’s functions can be expressed
in terms of convergent infinite integrals over the wave num-
ber. Explicit analytical expressions of the components of the
Green’s functions due to a Stokeslet near an elastic interface
are listed for convenience in Appendix A.

C. Multipole expansion

The flow field generated by a microswimmer can be de-
composed into a multipole expansion of the solution of the
Stokes equations [Eq. (1)] near an elastic interface. Then, the
linearity of the Stokes equations permits the description of
the far-field flow induced by a microswimmer in terms of a
superposition of different singularity solutions [124]. While
the leading-order flow field of a driven particle is a force
monopole (Stokeslet) field which decays as s−1, force- and
torque-free microswimmers typically create a force dipole
field in leading order [4,6] which decays as s−2. The next-
higher-order singularities are the force quadrupole, source
dipole, and rotlet dipole, which all decay as s−3. The Green’s
functions for higher-order singularities can be obtained as
derivatives of the Stokeslet solution [123]. For example, for
a force dipole (D),

GD(r, r0; ê, a) = (a · ∇0)G(r, r0; ê), (7)

wherein ∇0 denotes the nabla (gradient) operator taken with
respect to the singularity position r0. The force quadrupole
(Q) can then be determined from the force dipole as

GQ(r, r0; ê, a, b) = (b · ∇0)GD(r, r0; ê, a). (8)

In addition, we define the source dipole (SD) singularity
which can be derived from a singular potential solution satis-
fying the Laplace equation [124]. It can be expressed in terms
of the Stokeslet solution via

GSD(r, r0; ê) = − 1
2 ∇2

0 G(r, r0; ê). (9)

Further, we define the rotlet dipole (RD) singularity as

GRD(r, r0; ê, c) = c · ∇0GR(r, r0; ê), (10)

where the Green’s function for the rotlet (R) is obtained as

GR(r, r0; ê) = 1
2 [GD(r, r0; b, a) − GD(r, r0; a, b)], (11)

where a and b are unit vectors with a × b = ê (× denotes the
cross product). Note that the rotlet is the leading-order flow
field of a force-free particle but where an external torque is
applied. The flow field due to a rotlet dipole can further be

expanded as a combination of two force quadrupoles as

GRD(r, r0; ê, c) = 1
2 [GQ(r, r0; b, a, c) − GQ(r, r0; a, b, c)].

Expressions of the higher-order Stokes singularities in an
unbounded (infinite) fluid are provided in Appendix B.

In the presence of external forces and torques acting
on the microswimmer, the Stokeslet, G(r, r0; ê), and rotlet
GR(r, r0; ê), solutions have to be added to our description.
Collecting results, the self-generated flow field induced by an
axially symmetric microswimmer initially located at position
r0 and oriented along the direction of the unit vector ê can be
written up to third order in inverse distance from the swimmer
location as

v(r) = vS(r) + vR(r) + vD(r) + vSD(r) + vQ(r) + vRD(r),
(12)

where we have defined the velocities

vS(r) = αS G(ê), vR(r) = αR GR(ê),

vD(r) = αD GD(ê, ê), vSD(r) = αSD GSD(ê),

vQ(r) = αQ GQ(ê, ê, ê), vRD(r) = αRD GRD(ê, ê),

not writing the dependence of the flow singularities on r and
r0 explicitly any longer.

The Stokeslet coefficient αS has dimension of
(length)2(time)−1, the rotlet coefficient αR and dipolar
coefficient αD have dimension of (length)3(time)−1, whereas
the remaining higher-order multipole coefficients αSD, αQ, and
αRD have dimensions of (length)4(time)−1. The magnitude
and sign of these coefficients depend on the propulsion
mechanism as well as on the swimmer shape. For a valuable
discussion on the physical meaning and interpretation of these
singularities, we refer the reader to recent works by Spagnolie
and Lauga [124] and Mathijssen et al. [145].

III. SWIMMING NEAR AN ELASTIC INTERFACE

In the presence of confining boundaries, the swimming
direction ê of the microswimmer and its distance h from
the boundary dictate the hydrodynamic flows, as sketched in
Fig. 1. The orientation ê is described by the unit vector

ê = (cos θ cos ϕ, cos θ sin ϕ, sin θ ), (13)

where, again, θ denotes the pitch angle (such that θ = 0
corresponds to a swimmer that is aligned parallel to the
interface), and ϕ is the azimuthal orientation that we, without
loss of generality, set initially to zero.

The total self-generated flow field of the swimmer ex-
pressed by Eq. (12) can be decomposed into terms of the bulk
contribution v∞ and a correction v∗ that is required to satisfy
the boundary conditions at the elastic interface:

v = v∞ + v∗. (14)

The latter encompasses the Stokeslet contribution to the flow
field that we have determined in previous works [110,146]
in addition to the higher-order singularity solutions that we
calculate here. It is worth emphasizing that v∞ is the sum of
the bulk flow fields of the different multipoles such that

v∞ = lim
β,βB→∞

v. (15)
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The induced translational and rotational velocities due to
the fluid-mediated hydrodynamic interactions between the
elastic interface and a microswimmer of prolate ellipsoidal
shape located at position r0 are provided by Faxén’s laws
[126] as

vHI = v∗(r)|r=r0 , (16a)

�HI = 1
2∇ × v∗(r) + �ê × (E∗(r) · ê)|r=r0 . (16b)

These expressions have been restricted to leading order in
swimmer length c. Here, E∗ = [∇v∗ + (∇v∗)T]/2 is the
rate-of-strain tensor associated with the reflected flow, with
T denoting the transpose. Further, � = (γ 2 − 1)/(γ 2 + 1) ∈
[0, 1) is a shape factor (also known as the Bretherton constant
[147,148]) that depends on the aspect ratio γ of the prolate
spheroidal microswimmer, defined as the ratio of major to
minor semiaxes, i.e., γ = c/a � 1. It vanishes for a sphere
and approaches 1 for needlelike particles of large aspect ratio.
Higher-order correction terms in � to the induced hydrody-
namic fields can be obtained using the multipole method (see,
e.g., Ref. [146]).

Due to the linearity of the Stokes equations [Eqs. (1)] we
can consider the effect of each higher-order singularity on the
swimming behavior independently. Thus, in the following we
provide solutions for the translational and rotational veloci-
ties, vHI and �HI, induced by fluid-mediated hydrodynamic
couplings of the individual contributions with the nearby
elastic boundary.

Remarkably, the total velocities due to hydrodynamic in-
teractions with an elastic interface endowed simultaneously
with both shear and bending resistances can be written as
a superposition of the velocities induced by hydrodynamic
interactions with an interface of pure shear (βB → ∞) and
pure bending (β → ∞) resistances. Accordingly, the total
wall-induced linear and angular velocities can be obtained by
evaluating both contributions independently:

vHI = vHI|S + vHI|B, (17a)

�HI = �HI|S + �HI|B, (17b)

where the subscripts S and B stand for shear and bending,
respectively. However, it is worth mentioning that this is
only true for a planar elastic interface. For curved interfaces,
a coupling between shear and bending deformation modes
exists [149–153].

Near a no-slip wall, the induced hydrodynamic interactions
of the multipole flow fields created by a microswimmer lo-
cated at a given position and orientation are independent of
time [124] (assuming that the strengths of the singularities
are constant). This is in contrast to an elastic interface where
memory effects can lead to time-dependent contributions
vHI(t ) and �HI(t ). One way to realize such a time dependence
is to assume that the microswimmer is initially at rest with
a given orientation (θ, ϕ) at a distance h from the interface
and suddenly starts to swim and sets the surrounding fluid
into motion at time t = 0. However, we do not allow the
microswimmer to actually move towards the interface but its
position and orientation are kept fixed by applying just the
right external forces Fext and torques T ext, e.g., via optical
traps, aligning magnetic fields, or other micromanipulation

techniques. Denoting by v0 the bulk swimming speed, i.e., in
the absence of the confining interface, the swimming veloc-
ities and rotation rates are related to the external forces and
torques required to trap the swimmer near the interface via(

v0ê + vHI(t )

�HI(t )

)
+ μ ·

(
Fext (t )

T ext (t )

)
= 0. (18)

Note, the forces and torques are zero for t < 0, but finite and
time dependent for t � 0, when the flow fields created by
the microswimmers interact with the elastic interface. Here
μ is the position- and orientation-dependent hydrodynamic
grand mobility tensor of a spheroid near an elastic interface
[146]. We have neglected thermal fluctuations and all possible
steric interactions with the interface. We were able to calculate
vHI(t ) and �HI(t ) for all considered multipole flows. The
solutions for vHI(t ) are shown in Tables VI and VII. Similar
expressions exist for �HI(t ) but they are not shown here
because of their complexity and lengthiness.

In the following we discuss the different contributions
stemming from the different multipoles. Before doing so,
we present typical numbers which we used to produce the
results shown below. The shear and bending properties of the
elastic surface entail a characteristic time scale of shear as
TS = 6ηh/(BκS), in addition to a characteristic time scale of
bending as TB = 8ηh3/κB [110]. Thus, we define the scaled
times τS = t/TS and τB = t/TB associated with shear and
bending deformation modes, respectively. Note that, for h =
[3κB/(4BκS)]1/2, it follows that TS = TB. This corresponds to
the situation in which both shear and bending equally manifest
themselves in the system at intermediate time scales [111]. In
typical situations [128], elastic red blood cells have a shear
modulus κS = 5 × 10−6 N/m, a Skalak ratio C = 100, and
a bending modulus κB = 2 × 10−19 N m. By considering a
dynamic viscosity of the surrounding Newtonian viscous fluid
η = 1.2 × 10−3 Pa s, as well as a micron-sized swimmer of
size a = 10−6 m located above the interface at h = 5a, it fol-
lows that TS 
 0.36 s and TB = 6 s. Therefore, at later times,
bending effects are expected to manifest themselves in a more
pronounced way than shear. For the results presented below,
we use τ := τS = 16τB as the scaled time of the system.

We distinguish contributions relevant for force- and torque-
free swimming and contributions stemming from external
forcing, where particular focus lies on a trapped microswim-
mer in the vicinity of an elastic interface.

A. Force- and torque-free contribution

Here we discuss the swimming behavior of an active agent
near an elastic boundary by following the theoretical frame-
work discussed in Sec. II. We consider different higher-order
singularities that describe features of the swimming motion
of a variety of active agents. In addition to the leading-order
far field of a microswimmer in terms of a force dipole (1/s2),
we consider further details of the propulsion mechanisms that
contribute to the flow field with the order of 1/s3. These
include, for example, contributions of the finite size cell body,
the anisotropy in the swimming mechanism, and the rotation
or counter-rotation of body parts during swimming. Yet, the
importance of the contribution of each of these singularities
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depends strongly on the geometry of the active agent, its
swimming mechanism, and its distance from the elastic in-
terface.

1. Force dipole

The flow field induced by a force dipole, vD(r) =
αD GD(ê, ê), is the leading contribution to describe the hy-
drodynamics of many microswimmers, which are net force
free by definition [27]. The sign of the dipolar coefficient αD

distinguishes between pusher (αD > 0) and puller (αD < 0)
microswimmers. Some bacterial microorganisms, such as E.
coli, exploit (bundles of) helical filaments called flagella for
their propulsion, the rotation of which causes the entire bac-
terium to move forward in a corkscrewlike motion [154–156].
Here, the translation-rotation coupling of the hydrodynamic
friction of the flagellum yields a net propulsion of the swim-
mer. Since these swimmers push out the fluid along their
swimming axis, they are referred to as pushers. Another broad
class of microswimmers, including, for example, the algae
Chlamydomonas reinhardtii [157], pull in (averaged over one
whole swimming stroke) the fluid along the axis parallel to
their swimming direction, and are thus classified as pullers.

Both pushers and pullers may conveniently be modeled,
e.g., via minimal models based on the insertion of force cen-
ters that co-move with the body of the swimmer [158–162],
or as squirmers [163–165]. The latter are driven by prescribed
tangential velocities at their (spherical or ellipsoidal) surfaces
and were introduced to model microorganisms that self-propel
by the beating of cilia covering their bodies [31–33,166].
The squirmer model has been previously used to address,
e.g., the hydrodynamic interaction between two swimmers
[167,168], the influence of an imposed external flow field on
the swimming behavior [169,170], or low-Reynolds-number
locomotion in complex fluids [171–174].

We now return to the mathematical problem and remark
that a tilted force dipole (that is directed along ê) can be
expressed in terms of force dipoles aligned parallel and per-
pendicular to the elastic interface as [85]

GD(ê, ê) = GD(êx, êx ) cos2 θ + GD(êz, êz ) sin2 θ

+ GSS(êx, êz ) sin(2θ ), (19)

where GSS is the symmetric part of the force
dipole, commonly referred to as stresslet, GSS(a, b) =
[GD(b, a) + GD(a, b)]/2. By inserting the Stokeslet solution
(see Appendix A) into Eq. (7), the self-generated dipolar flow
field vD(r) can be evaluated and expressed in terms of infinite
integrals over the wave number. The frequency-dependent
components of the induced translational, vHI, and rotational,
�HI, velocities, of the microswimmer resulting from dipolar
interactions with the elastic interface, as given by Eq. (16),
are listed in integral form in Table IV of Appendix C. The
velocities in Fourier space depend on the dipolar coefficient
αD, the distance h from the elastic interface, the orientation
θ of the swimmer with respect to the interface, as well as
the dimensionless frequencies β and βB, reflecting shear and
bending contributions, respectively.

In Figs. 2(a)–2(c), we present the time evolution of the
induced swimming velocities and rotation rates due to dipolar
hydrodynamic interactions with a planar elastic interface. The

latter has only energetic resistance toward shear (green), only
energetic resistance toward bending (red), or simultaneously
possesses both shear and bending resistances (black). Here,
we consider a spheroidal swimmer with an aspect ratio γ = 4
(corresponding to a shape factor � = 15/17), as measured
experimentally for the bacterium Bacillus subtilis [175]. The
swimmer is inclined by a pitch angle θ = π/6 with respect to
the horizontal direction. Results are rendered dimensionless
by scaling with the corresponding hard wall limits listed in
Table I. As already mentioned, the total swimming velocity
near a planar interface with both shear and bending resistance
is obtained by linearly superimposing the individual contribu-
tions stemming from each deformation mode.

The translational and rotational velocities of the mi-
croswimmer induced by the presence of the elastic interface
amount to small values at short times (τ � 1), because the
interface is still relatively undeformed and therefore hardly
imposes any elastic resistance toward the flow field induced by
the microswimmer. Consequently, the system exhibits initially
a “bulklike” behavior. For increasing times, such that τ 
 1,
the presence of the elastic interface becomes more noticeable.
The induced swimming velocities monotonically increase in
magnitude before reaching at long times (τ � 1) the steady
limits. These correspond to the velocities induced near a
no-slip wall and are independent of the membrane shear and
bending properties. Therefore, the elasticity of the boundary
only contributes at intermediate time scales to the temporal
changes of the swimming behavior, whereas, in the steady
state, the swimmer essentially experiences the response of
the fully deformed interface that does not change its overall
shape of deformation any longer. It is worth emphasizing that
the hard wall limits are reached (if and) only if the interface
is simultaneously endowed with resistance toward shear and
bending. Interestingly, at intermediate time scales, the shear
related contribution to the rotational velocity [Fig. 2(c)] ex-
ceeds to a certain extent its steady value.

In the steady limit, the sign and magnitude of the swim-
ming velocities are strongly dependent on the dipolar coef-
ficient αD as well as on the pitch angle θ . In this situation,
because vz

HI
D ∝ −αD(3 cos2 θ − 2) for all interface types (see

Table I), it follows that, for a small pitch angle, such that |θ | <

arccos (
√

6/3), a pusher-type microswimmer (αD > 0) tends
to be attracted toward the interface, while a puller (αD < 0)
tends to be repelled away from it. This behavior is purely
hydrodynamic in origin as has been discussed earlier by Lauga
and collaborators for the case of a hard wall [124,176]. In
particular, the hard wall limits are predominately determined
by the bending related contribution. This implies that, for
the dipolar hydrodynamic interactions, the effect due to the
bending rigidity is more pronounced than that due to shear.
In addition, since �y

HI
D ∝ αD sin (2θ ), a pusher-type swimmer

tends to be oriented along the parallel direction (θ = 0 is a
stable fixed point), while the interface tends to align a puller
in the direction normal to the interface (θ = ±π/2). Hence,
in the absence of external trapping, a puller will tend to
swim either toward or away from the interface, depending
on whether it is initially pitched toward (θ < 0) or away
from the interface (θ > 0). Particularly, the extensional flow
and the shear related contribution to the rotation rate van-
ish for a sphere (� = 0). In such a case, the reorientation
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FIG. 2. Evolution of the scaled induced translational and rotational swimming velocities associated with a force dipole (a–c), source
dipole (d–f), force quadrupole (g–i), and rotlet dipole (j–l), resulting from hydrodynamic interactions with a planar elastic interface of pure
shear (green), pure bending (red), or both shear and bending (black) resistances. The swimmer has an aspect ratio γ = 4 and is oriented by a
pitch angle θ = π/6 relative to the horizontal direction. Here, the velocities are scaled by the corresponding hard wall limits listed in Table I,
except that the x component of the rotlet dipolar contribution shown in panel (j) is scaled by αRD/(8h4) (because this component vanishes in
the steady limit). The scaled time is τ := τS = 16τB.

of the swimmer is solely dictated by the interface bending
properties.

In addition to the leading-order contribution of a force
dipole, next-higher-order singularity solutions are useful to
describe details of the propulsion mechanism of an active
agent. The time-dependent translational and rotational ve-
locities induced by higher-order singularities close to the
elastic surface for the start-up motion from static condition are
presented in Table VI of Appendix C, and the steady limits are
shown in Table I.

2. Source dipole

The far-field hydrodynamic flows induced by the finite size
of a swimming object can be described by a source dipole,
vSD(r) = αSDGSD(ê). For the type of microswimmers that
propel themselves by means of activity on their surfaces, as
it is the case for many active colloidal particles [37,38,177] or
ciliated microorganisms [28,34], a source dipolar coefficient

αSD > 0 is expected. In contrast to that, it is expected that
αSD < 0 for nonciliated but flagellated microswimmers [145].

We now consider the scenario of a microswimmer initially
at rest before starting to pump the fluid, in a way analogous to
what we have introduced in the previous discussion regarding
the force dipole contribution. The respective scaled induced
translational and rotational velocities resulting from source
dipolar hydrodynamic interactions exhibit a similar logistic
sigmoid curve varying between 0 and 1 [see Figs. 2(d)–2(f)].
Similar as for the force dipole contribution, at long times the
corresponding values of a no-slip wall are approached. The
bending related contribution to the swimming velocities is
found to be once again more pronounced than that due to shear
resistance.

For all types of interface, the induced normal swimming
velocity in the steady limit can be cast into the form vz

HI
SD ∝

−αSD sin θ . Therefore, the swimmer tends to be attracted
to the interface for αSD > 0 when it is oriented toward it
(θ < 0) and tends to be repelled from the interface otherwise.
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TABLE I. Expressions of the induced translational and rotational swimming velocities resulting from force dipolar, source dipolar, force
quadrupolar, and rotlet dipolar hydrodynamic interactions with a planar elastic interface in the steady limit. Here, n = 2 for the force dipole
and n = 3 for the source dipole and force quadrupole. The swimming velocities near a no-slip hard wall are obtained by linear superposition
of the shear- and bending related contributions.

Interface type hnvHI
x hnvHI

z hn+1�HI
y

Force dipole

Shear 3αD
16 sin(2θ ) − αD

16 (3 cos2 θ − 2) 3αD
64 � sin(2θ ) cos2 θ

Bending 3αD
16 sin(2θ ) − 5αD

16 (3 cos2 θ − 2) 3αD
64 sin(2θ )[4 + �(4 − 3 cos2 θ )]

Hard wall 3αD
8 sin(2θ ) − 3αD

8 (3 cos2 θ − 2) 3αD
32 sin(2θ )[2 + �(2 − cos2 θ )]

Source dipole

Shear − αSD
16 cos θ − 3αSD

8 sin θ − 3αSD
16 cos θ [1 + �(2 − cos2 θ )]

Bending − 3αSD
16 cos θ − 5αSD

8 sin θ − 3αSD
16 cos θ [1 + 2�(2 − cos2 θ )]

Hard wall − αSD
4 cos θ −αSD sin θ − 3αSD

16 cos θ [2 + 3�(2 − cos2 θ )]

Force quadrupole

Shear αQ
32 cos θ (21 cos2 θ − 16) 3αQ

8 sin θ cos2 θ
3αQ
64 cos θ [3� cos4 θ + 2(1 − 2�) cos2 θ + 8�]

Bending 3αQ
32 cos θ (11 cos2 θ − 8) αQ

8 sin θ (15 cos2 θ − 4) 3αQ
64 cos θ [−9� cos4 θ + 2(11 + 8�) cos2 θ + 8(� − 2)]

Hard wall αQ
16 cos θ (27 cos2 θ − 20) αQ

4 sin θ (9 cos2 θ − 2) 3αQ
32 cos θ [−3� cos4 θ + 6(� + 2) cos2 θ + 8(� − 1)]

Interface type h3vHI
y h4�HI

x h4�HI
z

Rotlet dipole

Shear 3αRD
32 sin(2θ ) 3αRD

16 sin(2θ ) − 3αRD
32 (3 cos2 θ − 2)

Bending − 3αRD
32 sin(2θ ) 3αRD

64 sin(2θ )[2 + �(3 cos2 θ − 4)] 3αRD
32 � cos2 θ (4 − 3 cos2 θ )

Hard wall 0 3αRD
64 sin(2θ )[6 + �(3 cos2 θ − 4)] − 3αRD

32 [3� cos4 θ + (3 − 4�) cos2 θ − 2]

Moreover, since �y
HI
SD ∝ −αSD cos θ it follows that θ = π/2

is a stable fixed point for αSD > 0, thus favoring the escape
of the swimmer from the interface in the absence of external
trapping. In contrast to that, θ = −π/2 is a stable fixed
point for αSD < 0, leading to hydrodynamic trapping of the
swimmer near the interface.

3. Force quadrupole

The flow fields generated by a fore-aft asymmetry of the
propulsion mechanism can be captured in terms of a force
quadrupole vQ(r) = αQGQ(ê, ê, ê). Such contributions play a
pivotal role for flagellated microorganisms, such as bacteria
[178] and sperms [179], where an asymmetry between the
length of the forward-pushing cell and the flagella impacts
the propulsive force distribution along the agent and thereby
the hydrodynamic flows. Resulting effects have been found
to induce correlated motion between adjacently swimming
bacteria [178]. It is expected that αQ > 0 for microswimmers
with large cell bodies and short flagella, while αQ < 0 holds
for long-flagellated microorganisms with small cell bodies
[124,145].

Interestingly, the translational velocity vx
HI
Q induced by a

force quadrupole parallel to an elastic surface displays at
intermediate time scales a weakly nonmonotonic behavior
before reaching the steady state [see Fig. 2(g)]. In particular,
the velocity induced by a surface with pure shear resistance
displays the opposite effect to the one induced by a surface
with bending resistance at long times considering the present

set of parameters. This implies that, e.g., if bending resistance
increases the swimming velocity tangent to the interface, then
shear resistance decreases it and vice versa. The induced
translational velocity perpendicular to the elastic boundary
and the rotational velocity quasimonotonically increase in
magnitude over time as resulting from adding both shear and
bending contributions [see Figs. 2(h) and 2(i)]. Notably, the
bending effect is once again more pronounced than the one
associated with shear. In the steady state, the translational and
rotational velocities approach those induced by a rigid wall,
as has been observed for the other higher-order singularity
solutions presented above.

Depending on the types of interface, the force quadrupole
coefficient, and the pitch angle, quadrupolar hydrodynamic
interactions in the steady limit may lead to attraction or
repulsion of swimming microorganisms in a complex way.
Considering an interface with only energetic resistance toward
shear, we find that vz

HI
Q ∝ αQ sin θ . Thus, the swimmer tends

to be repelled from the interface when αQ and θ have both
the same sign, and tends to be attracted toward the interface
otherwise. An analogous discussion holds as well for an
interface with only energetic resistance toward bending, or
for an interface with both shear and bending deformation
modes, provided that |θ | < arccos (2

√
15/15) in the former

and |θ | < arccos (
√

2/3) in the latter case.
Next, considering an interface with energetic resistance

only toward shear, the rotation rate in the steady state �y
HI
Q ∝

αQ cos θ . Thus, the swimmer in the absence of external trap-
ping tends to rotate toward the interface when αQ > 0, and
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away from the interface when αQ < 0. For an elastic interface
possessing pure bending resistance, the swimmer may also
assume in the steady state an oblique alignment along a pitch
angle θ = ±θ� , where

θ� = arccos

⎛
⎝1

3

√
8 + 11

�
−

√
136 + 32

�
+ 121

�2

⎞
⎠.

Consequently, for αQ > 0, force quadrupolar hydrodynamic
interactions tend to orient the swimmer along θ = −θ� when
θ < θ� , and along θ = π/2 otherwise. In contrast to that, for
αQ < 0, the swimmer tends to be reoriented toward θ = θ�

when θ > −θ� , and along θ = −π/2 otherwise. An analo-
gous discussion holds when the interface is endowed with
both shear and bending resistances in the steady limit (hard
wall), where the oblique alignment in this situation is found
to be along

θ� = arccos

⎛
⎝

√
1 + 2

�
−

√
11

3
+ 4

3�
+ 4

�2

⎞
⎠.

4. Rotlet dipole

In addition, the flow field produced by flagellated microor-
ganisms can be altered by rotation of their body parts, such
as the rotation of their flagella bundle and the counter-rotation
of the cell body in E. coli bacteria [84]. The induced flow
far field can be included at lowest order in terms of a rotlet
dipole, vRD(r) = αRD GRD(ê, ê). A tilted rotlet dipole can
conveniently be expanded as a combination of rotlet dipoles
orientated parallel and perpendicular to the interface as

GRD(ê, ê) = GRD(êx, êx ) cos2 θ + GRD(êz, êz ) sin2 θ

+ GRR(êx, êz ) sin(2θ ),
(20)

where GRR(a, b) = [GRD(a, b) + GRD(b, a)]/2 denotes the
symmetric part of the rotlet dipole. Similar to the force
quadrupole contribution, the induced swimming velocity par-
allel to the elastic surface displays a nonmonotonic behav-
ior before approaching zero at long times [see Fig. 2(j)].
In addition, the shear- and bending related parts may have
opposite contributions to the overall translational velocity
tangent to the interface. At long times, again the velocities of a
microswimmer induced by a rigid, no-slip wall are recovered.

Interestingly, the rotation rate around the swimmer body
is found to be shear dominated where bending does not play
a significant role [Fig. 2(k)]. Moreover, the rotlet-dipolar hy-
drodynamic interactions induce a nonvanishing rotation rate
about an axis perpendicular to the interface [see Fig. 2(l)].
This naturally leads in the absence of external trapping to
an overall “swimming in circles,” as has been previously
reported for E. coli near walls [84,180] and explained via
corresponding theoretical studies that include phenomeno-
logical representations of the rotating flagella [81,181]. As
this component vanishes for the other singularities discussed
above, we thus expect the introduction of a rotlet dipole
to be the simplest possible hydrodynamic modeling of this
circling behavior near surfaces. Remarkably, this rotation rate
is independent of the shape factor � in the shear related part

but vanishes for a sphere (� = 0) in the bending related part.
Considering a swimmer that is aligned parallel to the interface
(θ = 0) in the steady limit, we obtain

�z
HI
RD

∣∣
S = −3αRD

32h4
, (21a)

�z
HI
RD

∣∣
B = 3αRD

32h4
�, (21b)

�z
HI
RD

∣∣
S+B = −3αRD

32h4
(1 − �). (21c)

Therefore, assuming that αRD > 0, circular motion is expected
to be clockwise (when viewed from top) near an interface
with pure shear or with both shear and bending rigidities
[Eqs. (21a) and (21c)], and counterclockwise near an interface
with pure bending [Eq. (21b)]. This is in agreement with
the behavior observed for a torque-free doublet of counter-
rotating spheres around its center near an elastic interface
[182]. It is worth mentioning that, in the steady limit, the sys-
tem behavior near an interface with pure bending resistance
is analogous to that near a flat fluid-fluid interface separating
two immiscible fluids with the same viscosity contrast.

B. Contributions due to external forces and torques

Nature offers a plethora of external stimuli and forces
that impact the swimming motion of active agents. Examples
include gravitational fields [183–186]. The far-field hydrody-
namics of externally trapped self-propelled particles near elas-
tic boundaries can readily be captured in terms of a Stokeslet
and rotlet solution to the Stokes equation. The corresponding
translational and rotational velocities as functions of time as
well as the steady limits are presented in Tables II and VI.

1. Stokeslet

In the presence of an external force, the Stokeslet singular-
ity can be used to capture the associated hydrodynamic flow
[157] and calculate the induced velocity of the microswimmer
as vS(r) = αS G(ê). Similar as before, a tilted Stokeslet can be
decomposed into a superposition of Stokeslets directed paral-
lel and perpendicular to the interface as G(ê) = G(êx ) cos θ +
G(êy) sin θ . In contrast to the higher-order singularities used
to model force-free swimming, the Stokeslet introduces a far
field of the fluid flow that decays as 1/h and thus represents
the leading-order contribution.

In Figs. 3(a)–3(c), we present the variations of the induced
swimming velocities due to a Stokeslet singularity acting near
a planar elastic interface with pure shear (green), pure bending
(red), or both shear and bending deformation modes (black),
using the same parameters as in Fig. 2. While resistance
toward shear manifests itself in a more pronounced way for
the translational motion parallel to the interface, the effect of
bending is dominant for the translational motion normal to the
interface and for the rotation rate.

In the remainder of our discussion, we assume that the
Stokeslet coefficient αS > 0. Correspondingly, the swimmer
in the steady state tends to be attracted to the interface when
θ > 0, and repelled from it when θ < 0. Near an interface
with resistance only to shear such that � � 2/3 (or γ �

√
5),

it follows that �y
HI
S ∝ cos θ . Therefore, the swimmer tends

to be reoriented toward the interface (θ = −π/2). In contrast
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TABLE II. Expressions of the induced translational and rotational swimming velocities resulting from Stokeslet and rotlet near an elastic
interface in the quasisteady limit of vanishing frequency, or equivalently for t → ∞. The swimming velocities near a no-slip hard wall are
obtained by linear superposition of the shear- and bending related contributions in the vanishing-frequency limit.

Interface type hvHI
x hvHI

z h2�HI
y

Stokeslet

Shear − 5αS
8 cos θ − αS

4 sin θ
αS
16 cos θ (2 − 3� cos2 θ )

Bending − αS
8 cos θ − 5αS

4 sin θ − αS
16 cos θ [2 + 3�(4 − 3 cos2 θ )]

Hard wall − 3αS
4 cos θ − 3αS

2 sin θ − 3αS
8 � cos θ (1 + sin2 θ )

Interface type h2vHI
y h3�HI

x h3�HI
z

Rotlet

Shear − αR
8 cos θ − 3αR

16 cos θ − αR
8 sin θ

Bending αR
8 cos θ − αR

16 cos θ (2 − 3� sin2 θ ) − 3αR
16 � sin θ cos2 θ

Hard wall 0 − αR
16 cos θ (5 − 3� sin2 θ ) − αR

16 sin θ (2 + 3� cos2 θ )

to that, for � > 2/3, the swimmer tends to align along the
oblique direction given by θ� = arccos [

√
6�/(3�)] when

θ > −θ� , and along θ = −π/2 otherwise. Near an interface
of either pure bending resistance or both shear and bending
resistance, �y

HI
S ∝ − cos θ , leading to swimmer reorientation

away from the interface (θ = π/2). Notably, �y
HI
S vanishes in

the hard wall limit for a spherical microswimmer (� = 0).

2. Rotlet

The far field of an external torque applied to the mi-
croswimmer can be described in terms of a rotlet singularity.
The rotlet related contribution to the induced translational
velocity resulting from hydrodynamic interactions with the
elastic interface has a single nonvanishing component along
the y direction, for which both shear and bending have

equal but opposite contributions to the overall dynamics [see
Fig. 3(d)]. For the induced rotation rates [Figs. 3(e) and
3(f)], the relative importance of shear and bending elasticity
depends strongly on the swimmer geometry and orientation.
Analogously to a rotlet dipole, the induced rotational velocity
normal to the interface is independent of the shape factor
� near an interface of only shear resistance, and vanishes
for a spherical microswimmer (� = 0) near an interface of
resistance only to bending.

C. Long-time decay of swimming velocities

Finally, we briefly comment on the leading-order behavior
of the hydrodynamically induced swimming velocities at long
times in approaching the steady limits. Results are summa-
rized in Table III for various singularity and interface types.
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FIG. 3. Evolution of the scaled swimming velocities associated with a Stokeslet (a–c) and rotlet (d–f) due to hydrodynamic interactions
with an elastic interface showing pure shear (green), pure bending (red), or both shear and bending rigidities (black). Here, the swimmer has
an aspect ratio γ = 4 and an orientation θ = π/6 with respect to the horizontal direction. The velocities are scaled by the corresponding hard
wall values except that the x component of the rotlet contribution is scaled by αR/(8h4). We set τ := τS = 16τB.
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TABLE III. Expressions of the long-time decay of the swimming
velocities due to dipolar, source dipolar, quadrupolar, and rotlet
dipolar hydrodynamic interactions with an elastic interface. Here,
τS = t/TS and τB = t/TB with TS = 6ηh/(BκS) and TB = 8ηh3/κB

are characteristic time scales associated with shear and bending
deformation modes, respectively.

Interface type vHI
x vHI

z �HI
y

Force dipole

Shear τ−2
S τ−3

S τ−3
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Source dipole/Force quadrupole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Stokeslet

Shear τ−1
S τ−3

S τ−2
S

Bending τ−1
B τ

−1/3
B τ−1

B

Interface type vHI
y �HI

x �HI
z

Rotlet dipole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ

−4/3
B τ

−5/3
B

Rotlet

Shear τ−2
S τ−3

S τ−3
S

Bending τ−1
B τ−1

B τ
−4/3
B

For higher-order singularities, the rotation rates are found to
decay similarly or much faster than the translational swim-
ming velocities. Most importantly, the shear related contri-
butions to the swimming velocities experience a faster decay
in time compared to those related to bending. Therefore, the
system behavior is shear dominated at early times, while
bending is expected to play the more dominant role at later
times.

IV. CONCLUSION

We have derived exact solutions for the translational and
angular velocities of a trapped microswimmer in the vicinity
of a deformable surface that features resistance towards bend-
ing and shear. Based on far-field calculations we show that the
velocities can be decomposed into bending and shear related
contributions, which can display opposed behavior; i.e., while
one of them enhances the velocities, the other decreases them
and vice versa. In particular, the elastic properties of the
interface introduce history to the hydrodynamic couplings,
which manifests itself in time-dependent translational and
rotational velocities of the approaching microswimmer. These
velocities strongly depend on the swimming direction, the
distance from the interface, the body shape, and details of the
swimming mechanism encoded in the singularity coefficients.
By accounting for both bending and shear resistances, the

steady-state velocities agree with those of an active agent
close to a planar, rigid wall.

Our results provide a detailed analysis of far-field hy-
drodynamic interactions of trapped, self-propelled particles
with a deformable surface and are expected to contribute to
our understanding of microswimmer motion in their natural
surroundings. Based on the proposed theoretical framework,
future investigations could elucidate the spatiotemporal be-
havior of freely moving microswimmers near an elastic inter-
face and analyze more closely the potential accumulation of
microswimmers at the deformable surface in comparison to a
rigid wall [176]. Moreover, an additional, intrinsic curvature
of the surface can be included in our model [150,187], which
could provide a fundamental ingredient for our understanding
of microswimmer entrapment and accumulation in realistic
biological setups.
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APPENDIX A: GREEN’S FUNCTIONS FOR A STOKESLET
NEAR AN ELASTIC INTERFACE

The components of the Green’s functions can be expressed
in terms of convergent improper (infinite) integrals over the
wave number and assume the following form:

Gxx = 1

4π

∫ ∞

0
dq q [G̃+J0(qρ0) + G̃−J2(qρ0) cos(2ϕ)],

Gyy = 1

4π

∫ ∞

0
dq q [G̃+J0(qρ0) − G̃−J2(qρ0) cos(2ϕ)],

Gzz = 1

2π

∫ ∞

0
dq q G̃zzJ0(qρ0),

Gxy = 1

4π

∫ ∞

0
dq q G̃−J2(qρ0) sin(2ϕ),

Grz = i

2π

∫ ∞

0
dq q G̃lzJ1(qρ0),

Gzr = i

2π

∫ ∞

0
dq q G̃zl J1(qρ0),

wherein ρ0 =
√

(x − x0)2 + (y − y0)2 denotes the radial dis-
tance and ϕ := arctan[(y − y0)/(x − x0)] is the azimuthal an-
gle (see inset of Fig. 1). Here Jn(·) represents the nth-order
Bessel function of the first kind [188] and we introduce

G̃±(q, z, ω) := G̃tt (q, z, ω) ± G̃ll (q, z, ω),
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TABLE IV. Expressions of the frequency-dependent evolutions of the induced-swimming velocities resulting from hydrodynamic
interactions with the elastic interface. Here, we have used the abbreviation S = 2Bu2 + (B + 2)iβu − β2.

Velocity component Expression

Force dipole

vx
HI
D

αD sin(2θ )
2h2

∫ ∞
0 du

( NS
D
S + 8u6

8u3+iβ3
B

)
e−2u

vz
HI
D

αD(2−3 cos2 θ )
h2

∫ ∞
0 du

( u3(u−1)
2u+iβ + 4u5(u+1)

8u3+iβ3
B

)
e−2u

�y
HI
D

sin(2θ )
24h3

∫ ∞
0 du

(
u3

S

(
HS

D + AS
D cos2 θ

) + 12u6

8u3+iβ3
B

[8 + �u(4 − 3 cos2 θ )]
)
e−2u

Source dipole

vx
HI
SD − αSD cos θ

h3

∫ ∞
0 du

( NS
SD
S + 4u6

8u3+iβ3
B

)
e−2u

vz
HI
SD − αSD sin θ

h3

∫ ∞
0 du

(
2u4

2u+iβ + 8u5(1+u)
8u3+iβ3

B

)
e−2u

�y
HI
SD − αSD cos θ

h4

∫ ∞
0 du

(
u4

S

(
HS

SD + AS
SD cos2 θ

) + 4u6

8u3+iβ3
B

[1 + �u(2 − cos2 θ )]
)
e−2u

Force quadrupole

vx
HI
Q

αQ cos θ

4h3

∫ ∞
0 du

(
u3

S

(
NS

Q + MS
Q cos2 θ

) + 4u6

8u3+iβ3
B

[4u(2 − 3u) + (15u − 8) cos2 θ ]
)
e−2u

vz
HI
Q

αQ sin θ

h3

∫ ∞
0 du

(
u4

2u+iβ [2(2 − u) + (5u − 8) cos2 θ ] + 4u5(1+u)
8u3+iβ3

B
[2(1 − u) + (5u − 3) cos2 θ ]

)
e−2u

�y
HI
Q

αQ cos θ

8h4

∫ ∞
0 du

(
u4

S

(
W S

Q cos4 θ + AS
Q cos2 θ + HS

Q

) + u6

8u3+iβ3
B

(
W B

Q cos4 θ + AB
Q cos2 θ + HB

Q

))
e−2u

Rotlet dipole

vy
HI
RD

αRD sin(2θ )
h3

∫ ∞
0 du

( NS
RD
4S − 2u6

8u3+iβ3
B

)
e−2u

�x
HI
RD

αRD sin(2θ )
16h4

∫ ∞
0 du

(
u4

S

(
GS

RD + KS
RD cos2 θ

) + 8u6

8u3+iβ3
B

[4(1 − �u) + 3�u cos2 θ ]
)
e−2u

�z
HI
RD

αRD
8h4

∫ ∞
0 du

(
u4

S

(
W S

RD cos4 θ + AS
RD cos2 θ + HS

RD

) + 8�u7

8u3+iβ3
B

[(4 − 3 cos2 θ ) cos2 θ ]
)
e−2u

Stokeslet

vx
HI
S − αS cos θ

h

∫ ∞
0 du

( NS
S

S + 4u5

8u3+iβ3
B

)
e−2u

vz
HI
S − αS sin θ

h

∫ ∞
0 du

(
2u3

2u+iβ + 8u3(u+1)2

8u3+iβ3
B

)
e−2u

�y
HI
S − αS cos θ

h2

∫ ∞
0 du

(
u2

2S

(
HS

S + AS
S cos2 θ

) + 4u5

8u3+iβ3
B

[1 + 2�u + 3� − �(u + 3) cos2 θ ]
)
e−2u

Rotlet

vy
HI
R

αR cos θ

2h2

∫ ∞
0 du

( HS
R

S + 8u5

8u3+iβ3
B

)
e−2u

�x
HI
R

αR cos θ

h3

∫ ∞
0 du

(
u3

4S

(
GS

R + KS
R cos2 θ

) − 4u5

8u3+iβ3
B

(1 − �u + �u cos2 θ )
)
e−2u

�z
HI
R

αR sin θ

h3

∫ ∞
0 du

(
u3

4S

(
HS

R + KS
R cos2 θ

) − 4u6

8u3+iβ3
B

� cos2 θ
)
e−2u

with

G̃ll = 1

4ηq

[
(1 − q|z − h|)e−q|z−h| +

(
2iqh(1 − qh)(1 − qz)

β − 2iqh
+ 8iq5zh4

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃tt = 1

2ηq

(
e−q|z−h| + iBqh

β − iBqh
e−q(z+h)

)
.
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TABLE V. Expressions of the frequency-dependent coefficients appearing in Table IV.

Coefficient Expression

NS
D u2[(2u2 − 4u + B + 2)iβ + 2Bu(u2 − 2u + 2)]

HS
D 3�[2(2u2 − 4u + 2 − B)iβ + 4Bu2(u − 2)] + 6[(4u − B − 4)iβ + 2Bu(2u − 3)]

AS
D 3�[3(−u2 + 2u + B − 1)iβ + 3Bu(−u2 + 2u + 1)]

NS
SD u3(Bu + iβ )(u − 1)

HS
SD 2(Bu + iβ )[1 + 2�(u − 1)]

AS
SD −(Bu + iβ )�(u − 1)

NS
Q −[4iβ(3u2 − 8u + 5 + B) + 4Bu(3u2 − 8u + 7)]

MS
Q (15u2 − 38u + 5B + 23)iβ + Bu(15u2 − 38u + 33)

W S
Q �[6iβ(B − 2 − u2 + 3u) − 6Bu2(u − 3)]

AS
Q 2Bu(15u − 28) + �(iβ(26 − 9B + 12u2 − 38u) + 2Bu(6u2 − 19u + 4)) + iβ(30u − 5B − 46)

HS
Q �[4iβ(2u + B − 2) + 8Bu2] − 24Bu(u − 2) + 4iβ(10 + B − 6u)

W B
Q 24�u(1 − u)

AB
Q 8[15u − 8 + �u(6u − 7)]

HB
Q 32(2 − 3u + �u)

NS
RD 2u3[(1 + B − u)iβ + Bu(3 − u)]

KS
RD �[6Bu(u − 2) − 3iβ(2 + B − 2u)]

GS
RD �[4iβ(2 + B − 2u) − 8Bu(u − 2)] + 16Bu + 4iβ(2 + B)

W S
RD �[3iβ(2 + B − 2u) + 6Bu(2 − u)]

AS
RD �[4iβ(2u − 2 − B) + 8Bu(u − 2)] − 6B(2u + iβ )

HS
RD 4B(2u + iβ )

NS
S u[(u2 − 2u + B + 1)iβ + Bu(u2 − 2u + 3)]

HS
S �[(4u2 − 2u − B − 2)iβ + 2Bu(2u2 − u − 2)] + (2u − 2 − B)iβ + 2Bu(u − 2)

AS
S −�[2(u2 + u − 2 − B)iβ + 2Bu(u2 + u − 4)]

HS
R u2[(2u − 2 − B)iβ + 2Bu(u − 2)]

KS
R �[(−4u + B + 4)iβ − 2Bu(2u − 3)]

GS
R −KS

R − 6Bu − (B + 4)iβ

HS
R −2B(2u + iβ )

The remaining Green’s functions in Fourier space read

G̃zz = 1

4ηq

[
(1 + q|z − h|)e−q|z−h| +

(
2iq3zh2

β − 2iqh
+ 8i(qh)3(1 + qz)(1 + qh)

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃lz = i

4ηq

[
− q(z − h)e−q|z−h| +

(
2i(qh)2(1 − qz)

β − 2iqh
− 8iq4zh3(1 + qh)

β3
B − 8i(qh)3

)
e−q(z+h)

]
,

G̃zl = i

4ηq

[
− q(z − h)e−q|z−h| +

(
− 2iq2zh(1 − qh)

β − 2iqh
+ 8iq4h4(1 + qz)

β3
B − 8i(qh)3

)
e−q(z+h)

]
.

The Green’s functions comprise both bulk contributions
and the frequency-dependent corrections due to the pres-
ence of the elastic interface. The terms involving β and
βB are, respectively, contributions associated with shear
and bending. Moreover, the remaining components of the
Green’s functions can readily be obtained from the usual
transformation relations. Specifically, this means Gxz =

Grz cos ϕ, Gyz = Grz sin ϕ, Gzx = Gzr cos ϕ, Gzy = Gzr sin ϕ,
and Gyx = Gxy. In the quasisteady limit of vanishing fre-
quency (β = βB = 0), the Green’s functions reduce to the
well-known Blake tensor near a no-slip wall [189,190].
Physically, this limit corresponds to an infinitely stiff wall,
for which the displacement field at the interface identically
vanishes.
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TABLE VI. Expressions of the time-dependent evolutions of the induced-swimming velocities due to hydrodynamic interactions with the
elastic interface. Here, ξ (u) = e−2u − e−2u(1+τBu2 ) is a bending related dimensionless function.

Velocity component Expression

Force dipole

vx
HI
D

αD sin(2θ )
2h2

( τS JS
D

8(1+τS )4(2+BτS )2 + ∫ ∞
0 du u3ξ (u)

)
vz

HI
D − αD(2−3 cos2 θ )

2h2

( τS(τ3
S +4τ2

S +6τS+6)
8(τS+1)4 + ∫ ∞

0 du (1 + u)u2ξ (u)
)

Source dipole

vx
HI
SD − αSD cos θ

2h3

( τS(τ3
S +4τ2

S +6τS+6)
8(1+τS )4 + ∫ ∞

0 du u3ξ (u)
)

vz
HI
SD − αSD sin θ

h3

( 3τS(2+τS )(τ2
S +2τS+2)

8(1+τS )4 + ∫ ∞
0 du (1 + u)u2ξ (u)

)
Force quadrupole

vx
HI
Q

αQ cos θ

8h3

(
τS

4(1+τS )5(2+BτS )3

(
Y S

Q cos2 θ − JS
Q

) + ∫ ∞
0 du u3

(
2 − 2u + (5u − 3) cos2 θ

)
ξ (u)

)
vz

HI
Q

αQ sin θ

2h3

( 3τS
4(1+τS )5

(
RS

Q cos2 θ − 2
) + ∫ ∞

0 du (1 + u) u2 (8 − 12u + (15u − 8) cos2 θ )ξ (u)
)

Rotlet dipole

vy
HI
RD

αRD sin(2θ )
4h3

( τSJS
RD

8(1+τS )4(2+BτS )3 − ∫ ∞
0 du u3ξ (u)

)
Stokeslet

vx
HI
S − αS cos θ

2h

( τSJS
S

4(1+τS )3(2+BτS )
+ ∫ ∞

0 du u2ξ (u)
)

vz
HI
S − αS sin θ

h

( τB(τ2
B+3τB+3)

4(1+τB )3 + ∫ ∞
0 du (1 + u)2ξ (u)

)
Rotlet

vy
HI
R

αR cos θ

h2

(− τSJS
R

8(1+τS )3(2+BτS )2 + ∫ ∞
0 du u2ξ (u)

)

APPENDIX B: HIGHER-ORDER SINGULARITIES IN AN
UNBOUNDED FLUID DOMAIN

In this Appendix, we provide for completeness analytical
expressions of the higher-order Stokes singularities in an
unbounded fluid domain, i.e., in the absence of the confining
elastic interface. By making use of the analytical recipes
introduced in Sec. II C, we readily obtain

G∞
R = 1

s2
(ê × ŝ),

G∞
D = 1

s2
[3(ê · ŝ)2 − 1]ŝ,

G∞
SD = 1

s3
[3(ê · ŝ)ŝ − ê],

G∞
Q = 1

s3
{3[5(ê · ŝ)3 − 3(ê · ŝ)]ŝ − [3(ê · ŝ)2 − 1]ê},

G∞
RD = 3

s3
(ê · ŝ)(ê × ŝ),

where, again, s = r − r0 denotes the position vector relative to
the singularity location, s = |s|, ŝ = s/s, and ê stands for the
orientation unit vector of the swimmer as defined by Eq. (13)

of the main body of the paper. Notably, the rotlet and force
dipole decay in the far-field limit as 1/s2, whereas the source
dipole, force quadrupole, and rotlet dipole undergo a faster
decay as 1/s3.

APPENDIX C: EXPRESSION OF THE
INDUCED-SWIMMING VELOCITIES IN THE

FREQUENCY AND TEMPORAL DOMAINS

Here, we present the main mathematical expressions ob-
tained in this paper in the form of tables. We provide
in Tables IV and V explicit analytical expressions of the
frequency-dependent translational swimming velocities and
rotation rates resulting from the fluid-mediated hydrody-
namic interactions with a nearby planar elastic interface. In
Tables VI and VII, we list the corresponding expressions
in the temporal domain for the startup motion from static
conditions. As already mentioned in the main text, only the
induced translational swimming velocities in the temporal do-
main are provided. The rotation rates have rather lengthy and
complex analytical expressions and thus are not listed here.
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TABLE VII. Expressions of the time-dependent coefficients appearing in Table VI.

Coefficient Expression

JS
D 3B2τ 5

S + 12B(1 + B)τ 4
S + 4[1 + 4B(B + 3)]τ 3

S + 4[4 + B(3B + 16)]τ 2
S + 2[8 + B(B + 24)]τS + 8(B + 2)

Y S
Q 21B3τ 7

S + 21B2(6 + 5B)τ 6
S + 42B[5B + 6(B + 3)]τ 5

S + [187B3 + 1260B(B + 1) + 88]τ 4
S + 2(58B3 + 561B2

+ 1260B + 220)τ 3
S + 2(5B3 + 348B2 + 1122B + 440)τ 2

S + 12(5B2 + 116B + 58)τS + 24(5B + 22)

JS
Q 16B3τ 7

S + 16B2(5B + 6)τ 6
S + 32B(5B2 + 15B + 6)τ 5

S + 4[35B3 + 240B(B + 1) + 16]τ 4
S + 8(11B3 + 105B2

+ 240B + 40)τ 3
S + 8(B3 + 66B2 + 210B + 80)τ 2

S + 48(B2 + 22B + 10)τS + 96(B + 4)

RS
Q τ 4

S + 5τ 3
S + 10τ 2

S + 10τS + 9

JS
RD 3B3τ 6

S + 6B2(2B + 3)τ 5
S + 18B(B2 + 4B + 2)τ 4

S + 2(5B3 + 54B2 + 72B − 4)τ 3
S + 4 (B3 + 15B2

+ 54B − 8)τ 2
S + 24(B2 + 5B − 2)τS + 48(B − 1)

JS
S 5Bτ 3

S + (2 + 13B)τS(1 + τS) + 2(1 + 2B)

JS
R B2τ 4

S + B(4 + 3B)τ 3
S + 2B(6 + B)τ 2

S + B(8 + B)τS − 4(1 − B)
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Chapter 6

Concluding remarks

In this chapter, I briefly summarize the most important research contributions
of this thesis, and I add a short perspective. The here-presented studies in the
field of active soft matter physics have focused on microswimmers, that is, active
particles suspended in a low-Reynolds-number medium and self-propelling by
creating fluid flows in the surrounding liquid. This way, the corresponding self-
propulsion mechanisms affect the surrounding environment, in particular other
microswimmers. Consequently, hydrodynamic interactions between the swimmers
arise, the effects of which we have analyzed.

First, Publications P1–P4 present our statistical framework for (semi)dilute mi-
croswimmer suspensions and the associated modeling of swimming at low Reynolds
numbers. Specifically, minimal microswimmer models on the basis of force dipoles
have been introduced, for straight-propelling swimmers [P1] and also for circle swim-
mers [P2]. In these models, both pushers and pullers can be constructed [P1, P2].
The concrete mathematical description concerning the involved fluid flow is con-
fined to the level of far-field hydrodynamics [31–33]. On this premise, correspond-
ing dynamical density functional theories (DDFTs) have been derived [P1, P2]
that include the effects of active self-propulsion, thermal noise, and external
potentials, as well as steric and hydrodynamic interactions between swimmers.
Additionally, an extension to multi-species systems has been formulated [P3],
covering both swimmer–swimmer and active–passive mixtures. In all three cases,
numerical evaluations for planar example situations have been performed [P1–P3],
showcasing the applicability of our framework. They include the effect of circularly
symmetric external trapping potentials confining the swimmers [P1–P3], for which
the theory qualitatively reproduces the previous results of particle-based computer
simulations [85, 163]. Especially, hydrodynamic interactions can cause spontaneous
symmetry breaking in the spatial distribution of the swimmers at the effective
boundaries of the trap, with the swimmers self-organizing into a high-density spot
acting as a hydrodynamic fluid pump [P1]. Depending on the system parameters,
further activity-induced instabilities can occur [P1–P3]. In contrast to that, circle
swimmers, in general, become localized near the center of the circular trap, if the
inherent curvature of their trajectories is large enough [P2]. Furthermore, we have
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described swimmers inside a circular shear cell, with externally driven particles on
the rim of the cell creating the internal fluid flow [P3].

Moreover, we have studied hydrodynamically-induced polar orientational ordering
of swimmers [P4], inspired by corresponding particle-based approaches [51,176]. For
this purpose, a test-particle method [181] has been newly adapted from equilibrium
to our system of active particles, creating a possibility to obtain full orientation-
dependent swimmer–swimmer pair distribution functions [P4]. The above problem
is treated via a linear stability analysis using appropriate approximations [P4].
We find that pure puller systems can develop polar orientational order across the
considered length scale, while disordered suspensions of pushers are linearly stable.
We have provided a quantitative criterion for the occurrence of the instability of the
uniform, disordered state [P4]. If enough pullers are present and sufficiently strong,
also binary mixtures of pushers and pullers can develop such a polar order [P3], in
qualitative accordance with previous particle simulations [51].

Concerning discrete-particle models, an individual three-sphere swimmer pro-
pelling by shape changes and its hydrodynamic interaction with nearby planar
walls (featuring no-slip boundary conditions) have been regarded [P5, P6]. Specif-
ically, setups featuring only one wall [P5] and a channel consisting of two parallel
walls [P6] were investigated. On the basis of corresponding, carefully calculated mo-
bility tensors that describe the translational and rotational response of each sphere
to a force or torque acting on one sphere, the subsequent swimmer trajectories (in
the absence of thermal noise) have been ordered into state diagrams [P5, P6].

Furthermore, the situation of a one-dimensional model membrane subject to
possible penetrations has been studied. Here, the model membrane consists of
discrete freely-orientable spherical particles that are subject to mutual steric,
elastic, and dipolar interactions [P7]. We have investigated whether an active
particle approaching the membrane is held back by the membrane or penetrates
it, depending on the system parameters [P7]. A corresponding mathematical
description has been developed as well [P7], which subsequently has been extended
to describing the situation for a two-dimensional model membrane [287].

Finally, hydrodynamic interactions of (active) particles with elastic interfaces
have been considered. First, a driven particle within a corresponding spherical
cavity in a specific non-axisymmetric setup has been described via an analytical
approach, obtaining the relevant mobility tensors that connect the driving force on
the particle to the resulting motions of the particle and the cavity [P8]. Second,
for a general microswimmer, represented by a set of hydrodynamic singularities,
near an infinite planar elastic interface, we have determined the corresponding
contributions of, e.g., a force dipole and a source dipole [P9].

In this thesis, DDFT-based studies on suspensions of hydrodynamically in-
teracting microswimmers [P1–P4] are formally combined with discrete-particle
models [P5–P9]. Beyond the given specific examples, the former statistical ap-
proach constitutes a quite general theoretical framework for many-swimmer systems,
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and should provide a versatile tool in the future, as indicated by the outlook in
Sec. 3.4. For example, the DDFT could be adjusted for setups featuring nearby
rigid walls, similar to those discussed in Publication [P5, P6] using a discrete-
particle model. Further work could include, e.g., more complex geometries for
the situations discussed in Publications P5–P9 because typical confinements, e.g.,
blood vessels or cell membranes, can feature significantly more irregular shapes.
Foremost, however, we would be interested in experimental tests of our various
predictions.

In conclusion, as the study of active microswimmers is still a relatively young field
of research, it is to be expected that there is a lot left to be discovered. I humbly
hope that the here-presented work can contribute to this progress.
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[64] B. Liebchen and H. Löwen, Optimal control strategies for active particle navigation,
EPL (Europhys. Lett.) 127, 34003 (2019).
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[68] J. Bialké, T. Speck, and H. Löwen, Active colloidal suspensions: clustering and
phase behavior, J. Non-Cryst. Solids 407, 367 (2015).

[69] M. E. Cates and J. Tailleur, Motility-induced phase separation, Annu. Rev. Condens.
Matter Phys. 6, 219 (2015).

[70] A. Solon, J. Stenhammar, M. E. Cates, Y. Kafri, and J. Tailleur, Generalized
thermodynamics of motility-induced phase separation: phase equilibria, Laplace
pressure, and change of ensembles, New J. Phys. 20, 075001 (2018).

[71] P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo, G. Gonnella, and I. Pagonabar-
raga, Full phase diagram of active Brownian disks: from melting to motility-induced
phase separation, Phys. Rev. Lett. 121, 098003 (2018).

[72] T. Speck, J. Bialké, A. M. Menzel, and H. Löwen, Effective Cahn-Hilliard equation
for the phase separation of active Brownian particles, Phys. Rev. Lett. 112, 218304
(2014).



214 References
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[196] M. Marechal and H. Löwen, Density functional theory for hard polyhedra, Phys.
Rev. Lett. 110, 137801 (2013).

[197] R. Wittmann, C. E. Sitta, F. Smallenburg, and H. Löwen, Phase diagram of
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[199] H. Löwen, Interaction between charged rodlike colloidal particles, Phys. Rev. Lett.
72, 424 (1994).
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M. Sassian, and Ü. Langel, Cell-penetrating peptides: a comparative membrane
toxicity study, Analyt. Biochem. 345, 55 (2005).

[283] Y. Xia, Nanomaterials at work in biomedical research, Nat. Mater. 7, 758 (2008).

[284] D. K. Kirui, D. A. Rey, and C. A. Batt, Gold hybrid nanoparticles for targeted
phototherapy and cancer imaging, Nanotechnology 21, 105105 (2010).

[285] J. S. Suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign, PEGylation as a strategy
for improving nanoparticle-based drug and gene delivery, Adv. Drug Deliv. Rev.
99, 28 (2016).



228 References

[286] A. Sommerfeld, Partial Differential Equations in Physics, Vol. 1 (Academic Press,
Cambridge, Massachusetts, 1949).

[287] A. Daddi-Moussa-Ider, B. Liebchen, A. M. Menzel, and H. Löwen, Theory of active
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