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Abstract 

I 

Abstract 
Phenylpropanoids and phenylpropanoid-derived plant polyphenols have numerous applications in pharmaceutical 

and food industries and are used for example as antibiotics, therapeutics and colourants. Unfortunately, their 

extraction from plants is not efficient due to low product concentrations. In addition, downstream processing is 

impeded because the desired phenylpropanoids are present in a complex mixture of compounds with very similar 

chemical properties. These limitations can be overcome using microbial platform organisms to produce 

phenylpropanoids and polyphenols. The following results were obtained in this thesis: 

(1) The efficient production of monolignols is an important requirement for the synthesis of the pharmacologically 

relevant lignans, which belong to the class of plant polyphenols. An engineered Escherichia coli strain, equipped 

with a set of genes encoding enzymes for monolignol synthesis, was used to elucidate the microbial production of 

different monolignols. For this purpose, natural and non-natural phenylpropanoids were supplemented to respective 

biotransformations using the engineered strain to examine the promiscuity of heterologous enzymes. It was 

revealed that the engineered strain was able to catalyse the stepwise reduction of six naturally occurring 

phenylpropanoids including 5-hydroxyferulic acid and sinapic acid, which was reported for the first time. Additionally, 

chemically interesting non-natural phenylpropanoids, such as 3,4,5-trimethoxycinnamic acid, 5-bromoferulic acid, 

3-nitroferulic acid, and a bicyclic p-coumaric acid derivative were also reduced to the corresponding non-natural 

monolignols. The microbial production of these compounds is a good basis for the synthesis of more complex plant-

derived compounds.  

(2) The site-specific and stereospecific decoration of phenylpropanoids with hydroxyl and O-methyl groups is a 

good possibility to obtain a variety of different phenylpropanoids. First a 4-coumarate 3-hydroxylase (C3H) from 

Saccharothrix espanaensis was used for the hydroxylation of p-coumaric acid yielding caffeic acid. In a second 

step, this enzyme was combined with the previously used monolignol pathway to produce caffeoyl alcohol from 

supplemented p-coumaric acid. Biotransformations resulted not only in caffeoyl alcohol production but also in p-

coumaryl alcohol production. This underlined the challenges of selective product synthesis with promiscuous 

enzymes. Further substitutions at the phenyl ring were introduced with the caffeic acid O-methyltransferase (COMT) 

from Medicago sativa, which was engineered towards the methylation of caffeic acid and 5-hydroxyferulic acid in 

whole cell biotransformations with engineered E. coli strains. COMT libraries obtained from site-saturation 

mutagenesis at four positions were screened and selected strains were further characterised. Amino acid 

substitutions in four positions located in or adjacent to the methoxy binding pocket were shown to alter the substrate 

specificity towards caffeic acid and 5-hydroxyferulic acid to produce ferulic acid and sinapic acid, respectively. 

Variants were found with an increased productivity of up to 17 % for ferulic acid production and 46 % for sinapic 

acid production compared to the not engineered wild type E. coli strain. The results contribute to a better 

understanding of these enzymes and will help to perform metabolic engineering for the microbial production of more 

complex phenylpropanoid-derived compounds in the future. 

(3) The multicopper oxidase CueO from Rhodococcus erythropolis, previously used for the in vitro production of 

lignan, was now examined regarding lignan production using a respective recombinant E. coli strain. The gene 

cueO was expressed under the control of a T7 expression system and a pBAD expression system to find the best 

suited induction conditions. It was revealed that the tight gene regulation of the pBAD expression system can be 

used for the microbial lignan production. The strain was cultivated in the presence of coniferyl alcohol (1 mM) and 

produced 0.17 mM (+)-pinoresinol. This is the first time, that microbial (+)-pinoresinol production was observed.  
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Zusammenfassung 
Phenylpropanoide und von ihnen abgeleitete pflanzliche Polyphenole haben zahlreiche Anwendungen in der Pharma- und 

Nahrungsmittelindustrie und werden beispielsweise als Antibiotika, Therapeutika und Farbstoffe eingesetzt. Leider ist ihre 

Extraktion aus Pflanzen ineffizient, da sie nur in geringen Konzentrationen vorkommen. Außerdem wird die 

Produktaufarbeitung dadurch erschwert, dass die gewünschten Phenylpropanoide im Pflanzengewebe in einem 

komplexen Stoffgemisch mit ähnlichen chemischen Eigenschaften vorkommen. Diese Einschränkungen können durch die 

Nutzung von mikrobiellen Plattformorganismen überwunden werden. Im Rahmen dieser Arbeit wurden folgende 

Ergebnisse erzielt: 

(1) Die effiziente Monolignolproduktion ist eine wichtige Voraussetzung für die Synthese des pharmakologisch 

interessanten Lignans, welches ein pflanzliches Polyphenol ist. Ein genetisch veränderter Escherichia coli Stamm wurde 

mit Enzymen für die Monolignolproduktion ausgestattet, um die Möglichkeit der Produktion einer Vielzahl von 

unterschiedlichen Monolignolen zu untersuchen. Dafür wurden natürliche und nicht-natürliche Phenylpropanoide zu 

Biotransformationen hinzugegeben und die Promiskuität der Enzyme erforscht. Es konnte gezeigt werden, dass der 

genutzte Stamm die schrittweise Reduktion von sechs natürlichen Phenylpropanoide katalysiert, darunter auch die 

Reduktion von 5-Hydroxyferulasäure und Sinapinsäure, welches zum ersten Mal beschrieben werden konnte. Die 

chemisch interessanten nicht-natürlichen Phenylpropanoide 3,4,5-Trimethoxyzimtsäure, 5-Bromferulasäure, 3-

Nitroferulasäure und ein bizyklisches p-Coumarsäurederivat wurden ebenfalls zum entsprechenden Monolignol reduziert. 

Die mikrobielle Produktion dieser Stoffe ist eine gute Basis für die Synthese von komplexeren pflanzlichen Substanzen. 

(2) Die Dekoration von Phenylpropanoiden mit Hydroxy- und O-Methylgruppen ist eine gute Möglichkeit, um eine Vielzahl 

verschiedener Phenylpropanoide zu erhalten. Zunächst wurde eine 4-Cumarat-3-Hydroxylase (C3H) von Saccharothrix 

espanaensis für die Hydroxylierung von p-Cumarsäure zu Kaffeesäure verwendet. In einem zweiten Schritt wurde dieses 

Enzym mit dem zuvor verwendeten Monolignolsyntheseweg kombiniert, um Kaffeoylalkohol aus hinzugefügter p-

Cumarsäure herzustellen. Biotransformationen führten nicht nur zur Produktion von Kaffeoylalkohol, sondern auch zur 

Produktion von p-Cumarylalkohol. Dies unterstreicht die Herausforderungen der selektiven Produktsynthese mit 

promiskuitiven Enzymen. Weitere Substitutionen am Phenylring wurden mit einer Kaffeesäure O-Methyltransferase 

(COMT) aus Medicago sativa eingefügt. Diese wurde gentechnisch verändert, um die Methylierung von Kaffeesäure und 

5-Hydroxyferulasäure in Ganzzellbiotransformationen mit E. coli zu steigern, wodurch Ferulasäure bzw. Sinapinsäure 

entsteht. Durch ortsspezifische Sättigungsmutagenese an vier Positionen wurde eine COMT Bibliothek erstellt, 

anschließend durchmustert und ausgewählte Varianten charakterisiert. Es konnte gezeigt werden, dass 

Aminosäuresubstitutionen in den Position 135, 136, 162 und 172, die in der Methoxybindetasche oder in deren Nähe 

lokalisiert sind, die Substratspezifität verändert. Außerdem konnte die Produktivität im Vergleich zur Wildtypvariante um 

17 % für die Ferulasäureproduktion bzw. um 46 % für die Sinapinsäureproduktion gesteigert werden. Die erhaltenen 

Varianten können zu einem besseren Verständnis dieser Enzyme beitragen und eine gentechnische Veränderung von 

Organismen für die Produktion von komplexen Phenylpropanoid-Verbindungen erleichtern.  

(3) Die Multikupferoxidase CueO aus Rhodococcus erythropolis wurde bisher für die in vitro Lignanproduktion genutzt und 

wurde nun hinsichtlich der Verwendung in E. coli untersucht. Das Gen cueO wurde unter der Kontrolle des T7-

Expressionssystems und des pBAD-Expressionssystems exprimiert, um die am besten geeigneten 

Induktionsbedingungen zu finden. Es zeigt sich, dass die enge Genregulation durch das pBAD-Expressionssystem für die 

mikrobielle Lignanproduktion verwendet werden kann. Der konstruierte Produktionsstamm wurde in Gegenwart von 1 mM 

Coniferylalkohol kultiviert und die Konzentration des Lignans (+)-Pinoresinol wurde bestimmt. Am Ende der 

Biotransformation wurden unter Verwendung dieses Enzyms in vivo 0.17 mM (+)-Pinoresinol hergestellt. Dies ist das erste 

Mal, dass die Produktion von mikrobiellem (+)-Pinoresinol beobachtet wurde. 
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Abbreviations 

4CL 4-coumarate: CoA ligase 

A adenine 

ara arabinose 

ATP adenosine triphosphate 

C cysteine 

C3H p-coumarate 3-hydroxylase 

C4H cinnamate 4-hydroxylase 

CAD cinnamyl alcohol dehydrogenase 

CCR cinnamyl-CoA reductase 

CHI chalcone isomerase 

CHS chalcone synthase 

CoA coenzyme A 

COMT caffeic acid O-methyltransferase 

CueO cuprous oxidase 

Da Dalton 

DIR dirigent protein 

E glutamic acid 

F phenylalanine 

F5H ferulate 5-hydroxylase 

G glutamine 

HPLC high performance liquid chromatography 

I isoleucine 

IPTG isopropyl-β-D-thiogalactopyranoside 

L leucine 

LAC laccase 

LB lysogeny broth 

LC/MS liquid chromatography/mass spectrometry 

leu leucine 

K lysine 

Kan kanamycin 

M molar (mol/L) 

MON cytochrome P450 monooxygenase 
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NF-κB nuclear factor-kappa B 

OD optical density 

OMT O-methyltransferase 

p para 

PAL phenylalanine ammonia lyase 

Q glutamine 

R arginine 

S serine 

SAH S-adenosyl-L-homocysteine 

SAM S-adenosyl-L-methionine 

SDS sodium dodecyl sulphate 

SIM selective Ion Monitoring 

STS stilbene synthase 

TAL tyrosine ammonia lyase 

T threonine 

V valine 
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1 Scientific context and key results of this thesis 

1.1 Polyphenols - naturally occurring and application 

Natural polyphenols comprise a multitude of plant-derived secondary metabolites 

which can serve as therapeutics, antibiotics and colourants (Licciardi and Underwood, 

2011; Marienhagen and Bott, 2013; Mi et al., 2016). Some polyphenols have 

antioxidant properties and reduce the risk of cancer, others are added to processed 

food products to make up for colour losses during processing (Guo et al., 2009; 

Sowbhagya and Chitra, 2010; Tan et al., 2011). In plants polyphenols are synthesised 

by enzymes of the phenylpropanoid pathway from L-phenylalanine and L-tyrosine as 

key building blocks. The such produced product range includes various 

phenylpropanoids, like cinnamic acid derivatives (other phenylpropanoids in Fig. 1) 

and monolignols (p-coumaryl alcohol in Fig. 1), which are precursor molecules for 

polyphenols. 

 

Fig. 1 Overview of biosynthetic pathways towards various phenylpropanoid-derived 
polyphenols. The amino acids L-tyrosine and L-phenylalanine serve as precursors for the 
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phenylpropanoids cinnamic acid and p-coumaric acid, which are formed by non-oxidative 
deamination. These compounds are building blocks of coumarins. Hydroxylation and O-
methylation in meta-position of the phenyl ring leads to other phenylpropanoids like caffeic acid 
or ferulic acid. The propene tail of p-coumaric acid, as part of the phenylpropanoid core 
structure, is modified in the first step by a 4-coumarate: CoA ligase. The resulting 
phenylpropanoyl-CoA thioester is a building block of stilbenes and flavonoids. Furthermore, 
the thioester can be reduced in two steps to p-coumaryl alcohol, a monolignol and lignan 
precursor. 4CL: 4-coumarate: CoA ligase, C4H: cinnamate 4-hydroxylase, CAD: cinnamyl 
alcohol dehydrogenase, CCR: cinnamyl-CoA reductase, CHI: chalcone isomerase, CHS: 
chalcone synthase, DIR: dirigent protein, LAC: laccase, MON: cytochrome P450 
monooxygenase, OMT: O-methyltransferase, PAL: phenylalanine ammonia lyase, STS: 
stilbene synthase, TAL: tyrosine ammonia lyase. 

 

Coumarins are secondary metabolites from plants, derived from cinnamic acid or p-

coumaric acid and contain a 1,2-benzopryone backbone (Fig. 1). They natural function 

as iron chelators in the soil or as defensive compounds against pathogens (Yang et 

al., 2015). Moreover, they can be found in tonka beans and are used as flavouring 

agents in alcoholic beverages and food (Wang et al., 2013).  

p-Coumaryl CoA serves as precursor for two polyphenol classes: stilbenes and 

flavonoids. One representative for stilbenes is pinosylvin (Fig. 1), which is present in 

the heartwood of Pinaceae and makes it resistant towards fungal attack (Hovelstad et 

al., 2006). Recent studies revealed pinosylvin as beneficial for human health with anti-

inflammatory and anti-cancer properties (Laavola et al., 2015; Liang et al., 2016). 

Another stilbene is resveratrol (Fig. 1) which can be found amongst others in grapes, 

berries, and peanuts (Shin et al., 2012). It is produced in response to injury or during 

an attack by bacteria or fungi (Frémont, 2000). Furthermore, resveratrol can 

presumably slow down the progression or even prevent cardiovascular diseases, 

cancer and showed positive impact on the lifespans of various organisms (Schmidlin 

et al., 2008; Shukla and Singh, 2011). 

Naringenin (Fig. 1) is a representative of the class of flavonoids and can be found in a 

variety of fruits, especially grapefruit and herbs (Felgines et al., 2000; Yáñez et al., 

2007). Among other positive characteristics, it stimulates DNA repair in prostate cancer 

cells and may prevent mutagenic changes (Gao et al., 2006). In a different study, 

naringenin was orally administered to mice once per day for 31 days to test its potential 

to treat Alzheimer's Disease. It could be shown that the memory was improved and the 

formation of harmful amyloid and tau proteins was reduced (Yang et al., 2017).  
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Lignans, also correlated with numerous health benefits, result from the oxidative 

coupling of two monolignols (e.g. p-coumaryl alcohol in Fig. 1, coniferyl alcohol in Fig. 

5) by laccases and dirigent proteins. As an example, pinoresinol, a dilignol consisting 

of two coniferyl alcohol molecules, is known for its broad medical application 

(Adlercreutz, 2007; Cornwell et al., 2004; Dixon, 2004; Duncan, Alison et al., 2003). It 

has antifungal properties (Hwang et al., 2010; Kim et al., 2010; Wikul et al., 2012) and 

reduces the risk of cardiovascular diseases and hormone-dependent cancer 

(Adlercreutz, 2007; Adolphe et al., 2010; Ayella et al., 2010; Azrad et al., 2013; 

Peterson et al., 2010). Moreover it has cytotoxic effects on tumour cells and an 

inhibitory effect on HIV-1 replication (López-Biedma et al., 2016; Mitsuhashi et al., 

2008; Moon et al., 2008). A more complex derivative of pinoresinol is podophyllotoxin, 

which is derived by a series of oxidation-, reduction- and methylation steps (Canel et 

al., 2000). It can be used for the treatment of venereal wart and its semi synthetic 

derivatives are used in cancer therapy (Davin and Lewis, 2005). 

1.2 Phenylpropanoids - naturally occurring and application 

Cinnamic acid is the “simplest” phenylpropanoid and consists of a phenyl ring attached 

to a propene tail (Buono et al., 2018) (Fig. 1). It is obtained from cinnamon oil and is 

mainly used as an antioxidant and preserving agent in food industry (Li et al., 2014; 

Sun et al., 2018; Zanetti et al., 2015). Cinnamic acid can be reduced to the 

corresponding monolignol cinnamyl alcohol, a building block for lignan synthesis in 

plants, and this compound is present only in small amounts in natural sources (Zucca 

et al., 2009). Therefore, chemical synthesis is used to produce sufficient amounts 

needed for fragrance and flavour ingredients (Bickers et al., 2005). 

p-Coumaric acid, a cinnamic acid derivative, harbours an additional hydroxyl group in 

4’-position of the phenyl ring (Fig. 1). It can be found in numerous plants like tomatoes 

and carrots but also in wine and vinegar (Carrero Gálvez et al., 2014). Its application 

includes the prevention of UV-induced damage to eye tissue and artery diseases 

(Ilavenil et al., 2016). p-Coumaryl alcohol is the respective monolignol and plays a key 

role in lignin formation, which is important for water transport in plants and prevents 

the degradation of wall polysaccharides being a major line of defence against 

pathogens, insects, and other herbivores (Hatfield and Vermerris, 2001). 

Another cinnamic acid derivative is caffeic acid with a dihydroxylated phenyl ring (Fig. 

1). It is a natural ingredient in coffee beans and found in apples, pears, bell peppers, 
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and mate tea (Bojić et al., 2013). In Aspergillus flavus caffeic acid can impede oxidative 

stress, which would otherwise result in triggered or enhanced aflatoxin production. This 

is detrimental because even the production of very low hepato-carcinogenic aflatoxins 

quantities can have a huge negative impact on food safety and on the quality of several 

agricultural products (Kim et al., 2008). Caffeoyl alcohol can be found in several vanilla 

and cacti species and is of interest in plant science, food industry and bioenergy 

research (Chen et al., 2012; Liu et al., 2017). 

Ferulic acid is ubiquitous in plants as the most abundant phenolic acid and it is one of 

the effective components in Chinese medicine herbs (Ou and Kwok, 2004). Due to its 

structural features it exhibits antioxidative activity. For instance, the hydroxyl group at 

the phenyl ring is responsible to capture and neutralize reactive oxygen species and 

the O-methyl group at the phenyl ring is important for the stability of the molecule 

forming a hydrogen bond with the hydroxyl group (Graf, 1992) (Fig. 1). It was 

demonstrated that ferulic acid has an effect against erythema, photoaging and skin 

cancer, which are caused by UV radiation. Moreover, the chemical stability of vitamins 

were increased by the incorporation of ferulic acid in topical solutions containing 

vitamins (Peres et al., 2018). The corresponding monolignol coniferyl alcohol is present 

in lignin from dicotyledonous angiosperms (Ruelland et al., 2003) and is a precursor 

molecule for pinoresinol, a putative hypoglycaemic agent in defatted sesame seeds 

(Wikul et al., 2012). Furthermore, coniferyl alcohol was also identified as a honey bee 

queen retinue pheromone (Keeling et al., 2003). 

Another cinnamic acid derivative is 5-hydroxyferulic acid, carrying two hydroxyl groups 

and one O-methyl group at the phenyl ring (Fig. 1). It is commonly found in plants and 

responsible for plant growth. For example, seedlings which were grown on media 

containing 5-hydroxyferulic acid were more vigorous than seedlings grown on ferulic 

acid media (Chapple et al., 1992). 5-Hydroxyconiferyl alcohol is also involved in 

lignification and can be found in several angiosperm plants (Parvathi et al., 2001).  

Sinapic acid is another cinnamic acid derivative and harbours one hydroxyl group and 

two O-methyl groups at the phenyl ring (Fig. 1). It is prevalent in plants including fruits 

(lemon, strawberries), vegetables (broccoli, cabbage), and herbs (borage, rosemary, 

thyme) (Nićiforović and Abramovič, 2014). Previous studies elucidated that sinapic 

acid inactivates the nuclear factor-kappa B (NF-κB), which suppresses the expression 

of pro-inflammatory mediators such as tumour necrosis factor-α and interleukin-1β 
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(Yun et al., 2008). NF-κB is important for the immune response to infections and its 

defective regulation is linked to autoimmune diseases, cancer, and improper immune 

development (Shukla and Singh, 2011). Sinapyl alcohol is the precursor for syringyl 

lignin units and is necessary for lignin formation and quality (Boerjan et al., 2003; Do 

et al., 2007). 

1.3 Enzymes participating in the phenylpropanoid pathway and 

polyphenol synthesis 

Enzymes involved in the phenylpropanoid metabolism have a broad substrate range 

and can convert a plurality of different substrates. Their activities target modifications 

of the propene tail, the phenyl group or contribute to polyphenol assembly 

(Marienhagen and Bott, 2013).  

1.3.1 Modulations at the propene tail 

Phenylpropanoids are precursor molecules of polyphenols and are derived from the 

aromatic amino acids L-phenylalanine or L-tyrosine. These amino acids are non-

oxidatively deaminated by ammonia lyases, for example a tyrosine ammonia lyases 

(TAL) is needed for the deamination of L-tyrosine (Fig. 2).  

 

Fig. 2 Biosynthetic pathway for p-coumaryl alcohol synthesis from L-tyrosine. p-
Coumaric acid is formed by deamination of L-tyrosine and is further modified by a 4-coumarate: 
CoA ligase to the corresponding phenylpropanoyl-CoA thioester. The thioester is reduced in 
two steps by a reductase and an alcohol dehydrogenase first to an aldehyde and then to p-
coumaryl alcohol. TAL: tyrosine ammonia-lyase, 4CL: 4-coumaryl-CoA ligase, CCR: cinnamyl-
CoA reductase, CAD: cinnamyl alcohol dehydrogenase. 

 

The outcome is a phenyl group attached to a propene tail, which is known as the 

phenylpropanoid core structure. (Jansen et al., 2014; Marienhagen and Bott, 2013; 

Milke et al., 2018). In case of TAL, L-tyrosine is deaminated to p-coumaric acid, which 
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is coenzyme A (CoA)-activated by 4-coumarate-CoA ligases (4CL) in the next step. 

Afterwards, p-coumaryl CoA is reduced to p-coumaryl aldehyde by a cinnamoyl-CoA 

reductase (CCR). The last step in this pathway is catalysed by a cinnamyl alcohol 

dehydrogenase (CAD), which reduces p-coumaryl aldehyde to p-coumaryl alcohol, 

also known as monolignol. Monolignols are building blocks for the lignin synthesis in 

plants, but are also important for the synthesis of the pharmaceutically interesting 

group of lignans (Korkina et al., 2011; Neutelings, 2011). Enzymes participating in the 

monolignol pathway are known for their broad substrate spectrum and might be used 

for the production of other monolignols besides p-coumaryl alcohol (Ferrer et al., 2008). 

1.3.2 Modification at the phenyl group 

In addition to the pathway from p-coumaric acid to p-coumaryl alcohol, there is also 

the possibility to convert p-coumaric acid to sinapic acid. The biosynthesis of various 

cinnamic acid derivatives starts with the hydroxylation of cinnamic acid catalysed by a 

cinnamate 4-hydroxylases (C4H) (Fig. 3). 

 

Fig. 3 Pathway of cinnamic acid derivatives. In the first step, cinnamic acid is hydroxylated 
to p-coumaric acid. Further phenylpropanoids are built by subsequent hydroxylation and O-
methylation steps in meta-position of the phenyl ring. C4H: cinnamate 4-hydroxylase, C3H: 4-
coumarate 3-hydroxylase, COMT: caffeic acid O-methyltransferase, F5H: ferulate 5-
hydroxylase.  
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This is followed by an additional hydroxylation catalysed by a 4-coumarate 3-

hydroxylase (C3H). The product of this reaction is caffeic acid, which is O-methylated 

at this hydroxyl group by a caffeic acid O-methyltransferase (COMT). The resulting 

ferulic acid is then hydroxylated in 5’-position by a ferulate 5-hydroxylase (F5H) yielding 

5-hydroxyferulic acid. The subsequent methylation at this hydroxyl group leads to 

sinapic acid and is catalysed by COMT. 

In this thesis, C3H and COMT were used for the microbial production of caffeic acid, 

ferulic acid, and sinapic acid in E. coli, and are therefore here described in detail.  

4-Coumarate 3-hydroxylase (C3H) 

The conversion of p-coumaric acid to caffeic acid is catalysed by C3H. The enzyme 

used in this thesis was derived from Saccharothrix espanaensis, a gram-positive 

bacterium belonging to the order of Actinomycetales (Berner et al., 2006). In previous 

studies, C3H was successfully used in E. coli to produce caffeic acid, when p-coumaric 

acid was supplemented as a substrate (Rodrigues et al., 2015).  

Caffeic acid O-methyltransferase (COMT) 

Methyltransferases are essential for lignin formation in plant cell walls and are 

ubiquitous in plants (Hatfield and Vermerris, 2001). They are responsible for the 

production of various phenylpropanoids as the basis for the production of numerous 

polyphenols (Schönherr and Cernak, 2013). COMT is an enzyme participating in the 

phenylpropanoid pathway catalysing the O-methylation of different cinnamic acid 

derivatives (Inoue et al., 2000; Parvathi et al., 2001) like caffeic acid and 5-

hydroxyferulic acid (Ferrer et al., 2008). A consequence of the low substrate specificity 

is the risk to produce several similar compounds, which are difficult to separate 

(Allewell, 2012; Yoon et al., 2012).  

The methyltransferase from Medicago sativa (M. sativa) is a 43 kDa enzyme 

consisting of 365 amino acids and forms a dimer in the native stage. The availability of 

a crystal structure by X-ray crystallography (PDB ID: 1KYZ) provides information about 

the substrate binding site and the reaction mechanism (Zubieta et al., 2002) which is 

comparable to other plant-derived O-methyltransferases (Zubieta et al., 2001). The 

active site of the functional methyltransferase consists of two subunits. Each monomer 

comprises a catalytic C-terminal domain consisting of an α/β-Rossmann fold, which is 

needed to bind the cofactor S-adenosyl-L-methionine (SAM) (Rossmann et al., 1974). 
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At first, the hydroxyl group at the phenyl ring is deprotonated by a histidine at position 

269. This allows the transmethylation of SAM and results in S-adenosyl-L-

homocysteine (SAH) and the methylated substrate (Fig. 4). 

 

Fig. 4 Caffeic acid O-methyltransferase (COMT) catalyses the O-methylation of various 
phenylpropanoids. The hydroxyl group (blue) located in meta-position of the phenyl ring 
serves as methylation site, S-adenosyl-L-methionine (SAM) donates the methyl group (red) 
and is transformed to S-adenosyl-L-homocysteine (SAH). SAM: S-adenosyl-L-methionine, 
SAH: S-Adenosyl-L-homocysteine; R1: -COOH (carboxylic acid), -CO (aldehyde), -COH 
(alcohol); R2: -H (proton), -OCH3 (O-methylation). 

 

The non-specific activity of COMT towards several phenylpropanoids could be due to 

the relatively large substrate binding site next to His 269 and the cofactor (Zubieta et 

al., 2001). 

1.3.3 Polyphenol synthesis: Multicopper oxidase/Laccase 

Laccases are copper-containing enzymes and belong to the family of multicopper 

oxidases (Kües and Rühl, 2011). They use oxygen as co-substrate and the only by-

product is water, which is the reason why they are described as “green catalysts”. 

Moreover, they are involved in the production of phenylpropanoid-derived polyphenols 

as they promote the oxidative coupling of two monolignols (Solomon et al., 1996). A 

single electron oxidation initiates the dimerization reaction through free radical coupling 

(Gang et al., 1999). These reactions are not stereochemically specific resulting in a 

variety of different lignans (Dixon, 2004) (Fig. 5).  
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Fig. 5 Radical coupling products from coniferyl alcohol. Laccases produce radicals of 
coniferyl alcohol that allow for multiple forms of dimerization. Without the addition of dirigent 
proteins, the coupling is non-specific. 

 

The multicopper oxidase CueO from Rhodococcus erythropolis was previously used 

for the in vitro lignan production and has a laccase activity (Classen et al., 2013). 

Multicopper oxidases are nearly ubiquitous in higher plants, fungi and bacteria and are 

known for their broad substrate spectrum. They participate in cell development, heavy 

metal resistance and in the formation and degradation of lignin (Hoegger et al., 2006). 

Amongst others, their application consists in the delignification of wood fibres, polymer 

synthesis or waste water cleaning in dyeing factories (Riva, 2006; Rodríguez et al., 

1999). 
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1.4 Microbial production of phenylpropanoids and phenylpropanoid-

derived polyphenols 

(Milke, L., Aschenbrenner, J., Marienhagen, J., and Kallscheuer, N. 2018, Applied 

Microbiology and Biotechnology, cf. chapter 2.1) 

Phenylpropanoids and phenylpropanoid-derived polyphenols are normally present in 

plants only in low concentrations, which impedes their extraction from their natural 

source (Georgiev et al., 2009). Furthermore, plants underly various environmental 

factors influencing the yield of desired compounds even more (Milder et al., 2005; Zhu 

et al., 2018). Another limitation is that plant tissues are composed of a mixture of 

phenylpropanoids with similar chemical properties, which makes the downstream 

processing time-consuming and costly (Chemler and Koffas, 2008). A different 

approach to produce such compounds is chemical synthesis, which, however, is 

laborious and time-consuming due to numerous synthetic steps including intermediate 

purifications (Maruyama et al., 1994; Pickel et al., 2010; Roy et al., 2002). A good 

alternative is the microbial production of phenylpropanoids and phenylpropanoid-

derived polyphenols as available molecular biological tools enable the functional 

implementation of plant-derived pathways in the microbial metabolism (Marienhagen 

and Bott, 2013; Milke et al., 2018). 

1.4.1 Phenylpropanoids 

Cinnamic acid is “the simplest” phenylpropanoid and serves as chemical basis to 

produce additional phenylpropanoids. Its synthesis depends on the shikimate pathway, 

which provides the aromatic amino acids L-phenylalanine and L-tyrosine (Masuo et 

al., 2016). This pathway can be used in connection with a PAL for the production 

of cinnamic acid from glucose in E. coli (van Summeren-Wesenhagen and 

Marienhagen, 2015; Vargas-Tah et al., 2015). Another strategy is the addition of 

the direct precursor molecule L-phenylalanine to cultivations, which was performed 

using Streptomyces lividans and E. coli (Cui et al., 2014; Wang et al., 2015). The 

production of p-coumaric acid, caffeic acid, and ferulic acid was enabled by 

introducing genes encoding enzymes that catalyse these steps in E. coli (Berner et al., 

2006; Choi et al., 2011; Rodrigues et al., 2015) (chapter 1.3.2). Further optimisation 

was achieved by an L-tyrosine overproducing E. coli strain resulting in higher product 

yields based on glucose (Kang et al., 2012; Lütke-Eversloh and Stephanopoulos, 
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2007; Pittard et al., 2005). The microbial production of 5-hydroxyferulic acid and sinapic 

acid was not described so far.  

As mentioned before, enzymes participating in the monolignol pathway have a broad 

substrate range and were used for the production of various phenylpropanoids (Ferrer 

et al., 2008). An E. coli strain harbouring a phenylalanine ammonia lyase, a carboxylic 

acid reductase and an alcohol dehydrogenase was able to produce cinnamyl alcohol 

from a glycerol/glucose mixture (Klumbys et al., 2018). Moreover, another E. coli strain 

was engineered for p-coumaryl alcohol production and its productivity was enhanced 

by balancing gene expression of all pathway genes on the level of varying the spacing 

between the Shine‑Dalgarno sequence and the START codon (Jansen et al., 2014; 

van Summeren-Wesenhagen et al., 2015). The production of caffeoyl alcohol and 

coniferyl alcohol was realised using immobilised cells or an optimised cultivation 

protocol with respect to the feeding strategy (Chen et al., 2017; Liu et al., 2017).  

1.4.2 Polyphenols 

In recent years, many microbial strains were constructed to produce polyphenols, 

especially flavonoids and stilbenes (Kaneko et al., 2003). For example the flavonoid 

naringenin was produced in E. coli by the heterologous expression of genes coding for 

a 4CL, chalcone synthase and chalcone isomerase (Hwang et al., 2003). These genes 

were used in E. coli, C. glutamicum, and Saccharomyces cerevisiae (S. cerevisiae) for 

naringenin production from different precursors like p-coumaric acid or L-tyrosine 

(Kallscheuer et al., 2016; Xu et al., 2011; Yan et al., 2005). The production was further 

optimised by the addition of cerulenin, which inhibits the fatty acid synthesis so that the 

stinted malonyl-CoA is then available for polyphenol synthesis (Santos et al., 2011; Wu 

et al., 2014). The same strategy was used to produce the stilbene pinosylvin from L-

phenylalanine or cinnamic acid in E. coli and C. glutamicum (Kallscheuer et al., 2016; 

van Summeren-Wesenhagen and Marienhagen, 2015). The stilbene resveratrol was 

also successfully produced in E. coli (Lim et al., 2011), C. glutamicum (Kallscheuer et 

al., 2015; Kallscheuer et al., 2016; Kallscheuer et al., 2017), and S. cerevisiae (Li et 

al., 2016; Shin et al., 2011; Shin et al., 2012) from various precursors. Until now, 

microbial production of lignans was not described. 

1.4.3 Production of non-natural compounds 

Another promising alternative to natural polyphenols is the production of non-natural 

polyphenols. These analogous have pharmacological properties and have a toxic 
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effect on bacteria and fungi, but are not active against human cells (Cress et al., 2013; 

Fowler et al., 2011; Ramawat and Mérillon, 2013). On top of that, these compounds 

can help to get a deeper understanding in mechanisms of enzymatic catalysis and in 

requirements for substrate specificity (Bhan et al., 2015; Chen et al., 2007; Mora-Pale 

et al., 2013). The production of different non-natural flavanones and stilbenes with 

enzymes of a phenylpropanoid pathway was previously demonstrated (Chemler et al., 

2007; Horinouchi, 2008; Horinouchi, 2009; Katsuyama et al., 2007b; Katsuyama et al., 

2007a). The used pathway included a 4CL, which is also needed for monolignol 

synthesis (chapter 1.3.1). The synthesis was achieved by supplementing respective 

precursor molecules to the cultivation broth and the resulting product titres were 

comparable to those for natural compounds. This strategy is also called precursor 

directed synthesis (Pandey et al., 2016). 

1.5 Aim of this thesis 

This thesis focused on engineering of E. coli for the microbial production of 

phenylpropanoids and phenylpropanoid-derived polyphenols. This should contribute to 

improve the access and thus cover the high demand for such compounds in the 

pharmaceutical and food industries. 

In part one the low substrate specificity observed with heterologous enzymes of the 

phenylpropanoid pathway was studied as strategy to produce various monolignols 

starting from respective cinnamic acid derivatives. All modifications introduced in these 

molecules by enzyme catalysis refer to the propene tail of the phenylpropanoids (Fig. 

2). Furthermore, successfully produced monolignols with interesting substitutions at 

the phenyl ring for consecutive chemical reactions were subject to further 

improvements. This included optimisation regarding substrate supplementation and 

implementation of a suitable screening method to monitor further optimisations in 

cultivation conditions or strain development.  

Another pathway involved in the phenylpropanoid synthesis mediates hydroxylation 

and O-methylation of the phenyl ring in phenylpropanoids (Fig. 3). The participating 

enzymes were examined to produce different cinnamic acid derivatives in part two. At 

first, a literature research was performed to evaluate suitable hydroxylases and O-

methyltransferase mediating the substitutions at the phenyl ring. Enzymes catalysing 

these steps were used in whole cell biotransformation for the in vivo production of the 

desired cinnamic acid derivative. This is advantageous because the O-methylation of 
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caffeic acid and 5-hydroxyferulic acid can then be conducted without additional 

cofactor (SAM) supplementation (Fig. 3, Fig. 4). If necessary, the substrate range of 

this enzyme must be adopted to methylate caffeic acid and 5-hydroxyferulic acid 

leading to ferulic acid and sinapic acid, respectively. This was performed using site-

saturation mutagenesis. 

The third part focused on the in vivo lignan production with building blocks synthesised 

in part one with the phenylpropanoid pathway. For this purpose, a suitable enzyme had 

to be selected and was subject to initial optimisation of the expression system. Finally, 

lignan production was evaluated by supplementation of monolignols.  

1.6 Key results 

This thesis comprises in total three parts. The first part focusses on the monolignol 

pathway which is responsible for the reduction of various cinnamic acid derivatives to 

the corresponding monolignol (Fig. 6).  

 

Fig. 6 General overview about the topics this thesis addresses. Chapters 1.6.1 and 1.6.2 
focused the monolignol pathway from a cinnamic acid derivative to the corresponding 
monolignol (in this scheme demonstrated with p-coumaric acid and p-coumaryl alcohol). 
Chapters 1.6.3 and 1.6.4 addressed the production of various cinnamic acid derivatives. 
Pinoresinol production is described in chapter 1.6.5. 
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The part addresses the production of various natural and non-natural monolignols by 

an engineered E. coli strain (chapter 1.6.1). In addition, the optimisation of cultivation 

conditions regarding substrate supplementation and the development of a suitable 

screening method was focused (chapter 1.6.2). 

The second part addresses the microbial production of cinnamic acid derivatives using 

other enzymes participating in the phenylpropanoid pathway (Fig. 6). This includes 

E. coli strains for the production of caffeic acid (chapter 1.6.3) and E. coli strains for 

the production of ferulic acid and sinapic acid (chapter 1.6.4).  

The last part concentrated on the microbial lignan production from supplemented 

coniferyl alcohol (chapter 1.6.5).  

 

1.6.1 Microbial production of natural and non-natural monolignols 

(Aschenbrenner, J., Marx, P., Pietruszka, J. and Marienhagen, J. 2018, 

ChemBioChem, cf. chapter 2.2) 

Enzymes participating in the phenylpropanoid pathway are known for their low 

substrate specificity, which is specifically advantageous as a broad range of different 

compounds can be converted with only one enzyme (Ferrer et al., 2008). However, 

this approach does only yield the desired target products in sufficient amount and 

purity, if the respective precursors are selectively supplied. In this thesis the catalytic 

versatility of the heterologous phenylpropanoid pathway to monolignols in E. coli was 

explored by supplementing different cinnamic acid derivatives as starting compounds 

to the cultivation medium (Aschenbrenner et al., 2018). The synthetic pathway towards 

the corresponding monolignols encompassed the following enzymes: tyrosine 

ammonia lyase (TAL) from the purple bacterium (Rhodobacter sphaeroides), 4-

coumarate: CoA ligase (4CL) from parsley (Petroselinum crispum), and two enzymes 

derived from corn (Zea mays): cinnamyl-CoA reductase (CCR) and cinnamyl alcohol 

dehydrogenase (CAD) (Fig. 2). The genes were organised as synthetic operon under 

control of the IPTG-inducible T7 promoter. In a previous work, the genes were already 

functionally introduced in E. coli and the success of the strategy was shown by 

production of the monolignol p-coumaryl alcohol by cultivation of the strain in LB 

medium without any supplements (Jansen et al., 2014; van Summeren-Wesenhagen 

et al., 2015).  
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In a first step, the following naturally occurring cinnamic acid derivatives were 

supplemented to cultivations of this engineered E. coli strain to verify that the 

corresponding monolignols can be produced via the heterologous pathway: cinnamic 

acid, p-coumaric acid, caffeic acid, ferulic acid, hydroxyferulic acid, and sinapic acid 

(Fig. 7).  

 

Fig. 7 Naturally occurring cinnamic acid derivatives (above) and the corresponding 
monolignols (below). 4CL: 4-coumarate: CoA ligase, CCR: cinnamyl-CoA reductase, CAD: 
cinnamyl alcohol dehydrogenase. The monolignol production was initiated by addition of the 
respective cinnamic acid derivative (2.5 mM) to the growing cells. After 17 h, the monolignol 
concentrations were determined by HPLC, respectively.  

 

It turned out that the synthetic pathway can be used to reduce several naturally 

occurring cinnamic acid derivatives to the respective monolignols. Cinnamic acid is a 

phenylpropanoid with an unsubstituted phenyl ring and a precursor molecule for 

cinnamyl alcohol, which could be obtained with 195.4 mg/L (1.46 mM) using the 

engineered E. coli strain (chapter 2.2: Tab. 1). The production strain was also able to 

accumulate 121.8 mg/L (0.81 mM) p-coumaryl alcohol in culture supernatants with the 

same cultivation conditions (chapter 2.2). Moreover, the strain was also capable to 

synthesise 5.6 mg/L (0.03 mM) caffeoyl alcohol, which was the lowest concentration 

observed among all naturally occurring monolignols. The highest monolignol 

concentrations were detected during coniferyl alcohol production (327.8 mg/L, 
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1.82 mM) and was therefore subject to extractions of 1 L culture supernatant yielding 

280 mg/L (1.55 mM). In addition, the production strain was also able to produce the 

two remaining monolignols, 5-hydroxyconiferyl alcohol (102.4 mg/L, 0.52 mM) and 

sinapyl alcohol (102.4 mg/L, 0.52 mM), which could be demonstrated for the first time. 

In literature, the production of some monolignols were also addressed using different 

media, a different set of enzymes, a prolonged cultivation time, higher substrate 

concentrations or a different strategy regarding substrate supplementation (Chen et 

al., 2017; Klumbys et al., 2018; Liu et al., 2017). The main influence had the multiple 

substrate addition during biotransformations, because this strategy impeded the 

growth-inhibiting effect of cinnamic acid derivatives, which could be seen during this 

work and in previous studies (Matejczyk et al., 2017; Rodrigues et al., 2015). 

Nevertheless, this was the first time, that one E. coli strain was used to produce 

cinnamyl alcohol, p-coumaryl alcohol, caffeoyl alcohol, coniferyl alcohol, 5-

hydroxyconiferal alcohol and sinapyl alcohol.  

Motivated by these results for the production of natural monolignols, the synthesis of 

non-natural derivatives was also examined, which gives access to a variety of 

modifiable lignans (Kantchev et al., 2007). One of such substrates, which resembles 

sinapic acid, is the commercially available 3,4,5-trimethoxycinnamic acid with three O-

methyl groups at the phenyl ring (Fig. 8).  
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Fig. 8 Non-naturally occurring cinnamic acid derivatives (above) and the corresponding 
monolignols (below). 4CL: 4-coumarate: CoA ligase, CCR: cinnamyl-CoA reductase, CAD: 
cinnamyl alcohol dehydrogenase. 

 

Nevertheless, only 4.5 mg/L (0.02 mM) 3,4,5-trimethoxycinnamyl alcohol, the 

corresponding monolignol, was detectable in culture supernatant (chapter 2.2: Tab. 1). 

3-Nitroconiferyl alcohol was also successfully synthesised by the production strain 

(74.6 mg/L, 0.33 mM) and is of interest because of the nitro group on the phenyl ring. 

This reactive group enables additional chemical alterations of 3-nitroconiferyl alcohol-

derived compounds (Kantchev et al., 2007). To further test the limits of the 

heterologous pathway, the sterically more challenging precursor bicyclic p-coumaric 

acid was subject to biotransformations. Astonishingly, 25.4 mg/L (0.13 mM) bicyclic p-

coumaryl alcohol accumulated in the culture supernatant and seems to be a more 

suitable substrate for the monolignol pathway in contrast to caffeic acid. It should be 

stressed that qualitative NMR experiments revealed the accumulation of p-coumaryl 

aldehyde in the culture supernatant. This suggests that CAD, the last enzyme within 

the heterologous monolignol pathway, does not efficiently reduce this aldehyde 

compared to other cinnamyl aldehyde derivatives. 5-Bromoferulic acid was the best 

converted non-natural cinnamic acid derivative with 5-bromoconiferyl alcohol yielding 

the highest titres (462.2 mg/L, 1.78 mM) among all tested natural and non-natural 
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monolignols. This is beneficial since the bromine group allows for the consecutive 

chemical transformation of lignans (Kantchev et al., 2007). 

This was the first time, that non-natural monolignols were produced with E. coli. 

Moreover, it is noteworthy, that the same engineered E. coli strain can be used to 

produce numerous natural and non-natural monolignols.  

1.6.2 Development of a suitable screening method 

(Aschenbrenner, J., Marx, P., Pietruszka, J. and Marienhagen, J. 2018, 

ChemBioChem, cf. chapter 2.2) 

5-Bromoconiferyl alcohol production was chosen for further optimisation because of 

the high yield and the reactive bromine group which allows additional chemical 

transformations (Kantchev et al., 2007). As known from natural cinnamic acid 

derivatives, which have an inhibitory effect on microbial growth, an appropriate 

substrate concentration must be found to compromise product concentrations and 

microbial growth (Matejczyk et al., 2017; Rodrigues et al., 2015). For this purpose, 

E. coli cultivations were performed in 48-well microtiter plates in a microbioreactor 

system (Aschenbrenner et al., 2018). The cultivations were supplemented with varying 

concentrations of 5-bromoferulic acid (0 mM – 6 mM) and the backscatter was 

recorded for 17 h. The cultivations with substrate concentrations up to 3 mM revealed 

that the presence of 5-bromoferulic acid has a growth-inhibiting effect, as was found 

for natural phenylpropanoids in this study (chapter 2.2: Fig. 3). Substrate addition in 

concentrations exceeding 3 mM resulted in precipitation which impeded the 

determination of the culture backscatter over time (chapter 2.2). Moreover, the 

supplementation of these substrate concentrations did not lead to increased 5-

bromoconiferyl alcohol concentrations, probably due to enhanced growth-inhibitory 

effect (Fig. 9). With respect to the 5-bromoconiferyl alcohol concentration, substrate 

concentrations around 2.5 mM turned out to be the most suitable since 225.7 mg/L 

(0.87 mM) were determined in culture supernatants (Fig. 9). 
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Fig. 9 Influence of different supplemented 5-bromoferulic acid concentrations on the 
production of 5-bromoconiferyl alcohol. E. coli was cultivated in 900 µL LB medium with 
different 5-bromoferulic acid concentrations in 48-well microtiter plates at 25 °C and 900 rpm. 
Heterologous gene expression was induced with 1 mM IPTG at the time of inoculation. 5-
Bromoconiferyl alcohol concentration was determined with HPLC. Data represents average 
values and standard deviations from three biological replicates. For details see chapter 2.2, 
Fig. 3. 

 

The growth-inhibiting effect of 5-bromoferulic acid could be circumvented by 

continuously feeding the substrate during biotransformations (Chen et al., 2017). One 

possibility, especially for large scale application, is fed-batch fermentation (Ezeji et al., 

2004), where the substrate concentration is kept below the toxic level. For future small 

scale biotransformations a slow-release technique can be used to avoid growth-

inhibiting effects caused by phenylpropanoid concentrations. This technique is based 

on a diffusion driven substrate release and consists of a feed reservoir system filled 

with a concentrated substrate solution, which diffuses through a dialysis membrane 

into the medium (Bähr et al., 2012; Jeude et al., 2006). Besides shake flasks cultivation 

this approach could also be used for biotransformation in microtiter plate scale 

(Wilming et al., 2014). 

For optimisation of the strain and culture conditions, an appropriate screening system 

is required, which allows the fast evaluation of numerous clones. Noticeably, the 

culture supernatants at the end of biotransformations changed the colour, which is 
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most likely because of the produced monolignols (Fig. 10). This could be used for a 

fast, colorimetric screening method. 

 

Fig. 10 Culture supernatants of different E. coli cultivations for monolignol production. 
E. coli harbouring the synthetic pathway for monolignol production was cultivated in 50 mL LB 
medium and 2.5 mM of the respective cinnamic acid derivatives were added. Samples were 
taken immediately after induction (t0) and at the end of the biotransformation (t17). The 
supernatants were obtained by centrifugation. After induction, only the cinnamic acid derivative 
could be found in culture supernatants. At the end of cultivation, cinnamyl alcohol derivatives 
were detectable. A1: cinnamic acid, B1: cinnamyl alcohol, A2: p-coumaric acid, B2: p-coumaryl 
alcohol, A3: caffeic acid, B3: caffeoyl alcohol, A4: ferulic acid, B4: coniferyl alcohol, A5: 5-
hydroxyferulic acid, B5: 5-hydroxyconiferyl alcohol, A6: sinapic acid, B6: sinapyl alcohol, C1: 
3,4,5-trimethoxycinnamic acid, D1: 3,4,5-trimethoxycinnamyl alcohol, C2: 5-bromoferulic acid, 
D2: 5-bromoconiferyl alcohol, C3: 3-nitroferulic acid, D3: 3-nitroconiferyl alcohol , C4: bicyclic 
p-coumaric acid, D4: bicyclic p-coumaryl alcohol. The most interesting compound is framed. 

 

In this thesis the production of 5-bromoconiferyl alcohol was focused. Absorbance 

measurements of the respective supernatants (Fig. 10, C2, D2) resulted in 470 nm as 

the best detection wavelength to monitor product formation. This characteristic could 

be used in the future as a fast colorimetric screening method for strains with enhanced 

5-bromoconiferyl alcohol production. 

1.6.3 Combinatorial biosynthesis using 4-coumarate 3-hydroxylase (C3H)  

Hydroxylation of the phenyl group gives access to various cinnamic acid derivatives, 

which can be used as precursors for monolignol synthesis (Fig. 6). The functional 

integration of the catalysing enzyme in the monolignol pathway would enable the 

synthesis of different monolignols, although only one cinnamic acid derivative is used 

as substrate in biotransformations. The hydroxylation is performed with C3H, which 

catalyses the conversion of p-coumaric acid to caffeic acid (Fig. 3). In this thesis, C3H 
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derived from Saccharothrix espanaensis was used (Berner et al., 2006), as it was 

previously successfully used to produce caffeic acid in E. coli (Rodrigues et al., 2015).  

To test the functionality of the heterologously expressed C3H in E. coli, 

biotransformations were supplemented with 2.5 mM (410 mg/L) p-coumaric acid and 

culture supernatants were analysed with HPLC for phenylpropanoid concentrations. At 

the end of biotransformations, 0.12 mM (22 mg/L) caffeic acid was produced. This 

proves that the engineered strain is capable of producing caffeic acid from p-coumaric 

acid, although the conversion is relatively low. As a next step it was tested whether this 

enzyme can be combined to the monolignol pathway to produce caffeoyl alcohol from 

p-coumaric acid. For this purpose, c3h was introduced into the pathway responsible 

for monolignol production (chapter 1.6.1, Fig. 2). For the subsequent cultivation, two 

products were possible. Either p-coumaric acid will be converted directly to p-coumaryl 

alcohol or p-coumaric acid will be converted to caffeic acid and subsequently to 

caffeoyl alcohol (Fig. 11). 

 

Fig. 11 Pathway from p-coumaric acid to p-coumaryl alcohol and caffeoyl alcohol. 
C3H: 4-coumarate 3-hydroxylase, 4CL: 4-coumarate: CoA ligase, CCR: cinnamyl-CoA 
reductase, CAD: cinnamyl alcohol dehydrogenase. 
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Biotransformations were supplemented with 2.5 mM p-coumaric acid and LC/MS 

analysis had to be used for sample measurement, because no caffeoyl alcohol 

reference material was available at that time. All four compounds were identified in 

culture supernatants: p-coumaric acid, caffeic acid, p-coumaryl alcohol and caffeoyl 

alcohol. The results confirmed the successful combination of an enzyme responsible 

for the modification of the phenyl group with enzymes responsible for reduction of the 

propene tail for the combinatorial biosynthesis of different monolignols in E. coli. 

However, it demonstrated that the promiscuous enzymes can not be used for the 

selective monolignol production, when multiple precursor molecules are present in the 

cultivation broth.  

1.6.4 In vivo application and engineering of caffeic acid O-methyltransferase 

(COMT) 

(see chapter 2.3, Engineering the substrate specificity of a caffeic acid O-

methyltransferase from Medicago sativa) 

As already pointed out (chapter 1.3.2), COMT belongs to the family of transferases 

and participates in the phenylpropanoid pathway. It catalyses the methylation of 

different phenylpropanoids, like caffeic acid and 5-hydroxyferulic acid (Ferrer et al., 

2008; Inoue et al., 2000; Parvathi et al., 2001). 

In this thesis COMT from M. sativa was selected to mediate O-methylation because 

this enzyme reached the highest product yields in literature (Wang et al., 2015) and 

because of its capability to convert caffeic acid and 5-hydroxyferulic acid (Zubieta et 

al., 2002) (Fig. 6). Since the SAM cofactor regeneration is ATP-dependent (Markham 

et al., 1980), the application of SAM-dependent enzymes in vitro is limited. 

Furthermore, the cofactor SAM is instable and expensive and the side product SAH is 

an inhibitor for many methyltransferases (James et al., 2002). Whereas one possible 

solution is the implementation of an in vitro SAM regeneration system (Mordhorst et 

al., 2017), whole cell biotransformations, as performed in this thesis, could overcome 

these limitations much easier, due to the internal regeneration of ATP in the living cell. 

However, the low substrate specificity of this enzyme leads to the production of several 

similar compounds, which are difficult to separate (Allewell, 2012; Yoon et al., 2012). 

Site-saturation mutagenesis was used to enhance the production of ferulic acid and 

sinapic acid and to alter the substrate specificity. 
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For this purpose, the constructed libraries consisted of mutants with alterations in the 

amino acid sequence at positions 135, 136, 162, and 172 (Fig. 12).  

 

Fig. 12 Active centre of COMT. S-Adenosyl-L-homocysteine (SAH) is shown as space-filling 
structure (yellow: sulphur, red: oxygen, blue: nitrogen). Ferulic acid, the product of the O-
methylation, is presented in magenta. Amino acid residues with postulated impact on the 
substrate specificity and which were subject to site-saturation mutagenesis are coloured in 
blue. Dashed lines assign the distance in Å. This image was produced with PyMOL (PDB ID: 
1KYZ) and was taken from the Master thesis of Sascha Jansen (Jansen, 2017). For details 
see chapter 2.3, Fig. 4. 

 

These positions were focused and were target sites for site-saturation mutagenesis, 

because an available crystal structure of COMT derived from M. sativa revealed that 

the side chains of L136, A162 and F172 are responsible for binding of not substituted 

substrate or O-methylated substrate in meta-position (Bugos et al., 1992; Inoue et al., 

2000; Parvathi et al., 2001; Zubieta et al., 2002). Moreover, a nucleotide sequence 

alignment of a different O-methyltransferase with higher specificity towards caffeic acid 

revealed instead of substitutions in position 136, 162 and 172, a substitution of V135 

to isoleucine and could cause the altered substrate specificity (Wiens and Luca, 2016). 

The simultaneous saturation of multiple codons has the advantage that synergistic 

effects can be elucidated, which might have a positive effect on product formation 
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(Shivange et al., 2009). In a first step, some clones of the constructed library were 

examined regarding amino acid diversity in the targeted positions. Nucleotide 

sequencing of comt revealed at least one nucleotide substitution in each codon 

causing an amino acid variation at each position and multiple substitutions in one 

variant. 

Detailed information about the screening set-up, which was performed in 96-deep well 

plates, can be found in chapter 2.3. In total, 1080 COMT variants with substitutions in 

position 136, 162 and 172 were tested regarding ferulic acid or sinapic acid 

concentration. One third of all tested variants were inactive, two third produced 

exclusively sinapic acid and 4 % can produce both phenylpropanoids. Based on this 

data, strains with promising COMT variants were selected and used in shake flask 

scale (10 mL) for further characterization. The comt sequences of these variants were 

also examined to get information about amino acid substitutions. It could be elucidated, 

that amino acid substitution at the selected position influenced productivity and 

substrate specificity. As demonstrated in Fig. 13, strains containing the wild type COMT 

produced 37.3 mg/L (0.19 mM) ferulic acid and 53.8 mg/L (0.24 mM) sinapic acid. 

 

Fig. 13 Ferulic acid and sinapic acid production in different E. coli strains expressing 
various COMT variants. Strains were cultivated in 10 mL TRIS/HCl buffered YNB medium in 
100 mL baffled shake flasks at 25 °C and 130 rpm. Heterologous gene expression was 
induced with 1 mM IPTG at OD600 0.6 and caffeic acid or 5-hydroxyferulic acid was added to a 
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final concentration of 2.5 mM. Ferulic acid and sinapic acid were determined by HPLC. Data 
represent average values and standard deviations from three biological replicates. Results 
were taken from the Master thesis of Sascha Jansen (Jansen, 2017). 

 

An exclusively sinapic acid production was achieved by three strains, which contained 

COMT variants with amino acid substitutions in position 136 to arginine or lysine, in 

position 162 to threonine or cysteine and in position 172 to glutamic acid and glutamine 

(Fig. 13). Substitutions in position 162 and 172 to serine resulted in ferulic acid 

concentrations comparable to the wild type and an increase of 15 % for sinapic acid 

production. As expected, the productivity is reduced with the quantity of amino acid 

substitutions introduced into COMT. A strain harbouring the substitution V135I (Wiens 

and Luca, 2016) resulted in 43.8 mg/L (0.23 mM) ferulic acid and 78.8 mg/L (0.35 mM) 

sinapic acid, which is an increase of 17 % and 46 % compared to the wild type. A direct 

impact of this amino acid substitution on the substrate binding pocket formation is 

unlikely, because the residue is not in direct proximity to the substrate (Fig. 12). 

However, the folding of the α-helix, which is adjacent to the substrate binding site and 

includes the residue at position 136, could be affected by a substitution at position 135 

(Fig. 12). Similar second shell interactions have already been described earlier (Lingen 

et al., 2002). 

The previously found COMT variants A162S/F172S and L136R/F172Q were subject 

to site-saturation mutagenesis at position 135 to increase the product titres or alter the 

substrate specificity of whole cell biotransformations. Variant A162S/F172S was 

selected due to increased ferulic acid production and L136R/F172Q due to selective 

sinapic acid production (Fig. 11). In contrast to the first screening approach, the site-

saturation of one codon in these sub-libraries result in only 32 possible gene variants 

coding for 20 amino acids. Consequently, screening in only one 96-deep well plate 

was sufficient to cover more than 95 % of all possible variants (Firth and Patrick, 2008). 

Under screening conditions, 14 variants produced exclusively ferulic acid and 

29 variants produced exclusively sinapic acid. Nucleotide sequencing of comt revealed 

substitution at position 135 to threonine, arginine, serine, glycine, glutamine and 

leucine.  

All observed amino acid substitutions in position 135, 136, 162 and 172 differ in their 

size and in their functional groups. This includes polar amino acids (S, T, Q), positive 
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charged amino acids (K, R) and negatively charged amino acids (E). These 

characteristics contribute to substrate specificity (Betts and Russell, 2007; Schneider 

et al., 2003), but the exact interactions are difficult to define. Substitutions in positions 

located directly in the substrate binding pocket (position 136, 162 and 172) led to 

reduced activity rather than substitutions in positions indirectly related to the binding 

pocket (position 135)(Fig. 12, Fig. 13). This suggested that maybe substitutions at 

different positions should be taken in considerations.  

The microtiter plate-based screening limited the selection of variants, because only 

few variants were found with increased ferulic acid production. A high-throughput 

screening approach, for example fluorescence-activated cell sorting (FACS) in 

connection with biosensors, could help to screen 70,000 variants within seconds to 

overcome these limitations (Marienhagen and Bott, 2013; Yang and Withers, 2009).  

Strains selected from the screening in 96-deep well plates were additionally subjected 

to phenylpropanoid production in shake flasks. In principle, cultivations in shake flasks 

yielded higher product concentrations and a different substrate specificity than 

cultivations in deep well plates. The approaches differed in culture treatment as gene 

expression in shake flasks was induced at OD600 0.6, whereas the expression in deep 

well plates was induced directly from the beginning. As a consequence, strains 

cultivated in deep well plates needed energy for the synthesis of recombinant protein 

and this energy is lacking for biomass production causing a longer lag phase at the 

beginning of the cultivation and a reduced phenylpropanoid production (Donovan et 

al., 1996). Furthermore, unfavourable cultivation parameters like low shaking 

frequencies and high filling volumes have an effect on the oxygen transfer rate, the cell 

growth and as a result the productivity of cultivations (Losen et al., 2004; Zimmermann 

et al., 2006). These parameters differ hugely between cultivations in microtiter plates 

and shake flasks and hamper the comparability between product yields and substrate 

specificity under screening and under production conditions (Duetz, 2007). The 

cultivation conditions should therefore be adjusted (Reetz and Carballeira, 2007). As 

a consequence, the gained knowledge can contribute to even higher ferulic acid and 

sinapic acid concentrations due to optimised cultivation conditions in shake flasks 

(Wewetzer et al., 2015). 
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1.6.5 Expression of cueO and in vivo pinoresinol synthesis 

One goal of this thesis was the microbial production of lignans (Fig. 6). As mentioned 

in chapter 1.1 this polyphenol has a positive effect on health, but the microbial 

production was not described yet (chapter 1.4.2). 

The multicopper oxidase CueO from Rhodococcus erythropolis catalyses lignan 

synthesis and was previously used for the lignan production in vitro (Classen et al., 

2013)1. The gene cueO was expressed in E. coli under the control of a T7 expression 

system and the resulting protein pattern was analysed by an SDS-PAGE analysis (Fig. 

14, A).  

 

Fig. 14 CueO production in different E. coli strains. (A) E. coli harbouring pHT-cueO to 
produce CueO (54.7 kDa) under control of the T7 expression system was cultivated in 500 mL 
TB medium in a baffled 5 L Erlenmeyer flask. Cultivation was induced after reaching OD600 0.6 
with 1 mM IPTG and was incubated for 16 h at 25°C and 130 rpm. Odd numbers: negative 
control strain (E. coli pHT), even numbers: production strain (E. coli pHT-cueO).1-2: 
supernatant, 3-4: total cell extract, 5-6: insoluble fraction of total cell extract, 7-8: soluble 
fraction of total cell extract. (B) E. coli DH10B harbouring pBAD-cueO to produce CueO 
(54.7 kDa) under control of the pBAD expression system was cultivated in 50 mL TB medium 
in a baffled 500 mL Erlenmeyer flask. Cultivation was induced after reaching OD600 0.6 with 

 
1 The gene was kindly provided by Dr. Thomas Classen, Institute of Bio- and Geosciences, IBG-1: Bioorganic Chemistry 
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different arabinose concentrations and was incubated for 16 h at 25°C and 130 rpm. 1: 
negative control strain (E. coli DH10B pBAD), 2-5: production strain (E. coli DH10B pBAD-
cueO). 1, 2: 0.2 % arabinose, 3: 0.02 % arabinose, 4: 0.002 % arabinose, 5: 0.0002 % 
arabinose. 

 

The results in Fig. 14 demonstrate that CueO (54.7 kDa) was successfully produced 

in the soluble fraction of the constructed strain. Besides the previous published 

expression protocol (cultivation in TB medium and 10 mM copper sulphate), the 

production was also tested in LB medium and 10 mM copper sulphate. This approach 

was not successful, because the cells were not able to grow in the unbuffered medium.  

The focus within this thesis was the in vivo lignan production starting from 

supplemented monolignol (Fig. 6). For the connection of lignan production with the 

previous implemented monolignol production (chapter 1.6.1, chapter 2.2), a tight gene 

regulation is necessary. This enables the production of lignans from monolignols 

instead of production already from precursor molecules like cinnamic acid derivatives, 

which can also serve as substrate in this reaction (Gunne and Urlacher, 2012; Jin et 

al., 2010). Moreover, the oxidative coupling catalysed by CueO and the required 

copper addition to cultivation broth is harmful to the microorganism (Galli et al., 2004) 

and would have a negative effect on simultaneous monolignol production. Therefore, 

a strain must be capable to reduce cinnamic acid derivatives to the respective 

monolignols as a first step and then produce an enzyme for the oxidative coupling of 

two monolignols for lignan formation. The pBAD expression system allows a tightly 

controlled regulation of a target gene in vivo and can be induced with arabinose 

(Guzman et al., 1995). Moreover, it shows only a low expression when the promoter is 

not induced (Balzer et al., 2013). The strain E. coli DH10B harbouring pBAD-cueO was 

used to produce CueO. It lacks the leuLABCD operon (part of Δ(ara leu)7697) and can 

therefore be used for the induction with arabinose (Durfee et al., 2008). The strain was 

induced with various arabinose concentrations (0.0002 % - 0.2 %) and CueO 

production was analysed by SDS-PAGE (Fig. 14, B). CueO could be found in the 

supernatant and in the total cell extract. Furthermore, it was primarily present in the 

soluble fraction of the total cell extract than in the insoluble fraction. From this it could 

be concluded, that CueO exists rather in a dissolved form than in (probably inactive) 

inclusion bodies. The protein amount decreases with lower arabinose concentrations 

and was not detectable when the strain was induced with 0.0002 % arabinose. This 
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tight gene regulation of cueO could be used in the future to connect the microbial 

monolignol production under control of the T7 expression system (chapter 1.6.1, 

chapter 2.2), with the subsequent lignan production under control of the pBAD 

expression system reducing the previously described harmful effects.  

The next step was to test whether an E. coli strain producing CueO is able to catalyse 

the reaction from coniferyl alcohol to (+)-pinoresinol. For this purpose, the production 

strain was cultivated in the presence of 1 mM coniferyl alcohol to examine the in vivo 

(+)-pinoresinol formation in three biological replicates. After 17 h biotransformation, 

0.17 mM (60.8 mg/L) (+)-pinoresinol was detectable in the culture supernatant using 

HPLC2. This was the first time that microbial (+)-pinoresinol production was observed.  

1.7 Conclusion and Outlook 

The results obtained in this thesis show that E. coli strains equipped with enzymes 

participating in the phenylpropanoid pathway are capable to produce numerous 

phenylpropanoids including cinnamic acid derivatives and monolignols. Moreover, an 

engineered E. coli strain is also able to produce the polyphenol (+)-pinoresinol, which 

is related to the class of lignans (Fig. 6).  

In this context it was demonstrated that an E. coli strain harbouring enzymes of the 

synthetic monolignol pathway represents a suitable whole cell biocatalyst for the 

production of natural and non-natural occurring monolignols, thereby giving access to 

chemically interesting and alterable polyphenols (chapter 1.6.1, chapter 2.2). This was 

achieved using enzymes with low substrate specificity resulting in the acceptance of a 

broad range of phenylpropanoid-like compounds. Among other produced monolignols, 

the microbial production of 5-hydroxyconiferyl alcohol and sinapyl alcohol as well as 

the microbial production of non-natural monolignols was demonstrated for the first 

time. Engineering the heterologous enzymes regarding productivity could lead to even 

higher product concentrations and could benefit from the screening method elaborated 

in this thesis (chapter 1.6.2, chapter 2.2).  

Besides reaction engineering could further increase the monolignol yield. For example, 

a fed-batch system could reduce inhibitory effects caused by the substrates and 

improve product formation as previously discussed (chapter 1.6.2).  

 
2 HPLC-measurements were carried out by Patrick Marx, Institute of Bio- and Geosciences, IBG-1: Bioorganic Chemistry 
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The second part addressed the production of various cinnamic acid derivatives (Fig. 

6). At first, a 4-coumarate 3-hydroxylase was successfully used to produce caffeic acid 

from p-coumaric acid in vivo (chapter 1.6.3). In combination with the previously used 

monolignol pathway, the constructed E. coli strain was able to produce caffeoyl alcohol 

and p-coumaryl alcohol from p-coumaric acid (chapter 1.6.3). This demonstrated the 

promiscuity of the synthetic pathway stressing the challenge of the broad substrate 

spectrum regarding selective monolignol production. Moreover, a caffeic acid O-

methyltransferase was engineered for increased methylation of caffeic acid and 5-

hydroxyferulic acid in whole cell biotransformations (chapter 1.6.4, chapter 2.3). It was 

revealed that amino acid substitutions in four positions located in or adjacent to the 

methoxy binding pocket, increased the productivity and changed the substrate 

specificity towards caffeic acid and 5-hydroxyferulic acid. These variants can contribute 

to a better understanding of these enzymes and might prove useful for the metabolic 

engineering of microbes for the biotechnological production of more complex 

phenylpropanoid-derived compounds, in future.  

Screening of the remaining variants could open the possibility to find variants with 

different amino acid substitutions causing higher product yields or an enhanced 

substrate specificity. Moreover, substitutions in other positions adjacent to the binding 

pocket could also be promising as discussed previously (chapter 1.6.4). For a better 

comparability of screening and production results, the cultivation conditions should be 

adjusted. The gained knowledge could also contribute to higher yields in large scale 

set-up (chapter 1.6.4, chapter 2.3). 

A further result of this thesis was the successfully production of an enzyme needed for 

lignan synthesis in E. coli under control of different gene expression systems and 

optimal induction conditions (chapter 1.6.5). The examination of the tight pBAD 

expression system would allow the connection of the previously implemented 

monolignol pathway and the enzyme mediating lignan production without the 

previously described drawbacks (chapter 1.6.5). Furthermore, the in vivo production of 

(+)-pinoresinol was demonstrated in E. coli for the first time using the constructed 

production strain.  

Additional endeavours should be directed towards production of further lignans by 

supplementation of various monolignols. In order to quantify lignan production, huge 

efforts must be put into the development of analytical methods since the lack of suitable 
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dirigent proteins lead to non-specific production and numerous lignans are synthesised 

(chapter 1.3.3).  

To conclude, E. coli is a suitable host to produce different phenylpropanoids like 

cinnamic acid derivates and monolignols, but is also capable to produce lignan, a plant-

derived polyphenol. Further engineering of participating enzymes and implementation 

of large-scale production is required to increase the concentrations of desired 

compounds.  
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2 Publications and Manuscripts 

2.1 Production of plant-derived polyphenols in microorganisms: current 

state and perspectives 
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2.2 Microbial production of natural and non-natural monolignols with 

Escherichia coli 
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2.3 Engineering the substrate specificity of a caffeic acid O-

methyltransferase from Medicago sativa 
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4 Appendix 

4.1 Supplementary material “Microbial production of natural and non-

natural monolignols with Escherichia coli” 
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4.2 Supplementary material “Engineering the substrate specificity of a 

caffeic acid O-methyltransferase from Medicago sativa” 
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Milke, L., Aschenbrenner, J., Marienhagen, J., and Kallscheuer, N. (2018). 
Production of plant-derived polyphenols in microorganisms: current state and 
perspectives. Applied Microbiology and Biotechnology, 102(4), 1575–1585. 
https://doi.org/10.1007/s00253-018-8747-5 

 

J. Aschenbrenner, L. Milke and N. Kallscheuer performed literature search and 

collected and compiled the material. J. Aschenbrenner, L. Milke, N. Kallscheuer and 

J. Marienhagen discussed the structure of the manuscript. J. Aschenbrenner, L. Milke, 

N. Kallscheuer and J. Marienhagen revised the manuscript.  

 

Chapter 2.2:  

Microbial production of natural and non-natural monolignols with Escherichia coli 

 

Aschenbrenner, J., Marx, P., Pietruszka, J. and Marienhagen, J. (2018). Microbial 
production of natural and non-natural monolignols with Escherichia coli. 
ChemBioChem, [Epub ahead of print]. https://doi.org/10.1002/cbic.201800673 

 

J. Aschenbrenner planned and performed the experiments. P. Marx synthesised non-

natural substrates, the reference material and performed NMR measurements. 

J. Marienhagen and J. Pietruszka wrote the manuscript based on the first draft written 

by J. Aschenbrenner. P. Marx wrote the supporting information. 
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Chapter 2.3:  

Engineering the substrate specificity of a caffeic acid O-methyltransferase from 

Medicago sativa 

 

Aschenbrenner, J., Jansen, S., and Marienhagen, J.  

 

As final studies have to be performed, the manuscript could not be finalized until this 

thesis was submitted. Thus, this chapter comprises a manuscript draft focusing on the 

obtained results. J. Aschenbrenner planned the project, the experiments and 

implemented the screening system. S. Jansen constructed the plasmids, performed 

site-saturation mutagenesis and cultivations, which was supervised by 

J. Aschenbrenner. J. Aschenbrenner wrote the manuscript.  
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production of p-coumaryl alcohol with Escherichia coli, 2015, EMBO | EMBL 

Symposium: New Approaches and Concepts in Microbiology, Heidelberg. 

J. Aschenbrenner, P. Marx, J. Pietruszka and J. Marienhagen. Combinatorial 

biosynthesis of natural and non-natural plant-derived phenols in microorganisms, 

2017, 7th Congress of European Microbiologists (FEMS). 

Oral presentations 

J. Aschenbrenner, P.v.Summeren-Wesenhagen, R. Voges, S. Sokolowsky, S. Noack 

J. Marienhagen. Combinatorial optimization of synthetic operons for the microbial 

production of p-coumaryl alcohol with Escherichia coli, 2016, 17th European Congress 

on Biotechnology (ECB). 
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