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Summary

Stem cells are a population of undifferentiated cells which are defined by their ability to
differentiate into various cell types (potency) and continuous proliferation (self-renewal). There are
different sources of stem cells based on their potency. Pluripotent stem cells (PSCs) include
embryonic stem cells (ESCs) derived from the inner cell mass of blastocyst and induced pluripotent
stem cells (iPSCs) reprogrammed from somatic cells. Human iPSCs (hiPSCs) are widely studied in
recent years owing to their different applications in developmental biology and regenerative
medicine. They have broad potentials especially in human disease modeling in vitro by starting with
reprogramming cells from patients to hiPSCs containing the disease-causing mutation(s) followed by
differentiating to disease-relevant cell types. In order to realize the potential of hiPSCs in clinical
applications, it is crucial to first address fundamental questions regarding their molecular nature of
pluripotency and the underlying intracellular signaling pathways which maintain the characteristics
of these cells. This doctoral thesis explored the molecular mechanisms involved in the transition from
pluripotency to differentiation with the focus on bFGF signaling in hiPSCs. Our results revealed the
prominent role of RAS-MAPK pathway as a downstream target of bFGF in maintaining pluripotency
in hiPSCs as compared to other pathways, such as PI3K/AKT and JNK, which remain unchanged
during differentiation. Interestingly, p38MAPK and JAK/STAT3 pathways were activated upon
differentiation. Further analysis of RAS isoforms, showed that NRAS is the link between bFGF
receptor and MAPK pathway leading to hiPSCs pluripotency. It has been shown that mutations in
genes of RAS-MAPK pathway can lead to a group of developmental disorders called RASopathies,
such as Noonan syndrome (NS). One of the mutated genes in NS patients in RAS-MAPK pathway is
RAF1. Patients with RAF15%"™ point mutation frequently display pathological hypertrophic
cardiomyopathy (HCM), however, the underlying molecular mechanism is poorly understood. Thus,
we generated iPSCs from a patient carrying RAF15%"" mutant and differentiated them to
cardiomyocytes. Interestingly, patient-derived cardiomyocytes recapitulated the HCM phenotype,
such as cell size enlargement, expression of fetal genes, as well as an increased sarcomere protein
synthesis and myosin heavy chain beta to alpha switch with an abnormal sarcomere structure,
increased calcium transient and cardiac contractility. Signaling analysis also confirmed a higher
MAPK activity in mutant cardiomyocytes. These findings indicate that an increased RAS-MAPK

15257L

signaling pathway in RAF cardiomyocytes may regulate the observed HCM phenotype. Fragile
X syndrome (FXS) represents another developmental disorder that is based on the loss of FMR1 gene
which produce fragile X mental retardation protein (FMRP). FMRP plays a critical role in chromatin
regulation, RNA binding, mRNA transport, and translation in many cell types, including several types
of stem cells. However, the underlying mechanisms including the cellular FMRP protein networks
remain elusive. This thesis has explored novel FMRP interacting proteins and their interaction
networks in multiple cellular processes, suggesting that FMRP is central in several biological

processes in various cell types.
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Zusammenfassung

Stammzellen sind undifferenzierte Zellen, die kontinuierlich proliferieren (Selbsterneuerung) und in
verschiedene Zelltypen differenzieren konnen (Omni- bzw. Pluripotenz). Innerhalb der Stammzellen
unterscheidet man basierend auf ihrer Differenzierungspotenz verschiedene Subklassen. Pluripotente
Stammzellen (PSCs) umfassen embryonale Stammzellen (ESCs), gewonnen aus der inneren Zellmasse
von Blastozysten, sowieinduzierte pluripotente Stammzellen (iPSCs), die aus reprogrammierten
somatischen Zellen generiert werden konnen. Humane iPSCs (hiPSCs) wurden in den letzten Jahren
eingehend beziiglich verschiedener Anwendungsmoglichkeiten in der Entwicklungsbiologie und der
regenerativen Medizin untersucht. hiPSCs zeigen ein besonders groB3es Potential im Modellieren humaner
Erkrankungen in vitro. Durch die initiale Reprogrammierung patienteneigener Zellen zu Stammzellen,
welche die krankheitsrelevante Mutation enthalten, konnen Differenzierungen in krankheitsrelevante
Zelltypen durchgefiihrt und diese untersucht werden. Um das Potential von hiPSCs in klinischen
Anwendungen zu untersuchen, ist es von grofiter Bedeutung zunéchst die molekularen Mechanismen der
Pluripotenz sowie die zugrundeliegenden intrazelluldren Signalwege zu verstehen. Diese Dissertation
untersucht den molekularen Mechanismus des Ubergangs von Pluripotenz zur Differenzierung mit dem
Fokus auf die bFGF induzierte Signaltransduktion in hiPSCs. Die gewonnenen Befunde sprechen fiir eine
dominante Rolle des RAS-MAPK Signalwegs in der bFGF-induzierten Aufrechterhaltung der
Pluripotenz. Interessanterweise zeigten auch andere untersuchte Signalwege, wie p38MAPK und
JAK/STATS3, eine differenzierungsassoziierte Aktivierung. Eine Analyse der RAS-Isoformen ldsst
vermuten, dass NRAS die Verbindung zwischen dem bFGF-Rezeptor und dem MAPK-Signalweg
darstellt und dadurch die Pluripotenz der hiPSCs aufrechterhilt. Des Weiteren konnte gezeigt werden,
dass Mutationen in Genen des RAS-MAPK Signalweges zu Entwicklungsstérungen (wie z.B. dem
Noonan Syndrom) fiihren, welche kollektiv als RASopathien beschrieben werden. Eines der mutierten
Noonan-assoziierten Gene ist RAF1. Individuen mit einer RAF15%7t-Punktmutation entwickeln mitunter
hiufig eine pathologische hypertrophe Kardiomyopathie (HCM), deren zugrundeliegender molekularer
Mechanismus kaum verstanden ist. Wir generierten daher Kardiomyozyten aus patientenspezifischen
iPSCs mit einer RAF152°7L-Mutation. Diese Kardiomyozyten spiegeln den Phéinotyp der HCM wieder,
gezeichnet durch Charakteristika wie insbesondere ZellvergroBerung, Expression fetaler Gene, Steigerung
der sarkomeren Proteinsynthese, abnormale Sarkomerstruktur, Wechsel der schweren Myosin-Ketten von
beta nach alpha, gesteigerte Kalziumtransienten, und erhohte kardiale Kontraktilitdt. Analysen der
Signaltransduktion bestétigten eine hohere MAPK-Aktivitdt in mutanten Kardiomyozyten. Diese
Ergebnisse sprechen dafiir, dass die gesteigerte RAS-MAPK-Signalwegintensitdt in RAFS27L-
Kardiomyozyten verantwortlich ist fiir den beobachteten HCM-Phénotyp. Das Fragile-X-Syndrom (FXS)
ist eine weitere Entwicklungsstérung, die auf dem Verlust des FMR I Genproduktes FMRP (fragile mental
retardation protein) basiert. FMRP spielt hierbei eine entscheidende Rolle in zentralen Vorgédngen in
verschiedensten Zelltypen, insbesondere Chromatin-Regulation, RNA-Bindung und -Stabilitit, mRNA
Transport, und Translation. Zugrundeliegende Mechanismen und das zellulire FMRP Proteinnetzwerks
sind jedoch groftenteils unverstanden. In dieser Arbeit wurden daher zahlreiche neue FMRP-bindende
Proteine beschrieben und deren Interaktionsnetzwerk in verschiedenen zelluldren Prozessen untersucht.
Basierend auf den gewonnenen Daten 14sst sich FMRP als zentrales Regulationsprotein in verschiedensten
biologischen Prozessen unterschiedlicher Zelltypen einglie
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PKB protein kinase B
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1.1 Stem cells
1.1.1 Background

Stem cells are biological and special cells, found in almost all multicellular organisms, which
are defined by two main properties; they have the ability to continuously proliferate (self-renewal)
and differentiate into different cell lineages (potency) (Kolios and Moodley, 2013). There are two
main categories of stem cells including embryonic stem cells (ESCs) and adult stem cells (ASCs).

The discovery of ESCs represented a major advance in cellular biology and medicine (Keller,
2005). Research on ESCs began when the very first stem cells, the embryonic carcinoma cells
(ECCs), were established in the early 1970s (Friedrich ef al., 1983; Kleinsmith and Pierce, 1964).
Later in 1981, Evans and Kaufman were able to successfully cultivate cell lines from inner cell mass
(ICM) of mouse blastocysts called mouse ESCs (mESCs). They established culture conditions for
growing pluripotent mESCs in vitro (Evans and Kaufman, 1981). In 1998, Thomson et al., derived
human ESCs (hESCs) from the ICM of normal human blastocysts donated by couples undergoing
treatment for infertility. Cells were cultured for many passages as long as retaining their high levels
of telomerase activity, maintaining normal karyotypes and expressing markers specific for typical
hECCs (Thomson et al., 1998). At the same time, Shamblott and his colleagues derived human
embryonic germ cells (hEGCs) from the gonadal ridge from a five to nine week aborted fetus. hREGCs
were cultured in vitro for approximately 20 passages, and maintained normal karyotypes (Shamblott
et al., 1998). Since then, techniques for deriving and culturing hESCs are being developed and
refined.

1.1.2 Stem cells characteristics

Two hallmark features of stem cells are self-renewal and potency. Self-renewal is defined as the
capacity of stem cells to divide symmetrically or asymmetrically and generate daughter stem cells
with the exact developmental potential (Fig. 1). Under special conditions and signaling, a stem cell
is able to exit self-renewal and start to differentiate into any cells from germ layers (Fig. 1) (Romito
and Cobellis, 2016). This process is crucial for stem cells to maintain their pool after injury, expand
their numbers during development and to retain in adult tissues. Defects in self-renewal can cause
cancer, premature aging and developmental disease (He ef al., 2009).

Potency is referred to the ability of differentiation into any specialized and mature cell types
(Fig. 1). Depending on the differentiation potential, various levels of potency are described,
totipotent, pluripotent, multipotent, oligopotent and unipotent (Hima Bindu and Srilatha, 2011).
Totipotent stem cells can differentiate into embryonic and extraembryonic cell types (Weissman,
2000). Pluripotent cells can differentiate into any cells that are derived from three germ layers
(ectoderm, mesoderm and endoderm) and they are the descendants of totipotent cells. Multipotent
stem cells can differentiate into a number of cells with a closely related family of cells, like adult
stem cells such as hematopoietic stem cells (Zuk et al., 2002). Oligopotent stem cells can differentiate
into only a few cells, like lymphoid or myeloid stem cells. Unipotent cells can produce only one cell
type of their own as spermatogonial stem cells, but these cells have the property of self-renewal,
which distinguishes them from non-stem cells (Hima Bindu and Srilatha, 2011).
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Figure 1: Embryonic stem cells characteristics.

Fertilization occurs when the sperm successfully enters and fuses with an egg and makes a zygote. The zygote divides
through mitosis until the cell number reaches around sixteen and the solid sphere of cells is called a morula with totipotent
cells. Then cells differentiate into outer layer and inner cell mass which is referred as blastocyst with pluripotent cells. ESCs
are derived from the inner cell mass of blastocyst. They are able to go through numerous cycles of cell division while
maintaining the undifferentiated state which is called self-renewal and upon stimulation they can differentiate into any
specialized and mature cell types including blood cells, neurons, liver cells, muscle cells, pancreatic islet cells and intestinal
cells.

1.1.3 Induced pluripotent stem cells (iPSCs)

ESCs were widely studied in recent years owing to their different applications. However, some
complications have hindered their utilization such as difficulties in their derivation, immunological
responses and ethical issues considering using them (Zhang et al., 2011). The emergence of iPSCs
has presented a breakthrough as an alternative for ESCs. iPSCs can be generated by a number of
approaches like somatic cell nuclear transfer (Wilmut et al., 1997; Tachibana et al., 2013) and cell
fusion (Tada et al., 2001; Cowan et al., 2005) from somatic cells. However, both methods were
limited by low efficiency and ethical issues. Till 2006 and following 2007, Takahashi and his group
were able to successfully induce pluripotency from mouse embryonic/adult and human adult
fibroblasts by introducing four transcriptional factors OCT3/4, SOX2, c-MYC and KLF4 via ectopic
expression using retroviral vectors (Takahashi and Yamanaka, 2006; Takahashi et al., 2007). At the
same time, an American group also obtained iPSCs from human somatic cells with OCT4, SOX2,
NANOG and LIN28 by using lentiviral vectors (Shi et al., 2017). Using pluripotent cells
reprogrammed from somatic cells solved efficiency, ethical and immunological issues. After
Takahashi and Yamanaka innovation, many groups used these pioneering studies to generate
pluripotent cells from somatic cells by using the same or other sources of cells with different inducing
agents and vectors for delivery.


https://en.wikipedia.org/wiki/Fertilisation
https://en.wikipedia.org/wiki/Sperm
https://en.wikipedia.org/wiki/Mitosis
https://en.wikipedia.org/wiki/Morula
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There are some differences between iPSCs and ESCs in gene expression signatures and
epigenetic modifications (Chin et al., 2009; Guenther et al., 2010); however they share the same
capacity of unlimited self-renewal and differentiation to any somatic cells and also they are similar
in stemness marker expression, morphology and growth properties (Wang et al., 2018).

1.1.4 Pluripotent stem cells applications

Over the last years, main progresses and discoveries in stem cell research were achieved by
studying pluripotent stem cells including ESCs and iPSCs. The importance of ESCs can be divided
to basic and biomedical research. In basic research, these cells represent the best model to study
differentiation, function and the development of human tissues; they also provide different and early
human cells that were previously almost inaccessible (Xu et al., 2002). In biomedical research, ESCs
are a powerful system to identify gene targets for new drugs and test the toxicity or teratogenicity of
them and to study human genetic disease (Romito and Cobellis, 2016). They are promising tools for
cell-based therapies in degenerative diseases (Kaji and Leiden, 2001) and transplantation of ESC-
derived cells can replace cells which are damaged by various diseases such as Parkinson’s disease,
cardiac infarcts, juvenile-onset diabetes mellitus and leukemia (Amit et al., 2000).

iPSCs have broad applications like ESCs especially in regenerative medicine. Soon after the
development of the technology, hiPSCs were used to generate human disease in vitro models and
used for drug screening for efficacy and potential toxicities. The advantage of hiPSCs in disease
modeling include their human origin, expandability, accessibility, ability to differentiate into almost
any cell types, no ethical concerns and the potential to develop personalized medicine using patient-
specific iPSCs. Disease modeling by hiPSCs starts with reprogramming cells from patients to iPSCs
containing the disease-causing mutation. These cells are then differentiated into disease-relevant cell
types. The resultant cells are used to investigate the potential mechanisms involved in disease (Shi et
al., 2017).

So far, many diseases have been studied using a single disease-relevant cell type derived from
iPSCs, such as RASopathies, Shwachman-Bodian-Diamond syndrome, adenosine deaminase
deficiency-related severe combined immunodeficiency, Parkinson disease and Gaucher disease type
III, they can be a perfect model for biological and pharmacological studies and drug screening
(Gunaseeli ef al., 2010; Lee and Studer, 2010; Park et al., 2008). The application of iPSCs as an in
vitro model has been reviewed in different disease like neurogenetic disorders (Chamberlain et al.,
2008), iPS-derived cardiomyocytes in arrhythmic diseases (Tanaka et al., 2009; Yokoo et al., 2009)
and they can also be a target in toxicology studies (Heng et al., 2009).

iPSCs also showed a promising result in clinical study. In 2015, hiPSC-derived retinal pigment
epithelial cells were used to treat macular degeneration (Kimbrel and Lanza, 2015), and it was
reported that the treatment was successful to improve the patient’s vision (Scudellari, 2016).

1.2 Signaling networks in embryonic stem cells

Pluripotency is a transient state during development that exits only for a short window of
embryogenesis, but it can be recaptured in vitro by deriving ESCs or reprogramming somatic cells.


https://www.merriam-webster.com/dictionary/inaccessible
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Shortly after the onset of embryogenesis, the cells within the embryo that are totipotent undergo
differentiation and become either progenitor cells that later will form extra-embryonic tissues (the
placenta and fetal extra-embryonic membranes) or become pluripotent cells which will form three
germ layers from that all the tissues are generated.

Pluripotency consists of two distinct molecular states which is different according to the species
(Kalkan et al., 2017). Naive pluripotency is the ground state of cells from the pre-implantation mESCs
and primed pluripotency is the property of post-implantation mouse epiblast stem cells (EpiSCs)
(Tesar et al., 2007) and ESCs derived from ICM of a human embryo. EpiSCs and hESCs share many
commonalities including a flat colony morphology, poor single-cell survival and dependent on activin
A and fibroblast growth factor 2 (FGF2/bFGF), which proposed that human ESCs are also in a primed
state (Li and Belmonte, 2017). Pluripotency is regulated by a highly interconnected gene regulatory
network that is linked to a set of core pluripotency transcription factors (Fig. 2), the three most
important ones are OCT4, SOX2 and NANOG (Li and Belmonte, 2017). This process is regulated by
interaction between these genes and more aspects of regulation that include extrinsic factors and
intrinsic signaling, chromatin regulators and regulatory RNAs (Fig. 2) (Pera and Tam, 2010; Li and
Belmonte, 2017; Zhao and Jin, 2017).

Stimulus

Signal transduction
|

v B

= Target genes

Chromatin regulators
Transcription factors

Regulatory RNA

Figure 2: Pluripotency regulation.

The core of ESCs regulatory circuitry composed of many genes. The regulation of this gene program is a product of
regulation by specific, chromatin-modifying enzymes from one hand, on the other side there are transcription factors which
lead to transcription or silencing the target genes. There are also regulatory RNAs like miRNA which are a product of these
program that can function at posttranscriptional levels and inhibit or activate some transcription factors. And on top of this
highly interconnected network there are stimulus and signaling pathways which can positively or negatively regulate
pluripotency.
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1.2.1 The core pluripotency genes

Octamer-binding transcription factor 4 (OCT4; also known as POUSF1) which in human is
coded by POUSFI gene, is involved in self-renewal and pluripotency in vivo and in vitro of stem
cells and is expressed in ESCs and primordial germ cells (Scholer et al., 1989; Nichols et al., 1998).
SRY (sex determining region Y)-box 2, also known as SOX2, is a transcription factor required for
pluripotent epiblast formation and is a key regulator for OCT4 expression (Avilion et al., 2003; Masui
et al., 2007). Loss of OCT4 and SOX2 expression will lead to trophectoderm differentiation, while
the overexpression promotes mesendoderm and ectoderm differentiation (Niwa et al., 2000; Thomson
et al., 2011). NANOG is the third important transcription factor in the core of pluripotency factors
due to its role in the acquisition of pluripotency in the ICM (Mitsui et al., 2003). OCT4, SOX2 and
NANOG co-occupy hundreds of potential downstream targets promoters, including their own and
make interconnected regulatory loops (Li and Belmonte, 2017) and pluripotency of ESCs and iPSCs
is safeguarded by these three most important transcription circuitry.

1.2.2 Pluripotency-supporting signals

Among various signaling pathways, seven main signaling pathways have been reported to be
involved in embryonic development (Brivanlou and Darnell, 2002), including JAK/STAT, NOTCH,
NFxB, MAPK, PI3K/AKT, Wnt and TGF-f signaling (Dreesen and Brivanlou, 2007). The major
signaling pathways modulating hESCs identity are described below.

MAPK pathway

MAPKSs are Ser/Thr protein kinases which convert extracellular stimuli into a wide range of
cellular responses. These Kinases regulate cell proliferation, differentiation, motility and survival in
mammals. They comprise the ERK1/2, JNK, p38 and ERKS. Each group composed of a set of three
evolutionarily conserved kinases; a MAPK, a MAPK kinase (MAPKK/MAP2K), and a MAPKK
kinase (MAPKKK/MAP3K). The MAP3Ks are Ser/Thr protein kinases which are activated through
phosphorylation or interaction with RAS/RHO family in response to extracellular stimuli. MAP3K
activation leads to the activation and phosphorylation of a MAPKK, which then stimulates MAPK
activity through dual phosphorylation on Thr and Tyr (Cargnello and Roux, 2011; Yoon and Seger,
2006).

One of the central components in the transmission network is the ERK cascade including RAF
(MAP3K), MEK (MAP2K) and ERK (MAPK) (Yoon and Seger, 2006). RAF proteins are Ser/Thr
kinases with three RAF isoforms CRAF (RAF1), ARAF and BRAF in mammalian. All of them
contain an N-terminal RBD and C-terminal Ser/Thr kinase domain. Binding the N-terminal RBD of
RAF kinase to RAS-GTP, brings RAF to the plasma membrane (Lavoie and Therrien, 2015), which
leads to downstream signaling activation. RAF kinases phosphorylate S218/5222 and S222/5226 of
MEKI1/MEK?2, respectively and phosphorylated and activated MEK1/2, phosphorylates position
T202/Y204 of ERK1 and T185/Y187 of ERK2. ERK1/2 are the final kinases of this cascade which
are triggered by RAS-GTP bound. ERK1/2, despite RAF and MEK kinase which have a limited
number of substrate, possess approximately 200 cytoplasmic and nuclear targets (Yoon and Seger,
2006).
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There have been conflicting reports on the role of MAPK/ERK signaling in hESCs but this
pathway is generally considered to support hESCs self-renewal (Armstrong et al., 2006; Li ef al.,
2007), however a pro-differentiation role is also reported (Singh et al., 2012).

JNKs/SAPKSs

JNKs are cycloheximide-activated MAP2K regulate cell proliferation, embryonic development,
inflammation, cytokine production, metabolism and apoptosis (Raman et al., 2007), whether
activation of JNK pathway leads to which process is based on the stimuli and the cell type (Fresno
Vara et al., 2004; Hennessy ef al., 2005). This signaling pathway can be activated by different stimuli
such as growth factors (Vanhaesebroeck et al., 2010), cytokines (Staal, 1987) and stress factors
(Alessi et al., 1996). INKs also called SAPKSs, have been first discovered in a c-Jun binding assay
with extracts from UV-stimulated HeLa cells (Hibi ef al., 1993). In mammalian, three genes JNKI,
2, 3 encoded the family of three isoforms (JNK1-3). JNKI and JNK2 are widely expressed while
JNK3 is mainly confined to brain, heart and testis. JNKs have a docking domain in C-terminal and a
glutamate/aspartate domain in their N-terminal which enable them to interact with upstream MAPKs
and downstream targets (Haeusgen et al., 2011). The main MAP2Ks upstream of JNK are MEKK4
and MEKKY7, which phosphorylate JNK on the TPY motif within the activation loop with the
preference of MEKK4 for tyrosine and of MEKK?7 for threonine (Kishimoto ef al., 2003; Tournier et
al., 2001). Whereas MEKK?7 is a specific activator of JNK, MKK4 can also phosphorylate p38
MAPK (Raman et al., 2007). Monophosphorylation of JNKs on the threonine residue by MEKK?7 is
sufficient for enhancing its activity, while the additional phosphorylation of the tyrosine residue by
MKK4 ensures optimal activation (Tournier ef al., 2001). After being phosphorylated and activated,
JNKs phosphorylate some transcription factors such as c-JUN, ATF-2, p53, ELK-land NFAT
(Raman et al., 2007). JNK signaling regulates apoptosis by phosphorylation of pro-apoptotic proteins
(Dhanasekaran and Reddy, 2008). This pathway is also responsive to mitochondrial signals (Sehgal
and Ram, 2013).

P38MAPKSs

P38MAPKSs are activated by a wide range of environmental stresses and inflammatory cytokines,
and less by serum and growth factors. In mammals, there are four p38 MAPKSs: a, B, y and 3. p38a.is
the best characterized among all isoforms and is expressed in many cell types (Cuenda and Rousseau,
2007). Together with JNK family, p38 MAPKS are also known as SAPKSs. The activation occurs via
dual phosphorylation by MKK3 and MKK®6 in the Thr—Gly—Tyr motif, in the activation loop
(Kyriakis and Avruch, 2001). Upon activation, the phosphorylated p38 MAPK undergoes
conformational changes which enhances access to substrate and increases enzymatic activity (Bellon
et al., 1999; Canagarajah et al., 1997). p38 MAPK has both cytoplasmic and nuclear targets. In the
cytoplasm, it phosphorylates other kinases like MNK1/2, while in the nucleus it can activate a large
range of transcription factors such as ATF2, ELK-1, p53 and STAT1, which are involved in DNA
damage response, apoptosis, inflammation, developmental processes and cellular proliferation
(Cuadrado and Nebreda, 2010).
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PI3K/AKT pathway

PI3K/AKT is an intracellular signaling pathway that is crucial for metabolism, proliferation, cell
survival and growth in response to extracellular signals (Hennessy et al., 2005) which is mediated
through phosphorylation of a wide range of downstream substrates. Key proteins involved in this
signaling pathway are PI3K and AKT. PI3K constitutes a large family of lipid and Ser/Thr kinases,
characterized by their ability to phosphorylate phosphatidylinositol and phosphoinositides (Hennessy
et al., 2005). Based on lipid substrate and sequence homology they are divided into three groups:
class I, II and III. Upstream regulators of PI3K, mainly consist, RAS proteins, receptor tyrosine
kinases and G protein-coupled receptors (Vanhaesebroeck ef al., 2010).

AKT or protein kinase B (PKB) is the human homologue of the viral oncogene v-4KT which is
known to be responsible for a certain type of leukemia in mice (Fresno Vara et al., 2004; Staal, 1987).
There are three known AKT isoforms derived from distinct genes including AKT1/PKBa,
AKT2/PKBp and AKT3/PKBy, which are closely related to each other with up to 80% homology in
amino acid sequences. Each isoform has a pleckstrin homology (PH) domain which interacts with 3'-
phosphoinositides and is contributing to recruitment of AKT to the plasma membrane (Fresno Vara
et al., 2004; Hennessy et al., 2005). The subsequent kinase domain contains a threonine residue
(T308) which is required for AKT activation after phosphorylation. Following the kinase domain,
there is a hydrophobic C-terminal tail containing a second regulatory phosphorylation site (S473 in
AKT1) (Fresno Vara et al., 2004). Recruitment of AKT to the membrane results in a conformational
change that exposes these two crucial amino acids, T308 is phosphorylated by constitutively active
phosphoinositide-dependent kinase 1 (PDK1), whereas phosphorylation in S473 is mediated by
PDK2 (Alessi et al., 1996; Blume-Jensen and Hunter, 2001). Different potential PDK2s have been
identified, including the mTOR rictor complex, integrin-linked kinase (ILK), PKCBII and even AKT
itself (Kawakami et al., 2004; Lynch et al., 1999; Sarbassov et al., 2005). Phosphorylation at T308
and S473 happens in response to extracellular stimuli and growth factors and it is essential for
maximal AKT activation (Alessi ef al., 1996).

JAK/STAT pathway

JAK/STAT pathway transduces a multitude of signals for development and homeostasis in
animals, from humans to flies. Its activation stimulates cell proliferation, differentiation, cell
migration and apoptosis (Rawlings et al., 2004). JAKs are a family of intracellular tyrosine kinases
which bind to the cytoplasmic regions of receptors (Blume-Jensen and Hunter, 2001). Upon ligand
binding to the receptor, the receptor-associated JAKSs are activated and in turn phosphorylate tyrosine
residues in the cytoplasmic domain of the receptor. The phosphorylation provides a docking site for
proteins with Src homology 2 (SH2) domains, one important class is STAT family (Lynch et al.,
1999). STAT proteins were first identified as cytoplasmic transcription factors, which were
translocated to the nucleus upon JAK-mediated phosphorylation and dimerization (Kawakami ef al.,
2004). In the nucleus, activated STAT can bind to consensus DNA-recognition motifs resulting in
transcriptional activation (Sarbassov ef al., 2005). The mammalian STAT family comprises STATI,
2,3,4,5a, 5b and 6 (Cuenda and Rousseau, 2007), which an overall general structure that is organized
into functional modular domains.
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JAK/STAT pathway plays a central role in maintaining pluripotent state of mESCs (Smith et al.,
1988; Williams et al., 1988). During ir vitro culture, LIF binds to the heterodimeric cytokine receptor
complex composed of LIF receptor b and gp130, resulting in the phosphorylation of gp130-associated
JAK kinases and STAT3. pSTAT3 acts as a key factor, translocate to the nucleus and regulate the
expression of downstream target genes which lead to maintenance of pluripotency in mESCs (Hirai
et al., 2011; Yoshida et al., 1994). Despite the importance of LIF in mESCs culture, LIF does not
support the pluripotency of hESCs when they are cultured in the absence of feeder cells and STATI,
3 and 5 are not phosphorylated (Noggle et al., 2005; Sato et al., 2004). Consistent with these results,
even addition of LIF to hESCs culture is not sufficient to maintain pluripotency. This contradiction
between mouse and human ESC suggests that this pathway has different role in pluripotency in the
two species.

1.3 bFGF in pluripotency

The family of fibroblast growth factor (FGF) consists of secreted signaling proteins (secreted
FGF) that signal through receptor tyrosine kinases (RTK) and intracellular non-signaling proteins
(intracellular FGF/iFGF) which are cofactors for voltage gated sodium channels. Secreted FGFs are
widely expressed in almost all tissues and play essential roles in early stage of embryonic
development, during organogenesis and in adults they serve as homeostatic factors which are
important for metabolism, regeneration and tissue maintenance (Ornitz and Itoh, 2015). This group
functions as autocrine or paracrine factors which are called canonical FGFs and endocrine factors.
Canonical FGFs control cell proliferation, differentiation and survival and are tightly bound to
heparin/heparan sulfate (HS) proteoglycans (HSPGs) that serves as cofactors to regulate the affinity
and specificity for FGFR signaling (Fig. 3). Endocrine FGFs paly an essential role in regulating bile
acid, carbohydrate, phosphate and lipid metabolism in addition to canonical FGFs functions and they
require aKlotho, pKlotho or KLLPH for receptor binding (Ornitz and Itoh, 2015).

The mammalian FGF family contains 5 subfamilies of canonical FGFs, one subfamily of
endocrine FGF and one subfamily of iFGF, with 22 genes, 18 of which signal through FGF tyrosine
kinase receptors. Subfamily of canonical FGFs are divided into FGF1, 4, 7, 8, 9 (Beenken and
Mohammadi, 2009; Eswarakumar et al., 2005; Ornitz and Itoh, 2001), from which FGF1 subfamily
is of our interest.

The FGF1 subfamily consists of FGF1 and FGF2. These two growth factors lack secretory signal
peptides but are readily exported by direct translocation across the cell membrane from cells
(Prudovsky et al., 2013). FGF2 which is also called basic FGF (bFGF), is a ubiquitously expressed
FGF in various developmental stages. bFGF is a prototype member of the FGF family that is encoded
by a single copy gene that produces one low (18-kDa) and four high (22-, 22.5-, 24-, and 34-kDa)
molecular mass isoforms (Arnaud et al., 1999; Delrieu, 2000). LMM bFGF signals through FGFRs
(FGFR1-4) in a paracrine or autocrine manner with the highest affinity toward FGFR1 and 2
(Ibrahimi et al., 2004a; Ibrahimi et al., 2004b). bFGF signals by activating a smaller family of cell
surface receptors called FGFRs.

FGFRs belong to the family of receptor tyrosine kinases of near 800 amino acids that are single-
pass transmembrane receptors with three extracellular immunoglobulin-like domains (I, II, and III),



Chapter I: General Introduction 10

a transmembrane domain and two intracellular tyrosine kinase domains. Upon binding of the ligand
to the extracellular domain of the receptor, the signal transduction will initiate which finally results
in gene expression (Fig. 3) (Dailey et al., 2005). The FGFR family consists of four genes encoding
various FGFR isoforms by alternative splicing including FGFR1-4 (Dailey et al., 2005; Eswarakumar
et al., 2005).

Signaling via FGFR, mediated through FGF binding, leads to receptor dimerization and
activation of intrinsic tyrosine kinase and cause phosphorylation of multiple tyrosine residues on the
receptors. These phosphorylation sites serve as docking sites for the recruitment of SH2 or PTB
(phosphotyrosine binding) domains of signaling proteins (Eswarakumar et al., 2005; Ornitz and Itoh,
2001). The best understood signal transduction activated by FGFs are RAS-MAPK including
ERK1/2, JNK and p38, PI3K/AKT, JAK/STAT and phospholipase C (PLCy) (Fig. 3) (Ornitz and
Itoh, 2001; Dailey et al., 2005). Phosphorylation of FRS2a activates RAS-MAPK and PI3K/AKT
pathways. Activated FRS20 binds to GRB2 (growth factor receptor-bound 2) and tyrosine
phosphatase SHP2 (Eswarakumar et al., 2005; Beenken and Mohammadi, 2009). GRB2 activates
RAS-MAPK through SOS and PI3K/AKT through GABI1 recruitment to the signaling complex (Fig.
3) (Beenken and Mohammadi, 2009; Prudovsky et al., 2013).

Among the 22 FGF ligands, it is widely accepted that hESCs require exogenous bFGF to sustain
self-renewal and the capacity to differentiate into a large number of somatic cell types (Xu ef al.,
2001). bFGF maintains pluripotency either directly under feeder-free conditions supplemented with
activin A (Zhao and Jin, 2017) or indirectly by stimulating irradiated mouse embryonic fibroblasts
(iIMEFs) to secrete activin A and other growth factors and cytokines necessary for hESCs
pluripotency (Greber, 2011; Greber ef al., 2007; Levenstein et al., 2006). Therefore, among many
growth factors and cytokines which maintain pluripotency of hESCs and hiPSCs, bFGF was selected
for monitoring downstream signaling pathways. All FGFR (1-4) are expressed in hESCs with specific
pattern, with FGFR1 being the most abundant species and other receptors showing lower expression
in the following order: FGFR1 > FGFR3 > FGFR4 > FGFR2 (Dvorak et al., 2005).
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Figure 3: Schematic view of signaling pathways downstream of bFGF.

The FGF-FGFR signaling pathway is regulated at different levels. HSPGs act both as co-receptors and modulators of ligand
bioavailability. Binding of bFGF to FGFR with HSPG induces the formation of ternary complex bFGF-FGFR-HSPG
complex which activates FGFR intracellular tyrosine kinase domain by phosphorylation of specific tyrosine residues. Four
main downstream pathways are MAPKs, JNK and p38 MAKPs, PI3K/AKT and JAK/STAT. The RAS-MAPK pathway:
The major FGFR kinase substrate, FRS2a is phosphorylated by the activated FGFR kinase. Phosphorylated FRS2a recruits
the adaptor protein GRB2, which then recruits the guanine nucleotide exchange factor SOS. The recruited SOS activates
the RAS GTPase, which then activates the MAPK pathway. The PI3K/AKT pathway: The recruited GRB2 also recruits the
adaptor protein GAB1, which then activates the enzyme PI3K, which then phosphorylates the enzyme AKT. The
JAK/STAT pathway: FGFR kinase also activates JAK/STAT. This activated signaling pathway mostly regulates gene
expression in the nucleus. bFGF, basic fibroblast growth factor; FGFR, fibroblast growth factor receptor; HSPG, heparan
sulfate proteoglycans; FRS2a, fibroblast growth factor receptor substrate 2a; GRB2; growth factor receptor bound protein
2; SHP2: Src homology region 2-containing protein tyrosine phosphatase 2; SOS, son of sevenless; GAB1, GRB2-
associated-binding protein 1; PI3K, phosphoinositide 3-kinase; PDK1, 3-phosphoinositide dependent protein kinase; JAK,
Janus kinase; STAT, signal transducer and activator of transcription; MEK, MAP/ERK kinase; ERK, extracellular regulated
kinase; JNK, c-Jun N-terminal kinases.

1.4 RAS superfamily at a glance

The history of the RAS protein family dates back in 1960s, when the highly oncogenic Harvey
and Kirsten murine sarcoma viruses (Ha-MSV and Ki-MSV) were discovered by Jennifer Harvey
and later Werner Kirsten to cause rapid tumor formation in rats (Malumbres and Barbacid, 2003).
These viral oncogenes, named Harvey and Kirsten RAS (HRAS and KRAS), along with their
neuroblastoma RAS (NRAS) viral oncogene homolog, are activated versions of genes encoding 21-
kDa phospho-protein (p21) with guanine nucleotide (GDP and GTP) binding and GTP hydrolyzing
activities (Malumbres and Barbacid, 2003). RAS superfamily act as molecular switches cycling
between a GTP-bound (active) and a GDP-bound (inactive) states (Wittinghofer and Vetter, 2011)
and based on the sequence, structure and functional similarities they are divided into five major
families: RAS, RHO, RAB, ARF and RAN (Wennerberg et al., 2005). This superfamily plays a major
role in signal transduction and transduces the signals from receptors at the membrane which regulate
a variety of cellular processes. The RAS GTPases are involved in regulation of gene expression, cell
proliferation, survival and differentiation. The RHO GTPases regulate actin organization and
cytoskeleton. RAB and ARF GTPases play a role in vesicular trafficking, regulating endocytosis and
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secretory pathways. RAN is involved in nuclear—cytoplasmic transport and mitotic spindle
organization (Vigil ef al., 2010).

1.4.1 RAS family GTPases

The RAS family includes 23 genes coding for at least 25 proteins. Based on sequence identity,
structure and function, the RAS proteins were divided into eight paralog groups: RAS, RAL, RRAS,
RIT, RAP, RHEB, RASD, and DIRAS (Nakhaei-Rad et al., 2018). The most characterized RAS
proteins are HRAS, KRAS and NRAS which have become the subject of intense investigations due
to their central involvements in signal transduction and their critical contribution to human diseases
and disorders (Hobbs et al., 2016; Simanshu et al., 2017). These three canonical RAS are highly
conserved across different species and play significant roles in various cellular processes, including
proliferation, differentiation, cell growth and cell death (Castellano and Santos, 2011).

1.4.2 RAS Effectors and signaling pathways

RAS family proteins link the extracellular signals, transduced through their receptors, with
multiple signaling pathways and consequently control a wide array of cellular processes. Different
RAS paralogs have unique roles in modulating the cellular processes. The specificity comes from
several levels: Subcellular localization, upstream stimuli, interactions with scaffolds, regulators and
target proteins and downstream signaling. Activation of different transmembrane receptors, including
receptor tyrosine kinases, G-protein coupled receptors (GPCRs), ion channel receptors (e.g. mGIluR
or NMDAR), cytokine receptors and adhesion receptors, lead to the activation of distinct RAS
proteins in distinct cell types (Nakhaei-Rad et al., 2018). Specific regulation of cellular functions by
the members of the RAS family depends on selective interaction with downstream targets, the
effectors (Mott and Owen, 2015; Nakhaeizadeh et al., 2016), which transduce the signal to distinct
pathways (Castellano and Downward, 2010; Cox and Der, 2003; Rajalingam ef al., 2007). More than
60 effectors reported for the RAS family proteins can activate about 49 pathways (Nakhaei-Rad et
al., 2018).

RAF kinases (ARAF, BRAF, and CRAF) are the major and best studied effectors for RAS
family. These kinases are critical elements of the MAPK pathway, which control gene expression and
thus, different cellular processes including proliferation, apoptosis, and differentiation (Fig. 4)
(Desideri et al., 2015). CRAF and BRAF are apparently downstream of many different members of
the RAS family, including HRAS, KRAS4B, NRAS, RAP1A, RRASI, RRAS2, RRAS3, RHEBI,
RIT1, and DIRAS3 (Baljuls et al., 2012; Jin et al., 2006; Karbowniczek et al., 2006; Mott and Owen,
2015; Self et al., 2001; Wellbrock et al., 2004).

The second best-characterized RAS effector family, PI3K (class I PI3K), phosphorylates
phosphoinositide (4,5) bisphosphate (PIP2) and generates the second messenger phosphoinositide
(3.,4,5) trisphosphate (PIP3) that recruits the wide range of protein effectors through their PH domain
to the membrane. Target proteins could be kinases (e.g. AKT and PDK1), adaptor proteins, GEFs, or
GAPs that regulate different cellular processes (Fig. 4) (Vanhaesebroeck et al., 2001). HRASI,
NRAS, KRAS4B, ERAS, RRAS, and RAP1A activate PI3Ks (Nakhaei-Rad ef al., 2018).
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Other RAS effectors are RALGDS, PLCg, and RASSF. RALGDS links RAS with RALA/B, and
regulates cellular processes such as vesicular trafficking, endocytosis and migration (Fig. 4) (Ferro

and Trabalzini, 2010).
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Figure 4: Schematic representation of the RAS-GDP/GTP cycle and downstream signaling pathways.
RAS proteins cycle between GDP and GTP form by two main regulatory proteins GEFs and GAPs. They only can transduce

signal transduction when they are in a GTP form and bounded to the membrane by posttranslational modifications. Effector
proteins of RAS-GTP are shown in red color and the downstream targets are in black. RAS, rat sarcoma; GEF, guanine
nucleotide exchange factor; GAP, GTPase-activating protein; RALGDS, guanine nucleotide dissociation stimulator;
RALBP1, RALA binding protein 1; PLCe, Phospholipase C &; DAG, diacylglycerol; IP3, inositol trisphosphate; PKC,
protein kinase C; RASSFS5, RAS-association domain family; MST, mammalian sterile 20-like kinase; LATS, large tumor
suppressor kinase.

1.5 RAS dysfunction and diseases

As RAS family proteins essentially control a wide variety of cellular processes, it is obvious that
any dysregulation or dysfunction of the respective signaling pathways results in the development of
human diseases, including developmental, hematological, neurocognitive and neurodegenerative
disorders, metabolic and cardiovascular diseases and cancer. Somatic mutations, frequently identified
for example in KRAS4B, HRAS, NRAS and RIT1, contribute to robust gain-of-function (GoF)
effects and to various types of cancers as well as leukemia and lymphoma tumors (Simanshu et al.,
2017).
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1.5.1 RASopathies

The RASopathies are a clinically defined group of developmental genetic disorders caused by
germline mutations in genes that encode components or regulators of the RAS-MAPK pathway.
RASopathies include noonan syndrome (genes encoding KRAS4B, NRAS, RRAS1/3, RIT1, SOSI,
SOS2, RASGAP1M, CRAF, CBL), cardio-facio-cutaneous syndrome (KRAS4B, BRAF, ERK1/2),
costello syndrome (HRAS1, HRAS2), neurofibromatosis type 1 (neurofibromin), legius syndrome
(SPRED1), noonan syndrome with multiple lentigines or LEOPARD (BRAF, CRAF, SHP2), and
capillary malformation/arteriovenous malformation syndrome (p120RASGAP) (Fig. 5) (Aoki et al.,
2016; Cao et al., 2017, Flex et al., 2014; Higgins et al., 2017; Korf et al., 2015; Lissewski et al.,
2015; Pantaleoni ef al., 2017; Rauen, 2013; Simanshu et al., 2017; Tidyman and Rauen, 2016). Each
RASopathy exhibit a unique phenotype but due to common underlying RAS-MAPK pathway
dysregulation, they show various overlapping phenotypic features such as craniofacial
dysmorphology, cardiac malformations, cutaneous, musculoskeletal, and ocular abnormalities,
neurocognitive impairment, hypotonia and an increased cancer risk (Aoki et al., 2016; Cave et al.,
2016; Gelb et al., 2015; Lissewski ef al., 2015; Mainberger et al., 2016; Simanshu et al., 2017).
Neurocognitive deficits and cardiac anomalies, particularly hypertrophic cardiomyopathy that is not
necessarily present at birth and has no causal treatment, are among the health issues, which are most
critical for life quality and expectancy in RASopathies (Wilkinson et al., 2012).

1.5.2 Noonan syndrome (NS)

NS is a relatively common autosomal dominant developmental disorder that affects
approximately 1 in 1,000-2,000 newborns. The principal features include congenital heart defects
and hypertrophic cardiomyopathy, postnatally reduced growth, variable cognitive deficit, skeletal and
hematologic anomalies an increased risk of developing cancer. This disorder is characterized by gain-
of-function mutations in genes encoding components of the RAS-MAPK signaling pathway, such as
PTPNI11, SOS1, RAF1, KRAS, NRAS, SHOC2 and CBL (Fig. 5) (Tartaglia et al., 2011). All of these
genes harbor heterozygous germline mutations. The most common protein associated with NS is
SHP2, encoded by PTPI1 gene, which accounts for approximately 50% of all cases (Tartaglia et al.,
2001). The second-most-common cause of NS is SOS1 missense mutations, accounting for
approximately 15% of all cases (Roberts et al., 2007; Tartaglia ef al., 2007). KRAS and NRAS
mutations are a rare cause of NS and have been found in a very small number of individuals,
respectively (Cirstea et al., 2010; Schubbert et al., 2006).

One of the mutated genes in RAS signaling is RAF1 as a downstream signal transducer. RAF1
mutations can be divided into three groups that affected three regions in the protein. The first group
of mutations (70% of total RAF1 defects) occur in the N-terminal consensus 14-3-3 recognition
sequence or adjacent residues. The second cluster (15% of RAF1 lesions) includes mutations which
affect the activation region of the kinase domain (Asp486 and Thr491). The third group (15% of
RAF1 mutations) occur at the two adjacent residues (Ser612 and Leu613) located at the C-terminal.
These panel of RAF1 mutations differentially disrupt protein function and intracellular signaling
(Tartaglia et al., 2011). Phenotype analysis of NS patients with RAF1 mutations (75% of cases)
exhibit Hypertrophic cardiomyopathy (HCM). HCM is probably the major cause of unexpected death
in patients with NS (Wilkinson ef al., 2012) and is characterized by an increase in left ventricular
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wall thickness. Its pathophysiology is poorly understood, but there is evidence from in vivo models
that aside from MAPK pathway also other RAS-dependent effector pathways are involved, and that
pharmacological inhibition may prevent the myocardial changes (Dhandapany et al., 2011; Marin et
al.,2011).

N\

RAS GEFs
RAS GAPs

Figure 5: Schematic view of mutated genes of RASophaties in RAS-MAPK pathway.
RASopathies are a group of developmental disorders with overlying clinical features and characterized by germline

mutations in genes that encodes for proteins involved in this pathway (illustrated in color code). This group of
developmental disorders includes the following disorders: noonan syndrome (NS), noonan syndrome with multiple
lentigines (NSML), NF1-like syndrome (NF1-like), neurofibromatosis type 1 (NF1), capillary malformation— arteriovenous
malformation syndrome (CM-AVM), cardio-facio-cutaneous syndrome (CFC), and costello syndrome (CS). NF1,
neurofibromin 1; SPRED1, sprouty-related, EVH1 domain containing protein.

1.5.3 Hypertrophic cardiomyopathy (HCM)

HCM is the most common inherited form of heart failures affecting up to 0.2% of the population,
which is manifested as thickening of the left ventricular wall, contractile dysfunction and potentially
fatal arrhythmias. The molecular events that lead to clinical phenotype of HCM is still unclear but
mutations in more than 20 genes have been identified which elucidate the genetic basis of HCM.
Most of these genes encode sarcomeric proteins including myosin 7 (also known as cardiac muscle
B-myosin heavy chain; MYH?7), cardiac myosin-binding protein C (MYBPC3) and cardiac muscle
troponin T (TNNT2) (Frey et al., 2011). As it has been mentioned earlier, NS patients according to
the type of gene mutation, show different cardiac disease, such as HCM. In addition to the mutation
in sarcomeric proteins, other stimuli can lead to cardiac hypertrophy that are divided into
biomechanical and stretch-sensitive mechanisms which are associated with the release of growth
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factors, cytokines, hormones and chemokines. These ligands are sensed by cardiac myocytes through
different membrane-bound receptors such as RTK, GPCRs and gp130-linked receptors. These
signaling directly leads to hypertrophic growth by changing gene expression, increasing protein
translation and decreasing the rates of protein degradation. The important mediators of cardiac
hypertrophy from proteins to signaling pathways are MAPK, NFAT, insulin-like growth factor-I
(IGF-I), PI3K/AKT and mTOR (Heineke and Molkentin, 2006).

GPCRs are activated by angiotensin II, endothelin-1 and catecholamines, leads to generation of
DAG which function as an intracellular ligand for PKC and its activation. PKC activation cause the
production of inositol-1,4,5 trisphosphate which upon accumulation leads to the mobilization of
internal Ca®" by directly binding to the Ins(1,4,5)P3 receptor located in the endoplasmic reticulum or
the nuclear envelope. Ca?* storage mediates hypertrophic signaling through calcineurin-NFAT
activation or calmodulin dependent kinase (CaMK)-HDAC inactivation (Wilkins and Molkentin,
2004).

In cardiac myocytes, MAPK signaling is initiated by different ligands such as IGF-1, TGF-f and
cardiotrophin-1 binding to RTKs, GPCRs and gp130-linked receptors. Activates MAPKs including
ERK, JNK and p38 phosphorylate multiple intracellular targets, including numerous transcription
factors that induce the reprogramming of cardiac gene expression (Heineke and Molkentin, 2006).
MEK/ERK signaling can induce cardiac hypertrophy by enhancing the transcriptional activity of
NFAT (Sanna et al., 2005).

1.6 Fragile X mental retardation protein (FMRP)

Genetic deficiency of the fragile X mental retardation protein (FMRP; also known as FRAXA,
MGC87458, POF, POF1) results in the most common inherited form of intellectual disability, fragile
X syndrome (FXS; also known as Escalante's syndrome or Martin—Bell syndrome) (Maurin ef al.,
2014). It results from expansion of a CGG nucleotide repeat in the 5' untranslated region (UTR)
of FMR1 (Verkerk et al., 1991) and the protein is ubiquitously expressed in different human cell types.
During early embryonic development (0—14 days), FMRP is ubiquitously expressed similar to adult
tissues. In the stage of day 15-19 of development, FMRP shows a specific pattern of expression,
mainly in tissues from ectodermal lineage, such as brain, hair follicles, sensory cells and adrenal
medulla (Bardoni ez al., 2001).

FMRP consists of an N-terminal domain containing two tudor (Tud) domains and one K
homology 0 (KH0) domain, a central region containing two KH1 and KH2 domains, and a C-terminal
domain containing a phosphorylation site (Bartley ef al., 2014) and an arginine-glycine-glycine
(RGG) region (Fig. 6) (Myrick et al., 2015). FMRP displays a nuclear localization signal (NLS), a
nuclear export signal (NES) and two nucleolar localization signals (NoLSs) (Fig. 6) (Bardoni et al.,
1997; Feng et al., 1997; Kim et al., 2009; Taha et al., 2014; Tamanini ef al., 1999), consequently
localizing to different subcellular compartments in the cytosol and nucleus (Taha et al., 2014). The
N-terminus of FMRP harbors different protein binding characteristics due to various subdomains.
Two conserved Tud1/2 domains (also called N-terminal domain of FMRP 1 and 2 or NDF1 and
NDF2) (Ramos et al., 2006; Taha et al., 2014) are part of the royal family of proteins that also includes
Agenet, MBT, PWWP, and chromo domains (Maurer-Stroh ef al., 2003). FMRP and Tud1/2 have
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been shown to selectively associate with trimethyl-lysine peptides derived from histones H3K9 and
H4K20 (Adams-Cioaba et al., 2010; Ramos et al., 2006) together with chromatin (Alpatov et al.,
2014). The N-terminus of FMRP has been proposed to be a platform for multiple protein-protein
interactions (Ramos ef al., 2006) (Ramos et al., 2006). A recent structure of the flexible FMRPN-erm
has revealed that this domain resembles a KH domain (Hu et al., 2015) that is directly linked to the
tandem KH domains of FMRP*"", KH domains are typical RNA and single strand DNA binding
modules, which have been first described for the heterogeneous nuclear RNA-binding protein
(hnRNP-)K (Nicastro et al., 2015; Varelas et al., 2008). FMRP“*™ may apply for FMRPN*™ i e,
its interactions may not all be direct protein-protein interactions but rather mediated via RNAs.

Nterm (1-218) Central (212-425) Cterm (444-632)
NLS NES [NoLS| [NoLS|
1 104 127 200 251 422 ‘ 496 503 526 532

Tud1]Tud2lf  KHo KH1

Figure 6: Schematic diagram highlighting major domains and motifs of FMRP.

FCT, FMRP C-terminus; KHO, KH1 and KH2, tandem K homology domain (first described for hnRNP K protein); NES,
nuclear export signal; NLS, nuclear localization signal; NoLS, nucleolar localization signal; RGG, arginine-glycine-glycine
region; P, phosphorylation sites; Tudl and Tud2, tandem Tudor domains.

1.6.1 FMRP functions

FMRP has been described previously to be involved in different biological functions. The most
prominent function of FMRP is regulation of translation. The mechanisms of translational regulation
by FMRP are not entirely clear, although mounting evidence suggests that FMRP suppresses
translation of its target mRNAs via association with either stalled, untranslating polyribosomes or
microRNA (miRNAs) (Wang et al., 2012a; Chen and Joseph, 2015; Irwin et al., 2000; Kenny et al.,
2014). This can leads to the formation of cytoplasmic ribonucleoprotein (RNP) granules, which
control the expression, repression, or decay of specific mRNAs (Alberti et al., 2017). There are
different types of cytoplasmic RNA granules, eukaryotic RNA processing bodies (P-bodies) and
stress granules (SGs), which transport, store or degrade mRNAs, thereby indirectly regulating protein
synthesis (Sfakianos et al., 2016; Alberti et al., 2017; Chyung et al., 2018; El Fatimy et al., 2016).
There is an increasing evidence that such RNP granules are associated with several age-related
neurodegenerative diseases (Maziuk et al., 2017).

FMRP not only acts as an RNA binding protein (RBP) and local translational regulator for
synaptic transmission (Ascano et al., 2012; Brown et al., 2001; Darnell and Klann, 2013; Darnell et
al., 2011; Fernandez et al., 2013; Sakano et al., 2017; Santoro et al., 2012), but is also involved in
the control of calcium channels (Ferron et al., 2014), actin cytoskeletal dynamics (Billuart and Chelly,
2003; Nolze et al., 2013; Schenck et al., 2003), chromatin dynamics (Alpatov et al., 2014), DNA
damage response (DDR) (Alpatov et al., 2014; Liu et al., 2012), and replication stress response
(Zhang et al., 2014). These cellular functions presume physical properties for FMRP, which are
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required not only for the recognition and localization of messenger RNA (mRNA) targets but also
for direct association with a multitude of proteins and protein complexes (Pasciuto and Bagni, 2014a;
Taha et al., 2014).

1.6.2 FMRP and stem cells

As it mentioned above, stem cells are regulated by a complex mechanism to maintain their
unique characteristics. Understanding stem cell regulation is critical to unlocking their therapeutic
potential. Conversely, stem cells also give the opportunity to explore mechanisms of development,
as well as developmental disorders, such as FXS. FMRP play significant roles in several types of
stem cells, including GSCs, eNSCs, aNSCs, ESCs and iPSCs (Callan and Zarnescu, 2011). So
understanding the role of FMRP in stem cell regulation is important for two reasons, first the post-
translational function of FMRP likely plays a role in stem cell regulation and second, these cells
provide a promising model to novel mechanisms and test potential treatments for FXS.

FMRP and ESCs/iPSCs, Eiges and his colleagues analyzed hESCs derived from a
preimplantation FXS embryo to investigate the early events of FMR1 gene inactivation. They showed
that in undifferentiated FXS-ESCs with full expansion of CGG repeats, FMRI was expressed with
acetylated promoter but in differentiated cells FMR1 gene was methylated. They showed for the first
time that differentiation will trigged FMRI inactivation (Eiges et al., 2007). Later, Telias et al.
showed that during hESCs neural differentiation, FMRP expression had a steady upregulation, while
FXS-hESCs could not upregulate FMRP during differentiation and exhibited aberrant expression of
several neurogenesis markers. Although FXS-hESCs could differentiate to functional neurons, they
had reduced synaptic connections (Telias et al., 2013). FXS-hESCs are a prominent model for
investigating the disease mechanism of FXS in human. The development of iPSCs technology made
arevolution in human development and diseases. Despite intense interest, very few FXS-iPSC studies
have been published. Urbach et al. reprogrammed fibroblasts from three FXS individuals to iPSCs
and found that the FMRI gene remained transcriptionally silent and the promoter was methylated in
all FXS-iPSCs. These data showed that there is a difference between hESCs and hiPSCs in FXS
modeling and reprogramming has little effect on the silenced FMRI gene (Urbach et al., 2010).
Moreover, Sheridan et al. analyzed differentiation ability of FXS-hiPSCs to neurons and showed that
FXS-iPSC differentiated neurons exhibited shorter neurites and fewer neurons, but more glia and also
confirmed the lack of FMR1 gene reactivation in hiPSCs (Sheridan et al., 2011). These studies prove
how hPSCs have given us the opportunities to study FXS and related disorders in human systems and
to investigate questions that cannot be answered using rodent models.


https://www.ncbi.nlm.nih.gov/pubmed/?term=Telias%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23219959
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Aims and objectives

The development of human embryonic stem cells opens new windows for basic research and
regenerative medicine due to their two remarkable properties, self-renewal and pluripotency. A key
goal in stem cell research is to identify the factors, which keeps human pluripotent stem cells (hPSCs)
undifferentiated in vitro and differentiating later to mature functional derivatives. However, obtaining
a clear and detailed view of how signaling pathways maintain pluripotency in vitro has been difficult
to achieve due to some limiting factors including; disparate culture conditions, tools for evaluation
of signal transduction pathways, their crosstalk and feedback loops. Basic fibroblast growth factor
(bFGF) was the first factor found to be crucial for the maintenance of hPSCs in vitro. It promotes
hPSCs self-renewal and pluripotency in two ways by directly activating RAS-MAPK and RAS-PI3K
pathways and by indirectly stimulating autocrine effects. This thesis aimed at exploring and
expanding in-depth the molecular mechanism of pluripotency with the focus of bFGF downstream
signaling. Our data revealed that MAPK pathway appears to be the prime signaling pathway
downstream of bFGF for maintaining pluripotency in hiPSCs (chapter II). Obtained knowledge about
molecular properties and regulation of RAS GTPases is compiled in chapter III.

In addition to the role of RAS-MAPK pathway in maintaining pluripotency, dysregulation of
this pathway causes a class of developmental syndromes called RASopathies. Noonan syndrome
patients with RAF15%"" point mutation are frequently associated with pathological hypertrophic
cardiomyopathy (HCM). Understanding the molecular mechanism of HCM, induced by RAF1537%,
was another objective of this thesis. Therefore, patient-specific iPSCs, carried RAF15%7C
differentiated to cardiac myocytes and investigated the mechanism involved in HCM in details
(chapter IV).

, were

Another developmental disorder that can be investigated by the technology of hiPSCs is fragile
X syndrome (FXS), with mutation in FMR! gene. The protein, FMRP, plays a critical role in chromatin
regulation, RNA binding, mRNA transport, and translation and interestingly plays important
regulatory roles in several types of stem cells. The underlying mechanisms, including the cellular FMRP
protein networks, which has remained elusive, was another goal of this thesis. We explored multitudes of
novel FMRP interacting proteins and described numerous novel FMRP interactors and networks, which are
involved in diverse subcellular processes (chapter V).
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Abstract

culture in response to bFGF stimulation.

Background: Human pluripotent stem cells (PSCs) open new windows for basic research and regenerative
medicine due to their remarkable properties, i.e. their ability to self-renew indefinitely and being pluripotent. There
are different, conflicting data related to the role of basic fibroblast growth factor (bFGF) in intracellular signal
transduction and the regulation of pluripatency of PSCs. Here, we investigated the effect of bFGF and its
downstream pathways in pluripotent vs. differentiated human induced (hi) PSCs.

Methods: bFGF downstream signaling pathways were investigated in long-term culture of hiPSCs from pluripotent
to differentiated state (withdrawing bFGF) using immunoblotting, immunocytochemistry and gPCR. Subcellular
distribution of signaling components were investigated by simple fractionation and immunoblotting upon bFGF
stimulation. Finally, RAS activity and RAS isoforms were studied using RAS assays both after short- and long-term

Results: Our results revealed that hiPSCs were differentiated into the ectoderm lineage upon withdrawing bFGF as
an essential pluripotency mediator. Pluripotency markers OCT4, SOX2 and NANOG were downregulated, following a
drastic decrease in MAPK pathway activity levels. Notably, a remarkable increase in phosphorylation levels of p38
and JAK/STAT3 was observed in differentiated hiPSCs, while the PI3K/AKT and JNK pathways remained active during
differentiation. Our data further indicate that among the RAS paralogs, NRAS predominantly activates the MAPK
pathway in hiPSCs.

Conclusion: Collectively, the MAPK pathway appears to be the prime signaling pathway downstream of bFGF for
maintaining pluripotency in hiPSCs and among the MAPK pathways, the activity of NRAS-RAF-MEK-ERK is decreased

during differentiation, whereas p38 is activated and JNK remains constant.

Keywords: bFGF, Differentiation, Induced pluripotent stem cells, MAPK, RAS, PI3K, Pluripotency

Background

Embryonic stem cells (ESCs) are derived from the inner cell
mass of human blastocyst [1], and represent promising
tools in tissue engineering and cell therapy [2, 3]. What
makes these pluripotent cells so valuable in developmental
biology and regenerative medicine is their ability to differ-
entiate into cell-types of different lineages both in vivo and
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in vitro. In order to realize the potential of ESCs in clinical
applications, it is crucial to address fundamental questions
regarding their molecular nature of pluripotency and the
underlying intracellular signaling pathways which maintain
the characteristics of these cells.

Various signaling pathways, including basic fibroblast
growth factor (bFGF/FGF2), TGF-f/activin, WNT, EGFR
family, insulin/IGF, PDGF, neurotrophin, integrin and
NOTCH, participate in maintaining pluripotency in
hESCs [4-12]. Among the 22 FGF ligands, it is widely
accepted that hESCs require exogenous bFGF to sustain
self-renewal and the capacity to differentiate into a large

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
Internaticnal License (http//creativecommeons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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number of somatic cell types [13]. bFGF maintains pluri-
potency either directly under feeder-free conditions sup-
plemented with activin A [14] or indirectly by stimulating
irradiated mouse embryonic fibroblasts (iMEFs) to secrete
activin A and other growth factors and cytokines neces-
sary for hESCs pluripotency [15-17]. Therefore, among
many growth factors and cytokines in maintaining pluri-
potency of hESCs and hiPSCs, bFGF was selected for
monitoring downstream signaling pathways.

The stimulation of the bFGF receptors result in activa-
tion of various signaling pathways, including MAPK,
PI3K/AKT and JAK/STAT [18]. The former two pathways
are activated via RAS proteins, which control essential cel-
lular processes, such as proliferation, differentiation, apop-
tosis, adhesion and migration and thus embryogenesis and
normal development [19-21]. However, not much is
known about the role of RAS proteins in regulating pluri-
potency or differentiation of hPSCs, especially hiPSCs. It
has been shown that RAS proteins regulate the transition
from naive to primed ESCs in mice [22] and RAS nully-
zygosity reduces the proliferation of mouse (m) ESCs and
prohibits their differentiation [23].

In this study, we explored and expanded the molecular
mechanism involved in the transition from pluripotency
to differentiation with the focus on bFGF signaling in
hiPSCs. We showed that, pluripotency markers were
downregulated in hiPSCs following bFGF withdrawal and
differentiated toward the ectoderm lineage. The MAPK
pathway activity was significantly decreased, but interest-
ingly no relevant changes were found in the activation of
AKT or its downstream targets such as S6 kinase (S6K),
FOXO-1, and JNK pathway. Investigating other signaling
pathways downstream of bFGF revealed the activation of
JAK/STAT3 and p38 as a result of differentiation. More-
over, we identified NRAS among the RAS paralogs as the
likely link between bFGF receptor and the MAPK pathway
that maintains hiPSCs undifferentiated.

Methods

Cell culture

Two clones of hiPSCs were generated by electroporating
human foreskin fibroblasts (HFF, purchased from ATCC)
with non-integrating episomal reprogramming vectors
obtained from Addgene (pCE-hSK #41814, pCE-hOct3/4
#41813, pCE-hUL #41855, pCE-mp53DD #41856, pCXB-
EBNA1 #41857) as previously described [24]. After 3—4
weeks, emerging hiPSC colonies were manually dissected
under microscopic control and plated individually on mitoti-
cally inactivated (30 Gy gamma irradiation) iMEFs. Estab-
lished clones were maintained as colonies on feeder layers
in medium comprised of Dulbecco’s Modified Eagle’s
Medium/Ham’s F12 + GlutaMAX (DMEM/F12) (Thermo-
Fisher, 31,331-028) supplemented with 20% knockout
serum replacement (KSR) (ThermoFisher, 10,828,028), 1%
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non-essential amino acids (NEAA) (ThermoFisher,
11,140,035), 01mM  2-mercaptoethanol  (Millipore,

ES-007.E), 25 ng/mL bFGF (Peprotech, 100-18B) and 50
units of penicillin/streptomycin (Genaxxon Bioscience,
M3140.0100). The medium was changed every second day
and colonies were passaged once per week using 0.4% (w/v)
collagenase IV (ThermoFisher, 17,104,019). To initiate
feeder-free cultures, almost confluent colony cultures were
dissociated using Accutase (ThermoFisher, A1110501) and
seeded onto Geltrex coated dishes (ThermoFisher,
A14132-02, 1:400) at a seeding density of 2 x 10° cells/cm®
with iMEF conditioned medium (CM, see below) supple-
mented with 100ng/mL of bFGF and 10puM Y27632
ROCK inhibitor (Selleckchem, S1049). After approximately
24 h, medium was exchanged with CM plus 100 ng/mL
bFGF but without Y27632. Medium was replaced daily and
confluent hiPSC monolayers were passaged every 3—4 days
in the same manner using Accutase with seeding densities
of 5x10* cells/cm® The CM was prepared as previously
described [13]. Briefly, iMEFs were seeded at the density of
6x10* cells/em* on precoated dishes with 1% gelatin
(Sigma, G9391). One day after seeding, iMEFs were washed
with PBS without calcium and magnesium (ThermoFisher,
10,010-015) and the medium was exchanged with DMEM/
F12, 15% KSR, 1% NEAA, 0.1 mM 2-mercaptoethanol and
5ng/mL bFGF. CM was replaced daily and collected for 7
days, filtered and aliquoted. HeLa and HFF cells were
cultured in DMEM (ThermoFisher, 11,965,092), whereas
NT2 cells were cultured in McCoy’s media (ThermoFisher,
16,600,082), all supplemented with 10% FBS (Thermo-
Fisher, 10,270—-106) and 50 units of penicillin/streptomycin.
Cell pellets from astrocytes were a gift from Dr. Boris Gorg
from the Heinrich-Heine University Diisseldorf.

Long-term stimulation

In order to investigate the effect of bFGF and its down-
stream pathways on hiPSCs, cells were cultured under four
different conditions; 100ng/ml bFGF (CM-100) as the
standard condition that was added to the medium each day
freshly, 5 ng/ml bFGF (CM-5) as a lower concentration of
bFGE, the conditioned medium without any bFGF (CM-0)
and non-conditioned medium (non-CM) (as negative con-
trol) that contains only DMEM/F12, 15% KSR, 1% NEAA
and 0.1 mM p-mercaptoethanol. For preparing CM-0,
iMEFs were supplemented with DMEM/F12, 15% KSR, 1%
NEAA, 0.1 mM B-mercaptoethanol without any bFGF and
the CM-0 was collected daily for 7 days. Undifferentiated
hiPSCs were seeded on Geltrex coated dishes with a density
of 5x10* cells/em® with CM-100 supplemented with
10 uM Y27632. The day after, cells were washed with PBS™~
and treated with CM-100, CM-5, CM-0 and non-CM and
were kept in culture for 6 days. The medium was changed
every day and at day 3, all cells were passaged by Accutase
and seeded with the specific medium with the addition of
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10 uM Y27632. Cells were harvested at the end of day 6 for
RNA and protein level analysis.

Short-term stimulation

hiPSCs were seeded at a density of 5 x 10* cells/cm? and
cultured until they reached 70-80% confluency and then
washed two times with PBS™"~ and incubated overnight
(12h) in DMEM/F12 deprived of bFGF and KSR. Cells
were stimulated with 100 ng/ml bFGF for 15, 30, 60 and
120 min before preparation of cell lysates.

Reverse transcriptase polymerase chain reaction

The total RNA was extracted by the RNeasy Plus kit
(Qiagen, Germany) according to the manufacturer’s
protocol. The quantity of the isolated RNA samples was
analyzed by Nanodrop spectrophotometer. DNA-free™
DNA removal kit (Ambion, Life Technologies) was used
to get rid of any possible contamination with genomic
DNA. Complementary DNA (cDNA) was synthesized
from DNase-treated RNA using ImProm-IITM reverse
transcription system (Promega, Germany) and real-time
PCR was performed using SYBR Green reagent (Life
Technologies). GAPDH was used as an internal control.
The 2% method was used for estimating the relative
mRNA expression levels. Primer sequences are listed in

Additional file 1: Table S1.

Immunoblotting

Cell lysates were prepared using lysis buffer (50 mM
Tris-HCl, pH 7.5, 100 mM NaCl, 2mM MgCl,, 1% Ige-
pal CA-630, 10% glycerol, 20 mM p-glycerolphosphate,
1mM NayVO,, EDTA-free protease inhibitor (Roche
Applied Science)), and protein concentrations were mea-
sured by Bradford assay (Bio-Rad). Equal amount of total
cell lysates (t-p38/p-p38; STAT3/p-STAT3; t-]NK/p-JNK;
t-RSK/p-RSK1: 40 pg; the remaining proteins: 10 pg)
were loaded on SDS-PAGE. After electrophoresis, pro-
teins were transferred into nitrocellulose membrane and
blocked for one hour in 5% nonfat dry milk (Merck)/
TBST (Tris-buffered saline, 0.05% Tween 20). Then mem-
branes were probed with primary antibody at 4 °C overnight
and later stained for one hour at room temperature with
both horseradish peroxidase (HRP)-conjugated secondary
antibodies (1:5.000 dilution) and florescence secondary anti-
bodies (1:10.000 dilution). Signals were visualized using ECL
(enhanced chemiluminescence) reagent (GE Healthcare) and
the Odyssey Fc Imaging System (LI-CORE Biosciences) re-
spectively. The following antibodies were applied for im-
munoblotting: mouse anti-y-tubulin (Sigma-Aldrich, T5326);
mouse anti-OCT4 (Santa Cruz, sc-5279); rabbit anti-SOX2
(Invitrogen, PA1-16968); goat anti-NANOG (R&D systems,
AF1997); mouse anti-SSEA4 (Millipore, MAB4304); mouse
anti-a-SMA (DAKO, MO0851); rabbit anti-GFAP (DAKO,
70334); rabbit anti-MEK1/2 (#9126), rabbit anti-ERI1/2
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(#9102), rabbit anti-RSK (#9355), rabbit anti-AKT
(#9272), rabbit anti-p-MEK1/2 (5217/5221, #9154),
rabbit anti-p-ERK1/2 (T202/T204, #9106), rabbit
anti-p-p90RSK (T573, #9346), rabbit anti-p-AKT (5473,
# 4060 and T308, #2965), rabbit anti-FOXO1 (#2880),
rabbit anti-p-FOXO1 (5256, #9461), rabbit anti-S6 kin-
ase (#2708), rabbit anti-p-p70 S6 kinase (T389, #9205),
rabbit anti-p38 (#8690), rabbit anti-p-p38 (T180/Y182,
#9211), rabbit anti-JNK (#9252), rabbit anti-p-JNK
(T183/Y185, #9251), mouse anti-STAT3 (#9139S) and
rabbit anti-p-STAT3 (Y705, #9145S) all from Cell Signaling.

Flow cytometry

For flow cytometric analysis, single-cell suspensions
were obtained with Accutase and cells were washed with
ice-cold PBS™". Cells were fixed in 4% paraformalde-
hyde (PFA; Merck) for 10 min on ice and permeabilized
with 90% ice-cold methanol for 15 min followed by a
blocking step with 1.5% BSA and 2.5% goat or donkey
serum diluted in PBS for 1 h at 4°C. Cells were stained
with primary antibodies overnight at 4°C. Secondary
antibodies, Alexa Fluor 488-conjugated goat anti-mouse
IgG (A11029) and Alexa Fluor 488-conjugated donkey
anti-rabbit IgG (A21206) from Invitrogen, were used at
a dilution of 1:2000 for one hour at room temperature.
Samples were analyzed with FACS Canto II (BD Phar-
mingen) and FlowJo Software (Treestar, Ashland, OR).

Cell fractionation

Simple fractionation was performed as previously described
[25]. Briefly, cells were washed with ice-cold PBS. 1 ml lysis
buffer (without Igepal CA-630) was added to cells following
centrifugation for 10s, at 12000 rpm and 4 °C. The super-
natant was removed and the pellet was resuspended in
900 pl ice-cold lysis buffer with 0.1% NP40 and was kept on
ice for 2 min. 300 pl was taken as total cell lysate (TCL) and
100 pl of 4x Laemmli buffer was added to it. The rest of the
supernatant was centrifuged and 300 pl was taken as cyto-
solic fraction (Cyt) following adding 100 pl of 4x Laemmli
buffer. The remaining pellet was resuspended in 1ml
ice-cold lysis buffer with 0.1% NP40 and centrifuged again.
The pellet was resuspended in 380 pul 1x Laemmli buffer
and kept as nuclear fraction (Nuc). TCL and Nuc were son-
icated at level 2 for 5s and all fractions were boiled for 10
min at 95°C. 20l from each fraction was loaded on
SDS-PAGE. GAPDH (Cell signaling, #2118) and Na*/K"
ATPase (Sigma, A276) were used as cytosolic markers and
histone H3 (Cell Signaling, #9715) and lamin Bl (Abcam,

16,048) were subjected as nuclear markers.

Immunostaining

Cells were seeded on Geltrex-coated coverslips with the
density of 5 x 10" cells/cm®. Cells were washed with PBS
containing magnesium/calcium two times and fixed with
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4% PFA for 20 min at room temperature. To permeabilize
cell membranes, cells were incubated in 0.25% Triton X-100/
PBS for 5 min. Blocking was performed by using 3% BSA in
PBS for one hour, room temperature. Incubation with pri-
mary antibodies was performed overnight at 4 °C following
three times washing steps with PBS and then incubation with
secondary antibodies Alexa Fluor 488-conjugated goat
anti-mouse IgG, Alexa Fluor 488-conjugated donkey
anti-rabbit IgG, Alexa Fluor 488-conjugated donkey anti-goat
IgG (A11003) all from Invitrogen, used at a dilution of 1:500
for two hours at room temperature. Slides were washed three
times and then stained with 4',6-diamidino-2 phenylindole
(DAPI) (Life Technologies) for five minutes and washed
again for two times. ProLong Gold antifade was applied to
mount coverslips. Confocal images were obtained using a
LSM 510-Meta microscope (Zeiss, Jena, Germany).

Pull-down assay

The RAS-binding domains (RBD) of effector proteins, in-
cluding CRAF-RBD (a.a. 51-131) and PIBK-RBD (aa. 127-
314) were constructed as GST-fusions in pGEX-4T and
transformed in Escherichia coli. GST-fused proteins were ob-
tained from total bacterial lysates. Glutathione Agarose 4B
beads (Protino®) were coated with GST-fused CRAF-RBD
and PI3K-RBD and GTP-bound RAS proteins were pulled
down from total cell lysates and were probed by western blot.
RAS paralogs were detected by validated antibodies: mouse
anti-pan-RAS (Millipore, #05-516), mouse anti-KRAS
(Sigma, WHO0003845M1), mouse anti-NRAS (Santa Cruz,
sc-31) and rabbit anti-HRAS (Santa Cruz, sc-520).

Statistical analysis

All assays were carried out in three independent experi-
ments in duplicates and triplicates. Data were analyzed by
one-way analysis of variance (ANOVA). Differences in
treatment levels were further evaluated for significance
with Tukey post hoc comparisons. A level of P < 0.05 was
considered significant. Statistical analysis was performed
using SPSS software (SPSS v.20). Values are expressed as
mean + SD.

Results

Undifferentiated state of hiPSCs

To ensure stable conditions, hiPSCs were expanded on
Geltrex-coated dishes with conditioned medium (CM)
from iMEF supplemented with 100 ng/ml bFGF (see
methods). We first analyzed the expression of pluripo-
tency and differentiation markers at the mRNA and pro-
tein levels. Confocal imaging of hiPSCs revealed the
presence of OCT4, SOX2, NANOG and SSEA4 and the
absence of differentiation markers a-SMA (mesoderm)
and GFAP (ectoderm) [26] in hiPSCs (Fig. la). Accord-
ingly, flow cytometry data showed that more than 98%
of the cells were positive for stemness makers, including
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OCT4, SOX2 and SSEA4 (Fig. 1b). Early and spontan-
eous lineage specific markers of mesoderm (BRACHY-
URY), ectoderm (PAX6) and endoderm (AFP) [26] were
greatly absent at the mRNA level, while pluripotency
genes were expressed (Fig. 1c). Western blot analysis
verified the presence of OCT4, SOX2 and NANOG in
hiPSCs and NT2 cells (pluripotent embryonal carcinoma
cells, as a positive control), as well as the absence of
a-SMA and GFAP (Fig. 1d). HeLa cells were used as
negative control for all proteins and HFF cells and astro-
cytes were used as positive controls for a-SMA and
GFAP, respectively (Fig. 1d). These data clearly con-
firmed that hiPSCs were undifferentiated for at least 15
passages under culture conditions using CM-100.

bFGF maintains undifferentiated state of hiPSCs

In order to investigate the effect of bFGF on hiPSCs,
feeder-free culture conditions were used to eliminate in-
direct effects of fibroblasts on hiPSCs. hiPSCs were cul-
tured for 6 days under four different medium conditions
containing various bFGF concentrations, i.e. CM-100,
CM-5, CM-0 and non-CM used as a negative control.
As indicated in Fig. 2a and Additional file 1: Figure S1,
withdrawal of bFGF disrupted the compact morphology
of hiPSCs, which spreaded out at day 6. These morpho-
logical changes are often correlated with the loss of plur-
ipotency [1]. Therefore, we assessed the pluripotent state
of the cells by determining OCT4, SOX2 and NANOG
expression at mRNA and protein levels. qPCR data re-
vealed a significant reduction in POUSFI, SOX2 and
NANOG expression 6days after withdrawing bFGF
(CM-0 and non-CM) as compared to CM-100 (Fig. 2b).
Consistent with the mRNA expression data, the amount
of OCT4, SOX2 and NANOG proteins were drastically
and significantly reduced in the absence of bFGF
(Figs. 2c, d). Interestingly, loss of pluripotency markers
under CM-0 and non-CM at day 6 (Figs. 2b, c) were
followed by the expression of GFAP, but not a-SMA, as
differentiation marker (Fig. 2c). Moreover, confocal im-
aging also confirmed the reduction in OCT4 expression
and differentiation toward the ectoderm and not meso-
derm lineage in hiPSCs (Figs. 2e-g). Thus, bFGF is es-
sential for maintaining pluripotency in hiPSCs and
removing it from the culture medium leads to cell differ-
entiation towards the ectoderm lineage.

MAPK pathway is required for maintaining hiPSCs in an
undifferentiated state

Conflicting studies have shown that MAPK pathway can
positively and negatively regulate hESCs pluripotency (7, 27].
Thus, we first analyzed the activation status of this pathway.
As shown in Fig. 3a (first lane from left), the MAPK pathway
was highly active in undifferentiated hiPSCs (CM-100), as de-
tected by immunoblotting of phosphorylated (p-) MEK and
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ERK1/2 proteins. This pathway is activated by bFGF [7] and
given that bFGF is essential for maintaining undifferentiated
state of hiPSCs (Figs. 2b, c), we next analyzed the MAPK
pathway activity in pluripotent vs. differentiated hiPSCs. Our
data showed that following withdrawal of bFGF (CM-0 and
non-CM as compared to CM-100) the activity of MAPK
pathway was reduced by 10- and 2-fold, as seen by decreased
levels of p-MEK and p-ERK1/2, respectively (Figs. 3a, b).
Thus, these data indicate that MAPK pathway activity

downstream of bFGF is required to keep hiPSCs in a pluri-
potent state.

PI3K/AKT pathway remains unchanged during hiPSCs
differentiation

Another main signaling pathway downstream of bFGF is
PI3K/AKT [18], which promotes activin A and Smad2/
3-mediated self-renewal of hPSCs [27] and is essential
for hiPSCs survival [28]. Therefore, we examined the
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Fig. 3 Signaling pathways downstream of bFGF in undifferentiated and differentiated hiPSCs. a Immunoblot analysis of the component of the MAPK pathway,
including p-MEK and p-ERK1/2 in hiPSCs in undifferentiated (CiVi-100) and differentiated hiPSCs (CM-0 and non-CM). Total amounts of MEK and ERK1/2 as well
as y-tubulin served as loading controls. b The graph represents densitometric analysis of three independent experiments, each carried out in duplicates. All
values were normalized to y-tubulin and relative to CM-100. Data are shown as mean + SD (ANOVA; *p < 001). ¢ Immunaoblot of the phosphorylated signaling
proteins downstream of the PI3K-AKT and mTORC2 axis in undifferentiated (CM-100) and differentiated hiPSCs (CM-0 and non-CM). Total amounts of AKT, SeK,
FOXO1 as well as y-tubulin served as loading controls. d The graph represents densitometric analysis of three independent experiments, each carried out in
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(CM-100) and differentiated hiPSCs (CM-0 and non-CM). Total amounts of STAT3 and y-tubulin served as loading controls

signaling activity of bFGF in undifferentiated and differ-
entiated hiPSCs towards AKT and their downstream
components S6K and FOXO1. Our data showed that
AKT was activated in undifferentiated hiPSCs (CM-100)
via both PI3K-PDK1-AKT and mTORC2-AKT pathways
as monitored by p-AKT™% and p-AKT**" levels,
respectively (Fig. 3c). The downstream components of
these respective pathways were also phosphorylated
(p-S6K™* and p-FOXO15%%; Fig. 3c, first lane from
left), presumably resulting in S6K activation and FOXO1
inhibition. However, we did not detect significant
changes in the activity of the PI3K-PDK1 and mTORC2
pathways during bFGF withdrawal induced differenti-
ation of hiPSC cells (Fig. 3¢, d). Thus, PI3K-AKT signal-
ing pathways are most probably involved in the control

of cell survival rather than the maintenance of hiPSCs
pluripotency.

p38 and STAT3 activation during hiPSCs differentiation

In the next step, we monitored the activation state of
p38, INK and STATS3, respectively, as further candidate
pathways downstream of FGF [18]. We found that p38
and STAT3 were not fully active in undifferentiated
hiPSCs (CM-100) (Figs. 3e, f). Interestingly, however,
following withdrawal of bEGE, the levels of phosphory-
lated and activated p-Thr180/Tyr182 p38 and p-Tyr705
STAT3, were clearly increased (Figs. 3e, f). Analysis of
the JNK pathway showed no changes during differenti-
ation (Fig. 3e). Taken together, p38 and STAT3, but not
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JNK, are activated upon bFGF withdrawal and may play
a role in hiPSCs differentiation.

Dominant cytoplasmic localization of p-ERK

Our data indicate that the MAPK signaling is a prominent
pathway downstream of bFGE which maintains hiPSCs
pluripotency and the activity will be decreased upon
hiPSCs differentiation. Activation and nuclear transloca-
tion of MAPKSs is necessary to initiate transcriptional pro-
grammes controlling cellular responses [29]. Thus, first
we analyzed the nucleocytoplasmic distribution of these
kinases in undifferentiated hiPSCs by subcellular fraction-
ation. Total cell lysates (TCL) as well as cytosolic (Cyt)
and nuclear (Nuc) fractions were analyzed for purity using
antibodies directed against specific marker proteins
(Fig. 4a). GAPDH and Na'/K" ATPase were consistently
found in the cytosol and histone H3 and lamin B1 in the
nuclear fraction, confirming the purity of each fraction.
Remarkably, both p-MEK/MEK and p-ERK1/2/ERK1/2
showed a predominantly cytosolic localization in undiffer-
entiated hiPSCs (Fig. 4b, first lane from left). Subcellular
fractionation was performed using another clone of
hiPSCs and NT2 cells and comparable results were ob-
tained (Additional file 1: Figure S3). Moreover, cells were
starved for 12 h and then stimulated with 100 ng/ml bFGF
for 15 min to observe any changes in p-ERK1/2 distribution
upon stimulation. Interestingly both p-MEK/MEK and
p-ERK1/2/ERK1/2 showed cytosolic localization even after
bFGF stimulation, rather than nuclear localization (Fig. 4b).
Consistent with this unexpected result, we investigated the
phosphorylation of RSK, a cytosolic target of p-ERK1/2 that
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previously has been reported in hESCs [30, 31]. Our data
revealed phosphorylation of RSK (at position T573) during
hiPSCs differentiation (CM-0 or non-CM as compared to
CM-100) (Figs. 4c, d), which is not consistent with predom-
inant cytosolic localization of p-ERK1/2 (Fig. 4b).

NRAS as an upstream regulator of undifferentiated hiPSCs
Small GTP-binding proteins of the RAS family transduce
extracellular signals and activate a multitude of pathways
via activation of effector proteins [32]. RAF kinases and
PI3Ks are well-studied effectors of RAS family members
which in turn activate MAPK and AKT, respectively
[32]. As our data indicate that MAPK pathway is in-
volved in maintaining pluripotency and PI3K/AKT likely
involved in the survival of hiPSCs, we further investi-
gated the RAS paralogs specificity downstream of bFGF
and upstream of these pathways. First, the expression
profile of three RAS paralogs (H/N/K) was investigated
at both mRNA and protein levels in undifferentiated vs. dif-
ferentiated hiPSCs. All four RAS genes were expressed and
upregulated (3-fold for HRAS and KRAS4B and approxi-
mately 2-fold for NRAS and KRAS4A) upon differentiation
(CM-0 and non-CM) (Fig. 5a). Interestingly, the amount of
RAS proteins in differentiated hiPSCs (CM-0 and non-CM)
was also increased 4-fold as compared to undifferentiated
cells (CM-100) (Fig. 5b, c). To gain insights into the level of
RAS activity (GTP-bound), total cell lysates of undifferenti-
ated (CM-100) and differentiated (CM-0 and non-CM)
hiPSCs were prepared and pull-down assays were per-
formed with CRAF-RBD as RAS effector protein. As indi-
cated in Fig. 5d, RAS activity was drastically reduced upon
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Fig. 4 Cellular localization of components of MAPK pathway in undifferentiated hiPSCs. a Simple nucleocytoplasmic fractionation. hiPSCs were
fractionated into three distinct fractions (TCL, total cell lysate; Cyt, cytosolic fraction; Nuc, nuclear fraction) by using rapid non-ionic detergent-based
purification technigue. b Immunoblot analysis of components of MAPK pathway showed the dominant localization of all proteins in the cytosolic fraction
in undifferentiated hiPSCs, before and after bFGF stimulation. ¢ Immunoblot analysis of p-RSK in undifferentiated (CM-100) and differentiated hiPSCs (CWI-0
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differentiation (CM-0 and non-CM) in comparison to the
undifferentiated state (CM-100) that was in consistent with
the reduction in MAPK pathway activity (Fig. 3a).

To examine the levels of active (GTP-bound) RAS para-
logs, undifferentiated hiPSCs were serum starved for 12 h
and re-stimulated with 100 ng/ml bFGF for different time
points. Based on the phosphorylation levels of p-ERK1/2
(Fig. 5e), stimulation with bFGF for 15 min was chosen. For
pull-down analysis, two major RAS effector proteins were
employed; CRAF-RBD and PI3K-RBD which were used as
GST-fusion proteins. As indicated in Fig. 5f, RAS activity
was increased upon bFGF stimulation leading to a stronger
RAF activation as compared to PI3K. To further investigate
the activity of each of the three canonical RAS proteins, we
used paralog-specific antibodies (Additional filel: Figure S4)
[33]. Interestingly, we found that NRAS is the main RAS

paralog which is activated upon bFGF stimulation (Fig. 5f).
It preferentially and most strongly bound to CRAF as com-
pared to PI3K for which no detectable binding was observed
(Fig. 5f). KRAS bound to CRAF showed no elevated activity
upon bFGF stimulation (Fig. 5f). The expression level of
HRAS protein was very low in hiPSCs and was not detect-
able (data are not shown). Altogether, these data suggest that
NRAS acts as a main RAS paralog that links bFGF signaling
to the MAPK pathway.

Discussion

This study provides novel molecular insight into the regula-
tion of pluripotency maintenance of hiPSCs. Our findings
indicate that among the signaling pathways downstream of
bFGE the MAPK pathway plays a critical role in maintain-
ing pluripotency, whereas strong activation of p38 and
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JAK/STAT3 signaling is linked to differentiation of hiPSCs.
In contrast, no relevant changes occurred in the activation
of AKT or JNK pathways from pluripotent hiPSCs towards
differentiated cells. Moreover, we identified NRAS among
the RAS paralogs as the likely link between bFGF receptor
and the MAPK pathway that maintains hiPSCs pluripon-
tency (Fig. 6).

Our data clearly suggest that bFGF transmits signals
to promote pluripotency and suppress differentiation ac-
tivities in hiPSCs (Fig. 6). We showed that bFGF with-
drawal from the culture, markedly decreased OCT4,
SOX2 and NANOG expression at the mRNA and pro-
tein levels, which was followed by the expression of
GFAP and differentiation towards the ectoderm lineage.
Consistent with our finding in hiPSCs, it was reported
that bFGF also maintains hESCs in an undifferentiated
state [11, 34].

Different studies suggest pleiotropic effects of bFGF ac-
tivating different pathways in hESCs either directly or in-
directly by inducing paracrine signaling via iMEFs in
coculture [35]. For investigating the mechanistic effects of
bFGE we compared the signaling pathways in undifferen-
tiated vs. differentiated hiPSCs obtained via bFGF with-
drawal. FGF has been reported to activate multiple
downstream signaling pathways, including MAPKs (ERK,
JNK and p38), PI3K and JAK/STAT ([36]. Our study
demonstrates the activation of MEK-ERK1/2 pathway in
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Fig. 6 Proposed model for bFGF signaling in pluripotent (green) vs
differentiated (orange) hiPSCs (for details see discussion). bFGF, basic
fibroblast growth factor; OCT4, octamer-binding transcription factor
4; SOX2, sex determining region Y-box 2; GFAP, glial fibrillary acidic
protein; RAS, rat sarcoma; PI3K, phosphoinositide 3-kinase; PDK1,
3-phosphoinositidedependent protein kinase; MEK, MAP/ERK kinase;
ERK, extracellular signal-regulated kinase; JAK, Janus kinase; STAT3,
signal transducer and activator of transcription 3
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undifferentiated hiPSCs and a remarkable decrease in the
p-MEK and p-ERK1/2 levels by withdrawing bFGF which
induces their differentiation. Previously, Li and colleagues
have shown that inhibiting FGF signaling induces hESC dif-
ferentiation into primitive endoderm and trophectoderm
[7]. However, Singh et al. have reported a pro-differentiation
role of MAPK pathway in hESCs [27]. These conflicting re-
ports could be due to different culture conditions, cell lines
or even pathway dose-dependency. Our data argue against a
pro-differentiation role of the MAPK pathway. We used in
this study a system for culturing hiPSCs with iMEF-CM that
was supplemented with 100 ng/ml bFGF which was differ-
ent from Li et al. and Singh et al. [7, 27]. Under these
conditions we are able to dissect direct and paracrine
iMEF-mediated influences of bFGF without the risk of con-
founding effects based on sample contamination with feeder
cells. Our data clearly showed that MAPK pathway posi-
tively regulates hiPSC pluripotency. Culturing cells with
CM-0 and non-CM, which led to differentiation toward
ectoderm, was in correlation with a significant decrease in
MAPK pathway activity between all groups (CM-100,
CM-5, CM-0 and non-CM). As previously described, bFGF
activates ERK1/2 at high concentrations (about 100 ng/ml)
in ESCs [27]. Here, we observed no obvious differences be-
tween high dose (CM-100) and low dose (CM-5) of bFGF in
maintaining the undifferentiated status of hiPSCs. Thus, the
downregulation of ERK precedes the decrease of pluripo-
tency markers and cannot be excluded under long-term cul-
ture (6days) conditions. These observations suggest that
homeostasis of MAPK signaling is a dose-dependent conse-
quence of bFGF without direct impact on the expression
level of pluripotency-associated transcription factors.
PIBK/AKT activation by bFGF has also been shown to
be important for the maintenance of the undifferentiated
state of hESCs [37]. This pathway contributes to a var-
iety of important cellular processes including nutrient
uptake, anabolic reactions, proliferation and survival
[38]. Proliferation and survival can be controlled by
mTORC1 mediated activation of S6K and mTORC2 me-
diated inhibition of FOXO-1, respectively [39, 40]. Arm-
strong and colleagues have shown that PI3K/AKT is
important for maintaining pluripotency in hES-NCL1
cells and the key components of this pathway, such as
p-PDK1, p-PTEN, p-AKT*® and p-AKT*"? are down-
regulated during differentiation to embryoid bodies [30].
Li and coworkers have shown that PI3K/AKT pathway,
downstream of bFGE, is highly active in hESCs, such as
H1 and H9 cells, which supports hESC self-renewal and
pluripotency [7]. Other studies have implicated the sur-
vival and anti-apoptotic role of PI3K/AKT in hESCs and
hiPSCs [27, 28, 41]. In our study, two axes of AKT acti-
vation were investigated, PI3K-PDKI-AKT-S6K and
mTORC2-AKT-FOXO1 as downstream pathways of
bFGEF, which is different from previous reports that just
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showed the importance of PI3K/AKT in maintenance
of pluripotency and not as a target of bFGF signaling
[27, 28, 41]. Our results showed that there was no
change in the activation level of these two pathways
following hiPSCs differentiation (CM-0 and non-CM).
This suggests that AKT-S6K and AKT-FOXO1 signaling
remain unaffected in the presence and absence of bFGF
during a long-term culture (6 days) which may be due to
the presence of KSR in iMEF-CM. KSR contains high
levels of insulin that can activate AKT pathways [27]. This
rather suggests that PI3K/AKT is not critical for maintain-
ing the undifferentiated state of hiPSCs and most probably
plays an anti-apoptotic role required for survival of hiPSCs
rather than their pluripotency.

In addition to MAPK and PI3K/AKT pathways, we also
analyzed other signaling pathways, including p38 MAPK
and JNK (c-Jun N-terminal kinase), both can be activated
by FGF signaling [35]. p38 activation has been observed in
response to a variety of extracellular stresses and mitogenic
stimuli which lead to different cell-specific responses, in-
cluding inflammation, cell death, senescence, survival, cell
growth and differentiation [42]. So far, little is known about
the role of p38 in pluripotency of hESCs. Neganova and
colleagues demonstrated an increased activity of p38
MAPK during the early stage of reprogramming of human
fibroblasts to hiPSCs and the importance of this pathway
for obtaining fully reprogrammed cells [43]. Moreover,
hESCs and hiPSCs are in a high-methionine metabolic state
which decreases upon differentiation. In this regard, it has
been shown that methionine deprivation triggering the acti-
vation of p53-p38 signaling leads to NANOG downregula-
tion and differentiation into all three germ layers [44]. We
showed in this study, for the first time, an increase in p38
MAPK activity during hiPSCs differentiation under bFGF
starvation (CM-0). It can be proposed that p38 is inhibited
as a downstream target of bFGF in undifferentiated hiPSCs.

Findings from Drosophila studies and some human
cancers indicate that JNK might be a regulator of stem
cells and cancer stem cells. Brill et al. observed a signifi-
cantly elevated JNK activity in undifferentiated hESCs,
which if blocked by JNK inhibitors under feeder-free
conditions in the presence of CM, leaded to decreased
OCT4 expression and differentiation [45]. A possible
contribution of JNK signaling to the maintenance and/or
self-renewal of hESCs was additionally confirmed in a
different hESC line, Harvard’s HUES-7. In response to
BMP-induced differentiation, a transient elevation of
c-Jun phosphorylation was observed, which indicates
both the competence of the basal JNK pathway to main-
tain the stemness of the hESCs and a possible involve-
ment of JNK activation in the initiation of hESC
differentiation [46]. In our study, we observed the con-
stant activation of JNK during hiPSCs differentiation in
response to bFGF starvation. Thus, INK pathway may be
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involved in other cellular responses rather than main-
taining pluripotency or inducing differentiation.

mESCs can be maintained in vitro by adding leukemia
inhibitory factor (LIF) to the medium and its withdrawal
rapidly leads to differentiation [47, 48]. LIF activates Janus
kinases (JAKs) which subsequently phosphorylate STAT3.
Activated STAT3 translocates into the nucleus and acti-
vates transcription of target genes [49, 50]. Interestingly,
LIF/STAT3 signaling fails to support self-renewal of
hESCs and is nonresponsive to LIF/STAT3 [51]. Since LIF
is not the only cytokine that activates JAK/STAT3 path-
way, we analyzed the activity of this pathway downstream
of bFGF. Similar to Humphrey and coworkers, who have
shown that STAT3 phosphorylation was not detectable in
undifferentiated hESCs [52], we also could not observe
phosphorylation of STAT3 in undifferentiated hiPSCs.
Interestingly, upon differentiation (CM-0 and non-CM),
JAK/STAT3 pathway was activated in hiPSCs. It can be
postulated that unlike mESCs, hiPSCs do not require
STATS3 activity for the maintenance of their pluripotency
but rather for their differentiation.

It has been shown that activated ERKs in hESC are
translocated from the cytoplasm to the nucleus where
they phosphorylate and activate nuclear transcription fac-
tors and effectors, such as ELK1 and MYC [30]. These
downstream targets of MAPK pathway are downregulated
during differentiation [30]. We performed subcellular frac-
tionation of undifferentiated hiPSCs to analyze the cellular
distribution of MAPK pathway components. Both p-MEK
and p-ERK1/2 were located in the cytoplasm, even after
stimulation with bFGF for 15 min. Therefore, we analyzed
the activity levels of RSK as one possible cytosolic target
of p-ERK1/2 in undifferentiated and differentiated hiPSCs.
There was an increase in phosphorylation level of RSK in
CM-0 and non-CM compared to CM-100 which was in
conflict with the loss of ERK1/2 activity during differenti-
ation of hiPSCs. Thus, these data suggest that p-ERK1/2
in hiPSCs most probably signal through further (critical)
cytosolic targets other than RSK.

We demonstrated the critical role of MAPK pathway
downstream of bFGF in maintaining pluripotency in hiPSCs.
For further analysis of this pathway, we analyzed the expres-
sion of canonical RAS isoforms in undifferentiated vs. differ-
entiated hiPSCs. Interestingly we found that in contrast to
the decreased level of MAPK pathway activity in differenti-
ated hiPSCs, the levels of RAS mRNA and protein were
both upregulated upon differentiation. To elucidate the
activity level of RAS (GTP-bound), pull down assays were
performed with CRAF-RBD as an effector for RAS proteins.
RAS activity was drastically reduced in hiPSCs treated with
CM-0 and non-CM (differentiated cells) compared to undif-
ferentiated cells (CM-100), consistent with the decrease of
MAPK pathway activity levels. These findings suggest that
RAS-RAF is upstream of MEK/ERK and its activity will be



Chapter II: bFGF-mediated pluripotency maintenance in ..... 32

Haghighi et al. Cell Communication and Signaling (2018) 16:96

decreased upon differentiation in hiPSCs. Furthermore, we
analyzed main RAS paralogs, i.e. H-, K- and NRAS. Inter-
action analyses with two RAS effectors (RAF and PI3K)
showed that among the RAS paralogs, NRAS preferentially
interacts with RAF in the presence of bFGF and activates
the MAPK pathway while no interaction was observed with
PI3K independent of the bFGF stimulation status. KRAS in-
teracts physically with RAF and PI3K but showed no prefer-
ence for either of the effectors upon bFGF starvation or
stimulation. Lastly, HRAS was the most difficult RAS to
analyze. Although the mRNA levels of HRAS were higher
than NRAS in hiPSCs (data not shown), at the protein level,
HRAS was not detectable (data not shown).

Signaling pathways regulating ESC fate differ between
mESCs and hESCs, and our study provides another aspect
of this difference in signal transduction. Recently, Altshu-
ler and colleagues have shown that all three RAS paralogs
regulate the transition from naive to primed state in
mESCs and HRAS, KRAS and NRAS display a similar
pattern of activation and overlapping roles in mESC differ-
entiation [22]. However, we clearly observed the difference
between the patterns of these paralogs in regulating the
downstream pathways, which are involved in maintaining
pluripotency. Further studies are needed to investigate the
role of these RAS proteins in hiPSC differentiation which
will provide a better understanding of pluripotency states
and early human embryonic development.

Conclusion

In conclusion, our study suggests that among the down-
stream pathways of bFGE, MAPK pathway plays a prom-
inent role in keeping hiPSCs in a pluripotent state, while
two axes of AKT pathway (PI3K-PDK1-AKT-S6K and
mTORC2-AKT-FOXO1) remain unchanged during differ-
entiation that propose a survival role of this pathway
rather than maintaining pluripotency which is different
from previous reports. Among other pathways, p38 and
JAK/STAT3 were activated upon bFGF withdrawal and
hiPSCs differentiation, and JNK, like AKT pathway, re-
main unchanged. Characterizing the MAPK pathway in
more detail revealed that among RAS isoforms, NRAS is
the link between bFGF receptor and MAPK pathway leads
to hiPSCs pluripotency.
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ABSTRACT ARTICLE HISTORY

Among the signaling molecules indirectly linked to many different cell surface receptors, RAS proteins Received 9 October 2017
essentially respond to a diverse range of extracellular cues. They control activities of multiple signaling Revised 18 January 2018
pathways and consequently a wide array of cellular processes, including survival, growth, adhesion, Accepted 19 January 2018

migration, and differentiation. Any dysregulation of these pathway leads, thus, to cancer, developmen-
tal disorders, metabolic, and cardiovascular diseases. The biochemistry of RAS family proteins has KEYWORDS

become multifaceted since the discovery of the first members, more than 40 years ago. Substantial Effectors; GAPs; GEFs;
knowledge has been attained about molecular mechanisms underlying post-translational modification, protein family; RAS; scaffold
membrane localization, regulation, and signal transduction through diverse effector molecules. proteins; signal transduction

However, the increasing complexity of the underlying signaling mechanisms is considerable, in part
due to multiple effector pathways, crosstalks between them and eventually feedback mechanisms.
Here, we take a broad view of regulatory and signaling networks of all RAS family proteins that extends
beyond RAS paralogs. As described in this review, a lot is known but a lot has to be discovered yet.
Graphical abstract: The RAS paralogs, KRAS4B, NRAS, and HRAS, are the best investigated members of
the RAS family, not only because of their oncogenic capacity. This protein family, however, contains 22
additional isoforms and paralogs, most of which are distantly related, with typically 20-30% amino acid
identity, although they share a conserved GTP-binding domain [the color spectrum goes from white
(for identical) through yellow and orange (for partially conserved) to red (for highly variable amino
acids). RAS family proteins control a wide array of signaling pathways and cellular processes distinct
from those controlled by RAS paralogs. This review focuses on common features and differences of
RAS family proteins regarding their structure, function, regulation, signaling, and involvement in
diseases.

Historical background and prototypes of the RAS superfamily proteins
(Wennerberg 2005; Wittinghofer and Vetter 2011; Rojas
et al. 2012), HRAS, KRAS, and NRAS have become the
subject of intense investigations due to their central
involvements in signal transduction and their critical
contribution to human diseases and disorders (Hobbs
et al. 2016; Simanshu et al. 2017).

In this review, we describe current understanding of
the regulatory mechanisms of individual RAS proteins
their neuroblastoma RAS (NRAS) viral oncogene homo- and their signaling networks beyond the RAS paralogs.
log, are activated versions of genes encoding 21-kDa  ppyjogenic analysis identified 25 members of the RAS
phospho-protein (p21) with guanine nucleotide (GDP family out of 35 sequences (van Dam et al. 2011)
and GTP) binding and GTP hydrolyzing activities  (Figure 2). RASL, RERG, and NKIRAS proteins exhibit
(Malumbres and Barbacid 2003). Later studies have pro- strong sequence deviations and thus, excluded from
vided evidences for the existence of specific regulators the list. The RAD family proteins, which are also
(guanine nucleotide exchange factors or GEFs and excluded, make up together with RAS, RHO, RAB, ARF,
GTPase activating proteins or GAPs) and effector pro- RAN, and RAG the RAS superfamily (Rojas et al. 2012).
teins activating individual pathways (Cherfils and By the time passing, new evidences indicate tissue-
Zeghouf 2013; Hennig et al. 2015; Upadhyaya et al. and cell-specific function of RAS proteins. The sequence
2016; Keeton et al. 2017). As the founding members similarity between RAS proteins, especially in effector

The history of the RAS protein family dates back in
1960s, when the highly oncogenic Harvey and Kirsten
murine sarcoma viruses (Ha-MSV and Ki-MSV) were dis-
covered by Jennifer Harvey and later Werner Kirsten to
cause rapid tumor formation in rats (Malumbres and
Barbacid 2003) (Figure 1). These viral oncogenes, named
Harvey and Kirsten RAS (HRAS and KRAS), along with

CONTACT Mohammad Reza Ahmadian @ reza.ahmadian@hhu.de @ Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine
University, Universitatsstrasse. 1, Building 22.03.06, Diisseldorf 40255, Germany
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HRAS & KRAS, described as RAP, identified by hybridization
21-kDa phosphoproteins (p21) with the Drosophila Dras3

RASD1, recognized as a GPCR-
independent activator of G-protein signaling

Moloney mouse type-C virus

Ha-MSYV, isolated by passaging
library of simian B-lymphocytes

[ RAL, isolated from a cDNA ]

RIT1/2, first identified
in mouse retina
1996

Ki-MSYV, isolated from rodent by serial
passage of murine leukemia viruses

93

[

RRAS, was isolated by hybridization
with a v-HRAS probe

DIRAS1, down-regulated
in human glioblastoma

1994

DNA tranfection in 3T3 cells

2
[ NRAS, identified by

RHEB, a RAS homolog rapidly induced in ERAS, expressed in undifferentiated
hippocampal neurons by synaptic activity

mouse embryonic stem cells

Figure 1. Historical timeline of the discovery of various members of the RAS family.

binding regions (see next section) was tempting to
speculate overlapping functions for related RAS proteins.
However, we need to consider the timing, subcellular
localization and external stimuli that selectively regulate
individual RAS proteins. This complexity comes in part
because of their hypervariable region at C-terminus and
sequence deviations in the full-length proteins, which
provide additional binding sites for various scaffolding
and adaptors proteins. Therefore, we discuss unique
aspects of each RAS subfamily in term of tissue expres-
sion, upstream stimuli, receptor activation, interactions
with regulators and effector that collectively fine-tune
individual cellular functions under normal and patho-
logical conditions. A large number of data, which will not
be considered in detail, are summarized in Table 1.

RAS isoforms versus paralogs

The RAS family includes 23 genes coding for at least 25
proteins. Based on sequence identity, structure and
function, the RAS proteins were divided into eight
paralog groups: RAS, RAL, RRAS, RIT, RAP, RHEB, RASD,
and DIRAS (Figure 2). Average sequence homology
among paralogs vary between 30% and 60% while
exceeds 90% within individual paralog groups. We intro-
duced, for more clarity, names of some members, for
example RRAS2 for TC21, RRAS3 for MRAS, RIT2 for RIN,
RASD1 for DEXRAS, RASD2 for RHES, and DIRAS1 for RIG.

While majority of RAS proteins corresponds to one
unique gene, some RAS family members are transcribed
by the same genes. These isoforms, thus, originate from
different mRNA transcripts, produced by alternative
splicing and mostly differ in their subcellular localiza-
tion. One example is HRAS with three isoforms p21,
p19, and HRAS variant, which are designated HRAS1-3.
HRAS1 (generally known as HRAS) has a stop codon in
exon 4A and is translated to yield a p21-kDa protein
with the canonical sequence with 189 amino acids. An
in-frame stop codon in exon IDX leads to a transcript
translated to produce a novel 170-amino acid protein

called HRAS2 (known as p19HRAS or HRASIDX) (Cohen
et al. 1989). HRAS3, a RASopathy-associated gene with a
de novo 10-nucleotide-long deletion promoting consti-
tutive retention of exon IDX in HRAST gene (Pantaleoni
et al. 2017). These three HRAS isoforms share an identi-
cal G domain and considerably different amino acids
from 152 to 189 (Figure 2). HRAS3 contains an insertion
of 24 amino acids between the residues 151 and 152 of
HRAS1 (Pantaleoni et al. 2017). The other example is the
KRAS gene, which encodes two transcripts, KRAS4A and
KRAS4B, which are processed by alternative splicing of
fourth coding exons 4A and 4B (McGrath et al. 1983).
Also in this case, yielded proteins of 189 and 188 resi-
dues that significantly differ in their very C-terminal end
(Figure 2), which take different ways of membrane traf-
ficking (see below). HRAS and KRAS isoforms are co-
expressed widely in human tissues (Guil et al. 2003;
Plowman et al. 2006). Until now, no isoform of NRAS
has been reported.

Structural fingerprints
The G domain and its molecular switch function

The RAS family proteins are usually known as molecular
switches, cycling between an active GTP-bound state
and an inactive GDP-bound state (Vetter and
Wittinghofer 2001). Accordingly, they share a conserved
GDP/GTP-binding domain (or G domain), which is
responsible for nucleotide-dependent conformational
changes. The structural differences between the two
states are primarily confined to two highly mobile
regions, designated as switch | (residues 28-39) and
switch Il (residues 59-74) (Figure 2). In the active state
Tyr-32 and Thr-35 in switch | and Gly-60 in switch Il
form a hydrogen bonding network with the y-phos-
phate of GTP. GTP hydrolysis triggers drastic rearrange-
ments of the switch regions, resulting in the
reorientation of these three critical residues away from
the active site. Although the G domain uses a univer-
sally conserved switching mechanism (Wittinghofer and
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Figure 2. Evolutionary conservation of RAS family members. Signature motifs of 25 RAS-related proteins are presented according
to their phylogenetic categorization. These proteins consist of a G domain with the five conserved motifs and a variable

C-terminal membrane anchorage region, divided in hypervariable region (HVR) and the CAAX motif®.

HVR contains several cys-

teines and serines for post-translational modifications, positively charged residues and other putative motifs, for example PXXP
motifs as binding sites for SH3 domain-containing proteins. Certain members exhibit extensions at their N-terminal (Nex) and
C-terminal (Cex) ends, which are summarized in Table 2. Conserved residues are shown in gray, homologous residues in orange

and variable residues in olive.

Vetter 2011), its structure, function and GTP hydrolysis
(or GTPase) reaction are adapted to many different sig-
naling pathways and processes (see below).

The G domain consists of five conserved motifs,
termed G1-G5 (Bourne et al. 1991) (Figure 2), which are
central in nucleotide and magnesium binding. G1 is
also known as the phosphate-binding loop or P-loop, as
it is responsible for the binding of the phosphate
groups of GDP and GTP. P-loop exists not only in GTP-
binding proteins but also in ATP-binding proteins
(Saraste et al. 1990) and typically contains several crit-
ical residues followed by a conserved lysine and a serine
or threonine. Gly-12 and Gly-13 (HRAS numbering) are
frequently mutated codons in  human tumors
(Malumbres and Barbacid 2003) leading to impairment
of the GTPase reaction (Ahmadian et al. 1999). The
majority of RAS family members contain a glycine at
position 12 except ERAS, RASD1/2, and DIRAS3. These
GTP-binding proteins do not act as molecular switches
as they are GAP insensitive and thus persist in a consti-
tutive active state (Kontani et al. 2002; Nakhaei-Rad
et al. 2015). RHEB1 and RHEB2 have an extremely slow
GTPase reaction due to an arginine and a serine or a
cysteine instead of Gly-12 and Gly-13, respectively, but
is interestingly switched off by RHEBGAPs, such as
tuberin (also called TSC2) (Scrima et al. 2008). In the
case of ERAS and RASD1/2, there is Ser-12 instead of
glycine, and DIRAS3 harbors alanine in this position. In

contrast to Gly-12 mutation, Ser-17 mutation to aspara-
gine is used as dominant negative RAS mutant.
Overexpressed RAS (S17N) tightly binds to endogenous
RASGEFs and sequesters them from endogenous RAS
proteins, and thus, interferes with RAS activation (Feig
1999). G2 (also called effector loop) is an integral part of
effector-binding site and contains the highly conserved
Tyr-32 and an invariant Thr-35 (HRAS numbering),
which are critical for the conformational rearrangement
of switch I. RIT1/2 contain histidine at the correspond-
ing position of Tyr-32, which may be the reason for an
accelerated nucleotide dissociation (Shao et al. 1999).
G3 is a part of switch Il and contains the critical catalytic
GIn-61 position. Similarly to Gly-12 mutations, replace-
ment of GIn-61 by virtually any other amino acid signifi-
cantly reduces the intrinsic hydrolysis rate, prevents the
GAP-mediated inactivation and, thus, induces onco-
genic transformation by constitutive activation of RAS
(Malumbres and Barbacid 2003). There is a threonine in
RAP paralogs instead of GIn-61, asparagine in RASD1/2,
glycine in DIRAS3 and serine in DIRAS1/2. In contrast to
RASD1/2 and DIRAS3, which seem to have an impaired
GTPase activity (Kontani et al. 2002), Thr-61 in RAP
paralogs and most interesting Ser-65 in DIRAST and
DIRAS2 (GIn-61 in HRAS1), do not compromise the
GTPase reaction especially in the presence of RASGAPs
(Scrima et al. 2008) (see “Regulatory proteins” section
for more detail). GTPase deficiency of RASD and DIRAS
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Table 1. Data summary for the RAS family proteins.

Post-translational

Proteins Synonyme Expression pattern Upstream signals GEFs GAPs Downstream target modifications
HRAS1 p21HRAS Ubiquitous Growth factors, phorbol RASGRF, 5051/2, p120RASGAP, NF1, C/BRAF, PI3K, RalGDS, Far, Cm, Palm, Ub,
esters RASGRP1-4, PLCe RASA1-3, PLCe, RASSF, S-Nit
SynGAP1 RGL3, FAK
HRAS2Z  p19HRAS n.d. n. d. n.d. n. d. RACK1 n. d.
HRAS3  HRAS™®X RASopathy gene n. d. n.d. n. d. n. d. Far, Cm, Palm, Ub
NRAS Ubiquitous Growth factors, phorbol ~ S051/2, RASGRP1-4 p120RASGAP, NF1, C/BRAF, PI3K, Far, Cm, Palm
KRAS4A esters, LI3, CSF1 RASA1-3, RALGDS, PLCe,
KRAS4B  HRAS2, RASK2 SynGAP1 RASSF, Calmodulin  Far, Cm, P, Ac, Ub
(KRAS4B)
ERAS KRAS2, HRASP  Embryonic stem cells, n. d. n.d. n.d PI3Kt/0, RASSFS Far, Cm, Palm
hepatic stellate cells
RALA Ubiquitous Aurora-A, PKA, alpha- RALGDS, RALGPS1/2 RALGAP1/2 RalBP1, SEC5, EXO84,  Ger, Cm
thrombin RGL1-4 PLD1, PLCS, Palm, P, Ub
RALB PKCor, thrombin ZONAB, TBK1
RRAS1 RRAS Ubiquitous Sema4D/3E-plexin RASGRF, €3G, p120RASGAP,GAPT, PLCe, Gridin, FLNa, Ger, Cm, P
B1/D1, EphB2; SRC, CalDAG-GEFI/1I/II NF1 PI3K, RAP1, RAF,
TCF8, NOTCH1, IL9, RIN2, VEGF
ORP3/VAP-A
RRAS2 TC21 Heart, placenta, kidney, 1L9/1L3 CRAF
ovaries, skeletal
muscle
RRAS3  MRAS Brain S0S1, RASGRF SHOC2/PP1C, CRAF, Ger, Cm
RGL3
RIT1 RIBB, RIT, ROC1  Ubiquitous NGF/EGF, injury, stress, 5051, GRF SynGAP, GAP1 PARS6, RALGDS, RGL2/ P
PACAP38, Goi/s/o 3, MKK3/6, SIN1,
BRAF
RIT2 RIN, ROC2 Adult brain NGF/EGF, PACAP38, Gui/ PAR6 n. d.
s/o, Forskolin/KCl
RAP1A KREV1 Ubiquitous cAMP, PLC, E-cadherin, EPAC1/2, Repac, RapGAP-I/II, SIPA1, B/CRAF, AF6, KRITT, Ger, Cm, P
ERM, Glucose, FGF2, CALDAG-GEF, E6TP1/SPAR, SPA- RAPL, PI3K,
GLP1, PAR4, integrins PDZGEF1/22, (3G, Ls, CAPR | ARAP3, RIAM,
RAP1B OK/SW-cl.11 B/T cells DOCK4, PLCe1 RGS14, RPIP9
RAP2A B/T cells, excitatory PLC, cAMP (3G, EPAC, INK, MAP4K4, PARG1,  Ger, Cm, Plam, P
synapses CalDAGGEFI, TNIK, RPIP9, MINK,
RAP2B Platelet, neutrophils Thrombin, convulxin PDZGEF1 PLCe Ger, Far, Cm, Palm
RAP2C Circulating mananuclear PDZGEF1 n. d. TNIK
leukocytes, liver, skel-
etal muscle, prostate,
uterus, rectum, stom-
ach, and bladder
RHEB1 Ubiquitous EGF, NGF, hypoxia, TCTe TSC1/2, RGS10 mTOR, FKBP38, PLD1,  Far, Cm, P
amino acids, forsko- PERK, BACE1,
lin, Low glocuse, CRAF, NIX/LC3-lI,
BDNF, insulin, FGF Dynein, NOTCH1,
RASSF1
RHEB2 Ubiquitous, brain NGF, SPC n. d. T5C1/2 mTOR, AKT1, CAD
RASD1 AGS1, DEXRAS1  Brain, heart, liver, Corticosteroids, estrogen, CAPON n. d. Gai/o, PAP7, FEB5, F, Cm
kidney, skeletal T3, nNOS PLCS
muscle, pancreas,
placenta
RASD2  RHES, TEM2 Corpus striatum, olfac- PAP7
tory tubercle
DIRAST  RIG, GBTS1 Brain, heart n. d. n.d. RAPGAP1/2 CRAF, RAC1, EPACT, Far, Ger
smgGDS
DIRAS2 Brain RAPGAP1/2 smgGDS
DIRAS3  ARHI, NOEY2, Ovary, breast epithelial n.d. STAT3, CRAF Myr
RHOI cells

Ac: acetylation; Cm: carboxymethylation; Far. farnesylataion; Ger. geranylgeranylation; n. d.. not determind; Palm: palmitoylation; P: phosphorylation;

Myr: N-myristoylation; S-nit: S-nitrosylation.

paralogs may even be strengthened by an additional
amino acid deviation at position 59 (Figure 2). G4 and
G5 contain invariant residues and are responsible for
the guanine base recognition. Mutation of Asp-119 in
RAS changes the nucleotide specificity from guanosine
to xanthosine nucleotides (Schmidt et al. 1996) and acts
as dominant negative in a dose dependent manner
(Tuder et al. 1999). G5 provides Ser-145 that stabilizes
Asp-119 of G4. Ala-146 binds the guanine base and is

Ub: ubiquitination;

another determinant for the guanine-binding ability of
the RAS proteins. Lys-147 is replaced in RIT1/2 by ala-
nine and may affect, together with the deviation in G2,
the nucleotide binding affinity (Shao et al. 1999).

Membrane anchorage and subcellular distribution

Interactions between signaling proteins and cellular
membranes are emerging as important modulators of
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cellular signaling. The spatiotemporal organization in
cells is largely dependent on both the nature and the
dynamics of the association of proteins with specific
sites of the cell membranes (Herrero et al. 2016).
Association of RAS proteins with cellular membranes is
mediated through a series of post-translational modifi-
cations and distinct motifs at their very C-terminal end
(Wright and Philips 2006; Omerovic and Prior 2009; Cox
et al. 2015; Nussinov et al. 2016; Wang and Casey 2016).
RAS proteins, except for RIT1/2, serve as substrates for
isoprenyl-transferring enzymes, which covalently and
irreversibly attach a 15-carbon farnesyl or a 20-carbon
geranylgeranyl moiety to the cysteine residue of the
very C-terminal CAAX (C is cysteine, A is any aliphatic
amino acid and X is any amino acid) motif (Figure 2).
This motif is present in more than 100 proteins and
necessary for diverse cellular processes (Lane and Beese
2006).

If the amino acid in the X position of CAAX is a leu-
cine, as in the case of RALA/B, RRAS1/3, RAP1A/B,
RAP2A (Figure 2), then geranylgeranyl transferase modi-
fies the protein with a geranylgeranyl moiety (Benetka
et al. 2006), otherwise the protein is modified with a far-
nesyl moiety by farnesyl transferase (Ahearn et al. 2011;
Berndt et al. 2011). Two post-prenylation enzymatic
steps are critical for proper localization, including pro-
teolytic cleavage of the AAX residues by the endopep-
tidase RCE1 and methylation of the terminal
isoprenylcysteine by the methyltransferase ICMT
(Winter-Vann and Casey 2005; Ahearn et al. 2011;
Berndt et al. 2011).

Due to a relatively weak affinity of isoprenylated pro-
teins for cellular membranes (Silvius and ['Heureux
1994), additional motifs in the hypervariable region
(HVR) are engaged in fine-tuning membrane association
with RAS proteins (Figure 2) and their functions
(Abankwa et al. 2007; Hanzal-Bayer and Hancock 2007;
Omerovic and Prior 2009). Some RAS proteins, e.g.
KRAS4B, RALA, RRAS3, and RIT1/2 (Figure 2), contain a
stretch of positively charged amino acids (called polyba-
sic region or PBR; Figure 2), which has been implicated
to contact negatively charged phospholipids of the cell
membrane (Banerjee et al. 2016; Nussinov et al. 2016).
Membrane association of KRAS4B is modulated in differ-
ent ways (Ashery et al. 2006; Bhagatji et al. 2010;
Alvarez-Moya et al. 2011). PDES binds to farnesylated
KRAS4B (Dharmaiah et al. 2016) and transport it from
perinuclear membranes to plasma membrane (Chandra
et al. 2011; Schmick et al. 2014). ERK1/2 phosphorylates
RRAS1/2 at Ser-186 and Ser-201, but not RRAS3, and
does not affect their subcellular localization but rather
stimulates their activation (Fremin et al. 2016).
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A further way of increasing the affinity of isopreny-
lated proteins for cellular membranes is an addition of
one or more lipid anchors. KRAS4A, NRAS, HRAS1, ERAS,
RRAS1, RAP2A/B, and RALA/B are palmitoylated by acyl
protein transferases at cysteines prior to the CAAX motif
(Figure 2) (Hancock et al. 1989; Beranger et al. 1991;
Schroeder et al. 1997; Takahashi et al. 2005; Uechi et al.
2009; Gentry et al. 2015; Tabaczar et al. 2017). In con-
trast to HRAS1, HRAS2 does not have any C-terminal
sites for post-translational modifications (Figure 2), and
appears to be distributed between cytosol and nucleus
(Guil et al. 2003). Another emerging concept in the field
is based on physical interaction of the G domain itself
with lipid membrane. A membrane-based, nucleotide-
dependent conformational switch operates through dis-
tinct regions on the surface of RAS proteins, including
the HVR, which reorient with respect to the plasma
membrane (Abankwa et al. 2010; Cirstea et al. 2010). G
domain-membrane interaction may contribute to the
specificity of signal transduction and may underlay add-
itional control elements. A critical aspect in this context
is the organization of RAS proteins into protein-lipid
complexes. These so-called nanoclusters concentrate
RAS at the plasma membrane. They are the sites of
effector recruitment and activation, and are essential for
signal transmission (Abankwa et al. 2007; Zhou and
Hancock 2015). It is not entirely clear how RAS nano-
clustering is regulated (see “Modulatory scaffold
proteins” section).

Modulatory post-transiational modifications

Trafficking of RAS proteins (Wurtzel et al. 2015) have
recently been shown to be highly specific for respective
RAS proteins and dependent on specific post-transla-
tional modifications beyond prenylation and acylation
(Oertli et al. 2000; Berzat et al. 2006; Calvo and Crespo
2009; Jang et al. 2015; Lynch et al. 2015; Schmick et al.
2015), namely, phosphorylation (Bivona et al. 2006; Sung
et al. 2013), ubiquitination (Jura et al. 2006; Rodriguez-
Viciana and McCormick 2006; de la Vega et al. 2010;
Wang et al. 2015), and S-nitrosylation (Shanshiashvili
et al. 2011; Chen et al. 2015). The molecular basis of
these modifications is mostly still unclear.

Acetylation of KRAS at Lys-104 interferes with GEF-
induced nucleotide exchange (Yang et al. 2012, 2013;
Knyphausen et al. 2016). S-nitrosylation of Cys-118 of
HRAS promotes nucleotide exchange (Lander et al. 1995;
Williams et al. 2003; Heo and Campbell 2004).
Ubiquitination of HRAS at Lys-117 accelerates intrinsic
nucleotide exchange, thereby promoting GTP loading,
while KRAS monoubiquitination at Lys-147 leads to an
impaired regulator-mediated GTP hydrolysis (Baker et al.
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20134, 2013b; Sasaki et al. 2011). RRAS1 phosphorylation
at Tyr-66 by EphB2 receptor and Src blocks its effector
interaction, for example with CRAF (Zou et al. 1999,
2002). In contrast, ERK1/2 phosphorylates RRAS1 and
RRAS2 at the C-terminal HVR at Ser-186 and Ser-201,
respectively and promotes cell adhesion and migration
(Fremin et al. 2016). In addition, phosphorylation of RAS
proteins also modulates their subcellular localization.
KRAS phosphorylation by PKC at the C-terminal Ser-181
promotes its dissociation from the plasma membrane
and translocation to intracellular membranes, including
the outer membrane of mitochondria (Bivona et al.
2006). A similar scenario is RALA phosphorylation at Ser-
194 by Aurora-A, which promotes RALA relocalization
from the plasma membrane to mitochondria leading to
mitochondrial fission (Kashatus et al. 2011).

The concept of family member selectivity

In spite of sharing a conserved G domain, each RAS
family member has specific deviation within and add-
itional features outside the G domain that make them
unique in regulation and function. In the following, we
compare individual members in the frame of 11 subfa-
milies with HRAS as a prototype of the family. Many
members of the RAS family exhibit unique amino acid
extensions at their N-terminal (Ng,) and C-terminal (C.,)
ends (Figure 2 and Table 2). The N-terminus of ERAS,
which appears to undergo multiple interaction with
other proteins (H. Nakhaeizadeh, J. Lissy, S. Rezaei
Adariani, S. Nakhaei-Rad, M.R. Ahmadian, unpublished)
and contains putative SH3-binding motifs, like RRAS1
and HRAS2/3 (Table 2). RRAS1 N-terminus, interestingly
is critical for protein targeting and function (Wang et al.
2000). These motifs may provide additional mechanisms
for sorting and trafficking to specific subcellular sites, as
proposed for ERAS (Nakhaei-Rad et al. 2015). RRAS
paralogs contain extended N-termini that seems to be

critical for cell migration (Holly et al. 2005). RALA N-ter-
minal extension is involved in SRC-induced PLD activa-
tion (Jiang et al. 1995). Signal-induced recruitment of
DIRAS3 to the plasma membrane appears to be regu-
lated by its N-terminal extension (Klingauf et al. 2013),
which is essential for its interaction with STAT3 and
importin (Nishimoto et al. 2005; Huang et al. 2009).
Notably, DIRAS3 contains a glycine at position 2, which
usually is used as a site for myristoylation (Resh 2004).

Protein interaction networks

RAS proteins are known to undergo interactions with
diverse types of proteins, some of which are summar-
ized as follows.

Regulatory proteins

RAS is believed to persist in its inactive form in resting
cells. This scenario is based on the assumption that its
intrinsic GTPase reaction is faster than its intrinsic GDP/
GTP exchange reaction. A further issue is that these very
slow reactions require catalysis by GEFs and GAPs,
respectively, which are controlled by upstream signals
and locally regulate RAS activity. There are, however,
several RAS family members, including ERAS, DIRAS3,
and RASD1/2, which exhibit distinct amino acid devia-
tions in G1 and G3 motifs (Figure 2). These proteins accu-
mulate themselves in GTP-bound form due to their
impaired GTP hydrolysis and GAP insensitivity (Kontani
et al. 2002; Nakhaei-Rad et al. 2015; Ogita et al. 2015),
and may underlay a different mechanism of regulation.
Unlike classical RAS proteins, these GTP binding proteins
are not ubiquitously expressed (Table 1) and may be
regulated at the level of transcription as recently shown
for ERAS (Nakhaeizadeh et al. 2016). All other members
of the RAS family appear to act as intracellular switches
and to be controlled by GEFs and GAPs (Table 1).
However, no RHEBGEF has been identified so far.

Table 2. Amino acid extensions beyond the G domain and HVR (see text for more detail).

N-terminal extensions

ERAS 'MELETKEGTFDLG LATWSPSFQGETHRAQARRRDVGRQ
RRAS1 'MSSGAASGTGRGR?RGGGEGEG DpPP
RRAS2 'MAAAGWRDGSG
RRAS3 'MATSAVPSDN
RALA "TMAANKPKGQNS
RALB 'MAANKSKGQSS
RIT1 'MDSGTRPVGSCCSSPAGL
RIT2 'MEVENEASCSPGSASGG
RASD1 "MKLAAMIKKMCPSDSELSIP
RASD2 'MMKTLSSGNCTLSVPA
DIRAS3 'MQNASFGSKEQKLLKRLRLLPALLILRAFKPHRK
C-terminal extensions
HRAS2 'SZSRSGSSSSSGTLWDEGEM
HRAS3 'SZSRSGSSSSSGTPRDQCDPAAPRAG
RASD1 197 PSEMSPDLHRKVSVQYCDVLHKKALRNKKLLRAGSGGGGGDPGDAFGIVAPFARR
RASD2 192 PHEMSPALHRKISVQYGDAFHPRPFCMRRVKEMDAYGMVSPFARR
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Postulated GEF activity of TCTP towards RHEB1 has been
disproved (Rehmann et al. 2008b). There are no specific
GEFs and GAPs described for RIT1/2 yet (Shi et al. 2013).

There are 30 RASGEFs known in human genome (van
Dam et al. 2009) sharing a common catalytic domain,
called CDC25 (Crechet et al. 1990; Quilliam et al. 2002;
Mitin et al. 2005; van Dam et al. 2011). Consistent with
the RHOGEF family (Jaiswal et al. 2013), RASGEFs also
exhibit selectivity profile towards distinct groups of the
RAS family (Popovic et al. 2013), which is a pivotal step
in establishing specific activation of the downstream
signaling pathways (Figure 3). The CDC25 domains of
SOS1, EPAC2 and RALGDS specifically bind HRAS,
RAP2B, dRal, the Drosophila ortholog of RALA, respect-
ively and structurally rearrange critical regions of the
nucleotide-binding site, including P-loop and switch I/1l
and consequently catalyze the GDP/GTP exchange
(Boriack-Sjodin et al. 1998; Rehmann et al. 2008a;
Popovic et al. 2016). They apparently operate by a sim-
ple allosteric competitive mechanism (Guo et al. 2005).
In the cell, the specificity of the RASGEFs is obviously
determined by other domains of the respective pro-
teins, for example SOS1 (Gureasko et al. 2008).

Unlike GEFs, GAPs for different groups of the RAS
family are mechanistically rather heterogeneous
(Scheffzek and Ahmadian 2005). RASGAPs provide com-
mon structural fingerprints (Ahmadian et al. 2003),
especially a catalytic arginine, which stabilizes GIn-61 of
RAS and RRAS paralogs and stimulate the very slow
GTPase reaction (Ahmadian et al. 1997; Scheffzek et al.
1997). RAPGAPs as well as the RHEBGAP, tuberin or
TSC2, utilize a catalytic asparagine that substitute for
the non-functional threonine of RAP paralogs and glu-
tamine of RHEB1 in the switch Il regions (Daumke et al.
2004; Yu et al. 2005; Scrima et al. 2008; Marshall et al.
2009). Tuberin requires for its GAP activity a heterodi-
merization with non-catalytic hamartin (also called
TSC1) (Li et al. 2004). GAP1'™BP however, utilizes a cata-
lytic arginine to inactivate RAP1 (Kupzig et al. 2009).
RALGAPs share a similar catalytic mechanism as
RHEBGAPs. They undergo a complex with a non-cata-
lytic subunit and stimulate the GTPase reaction of
RALA/B, most likely by supplying a catalytic asparagine,
too (Shirakawa et al. 2009). DIRAS1/2 share GAPs with
RAP paralogs, which also have a serine instead of a
catalytic glutamine (Figure 2) and can be inactivated by
RAPGAPs (Gasper et al. 2010).

Effector selectivity

Signal transduction implies physical association of RAS
proteins with and activation of a spectrum of function-
ally diverse downstream effectors. Effectors specifically
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interact with the active, GTP-bound form of the RAS
proteins, usually, in response to extracellular signals,
and link them to downstream signaling pathways in all
eukaryotes (Karnoub and Weinberg 2008; Gutierrez-
Erlandsson et al. 2013). They act as protein or lipid kin-
ases, phospholipase, GEFs, GAPs and scaffold proteins
(Table 1) (Herrmann 2003; Rajalingam et al. 2007;
Castellano and Downward 2010; Ferro and Trabalzini
2010; Bunney and Katan 2011; Chan and Katan 2013;
Nakhaei-Rad et al. 2016; Nakhaeizadeh et al. 2016).
Two major groups of effectors contain RAS binding (RB)
and RAS association (RA) domains, respectively
(Repasky et al. 2004; Wohlgemuth et al. 2005;
Nakhaeizadeh et al. 2016). Mining in the UniProt data-
base led to the identification of 118 distinct human pro-
teins containing RB and RA domains (Rezaei Adariani,
Dvorsky et al., unpublished). Notably, both types of
domains utilize critical determinants for the interaction
with different RAS proteins, particularly the intermo-
lecular pB-sheets (Nakhaeizadeh et al. 2016). Structural
studies have provided deep insights into the binding
modes and interaction specificities (Mott and Owen
2015) and yet, the precise mechanism, through which
effector association with activated RAS proteins results
in effector activation, is still unclear. It is, however, gen-
erally accepted that RAS proteins participate directly in
the activation of their downstream effectors and do not
simply mediate recruitment to specific sites of the
membrane.

The RAS paralogs share a similar effector binding
regions with other members of the RAS family but also
show distinct deviations (residues 30 and 31 in switch |,
and 64, 65, 71, 72, and 73 in switch Il) suggesting that
they may share downstream effectors with different
affinities (Wittinghofer and Nassar 1996). ERAS preferen-
tially interacts with PI3K rather than CRAF as compared
to HRAS. Trp-79 of ERAS (Arg-41 in HRAS) turned out to
be critical for ERAS binding to PI3K, RALGDS, and PLCe
(Nakhaei-Rad et al. 2015). Ser-34 of RHEB1, and Lys-31
in RAPTA (Glu-31 in HRAS1) have been discussed as
specificity determining for their effectors (Wittinghofer
and Nassar 1996). Notably, residues 70-72 (67-69 in
HRAST) in the switch Il region appear to undergo con-
tacts with Arg-15 and Ser-16 (Gly-12 and Gly-13 in
HRAS1) in P-loop and may contribute to an alternative
mechanism of intrinsic GTP hydrolysis (Karassek et al.
2010).

Modulatory scaffold proteins

Signal transduction of RAS family proteins are main-
tained by at least three classes of interacting partners.
These include regulators (GEFs and GAPs) that control
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Figure 3. Signal transduction pathways downstream of the RAS family proteins. Signaling schemes are divided in different
paralog in red colors (A-l). Reviewed effectors are shown in blue. Other downstream interacting proteins are shown in black.
Black arrows indicate activating events and red lines inhibiting events in pathways. See D for missing RALA/B signaling in A.

the GTPase cycle and a wide spectrum of effectors that
initiate signaling cascades downstream of the RAS pro-
teins. It has become evident that an increasing number
of additional RAS scaffold proteins, including CAM,
GAL1, GAL3, IQGAP1, NCL, NPM1, SHOC2, SHP2, SPRY,
SPRED1, and GAB1, are critical in modulating and inte-
grating RAS proteins in various signaling networks at
the biological membranes. CAM binds to KRAS4B PBR
(Wu et al. 2011; Sperlich et al. 2016) and determines
activation of distinct downstream pathways (Nussinov
et al. 2015; Jang et al. 2017). KRAS4B interaction with
CAM leads to the suppression of the non-canonical
Wnt/Ca®" pathway that strongly contributes to its
tumorigenic properties (Wang et al. 2015). Similarly,
CAM binds to RALA and PLCS and modulates RALA-
mediated PLCS activity (Grujic and Bhullar 2009). RIT2
PBR acting as a docking site for CAM is essential for the
EGF dependent RIT2 signal transduction (Lee et al.
1996). A CAM interaction of Drosophila Ric, a RIT1/2
ortholog, has been shown, however, to negatively regu-
late Ric crosstalk to the RAS-MAPK pathway (Harrison

et al. 2005). SHOC2 (also called SUR-8) in complex with
PP1c links RRAS3 with the inactive CRAF and stimulates
CRAF activity by dephosphorylating of SHOC2, thus,
promotes the RAS-RAF-controlled MAPK activation to
control proliferation and neurite outgrowth (Cordeddu
et al. 2009; Motta et al. 2016). SHOC2 also binds p110a
subunit of PI3K and regulates cell motility, invasion, and
metastasis (Kaduwal et al. 2015). IQGAP1, which con-
tains an inactive RASGAP domain (Kurella et al. 2009;
Nouri et al. 2017), binds BRAF and ERK1/2, and potenti-
ates their activity in response to EGF (Ren et al. 2007).
An ERK1/2-binding IQGAP1 peptide has been reported
to disrupt IQGAP1-ERK1/2 interactions and inhibit RAS-
and RAF-driven tumorigenesis (Jameson et al. 2013).
GALT, GAL3, NPM1, and NCL has been suggested to
modulate RAS nanocluster formation and activate the
MAPK pathway but the molecular nature remains to be
determined (Plowman et al. 2008; Inder et al. 2009).
GAL1 has recently been shown to form a complex with
CRAF and potentiate HRAS nanoclustering (Blazevits
et al. 2016). Other scaffold proteins, such as SPRY,
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SPRED1, and GAB1 act differently. SPRY2, for example,
interrupts signal transduction from FGFR to RAS by
binding to GRB2 and disrupting the GRB2-S0S complex
if phosphorylated by CK1 (Yim et al. 2015). SPRY2
appears to regulate the specific activation of RAC1 by
HRAS, which probably would be mediated by TIAM1
and PI3K (Lito et al. 2009). SPRED1 interferes with the
membrane anchorage and signaling of KRAS but not
HRAS (Siljamaki and Abankwa 2016) and modulate the
activity of NF1, a RASGAP, by binding and recruiting it to
the plasma membrane (Dunzendorfer-Matt et al. 2016).
GAB1 modulates, together with the tyrosine phosphat-
ase SHP2, p120RASGAP activity by recruiting it to acti-
vated EGFR at the plasma membrane (Montagner et al.
2005). Future studies will shed light on the underlying
mechanisms of these groups of modulatory proteins,
the total number of which may increase.

Signal integration and transduction

RAS family proteins link the extracellular signals, trans-
duced through their receptors, with multiple signaling
pathways and consequently control a wide array of cel-
lular processes. Different RAS paralogs have unique
roles in modulating the cellular processes. The specifi-
city comes from several levels: Subcellular localization,
upstream stimuli, interactions with scaffolds, regulators
and target proteins, and downstream signaling. In this
part, we describe more precisely the conditions under
which individual RAS proteins are activated and how
they transduce the signal.

Upstream signals

The convergence of multiple upstream cascades on the
RAS proteins mostly underlay a similar mechanism.
Different types of extracellular signals, transmitted
across the plasma membrane by diverse cell surface
receptors are linked with RAS proteins through differ-
ent, specific GEFs and GAPs (Table 1) (Quilliam et al.
2002; Hennig et al. 2015). Interestingly, activation of dif-
ferent transmembrane receptors, including receptor
tyrosine kinases (RTKs), G-protein coupled receptors
(GPCRs), ion channel receptors (e.g. mGIuR or NMDAR),
cytokine receptors and adhesion receptors, lead to the
activation of distinct RAS proteins in distinct cell types.
For example, IL3, CSF1, and EGF preferentially activate
KRAS4B and RRAS3 over HRAS or NRAS in B and T lym-
phocytes (Ehrhardt et al. 2004), GLP1 and PAR4 peptide
activate RAP1 in islet cells and platelets, respectively
(Trumper et al. 2005), FGF2 activates RAP1A/B in endo-
thelial cells (Yan et al. 2008), IL9/IL3 activate RRAS3 in T-
helper cells (Louahed et al. 1999), EGF, and NGF activate
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RIT1 in non-neuronal and neuronal tissues (Shi and
Andres 2005), EGF, NGF, and PACAP38 neuropeptide
activate RIT2 in neuronal tissues (Spencer et al. 2002b;
Shi et al. 2008), EGF and forskolin activate RHEB in rat
pheochromocytoma PC12 cells (Yee and Worley 1997),
while insulin, FGF and BDNF activate the RHEB1 in neur-
onal cells (Yamagata et al. 1994; Zhang et al. 2003;
Takei 2004), and glucocorticoid dexamethasone induces
a RASD1-mediated adipogenesis in adipocytes (Cha
et al. 2013). nNOS activation via NMDR stimulation
results in S-nitrosylation and CAPON adaptor acts as a
GEF to activate RASD1 (Fang et al. 2000; Cheah et al.
2006). L-DOPA, thyroid hormone and Estrogen regulate
RASD2 in striatal tissue (Subramaniam et al. 2011;
Ghiglieri et al. 2015).

The upstream signals specifically activate distinct
GEFs, which in turn selectively activate distinct mem-
bers of the RAS family and ultimately control distinct
cellular processes (Buday and Downward 2008). A nice
example is RAP1-mediated formation of cell-cell junc-
tion regulated by five different RAP1GEFs (Kooistra et al.
2007). Prominent examples are EPAC1/2, which is dir-
ectly activated by cAMP (de Rooij et al. 1998), controls
cellular processes ranging from insulin secretion to car-
diac contraction and vascular permeability (Gloerich
and Bos 2010). A different scenario is CalDAG-GEFIII
(also called RASGRP3) that operates on multiple RAS
proteins (Rebhun et al. 2000; Yamashita et al. 2000). In
endothelial cells, CalDAG-GEFIIl activates RRAS1 and
interferes with transendothelial permeability and angio-
genesis, respectively (Ichimiya et al. 2015), while it
affects inflammatory response in macrophages by acti-
vating RAP1 (Tang et al. 2014). Other well-studied GEFs
are SOS1/2, RASGRP1-4, and RASGRF1/2 (Hennig et al.
2015). Collective binding of multiple SOS1 and GRB2
domains to their protein and phospholipid ligands are
finely tuned in order to cooperatively control cellular
processes, including pluripotency and differentiation
factors (Findlay et al. 2013). RASGRP1 opposes EGFR-
SOS1 signals and suppresses proliferation in normal
intestinal epithelial cells (Depeille et al. 2015). RASGRF1/
2 carry out specific roles in three forms of synaptic plas-
ticity in the CA1 region of the hippocampus (Jin et al.
2014). RALGDS, an effector of different RAS proteins
(Ferro and Trabalzini 2010; Yoshizawa et al. 2017), acti-
vates RALA to regulate insulin-secretory process in pan-
creatic p-cells in response to intracellular Ca®* and
cAMP (Ljubicic et al. 2009) and to promote exocytosis of
endothelial Weibel-Palade bodies (Rondaij et al. 2008).
The latter, which are also regulated by cAMP-EPAC-
RAP1 (van Hooren et al. 2012), are critical elements of
hemostasis, inflammation or angiogenesis (Mourik and
Eikenboom 2017).
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Contrary to GEFs, only a few reports are known
about the signaling cascades, which control recruitment
and activation of GAPs. In the thymus, p120RASGAP,
the GAP prototype (Trahey and McCormick 1987), acts
for example as a negative regulator of the RAS-MAPK
pathway during positive selection and survival of naive
T cells (Lapinski et al. 2011). The activity of p120 is regu-
lated by ANXA60, which binds p120 and recruit it to
the membrane in a Ca’*-dependent manner (Grewal
et al. 2005; Grewal and Enrich 2006). The much larger
NF1 regulates for example RAS inactivation in dendritic
spines of pyramidal neurons in the CA1 region of the
rat hippocampus (Oliveira and Yasuda 2014). Dual-spe-
cificity RASGAP paralogs, GAP1'P8® and CAPRI, coordin-
ate RAS and RAP signaling pathways (Kupzig et al. 2006;
Sot et al. 2010). Inhibition of GAP1P*®" by an integrin
obPs outside-in signaling via PI3K leads to sustained
RAP1 activation and platelet spreading (Battram et al.
2017). Ca’"-dependent dimerization of CAPRI, a
GAP1'™8® paralog, switches its specificity from RASGAP
to RAPGAP (Dai et al. 2011). SynGAP is another dual-
specificity GAP, which is a negative regulator of RAS
and RAP proteins in dendritic spines (Jeyabalan and
Clement 2016). It is one of the most abundant post-syn-
aptic density proteins, where it binds as a homo-trimer
to multiple copies of PSD95 (Zeng et al. 2016). SynGAP
requires its C2 domain to catalyze RAP inactivation
(Pena et al. 2008). Spine-associated, classical RAPGAPs,
SPAR1-3, are recruited through their interactions with
Fezzin proteins to the post-synaptic SHANK scaffold and
regulate dendritic spine morphology (Dolnik et al.
2016).

Semaphorins, the plexin family of semaphorin recep-
tors, exhibit GAP activities towards RRAS paralogs (Hota
and Buck 2012). Sema3E-PLXND1 counteracts angiogen-
esis through RRAS inactivation (Sakurai et al. 2010).
However, SEMA4D-PLXNB1-RND1 complex inactivates
RRAS in order to induce growth cone collapse in hippo-
campal neurons (Oinuma et al. 2004), while SEMA4D-
PLXNB1 acts on RRAS3 to regulate actin-based dendrite
remodeling (Tasaka et al. 2012). As the GAP activities of
PLXNs is a matter of debate, a structural, and biochem-
ical study has shown that PLXNs apparently use a non-
canonical catalytic mechanism to act as GAPs on RAP
but not on RRAS paralogs (Wang et al. 2012). In this
study, SEMA3A stimulated the RAPGAP activity of
PLXNA1 to induce neuronal growth cone collapse.

TSC1/TSC2  heterodimerization  facilitates  TSC2
RHEBGAP activity leading to RHEB inactivation and
inhibition of the RHEB-induces mTORC1 activation (Tee
et al. 2003; Long et al. 2005). VPS34, a class Il PI3K,
upregulates RHEB and mTOR activities via production of
PIP; and recruits PIKFYVE to the plasma membrane,

where VPS34 forms a complex with PIKFYVE and TSC1
(Mohan et al. 2016). This in turn disengages TSC2 from
the TSC1/TSC2 heterodimer, leading to TSC2 ubiquitina-
tion and degradation. Arginine, a key activator of
mTORC1, cooperates with growth factor signaling,
which suppresses lysosomal localization of the TSC
complex and interaction with RHEB (Carroll et al. 2016).
MCRS1 regulates the lysosome localization of RHEB1 in
an amino acid-dependent manner and inhibits TSC2
binding to RHEB1 (Fawal et al. 2015). In myoblasts, how-
ever, TSC2 phosphorylation and inactivation by ERK
results in activation of the RHEB-mTORC1 axis and regu-
lation of protein synthesis (Miyazaki and Takemasa
2017).

Downstream targets and pathways
Classical RAS signaling

Specific regulation of cellular functions by the members
of the RAS family depends on selective interaction with
downstream targets, the effectors (Mott and Owen
2015; Nakhaeizadeh et al. 2016), which transduce the
signal to distinct pathways (Cox and Der 2003; Bos
2005; Rajalingam et al. 2007; Braun and Shannon 2008;
Karnoub and Weinberg 2008; Castellano and Downward
2010; Dodd and Tee 2012; Gentry et al. 2014). More
than 60 effectors reported for the RAS family proteins
(Table 1) can activate about 49 pathways (Figure 3). RAF
kinases (ARAF, BRAF, and CRAF) are the major and best-
studied effectors for RAS family. These kinases are crit-
ical elements of the MAPK pathway, which control gene
expression and thus, different cellular processes includ-
ing proliferation, apoptosis, and differentiation (Desideri
et al. 2015). RAF kinases phosphorylate MEK, which in
turn phosphorylates ERK kinases and triggers their
translocation into the nucleus, where they activate tran-
scription factors, such as ELK1, ETS1, MYC, FOS, and
DUSP1 (Unal et al. 2017). Rarely analyzed are, however,
a large number of other CRAF substrates, which are
involved in different processes, including adenylyl cycle,
vimentin kinase, Rb, CDC25, troponin T, DMPK, and
MYPT (Galaktionov et al. 1995; Janosch et al. 2000;
Shimizu et al. 2000; Broustas et al. 2001; Hindley and
Kolch 2002; Ehrenreiter et al. 2005; Kaliman and
Llagostera 2008; Davis and Chellappan 2008; Niault and
Baccarini 2010). CRAF directly associates with MST2,
ASK1, ROCK, and calcineurin, and controls proliferation,
apoptosis, contraction, and motility, respectively (Chen
et al. 2001; Niault and Baccarini 2010; Romano et al.
2014; Desideri et al. 2015; Varga et al. 2017).

CRAF and BRAF are apparently downstream of many
different members of the RAS family, including HRAS,
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KRAS4B, NRAS, RAP1A, RRAS1, RRAS2, RRAS3, RHEBI,
RIT1, and DIRAS3 (Figure 3) (Self et al. 2001; Wellbrock
et al. 2004; Jin et al. 2006; Karbowniczek et al. 2006;
Baljuls et al. 2012; Mott and Owen 2015; Yaoita et al.
2016). CRAF activity is known to be directly dependent
on its heterodimer formation with BRAF, which appears
to be stabilized by ARAF as a scaffold protein (Rebocho
and Marais 2013). Also ARAF homodimer seems to pro-
mote MAPK pathway activation (Mooz et al. 2014).
However, due to a lower binding affinity for ARAF,
HRAS seems to preferentially activate CRAF (Weber
et al. 2000). In contrast to HRAS1, HRAS2 does not inter-
act with two known HRAS effectors, CRAF and RIN1
(Guil et al. 2003). HRAS2 interacts with RACK1, a scaf-
folding protein that forms multiprotein complexes with
p120RASGAP, MAP kinases, PKCs, and SRC proteins (Guil
et al. 2003). It also regulates telomerase activity through
its interaction with p73 and arrest cell cycle at G1/S
phase (Camats et al. 2009). The RASopathy-associated
HRAS3, which has a 24-amino acid insertion at Gly-151
and Val-152 with partial similarity to the C-terminus of
HRAS2 (Table 2), is a weak hyperactive RAS protein with
constitutive plasma membrane localization in compari-
son to HRAS1. It has been suggested that it may, due to
its insertion, interact with signaling platforms located at
different subcellular compartments (Pantaleoni et al.
2017).

The second best-characterized RAS effector family,
PI3K (class | PI3K), phosphorylates phosphoinositide
(4,5) bisphosphate (PIP;) and generates the second
messenger phosphoinositide (3,4,5) trisphosphate (PIP3)
that recruits the wide range of protein effectors through
their pleckstrin homology (PH) domain to the mem-
brane. Target proteins could be kinases (e.g. AKT and
PDK1), adaptor proteins, GEFs, or GAPs that regulate dif-
ferent cellular processes (Vanhaesebroeck et al. 2001).
PI3K-AKT pathway is very well known in controlling cell
cycle entry, cell growth, survival, and metabolism
(Castellano and Downward 2011). HRAS1, NRAS,
KRAS4B, ERAS, RRAS, and RAPTA activate PI3Ks. AKT or
protein kinase B (PKB) belongs to AGC subfamily of pro-
tein kinases. AKT is one of the key proteins downstream
of PI3K-PIP3 involved in a wide range of the cellular
processes, such as cell proliferation, metabolism,
growth, autophagy inhibition, and survival (Andjelkovic
et al. 1997; Pearce et al. 2010; Hers et al. 2011). Upon
extracellular stimuli and the tyrosine receptor activation,
class | PI3K generates the PIP3 that engages both PDK1
and AKT through PH domain to the plasma membrane.
PDK1 phosphorylates AKT at position Thr-308 that is
located on the catalytic domain of AKT (Alessi et al.
1997). This phosphorylation triggers the inhibitory
phosphorylation of TSC1/2 that is a well-known GAP for
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RHEB protein. Phosphorylation of TSC1/2 suppresses its
inhibitory effect on mTORC1 (Inoki et al. 2002, 2003).
Second key phosphorylation site for AKT is on the
hydrophobic motifs of AKT Ser-473 that will be phos-
phorylated through the second mTOR complex
(mTORC2).

Other RAS effectors are RALGDS, PLCe, and RASSF.
RALGDS links RAS with RALA/B, and regulates cellular
processes such as vesicular trafficking, endocytosis
and migration (Ferro and Trabalzini 2010). RPM/RGL3,
another member of the RALGDS family, is an effector
for both HRAS and RRAS3, which has inhibitory effects
on the MAPK pathway (Ehrhardt et al. 2001). Dual func-
tions of PLCe, activated by RAS proteins (Kelley et al.
2001; Song et al. 2001; Ada-Nguema et al. 2006; Bunney
et al. 2006, 2009), include RAPGEF and PIP, lipase C
activities, which controls endocytosis, exocytosis, and
cytoskeletal reorganization (Bunney and Katan 2006).
RASSF5 (also called NORE1) forms a complex with
MST1/2 kinases, human orthologs of Hippo, and pro-
motes apoptosis and cell cycle arrest (Stieglitz et al.
2008; Chan and Katan 2013). RASSF1 is also potential
tumor suppressor and is required for death receptor-
dependent apoptosis and mediates activation of STK3/
MST2 and STK4/MST1 during FAS-induced apoptosis by
preventing their dephosphorylation (Praskova et al.
2004). Notably, there are many more RAS effectors
reported, e.g. TIAM1, p120RASGAP, RIN, AF6, IMP, GRB7,
and SIN1 (Pamonsinlapatham et al. 2009; Berndt et al.
2011; Stephen et al. 2014; McCormick 2015, 2016).

It is believed that different RAS isoforms can gener-
ate specific biological functions. HRAS has a critical role
in mediating different cellular effects. Focal adhesion
kinase (FAK) is a widely expressed non-receptor tyrosine
kinase and is stimulated by PDGF. HRAS plays as an
intermediate protein regulating PDGF-induced FAK
tyrosine phosphorylation in human hepatic stellate cells
(HSCs) (Carloni et al. 2000). Oncogenic HRAS preferen-
tially activates endogenous CRAF compared to ARAF,
which is due to the reduced binding affinity of HRAS for
ARAF (Weber et al. 2000). In primary hepatocytes, HRAS
is the major mediator of ERK induced proliferation and
survival, while HRAS and KRAS both mediate PI3K-
induced survival (Rosseland et al. 2008). KRAS4A and
KRAS4B share the same effectors but some proteins
are specific for KRAS4B, such as CAM (Villalonga et al.
2001), which facilitates KRAS4B interaction with CRAF,
RASGAP, and plasma membrane. Moreover, it has
been shown that KRAS4B binding to CAM will lead to
the suppression of non-canonical WNT signaling that
strongly contributes to its tumorigenic properties
(Wang et al. 2015).
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RRAS signaling

RRAS binds FLNa and promotes endothelial barrier func-
tion, which is loss if interfering with the RRAS-FLNA
interaction (Griffiths et al. 2011). Another RRAS effector
is gridin that is associated with VE-cadherin and con-
trols transendothelial permeability (Griffiths et al. 2011;
Ichimiya et al. 2015). In response to a wide variety of
inflammatory mediators, RRAS also activates, together
with RAP1, aMpB2 integrin in macrophages via a path-
way involving RAP1 (Caron et al. 2000), stimulates the
formation of focal adhesion through FAK and p130CAS
(Kwong et al. 2003), activates PLCe and controls the
actin cytoskeleton arrangement (Ada-Nguema et al.
2006). The RRAS-RIN2-RAB5 axis recruits the RACGEF
TIAM1 to control RAC1-dependent endothelial cell
adhesion (Sandri et al. 2012).

RAP signaling

RAP proteins contribute to several biological processes
which are often related to the cytoskeleton, adhesion
receptors, and cellular trafficking (Frische and
Zwartkruis 2010). RAP1 regulates adhesion to ECM via
activation of RGS14, PKD1, and RAPL (Nonaka et al.
2008; Plak et al. 2016; Zhang et al. 2017), controls cell-
cell junction via interaction with AF6 and KRIT1
(Glading et al. 2007; Kooistra et al. 2007). RAP2 interacts
with MAP4K4, MINK, TNIK, RPIP9, PARG1, and PLCe and,
thus, participates in different pathways (Rebhun et al.
2000; Ohba et al. 2001; Stork 2003; Stope et al. 2004). In
neurons, RAP2 regulates JNK activity leading to depot-
entiation by mediating synaptic internalization of AMPA
receptors (Zhu et al. 2005). The RAP2 effector MAP4K4,
but obviously not TNIK, mediates activation of JNK
pathway (Machida et al. 2004). RAP2 interaction with
TNIK increases the kinase activity and interferes with
the cell spreading. TNIK is a specific RAP2 effector and
is involved in actin cytoskeleton regulation (Taira et al.
2004). PLCe is activated via RAP2B and its activation
increases intracellular level of Ca®". RAP2B is involved
in Lung cancer development through its interaction
with PLCe (Nonaka et al. 2008; Tyutyunnykova et al.
2017). PARG1 is a specific effector of RAP2 which indu-
ces typical cytoskeletal changes for RHO inactivation in
fibroblasts. RAP2 interacts with ZPH region of PARG1
which mediates suppression of PARG1 action (Myagmar
et al. 2005). RPIP9 is a RAP2 effector and its activation
happens during the malignant breast epithelial trans-
formation and is related to metastatic lymph node inva-
sion (Raguz et al. 2005). Misshapen/NIKs-related kinase
(MINK) is a RAP2 interacting protein whose interaction
with RAP2 is GTP dependent. MINK is enriched in the

brain and activated MINK phosphorylates the post-
synaptic scaffold protein TANC1 (Nonaka et al. 2008).

RAL signaling

A well-studied function of RAL proteins is the regulation
and assembly of the multiprotein exocyst complex and,
therefore, regulation of exocytosis. Activated RALA, but
none of the other RAS proteins, interacts with SEC5 and
EXO84 in a competitive manner (Moskalenko et al.
2002; Sugihara et al. 2002; Jin et al. 2005). RALA-SEC5
and RALA-EXO84 interactions are critical regulators of
vesicle trafficking and exocytosis of adhesion molecules,
transporters, and receptors in many cell types and
organisms (de Leeuw et al. 2001; Shipitsin and Feig
2004; Kawato et al. 2008; Lopez et al. 2008; Sanchez-
Ruiz et al. 2011; Teodoro et al. 2013). RAL-exocyst com-
plex regulates the actin cytoskeletal organization by
mediating filopodia formation (Sugihara et al. 2002), cel-
lular motility (Spiczka and Yeaman 2008), autophago-
some formation (Bodemann et al. 2011), protein sorting
(Shipitsin and Feig 2004), neurite branching (Lalli and
Hall 2005), and cytokinesis (Cascone et al. 2008;
Shirakawa and Horiuchi 2015). RALBP1 (also called
RLIP76), the first RAL effector that have been described,
regulates mitotic progression of cytokinesis (Cascone
et al. 2008), and endocytosis of EGF and insulin recep-
tors through the interaction with active RALA and RALB
(Nakashima et al. 1999; Jullien-Flores et al. 2000). RALA
interaction with PLD1 stimulates together with ARF6
mTORC1 signaling (Xu et al. 2011) and modulates local-
ization of the cell cycle inhibitor, p27 (Tazat et al. 2013).
This interaction, however, appears to be nucleotide-
independent and mediated via the 11 amino acid
extension of RALA (Jiang et al. 1995).

RIT signaling

RIT1/2 interact, among known RAS effectors, with AF6
and RALGDS family proteins, which consists of RALGDS,
RGL, RGL2/RIf, and RGL3 (Ferro and Trabalzini 2010),
that directly link RIT1 to RAL signaling pathways (Shao
et al. 1999; Shao and Andres 2000). RIT2 targets the
RAC/CDC42 activation via PAR6 and regulates neurite
outgrowth in PC12 cells (Hoshino and Nakamura 2003;
Hoshino et al. 2005). RIT1 binds SIN1 and may regulate
AKT phosphorylation by mTORC2 (Cai and Andres
2014). This and other studies confirmed the unique role
of RIT1 but no other RAS proteins in protection against
cellular stress (Shi et al. 2011; Cai et al. 2012). In this
context, RIT1 also activates the second survival cascade,
p38-MSK1-CREB, which results in expression of anti-
apoptotic proteins, such as BCL-2 and BLC-XL (Shi et al.
2012). Activation of the RIT1-MKK3/MKK6-p38y axis
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promotes ¢-JUN transcriptional activity (Sakabe et al.
2002). RIT1 regulates the p38-MK2-HSP27 axis and by
subsequent AKT activation and BAD phosphorylation,
leads to the inhibition of apoptosis induced by ROS (Cai
etal. 2011).

RIT1/2 are also involved in neuron differentiation,
neurogenesis, neurite growth, and branching. RIT1
links NGF signaling to the MEK-ERK signal pathway
(Spencer et al. 2002a) and regulates neurite elongation
and branching via BRAF and p38 but not the AKT path-
way (Hynds et al. 2003; Shi and Andres 2005). RIT1,
however, modulates the proliferation and differentiation
of neuronal progenitor cells via SIN1-mTORC2-AKT axis
in adult brain, which results, among others, in phos-
phorylation of SOX2, a stem cell-specific transcriptional
factor (Mir et al. 2017). RIT2 has been found in different
protein complexes. Downstream of PACAP38-Gas-SRC
axis, RIT2 controls neuronal differentiation via HSP27,
which stabilizes the actin cytoskeleton (Shi et al. 2008).
In addition, RIT2 participates in regulated, PKC-depend-
ent, endocytosis and internalization of DAT1, and termi-
nates dopamine signaling in the brain (Navaroli et al.
2011).

RHEB signaling

RHEB1 plays an essential role in different organs and
regulates various cellular processes ranging from cell
growth to apoptosis (Ehrkamp et al. 2013). A well-
studied pathway is RHEB1-mTORC1 that regulates
translation, autophagy, and cell growth (Heard et al.
2014; Armijo et al. 2016; Potheraveedu et al. 2017).
RHEB1 directly binds and activates mTOR (Long et al.
2005). This activity is obviously modulated by different
proteins. PLD1 binds RHEB1 and potentiates mTOR
activation and presumably leads to cell size regulation
(Sun et al. 2008). PLD1-produced phosphatidic acid dir-
ectly interacts with the mTOR domain that is targeted
by rapamycin (Fang et al. 2001). In contrast, PDE4D
and GAPDH bind to RHEB1 and sequester it from
mTOR activation (Lee et al. 2009; Kim et al. 2010). The
latter is regulated by cAMP and Gly-3-P, which binds
PDE4D and GAPDH, respectively, and release RHEB1 to
bind mTOR and activates mTORC1 (Lee et al. 2009;
Kim et al. 2010). Due to its high similarity to HRAS
within the switch | region, RHEB1 has been shown to
interact with CRAF and BRAF although with a different
binding affinity (Karassek et al. 2010). While RHEB1
binding to BRAF inhibits its kinase activity and pre-
vents BRAF-dependent activation of the MAPK path-
way (Im et al. 2002; Karbowniczek et al. 2004), it
appears to bind CRAF and activates cell transformation
and neurite outgrowth (Yee and Worley 1997). In
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addition, RHEB1 binds dynein and blocks aggresome
formation and autophagy (Zhou et al. 2009), interacts
with FKBP38 and interferes with the BCL2 family pro-
tein association with the pro-apoptotic BAX/BAK pro-
teins (Ma et al. 2010), and RHEB1-NOTCH association is
involved in cell-fate decision (Karbowniczek et al.
2010). In addition, RHEB interaction with p-site amyloid
precursor protein (APP)-cleaving enzyme1 ([-secretase,
BACE1) results in its instability and lower level of amyl-
oid B generation (Shahani et al. 2014). Protein kinase-
like ER kinase (PERK) is known as a novel RHEB1
effector and its activation results in an elF2a phos-
phorylation and inhibition of protein synthesis again in
a mTORC-independent manner (Tyagi et al. 2015). In
addition, there is a crosstalk between RHEB1 and
Hippo pathway, where RHEB1 stimulates Hippo signal-
ing via binding to RASSF1. However, the RASSF1 bind-
ing to RHEB has an adverse effect on mTORC activity
(Nelson and Clark 2016).

ERAS signaling

Our knowledge about effector interaction and signal
transduction of ERAS as well as DIRAS and RASD paral-
ogs is very limited. The constitutive active ERAS controls
growth of mouse embryonic stem cells and maintains
quiescence in rat hepatic stellate cells via the
PI3K-PDK1-AKT-mTORC1 axis (Takahashi et al. 2003;
Nakhaei-Rad et al. 2016). ERAS may also regulate other
pathways, including MST1/2-LATS1/2-YAP and SIN1-
mTORC2 (Nakhaei-Rad et al. 2016), which remains to be
proved.

DIRAS signaling

DIRAS proteins antagonizes RAS signaling (Bergom
et al. 2016) leading to decreased levels of phosphoryl-
ation of CRAF, MEK, ERK, p90RSK, and BAD (Zhu et al.
2013). In Caenorhabditis elegans, DIRas-1 ortholog binds
to Epac-1 and modulates the synaptic plasticity in neu-
rons (Tada et al. 2012). Zebrafish DIRas increases the
protein levels and activity of Racl and regulates via
Rac1-Pak1-Cdk5-ARP2/3  axis  neurite  outgrowth
(Yeh and Hsu 2016). DIRAS3 interferes with IL6-induced
STAT3 phosphorylation and transcriptional activity
towards ¢cMYC, Cyclin D1, and Bcl-xL (Nishimoto et al.
2005). Moreover, DIRAS3 directly binds CRAF probably
via its N-terminal extension and interferes with MEK-
ERK1/2 activation (Klingauf et al. 2013).

RASD signaling

RASD1 (also called AGS1 or DEXRAS) is a non-receptor
activator of G,; and G,,, proteins (Cismowski et al. 1999;
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Cismowski et al. 2000; Blumer and Lanier 2014). It
blocks receptor-mediated sensitization of AC1 in a GPy-
dependent manner (Nguyen and Watts 2005) and
inhibits PMA-induced activation stimulation of AC2 by
interfering with PKC3 autophosphorylation (Nguyen
and Watts 2006). RASD2 (also called RHES) binds to
PAP7 in a PKA-dependent manner and activates DMT1
and iron uptake in the striatum (Choi et al. 2013).

Dysfunctions and diseases

As RAS family proteins essentially control a wide variety
of cellular processes, it is obvious that any dysregulation
or dysfunction of the respective signaling pathways
results in the development of human diseases, includ-
ing developmental, hematological, neurocognitive and
neurodegenerative disorders, metabolic and cardiovas-
cular diseases, and cancer.

Somatic mutations, frequently identified for example
in KRAS4B, HRAS, NRAS, and RIT1 (COSMIC), contribute
to robust gain-of-function (GoF) effects and to various
types of cancers as well as leukemia and lymphoma
tumors (The Cancer Genome Atlas Research Network
2014; Simanshu et al. 2017). Such oncogenes are consti-
tutive active and thus, strongly contribute to neoplastic
signal transduction (Hobbs et al. 2016). Similarly, GoF
mutations of genes frequently related to BRAF and PI3K,
cause constitutive activation of the MAPK and PDKI1-
AKT/PKB pathways (Santarpia et al. 2012; Mandal et al.
2016). In contrast, loss-of-function (LoF) mutations of
tumor-suppressive DIRAS genes is associated with pro-
gression of various cancers, including esophageal, ovar-
ian, breast, and colon cancers and particularly also
glioblastoma (Ligon et al. 1997; Ellis et al. 2002; Reif
et al. 2011; Zhu et al. 2013; Zheng et al. 2017). A pro-
posed mechanism for the tumor suppressive functions
of DIRAS1 is sequestration of SmgGDS from activation
of KRAS4B, RAP1A, and RHOA (Bergom et al. 2016).
Negative regulation of ERK and p38 by DIRAS1 appears
to induce apoptosis and inhibit invasion and metastasis
(Zhu et al. 2013). DIRAS3 downregulation may underlay
transcriptional mechanisms, involving E2F1 and E2F4,
and also loss of DIRAS3 mRNA binding proteins
(Guénard and Durocher 2010). LoF somatic mutations in
the NF1 gene, encoding a RASGAP protein, result in dys-
regulation of the RAS/MAPK pathway and thus, cause
neurofibromatosis, a multisystem disorder, and tumor
predisposition syndrome (Philpott et al. 2017; Postema
et al. 2018). Somatic NF1 mutations are associated with
the development of sporadic tumors in children (Brems
et al. 2009; Ratner and Miller 2015; Varan et al. 2016;
Philpott et al. 2017).

Mild GoF effects by germline mutations of KRAS4B,
HRAS1/2, NRAS, RIT1, and RRAS1/3 genes (NSEuroNet
database) cause a class of developmental syndromes.
These phenotypically overlapping genetic disorders
collectively known as RASopathies are mainly caused
by dysregulation of the RAS-MAPK pathway.
RASopathies include Noonan syndrome (genes encod-
ing KRAS4B, NRAS, RRAS1/3, RIT1, SOS1, SOS2,
RASGAP1M, BRAF, CRAF), cardio-facio-cutaneous syn-
drome (KRAS4B, BRAF, ERK1/2), Costello syndrome
(HRAS1, HRAS2), neurofibromatosis type 1 (neurofibro-
min), Legius syndrome (SPRED1), Noonan syndrome
with multiple lentigines (BRAF, CRAF), and capillary
malformation/arteriovenous malformation syndrome
(p120RASGAP) (Rauen 2013; Flex et al. 2014; Korf et al.
2015; Lissewski et al. 2015; Aoki et al. 2016; Tidyman
and Rauen 2016; Cao et al. 2017; Higgins et al. 2017;
Pantaleoni et al. 2017; Simanshu et al. 2017; Ueda
et al. 2017). RASopathies have pleiomorphic features,
including in part facial anomalies, cognitive impair-
ment, and congenital heart defects (Gelb et al. 2015;
Lissewski et al. 2015; Aoki et al. 2016; Cave et al. 2016;
Mainberger et al. 2016; Simanshu et al. 2017).
Inactivating germline mutations in NF1 gene are asso-
ciated with impaired activation of the RAS pathways
and increase risk of neoplasms (Alkindy et al. 2012;
Ratner and Miller 2015).

RAS proteins are also involved in neuropsychiatric
and neurodegenerative disorders, e.g. RIT2 in schizo-
phrenia and autism (Glessner et al. 2010; Navaroli et al.
2011; Liu et al. 2016), RIT2 and DIRAS1 in Parkinson’s
disease (Latourelle et al. 2012; Pankratz et al. 2012; Nalls
et al. 2014), RASD2 and RRAST in Huntington’s disease
(Miller et al. 2012; Ray et al. 2014; Vahatupa et al. 2016).
Alterations in the expressional control of DIRAS2 also
contribute to the ADHD phenotype of the attention
deficit-hyperactivity  disorder (Reif et al. 20171;
Grunewald et al. 2016). RASD1 plays a role in synchro-
nizing circadian rhythms, as its deletion impairs circa-
dian entrainment to light cycles and alters phase shifts
to light (Cheng et al. 2004). The molecular nature of
these (dys)functions are not well understood. However,
several biochemical studies have provided valuable
molecular insights into the roles of RAS protein in these
disorders. The RASD2 activity as a SUMO-E3 ligase
(Subramaniam et al. 2010) on the polyglutamine-
expanded mutant huntingtin protein leading to aug-
mented neurotoxicity and likely to Huntington’s disease
(Harrison 2012; Thapliyal et al. 2014). S-nitrosylation and
activation of RASD1 by NMDA-nNOS pathway induces
physiological iron uptake through interaction with PAP7
and activation of DMT1, and may be critical for NMDA
neurotoxicity (Cheah et al. 2006; Chen et al. 2013; Choi
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et al. 2013). The role of RIT2 in neuropsychiatric disor-
ders may be based on its role in the internalization and
downregulation of biogenic amine transporters, which
are discussed to be central to autism (Navaroli et al.
2011).

Conclusions and perspectives

More than 30 years intensive research and tens of thou-
sands of published studies have provided valuable
insights into biology, biochemistry, and biophysics of
the RAS family proteins. We have gained deep know-
ledge about their membrane trafficking, structure-
function relationship, mechanisms of GDP/GTP
binding, and accelerated nucleotide exchange by
GEFs, intrinsic and GAP-stimulated GTP hydrolysis,
interaction with effectors, and activation of diverse
signaling pathways. However, these studies have their
eligible confinement: Cell-free investigations have
been predominantly carried out in the absence of
lipid membrane using defined domains rather than
full-length proteins, and cell-based studies have been
mostly performed using heterologous expression of
tagged genes and their variants in a methodologically
congenial cell lines. As the omics era is coming to an
end and the research becomes decelerated, many
new movements are emerged, especially due to the
accessibility of new technologies. Several novel mech-
anisms have been uncovered that have extended our
understanding the role of protein-protein/protein—
lipid interactions, and various types of post-transla-
tional modifications in the modulation of the RAS
protein activity. Another issue is the activation mech-
anism of regulators and effectors. Notably, identifica-
tion of additional components of the RAS interaction
networks is a critical step towards understanding
both the relationship between the RAS proteins and
the selective activation of respective effectors, and
the molecular signatures required for spatiotemporal
integration and activation of the GEFs and GAPs.
Identification and functional reconstitution of specific
interaction networks by using appropriate liposomes
and full-length regulators and effector proteins may
eventually provide fundamental insights into the func-
tional characterization of multiprotein complexes of
RAS and the complete identification of regulatory
mechanisms. In this context, an interesting issue,
which is increasingly appreciated, is a RAS-membrane
interaction that appears to generate RAS isoform spe-
cificity with respect to regulator and effector interac-
tions. This is likely achieved by scaffold proteins
which may modulate isoform specificity at specific
site of the cell. Hence, elucidation of the RAS signal
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transduction requires not only RAS-effector interac-
tions but also additional structures and interplay of
multiprotein complexes. Keeping this in mind, accu-
mulating evidence support a role for cell type-
dependent RAS paralog functions that should prompt
future efforts to examine the respective pathways in
a more context-specific manner. Such efforts could
lead to the identification of disease-specific thera-
peutic opportunities.
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Molecular mechanisms underlying hypertrophic cardiomyopathy
caused by RAF1 missense mutation in Noonan patient

Patient-derived cardiac myocytes (carried RAF152"") recapitulated the
HCM phenotype with increased RAS-MAPK signaling pathway

Pluripotency
transcription
factors

= mm
-

) /\ >

(5 P
CATADAPDNFAT
Cardiac Growth P>
Hypertrophic
.

response genes
-

e~
- Human

 iPS cells

— =8 -

Hypertrophic -
cardiomyocyte

'_5 Molecular mechanisms

Normal

Differeﬂtlahon I, cardiomyocyte ©

Status:

In preparation

Impact Factor:

Own Proportion
to this work:

20%

iPSC culture (wt and RAF1 mutant), Differentiation to cardiomyocytes,
Flow cytometry for pluripotency and cardiac markers, Cell cycle analysis,
Beating rates, Figure preparation, Writing the manuscript




Chapter 1V: Molecular mechanisms underlying hypertrophic ... 64

Molecular mechanisms underlying hypertrophic cardiomyopathy caused by RAF1
missense mutation in Noonan patient

Saeideh Nakhaei-Rad'*, Julia Dahlmann®*, Marcel Bucholzer!, Fereshteh Haghighi!, Andrea
Borchardt®, Annette Vera Kronenbitter?, Anne Schiinzer®, Jiirgen Scheller!, Roland.Piekorz!, Andreas
Reichert’, Martina Kriiger®, Joachim Schmitt!, Andreas Hahn’, Martin Zenker®, George Kensah?@,
Mohammad R. Ahmadian'@

nstitute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Duesseldorf,
Germany.

Klinik fiir Thorax-, Herz- und GeféBchirurgie, Géttingen, Germany.

3Institute of Biochemistry and Molecular Biology I, Medical Faculty of the Heinrich Heine University, Duesseldorf,
Germany.

“Institute of Pharmacology and Clinical Pharmacology, Duesseldorf University Hospital, Duesseldorf, Germany.

3 Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany

“Institute of Cardiovascular Physiology, Duesseldorf, Germany.

"Department of Child Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany

8Institute of Human Genetics, Otto von Guericke-University, Magdeburg, Germany.

#These authors share first authorship on this work.

@Correspondence should be addressed to: Prof. Mohammad Reza Ahmadian, Institut fiir Biochemie und Molekularbiologie
II, Medizinische Fakultit der Heinrich-Heine-Universitit, Universitdtstr. 1, Gebdude 22.06, 40255 Diisseldorf, Germany,
reza.ahmadian@uni-duesseldorf.de; Dr. George Kensah, Klinik fiir Thorax-, Herz- und GefaBchirurgie, Goéttingen,
Germany, george.kensah@med.uni-goettingen.de.

Background

Hypertrophic cardiomyopathy (HCM) was reported as the first familial cardiomyopathy, is
manifested as increase in left ventricular wall thickness and is the most common cause of sudden
death in young people. HCM usually results from mutations in genes encodings structural
components of sarcomere and signaling function. Dysregulation of sarcomeric proteins and signaling
upregulate the fetal gene program, change the calcium transient rate, force generation and energy
consumption. Altogether, these result in the increasement of cardiomyocytes size, fibrosis and
pathological HCM.

The germline mutations of RAS-MAPK signaling components result in a set of developmental
disorders collectively called RASopathies, which are characterized by craniofacial dysmorphology,
delayed growth, neurocognitive impairment, cardiac abnormalities and an increased cancer risk. A
number of cardiac defects are listed in RASopathy with various prevalence in different disorders.
Among them, the mild to-severe HCM is the main complication in patient affected by RASopathy.

More than 30 years, RAS and its signaling components are studies as oncogenes. HCM is
diagnosed in 80 % of LEOPARD individuals (PTPN11 and RAF1 mutations), 65% of Castello
syndrome (HRAS mutation), 40% in Cardio-Facio-Cataneous syndrome (BRAF mutation) and 20%
in Noonan Syndrome (NS) (RAFI>PTPN11>RIT1 mutations). Although, in general the frequency
of HCM in NS syndrome is low (20%), notably, more than 90% of NS with RAF1 point mutation are
associated with pathological HCM. RAF kinases, ARAF, BRAF and CRAF, share three conserved
regions CR1-3. CR1 contains RAS binding domain (61-192aa) and CR2 (251-266) provides a
regulatory phosphorylation site that acts as a docking site for 14-3-3 binding. Kinase domain are
clustered in CR3 (333-625). Razzaque and Pandit reported, 80% NS individuals with S257L mutation
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in the CR2 exhibit the severe HCM with disorganized muscle bundles. However, the molecular
mechanism of HCM, induced by RAF15%°"" is not fully understood. To investigate the mechanism
underlying the RAF1 induced HCM, we need the human disease model of cardiomyocytes which
endogenously express RAF15%7L,

Material and methods
Generation and cultivation of human iPSCs

Dermal fibroblasts were obtained with the institutional ethics approval and under informed
consent of the parents from a female who was diagnosed with rapidly progressive HCM and a S257L-
mutation in exon 7 of RAF1. Human foreskin fibroblasts were purchased from ATCC and served as
healthy controls. Fibroblasts were cultured in DMEM high glucose supplemented with 10% fetal calf
serum, 1% non-essential amino acids, and 2 mM L-glutamine (all Thermo Scientific). Human iPSCs
were generated using a cocktail of non-integrating episomal reprogramming vectors obtained from
Addgene (pCE-hSK #41814, pCE-hOct3/4 #41813, pCE-hUL #41855, pCE-mp53DD #41856,
pCXB-EBNAI #41857) as previously published. In brief, 1x10° human fibroblasts were mixed with
1 pg of each plasmid in a total amount of 100 puL resuspension buffer R (Thermo Scientific). After
electroporation using the Neon Transfection system (Thermo Scientific) with two 20 ms pulses of
1650 V, fibroblasts were plated in fibroblast medium onto a Geltrex matrix coated 6-well culture
dish. After 24 h, medium was exchanged and cells were maintained further on in DMEM/F12 +
GlutaMAX supplemented with 1% N2 supplement, 2% B27 supplement, 1% non-essential amino
acids and 100 ng/mL bFGF. After 3-4 weeks, emerging iPSC colonies were manually dissected under
microscopic control and plated individually on mitotically inactivated (gamma-irradiation at 30 Gy)
murine embryonic fibroblast feeder layers (iMEFs). Established human iPSCs were then cultivated
as colonies on iMEFs in iPSC-medium (DMEM/F12 + GlutaMAX supplemented with 20% (v/v)
knockout serum replacement, 0.1 mM 2-mercaptoethanol (Sigma), 1% (v/v) non-essential amino acid
stock and 25 ng/ml FGF-2 (Peprotech) or as feeder-free monolayers in Geltrex coated cell culture
flasks in iMEF conditioned iPSC-medium incl. 100 ng/mL FGF-2 (CM+/100) and passaged every 3-
4 days.

Reverse transcriptase polymerase chain reaction

Cells were disrupted by TRIzol™ reagent (Ambion, Life Technologies, Germany) and total
RNA was extracted via RNeasy plus kit (Qiagen, Germany) according to the manufacturer’s protocol.
Possible genomic DNA contaminations were removed using the DNA-free™ DNA Removal Kit
(Ambion, Life Technologies, Germany). DNase-treated RNA was transcribed into complementary
DNA (cDNA) using the ImProm-II™ reverse transcription system (Promega, Germany). Quantitative
real-time reverse transcriptase polymerase chain reaction (QPCR) was performed using TagMan
probes or SYBR Green reagent (Life Technologies, Germany. The 244 method was employed for
estimating the relative mRNA expression levels and 22 for mRNA levels. Among 6 different HKG
that we tested HPRT1 showed the minimal variation among different cell lines and therefore, was

used for normalization.

Flow cytometry
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For flow cytometric analysis, to prepare the single-cell suspensions of hiPSC-CBs, they were
washed with phosphate buffer saline and incubated with Versene (EDTA-Solution, Gibco
#15040066) for 10 min in Eppi-Thermomixer at 37°C. Continuously, TrypLE (10x) was added and
incubate for additional 10 min at 37°C and 1200 rpm until the cell aggregates have disappeared. Cells
were fixed in 4% paraformaldehyde (PFA; Merck) for 10 min on ice and permeabilized with 90%
ice-cold methanol for 20 min followed by a blocking step with 1.5% BSA and 2.5% goat or donkey
serum diluted in PBS for 1 h at 4°C. Cells were stained with primary antibodies included OCT3/4
(1:1000; Santa crus, # sc-5279), cardiac troponin t (1:200, Invitrogen, # MAS5-12960) and Myosin
light chain 2 V (1:100, Synaptic Systems, # 310111) overnight at 4°C. Secondary antibodies (Alexa
Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 488-conjugated donkey anti-rabbit IgQG)
were from Life Technologies and used at a dilution of 1:2000 for one hour at room temperature.
Samples were collected with FACScanto (BD PharMingen) and analyzed with FlowJo Software
(Treestar, Ashland, OR).

Immunoblotting

To extract the total protein, hiPSC-CBs were washed with phosphate buffer saline and lysis
buffer (50 mM Tris-HCI pH 7.5, 100 mM NaCl, 2 mM MgC12, 1% TritonX 100, 10% glycerol, 20
mM beta-glycerolphosphate, 1 mM Ortho-Na3VO4, EDTA-free protease inhibitor (Roche,
Germany)) and to disturb the cell aggregate the sonicator with 70% power were used Sonicate for 40
second and they kept in rotor in 4°C for 30 min. Protein concentrations were determined with
Bradford assay (Bio-Rad). Equal amounts of cell lysates (10-50 ug), were subjected to Sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Following electrophoresis, the
proteins were transferred to a nitrocellulose membrane by electroblotting and probed with primary
antibodies overnight at 4°C. All antibodies from Santa Cruz were diluted 1:200 in 5% non-fat milk
(Merck, Germany)/TBST (Tris-buffered saline, 0.05% Tween 20), remaining antibodies were diluted
1:1000. The following antibodies were applied for immunoblotting: mouse y-tubulin (WB:1:2000,
Sigma-Aldrich, # T5326),rabbit phospho-MEK1/2 (WB:1:1000, S217/S221, # 9154), rabbit
phospho-ERK1/2 (WB:1:1000, T202/T204, # 9106), rabbit phospho-Akt (S473, WB:1:1000# 4060
and T308, #2965), phospho-YAP (WB 1:1000; Ser 127; Cell Signaling, #4911), YAP (WB 1:1000;
Cell Signaling, # 4912), INK (WB 1:1000; Cell Signaling, # 9252), phospho-JNK (WB 1:1000; Thr
183/Tyr185; Cell Signaling, # 9251), S6K (WB 1:1000; Cell Signaling, # 2708), phospho-S6K (WB
1:1000; Thr389; Cell Signaling, # 9205), phospho-p38 (WB 1:1000; Thr180/Tyr182; Cell Signaling,
#9211) and p38 (WB 1:1000; Cell Signaling, # 8690), OCT3/4 (WB: 1:1000; Santa crus, #sc-5279),
alpha-actinin (WB 1:1000, Sigma, # A7811), cardiac troponin t (WB:1000, Invitrogen, #MAS-
12960), Myosin light chain 2 V (Synaptic Systems, # 310111), ATP2A2/SERCA2 (WB 1:1000; Cell
Signaling, # 4388), RAF1 (WB 1:1000; abcam, #AB181115), phospho-RAF1 (WB 1:1000; S259,
abcam, #ab173539). Membranes were stained with horse radish peroxidase (HRP)-conjugated
secondary antibodies (1:5000 dilution). Signals were visualized using ECL (enhanced
chemiluminescence) reagent (GE Healthcare).

Immunocytochemistry

Immunostaining was performed as described previously (Nakhaei-Rad et al., 2015). Briefly,
cells were washed twice with ice-cold PBS containing magnesium/calcium and fixed with 4%
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Formaldehyde (Merck) for 20 min at room temperature. To permeabilize cell membranes, cells were
incubated in 0.25% Triton X-100/PBS for 5 min. Blocking was done with 3% bovine serum albumin
(BSA, Merck) and 2% goat serum diluted in PBS containing 0.25% Triton X-100 for 1 h at room
temperature. Incubation with primary antibodies was performed overnight. Cells were washed 3-
times for 10 min with PBS and incubated with secondary antibodies 2 h at room temperature. Slides
were washed 3-times and the ProLong® Gold antifade mountant (4',6-diamidino-2-phenylindole)
(Life Technologies) was applied to mount the coverslips. Primary antibodies included OCT3/4
(1:1000; Santa crus, #sc-5279), TRA-1-60 (1:100, abcam), SSEA4 (1:70, Hybridoma Bank), alpha-
actinin (1:200, Sigma, # A7811), cardiac troponin t (1:200, Invitrogen, #MA5-12960), RAF1 (1:250;
abcam, #AB181115). Secondary antibodies included Alexa488-conjugated goat anti-rabbit IgG
(Invitrogen, #A11034), Alexa546-conjugated goat anti-mouse IgG (Invitrogen, #A11003),
Alexa633-conjugated goat anti-rabbit IgG (#A4671), and Alexa488-conjugated goat anti-mouse IgG
(Invitrogen, #A11029) (all from Life Technologies). Confocal images were obtained using a LSM
510-Meta microscope (Zeiss, Jena, Germany).

Transmission electron microscopy (TEM)

Small biopsies were fixed with 6% glutaraldehyde/0.4 M phosphate buffered saline (PBS) and
were processed with a Leica EM TP tissue processor with 1%-osmium-tetroxide and embedded in
resin. For electron microscopy, ultrathin sections were contrasted with 3% lead citrate trihydrate with
a Leica EM AC20 (Ultrastain kit IT) and were examined using a Zeiss EM 109 transmission electron
microscope equipped with a Slowscan-2K-CCD-digital camera (2K-wide-angle Sharp:eye).

Results

RAF155 causes left ventricular hypertrophy, fetal arrhythmia and perivascular fibrosis

The meanwhile 18-year old female patient is the sixth of six children of healthy, unrelated
parents. Pregnancy was complicated by polyhydramnion and fetal arrhythmias (Figs. 1A and 1B).
The patient was born at 36-weeks gestation by caesarean section without complications. Medial
epicanthus, low-set ears, deep hair line, right sided ptosis, and lateralized mamillas were noticed at
birth. Immediately after birth, the ECG revealed chaotic atrial arrhythmia and ventricular
arrhythmias, necessitating treatment with atenolol, while the echocardiogram displayed a
biventricular hypertrophic cardiomyopathy (HCM) (Figs. 1C and D). Septal hypertrophy inclined
within the next years and resulted in obstruction of the left ventricular outflow tract. A cardiac
catheter examination at age 5 1/2 years demonstrated a left-ventricular intracavitary pressure
gradient of 70 mmHg, prompting transaortic septal myectomy. Since then, HCM is non-progressive,
not limiting daily-life activities. At the age of 8§ years, she suffered one afebrile seizure. At this time,
a short stature (height 114 cm, 3 cm < third percentile) was noticed. Neither lentigines nor other
cutaneous symptoms were visible. Now, Noonan syndrome was suspected because of her peculiar
face (Fig. 1A) in conjunction with short stature and HCM. At last follow-up, at the age of 16 years
and a height of 146 cm (5 cm < third percentile), her cardiac status was stable. She is still on beta-
blocker, although Holter ECGs at age 15 and 16 years displayed nor arrhythmias. Cardiac MRI at
this age disclosed a mild to moderate hypertrophy of the left ventricle with a septal wall thickness
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during diastole of 15 mm and left-ventricular posterior wall thickness of 14 mm, being above the
normal range in adults (Fig. 1D).

Compared to a healthy individual, histological analysis of a left ventricular endomyocardial
biopsy performed at age 5 2 years showed a cardiomyopathy with increased nuclear diameter and
myofibrillar disarray in H&E and Desmin stained sections (Figs. 1 F/F* and G/G"). Fibrosis was
pronounced perivascular (Masson Trichrome, MT) (Fig. 1 H/H") and the endothelial cell layer of
the myocardial vessels was enlarged demonstrated by immunohistochemistry against smooth
muscle actin (SMA) (Fig. 1 I/T).

Reprogramming of the somatic cells towards hiPSCs

To investigate the mechanism of HCM, we need the source of pluripotent and proliferative
cells to produce large amount of the cells and later differentiate them to human cardiomyocytes.
Fibroblasts were obtained from dermal biopsies of NS patients heterozygotes for RAF1S257L (Fig.
2A). The reprogramming of fibroblast to hiPSC was performed with cocktail of non-integrating
episomal vectors harboring the transcription factors of OC73/4, SOX2, L-MYC, TRP53 and EBNA-
1 as previously published. The hiPSC-RAF1 colonies stained positive for pluripotent markers of
Alkaline phosphatase, OCT4, SOX2, NANOG, TRA1-60 and SSEA4. Differentiation assay
confirmed that they were able to differentiate to all three germ layer, ectoderm, mesoderm and
endoderm (Fig. 2).
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Figure 1. Clinical manifestation of NS with RAF1 ¢.770C>T mutation.

A) A girl with clinical diagnosis of Noonan syndrome was recognized with right-sided ptosis, down-
slanted angles of the mouth, and lateralized mamillas. B) Schematic family pedigree of Noonan
patient. C) ECG displaying chaotic supraventricular arrhythmia. 2-Channel Holter monitoring
demonstrating a ventricular arrhythmia (triplet). D) Representative cardiac MRI in longitudinal axis
during diastole (left) and systole (right) at age 16 years depicting moderate cardiac hypertrophy. F-I)
Microscopy analysis of cardiac tissue (CT). F/F') HE staining shows moderate variation of
cardiomyocyte size and nuclei. G/G’) Desmin represent the microfilament disarray. H/H") Masson
trichrome staining (I/I') shows perivascular fibrosis, smooth muscle actin staining (SMA)
demonstrates endothelial thickening.



Chapter IV: Molecular mechanisms underlying hypertrophic ... 70

A
\
[
I
Tra-1-60
96,6

}q M Nanog M Nestn 257 B-MHC B FoxA2

c i) e

5 10 : [ Octd & AFP

250U sox ;

¢ 0.5

55

8504 W

23203

2=02

T 04

0.0 g — o

RAF1 RAF1 RAF1 RAF1 RAF1  RAF1 RAF1  RAF1
iPSC EB d24 iPSC EB d24 iPSC EB d24 iPSC EB d24

Figure 2. Characterization of RAF1S257L-iPSCs.

Human RAF1-iPSCs reveal a normal karyotype, express pluripotency markers and differentiate into
ectodermal, endodermal and mesodermal derivatives in vitro. A) RAF-1 Patient derived from dermal
fibroblasts. B) Typical RAF1-iPSC colony on mitotically inactivated murine feeder cells. C) Colonies
stain positive for alkaline phosphatase activity. D) In passage 8 after reprogramming, iPSCs show a
normal diploid karyotype. E) Sanger sequencing confirmed the heterozygous RAF1 S257L mutation
in iPSCs (asterisk). F) Expression of pluripotency markers Oct4, SSEA4 and Tra-1-60 by
immunofluorescence staining and flow cytometry. Gray histograms represent isotype controls. G)
Trilineage differentiation of patient iPSCs. Expression of endodermal (TUBB3), mesodermal
(Nkx2.5 and sarcomeric alpha actinin) and endodermal (Sox17) markers was detected. F) Relative
gene expression of pluripotency (Nanog, Oct4, Sox2) and differentiation markers (Nestin, TUBB3,
beta myosin heavy chain, Nkx2.5, FoxA2, alpha fetoprotein) of differentiated embryoid bodies on
day 24 of differentiation relative to undifferentiated iPSCs normalized by beta actin expression. Bar
graphs represent mean of three independent samples +/- SEM. *P < 0.05, **P < 0.01, ***P <(.001,
**%%P < (0.0001, unpaired t test. Scale bars: A, F, G: 100 pm, B, C: 1000 pm.
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Physical and functional protein and RNA interaction networks of FMRP suggest its participation in
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Abstract

The fragile X mental retardation protein (FMRP)
plays a critical role in RNA binding, mRNA
transport, and mRNA translation in neuronal and
nonneuronal tissues. However, the underlying
molecular mechanisms, including the cellular
FMRP protein networks, remain elusive. Here, we
employed affinity pull-down and quantitative LC-
MS/MS analyses with FMRP and identified known
and novel candidate FMRP-binding proteins and
protein complexes. FMRP interacted with 180
proteins, 28 of which interacted with the N-
terminus of FMRP. Interaction with the C-terminus
of FMRP was observed for 104 proteins, and 48
proteins interacted with both termini. This FMRP
interactome comprised known FMRP-binding
proteins, including the ribosomal proteins FXR1,
NUFIP2, and Caprin-1, and numerous novel
FMRP candidate interacting proteins that localize
to different subcellular compartments, including
CARF, LARPI1, LEO1, NOG2, G3BP1, NONO,
NPM1, SKIP, SNDI1, SQSTM1, and TRIM28. Our
data considerably expand the protein and RNA
interaction networks of FMRP and thereby suggest
that, in addition to its known functions, FMRP
participates in transcription, RNA metabolism,
ribonucleoprotein granule formation, translation,
DNA damage response, chromatin dynamics, cell
cycle regulation, ribosome biogenesis, miRNA
biogenesis, and mitochondrial organization. Thus,
it is appropriate to appreciate and analyze the
common roles of FMRP and novel candidate
interacting proteins throughout the body, beyond
the CNS.

Key words: FMRP, fragile X mental retardation
protein, protein interaction network, RNA
binding, signal transduction, ribosomes, gene
ontology

Introduction

Genetic deficiency of the fragile X mental
retardation protein (FMRP; also known as
FRAXA, MGC87458, POF, and POF1) results in
the most common inherited form of intellectual
disability, fragile X syndrome (FXS; also known
as Escalante's syndrome or Martin—Bell syndrome)
!, FMRP is a well-studied RNA-binding protein
(RBP) that regulates local translation ** and is
involved in the control of calcium channels ?, actin
cytoskeletal dynamics '*'2, chromatin dynamics ",
DNA damage response (DDR) '* ', and replication
stress response °. These cellular functions presume
physical properties for FMRP, which are required
for both the recognition and localization of
messenger RNA (mRNA) targets and direct

association with a multitude of proteins and protein
complexes '® 7. In view of so many different,
seemingly fundamental functions, it is appropriate
to appreciate common roles of FMRP throughout
the body, beyond the brain and spinal cord.
Despite its ubiquitous expression, the function and
expression of FMRP remain understudied in
nonneuronal tissues. FMRP plays critical roles in
germline development during oogenesis '8,
spermatogenesis ¥, regulating heart rate during
development %, endothelial cell proliferation and
angiogenesis 2!, stem cell maintenance and
differentiation %, and tumor progression. FMRP
controls downregulation of E-cadherin and
upregulation of vimentin and is involved in
different stages of aggressive breast cancer
including the invasion of cancer cells into blood
vessels and the spread of these cancer cells to other
tissues >*. FMRP is involved in relevant processes
of melanoma progression. The reduction
of FMRP in metastatic melanoma cell lines
impinges on cell migration, invasion, and adhesion
24 Enhanced FMRP expression in astrocytoma has
been proposed to promote proliferation through the
activation of MEK/ERK signaling .

The most prominent and studied function of FMRP
is involved in translational regulation. The
mechanisms of translational regulation by FMRP
are not entirely clear, although mounting evidence
suggests that FMRP suppresses the translation of its
target mRNAs via association with either stalled
nontranslating polyribosomes or microRNA
(miRNAs) %, This can lead to the formation of
cytoplasmic ribonucleoprotein (RNP) granules,
which control the expression, repression, or decay
of specific mRNAs *. There are two types of
cytoplasmic RNA granules, eukaryotic RNA
processing bodies (P-bodies) and stress granules
(SGs), that transport, store or degrade mRNAs,
thereby indirectly regulating protein synthesis
3033 There is increasing evidence suggesting
that such RNP granules are associated with
several age-related neurodegenerative diseases
34

FMRP consists of an N-terminal domain
comprising two tudor (Tud) domains and one K
homology 0 (KHO) domain, a central region
comprising two KH1 and KH2 domains, and a C-
terminal domain comprising a phosphorylation site
% and an arginine-glycine-glycine (RGG) region *,
FMRP displays a nuclear localization signal (NLS),
a nuclear export signal (NES) and two nucleolar
localization signals (NoLSs) 3™, consequently
localizing FMRP to different subcellular
compartments in the cytosol and nucleus 7.
Nuclear FMRP has been suggested to regulate the
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DDR and genomic stability as a chromatin-binding
protein '*. However, the interaction networks
modulating these functions of FMRP remain
unclear.

Taken together, we hypothesize that FMRP is
involved in numerous cellular functions in various
subcellular compartments. Therefore, in this study,
we addressed novel FMRP-interacting proteins
using a proteomic approach and described known
and numerous novel and potential FMRP
interactors and networks that are involved in
diverse subcellular processes, both in neuronal and
nonneuronal cells.

Experimental section

Constructs and Proteins

Amino-terminal (N-term; aa 1-218), central (aa
212-425) and carboxy-terminal (C-term; aa 444-
632) fragments of human FMRP were amplified by
standard PCR and cloned into pGEX-4T1-Ntev.
Escherichia coli BL21 Rosetta was transformed
with the respecive FMRP plasmids. The
expression and purification of the proteins was
performed as previously described *"*2, pFLAG-
CMV2 was used for G3BP1 constructs comprising
full-length (FL), M1 (1-138), M2 (139-466), M3
(222-466) and M4 (338-466), as reported
previously .

Antibodies and other reagents

The antibodies used in this study were as follows:
anti-FMRP (ab17722) and anti-nucleophosmin
(ab10530) (purchased from Abcam); anti-PKR
(Sc-6282), anti-FMRP (F6072), and anti-G3BP
(611126) (purchased from BD Transduction); and
anti-y-tubulin (T5326) (purchased from Sigma-
Aldrich). The anti-GST antibody was made in our
lab. 4',6-Diamidino-2-phenylindole (DAPI)
was purchased from Life Technologies, and
sodium arsenite was purchased from Merck. Anti-
FLAG (F3165) antibody and secondary antibodies
(IgG) Alexa Fluor 488 and 564 were obtained from
Molecular Probes (Oregon, USA). RNase
treatment was performed using RNase A (Qiagen,
Hilden, Germany) as described previously 7.

Cell culture

HEK?293 (human embryonic kidney cells), HDF
(human dermal fibroblasts), and cancer cell
lines such as HepG2, HeLa, PANCI and MCF7
were cultured in DMEM (ThermoFisher,
11965092), whereas NT2, BPHI, and SW480
cells were cultured in RPMI (ThermoFisher,
11875093); all media were supplemented with
10% FBS (ThermoFisher, 10270-106). Human
iPSCs were cultured as previously described **;

briefly, cells were cultured in irradiated mouse
embryonic fibroblast (iMEF) conditioned
medium supplemented with 100 ng/ml bFGF
(Peprotech, 100-18B). HUVECs were cultured
in  Endothelial Cell Growth Medium
(PromoCell) containing 100 U/ml penicillin and
streptomycin (Genaxxon Bioscience,
M3140.0100).

Immunofluorescence microscopy

Confocal imaging of Hel a cells was performed as
described previously . Images were obtained as
single optical slides using an LSMS510-Meta
confocal microscope equipped with a 40x/1.3
immersion objective and excitation wavelengths of
364 nm, 488 nm, and 546 nm. Superresolution
structured illumination microscopy (SR-SIM) was
performed as described recently * using the
ELYRA microscope (ZEISS, Jena, Germany) with
an alpha Plan-Fluor 100x/1.45 M27 oil-immersion
objective and immersion oil type S518F/30°C
(ZEISS, Jena, Germany). Images were acquired
using ZEN 2.0 software (ZEISS, Oberkochen,
Germany).

Transfection and pull-down assay

GST pull-down experiments were conducted as
described previously . GST-FMRPY“™ GST-
FMRP“=™, and GST as a negative control were
immobilized on GSH agarose beads, subsequently
mixed with HeL a total cell lysate and incubated for
1 h at 4°C to pull-down associating proteins and
protein complexes. The beads from three
independent experiments were washed four times,
boiled in 1x SDS loading buffer for 5 min and
separated on 10% tricine sodium dodecyl sulfate
(SDS) polyacrylamide gels. Lanes of Coomassie
Brilliant Blue (CBB)-stained SDS gels were cut in
different sections, excluding the bands related to
GST-FMRPY¥em GST-FMRP™™ and the GST
control. Gel sections were subjected to mass
spectrometry. The pull-down of flagtagged
G3BP1 protein fragments that were overexpressed
in HeLa cells was performed using purified GST-
FMRPY“™ and visualized by immunoblotting
using anti-Flag and anti-GST antibodies. HeLa
cells were transfected wusing TurboFect
Transfection Reagent (Thermo Scientific) as
previously described .

Immunoprecipitation

For coimmunoprecipitation, Hela cells were
lysed in immunoprecipitation buffer (20 mM
Tris-HCI pH 7.4, 150 mM NaCl, 5 mM MgCls,
0.5% NP-40, 10 mM B-glycerophosphate, 0.5
mM Na:VOy4, 10% glycerol, and EDTA-free
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protease inhibitor). IP from total cell lysates was
carried out for 2 h at 4°C with an anti-FMRP
antibody (ab17722). The beads were washed 5
times with IP buffer lacking NP-40, and eluted
proteins were heated in SDS-Laemmli buffer at
95°C and analyzed by immunoblotting.

Immunoblotting

Cell lysates were prepared using lysis buffer [50
mM Tris-HCI pH 7.5, 100 mM NaCl, 2 mM
MgCl, 1% Igepal CA-630, 10% glycerol, 20
mM B-glycerophosphate, 1 mM Na;VOy,
EDTA-free protease inhibitor (Roche Applied
Science)], and protein concentrations were
measured by Bradford assay (Bio-Rad). Equal
amounts of total cell lysates (40 pg) were
loaded on  SDS-PAGE  gels.  After
electrophoresis, proteins were transferred to
nitrocellulose membranes and blocked for one
hour in 5% nonfat dry milk (Merck)/TBST
(Tris-buffered saline, 0.05% Tween 20).
Membranes were probed with primary
antibodies at 4°C overnight and later stained for
one hour at room temperature with both
horseradish ~ peroxidase (HRP)-conjugated
secondary antibodies (1:5.000 dilution) and
fluorescent secondary antibodies (1:10.000
dilution) (DAKO, Germany). Signals were
visualized using ECL (enhanced
chemiluminescence) reagent (GE Healthcare)
and the Odyssey Fc Imaging System (LI-COR
Biosciences).

Mass spectrometry and data analysis

GST controls as well as N-term and C-term
samples were cut into five and six gel pieces,
respectively, excluding only the area of the GST
fusion protein. Proteins in gel pieces were reduced
by 10 mM dithiothreitol and alkylated with 55 mM
iodoacetamide. Proteins were digested for 16 h at
37 °C with 0.1 pg trypsin (Serva, Heidelberg,
Germany) in 100 mM ammonium hydrogen
carbonate in water. Tryptic peptides were extracted
twice with 1:1 (v/v) solution of acetonitrile and
0.1% trifluoroacetic acid, and after acetonitrile
removal resuspended in 0.1% (v/v) trifluoroacetic
acid and subjected to a liquid chromatography
system (RSLC, Dionex/Thermo Scientific, Idstein,
Germany) equipped with an Acclaim PepMap 100
C18 column (75 pm inner diameter, 50 cm length,
2 mm particle size from Dionex/Thermo Scientific,
Idstein, Germany) coupled to an Orbitrap Elite
mass spectrometer (Thermo Scientific, Bremen,
Germany) essentially as described *°. For protein
and peptide identification and quantification, raw
files were further processed using the MaxQuant

software suite version 1.3.0.5 (Max Planck Institute
of Biochemistry, Planegg, Germany). Database
searches were carried out against the UniProt
database (release 06.2013) using standard
parameters.  Label-free  quantification  was
performed using the “match between runs” option
with a time window of 2 min. Peptides and proteins
were accepted at a false discovery rate of 1%, and
proteins with quantitative information available for
at least three analyzed samples were subjected to
subsequent  statistical analysis. Protein
quantification was performed using the SAM
algorithm “ implemented in Perseus version
1.2.74 (Max Planck Institute of Biochemistry,
Planegg, Germany) on log-transformed data (false
discovery rate threshold: 0.01). Missing values
were replaced by imputation (width: 0.3;
downshift: 1.8).

Gene Ontology analysis

Gene Ontology (GO) terms for the biological
processes, molecular functions, and cellular
locations of FMRP-interacting proteins,
including isoforms, paralogs or related proteins.,
were identified using the PANTHER database
48

Protein-protein interaction network

A protein-protein interaction network for
FMRP was generated with STRING 11 and
visualized with Cytoscape 3.7.1.%

Results

Ubiquitous expression of FMRP in human cells
In a previous study, we observed large amounts of
FMRP in different cell lines, i.e., COS7, HEK293,
HeLa, MDCKII, MEF, and NIH3T3 '. To
examine the existence of FMRP in various types of
nonneuronal human cells, we investigated primary
cells (stem and cancer stem cells) and different
types of cancerous cells. Figure 1A clearly depicts
that FMRP was expressed in many types of
nonneuronal cells, consistent with findings in
thrombocytes * and human embryonic stem cells
31, This suggests that FMRP likely represents a
protein with important and conserved functions
across human tissues.

Identification of novel FMRP-interacting
proteins

To identify proteins associated with different
regions of FMRP in a proteomic approach, we used
HeLa cells. This comprehensive study was based
on several factors such as reproducible culture
conditions, available subcellular fractionation and
subcellular localization data 7, possible roles of
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FMRP in cancer progression 2, and the fact that
FMRP, as a multifunctional protein, exists in many
types of nonneuronal cells (Fig. 1A). Thus, we
conducted affinity pull-down experiments using
total HeL.a cell lysates and purified GST fusion
protein fragments consisting of the N-terminal (N-
term; aa 1-218), central (aa 212-425), and C-
terminal (C-term; aa 444-632) domains of human
FMRP.

Since most FMRP protein-protein interactions
were exclusively achieved via the N- or C-termini
and rarely via the central RNA-binding fragments
255 we excluded the latter from further analysis.
Pull-down samples were separated on SDS gels,
which were cut in different fractions, excluding the
bands related to GST-FMRPY*™ GST-FMRP™
emand the GST control (Fig. 1C, red boxes). The
gel fractions were reduced, alkylated, and digested
with trypsin. The resulting peptide mixtures were
analyzed by mass spectrometry as described in the
Materials and Methods.

All proteins interacting with GST-FMRPN®=™
and/or GST-FMRP“™™ were detected and
individually validated with a high degree of
confidence based on the peptide sequences using
specific databases and programs as described in the
Materials and Methods. The criteria for considering
proteins as significant interactors of FMRP
included their presence in all three independent
pull-down experiments, their absence in the GST
pull-down controls, and P-values of < 0.05.

Collectively, we short-listed a set of 102 FMRP-
interacting proteins, 22 of which were associated
with FMRP™“™ 67 were associated with FMRP®
em and 13 were found to bind to both termini
(Tables 1-3). Table 4 summarizes 78 isoforms and
paralogs, including the array of ribosomal proteins
that were excluded from the major lists of binding
partners. In our proteomic approach, we found nine
previously reported FMRP interactors, ie.,
ATXN2L., Caprin-1, DDX5, FMRP, FXRP,
MOV 10, NUFIP2, PABPI1, and PARP] '&--565%,
Known FMRP-interacting partners, such as
nucleolin and CYFIP ", were excluded in this
study as they were also present in the GST pull-
down controls. Other FMRP-interacting
proteins, including EIF4E *°, AGO1 ® and p-
catenin ', were absent in our lists, which may
be based on expression levels in different cell
types and/or on experimental pull-down
conditions.

A group of 13 proteins were found to be associated
with both N-terminal and C-terminal fragments of

FMRP (Table 3). One obvious explanation is that
FMRP may interact with two proteins within the
same protein complex. In this case, components of
a protein complex that do not directly bind to
FMRP will be pulled down. For these candidates,
we calculated the values of the exponentially
modified protein abundance index (emPAI) 2 by
comparing the number of identified MS/MS
spectra from the same protein in each of the
multiple LC-MS/MS datasets. Therefore, the term
‘abundance’ was used to suggest one possible
interacting domain. Based on the label-free
quantification intensity value, we measured the
abundance of each candidate in the FMRP™<™ ynd
FMRP“=™ pull-down experiments (Fig. 1E). As
exemplified for Cléorfl66, CIQBP, and
PABP1, some FMRP-interacting proteins were
clearly more capable of interacting with one
FMRP terminus than the other, while other
interacting partners (e.g., Caprin-1 and
NUFIP2) were found at nearly the same protein
levels in both FMRPY<™ and FMRP“™ pull-
down experiments. In that case, the arrows were
used to mark slightly higher protein levels. This
differentiation method was prominent for some
proteins, e.g., the highly abundant protein G3BP1,
which was shown by immunoblotting analysis to
interact specifically and directly only with FMRP™
em (Fig. 1D). Another critical aspect is the
oligomerization properties of FMRP through its
N-terminus *°. In this scenario, GST-FMRPN-term
binds endogenous, oligomeric FMRP and, in
this way, proteins interacting with its C-
terminus.

Interestingly, the vast majority of interactions
involve the C-terminus of FMRP (Table 2) and not
its N-terminus, as we and others previously
proposed 7%, A striking characteristic of FMRP“
trm js the presence of unstructured regions,
including arginine-glycine-glycine-rich (RGG)
motifs, phosphorylation sites, a nuclear export
signal (NES), and two newly identified NoL.Ss '™
It has also been reported that many FMRP
binding proteins contain RGG motifs *, which may
interact not only with proteins but also with RNAs
6+% A large number of the identified FMRP
interaction partners were RNA-binding proteins,
processing and/or transporting proteins, including
components of the translation machinery, different
helicases and transcription factors (Tables 1-4;
highlighted in bold). Thus, we tested three different
FMRP-interacting proteins such as
nucleophosmin-1 (NPM1), protein kinase R
(PKR), and RAS GTPase activating protein SH3
domain-binding protein 1 (G3BP1) for their RNA-
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dependency on interacting with purified FMRP in
the presence and absence of RNase A. As shown in
Figure 1D, FMRP interacts with endogenous
FMRP and G3BP1 via its N-terminal region and
with NPM1 and PKR via its C-terminal region.
None of these interactors bind to the central
region of FMRP. RNase A treatment of the
lysates for 45 min at 4°C did not affect these
interactions. In contrast, G3BP1 binding to
FMRP™=™ appears to be facilitated.

The N-terminus of FMRP harbors different protein
binding characteristics due to various subdomains
(Fig. 1B). Two conserved Tudl/2 domains (also
called the N-terminal domain of FMRP 1 and 2 or
NDF1 and NDF2, respectively)'”>* are within the
“Royal Family” of proteins, which includes
Agenet, MBT, PWWP, and chromo domains ¥
FMRP and Tud1/2 have been shown to selectively
associate with trimethyl-lysine peptides derived
from histones H3K9 and H4K20 **% together with
chromatin '*. The N-terminus of FMRP has been
proposed to be a platform for multiple protein-
protein interactions 7. However, we detected only
a relatively small number of binding proteins for
FMRPY™ compared to FMRP™™, A recent
structure of the flexible FMRPN ™ has revealed
that this domain resembles a K homology (KH)
domain ® that is directly linked to the tandem KH
domains of FMRP*"* (Fig. 1B). KH domains
are typically RNA and single-stranded DNA-
binding modules; these molecules were first
described for the heterogeneous nuclear RNA-
binding protein (hnRNP-) K ™ "\ A similar
scenario as discussed above for FMRP“*™ may
apply for FMRPY“™ e its interactions may
not all be direct protein-protein interactions but
rather mediated via RNAs. G3BPI belongs to the
evolutionarily conserved hnRNP family. It is
involved in an array of biological activities, ranging
from cell-cycle regulation to mRNA metabolism
and stress granule assembly “7%; however, G3BP1
binds to FMRP¥*™ in an RNA-independent
manner (Fig. 1D).

FMRP is associated with multiple cellular
processes

FMRP has been described previously to be
involved in different biological functions, e.g..
RNA  transport, protein translation, actin
cytoskeleton remodeling, and SG formation "% 1>
2217380 Most of these functions have been linked
to the ability of FMRP to control the translation of
numerous different mRNAs *.  potentially
explaining why FMRP is expressed in several
tissues and cell lines, including iPSCs (Fig. 1A).
FMRP has been previously suggested to play a role

in the maintenance and differentiation of iPSCs 22.
The FMRP-interacting proteins identified in this
study were classified into three ontologies:
biological process, molecular function, and cellular
component (Fig. 2). The vast majority of these
proteins are involved in binding nucleic acids,
especially mRNA, rRNA, and miRNA (Tables 1-
4, bold), and thereby participate in transcription,
RNA metabolism, SG formation, and translation
(Fig. 3). These functions imply an intracellular
shuttling of FMRP into/between different
subcellular compartments of the cell. FMRP has
been previously described to be predominantly
cytoplasmic ®. However, in recent years, it has
become increasingly evident that FMRP
translocates into the nucleus due to sequence motifs
responsible for its nuclear import and export as well
as nucleolar localization ™15 7. 368 8388 Notably,
LTV1 and IPOS5, which were found in our
proteomic analysis, may be involved in
nucleocytoplasmic shuttling of FMRP.

Exemplified functional analysis of FMRP
interactions

To obtain specific functional insights into
FMRP interactions, we performed
immunoprecipitation of endogenous FMRP from
HeLa cell lysates. Consistent with Figure 3, we
again observed NONO and G3BP1 as interacting
proteins in the immunoblot analysis (Fig. 4A).
These two FMRP interactors have been previously
described as components of neuronal cytoplasmic
RNP granules ¥. A different type of cytoplasmic
RNA granules represents stress granules (SGs),
which have been shown to contain FMRP * and
G3BP1 *. However, a direct interaction
between FMRP and G3BPI has not yet been
reported. Thus, we pulled down different
G3BP1 fragments (Fig. 4B) that were
overexpressed in Hel.a cells using purified
GST-FMRPM*'™  Ag presented in Figure 4C,
G3BP1 full-length and M3, but not M1, M2, or
M4, bound to FMRP™*™ suggesting that the
proline-rich region (PXXP) of G3BP1, which is
located between the acidic region and the
RRM/RGG (Fig. 4B), may play a central role in
the direct interaction with the N-terminal region
of FMRP. The acidic region of G3BP1has been
shown to have an inhibitory effect on G3BP1/2
protein interactions *°'; therefore, we assume
that G3BP1 has a similar effect when it is
expressed without the NTF-like domain.
Consequently, it may counteract the binding of
G3BP1 M2 to FMRPYe™ hut not full-length
G3BPI.
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To investigate the functional relevance of this
interaction, we next analyzed the relative levels
of FMRP and G3BP1 as well as their
localization in different cell lines treated with
sodium arsenite, an oxidative stress agent. The
expression levels of FMRP and particularly G3BP1
increased 1in cells under stress conditions,
strikingly, in human dermal fibroblasts (Fig. 4D),
suggesting that they have critical functions under
stress conditions. This prompted usto examine
their subcellular distributions in the same cell
lines in the presence and absence of sodium
arsenite.  Confocal and  superresolution
microscopy imaging revealed that both FMRP
and G3BP1 are recruited to and accumulated in
SGs (Fig. 4E), presumably in large protein
complexes, including Caprin-1 %,

Discussion

In the following section, we discuss selected
functional relationships of newly identified
proteins that potentially interact with FMRP in
selected cellular processes (Fig. 3 and Tables 1-4).

Transcription

Eukaryotic gene transcription is evolutionarily
highly conserved between budding yeast and
humans. This is based on deep structural and
functional homologies among promoter factors,
regulatory proteins, and RNA polymerases **.
The latter are divided into three different
enzyme systems: RNA polymerase [ (RNAP I)
synthesizes ribosomal RNA (rRNA); RNAP 11
synthesizes mRNAs and different types of
noncoding RNA (ncRNA); and RNAP III
synthesizes tRNA and some types of ncRNA.
The fact that more than 400 different mRNAs
are associated with FMRP * > * strongly
indicates that FMRP may be involved in diverse
processes. including mRNA synthesis by
RNAP II, processing by the spliceosome, and
transport. Interestingly, FMRP interacted with
several RNAP ll-associated factors, including
Cl4orf166, CTR9, CDC73, and LEO1 (Fig.
3A). These proteins, together with PAFI and
RTF1, belong to the highly conserved and
broadly utilized PAFl complex (PAFIC),
which regulates a variety of processes, such as
transcription-coupled histone modifications;
initiation, elongation and termination of
transcription by RNAP II; and RNA processing
%, Another possible role of FMRP in
transcription and chromatin remodeling may be
cell reprogramming and differentiation due to
its interaction with key elements, such as its
interaction with PSF, NONO and hnRNP-U,

which together with RNAP II, p-TEFb,
NWASP, and nuclear actin are key elements in
cell reprogramming and differentiation °°. P-
TEFb also regulates transcription termination
by promoting chromatin recruitment and
activating FMRP-associating XRN2, which is a
cotranscriptional RNA processing enzyme 7.
Various FMRP-associated proteins modulate
NFxB-, Rb-, and p53-controlled transcription
(Fig. 3A). SKIP potentiates the activity of
important transcription factors, including the
vitamin D receptor, CBF1, SMAD2/3, and
MYOD, and synergizes with SKI in
overcoming pRb-mediated cell cycle arrest *.
BCLAF1, which also binds FXRIP %, controls
p53 expression in a PKC8-dependent manner
100, MYBBPIA has been reported to enhance
P53 tetramerization and acetylation in response
to nucleolar disruption "', NAT10 regulates
p53 activation through p53 acetylation and
MDM2 ubiquitination '°%. In contrast, EWSR1
induces acute myeloid leukemia by inhibiting
the p53/p21 pathway '*. The interaction of the
nuclear corepressor TRIM28 with MDM2
contributes to p53 inactivation ' 1% ASCC2
and ASCC3 are components of the ASC-1
complex that stimulate transactivation by
NF«xB, SRF, and AP1 through direct binding to
SRF, c¢-JUN, p50, and p65 '°°. PRMTS5
dimethylates the p65 subunit to activate NF«xB
107 whereas the tumor suppressor PDCD4
inhibits NFxB-dependent transcription, e.g., in
human glioblastoma cells by direct interaction
with p65 '® XRN2 interacts with the NFkB-
repressing factor and regulates transcription
elongation ', MYBBP1A appears to be an
NFkB corepressor of transcription by
competing with p300 ''°, In this context, TGM3,
a candidate tumor suppressor ''!, appears to
interfere with the NF«xB signaling pathway and
promote proliferation '2,

The FMRP-associated proteins AGR2,
ATAD3A, DHX15, and RPL 17 were identified
in a proteome-wide analysis of hepatocellular
carcinoma as binding partners of AGR2 ',
Their FMRP-associated roles in transcriptional
control remain to be investigated. Thus, FMRP
appears to contribute to RNAP Il-associated
synchronization of biosynthesis, processing,
transport, stability, and translational control of
mRNAs through protein- and RN A-binding.

RNA metabolism
The majority of FMRP-interacting proteins are
RBPs and are involved in RNA metabolism, which
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refers to any event in the life cycle of RNA
molecules, including their synthesis,
folding/unfolding, splicing, modification,
processing, nuclear export, transport, storage,
translation  activation or  inhibition, and
degradation. RNA helicases are RBPs, which
represent a large family of proteins that play
central roles in almost all biological processes
in living cells ', The majority of FMRP-
associated proteins are involved in RNA
metabolism and include RNA helicases and
splicing factors.

FMRP-interacting RNA helicases comprise
DDXS5, DHX9, and CHD1 (which are involved in
the DNA damage response; see above) as well as
DDX1. DDX3X. DHXI5, DDXI17, DHX36.
IGHMBP2, MOV10, HLP/SKI2, YTHDC2,
and YBX3 (Fig. 3B). DDXI1 has been found
together with the FMRP-associating proteins
PSF, Caprin-1, and PQBP1 in a protein complex
that interacts in an RNA-dependent manner '*.
PQBP1 has been shown to colocalize with
FMRP to stress granules (SGs) !>, DDX3X has
been shown to stimulate the translation of a subset
of mMRNAs with long and structured 5" UTRs, such
as RACI " On the other hand, DDX3X
promotes cell migration and spreading by
physically interacting with PABP1 and Caprin-
1 'Y, two other FMRP-associated proteins.

The FMRP-associated proteins AGR2,
ATAD3A, DHX15, and RPL17 were identified
in a proteome-wide analysis of hepatocellular
carcinoma as binding partners of AGR2 '}, A
common function of FMRP and DHX36 is
binding to RNA G-quadruplexes, which are
stable secondary structures that play key roles
in RNA metabolism ''®. In this way, DHX36
regulates p53 pre-mRNA 3'-end processing
following UV-induced DNA damage ', while
CDC73 targets and destabilizes p53 mRNA 20,
IGHMBP2 was suggested to be a component of
the translational machinery by physically
associating with tRNAs ', Among other
functions, DDX1, DDX3X, DHX9, and MOV10
are involved in nuclear RNA export ''*. Similar to
FMRP, SKIP localizes both in the nucleolus and
cytoplasm and may be involved in ribosome
biogenesis and translation ', The functional
relation of the RNA helicase YTHDC2 to
FMRP remains unclear.

The removal of introns from pre-mRNA
transcripts is a critical intermediate step in the
expression of protein-coding genes. This
process takes place in the nucleoplasm and is
catalyzed by a large and dynamic small nuclear

RNP (snRNP) complex called the spliceosome
123,124 Several FMRP-interacting proteins are
well-studied splicing factors, such as ERH,
NONO, PRMTS5, PSF, SKIP, SRSF3, and
SRPK1 (Fig. 3B). PSF and NONO form
heterodimers and participate in various aspects
of RNA metabolism, including transcription,
pre-mRNA splicing, 3’ polyadenylation of
mRNA, and nuclear retention of mRNA 2% 126,
The splicing of mRNA requires a group of
essential factors known as SR proteins, which
undergo cytoplasmic-nuclear shuttling upon
phosphorylation by SRPK1 25126 Interestingly,
the AKT-SRPKI1-SR axis constitutes a major
pathway in transducing EGF signaling to
regulate alternative splicing in the nucleus.
SRPK1-mediated phosphorylation of SRSF1
has been shown to regulate alternative splicing
of RACIB '/, which is a hyperactive form of
RACI ', Moreover, ERH appears to regulate
SRPK1-mediated phosphorylation of the lamin
B receptor and SR proteins '*. ERH is also
associated with RNA processing complexes. It
binds to the spliceosomal Sm complex and is
required for splicing various mRNAs, including
the mitotic motor protein CENP-E '* and the
DDR protein ATM "', PSF interacts with
snRNA components of the spliceosome, is a
component of the 3’ polyadenylation complexes
SF-A, and binds together with MATR3 and
NONO to hyperedited RNA ', SKIP
counteracts p53-induced apoptosis by recruiting
the 3' splice site recognition factor U2AF65 to
the p21 pre-mRNA ', The methylation of
arginines, e.g., by PRMTS5, enhances
interactions with the Tudor domains of the
splicing factors SMN and SPF30 '*. SRSF3
links pre-mRNA processing to mRNA export
by recruiting the nuclear export factor NXF1 ',
The FMRP-interacting proteins Cl4orf166 and
DDX1 form a complex with HSPC117 and
FAMO98B, underlay a nucleocytoplasmic
shuttling in response to transcriptional activity,
and may play a role in nuclear and cytoplasmic
RNA fate ', Notably, Cl4orf166 interacts with
RNAP II, modulates nuclear RNA metabolism,
participates in RNA splicing, and is present in
cytoplasmic RNA granules involved in
localized translation ',

RNA granules

Cytoplasmic RNP granules in germ cells (polar
and germinal granules), somatic cells (SGs and
processing bodies), and neurons (neuronal
granules) have emerged as important players in
the posttranscriptional regulation of gene
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expression. RNA granules contain various
ribosomal subunits, translation factors, decay
enzymes, helicases, scaffold proteins, and
RNA-binding proteins, and they control the
localization, stability, and translation of their
RNA cargo (Fig. 3C) " Y7 A very recent
report has demonstrated a central role of FMRP
in granule biology by monitoring the transport
and fusion of RNA granules throughout
neuronal processes **. Most interestingly, RNA
granules, isolated and purified from mouse
brain homogenates **, contain more than 20
FMRP-interacting proteins along with most 40S
and 608 ribosomal proteins, as detected in HeLa
cells (Table 4). Three FMRP-associated
proteins, G3BP1, NONO, and PSF, have been
detected in complex with RBPMS in neuronal
cytoplasmic RNA  granules *. FMRP
immunoprecipitation revealed that G3BP! and
NONO coimmunoprecipitated with FMRP in
HeLa total cell lysates (Fig. 4A), suggesting
their critical interrelated roles in the formation,
integrity, and/or transport of cytoplasmic RNP
granules. This and the fact that FMRP exists in
almost every cell type (Fig. 1A) strongly
indicate the existence of such RNA granules as
the regulatory machinery for local translation in
the cell.

The activation of stress response pathways often
promotes the formation of stress granules (SGs)
throughout the cytoplasm of stressed cells '8,
SGs are dynamic aggregates of untranslated
mRNAs that are sorted between decay, storage,
or polysome assembly ¥ 1% SGs also contain
many signaling proteins '**. The association of
FMRP with the translation machinery and
polysomes in SGs has been described
frequently in several laboratories * % '4*'%,
Thus, it was not surprising that FMRP itself and
many FMRP-interacting proteins have been
shown to localize in SGs "' the vast
majority of which are RBPs (Tables 1-4).
Inhibition of translation initiation, achieved by
the phosphorylation of elF2o or by blocking
assembly of the elF4F complex (see below),
results in the formation of SGs % 52, NFAR, a
double-stranded RNA-binding nuclear protein
that is, similar to elF2a, a PKR substrate '3,
undergoes a heterodimeric complex with NF45
and thereby modulates RNA granule assembly
and disassembly . NFAR was identified in
this proteomic study as one of many Caprin-1-
and G3BPl-associated proteins, which we also
found to be associated with FMRP %, SGs
regulate double-stranded RNA-dependent PKR
activation through a complex containing

G3BP1 and Caprin-1 55, and probably also
FMRP. It has been reported that PKR
recruitment to SGs requires the PXXP region of
G3BP1 ", which appears to be essential for the
interaction with FMRP (Fig. 4 B-C). The role of
FMRP in SG formation has been discussed in
several studies ** " 7 but the molecular
mechanism of FMRP function awaits further
investigation.

Translation

Translational control has an impact on many
cellular and developmental processes, and most
steps of translation are subjected to specific
regulation. The role of FMRP as a regulator of
local translation has been best investigated for
neurons * >°. FMRP transports coding and
noncoding RNAs to the synapse and
participates in local protein synthesis in
dendrites. Thus, FMRP potentially influences
signaling pathways involved in spine
morphogenesis * ® 5% Increasing evidence
suggests that FMRP interferes with the translation
of its target mRNAs in two different ways:
suppression of translational initiation and
translocation and/or activation of miRNA
pathways 7577138, 159

In neurons, the vast majority of FMRP is
associated with both its target mRNAs ° and
stalled, nontranslating polyribosomes '** ',
This process appears to be regulated by FMRP
phosphorylation *% '¢!, The list of FMRP-
interacting proteins that are involved in
translation includes almost all ribosomal
proteins, initiation factors eEF2, elF3A,
elFAG1, and elF6, elF4-interacting PDCD4,
ribosome-associated helicases IGHMBP2 and
YBX3, and stress granule proteins ATXN2L,
Caprin-1, SYNCRIP and VGL (Fig. 3D; Tables
1-4). elF4G plays a key functional role in the
initiation of cap-dependent translation by acting
as an adapter to nucleate the assembly of the
heterotrimeric elF4F complex ', The latter
consists of elF4G, elF4E, and elF4A. Together
with poly(A)-binding protein and elF3, elF4F
subsequently triggers the recruitment of the 43S
ribosomal  preinitiation complex to the
messenger RNA template ', PDCD4
suppresses cap-dependent translation initiation.
PDCD4 tightly binds elF4A in its inactive
conformation and blocks its incorporation into
the elF4F complex, which consists of elF4A,
elF4E, and elF4Gl/elF4G3 '®°, that then
recruits the 40S ribosomal subunit to start
translation initiation '*“. Analogous to PDCD4,
LARP1 is also an FMRP-interacting protein and
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directly binds the cap and region adjacent to the
5-TOP motif of TOP mRNAs, thereby
effectively impeding access of elF4E to the cap
and preventing elF4F  assembly ',
Interestingly, IGF2BP3 in complex with the
ribonuclease XRN2 (two FMRP-interacting
proteins) destabilizes elF4E-BP2, a negative
regulator of elF4E ', Caprin-1 binds G3PBI
and induces phosphorylation of elF2o. most
likely through the activation of PKR, the
inhibition of translation and the formation of
cytoplasmic SG '%,

Several other FMRP-associated proteins act on
translation at different levels and in different
ways. The multi-KH protein VGL associates
with free and membrane-bound ribosomes and
is generally necessary for the localization of
mRNAs to actively translating ribosomes '%*,
IGHMBP2 is a component of the translational
machinery, which physically associates with
(RNAs '®, Brain cytoplasmic RNA of 200
nucleotides (BC200 RNA) is a brain-specific,
small noncoding RNA with a somato-dendritic
distribution in primate neurons. SYNCRIP
interacts specifically with BC200 RNA and
may recruit it to mRNA transport complexes
involved in the regulation of localized
translation in dendrites ** '™, Remarkably,
several other known translational regulators,
including FMRP and PABPI, are components
of the BC200 RNP complex '™, FMRP promotes
the translation of specific mRNAs in a complex
with NATI, eIF2 and PRRC2C 7!, In this context,
we identified PRRC2C and NAT10, but not NATI1,
as FMRP-interacting proteins (Fig. 3D). Another
FMRP-associated protein is ABCF1, which
influences the accuracy of initiation codon
selection by binding elF2 and efficiently

initiates translation '72.

Conclusion

The data presented in this work considerably
expand the physical and functional candidate
protein and RNA interaction networks of FMRP
and suggest its participation in various fundamental
cellular processes throughout the body beyond the
central and peripheral nervous  systems.
Accordingly, FMRP functions may start in the
nucleolus following cytoplasmic—nuclear
translocation, where it may be involved in the
biogenesis of ribosomal subunits and most likely
their nuclear export. FMIRP may be part of the
transcriptional  factory by regulating gene
expression via interaction and orchestration of
RNA polymerase II. where it directly binds to a

10

large set of mRNAs and transports them to sites of
local translation. Upon any kind of cellular stress,
FMRP accumulates at sites of stress responses and
facilitates, for example, the stabilization of double-
stranded RNA-binding and the activation of PKR,
leading to the formation of stress granules.
Moreover, our novel FMRP interactome analysis
indicates that FMRP may play central roles in the
DNA damage response, cell cycle regulation,
intracellular transport and actin dynamics and that
FMRP virally triggers innate immune responses.
Of note, FMRP may also be involved in
mitochondrial quality control and mitophagy.

functions that are directly related to
neurodegenerative and cognitive  disorders,
including FXS, Huntington's disease,

Alzheimer’s disease, Down syndrome, and
progressive supranuclear palsy. Our work
provides valuable insights and constitutes a useful
starting point for future studies of the cellular
functions of FMRP in both nonneuronal and
neuronal cells.
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Figure legends

Figure 1. FMRP protein interaction networks linked to the N- and C-terminal regions of FMRP. (A)
Immunoblot analysis depicting the expression pattern of FMRP in different human cell lines including epithelial
HEK293 cells, benign prostatic hyperplasia epithelial cell line (BPH1), primary endothelial HUVECs, human
dermal fibroblasts (HDF), human induced pluripotent stem cells (hiPSCs), embryonal carcinoma cells (NT2),
and cancerous cell lines from different tissues (Hel.a, HepG2, MCF7, PANC1 and SW480). (B) Schematic
diagram highlighting major domains and motifs of FMRP. FCT, FMRP C-terminus; KHO, KHI and
KH2, tandem K homology domain (first described for hnRNP K protein); NES, nuclear export signal;
NLS, nuclear localization signal; NoLS, nucleolar localization signal; RGG, arginine-glycine-glycine
region; P, phosphorylation sites; Tudl and Tud2, tandem Tudor domains. The FMRP fragments used in
this study are the N-terminal (N-term), the central and the C-terminal (C-term) fragments. (C) Proteins
from total HeLa cell lysates were affinity-purified using GST or GST-FMRP beads and analyzed by
SDS-PAGE. Blue boxes indicate gel fragments excised for mass spectrometric (MS) analysis. Red boxes
indicate GST, GST-FMRPY*™ and GST-FMRP““™ which were excluded from MS analysis. Samples from
three independent experiments were used for MS analysis. (D) Immunoblot analysis of newly identified
FMRP-interacting proteins. GST pull-down experiments were conducted by mixing purified GST fusion
proteins of FMRPN*™ FMRP*"* and FMRP“*“™ as well as GST (negative control) immobilized on
GSH agarose beads with total cell lysates (TCL) from HeLa cells in the presence (+) and in the absence (-
) of RNase A. Proteins retained on the beads were resolved by CBB-stained SDS-PAGE (upper panel)
and processed for Western blotting using monoclonal antibodies against GST and various FMRP-
interacting proteins (lower panels). (E) Proteins identified to bind to both N- and C-terminal domains of
FMRP (Table 3) revealed different abundances, which were determined based on the normalized values
of the label-free quantification intensity values. The abundance is sorted from “high or 1" to “low or 0”
based on color codes.

Figure 2. Gene Ontology analysis of the identified FMRP-interacting proteins categorized
according to biological process, molecular function, and subcellular localization. (A) FMRP-
associated partners were sorted into fifteen biological processes with a predominance of metabolic
pathways (31% of all interactors). (B) From the molecular functions, nucleic acid- (RNA/DNA) binding
proteins (35%) and ribosomal assembly factors (30%) are the major groups of FMRP interactors. (C)
Cellular component classification revealed that FMRP is localized in different subcellular
compartments, predominantly in the cytosol (35%).

Figure 3. Functional interaction map for FMRP. Interaction networks of FMRP-interacting proteins
involved in transcription (A), RNA metabolism (B), RNA granules (C), and translation (D) were
visualized by STRING. Black circle nodes indicate proteins identified in this study. Blue line edges
indicate protein-protein interaction networks. The functions of the proteins highlighted in larger font
were described in more detail in this study.

Figure 4. FMRP physically interacts and colocalizes with G3BP1 in stress granules. (A)
Coimmunoprecipitation of G3BP1 and NONO with FMRP. Endogenous FMRP was
immunoprecipitated (IP) from Hel.a total cell lysates (TCL) using an anti-FMRP antibody.
Immunoprecipitated endogenous proteins were probed with anti-G3BP and anti-NONO antibodies. y-
Tubulin was used as a negative control. (B) Domain organization of G3BP1 and the fragments used in
this study. G3BP1 consists of four domains, an N-terminal nuclear transport factor 2-like domain
(NTF2-like), an acidic region, a proline-rich region (PXXP), and a C-terminal region encompassing both
an RNA recognition (RRM) and an arginine-glycine-glycine (RGG) domain. (C) Pull-down experiments
were conducted by mixing GST-FMRPN*"™ immobilized on glutathione-agarose beads with HeLa cell
lysates overexpressing Flag-tagged G3BP1 wild-type protein or deletion mutants. Proteins retained on
the beads were resolved by SDS-PAGE and processed by Western blot analysis using anti-Flag and anti-
GST antibodies to visualize G3BP1 and FMRP™"™ proteins, respectively. (D) Increasing cellular
FMRP and G3BP1 protein levels upon sodium arsenite treatment. (E) Colocalization of endogenous
FMRP (red) and G3BP1 (green) in stress granules was visualized by structured illumination
superresolution microscopy (SR-SIM) in HeLa cells or using an LSM5 10-Meta confocal microscope in
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HEK?293 and HDF cells treated with sodium arsenite as indicated. DNA was stained using DAPI (blue).
Scale bar: 10 um.
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Table 1. Proteins interacting with the N-terminus of FMRP (FMRPNm),

Protein name® Function M p- Unique Seq.cove- Acc.ID
kDa  wvalue pep rage (%)
Actin depolymerizing factor (ADF, Destrin) Actin dynamics 185  0.005 3 224 P60981
AHNAK nucleopratein 2 (AHNAK2)* Calcium signaling 616.2  0.004 66 34 08IVF2
Anterior gradient protein 2 homolog (AGR2, AG2) Differentiation 200  0.016 3 20 095994
Coild-inducible RNA-binding protein (CIRBP, A18hnRNP) mRNA stabilization, translation, stress granules 186  0.009 6 318 Q14011
Collaborator of ARF (CARF, CDKN2AIP) DDR, cell growth 61.1 0.004 7 21.9 QINXVE
DEAD Box Protein 5 (DDXS, p68)* Transcription, mRNA processing 69.1 0.005 20 47.6 P17844
DEAH-Box proteln 36 (DHX36, RHAU)* Transcription, mRNA processing, translation, stress 1147 0.003 9 1.4 Q9H2U1
granues
Eukaryotic translation initiation factor 3 subunit K (elF 3K} Translation 25,043 0,020 7 385 QguBQS
Ewing sarcoma breakpoint reglon 1 profein (EWSR1) Transcription 684  0.003 4 10.3 Q01844
Fragile X mental retardation proteln (FMRP. FRAXA, POF1) DDR, transcription, RNA processing, transport, 41 0.007 a2 54 Q06787
translation, stress granules
Fused In Sarcoma (FUS, TLS) mRNA splicing, transcription 534  0.001 2 266 P35637
MAP7 domain-containing protein 2 (MAP7D2) Microtubule cytoskeleton organization 820  0.007 3 6.9 Q96T 17
Melanoma inhibitory activity protein 3 (MIA3, TANGO) Transport, ER-Golgi transport, exocytosis 2136 0.001 24 16.5 Q5JRA6
Non-POU domain-containing octamer-binding protein (NONO) DDR, transcription, mRMA splicing, RNA granule, 54.2 0.007 9 218 Q15233
innate immune response
Polypyrimidi -binding protein lated splicing factor ~ DOR, transcription, mRNA splicing, RNA granules,  76.1 0.002 2 19.6 P23246
(SFPQ, PSFY* innate immune response
Protein FAM98A Lysosome localization, proliferation 554  0.005 7 204 QBNCAS
Protein LSM12 homolog (LSM12) Postranscriptional regulation, circadian clocks 2.7 0.006 5 335 Q3MHD2
Ski-interacting protein (SKIP, SNWH) mRNA processing, splicing 615  0.002 4 9.6 Q13573
Transketolase (TKT) Pertose phosphate pathway, growth regulation 679  0.019 9 26.6 P29401
Tropomyosin-receptor kinase-fused gene protein (TFG) Protein transport, secretory pathways 434 0011 12 4.5 Q92734
408 ribosomal Protein $23 (RPS23)* Translation, stress granules 158  0.003 8 49.7 P62266
605 ribosomal protein L 36 (RPL36)* Translation 122 0.000 5 30.5 Qgy3us

# Underlined proteins were previously described as direct or indirect interacting partners of FMRP; * Isoforms, paralogs or related proteins identified are listed in
Table 4. Proteins highlighted in bold are RN A-binding proteins and proteins in iralic are components of the stress granules. * Some proteins have more than one

name (http://www.genecards.org), some alternative names or synonyms are therefore included in parentheses.
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Table 2. Proteins interacting with the C-terminus of FMRP (FMRPC-m),

Protein name® Function MW p- Unigue Seq.cove- Acc. D
kDa  wvalue pep rage (%)
Activating signal cointegrator 1 complex 2 subunit 2 (ASCC2)* Transcription 86.3 0.001 7 125 QOH1I8
ATPase family AAA domain-containing protein 3A (ATAD3A}" Cell growth, apoptosis 713 0.010 8 137 QONVIT
ATP-binding cassette subfamily F member 1 (ABCF1} Translation, transport 96.0 0.002 10 12.8  QBNETH
Bel-2-associated transcription factor 1 (BCLAF1, BTF) DOR, transcription, apoptosis 106.1 0.000 7 10.4  QONYF8
Cell division cycle 5-like protein (CDC5L) DDR, cell cycle, mRNA splicing, differentiation 92.2 0.003 1 21.3 099459
Cell division eycle protein 73 (CDC73, Parafibromin) Transcription, mRNA processing, apoptosis 60.5 0.018 16 299  Q6P1J9
Chromo-domain helicase DNA binding protein 1 (CHD1) Chromatinremodeling DDR, transcription 196.6 0.007 6 58 014646
Elongation factor 2 (eEF2) Translation 95.3 0.020 27 431 P13639
Eukaryotic translation Initiation factor 4 gamma 1 (EIF4G1)* Translation, stress granules, mitochondrial 1754 0.001 19 15.5 Q04637
organization, autophagy cell death, cell growth
Eukaryotic translation initiation factor & (elF5, p27BBP)" Ribosome biogenesis, transport, translation 26.6 0.000 7 522  P5653T
Exosome component 10 (EXOSC10, RRP6) RNA Processing 100.8 0.005 8 10.8 Q01780
Glypican-1 (GPC1) Endosome localization, differentiation 61.7 0.006 9 2 P35052
Helicase-like protein (HLP, Ski2, SKIV2L) Transcription, ibosome biogenesis 1377 0.000 10 10.8 Q15477
Immunoglobulin mu Binding Protein 2 (IGHMBP2, SMUBP2) Transcription, translation 100.1 0.008 4 6.2  P38935
Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP 3) mRNA transport, translation 63.7 0.003 12 215 000425
Karyopherin subunit a2 (KPNA2, SRP1-a) Nuclear import 57.8 0.006 7 21 P52292
Large subunit GTPase 1 homolog GTPase 1 (hLSG1) Ribosome biogenesis, transport 75.2 0.017 9 191 QoHO89
Long-chain 3 Hydroxyacyl-CoA dehydrogenase (HADHA) RNA silencing, miRNA biogenesis 83.0 0.002 24 425  P40939
Matrin-3 (MATR3) Innate immune response 946 0.006 5 89  P43243
Metadherin (MTDH, AEG1, LYRIC} Transcription, NFkB pathway 63.8 0.001 5 108 Q86UE4
Mitochondrial ribosomal protein $28 (MRP-528, S28mt)* Mitochondrial translation 208 0.000 6 337 Q8yzQ9
Myb-binding protein 1A (MYBBP1A, p160) Transcription, stress response, cell cycle 1488 0.005 9 8.7 QIBQGO
N-acetyliransferase 10 (NAT10, ALP) RNA processing 157 0.000 8 10.9  QOYHOAD
Nuclear factors associated with dsRNA (NFAR, NF90, ILF3) Transcription, Translation, antiviral response 95.3 0.001 9 1.8 Q12906
Nueleolar GTP -binding protein 2 (GNL2)* Ribosome biogenesis 836 0.001 6 10.8 Q13823
Nucleolar protein 2 homolog (NOP2, NOL1, NSUNG) RNA processing, ribosome biogenesis 89.2 0.001 7 10.9  P4s087
Nucleoph in (NPM1, B23,N i Ribosome assembly, biogenesis, mRNA stability, 326 0.010 8 4.2 PO6748
translation, transcription
0xidative stress-associated Src activator (FAM120A, C901f10} Oxidative stress 121 0.000 10 124  Q8NZB2
Poly [ADP-ribose] polymerase 1 (PARP1, ADPRT1 DDR, transcription, mitochondrial organization 130 0.001 18 244 P09BTA
Pre-IRNA-processing protein (TSR1) Ribosome biogenesis, RNA processing 91.8 0.008 8 13.2  Q2nL82
Programmed cell death protein 4 (PDCD4, H731) Transcription, cell cycle, apoptosis 51.7 0.002 9 243  Q53EL6
Protein arginine N-methyitransferase 5 (PRMTS, JBP1, SKB1} Transcription, spliceosome assembly 72.6 0.010 9 206 014744
Protein FtsJ homolog 3 (FTSJ3, SB92) RNA processing, ribosome biogenesis 96.6 0.000 6 9.7 081Y81
Protein kinase RNA activated (PKR, EIF2AK2) Transcription, mRNA processing, translation 62.1 0.019 1 216  P19525
Protein LTV1 hemolog (LTV1) RNA processing, 40S ribesome biogenesis 548 0.005 5 11.4  0Q9GA3
Protein PRRC2C Translation, differentiation 316.7 0.002 15 6.8  Q8Y520
Pumilichomolog 3 (PUFA) Translation 735 0.013 8 16.5 Q15397
Putative helicase MOV-10 (MOV10) Transcription, mRNA biogenesis, RNA interference, 113.6 0.005 5 7.3 QO9HCE1
RNA granules
Ribonuclease PIMRP protein subunit (P OP1) RNA processing 1146 0.002 9 11.8 Q99575
RNA polymerase-associated protein (LEO1) Transcription, RNA metabolism 75.4 0.001 6 10.5  Q8WVCO
Rl ly { protein CTRS homoll (CTRY) Transcription 1334 0.011 9 7.3 Q6PDB2
RRP 12-like protein (RRP12) tRNA processing, ribosome biogenesis 1436 0.003 7 81  Q5JTHY
SDA1 domain-containing protein 1 (SDAD1, hSDA) Ribosome biogenesis, transport, actin cytoskeleton ~ 79.8 0.013 3 47  QONVUT
organization
Sequestosome-1 (SQSTMA1, p62) Mitophagy, stress response, differentiation 417 0.011 8 3.8 Q13501
SerinelArginine-Rich protein specific Kinase 1 SRPK1)} RNA splicing, chromoseme segregation 743 0.000 4 9.4 QU6SB4
Serlne/arginine-rich splicing factor 3 (SRSF3, SRP20)* RNA splicing, transport 183 0.000 7 4.7  Ps4i03
SERPINE1 mRNA Binding Protein 1 (SERBP1, PAIRBP1) mRNA stability, apoptosis 449 0.012 13 33.6  QBNCS1
Single-stranded DNA-binding protein (SSBP 1, SOSS) Replication, mitochondrion erganization 17.2 0.006 5 33.8 Q04837
Staphyl | nuclease domain. ining protein 1 (SND1, Transcription RNA interference, stress granules 101.9 0.010 1 18.7  QTKZF4
TORD11)
'l lasmic RNA Ir ting profein RNA processing, splicing, translation 69.6 0.005 1" 26.9 060506
(SYNCRIP, hnRNPQ)*
Targeting protein for Xkip2 (TPX2, DIL-2) Microtubule organization, cell cycle, apoptosis 85.6 0.020 12 20.2  Q9ULWO
Tetratricopeptide repeat protein 37 (TTC37, Ski3) RNA processing 175.4 0.000 16 13 QBPGPT
Transcription intermediary factor 14 (TRIM28, KAP1) DDR, transcription 88.5 0.003 6 1.7 013263
Transglutaminase- 3 TGase-3 (TGM3, TGE) Proliferation, migration, NF-kB pathway 76.6 0.010 3 75 Q08188
Ubiquitin carboxyl-terminal hydrolase 10 (USP10} DDR, autophagy 87.1 0.003 6 9.8 014694
Unconventional Myosin-IC (MYQ1C, MMIb) Cytoskeletal rearrangements, motility 1216 0.012 5 71 000159
Valosin-containing protein (VCP) DDR, lysosome transport, autophagy 89.3 0.019 5 9.4  P55072
Vigllin (VGL, HDLBP) Lipid transport 414 0001 9 0.2 000341
X-ray repair cross-complementing protein 6 (XRCC6, Ku70)* DDR, transcription, innate immune response 69.8 0.001 38 61.7  P12956
Y-box-binding protein 3 (YBX3, CSDA, ZONAB) Transcription, translation, RNA binding 40.1 0.006 7 47 P16989
YTH domain containing 2 (YTHDC2) RNA processing 160.1 0.005 5 49  QOHBSO
Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1, ZAP) Innate immune response 101.4 0.003 5 8.7 Q7TZ2W4
Zinc finger protein 622 (ZNF622, ZPR9) ribosome biogenesis, apoptosis 54.2 0.007 1 30 096953
40S ribosomal Protein $19 (RPS19)* Ribosome biogenesis, translation 16.1 0.011 12 26 P39019
408 ribosomal protein $30 (FAU) RNA processing, translation, apoptosis 6.6 0.002 3 12.2 P62861
5'-3 exoribonuclease 2 (XRN2) Transcription, RNA processing 1085 0.007 5 8 Q8HOD6
605 ribosomal protein L6 (RPL6, TXREB1)* RNA processing, ribosome assembly, translation 327 0.004 1 49.7 Q02878

* Underlined proteins were previously described as direct or indirect interacting partners of FMRP; * Isoforms, paralogs or related proteins identified are listed in
Table 4. Proteins highlighted in bold are RNA-binding proteins and proteins in irafic are components of the stress granules.  Some proteins have more than one name
(http:/fwww.genecards.org), some aliernative names or synonyms are therefore included in parentheses.
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Table 3. Proteins (directly or indirectly) interacting with both FMRPN*™ and FMRPC ™

Protein name® Function MW p- Unique Seq.cove- Acc.ID
kDa value pep. rage (%)
Ataxin-2-like protein (A TXN2L) RNA metabolism, processing, stress granules, 113.3  0.008/0.004 13 162 Q8WwWM7
p-body assembly
Compl p 1Q sut p t-binding protein Transcription, mRNA processing, ribosome 31.3  0.012/0.000 9 429 Qo721
(C1QBP, HABP1) assembly, mitochondn al franslation apoptosis,
innate immune response

Cytoplasmic activation/proliferation assoclated profeln 1 (Caprin-1, Translation, differentiation 78.3  0.000/0.000 17 341 Q14444
GPIAP1, RNG105)
Enhancer of rudimentary homolog (ERH) Cell cycle 123 0.000/0.000 3 315 P84090
Fragile X mental refardation omie-relafed profein 1 1, RNA binding, translation, apoptosis, 69.7  0.000/0.003 23 527 P51114
hEXR1P, differentiation

nuclear rib I in U, haRNPU (HNRNPU,  Transcription, DDR, RNA processing, 90.5  0.000/0.000 8 144 Q00839
SAF-A)* granules, mitotic spindle assembly
La-related protein 1 (LARP1)* Translation, cell proliferation 1234 0.000/0.000 23 255 Q6PKGO
Nuclear fragile X mental retardation-interacting protein2 (NUFIP2. RNA binding, fransport, stress granules 761 0.016/0.005 5 144 QEZM7
82.FIP)
Polyadenylate binding protein 1 (PABPC1. PAB1)* RNA splicing, mRNA silencing, translation 70.6  0.002/0.008 16 343 P11940
RAS GTPase activating profein SH3 domain-binding protein 1 Transport 521 0.000/0.000 14 472 Q13283
(G3BP1)
RNA transcription, translation and transport factor protein RNA metabolism, transport 281 0.001/0.000 21 754 Q9y224
(C14orf166, CGI-99, hCLE)
Ubiquitin-associated protein 2-like (UBAP2L, NICE4)* RNA binding 1145 0.000/0.001 8 12 Q1457
Uncharacterized protein C7orf50 uncharacterized 221 0.014/0.001 5 418 QIBRIE

 Underlined proteins were previously described as direct or indirect interacting partners of FMRP; * Isoforms, paralogs or related proteins identified are listed in Table
4. Proteins highlighted in bold are RNA-binding proteins and proteins in ifalic are components of the stress granules. ® Some proteins have more than one name

(http://www.genecards.org), some alternative names or synonyms are therefore included in parentheses.
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Table 4. Isoforms, paralogs, and related proteins of FMRP interacting proteins depicted in Tables 1-3.
Interaction with FMRP "=m

AHNAK1 (Q09666), RPL13A (P40429), RPL18A (Q02543), RPS12 (P25398) SF1(Q15637), UBAP2 (QS5T6F2)

Interaction with FMRP ¢em

ASGC3 (QBN3G0), ATAD3B (Q5TIA), DHXS (Q08211), DHKA5 (043143), DHX30 (Q7L2E3), DHX57 (O6P158), elF3A (Q14152), elF3B (P 55884), elF 3C (Q99613), eIF 3D
(015371), GNL3 (Q9BVP2), hnRNPM (P52272), hnRNPUL1 (Q9BUJ2), LARP4 (QT1RC2), MRPL12 (P52815), MRPS2 (Q9Y399), MRPST (Q9Y2R9), NOG1 (Q9BZE4}, RPLP1
(P05386), RPLP2 (P05387), RPL4 (P36578), RPLS (P62917), RPLY (P32969), RPL10 (P27635), RPL10A (P62906), RPL13 (P26373), RPL13A (P40429), RPL14(P50914), RPL19
(P84098), RPL23A (P62750), RPL29 (P47914), RPL35A (P18077), RPLI7A (P61513), RPSS (P46782), RPS2TL (Q71UMS), SRSF6 (Q13247), XRCC5 (P13010)

Interaction with both FMRPHem and FMRPCtm

DDX1 (Q92499), DDX17 (Q92841), DDX3X (OD0571), DDX3Y (015523), DHX 36 (Q9H2U1), GIBP2 (QGUNBE), PABP3 (Q3ZCS4), RPLY (P32960), RPL0 (P27635), RPLIDA
(P62906), RPL15 (P61313), RPL17 (P18621), RPL18 (Q07020), RPL21 (P46778), RPL23 (P62829), RPL24 (PB3731), RPL26 (P61254), RPL26L1 (P61254), RPL2TA (P46776),
RPL28 (P46779), RPL30 (P62888), RPL38 (P63173), RPSS (P62241), RPS 9 (P46781), RPS14 (P62263), RPS16 (P62249), RPS17 (P0BT08), RPS1TL (POCW22), RPS18 (P62269),
RPS20(P60866), RPS21 (P 63220), RPS24 (P 62847), RPS26 (P62854), RPS27 (P42677), RPS28 (P62857)

Gene names (accession numbers) of different isoforms, paralogs, and related proteins, including ribosomal proteins (RPs) associated with FMRPR gnd FMRPsm
are collected. Proteins highlighted in bold are RNA-binding proteins.
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Identification of 180 FMRP interacting proteins in a proteomic approach strongly suggest a
localization in diverse subcellular processes, including transcription (A), DNA damage response (B),
cell eycle (C), actin dynamics and Intracellular transport (D), mitochondrial organization (E), innate
immune response (F), RNA metabolism (G), ribosome biogenesis (H), RNA granules (I),
translation (J), and miRNA biogenesis (K). ER, endoplasmic reticulum; Mt, mitochondrion; N,
nucleus; No, nucleolus; PM, plasma membrane; SG, stress granules.
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Chapter VI

IL-6 trans-signaling controls liver regeneration after partial
hepatectomy

IL-6 trans-signaling completely compensates for the loss of IL-6 classic signaling in liver
regeneration after partial hepatectomy
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IL-6 Trans-signaling Controls Liver
Regeneration After Partial Hepatectomy

Nastaran Fazel Modares,”* Robin Polz,"* Fereshteh Hagh.ighi.1 Larissa Lamertz, Kristina Behnke,? Yuan Z,huzmg,2 Claus Kordes,”
Dieter Hiussingt.r,3 Ursula R. Sorg,* Klaus Pfeffer,* Doreen M. Floss," Jens M. Moll,! Roland P. Pickorz,! M. Reza Ahmadian,’
Philipp A. Lang,” and Jiirgen Scheller!

Interleukin-6 (IL-6) is critically involved in liver regeneration after partial hepatectomy (PHX). Previous reports
suggest that IL-6 trans-signaling through the soluble IL-6/IL-6R complex is involved in this process. However, the
long-term contribution of 1L-6 trans-signaling for liver regeneration after PHX is unknown. PHX-induced genera-
tion of the soluble IL-6R by ADAM (a disintegrin and metallo) proteases enables IL-6 trans-signaling, in which
IL-6 forms an agonistic complex with the soluble 1L-6 receptor (sIL-6R) to activate all cells expressing the signal-
transducing receptor chain glycoprotein 130 (gp130). In contrast, without activation of ADAM proteases, 1L-6 in
complex with membrane-bound IL-6R and gpl30 activates classic signaling. Here, we describe the generation of
IL-6 trans-signaling mice, which exhibit boosted IL-6 trans-signaling and abrogated classic signaling by generic
conversion of all membrane-bound IL-6R into sIL-6R proteins phenocopying hyperactivation of ADAM-mediated
shedding of IL-6R as single substrate. Importantly, although IL-6R deficient mice were strongly affected by PHX,
survival and regeneration of 1L-6 trans-signaling mice was indistinguishable from control mice, demonstrating that
IL-6 trans-signaling fully compensates for disabled classic signaling in liver regeneration after PHX. Moreover,
we monitored the long-term consequences of global IL-6 signaling inhibition versus IL-6 trans-signaling selective
blockade after PHX by IL-6 monoclonal antibodies and soluble glycoprotein 130 as fragment crystallizable fusion,
respectively. Both global IL-6 blockade and selective inhibition of IL-6 trans-signaling results in a strong decrease
of overall survival after PHX, accompanied by decreased signal transducer and activator of transcription 3 phos-
phorylation and proliferation of hepatocytes. Mechanistically, IL-6 trans-signaling induces hepatocyte growth factor
production by hepatic stellate cells. Conclusion: 1L-6 trans-signaling, but not classic signaling, controls liver regen-
eration following PHX. (HepaToLocy 2019;0:1-17).

ynergistic action of hepatocyte growth factor and PI3K/AKT activation.” 1L-6 or IL-6R alone
(HGF) and interleukin 6 (IL-6) controls the have no affinity toward gpl30. IL-6R expres-
early regenerative phase after partial hepatec- sion is found on few cell types, including immune
tomy (PHX) by]promoting both mitosis and survival  cells and hepatocytes, which are directly activated
of hepatocytes.( #) [L-6 binds to the IL-6 recep- by IL-6 classic signaling.m Primarily ectodomain
tor (IL-6R), followed by dimerization of glycopro- shedding by a disintegrin and metallo (ADAM)
tein 130 (gpl30), leading to JAK/STAT, MAPK, proteases generates the soluble IL-6R (sIL-6R).*®

Abbreviations: 3'UTR, 3'untranslated region; ADAM, a disintegrin and metallo; ELISA, enzyme-linked immunosorbent assay; Fc, fragment
rry,rtﬂlt'izab!e; FRIjhppme remg:niiimi target; GFP, grse:rjfzmrz:tmi pmlsivr;g}‘:}.?f}, g..’ywpraiei:ﬂr 130; HGF, bepﬂiaryre gmwnﬁj&cx‘ar; HSCs,
hepatic stellate cells; IL-6, interleukin 6; IL-6R, interleukin 6 receptor; mAb, monoclonal mn‘iéa{fy; ns, not significant; PUCNA, proliferating
cell nuclear ﬂmz'gm,' PHX, partia[beparertamy; JEPL?G, soluble gpf.?ﬂ; sIL-6R, soluble IL.-6 receplor; STAT, ;igimf transducer and activator cy'
x‘rmr:tn})::':m; TNF, tumor necrosis jhttar; we, wild type.
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IL-6/s1L-6R complexes activate cells expressing
only gp130, or superactivates cells expressing more
gp130 than membrane-bound IL-6R.”™ Whereas
global IL-6 signaling (classic and trans-signaling)
is inhibited by neutralizing IL-6 or IL-6R anti-
bodies, soluble gp130 (s%pISO) selectively inhibits
IL-6 trans-signaling.'""'**) Healthy individuals dis-
play serum levels of 250-400 ng/mL endogenous
sgp130.1Y Recently, we have shown that endog-
enous serum levels of sgpl30 are not sufficient to
inhibit trans-signaling but might contribute to
increase the serum half-life of 1L-6."

IL-6 trans-signaling has primarily pro-inflammatory
functions and inhibition of IL-6 trans-signaling by
application of sgp130 as fragment crystallizable (Fc)
fusion protein (sgpl30Fc) resulted in suppression of
chronic inflammatory diseases in preclinical settings.
Recently, sgp130Fc has entered phase 2 clinical trial. 13)

Although hepatocytes express relatively high lev-
els of IL-6R, a modest increase in sIL-6R levels
after PHX would enable local trans-signaling in the
9 Therefore, heterologous application of the
trans-signaling superagonist hyper-IL-6, which is a
fusion protein of IL-6 and sIL-6R," illuminates
the maximal potential of trans-signaling in vifro and
in vivo. Forced IL-6 trans-signaling by application
of recombinant hyper-IL-6, but not classic signal-
ing by IL-6, resulted in acceleration of liver regen-
eration after PHX ¥ Ectopic expression of IL-6
and sIL-6R in double transgenic mice, but not of
IL-6 alone, leads to nodular hepatocellular hyper-
plasia. 1% Interestingly, I1.-6/sIL-6R, but not IL.-6
alone, cooperates with HGF to enhance hepatocyte
proliferation, and short-time transient expression of
sgpl30Fc inhibits hepatocyte Eroliferation at early
time points following PHX %" Even though these
results suggest a role for IL-6 trans-signaling in liver

liver.
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regeneration, long-term experiments to determine the
overall consequences of IL-6 trans-signaling during
liver regeneration are lacking. Increased serum levels
of sIL-6R are common events in pathophysiology
(e.g., following PHX), su%gesr_ing a shift from clas-
sic toward trans-signaling. ) Among others, ADAM
proteases execute the stress-induced ectodomain shed-
ding of IL-6R.®" Analysis of ADAM activity using
gene-deficient ADAM10/17 mice is hampered by the
complexity of the ADAM10-induced and ADAM17-
induced sheddome with more than 100 different pro-
tein substrates. Moreover, the phenotype of ADAM10
and ADAMI17 deficient mice is dominated by shed-
ding deficits of a few substrates, including epidermal
growth factor receptor (EGFR) ligands, Notch, and
tumor necrosis factor (TNF).®Y Therefore, conse-
quences of abrogated shedding of the IL-6R could
not be analyzed in ADAM10/17 deficient mice.®
Here, we generated and characterized IL-6
trans-signaling mice, which were genetically engi-
neered to execute IL-6 trans-signaling and were
indistinguishable from wild-type mice in liver regen-

eration after PHX.

Materials and Methods

Floxed sIL-6RTT™EC mice were generated by
ingenious targeting laboratory (www.genetargeting.
com). The conditional targeting vector bearing the
rearranged IL-6R exons 9 and 10 was electroporated
into C57BL/6N embryonic stem cells. Targeted
embryonic stem cells were microinjected into
Balb/c blastocysts, and the resulting chimeras with
a high percentage of black coat color were crossed
to C57BL/6N mice to generate IL-6R"/1-NEC,
DNA from tail clippings was isolated using the
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DirectPCR-Tail kit with proteinase K (Peqlab,
Erlangen, Germany) following the manufacturer’s
instructions for genomic PCR.

Results

IL-6 TRANS-SIGNALING SIL-6R™*
MICE HAVE DRASTICALLY
INCREASED SIL-6R LEVELS

Here we generated transgenic soluble IL-6R**
(sIL-6R**) mice, a strategy to mimic ADAM10/17
hyperactivation for the single target protein IL-6R.
sIL-6R** mice reflect a situation in which only
trans-signaling is active, whereas classic signaling is
abrogated. sIL-6R"* mice exhibit amplified endoge-
nous IL-6 trans-signaling due to an increased level of
sIL-6R, which is not caused by ectodomain shedding
but by Cre-mediated deletion of the genetic informa-
tion coding for the transmembrane and intracellular
domain of the IL-6R (Fig. 1A). In detail, exon 9 of
the IL-6R gene codes for the transmembrane domain
and the first part of the intracellular domain, and the
last exon 10 codes for the second part of the intra-
cellular domain followed by the 3'untranslated region
(3'UTR). In the targeting vector, the 5,420-base pair
(bp)-long intron 9 was deleted, resulting in func-
tional fusion of the 100-bp and 223-bp-long coding
regions of exon 9 and exon 10, respectively. Intron 9
was skipped because it would have complicated the
construction of the targeting vector. The original
IL-6R stop codon located in exon 10 was deleted,
and a sequence coding for the 2A-peptide sequence
followed by a KDEL-marked GFP was inserted. The
2A peptide from the foot-and-mouth disease virus is
a self-processing sequence to achieve expression of at
least two separate proteins from a single open read-
ing frame.“? The cleavage of the IL-6R and GFP is
thought to happen in a co-translational process. The
remaining 2A peptide fragment at the C-terminal end
of IL-6R is then cleaved off by the protease furin. In
addition, the endoplasmic reticulum retention signal
KDEL®Y was fused at the C-terminal end of the
green tluorescent protein (GEP). The E9-E10-GFP
cassctte was followed by the flippase recognition tar-
get (FRT)-neomycin-resistance-FRT cassette and the
original 3'UTR of the IL-6R 3'UTR and ultimately
flanked by loxP-sites.

FAZEL MODARES,POLZ, ET AL.

In the founder transgenic mice, the FRT-
neomycin-resistance-FRT  cassette was deleted by
crossing to Flp-recombinase expressing mice, referred
to as homozygous sIL-6R"" mice. We expected that
the modified IL-6R protein in IL-6RY" mice would
be produced with comparable efficiency compared
with the wild-type IL-6R protein and result in IL-6
classic and trans-signaling comparable to wild-type
mice (Fig. 1B). Cre-mediated recombination in the
germline resulted in homozygous T1.-6R"* mice car-
rying the deletion of the fused exons 9 and 10 on
both alleles (Fig. 1A). As a consequence, the trans-
lated IL-6R in Cre-recombined sIL-6R"* mice lack
the trans-membrane and intracellular domains and
will be directly secreted as soluble IL-6R (Fig. 1C,
Supporting Fig. S1A,B). Due to the lack of membrane-
bound IL-6R, sIL-6R"* mice will selectively execute
only trans-signaling. Introduction of the E9-E10-GFP
cassette in sIL-6RY" mice and deletion of the
E9-E10-GFP cassette in sIL-6R"* mice was con-
firmed by genomic PCR (Fig. 1D). Next, we quantified
the IZ-6R mRNA level in wild-type, sIL-6R"", and
sIL-6R""* mice. Whereas the I7.-6R mRNA level was
comparable in wild-type and sIL-6RY mice, a signifi-
cantly increased sIL-6R mRNA level was detected in
sIL-6R""* mice, suggesting that genetic rearrangement
in sIL-6R™ mice did not influence overall stability
of the IL-6R mRNA but the deletion of most of the
3'UTR in sIL-6R”* mice enhanced mRNA stability
(Fig. 1E,F). Unfortunately, we were not able to detect
GFP fluorescence in hepatocytes and immune cells
from sIL-6R™ mice, albeit western blotting of liver
and spleen tissue clearly detected GFP proteins in
sIL-6R™" mice, but not in wild-type and sIL-6R"*
mice (Fig. 1G). Next, we performed immunohisto-
chemistry of the IL-6R on liver samples from wild-
type, IL-6R deficient, and sIL-6R™" mice. We were
able to detect IL-6R in cells of wild-type mice but
not in IL-6R deficient mice, demonstrating that the
staining was specific. Interestingly, staining for sIL-6R
in sIL-6R"" mice was also absent, indicating that all
membrane-bound IL-6R was converted in sIL-6R
in sIL-6R”* mice and rapidly secreted (Fig. 1H).
Moreover, staining of the IL-6R in wild-type mice
suggests that IL-6R molecules were found primarily in
intracellular compartments and not on the cell surface
(Fig. 1H). Flow cytometry analysis of IL-6R on CD3"
T cells and monocytes demonstrated that wild-type and
sIL-6R"" mice had comparable levels of IL-6R on the
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cell surface, demonstrating that genetic rearrangement  1L-6R™" and sIL-6R** mice lacked IL-6R cell sur-
of 1L-6R in sIL-6R™ mice did not interfere with face expression, again supporting our conclusion
expression (Fig. 11], Supporting Fig. 52). Importantly, that all membrane-bound IL-6R was converted into
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FIG. 1. Generation and characterization of soluble 1L-6 trans-signaling mice (sIL-6R""). (A) Schematic representation of targeting
strategy for the generation of sSIL-6R"% and sIL-6R""* mice. The arrows indicate the locations of primers used for genomic PCR (exon
8 to exon 10, blue). Exon 9 codes for the transmembrane domain of the I1L-6R; exon 10 codes for the translated intracellular domain of
the IL-6R (coding, C) and the 3'UTR (U). In sIL-6R™M" mice, exon 9 and exon 10 were fused. The natural stop codon of IL-6R was
replaced by a 2A-GFP-KDEL coding sequence named GFP (green) followed by the 3’UTR of exon 10. After Cre-recombination, the
E9-E10-GFP cassette is deleted, resulting in the generation of a mRNA that codes only for the soluble IL-6R. Schematic illustration
of classic and/or trans-signaling in wild-type (wt)and SIL-6R™ (B) and sIL-6R™"* mice (C). IL-6 (gray) in complex with membrane-
bound IL-6R (blue) and gpl30 (green) induce classic signaling. (B) In mice, sIL-6R (blue) is produced only by shedding of the
membrane-bound IL-6R by ADAM proteases (red). (C) In sIL-6R' mice, sSIL-6R is produced and sccreted. 1L-6 in complex with
sIL-6R and gp130 induce trans-signaling. (D) PCR to characterize the genomic organization of the IL-6R locus in wt, sIL-6R™, and
sIL-6R"" mice. Primer combinations and PCR products are indicated. (E,F) Quantification of IL-6R mRNA level in wt, sIL-6RAT
and sIL-6R"* mice using the indicated primer combinations (n = 3). (G) Western blot against GFP on liver lysates from wt (n = 2),
sIL-6R™™ (1 = 4), and sIL-6R™" (n = 2) mice. (H) Immunohistochemistry of 1L-6R in liver samples from wt, 1L-6R™, and sIL-6R""
mice (n = 2). (1,]) Expression of membrane-bound IL-6R was measured by flow cytometry from blood on two cell populations (CD3*
cells [1] and monocytes [J]) from wt (black bar), sLL- gRAM (gray bar), sIL-6R""" (red bar), and IL-6R ™ (brown bar) mice. Results are
presented as mean + SEM of 4 animals/group. (K) The serum levels of sIL-6R in wt (black bar), sIL-6RfV! (gray bar), sIL-6R"" (red
bar), sIL-6R*"* LysM-Cre (dark gray}, and sIL-6R"* Alb-Cre (green bar) mice were determined by ELISA. Results are presented as
mean * SEM of at least 7 animals/group. (L) The amount of sIL-6R in sIL-6R™" (red bar) was compared with the sum of sIL-6R in
sIL-6R"* LysM-Cre (dark gray) and sIL-6R™* Alb-Cre (green bar) mice based on ELISA results.
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sIL-6R after Cre-recombination in sIL-6R"* mice
(Fig. 1L], Supporting Fig. 52). Next, determination
of the soluble IL-6R levels in the serum by enzyme-
linked immunosorbent assay (ELISA) showed that
wild-type and sIL-6RY mice had almost identi-
cal sSIL-6R serum levels of approximately 11 ng/mL.
Interestingly, sIL-6R"* mice had about 33-fold
increased sIL-6R levels of approximately 363 ng/mL
(Fig. 1K). The increased sIL-6R level might at least
to some degree also be caused by increased IL-6R
mRNA levels in sIL-6R"* mice. A previous report
demonstrated that serum sIL-6R was originating
almost completely from hepatocytes and neutrophils/
macrophages, because Alb-Cre-recombined IL-6R”
mice had 67.95% and LysMCre-recombined IL-6R™
mice displayed 39.95% of the sIL-6R levels of wild-
type mice (Supporting Table §1).%Y Here, we also
crossed our sIL-6RY" mice with the highly cffec-
tive Alb-Cre and LysM-Cre lines (Supporting Fig.
S3A,B).%2 Homozygous sIL-6R"" LysM-Cre
and sIL-6R”*Alb-Cre mice had about 129 ng/ml
and 128 ng/ml sIL-6R in the serum, respectively
(Fig. 1L). The sum of these sIL-6R serum levels was
about 257 ng/mL, representing only about 70.8% of
the sIL-6R levels detected in sIL-6R** mice (Fig. 1L,
Supporting Table S1). These data suggest that
although the native sIL-6R in wild-type mice were
derived primarily from hepatocytes and monocytes/
neutrophils, other cells also expressed appreciable
amounts of IL-6R, even though they did not contrib-
ute to sIL-6R level in wild-type mice.

SIL-6R IN SIL-6R"* MICE
MEDIATED IL-6 SIGNALS
THROUGH TRANS-SIGNALING

Injection of recombinant IL-6 in wild-type mice
showed that the colon, and to a lesser extent also the
liver and lung, are targeted by IL-6 trans-signaling."")
Our sIL-6R"* mice have a 33-fold higher sIL-6R
serum level compared with wild-type mice (Fig. 1K),
suggesting that sIL-6R""* mice efficiently and specif-
ically execute trans-signaling. To test this, sTT.-6R*"*
mice were injected with 5 pg recombinant IL-6, and
phosphorylation of signal transducer and activator
of transcription 3 (pSTAT3) was analyzed in the
colon, liver, and lung. IL-6 induced sustained STAT3
phosphorylation in these organs as demonstrated by
immunohistochemical staining and western blotting
compared with control mice (Fig. 2A-L, Supporting
Fig. S4A-C). Moreover, mice were co-injected with 50
pg sgp130Fc or 250 pg neutralizing IL-6 monoclonal
antibody (mAb) to block IL-6 signaling. Co-injection
of IL-6 with sgp130Fc or IL-6 mAb significantly
blocked pSTATS3 in colon, liver, and lung (Fig. 2A-L,
Supporting Fig. S4A-C). To analyze whether the
acute phase response differs between wild-type and
sIL-6R""* trans-signaling mice, we injected per mouse
5 pg IL-6 and analyzed the expression of the acute
phase protein serum amyloid A2 (Saa2) by quanti-
tative real-time PCR. As shown in Fig. 2M, induc-
tion of Sza2 expression in wild-type and sIL-6R**
trans-signaling mice was almost identical, suggesting
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that at least in the liver, IL-6 trans-signaling can
completely compensate for the loss of IL-6 classic
signaling. Our results demonstrate that the sIL-6R
in sIL-6R"" mice is biologically active and trans-
mits IL-6 signals through trans-signaling, thereby

|
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o
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indicating that forced IL-6 trans-signaling can acti-
vate all cells of the organism. Thus, endogenous 1L.-6
trans-signaling is a very efficient cellular activation
mode, which is specifically triggered during patho-
physiological conditions.
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FI1G.2. Injectionof1L-6in sIL-6R"* mice induced 1L-6 trans-signaling, sIL-6R"* mice were intraperitoneally injected with phosphate-
buffered saline, 1L-6, 1L-6, and sgp130Fc or IL-6 and IL-6 mAb. Mice were sacrificed 90 minutes after injection (n = 3). (A) Sections
of paraffin-embedded liver tissue were stained for pSTAT3. Higher magnification of cach picture is indicated by dotted lines. (B)
Quantification of (A) was performed from 10 visual fields per mouse (total of 30 visual fields). Results are presented as mean + SEM
of 3 animals/group. ***P < 0.001. (C) Liver lysates were prepared and stained for STAT3, pSTATS3, and y-tubulin by western blotting.
(D) Quantification of (C) of all samples (n = 3). Results are presented as mean + SEM of 3 animals/group. (E) Sections of paraffin-
embedded colon were stained for pSTAT3. Higher magnification of cach picture is indicated by dotted lines. (F) Quantification of
(E) was performed from 10 visual ficlds per mouse (total of 30 visual fields). Results are mean + SEM of 3 animals/group. ***P < 0.001.
(G) Colon lysates were prepared and stained for STAT3, pSTAT3, and y-tubulin by western blotting. (H) Quantification of (G) of
all samples. Results are presented as mean + SEM of 3 animals/group. *P < 0.05. (1) Sections of paraffin-embedded lung tissue were
stained for pSTAT3. Higher magnification of each picture is indicated by dotted lines. (J) Quantification of (I} was performed from
10 visual fields per mouse (total of 30 visual fields). Results are presented as mean = SEM of 3 animals/group. **P < 0.001. (K) Lung
lysates were prepared and stained for STAT3, pSTATS3, and y-tubulin by western blotting. (L) Quantification of (K) for all samples.
Results are presented as mean =+ SEM of 3 animals/group. *P < 0.05, **P = 0.001. (M) Quantification of §442 mRNA level in wt and
sIL-6R"" mice after injection of 5 pg IL-6 (n = 3).

SIL-6R"* MICE FULLY
COMPENSATED DISABLED IL-6
CLASSIC SIGNALING BY IL-6
TRANS-SIGNALING DURING
LIVER REGENERATION AFTER
PHX

PHX was performed in wild-type, sIL-6RYY
sIL-6R**, and T1.-6R™" mice to analyze whether IT.-6
trans-signaling is sufficient for normal liver regenera-
tion. Overall survival rate of wild-type and sIL-6R™™
mice 12 days after PHX was about 80%, whereas IL-6R
deficient mice had an overall survival rate of only
20%. Survival of sIL-6R*"* trans-signaling mice after
PHX was identical to wild-type mice and sIL-6R™
mice (Fig. 3A). Moreover, large necrotic areas were
only found in the liver of IL-6R™ mice but not in
wild-type, sIL-6R™ and sIL-6R"" mice (Fig. 3B).
Consequently, the necrotic score was increased in
IL-6R”" mice in comparison to wild-type, sIL-6R™",
and sIL-6R""* mice (Fig. 3C). There was, however, only
a trend for increased alanine aminotransferase (ALT)/
aspartate aminotransferase (AST) levels 12 and 24
hours following PHX in [L-6R”" mice compared with
wild-type, sIL-6R™" and sIL-6R** mice (Supporting
Fig. S5A,B). Liver weight to body weight ratio 12, 24,
and 168 hours after PHX was not different between
wild-type and sIL-6R”* mice (Supporting Fig. S6A).
Next, we analyzed sIL-6R levels following PHX in
wild-type, IL-6R™, and sIL-6R*"* mice. As reported
previously(m and supported by our data, sIL-6R level
in wild-type mice increased 1.5 fold from 11 ng/mL
to 15 ng/mL 24 hours after PHX (Fig. 3D), whereas
no sIL-6R was detectable in I1.-6R™" mice at any

time after PHX (Fig. 3E). Importantly, sIT.-6R"*
mice also showed a 3.2-fold increase of sIL-6R from
372 ng/mL to 1,200 and 620 ng/mL 12 hours and
24 hours after PHX (Fig. 3F). As shown previously,
the sIL-6R in sIL-6R"* mice was not generated by
ADAM-mediated shedding, but by direct secretion
of sIL-6R. Therefore, we analyzed mRNA levels of
IL-6R following PHX in wild-type and sIL-6R**
mice in liver and spleen by quantitative real-time PCR.
IL-6R mRNA levels were significantly increased in
livers of wild-type mice and sIT.-6R** mice by a fac-
tor of 6.6 and 5.5, respectively (Fig. 3G), suggesting
that transcriptional activation of 1L-6R is the main
driving force of sIT.-6R generation in sIL-6R"* mice
following PHX. Increased transcription likely con-
tributes to increased sIL-6R level in wild-type mice
following PHX; however, ectodomain shedding is the
final trigger for sIL-6R generation. IL-6R mRNA
levels were not increased in the spleen of wild-type
mice and in sIL-6R"* mice only after 24 hours
(Fig. 3H). Because in wild-type mice the membrane-
bound IL-6R is converted into sIL-6R by ectodomain
shedding, production of sIL-6R will be delayed in
comparison to direct secretion of sIT-6R in sIT.-6R"*
mice, which might be the reason for the faster increase
of the sIL-6R protein level in sIL-6R"" mice com-
pared with wild-type mice (Fig. 3D,F).

Next, we analyzed STAT3 phosphorylation in the
liver of wild-type, IL-6R™, and sIL-6R"* 12 hours
and 24 hours following PHX. STAT3 phosphoryla-
tion was comparable in wild-type and sIT.-6R** mice
as determined by immunohistochemistry (Fig. 4A).
Importantly, IL-6R™" mice had significantly reduced
pSTAT3 levels in the liver 12 hours and 24 hours
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FIG. 3. Abrogated liver regeneration in 1L-6R™ but not in sIL-6R"* mice after 70% PHX. (A) Mice were subjected to 70% PHX
and survival was monitored for 12 days (wt [n = 10], IL-6R™ [n = 10], sIL-6R™" [n = 10], and sIL-6R"" [n=10]). (B) Liver sections
from wt, IL-6R"", and sIL-6R"" were stained with hematoxylin and cosin (H&E) (n = 3). Necrotic areas are marked with arrows. (C)
Quantification of (B). **P = 0.01, **P = 0.001. (D-F) Zero, 12, and 24 hours after PHX,, the sIL-6R serum level was determined in
wt (D), IL-6R" (E), and sIL-6R"" (F) mice by ELISA (n = 5). *P = 0.01. (G) Total RNA was extracted from liver of wt and sIL-
6R"* mice 0, 3, 6, 12, and 24 hours after PHX, and mRNA levels of 1L-6R were determined by quantitative real-time PCR (n = 5).
*P<0.01,**P= 0.001. (H) Total RNA was extracted from spleen of wt and sIL-6R"* mice 0, 3, 6, 12, and 24 hours after PHX,, and
mRNA levels of IL-6R were determined by quantitative real-time PCR (n = 5). **P < 0.001.

following PHX (Fig. 4A-D, Supporting [ig. S7). pro]iferation.(zg) Immunohistochemical staining of

Proliferating cell nuclear antigen (PCNA) is required PCNA in liver sections 24 hours after PHX revealed
for DNA synthesis during replication and hepatocyte  a reduction of about 76.4% of PCNA-positive cells in



Chapter VI: IL-6 trans-signaling controls liver regeneration ...

112

HEPATOLOGY, Vol.0, No.0, 2019 FAZEL MODARES, POLZ, ET AL.
IL-6R”" mice compared with wild-type mice, whereas Taken together, our data demonstrate that IL-6
PCNA levels of wild-type and IL-6R"" mice were trans-signaling can fully compensate for the loss of clas-
comparable (Fig. 4E,F). sic signaling to ensure liver regeneration following PHX.
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FI1G.4. Abrogated pSTAT3 and PCNA levels in IL-6R" but not in sIL-6R""* mice after 70% PHX. (A) Sections of paraffin-embedded
liver tissues from wt, IL-6R™", and sIL-6R*"* were stained for pSTAT3 0, 12, and 24 hours after PHX. Representative examples are
shown (n = 5 mice per group). (B) Quantification of (A) from 10 visual ficlds of every mouse (n = 5). **P < 0.001. (C) Liver lysates from
IL-6R™ and sIL-6R"" were prepared and stained for pSTAT3 in western blotting 12 hours after PHX. Representative examples are
shown (n = 5 mice per group). (D) Quantification of (C) from western blots of 5 mice for each time point. *P < 0.05. (E) Sections of
paraffin-embedded liver tissues from wt, IL-6R", and sIL-6R"" were stained for PCNA 12 and 24 hours after PHX. Representative
visual fields are shown (n = 5 mice per group). (F) Quantification of (E) from 10 visual fields of every mouse (n = 5). ***P < 0.001.
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FIG. 5. Abrogated liver regeneration in mice treated with 1L-6 mAb and sgp130Fc after 70% PHX. (A) Mice were subjected to 70%
PHX and survival was monitored for 12 days (wt [n=10], wt+sgp130Fc [n = 10], and wt+IL-6 mAb [n = 10]). (B) Liver sections from
wt, wt+sgpl30Fc, and wi+IL-6 mAb mice were stained with H&E (n = 3). Necrotic areas are marked with arrows. (C) Quantification
of (B). *P < 0.05, **P < 0.01.
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SELECTIVE INHIBITION OF IL-6 in an overall survival of 10% after 12 days (Fig.

TRANS-SIGNALING PREVENTS 5A), which is in good agreement with the survival
LIVER REGENERATION of IL-6R™" mice after PHX (Fig. 3A). Importantly,
FOLLOWING PHX selective inhibition of IL-6 trans-signaling by repeti-

tive intraperitoneal injection of a low dose of 50 pg/

Discrimination between classic and trans-signaling  mouse sgp130Fc (1.25 mg/kg) resulted in a compara-

is also possible by comparing the functional outcome  bly low survival rate as observed for mice treated with
of classic and trans-signaling blockade by IL-6 and/ 250 pg/mouse IL-6 mAb (6.25 mg/kg) after PHX
or IL-6R antibodies with the specific blockade of (Fig. 5A). In contrast, an even lower dose of 10 pg/
trans-signaling by sgp130Fc. Therefore, we injected a2 mouse sgp130Fc (0.25 mg/kg) had no effect on sur-
high dose of monoclonal antibodies directed against vival (Supporting Fig. S8). Histological examination of
IL-6 (250 pg/mouse) and a low dose of sgpl30Fc  the overall liver damage 12 hours and 24 hours after
(50 pg/mouse) into wild-type mice, to independently PHX showed larger necrotic areas in mice treated with
characterize the contribution of classic and trans- IL-6 mAb and sgp130Fc (1.25 mg/kg) compared with
signaling to liver regeneration. A total of 50 pg/mouse  control mice (Fig. 5B). Consequently, the necrotic score
(1.25 mg/ke) sgpl30Fc was chosen because previous  was increased in IL-6 mAb and sgp130Fc treated mice
studies showed selective inhibition of trans-signaling  in comparison to control mice (Fig. 5C). There was,
for this dosage, whereas lower amounts had no effect.®>*”  however, just a trend for increased ALT/AST level
Abrogation of IL-6 classic and trans-signaling 12 hours and 24 hours after PHX in IL-6 mAb
in wild-type mice treated with neutralizing IL.-6 mAb  treated mice compared with wild-type and sgp130Fc
(250 pg/mouse) every 2 days following PHX resulted treated mice (Supporting Fig. S5A,B). Liver weight

10
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to body weight ratio 12 hours and 24 hours after
PHX was not different between experimental groups
(Supporting Fig. S6B). Due to the low survival rate
of IL-6 mAb-treated and sgp130Fc-treated mice liver
weight to body weight ratio at a later time point was
not determined. Next, we analyzed STAT3 phosphor-
vlation in the liver following PHX in mice treated
with IL-6 mAb, sgp130Fc, or left untreated. STAT3
phosphorylation in the liver was decreased after global
blockade of IL-6 signaling for 12 hours and 24 hours
compared with control mice, as determined by immu-
nohistochemistry (Fig. 6A,B) and western blotting
(Fig. 6C-F, Supporting Fig. S9A,B). Importantly,
selective inhibition of IL-6 trans-signaling also pre-
vented phosphorylation of STAT?3 in the liver 12 hours
and 24 hours after PHX (Fig. 6A-F, Supporting Fig.
S9A,B). Immunohistochemical staining of PCNA in
liver sections 24 hours following PHX demonstrated
a 94.1% reduction of PCNA-positive cells after global
blockade of IL-6 signaling and a 85.4% reduction
after selective inhibition of IL-6 trans-signaling com-
pared with control mice (Fig. 6G,H). Taken together,
our data showed that IL-6 trans-signaling is the main
pathway controlling liver regeneration following PHX.

IL-6 TRANS-SIGNALING INDUCES
HGF EXPRESSION IN MICE
FOLLOWING PHX AND IN
HEPATIC STELLATE CELLS

HGF is important for induction of hepatocyte
proliferation®  and was up-regulated following
PHX in wild-type mice in the liver at the mRNA
level (Fig. 7A). Importantly, inhibition of classic
and trans-signaling by IL-6 mAb or trans-signal-
ing by sgp130Fc prevented up-regulation of Hgf on
mRNA level in wild-type mice following PHX (Fig.
7A). Up-regulation of Hgf was, however, abrogated in
I1.-6R™ mice (Fig. 7A,B), but not in sIL.-6R*"* mice
(Fig. 7A,B). Next, we determined HGF level in the
liver lysate of mice following PHX. Whereas wild-
type and sIL-6R”* mice had significantly increased
HGF-level 12 hours and 24 hours following PHX, the
IL-6 mAb-treated, sgpl30Fc-treated, and IL-6R”
mice failed to show up-regulation of HGF (Fig. 7C).
These data indicate that HGF up-regulation follow-
ing PHX is dependent on IL-6 trans-signaling.

Hepatic stellate cells (HSCs) are a known source
of HGF following PHX.®Y To answer the question

FAZEL MODARES,POLZ, ET AL.

of whether IL-6 classic and/or trans-signaling trig-
ger expression of HGF, rat HSCs were analyzed.
Interestingly, HSCs express IL-6R and Gp130 on the
mRNA level as determined by quantitative real-time
PCR (Fig. 8A). Expression of IL-6R protein was ver-
ified by immunohistochemical staining (Fig. 8B), and
again IL.-6R was found primarily in intracellular com-
partments and only sparingly on the cell membrane.
Despite the expression of 1L-6R, only the stimula-
tion of HSCs with hyper-IL-6 but not with IL-6 or
sgpl30Fc, resulted in increased of Hgf mRNA level
(Fig. 8C). Even though increased HGF protein level
found only in lysates of hyper-1L-6 stimulated HSCs
(Fig. 8D), release of HGF was not stimulated by IL-6
trans-signaling in this in vitro setting (Fig. 8E). Our
data show that IL-6 trans-signaling induced HGF
production in HSCs, but suggested that in addition
to IL-6 trans-signaling, additional factors might be
needed to induce release of HGF from HSCs.

Discussion

We present three major findings in this study that
define the role of IL-6 signaling in the process of
liver regeneration. First, our data suggest that I1L-6
trans-signaling is the main mechanism of [L-6 action
in liver regeneration following PHX in mice. Second,
the trans-signaling sIL-6R™" mice represent a genetic
strategy to phenocopy substrate-selective hyperactiva-
tion of ectodomain shedding that is executed primarily
by ADAM proteases.® Third, using our trans-signaling
sIL-6R"" mice, we independently demonstrate that
IL-6 trans-signaling controls liver regeneration, and
show that classic signaling is absolutely dispens-
able for this process in this setting. Exemplified on
the basis of liver regeneration, the trans-signaling
SsIL-6R"" mouse model is a valuable tool to study
IL-6 trans-signaling under physiological and non-
physiological conditions, including acute and chronic
inflammation and cancer development. This strategy
might also serve as a blueprint to study increased
release of other ADAM substrates. Of note, it is not
possible to study most substrates in ADAM overex-
pressing mice, because the phenotypes in these mice
would be dominated by only a subset of deminating
substrates, including EGFR ligands, NOTCH, and
TNEF. Our strategy also complements existing models,
including mice with noncleavable ADAM-substrates,

11
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as shown for L-selectin, which is an elegant way to

analyze diminished ADAM activity for a selected
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substrate.??
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The genetic conversion of a transmembrane pro-
tein into a soluble protein to phenocopy single-
substrate ADAM activation has to be carefully
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FIG. 6. Abrogated pSTAT3 and PCNA signals in wt mice treated with sgp130Fc and IL-6 mAb after 70% PHX. (A) Sections of
paraffin-embedded liver tissues from wt, wt+sgp130Fc, and wt+IL-6 mAb mice were stained for pSTAT3 0, 12, and 24 hours after
PHX. Representative examples are shown (n =5 mice per group). (B) Quantification of (A) from 10 visual fields of every mouse (n=5).
#**P < 0.001. (C) Lysates from liver tissues from wt, wt+sgpl30Fc, and wt+1L-6 mAb mice were prepared and stained for pSTAT3
in western blotting 12 hours after PHX. Representative examples are shown (n = 5 mice per group). (I2) Quantification of (E) from
western blots of 5 mice each. ***P < 0,001. (E) Lysates from liver tissues from wt, wt+sgpl 30Fc, and wt+IL-6 m Ab mice were prepared
and stained for pSTAT3 in western blotting 24 hours after PHX. Representative visual fields are shown (n = 5 mice per group).
(F) Quantification of (C) from western blots of 5 mice each. ***P = 0.001. (G) Sections of paraffin-embedded liver tissues from wrt,
wi+sgpl30Fc, and wt+I1L-6 mAb mice were stained for PCNA 12 and 24 hours after PHX. Representative examples are shown (n=5
mice per group). (H) Quantification of (G) from 10 visual fields of every mouse (n = 5), **P < 0.01, ***P < 0.001.
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FIG. 7. Abrogated HGF expression in mice treated with sgp130Fc and IL-6 mAb after 70% PHX. (A) Total RNA was extracted from
liver tissues of wt, wt+sgp130Fc, and wt+I1L-6 mAb mice 0, 12, and 24 hours after PHX. Subsequently, the RNA levels of Hgfwere
determined by quantitative real-time PCR (n = 5). **P < 0.001. (B) Total RNA was extracted from liver tissues of sIL-6R™* and 1L-
6R" mice 0, 12, and 24 hours after PHX. Subsequently, the RNA levels of Hgf were determined by quantitative real-time PCR (n = 5).
*#P<0.01, **P < 0.001. (C) Total HGF protein levels in liver lysates of wt, we+sgpl30Fc, wt+IL-6 mAb, sIL-6R", and 1L-6R™ mice
0, 12, and 24 hours after PHX were determined by ELISA (n = 5). **P < 0.001.
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designed, because deletion of exons/introns might sIL-6R mRNA after Cre-mediated recombination.
also interfere with the generation and stability of the  As a consequence, the sIL-6R in IL-6R"" mice con-
respective mRNA. Importantly, genetic fusion of exon  tained the three additional C-terminal amino acids
9 and 10 and introduction of a 2A-GFP cassette did  (Gly, Lys, and Arg) after the last original amino acid
not influence endogenous IL-6R mRNA and protein  Leuy,, coded by the last codon of exon 8 and located
production. However, partial deletion of the 3'UTR of  close to the C-terminal end of the stalk region of the
the IL-6R by Cre-mediated recombination resulted in  translated IL-6R. Based on structural evidence, it is
increased sIL-6R-level, suggesting that negative reg-  highly unlikely that these three additional C-terminal
ulatory elements are located in the IL-6R 3'UTR. amino acids will influence the function of the solu-
Moreover, in the case of IL-6R, the genetically engi-  ble IL-6R, as the IL-6 binding domains of the IL-6R
neered soluble IL-6R was terminated by a stop codon  are not altered. ¥ Moreover, the naturally occur-
in the former intron 8, which becomes part of the ring and biologically active human sIL-6R, which is
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*P < 0.05. (D) Total HGF protein in lysates of rat HSCs stimulated for 48 hours with IL-6, hyper-1L-6, or sgp130Fc was determined
by ELISA (n = 4). *P < 0.05. (E) Total HGF protein in cell culture supernatants of rat HSCs stimulated for 48 hours with IL-6, hyper-
1L-6, or sgpl30Fc was determined by ELISA (n = 3). *P < 0.05. Abbreviations: DAPI, 4',6-diamidino-2-phenylindole.
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produced by differential splicing, contains 10 addi-
tional C-terminal amino acids (GSRRRGSCGL) that
are not present in the membrane-bound IL-6R.®Y
These additional amino acids showed no effect on the
binding affinity of IL-6 to the alternatively spliced
sIL-GR-prDtein.(ﬂ’S) In mice, the situation is much less
complicated, because the murine IL-6R is not differ-
entially spliced and the sIL-6R is only produced by
ectodomain shedding.(%) Importantly, our experiments
showed that the sIL-6R in trans-signaling sIL-6R""*
mice was biologically active, because injection of IL-6
efficiently induced trans-signaling in sIL-6R"* mice.

In wild-type mice, sIL-6R serum levels are in
the range of 6-15 ng and may rise 2-fold to 3-fold
under stress conditions.®**"*% Previously, it was cal-
culated that all circulating sIL-6R in wild-type mice
is derived from neutrophils/macrophages and hepato-
cytes, suggesting that these cells are also the main pro-
ducer of membrane-bound 1L-6R.®? However, here
we show by using LysM- and Alb-Cre-recombined
sIL-6R"" mice that only about 70.8% of all IL-6R

14

is produced by neutrophils/macrophages and hepato-
cytes, indicating that the remaining 29.2% must be
expressed by other cell types (Fig. 1]). Even though
neutrophils/macrophages and hepatocytes generate
more than 90% of the naturally formed sIL-6R in the
serum, our data indicate that they express proportion-
ally less membrane-bound IL-6R. It might just be
that neutrophils/macrophages and hepatocytes release
proportionally higher amounts of sIL-6R compared
with other cells that also express IL-6R. Neutrophils
are exceptionally efficient sIL-6R releasers. They have
a very short life span before they rapidly undergo
apoptosis. Apoptosis, however, is an efficient trigger
of ADAM17-mediated ectodomain shedding of the
IL-6R.%”

Many studies highlight the critical role of IL-6
in liver regeneration after PHX, with the consis-
tent finding that IL-6 deficient mice show impaired
liver regeneration based on reduced proliferation of
hepatocytes accompanied by a high mortality rate of
40%-80% versus 10% in wild-type mice, -21620:39)
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After PHX, gut-derived factors including lipopoly-
saccharide activate liver-resident Kupffer cells to
secrete 1L-6 in a TNFa-dependent manner.”) The
parallel increase of sIL-6R after PHX® opens a
functional window for IL-6 trans-signaling. Because
hepatocytes express much more gp130 than IL-6R,
the increased presence of IL-6 and sIL-6R will
result in more gp130 activation and a stronger 1L-6
signal. This is accompanied by the longer duration
of the IL-6 signal when mediated through trans-
signaling, because of the slower internalization of
IL-6/sIL-6R complexes compared with IL-6/mem-
brane-bound IL-6R complexes.(‘m) Our previous
study using hydrodynamic injection of a sgp130Fc
expression plasmid was designed to study the first 48
hours of liver regeneration after PHX.®? Although
it lacks a proper anti-IL-6 control, it already sug-
gested a positive trans-signaling.®”
The data presented here suggest that blocking
of IL-6 trans-signaling is as detrimental for liver
regeneration after PHX as blocking of global 1L-6
signaling. Nevertheless, all i vivo data with the trans-
signaling inhibitor sgp130Fc have to be interpreted
with caution, because we previously showed in vitro
that high concentrations of sgpl130Fc also cross-
inhibit classic signaling at molar ratios for sIL-6R/
IL-6 larger than 1, which are typically found in the
serum of healthy and moderately inflamed mice.®"
Importantly, recent studies defined the minimal
effective dose of sgpl30Fc in vive, clearly differen-
tiating between classic and trans-signaling effects in
a sepsis and a bacterial infection model.***” Here
we used 1.25 mg sgp130Fc/kg body weight, which
is at the lower border of this minimal effective dose,
to ensure inhibition of trans-signaling, but largely to
exclude cross-inhibition of classic signaling.
Previously, failure of liver regeneration after PHX
was shown in IL-6 antibody-treated” and IL-6
deficient mice.” Consistently IL-6R deficient mice
were compromised in liver regeneration following
PHX in our setting.”) This is noteworthy, because
in a murine skin wound-healing model, only IL-6
but not IL-6R deficient mice showed delayed heal-
ing,** which might be explained by the ability of the
IL-6R to bind also to at least two other cytokines
of the IL-6 family, CNTF and p28.“** Thercfore,
our working hypothesis was that after PHX, IL-6R
deficient mice might also behave like wild-type mice
and not like IL-6 deficient mice, which also warrants

role for
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the requirement to include treatment with IL-6R
mAbs as additional control in PHX. Importantly,
IL-6R deficient mice showed the same phenotype
after PHX as IL-6 deficient mice, exhibiting reduced
STAT3 phosphorylation and hepatocyte proliferation
as determined by reduced expression of PCNA.

HGEF is produced by HSCs and plays an important
role in the induction of hepatocyte proliferation follow-
ing PHX.?” Although HSCs express Gp130 and IL-
6R, production of HGF was stimulated only through
IL-6 trans-signaling. The reason for this phenomenon
is unknown, but immunohistochemical staining of
IL-6R in HSCs revealed that most IL-6R proteins are
present in intracellular compartments, which might pre-
vent efficient induction of classic signaling.

In summary, our data show that IL-6 trans-signaling
is the main driver of liver regeneration following PHX.
Although hepatocytes  express
IL-6R and are therefore also a target for classic signal-
ing, the signal induced through the membrane-bound
IL-6R on hepatocytes alone is not sufficient to induce
a proliferative response. In wild-type mice, the com-
bined injection of IL-6 plus sIL-6R, but not of 1L-6
alone, accelerates liver regeneration after PHX.!?
Our study now provides functional proof that IL.-6
trans-signaling has not only the potential to acceler-
ate liver regeneration, but it is critically involved in
normal liver regeneration, which might have implica-
tions for the use of anti-1L-6/IL-6R therapeutics in
the clinic and for the forthcoming clinical evaluation
of sgp130Fc.

membrane-bound
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Pluripotent stem cells possess two remarkable propetties: pluripotency or the ability to give rise into all
the tissues of adult body and immortality or indefinite self-renewal. The derivation of hESCs from human
embryo (Thomson et al., 1998) and the development of hiPSCs by reprogramming somatic cells (Takahashi
et al., 2007) are the main technological breakthroughs in biomedical research. Investigating the molecular
basis of hESCs or hiPSCs as well as studying how pluripotency is maintained and how lineage commitment
is regulated, are crucial not only for understanding the human embryogenesis and differentiation into
different cell types but also for human disease modeling, drug discovery and stem cell therapy; these
potentials are on the beginning to be identified (Pera and Tam, 2010). Therefore, it is noteworthy to search
for the key signaling pathways that govern pluripotent state of hiPSCs. Moreover, studying the pathological
mechanisms underlying human diseases plays an essential role in discovering novel therapeutic strategies.
Disease modeling using primary cells from patients is useful for developing therapeutic strategies and
actiology of human diseases. However, there are some limitations such as lack of accessible source of
primary cells from patients. hiPSCs are an attractive alternative since they can easily be reprogrammed from
different cell types, such as skin fibroblasts and blood cells, from different patients. Due to properties of
hiPSCs, self-renewal and potential to differentiate into nearly any cell type in the body, patient-specific-
iPSCs can provide wide range of disease-relevant cells and various cell types that were previously not
possible to access like neurons and cardiomyocytes (Shi ef al., 2017).

Small GTPases of RAS superfamily are central nodes of intracellular signaling which are involved in
almost every aspect of cell biology. This family composed of different families (RAS, RHO, RAN, RAD,
RAG, RAB and ARF) with specific expression, regulation and effector proteins which can activate different
signaling pathways and exert their cellular function.

This doctoral thesis provided new insights into molecular mechanism of pluriotency in hiPSCs with the
focus of bFGF downstream signaling (chapter II) continued by expanding the knowledge about molecular
properties and regulation of RAS GTPases (chapter III). In chapter IV, the advantage of hiPSC is
introduced by reprogramming dermal fibroblasts from a NS patients with HCM due to a RAF1
mutation. Specific hiPSCs were differentiated into cardiomyocytes and the mechanism involved in
HCM was investigated in details. In chapter V, another developmental disorder, fragile X mental
retardation, is introduced and the interaction networks of a large number of novel FMRP binding proteins
are studied in details.

7.1 hiPSCs and pluripotency

This thesis provides novel molecular insight into the regulation of pluripotency maintenance of
hiPSCs (chapter II). Our findings indicate that among the signaling pathways downstream of bFGF,
the MAPK pathway plays a critical role in maintaining pluripotency, whereas strong activation of
p38 and JAK/STATS3 signaling is linked to differentiation of hiPSCs. In contrast, no relevant changes
occurred in the activation of AKT or JNK pathways from pluripotent hiPSCs towards differentiated
cells. Moreover, we identified NRAS among the RAS paralogs as the likely link between bFGF
receptor and the MAPK pathway that maintains hiPSCs pluripontency. Each signaling will be
discussed in details below.

MAPK signaling pathway and pluripotency — Different studies suggest pleiotropic effects of
bFGF activating different pathways in hESCs either directly or indirectly by inducing paracrine



Chapter VII: General discussion 123

signaling via iMEFs in coculture (Lanner and Rossant, 2010). For investigating the mechanistic
effects of bFGF, we compared the signaling pathways in undifferentiated vs. differentiated hiPSCs
obtained via bFGF withdrawal. FGF has been reported to activate multiple downstream signaling
pathways, including MAPKs (ERK, JNK and p38), PI3K and JAK/STAT (Bottcher and Niehrs,
2005). Our study demonstrates the activation of MEK-ERK1/2 pathway in undifferentiated hiPSCs
and a remarkable decrease in the p-MEK and p-ERK1/2 levels by withdrawing bFGF which induces
their differentiation. Previously, Li and colleagues have shown that inhibiting FGF signaling induces
hESC differentiation into primitive endoderm and trophectoderm (Li et al., 2007). However, Singh
et al. have reported a pro-differentiation role of MAPK pathway in hESCs (Singh et al., 2012). These
conflicting reports could be due to different culture conditions, cell lines or even pathway dose-
dependency. Our data argue against a pro-differentiation role of the MAPK pathway. We used in this
study a system for culturing hiPSCs with iMEF-CM that was supplemented with 100 ng/ml bFGF
which was different from Li et al. and Singh et al. (Li et al., 2007; Singh et al., 2012). Under these
conditions we are able to dissect direct and paracrine iMEF-mediated influences of bFGF without the
risk of confounding effects based on sample contamination with feeder cells. Our data clearly showed
that MAPK pathway positively regulates hiPSC pluripotency.

PI3K/AKT signaling pathway and pluripotency — PI3K/AKT activation by bFGF has also been
shown to be important for the maintenance of the undifferentiated state of hESCs (Eiselleova et al.,
2009). This pathway contributes to a variety of important cellular processes including nutrient uptake,
anabolic reactions, proliferation and survival (Yu and Cui, 2016). Proliferation and survival can be
controlled by mTORC1 mediated activation of S6K and mTORC2 mediated inhibition of FOXO-1,
respectively (Laplante and Sabatini, 2012; Chiang and Abraham, 2005). Armstrong and colleagues
have shown that PI3K/AKT is important for maintaining pluripotency in hES-NCL1 cells and the key
components of this pathway, such as p-PDK1, p-PTEN, p-AKT?*% and p-AKT*” are downregulated
during differentiation to embryoid bodies (Armstrong et al., 2006). Li and coworkers have shown
that PI3K/AKT pathway, downstream of bFGF, is highly active in hESCs, such as H1 and H9 cells,
which supports hESC self-renewal and pluripotency (Li et al., 2007). Other studies have implicated
the survival and anti-apoptotic role of PI3K/AKT in hESCs and hiPSCs (Hossini ef al., 2016;
Romorini et al., 2016; Singh et al., 2012). In our study, two axes of AKT activation were investigated,
PI3K-PDK1-AKT-S6K and mTORC2-AKT-FOXO1 as downstream pathways of bFGF, which is
different from previous reports that just showed the importance of PI3K/AKT in maintenance of
pluripotency and not as a target of bFGF signaling (Hossini et al., 2016; Romorini et al., 2016; Singh
etal.,2012). Our results showed that there was no change in the activation level of these two pathways
following hiPSCs differentiation. This suggests that AKT-S6K and AKT-FOXO1 signaling remain
unaffected in the presence and absence of bFGF during a long-term culture which may be due to the
presence of knockout serum replacement (KSR) in iMEF-CM. KSR contains high levels of insulin
that can activate AKT pathways (Singh et al., 2012). This rather suggests that PI3K/AKT is not
critical for maintaining the undifferentiated state of hiPSCs and most probably plays an anti-apoptotic
role required for survival of hiPSCs rather than their pluripotency.

p38 MAPK and JNK signaling pathways and pluripotency — In addition to MAPK and
PI3K/AKT pathways, we also analyzed other signaling pathways, including p38 MAPK and JNK,
both can be activated by FGF signaling (Lanner and Rossant, 2010). p38 activation has been observed
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in response to a variety of extracellular stresses and mitogenic stimuli which lead to different cell-
specific responses, including inflammation, cell death, senescence, survival, cell growth and
differentiation (Zarubin and Han, 2005). So far, little is known about the role of p38 in pluripotency
of hESCs. Neganova and colleagues demonstrated an increased activity of p38 MAPK during the
early stage of reprogramming of human fibroblasts to hiPSCs and the importance of this pathway for
obtaining fully reprogrammed cells (Neganova ef al., 2017). Moreover, hESCs and hiPSCs are in a
high-methionine metabolic state which decreases upon differentiation. In this regard, it has been
shown that methionine deprivation triggering the activation of p53-p38 signaling leads to NANOG
downregulation and differentiation into all three germ layers (Shiraki ez al., 2014). We showed in this
study, for the first time, an increase in p38 MAPK activity during hiPSCs differentiation under bFGF
starvation. It can be proposed that p38 is inhibited as a downstream target of bFGF in undifferentiated
hiPSCs. Findings from Drosophila studies and some human cancers indicate that JNK might be a
regulator of stem cells and cancer stem cells. Brill et al. observed a significantly elevated JNK activity
in undifferentiated hESCs, which if blocked by JNK inhibitors under feeder-free conditions in the
presence of conditioned medium (CM), led to decreased OCT4 expression and differentiation (Brill
et al., 2009). A possible contribution of JNK signaling to the maintenance and/or self-renewal of
hESCs was additionally confirmed in a different hESC line, Harvard’s HUES-7. In response to BMP-
induced differentiation, a transient elevation of c-Jun phosphorylation was observed, which indicates
both the competence of the basal INK pathway to maintain the stemness of the hESCs and a possible
involvement of JNK activation in the initiation of hESC differentiation (Van Hoof et al., 2009). In
our study, we observed the constant activation of JNK during hiPSCs differentiation in response to
bFGF starvation. Thus, JNK pathway may be involved in other cellular responses rather than
maintaining pluripotency or inducing differentiation.

JAK/STAT3 signaling pathway and pluripotency —mESCs can be maintained in vitro by adding
LIF to the medium and its withdrawal rapidly leads to differentiation (Smith et al., 1988; Williams e?
al., 1988). LIF activates JAKs which subsequently phosphorylate STAT3. Activated STAT3
translocates into the nucleus and activates transcription of target genes (Sasse et al., 1997; Wang et
al., 2012b). Interestingly, LIF/STAT3 signaling fails to support self-renewal of hESCs and is
nonresponsive to LIF/STAT3 (Daheron et al., 2004). Since LIF is not the only cytokine that activates
JAK/STAT3 pathway, we analyzed the activity of this pathway downstream of bFGF. Similar to
Humphrey and coworkers, who have shown that STAT3 phosphorylation was not detectable in
undifferentiated hESCs (Humphrey et al., 2004), we also could not observe phosphorylation of
STAT3 in undifferentiated hiPSCs. Interestingly, upon differentiation, JAK/STAT3 pathway was
activated in hiPSCs. It can be postulated that unlike mESCs, hiPSCs do not require STAT3 activity
for the maintenance of their pluripotency but rather for their differentiation.

RAS paralogs and pluripotency — We demonstrated the critical role of MAPK pathway
downstream of bFGF in maintaining pluripotency in hiPSCs. For further analysis of this pathway, we
analyzed the expression of canonical RAS isoforms in undifferentiated vs. differentiated hiPSCs.
Interestingly we found that in contrast to the decreased level of MAPK pathway activity in
differentiated hiPSCs, the levels of RAS mRNA and protein were both upregulated upon
differentiation. To elucidate the activity level of RAS (GTP-bound), pull down assays were
performed with CRAF-RBD as an effector for RAS proteins. RAS activity was drastically reduced
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in differentiated hiPSCs compared to undifferentiated cells, consistent with the decrease of MAPK
pathway activity levels. These findings suggest that RAS-RAF is upstream of MEK/ERK and its
activity will be decreased upon differentiation in hiPSCs. Furthermore, we analyzed main RAS
paralogs, i.e. H-, K- and NRAS. Interaction analyses with two RAS effectors (RAF and PI3K) showed
that among the RAS paralogs, NRAS preferentially interacts with RAF in the presence of bFGF and
activates the MAPK pathway while no interaction was observed with PI3K independent of the bFGF
stimulation status. KRAS interacts physically with RAF and PI3K but showed no preference for either
of the effectors upon bFGF starvation or stimulation.

7.2 hiPSCs and disease modeling

Noonan syndrome is an autosomal dominant disorder of RASopathies which is manifested by
heart defects, facial dysmorphism, ectodermal abnormalities and mental retardation. One of the
common molecular pathogenesis of these disorders are the mutations in genes of RAS-MAPK
signaling pathway. The role of RAS-MAPK in HCM remains controversial. In 2007, mutation in
RAF1 were identified in patients with NS and LEOPARD syndrome (Pandit et al., 2007; Razzaque
et al., 2007). RAF1 is a Ser/Thr kinases which transmits signals from RAS proteins (from the cell
surface) to the nucleus. Regulation of RAF1 is complex and involves protein—protein interactions,
phosphorylation at multiple residues (inhibitory and activatory) and localization (Wellbrock et al.,
2004). RAF isoforms, RAF1, ARAF and BRAF share three conserved regions CR1, CR2 and CR3
(Mercer and Pritchard, 2003). BRAF mutations identified in CFC patients were located in CR1 and
CR3 domains (Aoki ef al., 2008), meanwhile mutations in RAF1 reported in NS and LEOPARD
patients mostly were clustered in CR2 domain and some mutations in CR3 domain. 80% of NS
individuals with S257L mutation in the CR2 domain of RAF1, exhibit the severe HCM with
disorganized muscle bundles and enhanced phosphorylation of ERK1/2 (Pandit et al., 2007
Razzaque et al., 2007).

Previously, Kobayashi and colleagues identified eight RAF1 mutations in 18 out of 119 patients
with NS and related conditions without any mutations in other genes of RAS-MAPK pathway. The
frequent phenotype of these patients was HCM and short stature. Four of these mutations were
clustered in CR2 domain (p.S257L, p.S259F, p.P261A, and p.N262K) which has an inhibitory
phosphorylation site (serine at position 259; S259). Among all mutations, S257L, was found in 11
patients. Moreover, they investigated the molecular mechanisms by which RAF1 mutants are
activated. Mutations in CR2 domain including S257L, had impaired phosphorylation of S529, which
will lead to non-efficient binding of RAF1 to 14-3-3 proteins, resulting in partial activation of ERK,
suggesting that mutations in CR2 domain lead to dephosphorylation of S259, which is the primary
pathogenic mechanism in the activation of RAF1 mutants as well as the downstream ERK (Kobayashi
et al., 2010). Later, Dhandapany ef al. investigated the role of RAF1 signaling in HCM in neonatal
and adult rat cardiomyocytes. Overexpression of wild-type and different mutations of RAF1
including S257L and L613V in adult rat cardiomyocytes, caused HCM by activating ERK and
calcineurin pathways whereas similar RAF1 overexpression in neonatal rat cardiomyocytes only
activated calcineurin signaling. These data suggested that RAF1 overexpression induced HCM via
two pathways, ERK and calcineurin, which depends on the developmental stage of heart
(Dhandapany et al., 2011). In the current status of the art, our understanding about molecular
mechanism of HCM is mainly based on animal models. Animal models will provide the scientist
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valuable information about the whole organism; however, several remarkable differences exist
between the mouse and human models. For instance, the resting beating rate of the mouse is 10-time
more that human. In mouse, the myosin heavy chain 6 (faster isoform) is a dominantly expressed in
ventricle and in human myosin heavy chain 7 (slower). The heart development, ion channels
contribution and therefore electrical properties varies between human and mouse. One other hand,
there are difficulties to obtain the human heart tissue samples. Regardless of this issue, since the adult
cardiac myocytes represents the terminally differentiated cells, they are not surviving in long-term
culture for further studies. Additionally, in the case of RASophaty, since the patients have the
developmental disorders and exhibits the postnatal and neonatal HCM (below 2 years), the adult
cardiac myocytes will not be helpful here. To circumvent these hurdles, the patient-specific human
pluripotent stem cell-derived cardiomyocytes will be beneficial for overall understanding of human
HCM. So, to investigate the mechanism underlying the RAF1 induced HCM, we generated
ventricular hiPSC-cardiac bodies from patient carried RAF15%" in 3D. Patient-derived cardiac
myocytes recapitulated the HCM phenotype such as cell size enlargement, expression of fetal genes,
and increased sarcomere protein synthesis and myosin heavy chain beta to alpha switch. RAF1527¢
cardiac myocytes exhibited the abnormal sarcomere structure, increased calcium transient and cardiac
contractility. CB-RAF 157" illustrated a specific SERCA2 upregulation that may affect the calcium
uptake via SR from cytoplasm. Signaling analysis also confirmed the higher MAPK activity in mutant
CBs. These findings indicated an increased RAS-MAPK signaling pathway in RAF15%"" cardiac
myocytes may regulate the observed HCM phenotype.

7.3 FMRP and multiple cellular process

FMRP has been described previously to be involved in different biological functions, e.g., RNA
transport, protein translation, actin cytoskeleton remodeling, and SG formation (Chen and Joseph,
2015; Sethna et al., 2014; Bardoni et al., 2006; Sidorov et al., 2013; Kenny and Ceman, 2016; Kim
and Ceman, 2012; Wang et al., 2012a; Santoro et al., 2012; Fernandez et al., 2013; Maurin et al.,
2014; Zalfa et al., 2006; Alpatov et al., 2014; Garber et al., 2006; Santos et al., 2014). Most of these
functions have been retained to the ability of FMRP to control translation of many different mRNAs
(Pasciuto and Bagni, 2014b). This can explain why FMRP is expressed in several tissues and cell
lines including iPSCs. FMRP has been previously suggested to play a role in maintenance and
differentiation of iPSCs (Li and Zhao, 2014). Identified proteins in this study which interact with
FMRP were classified into three ontologies, cellular component, molecular function, and biological
process. The vast majority of these proteins are involved in binding of nucleic acids, especially
mRNA, rRNA and miRNA and participate in RNA metabolism, ribosome biogenesis, RNA
interference, mRNA processing and transport, actin dynamics, mitochondrial stability, SGs formation
and translation. Other major functions include the regulation of the DNA damage response (DDR),
transcription, cell cycle regulation, apoptosis, antiviral response, immunity, and proliferation. These
functions imply an intracellular shuttling of FMRP into different subcellular compartments of the
cell. FMRP has been previously described to be predominantly cytoplasmic (Tamanini et al., 1997).
In recent years, it has become increasingly evident that FMRP translocates into the nucleus due to
sequence motifs responsible for its nuclear import and export as well as nucleolar localization (Taha
etal.,2014; Adams-Cioaba et al., 2010; Dube et al., 2000; Bardoni ef al., 2003; Lai et al., 2006; Kim
et al., 2009; Dury et al., 2013; Alpatov et al., 2014; Zhang et al., 2014; Okray et al., 2015; Tan et al.,
2016)
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The data presented in this work considerably expand the physical and functional protein and
RNA interaction networks of FMRP and suggest its participation in various fundamental cellular
processes throughout the body beyond the central and peripheral nervous system. Accordingly,
FMRP functions may start in the nucleolus following cytoplasmatic—nuclear translocation, where it
may be involved in DNA damage response, maintenance of genome stability, biogenesis of ribosomal
subunits and most likely their nuclear export. FMRP may be part of the transcriptional factory by
regulating gene expression via interaction and orchestration of RNA polymerase II, where it directly
binds to a large set of mRNAs and transport them to sites of local translation. Upon any kind of
cellular stress, FMRP accumulates at sites of stress responses and facilitates for example stabilization
double-strand RNA-binding and activating PKR and as consequence, leading to the formation of
stress granules. Moreover, our novel interactome indicates that FMRP plays a central role in
mitochondrial quality control and mitophagy, functions that are directly related to neurodegenerative
and cognitive disorders, including FXS, Huntington's disease, Alzheimer disease, Down syndrome,
and progressive supranuclear palsy. Our work provides valuable insights and constitutes a useful
starting point for future studies of the cellular functions of FMRP.
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