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Zusammenfassung

Lebensstil tragt zur interindividuellen Variabilitit wahrend der Hirnalterung bei.
Vorherige Studien untersuchten dabei hauptsachlich die Effekte einzelner Variablen.
Kombinierte und individuelle Beitrage von Alkoholkonsum, Rauchen, korperlicher Aktivitat
und sozialer Integration zur Variabilitdt in Hirnstruktur und funktioneller Konnektivitat
alterer Probanden der populationsbasierten 1000BRAINS Kohorte wurden untersucht. In der
ersten Studie wurde ein kombinierter Lebensstil-Risikoscore, der die vier Variablen in einem
Wert zusammenfiihrt, entwickelt. Hohere Scores gingen mit geringerer kortikaler Faltung im
linken pramotorischen und im rechten Prafrontalkortex einher. Dies wurde von htherem
Alkoholkonsum und niedriger korperlicher Aktivitat bzw. niedriger sozialer Integration
getrieben. Beide Regionen zeigten zusatzlich erhdhte funktionelle Konnektivitat zum
sensomotorischen und préfrontalen Kortex in Verbindung mit erhéhtem Rauchverhalten.
Eine zusatzliche Korrektur fiir genetisches Risiko, Bildung und depressive Symptomatologie
veranderte diese Assoziationen nicht. In der zweiten Studie wurde “BrainAGE” genutzt, ein
Imaging-Biomarker, der durch maschinelles Lernen schitzt, ob ein Gehirn auf Grund seiner
Anatomie alter (hoheres BrainAGE) oder jiinger (niedriges BrainAGE) aussieht, als aufgrund
des chronologischen Alters zu erwarten ist. Hoheres kombiniertes Lebensstil-Risiko war
generell mit hoherem BrainAGE und somit mit beschleunigter Hirnalterung assoziiert. Dies
wurde durch hoheres Rauchverhalten und niedrigere korperlicher Aktivitat getrieben.
Zusammenfassend zeigt die vorliegende Dissertation damit, wie Lebensstil-Verhalten zu
alterungsabhangigen Unterschieden in der Hirnstruktur, BrainAGE und der funktionellen
Konnektivitat beitrdagt. Die Ergebnisse helfen zu verstehen, weshalb Menschen so
unterschiedlich altern und erleichtern die Entwicklung von lebensstil-basierten

Interventionen, um gesundes Altern in der Bevilkerung zu fordern.



Abstract

Lifestyle contributes to interindividual variability in brain aging. Previous studies
mainly focused on the effects of single lifestyle variables, though. The combined and
individual contributions of four lifestyle variables - alcohol consumption, smoking, physical
activity, and social integration - to brain structure and functional connectivity in the older
adult population-based cohort of the 1000BRAINS study were studied. In the first study, a
combined lifestyle risk score, summarizing all four lifestyle behaviors, was developed.
Higher combined lifestyle risk was associated with decreased cortical folding in the left
premotor and the right prefrontal cortex. These decreases were driven by higher alcohol
consumption and lower physical activity, or lower social integration, respectively. Both
regions additionally exhibited higher functional connectivity to sensorimotor and prefrontal
cortex in association to smoking. Additional correction for genetic risk, educational level,
and depressive symptomatology did not alter the general associations, underlining the
relevance of daily habits for brain health. In the second study “BrainAGE” was used, an
imaging biomarker that estimates via machine learning, whether a brain appears older
(higher BrainAGE) or younger (lower BrainAGE) from its anatomical characteristics than
expected at that chronological age. In general, higher combined lifestyle risk was associated
to higher BrainAGE, hinting at accelerated structural brain aging. Examining individual
lifestyle variables showed that higher smoking, as well as lower physical activity were the
driving factors. In summary, the current dissertation provides insights into how lifestyle
behavior contributes to age-related differences in brain structure, BrainAGE, and functional
connectivity. The current results help to understand why people age so differently and

facilitate development of interventions to promote healthy brain aging.



Introduction’

Neuroimaging and the Aging Brain

Western populations nowadays face a shift towards a growing proportion of older
adults (WHO, 2017; 2018). Aging is also the most critical risk factor for the development of
neurodegenerative diseases, such as Alzheimer’s disease (AD; Riedel, Thompson & Brinton,
2016). Cognitive decline, however, is not only present in pathological conditions, but also
during the normal aging process. In comparison to younger adults, older adults experience
decreases in cognitive performance in the domains of processing speed, working memory
and executive functions (Reuter-Lorenz & Park, 2010). These decreases in cognitive
performance are accompanied by age-related differences in the brain’s functional and
structural architecture (Jockwitz, Caspers, Lux, Eickhoff, et al., 2017; Jockwitz, Caspers, Lux,
Jutten, et al., 2017; Liu et al., 2011; Ziegler, Dahnke, Gaser, & Initiative, 2012).

Neuroimaging techniques, such as structural and functional magnetic resonance
imaging (MRI), provide an excellent possibility for examining the aging brain. Structural
high resolution T1-wheighted anatomical MR images depict gray matter (GM), white matter
(WM) and cerebrospinal-fluid (CSF) by different gray values. From these anatomical scans
local characteristics of the brain’s structural architecture can be inferred, such as GM volume
(Fischl et al., 2002), the thickness of the cortex (Fischl & Dale, 2000) and gyrification (Schaer
et al., 2012; Schaer et al., 2008), where gyrification refers to the degree of cortical folding
(Figure 1). The human cortex is highly folded, such that a great amount of cortex is not
located directly at the interface of CSF and the skull, but buried within the sulci (Zilles,

Armstrong, Schleicher, & Kretschmann, 1988; Zilles, Palomero-Gallagher, & Amunts, 2013).

The introduction was partially adopted from manuscripts 1 and 2 in the Appendix.
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Figure 1. A coronal section depicting the measurement of the local cortical folding index. The
pial surface, tightly following the gyri and sulci, is depicted in white. And the created outer surface,
wrapping the pial surface without following the sulci, is depicted in yellow. The ratio between the pial
and the corresponding outer surface at a given point describes the amount of cortical folding.

Mustration derived from the two-dimensional approach of Zilles et al. (1988).

General age-related differences in brain structure between younger and older adults
comprise lower cortical and subcortical GM, lower WM volume, and lower cortical
thickness, accompanied by increases in CSF in older adults (Fjell & Walhovd, 2010; Fjell et
al., 2013; Jockwitz et al., 2019; Kennedy & Raz, 2015). Especially the prefrontal cortex has
been reported to be most affected by the factor age (Hogstrom, Westlye, Walhovd, & Fjell,
2013; Raz et al., 2005). Subcortical structures, such as the pallidum or the amygdala, as well
as the hippocampal formation seem to be particularly vulnerable to age-related GM
decreases as well (Fjell et al., 2013). One sensitive measure for cortical atrophy in older adults
is the local gyrification index, which measures the degree of cortical folding (Hogstrom et al.,

2013; Jockwitz, Caspers, Lux, Jutten, et al., 2017; Kochunov et al., 2005; T. Liu et al., 2010;
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Madan & Kensinger, 2016; Magnotta et al., 1999). Higher gyrification is supposed to promote
functional development and brain connectivity more efficiently than increasing cortical GM
(Hogstrom et al., 2013). Further, differences in gyrification seem to be more closely related to
age than differences in cortical thickness (Hogstrom et al., 2013).

Functional magnetic resonance imaging (fMRI) is an excellent technique when it
comes to examination of the functional architectonic of the aged brain. FMRI measures
changes in blood flow reflecting local changes in neural activity using the blood-oxygen-
level dependent (BOLD) signal (Ogawa, Lee, Kay, & Tank, 1990; Ogawa, Lee, Nayak, &
Glynn, 1990). It has been shown that the brain of older adults is best characterized by a
pattern of increased activation (overactivation) and dedifferentiation (Park & Reuter-Lorenz,
2009; Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Lustig, 2005; Reuter-Lorenz & Park,
2010). Further, older adults, who perform as well as younger adults during the execution of
cognitive tasks (i.e. episodic memory) recruit additional brain regions and activate those
brain regions stronger, than older adults not performing as well as the younger ones
(Cabeza, Anderson, Locantore, & McIntosh, 2002; Reuter-Lorenz & Cappell, 2008). This has
often been interpreted as compensatory mechanism to maintain cognitive functioning stable
(Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Park, 2010; Stern, 2012; 2017), especially if
the structural integrity of the brain already decreased (Hakun, Zhu, Brown, Johnson, & Gold,
2015; Jockwitz, Caspers, Lux, Jutten, et al., 2017; Reuter-Lorenz & Lustig, 2005).

Further, from changes in regional blood flow, age-related reorganization of functional
connectivity (FC) can be inferred (Damoiseaux, 2017; Sala-Llonch, Bartres-Faz, & Junque,
2015). FC (Figure 2) is defined as the co-activation of spatially distinct brain regions, whose
BOLD signaling fluctuates simultaneously for a measured amount of time, named timeseries

(Beckmann, DeLuca, Devlin, & Smith, 2005; Biswal, F., Haughton, & Hyde, 1995; Smith et al.,
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2009). These co-activation patterns can be investigated in humans at rest. At rest, i.e. in the
absence of a specific task, this resting-state functional connectivity (RSFC) allows to identify
functionally connected brain regions, which constitute neuronal networks corresponding
with major functional networks of the working brain (Beckmann et al., 2005; Smith et al.,
2009). Crucially, these RSFC networks allow for statements about general organization

principles of the brain’s functional architecture independent of a specific stimulus.

Figure 2. Representation of an executive resting-state network derived from independent
component analysis (Beckmann et al., 2005) in a transversal section. The BOLD signals of two regions
are represented in yellow and orange, where activation patterns are spatially distinct, but co-activate

in temporal correlation.

Another characteristic of the aging brain is the considerable high interindividual
variability, which has been observed within age-related neuronal changes and the resulting
differences in cognitive decline (Dickie et al., 2013). The most prominent observation
illustrating this issue has been made by Katzman et al. (1988). Here, a group of AD patients
showed preserved mental ability even though other patients with a comparable amount of
AD pathology were suffering from cognitive impairment. Katzman et al. (1988) attributed

the preserved mental ability of the first group to higher initial brain weights and greater
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number of neurons. Similar observations have been reported in normal aging: Two
individuals of the same chronological age may show completely different patterns of brain
aging, with one person experiencing strong decline in brain structure, whereas the other
exhibits almost none (Bartrés-Faz & Arenaza-Urquijo, 2011; Stern, 2009; 2012; Ziegler et al.,
2012). This led to the conclusion that some individuals have the ability to tolerate a great
amount of pathology or age-related neuronal loss without experiencing mental deficiencies,
which has since been summarized as brain reserve (Stern, 2009; 2017). The functional
equivalent to brain reserve, however, is cognitive reserve, the ability to compensate for age-
related differences and structural deficiencies by using neuronal networks and strategies
efficiently (Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Park, 2010; Stern, 2009; 2012;
2017). Stronger activation of the same or recruitment of additional brain regions in older
adults has already been pointed out as one compensational mechanism of the aging brain in
order to maintain stable cognitive functioning. If increases in FC occur already during rest,
they are thought to reflect higher base levels (Reuter-Lorenz & Cappell, 2008). These higher
base levels leave less room for additional increases in brain activity to boost performance
during active tasks and seem hence to reflect lower possibility for compensation. Increased
RSFC may therefore display dysfunctional disruptions of the brain’s general functional
architecture and supposedly reflects lower cognitive reserve (Reuter-Lorenz & Cappell, 2008;
Reuter-Lorenz & Lustig, 2005; Stern, 2009; 2012; 2017). Together, brain and cognitive reserve
explain, why the same chronological age can manifest very differently in the brain and in
cognitive performance. As Leritz et al. (2011) stated:

“It is likely that aging is not necessarily a reflection of number of years per se, but is more

probably a manifestation of the cumulative effect of physiological variations []”
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How strongly age manifests in the brain is likely not only due to several physiological
differences, such as sex (Ritchie et al., 2018; Ruigrok et al., 2014; Scheinost et al., 2015) but
psychological and behavioral variations as well, such as higher education. Higher education
is generally thought to be protective against age-related decline with higher educated older
adults showing lower decreases in GM and therefore less manifestation of age, i.e. higher
cognitive reserve (Christensen, Anstey, Leach, & Mackinnon, 2008; Stern, 2009; 2012). Still,
these factors explain little of the overall variability in brain reserve (Kennedy & Raz, 2015;
Raz et al., 2005; Stern, 2017). Therefore, identification of further factors that are related to
variability in brain reserve is still an ongoing task for current neuroscientific research. One
factor that has come into the focus of research is lifestyle, where several behaviors have the
potential (i) to be modifiable and (ii) to counteract brain decline.

The Role of Lifestyle in Brain Aging

Indeed, some lifestyle behaviors such as smoking and alcohol consumption may pose
a serious risk to brain health, whereas others seem to show beneficial effects, e.g. social
integration and physical activity (Anaturk, Demnitz, Ebmeier, & Sexton, 2018; Arenaza-
Urquijo, Wirth, & Chetelat, 2015; Fratiglioni, Paillard-Borg, & Winblad, 2004).

Physical activity. Physically more active older adults show better cognitive
performance (Churchill et al., 2002; Colcombe & Kramer, 2003; Hughes & Ganguli, 2009;
Kramer et al., 2003; Kramer & Erickson, 2007; Kramer et al., 1999; Voelcker-Rehage, Godde,
& Staudinger, 2010) along with higher task-related activity and more efficient use of brain
networks (Colcombe et al., 2004; Voelcker-Rehage, Godde, & Staudinger, 2011). In addition,
older adults, who engaged in physical activity training showed increased hippocampal
volume (Erickson et al., 2011), as well as preservation of cortical GM volume (Colcombe et

al., 2003; Erickson, Hillman, & Kramer, 2015; Erickson, Leckie, & Weinstein, 2014).
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Social integration. Stronger social integration of older adults is associated with
reduced cognitive decline and reduced risk of dementia (Fratiglioni et al., 2004). Socially
integrated AD patients show higher cognitive stability compared to AD patients, who are
socially not integrated, despite exhibiting a comparable amount of pathology (Bennett,
Schneider, Tang, Arnold, & Wilson, 2006). Further, social network size is correlated with
higher amygdala volume (Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011), as well as
higher regional and overall GM volumes in humans (James et al., 2012; Mortimer et al.,
2012). Additionally, social network size seems to manifest in higher regional GM volumes
e.g. in right prefrontal cortex, and higher functional connectivity in monkeys (Sallet et al.,
2011). Therefore, both lifestyle habits, physical activity and social integration seem to
promote cognitive or brain reserve capacity. In contrast, other ]ifestyle habits may rather
pose a risk onto healthy brain aging.

Smoking. Most studies focus on the direct effect of nicotine and its enhancing effect
on attention (Lawrence, Ross, & Stein, 2002), which, in turn, is correlated with increased
brain activation (Jacobsen et al., 2004). During rest, though, smokers, compared to non-
smokers, showed reduced RSFC (Zhou et al., 2017) as a correlate of generally altered
functional brain architecture (Greicius, 2008), between the insula and prefrontal cortex.
Additionally, smokers have stronger cortical thinning in prefrontal and temporal regions
(Karama et al., 2015) and decreased GM density within cingulum, precuneus, thalamus, and
precentral gyrus (Almeida et al., 2008) compared to non-smokers. Hence, the long-term
effects of smoking seem to pose a risk to structural, as well as functional brain health.
Compared to the high amount of studies investigating the association between physical
activity and GM changes in older adults, studies on the effects of smoking on brain health

are relatively rare, though.
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Alcohol consumption. Chronic alcohol dependence can lead to pathological
conditions, e.g. Korsakoff syndrome (de la Monte & Kril, 2014). Further, alcohol dependent
patients show pronounced GM loss (Paul et al., 2008), especially in the frontal cortex (Zahr,
Kaufman, & Harper, 2011), as well as pronounced WM loss (Topiwala et al., 2017), e.g. in the
corpus callosum and cerebellum (Zahr et al., 2011). GM loss, however, has also been reported
in older adults with moderate alcohol consumption (Mukamal, Longstreth Jr, Mittleman,
Crum, & Siscovick, 2001), not only in alcohol-dependence. To perform similar to controls in a
simple motor task alcohol dependent patients need to recruit additional neuronal networks,
which seems to be a compensational mechanism to sustain motor performance (Parks et al.,
2010) and hints at a underlying disruption of functional brain networks. Hence, alcohol
consumption and smoking may both be variables reducing brain reserve and can therefore

be classified as risk variables for accelerated brain aging.

The Current Work

Previous studies mainly focused on the isolated effects of single lifestyle variables on
brain structure and function. In real life, however, individuals rather engage in a
combination of lifestyle habits that could all influence brain reserve, e.g. being a smoker
(risk) and socially and physically active person (protective) versus being a smoker and an
inactive person. Yet, studies examining combinations of lifestyle, as well as lifestyle in a
multidimensional way are rare. For example, Floel et al. (2008) reported that the combination
of exercise, dietary habits, BMI, smoking and alcohol intake was a better predictor for
memory performance than the individual lifestyle behaviors. Another study found different
RSFC patterns, particularly in participants, who both smoked and consumed alcohol, as
compared to participants with only one of these risk variables (Vergara, Liu, Claus,

Hutchison, & Calhoun, 2017). This underlines the notion that individual lifestyle variables
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may have additive or interacting effects on the aged brain. Together with the observation
that age-related neuronal differences are likely a manifestation of a cumulative effect of
several factors, as has been pointed out in the section “Neuroimaging and the Aging Brain”,
it is therefore important to examine combinations of lifestyle habits to understand the high
inter-individual variability in brain reserve.

Hence, the first aim of the current work was to develop a summary measurement for
a combination of lifestyle variables. This approach was inspired by polygenic risk scores
(PRS). PRS aggregate the number and effect size of genetic variations, i.e. single nucleotide
polymorphisms (SNPs), which are related to one specific outcome, such as Alzheimer’s
disease (Desikan et al., 2017) or schizophrenia (Dima & Breen, 2015; French et al., 2015;
International Schizophrenia Consortium et al., 2009; Ursini et al., 2018). It has been shown,
that accumulating the genetic variations, which an individual carries, provides predictive
information beyond each single variation, e.g. to better estimate age of onset of AD (Desikan
et al., 2017). Recent studies provide evidence that carriers of higher genetic risk show
stronger and faster age-related neuronal decline, i.e. hippocampal volume loss and
hippocampal thinning (Fouquet, Besson, Gonneaud, La Joie, & Chetelat, 2014; Harrison et al.,
2016). Further specific genetic variations seem to be related to a higher tendency or risk to
drink alcohol (Clarke et al., 2017) or to smoke (J. Z. Liu et al., 2010).

The overall goal of the current dissertation was to measure the combined lifestyle risk
carried by one individual and to examine its association to differences in brain structure and
function in the 1000BRAINS study, a population-based cohort consisting of older adults
(Caspers et al., 2014). To measure these differences, a multimodal approach was chosen
investigating (i) brain structure using three different parameters, i.e. the degree of cortical

folding as a surface-based, sensitive measure for cortical atrophy, the volume of subcortical
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structures to complement this surface-based approach, and BrainAGE, a meaningful imaging
biomarker, as well as (ii) brain function using functional connectivity to measure the general

organization principle of the brain’s functional network architecture.
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Combining Lifestyle Risks to Disentangle Brain Structure and Functional
Connectivity Differences in Older Adults®

As pointed out in the introduction, prior studies mainly focused on the individual
effects of single lifestyle variables, whose effects may differ from those of possible
combinations (Vergara et al., 2017) and which may not reflect the situation in real life. The
first study aimed at developing a combined lifestyle risk score reflecting an aggregated
measurement of different lifestyle factors, inspired by polygenic risk scores, and examine its
association to differences in brain structure, as measured by surface morphology, and
subcortical volumes, as well as functional connectivity.
Analysis 1: Combined Lifestyle Risk and Brain Structure

In the first analysis, 549 participants (301 males, 248 females) aged between 55 and 85
from the population-based cohort of the 1000BRAINS study (Caspers et al., 2014) were
included. Then the combined lifestyle risk score as described in manuscript lone (see
Appendix) was developed. In short, self-reported lifestyle behaviors included physical
activity measured as the metabolic equivalent per task (Ainsworth et al., 2000; Floel et al.,
2010; Ruscheweyh et al., 2011), social integration as social integration index (Alcaraz et al.,
2019; Berkman, 2004; Sabbath, Lubben, Goldberg, Zins, & Berkman, 2015), smoking as pack-
years (number of packs smoked per day multiplied with numbers of years; Karama et al.,
2015) and alcohol consumption in grams per day. Next, in order to obtain a risk score that
indicated higher risk with higher values, signs were reversed and the maximum value from
each individual measurement for the protective behaviors (social integration and physical

activity) was subtracted. In contrast, risk behaviors were analogously transformed into

2Parts of this section were derived from manuscript 1 in the Appendix.
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positive scores by adding the minimum value to each individual measurement. Hence, all
values for risk behaviors were positive (i.e. indicating a higher lifestyle risk). Finally, these
linearly transformed values of all individual lifestyle variables were summed up into one
combined lifestyle risk score.

To examine brain structure, T1-weighted anatomical 3D images (Caspers et al., 2014)
were collected using a 3T Tim-TRIO MR scanner (Siemens Medical System, Erlangen,
Germany) at the Research Centre Juelich, Germany. The cortical folding index as a sensitive
surface-based measure for studying age-related differences in local brain structure was
selected as main parameter of interest and complemented by measuring GM volume of
subcortical structures (Fjell et al., 2013). Individual cortical surfaces from all participants
were reconstructed to measure cortical folding (Schaer et al., 2012), and GM volume of
subcortical structures was extracted (Fischl et al., 2002) using the FreeSurfer Software
[version 5.3.0, Athinoula A. Martinos Center for Biomedical Imaging; Fischl (2012)]. Based on
the assumption that differences in lifestyle are related to differences in brain structure, the
first hypothesis was as follows: Those individuals carrying higher combined lifestyle risk
should show decreased regional cortical folding index and GM volume, compared to
individuals with a more protective lifestyle.

As expected, higher combined lifestyle risk was associated with a lower cortical
folding index. This was found in the left dorsal part of the premotor cortex and the
ventrolateral part of the right prefrontal cortex (Figure 3a).

Now, individual contributions of each lifestyle variable to this association were
within the focus of interest. Here, each lifestyle variable was stepwise excluded from the
combined score, as it is done in epidemiological research, where the contribution of specific

variables is tested by stepwise inclusion into a model (Karama et al., 2015; Mukamal et al.,
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2001). The hypothesis was that exclusion of those variables that relevantly contributed to the
general association between lifestyle risk and brain structure would result in diminishing or

vanishing of the respective effect.

a Combined lifestyle risk score

soc | svo | [ acer [ ac

| ACT | ALC | SOC ‘ SMO ] ’* ACT | ALC I SOC—I sSMO | |*AC'T | ALC [ ."',(J(.'.—-

Figure 3. Differences in local brain surface structure as measured via the cortical folding index
associated with lifestyle risk. Small boxes represent different combinations of the lifestyle variables.
Negative associations are represented in blue, positive associations in red. The recurrent negative
associations between higher lifestyle risk and reduced cortical folding index in left dorsal premotor
cortex (dAPMC) and right ventro-lateral prefrontal cortex (vIPFC) are colored in pink and orange,
respectively. Abbreviations: ACT = physical activity, ALC = alcohol consumption, SOC = social
integration, SMO = pack years of smoking, L = left hemisphere, R = right hemisphere. The Figure was
not modified and is available under a creative commons public license 4.0

(https://creativecommons.org/licenses/by/4.0/), and was originally published in manuscript 1, Bittner

et al,, 2019, https://doi.org/10.1038/s41467-019-08500-x, Copyright 2019 by Nature Communications.
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As hypothesized, excluding individual lifestyle variables from the combined score
resulted in such alterations of the observed results. On the one hand, the observed decrease
in cortical folding index in left premotor cortex was no longer found when excluding both,
alcohol consumption and physical activity (Figure 3i). On the other hand, the association
between lifestyle risk and cortical folding index in the right ventrolateral prefrontal cortex
was no longer found, when excluding social integration (Figure 3b, f, h). Excluding smoking
from the combined score, however, did not result in systematic alterations of the results.

Further, higher combined lifestyle risk was associated to lower GM volume of
subcortical structures, as hypothesized. The strongest association, however, was observed
between enhanced social integration as a single lifestyle variable and greater GM volume of
the left hippocampus.

Analysis 2: Combined Lifestyle Risk and Functional Connectivity

Certain lifestyle behaviors have already been related to differences in RSFC (Vergara
et al.,, 2017; Voss et al., 2016; Zhou et al., 2017), such as smoking-dependent RSFC increases in
middle-aged adults (Janes, Nickerson, Frederick Bde, & Kaufman, 2012). In addition to that,
RSFC increases have also been described to be present in the case of structural atrophy (Hakun
et al., 2015; Jockwitz, Caspers, Lux, Eickhoff, et al., 2017; Reuter-Lorenz & Cappell, 2008).
Hence, structural differences associated to higher lifestyle risk may be accompanied by
alterations in RSFC. Here, those regions that showed structural differences in the cortical
folding index, namely the left premotor cortex and the right ventrolateral prefrontal cortex,
were expected to exhibit differences in RSFC.

To assess this hypothesis, the left dorsal premotor and the right ventrolateral
prefrontal cortex were used as seed regions. RSFC was calculated as the Spearman

correlation between the timeseries/BOLD-signal of the seed regions and the
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timeseries/BOLD-signal of all other GM voxels. This correlation was then related to lifestyle
risk. Since not for all participants RSFC measurements were available, the sample was
slightly smaller than in analysis one (n=501). As expected, higher combined lifestyle risk
scores were associated with variations in RSFC, in the present study increases, between left
dorsal premotor cortex (dPMC) and bilateral primary somato-motor networks. The seed in
ventrolateral prefrontal cortex (VIPFC) showed increased RSFC to right anterior superior

frontal gyrus in relation to higher combined lifestyle risk.

Resting-State Functional Connectivity

Figure 4. Lifestyle-risk-associated increases in RSFC to the seed in the left dorsal premotor cortex
(dPMC) and right ventrolateral prefrontal cortex (vVIPFC). Abbreviations in the small boxes refer to the
same variables as in Figure 3. S1 = primary somatosensory cortex, M1 = primary motor cortex, SFG =
superior frontal gyrus. Figure was modified from Bittner et al.,, 2019. The original figure is available

under a creative commons public license 4.0 (https://creativecommons.org/licenses/by/4.0/), and was

published in manuscript 1, Bittner et al., 2019, https://doi.org/10.1038/s41467-019-08500-x, Copyright

2019 by Nature Communications.
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Again, the hypothesis was that stepwise exclusion of one or more variables would
reveal their contribution to the association between lifestyle and RSFC. Figure 4 shows that
smoking was the driving factor for the associations between higher lifestyle risk and higher
RSFC in both regions. All combinations of lifestyle variables that included smoking as risk
factor were significantly related to increases in RSFC to the primary somato-motor network
(seed region: dPMC) or right anterior superior frontal gyrus (seed region: vIPFC). The same
results were obtained for smoking as a single lifestyle variable. In contrast, if smoking was
excluded from combinations of lifestyle variables, systematic variations in RSFC to these
regions were no longer found.

Analysis 3: Additional Adjustment for Non-lifestyle Variables

Based on the literature described above, genetic risk (Clarke et al.,, 2017; J. Z. Liu et al.,
2010; Thorgeirsson et al., 2010; Tobacco & Genetics, 2010), educational level (Christensen et
al., 2008) and depressive symptomatology (Fratiglioni et al., 2004) were hypothesized to
represent possible confounding factors within the associations of combined lifestyle risk and
the aged brain. To test this hypothesis, education was measured as defined in the
International Standard Classification of Education (UNESCO, 2003) and depressive
symptomatology using Beck’s Depression Inventory II (Hautzinger, Keller, & Kiihner, 2006).
Genetic risk was assessed via a polygenic risk score (PRS) for alcohol consumption and
smoking.

For PRS calculation, studies reporting genome-wide significant associations between
specific genetic loci and lifestyle variables were reviewed. Those loci meeting predefined
criteria (see manuscript one in Appendix) were selected and aggregated into the PRS. As

there were no reported loci for social integration and physical activity meeting our criteria
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for inclusion, these traits were not covered by the PRS. Since genetic information was not
available for all participants, this analysis was carried out with a sample of n = 488.

Entering the PRS, general level of education or depressive symptomatology as
covariates into the analysis investigating the relation between lifestyle risk and brain
structure, did not change the general pattern of lifestyle risk-related decreases in the cortical
folding index. Nevertheless, for the association between combined lifestyle risk and cortical
folding index, an additional correction for PRS revealed an additional effect in right
precuneus. Additionally, the results of the RSFC analysis remained largely unaffected after
adding PRS as covariate.

Discussion?

The aim of the first study was to develop a measurement for combined lifestyle risk
and to explore its contribution to variability in brain structure and functional connectivity of
older adults. Four core findings emerged:

First, the newly developed approach revealed that older individuals carrying higher
combined lifestyle risk load seem to be at higher risk for structural brain atrophy.
Importantly, systematic differences in regional cortical folding index were found for the
combined lifestyle risk score, but not for the single lifestyle variables, likely due to over-
additive effects, which are only revealed, when investigating the variables in combination.

Second, with regard to associations between lower cortical folding index in left dorsal
premotor cortex and higher lifestyle risk, a combination of lower physical activity and higher
alcohol consumption seems to be particularly important. This is in line with previous studies
showing better preservation of brain structure in physically more active older adults

(Colcombe et al., 2003; Erickson et al., 2015; Erickson et al., 2014; Erickson et al., 2011),

3 The discussion was partially adopted from manuscript 1 in the Appendix.
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possibly due to training-induced adaptations of the brains structural architecture (Draganski
et al., 2004). Furthermore, according to the “Use-it-or-Lose-It”-hypothesis, the organism is
thought to preserve brain regions that are needed in daily life against age-related changes,
i.e. the premotor cortex in physically active people (Swaab et al., 2002). A correlation
between higher alcohol consumption and decreased brain structure in premotor cortex has
not been shown so far, but associations between alcohol consumption and the deterioration
of functional motor networks has been reported (Parks et al., 2010; Zahr et al., 2011). In
comparison to prior studies, the current study is the first to reveal differences in brain
structure in premotor networks, which are only present in a combination of higher alcohol
consumption and lower physical activity.

Third, variations in cortical folding index in right ventrolateral prefrontal cortex were
mainly driven by social integration as revealed by the stepwise exclusion approach. The
ventrolateral prefrontal cortex, a subregion of higher order cognitive networks, subserves
cognitive processes needed for social interaction (Chester & Riva, 2016; Eisenberger,
Lieberman, & Williams, 2003; E. K. Miller & Cohen, 2001). In terms of the “Use-it-or-Lose-It"-
hypothesis (Swaab et al., 2002), it seems therefore likely that the pronounced recruitment of
the ventrolateral prefrontal cortex in socially active older adults leads to better preservation
of that brain region. In turn, better preservation of the prefrontal cortex may be particularly
important in light of the pronounced vulnerability of the prefrontal cortex to aging (Raz et
al., 2005).

All of these results were highly stable, observed in the main and sensitivity analyses,
and even showed overlap with lifestyle-related differences in cortical thickness (see

Supplementary material of manuscript one; Appendix).
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Fourth, systematic alterations in RSFC were mainly influenced by smoking. These
increases in RSFC may reflect reduced cognitive reserve related to smoking, as higher base
levels of functional connectivity leave less room for further increases in activation during
active tasks (Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Park, 2010; Stern, 2012). They
may as well reflect addiction-related functional adaptations of the brain (Janes et al., 2012;
Vergara et al., 2017; Zhou et al., 2017). Hence, less smoking may be a convenient way to
maintain efficient use of neuronal networks even up to older ages.

Furthermore, adjustment for general education, depressive symptomatology and
genetic risk for smoking and alcohol consumption did not alter the general pattern of these
results emphasizing the role of daily lifestyle habits, when it comes to healthy brain aging.

Finally, these observations resulted in subsequent research questions, which were to
be addressed in the second study of this dissertation: Based on the literature, study one
assumed the lifestyle behaviors to affect the brain in a certain direction, e.g. negative effects
of smoking on the brain. Effects in the opposite direction, depending on the brain region
examined, may still occur and should therefore be investigated in the second study.
Additionally, some lifestyle behaviors may affect the brain in a non-linear manner (Mukamal
et al., 2001). Further, as a comparison to the combined lifestyle risk score, it would be
desirable to investigate all four individual lifestyle variables in one model.

In summary, a more protective lifestyle seems to contribute to brain reserve, i.e. the
preservation of brain structure, and to cognitive reserve, i.e. the maintenance of efficient use
of functional brain networks. Integrative concepts of lifestyle may be a strong instrument for
advancing our understanding of risk and protective influences on aging in the general
population and in patients suffering from neurodegenerative diseases, as well as for low-cost

interventions preserving healthy aging.
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When Your Brain Looks Older Than Expected: Combined Lifestyle Risk and
BrainAGE*

The first study focused on the cortical folding index as a sensitive marker to measure
age-related differences in brain structure and revealed higher combined lifestyle risk to be
accompanied by stronger brain atrophy, i.e. a lower cortical folding index. This led to the
subsequent question, whether individuals with a higher combined lifestyle risk would show
accelerated structural brain aging in general as well. Here, BrainAGE, a recently developed
imaging biomarker, was chosen to measure general structural brain aging in the second
study. BrainAGE measures the gap between true chronological age of an individual and
estimated age of the brain, as predicted from anatomical patterns in MRI (Franke, Ristow,
Gaser, & Alzheimer's Disease Neuroimaging, 2014; Franke, Ziegler, K]oppe], Gaser, &
Initiative, 2010). This estimation is done, separately for female and male participants, by
machine learning algorithms, which are blind to the individuals true chronological age. A
higher BrainAGE score indicates that a brain appears older from its anatomical pattern than
expected from chronological age. It thus hints at accelerated brain aging, whereas lower
BrainAGE scores reflect younger looking brains, thus hint at decelerated brain aging (Cole &
Franke, 2017; Franke, Gaser, & Initiative, 2012; Franke et al., 2014; Gaser et al., 2013).
BrainAGE hence measures the deviation between chronological age and the manifestation of
that age in the brain (older versus younger looking brains despite the same chronological
age) and aggregates the multidimensional pattern of aging into one value.

Additional to the main research question of this second study, whether individuals

with a higher lifestyle risk would generally show accelerated structural brain aging, we

4 Parts of this section were derived from manuscript 2 in the Appendix.
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specifically addressed the questions, which resulted from study one: These were to test i)
each individual lifestyle variable’s contribution to structural brain aging, ii) the expected
directions of the variable’s effect and iii) non-linear effects of each variable. Based on recent
literature on general differences between female and male brains (Ritchie et al., 2018;
Ruigrok et al., 2014), as well as on different trajectories of aging patterns between the two
sexes (Riedel, Thompson, & Brinton, 2016; Scheinost et al., 2015) sex differences in the
association between lifestyle and BrainAGE were examined as well.
Analysis 4: Lifestyle Risk and the BrainA GE-Score

Similar to study 1, T1-wheighted anatomical MR scans (Caspers et al., 2014) were
used to estimate each individuals BrainAGE. All T1-wheighted images were segmented into
the tissue probability maps (GM, WM, CSF) using the SPM12 toolbox (The Wellcome Dept.
of Imaging Neuroscience, London; www fil.ion.ucl.ac.uk/spm) and the VBMS8 package

(http://dbm.neuo.uni-jena.de). Then, only the GM maps were included as input for

BrainAGE estimation. The age estimation framework then estimates the brains age only from
the anatomical patterns within these GM maps via machine learning algorithms (see
manuscript two; Appendix). This estimated, anatomical age is then compared to
chronological age:
BrainAGE = estimated — chronological age.

Thus, BrainAGE reflects whether a brain appears older (higher BrainAGE) or younger
(lower BrainAGE) from its anatomical characteristics than expected at that chronological age
(Figure 5). All analyses between lifestyle and BrainAGE were calculated in an older
subsample of the 1000BRAINS study aged 55 to 85 years (n =622, 272 females, 350 males) in

IBM SPSS Statistics 23 (https://www.ibm.com/de-de/analvtics/spss-statistics-software). The
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operationalization of all four lifestyle variables and the combined lifestyle risk score was

similar to study one (see manuscript two in the Appendix).
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Figure 5. The correlation between chronological age and estimated age, as estimated by the machine
learning algorithm. Dark blue dots represent a perfect correlation coefficient of r =1.0. If estimated age
is higher than chronological age, this results in a higher BrainAGE score and hints at accelerated

structural brain aging. Figure adapted from manuscript two in the Appendix.

As BrainAGE aggregates the multidimensional aging pattern into one value, this
enabled modeling the individual lifestyle variables using multiple linear regression to
compare this approach to the combined lifestyle risk score. Based on the previously
described literature and on the results of study one, study two hypothesized that higher
combined lifestyle risk would be associated with higher BrainAGE scores as an indicator of
accelerated structural brain aging. A general association between higher combined lifestyle

risk and higher BrainAGE (Figure 6a) was found. This association was significant even after
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outlier correction, as well as additional adjustment for general level of education, which was
measured the same as in study one (UNESCO, 2003).

In addition to the combined lifestyle risk score, the relation between individual
lifestyle variables and BrainAGE was examined. All four variables were simultaneously
introduced as regressors in a mult-iple linear regression, correcting for age and sex, and using
BrainAGE as dependent variable. Two-sided tests (p < .05) were employed to examine the
expected direction of effects. As a result, higher pack-years (Figure 6b), reflecting a higher
amount of lifetime smoking, as well as lower physical activity (Figure 6¢c), were associated to
higher BrainAGE scores. Both associations were significant after outlier correction and
additional adjustment for education, and Body Mass Index [for physical activity, Ho et al.
(2011)]. Moreover, these effects were additionally quantified in terms of years: BrainAGE
was estimated at 3.84 months older in addition to the effect of sex and age for one increase in
the combined lifestyle risk score. The association between pack-years and BrainAGE was
also dose-dependent with 0.36 month of additional BrainAGE per pack-year, such that brains
of severe smokers were on average 1.6 years older than those of moderate smokers in a post
hoc group comparison. In contrast, brains appeared 0.48 months younger with each increase
in metabolic equivalent (MET) per week (with 4 MET reflecting one hour of 10mph
bicycling), though this estimation was even higher when investigated in males only (brains
appeared 0.6 months younger).

Next, sex-differences were tested by including an interaction term between sex and
the combined lifestyle risk score or the respective lifestyle variable. There were no significant
interactions between sex and lifestyle on BrainAGE. Nevertheless, stratifying for sex
revealed that the association between lower physical activity and higher BrainAGE scores

was no longer significant in female participants.
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Figure 6. Associations between lifestyle and BrainAGE. (A) Higher combined lifestyle risk was related
to higher BrainAGE. The color scale represents the transition from protective (green) to risky lifestyle
behavior (pink). Smoking (B), as well as physical activity (C) explained the largest parts of variance in
this association. Triangular shapes represent male participants, circular shapes represent female

participants. Adapted from manuscript two in the Appendix.

Finally, non-linear associations, i.e. quadratic effects, between lifestyle and BrainAGE

were examined. Adding quadratic effects of each individual lifestyle variable to the



32

regression models did not generally result in a better prediction of the data than testing

linear effects only.

Discussion®

The second study shows that lifestyle differences contribute to the high inter-
individual variance in structural brain aging of older adults. In contrast to the first study,
differences in brain structure were investigated using BrainAGE as a meaningful imaging
biomarker (Franke & Gaser, 2012; Gaser et al., 2013; Loewe, Gaser, Franke & ADNI, 2016;
Franke et al., 2014). The analysis revealed smoking and physical activity to be the driving
variables behind the association between combined lifestyle risk and accelerated brain aging,
as indicated by BrainAGE.

Smoking has previously been related to lower GM volume, but most studies had
small sample sizes (Almeida et al., 2008; Brody et al., 2004; Gallinat et al., 2006). For the first
time, the current approach was able to quantify the deleterious effects of smoking: The
association between pack-years and BrainAGE was shown to be dose-dependent with 0.36
month of additional BrainAGE per pack-year, such that brains of severe smokers were on
average 1.6 years older than those of moderate smokers. Based on this analysis, conclusions
about the biological mechanisms driving this association cannot be drawn, but the
acceleration in brain aging patterns with higher smoking may be attributable to the direct
toxic effects of tobacco onto the cerebro-vascular system, such as oxidative stress, which can
result in cell death (Swan & Lessov-Schlaggar, 2007).

Further, the present results again support higher physical activity to be a fruitful
target to promote brain health. The protective effect of physical activity has repeatedly been

shown and discussed [for a recent review, see (Kramer & Colcombe, 2018)]. An important

3 The discussion was partially adopted from manuscript 2 in the Appendix.
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new aspect of the here applied approach was that physical activity was measured as a self-
report measure in contrast to intervention studies (e.g. Colcombe et al., 2004; Erickson et al.,
2011), where the kind and amount of activity is highly controlled. It is important to note, that
self-report measures, as the hear employed one, can always be biased by social desirability
and blurred recall. Still, physical activity contributed significantly to decelerated brain aging,
even though the current self-report measure was not monitored and rather reflected the
situation in real life. This again emphasizes the significance of protective lifestyle behavior
during daily life of older adults when it comes to healthy aging. One potential mechanism
how physical activity may act protectively on the aging brain may be increase of brain-
derived-neurotropic factors, which affect synaptic efficacy, neuronal connectivity and use-
dependent plasticity (Floel et al., 2010). Especially the latter may be particularly important, as
the “lose-it-or-use-it”-hypothesis (Swaab et al., 2002) states that neurons needed and
therefore stimulated in daily life are better preserved during the lifespan. By stimulation of
involved brain regions higher physical activity may thus protect those regions against age-
related structural atrophy, in turn leading to a perseveration of their structural integrity
(Boyke, Driemeyer, Gaser, Buchel, & May, 2008; Churchill et al., 2002; Colcombe et al., 2003;
Draganski et al., 2004; Erickson et al., 2011; Kramer & Erickson, 2007; Vaynman & Gomez-
Pinilla, 2005; Vaynman, Ying, & Gomez-Pinilla, 2004).

Additionally, our results hint at sex differences in the association between lifestyle
and BrainAGE that are often not explicitly considered. Interestingly, the association between
physical activity and Brain AGE seems to be stronger in male than in female adults. Prior
studies showed that the protective effect of physical activity in females may be dependent on
hormonal influences (Erickson et al., 2007), such that the association between activity and

brain health may be less stable in the general female population. In animal models it has
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further been shown that levels of neurotrophins differ between male and female mice. If
upregulation of neurotrophic factors drives the relationship between physical activity and
brain structure (Floel et al, 2010; Ruscheweyh et al., 2011), sex-differences in the levels of
neurotrophic factors may be another reason for the sex differences in the association between
physical activity and brain structure reported in the current study. Possibly, the sexes also
differ with respect to the specific kind of activity they engage in, as well as with respect to
metabolism, which may lead to significantly different effects on the brain (Burd, Tang,
Moore, & Phillips, 2009; Churchill et al., 2002; Colcombe & Kramer, 2003; Floel et al., 2010;
Hayes, Hayes, Cadden, & Verfaellie, 2013; Kramer & Colcombe, 2018; Wu & O'Sullivan,
2011). However, biological mechanisms behind these sex differences remain to be elucidated
for future studies considering the influence of the kind of activity, hormones, and the release
of neurotrophic factors on the association between physical activity and the aged brain (de
Melo Coelho et al., 2013; Venezia, Guth, Sapp, Spangenburg, & Roth, 2016).
General Discussion

By conducting four analyses, the current dissertation provides insights into the
significant contribution of lifestyle to the high inter-individual variability in brain aging of
older adults. The aim of the dissertation was (i) to develop an integrated approach to
measure lifestyle as a combined concept rather than investigation of one factor and
considering all other lifestyle behaviors as nuisance, and (ii) to describe its effects with
emphasis on capturing the aged brain as a system by employing different methodologies and
a multi-modal approach, examining GM volume (BrainAGE) versus cortical folding and its
relation to functional connectivity, which is crucial with respect to understanding the

complex nature of the aging brain.
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The first paper therefore investigated the complexity between lifestyle and genetic
factors, surface morphology (cortical folding index), GM of subcortical structures and
functional connectivity. The second paper, in contrast, was dedicated to uncovering the
relation between combined and individual effects of lifestyle, sex and BrainAGE, as a state-
of-the-art imaging biomarker, which has been shown to validly predict future trajectories of
brain aging (Cole & Franke, 2017; Franke et al., 2012; Gaser et al., 2013). Even though both
studies examine the relation between lifestyle and the aged brain, they differ and
complement each other with regard to the applied methods, the results and their
interpretation.

The first study used a whole-brain approach, whereas the second study used an
aggregated measurement, summarizing the multi-dimensional pattern of structural brain
aging into one value — the BrainAGE score. Thus, the first study was able to make statements
about regional specific differences in brain structure related to lifestyle risk, such as higher
cortical folding index of the prefrontal cortex in relation to higher social integration. Here,
the stepwise exclusion approach was applied, deducing the contribution of each lifestyle
variable from its exclusion. This approach hinted at over-additive effects between the
individual lifestyle variables, since only combinations showed associations to local brain
atrophy as measured via the cortical folding index, but not the individual variables alone.
Using this approach, we were able to deduce, that the combination of increasing alcohol
consumption paired with decreasing physical activity seems to be risk behavior for
advanced local brain atrophy. In the second study, the BrainAGE framework enabled
investigation of the effects of the individual lifestyle variables in one multivariate model
(multiple regression). BrainAGE particularly adds its meaningfulness when it comes to

different trajectories of aging (Franke et al.,, 2012; Gaser et al., 2013). Whereas the first study
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investigated differences in the aged brain between individuals, BrainAGE compares the
individual anatomical aging pattern to the same individuals true chronological age. Even
though this is not a longitudinal measurement of changes over time, it approximates
estimation of intra- rather than inter-individual aging patterns: Each participant’s image-
based brain aging pattern is compared to his or her own chronologically expected brain
aging in addition to the average brain aging pattern of the sample. The current approach
therefore allowed identification of individuals whose brain anatomy hinted at accelerated
brain aging: Those older individuals with a generally higher lifestyle risk (reflected in a
higher combined lifestyle risk score) and with stronger lifetime smoking and lower physical
activity.

Here, the employment of different methodologies revealed complementing insights
into this association: The analysis of the cortical folding index, as well as BrainAGE (analysis
one and four) revealed physical activity as one of the most important lifestyle behaviors
regarding maintenance of structural brain health even in older ages. Analyzing BrainAGE
further hinted at subtle sex differences within this association, not investigated in the first
three analyses. This significantly adds to the current state of research as sex differences are
rarely investigated in the association between lifestyle and brain aging, not only with regard
to physical activity, but in general (Anaturk et al., 2018; Erickson et al., 2014; Karama et al.,
2015; Mukamal et al., 2001). Shedding further light into sex as a possible influencing factor
may facilitate tailoring interventions regarding lifestyle changes (higher physical activity,
lower alcohol consumption) for the specific sex and may hence raise acceptance and
maintenance of interventions in the community (Kramer & Colcombe, 2018). Together, the

current dissertation showed that a more protective lifestyle (higher physical activity, higher
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social integration) may enhance preservation of brain structure in the sense of the “Use-It-or-
Lose-It-hypothesis”(Swaab et al., 2002), counteracting age-related structural decreases.

The results further hint at older adults with higher smoking behavior being at risk for
accelerated structural brain aging, as revealed by higher BrainAGE (analysis one). In
contrast, lifetime smoking was the only lifestyle variable that showed no systematic relation
to differences in cortical folding index in the first analysis. It was the only lifestyle variable,
which showed systematic variations to increases in RSFC (analysis two), though. Based on
the analyses of cortical folding index and RSFC, the conclusion was drawn that smoking may
be one lifestyle factor mainly affecting the functional, and not structural integrity of the aged
brain. In light of the forth study’s results, this hypothesis needs to be reevaluated: Smoking
seems to affect the regional blood flow, which is shown by the local increases in RSFC — and
which may further hint at underlying changes in structural connectivity and WM - but
smoking may also affect GM, when it comes to an aggregated measurement of brain aging
(BrainAGE). Physical activity, in contrast, seems to be a lifestyle behavior affecting the
general aging patterns of structural brain aging (BrainAGE) in GM, differences in cortical
thickness (manuscript one; Appendix), as well as the complex characteristics of cortical
folding index. In the first analysis, the effect of physical activity was only revealed when
examined in combination with alcohol consumption. Thus, cessation of alcohol consumption
and smoking, as well as engaging in physical activity may be fruitful targets to promote
healthy brain aging and protect from increased risk for accelerated structural decrease.
However, smoking cessation may also be an important target when it comes to maintenance
of the brain functional efficiency in old ages, since higher smoking was also related to higher

RSFC in the first study, hinting at lower cognitive reserve (Stern, 2009; 2012).
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In contrast to the first study, the analysis of BrainAGE (Analysis 4) did not reveal an
association between alcohol consumption or social integration and the aged brain. In
contrast, social integration as a protective lifestyle behavior was related to preservation of
brain structure as measured via the cortical folding index (analysis one) regarding the right
prefrontal cortex and via greater hippocampal volume, two brain structures particularly
vulnerable to age-related structural loss (Fjell et al., 2013; Raz et al., 2005). A potential reason
for not replicating this effect in the analysis of BrainAGE (analysis four) may be that it was
only found, when investigated in combination with additional lifestyle behaviors (analysis
one). Here, the effect of social integration may only be detectable when it comes together
with an accumulation of several lifestyle behaviors. One reason may be that the combination
of individual lifestyle effects results in higher power to detect an effect, which would not be
strong enough to be found when investigated alone. Another reason may be molecular
biological interactions between the lifestyle behaviors, which are not directly measurable
with statistics, which are covered by the combined lifestyle risk score. Another reason for not
replicating this effect using BrainAGE, may be intrinsic to the complexity of the aged brain:
The cortical folding index is thought to reflect the underlying regional complexity and
connectivity of the brain (Hogstrom et al., 2013; Zilles et al., 2013). BrainAGE, in contrast,
aggregates the multidimensional pattern of aging into one value. Prior studies, which
reported a protective effect of social activities examined regional GM volumes (James et al.,
2012) and cognition (Fratiglioni et al., 2004). Therefore, social integration may be more
closely related to regional differences in the complex measure of cortical folding index, than
to the aggregated aging pattern of GM.

However, similar to the present study, most measurements of social integration

included activities with a high social and cognitive demand (Anaturk et al., 2018; Gow et al,,
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2012; Hafsteinsdottir et al., 2012). Therefore, it would be desirable to deduce the cognitive
and social components of social integration to make further statements about its effect on the
aged brain in the future.

The observed effect sizes of lifestyle on the aged brain can be considered as small,
though comparable to other studies (K. L. Miller et al., 2016). Still, the effects seem to be
highly stable, since several subsequent analyses to test for the confounding influences of
further variables were conducted. Here, the influences of several covariates including genetic
risk variants, depressive symptomatology, general level of education, as well as non-linear
effects, and sex differences were investigated (analysis three & four). The results remained
stable and the effects were found independent of the measure, i.e. cortical folding index,
RSFC or BrainAGE, used. This underlines the importance of daily lifestyle habits and their
interplay for structural and functional brain health in older adults, beyond other influencing
factors, such as genetics and education.

Some limitations of the current dissertation, as well as future questions resulting from
the current results should be addressed. The present dissertation relied on a one-time
measurement of lifestyle. Future studies are needed to investigate long-term measurements
including change patterns of lifestyle behaviors. Further, both present studies applied
correlational analyses, such that directionality of the effects cannot be inferred. It is e.g.
impossible to disentangle whether enhanced social integration leads to a stronger regional
cortical folding index, or whether higher initial brain reserve leads to higher social
integration. Therefore, longitudinal studies are needed to test causality of the here reported
effects. For future studies, it would also be desirable to analyze additional lifestyle behaviors,
such as dietary (Gur et al., 2015) or sleep (Mander, Winer, & Walker, 2017) habits. The

current dissertation provides insights into lifestyle influences on a range of parameters
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characterizing age-related differences, but future work may extend these results onto WM
and structural connectivity. As some associations between lifestyle and structural
connectivity of the brain have been reported (Kohncke et al., 2016), this may shed further
light into the complex relationship between lifestyle, brain structure and functional
connectivity. Since some lifestyle variables contributed stronger to the present results than
others, one could further deduce different weightings of the different lifestyle variables
when entered into the combined score in future studies.

Together the four analyses add new evidence to the complex contribution of lifestyle
to the variability in structural brain aging and functional connectivity and therefore give
promising insights into why people age so differently. Such insights may help us to develop
interventions to employ in daily life of older adults to promote healthy brain aging,
maintenance of quality of life and autonomy even up to older ages. Applications of our
combined concept further supported the notion that age-related neuronal differences are
likely a manifestation of a cumulative effect of several factors and not only of individual

influences, which needs to be further elucidated in future studies.
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Lifestyle contributes to inter-individual variability in brain aging, but previous studies focused
on the effects of single lifestyle variables. Here, we studied the combined and individual
contributions of four lifestyle variables - alcohol consumption, smoking, physical activity,
and social integration - to brain structure and functional connectivity in a population-based
cohort of 549 older adults. A combined lifestyle risk score was associated with decreased
gyrification in left premotor and right prefrontal cortex, and higher functional connectivity
to sensorimotor and prefrontal cortex. While structural differences were driven by alcohol
consumption, physical activity, and social integration, higher functional connectivity was
driven by smoking. Results suggest that combining differentially contributing lifestyle
variables may be more than the sum of its parts. Associations generally were neither altered
by adjustment for genetic risk, nor by depressive symptomatology or education, underlining
the relevance of daily habits for brain health.
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hallmarks of brain aging. Both show high inter-individual

variability, especially in later decades of life. Here, lifestyle
habits came into focus possibly influencing this variability!.
While some lifestyle habits may pose serious risks to brain health,
others may be protective. Physically more active older adults
show less volume loss®3, and better performance in cognitive
tasks* along with higher task-related activity in attentional net-
works®. Likewise, stronger social integration of older adults is
associated with reduced cognitive decline!, reduced risk of
dementia! and Alzheimer’s disease®, and higher regional and
overall gray matter (GM) volumes’-8. Both lifestyle habits there-
fore seem to promote cognitive or neural reserve capacity™!?, that
is, the ability to tolerate age or disease load without functional
impairments. In contrast, other lifestyle habits may pose serious
risks to healthy brain aging. Studies reported associations between
heavy smoking and cortical thinning!! or lower GM density!2. In
addition, smokers, compared to non-smokers, showed reduced
resting-state functional connectivity (RSFC)!?, as a correlate of
generally altered functional brain architecture!, between the
insula and prefrontal cortex. Similarly, chronic alcohol depen-
dence can lead to severe neurological diseases, for example,
Korsakoff syndrome!>. GM loss, however, has also been reported
in healthy older adults with non-dependent alcohol consump-
tionl6. In alcohol-dependent patients!”, regional GM loss was
found particularly in the frontal cortex, whereas white matter
(WM) loss is more pronounced in corpus callosum and cere-
bellum!?. Further, RSFC as well as performance in a simple motor
task and associated brain activation were found to be decreased in
alcohol-dependent patients!8. Hence, alcohol consumption and
smoking may both be variables accelerating brain aging and
reducing brain reserve.

Previous studies mainly investigated effects of single lifestyle
variables in isolation. However, individuals rather show a com-
bination of lifestyle habits that could all possibly influence brain
reserve, for example, being a smoker (risk) and socially and
physically active person (protective) versus being a smoker and
an inactive person. Yet, studies examining combinations of life-
style variables are rare. One study found pronouncedly different

S tructural decline and functional reorganization are major

RSFC, particularly when participants who both smoked and
consumed alcohol were compared to participants with only one
of these risk variables'®. This underlines the notion that indivi-
dual lifestyle variables may have intermingling effects on the
aging brain. It is therefore essential to examine combinations of
lifestyle habits to understand the high inter-individual variability
in the reserve capacity to tolerate age-related differences.
Consequently, we developed a combined lifestyle risk score to
investigate the relation between lifestyle risk as a combined
concept and brain aging. Based on the literature described above,
physical activity?~> and social integration!-6-8 were classified as
protective variables, and alcohol consumption!>18 and smok-
ing!1-13 as risk variables. Data on all four lifestyle variables were
assessed via self-report in 549 older participants (248 female)
aged 55 to 85 years from the population-based 1000BRAINS
cohort study?. Physical activity was examined as metabolic
equivalent?!, alcohol consumption in grams of consumed alcohol
per week, smoking as pack years, and social integration as the
social integration index??. Similar to the concept of genetic risk
scores, we combined these four lifestyle variables into one risk
score indicating combined lifestyle risk (Fig. 1). Negative values
indicated a rather protective lifestyle (e.g., high levels of physical
activity and social integration, plus low alcohol consumption and
no smoking), and positive values a combination of more risky
behaviors. Further details can be found in the Methods section.
To investigate the relation between lifestyle and brain structure
and function, we tested not only this combined risk score but also
investigated the contributions of each lifestyle variable. To this
end, we successively excluded each lifestyle variable from the
combined lifestyle risk score resulting in eight risk score models
with different combinations of single lifestyle variables (see
Methods and Supplementary Table 1): Four risk score models
included three single variables and another four included two
single variables, where always one protective and one risk variable
were combined to examine whether they canceled each other
out!®. We used this epidemiologically motivated comprehensive
operationalization of lifestyle in three consecutive analyses to
understand its relation to reorganization during brain aging:
Analysis of (1) brain structure regarding (a) gyrification and (b)

Risk behavior
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Fig. 1 Combined lifestyle risk measured with the developed combined lifestyle risk score. Lifestyle related data, that is, alcohol consumption (g/week),
smoking (pack years), social integration (social integration index23), and physical activity (metabolic equivalent per weekZ2) were z-transformed to obtain
uniform measure units. Z-transformed data on the protective variables physical activity and social integration were first multiplied with (=1) and then

summed up with z-transformed data on the risk variables of alcohol consumption and lifetime smoking. This resulted in an individual score of combined
lifestyle risk. a The combined lifestyle risk score shows a nearly normal distribution. b Rank-sorted data of the combined lifestyle risk score: The participant
with the lowest score gets rank 1and the highest rank 549. Green colors indicate more protective lifestyle behavior and magenta colors indicate more risky

lifestyle behavior
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subcortical volumes, (2) RSFC, and (3) both analyses while
additionally accounting for genetic risk.

Recent studies identified the local gyrification index (LGI)?3,
the degree of cortical folding, as a sensitive surface-based
measure?®25 for studying age-related differences in local brain
structure. Differences in arealization and gyrification seem to be
more closely related to age than differences in cortical thickness
(CT)?“. Higher gyrification is supposed to promote functional
development and brain connectivity more efficiently than
increasing cortical GM?%, In turn, lower gyrification would imply
lower brain reserve capacity. We therefore hypothesized (1a) that
higher combined lifestyle risk would be associated with lower
local gyrification. We tested this hypothesis in FreeSurfer26-27
based on T1-weighted structural magnetic resonance (MR) ima-
ges. To complement this surface-based approach, we tested for an
association between combined lifestyle risk and volume of sub-
cortical structures (1b), as well as (1c) CT as a second surface
parameter?® adding the dimension of cortical GM volume in
supplementary analyses. Our second analysis examined whether
the identified lifestyle-related variations in brain structure would
be accompanied by variations in functional connectivity (2).
Here, we tested for decreases in RSFC, as well as RSFC increases
that have been repeatedly reported in pathological conditions!%.
RSFC increases that already occur during rest may reflect higher
base levels that leave no room for additional increases in brain
activity during active tasks to boost performance®-8. Therefore,
higher base levels supposedly reflect lower cognitive reserve?®30
and would be expected in individuals with higher combined
lifestyle risk. We hence hypothesized that those regions that
showed lifestyle-related variations in cortical folding would also
show variations in RSFC. Finally, evidence for influences of
genetic susce}gtibility on variability in behavior3!-3¢ and brain
organization®> has recently been provided. To account for indi-
vidual genetic susceptibility (3), we constructed a polygenetic risk
score (PRS) from genome-wide association studies (GWAS, see
Methods) of smoking and alcohol consumption.

The current study shows that combined lifestyle risk is asso-
ciated with decreased gyrification in left premotor and right
prefrontal cortex, and related higher functional connectivity with
sensorimotor and prefrontal cortex. While decreased gyrification
was driven by alcohol consumption, physical activity, and social
integration, higher functional connectivity was driven by smok-
ing. Neither genetic influences nor a set of non-lifestyle variables
(depressive symptomatology, Beck Depression Inventory-II (BDI-
1136 and education level as measured with the international
standard classification of education (ISCED)37) modulated the
relation between combined lifestyle risk and the brain pheno-
types. Daily lifestyle habits and their interplay therefore seem to
influence structural and functional brain health in older adults,
beyond other influencing factors.

Results

Sample characteristics. Mean age of the final study sample (n =
549) was 67.4 years (SE = 0.28, Table 1). Mean combined lifestyle
risk (summed-up z-scores) was —1.30 (SE=0.07) and its dis-
tribution did not significantly deviate from normality
(Kolmogorov—-Smirnov test: p=0.226, Fig. 1). Data on all four
single lifestyle variables (Table 1) were considerably skewed due
to a substantial number of participants not engaging in the spe-
cific lifestyle behavior, for example, 216 (136 female) participants
did not consume alcohol. Among these 216 participants, 16 never
consumed alcohol and no participant reported abstinence due to
former alcohol dependence. Similarly, 255 (139 female) partici-
pants never smoked. We used subgroups of the study sample for
the analysis of RSFC (n=>501) and for the PRS analysis (n =
488), since RSFC and PRS were not available for all participants.

Table 1 Descriptive statistics of lifestyle variables

Lifestyle variable Mean SE Min Max
Alcohol consumption (in g/week) 70.00 4.41 0.00 952.77
Smoking (in pack years) 12.77 0.80 0.0 120.00
Social integration (as social 12.72 0.25 2.00 43.00
integration index)

Physical activity (metabolic 40.75 171 0.00 257.75
equivalent per week)

Combined risk score =130 0.07 -6.81 420

(combined z-scores)

Combined lifestyle risk and gyrification. All reported analyses
were statistically corrected for age and gender as covariates and
corrected for multiple comparisons using Monte Carlo simula-
tions at & =0.05 with a cluster-wise p value (cwp) <0.01 (two-
sided test, for uncorrected results, see Supplementary Fig. 1). A
higher combined lifestyle risk score was associated with lower
local gyrification in two distinct cortical areas, namely left dorsal
premotor cortex (dPMC, cwp=0.0001, Fig. 2a) and ventro-
lateral prefrontal cortex (vIPEC, cwp = 0.0001, Fig. 2a) extending
from the frontal pole to middle frontal gyrus and to posterior
inferior frontal gyrus and sulcus.

Stepwise exclusion (Fig. 2) of one or more lifestyle variables from
the combined score and examining the associated differences in
gyrification revealed a consistent pattern: (i) Higher lifestyle risk in
all risk score models including alcohol consumption and/or physical
activity (Fig. 2a-h) was associated with decreased cortical folding in
left dPMC. This association disappeared, when excluding both
alcohol consumption and physical activity (Fig. 2i). This hinted at
alcohol consumption and physical activity being the driving
behaviors behind this association. (ii) Lower lifestyle risk in all
risk score models that included social integration (Fig. 2a, ¢, d, e, g,
i) was consistently associated with decreased cortical folding in right
VIPFC. Since this association vanished when social integration was
excluded (Fig. 2b, f, h), this hinted at social integration as the main
driving behavior for this association. To further test this association,
we extracted cortical folding values of the vIPFC region and used
them as dependent variable in a post-hoc multiple linear regression
including all four single lifestyle variables, age, and gender as
regressors. With f=0.11, sodal integration was the strongest
predictor of cortical folding in VIPFC (F test, F(1,542) = 3.95, p=
0.0007; for details, see Supplementary Fig. 17).

We did not find any significant association between single
lifestyle variables and cortical folding using permutation-based
inference. Uncorrected results are shown in Supplementary Fig. 2.
Analyses including additional covariates and measure (CT) can
be found in Supplementary Figs. 11-16.

GM volume of subcortical areas. The strongest association was
found between enhanced social integration alone and greater GM
volume of left hippocampus (partial Spearman’s p =0.15, p =
0.0017). This was the only correlation surviving a post-hoc
Bonferroni correction using a threshold of &, =0.05/20 =
0.0025 with 20 subcortical structures tested (Table 2).

Combined lifestyle risk and RSFC. We used regions showing
variations in cortical folding in relation to the combined lifestyle
risk score as seed regions (dPMC and vIPFC) to test for variations
in RSFC to all other GM voxels. All reported associations were
significant at & =0.05 (cluster level corrected, cluster-forming
threshold « < 0.001, two-sided) and corrected for age and gender.
Decreased RSFC between the seeds and other regions showed no
systematic differences (see Supplementary Figs. 3, 4).
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Fig. 2 Differences in cortical folding associated with lifestyle risk in different risk score models. a-i Small boxes represent different risk score models
derived from the stepwise exclusion approach with excluded single lifestyle variables grayed out. Associations between cortical folding and the combined
lifestyle risk score, or the different risk score models, respectively, are depicted on the inflated surfaces of the fsaverage brain. Arrows indicate the work
flow of the stepwise exclusion. Negative associations are represented in blue, and positive associations in red. The recurrent negative associations between
higher lifestyle risk and reduced cortical folding in left dorsal premotor cortex (dPMC) and right ventro-lateral prefrontal cortex (VIPFC) are colored in pink
and orange, respectively. All results are corrected for age and gender and corrected for multiple comparisons using Monte Carlo Z simulations with a=
0.05. Some of the associated regions in specific risk score models marked with an asterisk did not pass an additional correction for multiple comparisons at
a=0.05/13 = 0.0033. For detailed information see Supplementary Table 2. n.s. = not significant, ACT = physical activity, ALC = alcohol consumption,
SOC = social integration, SMO = pack years of smoking, L = left hemisphere, R = right hemisphere

Regarding the seed region of left dPMC, higher combined
lifestyle risk scores were associated with increased RSFC between
left dPMC seed and bilateral primary motor, left somatosensory,
left entorhinal, and left higher visual cortex.

Again, we applied our stepwise exclusion approach to test for
individual contributions of single lifestyle variables. Excluding
social integration, alcohol consumption, or physical activity from
the risk score left the overall association between left dPMC and
reported regions unaltered (Fig. 3b, d, e, h, 1). Contrarily, when
excluding smoking from the risk score models, increases in RSFC
were no longer found (Fig. 3c, f, g). Further, smoking as a single
variable revealed higher RSFC between left dPMC and bilateral
primary motor and somatosensory cortex, left superior frontal
gyrus, left dorsal and right lateral occipital cortex, that is, clusters
that were similarly found in the respective risk score models
that included smoking (compare Fig. 3a, b, d, e, h with Fig. 3I).
Thus, RSFC was only increased when smoking was considered,
either incorporated in a risk score model or as single variable.
Besides this general pattern, we found an additional systematic
change in RSFC of left dPMC (Supplementary Table 3): All risk
score models that included both physical activity and smoking,
or smoking as a single variable, were significantly related
to higher RSFC between left dPMC and dorsal visual cortex
(Fig. 3a, ¢, d, h, I).

For single lifestyle variables, we found additional associations
(Supplementary Table 3): Higher RSFC between dPMC and (i)
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left rostral superior frontal gyrus (for smoking), (ii) left temporo-
parietal junction (for social integration, Fig. 3m), and (iii) left
cerebellum (for alcohol consumption, Fig. 3k).

Now analyzing RSFC of the vIPFC, this seed showed increased
RSFC to right anterior superior frontal gyrus (SFG, Fig. 4a,
Supplementary Table 4) in relation to higher combined lifestyle
risk.

Again, we applied our stepwise exclusion approach for the seed
in right vIPFC. The cluster within right SFG was repeatedly found
in all risk score models containing smoking and not found when
smoking was excluded (Fig. 4c, f, g). Additionally, this cluster
showed higher RSFC in relation to smoking as a single variable
(Fig. 41), as well as clusters in its left homolog and thalamus.
Results remained unchanged when removing any other lifestyle
variable (Fig. 4b-i).

Two other single variables were associated with increased RSFC
to the right vIPFC seed, that is, to right caudate nucleus, and right
rostral inferior frontal gyrus (social integration, Fig. 4m); and to
left inferior frontal gyrus triangular part, left post-central gyrus,
and right middle temporal gyrus (physical activity, Fig. 4j).

Additional adjustment for polygenic risk. Entering the poly-
genic risk score (PRS, composed of genetic risk for alcohol con-
sumption and smoking, see Table 3 in Methods) as a covariate
did not change the general pattern of results, but revealed an
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Table 2 Correlations between lifestyle risk score models and

subcortical structures

Risk score Hemisphere Subcortical r (correlation) p value

model structure

Combined  Right Amygdala —0.086 0.044

risk score, Mc. accumbens —0.100 0.019

ACT, ALC,

SMQ, S0C

ACT, ALC, Left Thalamus 0.089 0.037

SMO

ACT, ALC, Right Amygdala —0.087 0.042

sOC

ACT, SOC, Left Hippocampus —0.089 0.037

SMO Putamen —0.092 0.030
Globus pallidus —0.089 0.037

Right Nc. accumbens —0.084 0.049

Hippocampus —0.091 0.033
Putamen —0.089 0.036

ALC, SOC, Left Hippocampus —0.091 0.033

SMO Right Nc accumbens  —0.129 0.003
Putamen —0.088 0.040

ACT, ALC  Bilateral Mid anterior —0.105 0.013
cingulum

ALC, SOC  Left Hippocampus —0.105 0.014
Amygdala —0.105 0.014

SOC, SMO  Left Hippocampus —-0.107 0.012
Globus pallidus —0.096 0.024

Right Putamen —0.098 0.022

Nc. accumbens —0.108 0.012

ACT as Bilateral Anterior 0.107 0.012

single cingulum

variable

SMO as Right Nc. accumbens —0.101 0.018

single

variable

SOC as Left Hippocampus? 0.1342 0.0022

single Amygdala 0.088 0.039

variable Right Hippocampus 0.101 0.018
Nc. caudatus 0.12 0.005

Table shows significant partial correlations between lifestyle risk score models and subcortical

structures, corrected for age, gender, and total intracranial volume, n= 549

Mo nucleus, r: Spearman’s correlation coefficient

#The partial correlation between social integration and the left hippocampus was the only one

being significant at an a-level corrected for multiple comparisons @, = 0.05/20 = 0.0025. The

complete correlation matrix can be found in Supplementary Data 1

additional effect in right precuneus as can be seen in Fig. 5 (see
Supplementary Fig. 5 and Supplementary Table 7). Results of the
RSFC analyses did not change either when adjusting for PRS
(Supplementary Figs. 6 and 7, Supplementary Tables 8 and 9).

Discussion

This study examined the relation between combined lifestyle risk
and cortical folding and RSFC of the aged brain. Four core
findings emerged: First, the combined lifestyle risk score showed
significant systematic associations to regional cortical folding,
whereas single lifestyle variables did not. Second, physical activity
and alcohol consumption were the main variables contributing to
reduced cortical folding in left dPMC, and third, social integra-
tion was the main variable contributing to higher cortical folding
in right vIPFC as revealed by the stepwise exclusion approach.
These patterns were highly stable, observed in the main as well as
in all additional and sensitivity analyses, as often used in epide-
miological research (see Supplementary Methods). Fourth, sys-
tematic alterations in RSFC were mainly influenced by smoking.

Finally, adjustment for genetic risk for smoking and alcohol
consumption did not alter the general pattern of results.

Our first finding that higher combined lifestyle risk scores
showed significant systematic associations to lower regional cor-
tical folding, whereas single lifestyle variables did not, may be
explained by additivity: Many different influencing factors con-
tribute to variations in older adults' brains3, with each variable
explaining only a small amount of variance. Hence, single effects
of each lifestyle variable on cortical folding might be too small to
reach significance. By combining different lifestyle variables, their
effects on the aged brain might either add up or integrate—
becoming strong enough to reach significance. Another reason
for finding effects for the combined, but not for single lifestyle
variables might be that the combined lifestyle risk score reduces
noise by integrating underlying information from different single
lifestyle variables. Reasons explaining why we did not replicate
previously reported results on single lifestyle variables might be
manifold, for example, the population-based and therefore het-
erogeneous nature of our sample in contrast to intervention
studies often having very homogenous samples®. Further, we did
not investigate lifestyle behavior in patients®!7, but in healthy
older adults, where pathological differences may be subtler.

Our second core finding that higher combined lifestyle risk was
associated with lower cortical folding in left dPMC is significant,
but only when alcohol consumption and/or physical activity were
included into the risk score models. Importantly, neither physical
activity nor alcohol consumption as single variables were sig-
nificantly related to cortical folding. Thus, both seem to drive the
association between lifestyle risk and cortical folding only in
combination with other lifestyle risk variables. Interestingly, we
found the same association between physical activity and alcohol
consumption and decreases in brain structure also with respect to
decreased CT (Supplementary Fig. 14). Physical activity has
repeatedly been linked to better cognitive performance? and
reduced age-related GM loss>. It has been discussed that physical
activity promotes increase or preservation of brain structure®?,
analogous to “activity”-induced or “training”-induced structural
adaptations of neuronal tissue described in animals’® and
humans®. This increase in GM was replicated in older adults*!,
suggesting that structural adaptations are even possible in later
life. A similar relation has also been described in the “use it or
lose it” hypothesis®? regarding cognitive or motor abilities.
According to this hypothesis, the more particular abilities are
used during daily life, the better they are preserved in the course
of aging. Consequently, often engaged brain regions show
structural adaptation?#3 and are better preserved? also in late
life**, which contradict the theory of often used brain regions
suffering from faster decline*2. Consistent with the current study,
structural correlates of physical activity have been found in
PMC*445, The dPMC is involved in a variety of processes needed
for daily physical activities and sports, such as movement plan-
ning, control, and learning (e.g., dancing), sensorimotor trans-
formations, and action selection?®%’. Possibly, older adults more
engaged in sports and physical activity in daily life recruit the
resources of PMC more often. This could lead to better pre-
servation of brain tissue in the very same area, such that an age-
related decrease? would be less pronounced in physically more
engaged older adults — similar to activity-induced structural
adaptations.

The other variable contributing to cortical folding in dPMC in
the healthy older adults of the present study was alcohol con-
sumption. Chronic alcoholism has repeatedly been related to
neurodegeneration, for example, of frontal GM!6, cerebellar
Purkinje cells*3, and motor performance impairment!8. However,
a direct association between alcohol abuse and degeneration of
PMC was not shown previously. A recent study, though, did find
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Fig. 3 Lifestyle risk-associated increases in resting-state functional connectivity (RSFC) to the seed in the left dorsal premotor cortex (dPMC).

a-m Abbreviations in the small boxes refer to the same variables as in Fig. 2. Coronar sections show brain regions exhibiting increases in RSFC depicted in
red. The recurrent pattern of higher RSFC between the dPMC and the somato-motor cortex is highlighted in pink. Arrows indicate the work flow of the
stepwise exclusion. Transparent sections represent not significant (n.s.) results. This analysis included a subsample of the study population (n =501).
Results were significant at @ = 0.05 (cluster level corrected, cluster-forming threshold & = 0.001). $1= primary somatosensory cortex, MTG = middle
temporal gyrus, M1 = primary motor cortex, DOC = dorsal occipital cortex, EC = entorhinal cortex, TPJ = temporo-parietal junction, L = left hemisphere,

R =right hemisphere

decreases in RSFC of motor networks in smoking alcohol con-
sumers!®. In the present study, older adults with stronger
drinking habits showed lower cortical folding in dPMC and
exhibited increased RSFC between dPMC and cerebellum
(Fig. 31). In our study, we found increased alcohol-related RSFC
in a fronto-cerebellar network already during rest. As previously
described, increases in RSFC may hint at lower cognitive reserve’
capacity, leaving no room for compensatory increases in brain
activity during task performance (compensation-related utiliza-
tion of neural circuit’s hypothesis?’, CRUNCH). Altogether, this
hints at impairment of (pre-) motor system organization in older
adults with stronger drinking habits. This may also explain why
alcohol consumers, compared to controls, need to recruit addi-
tional brain regions to perform simple motor tasks!®. Future
studies on the interplay between alcohol consumption and motor
networks in older adults may possibly provide new insights into
how “normal” alcohol consumption influences the aged brain.
Interestingly, the association between physical activity, alcohol
consumption, and left dPMC was not as stable as the association
between social integration and right vIPFC when additionally
correcting for depressive symptomatology and education (Sup-
plementary Figs. 11-13), even though the general association

between lifestyle risk and cortical folding did not change (Fig. 6).
Hence, depressive symptomatology and education may addi-
tionally contribute to this more complex association.

The third core finding was the association between lower
combined lifestyle risk and reduced decreases in cortical folding
in right vIPFC, mainly driven by enhanced social integration. A
post-hoc multiple linear regression further confirmed social
integration as the strongest explanatory variable of cortical fold-
ing within vIPFC (see Supplementary Methods). Consistent with
this finding, larger brain volume was found in more socially
engaged older adults’ and after a social activity intervention for
older adults®. Several mechanisms might drive this association:
Social integration may attenuate age-related neuronal loss,
leading to greater brain volume, which is generally considered a
factor contributing to brain reserve®!0. Animal studies on enri-
ched environment including possibilities for physical and social
activities, have indeed shown that socially integrated animals
exhibited greater neurogenesis and better spatial learning than
isolated animals®. Similarly, experimentally enlarged social net-
work size in macaques increased GM volume within temporal
and prefrontal cortex and concurrently lead to increased func-
tional connectivity*?. Social integration may also contribute to

URE COMMUNICATIONS | (2019010:621 | https:/ /doi.org/10.1038/541467-019-08500-x | www.nature.com/naturecommunications



NATURE COMMUNICATIONS

ttpsy//doi.org/10.1038/541467-019-08500-x

ARTICLE

2 Combined lifestyle risk score
SFG

L
| ACT | ALC
b c v
n.s.
| ACT|AL - [ AcT [ ALc [ soc] |
g /
n.s.
| | | AL [ soc | |
k
ns.
| ACT | Ao [soc [smo | [AcT [ALG | s0C|sMO| |

Fig. 4 Lifestyle risk-associated increases in resting-state functional connectivity (RSFC) to the seed in right ventro-lateral prefrontal cortex (vIPFC).
a-m Transversal sections show brain regions exhibiting increases in RSFC depicted in red. The recurrent pattern of higher RSFC between right vIPFC and
superior frontal gyrus is outlined in orange. Arrows indicate the work flow of the stepwise exclusion. This analysis included a subsample of the study
population (n = 501). For other conventions, see Fig. 2. Results were significant at @ = 0.05 (cluster level corrected, cluster-forming threshold « = 0.001).
SFG = superior frontal gyrus, MTG = middle temporal gyrus, THAL = thalamus, NC = caudate nucleus, n.s. = not significant, L = left hemisphere, R = right

hemisphere

Table 3 Selected SNPs from GWAS of smoking and alcohol consumption

Trait Study SNP Effect size  p overall Min Maj Effect Gene CHR
SMO Liu et al.33 rs1051730 —0.08 171E-66 A G G CHRNAS/3 4
rs6495308 0.07 5.82E—44 C T T CHRNA3 4
Thorgeirsson et al.32 rs13280604 0.31 13E-8 G A A CHRNB3
rs4105144 0.39 228712 T C C CYP2A6 8
rs7937 0.24 2.4E-09 C T T RAB4B 10
rs7260329 0.20 5.5E-06 A G G CYP2B6 10
Tobacco and Genetics rs1329650 -0.37 5.67E-10 T G G LOC100188947 15
Consortium33 rs1028936 —0.45 12909 C A A LOC100188947 15
rs3733829 0.33 10408 G A G EGLNZ 15
ALC Clarke et al35 rs1260326 —-0.03 13421 T C T GCKR 2
rs9841829 0.02 3.36E10 G T G CADM?Z2 3
rs11940694 —-0.03 8.4E-1 A G A KLB 4
rs145452708 —-0.03 115630 C G C ADH1B/c 4q23
rs29001570 —-0.03 9.58E-1° C T C ADH5 4q23
rs35081954 0.02 21410 CTG C CTG ADHic 4q23
rs193099203 —0.03 3.79E-%5 T C T Intergenic 4

frequency allele, CHR: chromosome

SMO: smoking (cigarettes per day), SNP: single-nuclectide polymorphism, GWAS: genome-wide association studies, ALC: alcohol consumption (g/day), Min: minor frequency allele, Maj: major
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Analysis of RSFC

Fig. 5 Comparison of analyses without adjustment for polygenetic risk scores (GRS) and with adjustment for polygenetic risk score (PRS). a The lower row
shows the results of the analyses of cortical folding and resting-state functional connectivity (RSFC) with adjustment for PRS. b The upper row shows the
results of the analyses of cortical folding and RSFC with adjustment for PRS. Whereas the general pattern of the results did not change after adjustment for
PRS, an additional decrease in cortical folding in right precuneus was observed. n.s. = not significant, L = left hemisphere, R =right hemisphere

Analysis of cortical folding corrected for different covariates

Age & gender

Age, gender & BDI-Il

Age, gender & ISCED

Age, gender, BDI-Il & ISCED Age, gender & PRS

Fig. 6 Analyses of cortical folding with additional adjustment for a set of non-lifestyle covariates. The illustrations show the associations between the
combined lifestyle risk score and cortical folding when correcting for a set of non-lifestyle covariates. The additional adjustments did not change the general
associations between the combined lifestyle risk and decreased cortical folding within the left dorsal premotor cortex (dPMC) (pink) and the right ventro-
lateral prefrontal cortex (vIPFC) (orange). BDI-Il = depressive symptomatology, as measured with Beck's depression inventory-1136, ISCED = educational
level as measured with international classification of education3?, PRS = polygenic risk score

brain reserve more indirectly by providing an enriched and
cognitively stimulating environment, for example, via cognitive
stimulation provided by social activities, better health support, or
less depression due to emotional support!.

In the current study, a negative correlation between combined
lifestyle risk and gyrification was found in right vIPFC, which
comprises regions associated with executive networks®!, atten-
tional control, decision making, and prediction of future out-
comes®2. All of these abilities play a crucial role in successful
participation in social situations, for example, requiring to update
information on the dialog partner and the group~?. Furthermore,
social interaction also demands inhibition of inadequate behavior,
which in turn is based on goal-directed thinking®? and prediction
of future outcomes to establish long-term, rather than short-term
relationships. Similarly, social interactions require emotional self-
regulation through top-down control, a process that also has
repeatedly been linked to (particularly right) vIPFC>*. These
social activity related abilities pose a high cognitive load and
require executive and integration skills. Since these highly com-
plex abilities are precisely subserved by vIPFC, this may explain
why the current study found social integration associated with
brain structure of the vIPFC, rather than brain structures more
typically associated with the social brain. Similar to the activity-
induced structural adaptation of brain regions to skill learning
and (exercise) training, particularly those brain regions subser-
ving high cognitive, integrative, and emotional load needed for

URE COMMUNICA

social interactions, may suffer less from age-related decline due to
their reoccurring recruitment. This could be referred to as a “use
it—or lose it” hypothesis in aging®!, and is of special interest since
the PFC is particularly vulnerable to aging”®.

Such activity-induced structural adaptation may also explain
the correlation between enhanced social integration and reduced
decrease in GM volume in left hippocampus. Socially enriched
environmental conditions have been linked to hippocampal
neurogenesis in animals*®. Additionally, the hippocampus is
involved in memory and flexible provision of knowledge in
complex human social situations®2. Thus, stimulating environ-
ments and memory demands of social activity may slow down its
age-related decline. These findings are complemented by a posi-
tive correlation between social integration and increased RSFC
between dPMC and left temporo-parietal junction (Fig. 3m), a
region involved in social cognition and theory of mind~®.

The general pattern of increases in RSFC associated with
higher lifestyle risk, though, was mainly driven by smoking—as
revealed by the stepwise exclusion approach. Similar to the
increases in RSFC associated with alcohol consumption, the
current study observed smoking-related increases in RSFC
already during rest. As a result of these higher base levels, older
adults who smoke may reach their limits faster during an active
task possibly performing worse than non-smokers®2”, as their
neural reserve might be exhausted. Therefore, smoking and the
here observed associated increase in RSFC may reflect less neural
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reserve capacity and less potential for compensation during active
tasks. Since such higher base levels are one major hallmark in
brain aging??, they may even hint at accelerated aging in smokers.
Other mechanisms that may lead to enhancement of functional
networks in the brains of smokers may more resemble addictive
mechanisms: Complex alterations have previously been found in
executive networks'?, comprising vIPFC and SFG—structures
that exhibited higher smoking-associated RSFC also in the cur-
rent study. These alterations have been suggested to reflect a shift
from more endogenous to more exogenous processing of
addiction-related cues in smokers!'3. Smoking-related alterations
in functional connectivity, however, seem not to be limited to
frontal brain networks: Consistent with the altered RSFC between
PMC and motor networks in the current study, disruptions in
motor networks have previously been observed in smokers!®,
together with decreased GM density!'2. Smoking thus seems to be
accompanied by a complex pattern of increases and decreases in
functional connectivity affecting frontal and motor networks.
Importantly, most of the here reported studies investigated
smoking in young to middle-aged adults. Within the aged
population, increase and dedifferentiation in RSFC seems to be
one hallmark?®. Smoking-related alterations in RSFC may
therefore rather shift to systematic increases in RSFC than to
decreases. Interestingly, while decreased functional coupling
within motor networks has been previously observed in smokers
in comparison to non-smokers!®, RSFC amongst smokers was
positively correlated with smoking severity. We also investigated
smoking in a dose-dependent manner (the more pack years, the
more RSFC), which may explain why we only found RSFC
increases related to smoking and no systematic decreases (see
Supplementary Figs. 1 and 2). Further, we found a systematic
relation between smoking and dorsal occipital cortex (dOC,
Fig. 3a, ¢, d, h, i), which is involved, for example, in visuospatial
attention®’. Influences of smoking on visuospatial attention have
been circumscribed in terms of smoking facilitating visual
attention by enhancing the blood oxygen-level-dependent
(BOLD) signal in dorsal visual stream® and higher coupling
between visual processing regions!®. These alterations in visual
processing during acute nicotine withdrawal may shift towards
altered RSFC patterns when abstaining from smoking. The
increases were observed in networks related to sensory awareness
and attention (dPMC and dOC), which may reflect a more
general shift of sensory and attention systems towards addiction-
related processing. Importantly, smoking was not related to
structural decline in the current study, but was the only variable
showing systematic associations to increased RSFC of those
regions that showed decreased brain structure.

We hypothesized that genetic susceptibility may modify the
relationship between lifestyle and the aged brain. Adjustment for
genetic risk revealed an extra effect in the precuneus, indicating
enhanced sensitivity of these analyses, while the general result
pattern remained unchanged. Thus, genetic susceptibility seems
to be a non-negligible, but not a strong contributor when it comes
to the relationship between lifestyle and brain aging. Our
approach shows that accounting for different concurrent influ-
ences may help to identify small effects. In future studies, it would
be desirable to also include potential genetic influences of the
other two lifestyle variables (social integration and physical
activity), for which genetic factors had not been consistently
identified at the time of our analysis.

Some further limitations of the current study should be
addressed. First, the questionnaire items that were used to mea-
sure lifestyle variables concerned different time windows (e.g.,
physical activity within the last 4 weeks, smoking as number of
cigarettes smoked over the whole lifetime). Each lifestyle variable
was operationalized to be as representative as possible for the

long-term lifestyle behavior of each person®®. Epidemiological
research has shown that assessments specifically regarding
defined short time frames (e.g., a month, a week) are more reli-
able indicators of long-term behavior than self-reports regarding
longer time frames (e.g, a whole year®0). Future studies are
warranted to additionally study the influence of changing lifestyle
habits.

Additionally, all lifestyle habits were assessed using self-report,
which may be influenced by memory effects or social desirability
bias. However, self-report measurements have been shown to
have high validity and reliability®® and are thus suitable in such
an epidemiological population-based cohort setting.

Our cross-sectional and correlational design makes it impos-
sible to determine causal directionality of effects or to rule out
cohort effects. It is, for example, impossible to disentangle whe-
ther enhanced social integration leads to stronger cortical folding,
or whether higher initial neuronal reserve leads to higher social
integration. Further, it might be interesting to also include non-
linear or differentially weighted effects when analyzing lifestyle
variables individually or in combination. However, based on the
current state of research, assumptions regarding a specific
weighting of different lifestyle variables would be speculative.
Future studies could use simulations to evaluate the potentially
non-equal contributions of different lifestyle variables by simu-
lating different weightings and examine their association to brain
structure and function. This needs to be evaluated in future
studies.

Based on the literature, we assumed the lifestyle behaviors
to affect the brain in a certain direction, for example, negative
effects of alcohol consumption on the brain. Effects in the
opposite direction, depending on the brain region examined,
may still occur. Importantly, the post-hoc multiple regressions
using extracted cortical folding values confirmed our assumption
of effect direction for the examined regions (Supplementary
Figs. 8-9). Additionally, although our concept of social integra-
tion is widely used in epidemiological studies??, it covers mostly
quantitative, summed-up measures of social network (visits of
friends, relatives, or children). According to socio-emotional
selectivity theory®!, however, older adults select their companions
based on relationship quality, leading to a small quantity of
close friends rather than a large number of superficial acquain-
tances without feeling less emotionally supported. Future research
could explore how the quality of social contacts contributes to
brain aging.

Besides the known beneficial effects of physical activity?—>, our
results emphasize the significance of low alcohol consumption
and high social integration as protective factors in aging. Whereas
interventions to preserve brain health based on physical activity
are quite common3, research lacks randomized intervention
trials of social integration of older adults, although both might be
easily combined?®. Further, other lifestyle variables such as dietary
or sleeping habits should be examined in future studies.

In summary, our results provide insights into the complexity
between environmental and genetic factors, brain structure, and
functional connectivity of the aged brain. Our newly developed
combined approach enabled us to examine this complexity
and revealed that older individuals carrying higher lifestyle risk
load seem to be at higher risk to suffer from structural brain
atrophy. While these variations in structural decline were mainly
explained by levels of alcohol consumption, physical activity, or
social integration, smoking was the main variable driving the
associations between higher lifestyle risk and increased RSFC. The
increases in RSFC, though, may further reflect reduced cognitive
reserve and accelerated aging related to smoking, as well as
addiction-related functional adaptations of the brain. In con-
sequence, a more protective lifestyle may contribute to brain
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reserve, that is, the preservation of brain structure, and to cog-
nitive reserve, that is, the more efficient use of functional brain
networks. Our study therefore shows that integrative concepts of
lifestyle may be a strong instrument for advancing our under-
standing of risk and protective influences on aging in the general
population and in patients suffering from neurodegenerative
diseases, as well as for low-cost interventions preserving healthy

aging.

Methods

Sample characteristics. Seven hundred and fifteen older adults from the
population-based cohort of the 1000BRAINS study®!, recruited from the Heinz
Nixdorf Recall study®’, were available for the current study. Two participants had
to be excluded from analyses due to incidental findings. Seventy MR data sets could
not be used for analyses of cortical characteristics due to poor quality of WM/GM
segmentation (see MRI processing), surface reconstruction, or registration. Due to
missing values in behavioral data 63 participants had to be excluded. After cal-
culating the combined lifestyle risk scores (see Construction of lifestyle-related risk
scores), we excluded another 31 participants as outliers (+3 SD from the mean) to
ensure that these extreme values would not bias the overall outcome. Finally, 549
older adults (248 female) were included in the analyses. All participants gave
written informed consent in agreement with the Declaration of Helsinki. The study
protocol was approved by the Ethics Committee of the University of Essen,
Germany. An overview of demographic data is given in Table 1.

Materials. Lifestyle measures: Lifestyle data were retrieved from the database of the
Heinz Nixdorf Recall study®®.

Single lifestyle variables: Alcohol drinking behavior was assessed via a self-
report questionnaire asking about average consumption of different beverages
(beer, red wine, white wine, spirits, and cocktails) within the last 4 weeks. The
proportion of pure alcohol per beverage was then multiplied with the frequency of
drinking. Next, all beverages per person were summed up, resulting in the amount
of total consumption of pure alcohol in grams per month (g/month).

The degree of lifetime exposure to tobacco smoking was assessed in pack years,
calculated by multiplying the years of smoking with the self-reported number of
smoked cigarettes per day (CPD).

Social integration was assessed using an adapted version of the social
integration index developed by Berkman?2. The present social integration index
comprised three domains: The first domain represented “marital status.” Married
or cohabitating participants were scored a 2; single, never married, widowed, or
divorced participants were scored a 0. The second domain was “close ties” and
represented a sum score of the number of children, close relatives, and friends
reported by the participants. The third domain was “membership in
organizations”. This domain represented a sum score of the number of
organizations participants were members in and participated in at least once a
month. Organizations included were: sport clubs, regional clubs, hunting clubs,
choirs, theater clubs, music clubs, occupational or labor unions, political clubs or
parties, congregations, and self-help groups. The scores of all three domains were
summed up into the social integration score.

Physical effort was measured using the metabalic equivalent of task (MET?!), a
measurement for the energy expenditure of a given activity compared to rest. The
compendium of physical activities”! provides a mean energy expenditure value per
hour of each activity. It is based on several studies measuring energy expenditure of
heterogeneous activities and lists activities, which include willful physical exercise,
but also several physically stressful activities not intending exercise, like cleaning or
home carpentry. Participants were asked to report up to four different sportive
(e.g., running) and up to four different physical activities (e.g., gardening), carried
out within the last month. Based on the MET values assigned to the activities listed
in the compendium, MET values were assigned to each of the activities reported by
the participants and multiplied with the duration in hours (per month). Finally,
a sum score of all activities was built.

Construction of the combined lifestyle risk score: Based on the literature, we
classified cigarette smoking!"'>!? and alcohol consumption!>-!# as risk variables
for brain atrophy. Social integration'®75? and physical activity’-” in contrast were
classified as protective variables. Raw data on each single lifestyle variable were
transformed into z-scores to obtain uniform measure units. The first aim was to
obtain a risk score that indicated higher risk in higher values. Therefore, we
reversed signs of the protective variables (social integration and physical activity),
such that negative values reflected higher protection. The second aim was to obtain
a risk score where a value of zero would indicate a mathematical balance of
negative and protective behavior. Hence, we applied an additional linear
transformation on the z-transformed lifestyle variables before summing them up:
The protective variables were linearly transformed into negative values (by
subtracting the maximum value from each value). Analogously, the risk variables
were linearly transformed into positive values (by adding the minimum value to
each value). Hence, all values for risk variables were positive. Finally, the linearly
transformed values of all lifestyle variables were summed up into one combined
lifestyle risk score, which indicated protection as negative values and risk as
positive values.
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Stepwise exclusion of single lifestyle variables: To examine the contributions of
each lifestyle variable to the combined lifestyle risk score, we used a stepwise
approach to exclude single lifestyle variables from the risk score. This resulted in
four risk score models integrating three single lifestyle variables, and another four
risk score models including only two single variables (Supplementary Table 1). The
first possible exclusions are exemplarily described here: For example, we first
excluded social integration from the combined lifestyle risk score, resulting in a
model including physical activity, alcohol consumption, and smoking (Fig. 2b). In
the next step, we additionally excluded smoking from the risk score, which now
included only physical activity and alcohol intake (Fig. 2f).

Genetic data: Lymphocyte DNA from participants was isolated from
ethylenediaminetetraacetic acid-coagulated venous blood by a Chemagic Magnetic
Separation Module I (Chemagen, Baesweiler, Germany). DNA samples were
genome-wide genotyped using Infinium assays ([llumina, San Diego, CA, USA) for
BeadChips HumanOmniExpress, HumanOmnil-Quad, or HumanCoreExome.
Quality control of raw genotype data comprised an exclusion of single-nucleotide
polymorphisms (SNPs) (deviation from Hardy-Weinberg equilibrium (HWE):
p<=1x10-% genotyping call rate: £95%; minor allele frequency: MAF < 3%) and
participants (SNP-based principal component analysis: >8 SD from the mean in
one of the first ten principal components; mismatch between self-reported and
X-chromosomal-derived gender). To increase the number of available SNPs and
decrease the number of missing genotype calls, dosage data were generated for
all participants using IMPUTE (version 2.3.1) as tool and phased haplotypes from
The 1000Genomes Project (ALL macGT]1 reference panel, phase 1, release 3,
March 2012) as reference.

The next step was the identification of phenotypically relevant SNPs that would
be included into the PRS. To further test whether genetic factors modify the
association between lifestyle risk and variations in cortical folding as well as
functional connectivity of older adults, we reviewed recent literature on common
genetic factors for lifestyle risk in Furopean ancestry populations. Study selection
was based on the NHGRI-EBI Catalog of published GWAS as of 23th May 2018,
provided by the National Human Genome Research Institute (NHGRI) of the
United Kingdom and the European Bioinformatics Institute (EMBL-EBI) available
at www.ebiac.ulk/gwas.

First, we identified studies that examined quantitative traits matching those we
investigated in the current study, namely smoking and alcohol consumption as risk
variables, and physical activity and social integration as protective variables.
Concerning physical activity and social integration, there were no GWAS
examining a matching phenotype in European ancestry populations. Further, there
were no studies available investigating the genetic basis of lifetime smoking
operationalized as pack years, but as in CPD, which was the closely related
phenotype found. Conceming the risk variables of alcohol consumption, due to the
population-based nature of our study, we found studies investigating alcohol
consumption in population-based cohorts and not in dinical cohorts. Secondly,
from those studies investigating one of the two phenotypes, we chose only those
that found significant association at genome-wide significance (p value <5 x 1078).
Additionally, we chose only those for which results had been replicated in a second
sample of European ancestry. By doing so, we identified three major studies of
interest for the phenotype “smoking” (in CPD)?'~33, and one study for “alcohal
consumption™*, Within the three publications relevant to smoking, the SNP
151051730 was identified as the top SNP for smoking quantity in CPD; ten
additional SNPs also showed significant association with CDP. For alcohol, the
number of candidate SNPs was 14. From the overall set of 25 SNPs, we included
those meeting the following conditions: Small difference of MAF (<3%) between
the reference population (1000Genomes CEU) and the current 1000BRAINS study,
no strong linkage disequilibrium (<0.8) to other selected SNPs of this phenotype,
and high imputation quality (median info score = 99.5%), as well as no deviation
from HWE (p > 0.05) in the subsample of 1000BRAINS. Finally, this resulted in
nine SNPs for the phenotype “smoking” and seven SNPs regarding the phenotype
“alcohol consumption” (Table 3). In the next step, genetic information provided
by the quality controlled 16 SNPs was transformed into a PRS.

PRS was calculated using the weighted allelic scoring routine by PLINK (v1.9).
In particular, effect alleles and effect sizes (R2) were used as defined by the original
studies (Table 3). The individual GRS value was then calculated as the mean of the
summarized effects in an SNP set that is for the SNP set of alcohol consumption
and for the SNP set of CPD. This resulted in individualized values of combined
genetic risk for smoking and alcohol consumption for each participant of the
current study.

Acquisition and processing of structural MR images: T1-weighted anatomical
three-dimensional (3D) images were collected with a 3T Tim-TRIQO MR scanner
(Siemens Medical System, Erlangen, Germany). The following scan parameters
were used: repetition time = 2.25 5, echo time = 3.03 ms, inversion time = 900 ms,
field of view =256 x 256mm?2, flip angle = 9°, voxel resolution =1x1x1 mm?3,
176 axial slices. A detailed description of the 1000BRAINS study protocol can be
found in Caspers et al.2’,

3D images were processed using the automated surface-based pipeline of the
FreeSurfer Software package (version 5.3.0, Athinoula A. Martinos Center for
Biomedical Imaging). A detailed description of all steps included in the streamline
was provided by Dale et al.27 and Fischl et al.52 and in the FreeSurfer
documentation at http://surfer.nmr.mgh harvard.edu. Processing includes motion
correction, intensity normalization, removing of extra-cerebral voxels (non-brain

ATIONS | (2019010:621 | https:/ /doi.org,/101038/541467-019-08500-x | www.nature.com/naturecommunications



ARTICLE

tissue) using SPM12 (The Wellcome Dept. of Imaging Neuroscience, London;
www.filion.uclac.uk/spm), spatial normalization, volumetric segmentation2, and
cortical surface reconstruction?”-%3, To reconstruct the cortical surface, first the so-
called white surface is generated at the interface of WM and GM. Then, the pial
surface is created at the interface between GM and the cerebrospinal fluid (CSF).
The final mesh model of the pial surface is tessellated into triangles and consists of
about 120,000 vertices per hemisphere with an average surface area of 0.5 mm?2,

Vertex-wise LGI was calculated using the surface-based approach as
implemented in FreeSurfer?, which is the 3D extension of the work by Zilles
et al.23; First, an outer hull of the pial surface (outer smoothed surface) is created.
This is obtained by a morphological closing operation and follows the exposed
(visible) surface along the gyri but does not reach into the segments buried within
the sulci. Then, for each 100th vertex on the outer surface the ratio between the
area on the pial surface and the corresponding area on the outer smoothed surface
(both defined as a circular region with 25 mm radius around the vertex26) was
calculated. Using a weighted average, finally local gyrification indices were
calculated at each vertex.

CT was also extracted using FreeSurfer2®, First, the boundary between GM and
‘WM was identified. CT was then measured by finding the shortest distance
between a given point on the reconstructed pial surface and the GM/WM boundary
surface and vice versa®S. Finally, averaging both values resulted in about 150,000
CT values per hemisphere.

Subcortical structures were segmented using the automatic segmentation
provided by FreeSurfer®. Here, subcortical GM is automatically segmented into
different volumes. Then, a neuroanatomical label is assigned to each volume based
on probabilistic information estimated from a manually labeled data set.

Acquisition and processing of functional MR images: We investigated
functional connectivity as measured by resting-state functional MRI. BOLD signal
time series were acquired using gradient-echo echo planar imaging (EPI) pulse
sequences (300 images, TR 2.2, 36 axial slices®”). The first four images were
discarded and the remaining images were processed using SPM12. Head motion
correction was done by affine registration using a two-pass procedure registering all
images to the individual mean of the respective participant. This mean ima;
spatially normalized to MNI152 using the unified segmentation procedure®:. We
then applied the resulting deformation to the individual EPI volumes. Residual
anatomical variations were compensated for by smoothing with a Gaussian kernel
of 5mm full width at half maximum, which additionally approximates
requirements of normal distribution of the residuals for Gaussian random field
inference to correct for multiple comparisons®5. Variance that could be explained
by first- or second-order effects of the following covariates was removed for each
voxel’s time series: (i) the six motion parameters derived from the image
realignment; (ii) their first derivative; (iii) mean GM and WM as well as CSF signal
intensity. The first three covariates (i-iii) entered the model as first- and second-
order terms, which was shown to increase specificity and sensitivity of the FC
analyses®®. Finally, the data were band pass filtered between 0.01 and 0.08 Hz to
keep only those frequencies most relevant for studying neural signal fluctuations in
the brain®®,

For analyses of differences in RSFC, the maximum vertices of the structurally
localized regions in dPMC and vIPFC were determined and transformed into MNI
space. A sphere of 5mm was then drawn around the coordinates and used as seed
volumes of interest (VOIs). The time courses of these VOIs were extracted for each
participant as the first eigenvariate of all GM voxels according to segmentation
within the respective VOI, mainly since this eigenvariate is robust against inter-
individual variance in anatomical localization and distribution of voxels mainly
driving the functionally relevant and representative VOI time series used for FC
analysis to a certain extent%.

Statistical analyses of surface-based measures: All statistical analyses regarding
the association between combined lifestyle risk and local gyrification, as well as CT
were carried out using Qdec, a graphical user interface implemented in the
FreeSurfer software package (http://surfernmr.mgh harvard.edu) and IBM SPSS
Statistics 20.0. General linear models (GLMs), as implemented in Qdec, were used
to evaluate the association between lifestyle risk and vertex-wise LGI, as well as CT,
respectively. Qdec allows whole-brain analyses of surface morphology, thus no
specific brain region needs to be defined a priori to test for an effect of behavioral
data. Instead, each vertex on the cortical surface is tested for an association between
the parameter of interest (cortical folding, CT) and the behavior of interest
(lifestyle). Here, we calculated a linear regression using the risk score as explanatory
variable and LGI and CT as dependent variables. Gender and age were used as
covariates that were statistically controlled for. Two-tailed F tests were used to test
whether lifestyle risk would be associated with higher or lower LGI and CT.
Corrections for multiple comparisons were performed by testing results against a
simulated null distribution of maximum cluster size across 10,000 iterations using
Monte Cardo Z simulation as implemented in Qdec®” using a duster-forming
threshold of @ = 0.05. This analysis was then recalculated with the inclusion of the
PRS as a third covariate, as well as with depressive symptomatology, as measured
with the BDI-II, ISCED7.

To specifically describe the association between combined lifestyle risk and
variations in local cortical folding, we extracted LGI values post hoc at the cluster’s
maximum vertex of those regions that showed variations in cortical folding
associated with combined lifestyle risk in the main analyses. To estimate the
contributions of the single lifestyle variables to cortical folding of these regions

with a different technique than the stepwise exclusion procedure, these LGI values
were imported into IBM SPSS Statistics 20.0 and submitted as dependent variable
into a multiple linear regression using the remove method. All four single lifestyle
variables, age, and gender were submitted as explanatory variables to the first
model. Then, single lifestyle variables were removed step by step from this model,
while changes in F and R? were measured for each step. When submitting the
extracted cortical folding values of the dPMC as dependent variable to the first
model, we excluded physical activity in the first step and alcohol consumption in
the second. This was done because the stepwise exclusion procedure in our main
analysis hinted at these two variables as the main contributors to cortical folding in
this region. Third, social integration and fourth, pack years were excluded.
Regarding the vIPFC, the stepwise exclusion procedure hinted at social integration
as the main contributor to differences in cortical folding. Therefore, we excluded
social integration in the first step when using the extracted cortical folding values of
the vIPFC as dependent variable. Second physical activity, third alcohol
consumption, and fourth pack years were excluded.

‘We then applied our stepwise exclusion procedure. All models derived from the
stepwise exclusion procedure were tested in the same manner as the combined
lifestyle risk score using linear regression models with gender and age as covariates
that were statistically controlled for. Again, all results were corrected for multiple
comparisons using Monte Carlo Z simulation with @ =0.05 and a cluster-wise
p-value <0.01.

‘We examined the effects of single lifestyle variables on LGI and CT, using a
series of GLMs: For each linear model, z-transformed data of one lifestyle variable
(alcohol consumption, smoking, social integration, physical activity) was taken as
the predictor. Comparable to the overall lifestyle risk score analysis, we included
age and gender as covariates that were statistically controlled for and tested two-
sided F tests. These GLMs were corrected for multiple comparisons by testing
results against permuted data in 10,000 iterations at a < 0.05 and a cluster-wise
p-value <0.01, as implemented in FreeSurfer. We chose to use permutation testing,
because data of single lifestyle variables showed a highly skewed distribution and
permutation-based inference as an exact non-parametric statistical test is applicable
to skewed data®.

Statistical analyses of subcortical structures: To examine the association between
GM volume of subcortical structures and lifestyle, we imported individual volumes
of 20 subcortical structures into SPSS and calculated partial Spearman's
correlations between the combined lifestyle risk score, the different risk score
models and single lifestyle variables, controlling for age, gender, and total
intracranial as covariates of non-interest. We additionally applied a post-hoc
Bonferroni correction using a threshold of a,,, = 0.05/20 = 0.0025 with
20 subcortical structures (Table 2) tested.

Statistical analyses of RSFC: To assess the association between combined
lifestyle risk and RSFC we computed linear (Pearson's) correlation coefficients
between the extracted time courses of the seed regions derived from the analysis of
differences in local brain structure, namely the dPMC and the vIPFC, and the time
series of all other GM voxels in the brain. The voxel-wise correlation coefficients
were then transformed into Fisher’s Z-scores, and tested for consistency across
subjects by a second-level multivariate analysis of variance (including appropriate
non-sphericity correction) with the combined lifestyle risk score as explanatory
variable (linear regression model). Results are reported at & = 0.05 and tested two-
sided for increases, as well as decreases in RSFC (cluster level corrected, cluster-
forming threshold a = 0.001).

Comparable to the surface-based analyses all models derived from the stepwise
exclusion procedure were tested for associations between the two seeds and RSFC
of all GM voxels in the same manner as the combined lifestyle risk score using
linear regression models while statistically controlling for gender and age as
covariates. Again, all results were thresholded at an uncorrected a value of a =
0.001 (cluster-forming threshold) and corrected at the cluster level at & = 0.05.

The same analyses conducted for the combined lifestyle risk score, as well as the
different risk score models derived from the stepwise exclusion procedure, were
also applied to investigate the association between single lifestyle variables and
RSFC of the two seeds. Here, always one single lifestyle variables was investigated
at one time.

Additional adjustment for polygenic risk: To see whether genetic influences
would modulate the relation between combined lifestyle risk scores and the aging
brain, we calculated the analyses of gyrification, CT and the analyses of RSFC twice:
(i) Without further adjustment for GRS and (ii) with additional adjustment for
GRS. Please note that all analyses were corrected for age and gender.

Sensitivity analyses: Subsequent to the main analysis, we conducted additional
sensitivity analyses as often used in epidemiological research to confirm our results.
From each single lifestyle variable we calculated residuals, corrected for the three
other single lifestyle variables: for example, we calculated residuals for social
integration by correcting for physical activity, alcohol consumption, and smoking
using partial correlations. The purpose was to clean each lifestyle variable from any
variance introduced by the other three lifestyle variables and to test whether the
results of the main analyses could be replicated. We then used these residuals to
again calculate the combined lifestyle risk score. Further, we repeated the stepwise
exclusion in the same manner as in the main analyses.

Anatomical allocation of significant findings: Significant clusters resulting from
the surface-based as well as the RSFC analysis were anatomically interpreted using
the JuBrain Cytoarchitectonic Atlas®®. Conceming the surface-based analysis, we
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converted coordinates of significant surface-based clusters from Talairach to MNI
space using the transformation tool “mri_surf2vol” as provided by FreeSurfer.
Conceming the RSFC analysis, the thresholded statistical parametric maps
resulting from the analyses on the different risk scores were used. Overlap between
significant clusters and cytoarchitectonically defined areas was determined using
the SPM Anatomy toolbox 2.2¢7° available at http://www.fz-juelichde/inm/inm1/
DE/Forschung/_docs/SPM AnatomyT oolbox/SPM AnatomyToolbox_node. html.
This was done using SPM12 (The Wellcome Dept. of Imaging Neuroscience,
London; www.filion.uclLac.uk/spm) within the environment of Matlab (The
MathWorks Inc, Natick, MA, USA). Localization of significant clusters is
therefore given on a macroanatomical and a cytoarchitectonic level where available
(see Supplementary Tables 2-12).

Data availability

The data sets generated and/or analyzed during the current study will be made
available from the corresponding author to other scientists on request in anon-
ymized format and according to data protection policy in the ethics agreement.
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Supplementary Methods

Associations between lifestyle risk and cortical folding: Post-hoc multiple linear regression
within IBM SPSS Statistics 20.0.

Associations between lifestyle risk and cortical folding. Higher combined lifestyle risk
was associated with lower cortical folding in two distinct cortical areas (Figure 2a): First, left
dorsal premotor cortex (dPMC, p = 0.0001) and second, ventro-lateral prefrontal cortex (VIPFC, p
=0.0001) extending from the frontal pole to the middle frontal sulcus and to the posterior portions
of the inferior frontal gyrus and sulcus. The stepwise exclusion approach hinted at alcohol
consumption and physical activity being the driving variables behind this association as it
disappeared when excluding both, alcohol consumption and physical activity (Figure 2i) from the
risk score models.

To confirm this, we extracted cortical folding values within the dPMC and imported them to IBM
SPSS Statistics 20.0 and submitted them as dependent variable in a multiple linear regression
using the “remove” method. All four single lifestyle variables, age, and gender were submitted as
explanatory variables to the first model. We used the remove method such that removing specific
variables would reveal the individual contribution to the specific pattern, while change in F and
r? for each step was measured.

Regarding the extracted cortical folding of the dPMC, the first model explained 2.9% of the
variance in cortical folding of the dPMC, F (1,542) = 3.69, R?=0.029, p = 0.0013. Excluding physical
activity reduced the explained variance to 2% and resulted in a significantly lower model fit,
F(1,542) = 3.37, R2 = 0.02, F-change = 5.64, p = 0.018. Excluding alcohol consumption in the second

step did not result in a significantly different model fit (R?=0.017, F-change =2.63, p=0.106), while
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the overall model was still significant (F(1,543) = 3.42, p = 0.009). In the next step social integration
was removed, which didn’t lead to a significantly different model fit (R? = 0.015, p = 0.133, F-
change = 2.27), while the model was not significant anymore (F(1,544) = 3.79, p = 0.103). When last
excluding pack years, the model explained significantly less variance (R? = 0.008, p = 0.027, F-
change = 4.95), but was significant (F(1,545) = 3.19, p = 0.042). Hence, physical activity indeed
explained the greatest amount of variance amongst the lifestyle variables as suggested by the
stepwise exclusion procedure in the main analysis. Here, exclusion of alcohol consumption did
not change the amount of explained variance significantly in contrast to the stepwise exclusion
procedure.

Submitting the extracted cortical folding values of the vIPFC as dependent variable, the first
model explained 3.1%, F(1,542) = 3.95 (R? = 0.031, p = 0.0007). Excluding social integration reduced
the explained variance to 2% and resulted in a significantly lower model fit (F(1,542) = 3.25 (R* =
0.02, F-change = 7.26, p = 0.007). Excluding physical activity in the second step did not result in a
significantly lower model fit (R? = 0.018, F-change = 1.996, p = 0.158,), while the overall model was
still significant (F(1,543) = 3.555, p = 0.007). In the next step, alcohol consumption was removed,
which didn’t lead to a significantly different model fit fit (R* = 0.02, p = 0.835, F-change = 0.044),
while the model was still significant, F(1,544) = 4.733, p = 0.003). When last excluding pack years,
the model explained significantly less variance (R?=0.013, p =0.024, F-change =5.16). In summary,
this multiple linear regression revealed social integration as the most contributing variable to the
differences in cortical folding in vIPFC. Beta weights for each single lifestyle variable as estimated
for the first model including sex, age, and all four single lifestyle variables are shown in

Supplementary Figure 9.
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Associations between lifestyle risk and cortical folding: Additional systematic reductions in
cortical folding observed in the stepwise exclusion procedure. The stepwise exclusion models
yielded additional systematic reductions in cortical folding (Fig. 2, Suppl. Table 2): Decreased
cortical folding in right dPMC, expanding to primary motor cortex, was associated with higher
lifestyle risk in the models that included a combination from physical activity, alcohol
consumption, or social integration (Fig. 2¢, 2f, 2g). Decreased cortical folding in left frontal pole
was found for the risk score models that included different combinations of social integration (Fig.

2d, 2g, 2i).

Sensitivity analyses

As sensitivity analysis, we calculated residuals from each single lifestyle variable, corrected for
the three other single lifestyle variables (see methods) to clean each lifestyle variable from any
variance influenced by the other three lifestyle variables. We calculated the combined lifestyle risk
score from these residuals again and repeated the stepwise exclusion similar to the main analyses
for replication purposes. Results of the sensitivity analyses reproduced almost entirely the result
pattern of the main analyses of the association combined lifestyle risk, cortical folding and RSFC.
An additional association was only found between the combined lifestyle risk score and cortical
folding in the right dorsal premotor cortex (dPMC, Suppl. Fig. 6a). Compared to the main
analyses, the clusters found in the right homologue of the dPMC were larger and expanding more
into posterior parts of the precentral gyrus (Suppl. Fig. 6c, {, g). Exact anatomical localization is
given in suppl. Table 10. Regarding RSFC, we still found the same pattern in the results: Risk score

models including smoking showed higher RSFC between the dPMC and the sensorimotor cortex
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and between the vIPFC and the superior frontal gyrus, respectively. The sensitivity analyses,
though, revealed additional significant associations: The risk score model composed of physical
activity, alcohol consumption and social integration, as well as the risk score model including
alcohol consumption and social integration, showed higher RSFC between the dPMC and the left
hippocampus (Suppl. Fig. 7c & g). Further, alcohol consumption as a single variable showed
additional associations between the dPMC and large clusters in the inferior temporal lobe and
several subcortical nuclei (Figure 7k). Compared to the main analysis, the combined lifestyle risk
score showed no significant association to increases in RSFC of the vIPFC. Still, the main pattern
of risk score models including smoking being significantly associated to increased RSFC of the
vIPFC was found (Suppl. Fig. 8).

Exact anatomical localization is given in suppl. Table 11 and Table 12.

Associations between lifestyle risk and cortical folding: Additional adjustment for non-
lifestyle variables. Additionally, adding BDI-II!, ISCED?, or both, respectively, as covariates did
not change the general association between combined lifestyle risk and cortical folding (Figure 6).
However, in the stepwise exclusion approach some of the risk score models did not reach
significance - particularly those risk score models, which were associated with left dPMC, while
those associated with right vIPFC remained largely unaltered when applying different sets of
covariates (Suppl. Fig. 11 — 13). It is particularly interesting that this association with social
integration and right VLPFC survived even if depressive symptomatology is now regressed out.
This further supports the strong association which was already consistently found in our original

analysis. Contrarily, the association to left dPMC was not that stable, as already evident from our
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original analysis. Since it was only found in risk score models including both alcohol consumption
and physical activity, depressive symptomatology seemed to additionally contribute to this more
complex association.

As there were only changes within the extend, but not the location of the brain regions associated
to lifestyle risk when additionally correcting for depressive symptomatology and / or depressive
symptomatology, respectively, we did not provide additional Tables presenting the associated

cytoarchitectonically defined areas.

Supplementary analysis of associations between lifestyle risk and cortical thickness: To
complement our analysis of lifestyle risk and cortical folding, we performed supplementary
analyses of an association between combined lifestyle risk and vertex-wise cortical thickness as
an additional dimension in surface-based analyses’.

Within the analysis of cortical thickness, we again found a reoccurring association between those
risk score models integrating alcohol consumption and physical activity and the left dPMC
(Suppl. Fig. 14a, b, ¢, e & f). Further, risk score models including alcohol consumption, and / or
smoking were associated with decreased CT in left inferior and superior parietal lobule.
Uncorrected results can be found in Suppl. Fig. 15 & 16. No association between lifestyle risk and
CT of right vIPFC could be found. It might thus be assumed that the so-far strong association
between lifestyle risk and brain structure and right vIPFC, which is also highly robust against
confounders, might be attributable to other mechanisms involving curvature and cortical folding

as compared to the effects on CT.
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Supplementary Figures

a  Combined lifestyle risk score

[ act [aLc | | || acT [ AL | soc | | [ AcT | |

Sy [ [ c [soc jSiel

Supplementary Figure 1: Brain regions showing alterations in cortical folding associated

with lifestyle risk without correction for multiple comparisons.

Associations between different risk score models and cortical folding without any correction for
multiple comparisons depicted on the inflated surfaces of the fsaverage brain. Red colours indicate
a positive association, while blue colours indicate a negative association between lifestyle risk and
cortical folding.

Abbreviations: ACT = physical activity, ALC = alcohol consumption, SOC = social integration,

SMO = pack years of smoking, L = left hemisphere, R = right hemisphere.
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Uncorrected associations between single lifestyle factors and cortical folding

[ AcT | ALc | | | |

Supplementary Figure 2: Brain regions showing alterations in cortical folding associated
with all four single lifestyle variables without correction for multiple comparisons.

Associations between single lifestyle variables and cortical folding without any correction for
multiple comparisons depicted on the inflated surfaces of the fsaverage brain. For further

conventions and abbreviations please see Suppl. Fig. 1.
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a  Combined lifestyle risk score
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Supplementary Figure 3: Brain regions showing a lifestyle risk associated decrease in

i -

RSFC to the seed in the left dPMC.
Abbreviations in the small boxes refer to the same meaning as in Figure 2. Coronar sections show
decreases in RSFC depicted in blue. n.s. = not significant, dPMC = dorsal PMC, vIPFC = ventro-

lateral prefrontal cortex.
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a  Combined lifestyle risk score
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Supplementary Figure 4: Brain regions showing a lifestyle risk associated decrease in

RSFC to the seed in the right vIPFC. Abbreviations in the small boxes refer to the same meaning
as in Figure 2. Transversal sections show decreases in RSFC depicted in blue. n.s. = not

significant, dPMC = dorsal PMC, vIPFC = ventro-lateral prefrontal cortex.
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a  Combined lifestyle risk score
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Supplementary Figure 5: Brain regions showing alterations in cortical folding associated
with lifestyle risk when additionally adjusting for polygenic risk.

Associations between different risk score models and cortical folding when additionally adjusting
for genetic risk as measured with the polygenic risk score (PRS). All results are depicted on the
inflated surfaces of fsaverage. The recurrent associations between higher lifestyle risk and
reduced cortical folding in the left dorsal premotor Cortex (PMC) and the right ventro-lateral
prefrontal Cortex (PFC) are highlighted in rose and orange, respectively. n.s. = not significant,

dPMC = dorsal PMC, vIPFC = ventro-lateral prefrontal cortex.
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a  Combined lifestyle risk score
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Supplementary Figure 6: Brain regions showing a lifestyle risk associated increase in
RSFC to the seed in the right dPMC when additional adjusting for polygenic risk.

Figure depicts the associations between different risk score models and brain regions showing
increased RSFC to the seed in dPMC in relation to higher lifestyle risk when additionally adjusting
for genetic risk as measured with the combined genetic risk score (GRS). Abbreviations are

explained in Supplementary Figure 1.
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a  Combined lifestyle risk score
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Supplementary Figure 7: Brain regions showing a lifestyle risk associated increase in

S0C | SMO SMO | | ACT | ALC

| ACT | ALC | S0C

| AcT | alc

RSFC to the seed in the right vIPFC when additional adjusting for polygenic risk.

Associations between different risk score models and regions showing increased RSFC to the
seed in VIPFC in relation to higher lifestyle risk when additionally adjusting for genetic risk as
measured with the combined genetic risk score (PRS) are shown. Explanations of abbreviations

can be found in Supplementary Figure 1.
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a  Combined lifestyle risk score

Supplementary Figure 8: Sensitivity analysis for the association between lifestyle risk and
cortical folding.

The figure depicts results of the analysis of cortical folding in relation to lifestyle risk after correcting
the effect of each single lifestyle variable out of the other lifestyle variables using partial
correlations. The recurrent associations between higher lifestyle risk and reduced cortical folding
in the left dorsal premotor Cortex (PMC) and the right ventro-lateral prefrontal Cortex (PFC) are
highlighted in rose and orange, respectively. Results shown in this figure are not adjusted for the
combined genetic risk score (GRS). Explanations of abbreviations can be found in Supplementary

Figure 1. Abbreviations: n.s. = not significant.
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a  Combined lifestyle risk score
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Supplementary Figure 9: Sensitivity analysis for the association between lifestyle risk and
RSFC of the seed in dPMC. Figure represents regions showing increased RSFC to the seed in
dPMC in relation to increased lifestyle risk after correcting the influence of each single lifestyle
variable out of the other lifestyle variables using partial correlations. Explanations of abbreviations

can be found in Supplementary Figure 1.
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a  Combined lifestyle risk score
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Supplementary Figure 10: Sensitivity analysis for the association between lifestyle risk and
RSFC of the seed in vIPFC. Figure represents GM voxels showing increased RSFC to the seed
in VIPFC in relation to increased lifestyle risk after correcting the influence of each single lifestyle
variable out of the other lifestyle variables using partial correlations. Explanations of abbreviations

can be found in Supplementary Figure 1.
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a  Combined lifestyle risk score

Supplementary Figure 11: Brain regions showing alterations in cortical folding associated
with lifestyle risk when additionally adjusting for depressive symptomatology.

Associations between different risk score models and cortical folding when additionally adjusting
for depressive symptomatology as measured with the Beck’s depression inventory score (BDI-II).
All results are depicted on the inflated surfaces of fsaverage. The recurrent associations between
higher lifestyle risk and reduced cortical folding in the left dorsal premotor Cortex (PMC) and the
right ventro-lateral prefrontal Cortex (PFC) are highlighted in pink and orange, respectively. Other
negative associations are depicted in blue. n.s. = not significant, dPMC = dorsal PMC, vIPFC =

ventro-lateral prefrontal cortex.
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a  Combined lifestyle risk score
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Supplementary Figure 12: Brain regions showing alterations in cortical folding associated
with lifestyle risk when additionally adjusting for education.

Associations between different risk score models and cortical folding when additionally adjusting
for education as measured with the international standard classification for education (ISCED,
Unesco, 2011). All results are depicted on the inflated surfaces of fsaverage. The premotor Cortex
(PMC) and the right ventro-lateral prefrontal Cortex (PFC) are highlighted in pink and orange,
respectively. Other negative associations are depicted in blue. n.s. = not significant, dPMC =

dorsal PMC, vIPFC = ventro-lateral prefrontal cortex.
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a  Combined lifestyle risk score
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Supplementary Figure 13: Brain regions showing alterations in cortical folding associated
with lifestyle risk when additionally adjusting for depressive symptomatology and
education.

Associations between different risk score models and cortical folding when additionally adjusting
for education as measured with the international standard classification for education (ISCED,
Unesco, 2011) and depressive symptomatology as measured with Beck’s depression inventory
(BDI-II). All results are depicted on the inflated surfaces of fsaverage. The recurrent associations
between higher lifestyle risk and reduced cortical folding in the left dorsal premotor Cortex (PMC)
and the right ventro-lateral prefrontal Cortex (PFC) are highlighted in rose and orange,

respectively. n.s. = not significant, dPMC = dorsal PMC, vIPFC = ventro-lateral prefrontal cortex.
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a Combined lifestyle risk score
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Supplementary Figure 14. Brain regions showing alterations in cortical thickness

associated with lifestyle risk in different risk score models (with stepwise exclusion). All
results are corrected for age and gender and corrected for multiple comparisons using Monte
Carlo Z simulations with o = 0.05. Positive associations between risk score models and cortical

thickness were not found.
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a Combined lifestyle risk score

Supplementary Figure 15: Associations between lifestyle risk and differences in cortical
thickness without correction for multiple comparisons.
Associations between different risk score models and cortical thickness without any correction for

multiple comparisons. For further conventions and abbreviations please see Suppl. Fig. 1.
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Uncorrected associations between single lifestyle factors and cortical thickness

| AcT | ALc | | ALc | soc |

Supplementary Figure 16: Brain regions showing alterations in cortical thickness
associated with lifestyle risk without correction for multiple comparisons.

Associations between single lifestyle variables and cortical thickness without any correction for
multiple comparisons depicted on the inflated surfaces of the fsaverage brain. For further

conventions and abbreviations please see Suppl. Fig. 1.
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Supplementary Figure 17: Beta weights of the multiple linear regression using extracted
cortical folding values of the dPMC and vIPFC. Plots show beta weights of each single
lifestyle factor, sex and age as estimated in the first model of the multiple linear regression
calculated in SPSS using extracted cortical folding values of the dPMC (A) and vIPFC (B) as

dependent variable. Error bars refer to standard errors of the individual beta weights.
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Supplementary Table 1. All possible combinations of lifestyle risk score models.

Risk score model

Included lifestyle variables

ACT, ALC, SOC, SMO

The combined lifestyle risk score:
Physical activity, alcohol consumption, social integration, smoking

ACT, ALC, SMO Physical activity, alcohol consumption, smoking

ACT, ALC, SOC Physical activity, alcohol consumption, social integration
ACT, SOC, SMO Physical activity, social integration, smoking

ALC, SOC, SMO Alcohol consumption, social integration, smoking

ACT, ALC Physical activity, alcohol consumption

ALC, SOC Alcohol consumption, social integration

ACT, SMO Physical activity, smoking

SOC, SMO Social integration, smoking
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Supplementary Table 2: Overlap between probability maps of the JuBrain atlas*” and

regions showing significantly decreased cortical folding with higher combined lifestyle

risk.
Risk score Hemis- Anatomical landmark Cytoarchitectonically Cwp-
model phere defined region*# value
Combined risk left Premotor cortex (PMC) - 0.0001
score right Frontal pole extending to inferior  Fp1, Fp2, Area 45 0.0001
ACT, ALC, frontal gyrus (IFG)
SMO, SOC
ACT, ALC, left PMC - 0.0029
SMO right n.s. -
ACT, ALC, left PMC - 0.0001
SOC right Frontal pole, middle orbital gyrus  Fp1, Fp2, Fo2 0.0001
IFG Area 44, 45 0.0001
PMC - 0.0001
Superior parietal lobule (SPL), TA, 7TM, 7P, 7TPC, hIP3 [IPS], 0.0001
extending to intra-parietal sulcus  hoc4d (V3A), hoc3d (V3d)
(IPS) and superior occipital gyrus
ACT, SMO, left Frontal pole Fp1, Fp2 0.0007
SOoC PMC - 0.0001
Fusiform gyrus FG3, FG4 0.0079
right Frontal pole, extending to IFG Fp1, Fp2, Area 44, 45 0.0001
Fusiform gyrus FG4 0.0069
ALC, SOC, left Frontal pole Fp1, Fp2 0.0090
SMO PMC - 0.0142
right Frontal pole Fp1, Fp2 0.0008
SFG, MFG - 0.0001
ACT, ALC left PMC - 0.0002
SPL, extending to sensori-motor 5A, 5M, 7A, 7TPC 0.0015
region Area 4a, Area 2
right Premotor to sensori-motor cortex  Area 1, 2, 3b, 4a 0.0001
SPL 5L 0.0001
ALC, SOC left Frontal Pole Fp1, Fp2 0.0009
IFG Area 45 0.0042
PMC - 0.0236
right Frontal pole Fp1, Fp2 0.0019
IFG Areas 44, 45 0.0020
PMC, M1 Area 4p 0.0001
SPL, extending to IPS and 7A, 7TM, 7P: hIP3 [IPS] hOC4d  0.0001
superior occipital gyrus (V3A)
ACT, SMO left PMC - 0.0080
Parietal operculum OP4 0.0093
SMO, SOC left Frontal pole Fp1, Fp2 0.0001
right Prefrontal cortex Fp1, Fp2 0.0001

Note. This table summarizes the overlap between the macroanatomical localization of the

reported effects with cytoarchitectonical maps of the JuBrain atlas'?*. Abbreviations: n.s. = not

significant.
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Supplementary Table 3: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly increased RSFC to the seed in left dPMC.

Risk score Hemi Anatomical landmark Cytoarchitectonically Voxel
model sphere defined region*?# size
Combined risk left Entorhinal cortex - 72
score S1/M1 Areas 3a, 4a 60
ACT, ALC, SMO, V3 (dorsal occipital cortex) Area hOc4d [V3A] 41
SocC M1 Area 4a 37
right M1 Area 4a 83
M1 Area 4a 76
ACT, ALC, SOC left Enthorinal cortex - 33
ACT, ALC,SMO  left V3 (dorsal occipital cortex) Area hOc4d [V3A] 71
right M1 Area 4a 110
S1/M1 Areas 3b, 4a 107
Middle temporal gyrus - 45
ACT, SMO, SOC  left M1 - 114
S1 Area 3a 69
V3 (dorsal occipital cortex) Area hOc4d [V3A] 51
Medial frontal gyrus - 49
right M1 Area 4a 87
M1/ S1 Areas 4a, 3b 79
M1 (precentral gyrus) - 45
Medial frontal gyrus - 41
ALC, SMO, SOC left paracentral region - 128
M1 (precentral gyrus) Area 4a 99
Entorhinal cortex Entorhinal cortex, 89
Subiculum
S1, extending to SPL Area 3a, 5M (SPL) 74
right Paracentral region 4a, 3b 467
Entorhinal cortex entorhinal cortex 62
ACT, SMO left V3 (dorsal occipital cortex) Area hOc4d [V3A] 106
M1 Area 4p 50
right M1 Area 4a 159
S1/M1 Areas 3b, 4a 154
SOC (as asingle left Temporo-parietal junction Areas PGa (IPL), PFm 59
variable) (IPL)
SMO (as asingle left M1 Area 4a 255
variable) S1 Area 3a 64
V3 (dorsal occipital cortex) Area hOc4d [V3A] 53
Superior frontal gyrus 37
right M1 Area 4a 945
M1 - 54
S1 Area 2 37
V3 (dorsal occipital cortex) Area hOc4la [V3A] 32
ALC (as asingle left Cerebellum - 118
variable) Brainstem - 57
right Cerebellum - 56
Hippocampus - 35

Note. Abbreviations: n.s. = not significant.
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Supplementary Table 4: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly increased RSFC to the seed in right vIPFC.

Risk score Hemi Anatomical landmark Cytoarchitectonically Voxel

model sphere defined region*?# size

Combined risk  right Superior frontal gyrus Fp1 64

score

ACT, ALC,

SMO, SOC

ACT, SMO, right Superior frontal gyrus Fp1 58

SOC Superior medial gyrus Fp2 51

ACT, ALC, right Super frontal gyrus Fp1 69

SMO Anterior cingulum - 35

ACT, ALC, right Orbitofrontal gyrus -

SOC

ALC, SOC, right Superior frontal gyrus Fp1 171

SMO Temporo-parietal junction Areas PGa (IPL), PFm 34

(IPL)

ACT, ALC left Cerebellum

ACT, SMO left Superior frontal gyrus Fp1 80

ACT, SMO right Superior frontal gyrus Fp1 274
bilateral Thalamus - 61
right Middle frontal gyrus - 33

SMO, SOC right Superior frontal gyrus Fp1 117

SMO (as a left Middle frontal gyrus - 94

single Superior frontal gyrus - 83

variable) _right Superior frontal gyrus Fp1 389
bilateral Thalamus - 60

SOC (as a right Caudate nucleus - 112

single Inferior frontal gyrus, - 53

variable) p. orbitalis

ACT (as a left Inferior frontal gyrus, Area 45 109

single p. triangularis

variable) Postcentral gyrus - 93
right Middle temporal gyrus hOc4la 88

Note. Abbreviations: n.s. = not significant.
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Supplementary Table 5: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly decreased RSFC to the seed in left PMC.

Risk score
model

Hemi
sphere

Anatomical landmark

Cytoarchitectonically

defined region

4.27

Voxel
size

Combined risk
score

ACT, ALC,
SMO, SOC

right

Precentral sulcus

45

SMO (as a
single
variable)

left

Cerebellum

33

SOC (as a
single
variable)

left

M1

Area 4a

42

ACT (as a
single
variable)

left

Paracingulate sulcus

37
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Supplementary Table 6: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly decreased RSFC to the seed in right vIPFC.

Risk score Hemi Anatomical landmark Cytoarchitectonically Voxel
model sphere defined region size
ACT, ALC, right Dorsal occipital cortex - 43
SMO

ACT, ALC right Dorsal occipital cortex - 70
ALC (as a left Inferior frontal gyrus Area 44 53
single

variable)

ACT (as a right Cerebellum - 40
single

variable)
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Supplementary Table 7: Regions showing significantly decreased cortical folding with

higher integrated lifestyle risk when additionally adjusting for polygenic risk.

Risk score Hemis- Anatomical landmark Cytoarchitectonically Cwp-value
model phere defined region*?
Combined risk  left Premotor cortex (PMC) - 0.00010
score right Frontal pole, extending to Fp1, Fp2, Area 45 0.00010
ACT, ALC, inferior frontal gyrus (IFG)
SMO, SOC Precuneus 7A, 7P 0.00010
ACT, ALC, left n.s. - -
SMO right n.s. - -
ACT, ALC, left PMC - 0.00010
SOC right Frontal pole, middle orbital Fp1, Fp2, Fo2 0.00010
_gyrus
IFG Area 44, 45 0.00010
Precentral gyrus 4a, 4p 0.00010
Precuneus 7A, 7P, hOc4d [V3A] 0.00010
ACT, SMO, left PMC - 0.00070
SOC Frontal Pole Fp1, Fp2 0.00010
Fusiform gyrus FG3, FG4 0.00010
right Frontal pole, extending to Fp1, Fp2, Area 45 0.00010
IFG
Precuneus, extending to FG3, FG4 0.00010
fusiform gyrus
ALC, SOC, left Frontal pole Fp1, Fp2 0.00010
SMO PMC - 0.00010
Fusiform gyrus FG3, FG4 0.00010
right Frontal pole, extending to Fp1, Fp2, Area 44 0.00010
IFG
SPL, extending to intra- 7A, 7TM (SPL), hIP3 (IPS] 0.00010
parietal sulcus
Precuneus, extending to hOc1 [V1], hOc2 [V2], FG3, 0.00010
calcarine sulcus and fusiform FG4
gyrus
ACT, ALC left SPL 5L, 7A 0.00480
right Precentral gyrus 4a 0.00287
ALC, SOC left Frontal Pole Fp1, Fp2 0.00200
IFG Area 45 0.03190
PMC - 0.00010
right Frontal pole, extending to Fp1, Fp2, Areas 44, 45 0.00010
IFG
PMC - 0.00010
Superior temporal sulcus - 0.00180
ACT, SMO left n.s. - -
right Fusiform gyrus, extendingto  FG3, FG4, hOc4v [V4 (V)] 0.00010
lateral occipital cortex
SMO, SOC left Frontal pole Fp1, Fp2 0.00010
Premotor cortex - 0.00100
Fusiform gyrus FG3, FG4 0.00010
right Frontal Pole, extending to Fp1, Fp2 0.00010

superior frontal gyrus
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Superior parietal lobule, TA [SPL], hIP3 [SPL] 0.00010
extending to intra-parietal
sulcus

Note. Abbreviations: n.s. = not significant.
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Supplementary Table 8: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly increased RSFC to the seed in left dPMC when additionally

adjusting for polygenic risk.

Risk score Hemi Anatomical landmark Cytoarchitectonically Voxel
model sphere defined region** size
Combined risk left Entorhinal cortex Entorhinal cortex, Subiculum 76
score S1/M1 Areas 3a, 4a, 5L (SPL) 64
ACT, ALC, SMO, M1 Area 4a 46
soc right M1 Area 4a 79
M1 Area 4a, 3b, 5L (SPL) 72
bilateral Brainstem - 33
ACT, ALC, SOC left Entorhinal cortex Entorhinal cortex 47
ACT, ALC,SMO left V3 (superior occipital gyrus) Area hOc4d [V3A] 50
right M1 Area 4a, 3b 133
M1 Area 4a 125
Middle temporal gyrus - 36
ACT, SMO, SOC left M1 4a 99
S1, extending to SPL 3a, 5M 84
Superior occipital gyrus hOc4d [V3A] 43
Medial frontal gyrus - 42
Medial frontal gyrus - 38
right M1 /81 Area 4a, 3b 73
M1 Area 4a 65
ALC, SMO, SOC left M1 Area 4a 121
M1/ S1, extending to SPL 4a, 3a, 5M 75
Medial frontal gyrus - 74
Entorhinal cortex Entorhinal cortex 71
Paracentral cortex Entorhinal cortex 47
right M1 Area 4a 416
ACT, SMO right M1 Area 4a 153
M1 Area 4a, 3b 145
left V3 (superior occipital gyrus) Area hOc4d [V3A] 106
M1 4p, 4a 53
SOC, SMO left M1 Area 4a 192
Paracentral cortex Areas 4a, 3a, 5M 128
Medial frontal gyrus - 101
right Paracentral cortex Area 4a, 3b, 5M 549
Medial frontal gyrus - 41
M1 - 38
SMA - 37
SOC (as a left Temporo-parietal junction Areas PGa (IPL), PFm (IPL) 56
single variable)
SMO (as a left M1 Area 4a 229
single variable) St Area 3a 54
V3 (superior occipital gyrus) Area hOc4d [V3A] 51
M1 Area 4a 49
right M1 Area 4a, 3b, 5L 967
Medial frontal gyrus - 46
S1 Area 2 42
Superior frontal gyrus - 35
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Posterior middle temporal Area hOc4la 31
gyrus
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Supplementary Table 9: Overlap between probability maps of the JuBrain atlas with brain

regions showing significantly increased RSFC to the seed in right vIPFC when

additionally adjusting for polygenic risk.

Risk score model Hemi Anatomical landmark Cytoarchitectonically Voxel
sphere defined region size
Combined risk score right Superior frontal gyrus Fp1 68
ACT, ALC, SMO,
SOoC
ACT, ALC, SMO right Superior frontal gyrus Fp1 65
ACT, SMO, SOC right Superior frontal gyrus Fp1 171
Supramaginal gyrus - 34
ACT, SMO left Superior frontal gyrus Fp1 54
right Superior frontal gyrus Fp1 259
Middle frontal gyrus Fp1 37
SMO, SOC right Superior frontal gyrus Fp1 59
Superior medial gyrus - 50
Insula - 37
SMO (as a single left Superior frontal gyrus - 81
variable) Middle frontal gyrus - 85
right Superior frontal gyrus Fp1 311
SOC (as a single right Caudate nucleus - 53
variable) Inferior frontal gyrus, - 51
orbital part
ACT (as a single left Inferior frontal gyrus, Area 45 76
variable) triangular part
Postcentral Gyrus OP4 52
right V3 (dorsal occipital cortex) Area hOc4la 66
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Supplementary Table 10: Regions showing significantly decreased cortical folding with

higher combined lifestyle risk in the sensitivity analysis.

Risk score Hemis- Anatomical landmark Cytoarchitectonically Cwp-value
model phere defined region*?’
Combined risk  left Premotor cortex (PMC) - 0.00010
score right Frontal pole, extending to Inferior Fp1, Fp2, Areas 45 0.00010
ACT, ALC, frontal gyrus (IFG)
SMO, SOC PMC - 0.00020
ACT, ALC, left PMC - 0.00020
SMO right n.s. - -
ACT, ALC, left PMC - 0.00010
SOC right Frontal pole, middle orbital gyrus Fp1, Fp2, Fo2 0.00010
IFG Area 44, 45 0.00010
PMC, extending to M1 4a, 4p 0.00010
SPL, extending to cuneus 7A, 7P, hOc4d [V3A] 0.00010
ACT, SMO, left Frontal pole Fp1, Fp2 0.00020
SOoC PMC - 0.00010
_right Frontal pole, extending to IFG Fp1, Fp2, Area 44 0.00010
PMC - 0.00010
right Frontal pole Fp1, Fp2 0.00010
PMC - 0.00170
ACT, ALC left PMC -
SPL 5L 0.00140
right Premotor cortex - 0.00010
Sensory-motor cortex, extending to Area 4, 2, 5L (SPL) 0.00010
SPL
ALC, SOC left Frontal Pole Fp1, Fp2 0.00390
IFG Area 45 0.00730
right Frontal pole, extending to IFG Fp1, Fp2, Areas 44, 45 0.00010
PMC, extending to inferior M1 3b 0.00590
Superior M1 4a 0.00180
SPL, Precuneus 7A, 7P (SPL) 0.00010
Middle temporal gyrus - 0.00210
ACT, SMO left PMC - 0.00680
right n.s. -
SMO, SOC left Frontal pole Fp1, Fp2 0.00010
right Frontal Pole, extending to middle Fp1, Fp2 0.00010

frontal gyrus
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Supplementary Table 11: Overlap between probability maps of the JuBrain atlas with

brain regions showing significantly increased RSFC to the seed in left dPMC in the

sensitivity analyses.

Risk score hemi anatomical landmark cytoarchitectonically voxel size
model sphere defined region*#
Combined risk left Entorhinal cortex Entorhinal cortex 67
score
ACT, ALC,
SMO, SOC
ACT, ALC, SMO right S1/M1 Areas 3b , 4a 52
M1 4a 37
ACT, ALC, SOC left Entorhinal cortex Entorhinal cortex 37
ACT, SMO, SOC left M1 - 114
S1 Area 3a 69
V3 (superior occipital gyrus) Area hOc4d [V3A] 51
Medial frontal gyrus - 49
right M1 Area 4a 87
M1/ S1 Areas 4a, 3b 79
M1 (precentral gyrus) - 45
Medial frontal gyrus - 41
ALC, SMO, SOC left Paracentral lobule - 128
M1 (precentral gyrus) Area 4a 99
Entorhinal cortex - 89
SPL (precuneus) Area 5M (SPL) 74
right M1 Area 4a 467
Entorhinal cortex - 62
ACT, SMO left V3 (dorsal occipital cortex)  Area hOc4d [V3A] 77
M1 Area 4p 32
right M1 Area 4a 80
S1/M1 Areas 3b, 4a 92
SOC (as asingle left Temporo-parietal junction Areas PGa (IPL), PFm 59
variable) (IPL)
SMO (as asingle left M1 Area 4a 255
variable) S1 Area 3a 64
V3 (superior occipital gyrus)  Area hOc4d [V3A] 53
Superior frontal gyrus 37
right M1 Area 4a 945
M1 - 54
S1 Area 2 37
V3 (dorsal occipital cortex) Area hOc4la 32
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Supplementary Table 12: Exact anatomical localization of brain regions showing

significantly increased RSFC to the seed in VLPFC in the sensitivity analyses.

Risk score Hemi  Anatomical landmark Cytoarchitectonically defined Voxel size
model spher region*?’
e
Combined risk right Superior frontal gyrus Fp1 64
score
ACT, ALC,
SMO, SOC
ACT, SMO, SOC right Superior frontal gyrus Fp1 126
Superior medial gyrus Fp2 42
ACT, SMO left Superior frontal gyrus Fp1 80
ACT, SMO left Superior frontal gyrus - 62
right Superior frontal gyrus Fp1 237
Middle frontal gyrus - 45
SMO, SOC right Superior frontal gyrus Fp1 117
SMO (as asingle left Middle frontal gyrus - 94
variable) Superior frontal gyrus - 83
_right Superior frontal gyrus Fp1 389
bilater = Thalamus - 60
al
SOC (as a single right Caudate nucleus - 112
variable) Inferior frontal gyrus, - 53
p. orbitalis
ACT (as asingle left Inferior frontal gyrus, Area 45 109
variable) p. triangularis
Postcentral gyrus - 93
right Middle temporal gyrus hOc4la 88
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Abstract

There is great interindividual variability in age-related decline of brain structure.
Lifestyle may be one source of unexplained variance: While physical and social engagement
are protective against structural decline, other lifestyle behaviors may be accelerating factors.
We examined whether there may be a lifestyle-dependent deceleration or acceleration of
structural brain aging using the BrainAGE score in a sample of 622 older adults from the
population-based 1000BRAINS cohort. Lifestyle was measured using a combined lifestyle
risk score, composed of risk (smoking, alcohol intake) and protective variables (social
integration, physical activity). Individual BrainAGE was estimated from T1-weighted MRI
data indicating accelerated brain atrophy (brains looking older than expected by
chronological age) by higher values. The effect of combined lifestyle risk and individual
lifestyle variables on BrainAGE was calculated using linear regressions. One unit increase in
combined lifestyle risk was associated with 3.84 months of additional BrainAGE. This was
driven by two individual lifestyle behaviors, i.e. smoking with 0.36 additional months of
BrainAGE per packyear and physical activity with a decrease of 0.48 months in BrainAGE
per metabolic equivalent. Post-hoc stratification by sex revealed a stronger association
between physical activity and BrainAGE in males (0.6 months less BrainAGE) compared to
females (0.48 months less BrainAGE). Thus, riskier lifestyle seems to be one contributor to
accelerated rates of brain aging. Especially the differential relation between physical activity
and BrainAGE between the sexes underline the need for sex tailored lifestyle interventions.
These observations may be particularly helpful with regard to the development of
interventions that slow or delay age-related changes in brain structure.

Keywords: Lifestyle, Brain AGE, smoking, physical activity, sex differences, inter-individual

variability
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1. Introduction

Structural brain changes during normal aging comprise decreases in gray matter
(GM) and white matter (WM; Fjell & Walhovd, 2010). Interestingly, some older individuals
experience strong and early manifestations (accelerated brain aging), while others of
comparable age spared affections expected at that age (decelerated brain aging; Bartrés-Faz
& Arenaza-Urquijo, 2011; Ziegler et al., 2012). As this high interindividual variability cannot
be fully explained by chronological age (Jockwitz et al., 2017; Stern, 2002; Stern 2009), other
factors that provide potential explanatory insight have come into focus, one of them being
lifestyle.

Indeed, some lifestyle behaviors such as smoking and alcohol consumption may pose
a serious risk to brain health, whereas others show promising beneficial effects, e.g. physical
activity and social integration (Anatiirk et al., 2018; Arenaza-Urquijo et al., 2015; Fratiglioni
et al., 2004). Socially integrated Alzheimer’s disease patients show higher cognitive stability
compared to not integrated patients, even when suffering from a similar degree of pathology
(Bennet et al., 2006). Further, social network size correlates positively with amygdala volume
in humans (Bickart et al.,, 2011). Likewise, higher physical activity, especially in older adults,
has repeatedly been associated with better cognitive performance (Colcombe & Kramer,
2003; Hughes & Ganguli, 2009; Kramer et al., 1999, Kramer et al., 2003; Kramer & Erickson,
2007; Voelcker-Rehage et al., 2010) and preservation of GM volume (Colcombe et al., 2003,
Erickson et al.,, 2014). Older adults engaging in physical activity training showed increased
hippocampal volume (Erickson et al., 2011) and more efficient use of functional brain
networks (Colcombe et al., 2004; Voelcker-Rehage et al., 2011). In contrast, smoking seems to
be associated with cortical thinning in prefrontal and temporal regions (Karama et al., 2015)

and decreased GM density within cingulum, precuneus, thalamus, and precentral gyrus
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(Almeida et al., 2008). Additionally, excessive alcohol consumption can lead to serious
neurological diseases, e.g. Korsakow syndrome (de la Monte & Kril, 2014) and is associated
with reduced GM and WM volume and density (Paul et al., 2008; Topiwala et al., 2017;
Pfefferbaum et al., 1995) in alcohol-dependent as well as non-dependent individuals
(Mukamal et al., 2001).

Most previous studies focused on specific effects of a single lifestyle variable on brain
structure and function. In real life, however, individuals engage in a combination of lifestyle
behaviors, e.g. physical exercise and afterwards meeting friends (social integration) while
drinking a beer (alcohol consumption). Only few studies investigated the effects of lifestyle
on brain structure and function or on cognition in a multidimensional way. For example,
Floel et al. (2008) found that the combination of exercise, dietary habits, BMI, smoking and
alcohol intake was a better predictor for memory performance than the individual lifestyle
behaviors. In a previous study, we developed a combined lifestyle risk score reflecting
individual combinations of the above described daily lifestyle behaviors, with higher values
reflecting more risky behavior (e.g. high smoking and alcohol consumption, low social
integration and physical activity), whereas lower values indicate protective combinations
(Bittner et al., 2019). We showed that higher combined lifestyle risk was associated with
brain atrophy, e.g. more alcohol consumption combined with low physical activity was
associated with structural decreases in the premotor region. Based on these findings it might
thus be assumed that combined risky lifestyle leads to accelerated brain aging, accompanied
by decreases in cognitive performance. Non-linear effects and covariates such as sex or
education as these affect not only brain phenotypes, but also lifestyle habits and the

association between both are of additional relevance (Cullen et al., 2011; Fratiglioni et al.,
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2004; Gur & Gur, 2017; Kramer & Colcombe, 2018; McKenna et al., 2003; Mukamal et al.,
2001).

To measure brain aging patterns, the BrainAGE framework was developed (Franke et
al., 2010), which multidimensionally aggregates voxel-wise GM alteration patterns of brain
aging into one single value, the estimated brain age. The BrainAGE score is the difference
between brain age as estimated from MR images and true chronological age (Franke et al.,
2010). BrainAGE is positive if aging patterns observed via MRI appear older than expected
based on chronological age (accelerated brain aging), and negative if they appear younger
(decelerated brain aging). BrainAGE was shown to be a meaningful imaging biomarker for
predicting the conversion from mild cognitive impairment to Alzheimer’s disease (Gaser et
al., 2013), as well as for cognitive decline and disease severity (Franke & Gaser, 2012).
Further, higher BrainAGE seems to be related to several physiological markers, such as
higher BMI and markers of liver and kidney function (Franke et al., 2014).

The current study aimed at examining whether combined lifestyle risk contributes to
deceleration or acceleration of brain aging reflected in BrainAGE in the population-based
1000BRAINS cohort of older adults (Caspers et al., 2014). First, we examined the relation
between our newly developed combined lifestyle risk score (Bittner et al., 2019) and
BrainAGE. We hypothesized that higher combined lifestyle risk would generally be
associated with accelerated brain aging, i.e. higher BrainAGE scores. Second, we investigated
the association between each individual lifestyle variable and BrainAGE to further elucidate
contributions of single lifestyle variables to this general association. All analyses were run for
the whole sample as well as for males and females separately (based on separate Brain AGE

estimations) to account for sex-specific differences.
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2. Materials and Methods
2.1 Participants

1,316 participants with an age range from 18.5 to 87.0 years were available from the
population-based 1000BRAINS study (Caspers et al., 2014). Due to the population-based
nature of the study, the only exclusion criteria for 1000BRAINS were contraindications for
the MR session (Caspers et al., 2014). From the overall cohort sample, 87 participants were
exluded due to missing MR scans, methodological failure during data processing (see MRI
preprocessing) or missing BrainAGE estimation. Hence, 1,229 MR datasets were available as
training sample for brain age estimation (see section 2.5, “Age Estimation Framework”).

For the lifestyle analyses, we used data of those participants aged older than 55 years
recruited from the Heinz Nixdorf Recall study (Schmermund et al., 2002). From those 1,229
participants with available MR data, n = 666 were within the selected age range. Two
participants had to be excluded from the lifestyle analyses due to incidental findings, and 42
participants due to missing values in behavioral data. Finally, the older subsample for the
lifestyle analyses consisted of 622 participants (272 females, 350 males) with an age range of
56 to 85 years (mean = 67.5 years, SD = 6.7). The study protocol of 1000BRAINS was
approved by the Ethics Committee of the University of Essen (Germany). All participants
gave written informed consent in agreement with the declaration of Helsinki.

2.2 Lifestyle Measures

Lifestyle data were retrieved from the database of the third examination (10-year
follow up) of the Heinz Nixdorf Recall study that commenced in June 2011 (Caspers et al.
2014; Schmermund et al., 2002).

2.2.1 Alcohol consumption
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Average consumption of different alcoholic beverages (beer as 0.2 liter, red and white
wine as one glass of 0.2 liter, and spirits as 0.02 liter) within the last four weeks was assessed
via a self-report questionnaire (Schmermund et al.,, 2002). The proportion of pure alcohol
within the specific beverage was then multiplied with the frequency of drinking. Next, all
beverages per person were summed up, resulting in the total amount of pure alcohol
consumption in grams per month (g/month). Alcohol consumption as assessed via self-
report questionnaires has been shown to highly correlate with blood indices of alcohol
consumption (Giovannucci et al., 1991), multiple weekly self-report diet records
(Giovannucci et al., 1991) and transdermal alcohol use assessment (Simons et al., 2015), thus
providing adequate reliability and validity for most research purposes (Del Boca & Darkes,
2003).

2.2.2 Smoking

The degree of lifetime exposure to tobacco smoking was assessed as packyears
(Duriez et al., 2014; Franklin et al., 2014; Karama et al., 2015), calculated by multiplying the
years of smoking with the self-reported number of smoked cigarettes per day.

2.2.3 Social integration

Social integration was assessed using an adapted version of the social integration
index (Berkman et al., 2004). The present social integration index comprised the domains
“Marital status” (married or cohabitating participants were scored a 2; single, never married,
widowed, or divorced participants were scored a 0), “close ties” (sum score derived from the
number of children, close relatives, and friends) and “membership in organizations” (sum
score of the number of organizations participants were members in and participated in at
least once a month). Organizations included were: sport clubs, regional clubs, hunting clubs,

choirs, theater clubs, music clubs, occupational or labor unions, political clubs or parties,
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congregations, and self-help groups. The scores of all three domains were summed up into
the social integration score.
2.2.4 Physical activity

To measure physical activity, we used the metabolic equivalent of task (MET,
Ainsworth et al., 2000) measuring the energy expenditure of a given activity compared to
rest. The compendium of physical activities (Ainsworth et al., 2000) provides a mean energy
expenditure value per hour of each activity. Participants were asked to report up to four
different sportive activities, carried out within the last month. Based on the MET values
assigned to the activities listed in the compendium, MET values were assigned to each of the
activities reported by the participants and multiplied by the duration in hours (per month).
Finally, a sum score of all activities was calculated. Additionally, body-mass-index (BMI)
was measured, since it has been shown to affect the association between physical activity
and brain volume (Ho et al., 2011).
2.2.5 Construction of the combined lifestyle risk score

The combined lifestyle risk score was constructed as used in a previous study (Bittner
et al,, 2019). That is, to standardize the measurements of the four lifestyle variables, we first
transformed the raw score on each individual lifestyle variable into a z-score. Next, in order
to obtain a risk score that indicated higher risk with higher values, we reversed signs of the
protective behaviors (social integration and physical activity). To obtain a risk score where a
value of zero would indicate a mathematical balance of negative and protective behaviors,
an additional linear transformation of the z-transformed lifestyle behaviors was applied: The
protective variables were linearly transformed into negative scores by subtracting the
maximum value from each individual measurement, whereas risk behaviors were

analogously transformed into positive scores by adding the minimum value to each
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individual measurement. Hence, all values for risk behaviors were positive. Finally, the
linearly transformed values of all individual lifestyle variables were summed up into one
combined lifestyle risk score.
2.3 Covariates

As the brains of women and men show some differences with respect to their
structural architecture, e.g. in the proportion of gray matter and the thickness of the cortex
(Ritchie et al., 2018) as well as aging trajectories (Cosgrove et al., 2007; Franke et al., 2014;
Gur & Gur, 2017; Ruigrok et al, 2014; Wierenga et al., 2018), we considered sex as a covariate
in the statistical models, and separately examined sex differences in performance measures.
Generally, all statistical models were adjusted for chronological age to investigate the
residual variability in brain aging. In addition, higher education is associated with higher
cognitive performance (Elias et al., 1997) and is generally considered a proxy for brain
reserve, the ability to better tolerate age-related neuronal loss (Bartés-Faz & Arenaza-
Urquijo, 2011; Christensen et al., 2008; Stern, 2012). Further, there may be associations
between education, intelligence, and lifestyle behavior (Cullen et al., 2011; Fratiglioni et al.,
2004), where less smoking has been found in more educated individuals (McKenna et al.,
2003). Hence, we hypothesized general educational level as a possible confounding factor
and added education as a covariate into the statistical model. General education was
measured using the international classification of education (ISCED, Unesco, 1997), a
standard classification system with 10 levels, where higher levels indicate higher education.
2.4 MRI Preprocessing

T1-weighted anatomical 3D images were collected with a 3T Tim-TRIO MR scanner
(Siemens Medical System, Erlangen, Germany). The following scan parameters were used:

TR =2.25s, TE=3.03 ms, TI =900ms, FoV =256 x 256mm?2, flip angle = 9°, voxel resolution =
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1 x 1 xXImm?, 176 axial slices. A detailed description of the 1000BRAINS study protocol can be
found in Caspers et al. (2014). MRI preprocessing was done using the SPM12 toolbox (The
Wellcome Dept. of Imaging Neuroscience, London; www.fil.ion.ucl.ac.uk/spm) and the
VBMS package (http://dbm.neuo.uni-jena.de) running under Matlab (The MathWorks Inc.,
Natick, MA, USA). First, T1-weighted images were corrected for bias field inhomogenities
and spatially normalized. Then, images were segmented (Ashburner & Friston, 2005) into
gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) using an approach
additionally accounting for partial volume effects (Tohka et al., 2004) by applying adaptive
maximum a posteriori estimations (Rajapaske et al., 1997) and a hidden Markov Random
Field Model (Cuarda et al., 2005), as described in Franke et al. (2010). From these
segmentation maps, only GM maps were used for the BrainAGE estimation framework. GM
maps were registered using an affine registration and further smoothed with an 8-mm full-
width-at-half-maximum (FWHM) kernel, while resampling the volumes at 8mm spatial
resolution. Next, since neighbouring voxels are spatially correlated and therefore contain
redundant information, principal component analysis (PCA) was conducted to reduce data
dimensions using the “Matlab toolbox for Dimensionality Reduction” (version 0.7b; van der
Maaten, 2007; Van der Maaten et al., 2007).
2.5 Age Estimation Framework
2.5.1 Training data

The BrainAGE framework is based on a support vector machine (Tipping, 2001) that
transforms training data into a high-dimensional space (Bennett & Campbell; 2000) and
translates features learned from a training sample onto an unkown test sample. To train and
test the BrainAGE framework with respect to prediction accuracy and reliability, we used a

‘leave 10% out’-procedure within the full cohort of 1000BRAINS, which spans 1,229 MR
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datasets with an age range from 18.5 to 87.0 years (M = 60.7, SD = 13.4; Mmate = 60.7, SDmale =
14.0; Meemate = 60.9, SDfemate = 12.5). In the training stage, the input data (90 percent of the
whole sex-split sample) were used to train the BrainAGE framework using chronological age
and the GM tissue probability maps (Franke et al., 2010), with separate age estimation
training for female and male participants. Blind to their true chronological age, the patterns
learned by the support vector regression were then transferred to the unknown 10 percent
test participants, such that estimated age was based only on their anatomical patterns within
the GM maps. For each participant, true chronologica] age was then subtracted from
estimated age:
Brain AGE = estimated age — chronological age

Positive BrainAGE scores reflect accelerated aging, i.e., the estimated age is higher
than the chronological age. In contrast, negative BrainAGE scores reflect decelerated aging,
i.e. the estimated age is lower than the chronological age. Finally, a correction for a quadratic
age trend, which is identifiable in Figure 1A, was applied to the resulting BrainAGE values
using spm_detrend (SPM12, The Wellcome Dept. of Imaging Neuroscience, London;
www. fil.ion.ucl.ac.uk/spm).
2.6 Statistical Analysis

In the first step, we explored performance measures of the BrainAGE framework. In a
second step, we investigated the influence of possible covariates (sex and education) on
BrainAGE to examine whether we need to consider their influences in the lifestyle analyses.
In the main analyses, we then examined the assocations between combined lifestyle risk, as
well as the individual lifestyle behaviors and BrainAGE. All statistical analyses were carried
out using IBM SPSS Statistics 23.0.

2.6.1 Performance measures for the BrainAGE estimation
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Following recent recommendations on age estimation models (Cole & Franke, 2017),
we provide study sample specific performance measures for the age estimation framework
applied within this study. To test accuracy of our model, we took the mathematical absolute
value of each BrainAGE value and calculated the sample mean, which should then reflect the
mean absolute error (MAE) of the brain age estimation. The smaller the MAE, the better the
performance of the estimation (Cole & Frane, 2017). The idea behind is that each individual
BrainAGE value can also be interpreted as the error of the age estimation model (i.e., the
extent to which the estimation deviates from the true age). In addition, we examined Pearson
correlations between estimated age, chronological age, and BrainAGE.

2.6.2 Relation between covariates and BrainAGE

We calculated a between-subjects MANCOVA with sex as independent factor (male vs
female), educational level as covariate and chronological age, estimated age, and Brain AGE as
dependent variables. Sex differences in educational level were examined using a between-
subjects ANCOVA with independent factor sex (male vs female), covariate chronological age
and education as dependent variable. Additionally, we calculated Spearman correlations
(method of choice for ordinally scaled variables, such as the ISCED) between education and
BrainAGE.

2.6.3 Lifestyle and BrainAGE

In our main analyses, we investigated the associations between lifestyle and
BrainAGE using a twofold approach. First, we examined the association between Brain AGE
and our combined lifestyle risk score. Second, we examined the association between
BrainAGE and each individual lifestyle variable.

To investigate the linear effect of combining the four lifestyle variables into one score,

we calculated multiple linear regressions (with IBM SPSS Statistics 20.0). In the analysis of
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combined lifestyle risk, we first used the combined lifestyle risk score, age and sex as
explanatory variables and BrainAGE as dependent variable. In the second analysis, we
introduced age, sex and the individual lifestyle behaviors (physical activity, social
integration, alcohol consumption, packyears of cigarettes) as explanatory variables to predict
BrainAGE. In both analyses, we did a post hoc outlier exclusion (values >3 SD) for each
variable that showed a significant effect on BrainAGE. Afterwards, we added education as
additional explanatory variable. To assess whether the combined lifestyle risk score
explaines more variance than the individual lifestyle variables, we compared the explained
variance in R? of both approaches.
2.6.3.1 Sex differences in the association between lifestyle and BrainAGE

We wanted to know whether sex changes the association between lifestyle and
BrainAGE. We calculated a between-subjects ANCOVA using sex as independent between-
subjects factor, chronological age, education and the combined lifestyle risk score as covariates and
BrainAGE as dependent variable, while introducing an interaction term between sex and the
combined lifestyle risk score to test for a moderating effect of sex on the association between
lifestyle risk and BrainAGE. To test for moderating effects of sex on the association between
the individual lifestyle behaviors and BrainAGE, we calculated a between-subjects
MANCOVA using the same independent factor, but using chronological age, education and
social integration, physical activity, alcohol consumption, and smoking as covariates, while
introducing interaction terms between sex and each respective lifestyle variable.

Next, we performed separate multiple linear regression analyses for the two sexes
first introducing only age as covariate and then adding education.

To further test for quadratic effects of the combined lifestyle risk score, as well as

individual lifestyle behaviors on BrainAGE, we used curve fitting to compare whether
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quadratic functions result in a better fit for any lifestyle variable and BrainAGE by first
regressing the linear effect of the three covariates age, sex and education out and then using
the residuals of the respective lifestyle variable as input. The linear function was defined as
BrainAGE = intercept + bu X lifestyle + £
whereas the quadratic function was defined as
BrainAGE = intercept + b X lifestyle + b X lifestyle? + &

.ﬂlﬂ'

Subscript indicates that the regressor belongs to the linear model, whereas

subscript “q” indicates that the regressors to belong to the quadratic function. In the final
step, linear and quadratic functions were compared with regard to the explained variance R
2.6.3.2 Quantification of lifestyle effects
To quantify the effect of the combined lifestyle risk score and those individual lifestyle
variables that showed a significant effect on BrainAGE, we estimated the slopes of the linear
regression line for each explanatory factor using the linear equation:
BrainAGE = intercept + b1 X sex + b2 X age + bs X lifestyle + ¢

We used the intercept and unstandardized regression coefficients as calculated in the
multiple linear regression as input for this equation, while the respective lifestyle variable
(i.e., the combined lifestyle risk score or one individual lifestyle variable) was set to 1. We
then multiplied the parameter bs with 12 months reflecting the increase in months of
BrainAGE with one increase in the explanatory variable.

We defined groups to further analyze the association between smoking and
BrainAGE and matched never (packyears =0, 82 male, 82 female) to moderate (packyears <
20, 96 males, 68 female) to severe smokers (packyears > 20, 55 females, 109 males) for age. We

then calculated an ANCOVA using the factors group (never vs. moderate vs. severe) and sex,

and the covariates age and education on the dependent variable BrainAGE.
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2.6.3.3 Power analysis

As the effects of lifestyle on the brain are rather small (e.g. Miller et al., 2016), post-
hoc power-analyses using GPower (Faul et al., 2009; http://www.gpower.hhu.de/) were
calculated for the applied linear regression models as recommended for studies with a given
sample size (Faul et al., 2009). Power reflects the probability of rejecting false null
hypotheses, in our case rejecting an association between lifestyle and BrainAGE which is
truly not there. Here, type-I error level ¢, the respective sample size (n = 622 for the whole
subsample, n =272 for female and n = 350 for male participants) and the fully adjusted model
number of predictors was used.
2.6.5 Data availability

The datasets generated and / or analyzed during the current study will be made
available from the corresponding author to other scientists on request in anonymized format

and according to data protection policy in the ethics agreement.
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3. Results
3.1 Performance of the BrainAGE estimation framework

Descriptive statistics of the training data set, comprising the whole available sample
of 1000BRAINS (n = 1,229), are shown in Table 1. Mean BrainAGE was 0.00 (SD = 5.04). The
mean absolute error (MAE) between chronological and estimated age was low with 4.62
years (SD = 3.67), respective was the correlation very high (r =.90, p <.001, Table 2, Figure
1A). The regression of estimated age on chronological age explained up to 83% of the
variance (Table 1).

Within the older subsample (n = 622), which we used for our main analysis of the
association between lifestyle and BrainAGE, mean BrainAGE was 0.23 years (SD = 4.96) with
a maximum positive deviation between chronological and estimated age of + 15.92 years
(brains appearing older compared to their chronological age) and a maximum negative
deviation of — 15.67 years (brains appearing younger compared to their chronological age).
MAE was 3.97 (5D =2.99) years, and did not differ between the two sexes [T (2, 620) = 0.20, p
= 0.839]. The regression of estimated age on chronological age explained up to 52% of the
variance (Table 1). The correlation between chronological and estimated age was r =0.714 (p
=0.0001, Table 2, Figure 2a), whereas the correlation between chronological age and
BrainAGE was r=-0.10 (p = 0.025, Figure 2b). Hence, the older the participants, the lower
were the BrainAGE scores.

3.2 Relation between covariates and BrainAGE in the older adult sample

In the between-subjects MANCOVA, there was no significant difference between
female and male participants in chronological age, F(1,621) = 1.55, p =0.213, n”=0.002, nor in
BrainAGE, F(1, 621) = 1.35, p = 0.246, n?>= 0.002. Mean estimated age was 1.28 years lower for

females than for males with F(1,621) = 3.98, p = 0.046, n2=0.005 (Table 1). In the between-
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subjects ANCOVA, males showed higher educational level than females [F(1,621) = 39.50, p <
.0001, n*=0.06]. No correlation between BrainAGE and education was found (p = 0.937), even

when stratifying the analyses for the two sexes (Table 3).
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Figure 1. Scatter plots for the whole sample of 1000BRAINS, n = 1,229. A. Correlation between
estimated and chronological age. Grey dots represent a regression line fitted to a simulated perfect
correlation between estimated and chronological age of r = 1.0. B. Correlation between chronological

age and BrainAGE. The correlation was significant for female (pink), but not for male participants (blue).
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Figure 2. Scatter plots for the older subsample of n = 622 used in the lifestyle analyses. A. Correlation

between estimated and chronological age was significant with r = 0.71 (p < 0.0001). B. Correlation

between chronological age and BrainAGE was r = -0.09 (p = 0.025). Blue dots represent men, pink plots

represent women. Sex-specific correlation values can be found in Table 2.

Table 1

Performance of the BrainAGE estimation framework

Whole sample of 1000BRAINS, # = 1,229, age range 18.5 — 85.4

Mean chronological age  Mean estimated age ~ Mean BrainAGE MAE R?

Whole group 60.8 (13.4) 60.7 (11.6) 0.0 (5.0) 46(37) 081
Male (1 = 680) 60.7 (14.0) 60.8 (10.5) 0.0 (5.1) 46(36) 078
Female (n=549) 60.9 (12.5) 60.6 (12.4) -0.1(4.9) 4.6 (3.7) 0.83
Older subsample used in analyses of lifestyle, n = 622, age range 56.2 - 85.4

Whole group 67.5(6.7) 66.8 (7.5) 0.2 (5.0) 40(3.0) 051
Male (1 = 350) 67.8(6.7) 66.5(7.2) 0.4 (5.1) 41(3.1) 051
Female (n =272) 67.1(6.7) 65.7 (6.9) 0.1 (4.8) 3829 052

Note. Descriptive statistics and performance measures for the whole training sample, as well as the older

subsample for lifestyle analyses. Age is given in years. Standard deviation is given in parentheses. MAE

= mean absolute error between estimated and chronological age. R?= explained variance drawn from

linear regressions of estimated age on chronological age.
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Table 2

Correlations between chronological age and estimated age and BrainAGE

Whole sample of 1000BRAINS, n =1,229

Estimated age

BrainAGE

Chronological age Whole group
Male (n = 650)

Female (n = 549)

r=-0.90, p <0.001
r=0.92, p<0.001

r=0.88, p <0.001

Older subsample used in analyses of lifestyle, n = 622

r=0.00, p=0.999
=-0.07, p=0.083
r=0.10, p=0.024

Chronological age Whole group
Male (n = 350)

Female (n =272)

r=0.71, p<0.001
r=0.71, p<0.001

r=0.72, p<0.001

r=-0.10, p=0.025
r=0.07, p=0.209
r=-0.12,p=0047

Table 3

Correlations between ISCED and chronological age, estimated age and BrainAGE

Spearman Correlations Chronological age Estimated Age BrainAGE

ISCED Whole subsample (n=622) p=-0.14, p<0.001 p= 0.13, p=0.001 p=-0.03, p=0.937

Male (n = 350) p=-0.11,p=0.040 p= 0.12,p=0028 p=-0.06, p=0.251

Female (n = 272) p=-0.16, p=0.008 p=-0.13,p=0.029 p=0.02, p=0.705

Note. Spearman correlations between general level of education as measured by ISCED with
chronological age, estimated age, and BrainAGE for the older subsample of lifestyle analyses.

p = Spearman correlation coefficient.

3.3 Main analyses of lifestyle and BrainAGE
3.3.1 Combined lifestyle risk

In our first analysis of lifestyle, we investigated the association between combined
lifestyle risk and BrainAGE. Table 4 shows descriptive statistics for all individual lifestyle
variables as well as for the combined lifestyle risk score. Mean combined lifestyle risk was -
1.02 (SD =2.1), reflecting a rather protective behavior within the selected older subsample of

1000BRAINS. The first multiple linear regression using combined lifestyle risk as



LIFESTYLE AND THE BRAINAGE SCORE 134

independent variable and age and sex as covariates showed a significant effect on BrainAGE
[F(3, 617)=8.77, p < 0.001, R*= 0.04)]. Here, higher combined lifestyle risk was significantly
associated with higher BrainAGE, with a regression coefficient of g =0.18, T =4.54, p < 0.001.
These results remained stable, even after outlier exclusion (f=0.17, T =4.28, p < 0.001, Figure
3; outlier marked with diamond shapes) and introducing education as a third covariate (f =

0.171, T=4.18, p < 0.001).
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Figure 3. Correlation between combined lifestyle risk and BrainAGE. Higher combined lifestyle risk
was associated with higher BrainAGE. The color spectrum depicts the increase in lifestyle risk from

protective (green) to balanced (yellow) to more risky (red) behaviour.

3.3.2 Individual lifestyle variables

In the next step, we examined how each individual lifestyle variable was related to
BrainAGE by including all four individual lifestyle variables into a multiple linear regression
as explanatory variables, while correcting for age and sex. Overall, the model significantly

predicted BrainAGE, F(6,615) =5.14, p <0.001, R?>= 0.05. We found a significant association



LIFESTYLE AND THE BRAINAGE SCORE 135

between higher amount of smoking and higher BrainAGE, g =0.14, T=3.41, p = 0.009, even
after outlier correction (8 =0.17, T =4.24, p <0.0001; Figure 4; 10 outlier marked with
diamond shapes) and adding educational level as covariate (8 =0.17, T=4.17, p <0.0001).
Additionally, higher physical activity was associated with lower BrainAGE, g=-0.11, T =-
2.75, p=10.006. This assocation remained significant even after exclusion of 9 outliers (Figure
5, marked with diamond shapes, g =-0.15, T=-3.72, p <0.001) and adding educational level
as covariate (8 =-0.15, T=-3.72, p <0.001). We additionally corrected this association for body
mass index (BMI), as BMI has been shown to influence the association between physical
activity and brain structure (Ho et al., 2011) and memory performance (Floel et al., 2008).
Higher physical activity remained significantly associated with lower BrainAGE (8=-0.14, T
=-3.41, p=0.001). No other individual lifestyle variable showed significant effects on
BrainAGE (Supplementary Table 1, Baicohol consumption = 0.05, p = 0.233; Bsocial integration = -0.05, p =
0.170).

3.3.3 Sex differences in the association between lifestyle and BrainAGE

3.3.3.1 Combined lifestyle risk

The between-subjects ANCOVA did not show a significant interaction between sex and the
combined lifestyle risk score on BrainAGE [F(4, 617) = 0.18, p = 0.672], even after outlier
correction [F(4, 617) = 0.37, p = 0.545]. After stratifying the group by the two sexes to account

for overall sex differences in BrainAGE, higher combined lifestyle risk was still associated

with higher BrainAGE in both males (g =0.19, T = 3.66, p < 0.001, [F(2,346) = 6.46, p < 0.001,
R?=0.04 for the whole regression model including age]) and females (8 =0.16, T = 2.63, p =
0.009, [F(2, 269) = 5.55, p = 0.005, R?>= 0.04 for the whole model including age]). Neither
introducing education as a second covariate changed these associations (Supplementary

Table 1), nor outlier exclusion (Supplementary Table 1, Figure 4, outliers marked with

diamond shapes).
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3.3.3.2 Individual lifestyle variables
We did not find any significant interaction effects of sex and the individual lifestyle variables

on BrainAGE in the between-subjects MANCOVA. After stratifying for the two sexes,
smoking and physical activity showed significant effects (Supplementary Table 2). Here, the

association between higher amount of smoking and higher BrainAGE was still significant for

male [ =0.18, T =3.46, p = 0.001, F(2, 340) = 6.92, p = 0.001, R2= 0.04 for the whole model], as
well as for female participants [ =0.134 T =2.33, p = 0.021, F(2, 266) = 4.90, p < 0.01, R>= 0.04
for the whole model], even after outlier correction (Supplementary Table 2, Fig. 4A, outliers
marked with diamond shapes) and adding education as a second covariate (Supplementary
Table 2). The association between higher physical activity and lower BrainAGE, though,
remained significant for male participants [f =-0.19, T = -3.50, p = 0.005, F(2, 346) = 7.05, p =
0.003 , R%= 0.04 for the whole model], but not for female participants [ =-0.10, T =-1.60, p =

0.110, F(2, 265) = 3.53, p < 0.05 , R>= 0.03 for the whole model]. In males, this association was

significant despite outlier correction and adding education and BMI as covariates
(Supplementary Table 2).
3.3.4 Exploration of non-linear lifestyle effects

Finally, we tested for quadratic effects of the combined lifestyle risk score and
individual lifestyle variables on Brain AGE. Lifestyle variables that were used as regressors in

the curve fitting process were already corrected for age, sex, education, and, in case of

physical activity, BMI. Therefore, the R? values within this estimation differ from those in the
purely linear regressions. In the following section, the subscript “q” indicates that the

regressors belong to the quadratic function.

3.3.4.1 Combined lifestyle risk

Adding a quadratic term to the linear regression of BrainAGE on combined lifestyle risk did
not result in a better fit than the linear regressions, with both functions explaining 3.1% of
the variance and the quadratic term itself not being significant, which was also true after

outlier correction. After splitting the sample by sex, adding the quadratic terms did show a
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slightly better fit to the data than the linear model in male participants (R2inear = 0.040,
R2quadratic = 0.046; (g = -0.077, T = -1.43, p = 0.155), but not in female participants (R2inear =

0.024, R%quadratic = 0.024; By= 0.015, T = 0.25, p = 0.803). All regression statistics can be found in

Supplementary Table 3.
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Figure 4. Association between smoking and BrainAGE. Higher BrainAGE was associated with
higher amount of smoking. Orange dots represent men, magenta dots represent women. The interaction

between sex and amount of smoking on BrainAGE was not significant. Dashed lines represent the fit of

a quadratic function into the data.

3.3.4.2 Individual lifestyle variables

Significant quadratic associations between the individual lifestyle variables and BrainAGE

were found for smoking and physical activity.
Adding the quadratic term to the linear model describing the association between

smoking and BrainAGE resulted in marginally higher explained variance (R#inear = 0.021,

R2quadratic = 0.023), while the quadratic term itself was not significant (%4 =-0.056, T =-0.99, p
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= 0.323). This was also true in male participants only (R2inear = 0.021, R2quadratic = 0.24; g = -

0.082, T = -1.05, p = 0.293, Suppl. Table 4). After adding the quadratic term to the linear
model for female participants, the model no longer showed a significant effect on BrainAGE
(Suppl. Table 4).

Regarding the association between physical activity and BrainAGE, the quadratic
term showed an additional effect on BrainAGE (RZinear = 0.011; R2quadratic = 0.019; £ = 0.125, T
=2.171, p = 0.030), which was no longer significant after outlier correction (Suppl. Table 4). In

male participants, including the quadratic term did result in a slightly better model (R%inear =

0.024; R2quadratic = 0.029), while the additional quadratic term was not significant (%, =0.11, T

=1.36, p = 0.174) and the better model fit disappeared after outlier correction. In female
participants, neither the quadratic nor the linear model showed a significant association

between physical activity and BrainAGE (Suppl. Table 4).

3.3.5 Quantification of lifestyle effects

For one increase in the combined risk score (risk score = 1), BrainAGE was estimated
at 3.84 months older in addition to the effect of sex and age (BrainAGE = 15.40 -0.57 X sex -
0.23 x age + 0.32 x riskscore). For each packyear of cigarettes, BrainAGE was estimated at 0.36
months older (BrainAGE = 5.07 -0.01 x sex -0.07 x age + 0.03 x packyears). Finally, we calculated
an increase in BrainAGE of 0.36 months per packyear in males and 0.48 months per packyear
in females (Brain AGEmae = 3.52 -0.05 x age — 0.03 x packyears; Brain AGEfmae = 4.89 -0.08 x age —
0.04 x packyears). Comparing never, moderate and severe smokers revealed, that the brains of
severe smokers (BrainAGE = 1.61) appeared significantly older than those of never
(BrainAGE = -0.05) and moderate (BrainAGE = -0.03) smokers, but that there was no
significant difference between never-smokers and moderate smokers in average Brain AGE.

For each metabolic equivalent that was expended per week, BrainAGE was estimated
0.48 month younger (BrainAGE = 6.53 -0.49 x sex -0.07 x age + 0.04 X activity). Finally, we

calculated a decrease in BrainAGE of 0.6 months per metabolic equivalent in males and 0.48
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months per metabolic equivalent in females (BrainAGEma. = 4.94 -0.06 x age — 0.05 X packyears;
Brain AGEfemae = 7.12 -0.09 x age — 0.03 X activity).

3.3.6 Power analysis. The post-hoc power analysis for the regression of BrainAGE
onto combined lifestyle risk within the whole subsample using a=0.05, n = 622 and number
of predictors = 3 revealed a power of 0.99 (power male = 0.93; powerfemale = 0.84). Similar values
were obtained for the regression of BrainAGE onto packyears using a= 0.05, n =622 and
number of predictors = 3 with a power of 0.99 (power male = 0.93; powerfemate = 0.84), and onto
physical activity using a= 0.05, n =622 and number of predictors = 4 with a power of 0.95

(power male = 0.89; powerfemate = 0.72).

BrainAGE

20 +——————

0 50 100 150 200
Physical activity [metabolic equivalent]

Figure 5. Association between physical activity and BrainAGE. Lower BrainAGE was associated
with higher physical activity as measured with the metabolic equivalent. Dark green dots represent
female, light green dots represent male participants. The interaction effect between sex and physical
activity on BrainAGE was not significant. The dashed lines represent quadratic trends. Regression lines

were significant for males, whereas they were not significant for females.
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Table 4
Descriptive statistics of lifestyle variables
Min Max Mean SD
Packyears total sample 0.00 204.00 13.61 21.73
(Male, Female) (0.00,0.00)  (204.00, 123.00) (16.27,1.19)  (24.37,17.21)
Alcohol total subsample 0.00 198.50 11.25 19.87
consumption (Male, Female) (0.00, 0.00) (198.50, 79.40) (15.85, 5.33) (23.86, 10.46)
Physical total subsample 0.00 196.00 14.32 20.94
activity (Male, Female) (0.00,0.00)  (196.00,189.00)  (14.69,13.86)  (21.07, 20.81)
Social total subsample 3.00 53.00 12.99 6.40
integration (Male, Female) (3.00, 4.00) (53.00, 44.00) (13.19, 12.72) (6.53, 6.24)
Combined total subsample -9.60 10.36 -1.02 2.06
lifestyle risk (Male, Female) (-9.60, -9.08) (10.36, 4.96) (0.72, 1.40) (2.19, 1.81)

Note. Descriptive statistics for all four individual lifestlye variables, as well as the combined lifestlye

risk score for the total older subsample (1 = 622), as well as for older males (n = 350) and older females

(n=272).

Table 5

Correlations between level of eduction and lifestyle variables

General level of Alcohol Physical Social Combined
Packyears

education consumption activity integration lifestyle risk score
Whole subsample p=-021, p=-0.02, £=0.10, p,=0.13, p=-0.16,
(n=622) p <0.001 p=0.066 p=0.017 p=0.001 p <0.001
Male p=-022, p=0.01, L£=0.10, p=0.17, p=-0.19,

(n = 350) p <0.001 p=0.841 p=0.064 p=0.001 p <0.001
Female p=-0.12, p£=0.06, p=0.14, p=0.12, p=-0.14,
(n=272) p=0.046 p=0311 p=0.014 p=0.059 p=0.026

Note. p-Spearman correlation coefficient.
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4. Discussion

The present study showed that lifestyle habits contribute to differences in brain aging
in a population-based cohort of older adults and gives promising insights into why people
age so differently. We used two approaches: We used a novel lifestyle risk score (Bittner et
al., 2019) combining different lifestyle variables into one value, while additionally
investigating each lifestyle habit alone. In addition, we examined differences in brain
structure using BrainAGE as a meaningful imaging biomarker (Franke & Gaser, 2012; Gaser
et al,, 2013; Loewe et al., 2016; Franke et al., 2014), which showed a very good performance in
our sample (Cole & Franke, 2017). Further, our results hint at sex differences in the
association between lifestyle and BrainAGE that are often not examined in studies on
lifestyle associated differences in the brain, e.g. in terms of smoking (Karama et al., 2015),
alcohol consumption (Vergara et al., 2017) and physical activity (Kramer & Colcombe, 2018).
4.1 Associations between combined lifestyle risk and BrainAGE

Prior studies focused mostly on the effect of single lifestyle variables on the brain,
considering co-occurrences of various lifestyle behaviors as nuisance factors rather than as
effects of interest. In contrast, the current study considered four different lifestyle behaviors
as a combined concept (Bittner et al., 2019) to examine if lifestyle explains variability in
BrainAGE and which lifestyle behaviors contribute the most to this association. Regarding a
phenotype as complex and multi-dimensional as lifestyle, it is reasonable to assume that one
specific behavior can only account for parts of the variance in brain aging, providing
necessity for investigation of different variables together (Bittner et al., 2019; Floel et al., 2008;
Vergara et al., 2017). Considering several behaviors as well as composite scores seem to
provide a better prediction of differences between older adults, e.g. in verbal memory, than

the individual measures alone (Floel et al., 2008). Comparable approaches have also been
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used in imaging genetics, where polygenic risk scores (several genetic markers aggregated
into one score) can explain more variability in neurological diseases and brain phenotypes
than individual genetic markers alone (Dudbridge et al, 2013; Harrison et al., 2016;
Torkamani et al., 2018; Ursini et al., 2018). Therefore, we hypothesized that our combined
lifestyle risk score would explain more variance than each single behavior alone.

As hypothesized, we found a lifestyle-dependent acceleration of structural brain
aging, where higher lifestyle risk was associated with higher Brain AGE scores, thus older
looking brains. This observation is particularly important, since it helps explain a significant
proportion of the large interindividual variability in structural brain aging of older adults
(Dickie et al., 2013), which cannot be accounted for by age, sex, education or clinical markers,
such as BMI or uric acid (Arenaza-Urquijo et al., 2015; Christie et al., 2017, Eavani et al., 2018;
Fjell et al., 2012; Franke et al., 2014; Jagust 2013; Lockhardt & DeCarli, 2014). In the present
sample, the model consisting of age, sex, and all individual lifestyle variables explained a
comparable amount of the variance in BrainAGE (5%) as the model consisting of age, sex,
and the combined lifestyle risk score. This is comparable to the amount of explained variance
reported for lifestyle behaviors or health markers in other large epidemiological studies
(Franke et al., 2014; Jockwitz et al., 2017; Miller et al., 2016). In a former study, individual
lifestyle variables did not show a significant effect on cortical surface measures, whereas the
combined lifestyle risk score did (Bittner et al., 2019). However, it is important to note, that
the former study was a vertex-wise whole brain approach, sensitive to lifestyle-related
regional differences, whereas the present study examined the association between lifestyle
and BrainAGE, reflecting the multidimensional pattern of aging aggregated into one marker.
Importantly, we quantified the effect of combined lifestyle risk on structural brain aging in

terms of years. This was inspired by Franke et al. (2014), who estimated mean BrainAGE in a
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“risky” and a “healthy” group in terms of clinical markers, such as BMI or uric acid. Instead
of quantifying group differences in terms of years, as done by Franke et al. (2014), we
estimated the linear increase in BrainAGE for each increase in lifestyle risk of the specific
variable. In consequence, with each increase in combined lifestyle risk, brains appear 3.8
months older than the “normal” age-related difference in brain structure, which the
statistical model corrected for. In comparison, brains appear 0.24 months older with each
packyear and 0.48 months younger with each increase in metabolic equivalent (MET) per
week (with, e.g., 4 MET reflecting one hour of 10mph bicycling). Hence, the combined
lifestyle risk score explained more than 3 months in Brain AGE “in addition” to smoking in
packyears, as hypothesized. Therefore, the combined lifestyle risk score seems to have higher
explanatory power, presumably via consideration of over-additive and interacting effects
between the individual factors when quantifying the harmful and protective effects of
lifestyle. Considering different behaviors of interest simultaneously may thus be a fruitful
way to explain additional variance in brain aging by investigating their cumulative effects.
4.2 Associations between individual lifestyle variables and BrainAGE

Investigating the four lifestyle behaviors individually revealed more smoking and
lower physical activity to be the strongest contributors to the positive association between
lifestyle risk and BrainAGE.
4.2.1 Smoking

One of the compelling results of the current study were the negative effects of
smoking on the aged brain quantified in months. Prior studies already hinted at an
association between smoking and changes in GM. Regionally lower GM volume and density
for smokers compared to non-smoking control participants have been reported in the

prefrontal cortex and the cerebellum (Brody et al., 2004), the posterior cingulum, precuneus,
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right thalamus, and bilateral frontal cortex (Almeida et al., 2008), as well as the substantia
nigra (Gallinat et al., 2006). Importantly, all of these studies had a fairly small sample size
that either included younger adults only (n =45, age range: 22.4 — 38.3 years; Gallinat et al.,
2006), older adults only (1 =78, age range 71.6 — 78.9 years; Almeida et al., 2008), or a large
age range (n =36, 21 — 65 years; Brody et al., 2004). Additionally, results on the association of
smoking with other brain metrics are quite heterogenous. Higher numbers of white matter
hyperintensities (Longstreth et al., 2005), lower microstructural integrity (Gons et al., 2011),
or infarcts (Howard et al., 1998) in smokers compared to non-smokers were reported. With
population-based cohort imaging available, the sample sizes have substantially increased
(e.g. Bamberg et al. 2015; Caspers et al., 2014; Miller et al., 2016; Van Essen et al., 2012), thus
increasing generalizability of results to the general population. For example, Karama et al.
(2015) showed that smoking was associated with widespread cortical thinning in a sample of
504 older adults particularly in prefrontal cortex, mostly omitting primary sensory areas.
Still, none of the studies provided a quantification of the effect of smoking on the brain. For
the first time, we were able to associate each packyear with an increase of 0.36 months of
BrainAGE. Translating this result to our older adult study sample taking into account the
average smoking behavior of 13.61 packyears, an overall increase of 4.9 years of BrainAGE
(13.61 x 0.36 month of BrainAGE) only by smoking can be stated.

There was a high variance in BrainAGE in individuals, who never smoked (139
female, 114 male, Figure 4). Within this group, BrainAGE scores were very high, as well as
very low, aggregating to a mean BrainAGE of almost zero. This finding is comparable to the
considerable variance in cortical thickness in the rarely smoking participants observed by

Karama et al. (2015). In the current study, the more the participants smoked, the stronger

was the relationship between higher packyears and higher BrainAGE, suggesting that this
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effect was mostly driven by high lifetime smoking (Figure 4). This was also revealed when
comparing never, moderate and severe smokers, where the brains of severe smokers
(BrainAGE = 1.61) appeared significantly older than those of never (BrainAGE =-0.05) and
moderate (BrainAGE =-0.03) smokers. It is particularly important to note that this
observation cannot be translated simply to the assumption that rare smoking has no effect on
the brain. Rather, rare smoking may manifest in other metrics for healthy brain aging, even if
alterations in brain structure would not be present: For example, in our previous study we
found no association between smoking and cortical surface measures in older adults.
Instead, more smoking was associated with higher resting-state functional connectivity
(RSFC), which may be a compensation mechanism for accelerated brain aging (Bittner et al.,
2019). Additionally, activity differences in task-based fMRI (Lawrence et al., 2002; Tanabe et
al., 2011), as well as receptor differences between smokers and non-smokers (Feduccia et al.,
2012; Mukhin et al., 2008) were described. Studies on RSFC in relation to longterm effects of
smoking and not acute effects of nicotine are rather rare. It may thus be of particular interest
to investigate general differences in brain function, e.g. in RSFC, associated with light
smoking (Janes et al., 2012; Pariyadath et al., 2014; Zhou et al., 2017), even though light
smoking seems not to be heavily associated to differences in brain structure.

The underlying mechanisms driving the association between smoking and changes in
brain structure are still unclear. Smoking could potentially act via atherosclerotic processes,
which may impact the aging brain and thus accelerate brain aging (Prescott et al., 1998,
Freund et al.,, 1993; Mucha et al., 2006; Pujades-Rodriguez et al., 2014). Possibly, the
measured increase in BrainAGE might also be attributable to the direct toxic effects of
tobacco smoke onto the cerebro-vascular system, which includes oxidative stress within the

cells and results in apoptosis (Swan & Lessov-Schlaggar, 2010). However, since BrainAGE
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takes the whole GM volume of an individual into account, drawing inferences about any
molecular mechanisms or disentangle regional differences that drive the association between
stronger smoking and accelerated brain aging as reflected by higher BrainAGE remains for
future studies.
4.2.1.1 Sex differences in the associations between smoking and BrainAGE

Most prior studies assessing the effect of smoking on brain structure did not examine
sex differences or the interaction of sex and smoking (Almeida et al., 2008; Brody et al., 2004;
Gallinat et al., 2006, Karama et al., 2015; Longstreth et al., 2005). To our knowledge, there are
only two studies addressing this issue, showing that structural differences associated to
smoking may regionally differ depending on sex (Duriez et al., 2014; Franklin et al., 2014). In
the present study, we addressed this issue and found no interaction between sex and
smoking, hinting at a comparable direction and strength of association in both sexes.
Nevertheless, future studies should carefully address sex-differences in lifestyle effects. With
imaging research focusing more on sex differences (Franke et al., 2014; Gur & Gur, 2017;
Richie et al., 2018; Ruigrok et al., 2014; Wierenga et al., 2018) it may be of particular interest
to identify lifestyle behaviors that differentially affect male and female brains, such that
interventions that slow or delay manifestations of aging can be tailored for sex.
4.2.2 Physical activity and BrainAGE

The protective effect of physical activity on GM volume has been discussed to be
regionally specific (see review by Erickson et al., 2014). Our results support an association
between higher physical activity and lower BrainAGE, thus younger looking brains. Physical
activity therefore does not only seem to affect specific brain regions, but also the multi-
dimensional pattern of brain aging itself. Most previous studies comprised intervention

trainings, where training was systematic, regular, and highly controlled (Erickson et al.,
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2014). The present study adds to this by demonstrating that higher physical activity is
associated with decelerated brain aging (lower BrainAGE scores) in a population-based
sample of older adults using a comprehensive, epidemiologically motivated measurement of
physical activity, i.e. the metabolic equivalent (Ainsworth et al., 1992; Bus et al.,, 2011; Fldel et
al, 2010; Milanovic et al., 2013; Pierce et al., 2007; Ruscheweyh et al., 2011; Wagner et al.,
2012). This measurement is drawn from self-reports that summarize all sorts of sports older
adults engage in and is likely to reflect the average daily physical activity, in contrast to
highly controlled intervention settings. The present association between self-reported
physical activity and BrainAGE is therefore not as strong as reported effects of fitness
training on e.g. the hippocampus (Erickson et al., 2011), but is likely reflecting a natural and
therefore more generalizable relationship.

Several mechanisms how higher physical activity or fitness levels may act
protectively on the aging brain have been discussed, such as the upregulation of
neurotrophic factors, including brain-derived-neurotrophic factor (BDNF, de Melo Coelho et
al., 2013; Neeper et al., 1996, Piepmeier & Etnier, 2015) and granulocyte-colony stimulating
factor (G-CSF; Floel et al., 2010), which significantly impact synaptic efficacy, neuronal
connectivity, and use-dependent plasticity. Here, use-dependent plasticity may play a crucial
role in the sense of the “lose-it-or-use-it”-hypothesis (Swaab et al., 2002). This hypothesis
states that those neurons needed and therefore stimulated in daily life are better preserved
during the lifespan. As a consequence, physical activity as one kind of training would lead to
better preservation of those brain structures needed to perform the activity engaged in
(Bittner et al., 2019; Colcombe et al., 2003; Vaynman et al., 2004; Vaynman & Gomez-Pinilla,

2005). Several studies have shown that training-induced preservation or even adaptation of
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brain regions is possible in adults (Churchill et al., 2002; Draganski et al., 2004; Erickson et
al., 2011, Kramer & Erickson, 2007), older adults in particular (Boyke et al., 2008).
4.2.2.1 Sex differences in the associations between physical activity and BrainAGE
Interestingly, the strength of this association seems to differ between the two sexes.
Stratifying the sample for the two sexes revealed the relationship to be significant in male (p
=0.005), but not in female participants (p = 0.169). However, the power to find an effect of
physical activity was lower in female participants (0.72) than in male participants (0.89), with
a power of 0.72 translating to 28% probability of assuming no effect of physical activity, even
though the effect is truly present. Hence it is possible, that even larger sample sizes are
needed to detect the small effect of physical activity in females as well. A recent review
concluded that the sex proportion in physical activity intervention studies may impact the
effect sizes (Kramer & Colcombe, 2018). A potential reason may be expression of BDNF and
its effect on physical activity, which has been shown to differ between the sexes in mice with
lower expression in females (Venezia et al. 2016). Further, estrogens or hormone replacement
therapy seem to be related to levels of neurotrophins (Garcia-Segura et al., 2000). One study
showed that longer periods of hormone therapy corroborated the positive effect of high
physical activity on cognitive performance in women (Erickson et al., 2007). If the enhanced
release of neurotrophic factors like BDNF drive the relationship between physical activity
(Floel et al., 2010, Ruscheweyh et al., 2011) and brain structure and the release of
neurotrophic factors differs between the two sexes, different levels of neurotrophins may be
another reason for the sex differences reported in the current study. There may also be
further differences between the two sexes that co-occur with physical activity, such as
dietary habits (Kramer & Colcombe, 2018), the specific kind of activity (Churchill et al., 2002;

Colcombe et al., 2003; Floel et al., 2010; Hayes et al., 2013; Kramer & Colcombe, 2018), as well
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as differences in metabolism (Burd et al., 2009; Wu & O’Sullivan, 2011) to be considered in
future studies. Taken together, higher physical activity seems to be one lifestyle behavior
that contributes to decelerated brain aging, in line with previous studies. Still, there seems to
be a lack of studies addressing the possibility of sex-differences within this association such
that underlying mechanisms could be identified. Most previous studies statistically
controlled for sex as a covariate, but did not examine interaction effects, as done in classic
psychological research or specifically conducted sex-stratified analyses, as done in
epidemiological research (Erickson et al., 2014; Floel et al., 2008; Floel et al, 2010, Ho et al.,
2011). As Kramer & Colcombe (2018) state in their recent review, it can be of great help to
disentangle the association between physical activity and BrainAGE to facilitate e.g. large
exercise programs within the communities. Here, programs tailored for the specific sex may
have higher acceptance and long-term maintenance rates.
4.2.3 Alcohol consumption and social integration

We did not find associations between BrainAGE and social integration or alcohol
consumption. Regional differences in brain structure associated to social integration, as well
as alcohol consumption could be present, but might not have been identifiable with the
specific approach of the current study. Several explanations might hold for these
observations. To date, the number of studies investigating social integration in relation to
structural brain decline in older adults is relatively small (for a recent review, see Anatiirk et
al., 2018). Additionally, most studies report effects for composite measurements of cognitive
and social activities, which do not clearly differentiate between social and cognitive
components (Gow et al., 2012; Hafsteinsdottir et al., 2012; Vaughan et al., 2014). Further,
composite measures for social activities when investigated in combination with additional

lifestyle behaviors (Bittner et al., 2019) have been assessed. Therefore, future studies could
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shed light on effects of social activities with low cognitive versus high cognitive demands to
answer the question whether the cognitive or the social component of social integration
contributes to brain reserve, the amount to which age-related GM loss can be tolerated
without showing deficiencies (Stern, 2012). Additionally, we used a quantitative
measurement of social integration. Studies have shown that older adults engage in
relationships with a focus on quality rather than quantity (Carstensen et al., 1999). Hence,
future studies would be needed to address the association between quality of relationships
and brain aging. Further, differences in brain structure related to social integration may be
regional or subtle (James et al., 2012), which also seems to be the case for alcohol
consumption (Topiwala et al., 2017). Even though accelerated brain aging has been shown in
patients with alcoholism (Pfefferbaum et al., 1992), differences related to alcohol
consumption in the normal population may not be as strong or only identifiable if several
risk behaviors co-occur (Bittner et al., 2019). Further, alcohol consumption may affect other
brain parameters earlier such as WM lesions (den Heijer et al., 2004) or RSFC (Vergara et al,,
2017). Additionally, effects of alcohol consumption may also be non-linear (Mukamal et al.,
2001), which we could not identify in the present study, but might be interesting for future
studies to further investigate into.
4.3 Strengths and limitations

Strengths of the present study include the large sample size, the older age range of
the sample, and the use of BrainAGE as a state-of-the art imaging biomarker to quantify the
effects of lifestyle behavior in years. The present study has a cross-sectional design which
does not allow conclusions about directionality of effects. Even without a longitudinal
design, though, our approach hints at individuals with higher risk for accelerated brain

aging: each participant’s image-based brain aging pattern is compared to his or her own
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chronologically expected brain aging and not only to the average brain aging pattern of the
sample. BrainAGE thus approximates intra-individual trajectories of brain aging rather than
displaying average inter-individual brain aging patterns of groups. BrainAGE therefore
provides a useful framework to capture relevant aspects of variability in structural brain
aging beyond average values and hence provides a meaningful framework to examine the
high variability in brain reserve (Stern, 2012).

Further, it is important to mention that, based on established approaches in
epidemiological research (Schmermund et al., 2002), the lifestyle variables included in our
combined lifestyle risk score were measured using different time windows (e.g., physical
activity was assessed for the last four weeks, smoking as the number of cigarettes smoked
over the whole lifetime). Assessments that refer to specifically defined short time frames
(e.g., amonth, a week) seem to be more reliable indicators of long-term behavior than self-
reports referring to longer time frames (e.g., a whole year, Del Boca & Darkes, 2003).

Additionally, all lifestyle habits were assessed using self-reports, which makes it
impossible to rule out memory effects or social desirability bias. Self-report measurements
have nevertheless been shown to be valid and reliable (Del Boca & Darkes, 2003) and thus
suitable in such an epidemiological population-based cohort setting.

4.4 Conclusion

Higher lifestyle risk, represented by a combined lifestyle risk score, contributes to
accelerated brain aging as revealed by BrainAGE, a meaningful imaging biomarker. Higher
lifetime smoking, as well as lower physical activity contributed most to this association.
Especially the differential relation between physical activity and BrainAGE between the
sexes, i.e. older men showing a stronger relationship between higher physical activity and

decelerated brain aging, underlines the need for sex tailored lifestyle interventions. Our
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results therefore highlight the importance of considering sex differences in the relationship
between lifestyle and alterations in brain structure and future studies are warranted to
examine the underlying mechanisms. More research is needed to elucidate the relation
between alcohol consumption and brain structure, as well as social integration and brain
health, e.g. by disentangling the cognitive and social components. In summary, lifestyle
seems to be a fruitful target for identifying behaviors that may slow neuronal changes and
related or resulting cognitive impairment. Considering co-occurrences between several
lifestyle behaviors as effects of interests, rather than as a nuisance may enable us to better
understand individual trajectories of brain aging in the older population and why people age

differently.
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Regression statistics, multiple linear regression examining the combined lifestyle risk score

Sample Model including Combined lifestyle risk score  F (whole model) R?
Whole subsample Age, sex, combined lifestyle
£=0.18, T=4.54, p<0.001 8. 77 0.04
(n=622) risk score
Outlier corrected Age, sex, combined lifestyle
£=0.17, T=4.28, p<0.001 7.92%x 0.04
(n=615) risk score
Age, sex, education, combined
£=0.17, T=4.18, p<0.001 5.95%% 0.04
lifestyle risk score
Male Age, combined lifestyle risk
£=0.19, T=3.66, p<0.001 6.46**** 0.04
(n=350) score
Outlier corrected, Age, combined lifestyle risk
£=0.18, T=3.32, p=0.001 6.19** 0.04
(n=2345) score
Age, education, combined
£=0.18, T=3.23, p=0.001 4.13* 0.04
lifestyle risk score
Female
Age, combined lifestyle risk
(n=272) £=0.16, T=2.63, p=0.009 5.55%* 0.04
score
Outlier corrected Age, combined lifestyle risk
£=0.16, T=2.64, p=0.009 5.56"** 0.04
(n=270) score
Age, education, combined
£=0.16, T=2.58, p=0.010 3.72% 0.04

lifestyle risk score*

Note. *** p < 0.0001, *** p <= 0.001, ** p < 0.01, * p < 0.05
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Supplementary Table 2

Regression statistics, multiple linear regression examining individual lifestyle variables

Variables B Alcohol B Physical B Social F (whole
Sample B Pack-years R?
included consumption activity integration =~ model)
Whole  Age, sex £=0.14 £=0.05 f=-0.11 £=-0.05
subsample all individual T=341 T=119 T=-275 T=-1.14 5.14** 0.05
(n=622) lifestyle variables p=0.009 p=0.233 p =0.006 p=0.170
£=0.14 £=0.06 £=-0.13 £=-0.07
Male Age, all individual
T=2.60 T=1.08 T=-245 T=-126 3.68" 0.05
(n=350) lifestyle variables
p=0.010 p=0.279 p=0.015 p=0.208
£=0.134 £=0.04 £=-0.08 £=-0.03
Female  Age, all individual
T=216 T=041 T=-134 T=0-54 2.47% 0.04
(n=272) lifestyle variables
p=0.032 p =0.680 p=0.182 p=0.587

Note. *** p < 0.0001, ** p <= 0.001, ** p < 0.01, * p < 0.05
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Supplementary Table 3

Regression statistics, multiple linear regression examining pack-years

Sample Covariates included Statistics F (whole model) R?
Whole subsample Age, sex £=0.17, T=4.24, p<0.0001 8.15%* 0.04
n=612 Age, sex, education £=017, T=4.17, p <0.0001 6.13%%* 0.04
Male, Age £=0.18, T=3.46, p=0.001 6.92%%* 0.04
n=>342 Age, education B£=0.18, T=3.40, p=0.001 4.60%* 0.04
Female, Age £=0.14, T=2.33, p=0.021 490 0.04
n=270 Age, education £=0.14, T=231, p=0.022 3.29,p=0.021 0.04

Note. *** p <0.0001, *** p <=0.001, ** p < 0.01, * p <0.05, all statistics refer to linear regressions examined

in the outlier corrected samples.
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Supplementary Table 4
Regression statistics, multiple linear regression examining physical activity
Sample Covariates included Statistics F (whole model)  R?
Whole subsample, Age, sex p=-0.15, T=-3.72, p<0.001 6.72%%% 0.03
(n=613) Age, sex, education F=-0.15 T=-3.65 p=0.001 5.12%%* 0.04
Age, sex, education, BMI F=-0.14, T=-3.41, p=0.001 4. 471 0.03
Male, Age £=-0.19, T=-3.50, p=0.005 7.05%%* 0.04
(n=345) Age, education F=-0.18, T=-3.47, p=0.001 4.75** 0.04
Age, education, BMI £=-0.18, T=-3.32, p=0.001 3.61* 0.04
Female, Age B£=-0.10, T=-1.60, p=0.11 3.53* 0.03
(n=268) Age, education £=-009, T=-1.52, p=0.131 242, p=0.067 0.03
Age, education, BMI B£=-0.08, T=-1.36, p=0.18 223, p=0.066 0.03

Note. *** p <0.0001, *** p <=0.001, ** p < 0.01, * p <0.05, all statistics refer to linear regressions examined

in the outlier corrected samples.
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Supplementary Table 5
Regression statistics, quadratic effects of the combined lifestyle risk score
Sample Combined lifestyle risk score F (quadratic whole model) R?
Whole subsample plq=0.177, T = 4.46, p < 0.001 FLinear = 19.85%%** Rlinear = 0.031
(n=622) £2q=-0.019, T=-0.47, p = 0.640 Fouadratic= 10.02%+** R2quadratic= 0.031

Qutlier corrected

(n=615)

Flg=0.172, T=4.31, p <0.001

£2q=-0.049, T=-1.234, p=0.218

FlLinear = 17.64****

FQuadralic = 959*

R2tinear = 0.028

quuadr.atic =0.030

Male

(n = 350)

Flg=0.217, T=4.01, p <0.001

£2q=-0.077, T=-1.43, p=0.155

FlLinear = 14.38****

FQuadralic = 823“**

R2inear = 0.040

R2quadratic= 0.046

Qutlier corrected

(n = 345)

Blg=0.181, T=3.38, p=0.001

B2q=-0.070, T=-1.317, p=0.189

Frinear= 10.56"**

FQuadraﬁc = 6 16’”

R2inear = 0.030

quuadr.atic =0.035

Female

(n=272)

Flg=0.157, T=2.57, p=0.011

B2q=0.015, T=0.25, p = 0.803

FLinear= 6.61%*

FQuadralic = 333*

R2tinear = 0.024

R2quadratic= 0.024

Qutlier corrected

(n = 270)

Blg=0.162, T=2.68, p = 0.008

B2q=-0.019, T=-0.320, p=0.749

Finear = 7.09%*

FQuadralic = 358*

R2tinear = 0.026

R2quadratic= 0.026

Note. **** p < 0.0001, ™* p <= 0.001, ** p < 0.01, * p < 0.05, all models have been carried out using the

residuals of the combined lifestyle risk score corrected for the covariates age and education and sex

(when examining the non-sex-split sample).
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Supplementary Table 6
Regression statistics, quadratic effects of pack-years.
Sample Pack-years F (whole model) R?
Whole subsample Biq=0.186, T =3.25, p = 0.001 FLinear= 13.34**** Riiinear = 0.021
(n=622) o =-0.056, T=-0.99, p=0.323 Fouadratic=7.16"**  Rlquadratic = 0.023

Qutlier corrected

(n=612)

F1g=0.182, T=3.13, p < 0.001

Py =-0.024, T=-0407, p=0.684

Frinear= 16.99****

FQuadraﬁc = 857% i

R2linear = 0.027

quuadrah'c = 0027_.

Male

(n = 350)

Fy=0.177, T=3.31, p=0.001

By =-0.082, T=-1.05,p=0.293

Frinear=10.97%*

FQuadralic= 60 o

R2linear = 0.031

quuadrah'c =0.034

Qutlier corrected

(n=342)

P19 =0.230, T =314, p = 0.002

fq=-0.078, T =-2106, p = 0.290

FLinear= 6.27*

FQuadraﬁc = 339*

R2linear = 0.031

quuadrah'c =0.34

Female

(n=272)

Fg=0.125T=1.39, p=0.166

fq=0.028, T=0.315 p=0.753

FLinear= 5.93*

FQuadratic= 3(1), P= 0.051

Rlinear = 0.021

quuadrah'c =0.22

Qutlier corrected

(n = 270)

F1g=0.085, T=0.775, p=0.439

g =0.079, T=0.723, p= 0470

FLinear= 6.27*

FQuadraﬁc = 339*

Rlinear = 0.023

quuadrah'c =0.25

Note. **** p <0.0001, *** p <= 0.001, ** p <0.01, * p <0.05, all models have been carried out using the

residuals of the metabolic equivalent per week corrected for the covariates age and education and sex

(when examining the non-sex-split sample).
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Supplementary Table 7
Regression statistics, quadratic effects of physical activity.
Sample Pack-years F (whole model) R?
Whole subsample pig=-0.197, T=-3.41, p=0.001 FLinear = 7.03** Rliinear = 0.011
(n=622) prq=0.125,T=2.171, p = 0.030 FQuadratic= 5.89** Rlquadratic = 0.019

Qutlier corrected

(n=613)

Fig=-0.145 T=-2.62, p=0.009

fq=0.010, T=0.175, p = 0.861

Frinear=11.94*

FQuadraﬁc = 598’“‘

R2linear = 0.019

quuadrah'c =0.019

Male

(n = 350)

Pg=-0.233, T=-297, p=0.003

fy=0.110,T=1.36,p=0.174

FLinear = 8.45**

FQuadraﬁc = 5 16’”

Rlinear = 0.024

quuadrah'c =0.029

Qutlier corrected

(n = 345)

P =-0.197, T=-2.64, p=0.009

fq=0.020, T=0.268, p =0.789

Flinear=11.86"*

FQuadraﬁc = 595’”

R2linear = 0.033

quuadrah'c =0.034

Female

(n = 270)

P =-0.082, T=-1.35,p=0.178

fq=-0.014, T=-0.16, p=0.876

FLinear=1.82, p=0.178

Fouadratic= 092, P= 0.438

R2linear = 0.007

quuadrah'c =0.007

Female

(n=268)

Frg=-0.065, T=-0.78, p=0.436

fq=-0.014, T=-0.16, p=0.871

FLinear = 149, P= 0.224

Fouadratic= 075, P= 0.472

R2linear = 0.006

quuadrah'c =0.0006

Note. **** p <0.0001, *** p <= 0.001, ** p <0.01, * p <0.05, all models have been carried out using the

residuals of the metabolic equivalent per week corrected for the covariates age, education, BMI and

sex (when examining the non-sex-split sample).
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Supplementary Table 8

Results of the power analysis

Effect of interest Sample Effect size F? Number of predictors ~ Resulting Power
Combined lifestyle risk n =622 0.04 3 0.99
n =350 0.04 2 0.93
n=272 0.04 2 0.84
Packyears n=622 0.04 3 0.99
n =350 0.04 2 0.93
n=272 0.04 2 0.84
Physical activity n=622 0.03 4 0.95
n =350 0.04 3 0.89
n=272 0.03 3 0.72

Note. For all calculations a error probability of @ =0.05 was used.
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