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Zusammenfassung

Elliptische Faserungen spielen eine wichtige Rolle innerhalb der Klassifikation von alge-
braischen Flichen. Sie werden definiert als integere, reguldre Flachen mit einem surjek-
tiven, eigentlichen Morphismus auf eine regulare Kurve, so dass die generische Faser glatt
und geometrisch integer ist von Geschlecht eins. Ist f: X — S eine elliptische Faserung,
so lasst sich R} f«Ox als Summe einer invertierbaren Garbe £ und eines Torsionsmoduls
T zerlegen. Letzterer ist nur an endlich vielen Punkten nicht-trivial. In Charakteristik
Null verschwindet dieser sogar vollstdndig, doch in positiver Charakteristik ist dies i.A.
nicht der Fall. Fasern iiber abgeschlossene Punkte s € S mit 7, nicht-trivial nennen wir
wilde Fasern. In dieser Arbeit untersuchen wir die Struktur von 7.

Fiir eine elliptische Faserung f: X — S bezeichne X; = mF die Faser von X iiber
dem abgeschlossenen Punkt s in S, wobei wir X, als grofftmogliches Vielfaches eines
Divisors F' auffassen. Bombieri und Mumford zeigten, dass sich m schreiben lédsst als
Produkt vp®, wobei p die Charakteristik des Restekorpers sei und v die Ordnung des
Normalenbiindels 0r(F) in Pic(F'). Abhéngig von der Entwicklung der Ordnung von
Onr(F) in Pic(nF) ldsst sich das Wachstum von dimy(H'(nF, 0,,F)) mithilfe der Arbeit
von Bertapelle und Tong beschreiben. Aus diesem Wachstum schlussfolgern wir eine
Formel fiir den Torsionsanteil von R!f,0x.

Um eine besser handhabbare Formel zu erlangen, versuchen wir, eine elliptische Faserung
X — S als Quotient einer anderen elliptischen Faserung zu gewinnen. Es geniigt, dies im
Falle des Spektrums eines vollstdndigen diskreten Bewertungsringes R zu tun. Sei dazu G
die Galoisgruppe einer minimalen Korpererweiterung K’ iiber K, so dass die generische
Faser Xk einen K’'-wertigen Punkt besitzt. Ferner notiere durch R’ den ganzen Abschluss
von R in K'. Wir gewinnen dann die elliptische Faserung in bestimmten Féllen als Quo-
tient einer elliptischen Faserung X’ — Spec(R’). Das Anwenden einer Spektralsequenz fiir
Réume mit Gruppenwirkung zeigt, dass der Torsionsmodul isomorph zur Gruppenkoho-
mologie H'(G, R') ist. Dessen Struktur wurde im wild verzweigten, zyklischen Fall bereits
von Sen untersucht. Wir verallgemeinern unsere Methode in héheren Dimensionen.

Ferner wenden wir unsere Kenntnis der Torsionsstruktur in R'f,0x auf algebraische
Flachen von Kodaira-Dimension —oo und Null an. Dadurch kénnen wir insbesondere die

Existenz zweier potentiell moglicher hyperelliptischen Flachen ausschlieflen.






Summary

Elliptic fibrations play an eminent role in the classification of algebraic surfaces. They
are defined as regular integral surfaces together with a surjective, proper morphism to a
regular curve, so that the generic fiber is smooth and geometrically integral of genus one.
If f: X — S is an elliptic fibration, we can write R!f,Ox as a sum of an invertible sheaf
% and a torsion module .7. The latter one is only non-trivial at finitely many points. In
characteristic zero, it even vanishes completely. Yet, in positive characteristic, this is in
general not the case. Fibers over closed points s € S such that .7 is non-trivial are called
wild fibers. We examine their torsion structure in this thesis.

For an elliptic fibration f: X — S, we denote by X; = mF the fiber of X over the
closed point s in S, where we consider X, as the largest multiple of a divisor F'. Bombieri
and Mumford showed that m can be written as a product vp®, where p is the characteristic
of the residue field and v the order of the normal bundle O (F') in Pic(F'). Depending on
the growth of the order of &, r(F) in Pic(nF’), one obtains a description of the growth of
dimy,(H(nF, O,r)) by the work of Bertapelle and Tong. We use these results to deduce
a formula for the torsion part of R!f,Ox.

To obtain a more manageable formula, we try to construct an elliptic fibration f: X — S
as a quotient of another elliptic fibration. It suffices to do this over a complete discrete
valuation ring R. To do this, let G be the Galois group of a minimal field extension K’
over K so that the generic fiber X admits a K’'-valued point. Moreover, denote by R’
the integral closure of R in K’. We will then construct the elliptic fibration as a quotient
of an elliptic fibration X’ — Spec(R’) in several cases. By applying a spectral sequence
on spaces with a group action, we deduce that the torsion module is isomorphic to the
group cohomology H'(G, R'). Its structure in the wildly ramified cyclic case was already
studied by Sen. We generalize our method to higher dimensions.

Furthermore, we apply our knowledge of the structure of the torsion part of R!f.O0x
on algebraic surfaces of Kodaira dimension —oo and zero. This enables us in particular to

exclude the existence of two potentially possible hyperelliptic surfaces.
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Introduction

Elliptic curves are objects that appear in many areas of mathematics. From an arithmetical
point of view, they appear when studying the solutions of a cubic equation in two variables
over a field K. If the equation is “nice”, i.e. the corresponding curve is a smooth genus-one
curve which admits at least one solution, we can manipulate the equation such that we

obtain an equation of the form
Y2+ a1zy + azy = 2° + asa® + asx +a, a; € K,

also called Weierstraf$ equation. If the characteristic of K is different from two or three, one
can even achieve a Weierstraf equation of the form y?> = x3+a4x+ag. The homogenization

of the former one gives the corresponding smooth genus-one curve
C=Vi(Y?Z+uXYZ+a3YZ*> - X>—ayX?7 — ay X Z? — aZ>) C P%.

In fact, every smooth genus-one curve with a fixed rational point O can be given that
way, where O corresponds to the point (0 : 1 : 0) € C. Whereas the solutions of linear
or quadratic equations in two variables are fairly well understood, e.g. by the Hasse—
Minkowski Theorem for K a number field, it is very hard to find all points (if any except
(0 :1:0)) on elliptic curves. They present complexities which are still of interest in
current research. For example, Wiles proof of Fermat’s Last Theorem relies on the theory

of elliptic curves.

Elliptic curves come with a commutative group structure which is determined by choos-
ing a rational point as the neutral element. This turns an elliptic curve into an abelian
variety. These are exactly the abelian varieties of dimension one. Altogether, elliptic
curves are complex but accessible enough to provide a standard testing ground for proofs
and techniques on curves of higher genus or general abelian varieties. This is also the case
in this thesis, as we will see.

Now assume that the coefficients a; of a Weierstrafl equation of an elliptic curve Ex over
K are all elements of a ring R with field of fractions K. One naturally asks if the properties
of an elliptic curve carry over to the scheme W C }P’% given by the Weierstrafl equation,
also called Weierstrafl model. The answer is in general no, because fibers over points

can degenerate to non-smooth curves like cusps and nodes. Moreover, the appearance of



singular fibers means that W is not smooth over R, so in particular no abelian scheme.
Often it is not even regular. This “failure” leads to the following two generalizations: The
Néron model of an elliptic curve and an elliptic fibration. The former one generalizes the
property of being an abelian variety: It asks for a smooth separated commutative group
scheme N over R of finite type with generic fiber isomorphic to Fx, satisfying the Néron
mapping property: For each smooth R-scheme Y and each K-morphism ug: Yx — Nk,
there is a unique R-morphism u: Y — N extending ug. Néron models are of great interest,
and we need results about the “degeneration” of its closed fibers, namely when the Néron

model has semi-abelian reduction.

An elliptic fibration f: X — Spec(R) is a proper morphism from an integral, regular
scheme X to Spec(R) such that the canonical map R — f.0x is an isomorphism and the
generic fiber is a smooth geometrically integral genus-one curve. This definition generalizes
the property of being a regular proper scheme. Note that the generic fiber is in general not
an elliptic curve as it might lack a rational point. For an elliptic fibration f: X — Spec(R),
all but finitely many fibers are elliptic curves. When the generic fiber is an elliptic curve
and R is an algebra over an algebraically closed field, then there are only finitely many
possible singular fiber types classified by Kodaira and Néron, cf. Theorem 1.12. By a result
of Liu, Lorenzini and Raynaud, this classification generalizes to every elliptic fibration, cf.
Theorem 1.13.

Going a step further, we “globalize” the definition by taking a smooth projective integral
curve S over a field k as the base, i.e. we say that f: X — S is an elliptic fibration if it

satisfies the same properties mentioned in the definition.

Our starting point are elliptic fibrations over smooth projective curves defined over
an algebraically closed field. They form an essential part of the Kodaira classification of
algebraic surfaces over an algebraically closed field k. The Kodaira classification subdivides
algebraic surfaces into four different classes according to the degree of the polynomial
growth of its plurigenera: Given a regular integral surface X proper over k, we define its
plurigenera as P(n) = dimy(H°(X,w$™)). It grows like a polynomial of degree d < 2, and
we set k(X) = d as the Kodaira dimension of X. Each surface X with x(X) = 1 is an
elliptic surface (or an quasi-elliptic surface, which only appear in characteristic two and
three), so elliptic surfaces make up a whole class in the Kodaira classification. Moreover,

they also appear in smaller Kodaira dimensions.

If S is a smooth proper curve over an algebraically closed field k¥ and f: X — S is
a relatively minimal elliptic fibration, i.e. there is no elliptic fibration ¥ — S such that
X — S is obtained by blowing up a point in a closed fiber of Y, there is the famous

canonical bundle formula for elliptic surfaces over C by Kodaira [37]. It was generalized



to arbitrary characteristic by Bombieri and Mumford [7], stating that

wx :f*(g\/@WS)@ﬁX(ZQSFS)
S#N

holds with the following notation (cf. Theorem 1.9): . is an invertible sheaf on S and
F, = m;lX s are divisors, where my is the greatest common divisor of multiplicities of the
irreducible components appearing in the fiber X over a closed point s € S. We denote
by 71 the generic point of S and a; is an integer between 0 and mg — 1. If the generic fiber
X, has a rational point, so it is an elliptic curve, the multiplicity m, equals one for every
closed point. If X, does not admit a rational point, this property again holds except for
finitely many closed fibers. Now the difference to the complex case lies in the numbers as.
If X is defined over C, the equality a; = ms — 1 holds. In arbitrary characteristic, this
depends on the structure of R f,0x: It decomposes into the sum of an invertible sheaf .%
on S and a torsion module .7 supported at finitely many closed points. In characteristic
zero, the torsion part does not appear, cf. [38], Corollary 3.9. In positive characteristic,
this can happen. Fibers X, over closed points s € S such that s is in the support of 7 will
be called wild fibers, whereas all other closed fibers will be called tame. For tame fibers,
as is equal to mgs — 1 like in characteristic zero. In positive characteristic, as can take any
value between 0 and mg — 1. To study the structure of .77, a feature only appearing in

positive characteristic, is the main purpose of this thesis.

This is done in two different ways. It is not difficult to see that we may assume the base
S of an elliptic fibration f: X — S to be the spectrum of a complete discrete valuation
ring, cf. Proposition 2.1. Let us write X; = mF for the single closed fiber as in the
canonical bundle formula above. Restricting the invertible sheaf &x (F") to the subscheme
nF gives an element 0, r(F) € Pic(nF') of finite order. Bertapelle and Tong [5] describe
the behaviour of the function n — ord(&,r(F)) relying on unpublished work of Raynaud.
It turns out that this function is monotonic increasing and bounded by m = vp®, where
v = ord(Op(F)). Denoting by n; the smallest positive integer such that ord(&,,(F'))
is equal to vp’, we obtain positive integers a; for 0 < i < e such that n; + a = a;vp’
holds (cf. Lemma 2.5). Note that a is the same one that appears in the canonical bundle
formula. Moreover, we obtain a characterization of the growth of H l(an s Opmp) Which,
together with the isomorphisms R!f,0x ®@r R/(7") — H'(nmF, O,,,r) coming from the
theorem on semi-continuity and base change, yields the following description of the torsion
in R'f,0x: Writing n; = Bim 4+ ; with 0 < ; < m for 1 < i < 1, we define

g —

yj = (p—1)(aj — Bjp*7 — L p J) — (g — 1)1,

5= (= D8+ 17 + | o | = 0)) + (a0 = Dy




for j=1,...,e, where ) .5 (o — 1);p® is the p-adic extension of ap — 1. Then:

Theorem (see Theorem 2.11). We have R' f,Ox ~ R® .7, with torsion part T given by

T = é ((R/mﬁj+1)@yj @ (R/mﬁj)@Zj)‘

j=1

Note that if the generic fiber X is an elliptic curve, we have mgs = 1. Hence, Theo-
rem 2.11 tells us that R! f, O has trivial torsion part. The theorem is proven by arranging
skillfully terms, but the determination of the n; is quite difficult. Moreover, relatively
minimal elliptic fibrations over Dedekind schemes S are in one-to-one correspondence to
smooth genus-one curves over the function field of S, and the theorem sheds no light on
how the torsion can be expressed in terms of the generic fiber.

We therefore use a different, more geometric approach, which also works in higher
dimension. This leads to the notion of an abelian fibration X — S, which is essentially
the same as the notion of elliptic fibration. The only difference lies in demanding that
the generic fiber X is a smooth geometrically integral scheme which becomes isomorphic
to an abelian variety after a field extension. The condition on the generic fiber X is
equivalent to the statement that the generic fiber is a torsor under an abelian variety Ay,
i.e. Ag acts on Xg such that after some field extension, there is some Ag-equivariant
isomorphism between X and Ag (cf. Proposition 3.3). Again, to study the torsion
structure, it suffices to work over a complete discrete valuation ring R. Assume that
its residue field k is algebraically closed. Let Xg be a torsor under an abelian variety
A which is the generic fiber of an abelian scheme A — Spec(R). We take a minimal
Galois extension K'/K with Galois group G so that X (K') is non-empty. Let R’ be the
normalization of R in K’ and A’ = A®pr R'. This is again an abelian scheme, on which G
acts over the second factor. We twist this action by a cocycle corresponding to X, that
is, by some K’-valued points on A’, such that the quotient will give an abelian fibration
f+ X — Spec(R) with generic fiber isomorphic to Xx. The upshot is that if the quotient
morphism is étale, we can easily apply a spectral sequence for spaces with group actions
on it to the quotient morphism that expresses the torsion in H'(X, Ox) in terms of group

cohomology.

Theorem (see Theorem 7.3). In above situation, the torsion in H' (X, Ox) is given by
H'(G, R).

In this situation, the extension K’ over K is unique and its Galois group G is an abelian
group which in the case of elliptic curves is even cyclic, cf. Proposition 7.2. Applying Sen’s
Theorem (cf. Theorem 5.21), H'(G, R') can be given explicitly in terms of ramification

breaks of the higher ramification group filtration. When X — S is an elliptic fibration



with X, being a torsor under the elliptic curve Ag, we let A — S be the relatively minimal

regular model of Ag over S. The technique discussed can be applied to the following cases:

(i) The special fiber Ay, is an elliptic curve and is ordinary, i.e. it admits a rational point
of order p (cf. Theorem 7.3),

(ii) Ay is a polygon of projective lines (cf. Theorem 7.5),

(iii) Ay is neither an ordinary elliptic curve nor a polygon of projective lines, but attains

it over a finite field extension of degree prime to p (cf. Theorem 7.9).

We say that Ax has good reduction if Aj is an elliptic curve, multiplicative reduction if
Ay is a polygon of projective lines and else that Ax has additive reduction. With this
terminology, we miss the following cases: Ak has good reduction with Ay supersingular;
Ak has additive reduction and attains good or multiplicative reduction only after a finite
field extension of degree divisible by p; or Ax has additive reduction, but good reduction
after a finite field extension with supersingular special fiber.

Note that in our considerations, we only analyzed the torsion structure of a specific
abelian fibration. In the case of elliptic fibrations, the torsion structure is invariant under

choosing elliptic fibrations over S with isomorphic generic fiber, cf. Proposition 6.12.

Outline of structure. In the first chapter, we set up notation and define the basic
objects we are working with. We collect facts about elliptic fibrations and reprove the
canonical bundle formula in a slightly more general setting than Bombieri and Mumford
[7] did.

The second chapter is dedicated to the study of the jumping numbers n;, the smallest
positive integer such that ord(&,, r(F)) is equal to vp', and we give a first description of
the torsion part in the cohomology of an elliptic fibration.

To give another description of the torsion part, we construct abelian fibrations as certain
quotients in Chapter 3. Section 3.1 gives details on the notion of torsors and sets up a
one-to-one correspondence between isomorphism classes of torsors under an abelian variety
A and the first Galois cohomology group H'(Gal(K*P/K), Ak (K*P)) via constructing
the torsor X as a quotient of Ax by G. To generalize this method to abelian fibrations
over a complete discrete valuation ring in Section 3.3, we introduce the notion of models
in Section 3.2 and cite results from the literature on the existence of certain models we
want to use in Section 3.3.

Given an abelian fibration X — S over a complete discrete valuation ring, we study its
behaviour under base change in Chapter 4. The first section examines the multiplicity of
the closed fiber, which is used in the second section to analyze when taking a separable

field extension of the function field K of S induces an étale cover. It turns out that there is



a finite maximal field extension inducing an étale cover. It coincides with the one obtained

in Section 3.3. Moreover, it is an invariant of the generic fiber in the case of elliptic curves.

Chapter 5 and Chapter 6 set up tools to draw information out of the quotient con-
struction from Section 3.3: In Section 5.1, we recall the notion of group cohomology and
standard facts used later. In Section 5.2, higher ramification groups are introduced, of
which we compute the first cohomology group in Section 5.3 in several cases. These are
often exactly the cohomology groups which reflect the torsion in R!f,0x for an abelian
fibration f: X — S. We sketch Sen’s Theorem on the structure of H(G, R') for a wildly
ramified cyclic Galois extension R’ over R of degree p™. In Chapter 6, we set up spectral
sequences for a space on which a group acts in the first section and explain in the second

section some special cases how to apply these.

The application of the spectral sequences on the quotients constructed in Section 3.3
is done in Chapter 7. In the first section, we treat the cases of good reduction and
multiplicative reduction, whereas in the second section we are concerned with additive
reduction in the case of elliptic curves. This chapter collects the main results of this

thesis.

For the major part of this thesis, we have reduced the situation to fibrations over a
complete discrete valuation ring. In the first section of Chapter 8, we note that often
one can go the opposite way: Given a torsor X over the function field K = K(S) of a
Dedekind scheme S and finitely many elliptic fibrations over 5’575 with field of fractions
K, = Frac(é’g, s) such that the generic fibers are isomorphic to X, there often is an ellip-
tic fibration X — S such that the base change X xg 5’573 is isomorphic to the prescribed
fibration over ﬁA&s. In Section 8.2, we resume the role of elliptic fibrations in the context
of Kodaira classification and study the question which elliptic fibrations with wild fiber
can appear in Kodaira dimension —oo and zero with respect to the invariants given in
the canonical bundle formula. In particular, we reprove the list of possible hyperelliptic
surfaces addressed in [7] and [51], complementing the list by the torsion structure and

excluding two potentially possible cases.
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Chapter 1
Elliptic fibrations

The main objects of consideration in this thesis are elliptic fibrations. We therefore want to
introduce them and their main properties. Yet, most of our techniques are also applicable
to higher dimensions, which will lead to the notion of abelian fibration. Thus, we work in
a more general setting. Luckily, it will not afford much extra work. Most of the notation
and theory is taken from [45], Chapter 8-10. Sources for elliptic fibrations in the context
of the Kodaira classification of surfaces are [7] and [4], Chapter 7.

Before giving the abstract definitions, we want to give concrete examples to have in

mind.

Example 1.1. Consider the projective scheme X = Proj(Z[X,Y, Z]/(F)) for the homo-
geneous polynomial F = Y2Z +YZ? — X3 — XZ? over S = Spec(Z). One recognizes
immediately that F' is a homogeneous Weierstrass equation, which over a field defines an
elliptic curve (granted that the discriminant is non-zero). And indeed, taking the fiber

over the generic point 7 of .S yields
X, = Proj(Q[X,Y, Z]/(Y?Z + Y Z? - X3 — X Z?)),

an elliptic curve over Q. The smoothness of the fiber spreads to an open subset of S
because X is proper and flat over S, cf. [19], Théoréme 12.2.4. Taking the fiber at the

closed point corresponding to the prime p € Z gives
X, = Proj(Fylz,y, 2]/ (Y?Z + Y Z* — X? — X Z?%)).

To see if this fiber is smooth and thus an elliptic curve, we study the discriminant A: It is
a polynomial in the coefficients of the Weierstrafl equation and X, is smooth if and only if
A # 0. One computes A = —7-13, so X, is smooth over F,, if and only if p # 7,13. Thus,
the fibers X7 and Xi3 are not smooth, hence X is not smooth over S. But X is regular,
as one only has to check at the non-smooth points over F7 and F13. The point at infinity,
ie. (0:1:0),is always regular, so we apply the Jacobian Criterion to the affine chart

D, (Z) = Spec(Z|z,y])/(y*> +y — x® — x) to see that there are only two non-smooth points.



They correspond to the maximal ideals (7,2 — 4,y — 3) and (13,2 + 2,y — 6). Denoting
m= (7,2 —4,y—3)and f =y?> +y— 23 — 2 as well as A = Z[z,y], we transform m to
(7,0,0) via the isomorphism

An — Agr00), zr—z+4, yr—y+3.

The image of f under the isomorphism is y? + 7Ty — 3 — 1222 — 492 — 56, which is not
contained in (7,z,y)%. Hence, Ay is regular by [45], Corollary 4.2.12. Moreover, we see
that the fiber over the prime 7 is given by the equation y? — 2?(x + 5) and hence a curve
with a node. We treat (13,2 + 2,y — 6) in a similar way, again obtaining a curve with a
node above 13. So X is almost an elliptic curve over S, with finitely many singular fibers

(also see Figure 1).
S H

X ‘Q—W
S

PR
0

5 7 11 13

Figure 1: Schematic picture of X over S with horizontal divisor H corresponding to a
rational point on the generic fiber

We will say that X has bad reduction over these points (here p = 7 and p = 13), and
otherwise good reduction. Note that our considerations were local over the base, so that

we may replace Z by the p-adic integers Z, for any prime p.

The next example already appeared in [31], Example 8.1, which we now elaborate. It

is a motivation in Chapter 3 to construct abelian fibrations as quotients:

Example 1.2. Let k£ be an algebraically closed field of characteristic p > 0 and S — ]P’/,lC
a finite cyclic Galois cover of degree p”, totally ramified over the point co € ]P’,lc. That
is, we want S — IP’,lC to be finite, surjective and étale outside of oo, and the function

field extension K’ = K(S) over K = K(P}) is a finite cyclic Galois extension of degree

'

p".
G = Gal(K'/K) extends to a morphism of an open subscheme of S. Moreover, as S is

Moreover, there lies only one point in S over co. Any element of the Galois group

normal, it uniquely extends to all of S, yielding an automorphism of S.

10



Now take an elliptic curve F over k that is ordinary, so that it has a k-rational point P

of order p". Denoting by o a generator of (G, we obtain an action of G on S x; F via
o:Sx E— Sxx E, (u,Q)+— (c(u),Q+ P).

The action is compatible with the action of G on S, that is, the projection pr: SxE — S'is
G-equivariant. Taking the quotients X = (S x; E)/G and S/G = P}, (which exist because

G is finite and the schemes are projective), we obtain the following commutative diagram

Sx, E —L1 4 X

pri if

S —— Pi.

Note that f is induced by the projection pr via the universal property of the quotient.
Furthermore, the quotient morphism ¢ is étale as G acts free on the closed points, cf. [56],
Theorem in Chapter II, Section 7. Therefore, X is a regular and integral surface over IP’}C.
Ifa € ]ID/,lc is a closed point other than oo, with sq,...,s,» € S lying above a, the fiber X,
is given by ((S xx E)s,U---U(S x E)s,n)/G, the identification of p™ copies of E via G,
hence isomorphic to E again. But the fiber X, yields a new phenomenon: We consider
X as a divisor rF in X for a divisor F' in X that is not the positive multiple of another
one. Denote by oco; the single point in S lying above oo € Pi. Taking the pullback of oo
in P,lg to S xi F in the two different ways of above diagram and using the étaleness of ¢
gives p"({o01} X E) = r({oo1} x E), hence Xo, = p"F . In fact, restricting the action
of Gon S Xy E to {oo} xi E, we see that F' = E/G is an elliptic curve. Therefore, X
is the infinitesimal thickening of an elliptic curve. We call the number p™ its multiplicity.
Moreover, the generic fiber X, cannot have a rational point 7', as otherwise the closure of
T in X would give a horizontal divisor, i.e. a divisor mapping surjectively to ]P’,lf (like in
Figure 1). By intersection theory on surfaces, the multiplicity of X, has then to be one,

a contradiction.

To set up the notion of fibration we use in this thesis, we specify the properties of the

base schemes we are going to use:

Definition 1.3. We call a connected, noetherian, normal scheme S of dimension one a
Dedekind scheme.

The naming comes from a close relation to Dedekind rings: If Spec(R) is an open affine
subscheme of S, the ring R must be an integral, integrally closed noetherian ring of Krull
dimension one, which is to say a Dedekind ring. On the other hand, if a connected, quasi-

compact scheme S can be covered by the spectra of Dedekind rings of Krull dimension
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one, it will be a Dedekind scheme. Some authors allow Dedekind rings and Dedekind
schemes to have dimension zero, but this is not the setup we are going to study.

From its definition, it immediately follows that S is integral and regular. These schemes
will usually play the role of the base scheme S of our fibration. We are mostly interested

in the following cases:

Example 1.4. (global case) S is a connected regular projective curve over a field k.
These curves are in one-to-one correspondence to finite field extensions of k(T") (cf. [15],
Theorem 15.22). This case will be of interest when we look at elliptic fibrations in the
Kodaira classification. Usually, S will be either the projective line or an elliptic curve over

an algebraically closed field.

Example 1.5. (local case) S is the spectrum of a discrete valuation ring R with field of
fractions K and algebraically closed residue field k. If we have a global Dedekind scheme,
localizing gives a local Dedekind scheme. We will also often reduce to the case that R
is complete, which can be achieved by completion. Then, by [66], Chapter II, §4-86, one
has the following powerful structure theorem: If char(R) = char(K), then R is isomorphic
to k[[T]]. If the characteristic is different, then one can uniquely embed the ring of Witt
vectors W (k) into R such that one obtains the identity on the residue fields. Moreover, R
is a free W (k)-module of finite rank e and A = W (k)[r], where 7 satisfies the Eisenstein
equation 7€ + be_ 1w + .- 4+ by = 0, with b; being divisible by p, but by is not divisible
by p?.

Having clarified over which base schemes we work, we come to the notion of fibration:

Definition 1.6. Let X be a normal, integral scheme and S be a Dedekind scheme. We
call a morphism of schemes f: X — S a fibration if it is proper and if the canonical
morphism Og — f.Ox is an isomorphism. We call the fibration of dimension n if each

fiber is equidimensional of dimension n.

Note that in our situation, the isomorphism &g — f.Ox implies that f is surjective,
and this is equivalent to the flatness of f by [15], Proposition 14.14. Moreover, f has
geometrically connected fibers, cf. [15], Theorem 12.69. Actually, the equidimensionality
of the fibers holds automatically according to [45], Lemma 8.3.3.

Usually, fibrations in the above sense are far too general to get a good understanding up
to isomorphism of it, but we defined them this way to have a more flexible notion than the
ones we are actually interested in, e.g. when changing the base (though one usually also
has to normalize to get a fibration). We are interested in the case that the generic fiber
becomes isomorphic to an abelian variety over a separable closure. This is equivalent to
the fact that the generic fiber is a torsor under its Albanese variety, see Proposition 3.3.
Note that if the dimension of X, is one, the base change X, ®x K’ is isomorphic to an

elliptic curve for some field extension K’ over K. Here are the objects of our main interest:
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Definition 1.7. We call a fibration f: X — S an abelian fibration if X is regular and the
generic fiber X is a torsor under an abelian variety. If dim(X,)) = 1, we call it an elliptic

fibration. We also say that the fibration f is projective if the morphism f is projective.

We already saw two examples for an elliptic fibration, Example 1.1 and Example 1.2.
To prove the condition on the generic fiber in the latter example, we refer to Remark 1.15.
Moreover, the surface S x; E over S in Example 1.2 is also an elliptic fibration, a trivial
one. Note that the naming “abelian fibration” or “elliptic fibration” is misleading in the
sense that the generic fiber does not have to be an abelian variety or elliptic curve, see
Example 1.2. Furthermore, we want to remark that the generic fiber X, of an abelian
fibration f: X — S becomes smooth over K after base change, so X;, — K must itself
be smooth by descent (cf. [20], Corollaire 17.7.3) and thus geometrically integral. Other
important, though here not thoroughly treated, objects are quasi-elliptic fibrations: They
are fibrations f: X — S with X regular and X, a geometrically integral, but singular
curve. They only appear in characteristic two and three. Similarly to quasi-elliptic fibra-
tions, one may define in general a genus-g-fibration for an integer g > 0 as a fibration of
dimension one for which the generic fiber is a geometrically connected smooth projective
curve of genus g. An elliptic fibration is then nothing else than a genus-1-fibration. If
one does not want to specify the genus of the generic fiber, one simply speaks of a regular
fibered surface. Let us recall that by a theorem of Lichtenbaum [42], Chapter I, Theorem
2.8, a regular fibered surface over an affine Dedekind scheme is always projective. The
same is true if f is a morphism of schemes proper over an algebraically closed field: By
the Theorem of Zariski-Goodman (e.g. [4], Theorem 1.28), X must be projective over k,
and therefore f is projective as projectivity satisfies the cancellation property.

Given an elliptic fibration or more generally a regular fibered surface X, one may always
blow up a closed point a in X to get a slightly different regular fibered surface X’. The
exceptional divisor F = X, is a (—1)-curve, that is, F is isomorphic to a projective line
Pi(a) with x(a) = H°(E,O0F) and has self-intersection (E - E) = —[x(a): k] (cf. [45],
Proposition 9.2.5). In particular, if k is algebraically closed, the self-intersection is —1,
which explains the name. Conversely, Castelnuovo’s Criterion states that given a (—1)-
curve on a closed fiber of X, there exists a unique morphism ¢ from X to a regular fibered
surface Y that is an isomorphism on X \ E and maps F to a point. That is, X is obtained
from Y by blowing up at g(E). As in the classification of algebraic surfaces, one wants to
study “minimal” objects, that is to say regular fibered surfaces that are not obtained by

blowing up.

Definition 1.8. We call the regular fibered surface X — S a relatively minimal fibered

surface if there is no (—1)-curve with support in a closed fiber.

In their foundational paper series [55], [7] and [6], Bombieri and Mumford transferred

the classification of algebraic surfaces over an algebraically closed field of characteristic
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zero to the positive characteristic case. In shorthand, there are four different classes of
algebraic surfaces according to their Kodaira dimension. This dimension is defined in
terms of the growth of the plurigenera P(n) = dimy(H°(X,w$™)) of the canonical bundle
of X, where n € N. Titaka showed in [29] that there are polynomials @1, Q2 of the same
degree d € {—00,0, 1,2} with positive leading coefficient such that Q1(n) < P(n) < Q2(n)
holds for large n. One then defines x(X) = d as the Kodaira dimension of X. As P(n) is

a birational invariant for smooth surfaces, so is £(X).

Surfaces of Kodaira dimension two remain rather general without additional assump-
tions, but the other ones have a quite explicit structure. In particular, every minimal
regular surface of Kodaira dimension one without (—1)-curve is a relatively minimal ellip-
tic surface (or quasi-elliptic surface, which appear only in characteristic two and three),
and they also appear in Kodaira dimension —oo and zero (but not in Kodaira dimension
two). We will give an overview in Chapter 8. In characteristic zero, Kodaira showed in
[37], Theorem 12, that the canonical bundle has a very explicit form in terms of its singular
fibers, namely

wx = [(L) 8 0x( D (ms ~ DF,),
5710

where .Z is a line bundle on S and mg is the multiplicity of the closed fiber X, i.e. my
is the greatest integer such that Xy = myFs holds for a Weil divisor Fs. This in turn also
defines F;. The infinite divisor sum is actually finite: As mentioned in Example 1.1, the
set of points s € S such that X, is smooth is open in S by the properness and flatness of
f, see [19], Théoreme 12.2.4. Hence, there are only finitely many singular fibers X, with
multiplicity ms > 1.

In characteristic p > 0, Bombieri and Mumford gave a very similar formula in their
article [7]. The only obstacle that comes when considering fibrations f: X — S in positive
characteristic is the appearance of torsion in the higher direct image R!f.0x. More
generally, looking at general fibrations f: X — S, one has a for any ¢ > 0 a decomposition
of R f,Ox into the sum of a locally free sheaf .%; of rank n; = dimg HZA(X,77 Ox,) and some
torsion sheaf .7; supported on finitely many points: The sheaf R'f,0x is coherent due
to the properness of f, cf. [16], Théoreme 3.2.1. As cohomology commutes with flat base
change, there is a canonical isomorphism (R'f.0x), — H'(X,, Ox,) = ﬁi‘??}; of Ox -
modules. This isomorphism extends to an open subset of S (cf. [15], Proposition 7.27),
which is also dense due to the irreducibility of S. Thus, R'f,Ox is free of rank n; except
at finitely many closed points. After localizing to such a point, R’ f,0x becomes a finitely
generated module over a local Dedekind ring, i.e. a discrete valuation ring. By the structure
theorem of finitely generated modules over discrete valuation rings, it must be isomorphic

to the sum of a free part and a torsion part.

Coming back to elliptic fibrations, there is only one torsion group of interest, as .95 =0
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by the very definition of fibration and R'f.0x = 0 for i > 2 by dimension reasons. The
main purpose of this thesis is to study the torsion structure of . = Z;. A fiber over a
point s € S such that 75 is non-trivial will be called wild fiber. Else, it will be called a tame
fiber. We are now able to state the canonical bundle formula for arbitrary characteristic.
Bombieri and Mumford stated it in [7] in the case that S is a proper k-scheme. Yet, their
argument works in our setting of S being an arbitrary Dedekind scheme, including the

mixed characteristic case:

Theorem 1.9. Let f: X — S be a relatively minimal projective elliptic or quasi-elliptic
fibration and let R' f,Ox = £ ® 7. Denote the length of 7 by l. Then

wx/s = [ (LY)® ﬁx(z ast>
s#£n

holds, where

(i) Xs =msFs holds as Weil divisors, and mg is the greatest common divisor of multi-

plicities occurring in the decomposition of X into prime divisors,

(ii) as is an integer between 0 and ms — 1, with as = ms — 1 if X is tame and k(s)

algebraically closed,
(1ii) deg(¥) = —1l — x(Ox) when S is a projective curve over a field k.

Moreover, if X and S are projective over a field k, then the dualizing sheaf wx with respect
to X — Spec(k) is of the form wx = wx s ® [*(ws), where wg is the dualizing sheaf with
respect to S — Spec(k).

Proof. We start by noting that a canonical divisor Kx/g has no horizontal part, i.e. every
prime divisor sitting in Kx/g is contained in some fiber over a closed point. This follows
from the equality

wx/slx, = wx, = Ox,,
where the first equality stems from the fact that canonical sheaves commute under flat base
change (cf. [45], Theorem 6.4.9) and the second equation from the fact that the canonical

sheaf of a genus-one curve is trivial, cf. [45], Example 7.3.35.

Now we apply intersection theory on fibered surfaces and observe that

(KX/S ) XS) = 2d1mK Hl(Xnv ﬁXﬁ) —-2= 07
(Kx/s D) >0

holds for any closed fiber X and prime divisor D C X (e.g. [45], Proposition 9.1.35 and
Proposition 9.3.10(b)). Note that the inequality uses the relative minimality of f. Let
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us write Xy = Y d;D; and assume that the support of K X/ lies in X,. This is justified
because the intersection number of prime divisors in different fibers is zero. From this, we
deduce

0=(Kx/s-Xs) =Y di (Kxss-Di),
hence (Kx,g- D) = 0 for any prime divisor D in X;. Thus, writing Kx/g = > a;D;, we
obtain

(Kxss - Kx/s) =Y ai(Kx/s- Di) =0.

i

Now taking intersection numbers on the prime divisors of X, gives a negative semi-definite
bilinear form (cf. [45], Theorem 9.1.23) and X, is connected for every closed point in S,
so we deduce from (Kx/g - Kx/s) = 0 that the divisor Ky/g is a multiple of X;.

Therefore, we may write wx/g = f* 4 ® ﬁX(Zs;ﬁn ast) as in the statement. We now
want to show that .#Z = £V: As a first step, we argue that Jrwxs = . This follows
from the projection formula if the canonical map Og — f*(ﬁ X ( Yo £n ast)) is bijective.

This can be checked locally, so we drop the index s in our notation. From the inclusions

f(Ox) C f*(ﬁX(aF)) - f*(ﬁX((m - 1)F))7

it suffices to check the case a = m — 1. As mF = X, for a closed point s € S holds and
S = Spec(R) is now a local Dedekind scheme, R is a principal ideal domain and we obtain
Ox(mF) = f*Os(s) ~ f*Os = Ox. Again using the projection formula, it suffices to
show f.O0x(—F) = Os. Certainly, this is an inclusion, so f.0x(—F') can be considered
as a finitely generated submodule of R, i.e. an ideal. As R is a principal ideal domain,
f+«Ox(—F) has a single generator and is isomorphic to R as an R-module, which proves

the claim.

It remains to show that .Z = #V. We therefore note that wy /s coincides with the first
relative dualizing sheaf (cf. [45], Theorem 9.4.32) and hence we may apply Grothendieck
duality:

fewxss = fiHomeoy (Ox,wx/s) = [ Homey (R [.0s, Os) = Homey (L & T, 05).

As the dual of the torsion part is trivial, we deduce fiwx/s = £V. Then the claim
wx = wx/s @ f*(ws) is exactly the adjunction formula for canonical sheaves, cf. [45],
Theorem 6.4.9(a).

We now turn our attention to the degree of .Z, assuming that X and S are projective

over a field. Applying the Leray—Serre spectral sequence yields the exact sequence

0 — HYS,05) — H'(X,0x) — H°(S,R'f.Ox) — 0
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as well as H?(X,Ox) = H'(S, R f.Ox). Putting these identities and and the equality
dimy, H°(S, 0s) = dimy, H*(X, Ox) into the definition of y (&) gives

X(Ox) = x(Os) = x(L) — 1 = —deg(L) — L.

To prove that X being tame implies that a; = ms — 1, we first observe that X being
tame is equivalent to dim,y) R'f.0x @ k(s) = dim,,() HY (X, 0x,) = 1 according to the
theorem on semi-continuity and base change (cf. [17], Section (7.7), also restated in The-
orem 2.9). We will prove in Proposition 2.4 that ms decomposes into mg = vy - p°, where
vs is the order of Ox (Fy) in Pic(Fy). The dimensions dim, ) H Y(nFy, Oyr,) are monotone
increasing with n > 1 and the first number n > 1 such that dim,, ) H'(nFs, Opp,) > 1 is
n =1+ vs by Lemma 2.5. Therefore, ms < 1 + v, which is to say ms; = vs;. One now has

the isomorphism
ﬁX ((as + 1)Fs) |FS = WFy/k(s) = ﬁFsa

where the first equality is the adjunction formula (e.g. see [45], Theorem 9.1.37) and
the second one Lemma 2.5 or [55], Corollary 1, p.333 (this is where we assume k(s)

algebraically closed). This means that ms = v, divides as + 1, so as = mg — 1. O

Example 1.10. We resume Example 1.2: Let S be the normal, proper curve given by
the Artin-Schreier extension K’ = K|[x]/(2P — x — t™), where K = k(t) is the function
field of IP’,IC and m is a positive integer coprime to p > 0, the characteristic of k. Then the
Galois group G of K’ over K is cyclic of order p, having a generator o that maps a root

aof f=aP—x—1t"toa+ 1. The genus of S is given by
1
9(S) = 5(p— 1)(m 1)

This can be seen as follows: The curve C = Vi (F) in P? defined by the homogeneous
equation F' = XPZ"P — XZ"~1 — T™MZ"™ where n = max(p,m), has function field
K’ and the inclusion k[T, Z] — k[T, Z, X]/(F) gives a rational map from C to Pj. One
easily sees that this is defined and étale away from oco € Pk. Concatenating with the
normalization S — C of C, the map extends uniquely to a morphism S — P,lg, cf. [45],
Corollary 4.1.17. This morphism is étale away from co, as S — C' is an isomorphism
away from oco. Over oo, the morphism S — IP’,Ic is totally ramified: We denote by vy the
valuation on K induced by the discrete valuation ring &p1 .. Then the element ¢ from
the equation 2P — x — t" has value —1. Take an extension of 4 on K’ and let 15 be the

normalization of it. Write 1»(t) = —e. From f, we deduce that v»(a) is negative and
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hence vo(a) = va(a + 1) holds. Thus, we have

p—1
pra(a) = vy <H o+ 2) = 1a(t"™) = —me.
=0

As p is coprime to m, it must divide e. Hence, as K’ over K is an extension of degree p,
we have e = p and the extension is totally ramified. We will discuss ramification theory
in Section 5.2 in greater detail.

Applying the Hurwitz Formula to S — P} (e.g. [45], Theorem 7.4.16), we are led to the
equation

9(5) = 5(ehe —1+2-2p),

where e/, — 1 can be identified with the valuation of the different, cf. [45], Remark 7.4.17
and [66], Chapter III, §7, Proposition 14. For our Artin—Schreier extension, this is equal
to (m + 1)(p — 1). This follows from the higher ramification groups of this extension
(cf. Example 5.24) and a formula for the valuation of the different in terms of its higher

ramification groups (cf. [66], Chapter IV, §1, Proposition 4). Hence, we obtain

9(8) = 50— 1)(m — 1),

We now observe that we can calculate wgy, g in two different ways: On the one hand, we
have wgx, r = ¢*wx as ¢ is étale. On the other hand, we have wgy, g = pr* ws®pr; wg, to-
gether with wg trivial for an elliptic curve. By [4], Proposition 9.7, the Euler characteristic
X(Ox) equals deg(q)x(Osx, ). Applying the Kiinneth Formula gives x(Ogx,r) = 0, and
the canonical bundle formula from Theorem 1.9 becomes wx = f *(ﬁ]}ni (—241)®Ox(aF).

Hence, if we take intersection with a horizontal divisor H, we get
(I=2p+a=(gwx-H)=(prws-H)=29(5) 2.
Writingm =dp+bfor 1 <b<p-—1andd >0, we deduce

[ =

2(8)-2-a ,_ [29(5)—2J+2:m_d
P

p

a=29(S)—2-p

{QQ(SP) —2J =p—>b—1.

In particular, we have wx = f*(ﬁ]p}c(m —d-2)®0x((p—b—1)F).

Remark 1.11. All possible cases for the as in Theorem 1.9 appear, cf. Example 1.10 and
[32], Theorem 3.1 or [46], Remark 8.12.

Let us assume that the generic fiber contains a rational point P € X, i.e. the generic

fiber can be considered as an “honest” elliptic curve by choosing a “zero” point. Its closure
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in X gives a divisor which is a section of the structure morphism. Moreover, it has inter-
section number (X, - {P}) = 1 for every closed point s € S (cf. [45], Proposition 9.1.30),
meaning that in every closed fiber X, there is at least one divisor of multiplicity ms = 1.
Those elliptic surfaces are also called elliptic surfaces with section, and the sections cor-
respond to the K-rational points of Xx. We already saw in the proof of Theorem 1.9
that those elliptic surfaces do not admit torsion: If the multiplicity ms is one, the first
number n where dimn(s) Hl(nFs, Onr,) > 1isn=1+v, =2, and hence the dimension of
the vector space R'f.0x ® k(s) = H'(Xs, Ox.) is one. Thus, s is not in the support of
. For elliptic surfaces with section, Kodaira gained in [36], Theorem 6.2, a good insight
into the degeneration types that can appear: Recall that the fibers over an open set in
S are smooth and connected, hence there are only finitely many “degenerated” fibers.
Kodaira found out that there are only finitely many types of curves that can appear in
characteristic zero. Néron independently described in [57] these curves algebraically if
they are defined over an algebraically closed field of any characteristic. Tate gave a very
elegant algorithm in [73] that determines among other invariants the degeneration type,
only assuming that the residue field of the point over which the curve lies is perfect. It
is an artful manipulation of the Weierstrass equation, which can also be looked up in
Silverman’s book [69]. There is also a generalization for non-perfect fields by Szydlo, cf.
[72]. We state the classification as the following theorem, in which N? denotes the identity
component of the closed fiber over s of the Néron model N of X,,. It coincides with the
smooth locus of f (cf. [45], Theorem 10.25.14) and will be discussed in Section 3.2.

Theorem 1.12. Let f: X — S be a relatively minimal elliptic surface with section and
s € S be a closed point with algebraically closed residue field. Then the special fiber is one
of the types listed in Table 1. All Kodaira symbols appear.

In Example 1.1, every fiber over a prime unequal to 7 or 13 was an elliptic curve, hence
of Kodaira type Iyp. The fibers over the primes 7 and 13 were curves with a node, that is
of Kodaira type I;. In Example 1.2, all fibers are of Kodaira type Io.

The proof of Theorem 1.9 exploits the boundaries given by intersection theory. For
example, as soon as one assumes that X has two or more irreducible components (and

for simplicity k(s) algebraically closed), one starts with the formula

2d; =Y _d;(D; - Dy),
J#i
where X, = ). d;D;. As X, contains a rational point P, there exists a section of f, namely
the closure of the rational point in X. That implies that the intersection number of X
and @ is equal to one, and therefore one may assume that d; = 1. Hence, the formula
above yields 2 = ) j>2d; (Dj-D1). As the intersection numbers involved are non-negative,

Dy meets at most 2 other components. Assume that » = 2. Then 2 = ds(D2 - D) and
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Kodaira symbol Number of Components N? Configuration

Io 1 elliptic curve O
1
1
I, 1 Gom C><
1
I, 2 Gm
1
1 1
A TN |
I, n G, 'l 1!
M
11 1 Ga <
1
1
111 2 G,
1
VI 3 e 1>’<1
1
1|1 1|1
I; 5 Ga
[ 1 2 1
I 54n Ga gk ;[ F 1t
1 11
1 1 1
VI 7 G, 2 2 2
3
| 4
2 21
4 2
T 9 G, 13 5 3 |4
2 6 !

Table 1: Kodaira—Néron classification of singular elliptic fibers



2dy = (Dy - Do), that is do = 1 and (D - D3) = 2. Thus, either D; and Dy intersect
tangentially (Type III) or they meet transversally in two different points (Type I3). For a
thorough discussion, we refer to [45], §10.25 or [69], §IV.8.

Now a very natural question to ask is how the special fiber of an elliptic surface without
section looks like. Take the jacobian Ef of the generic fiber X,, so that X, is an Ex-
torsor. To Ex we associate its relatively minimal regular model F over S. As Ex has per
definition a rational point as an elliptic curve, the multiplicity of its closed fiber is 1. Liu,

Lorenzini and Raynaud proved in [46], Theorem 6.6, a strong relationship:

Theorem 1.13. Let S be the spectrum of a discrete valuation ring with algebraically
closed residue field and denote by m the multiplicity of the closed fiber Xs in X. Then if
T denotes the Kodaira type of the fiber Es, the fiber X is of Kodaira type mT.

In particular, in the global situation that X and S are projective over an algebraically
closed field k, one can apply this theorem for any fiber X by first base changing to
Spec(0s ) and then applying the theorem.

As all but finitely many fibers of an elliptic fibration are elliptic curves, one may also ask
for fibrations such that all but finitely many fibers are abelian varieties. Yasuda defined
in [75] n-abelian fiber spaces as fibrations f: X — S such that X and S are smooth and
projective over an algebraically closed field k£ and that almost all closed fibers X, are
n-dimensional abelian varieties. A fiber X is then called wild if s € Supp(.7;,) holds and

tame else. Yasuda obtains the following canonical bundle formula:

Theorem 1.14. Let f: X — S be an n-abelian fiber space with (Kx - H"™Y) = 0 for a
hyperplane H C X. Denote R'f,Ox = & @© F; for 1 < i < n, where & is a locally free
sheaf and J; an torsion sheaf of length l;. Then we have

wx = (& ®ws) ® ﬁX(ZaiFi),
i=1
where
(i) m;F; = X, are the finitely many multiple fibers of f,
(ii} Ogaigmi—l,

(11i) a; = m; —n; holds for every tame fiber Xs,, where

n; = min{n > 1 | dimy, H°(X,w,r,) > 0},

(iv) x(Ox) =31 (=1)"(deg & + ;).
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Remark 1.15. Every n-abelian fiber space is an abelian fibration in our sense. This
can be seen as follows: The points s € S such that X is smooth and geometrically
integral over x(s) form an open subset (cf. [19], Théoréme 12.2.4). So shrinking the base,
we may assume that every fiber is smooth and geometrically integral. Thus, its Picard
scheme Picy,g exists (cf. [34], Theorem 4.18.1) and its degree zero component Pic% /s
is an abelian variety (cf. [34], Proposition 5.20). This in turn allows us to consider the
morphism X — Albﬁ(/s, where Albk/s is a torsor under the Albanese Albg(/s. The
morphism is universal in the sense that every morphism from X to a torsor under an
abelian variety factors through it. Its construction commutes with base change (cf. [22],
n°236, Théoreme 3.3), so it is an isomorphism over each point s € S such that X is an
abelian variety. In particular, by [16], Proposition 4.6.7 (ii), this spreads to an isomorphism
over an open subset of S. Hence, X, is isomorphic to Albﬁ(n JK(S)> the torsor under the
abelian variety Albg(n JK(S)" Note that we will discuss this sort of construction further in
Section 3.1.
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Chapter 2
The torsion structure: First description

In this chapter, we give one way for studying the torsion part .7 C R!f,Ox of an elliptic
fibration f: X — 5. In fact, it suffices to do this for the spectrum of a complete discrete
valuation ring: Let s € S be a closed point, S = Spec(ﬁAgvs) and consider the base change
Xg =X Xg S , where the completion is taken with respect to the unique maximal ideal
of Ogs. Then f: Xz — 5 is proper as the base change of f. Furthermore, the canonical
morphism Og — ﬁﬁ X is bijective due to the fact that cohomology commutes with flat
base change, cf. [26], Proposition 9.3. Hence, f is a fibration.

To see that fis an elliptic fibration, we note that the generic fiber is isomorphic to X,
which is again a torsor under an abelian variety as this notion is stable under base change.
As Xg is an excellent scheme and its regular locus is open (cf. Section 4.1), one checks
regularity at closed points. Denoting p: Xg — X, the map on stalks Ox ;) — ﬁXg,:v
induces a bijection on their completions for closed points € Xg by [71], Tag 0BG6. A
noetherian local ring is regular if and only if its completion is regular, so regularity follows.

For future reference, the following proposition states that we do not “lose” knowledge

of a fiber over a closed point s € S when we work over the completion of Oy ;.

Proposition 2.1. With the notation above, f: Xg — S is an elliptic fibration. It is
relatively minimal if and only if f: X — S is relatively minimal. Furthermore, the multi-
plicities of the closed fibers coincide. Write wx;s = f*(Z£V) ® ﬁx(zs?én asFs). Then

wX§/§ = ﬁxg (asﬁs)

holds and the torsion in le*ﬁX§ 1$ isomorphic to T, ®ps,, 5375.

Proof. We already showed that f is an elliptic fibration and we proceed on showing the
equivalence statement. Assume that X — S is not relatively minimal. Then there is
a regular fibered surface Z such that X is obtained from Z by blowing up a regular
closed point. The blow-up morphism X — Z commutes with flat base change, so that
X x 5§ — Z X S§ is again the blow-up in a regular closed point. Hence Xz is not relatively

minimal. Conversely, assume that we have a (—1)-curve ' C Xg. Denote its image in X
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under the projection p: Xg — X by T'. Asw Xg/5 = p*wx s holds by flat base change (cf.
[45], Theorem 6.4.9(b)) and p restricted to E is a finite morphism over x(s), we have the

degree formula

[K<E) : K(T)] degﬁ(s) WX/S’T = degn(s) wX§/§’E <O0.

Hence, T is a (—1)-curve (e.g. [45], Proposition 9.3.10(b)).
We already used that w Xg/5 = p*wx/s holds. As Pic(S) = 0, we only have to check for
the formulaonw /g that the multiplicity of the fiber is stable under base change. But this
S

follows from the isomorphism 7% Xga = % X p(z) ab any closed point = in Xg. The statement

on the torsion is due to the fact that cohomology commutes with flat base change. O

It thus suffices to study the case that S is the spectrum of a complete discrete valuation
ring R with field of fractions K. For the rest of this chapter, we assume this situation
together with the assumption that the residue field k is algebraically closed if not stated
otherwise. In the notation, we will omit the base point s, i.e. we will write m = my,
a = as and so on. To get more information on the multiplicity m of the special fiber
X = mF, we make the following observation: The invertible sheaf &y (F') restricted to F’
as a subscheme of X is still invertible, called the normal bundle of F', and its order must
divide m, as Ox(mF) = Ox(Xy) = f*Os(s) ~ f*Os = Ox holds.

Lemma 2.2. The order v of Ox(F)|r in Pic(F) divides m.

Moreover, the same holds for all orders of Ox(F)|,r in Pic(nF') for n > 0. The map
n +— ord(Ox(F)|,r) is monotone increasing as the restriction Ox (F) — O,r(F) factors
over O;p(F) for any | > n. The supremum should equal m. This is in fact the case, as
follows from [62], Lemma 6.4.4:

Lemma 2.3. Let f: X — S = Spec(R) be a proper, flat morphism with R a discrete
valuation ring. Then there exists a positive integer n such that all £ € Pic(X) which
satisfy Limr ~ Oynr and L|x, ~ Ox, for | > n+ 1, are trivial. In particular, we have
ord(Z|imr) = ord(L|(ng1ymr) = 1 for all 1 > n + 1.

Taking . = Ox(F) in our case and assuming that 0, p(mF) = O, for some m < m
and all n large enough, the lemma states that &x (mF') would be trivial in contradiction to
mF being the pullback of the uniformizer of R and therefore m minimal with the property
that mF' is the trivial divisor.

The number n in Lemma 2.3 can be made explicit: For a quasi-coherent sheaf & on
S, denote by V(&) = Spec(Symy,(&)) the quasi-coherent bundle defined by &. By [9],
Corollary 8.1/8, the functor

(Sch/S) — (Set), T+ H°(Xr,Ox,)
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is representable by V(.#) for a coherent €g-module .Z. One then can choose n in above
lemma to be the length of the annihilator ideal of the torsion submodule of .Z .

In order to get a better understanding of how the multiplicity is composed, we study
the order of 0, r(F') and give a connection to the length of the torsion part. This was
already done by Bertapelle and Tong in [5], §3, who themselves used unpublished results
by Michel Raynaud.

For notational setup, let 7 € R be a uniformizer and .¢ = Ox(—F). Then 4™ = 0.
As F = Ox(F)Y and Ox(F') have the same order, it suffices to study the growth of the

order of .#|,r € Pic(nF'). We consider the following two exact sequences:

0— AN — O — Of_1ypr — 0

0 — 1+ — 0% — O

(n—tyr — 0

where A4 = g7~/ g C O,p. Note that 42 = 0, so that x + 1 + 2 gives an isomor-
phism .4 — 1+ .#". This induces an isomorphism 3: H'(nF, #") — H'{(nF,1+ .#") on

cohomology groups such that for n = n — 1, the diagram

HO(AF, Opp) —>— HY(nF,. /) ——— H'(nF, Onp) —~— H'(iF, Onp)

L

HO(RF,0%,) - H'(nF,1+ .4#) —— Pic(nF) —2%— Pic(iF)

satisfies S(im(J)) = im(6*), cf. [59], §6, Proposition. As a consequence, the isomorphism
B induces an isomorphism coker(d) — ker(a) via the universal property of the cokernel.

Identifying ker(a) = coker(6*) yields the commutative diagram of exact rows

0 —— im(§) ——— Hl(nF,J/) —— coker(d) —— 0
Bls

s b |

0 —— im(6*) —— HY(nF,1+ .4) — coker(6*) — 0.

Remembering that .4 = #"~1/.#™ is annihilated by 7, we see that the finitely generated
R-module H!'(nF, /) is in fact a finite k-vectorspace, and hence coker(§) = ker(a) as
well. If p denotes the characteristic exponent of k, every non-trivial element in ker(a) is
of order p for p > 1 and else non-torsion. So the order of .#|,r € Pic(nF') either equals
the order of .7 |(,,_1)p € Pic((n —1)F) or is equal to p-ord(#|(,_1)r). Denoting by v the
order of .| in Pic(F'), we thus see by Lemma 2.3 that m = vp® for some e > 0. We

summarize:

Proposition 2.4. The multiplicity m of a closed fiber Xy, can be factored into m = vp°,
where v is the order of Op(F') in Pic(F). In particular, if p =1, we have m = v.
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Let us assume that p > 1. For ¢ = 0,...,e, let n; denote the smallest integer n > 1
such that .#|,r is of order vp’. Moreover, write h*.# = dim, H*(X,.%) for a sheaf .# on

a k-scheme X. The following lemma is from [5], Lemma 3.12.

Lemma 2.5. The following statements hold:
(i) Fori=0,... e, the sheaf wp,r = Wx/s gy Ox(Nil')|n,F is isomorphic to Oy, F,
(ii) Fori=0,...,e— 1, the difference nj11 — n; is positive and divisible by vp',

(i) The integers n € (ni, niv1] such that h'Opp > hlﬁ(n_l)F are exactly those which
can be written as n = n; + hvp' for some integer h. Furthermore, we then have
hlﬁnp = hlﬁ(n_l)p + 1.

Writing wy /g = 0 x(aF), the first statement in the lemma reads as
Ox((a+ni)F)|nr = On,r,

which means that vp’ | a+n;. We therefore find an integer a; such that n; = —a+a;vpt. In
particular, 1 = ng = —a+agv holds, so that calculating a or ag is equivalent. Furthermore,
we will use the positive integers k; = (n;j11 — n;)(vp')~! for i =0,...,e. They are indeed

integers due to the second statement of above lemma.

Remark 2.6. The sets {ag, ..., ae}, {ko, ..., ke—1} and {ng,...,ne} defined in Lemma 2.5
and afterwards can be calculated from each other: Apparently, this is true for the n; and
k; due to the formula n;+1 —n; = k;vp' and ng = 1. The formula n; = —a + o,vp’ gives a

direct translation between the n; and «;.

We will use the description of the jumping values of the order of the normal bundle by
«; to describe the torsion in the cohomology of a wild fiber. Therefore, we compose two

results from [5], Lemma 3.16 and Proposition 3.17, on the length of the torsion part:

Proposition 2.7. The length of 7 is given by [xm™1|, where x is given by

e—1

x=(m-1)+ Zkz(m — vph).
=0

We give another way to compute the length of the torsion part by the «;, which seems

to be nicer:

Corollary 2.8. We have

e

(T =(1-a)+ (-1

=1
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Proof. We apply the formula k; = (n;11 — n;)(vp") ™! = aip1p — g to I(T) = [xm™L]:

UT) = [xm™1] = Vm 1)+ T ki — ) J

m

e—1
1 .
=1—— ki(1—p"°
—+ ;:0 (I-p )J

1 e—1 -
= |-t D (aivp—ai)(1 - p' E)J
i=0

1 e—1
B PR S zazl— J
L 1=0

where we expanded the term (a1 1p — a;)(1 — p*~¢) in the last equality. Rearranging the

sum, we obtain

(7)) = {1—;+ae Zazp o) Zall— ‘)—ao(l—p e)J

e—1
= {1—1 —ao(l - ;)+ae(p—1)+zai(p—p"6—1+pie)J :

m X
=1

Now we excerpt the terms with integral value from the floor function and use the identity

agv =1+ a to see

where we used |am™!| = 0 due to 0 < a < m in the last equation. This shows the

formula. O

We are now going to study the structure of the torsion in the cohomology. Recall that we
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work under the general assumption that S is the spectrum of a complete discrete valuation
ring R and that we write X;, = mF for the unique closed fiber. As R?f.0x = 0 holds,
we have a canonical isomorphism R!f,0x ®g R/(7) — HY(mF, O,,r) by the following

theorem on semi-continuity and base change (cf. [17], Section (7.7)):

Theorem 2.9. Let f: X — S be a proper morphism of locally noetherian schemes and
F be a coherent sheaf on X, flat over S. Let s € S and i > 0, then:

(i) If the natural map
¢'(s): R'f(F) @ k(s) — H'(Xs, F)
is surjective, it is bijective and the same holds for all s’ in some neighbourhood of s.

(ii) If ©'(s) is surjective, then the following are equivalent:
a) ©'~1(s) is also surjective.

b) R f.(F) is locally free in an open neighbourhood of s.

In fact, this means more generally that for n > 1, the canonical maps
RYf.0x ®r R/(x") — H*(nmF, Opyr)

are bijective, cf. [26], Proposition 12.5 and Proposition 12.10. So R!f,0x decomposes
into a free part R and a torsion part .7, i.e. R'f.0x ~ R & 7. We treat R f,0Ox as a

plain R-module and inductively write

HY(mF, Opnr) = R'f.0x ®r R/(r) ~ R/(m)%*
HY(2mF, Oynr) = R f.Ox ®r R/(7?) ~ R/(n)®"17%2 @ R/(n?)®P22

n—1
H' (1, Gnrr) = R fu0x @1 B) (") = @R/ ()71 & (R/(x") 5,

i=1
where the integers x; for ¢ > 0 are inductively defined by these bijections. This comes
from the fact that in each step from n to n + 1, only the torsion summands of highest
length n can increase by length, hence all new torsion summands of length n + 1 in
H'((n + 1)mF, O(n+1ymr) come at the cost of reducing the torsion summands of length
n, i.e. r, becomes the number z, — x,4+1. So our aim is to compute these x,,. One easily

sees that x1 = h'0,,r and that for n > 2, the z,, are given by

Tp = hl OnmF — hlﬁ(n—l)mF :
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Just compute h' O, = x1+. . .4z, and the statement follows. An immediate observation
is that =1 gives the number of direct summands appearing in R f,0x and that for nm
bigger than n. (resp. n > a, due to ne = —a+a.m), the equality z,, = 1 holds. Therefore,
we have to count the number of jumping numbers between (n — 1)m and nm, that is to
say, integers [ € ((n — 1)m,nm] such that h! Ous1yF > h'O)r holds. By Lemma 2.5, they
are exactly of the form [ = n; + hvp' for some i. If n; < (n — 1)m and nm < n;y1 hold,
that is to say that the jumping distance vp® is constant in this range, this counting is easy:
We have

nm — (n —1)m =m = vp® = (vp*)p, (2.1)

i.e. if (n — 1)m is a jumping number, we have p®~* jumping numbers in ((n — 1)m, nm).
If the first jumping number between (n — 1)m and nm is greater than (n — 1)m, we also
have to count the first jumping number, but let drop the jumping number that exceeds
nm, so again p®~* jumping numbers. However, the general situation is more complicated,
having in general several increases of jumping distances to consider (i.e. several n; lying

between (n — 1)m and m). To handle these, we define
in=max{i|0<i<eandn; <nm} andiy=0,

that is, the greatest integer ¢ such that n; is smaller than nm. Then we can write
in—1
hlﬁan = Z kj + hina

J=0

where k; are defined in Lemma 2.5 and h;, is the unique number satisfying
nm = n;, + hi, vp™ +r; with 0 <r; < vp'.

That is, we count the number of jumping numbers we have before reaching nm. From this

point on, it is easy to calculate

in—1
T, = Z /ﬁj + hin — hin,1
J=in—1
in—1 iny1—1
and Ty — Tptl = thn — hin,1 — hin+1 + Z ]{Zj — Z kj.
j=in—1 =in
Note that if we have the equalities i,_1 = i, = i,41, the jumping distance between

(n — 1)m and (n + 1)m does not change, so that x,, — 2,41 = 0 holds. Thus, we “only”
need to compute these differences until n + 1, where i,, = e. We now want to compute a

formula that is more compact:
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We start with the equation z,, = S Lki+h

i —h;,_, and substitute k; = a;1p—q;

in

as in Corollary 2.8. This gives us

in—1
vn= Y (ajp—ay) +hi, — hi,
J=tn—1
in
j:infl“!‘l

Now recalling the definition of h;,, we observe

nm — n;,
hi, = | ———
vpin

nm n a N, + a
| upin pin vpin

:npefin =y

a )
- I/pinJ T — o,
ag—1 .

- (;)Zn J + npeiln o ain?

1 1

where in the last line, we used the equality 1 + a = vag to compute av™ and

thereby
ol R el B Bl

Using the geometric series, we see (p — 1) Zé‘”:inil 41 p¢I = peTin—1 — pe~in and hence

=g —V

obtain

=(p-1) Y o+ {ao — 1J + np®Tin — {ao — 1J — (n = 1)p°in1

j=in—1+1 P pin-t
& ap—1 ag—1
== Z at \‘ (;i" J - \‘ poinﬂ J +n(ptT —ptT ) 4 pt
j:infl"‘l

in

=(@-1) >, (ag—mp)+ {040 - 1J - ro = 1J +p i

in—1
j:in—l"l‘l p

For reasons we will see later, we want to put the “floor function terms” into the sum. This
makes us need some kind of geometric series for the floor function and p-adic expansion

of integers:
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Lemma 2.10. Let x be a non-negative integer, p > 0 prime and x = Zz‘zo x;pt its p-adic

expansion with sp(x) =3 ;5o xi. Then the following holds:
(i) Legendre’s Formula
ZLEJ _x—sp(x)
p' p—1 -

i>1

(ii) Forl>j >0, the equality

> [l == (- () - (5))

(i1i) Forl>j >0 and d € N\ {0}, we have

> la) = 55 (las] - Ll + sl ) - (L))

i=j+1

(iv) Forl>j >0, we have

L%J = Zl‘j_Hpi and in particular SPQZ%D - quz%p = —ng.

i>0

Proof. The first assertion can be found in [3], Theorem 6.5.1. For the second one, we

apply Legendre’s Formula as follows:

RIS Umpi‘jJJ _ H _SquffJ)'

1
i>jt1 i>1 p

Thus, one gets

> 2= T[22 1)

i=j+1 :j;l({;ﬂ iZEJJFSPQ;J)—SPQ;D)’

The third assertion follows directly from the second by using nested division

)= 155

31



and the fourth assertion follows directly from

x Z >0 xip' )
bJ = L’ij = szwp +p~ szzp J = jyip’
p >0 >0

A/—/ VT
eN <p’

and

ST RM(ETES oEs SN vt

i>0 i>0

We want to apply this lemma as follows: We transform with assertion (i7) and (iv)

R e RO I b R (o R ()

J=in—1+1

D S (o= |

J=in—1+1

where > >0 (g — 1)jp’ is the p-adic expansion of ap — 1. This altogether gives us

r= 30 (=0 = [ 25]) ~ (0= )+,

J=tn—1+1

Again using (p — 1) Z] i PETT = ptTint — p¥Tin we obtain for the difference

Z‘n+1

-3 ((p—l)(a (n+1)

j:in‘i’l

= > (-0 (-1 J‘—[“Opjlj) (00— 1);-1)
J=tin—1+1
) 1)

In fact, the terms in the first sum are non-negative: As 0 < a; < p—1 by definition of the

p-adic expansion, it suffices to see that

i ap— 1
aj—(n—1)p J—L o J

Ln‘j +a (n—-1)m «a J
vp/ vpl vp?

LWJ > 0.

Note that we again used the identity |av™1| = ap— 1. By assumption, n; > (n—1)m and
if equality holds, then vp’ | nj. But then the defining equation of a; shows that vp/ | a,
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and (g —1)j_1 = |av™1];_1 = 0. Similarly, one shows that

(0= 1)(0; — o+ 1p = [ 222 ]) (g 1)1 <0

p]
and that we should rephrase x, — x,,4+1 as

in

t—zn = Y (=1 (o - (= 1p° j—{“opﬂ)—wo—l)j_l)

j:infl‘f'l
intl ag—1
+ Z ( (n+1)ej+{0 J—og)—k(ozo—l)j,l),
J=in+1 P

where now all summands are non-negative. So how does this apply to give a “nice” formula
for the torsion structure? Do Euclidean division on the n;, i.e. write n; = 8;m + ~y;, where
0 < v < m holds. Note that the inequality ¢,—1 < %, means that we have a jumping

number (n — 1)m < i, < nm and therefore
/Bin :"':/Bin—l"l‘l =n—1.

So writing shortly z, — zp4+1 = Z] i 1Yt ZJ . w17 with all y;, z; non-negative as

above, we see

(R/m™)®Tn—ens1 — (R/m”>®z;1in—1+1yj ® (R/mn)@zéiﬂﬂza'

in Z‘n-&»l
— @ (R/m5j+1)®yj ® @ (R/mﬁj)@zj"
J=in-1+1 j=in+1

In particular, we have

(R/mn)@xn_mn+l D (R/mn+1)®mn+1—xn+2

in In+1
- @ (R/mﬁj+1)@yj@ @ (R/mﬁj)eaz]-@
J=in—1+1 J=in+1
Tn41 int2
D @mithMe @ (R/m)®
J=in+1 J=tnt1+1
Int1l
= P (B/m)® o (R/mP)%%) @ rest.
J=in+1

Now the jumping numbers between 4,, + 1 and 4,41 do not appear in any other formula

x; — 2141 for [ unequal to n and n + 1, so rearranging the direct sum yields
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Theorem 2.11. Let f: X — S be a relatively minimal elliptic fibration and m = vp® the
multiplicity of the closed fiber. For j =1,...,e define

v === B = |2 =) = (00— 1),
R (R R Y~ ay) + (a0~ 1)1

as above. Then R'f.Ox = R® 7, with torsion part T given by
e
T = @ ((R/m6j+1)@yj ® (R/mﬂj)@z]').
j=1
Note that we might use R/m® = 0 in the formula.

Remark 2.12. We can again calculate [(.7) by above formula: We therefore note that
y; +2; = (p— 1)p®7 and hence

WT) = y(Bi+1)+ Bz

=1
=Y (- 1B +(p— 1)<04j — Bip* — Laop]f D — (a0 —1)j-1
=1
— -1 ==X [T =D (a0 1.
j=1 Jj=1 P J=1
Now the equations
D (ao = 1);-1 = sp((ag — 1)),
=1
R Laopj_- 1J = (a0 = 1) = sp(ag — 1)
=1

are true by Lemma 2.10. Putting these equalities into the equation for [(7) gives the

known formula in Corollary 2.8.

Remark 2.13. Theorem 2.11 becomes much simpler in the case e = 1, i.e. the multiplicity
of the closed fiber is m = vp: We then have [(ag — 1)p~!| = 0 because the formula
vag =1+ a < m = vp implies ap < p. Furthermore, (ag — 1)g = ap — 1 holds. If a = 0,
then ny; = aym; and hence 51 = a;. If a > 0, then n; = ayvp—a = (aq — 1)vp+ (vp —a)

and B1 = a1 — 1. Calculating y; and z; in both cases, one obtains

T = (R/mm)@p—ao D (R/mm—l)@ao—l‘
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Example 2.14. We resume Example 1.2 resp. 1.10 to compute the torsion part of the
elliptic fibration constructed there. We therefore note that the restriction of the quotient
morphism q: SxpE — X to {oo;} X F yields the étale quotient morphism £ — E/G = F.
Identifying G with the constant group scheme Z/pZ, we obtain the exact sequence of group
schemes

0—G—FE—FE/G—0.

Dualizing and taking the rational points gives an exact sequence
0 — G (k) — Pic’(F) — Pic’(E).

As G is isomorphic to Z/pZ, the dual is given by 1, the kernel of the Frobenius G,, — Gy,.
Hence GV (k) consists of the p-th roots of unity of k and is thus trivial. This shows that
Pic’(F) — Pic’(E) is injective. As ¢*Ox(F) is trivial, ¢*Ox(F)|g is also trivial and
Or(F) is mapped to 0. The injectivity shows that Or(F) was already trivial, hence
v=ord(Op(F)) =1.

This gives ag = 1 +a = p — b. Now from the formula on the length of the torsion,

Corollary 2.8, we obtain
m—d=0(T)=1—ag+(p—1)a.
Solving the equation for a; gives a3 = d + 1. Using Remark 2.13, we obtain
T = (R/m*1)®b @ (R /md)@p—b-1

for the torsion in R! f,@x. Here, R is the discrete valuation ring ﬁp}cm or its completion as
used in Theorem 2.11. We will see in Example 5.24 that this torsion group coincides with
the group H'(G, R'), where R’ is the normalization of ﬁp}cm in K" = Klx]/(zP — 2z —t"™).

As in [31], Example 8.4, we can modify our previous example as follows:

Example 2.15. Like in the previous example, let K = k(t) be the function field of P} with
k algebraically closed and consider the Artin—Schreier extension K’ = K |x]/(axP —z —t"™),
where p > 0 does not divide nm. Let S be the curve corresponding to this field extension.
We already saw that it had genus g(S) = 271 (p — 1)(nm — 1) and that o(z) = x + 1 is an
automorphism generating the Galois group Z/pZ of K’ over K. Denoting by (,, a primitive
n-th root of unity, we obtain another field automorphism given by 7(t) = (,t. Note that
this is not defined over K. They both extend to a group action of G = Z/pZ X u, on S,
and its quotient is again P}. This can be seen from S/G = (S/(Z/pZ))/pn ~= P}/ pn ~= P},
where the first quotient is Example 1.2 and the second is immediate from the Hurwitz

Formula, for the quotient is an integral normal curve and its genus must be less than or
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equal to the genus of ]P’}C, hence zero. Choosing an ordinary elliptic curve E over k with pn-
torsion point P € E(k), we obtain an action of G on SxFE viao(t,z,Q) = (t,z+1,Q+nP)
and 7(t,x,Q) = ((ut,z,Q + pP). Denote by X the quotient of S x; E by G. As G acts
freely on closed points, it is again étale and X is regular. Like in Example 1.2, we see
that the induced morphism f: X — S is an elliptic fibration, now with multiple fibers
Xo = nkEy over the origin and X, = npF, over the point at infinity. The fiber over the
origin must be tame, as n is coprime to p. Again, we consider G as the kernel of the group
scheme morphism E — E/G. The choice of ¢, gives an isomorphism p,, ~ Z/nZ. Thus,
we have GV (k) = p,/ (k) = Z/nZ, from which we deduce that the order v of O (Fx) is

equal to n, so X is again a wild fiber. Note that we have now
wy = f*(ﬁﬁpllc(_2 +1)® Ox((n—1)Ey) @ Ox(aF),

from which we obtain, together with the isomorphisms ¢*wyxy = wgx, £ = pr*wg like in

Example 1.10, the formula
(=24 Dnp+p(n—1)+a=29(S) — 2.
We set again m =dp+bford>0and 1 <b < p—1, yielding

[l=m—d,

a=pn—>bn—1.
From agv = 1+ a, we obtain ag = p — b. Using Corollary 2.8, we get
m—d=1l=1—-ap+ (p—1)ay,
yielding vy = d + 1. Hence,
T = (R/md1)®b g (R /md)@p—b-1

as in the previous example.
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Chapter 3
Regular models of torsors as quotients

Let Xx be a torsor under an abelian variety Ag, both defined over the function field K
of a Dedekind scheme S. Take a finite Galois extension K’ over K with Galois group G,
so that X (K’) is non-empty. The normalization S’ of S in K’ carries a natural action of
G induced by the action on K’. As K'/K is Galois, the quotient will be again S. We then
would like to obtain an abelian fibration f: X — S with generic fiber X as a quotient of
an abelian fibration f’: A’ — S’ with generic fiber Ag/, together with an action of G on
A’ such that f’ is G-equivariant. In Section 3.1, we make this construction for the generic
fiber. To generalize this approach in Section 3.3, we introduce the notion of models of X g
in Section 3.2 and discuss results taken from the literature we want to apply in Section 3.3

in the situation that S is the spectrum of a complete discrete valuation ring.

3.1 Torsors of abelian varieties

Definition 3.1. Let Ax be an abelian variety over a field K with the Ag-action given by
translation. An Ag-torsor over K (also called torsor under Ag or principal homogeneous
space of Ar) is a separated scheme X of finite type over K equipped with an Ag-action
such that there exists an Agsep-equivariant isomorphism Xgsep — Agser. We call an

Ap-torsor Xk trivial if there exists an Ag-equivariant isomorphism to Ag.

If we omit all scheme-theoretic notions in the definition, we get a set-theoretical def-
inition of torsor. In particular, if X is an Ag-torsor over K, then Xy (K®P) is an

Ak (K5°P)-torsor, because
AK(KSep) = AKsep(Ksep) ~ XKsep(Ksep> = XK(Ksep)

holds. As Xy ~ Ay is projective, X also is by [15], Proposition 14.55. It is connected
and smooth over K by descent, cf. [20], Proposition (17.7.1).

In general, we will call any field K’ over K such that there exists an Ag/-equivariant
isomorphism Xy — Ak a splitting field and say that Xg splits over K. We can always
find a splitting field finite over K:
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Lemma 3.2. Let Xg be an Ak -torsor. Then Xk is a trivial torsor if and only if X (K)

18 mon-empty.

Proof. If X is a trivial torsor, it is isomorphic to Ax, which by definition has a rational
point. So choose a point P € X (K). Restricting the group action to the point P yields
an Ag-equivariant morphism ¢: Ax = Ax X Spec(K) — Xg. As Xk is an Ag-torsor,
we obtain an Agsep-equivariant isomorphism 1: Xgsep — Agser. Hence, the composition
1 0 Ppsep: Agsep — Apsep iS Agsep-equivariant and thus a translation, in particular an
isomorphism. Therefore, ¢ sep is an isomorphism. By descent (cf. [15], Proposition 14.51),

¢ is an isomorphism. O

To prove the claim that torsors under abelian varieties are - up to isomorphism - exactly
the schemes that become isomorphic to an abelian variety over a separable closure of the
ground field, we need the notion of Albanese variety and Albanese torsor.

Recall that the Albanese variety of a scheme X over K, together with a distinguished
closed point ¢y € X, is an abelian variety Albg(K over K together with a morphism
f: Xg — Albg(K mapping xg to 0 and satisfying the following universal property: Every
morphism f from Xx to an abelian variety Ay with f(z¢) = 0 factors uniquely through
f followed by an homomorphism of abelian varieties Albg(K — Ag. If X is proper over
K, then the Picard scheme Picy, exists (cf. [34], Corollary 4.8.13) and the Albanese
variety can be identified with the dual of P = (Picg(K)red7 ie. AlbggK = Pic, /K (cf.
[22], n°236, Théoreme 3.3). Furthermore, by loc. cit., the Albanese torsor is a torsor
Albﬁ(K under Albg(K, together with a morphism Xx — Albﬁ(K universal in the sense that
every morphism from Xg to a torsor Tk under Ag factors through Albﬁ(K, i.e. there are
morphisms Alb}(K — Tk and Albg(K — Ak such that the diagram

Alb%, x Albk, — Albk

| |

AKXTK—>TK

commutes. In this diagram, the horizontal morphisms are given by the group actions.
Note that Albng and Alb}(K are the degree zero resp. one components of a more general

Albanese scheme (cf. [61]) and that the construction of Albg(K and Alka as well as

XKk — Alb}(K commutes with base change. In particular, if X is an Ag-torsor, we get

a factorization of the identity on X

Xg —%— Albk,
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and a homomorphism of abelian varieties : Albg(K JK Ap such that

Alb%, x Alby, —— Albk,

wo Jo 1)

AKXXK—>XK

commutes. The factorization idx, = ¢ o« implies that « is a monomorphism. Moreover,
« is proper and thus a closed embedding, cf. [15], Corollary 12.92. As Xk and Alb}(K are
integral of the same dimension, o and therefore ¢ must be isomorphisms.

Using that the construction of the Albanese commutes with base change, we consider
the diagram (3.1) over the separable closure of K. Choosing a rational point in Alb}(Ksep
and its image in X gsep (K5P) under 1 gsep and restricting the group action to this point,
we obtain from diagram (3.1) the commutative square

AL, ., —— Albk .,

b o

AKsep % XKsep.
Thus, Y gsep is an isomorphism and therefore i too by descent. We conclude:
Proposition 3.3. Let X be a scheme over K. Then the following holds:

(i) The torsor structure is unique, i.e. if X is a torsor under an abelian variety Ay,
then the canonical morphisms Alb}(K — Xk and Albg(K — Ak induced by the

identity on Xi are isomorphism compatible with the torsor structures.

(ii) If Xgsep is isomorphic to a torsor under an abelian variety, the canonical morphism
Xk — Alby,  is an isomorphism. In particular, Xk is canonically equipped with a

torsor structure under Albg(K.

Proof. The first assertion was already proven in the discussion before. So for the second
assertion, assume that Xpgsep is a torsor under Agser. Then Xpgser — Alb}(Ksep is an

isomorphism by statement (i) and descends to the isomorphism Xx — Albﬁ(K. O

Torsors can be classified by group cohomology up to isomorphism (for group cohomol-
ogy, see also Section 5.1): Given a torsor X over K under Ax that becomes isomorphic
to Ag over a Galois extension K’ over K with Galois group G, we choose an isomorphism
¢: Agr — Xg. Every field automorphism o € G gives - by abuse of notation - automor-
phisms o: Xg — X and 0: Agr — Ak induced by base change. We therefore look at
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the (in general non-commutative) diagram

AK/ L) XK/

o| |7

AK/ T) XK/

and “measure” the defect of its commutativity by & = ¢ logo™! € Autg/(Ax/). Now

Autg/(Ag) can be considered as an G-module via
G x Autgr(Agr) — Autgr(Agr), (0,9) — “p=cotpoo !,
and the collection & = (&,),cq gives a cocycle:
& 76 = (¢ ogo Na(¢ irgr o = ¢ lorgr o = &,

This cocycle depends on the chosen isomorphism ¢, but if ¢: Agr — Xk is another
isomorphism, the cocycles defined by them are cohomologous: Using the automorphism
¢~ 1p € Autg/ (Ag), we obtain

Voot = (o7 ) ¢ ogo ) T (97 ).

Furthermore, if 6: Y — Xk is an isomorphism, Yx and Xg give cohomologous cocycles:
Let Ok : Y — Xk be the isomorphism induced by base change and ¢: Agr — Yg+ be
any isomorphism. Set ¢ = 0+ o ¢. Then the right square in the diagram

]
o
AK/ id > YK/ K >XK/

commutes. Therefore, 6’;{}00 k= o holds, from which we obtain
¢ logo ™t =T Oglo0kpo Tt = oo,
i.e. the cocycle defined by ¢ is cohomologous to the one defined by .

Thus, we get a well-defined element (£,), € H'(G, Autg:(Ag+)) which depends only
on the isomorphism class of Xg. So far, we have not used the group action on Xg at

all! Instead, we could have used any twist X of Ak, i.e. any scheme Xy that becomes
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isomorphic to Ax over the separable closure of K. So if Xk is a torsor under Ag, we
may choose an Ag-equivariant isomorphism ¢: Agr — X as soon as X admits a
K'-rational point by Lemma 3.2. It is completely determined by the image of the neutral
element 0 € Ay (K'). We thus see that for any point P € A/ (K°P), we have

&(P) = (¢ o) (o (P))
= (¢7'0)(0(0) + o~ (P))
= ¢~ (0¢(0) + P)
=Q+P,

where Q € Ay (K*P) is defined as ¢ 1o0¢(0). As ¢(0) and hence 0¢(0) are K’-rational
points, @ must be K'-rational as well. We deduce that &, is the translation by @ and simply
write {, = Q € Ag/(K'), where we identify Ag/(K’) with the subgroup of translation
automorphisms in Auty/ (Ags). In fact, Ags(K’) is invariant under the G-action and can

thus be regarded as a G-submodule of Auty/(Ag+). For the rest of this section, we prove

Proposition 3.4. Denote by Torsg: i the set of all torsors that split over K" up to
isomorphism and by Twistg: /i the set of all twists that split over K’ up to isomorphism.
The following diagram is commutative with bijective horizontal arrows and injective vertical

arrows:

TOI'SK//K —= HI(G, AK!(K,))

! l

TWiStK//K — Hl(G, AutK/(AK/)).

Proof of commutativity and injectivity. The commutativity is clear from the construction,
and the injectivity of Torsgs i — Twistgs g follows from the uniqueness of the torsor
structure up to isomorphism, see Proposition 3.3. If we show that the horizontal maps are
bijective, the injectivity of H'(G, Ax(K')) — H' (G, Autg/(Ag)) automatically follows.

To show that the lower horizontal map is injective, let Xgx and X x be twists of
Ay becoming isomorphic over K’ via ¢: Agr — Xk and 5: Agr — )Z'K/. Assume
that the induced cocycles &, = ¢ lopo~! and fc, = (5_1050_1 are cohomologous, i.e.
& = @D_lg, 91 holds for some ¢ € Autg/(Ags) and all o € G. Rearranging terms gives
a(qﬁd;‘lg_l) = ((Z)i/}‘la_l)a, so the isomorphism (gzﬁw_l%_l): Xy — Xpo descends and is
already defined over K. That is to say: Xg and X are already isomorphic.

The torsor argument is exactly the same. Note that in this case, ¢ and q~5 are Agr-
equivariant and 1 corresponds to translating by a @ € A(K'). Therefore, ¢1/1_1$_1

again Apgs-equivariant. O

We now want to show the surjectivity by associating to every cocycle £ an Ag-torsor

Xx as a quotient of Ags under G with a twisted action: To every cocycle & = (&), We
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associate the map
pe: G — Autg (Agr), or— &0,

where we consider £, as the translation-by-£, morphism on Ags. This is a group homo-

morphism, as is easily seen:

pg(UT) =or0T = (gogéTail)UT = &§0&T.

Indeed, it is injective because £,0 = id4 ., applied to the zero element which is already

defined over K and on which o acts triviz:lly, yields 0 = &,, and ¢ must be the identity.
This defines a group action of G on Ak, and its structure morphism A — Spec(K”)
is G-equivariant. As the Galois group G is the inverse limit of finite groups and the coho-
mology groups H'(G, Autg/ (Ag+)) as well as H' (G, A/ (K")) are direct limits according
to Proposition 5.1, we may assume that the extension K’/K is finite. Then the quotient
q: Agr — A /G = X over K exists due to A being projective and G finite. Moreover,

choosing a cohomologous cocycle gives a quotient that is isomorphic:

Lemma 3.5. Let ¢ and £ be cohomologous cocycles. Then pe and p; are conjugated and
their induced quotients of A are isomorphic. In particular, the quotient does not depend

up to isomorphism on the choice of a representative of a class in H'(G, Autg/ (Ag)).

Proof. If the cocycle ¢ = ({, ), is cohomologous to § = (£,),, there is some ¥ € Aut g/ (Ak)
satisfying ¢, = ¥ 1¢, 1. So we see that p¢ and p¢ are conjugated by ):

pc(0) = Coo = (V& T)o = YT Epo) = ¥ pe(0)y.
Now let g1: Agr — X1 and g2: Agr — X2 be the quotients induced by p¢ and p¢ resp.
Consider the commutative diagram

—1

AK/ i >AK/ i AK/

where the dashed arrows come from the universal property of the quotient: The map ¢ot

is invariant under the action of p¢, as we have

(@29)(Go0) = (@) (V™6 7Y 0) = (¢2650)9 = 2.

This induces the map X; --+ X5. Similarly, one obtains Xo --+ X7, and the composition

must be the identity due to the uniqueness of the factorizations. O
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Now it remains to show that Xx = Ag//G really gives the class of the cocycle £. The
quotient map ¢q: Agr — X factors over ¢: A — X by the universal property of the
fiber product. We note that ¢ is a finite morphism, and that X is integral and normal
because A is, cf. [15], Proposition 12.27 and Example 12.48. Thus, ¢ is also finite by [15],
Proposition 12.11. Furthermore, it is birational and hence, by a version of Zariski’s Main
Theorem (e.g. [15], Corollary 12.88) an isomorphism. In fact, if we equip X+ with the G-
action induced by base change, we see that ¢ is G-equivariant (where A is equipped with
the action via p¢ and not the one obtained by base change!): Denoting by pr: Xx — Xg

the canonical projection obtained by base change and using its G-invariance, we compute

proépe(o) = prope(o) = qpe(o) = q.

Note that ¢ was pe-invariant and that ¢ was the unique morphism satisfying pr¢ = ¢
given by the universal property of fiber product. Hence, the uniqueness of ¢ gives the
equality ¢ = o~ ppe(0), i.e. 0¢p = ¢pe(o). Rearranging terms, we obtain &, = ¢~ logo 1.

This proves Proposition 3.4 for twists.

Remark 3.6. Assume that the Galois extension K’ over K such that Xy splits is not
minimal, i.e. there is a Galois extension L over K with L C K’. Denote G = Gal(K'/K)
and N = Gal(K'/L). Then o is element of N if and only if p¢(0) = o:

Let ¢: Ap — Xt be an isomorphism. Then the base change ¢ is N-equivariant and

we have

VK0 =00k = Prrpe(0) = Prrés0.

Thus, & = 0 and p¢(0) = 0. Conversely, given the equality p¢(0) = o, we immediately
deduce &, = 0, which shows that c¢x = ¢+ holds. Thus, o € N.

To prove the surjectivity for torsors, it is not enough to apply Proposition 3.3 stating
that X x must be a torsor under Albg(K, because Alb&K might be a twist of Ax. Instead,
we define for above isomorphism ¢ an action u: Agr X Xgr — Xk as the morphism
making the diagram

Apr X Xgor —2s Xper

(o) Jo

AK/ X AK’ e AK/

commutative, where the lower horizontal morphism is the usual addition on the abelian
variety Ags. On T-valued points a € Ag/(T) and = € Xg/(T'), this means that we have
w(a,z) = ¢(a + ¢~ 1(x)). Using the Galois action of G on Xy and Ags, we have on

T-valued points a and =

po(a,z) = p(o(a),o(z)) = d(o(a) + ¢~ (o(2))).
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From the identity 0¢ = ¢p¢(c), we deduce ¢~ (o (x)) = pe(o)p~!(x) and hence

=¢ + & +o(9p—1(x))
= ¢(pe(0)(a+ ¢~ (x)))
=opla+ ¢ ' (2))

Hence, p is G-invariant and descends to a morphism Ax x Xxg — Xg. Thus, Xk is a

torsor under A, proving Proposition 3.4. In fact, this quotient construction is very nice:

Proposition 3.7. If K'/K is finite separable, the quotient morphism q: Agr — Xg 18

finite étale.

Proof. As K'/K is finite separable, so is Spec(K’) — Spec(K) and thus pr: Xg — Xg by

base change. Now ¢ = pr ¢ with ¢ being an isomorphism, so ¢ must be étale as well. [

We therefore see that the torsor under an abelian variety can be recovered as an étale
quotient. In the following, we will try to construct regular abelian fibrations as quotients.
More precisely, we construct some quotient that is birational to a given one. This is often
enough to read off significant invariants we are interested in. In the next section, we

introduce the necessary background.

3.2 Models of abelian varieties

We start with the following important notion:

Definition 3.8. Let Xx be a proper smooth connected scheme over a field K and S a
Dedekind scheme with function field K. We say that a normal scheme X flat and of finite
type over S together with an isomorphism X, ~ Xk is a model of X over S. If X is
regular, we say that the model is regular. Likewise, we say that the model is proper resp.

projective if X is proper resp. projective over S.

We will usually suppress the isomorphism X, ~ Xk and write X,, = Xj. By definition,
every fibration is a proper model of its generic fiber. Most often, one is interested in special
kinds of models. For example, in the classification of algebraic surfaces, one is interested
in relatively minimal regular elliptic surfaces. One may wonder if, given any torsor X
of an elliptic curve Ex over K, such a model X exists over S and if it is unique. The
existence holds for any smooth projective curve X over K: One may embed X g into some
projective space P% and take its closure in Pg, then normalize and resolve singularities.

Finally, one has to contract the (—1)-curves. The uniqueness only holds if the genus of
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Xk is positive, cf. [45], Theorem 9.3.21. Recall that we defined a genus-g-fibration to be
a regular fibered surface X over S such that the genus of X is g. Then we obtain:

Theorem 3.9. Let X — Spec(K) be a smooth projective curve of genus g > 1. Then

there exists a unique relatively minimal genus-g-fibration X — S which is a model of X .

In fact, a stronger version of the theorem holds, namely that X — S is a minimal
fibration. That means that every birational map of regular fibered surfaces Y --+ X over
S extends to a birational morphism. In particular, given a birational morphism of regular
fibered surfaces X — Y, we take its inverse on a dense open set of Y. By minimality, the
inverse extends to a morphism Y — X. Concatenating the morphisms gives a morphism
Y — Y which is the identity on a dense open subset. By separatedness, it must be
the identity and X — Y is an isomorphism. This also shows that there are no (—1)-
curves on X, as otherwise one could contract them. The same argument (also see [45],

Proposition 9.3.13) shows:

Proposition 3.10. Let X — S be a minimal regular fibered surface. Then the canonical
map
Autg(X) — Autg (Xk)

18 bijective.
Note that if X has genus 0, the following example taken from [45], Remark 9.3.23,

shows that there exist relatively minimal surfaces that are not minimal:

Example 3.11. Take X; = PL, and blow up in a closed point over s € S to obtain another
fibered surface X. In Xj, the strict transform of E of (X1)s is an exceptional divisor. We
contract F to obtain a regular fibered surface Xs. Then X; and X5 are relatively minimal
models obtained from X, but not isomorphic as models: The identity on the generic fiber
induces a birational map X7 --+ X9 which cannot be extended to a morphism X; — Xo

because the generic points on the fibers (X7)s, (X2)s induce distinct valuations in K (X).

Sadly, there is no such elaborated theory in higher dimension. Hironaka claimed a proof
of the existence of resolution of singularities in positive characteristic on his homepage [28]
in 2017 about 50 years after he gave a proof in the characteristic zero case. The correctness
of his proof is not confirmed until now.

But if we restrict to the case that X does not have to be proper over S, then there is
the very fruitful notion of Néron model which we shortly introduce. After that, we discuss
some existence results of regular proper models that have such Néron models as dense open
subsets. The most important reference on this topic is the book of Bosch, Liitkebohmert
and Raynaud [9], as the original article [57] does not use the language of schemes. Néron
models satisfy a universal property, which is - like most mathematical objects satisfying a

universal property - more important than the actual construction. Here is the definition:
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Definition 3.12. Let S be a Dedekind scheme with function field K and X be a smooth
separated K-scheme of finite type. A Néron model is an S-model X which is smooth,

separated, and of finite type satisfying the following universal property:

For each smooth S-scheme Y and each K-morphism ug: Y — Xk,

there is a unique S-morphism u: Y — X extending u.

This property is also called the Néron mapping property. There is also a more general
notion (which in our sense would not necessarily be a model anymore due to the lack of
being of finite type): If Xk is only smooth and separated, one calls a smooth separated
scheme X over S a Néron Ift-model. The letters “Ift” stand for “locally of finite type”,
which holds automatically for Xx and X due to the smoothness. Néron and Néron Ift-
models are unique up to unique isomorphism due to the Néron mapping property. We are

mostly interested in the following case (cf. [9], Theorem 1.4/3):
Theorem 3.13. Let Ax be an abelian variety. Then there exists a Néron model A over S.

If A is a Néron model of an abelian variety Ag, then the isomorphism
Homg (Y, A) — Hompg (Y, Ar)

given by the Néron mapping property extends canonically the group structure given on
Ag to A: just take Y = A xg A and the unique preimage of the multiplication map
A X Ax — Ak on the right hand side of the isomorphism. Do the same for the
inversion map and the unit section. Furthermore, if A — S is an abelian scheme, i.e.
smooth projective and each fiber is an abelian variety, then it is the Néron model of its
generic fiber (cf. [9], Proposition 1.2/8). There is a close relationship between the relatively

minimal regular model F of an elliptic curve Ex over S and its Néron model:
Theorem 3.14. The Néron model of Ex is the smooth locus of E.

For a proof, we refer to [45], Theorem 10.2.14. As in the Kodaira—Néron classification
in Theorem 1.12, one is also interested in distinguishing the possible closed fibers of Néron
models, but in a much coarser sense: Recall that the Néron model A — S of an abelian
variety A is a smooth separated commutative group scheme of finite type. In particular,
this holds as well for the closed fibers Ay, s € S. Fixing a closed point s € S and changing
the base to an algebraic closure k of x(s), Ay is defined over an algebraically closed field,
and by Chevalley’s Theorem (e.g. Theorem 9.2/1), its identity component A9 is uniquely
an extension of an abelian variety by a connected affine group H, which in turn splits as
the product of a torus and a unipotent group. In fact, if the unipotent part is trivial, the
extension is already defined over k(s), see [9], paragraph below Lemma 7.3/1. We make

the following definition:
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Definition 3.15. Let Ax be an abelian variety with Néron model A over S and s € S be
a closed point. We say that

(i) A has good reduction or abelian reduction at s if A is an abelian variety,

(ii) Ax has semi-abelian reduction at s if A? is the extension of an abelian variety by a

torus.

In the literature, one often uses the term semi-stable reduction instead of semi-abelian
reduction. Following [9] and [24], we do not use this term to avoid confusion with semi-
stable models of a scheme over a field. Applying this notion to the Kodaira—Néron clas-
sification of closed fibers of relatively minimal elliptic fibrations (see Theorem 1.12), we

obtain:

Theorem 3.16. Let f: E — S be a relatively minimal elliptic fibration with section and
s € 8 be a point with algebraically closed residue field. Then the following holds:

(i) Ex has good reduction at s if and only if Es has Kodaira type 1.
(i) Ex has semi-abelian reduction at s if and only if Es has Kodaira type 1,, for n > 0.

(i1i)) Ex does not have semi-abelian reduction at s if and only if Es has Kodaira type
ILIIL IV, IV IO I or I for n > 0.

Note that in the case of elliptic curves, one rather says multiplicative reduction at s if
the Kodaira type of Es is I, for n > 1 and additive reduction at s if Ex does not have
semi-stable reduction at s.

Abelian varieties having semi-abelian reduction behave much better in certain ways,
e.g. being semi-abelian is stable under base change. Therefore, one is interested to ex-
tend the base such that one obtains semi-abelian reduction. Grothendieck showed in [2],
Théoreme 3.6, Exposé IX, that this is always possible over a finite extension of the function
field of S. We also cite [24], Theorem 3.3.6.4, for the case of a complete discrete valuation

ring with algebraically closed residue field:

Theorem 3.17. Let A be an abelian variety and S a Dedekind scheme with function
field K. Then the following holds:

(i) If Ak has semi-abelian reduction everywhere, then Ay has semi-abelian reduction

everywhere for all finite extensions K'/K.

(ii) There is a finite Galois extension K'/K such that Ax: has semi-abelian reduction

everywhere.

(111) If S is the spectrum of a complete discrete valuation ring with algebraically closed
residue field, there exists a unique minimal extension K'/K in a separable closure

of K such that Ag: has semi-abelian reduction.
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One may even give bounds on the minimal degree of the extension needed and the
primes dividing it. Let g be the dimension of Ax. Then there always exists a finite

extension K'/K of degree

N(g) — 93g+orda(g!) H pLQQ/(Pfl)J +2d<29/(p—1) Ordp(d)

3<p<L2g+1

such that Ag has semi-abelian reduction, where the product runs over all prime numbers
between 3 and 2g + 1, cf. [11], Theorem 6.8. In particular, semi-abelian reduction is
attained over a tamely ramified field extension if p = char(k) > 2¢g + 1. This will be
of great importance when doing reduction steps later. The question when Ag has semi-

abelian reduction at certain points after base change leads to the following definiton:

Definition 3.18. Let Ax be an abelian variety with Néron model A over S and s € S be
a closed point. We say that Ax has potential abelian reduction or potential good reduction
at s if there exists a finite Galois extension K’ over K such that Ags has good reduction

at every point over s.

We now turn to the question if regular models containing the Néron model as in the
case of elliptic curves exist and which properties they satisfy. Indeed, if S is the spec-
trum of complete discrete valuation ring, there are such models due to Kiinnemann [39],
Theorem 3.5:

Theorem 3.19. Let S be the spectrum of a complete discrete valuation ring and Ax an
abelian variety with Néron model N over S having semi-abelian reduction. Then there

exists a reqular scheme P with projective flat structure morphism P — S such that
(i) N is a dense, open subscheme of P,
(ii) the action of N on itself by translation extends to P,

(11i) the reduced special fiber (Ag)red s a divisor with strict normal crossings on P. It
has a stratification such that the strata are exactly the orbits for the action of Ng on

Py given in (i7).

There is also a generalization of Kiinnemann’s result by Rozensztajn [64] to general

regular, noetherian base schemes.

3.3 Abelian fibrations as quotients

In Section 3.1, we showed that any torsor under an abelian variety can be recovered as a

quotient of the abelian variety with étale quotient morphism. We now raise the question if
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we can extend this construction to models of torsors, at least if we choose them appropriate.
Indeed, there is a way in certain cases:

For simplicity, assume throughout this section that S is the spectrum of a complete
discrete valuation ring R with algebraically closed residue field k£ and field of fraction K.
Let Xx be a torsor under an abelian variety Ax and let K'/K be a finite extension with
Galois group G so that Xk (K’) is non-empty. Denote by S’ the normalization of S in
K'. By Proposition 5.10, this is again the spectrum of a complete discrete valuation ring.
Let £ = (&) be a cocycle of the corresponding cohomology class of Xk . By assumption,
& € Ag/(K') for every 0 € G and it acts on Ags by translation. Due to the Néron
mapping property (cf. Definition 3.12), this translation extends to an automorphism of
the Néron model N’ of Ag: over S’. The action of G on K’ extends uniquely to an action
of G because S is normal and one-dimensional, cf. [45], Corollary 4.1.17. As in Section 3.1,
we denote by o: N’ — N’ the automorphism induced by o: S’ — S’. This gives again a
group homomorphism

pe: G — Autg(N'), o+ &o

such that the structure morphism N’ — S’ is G-equivariant. Note that {,0 is an auto-
morphism over S and not over S’ if it is not the identity. Now assume that Ag has good
reduction. Then A+ has also good reduction and A" = N’ is a projective smooth model

over S’, hence an abelian scheme.

Lemma 3.20. Let Ax have good reduction, X = A'/G and let q: A" — X be the quotient
morphism. Then X is a regular, projective model of X over S with irreducible closed
fiber and q is flat.

Proof. As ¢ is a finite morphism, X is projective over S if and only if A" is (cf. [15],
Proposition 13.66). Hence, X — S is projective. Moreover, as taking quotients commutes
with flat base change, the generic fiber is isomorphic to X as we have seen in Section 3.1.
As a finite, dominant morphism between regular schemes is flat (cf. [15], Corollary 14.127),
we only have to show the regularity of X. We therefore extend the action of A(K) on Xy
to all of X in the following way:

Denote by T the image of A(K) — A’(K') given by base change. This gives an action
of T on A’ which is equivariant with respect to ¢: Taking some @ € T, the morphism qQ
is invariant under the twisted action on A’ because Q commutes with &, and o for any o
in G. That is, we have ¢Qp¢(0) = qpe(0)Q = ¢Q. Hence, Q: A" — A" induces a morphism
X — X (denoted again by @) by the universal property of the quotient. The uniqueness
of the morphism applied to the concatenation (—@Q) o @ shows that this gives the identity
and therefore every ) € A(K) defines an automorphism. It extends the action of A(K)
on Xg.

To see that A(K) acts transitively on the rational points of the closed fiber Ay, we use
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the surjectivity of the reduction map
A(K) = A(S) — Ay(k),

where the equality comes from the Néron mapping property (cf. Definition 3.12) and the
surjectivity of the reduction map from the smoothness of A (cf. [45], Corollary 6.2.13).
Now observe that the rational points of Ay correspond to the closed points of Ay due to
k algebraically closed. Moreover, the closed fiber of A’ is isomorphic to Ay, as we have
A" xy, Spec(k) = A xg (S x Spec(k)) = A xj Spec(k). Hence, we may lift any closed
point in A’ to a point in T', so that T acts transitively on the closed points of A" and via
g transitively on the closed points of Xj.

Now X is normal as the quotient by a finite group and hence has a closed singular locus
of codimension greater or equal to 2 (cf. [15], Proposition 6.40, together with the openness
of Y™ according to [18], Corollaire 6.12.8, which uses R complete). Therefore, there are
regular closed points in X. Observe that all closed points of a fibration lie on closed fibers,
so we can shift a regular closed point of X via the action of T" to every closed point of X,

i.e. X is regular. O

The crucial ingredient of the proof lies in the ability to define an action on X that is
transitive on closed points. We want to mimic the proof as far as possible in the case that
Ak has semi-abelian reduction. Denote by N the Néron model of Ag over S and by N’

the Néron model of Ags over S’. Then, as before, we obtain a group action
pe: G — Autg(N'), o+ & 0.

The problem now is that N’ will not be proper over S’ as long as Ag does not have
good reduction. By Theorem 3.19, we may choose a projective regular model P’ of N'.
Moreover, the action of N’ on itself by translation extends to P’. By the Néron mapping
property, we may consider &, as an element of N'(S’), so that it extends to an automor-
phism of P’. Again denoting by o: P’ — P’ the automorphism induced by o: S’ — 5,

we obtain a group homomorphism
pe: G — Autg(P'), o+ &yo.

Taking quotients yields again a projective model X of X over S. As Ax has semi-
abelian reduction, the Néron mapping property induces an open immersion N xg 5" —
N’ which is an isomorphism on the identity component (cf. [24], §2.1.5). Like in the
preceding lemma, we denote by T the image of the K-rational points (or S-rational, as
they coincide). As they are G-invariant, this gives an action of 7" on X. The problem to

argue for the regularity of X is if this action is transitive on the closed points. At least,
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for a relatively minimal elliptic fibration f: X — S with multiplicative reduction, this
construction applies due to [46], Proposition 8.3.

In the following, we are going to consider the situation where the quotient ¢: P’ — X
above induced by p¢ is flat, and X hence regular (cf. [48], §21.D, Theorem 51).

Lemma 3.21. Assume that the quotient morphism q: P' — X given by the action of G
via pg is flat. Denote by r: N'(K) — N'(k) the reduction map. Then q is étale if and
only if r(&s) # 0 for all o #id in G.

Proof. By Theorem 3.19, the Néron model N’ C P’ is also dense in the closed fiber of
N’. Hence, the complement Z = P’ \ N’ is of codimension greater or equal to two, and
by Zariski-Nagata purity (cf. [1], X, Theorem 3.1), it suffices to check the étaleness on
the Néron model. As being étale is equivalent to being smooth and quasi-finite (cf. [20],
Corollaire 17.6.2 and Corollaire 17.10.2) and the smooth locus in P’ is open (cf. [15],
Proposition 6.15), it suffices to check étaleness on the closed points.

Take a closed point a € N’(k). This lifts to a point A € N'(K'), ie. r(A) = a.

Furthermore, the reduction map is a group homomorphism, and we obtain

(rpe(9))(A) = (r€;0)(A) = (& + 0(A)) = (&) +7(0(A)) = 7(&) (r(A))

for every o € G, that is, the action of G on N/, is given by the translations r(§,) € N'(k).
Now if r(&,) # 0 for all o0 # id in G, the action has no fixpoint and each orbit consists of
d = [K': K] points. In particular, these are preimages of closed points ¢(a) € X, and ¢
is étale. Conversely, if 7(£,) = 0 for some o # id, then the stabilizer of each closed point
a € N'(k) is non-trivial, and its orbit consists of less than d points. In particular, the fiber
N ; (a) is equal to this orbit. If ¢ would be étale at a, then the preimage would consist of d

copies of k (k algebraically closed) in contradiction to the size of the orbit. O
In fact, we can factorize ¢ into some “maximal” étale and non-étale part:

Proposition 3.22. Assume that the quotient morphism q: P’ — X given by the action
of G via p¢ is flat. Then the subset H = {0 € G |r(&;) =0} C G is a normal subgroup

of G and allows a factorization
q

e

Pty pP/H-25X
S —S/H—— S

of q, where q1 is not étale and qs is finite étale. Moreover, G/H is an abelian group, and

the corresponding Galois extension does not depend on the choice of K'/K splitting Xk .
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Proof. To see that H is a normal subgroup, we note id € H and that for o,7 € H, we

have
P(Sor1) = (6 +7&1) = (&) = (7T &) =00,

where we used £,.-1 = — 77157 following from 0 = ¢,.—1. Hence o7~' € H and H is a

subgroup. For the normality, take 7 € G and 0 € H. Then

7“(57'07'*1) = r(éT) + T(T(&T) + Ur(fol)) =0 + 0 + Oa

i.e. normality holds. Actually, we could have also argued that H is the kernel of rp;.

We therefore get the factorization of ¢ as stated in the diagram of the claim as follows:
Restricting the action of G to H gives a non-étale morphism ¢; by Lemma 3.21. Now G
acts on P’'/H induced by the action of G on P’: Given p¢(c): P’ — P’ and pg(1): P’ — P’
for o0 € G and 7 € H, we get o7 = 7/0 for some 7/ in H by the normality. Hence we have
qipe(07) = qpe(T')pe(0) = qupe(o) by the H-invariance of qi, i.e. qipe(o): P — P'/H
factors through P//H. In fact, as H acts trivial on P'/H, we get an induced action of
G/H on P'/H. Tt is étale due to Lemma 3.21, for if we have 7(§,,) = 0 for some 7 € H
and o € G, it would follow that r(&,) = 0, that is to say, o € H.

To see that G/ H is an abelian group, we show that each commutator o7o

=1 actually

lies in H. We therefore compute

where we used that G acts trivially on N'(k).

For the last assertion, take another Galois extension L over K splitting Xg. The
compositum L' = LK’ is again a Galois extension over K. To compute the kernel of
the map rpe: G — N|(k), we first note that for o in Gal(L'/K’), we have { = 0
due to Remark 3.6. Hence, Gal(L'/K’) is contained in ker(rp¢), and rpg factors over
Gal(L'/K)/ Gal(L'/K') = Gal(K'/K). So we can restrict ourselves to the extension K’
over K. Thus, we have identified the kernels of rpg for the extensions L'/K and K'/K.
The same applies to L'/K and L/K, and we are done. O
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Chapter 4

Base change of fibrations

For the whole chapter, we fix the following notation: S is the spectrum of a complete
discrete valuation ring R with field of fractions K and algebraically closed residue field k.
We denote by Xg a torsor under an abelian variety Ag over K and X — S will be a
proper model of Xg. In this setting, we study the behaviour of the multiplicity of the
closed fiber X under base change in the first section. To restrict the general case of
abelian fibrations over Dedekind schemes to our setting is justified by Proposition 2.1,
which says that the multiplicity is invariant under localization and completion of the base
scheme. In the second section, we will use the results to understand étale covers of X.
The whole chapter follows the treatises of [54], §5 and [53], §4, and is adjusted to abelian

varieties.

4.1 The multiplicity of closed fibers under base change

Given a proper model X — S of X, we write 22:1 m,; F; for the closed fiber X}, considered
as a Weil divisor and denote by m = ged{m;} the multiplicity of the closed fiber Xs. To

relate m to an invariant only depending on the generic fiber, we define
0(Xk/K)=gcd{[k(P): K]| P € Xk closed point }.

The following is a result from [14], Proposition 8.2(b):

Proposition 4.1. Let X be a proper regular model of X over S. Then m = §(Xk/K)
holds. In particular, the multiplicity of the closed fiber depends only on the generic fiber

and equals one if X has a rational point.
We now make the following construction: Given a finite separable field extension K'/K

of degree d, we let S’ be the normalization of S in K’. As we will see in Proposition 5.10,

S’ is again the spectrum of a complete discrete valuation ring R’ which is totally ramified
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of degree d over R, i.e. mR’ = m’?. Consider the following commutative diagram

X' (R

% X (4.1)
N |’

S — 5,

where X’ — X xg S’ is the normalization. This is possible because X xg S’ is integral:
As X xg S" — X is flat with integral generic fiber, X xg S" integral follows from [45],
Proposition 4.3.8. For the following discussion, we need 7 finite. By [15], Theorem 12.51,

S is an excellent scheme, i.e. it is locally noetherian and satisfies the following conditions:

(i) For all s € S, every fiber of the canonical morphism Spec(ﬁgys) — Spec(Os ) is

geometrically regular.

(ii) For every morphism 7' — S of finite type, the set of regular points ¢t € T such that

O, is regular is open in 7.

(iii) For every morphism T' — S of finite type and for every pair of closed irreducible
subsets Z C Z' C T, every maximal chain Z = Zy C Z; C --- C Z, = Z' of closed

irreducible subsets has the same length.

The class of excellent schemes is a rather big one: If Y is excellent and Y/ — Y is a mor-
phism locally of finite type, then Y’ is also excellent, cf. [20], Proposition 7.8.6. Therefore,
all schemes appearing in diagram 4.1 are excellent. Furthermore, the normalization of an
integral scheme is finite (cf. [20], Proposition 7.8.6.) and thus both S — S as well as
X' — X xg S’ are finite. This gives my finite. We remark that the property “excellent”
is the right notion to study resolution of singularities, cf. [20], Proposition 7.9.5 and Re-
marque 7.9.6. The following result is [54], Lemma 5.1.2, generalized to the case of torsors

of abelian varieties:

Lemma 4.2. Let X, = mF be the closed fiber of X — S with multiplicity m. Then
(i) the relations m’ | m and m | dm’ hold,
(i1) if Tx is étale, then m = dm’ holds,

(i1i) if X(K) is non-empty, then m; =1 for some 1 < i <r and m = 1.

Proof. To prove the relations, we denote as usual X;, = mF and X; = m/F’.

Denoting
the morphism S — S by g, we obtain f*¢g*{n} = 7% f*{n} for a uniformizer = € R,

considered as a divisor, by the commutativity of the diagram. As ¢ is totally ramified,
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g*{m} = d{7} holds as divisors, where 7 € R’ is again a uniformizer. Hence, we deduce
dm'F' = mn%, F, and m | dm’.
Now recall (e.g. [45], Exercise 7.2.3; one needs additionally normality) that the pullback

of F' under mx can be written as

mxF = Z €t/ ult, (F){2'},

T

where the sum runs over all points of X’ of codimension one such that z = mwx(z') is
of codimension one in X, the integer mult,(F") is the multiplicity of the divisor F' at z,
the number e/, = lengthﬁxlw,(ﬁX/@//mwﬁX/,x/) is the ramification degree and {z'} is
the prime divisor associated to z’. If mx is étale, it is unramified and e/, = 1 for all
ramification degrees. Therefore, the greatest common divisor of the multiplicities of 7% F’
is equal to one, and 7% F = F’. Hence, dm/F' = mF" and m = dm/.

More generally, let a,...,2) be points of codimension one in X’ mapping to z of
codimension one in X. Then we will see the formula d = 71, ey /.[r(2:): k()] in
Proposition 5.12. Thus, the greatest common divisor of the €x!/x has to divide d. Writing
7% (F) = AF', the integer A then has to divide all e,//,. Hence, A divides d and from
Am = dm/, we deduce m’ | m.

For the third statement, take a point P € X (K) and denote its closure in X by C. We
then have ,

1= [r(P): K] = deg,(Ox (Xs)le) = Y midegy(Ox(F)lc).
i=1
Now deg,(Ox (F})|c) = dimy HY(X, Ocnr,) > 0, so C intersects exactly one component
F; which has multiplicity m; = 1, and therefore m = 1. O

4.2 The maximal field extension inducing an étale covering of a

regular S-model

Consider again the commutative diagram (4.1), where X was a proper model of Xx over
S. We say that the extension K'/K of function fields corresponding to the dominant
morphism of Dedekind schemes S’ — S induces an étale covering of X if the induced

morphism 7wy : X' — X is étale.
Lemma 4.3. The following statements hold:

(i) Every field extension K'/K inducing an étale covering is separable.

(1) Let K" /K'/K be a tower of fields. Then K" /K induces an étale covering Tx if and
only if K'/K and K" /K' induce étale coverings mx and mx:.
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(11i) Inducing an étale covering is stable under composition, i.e. given two field extensions
K1, Ky over K in a common separable closure K°°P, each inducing an étale covering,

the compositum K1Ks/K induces an étale covering.

Proof. To prove separability, consider the reformulation
Spec(K') = Spec(Ox ) — Spec(Ox ;) = Spec(K)

of the generic fiber of mx. The extension must be separable by étaleness.

To see that the subextensions K'/K and K”/K' of an extension K”/K inducing an

étale covering induce étale coverings, consider the base change diagram

TX

TN

T/ ’ Tx X

X" X
X xg8" —— X xg8 —— X

| |

s » S s,

where S” = Spec(Ogr) and S’ = Spec(Ok+) with O» and Ok being the rings of integers
in K" and K’. Furthermore, the lower rectangles are cartesian. Because both the normal-
ization X’ — X x5 and the base change morphism X xg S’ — X are affine, 7x is affine.
The morphism 7y’ is dominant and 7x is finite, étale, surjective by assumption. We thus
apply [53], Lemma 4.7, stating that both mx/ and 7x are finite, étale and surjective. In
particular, K'/K and K" /K’ induce étale coverings. On the other hand, if 7x and mx/

are étale, then 7 is, proving the “only if” direction.

For the third assertion, let X; — X and Xo — X be the corresponding étale morphisms
to K1 and K. By base change and stability under composition, 7: X1 xx Xo = X; > X
is again étale. The generic fiber of 7 equals K1 ® x Ko. By [20], Remarque (4.2.1.4) in the
Errata et Addenda, it has Krull dimension zero. Moreover, it is regular as 7 is smooth
surjective and X is regular, see [15], Corollary 14.58. Hence every connected component
is regular and gives an étale morphism to X. We thus may take the connected component
X' of X; xx X5 belonging to the prime ideal that is the kernel of the canonical map
Ky ®k Ko — K1 K. The morphism X’ — S factors over S’ = Spec(Ok, k,) with Ok, k,
being the integral closure of R in KiK,. It remains to show that X’ — S’ is actually
induced by K1Ko/K:

Restricting 7: X7 X x Xo — X to X’ gives a morphism X’ — X x g S’ by the universal
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property of the fiber product. So we get a factorisation of 7 by

.
X s X xg8 — X.

Now 7 is a finite morphism, and hence u is finite by cancellation. As all morphisms are
dominant and K (X xgS") = K1 K9 = K(X'), u must be the normalization morphism (see
[15], Proposition 12.44), i.e. 7 is induced by K1 Ks/K. O

Thus, we may consider the compositum M /K of all finite field extensions inducing an
étale covering. We call it the maximal field extension inducing an étale covering of X. The
next proposition on this field extension generalizes [54], Lemma 5.1.2, on the behaviour of

the multiplicity under base change to our setting:

Proposition 4.4. Let M/K be the mazimal field extension inducing an étale covering
of X. Then the following holds:

(i) M/K is a finite Galois extension and induces an étale covering.

(ii) If g:' Y — X is a proper birational morphism between regular integral S-models
of Xk, the maximal field extensions inducing an €étale covering of X resp. Y coincide.
In particular in the case of relative curves, M /K does not depend on the choice of

a regular S-model X of Xx over S.
(iii) If K'/K a finite extension such that X (K') # @& holds, then M C K'.

Proof. For the first assertion, we note that M /K is separable as the compositum of sepa-
rable extensions. The normality follows from the observation that taking some embedding
o: M — K5 gives a field extension o(M)/K that again induces an étale covering of X,
hence o(M) C M. Thus M/K is normal and therefore Galois. It is finite by Lemma 4.2,
as every separable extension inducing an étale covering reduces the multiplicity of the
closed fiber. Writing M as a compositum of finitely many fields inducing étale coverings,
it must itself induce an étale covering by the previous lemma.

For the second assertion, we show that the category of finite étale coverings over X
- denoted by Et(X) - is equivalent to Et(Y). One considers the base change functor
X' — Y xx X', which is well-defined as étale is stable under base change. To see that
it is fully faithful, we note that 0x = g.0y due to X normal and f proper, birational.
So the functor & +— g¢g*& from the category of finite locally free &'x-modules to finite
locally free &y-modules is fully faithful (Homg, (&1, &>) is again locally free and the map
Home, (61,82) — Home, (61, 82) ® g+Oy = g«Home, (9" 61, g* &) is an isomorphism), cf.
[23], Chapter X, Lemma 3.5.
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To prove essential surjectivity, it suffices to consider a connected and hence irreducible
étale covering Y’ — Y. Then it can also be considered as the normalization of Y in
K(Y"), cf. [15], Proposition 12.44. We want to show that Y’ ~ Y xx X’ holds for the
normalization X’ of X in the function field of Y’. To see that X’ — X is étale, we note
that the complement of the open locus U C X such that ¢g~!(U) — U is an isomorphism
is of codimension greater or equal to two by [45], Corollary 4.4.3. We know that X’ and
Y’ coincide over U, as both are normalization morphisms. Hence, X’ — X is étale over
U. Applying Zariski-Nagata purity (cf. [1], X, Théoréme 3.1 or Corollaire 3.3) shows that
X' — X is étale everywhere.

Using the universal property of the normalization, the morphism Y’ — X factors over

X' and we get a commutative diagram

Y — X.

The fiber product Y xx X' is irreducible, as its irreducible components correspond
to minimal prime ideals in K(X') ®gx) K(Y) = K(X') (remember K(Y) = K(X) by
assumption). Moreover, it is regular as Y xx X’ — Y is étale by base change and the
base Y is regular (cf. [45], Corollary 4.3.24). The function fields of Y’ of the fiber product
Y x x X’ and of X’ coincide, so Y/ — Y x x X’ is birational. Hence, by a form of Zariski’s
Main Theorem (cf. [15], Corollary 12.88), it is an open immersion. But it is also finite due
to the finiteness of Y/ — Y and cancellation, and thus an isomorphism.

Therefore, the categories Et(X) and Et(Y) are equivalent, and their maximal field
extensions inducing étale coverings coincide. If we assume X; and X5 to be regular
models of a smooth projective geometrically connected curve X over S, one always finds
a relative curve X — S lying above X; and X3, i.e. morphisms X — X; and X — X
respecting the isomorphisms of the generic fibers (e.g. look at [54], Lemma 3.2.6).

For the last point, we may assume K'NM = K as K'NM C M induces an étale covering
and we can work on with this étale covering. So let X’ — X be the normalization of X
in K" and 7x: X — X be the étale cover induced by M. We make the base change

X/XXX*)X

| [

X — X.
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The morphism 7y is étale by base change. The scheme X’ x x X is irreducible with generic
fiber K(X') @k (x) K(X) =K' @k M = K'M and by the étaleness of wx regular. It is
induced by the extension K'M over K’, and applying Lemma 4.2 (ii) gives 1 = [K'M : K],

ie. M C K'. O

Corollary 4.5. In the situation of Proposition 3.22 where the quotient q: P — X, given
by the group action pe, is flat, M = K’G/H/K induces the étale cover P'/H — X. It
is the maximal field extension inducing an étale covering of X. In particular, this is an

abelian extension that sits in every extension L/K splitting X .

Proof. As Xk (K') is not empty, the maximal field extension inducing an étale covering
M/K of X is a subfield of K’. Furthermore, L = K 'G/H induces an étale covering by

Proposition 3.22: Consider the following commutative diagram

where S is the integral closure of S in L and X the normalization of X xg S in L. The
dotted arrow P'/H — X Xg S comes from the universal property of the fiber product
and P'/H — X from the universal property of the normalization (remember that the
normality and irreducibility of P’ imply these properties for the quotient P’'/H). The
maps P'/H — X and X — X are finite of the same degree, so P'/H — X is finite of
degree 1, i.e. an isomorphism. Therefore, P'/H — X is induced by L/K and L C M.
On the other hand, the assumption L C M implies N = Gal(K'/M) C Gal(K'/L) = H.
As above, we argue that the finite morphism P'/N — X is induced by M/K. By the very
definition of M, the morphism P’'/N — X must be étale. But take an element o € H that
is not in N. Its image in G/N is not trivial and acts on P'/N. As o fixes every closed
point on the closed fiber of P’, it also has to fix every closed point of the closed fiber in
P'/N. Therefore the quotient morphism P'/N — (P'/N)/(G/N) = X is not étale, i.e.

M /K does not induce an étale covering. Contradiction. O

Corollary 4.6. Let d be the prime-to-p part of m, the multiplicity of the closed fiber.
Then d | [M: K].

Proof. By Corollary 5.13, there is - up to isomorphism - a unique extension K'/K of degree
d given by K’ = K[T|/(T%—u), where u € R is a uniformizer. We have to show that K'/K
induces an étale cover Tx: X' — X. By Zariski-Nagata purity (cf. [1], X, Théoréme 3.1),
it suffices to check étaleness on the points of codimension one. So let P € X be a point of

codimension one and A = Ox p its stalk, a discrete valuation ring due to X regular. The
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base change A[T]/(T%—u) of A by the flat morphism R — R’ = R[T]/(T%—u) is again flat.
If P lies over K, the uniformizer  is a unit in A and Spec(A[T]/(T% — u)) — Spec(A) is
unramified because the fiber over the residue field k(A) of A is given by the finite separable
field extension x(A)[T]/(T¢ — u). Hence, Spec(A[T]/(T? — u)) — Spec(A) is étale and
A[T)/(T? — u) is already normal.

Now if P lies over k, the base change A[T]/(T? — u) is not normal anymore: As A is a
discrete valuation ring, we can write u = at™ in A, where a is a unit, ¢ a uniformizer in A
and [ a positive integer (recall that m is the greatest common divisor of the valuations of u
given by codimension one points over k). Denoting the residue class of T in A[T]/(T¢ —u)
by #/u, the element /a = &u t~ (™4 is a d-th root of a and the field of fractions L’ of
A[T]/(T® — u) is isomorphic to both L(/u) and L(a), where L = K(X). In particular,
a satisfies an integral equation, but /a is not element of A[T]/(T? — u). On the other
hand, consider A[T]/(T% — a). Its field of fractions is L’ and the homomorphism

AT —u) — A[T)/(T —a), T+ t4T
is an inclusion. Like in the case where P lies over K, as a is a unit in A and p is coprime

to d, the map Spec(A[T]/(T¢ — a)) — Spec(A) is étale. In particular, A[T]/(T? — a) is a

normal ring. O
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Chapter 5

Group cohomology of discrete valuation
rings and higher ramification groups

This chapter recapitulates some group cohomology theory we are going to use. For a Galois
extension K’'/K with Galois group G and an abelian variety A, there is a canonical
action of G on the K’'-valued points of A resp. Ags that respects the group structure.
Thus, Ag(K’) can be considered as a G-module and we will define cohomology groups
H(G,Ag(K")) for i > 0. The first cohomology group is especially important to us as it
classifies torsors of abelian varieties becoming trivial over K’. Torsors already appeared
throughout this work as generic fibers of abelian fibrations. Now assume additionally that
K is equipped with a discrete valuation giving with ring of integers R. If R is complete,
the normalization R’ of R in K’ will be again a discrete valuation ring with maximal ideal
m’, cf. Proposition 5.10. Then G will not act only on K’, but also on R’ and moreover
on R'/m/1 for all i > —1. The elements of G acting trivially on R'/m/“+! give rise to
a filtration G = G_1 D Gg D Gy D ..., the higher ramification groups. In the wildly
ramified case, we will state and prove Sen’s Theorem [65] on the structure of H!(G, R') in
terms of the higher ramification groups. We will later see that this group gives the torsion

part of an abelian fibration in certain cases.

5.1 Profinite group cohomology

This section relies on the exposition of Serre in [67].

A topological group G is called profinite if it satisfies one of the following equivalent
conditions (cf. [67], Proposition 0):

(i) G is the inverse limit of finite discrete groups.

(ii) G is totally disconnected, quasi-compact and Hausdorff.

Note that for a totally disconnected, quasi-compact Hausdorff group G, we have an iden-
tification G = @G /H, where H runs over all open, normal subgroups of G. As G/H is
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finite for H C G open and normal. This shows the easy implication (i7) = (i). We also
want to stress that in the following, one obtains the usual group cohomology for finite
groups G if one equips G with the discrete topology, which makes it profinite.

Let A be an abelian group. We equip A with the discrete topology and a continuous
G-action that respects the group structure of A. Those modules will be called discrete
G-modules. Denote for each natural number n by C"(G, A) the set of all continuous maps
of G" to A (G™ equipped with the product topology) and define the coboundary map
d: C"(G, A) — C"(G, A) via

n

(f)(g1s- - gnt1) = g1 (920 s Gnr1) + Y (911 GiGit 1, s Gnt1)
=1

+ (1" f (g1, 9n).

This gives a cochain complex C*(G, A) whose cohomology groups are denoted by H?(G, A)
for ¢ > 0. They are called the cohomology groups of G with coefficients in A. We now list

some properties given in [67], §2.2:

Proposition 5.1. Let (G;)ier be an inverse system of profinite groups. Assume that for
every i € I, we are given a discrete Gj-module A;, and that they form a direct system
(Ai)ier such that fori < j in I, the maps ¢i;: G; — G; and ;0 A; — Aj are compatible
in the sense that v;j(¢ij(9)a) = gij(a) holds for all g € G; and a € A;, i.e. yj is a
G j-homomorphism when A; is considered as an Gj-module via ¢;j. Set G = l'&nGi and
A= hAlAl Then one has
HY(G,A) = liqu(Gi,Ai)
el

for each ¢ > 0. If A is just some discrete G-module, we have

HY(G, A) = lim HY(G/U, A"),
U

where the limit runs over all open, normal subgroups U C G and AV is largest subgroup

of A on which U acts trivially. We also have

HY(G, A) = lim HY(G, B),
B

where the limit runs over all finitely generated sub-G-modules of A.

We will prove in Proposition 5.9 that H4(G, A) is torsion for finite groups G and ¢ > 1.
Using the property H1(G, A) = liqu(G/U, AY) shows that H?(G, A) is torsion for an
arbitrary profinite group G and ¢ > 1.
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Example 5.2. Let Ax be an abelian variety over a field K. Let G be the Galois group
of the extension K®P /K. This is a profinite group. Considering Ax (K5P) as a discrete
group, the group action m: G x A (K*P) — Ax(K"P) is continuous: If P is a point in
A (K*%P), we have to show that m~!(P) is open in G x Ax(K*P). As G x A (K5P) is
the union of the open subsets G x {Q}, with @ running through A (K%P), it suffices to
show that {(c,Q) | 0(Q) = P} is open in G x {Q}. Taking a finite Galois extension L
over which @ is defined, the map m: G x {Q} — Ax (K5P) factors over G/N x {Q} as
N = Gal(K®P/L) acts trivially on Q. Now N is open in G and G/N x {Q} is a finite set
with the discrete topology, so the preimage of { P} is open in it. As the map G x {Q} —
G /N x{Q} is continuous, the set {(0,Q) | 0(Q) = P} is open in G x{Q}. Thus, Ag (KP)
is a discrete G-module and we may consider the cohomology group H'(G, A(K*P)) as is

done in Chapter 3.

From the explicit description of the coboundaries and the cochains, one deduces easily

the following description of the first two cohomology groups:

Lemma 5.3. The following equalities hold:

HY(G, A) = A

f: G — A continuous | f(g192) = f(g1) + g1 - f(g2) for any g1,92 € G }

HY(G, 4) =1
(G, 4) {f: G — A continuous | f(g) =¢-a—a for some a € A}

In the preceding discussion, one could also forget the topology on G and do the same
constructions, but the resulting cohomology groups will in general be different. Yet, if G
is a finite group, they give the same cohomology groups stemming from the fact that G is

discrete and thus all cocycles and coboundaries are continuous.

Example 5.4. Let G be the profinite completion 7 = @n Z/nZ and let A = Q be
equipped with the discrete topology and trivial G-action. Using Proposition 5.1, we have
HY(G,A) = @HI(Z/nZ,A). As the G-action is trivial, H'(Z/nZ, A) can be identified
with group homomorphisms Z/nZ — A by Lemma 5.3. Therefore, we deduce

H'(G, A) = lim Hom(Z/nZ, Q) = 0,

as Q is torsion-free.

Now on the other hand, dropping the condition “continuous” in our construction of
cohomology would give again Lemma 5.3, only discarding the condition “continuous” in
the description. But now there are non-trivial group homomorphisms 7 — Q: Take the
canonical inclusion Z — 7 and the inclusion Z — Q. As Q is an injective Z-module, the
the homomorphism Z — Q extends to Z. Therefore, the resulting first cohomology group

is non-trivial.
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There is also another description of group cohomology as the derived functor of A — A%,
For G profinite, we refer to [63], §6. As for the forthcoming discussion we are only interested
in finite groups and to simplify the discussion, we do not care about the topology. Let
G be a group and A be a G-module. Given a commutative ring R, we impose on R the
trivial G-action and define R[G] to be the free algebra R[T,, g € G] over R with relations
Tg. Ty, = Ty g, Often, A is not only a G-module, but an R[G]-module. We then observe
that

H°(G, A) = A = Hompg(R, A)

as R-modules, where the right equality comes from the map a — (1 — a) with inverse
¢ = ¢(1). One then observes that the derived functors of Hompgg (R, ) coincide with
the group cohomology:

Theorem 5.5. For any R|G]-module A and q > 0, we have H1(G, A) = Ext4

R[G] (R7 A);

considered as an R-module.

This point of view has the advantage of being more flexible in terms of choosing a

resolution:

Example 5.6. Let G = Z. Then for any ring R, we have R[G] = R[T*!]. Consider the
exact sequence
0 — RTF =2 RITF) — R — 0.

Applying Hompgg(—, A) for some R[G]-module A, we obtain the exact sequence
0 — Hompprs1)(R, A) — Hompypey (R[T*'], A) = Hom gyp41)(R[T*'], A) — 0.

Using the canonical isomorphism Hom pgpre1) (R[T*!], A) = A, we deduce

AC i=0,
HY(G,A)=¢A/(T-1)A i=1,
0 i> 2.

We interpret H(G, A) as the largest submodule of A with trivial G-action and H!(G, A)

as the largest quotient with trivial G-action.

Example 5.7. Let G be the finite cyclic group Z/nZ for n > 1. Then we identify
S = R|G] with R[T]/(T™ — 1) and define the maps ¢,1: S — S by ¢(T') = 1 — T resp.
Y(T)=1+T+...+T" 1. As the concatenations ¢ o 1) and v o ¢ are zero maps, they

give a projective periodic resolution

0 R+ S« 5 92 g8 .
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Again applying Homg(_, A), we obtain the cochain complex
0 — Homg(R, A) — Homg(S, 4) % Homg(S, 4) % Homg(S, A) 3 Homg(S, A) 5 ...

Using the identification Homg(S, A) = A and Homg (R, A) = A% and denoting by A[1—T]
and A[1+T + ...+ T"!] the kernels of ¢ and 1, this gives

AC q=0,
HYG,A) =S AL +T+...+T" /(1 -T)A q odd,
Al -T)/A+T+...+THA ¢ > 2 even.

Note that in this context, A[1—T] is the invariant ring A and (14+T+...+T"71): A — A
is the trace morphism Tr: A — A which maps a to deG g-a. We observe that for ¢ > 1,
the cohomology groups in odd dimension are all equal and the ones in even dimension are
all equal. In particular, if the group acts trivially, we get H2¢T1(G, A) = A[n], the kernel
of multiplication by n, and H?1+2(G, A) = A/nA for ¢ > 0. Moreover, if the group is
trivial (i.e. the case n = 1), we obtain HY(G, A) =0 for ¢ > 1.

We now want to elucidate some functorial properties: If we work with a profinite group,
a closed subgroup H C @ is again profinite with respect to the subspace topology. It
acts continuously on A and therefore gives homomorphisms HY(G, A) — HY(H, A), called
restriction maps. If moreover H is normal in GG, we may consider the quotient group
G/H, again a profinite group with respect to the quotient topology. It does not act on
A anymore, but on A”. It induces a homomorphism H9(G/H, A") — HI(G, A), called

inflation map. One checks that the inflation-restriction sequence
0 — HY(G/H, A") — HY (G, A) — H'(H, A)%/H

is exact, cf. [66], Chapter VII, §6. In fact, these are the first terms of the five-term exact
sequence of the Lyndon—Hochschild-Serre spectral sequence, which can be found in [58],
Chapter II, §4:

Theorem 5.8. If H C G is a normal and open subgroup, there is a spectral sequence
EP" = HP(G/H,HY(H, A)) = HPTI(G, A) which gives an exact sequence

0— HY(G/H, A") - HY(G,A) — H'(H, A" - H*(G/H, A") — H*(G, A).

If H C G is normal and open, the quotient G/H is finite and we can define the norm
map
AP 5 AY o — Z ga.
gHeG/H
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This is well-defined and gives homomorphisms H?(H,A) — H%(G, A), called corestric-
tions. The composition with the restriction in degree zero, i.e. A9 — A" — AC i
nothing but multiplication with the index [G: H]. In fact this gives multiplication by

[G: H] on all cohomology groups. We get the following commutative diagram

[G: H]

HY(G,A) HI(G, A)
restrim %restriction
H(H,A),

from which we deduce:
Proposition 5.9. In above situation, the following statements hold:

(i) The kernel of the restriction map is annihilated by |G : H].
(i) If pt [G : H|, then the restriction is injective on the p-primary part of H1(G, A).

(i1i) If G is finite of ordern, then H1(G, A) is annihilated by n. If moreover multiplication
by n on A is bijective, then the isomorphism n: H1(G,A) — HY(G, A) is the zero
map, i.e. H4(G,A) =0 for ¢ > 1.

5.2 Higher ramification groups

Our goal is to study the torsion in the first higher direct image of an abelian fibration. By
Proposition 2.1, this can be done locally on the base. So we may assume our base S to
be the spectrum of a complete discrete valuation ring R. Working with complete discrete
valuation rings has the nice property that this notion is stable under finite extensions, cf.
[66], Chapter II, §2, Proposition 3:

Proposition 5.10. Let K be a complete field with respect to some discrete valuation v
defining a discrete valuation ring R C K. Take a finite extension K'/K of degree n and let
R’ be the integral closure of R in K'. Then R’ is a discrete valuation ring, a free module

of rank n over R and K' complete with respect to the valuation induced by R'.

Without the completeness assumption, there are in general finitely many prime ideals
mp,...,m; in R’ lying above m C R, i.e. m; N R = m. Note that every prime ideal is a

maximal ideal due to the rings being Dedekind rings. We may thus write

mR =m . m

The integer e; > 0 is called the ramification index of m; in K'/K. On the other hand, the
canonical map R — R’ — R’/m gives a finite field extension R/m — R'/m/ of degree f;,
called the residue degree of w, in the extension K'/K.
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Example 5.11. Let R = Z with field of fractions K = Q. Take the Galois extension
K' = Q(i) over K of degree 2. Then the normalization of R in K’ is R’ = 7Z][i], the
Gaussian integers: Every = € Q(7) is of the form = = a + bi and root of the polynomial
(T — (a+bi)(T — (a—bi)) = T? + (—2a)T + (a* + b?). Hence, if z is in the normalization,
it is either in Z or its minimal polynomial is of the form T2 + (—2a)T + (a? + b*) with
integral coefficients. We conclude that 2a € Z and from 4(a? + b?) € Z that 2b € 7Z as
well. Moreover, (2a)? + (2b)2 = 0 mod 4, which is only possible if (2a)? = (2b)? = 0 mod
4. This gives 4a and 4b in 47, that is, a and b are integers.

We now study which maximal ideals lie over a given maximal ideal (p) C Z by examining
the fibers of S’ = Spec(R') — Spec(R) = S: The fiber over the point corresponding
to the prime p is given by the spectrum of F,[T]/(T? + 1). If p = 2, the polynomial
T? +1 = (T + 1)? is reducible and the fiber is a thickened point. This means that there
is only one maximal ideal m’ lying above (2) and 2Z[i] = m’2. If p is odd, the polynomial
T? + 1 has a solution if and only if —1 is a square in F,, i.e. the Legendre Symbol (%)
is one. These are exactly the primes of the form p = 4z + 1, and for those, we have
F,[T]/(T? 4+ 1) = F, x F,, by the Chinese Remainder Theorem. If p is of the form 4z + 3,
the polynomial T2 + 1 is irreducible and F,[T]/(T? + 1) = F,2. Hence, if p = 1 mod 4, the
fiber is given by two points which correspond to two maximal ideals over (p) of ramification
index one and residue degree one. If p = 3 mod 4, the fiber consists of one bigger point,
which corresponds to a single maximal ideal lying above (p) of ramification index one and

residue degree two.

The ramification indices and residue degrees satisfy the following proposition (cf. [66],
Chapter I, §4, Proposition 10):

Proposition 5.12. The ring R'/mR’ is an R/m-algebra of degree n = [K': K| isomorphic
to [Ti—y R'/m and the following formula holds:

T
=1

In the special case of having only one prime ideal m’ C R’ lying above m and f = 1
(which by above formula is equivalent to e = n), we say that K'/K is totally ramified at m.
The other extremal case would be that e; = 1 for every i = 1,...,r and R'/m] is separable
over R/m. In this case, we say that K'/K is unramified over m. Applied to Example 5.11,
this means that the extension Q(7)/Q is totally ramified at (2) and unramified over the
primes p satisfying p = 1 mod 4.

Corollary 5.13. Let K be a complete discrete valuation field with algebraically closed
residue field k. Then every field extension K'/K of degree n prime to p = char(k) is of
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the form K' = K[T]/(T™ — u), where u is a uniformizer of R. Moreover, K'/K is a cyclic

Galois extension.

Proof. Let ' € R’ be a uniformizer. As k is algebraically closed, the extension K'/K
is totally ramified of degree n and there exists a unit 7 € R’ such that u = ru™. As
the residue fields coincide, we can find an element v € R* such that its image in R’

Lu, we may assume that

satisfies v = r mod m’. Thus, replacing the uniformizer u by v~
r =1 mod m’. The polynomial 7" — 1 € k[T] has a root in k, so the lift 7" —r € K'[T]
of it also admits a solution in K’ by Hensel’s Lemma. Thus, there is some w € K such
that w" = r. Replacing v’ by w4/, we obtain «/* = « and u’ is obviously an element of
degree n. For the cyclic statement, this is standard Galois theory (cf. [40], Chapter VI,

Theorem 6.2). O

In light of the propositions above, when working over a complete discrete valuation ring
R with algebraically closed residue field K = R/m, we only have one prime m’ C R’ lying
above m C R with f = 1 due to k being algebraically closed. Hence, if the extension
K'/K is not trivial, we will only work with totally ramified extensions of ramification
index e = [K': K]. This is the case to keep in mind. But the following discussion holds
in greater generality: Until the end of this section, if not stated otherwise, we assume R
to be a complete discrete valuation ring with residue field k of characteristic p and K'/K
to be a Galois extension with Galois group G. We denote by R’ the integral closure of R

in K’ and its residue field ¥’ to be a separable extension over k.

We now consider the group action of G on the subring R’ € K’. As every element
a in R’ can be written as the root of a monic polynomial with coefficients in R, it will
be mapped to another root of this polynomial under any automorphism of K’ over K.
Hence, its image will again be integral and therefore be contained in R/, thus R’ is closed
under the action of G. Surely, the unique maximal ideal will be mapped to itself by an
automorphism, and we deduce o(m’") = o(m’)? for any o in G and i > 0, inducing a
well-defined action of G on R'/m’". We therefore get a filtration

G; = {0 € G | 0 operates trivially on R'/m’1}

of G for i > —1. The group G; is called the i-th ramification group.

Proposition 5.14. The ramification groups give a descending filtration of G = G_1 by
normal subgroups G O G; with G; = {idg+} for i large enough.

Proof. As R'/m’® = 0, the equality G_; = G is immediate. To show that G; D G;41 holds,
take some o € Gj11, i.e. o(x) — z is in m"*2 C m"*! for any x € R'. Thus, o lies in G;.
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For the normality, take o € G; and 7 € G. They give automorphisms of R'/m"*! with

0| g pitr = id gy jyit1, so in particular
-1 = .
(TO'T )‘R//m/2+1 = ldR’/m”‘H .

Hence, 707! is element of G;. To see that the filtration terminates, assume that o in G
lies in all G, that is, o(x) —x € m"*! for all z € R’ and i > —1. Then o(z) — z lies in all
141

intersections (1), m = 0, i.e. o is the identity on R’. As G contains only finitely many

elements, this proves the termination of the filtration. ]

We now take a look at the quotients G;/G;y1. For details, we refer to [66], Chapter IV,
§2. The extension k'/k is normal by [66], Chapter I, §7, Proposition 20, and thus, by our

general assumption k’/k separable, Galois. The map
G — Gal(K'/k)

is surjective (cf. [66], Chapter I, §7, Proposition 20). The kernel, that is, the group of
automorphisms acting trivial on &/, is also called inertia group and coincides by its very
definition with Gy. To get information on the other quotients, we define a decreasing
filtration on the units U = R’ by defining U° = U and U? = 1+m"* for i > 1. We observe
the following:

Proposition 5.15. The group U° /U is canonically isomorphic to the multiplicative group
k'™, Fori > 1, the quotient U' /U is canonically isomorphic to the group m'' /m/"+1,

which is a one-dimensional k' vector space.

Proof. The first assertion immediately follows from the surjection U° — k’*. For the
second assertion, consider the surjection m’* — U*/U**! mapping 2 +— 1 + 2. This is a
group homomorphism, for (1 + x)(1+y) = 1+ (x + y) holds in the quotient. Its kernel
consists of the elements of m"“*1, proving m’ /m’"*! = U? /U1 which is a k’-vector space

of dimension one. O

To establish a connection to G;, we fix a uniformizer u’ € R’. We then define maps

G — U, o+

for i > 0. These are well-defined, for we have o(u/) — v’ € m"*! by assumption and
factoring out the uniformizer, this means that o(u/)(u/)~' — 1 € m’". This is equivalent to

o(u)(u')~t € U'. This map induces a group homomorphism

©: Gi/Gi-H — Ui/UiJrl, or—
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which is injective:

Proposition 5.16. Above map ¢ does not depend on the choice of a uniformizer and is

an injective group homomorphism.

Proof. We first show that ¢ does not depend on the choice of the uniformizer u': Taking

another uniformizer t = ru’ with r € U°, we calculate

As by the definition of o € G;, we have o(r) = r mod m’*!. This in turn yields that
o(r)r~1 is equivalent to 1 mod m"!, showing that o(u')(v/ )~ = o(t)t~! in U /UL,

For the homomorphism property, take o and 7 in GG;. Then

9

or(u) o) o
uu(u

7 o) T o(r(w)u' )
1

u’
1\ — / u/ T(u/)(u/)fl

u

holds, so we have to show that the last factor is in U;41. But this is immediate from the
argument o(r)r~! =1 mod m'**!, now taking r = 7(v/)(v/)" € U* C U.

For the injectivity, let o(u/)(u/)~! be trivial, that is, o(u/)(v/)~1 = 1 + a for some
a € m"*1. From this, we deduce o(u') — v’ = v'a € m**2 ie. 0 € Gi41. Note that this
must be proven for every element in R’ actually, but as u’ generates R’ as an R-algebra,

it is enough to check at a uniformizer. O

We now reap the fruits of our efforts:

Corollary 5.17. The group Go/Gy is cyclic of order prime to the characteristic of the
residue field. For i > 1, the groups G;/Git1 are direct products of elementary abelian
p-groups. In particular, if p = 0, then G = {1}. Otherwise, G1 is a p-group and G is
the semi-direct product G1 x Go/G1.

Proof. By the propositions above, we may embed Go/Gy into UY/U! = k', As Go/G1
is finite, it must be cyclic of order prime to the characteristic p of k. Again, we embed
G;/Giy1 into U /U™ C k. If p = 0, there is no finite additive subgroup and the quotient
is trivial. If p > 0, every element is annihilated by p, and G;/G;41 is elementary abelian.
Thus, each element in G is of order power of p and G is a p-group. Applying the Schur—
Zassenhaus Theorem on the normal subgroup G, we deduce that Go = G1 x Go/G1. O

5.3 Group cohomology of extensions of complete discrete

valuation rings

We are now in the situation of describing the cohomology groups H' (G, R') for the integral

closure R’ of a complete discrete valuation ring R in the Galois extension K'/K with
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Galois group G. The residue field K = R/m is assumed to be algebraically closed, hence
the extension K'/K is totally ramified. We start with the case that p = char(k) does not
divide |G|, which means that G; = {1} by Corollary 5.17. In this case, we call K'/K
tamely ramified and the cohomology groups H4(G, R') = 0 vanish for ¢ > 1:

Proposition 5.18. Assume that the totally ramified extension K'/K is tamely ramified.
Then
HYG,R)=0

forq>1.

Proof. By Proposition 5.9, as multiplication by |G| is an isomorphism on R’ the coho-

mology groups H?(G, R') vanish for ¢ > 1. O

This gives us a powerful simplification of the general case: Recall that in our situ-
ation, G coincides with its inertia group Gy, so that the order of G/G; and p are co-
prime. Thus, multiplication on any R’-module with [G: G4] is an isomorphism, so the
Lyndon—Hochschild-Serre spectral sequence E3* = H"(G/G1, H*(Gy, R")) = H""5(G, R')

(Theorem 5.8) degenerates and we immediately obtain the following proposition:

Proposition 5.19. We have a canonical identification
HY(G,R') = HY(Gy, R/
for q > 0.

In particular, as H9(G1, R') is a torsion module, the following result from [35], Lemma 1.5,

helps in taking the invariants:

Lemma 5.20. Let K'/K be a finite Galois extension of complete discrete valuation fields
of ramification index d. Then (m'*) =m? holds for z € Z, where a = 1+ | =],

So we are “only” left to study the case G = Gy, i.e. K'/K is wildly ramified. Let us focus
on the case where (G is cyclic of order p® with generator o € G. Then we want to measure
when an element ¢! € G stops being in a higher ramification group, i.e. o' € Gj\Gjs1. In
other words: When does o' (u') — v’ lie in m7*1\ m/*2 for a uniformizer ' € R'? Denoting
by v: K — ZU{oo} the discrete valuation induced by R/, this is equivalent to saying that
v((ot(u') —u')(u')™') = j. More generally, we define the map

it Z — Ny, v <0l(“/) —

/) =v(ol(u) — ) - 1.

u

Having fixed the notation, we state Sen’s Theorem (cf. [65], Theorem 2):
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Theorem 5.21. In above situation, we have an isomorphism
pe-1
H'Y(G,R') ~ P R/m™R,
I=1

where n; = V;@J

Sketch of proof. By Example 5.7, H'(G, A) is isomorphic to R'[Tr]/(oc — idg/)R’, where
Tr =idp +0 + - - - + 0P~ is the trace map.
By [65], Lemma 1, there are elements x; € K', 1 <1 < p® — 1, such that

v(iz)) =1 and v((oc—idg/)x;) =1+1i(l)

hold. As v(x;) =1 > 0, they lie actually in R’. Furthermore, together with 1 € R’ they
give an R-basis for R': To see that they are linearly independent over R, we apply o —idgs
to the linear combination Ay -1+ Zfi}l Az = 0 with Ao, ..., A\pe—1 € R and then take its

valuation yielding

pe—1

oo =v(0)=v <; (0 — idR/)(/\l:L'l)) = f\?;%{l/()\l) +1+i(l)}.
Here, we used the assumption v((o —idg/)x;) = [ +4(l) and the fact that [ +i(1) Z I'+4(l)
modulo p¢ holds (cf. [65], proof of Lemma 1.3) to make the estimation of the valuation of
a sum sharp. Thus, the set of [ such that A\; # 0 is empty and the linear independence
follows. As R’ is a finite R-module of rank p° by Proposition 5.10, the generating set
property follows.

Studying the previous argument, we actually showed that the elements
y = (0 —idp)r, 1<1<p°—1

are linearly independent in (0 — idg/ )R’ over R and therefore form an R-basis.

Now set n; = VJ;ZIE(Z)J for 1 <1 <p®—1 and choose a uniformizer u € R. We define

= (0 —idp)—L.

u™

Y
u™

Z] =
It is an element of (o — idg+)K’, but it also lies in R’, as we have
viz))=v(y) —ny-v(im) =1+i4(l) — Lpfe(l + z(l))J - p°.

This is exactly the non-negative rest one obtains when doing division with remainder.
Hence, v(z) > 0 for 1 <1 < p® — 1, and the z; are elements of R' N (0 — idg/)K’. In fact,
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we have R'[Tr] = R'N (o0 —idg/)K': To see the equality, the inclusion D is immediate from
Tro(o —idgs) = 0. For the inclusion C, we only have to check if K'[Tr] C (o — idg/) K’
holds. As dimyg K'[Tr] = dimg (0 — idg/)K’ = p® — 1 holds and we have one inclusion,
this is true.

We already observed that v(z;) = I+i(l) Z I'+i(l') = v(zy) mod p® for | # I, so the same
argument as for the z; shows that the z; are an R-basis. We conclude that u™z; =y, =0
in R'[Tr]/(0 —idp/) R, and this gives us the claimed structure of H'(G, R'). O

Corollary 5.22. If K'/K is wildly ramified, then
HY(G,R) # {0}.

Proof. If K'/K is wildly ramified, we consider the summand corresponging to [ = p — 1

in the theorem: We have

pe = 1+i(p° — 1)
p@

J;«EO = i(p°—1)>0.

But now i(p¢ — 1) > 1. Hence, H'(G, R') is non-trivial. O

Corollary 5.23. Let Gy be cyclic of order p® and G/G1 be cyclic of order n. Then
pe—1
HY(G,R)~ @ R/m™R,
I=1

where iy = | (1+i(1)+(n—1)p®)(np®) "1 | < ny holds. The numbers i(l) and n; are defined as

in Sen’s Theorem for the wildly ramified extension corresponding to the extension K'/K'G1.

Proof. Applying Proposition 5.19, we only have to check if
(RlGl /ﬁinl)G/Gl _ R/mﬁl

holds, where m is the maximal ideal in R'“*. For any positive integer z, we take the

G /Gy-invariants of the exact sequence
0 — m* — R — R /m* — 0.

Now n is prime to p by Corollary 5.17 and thus invertible in R'“1. Hence H'(G/G,m?)
ny;—1
is trivial by Proposition 5.9. Therefore, (R'Ct /m™)¢/¢1 = R /m'*175% ) holds by Lemma
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5.20. One then computes

1+[nl—1J:{nl—1+nJ
n n

V+i(l)+(nf1)p€J

pe
n

V—i—i(l)—i—(n—l)peJ'

np¢

To compare n; and n;, we obtained

-1
nz—ﬁzznz—l—[nl J,

n

and this is easily seen to be non-negative. O

Example 5.24. For a complete discrete valued field K, we consider the Artin—Schreier
extension K’ = Klx]/(2P — x — t), where vi is a normalized discrete valuation with
vi(t) = —m for a positive integer m coprime to p. This is a totally ramified extension
of degree p with cyclic Galois group, cf. Example 1.10. We want to compute H'(G, R'),
where R and R’ are the rings of integers in K and K’ with uniformizers u and u’. Let
a be a root of P — x — t and a, b integers such that a(—m) + bp = 1. Denoting vy, the
valuation induced by R’, we have vr(a) = —m and vp(u) = p. Therefore, vz (a®ub) = 1
and a%’ is a uniformizer in R’. Taking an automorphism ¢ € G with o(a) = a + 1, we

compute
v (o(a®ub) — a®ub) = v (((a + 1)* — a®)ub)

=pb+vg ( ZZ; <CZL> aail)
= pb+ v (a®1)
=pb—m(a—1)

=m+1.

Hence, 0 € Gy, \ Gp+1. Thus Gy is trivial. Writing m = dp + b for d > 0 and
1 <b<p-1, we deduce from Theorem 5.21

HYG,R) = (R/m¥1)® g (R/m?)PP—b-1,
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Chapter 6
Computing the torsion via group cohomology

Given a torsor Xx under an abelian variety Ag, we spend a lot of effort to construct a
regular proper model f: X — S of X as a certain quotient. This will allow us to apply the
Grothendieck spectral sequence for spaces with a group action, gaining information on the
torsion appearing in R f,0x. In the next sections, we will recapitulate the fundamentals
of this spectral sequence following the original source [21], Chapter 5, and apply it to our

situation.

6.1 The Grothendieck spectral sequence for schemes with a

group action

Let X be a scheme and G be a group acting continuously on X. Assume that the geometric
quotient f: X — Y = X/G of X under a group G exists, i.e. Y carries the quotient
topology, the fibers of f are exactly the G-orbits and &y — (f,0x) is an isomorphism.
Then we want to consider G-sheaves . on X and compute the cohomology of (f..%#)¢. We
use the language of schemes as it fits our situation, but the theory works more general on

topological spaces. To make sense of it, we first define the objects (e.g. [8], Definition 5.1):

Definition 6.1. Let .# be an abelian sheaf on X. We call a collection (¢4)4cq of sheaf
homomorphisms 94: g+.# — F a G-linearization if ¢.: F — F is the identity and
Ygh = Pg0g+«(1p) holds for all g, h € G. That means that the following diagram commutes:

GuhnF T g7 Y1, g

(goh)F

We call .% together with a linearization a G-sheaf. We call a homomorphism of abelian

sheaves p: . F — 4 a homomorphism of G-sheaves if it commutes with the G-linearizations.

Note that in general, there may exist more than one linearization. Furthermore, the

structure sheaf &'x comes equipped with a canonical G-linearization induced by the action
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of G: Every g € GG acts as an automorphism of ringed spaces, hence gives an isomorphism
Ox — g«Ox with inverse ¢,. The (1g)4eq define then a linearization of Ox. In the
following discussion, when we consider Ox as a G-sheaf, we will mean 0'x with its canonical

linearization. The following proposition just collects elementary properties of G-sheaves:

Proposition 6.2. Let X be a scheme and G be a subgroup of automorphisms of X with
geometric quotient Y = X/G. We denote by f: X — Y the quotient morphism and equip
Y with the trivial G-action. Let F be a G-sheaf on X with G-linearization (1g)g. Then
the following statements hold:

(i) The 14 are isomorphisms.
(i) Each g induces a bijection of stalks F -1y — .
(iii) Each abelian sheaf 4 on'Y can be pulled back to a G-sheaf f*4 on X.

Proof. The first statement follows from the equality

’ng © g*,(vbg—l = djgg—l =idy = ¢g—1g = 1,[)9—1 o (g_l)*¢ga

because the left hand side says that 1, is surjective and the right hand side that (971)*%}
is injective over any open U C X. Thus, 1), is also surjective over any open U C X as g !
is an isomorphism on X.

For the second statement, the isomorphism v, induces a bijection (g..#), ~ %, on
stalks. Reformulating gives the desired formula.

Now if ¢ is an abelian sheaf on Y, the pullback f*¢ = f~'¢ ® 14, Ox inherits its

linearization from the structure sheaf Ox. O

Denote by (€x[G]-mod) the category of Ox[G]-modules, that is to say, Ox-modules
% which are also G-sheaves such that the module structure is compatible with the G-
linearizations of 0x and .# and morphisms being homomorphism of &'x-modules which
are also homomorphisms of G-sheaves. Then (Ox[G]-mod) forms an additive category. It

behaves even better, see [21], Proposition 5.1.1:

Proposition 6.3. The category (Ox[G]-mod) is an abelian category satisfying AB5 and
AB3*, admits an generator and thus every Ox[G]-module can be embedded into an injective
Ox|G]-module.

Given a G-sheaf . on X, the direct image
f+Z: (Open/Y) — (Set), V +—T(f V), %)

is a sheaf on Y. It can naturally be endowed with a G-linearization inherited from .%,

which is - as G acts trivial on Y - nothing than a group action on I'(V, f..#) compatible
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with restrictions. Denote by .Z¢ the sheaf on Y given by V + I'(V,.%)%. In this sense,
we define the following functors:
(DF: (G-Sh/Y) — (Sh/Y), F+— FC
f&:(G-Sh/X) — (Sh/Y), F — (f.7)C.

In particular, f& = (_)$ o f. holds. As Y is a geometric quotient, we have 0y = f&(0x)

and obtain the following commutative diagram

£
Ox|G]-mod) ——— (Oy[G]-mod) ——— (Oy-mod)
g g N
(T'(X, O0x)[G]-mod) - » (I'(Y, Oy )-mod),
(7)Spcc(Z)

where we consider (I'(X, Ox)[G]-mod) as the category of G-sheaves over Z which are

['(X, Ox)-modules compatible with the G-linearization. This lets us write I'§ as at least

three different compositions:

F)G(:FYofE7
Fg;(:(*)GOFXa
F)G(:FlG/Of*-

These functors behave very well, cf. [21], paragraph above Proposition 5.1.3 and Corollaire:

Proposition 6.4. Restricting above functors on subcategories (with the same notation),

we get:
(i) fi: (Ox[G]-mod) — (Oy[G]-mod) is a covariant, additive, left exact functor.
(i) f&: (Ox[G]-mod) — (Oy-mod) is a covariant, additive, left exact functor.
(iii) f«: (Ab/X) — (Ab/Y) transforms injective objects into injective objects.

(iv) The functor I'x: (Ab/X) — (G-mod), .# — I'(X,.#) sends injective objects to

injective objects.

(v) For all injective abelian sheaves ., the sheaf f&(F) on'Y is flabby.
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This means that we can apply the Grothendieck spectral sequence. We denote the
derived functors of Fg’; and f& as follows:

H"(X;G,.7) = R"I‘?{(?): (Ox[G]-mod) — (T'(Y, Oy )-mod),
HG,.F) = R"f9(F): (Ox|G]-mod) — (Oy-mod).
This makes us able to formulate [21], Theorem 5.2.2:
Theorem 6.5. In the situation above, we have three spectral sequences
7 = HY(Y, (G, 7)) = HPI(X; G, ),

F F
159 = HY(G, HY(X, F)) = H"Y(X: G, F),
1y = HP(Y; G, R1f,.7)) = H'"(X;G, 7).

In the following, we list some important special cases of this theorem where one of the

spectral sequence degenerates.

Corollary 6.6. Let % be an abelian G-sheaf such that R1f. (%) =0 for all ¢ > 0. Then

the natural edge homomorphisms from the spectral sequence 1115
H"(Y;G, (7)) — H"(X;G, F)
are isomorphisms; moreover we have
H"G, F) = R" (Y (f+F)
in (Oy-mod).

Corollary 6.7. Suppose that #1(G, %) = 0 for ¢ > 0. Then we obtain for n > 0
canonical identifications H(X; G, .F) = H"(Y, f¢(F)) and

I = HY(G, HY(X, 7)) — HPY(Y, (7).

In particular, the condition is satisfied for F = Ox if X is integral, G finite and f étale.

Proof. The first statement follows again from the degeneration of the spectral sequence
57 = HPra(Y, fE(F)). Now prove the additional statement. As G is finite, the quo-
tient morphism is finite and RIf,0x = 0 for ¢ > 1. By Corollary 6.6, the equality
HUG,F) = R (f.7) holds and hence S#9(G,F), = HIG,(f.F),) for every
y € Y. We therefore can assume X = Spec(A) and Y = Spec(R) affine, with R the
spectrum of a local ring. If we show that A is a projective R[G]-module, we are done. By

[47], Proposition I1.2 and I1.3, this is equivalent to A being a projective R-module and the
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surjectivity of the trace map Tr: A — R. The projectivity of A as an R-module follows
from the flatness of f. To show that the trace is surjective, we have to show that its image
is not contained in the maximal ideal m of the local ring R. As the trace commutes with
reduction modulo m, it suffices to show that Tr: A/m — R/m = k is surjective. Note that
because f is unramified, points over the maximal ideal m make up an orbit of maximal
ideals, all with the same residue field I. Hence, A/(mA) is a copy of fields [®". The field
extension [ over k is separable. Even better, the extension [/k is Galois and G surjects to
its Galois group, cf. [66], Chapter I, §7, Proposition 20. So choose an element A € | with
non-trivial trace under Gal(l/k). Then the trace of ([,0,...,0) under G will be the trace
of [ under Gal(l/k). Hence, Tr: A/m — k is surjective. O

Corollary 6.8. Assume that H4(X,.%) =0 for all ¢ > 0. Then
H'(X;G,Z)=H"(G,T'(X,.7))

and I8 = HP(Y, (G, F)) = HP*(G,T(X, .F)).

6.2 General computing strategy

We want to apply the previously presented Grothendieck spectral sequences to the situa-
tion where we constructed torsors of abelian varieties as quotients, see Proposition 3.22.
Let S be the spectrum of a complete discrete valuation ring R and f: X — S be an abelian
fibration that is induced by taking the quotients on an abelian fibration f': X’ — S’ by a

group G, i.e. we have a commutative diagram

X I, x

f ’l lf

S —— S

Proposition 5.10 ensures that the Galois extension S’ = Spec(R’) over S is again the
spectrum of a complete discrete valuation ring R’. We apply the five-term exact sequences

resulting from Theorem 6.5 to two special situations:
Proposition 6.9. Keep the notation above.

(i) If we assume h étale and that H*(X', Ox:) and H* (X', Ox+) are free modules over R,
then H'(X, Ox) = R® & H'(G, R') holds, where g = h'(0x,).

(ii) If we assume |G| invertible in R', then HY(X,Ox) = H (X', Ox)C holds for all

integers v > 0.
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Proof. We first show (i): To compute the free part of the cohomology groups, we note that
cohomology commutes with flat base change, yielding H'(X, 0x) @p K = H'(X,, Ox,)-
Thus, the free part has dimension h'(0Y, ).

For the torsion part of H'(X, Ox), we consider the first spectral sequence from The-
orem 6.5, namely 1;° = H"(X, #%(G,0x/)) = H"(X';G, Ox/). By assumption, h is
étale and therefore (G, Ox/) is trivial for s > 1. Thus, the spectral sequence degener-
ates and we have H" (X, 0x) = H"(X';G, Ox) for r > 0.

Let us take a look at the spectral sequence I1I;° = H" (G, H*(X', Ox/)) = H"5(X, Ox):

Its five-term exact sequence yields
0 — HYG,H(X',0x/)) — HY(X,Ox) — HY (X', Ox/)C.

The module H'(X’, 0x:)¢ is torsion free, so all of the torsion in H'(X, Ox) must map
to zero. On the other hand, H' (G, H*(X', Ox/)) = H'(G, R') is a torsion module, so it
must coincide with the torsion part of H'(X, Ox).

To compute (i7), we again observe the vanishing of cohomologies: as |G| is invertible in
Ox, the cohomology groups H" (G, H5(X', Ox/)) and %(G, Ox+) vanish for s > 1 due
to Proposition 5.9 (the latter can be checked on stalks to obtain usual group cohomology
on which to apply the proposition). Thus, the Grothendieck spectral sequences I5* and
I1;° degenerate and we get canonical isomorphisms

Iy° 15

HY(X,0x) 2= HI(X',G, Ox)) 2= HY(X' Ox)°.

O

Remark 6.10. The situation that H* (X', O'x/) is torsion free for all i > 0 is satisfied if
X' is an abelian scheme: If Ag is an abelian variety, its cohomology groups H'(Af, Oa,.)
are known to have dimension (f) for i > 0 and g = dim A, cf. [56], Corollary 2 on p. 129.
Now if Ags has good reduction, its special fiber Ay is also an abelian variety and the
morphisms ¢’ from Theorem 2.9 are isomorphisms, i.e. no torsion appears.

Another important case where this is satisfied is the case of elliptic fibrations with
sections: The section forces the multiplicity of the closed fiber to be one and therefore has

no torsion according to Proposition 2.7.

At first sight, this proposition only helps in describing the torsion part in the coho-
mology of quotients. But the following theorem by Chatzistamatiou and Riilling (cf. [10],

Theorem 1) helps in comparing the cohomology groups of models of the generic fiber:

Theorem 6.11. Let f: X = Y be a projective and birational morphism between excellent
and reqular schemes. Then the higher direct images of Ox under f vanish, i.e. R f,Ox =0
for alli > 1.

80



This theorem implies that the spectral sequence H" (Y, R*f.0x) = H""5(X, Ox) de-
generates, i.e. H'(Y, f,Ox) = H" (X, Ox) holds. If both X and Y are additionally integral,
then f is connected and we have f,0x = Oy by a version of Zariski’s Main Theorem (cf.
[26], Corollary I11.11.4). In particular, this applies to a projective morphism f: X — X of
two regular models of X over S. Even if S is not excellent, we can make the base change
to the completion of the stalk of a closed point s € S. As we have seen in Proposition 2.1,
it does not change the torsion structure. We therefore can assume that X and Y are

excellent and apply Theorem 6.11.

In general, one cannot hope for the existence of a morphism between two regular proper
models, but in the case of fibered surfaces, there always exists a regular fibered surface
dominating any two other regular ones (cf. [45], Lemma 9.3.20). The morphisms are
proper, but if we restrict the surfaces to an open affine base, Lichtenbaum’s Theorem
(cf. [42], Chapter I, Theorem 2.8) grants that they are indeed projective. Again, we
apply Theorem 6.11 to show that the cohomology groups of regular fibered surfaces are
isomorphic. For general abelian fibrations, the existence of a regular model dominating

two given regular ones is unknown. For reference, we state the conclusion:

Proposition 6.12. Let Ax be an abelian variety over K with torsor Xg. Assume that for
any two projective reqular models X1 and Xo of Xk over S, there is a projective regular
model Xog of Xk over S that dominates both X1 and Xa, i.e. there is a commutative

diagram
Xo
X1 Xo
S

of Xx-models. Then H'(X1,0x,) = H (X, Ox,) = H (X2, Ox,) holds for i > 0. The

conditions of this proposition are satisfied if S is affine and Ag an elliptic curve.

Remark 6.13. In the situation of Proposition 6.9 (7), if X is of dimension greater than
one, we can ask for the structure of the higher direct images. We note that in fact, there

is a seven term exact sequence
0— By’ = H' - Ey' — EY? = ker(H? — Ey?) — Byt — B,

If ES? = H2(X',0x/) is a free R'-module, then the torsion % in H? = H2(X, Oy) is
mapped to zero. As E3° = H2(G, HO(X', Ox/)) and Byt = HY(G, H (X', Ox)) are also

torsion modules, ker(H? — Eg,z) must be exactly the torsion part 5, and it sits inside
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the exact sequence
H*(G,H' (X' Ox1)) — o — H'(G,H (X', Ox1)).

It would be interesting if one could get better information from the spectral sequence.
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Chapter 7

The torsion in the cohomology of abelian
fibrations as quotients

This chapter puts the theory we have developed together to compute the torsion in the
cohomology of abelian fibrations, and therefore its theorems are at the heart of this thesis.
As the torsion in the cohomology does not change under flat base change, it suffices to
study the case where S is the spectrum of a complete discrete valuation ring R. This
will be our general assumption. Moreover, we assume that the residue field k of R is
algebraically closed. We denote by p the characteristic of k and by K the field of fraction

of R. As usual, Ax will be an abelian variety over K and Xy an torsor under Ag.

7.1 The case of abelian varieties with good reduction and

elliptic curves with multiplicative reduction

Let Ax have good reduction. In Section 3.3, we constructed a proper regular model X
of Xk over S as follows: Take a minimal Galois extension of K'/K so that Xy (K') is
non-empty and let S’ be the normalization of S in K. Then Gal(K’/K) acts on the Néron
model A’ of Ag+ over S/, and the structure morphism is equivariant with respect to this
action. Taking the quotients of A’ and S’, we obtained a proper regular model X — S
with structure morphism induced by A’ — S’. To study the torsion in R!f,0x, we want
to apply Proposition 6.9. Yet, the quotient morphism A’ — X is not étale in general.
To see when the quotient morphism is étale or how to circumvent occurring problems, we
need to get a better understanding of the group H'(Gal(K*®/K), A(K*P)). In the case
of elliptic curves, we will be able to compute the torsion structure if the special fiber A
is an ordinary elliptic curve or Ax has multiplicative reduction, cf. Theorem 7.3 and 7.5.
We are going to reproduce some of the arguments of [62], Théoréme 9.4.1, clarifying the
group structure of H'(Gal(K*P/K), A(K*P)). It uses the theory of p-divisible groups,
e.g. [74].

For the rest of the discussion, we denote G = Gal(K*P/K) and assume that the order
d of [Xg] in HY(G, A(K*°P)) is a power of p, i.e. d = p°. This can easily be achieved
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as follows: Using the same notation as in Section 4.2, we define the index of Xk to be
m = §(Xgk/K), the greatest common divisor of all field extension degrees of closed points
in Xg. By [41], Proposition 5, d divides m, and they have the same prime factors. Given
a proper regular model of Xk over S, every field extension K'/K of degree prime to p
is Galois (Corollary 5.13) and induces an étale covering mx: X’ — X, see Corollary 4.6.
Therefore, using Proposition 6.9, we obtain H'(X, Ox) = H/(X', Ox)¢ for i > 0, where
G’ = Gal(K'/K). Tt thus suffices to study the p-part of a splitting field.

In Section 3.3, we already considered the reduction map A(K) — A(k) (note that every
closed point of A lies in Ay, so that A(k) = Ag(k) holds), which sits inside a short exact
sequence

0— A1(S) — A(K) — A(k) — 0.

Here, for the moment, A;(S) simply denotes the kernel of the reduction map, but we will
soon consider A; as a p-divisible group. Note that for elliptic curves, A;(S) is part of
a filtration ... C Aa(S) C Ai(S) C A(S), cf. [73], Theorem 4.2. Applying the Néron
mapping property to any algebraic extension K’ over K gives a similar exact sequence.
Moreover, if K'/K is Galois, we obtain an exact sequence of Gal(K’/K)-modules, where
Gal(K'/K) acts trivially on A(k). In particular, denoting by S5 the normalization of S

in K®P, we get a short exact sequence
00— A1(S°P) — A(K®P) — A(k) — 0

of G-modules, from which we can take the G-invariants. If we equip A(K®P) with the
discrete topology, it becomes a discrete G-module as in Example 5.2. The same is true for
A(k) because G acts trivially upon it, making the continuity of the group action easy to
see. Imposing on A;(S*P) the discrete topology as well, this yields a long exact sequence of
discrete G-modules. We are interested in its first cohomology groups. As A(K*P) — A(k)

is surjective, this yields the exact sequence
0 — HY(G, A (S5P)) — HY(G, A(K*P)) — HY(G, A(k)) — H*(G, A1(S5%P)).

The term H'(G, A(k)) is easy to understand: It is equal to the group of continuous group
homomorphisms Hom(G, A(k)) by the cocycle description of the first cohomology group,
see Lemma 5.3. The groups appearing in the sequence are torsion groups (Proposition 5.1),
so taking the p-torsion part is exact. Writing Hom(G, A(k))[p°°] for the p-primary part of
Hom(G, A(k)), we have an equality Hom(G, A(k))[p>] = Hom(G, A(k)[p>]) as follows:
Any ¢: G — A(k) annihilated by p™ implies p"¢(c) = 0, hence every image element
¢(o) is of finite order and ¢ factors over A(k)[p>]. Conversely, note that the kernel of
¢ is open in G due to A(k) discrete and ¢ continuous. Therefore, it factors over the
finite quotient G/ ker(¢), and the image of ¢ is a finite subgroup of A(k)[p>]. Hence, ¢ is
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annihilated by a power of p.

We now use that Ax has good reduction and that k is algebraically closed, so Ay is
again an abelian variety of dimension g with A(k)[p>] = lign(Z/p"Z)@f = (Qp/Zy)%,
where f is called the p-rank or f-rank of A, cf. [56], p.147. It suffices the inequality
0 < f < g. In particular, we obtain

Hom(G, A(k)) = Hom(G, (Qy/Z,)™).

Now to understand the kernel of the reduction map is more difficult. In fact, A; is a
p-divisible group, cf. [27], Theorem C.2.6 and [68], Proposition on p. 61. That means the

following:

Definition 7.1. Let I' = (T',,,¢,) be a direct system of finite group schemes I',, over R,
where n runs through the non-negative integers. Moreover, let h be a fixed non-negative
integer. We call I' a p-divisible group over R of height h if it satisfies the following two

properties:
(i) T, is a a finite group scheme of order p™”, i.e. it is locally free of rank p™ over R.
(ii) For each n > 0, the sequence
0 —Thn =" Topt 25 Do

is exact, i.e. [';, can be identified via i, with the kernel of multiplication by p" on

Tt

For example, given the multiplicative group G,,, over R, one takes the kernel ji,n of the
multiplication p": G, — G,. This yields a p-divisible group G, (p) = (fpn, in) of height
1, where ip: pipn — pipn+1 is the inclusion. The same construction applies to the abelian
scheme A over R in our case. Denoting A[p"] the kernel of the multiplication by p"™, we
obtain the p-divisible group (A[p"],i,) of height 2g, where g is the dimension of Ax. In
case that Ay is an ordinary abelian variety, i.e. the p-rank of Aj equals its dimension g,
the finite group scheme A[p"] has connected component isomorphic to u;?ng , and A; can
be identified with G,,(p)®9. For a complete algebraic extension K’/K with normalization
R of R in K’', and S’ = Spec(R’), one defines for a p-divisible group I' = (T, 4,,) the
S’-valued points of I by

I(8') = D(R') = im (R /m™) = lim lim T; (R'/m"™).

n n o j

Note that I'(S)tors = lim I, (R’) holds, cf. [74], p. 167. We have G, (p)(R*P) = 1+ m*P,
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which sits inside the exact sequence
1 — Gun(p)(S®P) — G, (S°°P) LN Gm(k) — 1, (7.1)

where r is the reduction map. Furthermore, denoting by v the valuation on K®*°P that

extends uniquely the one on K, we obtain the exact sequence
1 — Gp(S%P) — G (K*P) 5 Q — 1. (7.2)

Both exacts sequences together will show H2(G, G, (p)(S%P))[p>] = 0 as follows: Taking
the G-invariants of the exact sequence (7.2) and using H'(G, G,,(K*°P)) = 0 by Hilbert’s
Theorem 90, we obtain H(G,G,,(5%P)) = coker(v) = Q/Z. As S*% is strictly Henselian,
its Brauer group vanishes (cf. [50], §4, Corollary 1.7).Hence, H%(G, G,,(SP)) = Br(S%°P)

is trivial. Therefore, we deduce from sequence (7.1) and
HY(G, G, (k) [p™] = Hom(G, k*[p™®]) = Hom(G, {1}) =0

that H2(G, G, (p)(S%P))[p>] = 0. As sums of G-modules commute with group cohomol-

ogy (cf. Proposition 5.1), we obtain the exactness of
0 — H'(G, Ay(S*P))[p™] — H' (G, A(K*P))[p™] — H'(G, A(k))[p>] — 0.

As noted above, HY(G, A(k))[p™] = Hom(G, Q,/Z,)® holds. Using the surjectivity of
the reduction map on S-valued points, exact sequence (7.1) provides us with the equality
HY(G, Gy, (p)(55P))[p®] = HY(G, Gy, (S5P))[p™°] = Qp/Z, and we obtain

HY (G, AL (S*P))[p™] = H (G, Gm(p)(S*P))[p™] = (Qp/Z)™.

Given a class [Xg] of a torsor in H'(G, A(K*P)), the splitting field of its image in
HY(G, A(k)) gives us information on the maximal field extension inducing an étale cover-

ing:

Lemma 7.2. Let A be an ordinary abelian variety and X be the regular projective
model of Xx over S constructed in Proposition 3.22. We denote by v the surjection
HY (G, A(K*P)) — HY (G, A(k)). Then the following holds:

(i) Y([Xk]) has a unique minimal splitting field. It is Galois, and its Galois group is

the sum of at most g cyclic groups.

(ii) The unique minimal splitting field of V([ Xk]) coincides with M, the mazimal field

extension inducing an étale covering of X (cf. Section 4.2).

Proof. Under the isomorphism H(G, A(k))[p>] = Hom(G, (Q,/Z,)®9), we can identify
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([ Xk]) with a continuous group homomorphism ¢: G — (Q,/Z,)®9. Denote its kernel
by H. It is an open subgroup and therefore has finite index. By Galois theory, H is given
by Gal(K*®P/K’) for some unique finite Galois extension K'/K. As the restriction is given
by

Hom(G, (Qp/Zy)*?) — Hom(H, (Qy/Zy)%), ¢+ ¢|m.

the torsor X becomes trivialized by a field extension L if and only if K/ C L. Hence
uniqueness. The Galois group of the extension K’/K is the sum of at most g cyclic groups
because Gal(K'/K) = G/H = im(p) C (Q/Z)%9.

For (i), interpret [X ]| as a cocycle & with &, € A(K®®P). Then ¢ ([Xk]) corresponds
to the cocycle & given by £, € A(k). Using the same notation for [Xj;], we see by
Proposition 3.22 that ¢ ([X]) = 0, i.e. the splitting field of ¥ ([Xk]) sits inside M. On
the other hand, if ¢([X]) splits over K’/ K, then ¢([X]) = 0, which means M C K'. O

In the case of elliptic curves where Ay is ordinary, Raynaud proved in [62], Théoréme
9.4.1, that X is in the image of H!(G, A1(S%P))[p™] — HY(G, A(K*P))[p>] if and only
if the relatively minimal elliptic fibration f: X — S associated to X is cohomologically
flat. By Theorem 2.9, this is equivalent to say that there is no torsion in R'f,&x. Hence,

if Ay is ordinary, the torsion can be computed for every Ag-torsor by Proposition 6.9:

Theorem 7.3. Let Ax be a g-dimensional abelian variety with good reduction such that
Ay is ordinary and let X be an Ak -torsor. Denote by M /K the mazximal field extension
inducing an étale covering of X with Galois group H and by K'/K a minimal Galois
extension splitting Xx. Then the following holds:

(i) If M = K', the multiplicity m of the closed fiber of X equals [M: K| and we have
HY(X,0x)=R® @& H'(H,R).

(i) If additionally A is an elliptic curve, write H' = Gal(K'/M). Then the torsion in
R'f.Ox is isomorphic to

p¢—1
H'(H,R"') = B R/m™R
=1

where 7y = (1 +4(1) + (n — Dp!)(np!)~1|. The positive integer i(l) is defined as
in Sen’s Theorem for the wildly ramified extension corresponding to the extension
K'/K'"™M and [M: K] = np® with n not divisible by p.

Note that in the missing case in which Ax has good reduction and the special fiber
Ay is a supersingular elliptic curve, there is torsion in H'(X, Ox) according to [62],

Théoreme 9.4.1, but we are not able to compute it.
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Proof. Assume M = K’. Then the equality m = [M: K| holds by Proposition 4.2.
Furthermore, X is the étale quotient ¢: A’ — X constructed in Proposition 3.22, see
Corollary 4.5. As the cohomology groups of the abelian scheme A’ are torsion-free, we can

apply Proposition 6.9 to obtain
HY(X,0x)=R® @ H'(H,R).

Now if Ak is an elliptic curve, we first take the quotient Y = A’/H’. This is cohomological
flat over S"" according to [62], Théoréme 9.4.1. This means that H' (Y, Oy) = R'™ is
free and we can apply Proposition 6.9 to the quotient morphism Y/H — X (this is the

map ¢o in the factorization of Proposition 3.22). Hence, we have
H'(X,0x)=Ra& H'(H,R™).

In Lemma 7.2, we noticed that H is cyclic. It decomposes into its higher ramification
groups H = H/H; x Hy with H/H; and H; cyclic. Using Proposition 5.19, we obtain

HI(H, R/H/) — Hl(Hl,R/H/)H/Hl
on which we apply Sen’s Theorem 5.23. 0

Remark 7.4. Let Xx be a torsor under Ax whose corresponding cocycle class £ is in
the image of H'(G, A1(S%P))[p>] in H(G, A(K*P))[p>]. That is, the reduction (&)
is trivial in A’(k) for all o € G. In the case that Ak is an elliptic curve and Ay an
ordinary elliptic curve, we used in the theorem that the regular model Y = A’/H’ has no
torsion in its cohomology group. It would be interesting to see this fact directly from our
construction in Proposition 3.22 and generalize it to higher dimensions. In the same way,
we would like to know what happens in the case that Ay is not ordinary, as in that case

the reduction also vanishes.

If Ex is an elliptic curve with multiplicative reduction, Liu, Lorenzini and Raynaud
showed in [46], §8, that a torsor Xx of Ex has a unique splitting field and that the
relatively minimal proper regular model f: X — S is an étale quotient as constructed in

Section 3.1. As before, we prove:

Theorem 7.5. Let Xg be a torsor under an elliptic curve Ex with multiplicative reduc-
tion. Then Xy has a unique splitting field K'/K that is a cyclic Galois extension with
Galois group H and the torsion in the relatively minimal reqular proper model f: X — S

s given by
pe—1

H'(H,R) = R/m"R,
=1
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where iy = (I +4(1) + (n — D)p")(np")~t|. The positive integer i(l) is defined as in Sen’s
Theorem for the wildly ramified extension corresponding to the extension K'/K'"™ and
[K': K| = np® with n not divisible by p.

7.2 The case of elliptic curves with additive reduction

We use the same notation as in the previous section, except that we assume that Ax does
not have semi-abelian reduction, cf. Section 3.2. We would like to reduce the study of
the torsion in the cohomology of a proper regular model to the case where Ax has good
reduction (or more generally to semi-abelian reduction if we would have solved that case in
higher dimension). By Theorem 3.17, there is a unique minimal finite extension L/K such
that Ay has semi-abelian reduction. This is a Galois extension and its degree is coprime
to each prime greater than 2g 4+ 1. If p = char(k) is coprime to d = [L: K], we call Ag
tamely ramified. We would like to take the base change to L, take a regular proper model
of X7, compute the torsion part in the first cohomology group of this model and then
relate it to X, using Proposition 6.9. But there are obstacles in this consideration. The
first two are that we do not know how to relate the torsion in the cohomology of proper
regular models and how they behave on base change.

Yet, in the case of elliptic fibrations, this works: Let f: X — S be an elliptic fibration.
Then the cohomology group H'(X, Ox) is independent of the chosen proper regular model
(cf. Proposition 6.12). Moreover, we can resolve singularities. This makes us able to

consider the following commutative diagram

X —— 5 X')G

l L

Pl X xg8 — X (7.3)

| l

S S,
where

(i) S” — S is the unique extension induced by L/K, with Galois group G (cf. Proposi-
tion 5.13).

(ii) The lower square is the base change diagram of X along S’.

(i) X’ — X x g9’ is obtained by first taking the normalization of X x ¢S’ and then taking
the minimal desingularization, i.e. every other desingularization factors uniquely
through X'.
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(iv) G acts on X xg S’ by base change, hence on the normalization and on the minimal
desingularization X’ via their universal properties. The structure morphism f’ is G-
equivariant and G acts trivially on X so that the universal property of the quotient

gives a map X’/G — X, which is birational in our case.

Proposition 6.9 tells us
HYX'/G, Ox1)c) = H (X', 0x/)°.

Furthermore, the morphism h is proper birational and we know that X’/G is a normal
scheme. This is too weak to apply Theorem 6.11, but the statement holds for fibrations

of surfaces under weaker assumptions, cf. [44], Proposition 1.2:

Proposition 7.6. Let f: X — S and g: Y — S be fibrations, X normal and Y regular
and h: X =Y be a proper, birational morphism of fibrations. Then

HY(X,0x)=HY\Y, 0y)

holds.

Proof. By [44], Proposition 1.2, we see that R'h,Ox vanishes. The isomorphism follows
from the Grothendieck spectral sequence applied to f = g o h. ]

Hence, we obtain H!(X, Ox) = H' (X', 0x:)¢. We now turn to the question when this
minimal tame extension is achieved. Katsura and Ueno gave a construction for the global
setting where S is a projective Dedekind scheme over an algebraically closed field and X
is a relatively minimal elliptic curve over S, cf. [31], Theorem 2.3. The proof is given by
explicitly taking equations, making base change, normalizing and blowing up. It holds

verbatim in the case that the base scheme is local:

Theorem 7.7. Let f: X — S be a minimal elliptic fibration with additive reduction.

Define u as follows:

fiber type I; II II* III III* IV IV*
U 2 6 6 4 4 3 3

We assume that p does not divide w. Then f': X' — S" from diagram (7.3) has the
wild fiber X!, = p®lop if F = I} and X, = ply else. In particular, the fiber type of a

reqular minimal model of Ep, is of type loy or 1o by Theorem 1.13 and Ey, has semi-abelian

reduction.

What Katsura and Ueno have done explicitly is implicitly the mechanism of Tate’s fa-

mous algorithm, only that it works for elliptic fibrations with sections. Tim and Vladimir
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Dokchitser have studied the algorithm in [13] to characterize the Kodaira type from the
minimality of v(a;)i™!, where a; are the coefficients of a minimal Weierstra equation.
They use this formulation to study the behaviour of the Kodaira type under tame exten-

sions, cf. [13], Theorem 3:

Theorem 7.8. Let K'/K be a tame extension of ramification degree l. Assume that the
residue field k is perfect. Then:

(i) If Ex has Kodaira type 1,,, then Ey: has Kodaira type Ij,.

(i1) If Ex has Kodaira type I}, then Ex+ has Kodaira type Iy, if | is odd and type Iy, if

l 18 even.

(11i) In all other cases, the type of Ex is determined by
6EK/ = l0g,, mod 12,

where § = 0,2,3,4,6,8,9,10 if E has Kodaira type 1o, 1L, 111, IV, I, IV* IIT*, IT* re-

spectively.

If k is algebraically closed, each torsor under Fx has the same Kodaira symbol, see
[46], Theorem 6.6. Hence, we can read off the theorem that the numbers u defined by
Katsura and Ueno are the minimal ones with respect to possible tame extensions, and that
in the cases left for p = 2 or p = 3, there exists no tame extension such that the Kodaira
type becomes of good or multiplicative type. We gather the information obtained in the

following theorem:

Theorem 7.9. Let Ex be an elliptic curve with additive reduction such that p does not
divide v defined in Theorem 7.7. Let X be a torsor under Ex with reqular proper model
X. Then

HY(X,0x) = H\(X', 0x)H,

where H is the Galois group of the unique extension L/K of degree u (cf. Corollary 5.13)

and X' is a regular proper model of X .
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Chapter 8
Application to the Kodaira classification

For the main part of this thesis, we have worked with an abelian fibration X — S such that
S is the spectrum of a complete discrete valuation ring. As we saw in Proposition 2.1, we
can always restrict ourselves to this case to study the torsion in the cohomology. Whether
one can go the other direction is discussed in the first section.

In the second section, we show how elliptic fibrations fit into the Kodaira classification.
In particular, if the fibration has a wild fiber, we show which fiber types and multiplicities
are possible and can be realized in Kodaira dimension —oo. For Kodaira dimension zero,
this was already nearly settled by Bombieri and Mumford [7] and Mitsui [51]. We add
the description of the torsion structure and show that two of the three cases for which no

example could be given are in fact impossible.

8.1 From local fibrations to global fibrations

Let K be the function field of a Dedekind scheme S proper over an algebraically closed
field and Ax be an abelian variety. For every closed point s € .S, denote by K the field
of fractions of 55,3 and by G resp. G the Galois groups of K*P/K and K;*/Ks. Doing

base change by K, we obtain a map

Y HY (G, Ag(K*P)) — [[ H'(Gs, Ak, (K3P)), Xk — Xk,
57N

If Ag is elliptic, ¢ factors over the direct sum: By Theorem 3.9, a relatively minimal
proper regular model X of X over S exists and is unique. If the fiber X over s has a
rational point, X xg Spec(ﬁs,s) also has a rational point which lifts to a rational point on
Xk, by Hensel’s Lemma. Now X — S has only finitely many non-smooth fibers (cf. [19],
Théoreme 12.2.4), hence only finitely many fibers without rational points. Therefore, all
but finitely many torsor X, are trivial.

Moreover, X xg Spec(ﬁAg,S) is again a relatively minimal elliptic fibration and the Ko-
daira symbol, multiplicity and torsion structure of X, and X xg Spec(ﬁsjs) remain the

same by Proposition 2.1. So if ¢ would surject onto the direct sum, we could construct
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a relatively minimal elliptic fibration with prescribed Kodaira symbol, multiplicity and
torsion at fibers over given points of S. This is indeed often the case, and we are going
to sketch why. For a reference, we refer to [12], §5.4 or [49], Chapter III, Theorem 11.6.
There is also a generalization to abelian schemes over regular, noetherian, integral, sepa-
rated base schemes by Keller [33].

Let K be the function field of a Dedekind scheme S over an algebraically closed ground
field k and Ag be an abelian variety over K, with Néron model N over S. Denote by
i: Spec(K) — S the inclusion of the generic point. As N is a commutative group scheme,
we can consider it as an abelian sheaf on the étale site of S. We apply the Leray—Serre
spectral sequence HZ (S, R%i.i*N) = H"*(K,i*N) and obtain

0 — H}(S,ixi*N) — H}(K,i*N) — H%(S, RYi,i*N) — HZ,(S,ixi*N).

Note that i*N = Ag and 4,i*N = N hold due to the Néron mapping property and
that Hj (K, Ak) is the same as the Galois cohomology group H!(G, Ax(K*°P)), where
G = Gal(K*?/K). Furthermore, the restriction

HY (S, RYi.i*N) — [[(R"4.i*N)s
570

to the product of stalks at geometric points is injective, cf. [50], Proposition 11.2.10. More-
over, denoting by K the field of fractions of the henselization ﬁg} . of the stalk Og  for a
closed point s € S and by i?: Spec(K") — S the natural inclusion, we identify

(RYi,i*N)s = HY(K!, (i")*N).

In fact, using the notation as at the beginning, H'(K", (i?)*N) coincides with the group
H'(Kj, (is)*N) (cf. [12], Remark 5.4.2), which in turn can be identified with the group
HY(Gs, Ak, (K5P)). Arguing further, one puts this together to obtain the exact sequence

0 — Hi (S, N) = H'(G, Ax(K*P)) - @ H'(Gs, A, (Ks)) — Hz (S, N).
57N

Note that the group HZ (S, N) is also known as the Tate-Shafarevich group of N. In the
case that Ax = F is an elliptic curve, we get the following result (cf. [12], Corollary 5.4.6):

Proposition 8.1. Let Ex be an elliptic curve over K. Take the relatively minimal proper
reqular S-model f: E — S of Fx and assume that the elliptic fibration f is nontrivial, i.e.
E # Ej, x3, S. Then the global-to-local map H' (G, Ex (K*P)) — @ H'(Gs, Ex,(K57)),

where the sum runs over all closed points s € S, is surjective.
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8.2 Global invariants

For the whole section, let S be a proper Dedekind scheme over an algebraically closed field
k of characteristic p and f: X — S be a relatively minimal genus-1-fibration. By Zariski-
Goodman (e.g. [4], Theorem 1.28, or [42], Chapter I, Theorem 2.8), X/k is a projective

surface. There is a very famous formula

1

X(Ox) = 15 (e2(X) + (Ex - Kx)),

called the Noether Formula (cf. [4], Chapter 5, p.69), where c2(X) denotes the second
Chern class of X. It is equal to the l-adic Euler characteristic e(X) = Zfzo(—l)ibi(X),
where b;(X) = dimg, H (X, Q) is the i-th l-adic Betti number (I prime to p). To
obtain more information on y(&0x) and the appearing fiber types, we restate [12], Propo-
sition 5.1.6:

Proposition 8.2. Let f: X — S be a relatively minimal genus-1-fibration or quasi-elliptic
fibration. Then

ca(X) = e(X) = e(Xpe(S) + Y _(e(Xs) — e(Xq) + ;)
s#n

holds, where s > 0. In case that p # 2,3 holds or f is quasi-elliptic or that X is of
type I, the equality 6s = 0 holds. Furthermore, the l-adic FEuler characteristic of a fiber
Xs =mF is given by

0 if F'is of type Iy
e(mF) = { by(mF) if I is of type I,

1+ bo(mF) else.

The second Betti number coincides with the number of irreducible components.
Corollary 8.3. The Euler characteristic x(Ox) = 127 e(X) is non-negative.

Proof. We already showed in the proof of Theorem 1.9 that (Kx - Kx) = 0. Now from
the preceding theorem, we can read off e(X) > 0 in the case that X is of Kodaira type
Ip. If f: X — S is quasi-elliptic, this follows from the following lemma. O

Lemma 8.4. Let f: X — S be an quasi-elliptic fibration. Then all fibers are of additive
type.

Proof. As the first Betti number b; is lower semi-continuous and the generic fiber is of
additive type, we have b1 (Xx) = 0 and b1(Xs) = 0 for every other fiber. Hence, X, is of
additive type. O
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Corollary 8.5. Let f: X — S be a relatively minimal elliptic fibration. Then x(Ox) =0
if and only if each fiber is of type Iy.

Proof. As e(X) = 12x(0x ), Proposition 8.2 yields

X(Ox) =0-e(X)+> (e(Xs) = 0+8:) =Y (e(Xs) — 0+ 5y).

Therefore, x(Ox) = 0 implies e(Xg) = ds = 0, which in turn means that X is of type Ij.
If one now assumes that all X are of type Iy, then §; = 0 holds and hence x(€x) =0. O

We now turn to the Kodaira classification of relatively minimal genus-1-fibrations.
Recall that the Kodaira dimension x(X) € {—00,0,1,2} is defined as follows: Either
HO(X,w§") =0 for all t > 0 and we set k(X) = —oo or we define £(X) to be the minimal
non-zero integer n such that dimy H°(X ,w?}t) -t~™ is bounded for ¢ > 1. Remember that

the canonical bundle formula from Theorem 1.9 says that

wx = f(ZLY @ws) ® ﬁx(z aiFi)

i

holds, where m; F; = X, = f*({si}) as Weil divisors. In particular, writing .4 = £V ®wg

and z; = Ltaimi_lj, we use the projection formula to see
few§h) = fof* (JV ® ﬁs(Z%’{Si})) ® ﬁx(Z (% - ﬂfz)szz>
=4 R® ﬁs(Zxﬂs&) & f*ﬁx<z (fn& - Z’z)mz Fz)
i o—

)

=N ® ﬁs<2mi{si}).

i

Note that we used f.Ox(zF;) = Og for 0 < x < m; — 1 as proven in Theorem 1.9. In

particular, f*(wg’}t) is an invertible sheaf, of which we can compute the degree:
ta;
deg(fe(wih) =t(2h' Os — 2+ x(Ox) +1(T)) + Z {sz .

To get rid of the floor functions, we take ¢ to be the least common multiple m of the m;,
and define

M) = - des(f(w§™) = 20 05 — 2+ x(0x) + U7 +def

Note that HO(X,w$™) = HO(S, fi(w$™)) holds, and the growth of hO((fiw$™)®") is
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determined by its degree. So it is natural to reformulate the Kodaira dimension in terms

of A(f). The following proposition is also stated in [52], Proposition 1:

Proposition 8.6. In above situation, the following holds:

—oo if A(f) <0,
KX)=30 i A(f)=0,
1 if A(f) > 0.

Proof. If A(f) < 0, one finds that deg(f.(w$")) < tA(f) < 0 for any ¢ > 1. If hO(w§') >
0 holds for some ¢ > 1, any non-trivial section would give rise to an effective Cartier
divisor D. This yields deg(f«(wx)®") = h°0p > 0, a contradiction.

Now assume A(f) > 0. Then f,(w§™) is ample. Consider F; = fi(w$') for 0 <i < m—1
as a mere coherent sheaf on S. Then the global sections of f.(w{™" ") = f.(F @ WG™)
grow linearly in n for 0 < i < m —1 (cf. [4], Theorem 1.1, together with [26], Chapter III,

Theorem 5.2). In particular, how?}” is not bounded, whereas n*1h0w§" is, and k(X) = 1.

Now consider the last case A(f) = 0. As we have x(€x) > 0 by Corollary 8.3, we
deduce from the equation A\(f) = 0 that the genus of S is either zero or one. Assume that
S has genus one. Then [(.7) = 0 and a; = 0. Using Theorem 1.9, we obtain wx = f*.£V,
where 0 = deg(.¢) = x(£). As we have Kodaira dimension zero, h%w$" is positive for
some n. Hence 9" = g and w?}" = Ox. In particular, the plurigenera are bounded.
Now assume that S has genus zero, i.e. § >~ }P’,l{. The only invertible sheaf of degree 0 on
P is Op1 , therefore W™ = Ox. O

Example 8.7. We resume Example 1.10 and compute A(f) for the canonical bundle
wx = f*(ﬁpllc(m —d—2))® Ox((p—b—1)F). Namely, recalling m = dp + b, we have

—-b-—-1 1
)\(f):—2+0~|—m—d+pp:m—l—m;.

Therefore, we conclude for the Kodaira dimension

—o0o0 m =1,
K(X) =140 m=2and p=3orm=3andp=2,
1

else.

In general, the torsion in the cohomology is given by

T = (R/md—l-l)@b @ (R/md)@p_b_l,
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cf. Example 2.14. Hence, in the small Kodaira dimensions, .7 is given by

R/m m =1,
T =49 (R/m)®? m=2andp=23,
R/m? m =3 and p=2.

Example 8.8. We resume Example 2.15 and compute A(f) for the canonical bundle
wx = f*(ﬁﬂmllc (m—d—2))® Ox((n —1)Ey) ® Ox((pn — bn — 1)E). Namely, recalling
m = dp + b, we have

-1 pn—btn-—1 nm+p+1
+ =m- ——.

Af)=—2+0+m—d+ "
n pn np

Therefore, assuming n > 1 as we would otherwise have the previous example, we conclude
for the Kodaira dimension x(X) that

0 (m,n,p)=1(1,2,3) or (1,2,3),
oy {0 mmp) = (12,8) 0r (1,2,3)
1 else.

Recall that a relatively minimal fibration does not admit (—1)-curves in the fibers
by definition. Yet, there might exist horizontal (—1)-curves in X, i.e. curves that map
surjectively onto S. An (—1)-curve is isomorphic to Pi, and restricting X to the divisor
gives a finite morphism from IP’,{T — S. Thus, by the Hurwitz Formula, S itself is a projective
line. We will call a regular proper surface over k without (—1)-curves a minimal surface
(in contrast to minimal fibration). As we will see, both definitions coincide for Kodaira

dimension greater than —oo.

Lemma 8.9. Let f: X — S be a relatively minimal genus-1-fibration with A(f) > 0.
Then Kx is nef, i.e. (Kx - C) > 0 for every integral curve C C X, and X is a minimal

surface.
Proof. If Kx is nef and there would be a (—1)-curve E C X, then
0<(Kx-E)=-1

by the very definitions. Contradiction!

So we just have to show that Kx is nef under the assumption A(f) > 0. Take m to be
the least common multiple of the multiplicities of the fibers. Then we saw in the definition
of A(f) that mKx is the pullback of some divisor on S. Let C' C X be an integral curve.
In case C' is a vertical curve, i.e. its support lies in some fibers, either C N Kx = @ or

C < Kx as divisors. In both cases, (Kx - C') = 0 as we saw in the proof of Theorem 1.9.
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Now assume that C'is a horizontal divisor. Then C is the closure of some point P closed
in the generic fiber Xx and (X, - C) = [k(P): K] > 0 holds (cf. [45], Proposition 9.1.30).
Hence, writing mKg =), A\i X, for some A\; € Z \ {0}, we deduce

(mKx -D) =Y M(Xs, - C) = > |Ni|(X, - C)

Xi>0 Ai<0
= > N[(P): K] = YN [8(P): K]
Ai>0 Ai<0

=> Xi[k(P): K]

= deg(fumKx)[k(P): K]
= mA(f)[k(P): K] > 0.

O]

Proposition 8.10. Let f: X — S be a relatively minimal genus-1-fibration. Then X is

a minimal surface if and only if X is not rational.

Proof. Assume that X is not rational. By the lemma above, only the case \(f) < 0 is
unsettled. This means that we can assume x(X) = —oo and therefore h®(w$") = 0 for all
t > 1. Using Corollary 8.3 and Serre duality h?0x = hPwx = 0, we have

0<x(0x)=h"0x —hl'ox +h?0x =1—h'0x,

i.e. h'0x < 1. Now Castelnuovo’s Rationality Criterion, proven for positive characteristic
by Zariski in [76], asserts that h!@x = 0 would imply X rational. Hence, we have to lead
h'Ox = 1 to a contradiction. Assuming that there is some (—1)-curve £ C X, we can
contract it to get a minimal model X’. This in turn must be a ruled surface according to
[4], Theorem 13.13. On the one hand, (Kx - Kx/) = 0 holds due to [4], Proposition 11.19.
On the other hand, the intersection number goes down with each blow-up: Let m: X — X’

be the contraction morphism. Then

(KX‘K)() = ((F*KX/ +E)- (W*KX/ -l-E))
= (TF*KX/ -W*KX/)—l-Q(Tr*KX/ E)+(EE)
== (W*le 'W*le) -1
=-1

in contradiction to (Kx - Kx) = 0 as proved in Theorem 1.9.
Now assume that X is a rational surface. Then it is the blow-up of (possibly infinitely

near) nine points on P2, cf. [25], Proposition 4.1 and Lemma 4.2 and has (—1)-curves. [J
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Note that we are not interested in rational surfaces as no wild fibers appear:

Proposition 8.11. Let f: X — S be a fibered surface such that h'Ox = 0, e.g. if X

rational. Then there are no wild fibers.

Proof. The first terms of the Leray—Serre spectral sequence
0 — HYS,05) — H'(X,0x) — H°(S,R'f.Ox) — 0

yield H(S, R f.0x) = 0. Therefore, the torsion in R!f,Oy is trivial. O

We now want to understand which wild elliptic fibrations may appear for Kodaira
dimension —oo and zero. As a warm-up, we gather several easy observations. In particular,
we will see that no wild quasi-elliptic fibrations appear for A(f) < 0 except of non-classical

supersingular Enriques surfaces:

Proposition 8.12. Let f: X — S be a relatively minimal genus-1-fibration or quasi-
elliptic fibration of Kodaira dimension k(X) < 0 with at least one wild fiber. Then the

following statements hold:
(i) S ~Pj.
(ii) x(Ox) < 1. If moreover f is quasi-elliptic, then x(Ox) = 1.

(iii) If [ is quasi-elliptic, then p = 2 and X is a non-classical supersingular Enriques
surface, i.e. an Enriques surface with H'(X,Ox) = k on which the Frobenius acts

as the zero map. It has one wild fiber for which a = 0 holds.
(iv) There are at most two (resp. three) multiple fibers if A(f) <0 (resp. A(f) =0).
In particular, there are no quasi-elliptic fibrations with a wild fiber satisfying A\(f) < 0.

Proof. Recall that

——

A(f) zzhlﬁs—2+x(ﬁx)+l(9>+2%
M

holds. Thus, A(f) < 0 forces h'0s = 0 and x(Ox) < 1, so in particular S ~ P}. If
f is quasi-elliptic, we apply the Noether Formula, which gives 12 - x(Ox) = e(X) using
Corollary 8.3. As we know that the generic fiber is a cusp, Proposition 8.2 tells us that

e(X) =2¢(S) + Y (e(Xs) —2) =4+ (e(Xs) —2) >0

holds: We have e(P}) = 2 and e(X,) —2 > 0, the latter one because Xj is of additive type
by Lemma 8.4. Therefore, x(0x) = 1.
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We still assume that f is quasi-elliptic. Then there is no tame multiple fiber as else
some a;m; " > 0 and x(Ox)+1(T)+Y, aim; * > 2. Similarly, two wild fibers would mean
that I(.7) > 2, leading to A(f) > 0, which contradicts our general assumption on A(f).
Hence there is only one wild fiber with a = 0. As A(f) = 0, the surface X is minimal. As
x(Ox) = 1, it must be an Enriques surface, which is non-classical as h!@x = 0 would not
allow a wild fiber due to Proposition 8.11. Now from [12], Theorem 5.7.2, or [43], §7.3, we
conclude that X must be supersingular to bear a quasi-elliptic structure.

Let us turn to assumption (iv). If A(f) < 0, we must have [(.7) = 1. Hence there is

just one wild fiber. If we would have additionally two tame fibers, then

; -1 -1 1 1
Sasmolmel
m; mi ma 2 2

which contradicts A(f) < 0. The same argument shows that there cannot be three tame
fibers for A(f) = 0. O

The following lemma will be used in the next theorems.

Lemma 8.13. Let f: X — S be a relatively minimal elliptic fibration and [(F5) = 1 for

a closed point s € S. Then ms = vgp and as = vsp — Vs — 1 hold.

Proof. To ease notation, we omit the index s. Because [(.7) = 1, we have h'(0,,r) = 2
for the fiber mF over s by Theorem 2.9. Furthermore, using the notation of Lemma 2.5,
the first jumping numbers that increase h'(&,r) by one are 1 and 1+ v. So either the
jumping distance grows at n1 = 1+ v or vp® = m < 14 2v holds. The latter one can only
be the case for e = 1 and p = 2. But then vag =1+ a < m = vp forces ap = 1, so we
have a =v — 1 and 1 = (7)) = a1 by Corollary 2.8. Hence

mtv—1l=n+a=a1v2=2v,

and therefore n1 = v + 1 in all cases.
The next jumping number after 1+v must then be 14+v+pr, and we have the inequality
1+v+vp>m=uvp® from h'O,,r = 2. This is equivalent to vp(p*~! —1) < 1+v < 2v.

Hence e =1 and m = vp. Furthermore, a < vp holds and we have
avp=n1+a<l+v+uvp,
which is only possible if ay = 1. Thus a =pr — v — 1. O

Remark 8.14. The lemma shows that strange fibers, i.e. wild fibers with a = m — 1 (see

[31]), do not appear for wild fibers with torsion length one.
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For the following theorems, we set up notation: Let f: X — S be a relatively minimal

elliptic fibration with canonical bundle formula

wx = f*(gv ®w5) (= ﬁX(Zaze)
i=1

where the first [ fibers m;F; are wild fibers and the other tame. Following [7], we simply
write (ai1/m7,...,a;/m}, (myp1 —1)/myqq, ..., (my —1)/m;) in shorthand for the multiple
fibers appearing in the fibration. Note that the asterisk indicates a wild fiber.

Theorem 8.15. Let f: X — S be a relatively minimal elliptic fibration of Kodaira di-
mension —oo with at least one wild fiber. Then S ~ P} and x(Ox) = 0. Moreover, all
fibers are of type ly. The possible multiple fibers and the canonical bundle can be read off
from the following table:

multiple fibers characteristic canonical bundle

(p—2/p") p>2 wx = f(Op(—1)) ® Ox((p —2)F)

k

(0/2%,1/2) p=2 wx = f*(Op1(—1)) ® Ox(Frame)

k

Both possibilities appear.

Proof. Proposition 8.11 states that X cannot be rational under the assumption of wildness.
Hence, by Proposition 8.10, it is a minimal surface and therefore geometrically ruled. For
those, the formula (Kx - Kx) = 8(1 — h'@x) holds, cf. [4], Proposition 11.19. Thus, we
conclude h'@x =1 and x(Ox) = 0. Applying Corollary 8.5, all singular fibers are of type
Ip. The inequality A(f) < 0 forces h'@g = 0, that is S ~ P}. Furthermore, in all cases,
deg(.Z) = —x(0s) — (7)) = —1, which leads to the term f*(ﬁpllc(—l)) in the canonical
bundle formula.

Collecting our facts, the formula for A(f) becomes
@
Af)==2+UT — <0.
(f) +UT)+ ) <

It immediately follows that [(.77) = 1, and that there is at most (and at least by assump-
tion) one wild fiber Fj. If this is the only multiple fiber, its multiplicity must be a power
of p and the order of its normal bundle is one by [31], Corollary 4.2. The wildness auto-
matically follows in this situation. From [(.7) = 1, it follows that m =panda=p—1-1
by Lemma 8.13. Such a surface is given in Example 8.7.

Now assume that we have more than one multiple fiber, the wild one indexed by 1.

We know from Proposition 8.12 that there is at most one additional multiple fiber mgF5,
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which has to be tame. The inequality A(f) < 0 then gives us the condition

£+m271:mlflful+m271<l — 1<1+V1 1
my ma my ma mq ma
where we again used m; = v1p and a; = v1p — v; — 1 by Lemma 8.13.
We first consider the case m; = mg. Then v1p = my; < 2 + v; holds, which is only
satisfied if 1 = 1 and p = 2 hold. This gives us the last case in the table of the statement.
Such a surface was constructed in [30], Example 5.2.

Now we lead m1 # mo to a contradiction: First of all, we notice that the inequality

1 1 1 2 1
l<—+-+-—< >4
vip p m2” p 2
holds, from which we deduce p = 2 or p = 3. By [31], Theorem 3.3, the condition U,

defined there holds, i.e. there exists an integer [ such that

l 1
—+ — €Z.
mi Mo
Reformulating, we have lmg+mq € mimoZ, from which we see that my divides mq. Write
m1 = ymsy. By assumption, v > 2.
If p = 3, then we estimate mgy > 2 and m; > 6 (note that p and mg divide my). Thus
1<1+ 1 n 1 <1+1+1—1
3 my mg 3 6 2
a contradiction!
If p = 2, then by the same estimates as above, we conclude that only me = 2 can be
possible. For this case, we use again [31], Theorem 3.3, now on condition U;, which states

the existence of integers [1, lo such that

1+l11/1+572

€ 7.
my ma
In our situation, this reads as
1 lhh I
—+-—+-€Z,
mq + 2 + 2
which is impossible as m; > 2mo = 4. ]

The next theorem gives an overview over all possible relatively minimal elliptic surfaces
appearing in Kodaira dimension zero. Whereas the classification of Theorem 8.15 seems to
be new, the possible cases in Kodaira dimension zero were already tabulated by Bombieri
and Mumford in their paper [7] at the end of §2. They also noted which possibility they
could realize. Mitsui studied in [51], §6, the list given by Bombieri and Mumford with
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regard to the existence of possible types. He gave examples for all occurring possibilities
where x(Ox) = 0 holds, except for three cases. These are the cases when [(.7) = 1 and
the fibers are of the form (1/2*,1/2), (1/4*,3/4) and (2/4%,1/2). We narrow the list by
excluding the cases (1/2*,1/2) and (2/4*,1/2):

Theorem 8.16. Let f: X — S be a relatively minimal elliptic fibration of Kodaira di-

menston zero.
(i) If X is a K3 surface, then there are no multiple fibers.

(ii) If X is an Enriques surface, the following two cases can occur: Either X is classical
and has two tame fibers of multiplicity two or p = 2 and X is non-classical with

exactly one wild multiple fiber of multiplicity two and a = 0.

(i5i) If X is an abelian surface, it is given by the quotient of a trivial elliptic fibration
F1 X Es — Eo by a finite subgroup of E1 X i Fo, which acts by translation such that
the projection Fh X Fo — FEo is equivariant. In particular, there are no multiple

fibers.

(i) If X is a hyperelliptic surface, it is isomorphic to the quotient of two elliptic curves
FEy Xy E2 by a finite subgroup scheme A C Ey, which acts on the first factor via an
injective homomorphism a: A — Aut(qp)(E1) and on the second factor by transla-
tion. This yields two elliptic fibration structures f1: X — IP’,lg and fo: X — Eq/A,
where fo has smooth fibers. Thus, each fiber has multiplicity one and is of type Iy.
For f1, only the types which are listed in Table 2 can appear.

Remark 8.17. Bombieri and Mumford as well as Mitsui only listed for {(.7) = 2 the
possible cases (0/2%%) and (0/3%) without specifying the exponent.

Proof. Let us assume that X is a K3 surface. Then x(0x) = 2 and hence A(f) = 0 if and
only if S = ]P’,}/, and there are no multiple fibers.

Now let X be an Enriques surface. Then x(0x) = 1 and the tameness means that
I(7) = 0and A(f) = 0 implies > (m; — 1)m; ! = 1, which is only the case for two fibers of
multiplicity two. If there is a wild fiber, [(.7) = 1 holds and there is exactly one multiple
fiber, for which am ™' = 0 must hold.

Suppose that X is an abelian surface that admits an elliptic fibration. The general fiber
is an elliptic curve. Let us translate it in X so that it is a subgroup scheme F; C X. In
fact, every closed fiber is a copy of Ey: Take a closed point x € X, and consider x + Fj.
It does not intersect E7, hence it must be a vertical curve and therefore all of X, (recall
that every closed fiber is an elliptic curve by Corollary 8.5). In particular, all fibers are

reduced, the base S = X/E; is a geometric quotient and therefore an elliptic curve as

104



[(T) Multiple Fibers Torsion p  Example or reference

structure

0 (1/2,2/3,5/6) 0 >0 [51], §6
(1/2,3/4,3/4) 0 >0 [51], §6
(2/3,2/3,2/3) 0 >0 [51], §6
(1/2,1/2,1/2,1/2) 0 >0 [51], 56

1 (0/2%,1/2,1/2), 11 =1  K(s) 2 [51], §6
(1/2%,1/2), v1 =1 K(s) 2 Does not appear
(1/3%,2/3), 11 =1 K(S) 3 [51], §6
(1/4*,3/4), v1 =2 K(S) 2 Not known
(2/4%,1/2), 11 =1 K(s) 2 Does not appear
(2/6*,2/3), 11 =3 K(S) 2 Example 8.8
(3/6%,1/2), v1 =2 K(s) 3 Example 8.8

2 (0/2%), v1 =1 R/m? 2 Example 8.7
(0/4*), v1 =1 K(s) @ Kk(s) 2 [31], §8.1 and §8.2
(0/3%), 11 =1 K(s) ® K(s) 3 Example 8.7
(0/2%,0/2%) v, =1 k(s)@k(s) 2 [7],83

Table 2: Potential types of multiple fibers in hyperelliptic surfaces

well. Now secondly, observe that X is isogenous to the product E7 X o for an elliptic
curve Fy over k by Poincaré’s Complete Reducibility Theorem (cf. [56], §19, Theorem 1).

Consider the commutative diagram

E1 XkEQ*)X

| |

Ey —— S,

where the left vertical arrow is the second projection and Fs — S is given by restricting
E1 %X By — X — S to Es. Then both vertical arrows are minimal elliptic fibrations and
S is the quotient of E5 by the kernel of Fq X, Ey — X restricted to Fo. Therefore, taking
the quotients induces the elliptic fibration X — S.

The case of hyperelliptic surfaces is pretty much the same as for abelian surfaces
equipped with an elliptic fibration: It is the quotient of a product of elliptic curves. But
this time, the group only acts freely on one component. For a proof, see [7], Proposition 5
and Theorem 4. Thus, we only have to focus on the case where S = P.. Note that the

table is already in [7] or [51], §6, but without proof. For convenience, we give one:

Recall that A(f) = —2+1(7) + > a;m; ' holds in our situation and assume [(7) = 0.
Then A(f) = 0 forces >}, (m; — 1)m; ' = 2, where 7 is the number of multiple fibers.
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Reformulating

we deduce r < 4. If r = 4, then m; = 2 must hold for 1 < ¢ < 4. So we are left to study

the case r < 3. If m; > 7, we deduce from the inequality

1 1 1 1 1 1
l=—4—+—<c+—+—
my mo ms3 7 mo ms3
the inequality m2_1 + mgl > 6/7. This is only satisfied if my = mg = 2, but then the
equality 1 = ml_1 +my ! +mgz Lis not true, contradiction. Hence, m; < 6 must hold. From

this point on, it is easy to calculate which combinations satisfy A(f) = 0.

Now let I[(7) = 1. As every tame fiber contributes at least 27! to A(f), we have at
most two tame fibers. As (mj — 1)m; ' 4 (m2 — 1)my* > 1 holds with equality only if
m1 = mg = 2, one immediately sees that the constellation (0/2*,1/2,1/2) is the only
possible one. On the other hand, we must have at least one multiple tame fiber due
to almfl < 1. It suffices to check that m; < 7: Then we reformulate the equality
almfl + (mg — 1)7722*1 = 1 to moa = my and there are only finitely many cases left to
study. We already deduced m; = vp and a1 = m; — 1 — vy in Lemma 8.13. Hence, if

m1 > 7, we reformulate moa = m; to obtain the inequality

L a1 11 1 5
me Mg m  p 702 14’
—— ——

>_7-1>_9-1

which only holds if me = 2. In this case, the prime p in above inequality must be two, as
otherwise the inequality would not be true. Thus, m; = v; - 2 and m; = moa = 2(1; — 1)
hold. Contradiction. Hence m; < 6. Now one checks the finitely many possible cases.
Note that 11 can be determined by the properties v1p = mq and vy divides a1 + 1 as well

as mji.

For the remaining case {(.7) = 2, one immediately notices that there are at most two
wild fibers. The condition A(f) = 0 now implies that all a; = 0, in particular there is no
tame multiple fiber. If there are two wild fibers, Lemma 8.13 shows that they must be of
type (p—2/p*), hence of type (0/2*) due to a = 0. This settles the last entry in the list and
the torsion structure. So assume that there is just one wild fiber. Using the conclusions
from Lemma 2.5, we obtain 1 = 1 4+ a = agv, which tells us that cg = v = 1 holds. The
formula for the torsion length 2 = () =1 — g+ (p — 1) X7y o from Corollary 2.8
reduces the possible primes to 2 and 3. If p = 3, then a; = 1 and e = 1, settling the case
(0/3%). If p =2, either e =1 and oy = 2 or e = 2 and a3 = ag = 1, settling the cases
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(0/2%) and (0/4%).
For the torsion structure, we apply Theorem 2.11. As a = 0 in all cases, the formula

for the y; and z; becomes easier:

y; = (p—1)(a; = Bp),
zi=p-1)((8; + p¢7 — o).

Furthermore, in all cases, 1 =1+ a = vag holds, i.e. ap =1 and [(F) = (p—1) > 7 ;.
Start with the case (0/4%): We have e = 2 due to v = 1. Therefore, 2 =1(7) = a1 + as.
Because paj —aj = kj > 0 for 0 < j < e—1, we have oy, a2 > 0, so both are 1 and we
compute ny =2, ng =4, f1 =0, fo =1 and the numbers y; =1, 21 =2, yo =0, 20 = 1.
This gives 7 = (R/m)®2.

The other cases are a bit simpler due to Remark 2.13: For (0/2*), we have e = 1 and
2 = I(J) = a;. Therefore, 7 is isomorphic to R/m?. In the case (0/3*), the equality
2 = () gives a1 = 1, hence J = (R/m)®2. If we have two wild fibers with torsion
length 1, we already saw that the torsion structure is R/m.

Now turning back to [(.7) = 1, we can exclude the cases (1/2*,1/2) and (2/4%,1/2)
by the following argument: By Lemma 8.13, a wild fiber with torsion length 1 satisfies
a = m — v — 1. This excludes the appearance of a wild fiber (1/2*). Furthermore, we
deduced e = 1, which excludes the case (2/4*): because v = 1, the multiplicity is given by

m=1-22, ie. e=2. Contradiction. O

Remark 8.18. Proposition 8.1 does not help in constructing an hyperelliptic surface with
multiple fibers (1/4*,3/4) as in Table 2. If K(X) <0 and f: X — S admits a wild fiber,
we always deduced that S ~ IP’}C. According to [12], Corollary 5.5.5, every elliptic fibration
E — IP’%U, with section without degenerate fiber is trivial, i.e. X ~ Fj X IP’%J for an elliptic
curve E}, over k. Let X be a torsor under the elliptic curve Ex. Then the fibers of their
relatively minimal proper regular models E and X over S have the same Kodaira type,
see Theorem 1.13. That means that E does not admit a degenerate fiber, hence is trivial

and we cannot apply Proposition 8.1.
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