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Abstract

Formal models of argumentation in the field of artificial intelligence (AI) research were orig-
inally developed as a tool for logical inference on the basis of incomplete or inconsistent
knowledge. Recently, AI argumentation formalisms are also being used to represent and
evaluate real-world argumentations. Software tools that support argumentation can benefit
from the semantic evaluation mechanisms that are provided by formal argumentation mod-
els, while the application to real-world scenarios improves the scope and relevance of formal
models of argumentation in AI.

This research is part of the Ph.D. program “Online Participation,” supported by the North
Rhine-Westphalian funding scheme “Fortschrittskollegs.” One of the program’s goals is to
improve the quality of software-supported argumentation. This thesis contributes to this
improvement by strengthening the connection between formal argumentation models from
AI and software-supported discussions among humans on both sides.

The first part of the contribution of this thesis is an extension of the formal model of abstract
argumentation frameworks. In its basic form, an argumentation framework is given by a set
of arguments and a binary attack relation on these arguments. In the proposed extended
model of incomplete argumentation frameworks, individual arguments and individual at-
tacks may be uncertain—such elements may or may not be part of the discussion. The
extended model allows the representation of a wider range of scenarios that can arise in real
argumentation settings, such as intermediate states in elicitation processes or the restricted
knowledge of a single participant about the state of a discussion. The technical contribution
of this part of the thesis is a full analysis of how the added notion of uncertainty affects
the computational complexity of core reasoning tasks in abstract argumentation—namely,
the verification and acceptance problems—for various evaluation semantics. Compared to
the computational complexity of the respective problems for standard argumentation frame-
works, for incomplete argumentation frameworks we observe a jump in complexity for most
variants of the acceptance problems, but not for most variants of the verification problem.

The second part of the contribution of this thesis is the development and implementation
of translations from discussion data generated by the d-bas web tool for dialog-based argu-
mentation to three different AI argumentation formalisms, namely, abstract argumentation
frameworks, abstract dialectical frameworks, and the ASPIC+ framework. The translations
are proved to satisfy established quality criteria. We developed the tool dabasco to imple-
ment these translations, which enables d-bas to utilize the full range of existing software
tools for reasoning problems in the three argumentation models. The argument pipeline
consisting of d-bas, dabasco, and these tools can automatically determine whether, e.g.,
a statement is acceptable or whether a participant’s opinion is consistent, thus improving
feedback for operators and participants of discussions.
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Chapter 1

Introduction

In recent years, the rise of the Internet opened the possibility to relocate various areas of
public communication from the real world to online platforms. Online forums, comment
sections on web sites, and digital questionnaires provide a low-threshold opportunity for
participants to inform themselves about current debates, to convey their opinion, and to
learn about opinions and arguments of other users. Operators of such online participation
platforms often are interested in having an overview of which proposals were made, which
opinions were most common, and which are the most important arguments for and against
the proposals. This creates a demand for systems that allow to automatically evaluate the
arguments that were created by users in online discussions. One common approach is to use
machine learning techniques, like argument mining or opinion and sentiment mining (surveys
are given by, e.g., Pang and Lee (2008) and Peldszus and Stede (2013)). However, such
mechanisms typically do not provide an explanation to back their results. An alternative
way that ensures explainable results is to implement evaluation tools for online participation
platforms using formal argumentation models.

Within the field of artificial intelligence (AI) research, formal models of argumentation have
emerged as a range of formalisms that allow solving reasoning tasks with inconsistent data or
with uncertain inference schemes. In applications, this data could be, e.g., a digital agent’s
current information about the world’s state, or the different positions and statements in an
online discussion. Uncertain schemes of inference include logical induction, abduction, or
the application of common-sense reasoning—each of which is highly useful in practice, but
may lead to incorrect conclusions in some cases. Interesting reasoning tasks could be to
automatically determine what to believe about the current state of the world, what action
to take, or what argument to accept in a discussion. The interest for formal argumentation
in AI was most notably initiated by the work of Pollock (1970) on defeasible reasoning
within the area of philosophical logic, which was later transferred to AI by Pollock (1987).
A connection between defeasible rule-based logics and argument graphs was subsequently
drawn by Pollock (1994) and Dung (1995), sparking a wave of research on different models
of argumentation in AI—an overview is given in a variety of surveys by, e.g., Chesñevar
et al. (2000), Prakken and Vreeswijk (2001), Besnard and Hunter (2008), Carstens et al.
(2015), and Prakken (2017), and the book by Rahwan and Simari (2009).
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Chapter 1 Introduction

Recently, the potential of formal argumentation models to enhance online platforms was
recognized by AI researchers—see, e.g., the work by Scheuer et al. (2010), Heras et al. (2010),
Snaith et al. (2010), Toni and Torroni (2011), Bex et al. (2013), and Wyner et al. (2016). In
order to utilize formal models of argumentation in actual applications, an evaluation pipeline
must be established which starts with the argumentation data to be evaluated and outputs
recommendations on what to believe or what action to take. There are many possible ways
to establish such a pipeline. Caminada and Amgoud (2007) propose a pipeline that uses
defeasible theories as defined in Chapter 2 of this thesis as an intermediate representation
of real-world data, which are then used to instantiate formal argumentation models. The
following description embeds the four steps of their pipeline in a six-step process that, in
addition, explicitly draws the connection between the formal representation of a discussion
and the actual application level at both the start and the end. Figure 1 displays all steps of
the pipeline and indicates their level of abstraction.

1. Create a knowledge base and a set of inference rules from the application.
2. Construct arguments from knowledge base and rules.
3. Derive dialectical relations between arguments.
4. Determine the dialectical status of the arguments from the relations.
5. Derive accepted conclusions from accepted arguments.
6. Interpret accepted conclusions on the application level.

1.1 Bridging the Gap

A majority of research on argumentation in AI concentrates on problems in the “middle” of
the pipeline and is not concerned about the origin of the arguments or the interpretation of
the results. The aim of this thesis is to help with bridging gaps in the argument evaluation
pipeline. Our contribution is twofold.

Our first contribution is an extension of the model of abstract argumentation frameworks
introduced by Dung (1995), which allows the representation of incomplete knowledge about
elements in a discussion, and an analysis of the computational complexity of reasoning
problems in such incomplete argumentation frameworks. Our extended model increases the
scope of abstract argumentation frameworks and may allow using them in an extended range
of applications, where complete knowledge is not available. Our classification of the com-
plexity of reasoning problems in the extended model establishes bounds on the amount of
time required to find an answer to a given problem. This information helps with choosing
optimal ways to implement solutions to the problem. While simple problems can be con-
sistently solved in short time by dedicated, exact algorithms, similar algorithms for harder
problems might take an infeasibly long time for some instances. For such harder problems,
rather than using a dedicated algorithm, it might be more suitable to implement a reduction
to optimized SAT-solvers (see, e.g., Prasad et al. (2005)), or to trade accuracy for speed
by implementing a fast approximation algorithm (see, e.g., Johnson (1974)). In order to
generalize a reasoning problem for incomplete argumentation frameworks, we formalize a
possible and a necessary variant of it, which reduce the answer to finding the solution to the
original problem in some, respectively, in all, completions of the incomplete argumentation.
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a since b!
not b!

c! Also,
b since c!

d! Also, not
a since d!

discussion

K = {¬b, c, d}
R = {b⇒ a,

c⇒ b,

d⇒ ¬a}
defeasible theory

A1:
¬b

A2:
c

A3:
d

A4:
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arguments
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{A2, A3, A4, A5}
{A2, A3, A4, A6}

acceptable arguments

{¬a,¬b, c, d}
{a, b, c, d}
{¬a, b, c, d}

acceptable conclusions

“Accept c and d,
and do not accept a
while rejecting b!”

interpretation

1.

2.

3. 4.

5.

6.

application layer

formal language layer

formal argumentation layer

Figure 1: Visualization of the different layers of abstraction and different evaluation steps
in an argumentation pipeline as proposed by Caminada and Amgoud (2007).

We newly incorporate this approach in abstract argumentation theory, which has formerly
already been used by, e.g., Konczak and Lang (2005) in voting theory, by Bouveret et al.
(2010) in fair division theory, by Lang et al. (2015) in algorithmic game theory, and by
Baumeister et al. (2015a) in judgment aggregation theory. On the other hand, our con-
tribution aligns with other research on abstract argumentation frameworks that also aims
at increasing their domain of application, such as probabilistic and fuzzy generalizations
of argumentation frameworks by Janssen et al. (2008), Dung and Thang (2010), Li et al.
(2011), Rienstra (2012), and Hunter (2014), as well as various notions of dynamic change
in argumentation frameworks by Boella et al. (2009), Cayrol et al. (2010), Baumann and
Brewka (2010), Liao et al. (2011), Coste-Marquis et al. (2015), and Wallner et al. (2016). A
broad overview of generalizations of abstract argumentation frameworks is given by Brewka
et al. (2014), while Cayrol and Lagasquie-Schiex (2005) survey different forms of gradual-
ity in abstract argumentation, and Doutre and Mailly (2018) survey different concepts of
dynamic updates in argumentation frameworks.
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Chapter 1 Introduction

Our second contribution is the development and implementation of a software tool that auto-
matically generates instantiations of the ASPIC+ framework by Modgil and Prakken (2013),
abstract argumentation frameworks by Dung (1995), and abstract dialectical frameworks
by Brewka et al. (2013) from online discussions of the d-bas platform created by Krauthoff
et al. (2016, 2018). Together with a d-bas instance and existing solver software for reason-
ing problems in the respective target models, our tool dabasco provides a full argument
evaluation pipeline without the need for human intervention. Other tools that support the
formal representation of online discussion data include AIFdb by Lawrence et al. (2012),
which is a web interface that allows to store and retrieve argumentation data in the Ar-
gument Interchange Format (AIF) by Chesñevar et al. (2006); ArguBlogging by Bex et al.
(2014), which integrates discussions on online blogs into a semantic web based on the AIF;
PIRIKA by Oomidou et al. (2014), which provides an implementation of the full argumen-
tation pipeline as a standalone solution; and dAceRules by Diller et al. (2017), which allows
to encode knowledge bases with strict and defeasible rules in the ACE language data format
by Fuchs et al. (2008) for further evaluation. Argument mapping is a related approach that
allows the structuring and displaying of argumentations with the aim to help users organize
their information on a topic and to identify better conclusions. The main difference to other
semi-formal argumentation tools—and in particular, to d-bas—is that users of argument
mapping tools need to be aware of and actively use the formal structure underlying the tool.
Existing argument mapping tools include Araucaria by Reed and Rowe (2004), Rationale by
van Gelder (2007), Carneades by Gordon et al. (2007), DebateGraph by Baldwin and Price
(2008), Cohere by Shum (2008), and OVA+ by Reed et al. (2014), each of which provide a
frontend for constructing structured arguments from natural language inputs. Surveys are
given by Rahwan (2008), Schneider et al. (2013), and Bex et al. (2013).

1.2 Outline of Thesis

This thesis presents our contributions made towards applying formal models of argumenta-
tion for the evaluation of online discussions. Chapter 2 presents required notation, models,
and fundamental results from the areas of formal logic, the ASPIC+ framework, abstract
argumentation frameworks, abstract dialectical frameworks, and computational complexity
theory. The following Chapters present our results. Chapters 3 and 4 introduce the model
of incomplete abstract argumentation frameworks and present our complete study of the
computational complexity of possible and necessary variants of the Verification prob-
lem (Chapter 3) and Credulous-Acceptance and Skeptical-Acceptance problems
(Chapter 4). Chapter 5 presents the dabasco software tool that allows to translate d-bas

discussions to instantiations of abstract argumentation frameworks, the ASPIC+ framework,
and abstract dialectical frameworks. Finally, Chapter 6 summarizes the contributions of this
thesis and surveys some interesting ways in which this line of research can be continued.
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Chapter 2

Preliminaries

This chapter defines and illustrates all existing technical terms and models that are required
for the following chapters, starting with a background in formal logic in Section 2.1, followed
by introductions to the formal argumentation models used in this thesis in Section 2.2, and
finally the foundations of computational complexity theory in Section 2.3.

2.1 Foundations of Formal Logic and Inference

We start by defining all notions from propositional logic and first-order logic that will be
used in this thesis. A propositional variable x is a variable that ranges over the set of Boolean
truth values {true, false}. Given a set X = {x1, . . . , xn} of propositional variables, a truth
assignment τX on X is a function τX : X → {true, false} that assigns a truth value to
each variable in X. A propositional variable x has two literals, x and ¬x. Based on the
syntactical negation “¬” on literals, a corresponding semantic negation “∼” can be obtained
by, for a literal x, setting ∼x = ¬x if x is a propositional variable, and setting ∼x = x′ if
x = ¬x′ for some propositional variable x′. We call a set L of literals consistent if there are
no literals x1, x2 ∈ L with x1 = ∼x2.
Each literal is also a propositional formula. Further, when ϕ and ψ are propositional for-
mulas, then ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ are also propositional formulas. When X is the set of
all propositional variables that occur in literals in a formula ϕ, we say that ϕ is a formula
over X. Given a propositional formula ϕ over X and an assignment τX on X, we denote by
ϕ[τX ] the truth value that ϕ evaluates to under τX .

• If ϕ is a non-negated literal, then ϕ[τX ] = τX(ϕ), i.e., the formula ϕ evaluates to the
truth value that τX assigns to ϕ;

• If ϕ = ¬ψ for some formula ψ, then ϕ[τX ] = true if ψ[τX ] = false and ϕ[τX ] = false
otherwise;

• If ϕ = ψ1 ∨ ψ2 for some formulas ψ1, ψ2, then ϕ[τX ] = true if ψ1[τX ] = true or
ψ2[τX ] = true, and ϕ[τX ] = false otherwise;
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• If ϕ = ψ1 ∧ ψ2 for some formulas ψ1, ψ2, then ϕ[τX ] = true if ψ1[τX ] = true and
ψ2[τX ] = true, and ϕ[τX ] = false otherwise.

An assignment τX on a set X of literals is a satisfying assignment for a formula ϕ if ϕ[τX ]
evaluates to true.

A formula ϕ is a disjunction of formulas ψ1 through ψn if ϕ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn, which
can also be written as ϕ =

∨n
i=1 ψi. ϕ is a conjunction of formulas ψ1 through ψn if

ϕ = ψ1 ∧ ψ2 ∧ · · · ∧ ψn, which is also written as ϕ =
∧n

i=1 ψi. A clause is a disjunction of
literals. A propositional formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, and in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals (sometimes referred to as conjunctive clauses). Commonly used special cases are
CNF or DNF formulas with at most three literals in each clause or conjunctive clause. Such
formulas are said to be in 3-CNF or 3-DNF, respectively.

In the context of formal logic, the process of reasoning refers to the application of logical
inference: given certain knowledge, derive further knowledge that can be logically inferred
from it. Logical inference lies at the heart of formal arguments and thus plays a key role
in establishing formal models that represent argumentation scenarios. We first illustrate
logical inference in monotonic logic and then introduce non-monotonic inference as the core
formalism for formal argumentation models. Our notation loosely follows that of Caminada
and Amgoud (2007).

Let X be a set of propositional variables. A knowledge base over X is a set of literals over X,
and represents the facts that are known to be true a priori. For now, we assume knowledge
bases to be consistent. A strict inference rule allows to deductively infer a specific literal
when a corresponding set of preconditional literals is known. We write a strict inference
rule r as r : ϕ1, . . . , ϕk → ψ, where r is the rule name, {ϕ1, . . . , ϕk} is a consistent set of
literals called the body of the rule, the arrow “→” indicates strict logical inference, and ψ is
the head of the rule. Rule r states that, when all literals ϕ1, . . . , ϕk are known to hold, then
ψ holds, too.

We call a pair consisting of a knowledge base and a set of inference rules over a common
set of variables a theory . Reasoning in a theory is done by using known literals from the
knowledge base to activate inference rules, where a rule is active if all of its body literals are
known to hold. An active rule allows inferring the rule’s head literal, which is then added to
the knowledge, and which in turn may allow activating further rules. This iterative process
of deductively deriving further knowledge by applying inference rules is formalized by the
notion of closure in Definition 1.

Definition 1 (Closure). Let X be a set of Boolean variables, K be a knowledge base
over X and R be a set of inference rules over X. The closure ClR(K) of K under R is
the least set (with respect to set inclusion) that fulfills the following criteria:

1. K ⊆ ClR(K),

2. for all ϕ1, . . . , ϕk → ψ ∈ R with ϕ1, . . . , ϕk ∈ ClR(K), ψ ∈ ClR(K) must hold.

6



2.1 Foundations of Formal Logic and Inference

The closure can be constructed using the following algorithm: Start with the known
facts from the knowledge base and iteratively apply all inference rules that can be
activated. Stop when no more new knowledge can be derived.

1. Let K0 = K and i = 1.

2. Let Ri−1 ⊆ R be the set of rules whose body literals are in Ki−1. Let Ki =
Ki−1 ∪ Conc(Ri−1), were Conc(R) denotes the union of all head literals of rules
in the set R.

3. If Ki−1 
= Ki, set i← i+ 1 and repeat Steps 2 and 3.

4. The closure ClR(K) is Ki.

In a deductive theory, a proof for a literal ϕ is a tree structure of inference rules, where ϕ
is the root of the tree, literals in the knowledge base are the tree leaves, and each inference
rule applied in the proof establishes the connection between its body literal nodes to its
head literal node.

Example 2. Consider a set R = {r1 : a → b, r2 : b, c → e} of inference rules and two
knowledge bases K1 = {c,¬d}, K2 = {a, c,¬d} over a set {a, b, c, d, e} of variables.

• The closure ClR(K1) of K1 is equal to K1, since none of the two inference rules
in R can be activated using this knowledge base.

• The closure ClR(K2) of K2 is {a, b, c,¬d, e}, since a ∈ K2 allows to activate r1
and infer b, so in the second iteration, both body literals b and c of r2 are known,
allowing to activate r2 and also infer e.

In a theory consisting of K2 and R, a proof for literal e is a tree with root e, leaves
a, c ∈ K2, and an inner node b. b and c are children of e and a is a child of b.

Deductive reasoning—i.e., deriving knowledge by applying strict inference rules using a
knowledge base of priorly known facts—is monotonic in that it can only add new knowledge
and never retract previous knowledge. This is formalized in Definition 3.

Definition 3 (Monotonicity). A theory base is monotonic if for any set of inference
rules R, any two consistent sets of facts K and K ′ with K ⊆ K ′, and a literal ϕ, it
holds that if ϕ ∈ ClR(K), then ϕ ∈ ClR(K ′).

Monotonic theories can be generalized by allowing inconsistent knowledge bases and defea-
sible inference rules. Opposed to strict rules, a defeasible inference rule does not guarantee
its head literal to hold even if all body literals hold—there may be exceptions to its applica-
bility. However, defeasible rules come with the significant advantage that they can represent
non-deductive forms of inference like abduction, induction, a closed-world assumption, or
commonsense reasoning, thus greatly increasing the scope of applications that can be rep-
resented by a theory. We write a defeasible inference rule r that defeasibly infers a head
literal ψ from a set of body literals {ϕ1, . . . , ϕk} as r : ϕ1, . . . , ϕk ⇒ ψ.

7



Chapter 2 Preliminaries

Applying defeasible inference rules to infer a literal creates not a proof, but only an argument
for that literal. Like a proof, an argument can be represented by a tree structure with the
head literal as its root, body literals from the knowledge base as leaves, and activated
inference rules connecting inner nodes to their body literal nodes. But unlike a proof, an
argument does not guarantee its head literal to hold, and different arguments in a theory do
not need to be compatible and may be in conflict with each other. As a consequence, theories
that incorporate defeasible inference rules are non-monotonic—knowledge that was inferred
at some point of a reasoning process may be in conflict with new knowledge derived later,
and may need to be retracted. In addition, while the closure provides a simple formalism to
determine the set of all knowledge that can be believed in a monotonic theory, the closure of
non-monotonic theories may be inconsistent. In order to identify consistent sets of literals
that can be believed in a non-monotonic theory, more sophisticated methods are required.

A framework that allows creating arguments from defeasible theories is the ASPIC+ frame-
work introduced next in Section 2.2.1, while a framework that provides mechanisms to
identify consistent sets of arguments is the model of abstract argumentation frameworks
introduced thereafter in Section 2.2.2.

2.2 Formal Argumentation Models

In this section, we give an introduction to the formal argumentation models of the ASPIC+

framework (Section 2.2.1), abstract Argumentation Frameworks (Section 2.2.2), and Abstract
Dialectical Frameworks (Section 2.2.3), which are utilized in the technical part of this the-
sis. There exist a couple of other formal models of argumentation, for example, Defeasible
Logic Programming (DeLP) proposed by García and Simari (2004) or Assumption-based
Argumentation Frameworks (ABA) proposed by Bondarenko et al. (1993). For a broader
introduction, see, e.g., the books by Rahwan and Simari (2009) or Baroni et al. (2018).

2.2.1 ASPIC+

The ASPIC+ framework was developed as a means to instantiate argument graphs from
defeasible theories. ASPIC was first proposed in a technical report by Amgoud et al. (2004).
Based on weaknesses of the ASPIC model (and other logic-based models of formal argumen-
tation) identified by Caminada and Amgoud (2007), the extended framework ASPIC+ was
proposed by Prakken (2010) and later refined by Modgil and Prakken (2011) and Modgil and
Prakken (2013), with a comprehensive introduction given by Modgil and Prakken (2014).

We formally define and illustrate ASPIC+, following the model and notation from the latest
revision by Modgil and Prakken (2013). In ASPIC+, an argumentation system specifies the
logical language within which the reasoning takes place and the rules of inference that can
be applied to elements in this language. The language may be simply a set of literals closed
under negation, or any more sophisticated logical language.

8



2.2 Formal Argumentation Models

Definition 4 (Argumentation System). An ASPIC+argumentation system is a quadru-
ple AS = (L, ,̄R, n), where:

• L is a logical language,

• ¯ : L −→ 2L is a contrariness function for literals, where ϕ ∈ L and ψ ∈ L are
called contradictories of each other if ϕ ∈ ψ̄ and ψ ∈ ϕ̄, and where every element
of L is assumed to have at least one contradictory,

• R = Rs �Rd is a set of strict (Rs) and defeasible (Rd) inference rules, and

• n is a function n : Rd −→ L that maps defeasible rules to their language repre-
sentations and that allows rule identifiers to be used within the language.

An ASPIC+ knowledge base specifies the prior knowledge in a reasoning process, and allows
to distinguish between literals that are guaranteed to hold and those that may only be
assumed to hold.

Definition 5 (Knowledge Base). An ASPIC+knowledge base in an argumentation
system with language L is a set K with K ⊆ L and K = Kn � Kp, where:

• Kn is the set of axioms which are guaranteed to be true, and

• Kp is the set of ordinary premises which may be assumed, but which can be
defeated.

An ASPIC+argumentation theory AT is the combination of an argumentation system AS
and a knowledge base K over a common language L. The purpose of an argumentation theory
is to construct arguments which can be used to evaluate the dialectical status—accepted or
rejected—of literals in the theory.

Definition 6 (Argument). An argument A on the basis of an argumentation theory
AT = (AS,K) with AS = (L, ,̄R, n) and K ⊆ L consists of the following elements:

• Prem(A) ⊆ L – the set of premises,

• Conc(A) ∈ L – the conclusion,

• Sub(A) – the set of subarguments of A,

• DefRules(A) ⊆ Rd – the set of defeasible inference rules applied in A, and

• TopRule(A) ∈ (Rs ∪Rd) – the last inference rule applied in A.

Arguments in ASPIC+ are built recursively from the knowledge base: A literal argument just
states a single literal from the knowledge base without applying any inference rules, where
for each ϕ ∈ K, A = ϕ is an argument with Prem(ϕ) = {ϕ}, Conc(ϕ) = ϕ, Sub(ϕ) = {ϕ},
DefRules(ϕ) = ∅, and TopRule(ϕ) = undefined. More advanced arguments apply a single
inference rule and make use of subarguments which provide the body literals necessary to
activate that inference rule.
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A6

(¬b, c) → ¬d
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¬b

A3

c
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c
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r1 : (b, c, e) ⇒ d
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c
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e

A5
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Figure 2: Tree visualizations of all ASPIC+ arguments created in Example 8. Subarguments
are displayed as children of an argument node, and literals are the tree leaves. All
non-literal arguments are labeled with the inference rule that they apply. Dashed
edges represent, depending on the context, either a defeasible inference rule or
an ordinary premise. Arguments that appear as subarguments of several other
arguments are displayed multiple times for improved readability.

Definition 7 (Strict and Defeasible Arguments). If A1, . . . , An are arguments and if
there exists a strict rule r ∈ Rs with r = Conc(A1), . . . , Conc(An) → ψ (respectively, a
defeasible rule r ∈ Rd with r = Conc(A1), . . . , Conc(An) ⇒ ψ), then A is an argument
with:

• Prem(A) = Prem(A1) ∪ · · · ∪ Prem(An),

• Conc(A) = ψ,

• Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
• DefRules(A) = DefRules(A1) ∪ · · · ∪ DefRules(An) ∪ ({r} ∩ Rd), and

• TopRule(A) = r.

ASPIC+ allows to distinguish between certain and uncertain prior knowledge through the
distinction between Kn and Kp in the knowledge base K, and between strict and defeasible
rules through the partition of R into Rs and Rd. This allows to classify arguments based on
the strength of the knowledge base literals and inference rules that they use. An ASPIC+

argument A is called strict if DefRules(A) = ∅, and defeasible otherwise. A is called firm
if Prem(A) ⊆ Kn (or equivalently, if Prem(A) ∩ Kp = ∅), and plausible otherwise. Ev-
ery argument is either strict or defeasible and either firm or plausible, allowing a total of
four individual argument type combinations. Strict-and-firm arguments represent deductive
proofs of their conclusion, while all other argument types are non-deductive. Therefore,
every strict-and-firm argument guarantees its conclusion, whereas a defeasible or plausible
argument only provides a reason to believe its conclusion.
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2.2 Formal Argumentation Models

We illustrate ASPIC+ argumentation theories and arguments in Example 8.

Example 8. Consider an ASPIC+ argumentation theory given by the following argu-
mentation system and knowledge base.

• L = {a, b, c, d, e, r1, r2} ∪ {¬a,¬b,¬c,¬d,¬e,¬r1,¬r2},
• ϕ̄ = {¬ϕ} for all ϕ ∈ L,

• Rs = {a→ b, (¬b, c) → ¬d},
• Rd = {(a, c) ⇒ ¬r1, (b, c, e) ⇒ d},
• n((b, c, e) ⇒ d) = r1, n((a, c) ⇒ ¬r1) = r2.

• Kn = {a, c},
• Kp = {¬b, e}.

In this argumentation theory, four literal arguments can be created: A1 = a and A3 = c
from Kn, and A2 = ¬b and A4 = e from Kp.

Using the strict inference rules in the argumentation system, two strict arguments can
be created:

• From rule a→ b, create argument A5 with subargument A1 = a.

• From rule (¬b, c) → ¬d, create argument A6 with subarguments A2 = ¬b and
A3 = c.

Using the defeasible inference rules in the argumentation system, two defeasible argu-
ments can be created:

• From rule (a, c) ⇒ ¬r1, create argument A7 with subarguments A1 = a and
A3 = c.

• From rule (b, c, e) ⇒ d, create argument A8 with subarguments A3 = c, A4 = e,
and A5 (with conclusion b).

All eight arguments are summarized in Table 1. Arguments A7 and A8 apply a defeasi-
ble rule and are therefore defeasible, while all other arguments do not apply defeasible
rules and are strict. Arguments A2 and A6 use the ordinary premise ¬b, and arguments
A4 and A8 use the ordinary premise e, and are therefore plausible, while the remaining
arguments are firm. Figure 2 displays tree visualizations of all arguments that were
created.

ASPIC+ arguments can be in conflict with each other. ASPIC+ distinguishes three different
types of argument attacks. An undermining attack indicates that the conclusion of an
argument is incompatible with a premise of another argument, a rebutting attack indicates
that the conclusions of two arguments are mutually inconsistent, and an undercutting attack
indicates that the conclusion of an argument is a direct attack against a defeasible inference
rule applied in another argument.

11
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Table 1: ASPIC+ arguments created from the argumentation theory in Example 8

Prem Conc Sub DefRules TopRule

A1 = a {a} a {a} ∅ undefined

A2 = ¬b {¬b} ¬b {¬b} ∅ undefined

A3 = c {c} c {c} ∅ undefined

A4 = e {e} e {e} ∅ undefined

A5 {a} b {A1, A5} ∅ a→ b

A6 {¬b, c} ¬d {A2, A3, A6} ∅ (¬b, c) → ¬d
A7 {a, c} ¬r1 {A1, A3, A7} {(a, c) ⇒ ¬r1} (a, c) ⇒ ¬r1
A8 {a, c, e} d {A1, A3, A4, A5, A8} {(b, c, e) ⇒ d} (b, c, e) ⇒ d

Definition 9 (Argument Attacks). An ASPIC+ argument A undermines argument B
(on ϕ ∈ L) if and only if:

• ϕ ∈ Prem(B) is a premise of B,

• ϕ ∈ Kp is an ordinary premise of the knowledge base, and

• Conc(A) ∈ ϕ̄.

An ASPIC+ argument A rebuts argument B (on subargument B′) if and only if:

• B′ ∈ Sub(B) is a subargument of B,

• TopRule(B′) ∈ Rd, and

• Conc(B′) = ϕ and Conc(A) ∈ ϕ̄ for some ϕ ∈ L.

An ASPIC+ argument A undercuts argument B (on subargument B′) if and only if:

• B′ ∈ Sub(B) is a subargument of B,

• TopRule(B′) ∈ Rd, and

• Conc(A) ∈ n̄(TopRule(B′)).

Example 8 (continuing from p. 11). In our example, we have the following argument
attacks: A5 undermines A2 on ¬b, A5 undermines A6 on ¬b, A6 rebuts A8 on A8, and
A7 undercuts A8 on A8.

Since all attacks target some defeasible element in the attacked argument (either an ordinary
premise or a defeasible rule), each attack type can only target specific argument types: only
plausible arguments can be undermined, while only defeasible arguments can be undercut or
rebutted. On the other hand, each argument type can be the source of all kinds of attacks
without limitation.
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The ASPIC framework was extended to ASPIC+ by Prakken (2010), who proposed to
refine an argumentation theory by introducing preference orderings on its arguments that
indicate relative strength. Preferences allow to distinguish between argument attacks—as
defined here—and argument defeat, where an attack is a defeat if it is either an undercut or
successful, and successful if the target argument is not preferred to the attacking argument.
Preferences between arguments can be derived from a preference relation on knowledge base
literals in Kp and a preference relation on defeasible inference rules in Rd, which are part
of an ASPIC+ instance. For technical details, we refer the interested reader to Modgil and
Prakken (2013).

ASPIC+ is a general framework that allows the creation of custom argumentation systems,
which in turn can be instantiated using specific data. It is important to avoid building
a system that can produce counter-intuitive results—e.g., a set of arguments that do not
attack each other, but whose conclusions are not consistent. In order to control the behavior
of systems based on ASPIC+, Caminada and Amgoud (2007) propose a set of rationality
postulates that each impose constraints on the acceptable conclusions that are derived from
a system.

Definition 10 (Rationality Postulates). Let Args be a set of ASPIC+ arguments.

• Args fulfills subargument closure if for any argument A ∈ Args, Sub(A) ⊆ Args.

• Args fulfills closure under strict rules if its set of conclusions is closed under strict
closure, i.e., {Conc(A) | A ∈ Args} = ClRs({Conc(A) | A ∈ Args}).

• Args fulfills direct consistency if {Conc(A) | A ∈ Args} is consistent.

• Args fulfills indirect consistency if ClRs({Conc(A) | A ∈ Args}) is consistent.

The postulates in Definition 10 can be generalized to be applicable also for other frameworks
than ASPIC+. An instantiated argumentation system satisfies one of the postulates if all
sets of acceptable arguments produced by that system satisfy the postulate.

ASPIC+ can be instantiated using the TOAST system by Snaith and Reed (2012), which
was developed to represent defeasible theories following the ASPIC+ format specifically.
There are other related tools for reasoning tasks in structured knowledge bases that are not
tailored to the ASPIC+ framework, e.g., Argue-tuProlog by Bryant et al. (2006). A recent
survey is given by Cerutti et al. (2017).

2.2.2 Abstract Argumentation Frameworks

Abstract argumentation frameworks were proposed by Dung (1995) as a simple model that
provides formal methods to resolve conflicts in a graph structure consisting of arguments
and the attack relation between them, and to determine which arguments can be considered
acceptable. The model’s abstract nature allows it to be used for a wide range of different
scenarios.

We will now introduce all fundamental definitions of Dung’s original model, while our no-
tation loosely follows that of Dunne and Wooldridge (2009).
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Figure 3: Graph representation of the argumentation framework in Example 12

Definition 11 (Argumentation Framework). An argumentation framework (AF) is
a pair 〈A,R〉 consisting of a finite set A of arguments and a binary attack relation
R ⊆ (A×A) on A. If (a, b) ∈ R, this indicates that a attacks b.

We require the set A of arguments to be finite, since our work deals with complexity analysis
of reasoning problems in argumentation frameworks on the one hand, and instantiation
of real-world discussion data on the other hand. Finite instances are a precondition for
complexity analysis, since the complexity is measured in relation to the input size. Further,
infinite discussions do not occur in real applications, so this is a reasonable requirement.
However, there are other works that consider argumentation frameworks where A may be
infinite, e.g., Baumann and Spanring (2015).

Example 12. An AF 〈A,R〉 can be represented as a directed graph by identi-
fying A as the set of nodes and R as the set of directed edges. Figure 3 dis-
plays an argumentation framework with arguments A = {a, b, c, d, e, f, g} and attacks
R = {(a, b), (b, c), (c, b), (c, e), (d, c), (d, f), (e, d), (f, d), (g, e), (g, g)}.

Although the identity of the arguments and the attacks between them are the only informa-
tion that is available in an argumentation framework, it is enough to derive further insights
about the relations between and dialectical status of the arguments. The first is the implicit
notion of defense that is induced by the attacks. A set Args ⊆ A of arguments defends
an argument b ∈ A if Args attacks all attackers of b, i.e., if for each attacker a ∈ A with
(a, b) ∈ R there exists a defender d ∈ Args such that (d, a) ∈ R. When Args defends b,
one may equivalently say that b is acceptable with respect to Args. The function that maps
any set Args of arguments in an argumentation framework AF to the set of all arguments
defended by Args is called the characteristic function of AF , and is formally defined as
FAF : 2A → 2A with FAF (Args) = {a ∈ A |a is defended by Args in AF} for all Args ⊆ A.
The second notion derived from the attack relation is the property of conflict-freeness . A
set Args ⊆ A of arguments is conflict-free if there are no attacks between members of Args,
i.e., for all a, b ∈ Args we have (a, b) 
∈ R. The combined requirements of conflict-freeness
and defense are captured by admissibility—a set Args of arguments in an argumentation
framework AF that is both conflict-free and that defends itself, i.e., Args ⊆ FAF (Args), is
called admissible. Admissibility encompasses the intuition that a set of arguments cannot
be acceptable if it contains arguments that are in conflict with each other, or if it cannot
defend its members against attacks from other arguments. Admissibility is a precondition
for most advanced criteria in argumentation frameworks and for all criteria considered in
this thesis.
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conflict-free admissible complete grounded

preferred stable

Figure 4: Implications between conflict-freeness, admissibility, and the four semantics from
Definition 13, where for each pair of connected properties, all sets of arguments
that satisfy the conditions of the parent property also satisfy the conditions of the
child property.

The acceptability status of a single argument in an argumentation framework is determined
based on its membership in sets of arguments that are collectively acceptable (an equivalent
approach based on argument labelings instead of sets of arguments was defined by Caminada
(2006a)). A criterion that decides which sets of arguments in an argumentation framework
can be considered acceptable is called a semantics of the argumentation framework. Many
different semantics were proposed in the literature that serve different purposes, depending
on the specific requirements of the application. We formally define the four semantics that
were proposed by Dung (1995).

Definition 13 (Semantics). Let AF = 〈A,R〉 be an argumentation framework and
let Args ⊆ A be a conflict-free set of arguments.

• Args is complete (cp) if it is a fixed point of the characteristic function of AF ,
i.e., if Args = FAF (Args).

• Args is grounded (gr) if it is the unique least fixed point of the characteristic
function of AF , i.e., if Args = F ∗

AF (∅) (where F ∗
AF denotes the infinite composi-

tion of FAF ).

• Args is preferred (pr) if Args is a set-maximal admissible set.

• Args is stable (st) if for every b ∈ A\Args there is an a ∈ Args with (a, b) ∈ R.

Even though conflict-freeness and admissibility were introduced as basic preconditions and
not as full-fledged semantics, there is no technical reason to differentiate between them and
semantics, since they also provide a criterion to distinguish acceptable from unacceptable
sets of arguments. We often use the shorthands cp, gr, pr, and st to refer to the four
semantics, cf for conflict-freeness, ad for admissibility, and s as a variable ranging over
these. A set that satisfies the conditions of a semantics s ∈ {cf,ad,cp,gr,pr, st} is called
an s extension of AF .

The following implications hold between these properties, as proven by Dung (1995) (or,
in some cases, as a direct consequence of their definition): Every stable set is preferred,
every preferred set is complete, every complete set is admissible, and every admissible set
is conflict-free. The unique grounded extension is complete, but need not be preferred, just
as a preferred set need not be grounded. These implications are displayed in Figure 4. The
grounded extension further coincides with the intersection of all complete extensions. It
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Figure 5: Visualization of both complete extensions in the AF of Example 12, where argu-
ments are labeled in if they are in the extension, labeled out if they are attacked
by in arguments, and labeled undec otherwise.

can be algorithmically determined by applying the characteristic function FAF repeatedly,
starting from an empty set of arguments, until a fixed point is reached. In every argu-
mentation framework, there is at least one preferred extension (which may be the empty
set). However, there are argumentation frameworks that have no stable extension. Dung
(1995) identifies restricted subclasses of argumentation frameworks, namely, coherent and
well-founded argumentation frameworks, in which certain semantics coincide and that guar-
antee the existence of a stable extension. We do not utilize these notions here and therefore
omit formal definitions.

Example 12 (continuing from p. 14). We continue Example 12 and determine all
extensions of the given argumentation framework. Its conflict-free sets of arguments
are {a, c, f}, {a, d}, {a, f, e}, {b, d}, {b, f, e}, and all their subsets. Of these, only
∅, {a}, {f}, {a, f}, {c, f}, and {a, c, f} defend all their members (and are therefore
admissible), since argument a is unattacked, argument f defends itself against its only
attacker d, and argument c defends itself against b and is defended by f against d.

To determine the complete extensions, we can check which of the admissible sets are
fixed points of FAF . We have FAF (∅) = {a}, FAF ({a}) = {a}, FAF ({f}) = {a, f},
FAF ({a, f}) = {a, c, f}, FAF ({c, f}) = {a, c, f}, and FAF ({a, c, f}) = {a, c, f}. Thus,
{a} and {a, c, f} are the only complete extensions of AF . Since FAF (∅) = {a} and
FAF ({a}) = {a}, we also know that {a} is the grounded extension of AF . The only
set-maximal admissible set is {a, c, f}, which is the only preferred extension of AF .
AF has no stable extension, because no conflict-free set has a chance to attack the
self-attacking argument g.

Both complete extensions of this example are displayed in Figure 5 using the labeling
representation by Caminada (2006a), where arguments are labeled in if they are in
the extension, labeled out if they are attacked by in arguments, and labeled undec

otherwise.

The complete extensions of an argumentation framework are all admissible sets that are
closed under defense, i.e., where no defended argument is deliberately excluded. Among the
complete extensions, the grounded semantics represents a conservative approach—it only
includes arguments that need to be accepted without doubt and suspends judgment for
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as many arguments as possible. On the other side of the spectrum, the stable semantics
represents a decisive approach and requires judgment for all arguments: In a stable extension,
every argument must either be in the extension (accepted) or attacked by the extension
(rejected). Since this requirement is sometimes impossible to be satisfied, the preferred
semantics serves as an intermediate, less demanding alternative between complete and stable
semantics. A preferred extension locally maximizes judgment, but still allows judgment
suspension if necessary, and thus guarantees the existence of a preferred extension. However,
this comes at a computational price—as we will see in Section 2.3, most reasoning problems
are harder to solve for the preferred than for the stable semantics.

In addition to Dung’s original semantics used in this thesis, a range of further semantics has
been proposed, which fill more roles not occupied by Dung’s original semantics. Among them
are the stage semantics by Verheij (1996), the CF2 semantics by Baroni et al. (2005), the
semi-stable semantics by Caminada (2006b), or the ideal semantics by Dung et al. (2006).
A comprehensive overview is given in the survey by Baroni et al. (2011a).

The acceptability criteria that the various semantics provide for sets of arguments can be
leveraged to derive acceptability criteria for individual arguments. Given an argumentation
framework AF , a semantics s and a single argument a ∈ A, a is credulously acceptable with
respect to s if a is contained in at least one s extension of AF . Similarly, a is skeptically
acceptable with respect to s if a is contained in all s extensions of AF . The notion of
credulous and skeptical acceptance was initially proposed by Dunne and Bench-Capon (2002)
for the preferred semantics, but is now established for all semantics.

Abstract AFs can be instantiated using the ASPIC+ framework described in Section 2.2.1.
As an alternative to ASPIC+, a direct method to instantiate argumentation frameworks
from defeasible theories was proposed by Wyner et al. (2015) and implemented by Straß
(2014).

Several software tools exist that implement reasoning tasks for abstract argumentation
frameworks. Among the most established are the answer-set programming (ASP) based
solver ASPARTIX by Egly et al. (2010), the constraint satisfaction problem (CSP) based
solver ConArg by Bistarelli and Santini (2011), and the SAT-based solvers CEGARTIX
by Dvořák et al. (2012) and ArgSemSAT by Cerutti et al. (2014). Detailed surveys of
different approaches to constructing AF solvers and of existing implementations are given
by Charwat et al. (2015) and Cerutti et al. (2016).

2.2.3 Abstract Dialectical Frameworks

The formal model of abstract dialectical framework was developed by Brewka and Woltran
(2010) and later revised by Brewka et al. (2013) as a powerful generalization of abstract
argumentation frameworks. Like AFs, ADFs have the purpose of representing formal ar-
gumentations and of providing mechanisms to identify acceptable conclusions. The main
difference between ADFs and AFs is that the conditions under which an individual element
in the argumentation can be acceptable is explicitly specified in an ADF, while acceptability
of all arguments in an AF uniformly depends on the attack relation and the semantics.
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Definition 14 (Abstract Dialectical Framework). An abstract dialectical framework
(ADF) is a triple (S,L,C), where S is a set of statements, L ⊆ S×S is a set of directed
links between statements, and C = {Cs}s∈S is a set of acceptance conditions for each
statement.

Each link (s1, s2) ∈ L indicates that the acceptance of statement s2 depends on the accep-
tance of its parent statement s1. For each statement s, its acceptance condition Cs defines
how exactly its acceptance can be derived from the acceptance statuses of s’s parents. Cs

can be represented by either a Boolean function or a propositional formula over the accep-
tance statuses of s’s parents. ADFs coincide with AFs in case the acceptance conditions are
only attacks, i.e., if a statement is accepted when all its parents are not accepted.

ADFs borrow the notions of interpretation and model from logic programming to formalize
how sets of accepted statements are to be determined. A (three-valued) interpretation
I : S → {true, false, unknown} on a set S of ADF statements maps each statement s
to either true, false, or unknown. An interpretation is called a model of the ADF if it
conforms to the acceptance conditions, i.e., if for each statement s with I(s) 
= unknown,
it holds that I(s) = Cs[I], where Cs[I] is the truth value that Cs evaluates to under I.
Evaluation of formulas under three-valued interpretations is done following the standard
evaluation algebra for three-valued logic. ¬unknown is evaluated to unknown. ϕ ∧ ψ is
evaluated to true if both ϕ and ψ are true, to false if ϕ or ψ are false, and to unknown
otherwise. ϕ ∨ ψ is evaluated to true if ϕ or ψ are true, to false if both ϕ and ψ are
false, and to unknown otherwise. This evaluation clearly coincides with standard Boolean
logic for two-valued interpretations, where no statement is mapped to unknown.

Example 15. Consider a set S = {a, b, c, d} of statements and the following set C =
{Ca, Cb, Cc, Cd} of acceptance conditions:

Ca = ¬Cc ∨ (Cb ∧ ¬Cd)

Cc = true

Cb = Cd

Cd = Cb

The set of links L = {(b, a), (c, a), (d, a), (d, b), (b, d)} is implicitly given through the
acceptance conditions.

Consider an interpretation I1 with I1(a) = false, I1(b) = true, I1(c) = true, and
I1(d) = true. I1 is a model of (S,L,C), because:

• Ca[I1] = ¬Cc[I1] ∨ (Cb[I1] ∧ ¬Cd[I1]) = false = I1(a),

• Cb[I1] = Cd[I1] = true = I1(b),

• Cc[I1] = true = I1(c), and

• Cd[I1] = Cb[I1] = true = I1(d).

Another model of (S,L,C) is I2 with I2(a) = false, I2(b) = false, I2(c) = true, and
I2(d) = false. Both I1 and I2 are even two-valued models. It is clear that no other
two-valued interpretation is a model for this ADF.
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The notion of models can be refined by different semantics—i.e., complete, grounded, stable,
or preferred models—that are closely related to the corresponding semantics in abstract
argumentation frameworks. For formal definitions, please refer to Brewka et al. (2013).

A method to instantiate abstract dialectical frameworks from defeasible theories was pro-
posed by Straß (2015). Software tools to solve reasoning tasks in instantiated ADFs in-
clude DIAMOND by Ellmauthaler and Straß (2014), QADF by Diller et al. (2015), YADF
by Brewka et al. (2017), and k++ADF by Linsbichler et al. (2018).

2.3 Computational Complexity

A majority of the technical results described in this thesis are classifications of decision
problems with respect to their computational complexity. This section provides the required
background in computational complexity theory. For a more general introduction to the
topic, please refer to, e.g., Papadimitriou (1995) or Rothe (2005).

A decision problem specifies a set of admissible instances, which are assumed to be provided
in some suitable encoding (typically binary), and a question to be decided for each instance,
for which “yes” and “no” are the only possible answers. Many essential algorithmic challenges
can be represented as decision problems. One of the most iconic decision problems is the
satisfiability problem for Boolean formulas, abbreviated as SAT, which asks whether a
given propositional formula is satisfiable, i.e., whether there is a truth assignment to the
propositional variables in the formula for which the formula evaluates to true. We display
decision problems in the following form, where the name of the problem is given at the
top (possibly augmented by parameters and a shorthand in parentheses), followed by a
specification of the admissible instances in the middle, and the problem question at the
bottom.

Satisfiability (SAT)

Given: A formula ϕ on a set X = {x1, . . . , xn} of propositional variables.
Question: Does it hold that ∃τX : ϕ[τX ] = true?

We call an instance I of a decision problem P where the answer is “yes” (respectively, “no”) a
“yes”-instance (respectively, a “no”-instance), and write I ∈ P for “yes”-instances and I 
∈ P
for “no”-instances.

Example 16. Consider an instance I = (ϕ,X) of SAT with the set X = {x1, x2} of
variables and formula ϕ = x1 ∧ (¬x1 ∨ ¬x2). It holds that I ∈ SAT, because τX with
τX(x1) = true and τX(x2) = false satisfies the condition ϕ[τX ] = true.

When we instead look at the instance I ′ = (ϕ′, X) with ϕ′ = x1 ∧ (¬x1 ∨ ¬x2) ∧ x2,
none of the four possible assignments on X satisfy ϕ′, so I ′ 
∈ SAT.

19



Chapter 2 Preliminaries

2.3.1 Complexity of Decision Problems in the Polynomial Hierarchy

The hardness of solving a given decision problem is measured by computational resources
required by algorithms which solve that problem. An algorithm for a decision problem is a
procedure that receives the encoding of an instance as input and computes the answer to the
problem (“yes” or “no”) as output. A key formalism to represent algorithms in theoretical
computer science is the Turing machine invented by Turing (1937), which is a lightweight
model of an abstract machine that, however, is still powerful enough to solve any algorithmi-
cally decidable decision problem. A formal definition of the Turing machine is not required
to understand the following notions and is therefore omitted.

For a given algorithm (e.g., a Turing machine), we measure its run time by counting the
number of elementary computing steps executed by the algorithm until the answer is pro-
duced. Each such step is required to run in constant time, i.e., a timespan independent of the
individual features specific to the given instance. In particular, it must be independent of
the size of the instance, which is the length of its encoding. We need to distinguish between
deterministic algorithms and non-deterministic algorithms. For a deterministic algorithm,
each execution of an elementary step maps the previous configuration of the algorithm to
exactly one successor configuration. Non-deterministic algorithms allow multiple different
successor configurations for a single configuration. In consequence, the execution of a de-
terministic algorithm is a linear sequence of configurations that lead to either an accepting
configuration (indicating a “yes” answer for the input), a rejecting configuration (indicating
a “no” answer), or that continues infinitely (which is equivalent to a “no” answer). On the
other hand, in the execution of a non-deterministic algorithm, that sequence may split up
into several execution branches at each step, producing an execution tree instead of a linear
sequence. A non-deterministic algorithm for a decision problem outputs a “yes” answer if at
least one of its branches reaches an accepting configuration, and a “no” answer otherwise.

The complexity of a decision problem is defined based on the general run time of algorithms
for that problem. In order to formalize the general run time of an algorithm for all its possible
instances, the run time is generalized as a function of the input size. When comparing the
run time of an algorithm for different inputs, or that of different algorithms, we are not
interested in run time factors that are independent of the input—since these are easily
compensated by optimized implementations, faster computers, or a different encoding of the
problem—but only those that change with varying size of the input. Also, the behavior of
the algorithm for a few (i.e., finitely many) smaller instances may be ignored in favor of the
behavior for the remaining (infinitely many) larger instances. That is, we want to capture
only the asymptotical development of the run time for different inputs. Since the execution
time of each elementary step of an algorithm is required to be independent of the input size,
we can use the number of elementary steps executed by an algorithm as a measure of its
asymptotical run time. Further, since we want to establish guarantees on the time required
by algorithms, we focus on their worst case run time. For a fixed input size, the worst-case
run time of an algorithm is the highest number of steps required by that algorithm to solve
any instance of that size. The general asymptotical worst-case run time of an algorithm is
the asymptotical development of its worst-case run time for all instances.
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2.3 Computational Complexity

Example 17. For example, consider an algorithm that requires between 5n2+10 and
3 ·2n−2+5 elementary steps to find an answer for any instance, where n is the instance
size. When we strip away constant elements in the run time, this leaves asymptotical
run times between n2 and 2n . Since n2 < 2n for all n ≥ 5, the asymptotical worst-case
run time of that algorithm is proportional to 2n, and so belongs to the asymptotical
growth class O(2n).

Now, the computational complexity of a decision problem can be defined—based on the
notion of the run time of algorithms—as the asymptotic worst-case run time of the “best”
algorithm for that problem, i.e., the minimum asymptotic worst-case run time over all
algorithms which solve that problem. Of course, it is infeasible to actually analyze all
possible algorithms that solve a problem, so problem complexities are typically only bounded
from above and below.

To obtain an upper bound on a problem’s complexity, it is clearly sufficient to provide an
algorithm with the respective run time. We divide the set of all decision problems into
classes based on upper bounds to their complexity. We start with the classes that are based
on Turing machines with a polynomial time bound.

Definition 18 (Complexity Classes). The complexity classes P, NP, and coNP are
defined as follows.

• P (for deterministic polynomial time) is the class of decision problems that can be
solved by a deterministic Turing machine in a number of steps that is polynomial-
bounded by the instance size.

• NP (for non-deterministic polynomial time) is the class of decision problems that
can be solved by a non-deterministic Turing machine in a number of steps that
is polynomial-bounded by the instance size.

• coNP (for complement NP) is the class of complements of NP problems.

NP can also be characterized as the class of decision problems for which a certificate claiming
that the problem’s answer for a given instance is “yes” can be verified in polynomial time.
For coNP, an alternative characterization is the class of decision problems where a certificate
for a “no” answer can be verified in polynomial time.

Example 19. SAT is in NP. An instance (ϕ,X) of SAT is a formula ϕ on a set X
of variables. A certificate for (ϕ,X) ∈ SAT is a satisfying assignment τX on X, i.e.,
an assignment where ϕ[τX ] = true. Given an instance (ϕ,X) and a certificate τX , it
is clearly possible to evaluate ϕ[τX ] in time that is polynomial-bounded by the size of
the instance.

SAT’s complementary problem is UNSAT, which takes the same type of instances and
gives a “yes” answer for an instance if and only if SAT’s answer is “no”.
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Chapter 2 Preliminaries

Unsatisfiability (UNSAT)

Given: A formula ϕ on a set X = {x1, . . . , xn} of propositional variables.
Question: Does it hold that ∀τX : ϕ[τX ] = false?

UNSAT is in coNP. Again, an instance (ϕ,X) of UNSAT is a formula ϕ on a set X
of variables, and a certificate for (ϕ,X) 
∈ UNSAT is a satisfying assignment τX on X,
which can be verified in polynomial time.

It is clear that P ⊆ NP, since deterministic Turing machines are a special case of non-
deterministic Turing machines. Further, the classes P and NP are assumed to be distinct.
For example, while the current state of technology allows deterministic P algorithms to be
directly implemented in real applications, non-deterministic NP algorithms can merely be
emulated by deterministic algorithms that sequentially traverse their execution branches,
instead of executing parallel branches simultaneously. Since the number of nodes in the
execution tree may be exponentially higher than the length of each individual branch, this
means that such an emulating deterministic algorithm may take exponentially more time
to compute an answer than the hypothetical non-deterministic algorithm. Currently, no
deterministic algorithm is known that can guarantee a polynomial run time for the hardest
problems in NP, and it is assumed that no such algorithm can exist.

Various complexity classes exist beyond NP and coNP. We will introduce the classes of the
polynomial hierarchy initially introduced by Meyer and Stockmeyer (1972) and Stockmeyer
(1976). These require the notion of oracles . An algorithm that has access to an oracle of a
complexity class C can use that oracle to get an answer to a problem in C in a single step.
Oracles can be seen as black boxes, where the work needed to solve sub-problems that lie
within C is not counted towards the run time of the algorithm invoking the oracle. The
complexity class consisting of all problems that can be solved by a non-deterministic Turing
machine which has access to an oracle for a class C is written as NPC .

NPP is equal to NP, since the polynomial work done by a P oracle could as well be performed
by the NP algorithm itself. NPNP, however, is a different class, and denoted as Σp

2. The
class of complements of Σp

2 problems is called Πp
2, and can be characterized as coNPNP. This

hierarchy can be extended arbitrarily using the following recursion, where Σp
0 is set to be

equal to P as a base case.

Definition 20 (Polynomial Hierarchy). The polynomial hierarchy is the union of all
classes Δp

i , Σ
p
i , and Πp

i , defined as

• Δp
i+1 = PΣp

i

• Σp
i+1 = NPΣp

i

• Πp
i+1 = coNPΣp

i

with Δp
0 = Σp

0 = Πp
0 = P.
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2.3 Computational Complexity

This definition also yields that Δp
1 = PP = P, Σp

1 = NPP = NP, and Πp
1 = coNPP = coNP.

It is known that each level i of the hierarchy is fully contained in each class of the next
level i + 1 of the hierarchy, i.e., (Δp

i ∪ Σp
i ∪Πp

i ) ⊆ Δp
i+1, (Δp

i ∪ Σp
i ∪Πp

i ) ⊆ Σp
i+1, and

(Δp
i ∪ Σp

i ∪Πp
i ) ⊆ Πp

i+1. The relation between two consecutive levels i and i + 1 of the
polynomial hierarchy is similar to that between P and NP: Each problem in level i + 1
can be solved deterministically by an exponential number of calls to an oracle for level
i, but for the hardest problems in each level, no deterministic algorithm is known that
guarantees at most a polynomial number of calls. Accordingly, it is assumed that the
inclusions between the classes given above are strict and that each new level of the hierarchy
contains inherently harder problems than the previous level. In the technical results of
this thesis, upper complexity bounds on decision problems are provided in the form of
membership within certain classes of the polynomial hierarchy.

The SAT problem, which is in NP = Σp
1, can be extended to a sequence of quantified

satisfiability problems which are typical representatives for the class Σp
i . The i-Quantified-

Satisfiability problem allows the propositional variables in an instance to be divided into
i disjoint sets. In the problem question, the assignments on variables in the first set are
existentially quantified, while the assignments on variables in the second set are universally
quantified within the first quantifier. This continues, with alternating quantifiers, for all
sets. It is easy to see that this problem coincides with SAT for i = 1.

i-Quantified-Satisfiability (QSATi)

Given: i disjoint sets X1, . . . , Xi of n propositional variables and a formula ϕ
on

⋃i
j=1Xj .

Question: ∃τX1
: ∀τX2

: ∃τX3
: . . . ϕ[τX1

, . . . , τXi
] = true?

Analogously to the complementary problem UNSAT for SAT, we define a complementary
problem QSATi for each QSATi. These problems are typical representatives for the classes
Πp

i .

i-Quantified-Unsatisfiability (QSATi)

Given: i disjoint sets X1, . . . , Xi of n propositional variables and a formula ϕ
on

⋃i
j=1Xj .

Question: ∀τX1
: ∃τX2

: ∀τX3
: . . . ϕ[τX1

, . . . , τXi
] = false?

Finding a lower bound on the complexity of a problem is much harder, because, in principle,
this requires a proof that all algorithms for that problem have an asymptotic worst-case
complexity at least as high as that lower bound. Instead, the notion of reducibility is
commonly used to closely relate the lower complexity bounds of different problems. This
way, known lower complexity bounds of a problem can be propagated to other problems.
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Definition 21 (≤p
m-Reducibility). A problem P1 is polynomial-time many-one re-

ducible (≤p
m-reducible) to another problem P2—written as P1 ≤p

m P2—if there exists
a translation f from instances of P1 to instances of P2 that satisfies the following
properties:

• an instance I1 of P1 is a “yes”-instance of P1 if and only if f(I1) is a “yes”-instance
of P2 (formally, I1 ∈ P1 ⇐⇒ f(I1) ∈ P2), and

• computing f(I1) requires time that is polynomial-bounded by the size of I1.

When a problem P1 is ≤p
m-reducible to problem P2, this means that instances of P1 can

be simulated by solving certain instances of P2 instead, while incurring only a polynomial
workload overhead. As a consequence, if a lower bound on the asymptotical worst-case
complexity of P1 is known, then P2 inherits a lower bound that is different from that of
P1 by at most a polynomial factor (due to the polynomial work that may be done by the
function f in the process of the reduction).

Further, it is easy to see that if P1 ≤p
m P2 via translation f and P2 ≤p

m P3 via translation f ′,
then P1 ≤p

m P3 via the composed translation f ′ ◦ f . Since f is polynomial-bounded in the
size of instances I1 of P1 and f ′ is polynomial-bounded in f(I1), the composition f ′ ◦ f is
polynomial in I1, too. Thus, the relation over decision problems induced by ≤p

m-reducibility
is transitive.

The complexity classes of the polynomial hierarchy are closed under ≤p
m-reduction. This

allows identifying the hardest problems in each class—these are the problems to which all
other problems in the class can be reduced.

Definition 22 (Hardness, Completeness). A problem P is hard for a complexity class
C if for each problem PC ∈ C, it holds that PC ≤p

m P—i.e., any problem in C can be
reduced to P . A problem P is complete for a complexity class C if P is hard for C and
P ∈ C.

Native proofs for the NP-hardness of SAT were independently published by Cook (1971) and
Levin (1973). Since we also know that SAT ∈ NP, it follows that SAT is NP-complete. Due
to the transitive nature of hardness, this result allows proving NP-hardness for any problem
by simply reducing SAT to it. Garey and Johnson (1979) compiled a large collection of
problems that are complete for NP and other classes. Reducing from any of these classes is
enough to prove hardness of a new decision problem for the corresponding class.

QSATi is complete for Σp
i and QSATi is complete for Πp

i . The hardness remains even if
these problems are restricted to instances where the formula is in conjunctive normal form
with at most three literals per clause (3-CNF).

In the technical results of this thesis, lower complexity bounds on decision problems are
provided in the form of hardness for certain classes of the polynomial hierarchy. We use the
following instantiations of QSATi and QSATi, limited to 3-CNF instances, which are com-
plete for NP (3-SAT), coNP (3-UNSAT), Σp

2 (Σ2SAT), Πp
2 (Π2SAT), and Σp

3 (Σ3SAT).
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2.3 Computational Complexity

3-CNF QSAT1 (3-SAT)

Given: A set X of propositional variables and a 3-CNF formula ϕ on X.
Question: ∃τX : ϕ[τX ] = true?

3-CNF QSAT1 (3-UNSAT)

Given: A set X of propositional variables and a 3-CNF formula ϕ on X.
Question: ∀τX : ϕ[τX ] = false?

3-CNF QSAT2 (Σ2SAT)

Given: Two disjoint sets X and Y of propositional variables and a 3-CNF for-
mula ϕ on X ∪ Y .

Question: ∃τX : ∀τY : ϕ[τX , τY ] = false?

3-CNF QSAT2 (Π2SAT)

Given: Two disjoint sets X and Y of propositional variables and a 3-CNF for-
mula ϕ on X ∪ Y .

Question: ∀τX : ∃τY : ϕ[τX , τY ] = true?

3-CNF QSAT3 (Σ3SAT)

Given: Three disjoint sets X, Y , and Z of propositional variables and a 3-CNF
formula ϕ on X ∪ Y ∪ Z.

Question: ∃τX : ∀τY : ∃τZ : ϕ[τX , τY , τZ ] = true?

2.3.2 Complexity of Reasoning Problems in Abstract Argumentation

In this thesis, three existing decision problems for argumentation frameworks—each of them
parameterized by an evaluation semantics—are extended to a more general model. These
problems represent central reasoning tasks for argumentation frameworks. For a given se-
mantics s, s-Verification requires an argumentation framework 〈A,R〉 and a subset S ⊆ A
of the arguments as input and asks whether S is an extension of 〈A,R〉 with respect to se-
mantics s.

s-Verification (s-Ver)

Given: An argumentation framework 〈A,R〉 and a subset S ⊆ A.
Question: Is S an s extension?
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Both Acceptance problems take a single argument a ∈ A as input instead of a set of
arguments, and ask whether a is contained in at least one s extension of the given argumen-
tation framework (for s-Credulous-Acceptance) or even in all s extensions of the given
argumentation framework (for s-Skeptical-Acceptance).

s-Credulous-Acceptance (s-CA)

Given: An argumentation framework 〈A,R〉 and an argument a ∈ A.
Question: Is there an s extension S of 〈A,R〉 with a ∈ S?

s-Skeptical-Acceptance (s-SA)

Given: An argumentation framework 〈A,R〉 and an argument a ∈ A.
Question: For all s extensions S of 〈A,R〉, does a ∈ S hold?

There are a few special cases for these problems. Firstly, credulous and skeptical acceptance
for the grounded semantics coincide, since there is always only one grounded extension.
Further, since the grounded extension of an argumentation framework is the intersection of
all its complete sets, an argument is in all complete extensions of an argumentation frame-
work if and only if it is in its grounded extension, so the skeptical acceptance problem
for the complete semantics coincides with that for the grounded semantics. Similarly, the
union of all admissible sets, of all complete extensions, and of all preferred extensions of an
argumentation framework are the same. Therefore, an argument is in at least one exten-
sion for one of these semantics if and only if it is in at least one extension for any of the
others, so the credulous acceptance problems for the admissible, complete, and preferred
semantics coincide. Finally, since there are argumentation frameworks that have no stable
extension, st-Skeptical-Acceptance is not uniquely defined. There exist two versions
of this problem—the first applies the rule that a universal quantifier over an empty set eval-
uates to true, so all st-SA instances with an AF that has no stable extension are treated
as “yes”-instances. An alternative version incorporates an exception for such instances and
treats them as “no”-instances. In this thesis, we only cover the first version.

The s-Ver, s-CA, and s-SA problems have already been fully classified with respect to
their computational complexity. Table 2 summarizes all results for the conflict-free (cf),
admissible (ad), stable (st), complete (cp), grounded (gr), and preferred (pr) semantics,
and gives credit to the respective authors.

We give a short explanation for the straightforward cases from Table 2. A set S ⊆ A is
conflict-free if and only if no attack exists among members of S, which can be checked in
linear time. A single argument a ∈ A is contained in at least one conflict-free extension if and
only if it does not attack itself. The empty set is always conflict-free and admissible, so the
answer to cf-SA and ad-SA is always “no” regardless of the instance, making these problems
trivial. The unique grounded extension can be determined by the polynomial-time fixed-
point algorithm sketched in Section 2.2.2. Therefore, verification of a set of arguments for
the grounded semantics can be done by comparing the given set to the grounded extension,
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2.3 Computational Complexity

Table 2: Overview of the computational complexity of s-Verification, s-Credulous-

Acceptance and s-Skeptical-Acceptance, where results marked with ♠ are
by Dung (1995), with ♣ by Dimopoulos and Torres (1996), and with � by Dunne
and Bench-Capon (2002). Results without a reference are straightforward and do
not require a formal proof.

s s-Ver s-CA s-SA

cf ∈ P ∈ P trivial
ad ∈ P ♠ NP-c. ♣ trivial
st ∈ P ♠ NP-c. ♣ coNP-c. ♣

cp ∈ P ♠ NP-c. ♣ ∈ P

gr ∈ P ∈ P ∈ P

pr coNP-c. ♣ NP-c. ♣ Πp
2-c.

�

and both acceptance problems for the grounded semantics (and thus also the cp-SA =
gr-SA problem) collapse into checking membership of the given argument in the grounded
extension.

The complexity results indicate that reasoning with the conflict-free or grounded semantics
can always be done efficiently. Further, verifying whether a given set of arguments is an
extension is possible in polynomial time for all but the preferred semantics. All other
problems—except when they are trivial or coincide with one of the previous problems—are
hard for some class in the first or second level of the polynomial hierarchy, indicating that
these cases may be hard to solve for large argumentations in applications.
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Chapter 3

Verification in Incomplete Argumentation
Frameworks

This chapter summarizes our work on the complexity of generalizations of the Verifica-

tion decision problem for incomplete argumentation frameworks published in our paper
[Baumeister et al. (2018d)]:

Baumeister, D., Neugebauer, D., Rothe, J., and Schadrack, H. (2018d). Verifica-
tion in incomplete argumentation frameworks. Artificial Intelligence, 264:1–26.

This paper summarizes and extends results from our previous papers published at ADT’15
in [Baumeister et al. (2015b,c)], at COMSOC’16 in [Baumeister et al. (2016)], at AAAI’18
in [Baumeister et al. (2018b)], and at COMSOC’18 in [Baumeister et al. (2018c)].

3.1 Summary

Unquantified uncertainty in instances of abstract argumentation frameworks was first pro-
posed by Coste-Marquis et al. (2007) and Cayrol et al. (2007) in the form of partial argu-
mentation frameworks. In a partial argumentation framework, a subset of the attacks is
distinguished, where each of these attacks individually may or may not exist. In this paper,
we complement the notion of uncertain attacks by proposing a corresponding notion of un-
certain arguments which may or may not exist in a given argumentation framework. In total,
these two notions allow to represent either purely attack-incomplete argumentation frame-
works (which coincide with partial argumentation frameworks), purely argument-incomplete
argumentation frameworks, as well as a general model of incomplete argumentation frame-
works where there may be uncertainty about both attacks and arguments. All of these
models coincide with standard argumentation frameworks in case the set of uncertain ele-
ments is empty, so they are true generalizations of argumentation frameworks.

The technical contribution of this paper is the proposal of two generalizations of the estab-
lished Verification problem, namely the s-Possible-Verification and s-Necessary-

Verification problems, and a full analysis of the computational complexity of both prob-
lems with respect to all semantics introduced by Dung (1995). Although the possible and
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necessary problem variants are potentially harder than s-Verification, we were able to
find non-trivial polynomial-time algorithms that solve s-Necessary-Verification and the
purely attack-incomplete version of s-Possible-Verification, using the admissible, com-
plete, grounded, or stable semantics. This indicates that it may often be feasible to perform
verification tasks even if the state of the argumentation is not fully known.

3.2 Personal Contribution

The model of incomplete argumentation frameworks and the “possible” and “necessary” gen-
eralizations of the s-Verification problem were developed jointly with my co-authors.
Also, all straightforward results (Theorems 26 and 28, and all Corollaries) are joint work
with my co-authors. Writing of all non-technical text in the paper was done in equal parts
by all authors. All further technical results, except Theorems 43 and 44, are my contribu-
tion, including all critical completions—namely, optimistic, pessimistic, fixed, unfixed, and
ungrounded completion—and all derived results.
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Chapter 4

Credulous and Skeptical Acceptance in
Incomplete Argumentation Frameworks

This chapter summarizes our work on the complexity of generalizations of the s-Credulous-

Acceptance and s-Skeptical-Acceptance decision problems for incomplete argumen-
tation frameworks published in our paper [Baumeister et al. (2018a)]:

Baumeister, D., Neugebauer, D., and Rothe, J. (2018a). Credulous and skeptical
acceptance in incomplete argumentation frameworks. In Proceedings of the 7th
International Conference on Computational Models of Argument, volume 305 of
Frontiers in Artificial Intelligence and Applications, pages 181–192. IOS Press.

4.1 Summary

Similar to the generalized s-Possible-Verification and s-Necessary-Verification

variants for incomplete argumentation frameworks of the established s-Verification prob-
lem for argumentation frameworks presented in Chapter 3, this paper proposes a generaliza-
tion of both the s-Credulous-Acceptance and s-Skeptical-Acceptance problems
by considering a possible and a necessary variant of both problems. Again, the com-
putational complexity of the resulting problems s-Possible-Credulous-Acceptance,
s-Necessary-Credulous-Acceptance, s-Possible-Skeptical-Acceptance, and s-
Necessary-Skeptical-Acceptance is potentially higher than the complexity of the re-
spective base problem for the same semantics.

The technical contribution of this paper is a full characterization of the complexity of the
four problem variants for all six original semantics, using a generic reduction from different
variants of the quantified satisfiability problem. As opposed to our results for s-Necessary-

Verification and for the purely attack-incomplete version of s-Possible-Verification,
where we were able to find non-trivial polynomial-time algorithms for all but the preferred
semantics, in this paper all results establish either an increase in complexity or some triv-
ial collapse of complexity due to, e.g., a quantifier representation of a problem with two
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consecutive universal quantifiers. In particular, for the acceptance problem variants, the re-
sults do not change if we restrict instances to purely attack-incomplete or purely argument-
incomplete argumentation frameworks. This indicates that possible and necessary variants
of acceptance problems in incomplete argumentation frameworks are substantially harder
than the respective variants of the verification problem.

4.2 Personal Contribution

Writing was done jointly with my co-authors. All technical results are my contribution.
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Chapter 5

Generating Defeasible Theories from
Real-World Discussions using D-BAS

This chapter summarizes our report on the dabasco software tool for instantiating for-
mal argumentation data from d-bas discussions given in our paper [Neugebauer (2019)]
submitted to the “Argument & Computation” journal:

Neugebauer, D. (2019). DABASCO: Generating defeasible theories from real-
world discussions using D-BAS. Argument & Computation. Submitted.

Preliminary versions of this paper were published at AIAIAI’17 in [Neugebauer (2017)] and
at COMMA’18 in [Neugebauer (2018)].

5.1 Summary

This work connects the discussion software d-bas developed by Krauthoff et al. (2016,
2018) with the rich evaluation machinery that exists for the formal models of abstract
argumentation frameworks, abstract dialectical frameworks, and the ASPIC+ framework.
The state of a d-bas discussion at a given point in time is represented by a set of statements,
a set of arguments, and a user opinion for each participant of the discussion. Each statement
is a short natural language text, while each argument is a logical connective stating that
believing the argument’s premise statements is a reason to believe the argument’s conclusion.
Statements and arguments can be created by operators of a d-bas platform as a starting
point of a discussion, as well as by users during a discussion. A user opinion specifies which
statements are accepted and which are rejected by that user in the discussion.

In our work, we first formalize the state of a d-bas discussion as a defeasible theory. We
provide the option of incorporating either no user opinion, which yields an objective repre-
sentation of the discussion, or a single user’s opinion, which produces a subjective represen-
tation from that user’s point of view. If a user opinion is used, it can be encoded using either
strict or defeasible inference rules, which affects the strength of the opinion in the theory.
For the defeasible theories thus created, we verify constraints introduced by Wyner et al.
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(2015). Next, we adapt established translations that create instances of formal argumenta-
tion models from defeasible theories: the translation to AFs by Wyner et al. (2015) and the
translation to ADFs by Straß (2015). We show that Wyner et al.’s notion of well-formed
preferred extensions is flawed and propose the notion of strongly well-formed preferred ex-
tensions as a solution. Our adaptation of Wyner et al.’s translation guarantees all preferred
extensions in the resulting AF to be strongly well-formed. In addition, we present a direct
translation of our defeasible theories to ASPIC+ instances. For all our translations, we prove
that the rationality postulates of Caminada and Amgoud (2007) are satisfied.

All translations are implemented in the software module dabasco, which is available on
GitHub at https://github.com/hhucn/dabasco as open-source software. dabasco is a
Python program that communicates with d-bas via a REST interface and produces out-
put that is compatible with existing solver software, including the TOAST online service
by Snaith and Reed (2012) for ASPIC+; ASPARTIX by Egly et al. (2010) and ConArg
by Bistarelli and Santini (2011) for abstract AFs; and DIAMOND by Ellmauthaler and
Straß (2014), YADF by Brewka et al. (2017), and k++ADF by Linsbichler et al. (2018) for
ADFs.

5.2 Personal Contribution

All writing, implementation, and technical results are my contribution.
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Chapter 6

Conclusions and Future Work

In this chapter, we give a summary of the contributions of this thesis and point out possible
directions to continue this work. The objective of the research presented in this thesis was to
narrow the gap that exists between formal models of argumentation in the computer science
and AI research community on the one hand, and implemented systems for argumentation
among humans on the other hand. The results establish progress on both sides of that
gap.

6.1 Results

On the theoretical side, a powerful generalization of abstract argumentation frameworks was
proposed which can represent uncertain information about the state of an argumentation
and thus allows a wider range of natural situations to be captured by the model. General-
izations of the Verification, Credulous-Acceptance, and Skeptical-Acceptance

decision problems were defined and their computational complexity was fully determined. A
summary of our complexity results for all problems is given in Table 3. Our results have been
published in peer-reviewed journals or conference proceedings in the form of the following
articles: [Baumeister et al. (2015b)], [Baumeister et al. (2016)], [Baumeister et al. (2018b)],
[Baumeister et al. (2018c)], [Baumeister et al. (2018d)], and [Baumeister et al. (2018a)].

Our complexity classifications help with deciding which of the generalized problems can
realistically be solved in practice. While the Necessary-Verification problem for the
different semantics has no higher asymptotical complexity than Verification, and the
Possible-Verification problem is harder than Verification only for a few seman-
tics, the possible and necessary variants of Credulous-Acceptance and Skeptical-

Acceptance are harder than their respective base problem in all non-trivial cases, reaching
hardness for the second or even the third level of the polynomial hierarchy. The results indi-
cate that, for most semantics, solving the generalized possible or necessary problem variant
is significantly harder for the acceptance problems than for the verification problem. In ap-
plications, it may therefore be feasible to solve generalized verification problems in a wider
range of situations with incomplete information.
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Table 3: Summarized complexity results for six semantics (first column) of the possible and
necessary variants of Ver (second to fourth column), CA (fifth and sixth column),
and SA (seventh and eighth column). Results marked with � are partially due
to Coste-Marquis et al. (2007). C-c. is a shorthand for completeness in a complexity
class C.

s s-PV s-NV s-PCA s-NCA s-PSA s-NSA

AttInc ArgInc/Inc

cf ∈ P� ∈ P ∈ P� ∈ P ∈ P trivial trivial
ad ∈ P NP-c. ∈ P� NP-c. Πp

2-c. trivial trivial
st ∈ P NP-c. ∈ P NP-c. Πp

2-c. Σp
2-c. coNP-c.

cp ∈ P NP-c. ∈ P NP-c. Πp
2-c. NP-c. coNP-c.

gr ∈ P NP-c. ∈ P NP-c. coNP-c. NP-c. coNP-c.
pr Σp

2-c. Σp
2-c. coNP-c. NP-c. Πp

2-c. Σp
3-c. Πp

2-c.

On the practical side, we developed translation procedures that allow to generate AF,
ADF, or ASPIC+ representations of discussions created by users of the d-bas platform
by Krauthoff et al. (2018). The translations are shown to satisfy established quality cri-
teria. All translations were implemented in the software tool dabasco, which is available
as free open-source software on GitHub at https://github.com/hhucn/dabasco. Our re-
ports on dabasco have been published in [Neugebauer (2017)] and [Neugebauer (2018)]
and submitted for publication in [Neugebauer (2019)].

dabasco connects d-bas to solver software for reasoning problems in the different argu-
mentation models, and thus establishes a full argument evaluation pipeline. This pipeline
allows both the automatic analysis of d-bas discussions, as well as the use of real-world
discussions as benchmark data for solvers.

6.2 Future Work Directions

An immediate next step in the study on uncertainty in argumentation frameworks is the
development of a data format that adequately represents instances of incomplete AFs, and
the implementation of solver software for reasoning tasks on such instances, in order to
transfer our theoretical results in this area to the practice.

On the theoretical side, our research on incomplete argumentation frameworks can be contin-
ued by analyzing further decision problems and by considering further semantics. Existing
decision problems that could be generalized for incomplete argumentation frameworks in-
clude the st-Existence problem, which examines the existence of a stable extension in
an AF; the s-non-Emptiness problem, which is a refinement of the s-Existence problem
that considers only non-empty extensions (and which therefore is non-trivial not only for the
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stable semantics); and the Coherent problem defined by Dunne and Bench-Capon (2002),
which determines whether a given AF satisfies the coherence property proposed by Dung
(1995). Possible other semantics include the stage semantics by Verheij (1996), the CF2
semantics by Baroni et al. (2005) the semi-stable semantics by Caminada (2006b), or the
ideal semantics by Dung et al. (2006).

From a more conceptual point of view, another interesting advancement of research on in-
complete argumentation frameworks could be to allow interdependencies between uncertain
elements of an argumentation—currently, the uncertainty of the possible arguments and
attacks is assumed to be unrelated, meaning that every completion that is syntactically
possible is assumed to be actually viable. However, there are several applications where
the uncertainty of individual elements in an argumentation may be related. For example,
different arguments may share common premises, or apply the same inference rule. If the
existence of any of these elements in the underlying data is uncertain, then this uncertainty
translates to a correlated uncertainty of all arguments that incorporate these elements. A
model of incomplete argumentation frameworks with interdependencies would allow to rep-
resent such situations and further increase the scope of the model.

The software tool dabasco can be improved by allowing additional options to customize
the encoding of a d-bas discussion, or by extending the set of argumentation models that
a discussion can be translated to, such as assumption-based argumentation frameworks
by Bondarenko et al. (1993), argumentation frameworks with recursive attacks by Baroni
et al. (2011b), probabilistic argumentation frameworks by Li et al. (2011), or our model of
incomplete argumentation frameworks.

Further, the evaluation pipeline consisting of d-bas, dabasco, and solver tools could be
integrated into a feedback loop for d-bas by developing new d-bas features that directly
utilize the results of the pipeline. Such features could provide helpful information for par-
ticipants of a discussion, as well as insights for the operators of a d-bas platform.
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