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Zusammenfassung

Das Glioblastom ist der am haufigsten vorkommende hirneigene Tumor.
Sogenannte Gliomstammzellen (GSZ), eine Subpopulation der
Glioblastomzellen, werden aufgrund ihrer Resistenz gegentiber konventionellen
Therapien fur das Auftreten von Tumorrezidiven nach Operation, Strahlen- und
Chemotherapie verantwortlich gemacht. Aktuelle Forschungsansatze versuchen
GSZ direkt anzugreifen, um die Therapieresistenz von Glioblastomen zu
Uberwinden und die Prognose der Patienten zu verbessern. GSZ werden von
verschiedenen Stammzellsignalwegen gesteuert, von denen einige auch
pharmakologisch modifiziert werden kdnnen. Einer dieser Signalwege ist der
Wnt Signalweg. In dieser Arbeit soll die pharmakologische Wnt Inhibierung
charakterisiert und ihr Effekt auf GSZ untersucht werden, um so die Frage
beantworten zu kénnen, ob sie eine Therapieoption fur Glioblastompatienten
darstellt. Die Behandlung von Glioblastomzellen mit dem pharmakologischen
Wnt Inhibitor LGK974 flihrte zu einer Reduktion der intrinsischen Wnt
Aktivierung. Des Weiteren zeigten die behandelten Zellen eine reduzierte
Viabilitat, eine erhéhte Apoptoserate, sowie reduzierte Stammzelleigenschaften
in vitro. AuBerdem wurde LGK974 mit dem Chemotherapeutikum Temozolomid
(TMZ) und Strahlentherapie, die first-line Therapien fur Glioblastome,
kombiniert. LGK974 zeigte synergistische Effekte mit beiden Behandlungen in
vitro, was zu der Annahme fuhrte, dass pharmakologische Wnt Inhibierung die
Chemo- und Bestrahlungsresistenz von Glioblastomen reduzieren kann. Eine
umfassende Transkriptionsanalyse (microarray analysis) von Zellen welche mit
LGK974, TMZ oder einer Kombination behandelt wurden zeigte, dass
differenzielle Expression des Enzyms Aldehyddehydrogenase 3A1 (ALDH3AT1)
eine mdgliche Ursache fur die reduzierte Therapieresistenz in LGK974
behandelten Zellen darstellt. Um zu untersuchen, ob ALDH3A1 eine Rolle bei
der Resistenzentwicklung gegen Chemotherapeutika spielt, wurde das Enzym
genetisch gehemmt. ALDH3A1 knock-down Zellen zeigten eine verminderte
generelle Viabilitat und eine erhdhte Sensitivitat gegenliber TMZ Behandlung
als die Kontrollzellen. AuBerdem zeigten ALDH3A1 supprimierte Zellen eine
reduzierte Expression diverser Stammzellmarker sowie eine verminderte
Klonogenitat, was auf eine Reduktion der GSZ Population hinweisen kann.
Zusammenfassend zeigt diese Arbeit, dass die Behandlung mit dem Wnt
Inhibitor LGK974 eine potentielle Therapie fur Glioblastome darstellt, um GSZ
direkt anzugreifen. Dies wird wahrscheinlich durch die Reduktion der ALDH3A1
Expression vermittelt. Um die aktuelle Datenlage zu pharmakologischer Wnt
Inhibition in Glioblastomen darzustellen, wurden die bisherigen Daten durch ein
review vervollstandigt, das alle an Glioblastomen getesteten, publizierten
Medikamente auflistet und diskutiert.



Abstract

Glioblastoma is the most common primary brain tumor. A subpopulation of
glioblastoma cells defined as glioma stem-like cells (GSCs) are thought to be
highly resistant against conventional therapies, leading to recurrence of the
tumor after surgery and conventional chemo- and radiotherapy. New research
approaches aim to directly target GSCs to overcome treatment resistance in
glioblastoma and improve the prognosis of patients. GSC formation and
maintenance is driven by several stem cell pathways, which can be targeted by
pharmacological compounds. One of them is known as the Wingless (Wnt)
pathway. This work aims to characterize the effects of pharmacological Wnt
inhibition in glioblastoma, its effect on GSC maintenance, and possible
application as a novel anti-GSC treatment strategy. Therefore, in vitro GSC
models were treated with the pharmacological Wnt inhibitor LGK974, leading to
a reduction of intrinsic Wnt activation. Additionally, treatment with LGK974
decreases cell viability, increases apoptosis and impairs stemness in vitro.
Furthermore, LGK974 treatment was combined with either DNA alkylating agent
temozolomide (TMZ) or y-irradiation, which are the currently used standard-of-
care treatment options for glioblastoma patients. Both treatments showed
synergistic effects when combined with LGK974 in vitro, leading to the
assumption that pharmacological Wnt inhibition can reduce chemo- and
radioresistance of GSCs. In order to further elucidate the underlying link
between Wnt signaling and therapy resistance, microarray analysis revealed
reduced mRNA expression of the enzyme aldehyde dehydrogenase 3A1
(ALDH3A1) upon combined LGK974 and TMZ treatment. To further assess
whether ALDH3A1 promotes chemoresistance in glioblastoma cells, its
expression was suppressed. ALDH3A1 knock-down cells showed reduced cell
viability in general, and more reduction of cell viability than control cells under
TMZ treatment. Since ALDH3A1 expression correlates with stemness, we
assessed the stemness geno- and phenotype of ALDH3A1 suppressed cultures
and observed both reduced stem cell marker expression and clonogenicity.
Taken together, this study highlights pharmacological Wnt suppression as a
potential novel glioblastoma therapy directly targeting GSCs, and alleviating
therapy resistance, plausibly through reduction of ALDH3A1 expression. To
further evaluate the current status of pharmacological Wnt inhibition in
glioblastoma, a review summarizing and discussing the published work about all
compounds tested on glioblastoma samples completes this work.
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Introduction

Classification of gliomas

Gliomas are tumors that occur primarily in the brain and the spinal cord. The
name “glioma” is based on the fact that these tumors resemble glia cells and
was introduced by Rudolf Virchow in the 19" century, who described glia cells
as “connective tissue” in the brain (1). In 1926, Harvey Cushing and Percival
Bailey published the first classification of gliomas, distinguishing different
subtypes according to the specific sort of glia cells they share the most
morphologic features with, including astrocytoma, oligodendroglioma and
ependymoma, resembling astrocytes, oligodendrocytes and ependymal cells
(2). Over time, brain tumors were not exclusively classified by their morphology,
but further by their grade of malignancy according to the World Health
Organization (WHO). The first classification for tumors of the central nervous
system was introduced in 1979 and revised four times since then. The WHO
distinguishes between four different tumor grades, based on histological
aspects. Grade | gliomas (e.g. pilocytic astrocytoma) are characterized by
circumscribed growing patterns and lack of malignant progression. Patients can
often be cured by surgery. Grade Il to IV gliomas are nowadays regarded as a
separate group, plausibly arising from a different cell of origin, since they are
characterized by infiltrative growth pattern and a tension to progress into higher
tumor grades by time. Grade Il gliomas are marked by increased cellularity and
nuclear atypia, grade Il gliomas further present with higher mitotic activity.
Grade IV gliomas are particularly called glioblastoma and characterized by
tumor necrosis and microvascular proliferation additionally to grade Ill tumor's

criteria. Glioblastomas account for more than half of all diagnosed gliomas.

In 2016, the WHO published its latest classification, introducing for the first time
molecular markers complementing the histological characteristics (3). The WHO
classification now distinguishes between isocitrate dehydrogenase (IDH)1/2
wildtype and IDH1/2 mutant gliomas. This is a very early occurring mutation in
tumor development causing malfunctional IDH1/2 proteins which cannot fulfill
their designated functions as part of the citric acid cycle. Mutated IDH proteins



metabolize isocitrate into 2-hydroxygluatate (2-HG) instead of a-ketoglutarate.
2-HG accumulations further promote histone and DNA-methylation, leading to
tumorigenesis. Interestingly, IDH1/2 mutations are generally found in low-grade
gliomas and secondary glioblastomas, which are developed from former diffuse
or anaplastic astrocytomas and tend to have a better prognosis. It is thought
that IDH1/2 mutations lead to reduced capacity of nicotinamide adenine
dinucleotide phosphate (NADPH) production in tumor cells, which makes them
more vulnerable to oxygen species released due to chemo- and radiotherapy.
Primary glioblastomas, formed de novo and more frequently diagnosed in
elderly patients, are defined by an IDH wildtype genotype. Primary
glioblastomas account for 90% of all diagnosed glioblastomas (4). Another
important molecular marker for classification of gliomas are alterations on
chromosome arms 1p and 19q. 1p/19q co-deletion is highly associated with the
oligodendrocytic phenotype and according to the latest WHO classification
required to diagnose a tumor as an “oligodendroglioma”. 1p/19q co-deletion is
also associated with higher response to chemotherapy and prolonged survival
(5=7). The astrocytic phenotype is linked to tumor protein p53 (TP53) mutations
and alterations of alpha-thalassemia/mental retardation syndrome X-linked
(ATRX) expression (8,9). TP53, a well studies tumor suppressor gene, is
inactivated due to loss of function mutations in approximately every second
glioma, and represents an unfavorable prognostic factor (10). Loss of ATRX
expression is linked to a better prognosis in anaplastic astrocytoma (11).
Another tumor entity that often shows loss of ATRX expression is diffuse
midline glioma (named diffuse intrinsic pontine glioma before 2016). Primarily
occurring in the brain stem, thalamus, and spinal cord of children, diffuse
midline gliomas are defined by mutations in the H3K27 protein. H3K27 is a
gene encoding for the histone variant H3.3. Loss of function has an impact on
epigenetic processes in the tumor cell and may lead to genomic instability (12).
Nevertheless, these processes are poorly understood so far.

A classification for glioblastoma based on genomic alterations was described by
Verhaak et al. in 2010. Due to differential expression profiles of genes including
the Epidermal Growth Factor Receptor (EGFR), Neurofibromin1 (NF1), Plate-
Derived Growth Factor Receptor A (PDGFRA), and IDH1 they defined four



different glioblastoma subgroups, termed classical, mesenchymal, proneural
and neural subtype (13). The subtypes differ in response to treatment, showing
best treatment response in classical glioblastoma and worst in proneural
tumors.

Localization and origin of glioma

Regarding anatomic distribution, 40% of glioma cases occur in the frontal lobe,
followed by 29% in the temporal lobe. 14% occur in the parietal lobe, whereas
only 3% are localized in the occipital lobe. A correlation between localization
and tumor grading due to WHO classification could not be shown in the past
(14). Nevertheless, a direct correlation between the distribution of glioblastomas
in relation to the subventricular zone (SVZ) and the molecular subgroups
defined by Verhaak et al. could be identified. Based on clinical imaging,
proneural and neural glioblastoma were described to be more likely localized
close to the SVZ, in contrast to mesenchymal and classical glioblastoma, that
occur predominantly far from the SVZ (15).

The SVZ is a structure of the brain located at the boarder walls of the lateral
ventricles, where neural stem and glial progenitor cells reside. There, they have
optimal conditions to proliferate and generate neurons and glia cells. It is
hypothesized that gliomas arise from these multipotent cells in the SVZ. From
there, mutated cells migrate into different parts of the brain and form infiltrative
tumors. Driver mutations during the formation of low-grade gliomas are thought
to be IDH1/2 mutations, since they occur very early in glioma development.
Further genetic instability leads to either TP53 mutations or deletion of 1p/19q
determining differentiation into astrocytomas or oligodendrogliomas,
respectively. Primary glioblastomas often show amplification of EGFR, which is
thought to be a driver mutation for IDH1/2 wildtype gliomas (16,17).

Nevertheless, it remains elusive which external or internal factors influence the
formation of glioblastoma. The only defined risk factors are hereditary familial
syndromes such as neurofibromatosis (type 1 and 2), tuberous sclerosis, von
Hippel-Lindau, or Li-Fraumeni-syndrome. The only described risk factor not
involving hereditary genetic alterations is exposure to ionizing radiation,
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especially to the head and neck, which could be correlated to glioblastoma
occurrence. Incidence rates of glioblastoma rise with the age and could be
correlated to the sex of the patients, with males being more often affected.
Aberrations on chromosome 10 and 17 further increase the risk (18,19). In
contrast to most other cancer types, smoking does not seem to increase the
probability for developing glioblastoma. Despite rumors about radiofrequency
radiation from mobile phones and microwave ovens promoting tumorigenesis,

there is no reported correlation with occurrence of brain tumors.

Treatment of glioblastoma

Overall survival time of patients newly diagnosed with glioblastoma and treated
with current therapeutic standards remains poor with 12 to 15 months on
average (20). Without treatment, patients only survive a few months. Treatment
of glioblastoma typically includes surgery followed by radiotherapy (60 Gy, 5
days per week in doses of 1.8 — 2 Gy) and adjuvant therapy with temozolomide
(TMZ) (21), an orally administered chemotherapeutic drug. The alkylating agent
TMZ adds alkyl or methyl groups to the DNA, mostly on the N-7 or O-6 positions
of guanine residues. Expression of the O-6-methylguanine-DNA
methyltransferase (MGMT) antagonizes the effect of alkylating drugs such as
TMZ, making the tumor more resistant towards chemotherapy. Therefore,
silencing of the MGMT gene due to promoter methylation, which often occurs in
high-grade gliomas, is an indicator whether the tumor is sensitive or resistant
towards chemotherapy with TMZ (22,23). During surgery, Carmustine-polymer
wafers, also known as Gliadel, can be placed in the resection cavity to work as
local chemotherapeutic (24). However, survival benefit compared to placebo is
low (25).

Other treatment options include an antiangiogenic monoclonal antibody,
bevacizumab (Avastin), targeting the vascular endothelial growth factor (VEGF)
A. Unfortunately, after accelerated approval by the FDA for recurrent
glioblastoma in 2009, expected therapeutic efficacy has not been that apparent,
and latest studies indicate that bevacizumab treatment has no survival benefit
for patients suffering from glioblastoma. One possible reason for the lack of



effect of bevacizumab and most other pharmacological compounds is the
obstacle of passing the blood brain barrier (BBB) to reach sufficient
concentrations at its target side. Convection-enhanced delivery (CED) via
intracranial catheters which deliver substances directly to their side of action is
one subject of current research. Nevertheless, a completed phase Il study by
Vogelbaum et. al on glioblastoma patients (using citredexin besudotox, a
pseudomonas exotoxin with recombinant human interleukin-13 in the study
group and Gliadel in the control group) could not show any benefit (26).

New therapeutic opportunities apart from traditional pharmaceuticals and
radiation treatment include electric-field therapy developed by Novocure, so
called tumor treating fields (TTF). The electronic fields are installed at the
patient's scull. The theory is that TTFs only target dividing tumor cells while no
harming non-proliferative healthy brain tissue. Initially approved for recurrent
glioblastoma, the FDA expanded the initial approval for TTF as first-line therapy,
after a study showed survival benefit for patients treated with a combination of
TTF and TMZ compared to patients that only received TMZ (20.5 vs. 15.6
months, p=0.004) (27).

Immunotherapy is considered a standard of care for many malignancies. To
date, there has been no approval for immmunotherapy in glioblastoma. However,
extensive research and several clinical studies are in progress, one of them
focusing on T-cell based vaccines. In this approach the immune system shall be
sensitized, evoking immune response against glioblastoma cells by injecting
antigens which are exclusively present (tumor-specific antigens, TSA) or mostly
present (tumor-associated antigens, TAA) in the tumor. The TSA epidermal
growth factor variant Ill (EGFRvIII) was believed to be a potential target.
Unfortunately, EGFRuvIII vaccine failed to show a survival benefit in combination
with TMZ, presumably due to low expression in heterogeneous glioblastoma
tumor mass (28). Alternatively, autologous dendritic cells, initially activated with
TAAs are reinjected into the brain. As antigen-presenting cells, these dendritic
cells are supposed to constantly present the TAAs on their cell surface and thus
induce a continuous tumor-specific T-cell response. An ongoing clinical phase
Il trial will prove efficacy (29). Exposing dendritic cells to TAA overexpressed in
GSCs showed promising results in a phase Il study (30). As for metastatic
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melanoma, immune checkpoint inhibitors have emerged as a powerful tool (31).
Blocking antibodies against the immunosuppressive receptors cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1
(PD-1) are presumed to maintain T-cell activation and immune response.
Several clinical trials testing checkpoint inhibitors on glioblastoma are ongoing
(32,33).

Glioma stem cell therapies

In 2004, Singh et al. described cells within brain tumors which possess high
self-renewal capacity and the ability to initiate tumor growth, so called tumor-
initiating cells or cancer stem cells (CSCs) (34,35). CSCs were first discovered
in acute myeloid leukemia in the late 1990s (36,37) and subsequently described
also in solid malignant tumor entities such as breast (38), colon (39), head and
neck (40), pancreas (41), lung (42), liver (43) and skin cancer (44). In glioma,
CSCs are also known as glioma stem-like cells (GSCs). Markers enriched in
neural stem and progenitor cells are used to differentiate between GSCs and
non-GSC-brain tumor cells. Most prominent is the transmembrane glycoprotein
and neural stem cell surface marker CD133, also known as prominin1 (35,45).
Later on, GSCs were found to be highly resistant against radio- and
chemotherapy, causing predictable treatment failure with common standard
therapeutic regimes (46—49).

It is presumed that GSCs account for a small percentage of the tumor cells’
population. Although conventional therapies result in tumor shrinkage since they
target the bulk of the tumor, highly resistant GSCs are left behind and give rise
to an even more aggressive tumor relapse (50). Therefore, new therapy
approaches are needed, capable of precisely targeting GSCs. As a
conseqguence, many studies aim to pharmaceutically inhibit so called CSC
pathways. These signaling pathways are mostly well described in somatic stem
cells, where they assist in maintaining an optimal niche for these cells. Several

stem cell pathways were described to be aberrantly activated in GSCs.

One of them is the Notch pathway, which plays an essential role in embryonic
development and inhibition of neuronal cell differentiation (51). In cancer, the
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four different Notch receptors (named NOTCH1, 2, 3 and 4) can show aberrant
function through mutations, making them an interesting target for CSC therapies
(52). Gamma-secretase inhibitors prevent processing of membrane proteins like
Notch receptors and are used experimentally as well as in clinical trials to block
Notch signaling (53). It was shown that gamma-secretase inhibitors effectively
deplete brain tumor stem-like cells in mice as well as in glioblastoma patients
(54,55).

The Sonic hedgehog (Shh) pathway is also known for its importance in GSC
maintenance and correlated to chemoresistance in glioblastoma (56,57). Three
groups of Shh pathway inhibitors are used, operating on different target
locations. The first group targets the membrane-bound protein smoothened
(SMO), thereby impeding activation of the transcription factors glioma-
associated oncogene homolog 1 and 2 (GLI1 and GLI2), leading to repressed
transcription of several pro-tumorigenic genes. Several SMO inhibitors were
tested in clinical trials in various types of cancers. Vismodegib and erismodegib
were approved by the FDA for application in basal cell carcinoma. At present, a
phase |l clinical study is ongoing for treating recurrent glioblastoma with
vismodegib (58). Another group of Shh inhibitors directly targets Gli
transcription factors. Since GLI1 and GLI2 can also be activated by other
molecular pathways, independently from SMO, Gli inhibitors are also effective in
tumors harboring mutations of the Shh pathway. Clinical frials are ongoing for
several types of cancer, not including brain tumors. Operating upstream of Shh
signaling, the third group of Shh inhibitors consists of compounds targeting
SHH, a hedgehog ligand (59). This group is still under preclinical development.

CSC pathways are often interconnected. For instance, a group from Boston
describes a link between Shh and phosphatidylinositol 3-kinase (PI3K) signaling
in glioblastoma (60). PI3K is frequently activated by loss of the tumor
suppressor gene phosphatase and tensin homolog (PTEN). PI3K leads to AKT
(protein kinase B) activation that further activates mTOR (mechanistic target of
rapamycin). In dividing cells, PTEN is suppressed by the transforming growth
factor (TGF)-B. In almost 60% of glioblastoma, the PI3K pathway harbors
mutations (61). An ongoing phase Il trial tests a PI3K inhibitor on recurrent
glioblastoma with activated PI3K pathway (62). Another phase Il study is using
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the AKT inhibitor perifosine in recurrent glioblastoma, but little effect was shown
so far (63). mTOR inhibitors are already well established in the clinic for treating
e.g. colon cancer (64), breast cancer (65) and non-small cell lung cancer (66).
Several clinical trials are ongoing to test the effectiveness of mTOR inhibitors on
brain tumors, but so far none of the compounds got approved for glioblastoma
(67).

Whnt signaling pathway

In the early 1980s, a new protooncogene called int1 (integration 1) was
described in mice transfected with breast cancer virus. Simultaneously, another
gene involved in embryonic tissue development was found in Drosophila and
named Wingless. Later on, it was discovered that both genes were identical,
and a common name was chosen: Wnt. Further research revealed that the
protein encoded by the Wnt gene was integrated into a network of proteins
interacting with each other in a signaling cascade with Wnt at its starting point.
The newly discovered pathway was called Wnt signaling. Nowadays, we
distinguish between several different Wnt proteins (labeled by numbers) and
two different signaling cascades, the canonical and the noncanonical Wnt

signaling pathway.

The canonical Wnt pathway was the first to be found and is much better
understood. It is activated by the proteins Wnt-1, -2, -3, -8a, -8b, -10a, and -10b
which bind to a receptor named Fizzled and its co-receptors low-density
lipoprotein receptor-related protein (LRP)5 or LRP6. This leads to recruitment of
axis inhibitor protein (Axin), a negative Wnt regulator, to the plasma membrane.
During absent Wnt activation, Axin gathers together with glycogen synthase
kinase 3B (GSK-3B) and adenomatous-polyposis-coli (APC) protein to form a
destruction complex, leading to the degradation of B-catenin. When instead Wnt
signaling is activated, the destruction complex is not able to be formed and B-
catenin accumulates within the cell, enters the cell's nucleus, and binds as a co-
activator to transcription factors from the TCF/LEF (transcription factor/
lymphoid enhancer factor) family. Thereby, it drives transcription of several
target genes involved in cell growth and motility.



The noncanonical Wnt signaling pathway is less described and understood.
Activation is induced by Wnt proteins 4, 5a, 5b, 6,7a, 7b, and 11. While
activated, intracellular calcium is released, leading to increasing levels of nemo
like kinase (NLK). NLK inhibits the B-catenin/TCF transcription complex, making
noncanonical Wnt signaling a direct counterpart of canonical Wnt signaling.
Calcium release further activates nuclear factor of activated T cells (NFAT).
NFAT plays a pivotal role in immune response, in cancer it was shown to
increase cell motility and metastasis formation (68). Independently of calcium
release, the c-Jun N-terminal protein kinase (JNK) pathway is activated through
the GTPases Rho (Ras homologue) and Rac (Ras-related C3 botulinum toxin
substrate). There is evidence that JNK has an essential role in cell polarity,
growth and differentiation.

Besides embryogenesis, Wnt signaling has a critical role in cancer development
and maintenance. Many tumor entities are defined by mutations related to the
Wnt pathway or epigenetically silenced Wnt antagonists. The second case is
more applicable to glioblastoma (69). Wnt activation leads to transcription of
genes essential for proliferation and migration of cancer cells, further leading to
tumor growth and metastasis. One mechanism that is enrolled in metastatic
cancer and induced by Wnt signaling is called epithelial-to-mesenchymal-
transition (EMT). This genetic reprogramming originating from embryonic
development makes tumor cells losing their cell-cell adhesions and transforming
into a mesenchymal state with increased invasive potential. Wnt signaling and
EMT were both linked to resistance against chemo- and radiotherapy. Genes
encoding for multidrug transporter proteins such as ATP binding cassette
subfamily B member 1/ multidrug resistance protein 1 (ABCB1/MDR1) were
found to be transcriptional target genes of canonical Wnt signaling (70).
Furthermore, Wickstrom et al. showed that expression of the repair enzyme
MGMT was regulated through Wnt signaling in brain tumors. In their work they
could restore chemosensitivity among glioblastoma cell lines through Wnt
suppression (71). Downstream targets of Wnt like Wnt1 Inducible Signaling
Pathway Protein 1(WISP1) were found to be involved in maintaining resistance
against y-irradiation in cancer cells (72). In prostate cancer, Wnt activation was
linked to expression of the oxidation enzyme aldehyde dehydrogenase (ALDH)



and radioresistance (73). Nevertheless, the underlying mechanisms initiating

resistance mechanisms upon Wnt activation remain incompletely understood.

Pharmacological Wnt inhibition

As described previously, there are two different types of Wnt signaling pathways
with antagonizing effects, which makes is difficult to modulate both at the same
time. In this study LGK974 (Wnt-974) was used, a small molecule pan-Wnt
inhibitor modulating both pathways and created by Novartis. It is a porcupine
inhibitor, interfering with the palmitoylation of Wnt proteins which is necessary
for entering the intercellular space and binding to its receptors. Thereby
inhibitory effects are equal among all different Wnt proteins in vitro. LGK974
was also shown to be effective in a ring finger protein 43 (RNF43)-mutant
pancreatic cancer, a head and neck squamous cell carcinoma and a breast
cancer mouse model in vivo (74,75). The compound is currently tested in a
clinical phase | study on solid tumors dependent on Wnt ligands, including
pancreatic cancer, B-Raf (rapidly accelerated fibrosarcoma) mutant colorectal
cancer, melanoma, triple negative breast cancer, head and neck cancer and
other tumor types with documented upstream genetic alteration in Wnt signaling
(76). Whereas LGK974 is not the only pharmacological compound interfering
with Wnt signaling, most agents solely inhibit the canonical branch of the Wnt
pathway. An overview of all compounds tested on glioblastoma is presented in
the review “Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel

Therapeutic Strategy” included in this work.
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Objective

Glioblastoma is a malignant brain tumor with a dismal prognosis, presumably
caused by a highly resistant cell fraction within the tumor, so-called GSCs.
Although pharmaceutical compounds trying to directly target stem cell pathways
that are crucial for GSC maintenance have been tested, none of them has
made it into clinic for glioblastoma so far. Much uncertainly still exists about the
impact of Wnt signaling in glioblastoma. This work wants to further address this

issue.

The main aim of this thesis is to investigate whether pharmacological Wnt
inhibition can be used as a potential therapy in glioblastoma. The thesis

includes three publications, each one covering a different subtopic.

The first paper examines whether the pharmacological Wnt inhibitor LGK974 is
capable of targeting GSCs in vitro. To address this question a reporter assay
construct containing seven TCF binding sides followed by a firefly luciferase
cassette was used to test whether Wnt activation is suppressed after LGK974
treatment in three glioblastoma cell lines. Effects on cell growth, proliferation
and cell death were examined as well as stemness characteristics including
expression of stem cell markers (NANOG, CD133), differentiation markers
(GFAP, MAP2) and clonogenic potential. To assess the role of Wnt activation in
glioblastoma in vivo, 73 tumor samples from glioblastoma patients were stained
for intranuclear B-catenin. Furthermore, data published by The Cancer Genome
Atlas (TCGA) was analyzed to elucidate a possible correlation between the
overall survival time of glioma patients and the Wnt activation status of the
tumor (77).

The second publication intends to determine whether and how LGK974 can
increase the tumors’ sensitivity towards chemo- and radiotherapy in
glioblastoma in vitro. Therefore, we analyzed whether a combination treatment
of glioblastoma cell lines with LGK974 and either y-radiation or TMZ has
synergistic effects. In order to demonstrate a possible synergistic effect of
LGK974 treatment and the MGMT methylation status, we used two cell lines
with methylated and two with unmethylated MGMT promoter. To reveal which
mechanism causes synergy of combined LGK974 and TMZ treatment, a

11



microarray assay was performed, highlighting ALDH3A1 to be significantly
downregulated upon combined treatment. To further assess the role of
ALDH3A1 in glioblastoma, TMZ sensitivity, clonogenicity and stem cell marker
expression (CD133, Nestin, Sox2) were tested in ALDH3A1 knock-down cells
(78).

The third paper is a review that gives an overview of all pharmacological Wnt
inhibitors which were tested on glioblastoma at the time of publication. Different
compounds are closely examined concerning their mechanism of action and
possible applicability for glioblastoma treatment. Furthermore, the effects of
canonical and noncanonical Wnt pathway activation are outlined in greater
detail. Additionally, we have a closer look on Wnt signaling in glioblastoma
listing common pathway alterations and evaluating markers for Wnt activation
(79).

Taken together, this work combines experimental in vitro research on a
pharmacological Wnt inhibitor in glioblastoma with a detailed overview of the
current state of the art on pharmacological Wnt inhibition in gliomas. This work
further describes the first application of a small-molecule Wnt inhibitor on
glioblastoma cell lines, which has only been tested on pancreatic and head and
neck cancer cell lines before. As therapies directly targeting GSCs in patients
are missing so far, the results are highly relevant for new clinical approaches
combating glioblastoma. Over the long term the results of this thesis can form a
basis for in vivo experiments and clinical trials.

12
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Abstract

Wingless (Wnt) signaling is an important pathway in gliomagenesis
and in the growth of stem-like glioma cells. Using immunohisto-
chemistry to assess the translocation of B-catenin protein, we identified
intranuclear staining suggesting Wnt pathway activation in 8 of 43
surgical samples (19%) from adult patients with glioblastoma and in 9
of 30 surgical samples (30%) from pediatric patients with glioblasto-
ma. Wnt activity, evidenced by nuclear B-catenin in our cohort and
high expression of its target AXIN2 (axis inhibitor protein 2) in pub-
lished glioma datasets, was associated with shorter patient survival,
although this was not statistically significant. We determined the ef-
fects of the porcupine inhibitor LGK974 on 3 glioblastoma cell lines
with elevated AXIN2 and found that it reduced Wnt pathway activity
by 50% or more, as assessed by T-cell factor luciferase reporters. Wnt
inhibition led to suppression of growth, proliferation in cultures, and
modest induction of cell death. LGK974 reduced NANOG messenger
RNA levels and the fraction of cells expressing the stem cell marker
CDI133 in neurosphere cultures, induced glial differentiation, and
suppressed clonogenicity. These data indicate that LGK974 is a
promising new agent that can inhibit the canonical Wnt pathway in
vitro, slow tumor growth, and deplete stem-like clonogenic cells,
thereby providing further support for targeting Wnt in patients with
glioblastoma.
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INTRODUCTION

Patients with glioblastoma multiforme (GBM) rarely
survive more than 2 years after the initial diagnosis, making
this malignant glioma one of the most lethal tumors overall
(1). Glioma stem cells (GSCs) are thought to play a key role in
long-term tumor growth and resistance to standard therapies.
This subpopulation of cells is defined by its capacity for in-
definite self-renewal and by its ability to initiate orthotopic
xenograft formation (2, 3). Glioma stem cells also show
multilineage differentiation potential (3-5), express markers
found in nonneoplastic neural stem cells (6-9), and are rela-
tively resistant to radiation and chemotherapy compared with
glioma cells lacking stem cell properties (10-12). Therefore,
many research groups, including our own, have sought to
identify molecular regulators required for the survival and
proliferation of GSCs and to evaluate them as new therapeutic
targets. One pathway that has been implicated in GSCs and
glioma pathobiology is the wingless (Wnt) pathway (13-17).

The Wnt pathway has been shown to regulate a range
of cellular interactions in normal development and diseases
(18-20). It is a major pathway among stem and progenitor
cells in the developing fetus (21, 22) and in adults (20, 23).
For example, Pinto et al (24) modulated Wnt activity in the
intestines of transgenic mice and showed that the pathway is
required for stem cell homeostasis. Wnt is also required for
maintenance of neural stem cells, and loss of signaling induces
neural, glial, and oligodendroglial differentiation (25-27).

Whats are a large family of highly conserved protein ligands
that are modified by lipids and palmitate before they are secreted
as paracrine factors (28) and before they bind to cell surface
receptors of the Frizzled family and to their low density lipo-
protein receptor-related protein (LRP) coreceptors (29). Ligand/
receptor binding recruits the downstream mediator Disheveled to
the receptor site (30). Cytoplasmic levels of the key factor 3-
catenin (CTNNB1) are regulated through a specific degradation
complex composed of the scaffolding protein AXIN (axis in-
hibitor protein), a product of the tumor-suppressor gene adeno-
matous polyposis coli, casein kinase 1, and glycogen synthase
kinase 3, which promote its phosphorylation and constitutive
proteolytic degradation (18). Wnt binding and recruitment of
Disheveled disrupt this inactivation complex and lead to accu-
mulation of free CTNNBI in the cytoplasm, which translocates
into the nucleus, binds to transcriptional coactivators of the T-
cell factor (TCF)/lymphoid enhancer factor (LEF) family, and
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promotes expression of genes involved in a variety of cellular
processes important in tumorigenesis, including growth (31-33),
invasion (34-36), and therapeutic resistance (37, 38). One well-
characterized Wnt target is AXIN2 (39-41). AXIN2 expression
has previously been shown to directly correlate with Wnt ac-
tivity and aggressive behavior in GBM model systems (42—44).

In gliomas, Wnt is generally activated at the level of
ligand interaction rather than mutation (45). For example, the
gene £V, which is responsible for the secretion of Wnt mor-
phogens, is frequently overexpressed in GBM (46). Moreover,
increased expression of the pathway receptors Frizzled 2 and
Frizzled 9 and of Wnt6 by the zinc finger protein PLAGL2
promotes tumor growth by impeding glioma differentiation
(15). Wnt5a has been shown to promote invasion by inducing
the extracellular matrix metalloproteinase MMP-2 (47) and the
proliferation of GBM cells (48). Wnt3a increases nuclear

translocation of CTNNBI through induction of the cell cycle
regulator FoxM 1, thereby enhancing gliomagenesis (38, 44). In
addition, high levels of the Wnt receptor Frizzled 4 augment
glioma invasion and therapeutic drug resistance through in-
duction of epithelial to mesenchymal transition and reduced
susceptibly to inducing caspase3-dependent apoptosis (49).

A number of prior studies have used modulation of
upstream activators or genetic methods to inhibit Wnt in gli-
omas. In general, these have shown inhibitory effects on
GSCs and overall tumor growth (14, 36, 49, 50). However,
direct pharmacologic suppression of Wnt activity in cancers
has been challenging because of a lack of effective and
specific Wnt inhibitors. Recently, potent inhibitors of the
Wnt-specific acyltransferase porcupine, which lead to dis-
ruption of the ligand-driven activation of the pathway, have
been developed; these hold considerable promise as potential
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FIGURE 1. CTNNB1/p-catenin expression in surgical adult and pediatric glioblastoma specimens. (A) Glioblastoma in an adult with
moderate cytoplasmic and weak nuclear $-catenin immunoreactivity in a subset of cells (inset; arrow). (B) Pediatric glioblastoma
with weak (-catenin expression in cytoplasm and scattered nuclei (inset; arrow). (C€) A weak cytoplasmic staining pattern with no
nuclear protein was detected in formalin-fixed pellets from the GBM1 neurosphere cell line. (D) Patients whose glioblastoma
contain nuclear 3-catenin have shorter overall survival than those without signs of Wnt activity (median overall survival, 17 vs 20 months;
p=0.8).
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treatment. One such agent, LGK974, has shown therapeutic
potential in experimental studies of head and neck, breast, and
pancreas cancers (51-53). An open-label Phase 1 clinical trial
for various tumor types with documented genetic alterations
upstream of the Wnt pathway (https:/clinicaltrials.gov/ct2/
show/NCTO01351103) is currently further investigating the
clinical effects of this compound.

In this study, we demonstrate the ability of LGK974 to
inhibit canonical Wnt signaling in several in vitro GBM
models with AXIN2 expression levels similar to those seen
in primary tumor specimens. Glioblastoma multiforme cells
treated with the Wnt inhibitor also showed significant re-
ductions in overall cell growth, decreased proliferation and
clonogenicity, lower expression of the stem cell marker
CDI133, and induction of glial differentiation. Taken together,
these results suggest that targeting the Wnt pathway in GBM
using the porcupine inhibitor LGK974 may represent a novel
treatment strategy for malignant gliomas.

MATERIALS AND METHODS

Primary Tissue Samples, Cell Culture Models,
and Pharmacologic Treatment

Snap-frozen samples from adult brain gliomas (GBM:
p349, p635, p636, p696, and p770; low-grade glioma: p824)
were retrieved from the Johns Hopkins Neuropathology Brain
Tumor Tissue Bank. Tissue collection and analyses were ap-
proved by the Johns Hopkins Institutional Review Board.
Neurosphere cell lines (GBM 1, JHH520, US7NS, and GBM10)
were maintained in serum-free Dulbecco modified Eagle
medium/F12 (Life Technologies, Carlsbad, CA) supplemented
with B27 (Life Technologies), bovine fibroblast growth factor
(Peprotech, Rocky Hill, NJ), human epidermal growth factor
(Peprotech), and heparin (Sigma-Aldrich, St Louis, MO),
as previously described (54). The adherent glioma cell line
LN229 was cultured in Dulbecco modified Eagle medium (Life
Technologies) containing 10% fetal calf serum (Life Technol-
ogies) and 1x penicillin/streptomycin (Life Technologies).
GBM1 was generously provided by A. Vescovi (Milan, Italy);
AQH612 was provided by A. Quinones-Hinojosa (Department
of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD);
and JHH520 and JHH136 were provided by G. Riggins (Johns
Hopkins Hospital). LN229 and U87 were purchased from
American Tissue Culture Collection (Manassas, VA). GBM10
(54) and GBM 14 (55) are neurosphere lines generated in our
laboratory from intraoperative specimens obtained from the
Department of Neurosurgery at Johns Hopkins Hospital. RNA
was extracted from cell lines and tumor samples using standard
techniques. RNA from the pediatric brain tumor cell lines
SF188, SU-DIPG, BT35, BT40, Res186, Res259, D283, and
D425 were generously provided by E. Raabe (Department of
Pediatric Oncology, Johns Hopkins Hospital.

Identities of cell cultures were confirmed by analyzing
9 tandem repeats plus a sex-determining marker, Amelogenin,
using the StemElite kit (Promega, Madison, WI), at the
John Hopkins Core Facility for DNA Fragment Analyses
(http://gref.med.jhu.edu/) as part of its standard short tan-
dem repeat fingerprinting service for cell lines (Support-
ing Information File, Supplemental Digital Content 1,

© 2015 American Association of Neuropathologists, Inc.

http://links.lww.com/NEN/A774). Cells were passaged be-
fore the porcupine inhibitor LGK974 (no. M60106-2S; Xcess
Biosciences, San Diego, CA) was applied at the indicated
concentration and dissolved in cell line—specific cell culture
media. Cell cultures were supplied with LGK974 every 48 hours
in fresh media.

A tissue microarray containing multiple 0.6-mm cores
from 35 pediatric and 45 adult glioblastoma samples was
constructed as previously described (56). The tissue array and
GBMI1 cell pellets, which were fixed in formalin, processed,
and sectioned in the same manner as clinical specimens, were
stained for CTNNB 1/B-catenin (no. 610154, 1:1000 dilution;
Transduction Laboratories, Lexington, KY) at the Johns
Hopkins Hospital Clinical Pathology Laboratory. Tumors
were scored by a neuropathologist (Charles G. Eberhart), who
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FIGURE 2. Quantification of the Wnt target AXIN2 and clinical
prognosis. (A) AXIN2 mRNA levels in snap-frozen adult brain
tumors (GBM: p349, p635, p636, p696, and p770; low-grade
glioma [LGG]: p824), and brain tumor cell lines derived from
adult GBM (GBM1, GBM10, GBM14, JHH136, ]HH520, AQH612,
U87, UBZNS, and LN229) and pediatric brain tumors, including
diffuse intrinsic pontine glioma (SU-DIPG), anaplastic astrocytoma
(AA; BT35), atypical teratoid rhabdoid tumor (ATRT; BT40),
LGG (Res186 and Res259), high-grade gliomas (SF188 and
KNS42), and medulloblastoma (MB; D283 and D425). (B) Pa-
tients with GBM who have high AXIN2 have significantly shorter
survival compared with patients with low AXIN2 (median overall
survival, 208 vs 448 days) (z-score = +1.75, p = 0.06; TCGA
dataset May 2015).
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was blinded to clinical and pathologic findings, as having no,
weak, moderate, or strong cytoplasmic/surface and nuclear
immunoreactivity for CTNNBI1 in at least 5% of cells.

Reporter Assay for Measurement of
Wnt/CTNNB1 Activity

Canonical Wnt pathway activity in in vitro material was
assessed using bioluminescence-based quantification with lu-
ciferase reporter construct (firefly luciferase cassette under the
control of 7 TCF binding sites, as previously described (57).
This reporter, which measures occupied CTNNBI TCF/LEF
binding sites, was stably integrated into cells. Infectious len-
tiviral particles carrying the reporter were generated using a
third-generation lentiviral packaging system, as described
previously (58, 59); stable integration was selected using
2 pg/mL puromycin (Sigma-Aldrich). Cells overexpressing
Wnt because of the introduction of point-mutated CTNNBI/
[B-catenin served as positive controls and were generated in
our laboratory as previously described (34).

For each measurement, cells were harvested, washed in
1x PBS, and lysed according to the manufacturer’s in-
structions using the Dual-Light luciferase and 3-galactosidase
reporter gene assay system (no. T1003; Life Technologies).
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Luminescence readout was performed at 490 nm emission
wavelength on an Infinite M1000Pro plate reader (Tecan,
Morrisville, NC) and normalized to B-galactosidase activity.

Analysis of Gene and Protein Expression

Abundance of messenger RNA (mRNA) transcripts
was assessed by conversion into complementary DNA and
subsequent relative quantification using SYBR green—based
fluorescence (Bio-Rad, Hercules, CA). Real-time polymerase
chain reaction normalized to the housekeeping gene B-actin
was performed with the AAC, method. Primer sequences
can be found in Supporting Information File, Supplemental
Digital Content 2 (http://links.lww.com/NEN/A775). Western
blot analysis was performed as described previously (60),
and antibodies were used following the manufacturer’s in-
structions (Supporting Information File, Supplemental Digital
Content 2, http://links.lww.com/NEN/A775).

For The Cancer Genome Atlas (TCGA) analyses, AXIN2
transcription levels acquired (using the Agilent 244k micro-
array) from 401 GBM specimens collected from TCGA
(http://cancergenome.nih.gov) were retrieved through cBioPortal
(http://www.cbioportal.org) (61) from the provisional Glio-
blastoma dataset in May 2015. AXIN2 expression values
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FIGURE 3. LGK974 suppresses canonical Wnt activity. (A) Wnt pathway activity assessed by TCF luciferase reporters. (B) Intro-
duction of mutant active CTNNB1 (533Y) increased TCF reporter signals in GBM1 and JHH520 cells. (€) LGK974 inhibits Wnt
activity in a dose-dependent manner. (D) Treatment with 5 pmol/L LGK974 for 48 hours effectively inhibited Wnt signaling in all

glioma cell lines tested (* p < 0.05). DMSO, dimethyl sulfoxide.
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were correlated with available overall survival data provided
by TCGA, with a cutoff of 1.75 SD above the median (z-score)
considered as AXIN2 high-expressing tumors.

Fluorescence-Activated Cell Separation
and Analyses

For CD133 cell surface immunostaining, 5 x 107 cells
were retrieved from a single-cell suspension and labeled
with anti-CD133/1-phycoerythrin antibody (AC133, no. 130-
080-801; Miltenyi Biotec, Cologne, Germany) according to
the manufacturer’s instructions. The antibody solution con-
sisted of anti-CD133/1-phycoerythrin (1:11) plus FcR block-
ing reagent (1:11, no. 130-059-901; Miltenyi Biotec) in 1x
PBS (Life Technologies). All CD133-positive fractions were
gated using the respective controls (AC133-pure, no. 130-
090-422; Miltenyi Biotec). Fluorescence-activated cell anal-
yses were performed on Accuri C6 (BD Biosciences, Franklin
Lakes, NJ). Fluorescence-activated cell sorting was performed
on SH800 (Sony Biosciences, Cambridge, MA), and FlowJo
V10 software (Tree Star Inc, Ashland, OR) was applied to
perform data postprocessing.

Cell Growth, Proliferation, and Apoptosis Assays

Cultures were dissociated into a single-cell suspen-
sion, and viable cells were quantified using the MUSE Count
and Viability Assay Kit (no. MCHI100102; Merck KGaA,
Darmstadt, Germany); 2,000 cells/well (96-well plates) were
plated in 100-pL triplicates. For this assay, GBMI and
JHH520 were grown as adherent cells on plates coated with
laminin (no. L2020; Sigma-Aldrich; minimum of 3 hours prior
cell plating with 20 pg/mL laminin solution) under stem cell
culture conditions and replaced with fresh media with consis-
tent drug concentration (5 pmol/L) every 48 hours. Relative
cell numbers were measured at 1, 2, 3, and 4 days using the
fluorescence viable cell mass assay TiterBlue, according to the
manufacturer’s instructions (no. G8081; Promega), on the In-
finite M1000Pro plate reader (Tecan). Cell TiterBlue reagent
was added directly to the cells (20 pL per well) and incubated
for 2 hours at 37°C. Fluorescence intensity was measured at
560,,/590,,, nm.

To assess the effects of drug treatment on cell prolif-
eration, we performed Ki67quantification on Days 2 and 3
after initiation of pharmacologic treatment using the Muse
Ki67 Proliferation Kit (no. MCH100114; Merck KGaA) on
the Muse Cell Analyzer (no. 0500-3115; Merck KGaA).
Reduction of proliferation was normalized to dimethyl
sulfoxide—treated control, and Ki67 stain was gated with the
respective IgG stain control. For each sample, 50,000 cells
were stained for 45 minutes.

Apoptotic cells were quantified using the Annexin V
and Dead Cell Kit (no. MCH100105; Merck KGaA) on the
Muse Cell Analyzer according to the manufacturer’s protocol.
A minimum of 2,000 gated events were acquired.

Colony Formation Assay in Soft Agarose

Six-well plates were coated with a bottom agar/media
layer made from a 1:1 mixture of a prepared 2x concentra-
tion of neurosphere media and 1% melted agarose (Life
Technologies) in water. A single-cell triturated suspension

© 2015 American Association of Neuropathologists, Inc.

was placed into a top agarose/media mixture (0.7%) and
immediately plated into 6-well plates at densities of 3,500
cells/well (GBM1) and 5,000 cells/well (JHH520) in 1.5 mL
of agarose; 1.5 mL of media (supplemented with drug or ve-
hicle) was placed into each well. For the effects of LGK974
on colony formation, 500 mL of fresh neurosphere media (with
and without drug) was added to the treatment group every
48 hours. The experiment was stopped by viable cell visuali-
zation with nitroblue tetrazolium (Sigma-Aldrich) overnight at
37°C on Day 19 and quantified using MCID Elite software
(MCID, Cambridge, United Kingdom).

Statistical Evaluation

Kaplan-Meier analysis using logrank test compared
overall survival between groups and was performed with
Prism version 4 (GraphPad Software Inc, La Jolla, CA). Sta-
tistical analyses of in vitro experiments, which each included
a minimum of 3 biologic replicates, were performed using 2-
tailed Student f-test and Statistica software (Statsoft. Tulsa,
OK). Data are presented as mean + SD, and p < 0.05 was
considered significant.

RESULTS

Levels of Wnt Activity in Surgical GBM
Specimens and Glioma Cell Lines

We first used immunohistochemistry to examine the
expression and localization of CTNNB1/B-catenin in surgical
GBM specimens and in cell pellets from the GBMI1 neu-
rosphere line that were fixed and processed in parallel with the
clinical samples. Among the primary tumors in our tissue
microarray, 30 pediatric and 43 adult glioblastoma samples
had sufficient material on stained slides for scoring. Among
these, the degree of cytoplasmic and cell membrane CTNNBI
protein expression varied widely, with most cases showing
no or weak expression; however, approximately one quarter
showed moderate or strong expression (Figs. 1A, B). We did
not identify the type of strong nuclear protein reported in
tumors such as medulloblastoma, in which the pathway is
activated by CTNNB! mutation (62, 63). However, in 8 of
43 adult GBM samples (19%) (Fig. 1A) and in 9 of 30 pedi-
atric GBM samples (30%) (Fig. 1B), we detected weak im-
munoreactivity in a subset of nuclei, which could potentially
represent pathway activity. The presence of weak nuclear
staining was seen in cases with a range of cytoplasmic expres-
sion, and the 2 did not seem to correlate. GBM1 neurosphere
cells showed weak cytoplasmic staining levels similar to many
GBM but no evidence of nuclear CTNNBI1 (Fig. 1C).

The relationship between protein expression and cli-
nical outcome was also evaluated. Patients with GBM show-
ing nuclear CTNNBI in their tumors had a median survival of
17 months compared with 20 months for those without in-
tranuclear staining. Logrank analysis of Kaplan-Meier sur-
vival curves revealed that this difference was not significant
(Fig. 1D). Examination of the prognostic impact of nuclear
CTNNBI on adult and pediatric cases individually revealed
equal survival in adults (20 vs 20 months) but shorter survival
in patients younger than 18 years with nuclear protein (14 vs
20 months), although the difference was not significant even
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GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

in these pediatric patients. Analyses of adult GBM and pedi-
atric GBM with and without cytoplasmic CTNNBI1 protein
did not reveal any survival differences between patient
groups. We also did not identify any correlation between cy-
toplasmic or nuclear CTNNBI and expression of mutant
IDHI, as detected by immunohistochemistry. These findings
suggest that oncogenic Wnt signaling is active in a subset

of GBM, but a possible association with worse clinical out-
comes is not clear. Because immunohistochemical analysis
was difficult owing to weak nuclear CTNNBI staining, we
sought to use more quantitative and sensitive methods to as-
sess Wnt signaling status.

Expression of AXIN2, an established target of canoni-
cal Wnt signaling (34, 40, 44, 49, 64), has been shown to be

FIGURE 4. Decreased growth after Wnt pathway blockade. Wnt inhibition significantly reduced cell growth, as assessed with
TiterBlue assay (A); cell proliferation, as assessed by fluorescence-based Ki67 quantification (B); and cell survival, as assessed
with Annexin V/propidium iodide-based apoptosis and cell death quantification (C). * p < 0.05 for all panels. 48h, 48 hours;

72h, 72 hours; DMSO, dimethyl sulfoxide.

© 2015 American Association of Neuropathologists, Inc.
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associated with Wnt activity and glioma stemness (4244,
65). Therefore, we measured AXIN2 to determine whether the
brain tumor cell lines used in our laboratory had levels of
pathway activity similar to those found in snap-frozen patient
specimens. As shown in Figure 2A, AXIN2 mRNA levels in
the 6 adult tumor specimens examined (adult GBM: p349,
p635, p636, p696, and p770; low-grade glioma: p824) varied
more than 2-fold between tumors. AXIN2 levels were even
more heterogeneous in in vitro models, including cell lines
derived from 9 adult GBM tumors (GBM1, GBM10, GBM 14,
JHH136, JHH520, AQH612, U87, USTNS, and LN229) and 9
pediatric brain tumors, including | diffuse intrinsic pontine
glioma (SU-DIPG) (66). 1 anaplastic astrocytoma (BT35) (67),
1 malignant atypical teratoid rhabdoid tumor (BT40) (67), 2
low-grade gliomas (Resl86 and Res259) (68), 2 high-grade
gliomas (KNS42 (59) and SF188 (69)), and 2 medulloblasto-
mas (D283 and D425) (70).

We noted no clear correlation between AXIN2 expres-
sion levels in our cell lines and patient age or tumor type.
However, a number of GBM lines showed levels of AXIN2
similar to those seen in primary tumors. We selected 2 neu-
rosphere lines (GBM1 and JHH520) and 1 adherent line
(LN229) that showed relatively high AXIN2 expression within
the physiologically relevant range for further studies of func-
tional inhibition.

We also examined AXIN2 mRNA levels as a potential
prognostic marker in 396 GBM specimens from the database
of TCGA, with follow-up data available. A number of po-
tential thresholds for AXIN2 overexpression were tested;
however, although shorter survival was associated with higher
levels of this Wnt pathway target, the differences were not
statistically significant. The most prominent effects were not-
ed with the quite stringent thresholds for AXIN2 overexpression.
Figure 2B shows that patients with high AXIN2 (defined as
expression =1.75-fold SD above the median) survived 208
versus 448 days for the rest of the TCGA group (p = 0.06).

Wnt Pathway Luciferase Reporter Assays in Cell
Line Models

Luciferase reporter systems driven by CTNNBI/B-
catenin binding to multimerized TCF/LEF promoter sites are
frequently used to measure canonical Wnt activity in cell
lines. We introduced this reporter into our GBM lines using
lentivirus and selected for stable integration using puromycin.
Interestingly, TCF/LEF reporter signals correlated with AXIN2
mRNA levels, with moderate luciferase signals in GBM1 (0.4),
with higher luciferase signals in LN229 (0.7), and with the
highest luciferase signals in JHH520 (1.1) (Fig. 3A), supporting
AXIN2 as a marker of Wnt activity in these tumors. When
GBMI and JHHS520 reporter cultures were transduced with
constitutively active (S33) mutant) CTNNB 1/B-catenin (34),
we observed a more than 100-fold (GBM1) or 4-fold (JHH520)
induction of luciferase activity (Fig. 3B), confirming the re-
sponsiveness of the reporter.

LGK974 Treatment Reduces Wnt Transcriptional
Activity and Cell Growth in GBM Cells

We next tested the effects of LGK974 administra-
tion on Wnt transcriptional activity in our culture models. In
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GBMI1 cells, we identified 5 pmol/L LGK974 as sufficient to
suppress canonical Wnt signaling; a representative experi-
ment is shown in Figure 3C. Additional experiments using
5 pmol/L LGK974 in GBM1 and other lines confirmed 40%
to 60% Wnt pathway suppression, which was significant in
2 lines (p < 0.05) (Fig. 3D). We chose to use this dose for
functional studies to avoid potential nonspecific cytotoxicity.

Glioma cells with suppressed Wnt signaling showed
reduced overall growth compared with their vehicle (i.e. di-
methyl sulfoxide)-treated counterparts, as assessed with Titer-
Blue assay. Statistical significance was reached at 48 hours of
treatment (GBM1 and LN229) and at 96 hours of treatment
(JHH520) (Fig. 4A). We also tested U87 and SFI188 (2 cell
lines with low AXIN2 baseline levels, as shown in Fig. 2) but
did not see significant growth inhibition afier LGK974 treat-
ment (data not shown), suggesting that Wnt activity might be
predictive of susceptibility to pathway inhibition.

LGK974-sensitive lines showed a reduction in the per-
centage of proliferating cells, as assessed with fluorescence-
based quantification of Ki67 expression (Fig. 4B). An increase
in apoptotic cell death, as detected by fluorescence-based
quantification of Annexin V/propidium iodide—positive cells,
was also seen in GBM1 and JHH520 after 48 and 72 hours of
LGK974 treatment; however, no induction of apoptosis was
observed in LN229 (Fig. 4C).

LGK974 Treatment Reduces In Vitro
Clonogenicity and Induces Glial and Neural
Differentiation

Canonical Wnt signaling has been implicated as a reg-
ulator of the GSC marker CD133 and has been shown to af
fect glioma cell differentiation (13, 34). Glioblastoma mul-
tiformecultures expressing the cell surface marker CD133
showed a reduction in the percentage of positive cells after
treatment with LGK974 (GBM 1: 45%-8%; USTNS: 17%—9%;
GBM10: 50%-43%) (Fig. 5A). The JHH520 and LN229 lines
had very low baseline levels of CD133-positive cells (approx-
imately 1%-2%), and this did not change significantly after
LGK974 exposure (data not shown). When we sorted GBM1
cultures by CD133 expression using fluorescence-activated
cell sorting, the positive stem-like fraction had somewhat
higher levels of Wnt signaling, as assessed by the TCF
luciferase reporter, although the pathway was clearly also
active in better differentiated cells (Fig. 5B). LGK974 also
reduced mRNA levels of the neural stem cell marker
NANOG in all tested lines, reaching significance for GBM1
(Fig. 5C).

Because induction of differentiation can be an effective
anticancer stem cell therapeutic strategy for malignant glio-
mas (71), we also assessed whether Wnt blockade could
promote differentiation. Western blot analysis revealed in-
duction of the glial differentiation marker glial fibrillary acidic
protein in LN229 and JH520 and a very minor increase in
GBM1 (Fig. 5C). The neuronal marker microtubule-
associated protein 2 was only induced in LN229 after Wnt
inhibition (Fig. 5D).

Given the reductions in the stem-like cell fraction, we
evaluated the effects of LGK974 treatment on in vitro
clonogenicity. Soft agar colony formation assays showed a
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significant reduction in total number of spheres formed and
mean sphere diameter after drug exposure in both GBM1 and
JHHS520 neurosphere lines (p < 0.001). However, the magni-
tude of the effect was much more prominent in GBMI, with a
mean sphere number reduction of more than 80% and a mean
colony size decrease from 147 to 86 pm (Fig. 6).

DISCUSSION

Recent studies have identified molecular changes af-
fecting the Wnt pathway in malignant gliomas (33, 72-74).
These and other research studies have suggested that ligand-
driven upregulation of Wnt is involved in glioma pathogene-
sis. For example, Wnt3a can control tumorigenicity through
regulation of the cell cycle regulator FoxM 1, which promotes
intranuclear accumulation of CTNNBI/B-catenin (44). In
addition, ectopic expression of soluble Frizzled-related
proteins—secreted factors that interact with and control Wnt
ligands (75)—inhibits glioma cell motility (76). The Wnt-
specific secretory protein EVI/Wntless, which controls the
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FIGURE 6. LGK974 treatment significantly inhibits in vitro clonogenicity and reduces mean sphere diameter (GBM1: from 147 to

secretion of pathway ligands in canonical and noncanonical
contexts, is overexpressed in high-grade brain tumors and
promotes GBM malignancy (46). The expression of Wnt in-
hibitory factor 1, a soluble inhibitor of Wnt morphogens, is
downregulated in GBM and thereby activates the Wnt net-
work, promoting tumor invasion (36). Given these data indi-
cating that Wnt signaling in gliomas can be activated at the
ligand level, we investigated the effects of LGK974 (51), an
inhibitor of palmitoylation and extracellular secretion of Wnt
ligands (77), on adult glioma cells in vitro.

Using cell lines grown adherently or in serum-free
media as neurospheres, we found that LGK974 could sup-
press canonical Wnt activity in a dose-dependent manner, as
measured by a highly sensitive luciferase-based reporter of
transcriptional activity for the pathway. Wnt pathway sup-
pression was associated with significant reductions in the
proliferation index and in the overall growth of all 3 lines
tested. We also noted increased glial differentiation, as evidenced
by a stronger expression of glial fibrillary acidic protein, and
a reduction in NANOG levels and in the percentage of cells
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expressing the stem cell marker CD133. Consistent with the
notion that a stem-like fraction was being depleted, Wnt inhi-
bition caused a decrease in the size and number of colonies
formed in soft agar.

To assess the extent of Wnt activity in primary gliomas,
we examined the expression and localization of CTNNBI1/B-
catenin protein in 73 pediatric and adult surgical GBM speci-
mens because nuclear translocation of this protein is associated
with canonical signaling (62). Nuclear CTNNBI was identified
in 30% of pediatric GBM samples and 19% of adult GBM
samples, but expression was weak and present in relatively
small numbers of cells. This assay did not show nuclear
CTNNBI in GBM1 cultures, suggesting that the immunohis-
tochemical assay is less sensitive than TCF luciferase reporters,
which identified biologically significant Wnt activity in these
cells. The weak nuclear staining may also reflect a more
modest ligand-driven activation of Wnt signaling in gliomas, as
opposed to adenomatous polyposis coli loss or CTNNBI mu-
tations, which activate the pathway in medulloblastoma (78).
Nevertheless, together with prior reports, our findings support
the concept that Wnt is active in a significant number of GBM
and may be particularly frequent in pediatric tumors.

Several earlier studies found that increased cytoplasmic
CTNNBI1/B-catenin protein levels and nuclear translocation
could be prognostically significant in patients with gliomas.
Liu et al (79) reported that 28% of the 43 glioblastomas they
examined had cytoplasmic and nuclear proteins, which were
associated with significantly shorter survival. Other groups
showed that increased cytoplasmic or nuclear CTNNBI1/3-
catenin was associated with higher glioma grade and poor
outcomes (80, 81). In contrast, Zhang et al (82) found in a
series of 63 astrocytomas that only 4 cases showed nuclear -
catenin immunoreactivity and that, although increased overall
protein levels were not associated with tumor grade, they did
correlate with shorter survival. Finally, the presence of nu-
clear Y333 phosphorylated B-catenin in GBM cells has been
linked to shorter survival in a series of 84 patients (14).

Although we found a shortened overall survival in pa-
tients with GBM whose tumors had nuclear CTNNBI (17 vs
20 months), this difference was not significant. When we
analyzed only patients younger than 18 years, the survival
disadvantage of nuclear CTNNB1 was more pronounced (14
vs 20 months) but still not significant. Potential causes of the
differences between our clinical correlation data and those
from other groups include variations in staining protocols,
scoring of combined nuclear and cytoplasmic proteins in
some studies, and the small size and mixed nature of many
previously published clinical cohorts. We also examined the
prognostic impact of the Wnt target gene AXIN2. As was seen
for nuclear CTNNBI, increased Wnt activity, as defined by
high AXIN2 levels, was associated with shorter survival, but
this was not significant.

Despite the proven oncogenic role of Wnt in gliomas
(14, 15, 44, 83) and some progress in the development of
pathway inhibitors (84, 85), little has been published on
small-molecule compounds targeting Wnt, which are ready
for clinical use in gliomas. One recent study tested the AXIN
stabilizer SEN461, which showed promising therapeutic ef-
fects and inhibited Wnt activity in GBM cells in vitro and in
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vivo (86). Lan et al (87) used aspirin to suppress both Wnt
signaling and the invasion and survival of GBM cells, al-
though this anti-inflammatory agent can have a variety of ef-
fects. Another group investigated the antipsychotic drug
risperidone, which decreased CTNNBI in gliomas and re-
duced the stem-like cell fraction (88). FH535, a small-
molecule Wnt inhibitor, suppressed Wnt activity in U7 and
LN229 cells and reduced cellular invasion and proliferation
(81). Finally, the use of genetic constructs to modulate the
epigenome regulating Wnt—that is, miR-34a (89), miR-92b
(90), miR-96 (74), miR-218 (35), miR-328 (91), and miR-603
(33)—is also possible, but efficient in vivo delivery remains
challenging.

In summary, our data support the concept that Wnt
signaling is active in at least a subset of malignant gliomas
and that inhibition of this pathway can slow tumor growth,
reduce the stem-like cellular fraction, and block clonogenicity
in some GBM neurosphere lines. Our findings also suggest
that the porcupine inhibitor LGK974, which is currently in
trial for pancreatic and colorectal cancers, can effectively
suppress Wnt signaling in GBM in vitro. However, preclinical
in vivo studies must be performed to assess the therapeutic
potential of LGK974 in the treatment of brain tumors.
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ABSTRACT

Glioblastoma is the most aggressive type of glioma. The Wingless (Wnt) signaling
pathway has been shown to promote stem cell properties and resistance to radio-
and chemotherapy in glioblastoma. Here, we demonstrate that pharmacological
Wnt pathway inhibition using the porcupine inhibitor LGK974 acts synergistically
with temozolomide (TMZ), the chemotherapeutic drug currently used as standard
treatment for glioblastoma, to suppress in vitro growth of glioma cells. Synergistic
growth inhibition was independent of the O®-alkylguanine DNA alkyltransferase
(MGMT) promoter methylation status. Transcriptomic analysis revealed that
expression of aldehyde dehydrogenase 3A1 (ALDH3A1) was significantly down-
regulated when cells were treated with LGK974 and TMZ. Suppressing ALDH3A1
expression increased the efficacy of TMZ and reduced clonogenic potential
accompanied by decreased expression of stem cell markers CD133, Nestin and Sox2.
Taken together, our study suggests that previous observations concerning Wnt
signaling blockade to reduce chemoresistance in glioblastoma is at least in part
mediated by inhibition of ALDH3A1.

INTRODUCTION chemotherapy with temozolomide (TMZ). In case of
TMZ, which works as a DNA alkylating agent by adding

Glioblastoma is the most common primary alkyl-residues to the N-7 and O-6 positions of guanine,

malignant brain tumor in adults and is characterized by
a dismal prognosis. Despite radical treatment with radio-
and chemotherapy, the median overall survival is less than
two years [1, 2]. One of the obstacles of curative treatment
of glioblastoma is primary or acquired resistance to the
current standard of care consisting of radiotherapy and

promoter methylation of the O-6-methylguanine-DNA
methyltransferase (MGMT) gene is associated with more
efficient therapeutic success [3]. TMZ is less effective
in glioblastomas lacking MGMT promoter methylation,
resulting in worse outcome of this group of patients [4].
New therapeutic options, such as anti-angiogenic strategies
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employing blocking antibodies against vascular endothelial
growth factor, did not result in significant overall survival
benefit [5]. Therefore, other treatment targets must be
identified and validated, with glioma stem-like cells (GSCs)
having emerged as a promising target for future treatment.
GSCs have been reported to be the most therapy resistant
type of tumor cells in malignant gliomas, withstanding
treatments with radio- and chemotherapy [6, 7]. Similar
to somatic stem cells, GSCs are governed by deregulated
phylogenetically conserved stem cell signaling pathways
modulating differentiation, proliferation, invasion and
stress regeneration capability [8]. One of these cascades
is the Wingless (Wnt) pathway. Several drugs targeting
various members of the Wnt signaling network have been
developed and have shown promising preclinical results
against various types of cancer including glioblastoma
[9-13]. We have previously shown that pharmacological
interference with the Wnt ligand-receptor interaction
through inhibition of porcupine with LGK974 (Wnt974) is
a novel strategy to efficiently block Wnt signaling activity
in glioblastoma cells [14]. Here, we now demonstrate that
LGK974 acts synergistically with TMZ chemotherapy to
reduce cell viability in both MGMT promoter-methylated
and unmethylated glioblastoma neurosphere cell lines.
We found aldehyde dehydrogenase 3A1 (ALDH3Al),
an enzyme involved in cellular metabolic clearance and
detoxification of alcohol-derived acetaldehyde [15], to be
down-regulated in cells treated with LGK974 and TMZ as
compared to monotherapy with either TMZ or LGK974.
Our results suggest that ALDH3A1 in glioblastoma is a
target gene of the canonical Wnt signaling and we provide
functional evidence that pharmacological inhibition of the
pathway by porcupine inhibition increases susceptibly to
TMZ treatment at least in part due to down-regulation
of ALDH3A]1. Therefore, targeting ALDH3A1 can be
an innovative strategy to increase TMZ sensitivity in
brain cancer cells independently of the MGMT promoter
methylation status.

RESULTS

Pharmacological Wnt inhibition acts
synergistically with TMZ to inhibit glioma cell
growth

We characterized the MGMT promoter methylation
status of four in vitro glioma models using methylation-
specific PCR as either MGMT promoter-methylated
(GBM1, JHH520) or -unmethylated (GBM10, SFI188)
supported by relatively low (GBMI1, JHH520) or high
(GBM10, SF188) IC,; values of TMZ (Table 1). IC
concentrations for LGK974 and doses for y-radiation
were also determined for each cell line. In contrast to TMZ
treatment, the MGMT promoter methylation status had no
effect on therapy sensitivity when LGK974 or y-radiation

was applied to the cultures (Table 1). We previously
showed that LGK974 effectively blocks canonical Wnt
signaling activity in glioblastoma cells [14]. To assess
whether LGK974 might increase sensitivity towards TMZ,
we measured combinatory effects of both drugs by defining
cell viability (using CellTiter Blue) as our primary readout
and calculating synergistic effects due to combination
index equation for multiple drug effect interactions using
computerized simulations (Compusyn) [16]. We found
that the combination of TMZ with LGK974 reduced
cell growth significantly more effectively as compared
to treatments with either drug alone irrespective on the
MGMT promoter-methylation status (Figure 1A). The
same effect was observed in cells treated with y-radiation
and LGK974 (Supplementary Figure 1A). Looking at the
dose-effect curves for both drugs, we observed a sigmoidal
curve for TMZ and a hyperbolic, non-linear relationship
for LGK974 that explains diminishing increment of
effectiveness as the concentration rises above the IC, [17]
(Supplementary Figure 1B). Stronger synergy was noticed
in lower dosages of both drugs.

Base line ALDH3A1 expression is independent
on Wnt pathway activity and TMZ resistance
but is down-regulated upon treatment with
LGK974 and TMZ

Next we performed the whole transcriptome
analysis of GBMI1 cells treated with DMSO control,
TMZ, LGK974, and TMZ plus LGK974. We chose
GBM1 for our analysis as we previously showed that
LGK974 effectively reduces stemness in this cell line
[14]. Evaluation of the data revealed significant down- or
upregulation of 2175 genes with moderate fold change
values in the combinatory treatment group as compared
to the single treatment groups and the DMSO control
group (Figure 1B). We validated the data by targeted
expression analyses using quantitative real time PCR
(gqPCR) for nine differentially expressed genes. The
nine genes were selected based on their relatively high
overall expression values and the fold-change values of
differential expression following combinatory treatment
(Figure 1C, Supplementary Figure 2A). All genes showed
similar expression tendencies as detected in the microarray
screen, except HISTIH2BD, that showed an upregulation
on the mRNA expression level (Supplementary
Figure 2A). Thereby we confirmed that ALDH3A1, the
strongest inhibited gene in the microarray screen, was
robustly down-regulated by LGK974 and TMZ in GBM1
cells evaluated by real time-PCR. Moreover, we tested
basal mRNA and protein expression of ALDH3AI of our
cell lines and compared it with the specific IC,, dosage
of TMZ (Figure 2A, Supplementary Figure 2B). We did
not find any correlation between ALDH3A1 expression
and resistance against TMZ, which is more predicted by
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Table 1: IC,; doses for TMZ, LGK974 and y-irradiation

Cell line MGMT promoter LGK974 [uM] TMZ [pM] y-irradiation [Gy]
GBMI1 methylated 1 5 2
JHH520 methylated 3 10 6
GBM10 unmethylated 6 70 2
SFI188 unmethylated 1 40 2

Each cell line was treated with different dosages of TMZ and LGK974. Cell viability was taken as readout.

MGMT promoter methylation status. There was also no
correlation found between ALDH3A1 expression and
basal WNT activity in our cell lines (Supplementary
Figure 2C).

Testing of ALDH3Al mRNA expression after
pharmacological treatment in additional cell models
SF188, JHH520 and GBM 10 revealed that the latter two
showed significant signal suppression. No difference in
gene transcription was noticed in pediatric glioma model
SF188 (Figure 2B). For these studies we used half dosages
of the IC, for each drug since these concentrations
resulted in most significant synergistic effects (Figure
1A). The array data suggested that LGK974 treatment
alone may not only down-regulate specific Wnt target
genes such as Dickkopt3 and CD44, but also down-
regulates expression of ALDH3AI, although to lesser
extent as compared to combination treatment with TMZ
(data not shown). Verifying this data using sensitive
reporter readouts, we found combined TMZ and LGK974
treatment significantly reducing Wnt pathway activity
in all four cell lines (Figure 2C). On protein level,
combination treatment of LGK974 and TMZ reduced
ALDH3A1 in GBMI1 and SF188, whereas in GBM10
protein was reduced under LGK974 monotherapy only.
No significant suppression of ALDH3A1 was seen in
JHHS520 (Figure 2D). In concordance, genetic inhibition
of Wnt signaling in GBM1 cells using shRNA-mediated
knock-down of B-catenin expression caused reduction in
ALDH3A1 expression levels (Supplementary Figure 2D).

ALDH3AL1 inhibition reduces cell viability and
resistance to TMZ

To test whether ALDH3A 1 mediates the resistance
to TMZ, we created glioma cells with genetically down-
regulated ALDH3A1 expression (Figure 3A). Most
efficient KD was achieved in cell lines GBM1, GBM10
and SF188 and therefore chosen for further experiments.
In comparison to control cells we noticed that cells with
down-regulated ALDH3A1 expression grew slower and
were significantly more sensitive to TMZ (Figure 3B,
3C). In contrast, ALDH3A1 knock-down cells did not
alter their sensitivity towards LGK974 and combination
treatment with TMZ (Figure 4A).

ALDH3A1 inhibition reduces in vitro
clonogenicity and the expression of stem cell
markers

To reveal effect of ALDH3AI knock-down on
glioblastoma stem-like cells, we tested the expression
of several established stem cell genes in our genetically
modified cell models. ALDH3AT GBM10 knock-down
cells showed reduced CDI33 protein levels, whereas
in GBM1 and SF188 we noticed a tendency of reduced
C133 expression (Figure 4B). Of note, in cell lines when
blocking ALDH3A1 we observed a significant decrease
in mRNA expression of Nestin and Sox2 (Figure 4C) as
compared to control cells. Additionally, cells with blocked
ALDH3AI caused a strong significantly reduced the total
sphere formation capacity (Figure 5).

DISCUSSION

Current therapeutic options for glioblastoma patients
result in unsatisfying clinical outcomes. In particular, novel
treatment options are highly needed for patients suffering
from glioblastomas without MGMT promoter methylation
who show limited benefit from TMZ chemotherapy. Our
findings suggest that the enzyme ALDH3A1 might act
as a therapeutic target whose inhibition sensitizes glioma
cells to TMZ. Of note, ALDH3A1 blockade increased
TMZ sensitivity independently of the MGMT promoter
methylation status. Moreover, we identified Wnt signaling
as an upstream regulator of this mechanism by showing
that targeting Wnt pathway activity down-regulates
the expression of ALDH3AI. This is of interest as Wnt
signaling emerges as a therapeutic target in glioma stem-
like cells [13]. Of note, in SF188, the only pediatric GBM
model in our study, we observed significant differences
in ALDH3A1 mRNA and protein levels in the context of
drug treatment experiments. We speculate this may be a
consequence of various post-transcriptional and epigenetic
regulations as well as a possible negative protein-to-
transcription feedback loop as previously described in
large-scale glioblastoma datasets [ 18].

In addition to confirming recent findings that Wnt
signaling promotes chemoresistance of glioblastoma
cells [19], our data suggests that a possible mechanism
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Figure 1: LGK974 acts synergistically in combination with TMZ. The x-axis represents different multiples of the detected
IC,, dose for each drug and cell line. The axis of ordinates demonstrates the calculated combination index. The combination index is
calculated based on the median-effect equation, taking each value from TMZ single treatment, LGK974 single treatment and combination
of both treatments for one specific dose into account. In one experiment, the combination index is calculated for five different doses and
represented by one colored line. If the combination index is less than 1, both treatments act synergistically. If it is equal 1, both treatments
act additively. If the combination index is more than 1, the effects are antagonistic. (A) LGK974 acts synergistically with TMZ in cell lines
with methylated (green labeled GBM1 and JHH520) (n = 4 independent experiments) and unmethylated MGMT promoter (orange labeled
GBM10 and SF188) (n = 3 independent experiments). (B) 2175 genes are significantly deregulated when combining LGK974 and TMZ
treatment in GBM1 cells. Each treated group (TMZ alone, LGK974 alone, TMZ plus LGK974) was compared to the DMSO-treated control
group (n = 4 independent experiments). 1800 genes were differentially expressed in the TMZ-treated group, 954 genes in the LGK974-
treated group and 177 genes were expressed in all treated groups compared to DMSO control. (C) The nine genes with highest fold-change
in the combinatory treatment group. Abbr.: D: DMSO; T: TMZ; L: LGK974."p < 0.05, “p < 0.01, "'p < 0.001 vs. additive effect (unpaired
student -test).
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of this association is the down regulation of ALDH3A1 We consistently observed most synergistic anti-

expression in response to pathway inhibition. We growth effects in lower dosages of TMZ and LGK974.
chose ALDH3AI as our target of interest since family This observation might be explained by the dose-effect
members of the ALDH group are known to detoxify curve for LGK974 indicating high effectiveness in
reactive aldehydes caused by treatment with alkylating low dosages. Given the particularly high synergistic
chemotherapeutics [20, 21]. effect observed when treating the cells with low drug
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Figure 2: ALDH3A1 mRNA and protein expression is down-regulated in glioma cells treated with LGK974 and TMZ.
(A) Comparison between basal protein levels of ALDH3AI (left) and I(.'_;a dosages of TMZ and LGK974 (right) for all four cell lines. One
blot of basal ALDH3A1 expression is shown (n = 3 individual experiments). (B) ALDH3A! mRNA expression in the four glioma cell
lines. Note that ALDH3A1 mRNA expression is significantly down-regulated in the MGMT promoter-methylated cell lines GBM1 and
JHH520 in the LGK974 plus TMZ treatment group (n = 3 independent experiments). (C) Wnt pathway activity assessed by T cell factor
(TCF) luciferase reporters. Wnt activity is significantly reduced upon combined treatment with TMZ and LGK974 in all cell lines (n = 3
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concentrations, we hypothesize that adverse effects could
be minimized and thereby favoring clinical applicability.
Additionally, our functional data suggest the utility
of high ALDH3A1 expression as a putative diagnostic
marker for stemness in glioma as indicated by reduced
expression of CDI133, Nestin and Sox2 as well as
diminished clonogenicity in response to ALDH3AI

inhibition. Further correlative investigations in clinical
datasets and in vive models are needed to verify this
hypothesis. Moreover, decreased overall cell viability
following reduced ALDH3A1 expression could be due
to the depletion of glioma cells with stem-like properties.
However, additional functional studies are needed to
comprehensively decipher the mechanistic background of
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Figure 5: Clonogenicity is reduced in ALDH3AI knock-down cells. Representative pictures of NBT stained colonies and
quantifications of three colony forming assays are shown (7 = 3 independent experiments). “p < 0.01.

www.oncotarget.com

22710 Oncotarget



interaction between stemness and cell growth in relation to
ALDH3AI expression and Wnt signaling activation.

The data reported in the present study is in
concordance with observations in other solid tumors. In
both preclinical and clinical studies it has been reported
that high levels of ALDH3A]1 promote chemoresistance
towards various common anti-cancer drugs and could
be correlated with poor clinical prognosis [15, 22-26].
Moreover, reports on other tumors outside the central
nervous system suggest a positive correlation of ALDH3A1
expression and P-catenin signaling levels [26-29].
In head and neck squamous cell carcinoma, activation of
ALDH3A1 increases chemoresistance against cisplatin
whereas combining cisplatin with an ALDH inhibitor
results in more pronounced cell viability reduction than
treatment with each compound alone [30]. Other members
of the ALDH family were already proposed to mediate
therapy resistance in glioblastoma. ALDHI1A3 was shown
to increase resistance towards y-radiation and to be up-
regulated in high grade gliomas, whereas ALDHIA3
promoter-methylation correlated with longer survival time
[31, 32]. Schifer et al. identified ALDHIATL to induce
resistance towards TMZ in glioblastoma in vitro [33].
Importantly, we could not find any correlation between
spontaneous ALDH3A 1 mRNA expression and resistance
levels to TMZ, suggesting that sensitivity to TMZ is only
partly mediated through ALDH3A1. However, we provide
evidence for ALDH3A 1 inhibition to function as sensitizer
to the glioblastoma standard of care chemotherapeutic
agent.

The porcupine inhibitor LGK974 reduces Wnt
signaling and decreased expression of ALDH3AI
mRNA and protein in glioma cells, thereby increasing
their susceptibility to TMZ treatment. Regulation of
ALDH3A1 transcription by Wnt pathway activity may be
mediated by increased TCF/LEF binding to the ALDH3A1
gene promoter harboring TCF/LEF binding motifs
(Supplementary Figure 3) [34]. However, this hypothesis
requires further experimental proof. By comparing the
results from wildtype cells with those from cells with
genetically inhibited ALDH3A 1 expression, it seems as if
the ALDH3A1 knock-down is more efficient in reducing
cell viability than pharmacological Wnt-inhibition. This
result might be explained by the fact that LGK974 is a
porcupine inhibitor and hence possibly not only affecting
Wnt signaling but also further off-targets. Nevertheless,
our results also suggest that the observed suppression
of cellular growth upon Wnt blockade is mediated
by suppression of ALDH3A1 for the most part, since
LGK974 treatment has no effect on ALDH3A1 knock-
down cells. Besides, we could not find a correlation
between Wnt activation and ALDH3A1 expression in our
cell lines, indicating that ALDH3A1 might not only be
regulated through Wnt/B-catenin signaling but ALDH3A
expression is also affected by other cellular dynamics.

Our findings also suggest that ALDH3A1 may be a
promising therapeutic target for glioblastomas resistant to
the standard of care treatment. The potential of ALDH3A1
as a therapeutic target with low adverse effects has been
shown in ALDH3A 1 knockout mice [35]. Except for eye
cataracts, a consequence of destruction of fiber cells that
are dependent on ALDH3A1 to minimize oxygen damage,
ALDH3Al knockout mice showed equal survival and
growth as control animals. Of note, specific inhibitors of
ALDH3A1 have been developed and shown to enhance
the sensitivity of cancer cells to the alkylating agent
cyclophosphamide [20, 22]. Our data also indicate that
ALDH3A 1 may regulate TMZ sensitivity in glioblastoma
cells independently of the MGMT promoter methylation
status. However, preclinical in vivo studies with drugs
targeting ALDH3A1 are compulsory to further substantiate
our in vitre findings and translate them into novel targeted
treatment approach. Whereas ALDH expression serves
as biological marker in solid tumors, we could not verify
any prognostic value for ALDH3A1 in glioblastoma
by searching several data bases (The Cancer Genome
Atlas  (TCGA) https://cancergenome.nih.gov/, The
Cancer Imaging Archive (TCIA) [36], Murat ef al. [37],
Reifenberger et al. [38]).

In summary, our results reveal that ALDH3AI
expression in glioma cells can be modulated by Wnt
pathway inhibition. Furthermore, we show that down-
regulation of ALDH3AIl increases TMZ sensitivity
and reduces stemness features in glioma cells in vitro
independent of the MGMT promoter methylation
status. These findings may have clinical significance by
suggesting inhibition of ALDH3A1 as a potential strategy
for increasing TMZ efficacy and particularly targeting the
highly malignant subpopulation of stem-like glioma cells.

MATERIALS AND METHODS

Cell culture, pharmacological and radiation
treatment

All four glioblastoma cell lines (GBM1, GBM10,
JHHS520, SF188) were cultivated in neurosphere medium
containing 70% serum-free Dulbecco modified Eagle
medium and 30% F12 (both Gibco BRL, Eggenstein,
Germany), supplemented with 2% B27 (Gibco BRL),
20 ng/ml bovine fibroblast growth factor (Peprotech,
Rocky Hill, NJ), 20 ng/ml human epidermal growth
factor (Peprotech), Sug/ml heparin (Sigma-Aldrich, St
Louis, MO) and 1% Anti-Anti Penicillin Steptomycin
Fungizones mixture (Gibco). All cell lines were cultivated
under standard cell culture conditions at 37° C temperature
and 5% carbon dioxide. They were regularly tested for
the absence of mycoplasma contamination using the
PCR-based Mycoplasma Test Kit I/C from Promokine
(Heidelberg, Germany). GBM1 was generously provided
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by A. Vescovi (Milan, Italy);: GBM10 was provided by C.
Eberhart [39]; JHH520 was provided by G. Riggins;
the pediatric GBM cell line SF188 was provided by E.
Raabe [40] (all Baltimore, USA). LGK974 (Selleckchem,
Houston, USA) and temozolomide (Sigma-Aldrich, St.
Louis, USA) were diluted in DMSO (Sigma- Aldrich)
and stored in —20° C/-80° C. Both drugs were diluted
in medium and added after each cell passage. Cells were
passaged every second day and medium containing fresh
drug was substituted. For radiation treatment, cells were
exposed once to y-radiation using a Gulmay RS225 X-ray
system from X-Strahl (Camberley, UK).

MGMT promoter methylation analysis

The methylation status of the MGMT promoter
was determined by methylation-specific PCR as reported
before [41]. The glioma cell line A172 served a positive
control for MGMT promoter methylation whereas DNA
extracted from peripheral blood leukocytes served as a
negative control.

Cell viability assays

Triplicates of 2000-5000 cells per well (depending
on cell line) were plated on laminin-coated 96-well-plates
in 100ul media for 6 days. The definition of maximal
inhibitory concentration (IC50) of applied stimuli
(LGK974, TMZ, y-radiation) was performed through
quantification of reduction of cellular viability using
the CellTiter Blue™ Cell Viability Assay (Promega,
Fitchburg, USA) as previously reported [14]. Fluorescence
was measured after 2 hours incubation time using the
Tecan Safire 2 Multiplate Reader (Tecan, Minnedorf,
Switzerland) at 560ex/590em. For IC50 definition we
compared the effect on day 6 after treatment while
changing medium supplemented with fresh drug every 2nd
day. For analyzing combinatory effects, cells were treated
with 5 different concentrations (0.25x, 0.5x%, 1%, 2x and
0.125% or 4= IC50) of each drug or y-radiation as mono
or combination therapy. Viability measurements where
performed as described above for the IC50 experiments.
The combination index (CI) was calculated as described
before [42] using the program CompuSyn (ComboSyn
Inc., Paramus, NJ. 07652 USA) [16]. A CI < | refers
to a synergistic, CI = 1 to an additive and CI > 1 to an
antagonistic effect.

Gene knock-down in glioblastoma cells using
Crispr/Cas9- and shRNA-based approaches

Lentiviral particles of the third generation were
generated for infecting cells as reported [43]. Cells with stable
integration were selected using 2 pg/mL puromycin (Sigma-
Aldrich). For ALDH3A1 gene knock-down we used the
lentiCRISPRv2 plasmid (Addgene plasmid # 52961) [44].

Oligonucleotides for guide RNAs were designed using
the CRISPR design tool provided by the Zhang lab (http://
crispr.mit.edu/). Oligonucleotides targeting GFP were used
as a control. f-catenin knock-down was achieved by cloning
shRNA into a pLKO.I vector (Addgene plasmid # 1248)
[45]. The RNA targeting sequences used are provided in the
Supplementary Table 1B.

Quantitative PCR and microarray-based gene
expression analysis

RNA extraction (RNeasy Mini Kit, Qiagen) and
cDNA synthesis (using M-MLV reverse transcriptase,
Promega) were performed according to the manufacturer’s
instructions. For the ¢gPCR SsoAdvanced SYBR
Green Supermix (BioRad) was used in a CFX Connect
Thermocycler (BioRad), and the reaction was normalized
to the housekeeping gene Pf2-microglobulin employing
the A AC method. Primer sequences are provided in
Supplementary Table 1A. Transcriptome-wide expression
analysis was performed on GBM1 cells after 72 h under
drug treatment using Affymetrix GeneChip PrimeView
Human Gene Expression Arrays (Affymetrix, Santa Clara,
USA). Total RNA preparations were checked for RNA
integrity by using the Agilent 2100 Bioanalyzer system
(Agilent Technologies, Santa Clara, USA). All samples in
this study showed high quality RNA Integrity Numbers
(RIN = 10). RNA was further analysed by photometric
Nanodrop measurement and quantified by fluorometric
Qubit RNA assays (Life Technologies). Synthesis of cDNA
and subsequent biotin labelling of cRNA was performed
according to the manufacturers” protocol (3" IVT Plus
Kit; Affymetrix Inc.). Briefly, 100 ng of total RNA were
converted to cDNA, followed by in vitro transcription and
biotin labelling of cRNA. After fragmentation, labelled
cRNA was hybridized to Affymetrix PrimeView Human
Gene Expression Microarrays for 16 h at 45° C, stained
by streptavidin/phycoerythrin conjugate and scanned as
described in the manufacturers” protocol. Data analyses
on Affymetrix CEL files were conducted with GeneSpring
GX software (Vers. 12.5; Agilent Technologies). To
further improve signal-to-noise ratio, a given probeset
had to be expressed above background (i.e. fluorescence
signal of a probe set was detected within the 20th and
100th percentiles of the raw signal distribution of a given
array) in all four replicates in at least one of two, or
both conditions to be subsequently analyzed in pairwise
comparisons.

Western blot analyses

Total proteins were extracted from glioma cells
using RIPA Buffer as reported. Protein concentrations
were determined in a Tecan Safire 2 Multiplate reader
(Tecan) using the DC Protein Assay Kit (Biorad) due
to the manufacturer’s instructions. Primary antibodies
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(ALDH3A1, 1/1000, abcam # ab76976; B-catenin,
1/1000, BD # 610153; a-Tubulin, 1/10000, Sigma #
T9026; CDI133, 1/100, Miltenyi Biotec # W6B3Cl1)
were incubated overnight at 4°. Secondary antibodies
(goat-anti-rabbit, IRDye800CW LI-COR # 926-32211;
goat-anti-mouse, IRDye680RD LI-COR # 926-68070;
goat anti-rabbit-HRP, Jackson Immuno Research #
111-035-144; all 1/10000) were incubated 1h at room
temperature. All antibodies were diluted in blocking
solution containing 5% milk powder in Tris-buffered
saline with Tween20 (TBST). Signals were detected
using a film based system by applying Super Signal
West Pico Chemiluminescent Substrate (Thermo
Scientific) or a luminescence based system in a LI-COR
Odyssey CLx Imager (LI-COR). Densitometry was
done using supplied software from LI-COR or Imagel
software.

Reporter assay for measurement of Wnt/
CTNNBI1 activity

To detect canonical Wnt pathway activity we
installed a stable transfection of our cells with a reporter
construct containing seven TCF binding sides followed
by a firefly luciferase cassette, as previously described
[14]. Transfected cells were selected using 2 pg/ml
puromycin (Sigma-Aldrich). For each measurement,
cells were harvested and washed in PBS. According to
the manufacturer’s protocol the cells were lysed in Lysis
Solution (Life Technologies # T1003). Luminescence
readout was performed at 490 nm emission wavelength on
a TriStar LB941 luminometer (Berthold Technologies, Bad
Wildbach, Germany) and normalized to B-galactosidase
activity.

Clonogenicity assay sigma-aldrich

For assessing clonogenic capacity of our cell lines
we performed a colony formation assay in soft agarose
as described previously [14]. Six-well plated were coated
with a bottom layer consisting of 1.5 ml of 1% agarose
(Life Technologies) and neurosphere media. On top a 2 ml
layer consisting of 0.6% agarose containing 5000 cell/
well was plated. It was covered with additional media
(2 ml). After 3 weeks, 1 mg/ml 4-Nitro blue tetrazolium
chloride (NBT) solution (Sigma-Aldrich) was added to
stain the colonies overnight at 37° C. The experiments
were quantified using Clono Counter software [46].

Analysis of human tissue samples and published
glioblastoma expression datasets

For prognostic associations of ALDH341 mRNA
expression in glioblastoma patients, we retrieved
publically available data sets from Reifenberger et al.
(GEO accession no. GSE53733).

Statistical analyses

All cell biological experiments were done in at
least three independent experiments and results are shown
as mean + standard deviation (SD). An unpaired student
t test was performed with Prism version 4 (GraphPad
Software Inc, La Jolla, CA) to calculate statistical
significance and p < 0.05 was considered as significant.
The correlation coefficient was also calculated using Prism.
For transcriptome-wide expression analysis, probes within
each probeset were summarized by Robust Multi-array
Average (RMA) after quantile normalization of probe level
signal intensities across all samples to reduce inter-array
variability [47]. Input data pre-processing was concluded
by baseline transformation to the median of all samples.
To further improve signal-to-noise ratio, a given probeset
had to be expressed above background (i.e. fluorescence
signal of a probeset was detected within the 20th and 100th
percentiles of the raw signal distribution of a given array) in
all four replicates in at least one of two, or both conditions
to be subsequently analysed in pairwise comparisons.

Abbreviations

ALDH3A1: aldehyddehydrogenase 3Al;
GSC: glioma stem cell; IC,; half maximal inhibitory
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factor; TMZ: temozolomide; Wnt: wingless.
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Abstract

Glioblastoma (GBM) is the most malignant brain tumor and has a
dismal prognosis. Aberrant WNT signaling is known to promote gli-
oma cell growth and dissemination and resistance to conventional
radio- and chemotherapy. Moreover, a population of cancer stem-
like cells that promote glioma growth and recurrence are strongly
dependent on WNT signaling. Here, we discuss the role and mecha-
nisms of aberrant canonical and noncanonical WNT signaling in
GBM. We present current clinical approaches aimed at modulating
WNT activity and evaluate their clinical perspective as a novel treat-
ment option for GBM.

Key Words: Glioma, Inhibitors, Noncanonical WNT signaling,
Prognostic markers, Small molecules, WNT.

INTRODUCTION

Glioblastoma (GBM) is the most aggressive primary
malignant brain tumor in adults. Despite continuous advance-
ments in research, the median survival time of patients
diagnosed with GBM remains less than 2 years (1). Current
treatments combine operative resection of the tumor followed
by radiation and chemotherapy with the alkylating agents
temozolomide andfor carmustin (2, 3). For recurrent GBM,
the vascular endothelial growth factor inhibitor bevacizumab
is used, although recent studies have shown no significant ben-
efit (4). The dismal prognosis is suggested to be a consequence
of the existence of cancer stem-like cells (CSCs) that give rise
to new glioma cells that can evolve and cause tumor recur-
rence, often with a more aggressive phenotype (5). This is at
least partially due to the aberrant activation of developmen-
tally conserved signaling pathways such as WNT (6-9). These
pathways are also activated in neural stem cells during early
development and in adulthood to promote their proliferation,
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self-renewal, and migration. Novel therapeutic strategies focus
on selective targeting of CSC populations in gliomas by in-
hibiting these pathways (10, 11). Accumulating evidence sug-
gests that the WNT signaling network acts as a potent onco-
genic driver in some GBMs, and recent developments of
effective, highly specific WNT inhibitors have raised hope for
their clinical application as a therapeutic strategy in the near
future.

Signal Transduction Along the WNT Pathway:
Canonical and Noncanonical Signaling

WNT signaling can be divided into a canonical p-
catenin-dependent branch and the noncanonical B-catenin-
independent network (Fig. 1) . The canonical pathway is better
understood. It is triggered by the binding of a WNT protein to
the cell-surface receptor complex Frizzled (Fzd) and its coacti-
vator, the lipoprotein receptor-related protein (LRP) 5/6. WNT
binding enables the intracellular domain of Fzd complex with
Dishevelled, which then acts as the key signaling mediator in-
volved in the recruitment of Axin to the plasma membrane
(Fig. 1). As a result of bound Axin, the -catenin destruction
complex (consisting of Axin, glycogen synthase kinase 3f
[GSK-3B], and adenomatous-polyposis-coli [APC] protein),
which is necessary to phosphorylate f-catenin, cannot assem-
ble. Without WNT/Fzd interaction, the pathway is in “off-
mode™; then, fully functional f-catenin-inactivation complex
phosphorylates f-catenin, resulting in its ubiquitination and
eventual degradation in the cells’ proteasome. During WNT
activation, B-catenin is stabilized and accumulates in the cyto-
plasm, where an oversaturation leads to its translocation into
the nucleus. Intranuclear B-catenin interacts with transcription
factors of the TCF/LEF family to promote target gene activa-
tion, thereby influencing a variety of cellular processes includ-
ing proliferation, motility, and invasion (12).

The noncanonical WNT pathway is better known for its
importance in body-axis formation and cell-fate specification, as
well as migration during embryonic development (13, 14). Simi-
larly, binding of WNT proteins to the Fzd receptors, allowing re-
cruitment of Dishevelled, activates the noncanonical signaling.
Subsequent release of calcium (Ca®") from the endoplasmic re-
ticulum increases Nemo-like kinase (NLK), which in tum in-
hibits the B-catenin/TCF transcription complex. Ca®" release
also stimulates the transcription factor NFAT (nuclear factor of
activated T cells), which enhances cell adhesion and migration
(15). Ca®" -independent noncanonical WNT signaling includes

388 © 2016 American Association of Neuropathologists, Inc. All rights reserved.
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.

noncanonical
WNT signaling

canonical
WNT signaling

FIGURE 1. Canonical and noncanonical WNT signaling. The canonical WNT pathway is activated via binding of the WNT
protein to the Frizzled and LRP5/6 receptors. Dishevelled inhibits f-catenin’s destruction complex build of Axin, APC, and
GSK-3p so that p-catenin accumulates in the cell and its nucleosome, where it drives target gene expression after binding to
the LEF/TCF binding side. Activation of noncanonical WNT signaling is triggered through WNT proteins binding to the
Frizzled receptor, whereas ROR2 acts as a coreceptor rather than LRP5/6. Activated through Frizzled, Dishevelled can either
enhance Rho and Rac to activate the JNK pathway or increase the intracellular Ca®* concentration. Increased Ca®" enhances
gene expression via NFAT and activates NLK that antagonizes f-catenin-mediated gene expression. WNTs-1, -2, -3, -8a, -8b,
-10a, and -10b are supposed to activate the canonical/f-catenin pathway, whereas WNTs-4, -5a, -5b, -6, -7a, -7b, and 11
are defined to activate noncanonical signaling. FZD, Frizzled receptor; Dsh, Dishevelled; LRP5/6, lipoprotein-related protein;
APC, adenomatous-polyposis-coli protein; GSK-3p, glycogen synthase kinase 3p; TCF, TCF/LEF binding side; Ca®", calcium;
NFAT, nuclear factor of activated T-cells; NLK, Nemo-like kinase; Rho, Rho GTPase; Rac, ras-related C3 botulinum toxin
substrate; INK, c-Jun N-terminal protein kinase.
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activation of the JNK (c-Jun N-terminal protein kinase), leading
to planar cell polarity (16).

WNT Proteins

Until recently, it was not known which mechanisms de-
termined which branch of the WNT network (ie, canonical or
noncanonical) is activated. The initial hypothesis implied that
the distinct WNT proteins activate only one side of the WNT
pathway: WNT-1, -2, -3, -8a, -8b, -10a, and -10b are thought
to activate the canonical pathway, whereas WNT-4, -5a, -5b,
-0, -7a, -7b, and 11 are associated with the noncanonical cas-
cade. WNTs-2b and -9b are undetermined (17, 18). However,
WNT-3, which was traditionally considered canonical, was
found to inhibit medulloblastoma cell proliferation via the
noncanonical WNT pathway (19). Additionally, morphogens
thought to belong to the noncanonical pathway (eg, WNT-7a)
have been shown to stimulate canonical signaling (20); how-
ever, in GBMs, no such cross-over has been reported. Never-
theless, these observations indicate that the mechanisms
governing the decision of whether canonical or noncanonical
WNT signaling is activated are complex and do not depend
solely on the WNT proteins interacting with their respective
receptors.

WNT Receptors

Another concept suggests that the WNT receptors and
their coreceptors determine whether the canonical or non-
canonical pathway is activated (21). As mentioned before,
secreted WNT proteins bind to a member of the 7-pass trans-
membrane receptor family called Frizzled, of which 10 differ-
ent subtypes are described (21). To be effective, they have to
bind additionally to the Fzd-coreceptor LRP5/6. This interac-
tion is a classical activator of the canonical WNT pathway.
Noncanonical signaling is activated if receptor-like tyrosine
kinase (Ryk) and tyrosine-protein kinase transmembrane re-
ceptor (ROR2) are recruited as coreceptors. Thus, according
to this model, not the secreted WNT proteins but rather the
coreceptors to which they bind determine whether canonical
or noncanonical signaling is activated. Nevertheless, some
WNTs (eg, WNT-1 and -3a) have predilection to bind to
LRP5/6 and some (eg, WNT-5a and -11) to Ryk or ROR2.
The most recent study indicates that noncanonical WNTs
(WNT-4 and -5a) are also able to induce canonical signaling,
but solely with LRP5/6 overexpression. This study also dem-
onstrated that WNT-4 and -5a are only capable of binding 3
out of 10 subtypes of Frizzled receptors (22). This might ex-
plain why WNT signaling has different influences on distinct
cell types, suggesting that cells express an individual composi-
tion and different amounts of receptors. The overexpression of
the Frizzled 4 receptor itself is related to the activation of the
canonical WNT signaling, which increases stemness and inva-
siveness of GBM cell lines. In this context, it is not known
whether Frizzled 4 has an effect on noncanonical WNT signal-
ing (23). Moreover, Ryk, but not ROR2, leads to increased in-
vasiveness in GBM that seems to be dependent on WNT-5a.
In addition, Ryk and Fzd expression correlates with malig-
nancy grade in GBM (24, 25).

390

Effect of Canonical and Noncanonical WNT
Signaling in GBM

It is generally accepted that aberrant canonical WNT sig-
naling leads to GBM progression. High -catenin levels corre-
late with worse clinical outcome (26), and canonical WNT ac-
tivation is described as a characteristic of CSCs in GBMs (27—
29). Canonical WNT has been shown to mediate resistance to
chemo- and radiotherapy (30-32). In epithelial cancers, WNT
signaling acts as a major inducer of epithelial-to-mesenchymal
transition (EMT). Studies suggest that, in gliomas classified as
neuroepithelial tumors (33-37), a similar process can be ob-
served leading to the so-called glial-mesenchymal transition
(GMT) (38). GMT is related to migration and tumor spread by
evoking single-cell movement (39, 40). The core-activator of
EMT/GMT, ZEBI, is found to be a downstream target gene of
canonical WNT signaling, representing a possible major mech-
anism by which WNT signaling augments glioma cell invasion
(36, 41). However, another study claims that overexpression of
B-catenin under hypoxia initiates neuronal differentiation of
glioma CSCs. The authors explain this with a transcriptional
drift of P-catenin cofactor expression under hypoxia, from
TCF4 toward TCFI/LEF1, a process known to occur in embry-
onic stem cells (42, 43). In that study, overexpression of -cat-
enin under hypoxia was linked to inhibition of Notch, which
might explain suppression of stemness factors and induction of
neuronal genes. The same effect has not been found relevant
under normoxia (43). This finding, although preliminary, sug-
gests that in vitro studies under normoxia might not reflect the
physiological conditions of GBM, which are characterized by
areas of severe hypoxia or anoxia.

Several recent studies have focused on the role of nonca-
nonical WNT in different types of cancers (33, 44-46), but its
importance in GBM is not yet well understood. Some reports
show a negative correlation between canonical and noncanoni-
cal signaling, indicating a suppressive function of noncanoni-
cal signaling on B-catenin through activation of NLK (47-49).
In GBM, cell migration appears to be regulated by noncanoni-
cal WNT signaling (25, 50-52). WNT-5a expression was also
linked to increased proliferation in GBM as well as enhanced
tumor formation capacity in xenografts (53). Both WNT-5a
and -5b are frequently overexpressed in GBMs (25, 54).

Ligands that affect both the canonical and noncanonical
WNT pathway, such as the WNT-inhibitor DKK3 or WNT-
stimulator Evi, are reported to promote cellular proliferation
(51, 55). Dishevelled 2, another protein interfering with both
canonical and noncanonical signaling, causes differentiation
and inhibits GBM growth in vivo. In that study, blocking of
the canonical pathway reduced proliferation but did not pro-
mote differentiation (56). Taken together, our understanding
of the effects of the noncanonical WNT pathway in malignant
gliomas is still limited, and further investigations are needed
to decipher its impact on the tumor cell biology.

Alterations of WNT Signaling in GBM

Aberrant WNT signaling is well known to play a crucial
role in colon cancer and medulloblastoma, in which high
WNT activity is caused by somatic mutations (57-60). A sub-
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group of medulloblastomas is characterized by high WNT ac-
tivation, mainly due to aberrant stabilization of B-catenin (61,
62). Interestingly, in contrast to GBM, high WNT is a positive
clinical prognostic marker for medulloblastoma. In GBM, dys-
regulation of WNT signaling is mainly caused by deactivated
pathway inhibitors (63). The WNT antagonist WIF-1 is si-
lenced in more than one-third of all GBMs (64, 65). WIF-1
competitively binds WNT proteins, thus impeding their bind-
ing to the Frizzled/LRP receptor complex. When WIF-1 is ex-
pressed, it results in cell-cycle arrest in GBM cells (66). Con-
sequently, one-third of all GBMs do not undergo cell-cycle
arrest. Recent studies, however, indicate that WIF-1 does not
only affect the canonical pathway, but also downregulates the
noncanonical WNT/Ca®" pathway (67). Dickkopf 1 (DKK1)
and secreted Frizzled protein 1 (sFRP1), other canonical WNT-
pathway antagonists, have been reported to be inactivated epi-
genetically in GBM: DKK1 also inhibits noncanonical signal-
ing and was shown to reduce glioma-cell clonogenicity in vitro
(68). The tumor suppressor gene FAT/ inhibits glioma growth
by binding P-catenin, thus preventing it from entering the
nucleus. This recent finding extends the list of neoplasms in
which WNT-activating somatic mutations can be found with a
mutation frequency of about 1 out of 5 GBMs (69). Another
gene that is silenced in GBM through promoter hypermethyla-
tion is PEG3. PEG3/Pwl protein is involved in embryonic
development, in which it leads to degradation of f-catenin
(70). Interestingly, in GBM-CSCs, PEG3/Pw1 seems to be sup-
pressed (71).

Aberrant autocrine-pathway regulation in GBM is best
demonstrated through the WNT target gene FOXM!. The pro-
tein directly binds to f-catenin and promotes its translocation
into the nucleus (72). In addition, FOXM1 interacts with B-cat-
enin and STAT3 to promote GBM-CSC renewal, as shown in
recent functional studies after genetic FOXM [ -depletion in vi-
tro. (73). Its role seems to be vital for glioma stem cell mainte-
nance because inhibition through shRNA or small molecule
inhibitors decreases multiple stem cell markers and sphere-
forming capacity (74).

Based on data from the Cancer Genome Atlas, which
subcategorizes GBMs according their different transcriptional
signatures, the proneural subgroup is characterized by elevated
expression of 2 WNT pathway activators, TCF4 and SOX.
This group tends to have a bad prognosis and has higher inci-
dences in younger patients (75-77). High expression of EMT
activators and NF-kB, as well as canonical WNT targets
DKK1, Frizzled 1, and LEF 1, are described for the mesenchy-
mal subgroup, which is also linked to very poor clinical out-
come (36, 75). Taken together, these findings suggest that the
WNT signaling network affects a variety of cellular processes
and plays a fundamental role in gliomagenesis.

Prognostic Markers Related to WNT Signaling
in GBM

Several studies report the overexpression of genes in-
volved in the canonical WNT signaling pathway in gliomas,
including WNT1, fi-catenin, and TCF4 (26, 77-80), suggesting
their prognostic value. Analyzing the expression data from the
Cancer Genome Atlas, Axin2, the most prominent WNT target

gene, was recently reported to have a somewhat-negative
prognostic value in GBM but did not reach statistical signifi-
cance (78). In a histological approach, the amount of nuclear
[-catenin, significantly higher in high-grade gliomas as com-
pared to low-grade gliomas, correlates positively with WHO
grade (26, 81). The expression level of the noncanonical WNT
ligand WNT-4 correlates negatively with WHO grade (82). At
present, none of these markers are used in routine clinical
practice. Should pharmaceutical WNT inhibition be consid-
ered as a relevant therapy option for gliomas, inclusion of di-
rect WNT pathway members or downstream mediators for di-
agnostic purposes should be evaluated carefully through more
comprehensive retrospective and prospective studies.

Pharmacological WNT Modulation

Given the significant accumulation of strong preclinical
data documenting the importance of WNT signaling in tumor
biology, the pharmaceutical industry has defined the develop-
ment of potent and specific WNT inhibitors as a main goal for
future therapy in oncology. Many of the new compounds have
already been tested successfully in cancers with known WNT
mutations (8§3-85). In this section, we focus our discussion on
small-molecule inhibitors and pharmacological compounds
that have been tested in GBM in vitro and partly in vivo.

A small-molecule porcupine inhibitor, LGK974, blocks
the indispensable palmitoylation of WNT proteins, thus pre-
venting their secretion and binding to the receptor complex
(Table). This substance has effectively inhibited WNT and re-
duced tumor growth in preclinical models of pancreatic and
head and neck cancers (86, 87). Recent studies indicate that
LGK974 inhibits canonical WNT in glioma cells and results
in decreased proliferation, survival as well as a depletion of
the CSC pool in vitro (78). Due to the fact that LGK974 modu-
lates the secretion of all WNT proteins, inhibition of both ca-
nonical and noncanonical pathways is likely.

Another compound, SEN461, effectively reduces gli-
oma growth in vitro and in vivo, possibly through the stabili-
zation of Axin, thus augmenting the degradation of B-catenin
(88, 89); however, its precise site and mechanism of action of
is currently still unknown.

Two other compounds currently in preclinical develop-
ment, XAV939 and IWR2, stabilize Axin through the inhibi-
tion of tankyrase, an enzyme that stimulates Axin degradation
in the proteasome (90-92). Both molecules show antitumori-
genic effects in vitro but have yet to be tested in a clinical trial
(93).

Another therapeutic target influencing the f-catenin de-
struction complex is Aurora-A, a seronine/threonine kinase
that interacts with Axin and destabilizes the GSK3p/Axin/p-
catenin structure. Originally, Aurora-A was found to be local-
ized at centrosomes of cancer cells, promoting their mitosis
(94). Current phase II studies are investigating the Aurora-A-
inhibitor alisertib in patients with T-cell lymphoma, but re-
sults, though promising, are not yet conclusive. Also, in GBM,
alisertib was found to decrease WNT signaling in vitro and
in vivo, and aurora-A-knockdown targeted the GBM-CSC
compartment (95-97).
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TABLE. Inhibitors and Activators of WNT Signaling in Glioblastomas

WNT Target Mechanism Development Stage in Research Stage in Reference

Inhibitors Cancer GBM

LGK974 Porcupine Inhibition of palmitoylation of WNT Phase I In vitro (78, 86, 87)
proteins

SEN461 Axin Axin stabilization through tankyrase Preclinical In vivo (88, 89, 92)
inhibition

XAV939 Tankyrase Axin stabilization through tankyrase Preclinical In vitro (90-93)
inhibition

IWR2 Tankyrase Axin stabilization through tankyrase Preclinical In vitro (90-93)
inhibition

Aurora-A- Axin Stabilization of destruction complex Phase 111 In vivo (95-97)

inhibitor

ICG-001 CBP Disruption of CBP/f-catenin complex Preclinical In vitro (83, 100)

PKF115-584 B-catenin/TCF Disruption of transcription complex Preclinical In vitro (99, 100)

Aspirin COX Repression of gene transcription - In vitro (101, 102)

FH535 P-catenin/TCF/ Disruption of transcription complex Preclinical In vivo (104, 105)

LEF
BASI miR-200a, miR- Inactivation of f-catenin Preclinical In vitro (112)
181d
Enzastaurin PKCp Inhibition of GSK-3p Phase 111 In vivo (107-111)
Lithium GSK-3f Inhibition of GSK-3 Preclinical In vitro (113)
chloride

CBP, CREB-binding protein; GSK-3f, glvcogen synthase kinase 3[i; LEF, lymphoid enhancer factor; miR, microRNA; PKCJ, protein kinase C [} TCF, T-cell factor.

Many new drugs aim to target specifically the -
catenin-transcription-complex. ICG-001, for example, targets
the NH,-terminus of CBP, thus disturbing its interaction with
P-catenin and therefore impeding an effective downstream
signal transduction (98). PKF115-584 also specifically inter-
rupts the B-catenin-TCF complex (99). Both compounds in-
duced differentiation and reduced cellular proliferation in
GBM cultures (100). A second-generation CBP-inhibitor PRI-
724 is very effective in low concentrations but has not yet
been tested on glioma cells.

Interestingly, the prominent analgesic and antiphlogistic
drug aspirin was demonstrated to suppress the effect of WNT
signaling. Similar to an NSAID and an irreversible COX inhib-
itor, aspirin reduces inflammatory mediators and diminishes
WNT pathway activity in colon cancer by attenuating the tran-
scription of P-catenin/TCF-responsive genes (101, 102). The
same effect was observed in glioma cell lines (103). However,
because of its broad effects on various other biological pro-
cesses and high molecular concentration needed to suppress
WNT, further clinical testing as a treatment option for patients
with GBM is needed.

FH535 is a dual inhibitor that targets both peroxisome
proliferator-activated receptor (PPAR) and the p-catenin/TCF/
LEF complex. Its inhibitory effect on canonical WNT signaling
is assumed to be the result of repressing the recruitment of f3-
catenin and coactivator glutamate receptor interacting protein |
(GRIP1) (104). Promisingly, FH535 downregulates [-catenin
and TCF in glioma cell both in vitro and in vivo (105). It is un-
known why these results did not lead to clinical tests, but the
authors speculate that the limited knowledge of the mechanism
of action of FH535 might be the reason.
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The compound Enzastaurin, an inhibitor of GSK-3, is
currently in a phase III clinical trial for patients with B-cell
lymphoma. As an inhibitor of protein kinase Cp (PKCP),
Enzastaurin prevents phosphorylation of GSK-3f and AKT.
Inactivation of these proteins in tumor cells reduces prolifera-
tion and impacts tumor angiogenesis. This effect has also been
observed in GBM xenografts (106, 107). A phase I study
testing Enzastaurin versus the nitrosourea-derived alkylating
agent Lomustine on patients with GBM failed to prove any
benefit; however, the therapy was well tolerated (108). Enzas-
taurin was additionally tested in combination with temozolo-
mide and irradiation on the basis of preclinical studies indicat-
ing synergistic effects (109, 110). Nevertheless, Enzastaurin
has not yet made it into clinical application (111-113).

Clinical Perspective of WNT-Targeted Therapies
in Gliomas

Over the last several years, the role of WNT in glioma-
genesis has become increasingly appreciated (114). In this re-
view, we discuss the current understanding of canonical and
noncanonical WNT signaling in gliomas. Despite numerous
studies indicating the activation of WNT signaling as an im-
portant piece of gliomagenesis, the “big picture” is far from
clear. For example, canonical WNT signaling in combination
with hypoxia was described to reduce stemness in GBM. These
data could be supported by other studies in stem and progenitor
cells, indicating that canonical WNT signaling can act as a
driver of stem cell differentiation (43, 115-117). Since most
studies describe WNT pathway activation to promote stem
cells in cancer, these results appear controversial and require
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further investigation of the underlying molecular events fol-
lowing WNT activation. Regarding GBM, tumor environment
seems to play a pivotal role and might impact WN'T signaling;
therefore, we need (o study the biology of WNT inhibition un-
der hypoxia. Investigation of WNT inhibition only under nor-
moxia might be missing potential side effects.

In addition, the WNT pathway participales in aclive re-
ciprocal dialogue with other important cell-signaling cascades,
including AKT, Hippo, Notch, Hedgehog, and epithelial
growth factor receptor (EGFR) (118-121). Accordingly, mod-
ulating one of these pathways may influence WNT, and WNT
modulation could atfect other pathways, resulting in the devel-
opment of treatment resistance. To better evaluate the impact
of new WNT pathway inhibitors. the potential side cffects
need to be carefully investigated.

We describe WNT-associated molecules serving as
potential prognostic biomarkers for GBM. These findings pro-
vide some support tfor the conceptual premise that GBM ma-
lignancy correlates with high canonical WNT activation but
still need to be imterpreted with caution. With conlirmation in
larger clinical datasets. these markers could be used to monitor
anti-WNT therapy. Because not all GBMs show high aberrani
WNT activation, [urther work s required 1o lind reliable pre-
dictor markers to define GBMs for which blockade of WNT
might be a suitable therapeutic option.

A major physiological problem in reaching glioma cells
remains the blood-brain barrier (BBB), which is a mechanical
obstacle for the majority of drugs. This should atfect the de-
sign of molccules with specific physiochemical propertics, in-
cluding high lipophilicity, small size, and a long half-life pe-
riod, to increasc the likelihood of penetrating the BBB (122).
In addition, osmotic BBB disruption or combination of the ac-
tive substances with nanoparticles may prove successful in
treating glioma patients with drugs otherwise incapable of en-
tering the brain. The recently described application of focused
ultrasound technology that temporarily and locally opens the
BBB is another promising strategy to enhance intra-CNS drug
delivery (123).

At this point in time, WN'T inhibitors are being tested in
clinical trials in WNT-dependent cancers, and none of them
have been successfully tested in glioma patients. It is conceivable
that WNT inhibitors may be used in combination with temozolo-
mide and irradiation because WINT signaling is linked to glioma
resistance against conventional chemo- and radiotherapy.

As shown, most developed drugs aim to target only the
canonical WNT pathway. In this review, we report that both
WNT pathways (ic, the canonical and the noncanonical) corre-
late with GBM malignancy and discase progression. These
findings arc consistent with rcports in other cancer types
(124-127). In colon cancer, cells even undergo a switch from
canonical to noncanonical WNT signaling to enhance drug re-
sistance (128). According to these data, we can infer that com-
bating GBM might he more effective by targeting both canoni-
cal and noncanonical WNT signaling simultaneously using
single- or multiagent therapeutic approaches. Among the phar-
maceuticals discussed herein, only LGK974 [ullills this quali-
fication. To develop a full picture of LGKY74’s potential in
treating GBM, additional studies will be needed that evaluate
its permeability through the BBB and effectiveness in vivo.
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Discussion and Conclusion

Improving the treatment outcome for glioblastoma has emerged as a central
goal in neurooncology over the past years. Compared to many other tumors,
glioblastoma therapy has lacked major groundbreaking progresses to
significantly improve the prognosis of newly diagnosed patients. Glioblastomas
are characterized by an intratumoral heterogeneity, and present treatment
concepts as chemotherapeutics and y-irradiation fail to target the whole
diversity of glioblastoma cells. Treatment failure and high frequency of tumor
relapse is caused by the presence of GSCs, which are resistant to conventional
therapy. Due to the infiltrative nature of glioblastomas and the high density of
functional tissue in the brain that cannot be removed without severe damage,
surgery alone is not sufficient. Therefore, novel therapeutic strategies targeting
GSCs are urgently needed. The use of pharmacological inhibitors targeting
pathways highly activated in GSCs is thought to be a promising approach to
overcome treatment resistance in glioblastoma. One of these pathways is the
Wnt pathway, whose inhibition is therefore an appealing treatment target for
GSCs.

The first section of this thesis focuses on the question whether the small-
molecule inhibitor LGK974 can directly target GSCs in vitro. It was first verified
to what extend glioblastoma showed Wnt activation in surgical specimens.
Positive nuclear staining for B-catenin was found in 19% of adult glioblastoma
cases (8/43) and even 30% of all examined pediatric glioblastoma cases (9/30).
However, staining was weak and only present in a small number of cells (77).
Previous studies indicate Wnt being aberrantly activated through epigenetically
silenced intrinsic Wnt inhibitors in more than 40% of glioblastomas (69). Another
study found 28% of glioblastoma with positive immunohistological staining for
cytoplasm-nuclear B-catenin (80). Taken this and previous data together, it
could conceivably be hypothesized that every forth glioblastoma shows aberrant
Wnt activation. One might wonder whether it makes sense to target Wnt
signaling in glioblastoma, when only activated in less than 30% of cases.

Undoubtedly, it is necessary to identify potential responders out of all
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glioblastoma patients. For this, precise molecular markers indicating positive
treatment response are indispensable and should be a focus of future research.

Before assessing functional effects of LGK974 treatment in cell culture, it was
necessary to clarify whether LGK974 is reaching its target side. Inhibition of
canonical Wnt signaling was detected by using a highly sensitive luciferase-
based reporter system, showing pathway suppression in a dose dependent
manner. On the contrary, mutant active B-catenin increased luciferase signaling
in two cell lines tremendously. Suppression of the noncanonical Wnt pathway
was not assessed due to the lack of a reliable readout (77). Studies from other
research groups and the underlying mechanism of function suggest LGK974 to
also target noncanonical Wnt signaling (81).

Next, glioblastoma cells were treated with LGK974 cultivated in stem cell media.
Under LGK974 treatment, glioblastoma cells were impaired in their proliferation
and viability, and apoptosis rate was increased in one cell line. Additionally,
reduced expression of stem cell marker CD133 was detected in all cell lines,
and stemness marker NANOG was decreased in GBM1 upon LGK974
treatment. CD133 positive cells presented to have higher canonical Wnt activity
measured by the luciferase-based reporter system. Enhancement of
differentiation marker expression was observed after treating cells with LGK974,
with GFAP expression being increased in all cell lines and MAP2 expression
being upregulated in LN229. Clonogenicity was reduced upon LGK974
treatment in stem cell media cultivated cell lines. These results indicate LGK974
to effectively reduce stemness in glioblastoma in vitro (77). Therefore, LGK974
can be regarded as a potential treatment option for glioblastoma by both
targeting GSCs on one side, as well as inhibiting tumor progression in general
on the other side.

In this study, Wnt activation indicated by present nuclear B-catenin and Axin2
expression was correlated to decreased overall survival (77). In contrast to
earlier findings, however, no significance was detected. Shi et al. found nuclear
accumulation of B-catenin to be associated with higher grading and worse
prognosis in glioma (82). Looking at protein and mRNA expression levels,

Denysenko et al. found Wnt3a, B-catenin and Wnt-associated transcription
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factor 4 to be associated with histopathological tumor grading and worse
prognosis in human glioma (83). Axin2 has not been characterized as a tumor
marker for brain tumors so far, whereas correlation between Axin2 expression
and tumor grading has been described for solid tumor entities such as colon,
liver and breast cancer (84,85). In this study, mMRNA expression levels of Axin2
were positively correlated to the amount of intranuclear B-catenin measured by
a reporter assay. The results of this study indicate Axin2 as a marker for Wnt
activation in glioblastoma. While being a direct target of B-catenin binding to
LEF/TCF sides, the amount of Axin2 enables precise information about the level
of canonical Wnt activation (86). As a member of the B-catenin destruction
complex, Axin functions as a negative regulator of canonical Wnt, and Axin2
was observed to be positively correlated with the amount of nuclear B-catenin
before (87). Nevertheless, this study did not investigate any thresholds, and
therefore the role of Axin2 as a marker for Wnt activation in glioblastoma can
only be stated with caution. Furthermore, Axin2 expression was not correlated
with ICso doses of LGK974, indicating that Axin2 is not a marker for therapeutic
response to porcupine inhibition. Axin2 serves only as a readout for canonical
Wnt activation, missing representation of noncanonical Wnt signaling, which
could explain this discrepancy. Moreover, Axin2 expression levels of primary
tumor samples were related to the expression levels of glioblastoma cell lines
used in this study, thus it was guaranteed that a confident model for
glioblastoma’s biology was set up (77).

For the first time, this work gives detailed insight into the effects of
pharmacological Wnt inhibiton in glioblastoma cells in vitro. The small molecule
inhibitor LGK974, created by Novartis, was used in this study. It is directly
targeting porcupine and therefore inhibiting both the canonical and the
noncanonical branch of Wnt signaling pathway. As compared to colon
carcinoma, Wnt activation in gliomas is rarely defined by somatic mutations,
making upstream Wnt inhibitors a feasible therapeutic option. LGK974 is
currently used in a phase | study for solid tumors such as colon carcinoma and
pancreatic cancer. It is the first pharmacological Wnt inhibitor that was tested in
patients. In 2016, at least 19 clinical trials used pharmacological Wnt inhibitors
for treating cancer, but none was performed in gliomas to date (88).
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Nevertheless, instead of monotherapy we rather suggest combinatorial therapy
for the use of Wnt inhibitors. A key trend in cancer research and therapy
observed these days is leaving monotherapy and increasing systematic
treatment with several agents simultaneously to overcome treatment resistance
in tumors. Therefore, the second paper included in this work attempts to assess
whether the combinatorial therapy of LGK974 with TMZ or y-irradiation harbors
a synergistic effect and could be implicated as future therapy for glioblastoma.
To answer this question, two cell lines defined by a methylated or unmethylated
MGMT promoter, respectively, were used to evaluate if synergistic effects are
MGMT methylation dependent. MGMT promoter methylation is the most
important predictive biomarker for response to TMZ. Cell lines harboring an
unmethylated MGMT promoter showed higher ICso doses for TMZ (78).

This study shows that LGK974 works synergistically with TMZ and y-irradiation,
meaning the total effect of both treatments is greater than the sum of individual
effects of each single treatment. This was the case for both MGMT methylated
and unmethylated cell lines. On the basis of these results, it is possible to
conclude that LGK974 sensitizes glioblastoma cells to chemo- and
radiotherapy. This makes pharmacological Wnt inhibition a feasible additional
therapy for current standard of care treatments. For combination of LGK974 and
TMZ, synergy was stronger when applying lower dosages of both drugs. For
clinical application, this could result in reduced side effects with no setback in
effectiveness when treating patients with less amounts of anticancer agents.
Lower dosages of LGK974 and TMZ are showing high efficacy when applied
together in vitro, therefore it is possible that this can also be repeated while
treating patients (78).

In the first part of the study higher dosages of LGK974 were used compared to
the following investigations on combinatorial treatment (5uM vs. 1uM for GBM1,
5uM vs. 3uM for JHH520), since different incubation times were implemented.
While applying LGK974 as a single agent, the cell lines were incubated with the
drug for either 1 or 2 days. When treating the cells in combination with TMZ,
greatest efficacy of TMZ was observed after 6 or 8 days, therefore a later time

point was chosen as readout. Incubating the cells for a longer period with
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LGK974 (while changing media with fresh drug every 2 days) changed
individual 1Cso doses to a lesser extent.

In this study the expression of ALDH3A1 was found to be downregulated upon
LGK974 treatment. While applying LGK974 and TMZ in combination, an even
greater extent of reduction in ALDH3A1 expression was achieved. These
results suggest ALDH3AT1 to play a role in resistance against TMZ, since
combined LGK974 and TMZ was also observed to have synergistic effects on
suppressing cell viability. ALDH3A1's role in chemoresistance was further
investigated in this study, since ALDH3A1 was the gene mostly deregulated
upon combination treatment of LGK974 and TMZ. Therefore, the protein was
genetically blocked in glioblastoma cell lines. ALDH3A1 knock-down cells
showed reduced cell viability in general, and more reduction of cell viability
under TMZ treatment compared to control cells. These results suggest
reduction in ALDH3AT1 to sensitize glioblastoma cells towards chemotherapy. It
is unfortunate that this study does not include data on genetically
overexpressed ALDH3A1 showing increased resistance upon TMZ treatment;
therefore, it is not possible to claim that ALDH3A1 increases chemoresistance
in glioblastoma. Also, there was no correlation between ALDH3A1 expression
levels and TMZ ICso doses in our cell lines observed. Therefore, mechanisms
beside ALDH3AT1 regulation have to be involved in TMZ resistance in
glioblastoma cell lines. Nevertheless, this study confirms that decreased
ALDH3A1 expression levels lead to increased sensitivity towards TMZ in
glioblastoma in vitro (78).

In contrast, treating ALDH3A1 knock-down cells with LGK974 was not more
effective than same treatment in control cells, implicating that ALDH3A1 might
be regulated through Wnt signaling. This hypothesis matches to previous
research, where a link between Wnt signaling and ALDH3A1 expression has
been drawn already. In hepatocellular carcinoma, ALDH3A1 is associated with
intranuclear B-catenin expression assessed by immunohistological staining (89).
Another group could show that breast cancer cells with high stemness character
are increased in their B-catenin, Wnt-1 and ALDH3A1 expression levels at the
same time (90). However, there was no correlation between ALDH3A1
expression and intranuclear B-catenin measured by a reporter assay construct
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found in this study, indicating that there is no direct linkage between ALDH3A1
and Wnt in the cell models being used. Canonical Wnt signaling was reduced
upon TMZ and LGK974 treatment, similar to the results for ALDH3A1 protein
and mRNA expression observed throughout same treatment conditions.
Moreover, ALDH3A1 expression was reduced in GBM1 B-catenin knock-down
cells (78). These results implicate a positive correlation between ALDH3A1
expression and canonical Wnt activation. Additionally, two promoter binding
sides for TCF in the ALDH3A1 promoter region were found. Taken together, it
can be assumed that ALDH3AT is at least partly regulated though Wnt
signaling.

The results of this study support previous research in cancer which links
ALDH3A1 expression to resistance against chemotherapy. In head and neck
squamous cell carcinoma, induction of ALDH3A1 with the small molecule
activator Alda-89 increased cell survival under cisplatin (91). In breast cancer
cells, ALDH3A1 expression was linked to resistance against four different
chemotherapeutics (4-hydroxyperoxycyclophosphamide, doxorubicin,
etoposide, and 5-fluorouracil) and y-irradiation. In contrast to the results from
this study, the group observed decreased clonogenic potential as well as
decreased expression of stem cell markers such as Sox2 in ALDH3A1
overexpressing cells, whereas our results indicate this tendency for ALDH3A1
knock-down cells (92). Regarding other publications investigating ALDH3A1's
role in disease, the general sense matches with the observation made in this
study, for ALDH3A1 having a proliferation promoting character (93). These
findings may support the hypothesis that ALDH3A1 could be a biological marker
for prediction of a tumor's response towards chemotherapy with TMZ. A note of
caution is due here since it was not tested whether upregulated ALDH3A1
expression is correlated to resistance against TMZ, nor exist any clinical data
on ALDH3A1 expression and tumor progression in glioblastoma. Results from
researchers working on different tumor entities suggest a potential role for
ALDH3A1 as a biomarker predicting chemoresistance. Data on Burkitt
lymphoma show that ALDH3A1 is mutated in tumor relapse of patients that
underwent chemotherapy (94). In hormone-receptor positive early breast
cancer, single nucleotide polymorphisms (SNPs) in ALDH3A1 are correlated

21



with poor overall survival (95). Wu et al. stained 93 gastric tumor specimens,
revealing ALDH3A1 expression correlates with dysplasia, lymph node
metastases and cancer stage, and therefore suggest ALDH3A1 as a marker for
stemness in gastric cancer (96). ALDH3A1 was already suggested to mark
somatic stem cells as well as CSCs, like hematopoetic stem cells (97), prostate
CSCs (98), and breast CSCs (92). This study presents data showing reduction
of stem cell markers Nestin, Sox2 and CD133 (only in one cell line) in ALDH3A1
knock-down cells as well as reduced clonogenicity (in two cell lines) (78). In line
with previous data on ALDH3A1 and stem cell character, we infer ALDH3A1 to
might serve as a marker for stemness in GSCs. Nevertheless, this data is solely
based on four glioblastoma cell models, impeding generalization to all
glioblastoma patients. Analyzing a larger cohort of tissue specimens with
referring to clinical data is indispensable for stating ALDH3A1 as a marker for
glioma stem cells and a proposal for future research projects.

ALDH3A1 belongs to a family of 19 so far different aldehyde dehydrogenases.
These enzymes regulate the oxygenation of aldehydes with the use of either
NAD or NADP as a coenzyme, being involved in detoxification of metabolites,
drugs and alcohol. Over the years aldehyde dehydrogenases were found to
have numerous functions in physiological and pathological processes. Nine
aldehyde dehydrogenases were described to show higher activity in somatic
and cancer stem cells including GSCs, most notably ALDH1A1 and ALDH3A1.
ALDH1A3 was found to be enriched in mesenchymal GSCs from high grade
gliomas (99). Zhang et al. found that ALDH1A3 promoter methylation leading to
less protein expression was correlated to better outcome for glioblastoma
patients lacking IDH mutation and MGMT promoter hypermethylation (100).
These results suggest other members of the ALDH family to also play a role in
glioma maintenance, worsening clinical prognosis.

ALDH3AT1 is located on chromosome 17 in humans and best known for its role
in corneal epithelial homeostasis. In contrast to other aldehyde
dehydrogenases, it is only poorly represented in human liver cells (101). As
ALDHs, and especially ALDH3AT1, harbor an essential role in abrogating
oxidative stress, ALDH3AT1 is highly expressed in organs constantly exposed to
environmental stimuli, including cells in lung, stomach, cornea and skin. High
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expression of ALDH3A1 was linked to increased drug resistance and
proliferation rates before, as well as resistance against aldehydes derived from
lipid peroxidation. Since ALDH3A1 was already known for its role in
chemoresistance and cancer stem cells, several small molecule inhibitors have
already been developed and tested in vitro, whereas in vivo experiments have
not been yet performed (102-104). Sensitization towards chemotherapy was
observed among application of ALDH3A1 inhibitors, also in glioblastoma cell
lines (103). In breast cancer cells, ALDH3A1 leads to increased resistance
against irradiation (92), indicating that ALDH3A1-inhibition might also be
supportive among radiotherapy in cancer.

Finally, the question remains as to whether Wnt or ALDH3AT1 acts as better
therapeutic target. Both Wnt signaling and ALDH3A1 contribute to stemness as
well as chemoresistance in cancer. Inhibiting compounds are also available for
both targets. When it comes to fully genetically Wnt blocked mice, the animals
show a high mortality at early embryonic time points, indicating the importance
of Wnt signaling in embryonic development (105). Mice lacking Tcf7/L2 receptor
or genetic blockade of B-catenin were impaired in self-renewal of crypts located
in the intestine (106). Since Wnt signaling is known for its importance in somatic
stem cells, pharmacological blockage might cause severe side effects on highly
self-renewing cells. This indicates a small therapeutic index, comparable to
most chemotherapeutic drugs. In contrast, ALDH3A1 knockout mice only suffer
from eye cataracts, but are similar to control animals regarding growth and
survival time (107). To fully answer the question whether Wnt or ALDH3A1
inhibition is the better target, more research using controlled trials for LGK974
and TMZ combination as well as ALDH3AT1 inhibitors tested at least in xenograft

models are indispensable.

A research paper published recently in Cancer Cell concerning systemic
administration of LGK974 in mice (5 mg/kg twice a day), described good
tolerance of the applied dose. Interestingly, the group found LGK974 to cross
the BBB and to significantly improve survival in glioma xenografts when
combined with TMZ in vivo. LGK974 treatment alone showed a trend of
improved survival without significance (108). The data suggests LGK974 to be a
better treatment when combined with TMZ. This paper supplements our in vitro
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results with in vivo data and strongly supports the hypothesis of LGK974 being
a potential treatment for glioblastoma patients in combination with TMZ.

Since this study was limited to the use of LGK974, it is not possible to
generalize our in vitro results to every other pharmacological Wnt inhibitor.
LGK974 is supposed to inhibit both canonical and noncanonical Wnt signaling
equally, whereas most other pharmacological compounds only target canonical
Wnt signaling. This makes it even more difficult to transfer the results of this
study to other pharmacological Wnt inhibitors. To further characterize
pharmacological Wnt inhibition in glioblastoma in general, the work was
enriched by a third paper, listing all pharmacological compounds targeting Wnt
and used in preclinical studies in gliomas. The review paper gives an overview
about mechanism and target side of each compound, as well as its stage of
research in glioblastoma and in cancer in general. Furthermore, common
alterations of Wnt signaling in glioblastoma, as well as prognostic markers
linked to Wnt signaling are listed (79). Unfortunately, no marker has been
described to predict effective pharmacological Wnt inhibition in glioblastoma so
far. In pancreatic adenocarcinomas and colorectal cancer without APC
mutations, genetic alterations of RNF43 were shown to predict sensitivity
towards compounds inhibiting Wnt secretion such as LGK974 (75,109).
Identification of predictive markers for glioblastoma patients benefiting from anti-
Wnt therapy is indispensable for clinical application and should be subject of
prospective research. In conclusion, the third paper illustrates clinical
perspectives on Wnt-targeted therapies in glioblastoma, mentioning estimated
obstacles and suggesting implication for future investigations (79). It is worth
noting that the review was published in 2016 and novel Wnt inhibitors were
designed and new clinical studies enrolled since then. Even so, none of the
compounds listed in the review or any other pharmacological Wnt inhibitor has
made it into clinical studies for glioblastoma so far.

As a conclusion, this work confirms pharmacological Wnt inhibition to be useful
as a potential therapy for glioblastoma by directly targeting GSCs and reducing
tumor growth in vitro. Furthermore, LGK974 works synergistically with TMZ
treatment in vitro, at least partly mediated through the enzyme ALDH3AT1, which
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was identified as another potential therapeutic target for sensitizing
glioblastoma cells to TMZ. These results are highly relevant for clinical attempts
to target GSCs in glioblastoma. A natural progression of these data would be
performing in vivo experiments with ALDH3AT1 inhibitors in glioblastoma
xenograft models and setting up a clinical trial evaluating the effect of combined
TMZ and LGK974 treatment for glioblastoma patients.
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Supplementary data

Kahlert, UD., Suwala, AK., Koch, K., Natsumeda, M., Orr, BA., Hayashi,M., Maciaczyk, J.,
Eberhart, CG. (2015), Pharmacological WNT inhibition reduces proliferation, survival and

clonogenicity of GBM cells. Journal of Neuropathology & Experimental Neurology, (Volume 74),
pages 889-900
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Supporting Information S1. Short tandem repeat profiles of cell cultures
used for functional studies.
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primers

|oene name |sequences
|beta ACTIN AGCACAATGAAGATCAA
CGATCCACACGGAGTACTTG
AXIN2 AGCCAAAGCGATCTACAAAAGG
GGTAGGCATTTTCCTCCATCAC
|NANOG TGATTTGTGGGCCTGAAGAAAA
| GAGGCATCTCAGCAGAAGACA
antibodies
antigen _ Iproduci |[dilution for Western blot
GFAP Clone 6F2 #MO761, Dako 110 3000
GAPDH Clone 6C5 [#Sc-32233_Santa Cruz 110 1000
|MAP2 Clone H-300 |#Sc-20172, Santa Cruz 1 to 2000

Supplemental Data S2. Primer sequences and antibody specifications
for Western blot-based protein analyses.
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Supplementary Figure 1: (A) LGK971 acts synergistically in combination with y-irradiation. The x-axic represents diffzrent multiples
of the detected IC,, dose for each treatment and cell line. The axis of ordinates demonstrates the calculated combination index. The
combination index is calenlated based on the median-cffect equation. taking cach valie from y-irradiation. TAGK974 single treatment and
combination of hoth treatments for one specific dose inta acconnt. In one experiment, the combination index is calenlated for five different
doses and representad by ons colored line. If the combination index 1s less than 1. both treatments act synergistically. 11t 15 equal 1. both
lreatents act addiinvely, I the combination ndex 1s wore thau 1. the elects are autagonistic. Each color represents ons mdependent
sxperiment (GBML # — 5 mdependent expernents: JHH5320, GBM10 and SF188 » — 3 mdependent experments). MGMT wmezthylated
cell lines presented in green, MGMT unmerhylated cell lines presented in orange. (B) Dose-effect curve of TMZ and LGK971 in GBMI1.
Effect (Fa) is represented on the axis of ordinates; dose is represented on the x-axis on linear scales. D: DMSO: T: TMZ: I y-irradiation:

L: LGK974.
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Supplementary Figure 2: (A) mRNA expression of 9 genes showing most pronounced differential expression in LGK974 and TMZ treated
GBM I cells as detected by microarray analysis. (B) Basal ALDH3A1 mRNA expression of all four cell lines. (C) Basal Wnt activation of all four
cell lines assessed by T cell factor (TCF) luciferase reporters. (D) ALDH3A1 protein expression is reduced in GBM1 B-catenin-knock-down cells.
pLKO.1 serves as the vector control. Data is presented as mean = standard deviation (SD). D: DMSO: T: TMZ: L: LGK974.
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1 tttcatgtgt gatgagggtg cattccgtgt ccgttaagat ccaggacggg gcttcccaga
61 ccccaagaga ctggcagtac caacccaagc gtgccctgge atgtcctoct ggcatgeccg
121 ctgtgtccct tccaggatgg ccggggtgty ggctggtctyg cagaggetet gecagetgggg
181 ctgcagccag goggtgactc aggcaggttc cgectggget aggagggecg ggcattccty
241 ctgtgaggct gcccgtgect aactcaccat gacttgeact ttgetgecat cctgectgge
301 aggctgactt agccaggat ccctagtac ccacttcocce tccagccage actcatgect
361 tctgcccege taagatgc“ga ctcggcagag gcttcctggg agccagggeoc
421 tgggcctggg agccacaget toctgggagc aggaaagtcc aagggagatg gggtgaggac
481 tggggcctct geoagcatctt aggggagget cccecttget cgecactcacc tccgotgget
541 gcaaacctgc agcttctctyg acccaaggca ctatgactgg cagcagataa agagatgaag
601 aagccccaga agtccttteoc tacaagtccce cagaaggtgt ggacacagtg gggaaattge
661 cccgggcaca gecagttctg ctgacttcat gectctccaa agaggggett tgtaacagta
721 acagagggct ttgtaacaga ctgactgeotc ttggotggge acggtgactg gattacaget
781 ctetgtggeoe ttcaactect gggctcaage gatcctccca cctcagette cccgagtage
841 tgggactgca ggtgcegtgoc accacgccca goagattttt acattttttg tagagatagg
901 gtcttgcttg gtcacccagg ctggtctcaa actcctgacc tcaggtgatc tgocogocte
961 ttcctcccaa agtgctggga ttacaggtgt gagtcaccgt goctggotga acactaagte
1021 gtattatttc tacctaaata tqtfEEBGEEMEccactaagc aagctctctt tattcccceca
1081 cctccccacce cttecccagec ctggtaacca ccgatctatt ctctatctte atgagatcca
1141 cttgtttggc tcccacacat gagggagaac atgtggcatt tgtcttcctg agtcataaca
1201 cttttaacca acggggaggt ccctgagacc cactgectaa ttttcteett tctactctct
1261 cttttttttt tgagacaggg tctacctggt cactctgtcc cccaggctgg agtgcactgg
1321 catgattaca gctcactgaa gcctcgacct cctgggctca agtgatccte ccgctcagece
1381 tctcaagtag ctgggtgcat gcoccaccacgc ccagctaatt tttttttttt tLtttttttg
1441 agatggagtc tcgctctgec ctcatccaag ttggagtgca gtggegecaat cttggcotcac
1501 tgecaacctec acctcccagg ttcaagegat tcoctectgeet cagectcceg agtagetggg
1561 attacaggca tgcaccacca cggccagcta atttttgtat tttagtagag atggggtttt
1621 accatgttgg ccaggctggt cttgaactcc tgagctcaag tgatctgccc goctcaacct
1681 cccaaagtgc tgggattaca ggcgtgagcc accgcaccca goctccttec ttttttttat
1741 tttttgtaga gatgagtctc tctatgttgc ccaggctcet tctactcgta taaagaaagt
1801 ggtttccect cccaacaact atatctaatc taaatgttce ttgaaattta agcaaacteg
1861 ctattcattc attcattcat tcattcaaca ctttttttge tagetttggg tgaatttget
1921 gaaaatcgtc ttgctaaatg attgottttc catcagaggg atggttaggt gtagtggget
1981 gcttccgtat cttcagaggt ctcccttgtg ccaggatatg gtgotgaaca aaagttgaga
2041 tctctgcctt tgtggacatt ccagtccaag ggggaataag gagagacata gtcacacaaa
2101 caaagatatg aacgcaggtt gtgacaggtt cctggaagta aggaaggttt tatttgagag
2161 gtgagagagg tcagggaagc tgagatctga acatggataa gagttagtct ggtgcagagt
2221 ggaagaaaaa gtgtcccagg gagcaagaac agcatgtgeca aaggecttgt ggtaggaaat
2281 tgecectggtta agtcaaggaa tgccagcaga ctggagtgca gtgagaatgg tgggaagtgg
2341 tgcgaagtga ggctggcaag gcagccagga gocaggocag gcaggggctc acaggcocatg
2401 ggaggaagct tcctgacagce aagggggtgce cacccaagga tgtgaatcag gggagagaca
2461 tgctcaggtc cttatcgtcc gecatgtctct ctggcagcca cttggagaag gcagctgage
2521 ctgactcaag gagagtaggt agagggcaag aacagtggcc tgggagagag agagtgagtg
2581 acagcccagg tgaggatgag gcattgggga tggagtatta ggacttgcaa agattaacte
2641 atgcttgcaa tcccagcact ttgggaggct gaggcgggaa gatgaattga goccaggagt
2701 ttgagaccag cctgggcaac ataatgagac ccatctctac aaaacattta aaaattagcec
2761 aggcatggtg gtgggttcct gtagtcacaa ggtgggagga tcgcocttgago accggaatte
2821 aaagctgcag tgagccgtga tggcaccact gocactccage ctgggcaaca gagcaacace
288l ctgtctcaaa aaaaaaaaaa aaaaaagaaa aaagaaaatc tgaaaagcaa gtatctgcaa
2941 gtttctagca caacccacac tcccacactt ttgccactac tgaaactata accaaaacec
3001 aaacacgcaa acaaggattt tgttctteogt agatttgaac tgettttagg ctecttgete
3061 tgacgcttcc accactactg ctgccacttt tgatgacacc cacaccacct aacctttcca
3121 ggatgccctc ggcocccgecag geactgttcot ggtcactteg tgtactcaat getgtgttge
3181 tggcttttge tagttgcttc catggttctc ccaggggagg geccgectgcca caagaagtca
3241 gctccgaatg gecttcocggec ttgecattcetg ccoctctactc aagatccaaa ttcccaggag
3301 agtcagggag gcctcatggg gagcccaccc caacccatgg ctggoctgga gaaggcacct
3361 ggttgatcat ctcaccaagt aggaaggggt tgcctgcaaa gataatcage tgctgccace
3421 agaaaagggg agaggctggc acaggctegg tettctocce tetcaggagg caccccactt
3481 tgcacctacc acccagtcca goccctgoac aggtgeogagg toctgcagat gettetttet
3541 gectgtttetg gaatgtttec cattetgtta gtcocttatttg ggggtctegt catttettge
3601 ctgcattgcet ggaagctgoa goctttggge tagacctttc tcacactgtg ccctgtccag
3661 ggggttctct aaaacaaaaa atagcagaca tttgtctgtc tgataatctc ctcagogeccc
3721 tgcaccccca cagccagect ggeccacagg ccoctcogtgag cccccgoccc aggagagtca
3781 ttcacctcca cacctcctge tggcaacagt ggacacatcg cactttttcog tgacataacg
3841 ttcccagcct ctgtgeocttt gettetgete ttccagecce cttgetgtte cttgecccaaa
3901 tgcttctcac tcagctcaga tgatgttcce tcccacggac tctcacccca gcccctctag
3961 catcctctge ctacctggtt actacagtgt tcacattatt ttgaaatttc ctgtttattt
4021 tgtcagtcaa taaatattta ttgagcatct actataaatg ctgtatggag gttacagcag
4081 tgaacaaatc aaattctagc tgtcaggagt taagggacag gtagcaaaca agatataaac
4141 gctccagaga aaaaataatg gaggaagacyg acagcattgt getattttcc acagcacatt
4201 ggagcgtage cgtgtggoty gatgtagggy aagggggctc caggtggaga gaagcaggag
4261 ggccagagca catcctcagg actcgtagge caggaccgga accttgtgtt ttocctcgaat
4321 gaaatgggaa gcagggaccc catgctggta agcagtctge ctgcaggegg gtgagggtgg
4381 cgggaagcgc ctggtgagag gggccgagag tcotgttocac acctgoctec tocccacage
4441 gtggtgcaga gcaggagccc agcgaacatt gatcagacag cgtgggaacg gettttcoccag
4501 actccttcct tcccaageat ctetggtttt cggtgaccac acagaccctt ggccctctte
4561 tcagctattc aacgagagag cagatttatg gattggagac ccccatcaaa agtccccage
4621 ctgtggctcc ccagggttag gatctctgac tcaatgggge cctgtgcaca ctgggggatg
4681 tgaagggccc ggggcagegg tggeotggggg tgogtttogg gggagetgea tgctctcact
4741 gtggttcgtg gctgagccct gecgatctta tgtaaccaga gaactcagag aaccgcatct
4801 ggcagcggea agtctggaaa getggaagag ctccatgoca ggctgaatca atcagceagec
4861 cccacgccca gggcaaacat aggectctttt gaagattgga gatgtgccct goccaagect
4921 tcagaaacat tctcgcattt cagaagtgaa caaaagcaaa cagcocggga cctaatccoo
4981 aaaacctggg ctgtagggag

Supplementary Figure 3: Genomic sequence on chromosome 17 (nucleotides 19753433-19748433) with binding sides for
TCF in der ALDH3 41 promoter marked in blue. The sequence was retrieved from NCBI GenBank.
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Supplementary Table 1: Primer sequences used for qPCR analyses (A) and oligonucleotides used as RNA-targeting sequences

for CRISPR/Cas9-mediated knock-down of ALDH3A1

A
Primer fwd rev
f2-microgobulin GTTGCTCCACAGGTAGCTCTAG ACAAGCTTTGAGTGCAAGAGATTG
ALDH3ALl TGTTCTCCAGCAACGACAAG CTGACCTTCAGGCCTTCATC
P57 GCTGAACGCCGAGGACCAGAACCG CGGGCACCGAGTCGCTGTCCACTT
DLL1 TGGCGCAGGCATCGA GGCGGCTGATGAGTCTTICT
PRKCQ CTCCCTTATATGGCCCCTGG CTTCTGCGATGCCACTGTAC
SFRP2 TTCCCCAAGCACACTCCTAG TACAAGATTCGGGTGGGCTT
HISTIHIE CCAAGAAGAGCGCCAAGAAG CGCCTTGGGTTTAACTGCTT
HIST2H2AC GTGGCAAACAAGGAGGCAAG GTCTICTTGTTGTCCCGAGC
HISTIH2BD ACCGGCACCTTGATCTTGTA GGCTGGGGAGTAAAGAGTGT
HISTIH2AL GACAACAAGAAGACCCGCAT CTCGGTCTTCTTGGGCAGTA
Sox2 TGGACAGTTACGCGCACAT CGAGTAGGACATGCTGTAGGT
Nestin GGCGCACCTCAAGATGTCC CTTGGGGTCCTGAAAGCTG

B
Oligo fwd rev
Control CACCGGGTGAACCGCATCGAGCTGA AAACTCAGCTCGATGCGGTTCACCC
crALDH3Al CACCGTTCGACCATATCCTGTACAC AAACGTGTACAGGATATGGTCGAAC
crALDH3AL1 2nd CACCGGGACACCCCCATTGATTACT AAACAGTAATCAATGGGGGTIGTCCC
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