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ABSTRACT

Next generation sequencing (NGS) is able to identify hundreds of thousands of

mutations per individual, revealing new insights for research and medical treat-

ment. This has lead to an improved characterization of tumors, discoveries of new

disease-causing mechanisms in genetic diseases, as well as the identification of new

treatment options. Medical sequencing experiments are multidisciplinary efforts

that require members with varying professions and degrees of expertise to generate

and process the data. Identify variants of significance in a haystack of mutations

is done through interpretation by genomic experts (e.g. molecular biologists and

medical doctors).

The initially large number of variants is reduced by applying custom variant an-

notation and filtering procedures. This requires complex software toolchains to

be set up and data sources to be integrated. Furthermore, increasing study sizes

subsequently require higher efforts to manage datasets in a multi-user and multi-

institution environment. It is common practice to expect numerous iterations of

continuative respecification and refinement of filter strategies, when the cause for a

disease or phenotype is unknown. Data analysis support during this phase is funda-

mental, because handling the large volume of data is not possible or inadequate for

users with limited computer literacy. Constant feedback and communication is nec-

essary when filter parameters are adjusted or the study grows with additional sam-

ples. Consequently, variant filtering and interpretation becomes time-consuming

and hinders a dynamic and explorative data analysis by experts.

In this work I present SNuPy, an interactive tool that empowers genomic experts

to analyze their own variant datasets. A user-friendly interface allows to manage

datasets and filter small variants (SNV/Indel), as well as copy number variants from

thousands of samples in parallel. Utilizing SNuPy, genomic experts can perform

quality control to verify the correctness of datasets, execute parameterized multi-

criterial queries to find mutations of interest, and are enabled to refine queries

without additional bioinformatic support. I present a variant discovery platform

that addresses the short-comings of current solutions for this task.

SNuPy was deployed in the sequencing facility in one of Germanys largest pe-

diatric oncologies to handle hundreds of millions of genotyped variants in a user-

friendly platform, managing more than 5000 variant datasets. It has successfully

contributed to a broad range of research projects as part of oncological (7 times),

immunological (6 times), drug-resistance and clinical diagnostic studies in human

and mice (2 times).
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ZUSAMMENFASSUNG

Die Next Generation Sequenzierung (NGS) identifiziert hunderttausendeMuta-

tionen pro Individuum und eröffnet der Forschung und medizinischen Behand-

lung neue Erkenntnisse. Dies führte zur verbesserten Charakterisierung von Tu-

moren, der Entdeckung neuer krankheitsverursachender Mechanismen bei geneti-

schen Erkrankungen sowie der Identifizierung neuer Behandlungsmöglichkeiten.

Sequenzierungexperimente sindmultidisziplinäre Projekte, die die Fachkenntnisse

unterschiedlicher Experten benötigen, umDaten zu generieren und zu verarbeiten.

Die Ergebnisse werden von Genomikern (z.B. Molekularbiologen undMediziner)

interpretiert, um signifikante Varianten in einemHeuhaufen vonMutationen zu

finden.

Die anfänglich große Anzahl der Varianten wird durch die Ausführung angepas-

ster Annotations- und Filterprozesse reduziert. Dies erfordert den Aufbau kom-

plexer Software-Werkzeugketten und die Integration unterschiedlicher Datenquel-

len. Darüber hinaus bedeuten steigende Studiengrößen einen zunehmend höheren

Verwaltungsaufwand der Datensätzen in einer Multi-User und -Institutionsumge-

bung. Die Unterstützung der Datenanalyse in dieser Phase ist von grundlegender

Bedeutung, da das große Datenvolumen für Benutzer mit eingeschränkter Com-

puterkenntnis nicht oder unzureichend handhabar ist. Wenn die Ursache für eine

Krankheit oder einen Phänotyp unbekannt ist, ist es üblich, dass über mehrere Ite-

rationen hinweg Filterstrategien und Problemspezifizierungen verfeinert werden.

Ständige Rückmeldung und Kommunikation ist notwendig, wenn Parameter an-

gepasst werden müssen oder sich die Datengrundlage ändert (z.B. wenn weitere

Proben hinzugefügt werden). Die Variantenfilterung und -interpretation werden

so zeitaufwendig und erschweren eine dynamische und explorative Datenanalyse

durch Experten.

In dieser Arbeit stelle ich SNuPy vor, ein interaktives Werkzeug, das Forschern mit

eingeschränkten Computerkenntnisse die Möglichkeit gibt, ihre eigenen Varian-

tendatensätze zu analysieren. SNuPy erlaubtGenomik-ExpertenmitQualitätskon-

trollen die Korrektheit von Datensätzen zu überprüfen und diese zu verwalten.

Kleine Varianten (SNV/Indel) sowie Kopienzahl-Varianten aus hunderten Proben

können über eine benutzerfreundliche Oberfläche parallel gefiltert werden. Dazu

ist es möglich parametrisierte und aus multiplen Kriterien bestehende Abfragen

durchzuführen, so relevanteMutationen zu finden,oder verfeinerteAbfragen ohne

bioinformatische Unterstützung neu zu stellen. Ich präsentiere eine Variantenent-

deckungsplattform, die die Mängel aktueller Werkzeuge in diesen Aspekten löst.

SNuPywurde in der Sequenziereinheit in einer der größten pädiatrischenOnko-

logien Deutschlands eingesetzt, um hunderte Millionen genotypisierter Varianten

ix



x

über eine benutzerfreundliche Plattform zu verarbeiten undmehr als 5000Variant-

Datensätze zu verwalten. Es wurde erfolgreich in einem breiten Spektrum von

Forschungsprojekten im Rahmen von onkologischen- (7 mal), immunologischen-

(6 mal), medikamentenresistenz- und klinischen Diagnose- Studien anMenschen

undMäusen (2 mal) eingesetzt.
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INTRODUCTION





1
MOTIVATION

The advent and success of Next-Generation Sequencing (NGS) technology in re-

search and clinical applications has undoubtedly shaped the way genetic diseases

are studied and treated. With sequencing cost of a human genome dropping from

hundreds of million dollars to hundreds of dollars and the time required drop-

ping from years to days or even hours 1 this technology is now widely available for

laboratories and hospitals in the developed world.

Recent years have seen an increase in genetic and genomic information as part of

population sequencing studies as well as disease centered studies2,3,4,5. The Leiden

Open Variation Database (LOVD)6 project currently lists 81 projects, reporting

on different disease specific or population wide DNA variations summing up to

3,953,657 unique variations (as of 24th Sep. 2018). ClinVar7, a database of clinically

described variations holds more than 400,000 variations of different significance

levels (as of 24th Sep. 2018)

However, there remains a discrepancy between the availability and potential

usage of genomic data in clinical research and applications, as identified by Yang

et al.:

"Many patients with genetic diseases are not given a specific diagnosis.

The standard of practice involves the recognition of specific phenotypes

[. . .] or the selection of candidate-gene tests, including single-gene anal-

ysis and gene-panel tests. The majority of patients remain without a

diagnosis."8

Efforts in the field of precision medicine (PM) are working towards overcoming

this discrepancy9,10.

"PM seeks to improve stratification and timing of health care by uti-

lizing biological information and biomarkers on the level of molecular

disease pathways, genetics, proteomics as well as metabolomics." 11

These efforts are not new, "blood typing, for instance, has been used to guide

blood transfusions for more than a century"9 and even the use of genetic markers

have been used successfully for decades (e.g. HER-2 in breast cancer 12). However,

the era of NGS technology now provides unprecedented resolution and availabil-

ity as a toolkit for diagnosis and research, and consequently has entered medical

practice 13,14,15.

Oncology has been, and still is the vanguard in application and implementation

ofNGSbased diagnosis and treatment decisions, in part because it is able to unravel

3
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the heterogeneous genetic landscape of cancer 16. Examples for this are sequenced-

based identification of minimal residual disease (MRD) 17,18, the identification of

leukemia subtypes 19,20 as well pharmacogenomics approaches, a subtype of PM

aiming to assess drug efficacy21,22,23. Recently, new disease causing mechanisms for

leukemia have been revealed using NGS technology hinting at the role of common

pathogens in early leukemia development24,25.

Although PM is met with skepticism by some26, and has limits27, NGS and its

potential to transform PM is part of the solution for future developments9,28,29.

Especially when newmechanisms that influence disease progression, such as micro-

biota29 are getting more attention.

Moreover, since 2007 the drop in sequencing costs have outperformed the highly

referencedMoore’s law of semiconductor cost decrease30 constantly. It has been es-

timated that sequencing instruments in 2013produced 15petabytes (106 gigabytes)

of data, this number is forecast to reach 1 zettabyte ( 106 petabytes) by 202531.

As a consequence researchers and clinicians are faced with the "DNA data del-

uge" 32. Between 20,000 and 80,000 variants fall in the coding region of human

individuals33,34,35, which make up around 2% of the whole genome. Besides all

the clinical, medical and biological challenges PM and molecular biology research

faces, the shear amount of data that researchers and clinicians need to sift through

is immense and close to being useless without appropriate tools32.

In order to identify significant variants, genomic scientists have to be able to

query the datasets, interpret the result and possibly refine the previous query. The

required filter conditions are complex, possibly involving hundreds of samples,

a multitude of annotation features from difference sources to filter by, usage of

shared controls and all is performed in a collaborative environment that requires

multiple disciplines and institutions to work together (see Brownstein and Others,

Amendola et al.).

The integration of bioinformaticians into research groups to support data anal-

ysis has been standard practice in recent years. This requires constant communica-

tion and feeback when filter criteria need to be adjusted in response to a previous

query result in an iterative fashion. Consequently, such setups hinder dynamic and

explorative approaches that can empowergenomic experts to query complex variant

datasets and interpret the results independently.

1 .0 .1 Outline

This thesis aims to systematically analyze the requirements that are necessary for

genomic scientists to perform filtering, analysis and interpretation of genomic vari-

ants from NGS experiments. I will further show how to design a platform that

empowers genomic scientists to perform queries on genomic variant datasets with-

out additional bioinformatic support. Additionally I will show how variant inter-
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pretation, data management and quality control can be supported to enable the

identification of significant variants from hundreds of samples.

Because the work is set in a interdisciplinary field at the intersection between

bioinformatic, molecular and clinical research I will give a brief introduction into

the bio-medical background in the rest of this introductory part. Next we will look

at existing solutions and the State of the Art for variant discovery tools.Herewewill

examine the current software landscape, that is available to researchers to filter and

process variant datasets. The third part will analyze theRequirements for a versatile

and comprehensive variant discovery platform. That part consists of the variant

analysis requirements on one hand and the technical platform requirements on

the other. The two subsequent parts will present aConcept and its Implementation.

These partswill focus on a design thatmeets the requirements and the development

ofmodules for aweb application platform that ismade available to genomic experts.

The two final chapters will present statistics about the feasibility of our approach

and demonstrate how the software aided in the clinical andmolecular research over

the last years of its development, as well as give an outlook for the road ahead.





2
GENOMICS & NEXT GENERATION SEQUENCING

2.1 f rom dn a to d i s e a s e

2.1 . 1 From DNA to Protein

Genetic information is encoded in nucleic acids (adenine(A), guanine(G), cyto-

sine(C) & thymine(T)) that form the double-helix structure of deoxyribonucleic

acids (DNA). A only binds to T, and G only to C when they are on opposite sides

of the double helix, hence their name: basepairs (bp). Long chains of these struc-

tures are packaged into so called chromosomes, which humans have 23 pairs of,

22 autosomes (no. 1-22) and one pair of gonosomes (X & Y, in combinations of

XX or XY), which determine the sexa. These chromosomes form the genome of

an organism and describe all inherited information that is passed down to the next

generation.

Because each chromosome is redundant there are always two copies (alleles),

which are independent from one another. Sex gonosomes are an exception because

human male carry XY and female carry XX, thus only females have redundancy

in the X-chromosome.

Genes are species-specific regions of the genome that contain thenecessaryblueprints

for proteins - the structures that provide biological functions by interacting with

each other or the environment. The process how genes, which are tightly pack-

aged into large chromosomes, are extracted and used as blueprints is called protein

biosynthesis. It is split into two subprocesses called transcription and translation,

one responsible for extracting and copying genetic information (transcription) and

the other using this information to create proteins from amino acid (translation).

Transcription starts in the region before the gene ("upstream", so called 5’UTR)

and ends after the gene ("downstream", so called 3’UTR). The process is started by

the binding and accumulation of transcript factors, guiding the so calledRNApoly-

merase to the start of the relevant genetic information. An RNA polymerase cat-

alyzes the duplication of a single strand from the double-stranded DNA structure,

so called ribonucleic acid in single stranded form (hence RNA)b. The bases com-

prising an RNA as also referred to as basepairs, although they are single stranded

and are usually not bound to another nucelic/ribonucleic acid.

A single string of RNA consists of two components, exons and introns. The

latter are subunits of the RNA that are removed from the RNA in a process called

a Other mammals and organisms may have different autosome/gonosome names and distributions
b During this process thymine is replaced by uracil(denoted U)

7
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splicing, leaving only a continuous string of exons. This transcribed and spliced

structure is calledmRNA and is then passed from the cell nucleus to the cytoplasm,

where it is used as a template for the translation process. The regions mentioned

above, namely 5’UTR, 3’UTR and introns are however not useless in the process,

but may act as (auto-)regulatory elements for the transcriptional or translational

process.

The synthesis of proteins is done during the translational process, using mRNA

strings as templates, which are virtually subdivided into basepair triplets, so called

codons. A protein group called Ribosomes start the translational process that sub-

sequently recruits amino acids one-by-one, as a function of a codon and using

structures called transport RNA (tRNA). These RNA structures are comprised

of a RNA binding site that is three basepairs long and matches the compliment

of the RNA codon sequence. On the other side it carries a single amino acid. The

process stops once a special codon sequence is detected and the fully functional

protein is released from the ribosome. In total a triplet of basepairs allows for 64

possible combinations, but only 21 amino acids are available in humans, leading to

a redundancy in codon codes. Addiontally a set of special triplets called stop codons

are not associated to amino acids, but rather quit the translational process.

Post translational processes and interactions with other proteins then make up

the biological function required in cells to perform basic tasks (house keeping) or

more specialized tasks, depending on the tissue the cell developed into.

The body of geneticDNA information is called genome and genes onlymake up

2%of the around3billionbase pairs of genetic information thehumangenome con-

tains. The 98%ofgenetic informationwas seen as evolutionary junk fordecades,but

has been revealed to carry so called epigenetic functionality that explains inheritance

without change of DNA code. Other larger parts of DNA act as regulatory regions

that are able to regulate mRNA expression and protein abundance. Smaller parts,

so called microRNA act as a regulatory mechanism for mRNA abundance and

regulate degradation of them. Most importantly, when it comes to whole-exome

sequencing (see section2.2.2): The body of information that are templates for pro-

tein products is called exome because only exons contain parts of DNA relevant to

protein synthesis.

2.1 .2 From Cell to Cell and parent to child

Cells, the smallest livingparts of anorganismuse cell division to replicate themselves,

while larger living organism reproduce. Themain difference, is that replication lead

to a copy of the same cell, while reproduction results in a new cell with two(or

more) predecessors. The composition of genetic information in the first case stays

the same, but changes in the latter.

The life of a cell is called cell cycle, which is comprised of 5 phases:

g a p 0 ( g 0 ) The cell does not divide any more.
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passed on to offspring, resulting in four possible combinations (see Figure 2.1). In

total there are four classes of variants that are relevant for genetics:

Single Nucleotide Variant (SNV) indicating only a single basepair

change.

Insertion/Deletion (InDel) Insertion/Deletion, local insertion or

deletion of genetic information. The range is considerably large, reaching

from 50 bp39 to 1kb40.

Copy Number Variant (CNV) a larger deletions or duplication of chro-

mosomal DNA (>1000 bases) possibly spanning multiple gene regions40.

Structural Variant (SV) Large scale fusions of chromosomal regions.

The term SNP (for Single Nucleotide Polymorphism) is often used and historically

has the same meaning as SNV. However, in recent years SNP and in lights of large

sequencing projects the term SNP specifically refers to SNVwhich are rare in the

common human population(<10%).

A variant is always a change in comparison to the human reference genome,

which is based on DNA of thirteen anonymous individuals from the Buffalo, New

York area41,42.

2.1 .3 From defect to disease

Protein biosynthesis is a complex molecular machinery that has remarkable error

detection and repair mechanisms during the different stages. If errors are detected

there are fail-safe mechanisms to prevent erroneous RNA from being transcribed

or translated.

The same is true for cells and their life cycles. If checkpoints fail the cell will

start a suicide process called apoptosis, triggering internal metabolic processes that

eventually lead to a fragmentation of the cell, which is cleared up by other cells of

the body. Apoptosis can be triggered extrinsically as well, when certain receptors on

the cell surface are activated by other cells via proteins or compounds (e.g. drugs).

However, when these failsafe mechanisms are not successful the fine balanced

biologic machinery gets disrupted, resulting in dysfunctional proteins being built

or genetic copies of the cell carrying new (de novo) variants. If proteins of critical

biological functions or function cascades (pathways) are affected by modifications,

this can lead to possibly life threatening genetic disease (as compared to bacterial,

viral or fungal diseases).

A common theme in oncology are cells that are not able to initiate or complete

an apoptotic process, or evade the immune response, resulting in uncontrolled and

unchecked cell division. The sister cells of the first founding cell with a genetic

defect then carry the same genetic defect, proliferate the same way without being

able to go into apoptosis, replicating again and eventually driving out healthy cells
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from their environment, leading to a collapse of the biological function supporting

the organism.

The reasons forpossibleDNAdamage are plenty, reaching from intrinsic failures

in the DNA copy mechanism, missing gene redundancy due to consanguine back-

ground to extrinsic factors from the environment, radiation, drugs or pathogens.

Technology allows to observe the consequences of genetic aberrations on the full

spectrum of the protein biosynthesis.

In general, when a biological measure can be used for diagnosis or treatment

decisions, these measures are called biomarker. There are biomarkers that are easily

obtained and that have been long used inmedicine, such as heart rate or blood type.

Molecular biomarkers are more complex to obtain, but play an important role in

oncology today (e.gHER-2 receptors for breast cancer 12). With the advent ofNGS

the prospect is that precise genetic markers will aid in PM approaches to find the

best treatment options utilizing the whole genome.

2.2 i n t rodu c t i o n to n e x t g e n e r at i o n s e q u e n c i n g

Sanger-sequencingwas theprevailingmethod to sequenceDNAstrands fordecades.

The general process behind Sanger-sequencing is to break a single piece of DNA

into pieces that share the same sequence prefix, sorting them by length and use a

readout method to determine the last basepair of each piece. This results in a signal

for each possible nucleic acid at each position of the originally shattered DNA se-

quence. It was the fundamental technology for the assembly of the human genome

and is still used today to validate results or confirm variants in small areas of a gene.

So called next generation sequencing summarize high-throughput sequencing

technologies, not based on Sanger-sequencing. These technologies use different

readouts using light sensors or semi-conductors to record millions of single molec-

ular reactions in parallel and compile them into sequences.

Available technologies are called PacBio (by Pacific Biosciences), Ion torrent se-

quencing (by Ion Torrent), Pyrosequencing (454 Life Sciences), synthesis based

sequencing (by Illumina), ligation sequencing (by SOLiD) andNanopore sequenc-

ing (by Oxford Nanopore). The technologies differ in the required biological pro-

tocols and technical readout techniques, but most importantly in their error rate,

maximal achievable read length and their cost per basepair (see Levy andMyers 43

for a review on available technologies).

Illumina is currently the most widely used technology, able to sequence DNA

fragments up to reads of 300 basepairs, while other technologies such as PacBio

provide read lengths of up to 20.000 basepairs44. Even longer reads in the range of

400.000-500.000 basepairs are also being developed43. Long-read technologies are

mostly used to assemble previously unknowngenomes (de novo assembly),phasing

or haplotyping, allowing investigators to track the paternal origin of specific alleles.
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Sequencing itself must be seen as a sampling process, in which the DNA of

a random set of cells is fragmented and each fragment is randomly chosen to be

successfully sequenced. One way to overcome this is to be able to sequence all

possible fragments that went into the sequencer, but this is usually limited by the

amount of basepairs a machine can detect per run.

2.2 .1 Fields of application

Next generation sequencing technologies has been used in a wide range of applica-

tion, among them:

who l e g e nom e s e q u e n c i n g (wg s ) Sequencingof the entire genomes.

who l e e x om e s e q u e n c i n g (w e s ) Sequencingof the entire exome.

r n a - s e q sequencing of the mRNA content of cells.

ch romat i n i mmuno p r e c i p i tat i o n ( c h i p ) used to identify

genomic sites where transcription starts (transcription factor binding sites).

b i s u l f i t e s e q u e n c i n g used to identify which chromosomal regions

are available for transcription.

m i c ro b i om e & me tag e nom i c s allows the sequencing of environ-

mental samples, such as water, soil, food and the gut.

The result of sequencing is always a list of reads that were produced by the read-

out of individual fragments. For large genomes, where the technology does not

allow the complete coverage of the genome with a single read, this step is followed-

up with an alignment of the reads against the reference genome (alignment). The

complexity of this process depends on the lengthof the reads and error rate atwhich

bases are classified incorrectly during sequencing.

RNA-Seq, ChIP and bisulfite sequencing do not look at genetic information,

but rather expression, regulatory or epigenetic factors. Micro biome (also called

metagenomics) mostly target the bacterial or viral composition of a sample, by

targeted sequencing of species specific sites. This work will focus on WGS and

WES to identify SNV , InDel and CNV for the rest of the work because these

applications allow the detection of clinically relevant genetic aberrations. Another

reason I will focus on these variation types is the large number of variations and

the genes they affect, which pose a major analysis challenge for users with limited

computer literacy.

The final step is to find statistically significant differences from the reference,

often referred to as variant or copy number variation calling. Longer reads allow to

detect larger events, such as copy number variations with higher resolution and ac-

curacy,while shorter reads today result in a higher number of fragments supporting

a single genetic locations variant status.



2.3 f rom s am p l e to va r i a n t 13

2.2 .2 Whole-genome & Whole-exome sequencing

Whole genome sequencing, as the name suggests, allows to sequence the complete

genome of an individual. The size of the human reference genome is around 3

billion nucleotides, and only for a small fraction of it the biological function is

known. While the complete genome of an individual can be sequenced, due the

current limitations, only a hand full or dozens of fragments can be sequenced per

site. This is very low compared to the thousand or millions of cells that are present

in a sample. This can be overcome by performing and merging multiple whole

genome runs, but has to be traded-off against the associated cost.

For this reason researchers often chose whole-exome sequencing, which ampli-

fies the exome of a sample, hence shifting the probabilistic distribution in favor of

genetically active genetic sites. This results in higher coverage (many reads support-

ing a site) in exonic sites and virtually no coverage of intergenic regions. A special

case of whole exome sequencing is targeted and panel sequencing where only very

few targets of interest are sequenced with the benefit of extensive coverage (often 3

magnitudes larger than whole exome sequencing).

This targeted sequencing approach is used to detect variants at very low frequen-

cies, or perform genetic testing on known disease-associated genes. WES provides

a trade-off between unbiased detection in all genetically relevant (or interpretable)

regions and the cost for a comprehensive WGS.

Using the NGS results of multiple samples allows to detect variants in each sam-

ple individually and to compare changes in the allele distributions between samples.

Using this enables to detect tumor-specific (somatic) variants, inherited variants

(germline), acquired variants of the germline (de-novo) and an estimate of copy

number variants in exonic regions.

2.3 f rom s am p l e to va r i a n t

The complete workflow from sample to a list of variants is depicted in Figure 2.2.

First DNA is extracted from a sample, which can come from solid or liquid

tissue (e.g. blood). Second the DNA is sheared and denaturated into smaller, single

strand pieces, allowing the material to be amplified in the third phase (if necessary).

Depending on the technology used adapters may be added to DNA fragments to

later support the sequencing or allow multiple samples to be multiplexed during

a single sequencing run. The result of the sequencing process is a list of unsorted

reads that are subsequently aligned to a reference genome. This alignment then

allows to analyze the samples and identify statistically relevant variants within a

sample, possibly taking into consideration the allele distribution in other samples

(e.g. de-novo, germline, somatic calling). The de-facto standard file format for lists

of variants is the Variant Call Format (developed by the 1000 genomes project)





3
VARIANT ANNOTATION

Variant annotation describes the augmentation and enrichment of variants with

relevant information from several resources. It is fundamental for the degree to

which the impact of variants on a biological function or organism can be described

and interpreted.

3.1 a n no tat i o n r e s o u rc e s

A wide range of biological databases are publicly available to researchers. These

cover primary genetic information, such as genetic location of genes, and secondary

information that is derived from primary data through other methods (e.g. exper-

imental, such as gene expression profiles or computational, such as conservation

scores).

3.1 . 1 Transcript sets & gene annotation

Large institutional databases, such as Ensembla andNationalCenter forBiotechnol-

ogy Information (NCBI) b provide rich state-of-the-art information about genome

assembly and annotation. This includes theGENCODE45 andRefSeq46 transcript

sets, which are widely accepted and used as standard transcript sets. They provide

information about the genomic location of genes, their transcriptsc, their exons

and proteins. Using this information the consequence of a nucleotide exchange on

the protein product can be calculated when an in-silico translation is performed.

Because different codons encode the same amino acid in the final gene product,

it is possible for a single nucleotide variant to have no direct affect on the amino

acid composition. These are called synonymous variants, compared to missense

variants, which result in a different amino acid.

Futhermore these databases allow to translate between the absolute genomic

location of a variant and the possibly relative Human Genome Variation Society

(HGSV) nomenclature47.

In general, not all amino acids of a protein have the same relevance for the protein

function. So called proteins domains, are parts of a protein that support a specific

protein function. Proteins can contain different, often independent protein do-

a www.ensembl.org
b www.ncbi.nlm.nih.gov
c transcripts are the product of the splice process, and one gene can possibly encode many different

alternatively spliced transcripts. The transcriptmost likely to be the protein coding transcript is called

canonical transcript

15
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mains. Databases that contain these and similar information about the functional

information are for example PFAM48, SMART49 and Prosite50.

3.1 .2 Variant databases

The dbSNP database51 is a public resource to report genetic variations frommul-

tiple organisms. It is a repository that is used for a wide range of applications and

strives to provide a catalog of previously observed variants. Large population se-

quencing projects such as 1000 genomes3 have provided millions of variations to

this catalog.

Furthermore, population sequencing projects, such as 1000 genomes, ExAc4 and

UK10k project2 provide information about the frequency at which a variant is

observed in different human populations. These are valuable resources for human

genetics because it enables researchers to exclude variants from their researchwhich

are frequent in humans.

3.1 .3 Disease associations

Disease association resource combine variation databases with information about

diseases andphenotypes,e.g.HGMD52,COSMIC53,TCGA5,ClinVar7 andOMIM54.

COSMIC and TCGA focus on mutations in cancer and provide multiple mea-

sures per sample (e.g. gene expression, variation andother) fromdifferent platforms

as well. HGMD,ClinVar andOMIMon the other hand focus on inherited diseases

and phenotypes and differ mostly in the level of curation for reported variants and

genes.

These databases also link to relevant clinical information such as drug resistance

(COSMIC), detailed literature reviews (OMIM) or clinical evidence of pathogenic-

ity (Clinvar). Such information is used to find co-located mutations and identify

variants of significance.

The Leiden Open Variantion Database6 is a project that publishes a catalog of

disease specific specialized databases, where researchers can publish disease associa-

tions for genes and variants. This allows the creation of a comprehensive list.

3.1 .4 Conservation

During evolution some parts of a genome are more frequently subject to changes

than others. These mutations can possibly manifest through generations. When a

gene or protein domain provides critical survival or fitness benefits, it is less likely

to be altered between generations and related species. Conservation scores such as

PhyloP55, GERP56 or phastCons57 capture the evolutionary conservation and are

used as indicators for the rate of conservation of genetic locations.
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PhyloP considers single positions in the evolutionary development, while phast-

Cons takes evolution of neighboring position into account and thus provides runs

of conserved sites. GERP estimates the constraint that is put on a loci, derived from

multiple alignments with other mammals.

3.1 .5 Functional context

Missense variants that result in a amino acid exchange are the most abundant pro-

tein changing variant observed39. Yet it is clear that due to conservation, amino

acid localization and other factors, not all of these amino acid mutations have a

functional effect, let alone one that damages the protein function. Loss of function

prediction tools such as PolyPhen58 and SIFT59 attempt to estimate the impact a

missense variant has on the function of a protein. They use conservation scores

(SIFT) or information about the protein structure (PolyPhen) to train models that

allow the effect prediction of amino acid exchanges.

However, a substantial portion of protein altering mutations, such as those af-

fecting splice sites, intronic or regulatory regions cannot be scored using these mod-

els. CADD60 introduced a generic framework to score all positions of the human

genome using synthetic variants to train their model. Although it is widely used

even for variant interpretation guidelines and reviews61,62, it’s clinical validity has

been questioned recently63,64,65.

3.1 .6 The complexity of resources

Peterson et al. 66 conducted a review of the available resources for the prediction

of deleterious variants, including a comparison of publicly and commercially avail-

able variant databases. They found that "The comparison of variant databases is

a complex task due to differences in inclusion criteria, quality filters, amount and

quality of annotation, and discrepancies in the reference sequences used"66 . They

describe further details of the difficulties and details of the quanitative analysis

of overlapping genes and variants. All in all a 62% recurrent disase-gene associa-

tions were found(2601 of 4164 genes recurrently associated d). Furthermore, they

reviewed and compared 32 different in-silico tools that can be used to predict or

grade the functional impact of a variant. Serveral conservation, loss-of-function

prediction, splice site and structural stability tools are listed, highlighting the vast

range of tools available. They conclude that: "translating the analysis of human

variants performed in-silico into the clinical setting is still one of the main challenges

towards the goal of precision medicine."66 .

Niroula and Vihinen 67 conducted a meta review of state of the art prediction

tools that can be used to support variant interpretation. They list a total of 23

variant databases that support interpretation, includingmeta databases that link to

d derived from Figure 1A of Peterson et al.
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even more resources such as LOVD6. To assess the effectiveness and performance

of in-silico tools for damage assessment, they compiled a list of eleven performance

studies that overall tested the performance of 55 tools using different scenarios and

datasets. They conclude that it is important to use computational tools for the are

that they have been developed for. Thus they advice to use disease variant databases,

such as Clinvar first before using other computational prediction tools.

Because so many tools exist for damage assessment, which themselves require

multiple feature and training resources Liu et al. developed dbNSFP (database

for nonsynonymous SNPs’ functional predictions)68 that compiles the result for

multiple in-silico loss of function prediction tools for all possible missense variants

of the exome. This provides a reproducible and integratable database for the various

measures, which researchers can use.

3.2 a n no tat i o n too l s

The numerous annotation resources, each possibly available in different versions

with asynchronous update cycles makes it very difficult to provide accurate repro-

ducible variant annotation. The different formats the resources are published in

result in an integration challenge to access them in a unified way. Variant anno-

tation tools aggregate different annotation resources and provide such a unified

way to perform annotations on variants. They annotate VCF files with relevant

information and are also part of the most clinical variant interpretation guidelines

for cancers62. Additionally, these tools can provide databases that contain the inte-

grated information and thus provide reproducibility of the annotation process.

A list of available variant annotation tools is available Table 3.1.

Table 3.1 lists available variant annotation tools. SNPEff69 and Annovar70 are

the twomost cited tools. They provide annotations from different sources and and

organisms. 6 of 8 toolse providemethods to also filter annotated variants. However,

not all tools are available for download and may require users to upload variants

through a web interface. Such online tools are not feasible for automated analysis.

subsection 4.2.2 will present how these tools are currently used by existing variant

discovery applications.

e Variant Effect predictor was published in two articles



Name No

citations

Reference Filter Ca-

pabilities

Resource Type

AnnoVar 2979 Wang et al. (2010) Yes Download/Online

Bystro 0 Kotlar et al. (2018) Yes Online

NGS-SNP 65 Grant et al. (2011) Yes Download

SeattleSeq 1065 Ng et al. (2009) No Online

SNPEff 1750 Cingolani et al.

(2012)

Yes Download

VARIANT 30 Medina et al. (2012) No Online

VAT(VAAST suite) 38 Habegger et al.

(2012)

No

(VAAST

suite has)

Download

VEP (1st version) 823 McLaren et al.

(2010)

Yes Download/Online

VEP (updated ver-

sion)

354 McLaren et al.

(2016)

Yes Download/Online

Table 3.1: List of variant annotation tools and their current number of citations.
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4
VARIANT DI SCOVERY

Querying and exploring variants should lead to the discovery of variants, which are

relevant for genetic researchers.

The variant annotation tools (see Table 3.1) provide command line based filter

scripts, to process and filter VCF files. Computer literate users can utilize these to

filter lists of variants using the command line and the provided filter capabilities.

However, these filter capabilities are limited to being used on the output of the

respective tool.

Because of this, many tools were developed in the past that providemore general

support for variant discovery for users. This chapterwill give an overview, summary

and categorization of existing tools to introduce the current software landscape

currently available to researchers.

4.1 e x i s t i n g a p p l i c at i o n s

Several solutions for variant discovery tools exist(see Table 4.1), which can be di-

vided into command-line-interface tools (CLI),graphical-user-interface tools (GUI)

andweb applications (WA). Command line tools are designed for experiencedusers,

capable to work with a command line. GUI andWA are suitable for regular users,

assuming that a user friendly interface is provided.

The target user group for CLI are bioinformaticians, who use these tools to

process variant datasets as part of a larger workflows. These tools require expertise

in basic programming and for users to manage datasets on their own. Examples for

CLI tools are Var-MD, PriVar and GEMINI.

Var-MD78 is a software designed to filter and rank variants for small projects,

although discontinued in its development. It supported filtering by mendelian in-

heritance models and annotation using SeattleSeq73. PriVar79 provides six static

filter strategies to users and is able to rank the results based on the a logistic re-

gression of functional impact predictors. GEMINI80 allows researchers to query

variants and their annotations from VCF files using Structured Query Language

(SQL) expressions. It is designed to be used as command line tool, but also provides

a simple web interface to send SQL queries to the database interface.

GUI tools have a graphical interface and thus are more suitable for users, who

do not have extensive programming skills. They are more user friendly compared

to CLI tools, and are designed to be installed as programs on a local work station

computer.

23
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SVA,VarSifter,myVCF,VCF-Explorer, VCF.filter, exomeSuite andVarAFT pro-

vide such interfaces. SVA81, provides an interface to filter by variant consequence on

the protein product. VarSifter82 allows users to filter pre-annotated VCF files and

visualize the results. Similarly, VCF-Explorer83 allows users to filter variants from

VCF files, but does not enrich the datasets with additional information (such as as-

sociated genes etc.). myVCF84 provides a GUI through a local web server instance

that stores its data in a local SQLite database. It does not perform annotation, but

provides methods to make use of pre-annotated variants. Similarly, VCF-Miner85

enables users to filter pre-annotated VCF files. The software exomeSuite86 sup-

ports to filter input files by inheritance models and genes of interest. Afterwards

annotation is performed enriching the result using several population and loss-of-

function prediction tools. VarAFT87 is a desktop tool that allows annotation and

filtering on variants from VCF files. It features annotations that are performed on

the datasets on the users desktop environment.

Web applications(WA), support a server-client structure by design. Here data is

stored on a server andmultiple users can interact with the data using amodern web

browser, which makes these interfaces platform independent.

BierApp, wKGGSeq, VariantDB, Var2GO, VarApp andMendel,MD are exam-

ples for web applications that can be used to annotate and filter variants.

BierApp88 allows users to upload variants inVCF files andprovides filters to take

additional information such as inheritance into account. BierApp offers relational

and non-relational (so called noSQL) databases to store variants.

wKGGSeq89 is a web interface to KGGSeq90, which provides a framework to

perform pre-defined filtration and prioritization for whole exome data using a cus-

tom annotation and protein consequence prediction pipeline. This capability is

utilized in wKGGSeq and results are presented to users in a user friendly fashion.

VariantDB91 allows users to upload variants, which are then annotated using

various resources and two variant annotation tools (Annovar and SnpEff). It allows

users to customize queries and the annotations are displayed in the output.

Var2GO92, allows to upload VCF files and provides an interface to filter the

annotated variants. Although VCF defines how variants position and exchange

are encoded, users have to specify this information as part of the upload. A new

database is created for each dataset that is uploaded, including optional variant

annotation.

VarApp93 is a web application that makes use of reactive user interaction tech-

nologies that allows quicker updates to the web interface than common request-

response patterns in most web applications. Utilizing this, users can upload VCF

datasets and the application uses VEP77 to annotate and GEMINI80 to filter vari-

ants by user defined criteria.

Mendel,MD94 is a web application that gives its users the ability to query, pos-

sibly multiple VCF files and provides parallel annotation. It is build on a relation
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database and allows users to filter variants by their own criteria or filter them based

on different modes of inheritance.

An advantage of web application architecture is that required software and data

source do not have to be set up or maintained by users and heavy computations

are performed on adequate hardware. However, when a web application is only

available online and not individually installable (e.g. EVA95, Annotate-it34, wKG-

GSeq89, Var2GO92), users are required to expose private genetic data to foreign

site. Because of the legal implications, such tools should not be used for genetic

clinical patient data.

Maintenance and creating a sustainable framework and environment is a chal-

lenge for every software product. Consequently, 7 out of 28 listed tools (25%) are

not available anymore, even after further research into finding a working copy.
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Ge et al. 81 SVA: software for annotating and visualizing

sequenced human genomes.

2011 41 No GUI

Sifrim

et al. 95
Annotate-it: a Swiss-knife approach to anno-

tation, analysis and interpretation of single

nucleotide variation in human disease.

2012 24 No Online

Sincan

et al. 78
VAR-MD: a tool to analyze whole exome-

genome variants in small human pedigrees

with mendelian inheritance.

2012 20 Discontinued CLI

Teer

et al. 82
VarSifter: visualizing and analyzing exome-

scale sequence variation data on a desktop

computer.

2012 85 Yes GUI

Preston

et al. 96
VarB: a variation browsing and analysis tool

for variants derived from next-generation se-

quencing data

2012 7 No GUI

San Lucas

et al. 97
Integrated annotation and analysis of ge-

netic variants from next-generation sequenc-

ing studies with variant tools

2012 56 Yes CLI

Vuong

et al. 98
AVIA: an interactive web-server for annota-

tion, visualization and impact analysis of ge-

nomic variations

2012 2 Yes Online

Coutant

et al. 34
EVA: Exome Variation Analyzer, an efficient

and versatile tool for filtering strategies in

medical genomics

2012 11 No Online

Paila

et al. 80
GEMINI: Integrative Exploration of Ge-

netic Variation and Genome Annotations

2013 116 Yes CLI

Zhang

et al. 79
PriVar: a toolkit for prioritizing SNVs and in-

dels from next-generation sequencing data

2013 16 Yes CLI

D’Antonio

et al. 99
WEP: a high-performance analysis pipeline

for whole-exome data

2013 28 Yes Web

application

Na

et al. 100
AnsNGS: An Annotation System to Se-

quence Variations of Next Generation Se-

quencing Data for Disease-Related Pheno-

types

2013 2 No Web

application

Yao

et al. 101
FamAnn: an automated variant annotation

pipeline to facilitate target discovery for

family-based sequencing studies

2014 5 Yes CLI

Alemán

et al. 88
A web-based interactive framework to as-

sist in the prioritization of disease candidate

genes in whole-exome sequencing studies

2014 20 Yes Web

application
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Maranhao

et al. 86
exomeSuite: Whole exome sequence variant

filtering tool for rapid identification of puta-

tive disease causing SNVs/indels

2014 14 No CLI

Vandeweyer

et al. 91
VariantDB: a flexible annotation and filter-

ing portal for next generation sequencing

data

2014 19 Yes Web

application

Li et al. 89 wKGGSeq: A Comprehensive Strategy-

Based and Disease-Targeted Online Frame-

work to Facilitate Exome Sequencing Studies

of Inherited Disorders

2015 5 Yes Web

application

Hart

et al. 85
VCF-Miner: GUI-based application for min-

ing variants and annotations stored in VCF

files.

2016 13 Yes GUI

Granata

et al. 92
Var2GO: a web-based tool for gene variants

selection

2016 3 Yes Web

application

Delafontaine

et al. 93
Varapp: A reactive web-application for vari-

ants filtering

2016 0 Yes Web

application

Salatino

and Ram-

raj 102

BrowseVCF: a web-based application and

workflow to quickly prioritize disease-

causative variants in VCF files

2016 4 Yes CLI/Web

application

Pietrelli

et al. 84
myVCF: a desktop application for high-

throughput mutations data management

2017 0 Yes GUI

G. C. C. L.

Cardenas

et al. 94

Mendel,MD: A user-friendly open-source

web tool for analyzing WES andWGS in the

diagnosis of patients with Mendelian disor-

ders

2017 2 Yes CLI/Web

application

Akgün

et al. 83
VCF-Explorer: filtering and analysing whole

genome VCF files

2017 0 Yes GUI

Müller

et al. 103
VCF.Filter: interactive prioritization of

disease-linked genetic variants from sequenc-

ing data

2017 1 Yes GUI

Desvignes

et al. 87
VarAFT: a variant annotation and filtration

system for human next generation sequenc-

ing data

2018 3 Yes GUI

Table 4.1: A list of existing tools to filter variant datasets and their usage in litera-

ture. Number of citations were obtained using rcrossref 104(Oct. 2018).

4.1 . 1 Utilization of existing tools

Looking at the citation records of existing solutions (see Table 4.1) one can see

that a total of 497 citations refer to the mentioned variant discovery tools. This

number indicates a low of usage when compared to the more than 6900 articles

found through Pubmed including the exact term "whole exome sequencing" in title

or abstracta. It suggests that most whole exome variant analysis are based on cus-

tom solutions or pipelines, possibly linked to the filter capabilities of the variant

annotation tools which are cited more frequently (see Table 3.1).

a Number fromOct. 2018
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Themost cited variant discovery tool is GEMINI80 with 116 citations. GEMINI

is a command line tool and thus can be expected to be used by computer literate

users as part of workflows or in the case of VarApp93 as the database of choice to

store variants.

The second most cited tool is VarSifter (85 citations), a GUI tool that allows to

filter VCF files by genomic coordinates, gene name, consequence or information

from the INFO field of a VCF . In general, such tools are a user friendly way to filter

variant datasets. However, VarSifter is only able to load one VCF file at a time. This

means that is has limited usability when large studies, withmultiple individuals are

sequenced as part of an institutionalized sequencing effort. The fact that it relies on

pre-annotated datasets means that an even higher burden is put on users tomanage

these, possibly complex annotation tools as well, with all the implications it has for

maintainability and feasibility.

The third most cited tool is "variant tools"97 (56 citations), again a command

line tool that can be expected to be utilized by computer experts. The output of

this tool allows its users to generate reports in VCF format, which is not suitable

for end users and thus requires post-processing.

Together these three tools make up for 51% of all variant discovery tool citations

to date. However, for the reasons mentioned above, none of these tools provide a

suitable environment for users with low computer literacy.

4.2 f e at u r e s o f e x i s t i n g s o l u t i o n s

The application and feature range of existing solutions is large, ranging from line-

by-line filtering83 to more complex technological applications93. To get a better

overview Iwill present the recurring features and how existing solutions implement

them. A tabluar overview of the existing solution and features can be found in table

10.5 as part of the results.

4.2 .1 Data management

Generally two types of data management can be identified: First local storage in

singular files, and second a centralized database structure.

Local storage usually makes use of indexes to access datasets more rapidly, either

using custom solutions 105 or building onto existing ones (e.g. using indexes of local

database solutions80,84,97,102, such as SQLite). It has been recently proposed that

index-free solutions may be better suited when it comes to large whole-genome

datasets83. Restriction of this approach are the limited possibilities to share work

between users and machines, which become a bottleneck when many users work

with many datasets as part of a large cooperative studies.

Centralized database structures, when combined with a user authorization and

authentication system are able to overcome this problem. Examples for these solu-
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tions may use relational databasesb or non-relational databases c. Some tools also

offer additional user managementd .

Another difference between the data management approaches is how andwhich

information is stored as part of the variant discovery process. This affects two types

of data: One is the variant genotypes and the other is the variant annotation, nec-

essary for the filtering. Some solutions require previously annotated inpute, others

provide an on-the-fly annotation92,100, and a third option stores annotations for

subsequent filtering87,91,93.

Variant and genotypes can be stored in a database, when multiple input files

from various projects need to be integrated. Applications supporting this feature

are EVA34, Annotate-it95 and VariantDB91.

Not all tools require data management features, for example VCF-Explorer83,

SVA81, FamAnn 101, VarSifter82, VCF-Miner85 orVar-MD78 process input files and

store the results without persisting additional data.

4.2 .2 Annotation

Annotation and data augmentation are crucial parts in the variant discovery and

interpretation process62 because the ability to identify relevant variants depends

on the features that can be derived from these annotations. The sources for vari-

ant annotation differ, but the most popular variant annotation tools are AnnoVar,

SNPEff, SeattleSeq and VEP (see Table 3.1). Consequently these annotation tools

are commonly used by variant discovery tools to gather information about variants,

either by integrating an automated annotation or by using pre-annotated input

files. Annovar is used by 8f ,SNPEff used by 5g and VEP used by 7 h tools. Interest-

ingly SeattleSeq73, although highly cited is only used as an annotation resource for

one tool78. SeattleSeq data cannot be downloaded and does not provide a program-

matic interface to facilitate its capabilities in an automated or integrated fashion.

Out of 14 tools that use variant annotation tools as a resource for unified annota-

tions, only eight integrate these tools while the others rely on users to pre-annotate

the datasets they want to analyze.

b Coutant et al., Li et al., Vandeweyer et al., Granata et al., Delafontaine et al., Sifrim et al., San Lucas

et al., D’Antonio et al.
c Hart et al., Alemán et al., Salatino and Ramraj, Lopez et al.
d Coutant et al., Vandeweyer et al., Delafontaine et al., Sifrim et al.
e Sincan et al., Paila et al., Teer et al., Pietrelli et al., San Lucas et al., Yao et al., Salatino and Ramraj
f Coutant et al., Pietrelli et al., Desvignes et al., Vandeweyer et al., Granata et al., San Lucas et al., Vuong

et al., D’Antonio et al.
g Paila et al., Vandeweyer et al., Granata et al., Yao et al., Müller et al.
h Coutant et al., Paila et al., Pietrelli et al., Delafontaine et al., Yao et al., Salatino and Ramraj, Müller

et al.
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Results of protein consequence prediction depends on the transcript set that is

used 107. RefSeq is referenced by 6 toolsi, the Ensembl transcript set is referenced

by 4 tools j as well.

Population frequency data is available through 17 variant filtering tools pub-

lished after the release of the 1000 genomes project data, highlighting its significance

for the variant discovery process.

Similarly, loss-of-function prediction tools are also widely used. PolyPhen258

and SIFT59 are among the most well established tools for this task, with 15 tools

mentioning them as part of their filtering features.

Clinical and disease related information from ClinVar and OMIM are available

for 9 solutions, only VarAFT supporting both.

4.2 .3 Query

The presented tools support genomic scientists to varying degrees in their ability

to find relevant variations.

Tools such as VarSifter, VarB, VCF-Explorer and VCF.Filter k are designed to

explore VCF datasets in an easy way. This is useful, when users need to investigate

only a limited set of locations or genes e.g. for validation sequencing. However,

it does not enable users to investigate variants in many hundreds of samples and

genes that are expected from whole-exome sequencing.

Nine existing solutions provide pre-defined query strategies, which allow users

to filter datasets by a set of implemented rules, possibly parameterizing thresholds.

This strategy is helpful, when samples need to be analyzed in-breadth and in the

same way repeatedly. While these tools allow a broader view on a sample compared

to explorative tools, only 3 of them allow users to also query based on user-defined

criteria, which is necessary to allow unbiased and dynamic hypothesis testing (e.g.

in case pre-defined rules do not yield results). This is especially relevant for research

settings, where, by definition, new and unexpected findings are of interest.

13 variant discovery tools allow users to dynamically query datasets by defining

feature of interest. This allows users to remove or retain variants based on genomic

properties (e.g. genename).However,only 4of these tools provide an integrationof

variant annotation tools and other resources. All others rely on the user to perform

the necessary augmentation of the datasets beforehand. Because the results of this

filter process depends on the specific feature versions used, it is fundamental for

reproducibility to provide such integration.

Only two tools are available to query multiple samples at once. Unfortunately,

Annotate-it95 is not available as an online resource anymore and the only other

tool with this feature is the command line tool ’variant tools’San Lucas et al..

i Coutant et al., Ge et al., Desvignes et al., Vandeweyer et al., Vuong et al., Na et al.
j Desvignes et al., Alemán et al., Vandeweyer et al., Sifrim et al.
k Teer et al., Akgün et al., Preston et al., Müller et al.
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Most tools empower users to query datasets by genes, consequencel and inheri-

tance. These query features are fundamental to identify relevant variants. Among

the most common other query features is the support to remove variants based on

population frequency and loss-of-function predictions.

One example, of the abundance of variant features that users are faces with is

given by VariantDB91 which provides 105 different features per variant. Some of

the features, such as gene names are easily comprehensible for end-users, more ad-

vanced properties such as conservation or computational prediction scores are not.

No existing solution gives standard default cutoffs that users can rely upon, in or-

der to set appropriate filters. Such defaults are necessary because computational

predictions can yield arbitrary values, scales and thresholds that are not common

knowledge among regular users at all. Thus it becomes impossible for them to

perform abstract queries, such as "only show variants in conserved regions" when

existing solutions require to filter variants by different unintuitive thresholds.

Remarkably, only VarAFT87 enables users to workwith copy number variations

that can be derived fromNGS datasets and provide important information to in-

vestigators. For all other tools, this means that user need to switch the annotation

and query platform, if they need to analyze copy number variations derived from

the same raw NGS data.

4.2 .4 System implementation

Four existing solutions are only available online as web sites, which requires user to

upload genetic patient data to a foreign site. A majority of 15 tools choose a local

system architecture, targeting single users and smaller datasets to be investigated.

Seven tools are database driven, although GEMINI, the most frequently cited one,

uses local database files to transform VCF files into a relational structure.

Five tools implement features that allowcollaborationbetweenusers in their soft-

ware, while none of them allows multiple institutions to work on shared datasets.

Only four existing solutions provide users with quality control measures that allow

basic quality controls and only three give users the possibility to document up-

loaded datasets with comprehensive meta information. A lack of a comprehensive

data management is detrimental to build large databases and manage large cohorts

or studies.

4.2 .5 A note on commercial solutions

This review leaves out existing commercial solutions that are provided by manufac-

turers and service providers (e.g. Illumina Basespace, Quiagen Ingenuity or Strand-

NGS). Research facilities have to follow scientific rules of transparency, which com-

mercial solutions due their competitive nature do not offer. Furthermore, it hinders

l The consequence is the predicted consequence a variant has on the protein biosynthesis process.
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reproducibility when groups around the world need to purchase licenses, especially

with regards to high license costs for developing countries. The work therefore fo-

cuses on tools that are readily available to the research community and where good

scientific practice can be achieved.

4.3 i n t rodu c i n g s n u p y

In this work I developed Single NUcleotide PolYmorphism platform (SNuPy) to

address the short-comings of existing solutions and to meet the requirements that

a comprehensive variant discovery platform has to meet (see Part iii). Several as-

pects are either missing in current solutions, or are only available sporadically or by

combining several tools - which is not feasible for the target user group of genomic

scientists.

SNuPy integrates commonly used variant annotation tools, databases and con-

sequence predictions, allowing users to reach informed decisions about the impact

and significance of variants. This approach is supported by the possibility to collab-

orate with other users making it possible to find consensus in their interpretation.

A comprehensive data management approach allows to document datasets using

controlled vocabulary, thus establishing the base for sustainable data foundation

as more and more datasets are added.

Because of its user-friendly interface, SNuPy does not require users to combine

tools in a complex tool chain in order to find the necessary features of variants.

Furthermore, several quality control measures allow the verification and vali-

dation of uploaded datasets, a feature necessary when thousands of samples are

made available to users. Currently, no other tool offers such means to assess the

correctness of variant datasets.

It allows to manage multiple projects, users and datasets independently from

one another. A role-based user-authorization system enables fine-grained access

permissions to the uploaded datasets, possibly sharing individual samples or full

projects.

Pre-defined queries allow users to query all individuals in the database using the

same query conditions and subsequently compare the results.

By collaboration, users can stay up-to-date in a fast moving research field, by

sharing genes of interest with each other. Such gene of interest lists can represent

biomarkers, pathways or known disease associated genes, compiled by experts and

can be integrated into user-definedqueries. Furthermore, standardized reporting of

query results is possible for variant interpretation, druggable target and mendelian

diseases.

VariantDB91 allows to query variants through a web interface, but only retrieves

100 variants at a time, requiring multiple re-queries when more variants match

the filters. SNuPy allows to query possibly thousands of samples through its web

interface and retrieve large results sets, allowing users to investigate and follow-up
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on these findings inside the web application, on external web sites, or exporting the

results to spreadsheet processing programs for publication or further analysis.

Currently, to the best of my knowledge, no solution exists that provides an ex-

tendible ormodular framework to integrate new annotation resources in an orderly

fashion. Only GEMINI provides an API to their local SQLite database, allowing

to send SQL statements to the engine through Python rather than through the

command line. This lack of systematic architecture layout hinders the expansion

of analysis features necessary for the adaptation to others fields of research.

SNuPy addresses this problem with the development of a framework (Annota-

tionQUery andAggregation framework (AQuA) ) that allows programmers to add

modules to the existing platform providing general or specialized annotation fea-

tures for the variants in the database. User can access these annotations in a unified

fashion, making the usability consistent and user-friendly. Developers set default

values and group query conditions by their meaning, allowing users to focus on

hypothesis testing rather than determining the correct threshold for an arbitrarily

scaled feature. Furthermore, the aggregation layer allows to present variant features

in an intuitive way using color coding and link-outs to additional information.



Part III

REQUIREMENTS





5
ANALYS I S REQUIREMENTS

To build a variant discovery system it is necessary to identify and clarify the user

requirements, which need and can be addressed by such a system.

In general, next-generation sequencing technology can be used to study the

genome of any organism. This work focuses on the usage of NGS technology to

detect small genetic variants of genomic significance in humans and model organ-

isms.

Genomics "is defined as the study of genes and their functions, and related tech-

niques" 108 . This highlights the underlying complexity that genomic scientists face

to explore and identify relevant genetic aberrations.

Human genomics in health aims to investigate themolecular causes,mechanisms

and impact of genetic aberrations on diseases. Genomic researchers study these top-

ics and focus on different levels of the protein biosynthesis process, thus amultitude

of annotations are required to cover transcriptional, translational and regulatory

impacts of variants. The low and dropping costs associatedwithNGSmeans that it

is now feasible for research laboratories to sequence hundreds of samples, facing the

computational and analytical challenge of this "DNA deluge"32 . Consequently, a

variant discovery platformneeds to empowerusers to handle hundredor thousands

of samples.

The scientific background of this work is based on research in pediatric oncology,

hematology and immunology in a clinical setting. Because of this, there is a clear

motivation to research the use of this technology in diagnostics 15,35,109,110,111, to de-

termine possible treatment options22 and to include medical doctors in the user

group of genomic scientists. Tumor development, progression and even treatment

options differ for pediatric and adult malignancies, but from an analytical stand-

point the same requirements apply because the hypotheses tested do not dependon

the age of a patient or sample. Age however is important for the interpretation of

the results and the conclusion drawn from it, a task preferably performed by medi-

cal doctors and genomic scientists36. This requires a variant discovery platform to

be accessible and usable by these user groups.

In addition to the clinical applications, research laboratories, such as the labora-

tory of the Clinic For Pediatric Oncology, Hematology And Clinical Immunology

at the University of Düsseldorf, perform research e.g. on mice to study mutational

landscapes and tumorigenesis24,25. The analysis requirements are the same for every

diploid organism, but the availability of data resources differ greatly, depending on

how comprehensively a model organism has been studied. Such research on mul-

tiple organisms needs to be supported by a variant discovery platform, requiring

different annotation resource of varying complexity or completeness.

35
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5.1 va r i a n t f i lt e r i n g

In general,whole exome sequencing reveals between 20,000 and80,000 variants per

human individual33,34,35. A recent study of mice exomes revealed between 27.000

and 31.000 mutations in tumor and germline samples25. Showing that a whole-

exome variant analysis platform needs to handle ten-thousands of variants per in-

dividual, each possibly sequenced multiple times from different tissues and disease

states (e.g. diagnosis, remission, relapse etc.).

Any mutation that affects the function or abundance of a gene product directly

or indirectly may be causative for a disease35,112. Protein-coding variants can be

found in healthy individuals, even those where variant consequence can disrupt

translation or transcriptional processes, such as by introducing stop codons, dis-

rupting splice mechanisms or causing frameshifts during translation 113,114.

The study of more than 60,000 exomes from the ExAC project revealed that

individuals carry 54mutations on average that have been reported disease-causing4.

In linewith these findings is a study byChen et al.,who analyzed 589,306 healthy

individuals and found individuals carrying disease-causing mutations for early-

onset diseases. Although the study could not follow up on all identified individuals,

due to missing recontact clauses and information, it indicates that incomplete pen-

etrance may play a larger role than previously expected.

In order to narrow down the number of potentially disease-causing variants,

a single patient sample is usually compared to control samples. These can either

come from the individual (usually from germline/disease-free tissue), close relatives

(parents, sibling etc.) or from large population studies such as the 1,000 genomes3,

ExAC project4 or the UK10K project2.

To narrow down the list of potential candidates, filtering steps from four cate-

gories (genetic scenario, variant properties, gene features and functional context)

should be combined35,61.

5.1 . 1 Genetic scenarios

Genetic scenarios consider the different genetic background and inheritance effects

that may lead to a dysfunctional genomic environment, either by inheritance or

spontaneous events (see Table 5.1).
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Description Study requirements

Somatic A disease-tissue specific

mutation, not present in the

germline of a patient

Germline control sample has

to be available.

De novo Themutation is not inherited

by the parents, but is present

in the germline.

Parents, possibly siblings and

related family members

Germline A mutation that is inherited

from the parents.

Parents, possibly siblings and

related family members

Autosomal dominant A single variant allele causes a

disease.

Parents, possibly siblings and

related family members

Autosomal recessive A homozygous mutation that

causes a disease, which is het-

erozygous in both parents.

Parents, possibly siblings and

related family members

Compound heterozygous A patient inherits two defec-

tive copies of a gene, parents

carry one functional copy.

Parents, possibly siblings and

related family members

Gonosome-linked A mutational burden that is

imposed by the presence/ab-

sence of a X or Y chromsome.

Parents, possibly siblings and

related family members

Single linkage Only a single case can be iden-

tified within a family.

Parents, possibly siblings and

related family members

Multiple linkage Multiple members of the fam-

ily are disease, possible span-

ning generations.

Parents, possibly siblings and

related family members

Recurrent Multiple patients carry the

same mutation

Multiple patients with the

same disease.

Known cause Patients carry a mutation in a

known disease gene

A list of disease associated, or

relevant genes.

Full penetration Carrying a genomicdefectwill

result in the disease.

Family samples and clinical

data

Partial penetration Carriers of the mutation do

not necessarily develop a dis-

ease, or may only show mild

symptoms.

Family samples and clinical

data

Table 5.1: A list of possible genetic scenarios that researchers may consider to iden-

tify disease causing mutations.
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Some genetic scenarios require additional samples to be sequenced as part of the

study, in order to test them. With this in mind it is clear that users need to query

and compare multiple samples at the same time. This includes the usage of shared

control samples that can be used to exclude variants of low significance.

5.1 .2 Variants, Genes and Functional Context Filters

The properties of variants and genes are decisive when it comes to filtering variants

and finding those that are of interest in the context of a hypothesis. A first step

is to remove variants of low confidence33,116 or those that violate the mendelian

inheritance model 117a.

Variant Quality: Filtering by properties and measures of the variant detec-

tion process is a basic filter strategy to remove variations that are detected with little

confidence8,20,117. These values depend on the sequencing process and are usually

added during the variant detection steps as part of the variant calling pipeline. Fil-

tering by these attributes during the variant discovery allows to adapt the quality

criteria instead of hard filtering them. For example, a low confidence variant may

still be regarded as significant and a candidate for further validation; if itmeets other

significant filter criteria (e.g. pathogenicity, disease-association . . .).

Read depth and target enrichment: The sequencing read depth

describes the number of DNA fragments that were identified by NGS in a genetic

region, i.e. how often a position was observed in all fragments. A higher read depth

gives more confidence in the variant and allows to identify low frequency vari-

ants 118. The maximum possible read depth varies, but is limited by the fragments

available as well as the sequencing technology used. When a whole genome is se-

quenced, the possible number of reads should ideally be evenly distribute across

the whole genome. Whole exome sequencing on the other hand involves a tar-

geted amplification step that elevates the sequencing probability in exonic areas

of the genome, thus generating higher read depth in these areas. Which areas of

the genome are amplified depends on the use case and manufacturer providing

the amplification kit. They may include, additionally to the exonic regions, regula-

tory regions, microRNA sites, but may also exclude specific known genetic regions

because of technical difficulties targeting these sites.

All of these factors play a role for the filtering8,20, evaluation and interpretation

of variants, thus adjustable read depth and capture region filters are an important

requirement.

Mendelian filters: The genotype of a variant is especially relevantwhen the

mode of inheritance has to be determined for patients and to evaluate the impact

a Violation of themendelian inheritancemay also be of interest, for example when looking for de novo

mutations that manifested spontaneously, so caution is necessary when removing variants based on

these criteria.
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of a mutation. Filtering by genotype is necessary for some inheritance models to be

checked, thus it is required that users can filter by this property.

Population Based Data: Population based variation data is used to filter

variants that are common in the general population and thus are unlikely to be

disease causing35,65,117. Several projects compiled datasets to assess the frequency of

variants over large sets of individuals, namely e.g. the 1,000 genomes project, the

exome variant server and ExAC are valuable resources3,4. Disease specific databases

that record the variant frequency in tumors, such as the COSMIC database53, are

relevant for cancer studies. They are part of the recommended guidelines for the

interpretation of sequence variants38, highlighting their necessity for users to filter

using these data resources.

Consequence Prediction: A variants consequence is the predicted effect

it has on the transcriptional and translational process. The consequence of a mu-

tation can be predicted using transcript sets, which allow to perform an in-silico

transcription using exon boundaries. Two well established transcript sets are avail-

able from GENCODE45 and RefSeq46. Possible consequences include missense

mutations that lead to an amino acid exchange, or the effect of a frameshift caused

by an InDel . McCarthy et al. demonstrated the differences of the consequence

predictions of different tools and transcript sets, thus multiple tools for the conse-

quence prediction should be used such that different interpretations of the same

variant can be presented to users 119.

Gene Panels: To make hypothesis testing more consistent, checking for mu-

tations in sets of genes is an important tool. Using such lists allow several users to

query the same genes of interest, which may be compiled from pathways, known

disease associations, publications or external databases. Ideally these lists are created

by and shared between users and institutions, to facilitate reproducibility.

Functional Impact: Amultitude of tools exist that allow the in-silico as-

sessment of the probable functional impact of a variant61,113. But especially mis-

sense variants, the most common protein altering consequences, can be hard to

interpret correctly unless structural, conservational andmolecular factors are taken

into account 113. Loss-Of-Function-Prediction tools calculate scores to help users

with the interpretation, although careful interpretation and follow-up analysis is

required64,65 (e.g. functional and other laboratory validation).

Other functional impacts may be identified from specific amino acid exchanges,

such as losses of cysteine or lysine which are known to affect post translational

modifications. Enabling users to identify and select these types of exchanges aids

in hypothesis verification because unlike the output of loss-of-function-prediction

tools, these effects are supported directly by molecular biological functions, rather

than an numeric score.

Functional Context: One way to assess the functional context of multi-

ple variants is to embed themutations into the protein-protein interaction graph of
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their protein products. This allows to display the functional landscape of multiple

variants of interest and supports the interpretation process. Protein-protein inter-

action network integration has been used to describe new potential disease causing

mechanism for autoimmune lymphoproliferative syndrome-like syndrome 120 and

to identify a hub of proteins that may can be used as a potential biomarker for

drug-resistance23.

Thus, functional context integration is required as it allows to discover significant

variants that impact protein function.

Disease associations: Variants, or the genes they affect, which were previ-

ously linked to a disease or phenotype are important for classification, even when

the association is not to the same phenotype or disease (see Richards et al., Sukhai

et al.). Databases that record variant-disease and gene-disease association, such as

ClinVar7 and OMIM54 respectively, are valuable resources on inherited diseases.

Inheritance Model: When samples from family studies are available, se-

lecting variants thatmatch an inheritancemodel (as described inTable 5.1) is crucial.

Some inheritancemodels, such as recessive inheritance of single nucleotide variants,

can be checked directly by comparing the genotype at a single location for parents

and their children. Othermodels, such as compound heterozygous defects can only

be found when transcript sets are integrated & and taken into account.

Set Operations On Samples: Combining, intersecting and subtracting

the variant sets of individuals is required to support basic set operations on samples.

This allows an intuitive and straight forward way to e.g. to exclude variants from

a control sample or find intersections between patients. Furthermore, when these

capabilities are integrated into the filtering process it allows complex filter strategies

to be implemented that are necessary to study complex disease progressions (see

section 11.3 for an example).

Informed Decisions: Informed decisions are crucial for diagnostic appli-

cations and when researchers need to investigate every possible scenario. Conse-

quently, the integration of multiple annotation sources from possibly multiple

versions has to be supported so users can get the full picture and make informed

decisions.

Integration into external workflows Variant filtering and the

ability to do so is not an isolatedprocess,but is part of a largerworkflow.To facilitate

the integration of the variant discovery process into larger projects with multiple

experiments, or complex computational tasks, it is essential that a variant discovery

platform provides an external interface. Such interfaces allow integrated study of a

multitude of next-generation-sequencing technologies.

Batch queries Variant interpretationmostoften requires dynamic filter strate-

gies with user-defined parameters when datasets are investigated in a explorative

fashion, especially when the phenotype is rare and the study is small. Larger stud-
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ies that investigate e.g. a shared genotype among many individuals benefit from

applying the same filtering logic to all datasets in order to have comparable results.

Meta analysis Thedecrease in sequencing costs lead to an increase of available

sequencing datasets. Consequently, even small- andmedium sized laboratories now

have sequenced hundreds or thousands of samples. A variant discovery platform

should allow users to harvest this data abundance and allow meta queries, that are

performed on all available datasets. This requires an easy way to select the samples

of interest. For example a usermay be interested in all somatic variants of the second

tumor from samples with a specific cancer subtype. When thousands of samples

are available users have to have a user friendly way to automatically select the subset

of datasets, that match such criteria. Furthermore, the variant discovery platform

has to be able to query hundreds or thousands of samples that such a subset might

include.

5.2 va r i a n t i n t e r p r e tat i o n

Most genetic disorders are rare 122, thus most genetic diseases have to be studied

on a case-by-case basis, making interpretation crucial for understanding the genetic

mechanisms36,123.

In general, the categories to studygenetic disorders canbe classified intomendelian

and somatic groups. Mendelian variants are explained by inheritance or their in-

heritance violation (e.g. by spontaneous events) and generally attempt to identify

pathogenic germline variants present in all cells of the body. Somatic variants on

the other hand, are variants that occur in the diseased tissue, but are not present or

functional in germline tissue 124b.

A distinction between germline and somatic analysis scenarios has been pro-

posedbySukhai et al.:mendeliandisordervariant interpretation aims to findpathogenic

variants. In contrast somatic variant interpretation aims to identify actionable vari-

ants 121. Pathogenic variants try to explain the phenotype, while actionable variants

are direct or indirect targets of a drug for disease treatment 121.

5.2 .1 Germline Variants

In an attempt to standardize variant interpretation for mendelian disorders the

American College of Medical Genetics (ACMG), the Association for Molecular

Pathology (AMP) and College of American Pathologists (CAP) have released joint

guidelines to classify variants in the context of mendelian diseases. The guidelines

consists of a catalog to assign variants into a five-tier system that rates theirpathogenic-

b In general a mutation should occur in the diseased or non-diseased tissue. There are scenarios e.g.

mosaicism, which are special cases of somatic and germline mutations.
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ity38. It was later adopted by theUKbasedAssociation for Clinical Genetic Science

(ACGS) 125.

The ACMG/AMP guideline defines 27 criteria and five rules, to combine the

criteria into pathogenic, likely pathogenic, benign, likely benign and uncertain signif-

icance classes. It incorporates hard criteria from information that can be queried

statically, such as population frequencies, predictive tools results or even disease as-

sociation. Other criteria are based on soft evidence, such as the PVS1 criteria: ’null

variant in a gene where [loss of function] is a known mechanism of disease’ 125. Such

soft criteria are subject to expert opinion and may vary between experts.

Biesecker and Harrison 126 have recently proposed to remove the criteria for a

’reputable source’ from the ACMG/AMP variant interpretation schema. This cri-

teria allows the integration of pathogenicity predictions of specialized databases

into the interpretation schema. However, the authors of the interpretation guide-

line assume that the removal of this criteria is unlikely to impact the the variant

classification 127

The formalization of soft criteria has been focused on recently 128. Abou Tay-

oun et al. 128 developed a decision tree that helps to streamline and standardize

such interpretations. It gives researchers a better understanding how to apply the

criteria. Nevertheless, Abou Tayoun et al. decision system requires ’biological rele-

vant transcripts’, which in turn will require further clarification and context-based

interpretation by experts.

While soft criteria havebeenone source of interpretation variance,Ghoshet al. 129

focused on the interpretation of benign criteria BA1( "Allele frequency is >5% in

Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consor-

tium"38 ) in the context of commondisease alleles, but show incomplete penetrance

(e.g. hemochromatosis) 129.

The Sequence Variant InterpretationWorking Group (SVIWG) c of the clinical

genome project (ClinGen) 130 is working towards a standardized variant interpreta-

tion and criteria refinements, both for disease and gene-level contexts that can be

adapted in practice.

Another approach was developed by Nykamp et al. 131 with the Sherloc frame-

work, a refined version of the ACMG-AMP guidelines that is based on a numeric

scoring system for categories and criteria. Just as ACMG-AMP guidelines, Sherloc

requires users to include soft data such as clinical reports and to evaluate functional

experiments and databases, highlighting the significance of case-by-case interpreta-

tion.

c https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/
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5.2 .2 Somatic Variants

Similar attempts exist for somatic variant interpretation. Either based on gene panel

targeted sequencing that relies on apre-defined setofknowndisease-causing genes 121

or an unbiased whole-exome sequencing approach62,132.

Sukhai et al. uses a 5-tier classification system that rates the actionability with

regards to patient care. It uses informationwhether a variant is ’actionable’ based on

histology, recurrence in literature, previously reported information and predictive

tools.

Van Allen et al. developed a rating system for variants resulting in 4 criteria:

(1) potential clinical, (2) biological, and (3) pathway relevance, as well as (4) syn-

onymous variants. In addition to this, the variants of interest are summarized in a

structured annotation form, using five evidence levels in four categories (approved

therapies, predictive therapies, prognostic and diagnostic) to generate standardized

reports.

Li et al. developed "A Joint Consensus Recommendation of the Association for

Molecular Pathology, American Society of Clinical Oncology, and College of Amer-

ican Pathologists"62 that allows the categorization of malignant variants into four

tiers based on their clinical significance and therapies approved by the U. S. Food

and Drug Administration (FDA) .

Common to all methods and guideline approaches is that, the information that

goes into the interpretation process are highly context and disease specific, thus

users need access to all necessary information about variants.

The subjectiveness of variant interpretation was studied by Amendola et al.,

who compared the result of nine laboratory internal variant assessments to the

standardized ACMG/AMP guidelines37. They report a 79% concordance for intra-

laboratory variant assessment compared to the standardized guidelines, which was

not significantly different between laboratories as well. However, when it came to

the concordance between different laboratories, only 34%of variants were classified

identically from all participating laboratories, which shows a high variance in the

interpretation of variants.

Interestingly, this concordance rose to 71% after consensus discussion between

the involved laboratories. This is in line with a previous clinical challenge study, by

Brownstein and Others that identified a "de-facto consensus of experts for interpre-

tation of NGS"36 , demonstrating a general agreement among experts about the

severity and role of variants.

This study highlights the necessity for genomic scientists to work together across

laboratories and to be able to interpret the variants in a disease specific context27,124.

This has been realized by other authors as well: "Its(the variant interpretation -

editors note) early steps are highly automated, but the final, most critical aspects are

not. Instead, they rely on expert review and human interpretation." 113
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Standardized reporting supports the streamlined interpretation of variants by

experts. A variant discovery platform should therefore allow to present the results

of a filtering process in comprehensive reports. These can provide a base for com-

munication between users and external users.

To keep discordance between variant interpretation low, it is necessary to in-

clude consequence predictions based on different transcript sets to counteract the

reported differences explained 119 and thus allowing the users to reach an informed

decision. There is also a need to integrate multiple data sources, because the tran-

script consequence predictions alone are not sufficient to predict the actual conse-

quence of a variant on the protein product 122.

The most comprehensive data resources are available for the human genome.

Model organisms, such as mus musculus, also play an important role in the re-

searchers ability to study genetic diseases as exemplified byMartin-Lorenzo et al. 25.

Thus it is necessary for a variant discovery platform to provide filter capabilities

that do not depend on a specific organism.

In summary: A variant discovery platform should provide features to allow coop-

eration between laboratories. It should also let users select which criteria they think

to be relevant and enable interpretation, possibly using refinement of queries to

narrow down the mutational landscape of an organism to the significant variants.

"As a result of its complexity and impact on patient diagnosis and treatment, this

process remains largely one of expert interpretation and literature review." 113 .
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PLATFORM REQUIREMENTS

The primary goal of the variant discovery system is to enable genomic scientists

to query and explore whole-exome datasets. The main focus is to reduce the large

number of variants to the most relevant variants by attribute based filtering.

An information system, like a variant discovery platform developed for the set-

ting described above, can be categorized in three parts 133: (1) Memory - a function

to store and represent data, (2) Active - a function to modify the current state of

the memory, and (3) Informative - a function that provides information about the

systems memory.

The memory function is implemented by a database and by the data represen-

tation of the variant data. The active function augments the variant datasets with

the necessary information from external resources. In the context of this work the

informative function allows to query and work with the variant datasets.

Parallel to these definitions, the platform requirements can be split into three

categories:

1. Data management

2. Variant annotation

3. Variant filtering

There are three areas that need to be addressed in order to meet the above de-

fined requirements for a variant discovery platform. First, primary data has to be

added to the system, where it can be managed in a user-friendly fashion. Second,

the system needs to integrate multiple external resources to augment the variant

data and provide supporting features for the filtration and interpretation processes.

Third, user have to be enabled to filter and explore the datasets in a user-friendly

fashion, while developers need to be able to extend the capabilities and integrate

more external resources.

6.1 data man ag em e n t

As described above, variant filtering and interpretation are the crucial parts to lever-

age information inNGSdatasets.With tens of thousands of variants per individual,

possibly requiring multiple study and control individuals per study, it is clear that

data management is a central task for a variant discovery platform.

Three aspects are relevant for this topic. First, a feasible underlying database

management system has to be identified. Second, is to look at the requirements for

45
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themeta-data which has to be stored and organized alongside the plain variant data.

Third, will be to find the necessary annotations to add and assess the data resources

and features which are provided to the users.

6.1 . 1 Relational vs. noSQL Databases

In recent years, so called noSQL database systems have been developed that allow

key-value, graph or document oriented database systems. Such database systems

promise higher performance, while breaking with traditional reliability concepts in

relational databases such as ACID (Atomicity, Consistency, Isolation, Durability),

in favor of more flexible concepts such as BASE (Basically Available, Soft state,

Eventually consistent) 134,135.

NoSQL systems outperform traditional RDBMS systems when it comes to per-

formance (insert, update, query) regularly 136,137, but not consistently 138.

Zeng et al. reported a performance advantage of noSQLover relational databases

when comparing data insertion and retrieval of clinical patient dataset a. Due to the

high number of attributes per record and the column count limit of the MySQL

database system, they chose to split each record into multiple tables. Results for

other data management approaches, such as using long lists instead of wide lists or

using other normalization approaches are missing 136.

Schulz et al. demonstrated that for genotype data noSQL solutions provide

higher insertion andbetterqueryperformance,whenbuilding a SNP-locusdatabase 137.

However data on advanced techniques, such as direct file import that can be used to

increase the performance in SQL system are not part of the study. This highlights

the necessity to use database-specific methods to increase performance.

Parker et al. showed that while noSQL solutions may outperform SQL systems

when it comes to insert, update and delete operations, complex queries are bet-

ter suited for SQL systems 139. Such complex queries are expected to be the most

common use in variant discovery systems.

These cases highlight an important aspect when considering traditional rela-

tional databases over noSQL solutions: Comparing the two systems solely on their

performance is a complex task because the data models should be independently

optimized towards the tasks the systems should be used for (also see Sahatqija

et al., Lourenço et al.). A poorly designed model in one database system, may per-

form better in another. A key-value store is expected to show best performance

when retrieving the available keys. Vice versa, a relational database should outper-

form other systems when it comes to relational operations.

Consequently, based on the performance benchmark by Cooper et al., the au-

thors suggest that both traditional and noSQL solutions have their own benefits.

For this reason, practical applications may chose to combine the two technologies

a The data analyzed does not include large variant datasets, but regular clinical patient data
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and use them as tools for an integrated database system. The integration of SQL

and noSQL database systems is the target of current research (e.g. Liao et al.).

To analyze the requirements it is therefore better to compare the two systems

based on conceptual differences rather than benchmark performances, as exempli-

fied byMohamed et al. 135.

r e qu i r em e n t s f o r a data b a s e m a n ag em e n t s y s t em

While insertion of data records is important for dynamic systems that need to han-

dle user generated input frequently, this performance measure is not meaningful

for query systems that do not update data frequently. A variant discovery platform

is such as system because data is added only once for each study, while multiple

queries are performed afterwards.

When security is a concern, as it is for genetic data,RDBMSprovide betteroverall

security features 135.

Another difference between relational and non-relational databases are their flex-

ibility when it comes to changes in the data models 134,139. Relational databases

require static database schemas, allowing well defined data models, while noSQL

databases aremore flexible. A variant discovery platform benefits fromwell defined

data models, when standardized input formats are imported and features from

possibly unstructured external sources have to be made available in a structured

fashion.

Furthermore, relational databases have proven capable to store genotype data in

a relational way 143,144. These more traditional relational database systems can be

considered the industry standard 139, thus they are considered more maintainable.

There is a also a known lackof a standardizedquery language fornoSQLdatabase

systems. Vendors implement their own language or dialect, but it requires custom

programming to perform join or aggregation operations on such systems 134, mak-

ing them harder to develop and maintain.

To fulfill the requirements for a variant discovery platform, a relation database

system is not the only, but the best maintainable, secure, mature and accessible

solution. Existing solutions that use database backends also mostly use relational

databases (most notably GEMINI), showing that feasible performance is possible.

6.1 .2 Sample Access & Meta Information

Managing variant datasets has to include storage ofmeta-information about sample

state and relevant context specific information that should be stored alongside the

datasets to allow reproducibility and re-usability. Because the clinical and biological

research field may focus on very different aspects of an individual, it is necessary

that a multi-purpose variant discovery system provides a flexible way for users to

integrate the information, which is necessary for them.
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me ta i n f o rmat i o n

Organization of datasets and adding annotations necessary for documentation and

meta-analysis is always an important aspect of data management. Any data system

that allows cooperative research should also impose mandatory minimum infor-

mations about datasets. This makes reproducible research easier and supports the

structuring of possible hundreds of datasets, eventually enabling inter-laboratory

interpretation and cooperation. There are three reasons for this requirement. First,

a basic form of documentation is necessary as a basis for collaboration between

colleagues and institutions. Fluctuations in employees means that knowledge of

samples and theirbackgroundchangeswith themandmightbe hard to recoveronce

knowledge-holders are not available anymore. Second, it is crucial for NGS studies

to differentiate between case and control samples in order to build up groups of

shared control samples, which can be confidently reused in other projects. Third,

implementing mandatory minimum information enables automated analysis that

can be based on a minimal set of available information.

The mandatory minimum information for each whole-exome sample are:

s am p l e s tat e - describes the disease state of the sample.

t i s s u e - describes which tissue was used to retrieve the specimen.

s am p l e c l a s s - describes if a sample is a shared control sample, or can be

categorized into a specific disease class (malignant, immune-deficiency, rare

etc).

d i s e a s e - describes the disease or phenotype the sample presents.

acc e s s r e s t r i c t i o n s

To support cooperation across laboratories, the system has to allow multiple col-

leagues and laboratories to access the relevant information and keep other datasets

private.

According to De Capitani di Vimercati et al., an access control system should

support eight features to be feasible. I will adapt these features to fit into the context

of a variant discovery platform:

accoun ta b i l i t y a n d r e l i a b l e i n p u t -This is necessary tomake

sure that users are authorized to use the system. In a variant discovery system

this should be as strict and stringent as possible, only allowing access to the

system after authentication.

s u p p o rt f o r f i n e - a n d coa rs e - s p e c i f i c at i o n - If possi-

ble this makes sure that only specific actions can be granted access to. Given

that multiple user groups access a variant discovery system, it is useful to

define which user group, or user can perform which action.
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cond i t i o n a l au tho r i z at i o n s - To protect data, it is necessary to

apply conditional authorization, based on the context of the action. For ex-

ample the owner of a dataset maymodify it, but others may only display the

entity.

l e a s t p r i v i l e g e - This feature mandates that users should perform their

actions with the least privilege necessary, to minimize the possible damage

by errors.

s e p a r at i o n o f d u t y - "refers to the principle that no user should be

given enough privilege to misuse the system on their own" 145 . This concept

refers to managing potential conflicts of interest and fraud. This is especially

relevant when the system is used by different institutions, possibly within a

competitive field. Themost detrimental actionwouldbe deletion of datasets,

which should be prevented for users and seen as an administrative action. Be-

cause users upload the data on their own, they can be expected to have a copy

of the data, thus it would never be truly lost. This loss of information has

to be seen in contrast to other information systems, e.g. sales-systems where

customers can’t be asked to redo their orders to recreate a database state. The

same is true for altering the minimal documentation, required for datasets,

which should only be editable by specific users or small administrative user

groups. Another aspect is an overloading of the systemwith datasets or com-

plex queries. Restrictions on the ability to upload datasets and limit query

result complexity are therefore required.

mu lt i p l e p o l i c i e s a n d e x c e p t i o n s - usuallypolicies canbedi-

vided into two classes: closed and open. Closed policies do not allow any ac-

tion, unless authorization is present. Open policies allow every action, unless

a rules prevent it. A variant discovery system should follow a closed policy

to prevent any potential data misuse.

p o l i c y com b i n at i o n a nd con f l i c t - r e s o l u t i o n -This

feature accepts that rule based system can be incomplete or inconsistent, but

requires the access restriction system to handle such cases, e.g. with default

behavior. To protect the datasets frommisuse the default behavior in a vari-

ant discovery platform should always be to enter a safe state that does not

allow access to the datasets, thus following the closed policy paradigm.

a dm i n i s t r at i v e p o l i c i e s - This feature describes who is able to set

the aforementioned policies and modify them. For a variant discovery sys-

tem only privileged users should be able to modify coarse-grained access to

datasets (e.g. access to all samples of an institution), but give users the ability

to decide on the fine-grained access (e.g a specific other user should be able to

use this specific sample).
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6.1 .3 Variant Data

Variant data can be stored in a sample-variant-genotype relational association 143,144.

However, before analyzing datasets users should perform a quality control step,

to verify the correctness and validity of the samples, to prevent a ‘garbage in, garbage

out’ 146 scenario.

g e no t y p e data

When storing genotype data in a relational database, several database normaliza-

tions are available from a database design point of view. Such normalizations aim

to minimize redundant information and split up the attributes of an entity over

several tables using foreign-key associations. These associations are merged during

a query by JOIN operations to build or rebuild the attributes of an entity.

However, when working with large databases of genetic data, it has become best

practice to abandon rigorous normalization in favorofperformance increase,which

is feasible for databases that are not regularly updated. Examples for reduced nor-

malization (or denormalization) are the StringDB 147 and Ensembl database 148.

i n p u t f i l e f o rmat

The de-facto standard93 format for variant datasets is the VCF format (described

by Danecek and Others). This format uses absolute genomic coordinates to locate

variants unambiguously. Coordinates in such an encoding can be translated into

coding and protein nomenclatureb(e.g. HGVS nomenclature) more easily than the

other way around, are mappable to other organisms and are the recommendedway

to handle variants for clinical interpretation38,62. Therefore, this format should be

supported for data upload and management, possibly with the ability to handle

tool-specific output and additions to the flexible format.

qua l i t y con t ro l

Generating NGS datasets is a complex task, which involves a multitude of proto-

cols and wet-lab work by different personal. Standard operating procedures are

employed to prevent mistakes and these processes are carried out carefully to pro-

vide reproducibility and traceability. However, as the number of sequencing experi-

ments increases, even with low error rates there is a statistical limit to when the first

error occurs with significant certainty.

Quality measures of raw NGS data are mostly focused on the validation of the

sequencing process and its success. However, variant data quality analysis is also

necessary to gain confidence in the correctness of the pipeline, which is carried out

to create the NGS datasets. For example, a sequencing run can meet all the quality

b Anomenclature where variant positions are given with respect to the gene, transcript or protein then

affect
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criteria, but if the sample was mistakingly swapped during wet-lab processing this

would not stand out and may result in false reporting.

Several quality measures, such as variation call statistics, variant frequency and

count distributionmust be implemented to enable quality control. This should be

carried out before any analysis to check the integrity ofNGSprocess anddatasets 146.

Many potential sources for errors arise during the process of sampling a biologi-

cal specimen and the actual upload of the datasets into the variant discovery system.

The main reason for this are human errors during handling of the specimen, in-

complete or inaccurate documentation as well as errors during in-silico processing

of the next-generation sequencing results. Sources of errors are:

s am p l e swa p s -A samplewasmislabeledduring any stage. This can happen

during handling of the physical as well as the in-silico sample.

wrong r e l at i o n s h i p a s s o c i at i o n - This is a special case of a

sample swap,which can be recovered if relationship information and clinical

information are available.

s am p l e con tam i n at i o n - impureness due to foreign genetic material

can be caused by mistakes during wet-lab processing or erroneous data pro-

cessing.

Validating candidates is a laborious time consuming task and a variant discovery

platform should support users to identify sample contamination events before en-

gaging in this work. Such events are not apparent from the query result that user

work with and potentially lead to false reporting in publications or worse a misdi-

agnosis in a clinical setting.

Another prospect of quality control is to spot unusual samples, e.g. those that

carry an exceptionally high number of variants or have exceptionally less variants

on a specific chromosome. These information are used as a control measure, e.g.

a female sample should not carry a significant number of mutations on the Y-

chromosome. They may also serve as a control of expectation, for example when a

patient received allogeneic stem cell transplantation, the mutational profile should

significantly differ from a sample before transplantation.

Quality control can also lead to a phenotypic observation, e.g. a sample with

a high mutation rate might suffer from a dysfunctional DNA-repair mechanism,

which is especially relevant information in cancer studies andmayhave implications

for treatment options.

Several measures are possible to e.g. track potential sample swaps, or detect un-

usual/unexpected results. Gender prediction and sample similarity measures allow

to verify that the sequenced samples were not swapped by mistake. Variant fre-

quency distribution plots can further help to check if a sample was potentially con-
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taminated c. Sample swap and contamination indicators are necessary in a variant

discovery platform so users can take appropriate actions to resolve such issues.

6.2 va r i a n t a nno tat i o n

Augmenting the variant datasets with relevant and comprehensive annotations is

necessary to meet the analysis requirements, described in the previous chapter.

In general, there are two sources for annotations: primary and aggregated re-

sources. Primary resources are databaseswith information about variants and genes,

while aggregated resources provide multiple primary resources from a single loca-

tion.

While primary resources provide the most up-to-date data, the aggregated re-

sources usually provide a fixed collection of primary data that is updated regularly.

Examples for such aggregated resources are Variant Effect Predictor(VEP)77, An-

novar70, SNPEff69 and dbNSFP68, which provide rich variant annotations. Many

primary resources, e.g. PolyPhen258, require a multitude of other primary data

sources and the resultmay differ when versions differ. Using aggregated resources is

therefore advantageous because of the increased maintainability and reproducibil-

ity.

Nevertheless, setting these tools up requires significant effort, to install the soft-

ware dependencies, acquire and store the necessary data sources, as well as organize

and maintain such an environment in a sustainable and manageable fashion. This

becomes even more challenging, when different versions of data sources need to be

handled. Overall, these tasks are not suitable for users with low computer literacy,

such as genomic scientists, hence they are usually taken on by bioinformaticians.

A variant discovery platform should allow to integrate primary and aggregated

resources and make them available to user. Furthermore, such as platform should

be extendible to integrate new data resources in the future, to react to new develop-

ments and to allow flexible customization for different areas of research. To achieve

this a unifying framework that provides developers the environment to integrate

annotation resources is necessary. Such a framework implements common tasks,

such as input data generation and annotation tracking allowing developers to focus

on tool specific tasks.

c Here the term contamination is used to describe impureness of a sample on DNA level, which may

be caused by e.g. biologically processes (e.g. in-vitro growth), medical treatment (e.g. transplants),

accidental or unexpected mixing of diploid DNA samples of different individuals of the same or-

ganism. Contamination does however not refer to contaminations e.g. of hygiene that may refer to

contamination with fungi, bacteria or viruses, or radioactive contamination.
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6.3 va r i a n t f i lt e r i n g

s em an t i c q u e r i e s

As outlined before, variant filtering is fundamental when exploring variant datasets.

Using external annotation resources means that users get a variety of possible filter

options for their queries. The same annotation attribute by different annotation

toolsmayhave a differentor a similarmeaning for a query,putting a burdenonusers

to identify the annotation feature name they need to use. One common example

are gene symbols, which may be called gene name, hgnc, or simply gene.

When designing queries, users should be empowered to formulate them in a user

friendly way and should not have to think in terms of feature names, but rather

in terms of which variants they want to identify. For example, users should be pre-

sented with an input for a gene identifier and the query system should use the

necessary feature names (e.g. symbol, gene name, HGNC,MGI, . . . ) to test against.

I call this abstract query to emphasize that features, although they can have different

names, can be semantically equivalent on an abstract level.

com p l e x qu e r i e s

When a relational database is used, SQL is the standard query language to answer

queries on these databases. These queries are complex and not user-friendly, there-

fore user defined conditions have to be translated into a SQL -query that can be

executedandansweredby the database system.However, somequeries are very com-

plex to formulate in a relational system, especially when filter conditions require

self-joins to utilize multiple rows of the same table. Thus, variant filter methods

should also provide means to filter query result sets programmatically, to ensure

that such complex queries can be performed in an efficient, sustainable and non-

relational fashion. One example for this type of complex query are searches for

compound heterozygous mutations, which can only be executed with regards to

transcript boundaries and family genotypes because multiple variants need to hit a

single transcript.

p r e - d e f i n e d qu e r i e s

It is important for users to be able to test their hypotheses dynamically in an ex-

plorative way. However, to facilitate reproducibility and comparability it is also

important to support standardized, pre-defined queries that filter a dataset with

fixedparameters.When large studies contain hundreds of samples, suchpre-defined

query criteria provide a valuable starting point for a more detailed and individual-

ized analysis or overview.
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6.4 t e c hn i c a l r e q u i r em e n t s

Because a centralized database is required, encryption and authenticated commu-

nication is necessary when data is transfered over public networks.

When input data is transfered over a network, a validation of the data integrity

should be performed to avoid data corruption. This is especially relevantwhen data

is transfered through a strict and possibly intrusive firewall that clinical networks

employ.

A quick turnaround time is necessary for an explorative variant discovery pro-

cess. The complexity of the query is essential for the overall filter time. Displaying

mutations in a single gene should be possible within a few seconds, whereas more

complex queries involvingmany control samples and filter criteria may be expected

to return results within minutes. Processing of raw data is expected to take longer

because this step mostly depends on the external tools and their performance to

annotate datasets.

Because of the unpredictable complexity of a query and the required runtime, it

is necessary to handle long running processes. Such a feature allows users to send a

query to a queuing system that decides which jobs to execute and stores the results

to be retrieved later. Furthermore, due to potentially restrictive computer network

policies in a clinic, the application should support usage through a firewall.

Because variant discovery is usually done alongside other biological experiments,

features to export the datasets and relevant information about variant- and sample-

annotation are required to integrate the platform into external workflows. The

absence of external interfaces significantly obstructs the reuse in new platforms, e.g.

SeattleSeq that although highly cited is only used by one variant discovery tool (see

4.2.2). The interface should support different response formats to allow flexible

integration for future developments.
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7
A VARIANT DI SCOVERY PLATFORM

7.1 data a nd s am p l e m an ag em e n t

7.1 . 1 Upload

The de-facto file format to encode lists of variant is the VCF format. It defines a

set of attributes and sample information that can be used to describe the quality,

support, genotype and additional annotations for a variant. Each file may contain

multiple samples that are the result of a variant calling process (e.g. genotypes in

tumor and normal tissue, or genotypes from parents and their offspring).

The format is flexible, thus it is possible for the same information to be encoded

in different ways and under different attribute names. For this reason, different

parsers have to be supported to extract the relevant information from standard

VCF files, or customized output by standard tools such as GATK 150, VarScan2 151

or EXCAVATOR 152.

Data is uploaded as individual files, possibly compressed using the well estab-

lished block gzip format of tabix 153 or as a ZIP archive that contains multiple files

and a meta-information file. The upload is based on the Hypertext Transfer Proto-

col (HTTP) protocol allowing programmatic access to integrate the software into

workflows.

When the upload is successful, the variants are extracted into the database and a

index is generated that allows developers to trace the variants in the database to the

file location in the raw-data. Based on these information, the variants for individual

samples are extracted into a table containing the genotype, as well as the minimum

information provided by the VCF standard.

7.1 .2 Sample organization & meta information

Sample data and meta information are organized in a hierarchical structure that

represent varying degrees of abstraction. It is complemented by a dynamic tagging

system, that allows each instance in the hierarchy to be annotated. The minimal in-

formation necessary to document variant datasets is realized using this annotation,

with pre-defined tags. Tags provide a flexible way to add controlled vocabulary to

the system without having to restricting users.

57
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s am p l e a n no tat i o n s ch ema

The hierarchical sample schema includes several levels of abstraction from a specific

sample to the analysis of complete pedigrees.

Furthermore, a structured sample organization allows to compile focused studies

from previous experiments and the establishment of a shared control sample pool.

These features are fundamental when samples are queried as part of ameta-analysis.

The sample hierarchy (figure 7.1) allows to view a dataset on different levels of

abstraction. Themost abstract level are entity groups,which can be used inmultiple

projects, e.g. when they contain entities carrying multiple phenotypes of interest.

Each entity group is comprised of at least one entity, which represents an individual

(e.g. patient or cell line) that is part of a study group. Each entity is associatedwith at

least one specimen, which represent the biological specimen (e.g. aliquot) that are

sampled from one individual and for which next-generation-sequencing analysis is

performed. Because several analysis pipelines may process the same specimen, each

one is linked to several VCF files, containing samples from the different analysis

workflows.

In practice,entity groups represent the smallest group of entities sufficient to

perform variant discovery on an individual (e.g. patient or study subjects like mice).

In case of complete family trios, parents and child are part of one entity group.

In case of tumor-normal studies the entity group only contains one entity. This

allows to compile newprojectswithdifferent researchquestions fromexisting entity

groups, while being flexible to be applied to a wide range of study setups.

A note on the terms specimen and sample: In an interdisciplinary field, such as

bioinformatics, the same term may have different meaning. The term sample is an

example for this. For wet-lab applications this usually refers to a biological specimen

that was sampled from an organism. For variant calling from aNGS pipeline it refers

to the result of the analysis stored in a VCF file. The structured sample hierarchy

uses the term specimen to describe the biological sample taken and the term sample

in the way used by the VCF standard.

tag s

To classify the elements in the sample hierarchy (see Figure 7.1), controlled vocabu-

lary in the form of tags are used. This is necessary to establish a unified terminology

that can be used for automated analysis and support long-term documentation in

a field where different users work with the same datasets over a long period of time.

Tags are a flexible way to allow adaptation to new projects. User are able to add new

tag categories, which adds new terminology making documentation of research

project from different disciplines more feasible.

While the tags are dynamic and new tag categories can be added, some tags are

mandatory to provide basic analysis functionality. I call these tagsmandatory mini-

mal information, that are necessary to perform the required variant filtering strate-

gies (see Part iii). There are mandatory tags for entities, specimens, samples and
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7.1 .3 Reports

User need to be empowered to filter variants to find variants of significance. This

is most often achieved through multiple query refinement iterations and context

based variant interpretation. For this taskusers can export lists of variant in different

formats (e.g. Excel or VCF format) to work on result lists in a offline fashion which

is suitable for a practical solution.

Once users have identified variants of significance they have the option tomark vari-

ants of interest and generate a standardized summary report as a unified template

to communicate their findings to others.

For this purpose developers utilize a reporting template engine to create Open

Document Format files, that users can view and edit using standard text process-

ing software (e.g. LibreOffice, Microsoft Word etc). The possibility to modify a

report allows users to add smaller modifications (e.g. highlighting) by themselves

if necessary, increasing productiveness.

After modifying the reports, users can upload the documents back into SNuPy

to document their finding and keep documentation centralized.

7.1 .4 Quality controls

The quality control measures in SNuPy are based on variants and data, which is

generally available from VCF files based on the format reference 149.

Several measures are computed to support the discovery and possibly subsequent

recovery of errors:

• Detecting sample swaps is a crucial step and the most basic way to do this is

to look for coherent overlap between different specimens of the same patient

or between family members. If the overlap of variants is too small a sample

swap is possible and users can take action to verify this further.

• Another straight forward method is to check the variant patterns on the

gonosomes to predict the gender of the sample, which can be used to verify

if the result is coherent with the study documentation.

• Some sample contamination events can be detected on a variant basis, for

example by investigating the variant frequency patterns of heterozygousmu-

tations. In the event of a contamination of two individuals the frequency

distribution becomes a mixed distribution, which becomes obvious in a dis-

tribution plot.

• Using basic statistics about the variant count distribution and the allele ex-

change rates also provide valuable information about the mutation rate.



62 a va r i a n t d i s cov e ry p l at f o rm

All of these measures are made available to the users for investigation and to em-

power them to detect exceptional datasets.

For more information on the calculated measures see section 8.6.

7.1 .5 Role-based authorization system

A role-based user management system is used as a manageable and flexible solution

to the user management and access regulations. Each user has direct access to the

datasets he is assigned to, while he can access other datasets based on institutional

association and his role. This allows to share datasets in a fine and coarse grained

fashion.

The access rules can be divided into four different actions and four different roles:

The four actions are:

qu e ry - Query datasets and filter their mutations by submitting a query.

mod i f y - Modification of a dataset and its meta-data. Only few members of

projecthave the competence andauthority todocumentandmodify adataset.

r e v i ew - Use samples in a review process, that is used to filter rare mutations

in the database or exclude possible sequencing artifacts. This implies read-

access to the samples of a users institutions.

u p l oa d - Add new VCF files to the platform and start processes to augment

the datasets.

These actions are used to categorize the abilities users have to interact with the

system.

In order to categorize the users, three different roles and an administrator are

used to organize the user access.

r e g u l a r u s e r - is able to query datasets and modify only a specific set of

datasets.

r e s e a rch man ag e r - is able to modify all datasets as well as review all

datasets of the associated institution.

data man ag e r - is able to modify all datasets and has the ability to upload

new data. This requires basic training for users to identify VCF file format

violations that might lead to misleading variant calls in the database.

a dm i n i s t r ato rs - have access to all datasets and are able to add andmod-

ify users & institutions, as well as their roles.

To increase the integrity of data access, the elements that users are authorized

for are retrieved through a single SQL statement. This prevents developers from

mistakingly granting unauthorized access when extending the platform.
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7.2 a n no tat i o n , q u e ry , ag g r e g at i o n f r am ewor k ( aq ua )

The AQuA framework defines three module types which developers use to extend

the variant discovery capabilities. Annotation, query and aggregation modules are

independent from each other and enable a configuration based approach, which

allows developers to add new modules with reduced programming efforts. This

principle allows developers without much experience in the underlying web appli-

cation framework to contribute new features and filters.

All modules are configured to support a set of one or more organisms and varia-

tion types (i.e. SNV, Indel and copy number variation).

AQuA is divided into three module categories

a nno tat i o n , which executes external annotation tools and store the result

in the database.

qu e ry , which merge a set of filter conditions into feature-based queries. For

example, a query for a gene identifier merges multiple filter conditions to

match against different gene identifier names (e.g. gene name, gene symbol

etc.).

ag g r e g at i o n , which provides variant annotation attributes and presenta-

tion options for the query result.

Allmodules are independent from each other, although in practice each annotation

tool will require a set of query and aggregation modules to provide the annotation

features to users.

7.2 .1 AQuA annotation modules

Annotation modules provide the functionality to setup, manage and execute exter-

nal variant annotation tools as well as storing the result of the process. Their role

is to set up the requirements to run an external annotation tool, check for system

dependencies and ensure that execution of the tool is possible. When this is imple-

mented fully, automated tasks are run to apply the annotation to all datasets in the

database and ensure that every variant is annotated. How and which annotations

are stored is defined by a database model, which is also used further downstream

to define filter dependencies and generate the appropriate query statement.

One annotation module consists of the following components:

r a k e f i l e Rake is amake-like system that is used to define setup and clean up

tasks for an annotation resource. Several general tasks are available, which

are available for all tools. This includes an activation and deactivation tasks,

which is used to run the annotation on all datasets currently in the database

and make sure the annotation is available for every one of them. Manual
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aqua a nno tat i o n i m p l em e n tat i o n Heremethods to annotate

an input file and storage of the results in the database is implemented. Stan-

dard file formats for variant annotation, such as VCF files are generated as in-

put for themodule by the annotation process, according to the specifications

in the implementation. Annotation implementations are also configured to

support specific variant types (snp, indel, cnv) and organism.

Figure 7.3 shows an overview of the process that is used to annotate variant

datasets. During the setup phase, an administrator uses the task definitions in the

Rakefile to download and setup the dependencies for the external annotation tool,

as well as use it to trigger the creation of the necessary data model. After comple-

tion, existing datasets are annotated as part of the initial annotation. Afterwards

an annotation process will always trigger the annotation, when it is applicable to

the uploaded dataset.

The first step in the annotation process is to identify all annotation modules,

which are (a) suitable for the variant type (SNV , InDel , CNV ) and (b) able to

provide annotation for the organism the data is based on. To support more com-

plex annotation scenarios annotationmodules can contain inter-dependencies, this

way a tool that works on protein interactions can rely on the protein consequence

prediction of another annotation resource. The annotations are then processed in

the order determined by the topological order of the dependencies and will fail if

circular dependencies are detected.

Before annotation, the missing variants are determined and a minimal input

file is generated, eliminating redundant annotations. The minimal input file can

have different format, currently supporting CSV and VCF . An AQuA annotation

module implementation will then annotate the input file and use the annotation

model to store the results.

It is also possible to use the annotation capabilities directly on an input file,

without storing information in the database. This can be used to integrate the

annotation capabilities of SNuPy into a larger workflows.

7.2 .2 AQuA query modules

Query modules implement the requirements for abstract queries (see section 6.3)

and merge filter modules, which provide the concrete filter conditions.

Abstract queries allow natural problem formulation for genomic scientists in a

way that is comprehensible and matches the knowledge domain of the field. De-

tailed filter details, such as feature names and meaningful value ranges can be speci-

fied by developers, while users are enabled to translate their hypothesis into a query

unobstructed from specific feature names. Fine granularmodifications to the query

are made possible by activating and deactivating specific filters, if necessary combin-

ing them with different logical operators.

A query module has the following components:
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variants. Such a filter also includes a specification of requirements, which

have to be retrieved from the database.

Each abstract query is supported by a set of filters that provide the necessary filter

conditions. The set of filters is combined either using logicalOR orAND opera-

tions.

Figure 7.4 shows the processes that are executed when utilizing query modules.

The query definition is submitted using HTTP, either through the web interface

or by an API request (see subsection 7.2.4). A variant discovery process in SNuPy

passes the query parameter on to the QueryProcess, which first builds the SQL

statement, then executes programmatic filters and returns the result. To built the

SQL statement three information are necessary: 1) the attribute names that are

required for the programmatic filters, 2) the SQL conditions that performdatabase-

side filtering and 3) the tables which are used in the process. The latter also accounts

for relations among depending models, introducing necessary JOIN operations

to the SQL statement. The other information are obtained from the active filter

modules, which utilize the Object Relational Mapper (ORM) ActiveRecord to

provide database specific partial statements.

7.2 .3 AQuA aggregation modules

Aggregation modules decouple the features required during the data filtering pro-

cess from the results, which are displayed. An aggregation module consists of a

AQuA aggregation class implementation, which defines the features that need to

retrieved from the database and a method to enrich them(presentation logic), e.g.

with links to other websites or resources. Optionally, developers can define color

gradients or assign colors to regular expresion matches to highlighting important

features.

Two aggregation types are available: attribute and grouping aggregations . The

first retrieves annotation attributes for a variants, the second groups records of a

query based on an attribute. Attribute aggregations define which attribute is re-

trieved and how it is presented. Grouping aggregations are required to denormalize

the output of relational table queries, which is convenient for data analysis, but is

confusing for users who are confronted with redundant information. Thus, users

may chose to group their aggregated results by exact location, or region overlap. Just

like query module implementations, aggregation module implementations specify

their dependencies using the annotation data model and associations to generate a

SQL statement, that is database system independent.

Figure 7.5 shows the aggregation process, which is triggered after a query process

was either executedor its result loaded from thedatabase. The colorizing capabilities

are only applied to the result when users decide to render it in a format, that allows

coloring (e.g. HTMLwebsites).
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7.2 .4 Query Capabilities

SNuPy implements three different ways to query datasets. First are parameterized

queries that filter a user-defined set of datasets by user-defined criteria and thresh-

olds. This allows users to explore datasets and refine queries in a top-down fashion

that incrementally applies refined filter conditions to find candidate variants.

Second are per-defined queries that can be used to query datasets in a repro-

ducible manner without the possibility for users to change the parameters indi-

vidually. This is used for large studies that need to run the same query on many

individuals and require lesser exploration.

Third aremeta-queries that allowusers to query all samples of a specific organism

that he has access to. When hundreds or thousands of datasets are available and

spreadovermultiple projects, this empowers user toperformabottom-upapproach.

Here candidate genes are already known (e.g. from other studies) and users are

interested in which samples carry mutations in these genes.

All of these ways utilize the query process defined above in order to make sure

that results retrieved through one are reproducible using another method.

External Interface

An external advanced programming interface (API) enables the data management

and query capabilities of SNuPy to be integrated into larger workflows and into li-

braries forother applications. Twooutput formats are supported: JSON(JavaScript

Object Notion) and TSV (tab-separated values). The first is a state of the art way

for object serialization and has wide support in other programming languages and

programs. TheTSV format is a human readable format, that is supportedby spread-

sheet programs so users can view the tabularized data andmakes processing of data

easier.

Automated data management and sample retrieval can be based on a RESTful

HTTPa interface, allowing programmatic retrieval of sample groups and additional

information in JSON or TSV format. The same RESTful interface allows to dis-

play the HTML-based web interface, that users interact with when HTML out is

requested. The latter is the defalt behaviourwhen SNuPy is access throughmodern

web browsers.

Such an approach allows any information and action that is available through the

user interface to be accessible through a programming interface too. Additionally,

the same access rules apply, as they do when users access the platform. This means

that any restrictions defined by the role-based authorization approach is abided

when data is accessed programmaticically.

Users of the web interface are shielded from retrieving excessive amounts of

variant genotypes, because of the practical reasoning that large number of variants

a RFC 7231: https://tools.ietf.org/html/rfc7231
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(e.g. more than 15,000 by default) are not feasible for regular users in most circum-

stances. However, the API allows complete datasets and large volumes of variants

to be analyzed and downloaded programmaticically.



Part V

IMPLEMENTATION





8
SNUPY

8.1 ov e rv i ew

SNuPy is a Ruby-on-Rails web application that uses a MariaDB database to em-

power genomic scientists to query their own variant datasets. This chapter will give

a brief introduction to the web interface and how users interact with it to query

and interpret variants.

Theweb application provides access to the functionality andprocesses, that users

can execute to manage and explore whole-exome datasets.. This includes the basic

model definitions for the data and user access management, as well as the sample

hierarchy, the variant data and VCF files. Furthermore SNuPy provides methods

to visualize data in dynamic tables, network graphs or plots.

The datamanagement andprocessing concepts presented before need to be orga-

nized and made accessible for genomic scientists, both on a technical and usability

level. A web application solution is system independent, scalable and can be used

even with limited hardware resources on the client side. Its interface allows flexi-

ble, dynamic and user friendly interaction, while the underlying data model allows

validation which is crucial when custom data is uploaded.

Figure 8.1 shows an overview of the platform and its components. Users interact

with the system through the web interface or HTTPAPI, that requires authentica-

tion before directing the request to the actual web application. Performing authen-

tication on the web server allows SNuPy to be used in conjunction with external

authentication services (e.g. LDAP andKerberos). This allows seamless integration

into existing usermanagement systems, that are commonly used in institutional IT

infrastructures. Additionally, such a setup ensures that users are prohibited from

accessing any information that is stored inside SNuPy without proper access per-

missions.

After users have been authenticated, the authorization process checks if the user

has the permission for the requested action (e.g. uploading a VCF file). This stage

makes use of the role-basedauthorization systemdescribedearlier. It grants access to

the tasks that users require to manage variant datasets and users, as well as perform

quality control, variant discovery and reporting.

Access to the database, for basic data models (see section 8.2) and the variant an-

notation is performed through the ActiveRecord object-relational mapper making

the system database independent. Tasks that require to work with variant annota-

tion use AQuAmodules to access annotations or filter datasets (described below

73
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va r i a n t data s e t s - uploaded raw data and the set ofmutations per sam-

ple are defined here.

acc e s s m a n ag em e n t - is used tomanage authorization todifferentparts

of the web application and the actions users are allowed to perform on

datasets.

a n a ly s i s - Contains all relevant information to an analysis, including the gen-

erated reports.

Information about variants is divided into two parts: One are the variant data

models, which hold information regarding the genomic position and nucleotide

acid exchange of a variant, the second are variant datasetmodels,which link variants

to observed genotypes in individuals (variant calls). These genotypes depend on

the analysis theNGS sequencing data is based on and is uploaded as a VCF file. The

variant dataset is also where the multi-organism support in SNuPy is rooted. Each

variant call is associated with an organism through its VCF file association, that is

necessary for the AQuA annotation processes to determine the correct organism-

dependent database, such as transcript sets.

As described above, AQuAmodules use these standard data models to annotate

variants with external information and define associations between annotations

and variants.

The sample hierarchy allows the organization and categorization of variants

datasets using a flexible tagging system.

Gene panels can also be added dynamically to provide re-usable lists of genes of

interest. This is useful when the same set of genes is either of interest to larger user

group, or a specific study setup.

Additionally, users can associate static and dynamic reports with their datasets.

Static reports are files, that are associated evidence and is uploaded through SNuPy

. This can include reports on the variant calling process for VCF files or additional

documents relevant to the dataset documentation. Dynamic reports are generated

from a query result and are associated to diseased entities. Such reports provide

standardized summaries that users storewhen they have found a variants of interest.

8.3 p ro c e s s i n g i n f r a s t r u c t u r e

The basic processing infrastructure consists of two elements: One is the web server,

which receives query requests and renders the results into the output format. The

second is a daemon that polls a job queue for new jobs, executes them and stores

the result in a database to be delivered to the user through the web interface later.

The latter is required to handle long running or computationally intensive jobs.

A central job queue also provides basic load balancing and scaling capabilities,

when multiple worker processes execute jobs from the job queue. Two different
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queues are used to handle sample annotation & extraction in one and query tasks

in another.

Long running web requests are often blocked by firewalls, which are common

in clinical IT infrastructures. This is problematic for computational or read-write

intensive jobs, because they usually take longer than the firewall timeout allows.

Such tasks are can be submitted to the queues for asynchronous processing. The

central database is used to place jobs in the queue, which in turn are processed by

job queueworkers. This concept allows scalingwith any number ofworkers, which

have access to the central database.

8.3 .1 Annotation queue

The annotation queue processes jobs for variant annotation, computing quality

measures and storing genotype data fromVCF files in the database. These tasks are

read-write and computationally intensive. The runtime depends on the amount

of data uploaded and the annotations that are computed.

8.3 .2 Query queue

The queries which are submitted use flexible filter values. Thus runtime can vary

greatly between queries, because of the attributeswhichneed to bematched and the

number of datasets that are included. The query queue processes are dynamic read-

only operations andmight be processed by any number of workers, thus providing

scaling for a growing user base. Furthermore the usability is increased by caching

of long running jobs that allow to load results from previous complex query.

8.4 data man ag em e n t

8.4 .1 Vcf File & Sample import

The basic workflow to add new variant data consists of four steps:

1. Upload variant data in VCF format

2. Annotate the variant data using AQuA

3. Extract genotype information from samples in the VCF file.

4. Link the genotypes to the specimens

In the first step, data manager upload VCF files and link them to an institution

and an organism. The institution is required to make sure the data can only be

accessed by authorized users, the organism is required to apply the correct annota-

tions. The integrity of the upload can be ensured by providing a MD5 checksum

for each VCF file.
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In the second step the annotation of the VCF file is performed, using the applica-

ble AQuA annotation modules (see section 9.1). A tool is not be applicable, if the

given organism or variant type is not supported. This step only annotates variants,

which were not annotated before to avoid unnecessary annotation computation.

Once the annotation was successful for all applicable annotation tools the geno-

type information can be extracted into samples from the VCF file.

A standard VCF file contains variant coordinates as well as the state of a variant

in a list of samples. This format allows to store arbitrary information alongside a

variant (in the INFO field) and the individual samples, but also defines a core set

of attributes, which should be present for every record. These include:

g e nom i c l o c at i o n - chromosomal position of a variant.

r e f e r e n c e & a lt e r at i o n - two columns that carry the reference al-

lele and a list of alterations. Multiple alterations are possible, if both alleles

deviate from the reference ormultiple sampleswere sequencedwithdifferent

mutations.

f i lt e r s tat e - a filter field that indicates if a variant has passed all necessary

filters during variant calling. PASS and . suggests that a variant passed the

filters, all other values indicate that a filter has failed.

g t - the genotype of a variant in a sample, representing homozygous and het-

erozygous mutations.

d p - the read depth of a variant in a sample.

a d - the allelic depth of a variant in a sample, allowing to calculate frequency of a

variant in a sample.

gq - genotype quality, a measure that is used by variant callers to rate the confi-

dence in the genotype prediction.

f s - short for fisher score, used to measure the strand bias of a variant call. Some

variant are only called on one strand of the sequenced fragment, which sug-

gests a systematic error in the sequencing process. Variants with a hight

strand-bias score are usually removed or discarded.

The information that is encoded in these files depends on the variant caller, I have

implemented VCF parsers for the standard format, the variant caller GATK 154, the

somatic and trio variant caller VarScan2 151 as well as the copy number variation

caller EXCAVATOR 152.

If other tools deviate from the standard format definition developers can im-

plement their own parsers, which extract the minimal requirements defined in the

VCF standard. The parser allows to define rules for records and header, to make

sure the user uploaded data in the correct format. VarScan2 for example produces
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a VCF-like format, that requires careful attention and does not comply fully with

the standard format.

Because projects may contain many VCF files, which in turn may contain many

(possibly hundreds) samples the upload and sample extraction procedures allow

batch processing. VCF files can be uploaded as ZIP archives, which include a config-

uration file associating variant datasets to an institution, organism and the name to

use inside the platform. Sample extraction sheets allow batch extraction of samples

from VCF files. They are uploaded as tab-separated-value (TSV) files, containing

information of the sample type, name, tags and associated users.

The forth and last step is to link a sample to the sample annotation hierarchy.

This is done by research managers and also allows to create large batches using the

web interface. In general, research managers have access to all relevant information

about a NGS run, its history, the phenotype and additional information that are

relevant to the study. Once a sample is categorized, it can be queries through the

web interface.

8.4 .2 Database & ActiveRecord

A relational database is used to store all datasets and other information. ActiveRe-

cord maps the data models to the database. This object relational mapper allows to

instantiate objects from database record and define direct and indirect relations be-

tween models. All relations are kept consistent by triggers that are executed before,

during or after an object is created, updated or destroyed. The AQuA framework

uses these relations to determine the requirements for a module and compile query

statements during the query and aggregation processes (see below). ActiveRecord

provides several database adapters to the most common database management sys-

tems, allowing the discovery platform to be deployed on a wide range of database

systems.

8.4 .3 Access Management

The access management is implemented as a role-based user system, that grants

users different permissions in different institutions. The roles and the permissions

they give to users were described before in 7.1.5.

A role-based authorization system (cancancan library) is used to grant access to

each action users can perform through the web interface. This includes actions to

query, create, edit or removal of elements.

Developers may use the three different methods to access objects on either level

of the sample hierarchy (7.1.2, or any other object that has a relation defined to an

institution and user.
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u s e r . v i s i b l e ( m od e l ) - retrieves all instances of a model, which are as-

sociated with any of the users’ institutions, or where the object is associated

to the user through a direct association.

u s e r . r e v i ewa b l e ( mod e l ) - retrieves all objects of a model, which are

associated with institutions, where the user is a data or research manager, or

the object is associated to the user through a direct association.

u s e r . e d i ta b l e ( mod e l ) - retrieves all objects of a model, which are as-

sociated with institutions, where the user is a data manager, or where the

object is associated to the user through a direct association and belongs to

one of his associated institutions.

Themodel parameter can be any model, which can be associated to an institu-

tion and user (see section 8.2). This includes indirect associations, that are defined

through other models. This ensures that access to specimens is always consistent

with the access to the respective entity group, because the institution and user asso-

ciation is established through the sample annotation hierarchy.

Granting users access to elements that they are directly associated to, allows a

very flexible sharing of datasets with users. It enables specific objects to be shared

with users from external institutions without exposing other private datasets.

The usual workflow does not require datasets to be removed from the database.

However, if it becomes necessary, this task is only authorized for administrators to

prevent any accidental or deliberate wrongdoing when handling the datasets.

8.5 w e b i n t e r f ac e

Data and user management interfaces are available to upload VCF files, extract sam-

ples and integrate the data into the sample hierarchy, that is used to organize the

data (see Figure 8.3). Users are shown extracted samples that have not been placed

into the sample hierarchy to improve organization. Long running jobs, such as an-

notation and complex queries are send to the job queue that is displayed at all times,

allowing users to access the result conveniently.

Details for datasets and variants are shown in JavaScript-driven, dynamic Hyper-

text Markup Language (HTML) tables. Developers colorize elements of the table

by defining rules as exact or pattern based matches against texts, color scales for

numeric values or a discrete coloring for factors (for an example see Figure 8.7).

8.5 .1 Query interface

Toquerydatasets,users first selectwhich samples theywant toquery (see Figure 8.4).

It is possible to pre-select all datasets that match specific tag (e.g. tissue, disease etc.),

tomake the query design easierwhen hundreds of samples need to be queried. This
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Figure 8.3: The basic SNuPy interface.

Active projects, a list samples that need to be integrated in to the sample hierarchy

and of previously or currently running jobs are displayed when users access the

platform. Tables are supported by a JavaScript library (dataTables) to a allow

dynamic filtering and sorting.

Figure 8.4: An example for an annotated query output.

The dynamic tables allow developers to use different coloring rules to help guide

users to find relevant variants more easily. Developers can add methods to the

bottom of a table, that allows users to perform actions on selected elements. In

this example, users can calculate sample similarities between selected samples.

feature also allows users to apply set operations to the selection of samples, e.g. to

select all datasets that are tagged as relapse and were built using the somatic caller

Mutect 155(’mutect & RLPS’).

After users have established the samples of interest, the filter conditions are speci-

fied througha variety of categorizedquery criteria (Figure 8.5). If necessaryusers can
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use different filter conditions and combinations, for each filter criteria. Figure 8.5

shows an example, where the user has chosen to find homozygous variants that are

covered by at least 10 reads, have a frameshift or otherwise fatal consequence for the

protein product, is heterozygous in two other samples and is present in not more

than 15% of the general population. The setting for the last criteria are shown in

the figure and demonstrate that users have a choice how the abstract query condi-

tion present in not more than 15% of the general population is applied. The example

shows that the condition takes the variant frequency of the 1000 genomes and the

ExAc project into account, as annotated by the Variant Effect Predictor (VEP).

Users also chose which aggregated attributes should be displayed for each variant

(Figure 8.6), allowing focused assessment of variant impact or a more explorative

approach. Each variant attribute is then displayed as a column in the result table

(Figure 8.7), possibly color coded.

The color coding highlights important or unusual attributes for a visual inspec-

tion by users and to provide a reference point for its significance. This is a necessary

step during the variant interpretation process, because of themultitude of unscaled

variant scores that are available. Without such interpretation guidance, users need

to research the meaning of scores and how to interpret them themselves, leading to

a fragmentation of the way the scores are interpreted.

User also have the option to download the results directly, instead of viewing

them in awebbrowsers. This is necessary e.g. when results are stored forpublication

or later use in an external program.

8.5 .2 API Interface

SNuPy provides access to its data management and query capabilities through a

RESTful HTTPS interface. The model-view-controller (MVC) framework, pro-

videdbyRuby-on-Rails, allows to provide such an interface in conjunctionwith the

regular HTML-based user web interface. This approach reduces redundant code

because the API returns the same information as the user interface does, only in

machine readable format. Because the access is based onHTTPS protocol, a secure

and encrypted connection is established between the API user and the server.

There are two use cases that users of the API will face. First is the data manage-

ment and sample annotation feature of SNuPy , that is available through a pure

REST interface. This allows the following actions on objects of the sample hier-

archy and its information, by using the appropriate HTTP verbs: listing all or a

specific object (GET), create an object (POST), update an object (PUT) and delete

an object (DELETE). This allows developers to identify samples of interest that

they want to query (e.g. samples derived from tumors). Second is the usage of the

query and aggregation capabilities, which can be utilized through the /aqua end-

points of a project (e.g. projects/1/aqua) and returns the results in JSON or TSV

format.
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Figure 8.5: Query filter configuration.

The filter conditions and procedures are grouped into categories for easier

sorting. Each user-defined value is passed on to the selected filters, that are used to

reduce variant datasets. When multiple options are available users are displayed

dialog that allows them to select specific elements.

This API interface has been used to develop a R-librarya that allows access to

variants and annotations in an R environment. R is a well established platform for

statistical analysis,machine learning and visualization. TheR library usesR6 classes

to represent the objects of the sample hierarchy and their relation, as described ear-

lier. This solution allows call-by-reference, which is critical because variant datasets

canbecome large anddata duplicationputs a heavyburdenon theworkingmemory.

To retrieve variant data it also uses a streamlined download from SNuPy , allowing

the data to be parsedwhile data is still send from the database. The library was used

for custom analysis workflows that integrate additional data sources into a study

(e.g. see chapter 11), as well as making use of the advanced statistical methods to

analyze datasets with respect to a specific study question, that cannot be answered

with the SNuPy web interface.

a available at https://github.com/sginzel/snupyR
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Figure 8.6: The list of grouped aggregations.

Each tool provides its own set of aggregations that users are displayed as part of

the query result. Some aggregations (e.g. Loss Of Function Prediction) will add

multiple columns to the result in order to make it easier for users to select

consistent sets of attributes.

8.6 q ua l i t y con t ro l m e a s u r e s

Quality control measures can be calculated on-the-fly (e.g. sample similarities) or

are pre-computed for individual samples. When multiple samples are assigned to a

project the quality controls are presented in an aggregated fashion tomake compar-

isons easier. Quality control summaries are displayed either as plots or color coded

tables.

s am p l e s i m i l a r i t y

Several measures of sample similarity are available for users that allow to assess the

mutational similarity between samples.

The similarity between samples may be calculated from:
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Figure 8.7: The result of an example query.

Variants and genotypes in samples are displayed in rows and using color coding to

highlight features that are important for users. For example, the population

frequency ranges from red to green, depending on how common a variant is.

This example also shows that users see the frequency of a variant in the database,

helping users to judge its importance. Categorical values, such as the amino acid

class of the affected amino acids are highlighted in different colors to support

quick visual assessment of differences.

a b s o l u t e ov e r l a p - although this is not a similarity in a metrical sense,

the absolute overlap between two samples lets users compare samples and

investigate possible sample swaps.

r e l at i v e ov e r l a p - as the absolute overlap this measure is not a mathe-

matical similarity measure. But it enables a normalized view on the size of

the overlap between different samples.

co s i n e s i m i l a r i t y - The cosine similarity between two samples is based

on the cosine similarity between their b-allele frequency vectors a and b.

cosim(a, b) = cos(−→a ,
−→
b ) =

−→a ·
−→
b

∣

∣

−→a
∣

∣ ·
∣

∣

∣

−→
b
∣

∣

∣

Using allele frequency vectors results in higher similarities between related

members compared to unrelated members. Because all frequencies are> 0,

the similarity can be transformed to a distance measure (codist(a, b) =

1 − cosim(a, b)), which in turn can be used for sample clustering.

The sample similaritymeasures allowusers to identify possible sample swaps or sam-

ple contamination, when combined with information from lab-books and other

documentations.

b - a l l e l e f r e q u e n c y p l o t s

The b-allele frequency is defined as the frequency of an alternative read among all

reads at a given position1. 1 I do not use the total

number of reads at a

position for the

frequency, due to low

quality base calls some

reads are not taken

into account when

calling a variant.
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ba f (var) =
|altreads(var)|

|altreads(var)|+ |re f reads(var)|

The b-allele frequency distribution plots helps to identify possibly unexpected

contamination of samples with foreign DNAmaterial. This quality control mea-

sure plots the frequency distribution of heterozygous variants for each sample. It

can be expected that heterozygous mutations are evenly distributed around the

expected frequency of 0.5.Note that multi-allelic variants are ignored for this kind

measure.

In case of a contamination this distribution becomes a mixed distribution with

additional spikes to the left and right of the 0.5 peak, because of homozygous and

heterozygous mutations introduced from the contaminant.

Such a contamination may be expected if the sample is impure or if donor ma-

terial is expected to be present in a sample that underwent allogeneic stem cell

transplantation at some point. Interpretation of the sample context by the user is

therefore always necessary.

va r i a n t coun t & qua l i t y s umma ry Asummaryof the vari-

ant counts is provided as a measure that users can include in their sample statistics.

It includes the total number of variants, deletions and insertions with different

genotypes (homozygous, heterozygous and heterozygous without reference), for

all variants and those covered sufficiently (20-fold). Mutational profile patterns

may be extracted from the nucleotide exchange statistics that list the number of

specific nucleotide exchanges for each sample

To identify abnormalities regarding the read depth and variant count distribu-

tion a detailed chromosome specific overview is calculated as well. This include the

average quality of the variants, the average read depth and number of variants for

each chromosome. This may help to identify large deletion events, which can result

in a reduced number of reads on a chromosome.

s e x p r e d i c t i o n A sex prediction was implemented to suggest to users

whether a sample is male or female, which can be matched against the documenta-

tion of a sample andmay be used to identify possible sample swaps. The calculation

is based on the average ratio of homozygousmutations over all chromosomes, com-

pared to the same ratio on the X-chromosome.

For female samples the ratio of homozygous mutations on the X-chromosome

should approximately be the same as on all other diploid chromosomes, thus the

ratio between the average portion of homozygous mutations is close to one.

Because all variants on the X-chromosome for male samples are homozygous

the expected value for this group is close to 2. Larger deviations may be due to

chromosomal aberration, such as XXY karyotpyes, contamination or other genetic

effects and should be investigated by experts.
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8.7 r e p o rt i n g

Static and dynamic reports allow users to add additional information to query re-

sults and facilitate standardized reporting for clinical application (see 7.1.3). This

allows users to communicate findings with external partners, share results and sup-

port reproducible variant interpretation. To generate a report, users select a list of

variants of interest from their query results After the report is generated, it can be

download as .docx file, which allows users to work with the result using text pro-

cessing software (e.g. LibreOffice, Word). After editing the report, possibly adding

additional information for its interpretation, users can upload the modified report

to document their findings.

Three dynamic reporting templates have been developed, based on a plug-in

mechanism that lets developers add additional templates (e.g. project- or disease

specific).

First a general report, that users may use to summarize their findings (see supple-

ment 3 for an example). They select variants of interest and optionally a set of gene

panels to configure the report. If no panel is selected all selected variants are part

of the report, otherwise the report is split into sections for each panel. A section of

this report contains three subsections: (1) a transcript based information about the

affected genes and transcript consequences, (2) a table of allele frequencies in the

specimen of the patient and relatives (if available) (3) a table of clinically relevant

information including the associated phenotypes and loss-of-function predictions.

The last page shows the query parameters that have lead to the discovery of the

variants in the report to provide basic documentation and allow to refine the query

later.

Second, is report for gene-drug interaction targets (see supplement 2 for an ex-

ample). It adds information about the druggability to the gene that variants affect.

The information for drug-gene interactions are retrieved fromDGIDB 156 and up-

dated regularly to provide most up-to-date information. This database aggregates

interactions from various resources cumulating to more than 50,000 documented

interactions for more than 3,000 genesb.

Third, the ACMG/AMP evidence framework for pathogenic variants38 is made

available as a report (see 1). The report includes an overview table for each variant,

that users select from a query as well as a description of the criteria, as published

by Richards et al.. For each variant of interest, a single-page table of the evidence

framework(see Figure 1 by Richards et al. 38) is added to the report, where the cri-

teria are substituted for the data which is available in SNuPy . This allows users to

perform standardized variant interpretation and allows the results of a sequencing

project to be reported in a standardized fashion across projects. The ACMG/AMP

template is a proof-of-concept for standardized variant interpretation in SNuPy .

b April 2019
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As the recommendation progresses and new disease-specific criteria will emerge I

expect these to be integrated in SNuPy as well.



9
AQUA MODULES

9.1 a n no tat i o n modu l e s

Table 9.1 lists the available annotation modules that have been implemented in

SNuPy .

The input and output specification defines which annotation modules can be

used independently from SNuPy using the command line. The supported organ-

ism and mutation type is part of the module configuration, because not every tool

generates annotation for all organisms and variant types. Dependencies can be

added that make sure another module was successfully before another tool is avail-

able.

Other tools, such as StringDB,DIDA,ClinVar andOMIM are not executed dur-

ing the annotation workflow, because these tools do not annotate variants directly.
Forexample, theOMIMmodule adds the information from theOMIMdatabase

to a table. It is then used in conjunction with the gene annotations derived from
VEP to provide useful query and interpretation capabilities.

Source No.

Features

Supported Organ-

isms

Supported

Mutation

types

Depends

on

Annovar

2015Mar22

69 homo sapiens, mus

musculus

snp, indel

CADD 2 homo sapiens snp, indel

Capture kit 1 homo sapiens, mus

musculus

snp, indel

ClinVar 30 homo sapiens

DIDA v2 6 homo sapiens VEP

OMIM 33 homo sapiens VEP

snpeff 4.1 db_75 21 homo sapiens, mus

musculus

snp, indel

StringDB v9 14 homo sapiens, mus

musculus

VEP

Variant Effect Pre-

dictor (VEP v84)

47 homo sapiens, mus

musculus

snp, indel,

cnv

Table 9.1: A list of annotations implemented as AQuA annotations modules.

9.2 q u e r i e s

Table 9.2 table shows which queries were implemented as AQuA query modules.

The query classes implement the abstract queries described in 7.2.2 and 6.3. In total

89
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users can utilize and combine more than 200 different filter conditions for more

than 70 abstract queries from 10 categories.

Category Query class No. ab-

stract

queries

No. filters

Variant Properties Target region 2 14

Population frequency 1 6

Read depth 1 1

Genotype & quality 2 2

Genetic coordinates 1 1

Recurrence in Sample/Entity 2 2

Genetic Impact Transcription consequence 1 9

Genetic identifier 1 12

Gene panel 1 11

Protein Impact Affecting canonical transcript 1 1

Amino acid exchange 2 13

Protein domain 3 13

Clinical Association Digenic disease association 1 1

Clinical significance 2 13

Phenotype 4 17

Tissue expression 1 1

Functional Impact Loss-of-function predicted 1 15

Conservation 1 6

Protein Protein Interactions (incl. Interaction to

panels)

2 5

Inheritance Presence/Absence in other sample 8 15

Single/Combined Inheritance pattern 6 12

Compound heterozygous 1 1

Sample comparison Presence/Absence in previous query 2 4

Restrict search using set operations 2 4

Allele difference between samples 1 4

CNV Gain/Loss by CNV 1 1

Absolute/Relative overlap of CNV with feature

(gene, protein, regulatory)

2 4

Regulatory Impact Affects transcription factor binding site 1 4

Hits microRNA or its binding site 2 3

API access Sample details 11 9

Variant & Genotype details 8 9

Table 9.2: A list of queries implemented as AQuA query modules.

va r i a n t p ro p e rt i e s Queries of this category filter variants by posi-

tion and variant specific features. Some of them are flexible between samples, such

as the read depth that depends on the sequencing process. Others are static, such

as the population frequency with which a variant has been recorded.

g e n e t i c i m p ac t Includes queries that allow users to remove or retain

variants that affect a specific gene.
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p ro t e i n i m p ac t These queries focus on filtering variants by their con-

sequence on the protein product, including the focus on variant that affect protein

domains.

c l i n i c a l a s s o c i at i o n Allows users to formulate queries that re-

quire information from clinical associations and phenotypes.

f u n c t i o n a l i m p ac t These queries are relevant when loss- or gain-of-

function events are associated with a disease.

i n h e r i ta n c e Different modes of inheritance can be applied to the filter-

ing process. Because it is an important feature, users have a wide range of options

available to combine the inheritance models. They can either specify specifically

which datasets to include/exclude or use the dataset hierarchy to automatically de-

tect parental variants.

s am p l e com p a r i s o n Because some query scenarios require complex

filtering scenarios, this category can be used to query dataset using set operations

such as union, intersection and set differences.

c n v Copy Number Variations provide different attribute types than smaller

variants, such as SNV and InDel . For example, smaller variants usually only affect

a small region of a transcript, while CNV can overlap with large portions.

r e g u l ato ry i m p ac t These filters allow users to reduce the result list

to variants that have a regulatory, e.g. by affecting microRNA binding sites.

a p i acc e s s Special queries are available through the API accees, which

allow its users to query single properties of the data models and variants.

9.2 .1 Pre-defined Queries

SNuPy implements a total of seven pre-defined queries, which are used to provide

reproducible and systematic queries on all entities of a project. This empowers

users to query hundreds of patients, using the same parameter and to compare the

results.

com pound h e t e ro z ygou s -Compoundheterozygousmutations that

occur when each parent inherits a defective copy of a transcript to their off-

spring, leaving the offspring with no working copy.

d e - n ovo mutat i o n s - Mutation not occurring in the parents.
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r e c e s s i v e va r i a n t s -Homozygousmutations that are heterozygous in

the parents.

oncog e nom e ( g e n e r a l ) - Somatic mutations from any tumor.

oncog e nom e 1 ( i n i t i a l ) - Somatic mutations from an initial tumor.

oncog e nom e 2 ( r e l a p s e ) - Somatic mutation of the first relapse af-

ter treatment.

i m p ac t f u l s i l e n t mu tat i o n s - Silent mutations with a consider-

ably high CADD and conservations score.

The great benefit is that each pre-defined query can be configured to exclude

parents, siblings or other control sample that are automatically determined by the

sample hierarchy (see figure 7.1). Renderingmanual selectionof controls orparental

samples unnecessary, which is a time consuming and error-prone factor whenman-

ually searching for the correct parent samples in thousands of datasets.

Additionally users can also configure which variant analysis tool (such as GATK

or MuTect) they want to base their analysis on. Developers are free to give users

power over additional parameters, for example a population frequency cutoff.

9.3 ag g r e g at i o n modu l e s

Table 9.3 lists the available aggregations that users can use to enrich their query

results.

As presented in table 9.1, some annotation sources provide more than 60 differ-

ent features for variants that are stored in the database. The features are summarize

and categorized for each annotation resource, to unburden the user and present the

features in a user-friendly fashion that allows users to focus on the relevant aspects

of variant interpretation.

For example, the 21 loss of function prediction annotations, provided by Anno-

Var are summarized into one aggregation module that users can activate to show

loss of function predictions as part of their output, if necessary.
Lastlymore than 280 variant annotation features aremade available through the

API access that workflow developers can use to extract specific features of a variant.

Annotation Source No. aggregation

modules

Annovar 2015Mar22 12

CADD 1

Capture kit 7

ClinVar 1

DIDA v2 1

OMIM 1

snpeff 4.1 db_75 8

Variant Effect Predictor (VEP v84) 28
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Annotation Source No. aggregation

modules

Other (e.g. inheritance, variant coordi-

nates etc)

15

API access 281

Table 9.3: Number of AQuA aggregation modules derived from annotations.

Each aggregation may utilize and summarize multiple available features

from the annotation source.
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10
SNUPY

10 .1 data man ag em e n t

SNuPy supports a comprehensive data management that allows to store millions

of genotyped variants and as well as their associated datasets and documentation

using controlled vocabulary.

Currently the platform manages more than 5,800 raw VCF files, and holds an-

notations for more than 19 million variants. These result in more than 320 million

genotyped associations in more than 5,100 samples available for usersa.

The flexible tagging approach allows the adaptation of SNuPy to different fields

of research, currently holding 1,200 tags as controlled vocabulary. Although it was

developed in the context of pediatric oncology and immunology, it was used in

other studies as well (e.g. drug-resistance).

The role-based authorization system facilitates cooperative research and enables

users from different institutions to work together on specific user-defined projects.

To this day 53 users have used SNuPy to query their variant datasets.

10 .1 . 1 Integration into external workflows

The access to data management allows to programmatically upload new variant

datasets in VCF format, wait for their annotation to be finished and extract the

variants into sample objects. Additionally, elements of the sample hierarchy can be

created externally as well, allowing large and complex datasets to be added automat-

ically as part of an external workflow.

Spike 157 is a reference implementation that processes raw sequencing output

files, generates the necessary intermediate data, extracts variants and add these to

SNuPy is available at https://github.com/sjanssen2/spike/. This custompipeline is

basedon the python frameworkSnakeMake 158,which is a scalableworkflow engine.

It illustrates how the external SNuPy interface can be used in conjunction with

otherprogramming languages and as an endpoint for variant sequencingworkflows

to deliver the results to genomic researchers and experts.

a The disparity between uploaded raw data and extracted samples can be attributed to incomplete

processing of datasets at the time this statistics was recorded from the production system.
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Figure 10.1: SNuPy variant data growth statistics. There is a steady growth in

datasets over the years, with a stagnation phase during 2016, when

technical problems prevented samples to be sequenced.

10 .2 q u e ry p e r f o rman c e

To demonstrate the performance of our system, I analyzed the query log files for

queries done between between August and December 2018. This revealed 708

queries send by users, excluding queries made through the programmatic inter-

face. During this time, 12 queries exceeded the threshold of 15,000 genotypes set to

prevent overloading the user with unnecessarily large result sets. The 696 successful

queries are further divided into 605 regular and 91meta queries.Meta queries allow

users to query all samples of a specific species in the database. Details of the analysis

are shown in table 10.1 and table 10.2b.

A total of 605 normal queries were analyzed and during this time 43% were

executed in less than 1 second, 72% within 10 seconds, and 91% returned within

one minute. Only 6% of queries took longer than two minutes, which in 74% of

cases (28) resulted in up to 1000 variants or more.

Table 10.1 shows that 20% of queries send by experienced users lead to empty re-

sult sets.Without SNuPy such queries would require additional coordinationwith

bioinformatic staff to modify the criteria and rerun a query. The explorative query

capabilities offered by SNuPy allows users to do these modifications themselves

and retrieve a new result set.

With SNuPy users were able to focus on small result sets. When queries were

successful (meaning they actually return a result > 0, 483/605), 36%(177/483) of

the result sets contained less than 10 genotyped variants and 74% contained less

than 250 genotyped variants, demonstrating the filter and reduction capabilities to

b Please note that when refering to relative fractions, the percentages are rounded andmay not sum-up

to the total of 100%.
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deal with whole-exome datasets that regularly contain 80.000 variants. Still a large

fraction of 25% (123/483) returns 250 andmore genotypes. However, the retrieved

genotypes may be detected bymultiple tools in the same individual, thus the actual

result size after aggregation is smaller. This can be attributed to SNuPy ’s capability

to query multiple samples at the same time, allowing different analysis of the same

specimen to be compared and find consensus.

Interestingly, 65% of meta queries return within one second. This is likely ex-

plained by stringent filters that users apply, when performing meta queries. A typi-

cal meta query would be to identify rare variants within a single candidate gene, or

a small subset of genes. As expected however, the fraction of queries returning an

empty result set is smaller (12%) compared to regular queries (20%). This can be

explained by the high number of samples that are queried as part of meta queries,

making it less likely to return a completely empty result set. This is supported by

the fact that 77% (62/80) of non-empty meta queries return 50 or less genotyped

variants.

Additionally, I recorded 2,111 queries made to the query interface through the

API. As expected, queries made through the API took longer on average, yet 67%

finished within 10 seconds and 98% of queries finished within one minute. The

fraction of empty result sets is much larger. However, of the 1076 successful queries

53%(581) returned less than 50 genotyped variants.

This analysis of queries made through a variant discovery platform reveals that

users are enabled to focus onmanageable and specific result sets, compared to the up

to 80.000 variants, which can be expected from a whole exome sequencing analysis.

Additionally, the average number of 8.7 queries per working day recorded during

this time frame suggests a constant utilization of SNuPy and the need and ability

for users to perform their own variant discovery.

No. genotypes |Duration 1s 10s 60s 120s +120s Count

∅ 82 28 12 0 0 122(20%)

10 82 63 23 4 5 177(29%)

50 40 32 23 0 2 97(16%)

100 8 12 4 0 2 26(4%)

250 13 14 29 2 1 59(10%)

1000 25 7 24 6 10 72(12%)

15000 7 9 14 3 18 51(8%)

Count 257(43%) 165(27%) 129(21%) 15(2%) 38(6%) 605(100%)

Table 10.1: A summary of 605 queries recorded between August-December 2018,

analyzed for the number of returned genotyped variants and filter du-

ration. An empty list of genotypes is returned, when the filters do not

yield results.
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No. genotypes |Duration 1s 10s 60s 120s +120s Count

∅ 4 5 1 0 1 11(12%)

10 29 5 0 0 0 34(37%)

50 22 1 5 0 0 28(31%)

100 2 0 2 0 0 4(4%)

250 1 0 3 0 0 4(4%)

1000 1 1 3 0 0 5(5%)

15000 0 1 2 0 2 5(5%)

Count 59(65%) 13(14%) 16(18%) 0(0%) 3(3%) 91(100%)

Table 10.2: A summary of 91 meta queries recorded between August-December

2018, analyzed for the number of returned genotyped variants and fil-

ter duration. User send meta queries to query all available samples of a

species.

No. genotypes |Duration 1s 10s 60s 120s +120s Count

∅ 125 637 267 6 0 1035(51%)

10 11 247 140 2 0 400(20%)

50 8 107 65 1 0 181(9%)

100 8 67 17 6 0 98(5%)

250 7 26 21 1 0 55(3%)

1000 5 81 26 5 0 117(6%)

15000 4 72 54 21 3 154(8%)

Count 168(8%) 1237(61%) 590(29%) 42(2%) 3(0%) 2111(100%)

Table 10.3: A summary of 2,111 queries made through the API recorded be-

tween August-December 2018, analyzed for the number of returned

genotyped variants and filter duration. These queries have been sent

through the API as part of larger analysis workflows.

10 .3 va r i a n t i n t e r p r e tat i o n

As described in the requirements analysis, variant interpretation is a context and

case specific process that is best performed by experts. Software platforms, such as

SNuPy aid these experts in the process.

To demonstrate its utility for this task, I will look at the variant interpretation cri-

teria for the pathogenicity of variants recommended by the ACMG-AMP38. More

specifically,at the criteria relevant to variantdatasets because some categories require

other experimental setups (e.g. functional validation and transcriptome analysis).

Table 10.4 gives an overview of the criteria, that users of the guideline follow

to reach a conclusion about the relevance of a variant. The following paragraphs

use the same categorization summary that Richards et al. published to show how

SNuPy allows its users to perform the categorization necessary for the task.

p v s 1 n u l l va r i a n t s

Specifically damaging variant consequences e.g. nonsense, frameshift, canonical and
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splice site regions, are often associated with a functional loss of the gene product.

SNuPy provides variant consequences by three state of the art variant annotation

tools that calculate impacts on multiple alternative transcripts. With the integra-

tion of disease-association from ClinVar and OMIM, as well as links to literature

through PubMed, users have the ability to identify variants falling in this category.

p s 1 s am e am i n o ac i d ch ang e

Because a different nucleotide exchange can lead to the same amino acid exchange

investigators should not only look for the exact same exchange, but also for the

same consequence on the gene product. This is possible in SNuPy through the

ClinVar module, that integrates known pathogenic variants that are co-located or

neighboring to variants in patients.

p s 2 pm 6 d e novo va r i a n t s

De novo variants are those that cannot be explained by inheritance and are not

found in the paternal lineage. When parental samples are available, SNuPy allows

to look for de novo variants and find variant falling into these categories.

p s 3 b s 3 f u n c t i o n a l s t u d i e s

Functional studies require additional experiments to be carried out that do not

focus on variants, but rather on the functional characteristics of a sample and are

outside the scope of a variant discovery platform.

p s 4 pm 2 b a 1 b s 1 b s 2 va r i a n t f r e q u e n c y a nd u s e o f co n -

t ro l p o p u l at i o n s

SNuPy provides features to filter variants by population frequency from the popu-

lation databases proposed by Richards et al. 38. Additionally, users can obtain the

variant frequency based on all samples from the database. This allows to identify

possible artifacts or recurrent mutations.

pm 1 mu tat i o n a l ho t s p o t a nd / o r c r i t i c a l a n d w e l l -

e s ta b l i s h e d f u n c t i o n a l doma i n

When users look for variants that are part of ClinVar, they can also look for vari-

ants in the vicinity of these variants using various thresholds (direct hit, 10, 30, 100,

150 base pairs up or downstream). This allows users to identify variants that fall

within the region of clinically associated variants. Furthermore, users can identify

variants that fall within the functional region of a protein. Additional interpreta-

tion about the specific site and its impact on the protein is necessary and provided

through linking out to generic resources (e.g. USCS genome browser), that further

assessment.
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pm 3 b p 2 c i s / t r a n s t e s t i n g

SNuPy is able to work with phased genotype data that allows investigators to deter-

mine whether a heterozygous mutation was inherited from the mother or father.

Utilizing this feature enables users to establish if a working copy of a gene may still

be available or not. This is closely related to identifying compound heterozygous

variants, that leave a patient without a working copy of a gene, because both copies

carry mutations fatal to the gene product.

pm 4 b p 3 p ro t e i n l e n g th ch ang e s d u e to i n - f r am e d e l e -

t i o n s / i n s e rt i o n s a n d s to p l o s s e s

SNuPy is able to classify InDel variants as inframe or frameshift events, as well as

identify stop losses through a single nucleotide variant.

pm 5 nov e l m i s s e n s e at th e s am e p o s i t i o n

This is a case similar to PS1, where the same amino acid is encoded by another

nucleotide. PM5 however allows categorization of novel amino acid exchanges,

which is interpretable by users in the same fashion.

p p 1 b s 4 s e g r e g at i o n a n a ly s i s

Segregation analysis is possible in SNuPy , when multiple family members are

available and the necessary controls were sequenced. However, the authors of the

guidelines note that, "If appropriate families are identified, clinical laboratories

are encouraged to work with experts in statistical or population genetics to ensure

proper modeling and to avoid incorrect conclusions of the relevance of the variant

to the disease"38 . While SNuPy allows the identification of potential candidates

and checking them against all samples in the database, further external case-specific

analysis is necessary.

p p 2 b p 1 va r i a n t s p e c t r um

This category is mainly based on literature review, expert knowledge and clinical

data. SNuPy provides links to clinically relevant resources, such asOMIM,ClinVar,

COSMIC and Pubmed, to aid users in the literature review process.

p p 3 b p 4 com p u tat i o n a l ( i n s i l i co ) data

More than ten loss of function prediction tools are made available to users through

SNuPy . This includes tools to identify non-coding regions of interest through

CADD and rate splice site variants throughMutationTaster.

p p 4 u s i n g p h e no t y p e to s u p p o rt va r i a n t c l a i m s

This category builds upon literature review, expert knowledge and clinical data

when comparing the observed and described phenotypes, thatmay ormay not over-
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lap. OMIM, ClinVar and Pubmed are useful resources for this task and provided

by SNuPy .

p p 5 b p 6 r e p u ta b l e s o u rc e

The use of reputable resources allows users to integrate information from exter-

nal databases into their variant interpretation schema, that do not share primary

data directly. ClinVar provides a transparent resource for variants that have been

scored by experts with regards to their pathogenicity. Optionally, SNuPy allows the

integration of specialized annotation resources.

b p 5 a lt e r n at e l o c u s o b s e rvat i o n s

This category requires expert knowledge based on literature review, clinical data

and experience.

b p 7 s y n on ymou s va r i a n t s

SNuPy provides computational prediction about conservation and the potential

damaging affect on splice sites. Additionally, CADD scores were developed to score

the impact on pathogenicity of silent mutations, which is provided by SNuPy .

However, additional experiments may be necessary to make sure the criteria for

this category is met (e.g. transcriptome and splicing analysis). Variant interpreta-

tion is case specific and a manual task of literature review and expertise. Thus a

stand-alone variant analysis is not suitable as a singular source for a final variant in-

terpretation. However, SNuPy empowers users with limited computer literacy, to

utilize variant data and use it as a starting point for evaluation in 25 of 28 categories

of the ACMG/AMP guidelines.

A total of 15 categories can be identified using only SNuPy , when the data is

available as variant datasets. In further 10 categories, SNuPy empowers users to

either identify variants of interest for further analysis (e.g. PP1 and BS4) or sup-

ports experts in finding relevant resource (e.g. for literature review). Three other

categories are outside the application scope of SNuPy .

10 .4 f e at u r e com p a r i s o n

SNuPy is not the only tool to perform variant discovery, as already described in

the state of the art. However, it is the only tool that is flexible, versatile and com-

prehensive to perform variant analysis in parallel on multiple samples and meet all

requirements necessary to perform genomic variant analysis in a clinical research

setting. Table 10.5 shows a comparison of the features supported by SNuPy and

other tools that allow users to filter variant datasets.

SNuPy integrates all state of the art variant annotation tools, targeting the known

problem of different transcript sets and annotation tools calculating possibly con-

flicting variant consequences (see Li et al., Miosge et al., McCarthy et al.).
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Pathogenic

Very

strong

PVS1 + null variant (nonsense, frameshift, canonical ±1 or 2 splice

sites, initiation codon, single ormultiexon deletion) in a gene

where LOF is a knownmechanism of disease

Strong

PS1 + Same amino acid change as a previously established

pathogenic variant regardless of nucleotide change

PS2 + De novo (both maternity and paternity confirmed) in a pa-

tient with the disease and no family history

PS3 na Well-established in vitro or in vivo functional studies sup-

portive of a damaging effect on the gene or gene product

PS4 + The prevalence of the variant in affected individuals is signif-

icantly increased compared with the prevalence in controls

Moderate

PM1 * Located in a mutational hot spot and/or critical and well-

established functional domain (e.g., active site of an enzyme)

without benign variation

PM2 + Absent from controls (or at extremely low frequency if reces-

sive) in Exome Sequencing Project, 1000 Genomes Project,

or Exome Aggregation Consortium

PM3 + For recessive disorders, detected in trans with a pathogenic

variant

PM4 * Protein length changes as a result of in-frame deletions/in-

sertions in a nonrepeat region or stop-loss variants

PM5 + Novel missense change at an amino acid residue where a dif-

ferentmissense changedetermined tobepathogenichas been

seen before

PM6 + Assumed de novo, but without confirmation of paternity

and maternity

Supporting

PP1 * Cosegregation with disease in multiple affected family mem-

bers in a gene definitively known to cause the disease

PP2 * Missense variant in a gene that has a low rate of benign mis-

sense variation and inwhichmissense variants are a common

mechanism of disease

PP3 + Multiple lines of computational evidence support a deleteri-

ous effect on the gene or gene product (conservation, evolu-

tionary, splicing impact, etc.)

PP4 + Patient‘s phenotype or family history is highly specific for a

disease with a single genetic etiology

PP5 * Reputable source recently reports variant as pathogenic, but

the evidence is not available to the laboratory to perform an

independent evaluation
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Bening

Stand-

alone

BA1 + Allele frequency is >5% in Exome Sequencing Project, 1000

Genomes Project, or Exome Aggregation Consortium

Strong

BS1 + Allele frequency is greater than expected for disorder

BS2 + Observed in a healthy adult individual for a recessive (ho-

mozygous), dominant (heterozygous), or X-linked (hemizy-

gous) disorder, with full penetrance expected at an early age

BS3 na Well-established in vitro or in vivo functional studies show

no damaging effect on protein function or splicing

BS4 * Lack of segregation in affected members of a family

Supporting

BP1 * Missense variant in a gene for which primarily truncating

variants are known to cause disease

BP2 + Observed in trans with a pathogenic variant for a fully pen-

etrant dominant gene/disorder or observed in cis with a

pathogenic variant in any inheritance pattern

BP3 na In-frame deletions/insertions in a repetitive region without

a known function

BP4 + Multiple lines of computational evidence suggest no impact

on gene or gene product (conservation, evolutionary, splicing

impact, etc.)

BP5 * Variant found in a case with an alternate molecular basis for

disease

BP6 * Reputable source recently reports variant as benign, but the

evidence is not available to the laboratory to perform an in-

dependent evaluation

BP7 * A synonymous (silent) variant for which splicing predic-

tion algorithms predict no impact to the splice consensus

sequence nor the creation of a new splice site AND the nu-

cleotide is not highly conserved

Table 10.4: A list of whichACMG38 criteria are available through SNuPy . SNuPy

: (+) directly available from the provided features, (*) derivable through

features provided by SNuPy – may require additional resources or

databases (e.g. expert knowledge, raw data, clinical record, wet lab ver-

ification), (na) not applicable for variant discovery platform, or whole

exome data (e.g. transcriptome analysis)

The availability assumes, that all relevant individuals were sequenced

and variants called appropriately. The table shows the categories and

descriptions as published by Richards et al., the author of this work

does not claim authorship of the description texts.



106 s n u p y

Its ability to also continuously integrate new, context-specific and updated re-

sources through a modular annotation and query system ensures the software is

sustainable, versatile and adaptable to other fields of research in the future. This

includes annotation and links to resources associated to population and disease-

specific databases, a wide range of in-silico loss of function prediction tools as well

as the consequences as calculated by several state of the art variant annotation tools.

Currently, no other tool defines and offers a framework that allows such modular

extension of annotation resource.

This wide range of features that are already implemented and made available to

users empowers them to interpret andclassify variants according toACMG/AMP38

(fordetails, see above) the similarACGS 125 guidelines formendelian diseases.When

the classification for actionable variants 121,132, somatic variant interpretation62 and

for disease specific guidelines 159 become institutionalized, the variant features in

SNuPy and its extendability will allow their integration as reporting templates.

From the categorization criteria above, it becomes clear that users not only need

access to a large number of annotations, but also they need to query many samples

and check the presence of variants in control samples. Currently SNuPy is the only

tool in the list of scientific software solutions, that is able to empower users to

work with hundreds of samples in a user-friendly fashion. Users are supported by

comprehensive interpretation guidance, that guides their interpretation efforts to

identify important variant attributes, e.g. it makes use of colored classifications and

gradients that guide attention and provides reporting templates. Also, it enables

users to check the variant distribution in other samples of the database as well as its

ability to display protein-protein interaction to check the functional context of a

set of variants.

VarAFT was recently published, which allows to work with copy number varia-

tions, but onlyworks locally, not allowingmultiple users to cooperate and to utilize

the stronger computational power provided by a server-based setup, such as SNuPy

. The platform is, to the best of my knowledge, the only web platform that allows

users to query copy number variation (CNV) and variant data in the same interface.

Copy number variation have been associated with neurological diseases, such as

Parkinson and Alzheimer, mental diseases such as Autism and Schizophrenia, Dia-

betes as well as infectious diseases and cancer 160,161,162,163,164,165,166. This shows that

SNuPy is of wide utility to NGS based copy number variation analysis of disease

in theses contexts.

Table 10.5 displays that SNuPy is currently the only web application tool that

allows to query multiple samples in parallel and aggregate the results. The variant

discovery tools varianttools and Annotate-it also allow to query multiple sample,

but are only usable through a command line or were only available as an online

platformc, requiring users to upload genetic patient information to a foreign site.

Mendel,MD and VCF-Miner also allow to query multiple sample at once, but nei-

c Annotate-it is one of seven tools not available anymore.
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ther of these tools provide the user with any possibility to document the datasets.

In consequence, while users can query multiple samples it is not implemented in a

fashion that allows continuous interactive analysis by multiple, cooperating users.

Althoughusers ofMendel,MDare supportedwith aweb interface to query their

datasets, core features such as annotating uploadedvariants still require a command-

line interface. Thus, requiring its users to be computer literate and capable to use a

command-line interface. The import and annotation process in SNuPy is triggered

automatically and maintenance of the server instance and setup is performed by

trained personal. VCF file format checks can be extended by developers, allowing

the import of VCF data that deviate from the standard file format description and

make use of its intended flexibility.

SNuPy is currently the only tool that allows the integration of its variant discov-

ery capabilities into larger workflows. An example for this is Spike 157, whichmakes

its results available to users of the Clinic for Pediatric Oncology, Hematology and

clinical Immunology at the university clinic of Düsseldorf via SNuPy .
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SVA r 1o f g l

Annotate-it e 1eo pso o fm gcio s sc o h

VAR-MD (q) 1 ps p gcio l

VarSifter e gc l

VarB e g l

variant tools (as) r pso fm l

AVIA a r ps ep g d hm

EVA av r 1eo psc o ef si cq o h

GEMINI sv 1e c f si la h

PriVar 1e psco p si q l

WEP a 1e ps fp gcio si ld h

AnsNGS r 1 o p si d

FamAnn (sv) 1e pso p l

BierApp e 1e ps c ef gcio si d h

exomeSuite 1e pso p si l

VariantDB as re 1e psc c ef gcio si sc d h

wKGGSeq 1e pso o fp gcio si q c o

VCF-Miner p efm si ld

Var2GO s 1e s f go o hm

Varapp v 1e psc efp gcio si scr d

BrowseVCF (v) f gci si l

myVCF (av) 1e ps c f gcio si cq l

Mendel,MD sv re 1e psco co efm gcio si d h

VCF.Filter e l

VarAFT a re 1eo psco co f gcio sic l

SNuPy asv re 1emo psco co efpmd gcio sic scqr cgoa daf hm+

Table 10.5: A list of variant discovery tools and their features compared to SNuPy,

based on a literature review. Column description:Annotation Tools: a

(Annovar), v (VEP), s (SNPEff), q (SeattleSeq), brackets indicates that

pre-annotion is required Transcriptsets: r (RefSeq), e (Ensembl) Pop-

ulation Freq.: 1 (1000 genomes), e (ExAc or ESP), m (mouse genome

project), o (other)LOF Prediction: p (PolyPhen), s (SIFT), c (CADD),

o (other)Clinical: c (ClinVar), o (OMIM)Query: e (explore specific re-

gions/genes), f (feature of interest), p (pre-defined), m (multi-sample),

d (defaults) Filter Features: g (gene), c (consequence), i (inheritance),

o (other) Variation types: s (SNV), i (Indel), c (CNV) Data Manage-

ment: s (sample documentation), c (collaborative), q (quality control),

r (reporting template) Interpretation Support: c (classification), g (gra-

dients), o (other), a (ACMG-AMP) System features: l (local), o (online

only), d (central database), f (framework), a (API) Organisms: h (hu-

man), m (mouse), + (expandable)
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CASE STUDIE S

11 . 1 a l p s

The autoimmune lymphoproliferative syndrome (ALPS) is a genetic disease of

T-cells, caused by a dysfunctional FAS death receptor signaling pathway, which

triggers cell apoptosis in its normal state 120. The lack of this function causes defects

during lymphocyte development and results in an accumulation of T-lymphocytes

in lymphoid organs, which can develop into wide range of hematological diseases,

including malignancy 167.

Currently five ALPS classes (Table 11.1) are defined, which affect the FAS death

receptora, its ligand FASLGb or the disruption of the downstream protein caspase-

10 (CASP10)c, responsible for catalyzing the apoptotic signal 120.

Although the disease is characterized by well defined criteria (see Oliveira et al.,

Table 11.1),affecting three geneproducts, the true incidence rate remainsunknown 169.

This may be explained by a high rate of ALPS-like cases that present similar phe-

notypes as ALPS, but have to be classified asALPS-U (ALPS III ), or are classified

differently because of RAS mutations, known to result in similar phenotypes 120.

Consequently, for 20-30% of ALPS-diagnosed cases the genetic cause remains

unknown 170. This makes interactors and regulators of the known candidate genes

a potential target for cases that carry anALPS-like phenotype, but nomutation can

be found in any of the three ALPS candidate genes (FAS, FASLG and CASP10) 120.

The rationale is that the dysregulation of interactors produces effects and pheno-

types similar to those of a dysfunctional primary protein.

11 . 1 . 1 Deregulation of Fas ligand expression as a novel cause of autoimmune

lymphoproliferative syndrome-like disease 120

Nabhani et al. (2015) investigated 20 patients, previously diagnosed as ALPS-U,

usingwhole-exome sequencing and employing SNuPy to perform the analysis. The

authors identified a patient carrying a truncating nonsensemutation in Interleukin

12 Receptor Subunit Beta 1 (IL12RB1) resulting in loss of crucial IL12 signaling 120.

95,794 variants were identified in the patient using whole-exome sequencing of

which 5,394 affected the FAS network and its interactors in a protein-protein in-

teraction network (STRINGdb 147). This number was further reduced by filtering

a protein name: Fas or CD95
b protein name: FASL or CD95L
c protein name: Casp-10

109
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Previous nomencla-

ture

Revised nomencla-

ture

Gene Definition

ALPS type 0 ALPS-FAS FAS Patients fulfill ALPS

diagnostic criteria

andhave germline ho-

mozygous mutations

in FAS.

ALPS type Ia ALPS-FAS FAS Patients fulfill ALPS

diagnostic criteria

and have germline

heterozygous muta-

tions in FAS.

ALPS type Im ALPS-sFAS FAS Patients fulfill ALPS

diagnostic criteria

and have somatic

mutations in FAS.

ALPS type Ib ALPS-FASLG FASLG Patients fulfill ALPS

diagnostic criteria

and have germline

mutations in FAS

ligand.

ALPS type IIa ALPS-CASP10 CASP10 Patients fulfill ALPS

diagnostic criteria

and have germline

mutations in caspase

10.

ALPS type III ALPS-U Unknown Patients meet ALPS

diagnostic criteria;

however, genetic de-

fect is undetermined

(no FAS, FASL, or

CASP10 defect).

Table 11.1: ALPS classifications according toOliveira et al.. Six classes are currently

used to classify ALPS cases. Suspected cases are commonly classified as

ALPS type III.

for variants affecting the protein products (534), as these variants are most likely

to have an effect on the protein interaction partners. 16 homozygous variants were

detected that are not detected in the general population, utilizing data from the

1000 genomes project3,HapMap 171, Exome variant serverd , alongside 300 in-house

whole exome datasets as shared controls. Further filtering for autosomal recessive

genetic inheritance scenario, using variants from the two parents reduced the num-

ber to 6 variants. The functional context of these last six variants revealed a stop

gain mutation affecting IL12RB1, a direct high-confidence interactor of FASLG,

the known cause for ALPS-FASLG. Further functional studies were conducted

that confirmed IL12RB1 as a relevant candidate for an ALPS-like phenotype 120.

d http://evs.gs.washington.edu/EVS last visit 5th Sep 2018
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This rigorous systematic filtering schema was developed by genomic experts dur-

ing multiple iterations and query refinements, adding increasingly specific criteria

of increasing complexity using SNuPy . Criteria were combined using consequence

predictions, variant quality, genotype and its quality, inheritance patterns taking

multiple samples into account, custom shared controls and population frequencies

as well as protein-protein interaction data. It showcases how genomic researchers

are enabled to find relevant and novel disease mechanism if they are empowered to

refine their initial query by themselves.

11 . 1 .2 STAT3 gain-of-function mutations associated with autoimmune lympho-

proliferative syndrome like disease deregulate lymphocyte apoptosis and

can be targeted by BH3 mimetic compounds 172

Using SNuPy , Nabhani et al. (2017) analyzed 30 children with ALPS-U diagno-

sis for pathogenic variants and possible treatment options. After classical ALPS

mutations in FAS, FASLG and CASP10 could not be detected by Sanger sequenc-

ing, whole exome sequencing was performed on the patients as well as parents and

siblings (where it was possible and consent was given) 172.

Two patients in this cohort, one with consanguineous parents (patient 1) and

one with non-consanguineous parents (patient 2), harbored variants in the signal

transducer and activator of transcription 3 (STAT3), which regulates the gene ex-

pression of apoptosis, proliferation and cell growth factors. Consanguinity status

is an important heritage factor, when analyzing samples for possible Mendelian

disorders, due to increased loss of heterozygosity. Consequently, SNuPy was used

to filter variants of the patients, with regard to this clinical information.

The identified mutations were found to have a gain-of-function (GOF) effect

on STAT3, leading to hyperactivity of the protein. In case of STAT3 this leads to a

decrease of FAS expression, therefore mimicking a loss-of-function of FAS that is

the cause of ALPS-FAS phenotype 172.

With regards to the gain-of-function detection, by loss-of-function prediction

tools: As described by Flanagan et al. gain-of-functionmay havemore subtle effects

and therefore are not expected to be detected with the same sensitivity as loss-of-

function mutations by PolyPhen2 and SIFT. However, the functional validation

of the STAT3 mutations highlights the importance of in-silico loss-of-function

prediction tools and show how they can aid in the search and interpretation of gain-

of-function mutations, when they are thoroughly and independently validated.

For both patients the analysis was focused on variants covered by at least 10 reads,

the variant base qualitywas larger than 30e, the frequency in the general population

does not exceed 10−5, the missense consequence is predicted to be deleterious by

PolyPhen258 or SIFT59.

e The variant base quality is a phred-scaled measure to indicate the confidence in the presence of a

variant
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A key difference in the filtering strategy of the two patients, lies in the incor-

poration of available controls into the filtering criteria. For patient 1, parents and

healthy siblings were used as controls, resulting in two candidate mutations. For

patient 2 on the other hand, whole-exome data for the father was not available and

only variants from the mother and another healthy sibling could be used, resulting

in 27 potential candidates.

The follow-up analysis of the protein-protein interactions from STRINGdb 147

further showed that FASLG and STAT3 have a described interaction that further

strengthened the interest to validate the role of STAT3 as potential cause for ALPS-

like phenotype.

Compared to the discovery of IL12RB1 (described above) this study displays the

necessity to adapt filter strategies with regards to the actual available data. A flexible

variant discovery system, such as SNuPy allows its users to make the best out of

possibly sub-optimal starting position, such as incomplete parent-offspring trios.

Criteria:
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11 .2 a n ov e l a p p roach to d e t e c t r e s i s ta n c e m e ch -

a n i s m s

So called ’epidrugs’ have emerged as possible treatment tools over the last decade.

These drugs "are defined as drugs that inhibit or activate disease-associated epige-

netic proteins to ameliorate or cure the disease"23 and are commonly used either in

mono-therapy or in combination with other anti-cancer drugs during treatment.

Suberoylanilide hydroxamic acid (SAHA) (Vorinostat,Zolinza©(Merck andCo.,

Inc.)) is one of these drugs and the first to be approved by the American Food and

Drug Administration (FDA) in 2006, as part of the treatment for patients with

cutaneous T-cell lymphoma 174.

The use of this drug for the treatment of Non-Hodgkin lymphoma (NHL) is

currently an area of active research23. NHL is a group of lymphoproliferative neo-

plasms that contains two aggressive subtypes: Diffuse large B-cell lymphoma (DL-

BCL) and Burkitt lymphoma (BL). Using SAHAmonotherapy, remarkably 30%

of patients reached complete remission23, leaving however 70% of patients with-

out response during treatment. Identifying genetic factors that can act as potential

biomarkers for tumor resistance against SAHAwas the focus of our study23.

To identify possible genetic factors of drug-resistance towards SAHA we de-

signed a drug efficacy testing with exome and captured target analysis (DETECT)

method. This method combines (1) SAHA sensitivity test using flow cytometry

(Annexin V/propidium iodide staining), (2) whole-exome variant analysis, (3) Cap-

ture CompoundMass Spectrometry (CCMS, see below) with (4) an integrated net-

work analysis of the identified candidates.

The analysis used 26 commercially available B-cell lymphoma cell lines that were

sequencedusingwhole-exome sequencing and tested for theirdrug sensitivity,which

is meased as an IC50 value. IC50 indicates the half maximal inhibitory concen-

tration, a molecular concentration measure that needs to be exceeded to inhibit

a molecular process or function in-vitro. Higher values mean that a higher drug

concentration needs to be achieved during treatment, which is restricted by the av-

erage plasma concentration feasible for patients (e.g. due to toxicity). An achievable

plasma concentration of 2.5µMwas reported for SAHA 175 and build the base of

the classification of the 26 cell lines into resistant, intermediate and sensitive cell

lines (Table 11.2).

Based on this SAHA resistance distribution over the 26 cell lines, 8 sensitive and

resistance cell lines were chosen for CCMSmeasures with SAHA.

CaptureCompoundMass Spectrometry (CCMS)uses a trifunctional smallmolec-

ular probe called Capture Compounds (CC)Köster et al.. Using replication, com-

petition and control samples this method allows to identify SAHA interaction

partners. Due to the possibility of capturing protein complexes with this CC-based

approach it is also possible to identify indirect binding proteins.
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SAHA Cell line IC50 (µMSAHA)

Resistant CA-46* 470.40

Daudi* 282.60

DG-75* 117.70

Raji* 19.74

Blue-1 11.72

Namalwa 7.00

DND-39 5.76

HT 4.63

BL-70 3.93

Carnaval 3.56

WSU-DLCL2 3.52

Intermediate Kis-1 2.49

SU-DHL-4 2.27

OCI-Ly7 2.15

Sensitive OCI-Ly2 1.98

WSU-FSCCL 1.82

HBL-1 1.62

U2932 1.61

SU-DHL-6 1.48

Granta-452* 1.28

BL-2 1.18

OCI-Ly3 1.14

BL-41* 1.13

TMD8* 0.96

OCI-Ly10 0.61

OCI-Ly1* 0.50

Table 11.2: Cell line classifications based on their resistance towards SAHAexosure

(by Joosten et al.). Cell lines thatwere analyzedusingCCMSaremarked

with *.

In total we compiled a list of 315 candidate proteins interacting with SAHA

directly or indirectly. Among the candidates, previously described SAHA targets

such as HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, members of the HDAC1/2

complexes, as well as ISOC1 and ISOC2 were identified. HDAC proteins are epi-

genetic modifiers and expected targets of SAHA. Of the 315 proteins, 117 and 12

were enriched in resistant and sensitive cell respectively.

To visualize the functional context of the significant SAHA binders we extracted

their protein-protein interactions (STRINGdb 147), revealing 125 proteins that in-

teract with at least one other protein in the group.

The largest connected component (62 proteins) of this SAHA activity network

harbored membrane associated and cytoplasmic proteins, mainly consisting of Src

kinases (FGR, HCK, LYN), G-Proteins and their regulators (GNAI1, GNAI2,

GNAI3, GNG7, GNAZ, GNAS, GNB1, RGS14 and RGS19). The association to

nucleus-associated HDAC complexes is established through the STAT-pathway.
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Using SNuPy external API we integrated the consequence predictions into the

network to visualize proteins and interactions. Subsequently proteins whose genes

are hit by a more severe mutation in resistance compare to sensitive cell lines, were

highlighted (severity was derived by the consequence impact rating of the Ensembl

analysis group76) (see Figure 11.1).

This analysis revealed the genes FGR, RGS14, and PAG1 to be mutated more

severely in resistant cell lines, while also showing higher binding affinity compared

to sensitive cell lines. In total 4 of 11 resistant cell lines (Blue-1, DG-75, HT and

WSU-DLCL2) harbored mutation in these three genes. FGR showed the highest

affinity for SAHA binding (p = 9.6e-07), affecting three resistant cell lines (Blue-

1, DG-75 and HT) and was identified as the most likely candidate to characterize

the SAHA binding and to use its expression as potential biomarker for SAHA

resistance.

Interestingly FGR showed higher expression patterns in SAHA resistant cell

lines, compared to sensitive cell lines and also higher expression in B-cell lymphoma

compared tonon-lymphoidentitiesJoosten et al..We thenperformedCRIPR/Cas9

knockout of FGR in three SAHA resistant cell lines (Raji, Daudi and DG-75). For

cell lines not carrying a FGRmutation in their exome, this knockout reveled an in-

crease in SAHA sensitivity. DG-75, carrying a c.1459/C>Amutation in its tyrosine

kinase domain, remained resistant despite of the knockout and 85% integration of

Indels by CRISPR/Cas9.

FGR expression analysis of 1200 B-cell lymphoma patients demonstrated a high

variance, while FGRmutations were rare, suggesting that FGR expression is more

suitable to identify SAHA resistant cell lines. In conclusion, this study successfully

used the DETECT method to unravel FGR as a potential biomarker to stratify

SAHA resistance in B-cell lymphoma patients.

Using SNuPy we first evaluated if a systematic difference in the mutational pro-

file can be found between SAHA-resistant and sensitive cell lines. Multiple itera-

tions and filter strategies were developed. This included to identify overlapping and

distinct mutations and genes between the two sample groups. We further incorpo-

rated additional shared control samples to better identify sequencing artifacts. The

use of gene panels allowed us to also focus on genes that are know tomodify the epi-

genetic landscape of a genome. However, these strategies did not yield conclusive

results from stand-alone whole-exome variant analysis.

This study demonstrates the need for multiple complex experimental protocols

and verifications steps that are necessary to identify potential biomarkers for drug

resistance. My personal contribution to this work was the analysis of whole-exome

datasets, the development of an data analysis strategy as well as the integration of

the results to a protein-protein interaction network. The workflow incorporates

IC50 drug sensitivity values and variants fromwhole exome analysis for 26 cell lines,

with CCMSmeasures from only eight cell lines. Integrating whole exome variants
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with the findings from CCMS and resistance measures allowed the identification

of interacting protein networks that we believe contributes to SAHA resistance.
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11 .3 e x om e s e q u e n c i n g o f p e d i at r i c a l l r e l a p s e s a f -

t e r a l l o g e n e i c s c t

Acute lymphoblastic leukemia (ALL) is the most prevalent pediatric cancer and

with a 5-year survival rate of approximately 90% in developed countries 177, can be

treated effectively. However, when patients do not respond to the first treatment

and relapse they have much poorer prognosis. One treatment option for these chil-

dren are allogeneic hematopoietic stem cell transplantation (allo-SCT),which show

8-year survival rate of up of 70% 178.

There are however, no standard protocols for cases of early post-allo-SCT re-

lapses available, and treatment options are limited, due to cumulative toxicity. For

some children disease-free survival rates of 30% after two years could be achieved

with subsequent SCT, when remission and low or negative minimal residual dis-

ease (MRD) level was achieved 179. For this reason novel approaches are urgently

needed to achieve complete remission from a post-allo-SCT relapse that evaded the

chemotherapeutic and immunologic pressure from previous treatment.

Gröbner et al. have recently shown that 52% pediatric cancers (n = 675) harbor

potentially druggable events (PDE), and 37% (n = 41) retain these during progres-

sion to relapse. This highlights the potential for druggable targets and possible

individualized treatment options, for cases with relapse after SCT.

Toaddress the clinicalneed for identification anddescriptionofpatient-individualized

treatment options,we usedwhole-exome sequencing on ten pediatric patients,who

suffered from post-allo-SCT relapses and were enrolled in a multicenter pediatric

ALL trial as part of the "IndividualizedTherapy forRelapsedMalignancies inChild-

hood" (INFORM) 10 project. The average age at first diagnosis was 4.6 years (range:

0.3-10.2), average time to first relapse was 2.2 years (range: 1.1-3.4), and average

time to post-allo-SCT relapse was 0.7 (range: 0.2-1.7 years). Seven patients received

transplants frommatched-unrelated donors, two from siblings and one from his

mother. At the time of the analysis only two patients were alive, illustrating the

dismal prognosis of post-allo-SCT relapses.

As previous approaches have shown, it is important to use more than one so-

matic mutation identification pipeline when analyzingWES samples 181. Thus we

combined the variant calls of MuTect 155 and VarScan2 151 to find the mutations

comprising the oncogenomes during tumor progression. These oncogenomesf are

defined as:

oncog e nom e 1 : INIT-REMI [OG1]

oncog e nom e 2 : RLPS-REMI [OG2]

oncog e nom e 3 : (TRLPS-TREMI) ∩ (TRLPS-REMI) [OG3]

f For a description of the semantics behind the state identifiers see Figure 7.2
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The venn diagrams (see Figure 11.2) reveal that all studied patients carry muta-

tions in genes that survive the treatment process through all of it’s stages, ranging

between 2 and 18 genes.

Median number of somatic variants in OG1, OG2 and OG3 were 13.5, 50 and

55.5, respectively. Individually the sizes varied substantially and stayed below 200,

withoneoutlier inOG1,and two forOG2andOG3.These outliers carriedacquired

variants in DNA polymerase or DNA repair/Fanconi anemia genes, possibly ex-

plaining the hypermutator phenotype. The oncogenomes of other patients did not

carry mutations in these genes.

Although a stable core set of genes seems to manifest in these patients, some

genes, such as NT5C2, a gene described to drive therapy resistance, were absent in

all OG1, while 3/10 patients carried somatic mutations in OG2, disappearing in

OG3 182.

We applieddensity-basedclustering 183 to the log-scaledvariant frequencies of the

tumors to identify possible co-evolution of clones during tumor progression. This

analysis reveals several clusters per patient, which undergo a similar tumor progres-

sion. Surprisingly, mutational clusters containing known cancer associated genes

are as variable as clusters not containing these genes, hinting at different drivers for

each tumor (data not shown, manuscript submitted).

The rigorous and flexible sample annotation schema, as well as the dynamic

sample state representation (see Figure 7.2), allowed for a systematic analysis of 53

whole-exome sequencing datasets from 10 patients, resulting in 201 variant datasets.

Because the study was conducted as part of a national multicenter trial, samples

from different locations with different identifiers required a flexible data manage-

ment and quality control to allow consistency and integrity checks.

The pre-defined query feature, as well as the dynamic queries and the external

SNuPy interface enabled the integration of all somatic variants from all stages and

the exploration of the patients mutational landscape. The ability of SNuPy to

analyze hundreds of samples in parallel and dynamically query large number of

variant datasets was fundamental for this study, that required explorative queries

of more than 200 variant datasets and the integration of multiple somatic callers.

Furthermore, statistical analysis (e.g. oncogenome sizes and overlaps) was carried

oututilizing the SNuPyRpackage, the state of the art frameworkandprogramming

language to target such statistical tasks.

Details of this work have been submitted for publication under the title "Pediatric

ALL relapses after allo-SCT show high individuality, plasticity, selective pressure

and druggable targets" to the Blood advances journal.
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11 .4 o t h e r c a s e s t u d i e s

Thepublications andprojects described above describe somehighlights of the usage

of SNuPy which has also been used as part of other publications that are summa-

rized in this section.

Next-generation-sequencing-based risk stratification and identification of new genes

involved in structural and sequence variations in near haploid lymphoblastic leukemia.

(Chen et al. (2013))

Whole-genome sequencingprovides a feasible tool todistinguishhighhyperdiploidy

and near haploidy samples. Whole exome variant analysis using SNuPy was em-

ployed to gain insight into tumor promoting events, contributing to near haploidy

in five patients. For this task the mutational landscape of relevant mutations was

described, with a focus on the difference between a new haploid cell line and high

hyperdiploid samples from patients. Utilizing SNuPy genomic experts were able

to analyze the sample of complex chromosomal compositions.

Whole-genome paired-end analysis confirms remarkable genomic stability of atypical

teratoid/rhabdoid tumors (Hoell et al. (2013))

This report analyzes two patients suffering from atypical teratoid/rhabdoid tu-

mors (AT/RT) and reports on the somatic mutations, which have been identified

by tumor-normal matched sequencing. SNuPy allowed clinicians to evaluate and

analyze the exomes and somatic mutations and independently confirm previous

reports of the role of SMARCB1 mutations in this type of brain malignancy.

Combined immunodeficiency with life-threatening EBV-associated lymphoprolifera-

tive disorder in patients lacking functional CD27 (Salzer et al. (2013))

This studyattempted to establish ifCD27mutations are causative foraEVB-associated

lymphoproliferative disorder. Previous analysis of Patient 1 identified a homozy-

gous c.G158A mutation in CD27, that was shared in a homozygous state among

siblings and found to be heterozygous in parents with consanguine background.

SNuPy was used to analyze the whole-exome results of two more families and al-

lowed the identification of the same mutation in two more patients. It allowed

rapid verification of a hypothesis, previously derived from another experiment.

Constitutional Mismatch Repair-deficiency and Whole-exome Sequencing as the

Means of the Rapid Detection of the Causative MSH6 Defect (Hoell et al. (2014))

Studying the feasibility to use whole-exome sequencing as a tool to diagnose consti-

tutional mismatch repair-deficiency (CMMR-D), linked to increased risk of child-

hood hematologicmalignancies, brain tumors, colorectal cancers and other rarema-

lignancies. It is caused by mutations in MLH1, MSH2, MSH6 and PMS2, which

are essential to the DNA replication control and repair process. Rapid diagnosis

is necessary to tailor therapeutic factors, such as radiation exposure. SNuPy was

used by clinicians to explore and interpret the variations of the patient, parents and

siblings. Without additional bioinformatic support the trained clinicians were able
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to identify two homozygous MSH6 mutation in the patient among more than

200,000 variants detected by whole-exome sequencing.

Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5

c.547G>A (Auer et al. (2014))

This study confirmed a previous report PAX5 to confer an inherited susceptibility

to pre-B-ALL. For this the pedigree of two children of the families of two brothers

were sequenced. SNuPy was used to identify 518 mutations, common between the

children and both fathers, that made up the initial list of candidates. The three

affected children, and the two brothers shared a transmitted PAX5mutation. Be-

cause of the presence of the same mutation in other healthy sibling, we conclude

that themutation itselfmay have reduced penetrance. Suggesting secondary factors

to trigger the development on pre B-ALL.

Infection Exposure Is a Causal Factor in B-cell Precursor Acute Lymphoblastic

Leukemia as a Result of Pax5-Inherited Susceptibility (Martin-Lorenzo et al. (2015))

This study presents in-vivo genetic evidence for the hypothesis that infections by

common pathogens are causative for pre B-ALL. Pax5 positive mice developed pre

B-ALL when removed from specific pathogen-free (SPF) environment. There was

significant difference to Pax5 negative mice that were exposed to the same condi-

tions. SNuPy supported the variant analysis and exploration of the mice samples,

by providing access to protein consequence prediction for mouse transcripts and

SIFT scores. This allowed to reduce the large number of whole exome variants

of three mice (between 27,000 and 31,000 mutations) and identify additional sec-

ondary hits in known oncogenes Il7R, Jak3 and Stat5. A recurrent Jak3 mutation

in twomice was found and further sanger sequencing reveals that 6 of 9 other mice

carry non-synonymous Jak3 mutations as well.

Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia

identifies recurrent mutation patterns and therapeutic options (Fischer et al. (2015))

TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL), an ALL sub-

type was analyzed using a multitude of NGS and screening technologies, including

whole-genome, whole-exome, whole-transcriptome, drug profiling using patient

and xenograftmodels. This highly cooperative project was carried out by a national

consortium of 25 institutions. In this consortium a specific annotation release (En-

sembl v70)was usedas a basis for integration andSNuPyprovided thewhole-exome

variant analysis using this version. This was achieved using the flexible variant an-

notation system that the AQuA framework provides in SNuPy . Quality control

measures in SNuPy was also fundamental to ensure that samples of the study were

not contaminated.

Next-generation-sequencing of recurrent childhood high hyperdiploid acute lym-

phoblastic leukemia reveals mutations typically associated with high risk patients

(Chen et al. (2015))

This study investigated the factors contributing to recurrent high hyperdiploid
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ALL. In total 5 patients, with tumor, germline and relapse samples were inves-

tigated. Additionally, samples from 24 other ALL-associated patients were used

as controls to find mutations and affected genes specific to the recurrent pheno-

type. SNuPy allowed to use previously analyzed samples to be integrated in this

project, allowingmore specific description of separating factors. This highlights the

usefulness of a central database, making studies available to all investigators of an

institution to integrate them into their filter strategies.

Fatal Lymphoproliferative Disease in Two Siblings Lacking Functional FAAP24

(Daschkey et al. (2016))

Epstein Barr virus (EBV) infections are often asymptomatic in children and aremet

with a vigorous immune response in health individuals. However, there are cases

when immunodeficiencies lead to a response failure, causing a severe lymphoprolif-

erative disorder. A family with consanguine background, fromwhich two children

died from progressive EBV-associated lymphoproliferative disease was studied, in-

cluding two healthy siblings. SNuPy supported the comparison of the affected and

unaffected children and the identification a recurrent homozygous mutation in

Fanconi Anemia Core Complex Associated Protein 24 (FAAP24).

Specific antibody deficiency and autoinflammatory disease extend the clinical and

immunological spectrum of heterozygous NFKB1 loss-of-function mutations in hu-

mans (Schipp et al. (2016))

This report investigates two patients with severe autoinflammatory disease. Both

patients carry mutations in the nuclear factor of kappa light polypeptide gene en-

hancer in B-cells 1 (NFKB1), which resulted in significantly reduced expression of

this immune and inflammatory response regulator. SNuPy was used to analyze

the patients whole exome variant datasets and identify candidate mutations that

broaden the spectrum of NFKB1-associated phenotypes.

Anovel homozygous mutation inUNC13D presenting as Epstein-Barr-virus-associated

lymphoproliferative disease at 9 years of age (Bienemann et al. (2016))

This study, as the study from Daschkey et al. (2016) described above, studied a

patient with EBV-associated hematologic disease. The child was born to parents

with consanguine background and was analyzed based on this hypothesis. SNuPy

enabled the identification of a recessive UNC13D variant.

Human RAD52 - a novel player in DNA repair in cancer and immunodeficiency

(Ghosh et al. (2017))

This case reportpresents an 18-yearoldmanwith immunodeficiencies,EBV-lymphoproliferative

disease and chemosensitivity of fibroblasts. Fibroblast is a type of connective tis-

sue with mesenchym origin and is commonly used as germline control to identify

tumor specific mutations. The chemosensitivity of this tissue from this patient re-

sembled that of Fanconi anemia (FA), an autosomal disorder affecting the DNA

repairmechanisms during cell division and association to increased cancer risk. This

circumstance and the family history of malignancies prompted the investigators to
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search for factors of inherited diseases, by sequencing the father, sister and stored

samples of the diseased mother, who died early of breast cancer carcinoma. Using

SNuPy a total of 122 variants were detected, of which three could be excluded us-

ing deduction from clinical data. Only one mutation in RAD52 homolog, DNA

repair protein (RAD52) was detected to be private to the patient and mother after

comparison to database-wide available control samples. This massive reduction of

possible candidates highlights the importance of institution wide control samples.

Loss of Pax5 Exploits Sca1-BCR-ABL p190 Susceptibility to Confer the Metabolic

Shift Essential for pB-ALL (Martín-Lorenzo et al. (2018))

Preleukemic cells are cells, which later develop into full leukemic cells, such as pre-

cursor B-cell acute lymphoblastic leukemia (pre B-ALL). These preleukemic clones

can be found early in neonatal cord blood, e.g. harboring BCR-ABLp190 (BCR-

ABL) lesions. However, these lesions often remain silent and fraction of normal

B-cells in healthy adults harbor them without developing into pre B-ALL. This

study set to investigate factors contributing to tumorigenesis of BCR-ABL posi-

tive cells. For this task sixteen tumors, 3 regular Sca1-BCR-ABL and 13 Sca1-BCR-

ABL+Pax5+/−, as well as the respective germline samples were sequenced using

whole-exome sequencing. This revealed Pax5 and Jak3 to be recurrently mutatedg

in Sca1-BCR-ABL+Pax5+/− pre B-ALL, while Sca1-BCR-ABL were more hetero-

geneous. SNuPy was used to identify and describe the mutational landscape in

these two different classes, which was enabled by allowing multiple samples to be

queried in parallel.

g see also Infection Exposure Is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a

Result of Pax5-Inherited Susceptibility (Martin-Lorenzo et al. (2015)) described above
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Next generation sequencing technologies are widely seen as a driving force of fun-

damental changes in medical research, diagnosis and treatment in the coming years.

What has started in the late ’00 years is now becoming more andmore accessible in

terms of financial and timely investment. With the simultaneous increase in depth

and breadth that genome wide sequencing offers data accessibility is becoming a

more and more pressing issue.

These developments are not unique to the medical sector as the field of data

related sciences is beginning to emerge in production and service-driven industries

as well. But despite the success of data science applications, it is not alwaysmetwith

acceptance in the general population. The health-care aspect ofmedical NGS offers

great benefits to increase acceptance for this field by offering better treatment and

prevention through precision medicine utilizing data-driven processes.

However,data literacy requires tools that supports experts to access large datasets,

both digitally and mentally and allow them to interpret their findings. SNuPy is a

tool that empowers genomic scientists to do exactly this and lets users with limited

computer literacy become data literate.

Bio-medical research is a rapidly evolving field and NGS is one of its current

driving forces. There are many data sources available, many of them are specifically

designed to focus on a single aspect of variants or diseases. Therefore, it is funda-

mental for any variant discovery platform to be extendable and integrate new data

sources in a flexible fashion. Although most genomic information is gathered and

published for the human genome, model organisms are important subjects of ge-

nomic studies as well. Consequently SNuPy enabled, users to not only work with

human genomic data, but also with those of other organisms.

The Clinical Genome Resource projecta aims to built a curated knowledge base

for clinical genomics. Standardized variant interpretation criteria have been recog-

nized by this project as a fundamental part of reproducible and coherent variant

classification by experts. Thus variant discovery platforms need to be able to sup-

port users in complying with such standardized approaches, which SNuPy does.

As I have demonstrated SNuPywas usedwith great success for different research

projects on varying topics (see chapter 11). The underlying AQuA framework con-

cept allows sustainable and flexible future developments that can be adapted to

many research tasks that analyze genome-wide variant datasets. It was successfully

used to integrate the necessary data sources (see section 9.1) that allow standardized

variant interpretation and explorative analysis (see section 10.3).

a https://www.clinicalgenome.org
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As we have seen when looking at other solutions that provide a subset of the

necessary variant discovery features, there is no clear state-of-the-art concept on

how to store variants and the variant annotation data. The VCF standard defines a

data exchange format and allows position based retrieval of annotations, but falls

short for example when one needs to query a dataset by gene name. GEMINI, a

popular command line based filtering tool uses a approach using file based rela-

tional database, utilizing indexing on arbitrary attributes. SNuPy utilizes a remote

relational database to store variants and the associated raw variant data, utilizing the

increased computational power of a centralized setup. The database size has grown

significantly over the years, harboring more than 5.000 variant datasets with more

than 300 million genotypes. Despite the large volume, SNuPy manages to query

datasets in a time frame that allows dynamic and explorative work (section 10.2),

thus providing another successful example of storing andmanaging variant datasets

in a relational database management system.

With use of SNuPy in research and the overall increasing number of publication

in this field, the next step is to utilize the knowledge that can be derived from the

results. One way an integrated variant discovery platform can support variant in-

terpretation efforts is to identify recurring aspects of query results. For example,

analyzing the results of the queries of a project to identify patterns in the returned

result that are not apparent from a single query, but follow a pattern (e.g. biological

function) that show up more frequently as part of the result than expected. Us-

ing expert knowledge to drive this process will allow to learn important aspects of

disease causing variants. Moreover, variant filtering and interpretation standards

may benefit from such observation-based approaches, in order to find new criteria,

refine existing ones or weight individual aspects more precisely.

I will be working on the extension of SNuPy by utilizing the existing AQuA

framework to integrate new data sources, such as those published by the clinical

genome project and disease specific databases. While SNuPy in its current state

allows quality control of individual samples, I further plan on extending the quality

controls capabilities to a databasewide level, specifically to ensure that data is correct

across all project and no NGS samples have been swapped. One promising way to

address this are local sensitive hashing algorithms that allow to calculate distances

basedonhashedvalues,whichcanbepre-computedand storedwhen adding variant

datasets.

Furthermore, the extension of SNuPy towards other NGS experiments such as

RNASeq, whole-genome structural data, and microbiome data will be an impor-

tant stepping stone towards comprehensive NGS sample analysis. This is expected

to give insight into complex and regulatory disease progression mechanisms as well

as to allow more targeted drug profiling and in the context of precision medicine

approaches.

In conclusion: SNuPy has proven its capabilities in numerous practical case stud-

ies to be a user-friendly, comprehensive and versatile tool that empowers genomic
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scientists to manage, query and interpret genomic variant datasets without addi-

tional bioinformatic support . The DNA data deluge32 was and will remain a chal-

lenge for the next years, but we are sure to have the tools and know-how to navigate

it.
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GLOSSARY

Entity
Entities represent individuals that are under investiga-

tion and for which biological specimen were retrieved.

Entity Group
Entity groups represent datasets which can be analyzed

independently.

Project
Projects can be compiled by a user and consist of any

number of entity Groups

Sample
Extract from a VcfFile, which may contain many sam-

ples.

Specimen A biological specimen taken from an Entity.

VcfFile Result of a NGS analysis pipeline
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ACRONYMS

AQuA Annotation QUery and Aggregation framework

CNV Copy Number Variant

FDA U. S. Food and Drug Administration

GUI Graphical User Interface

HGSV Human Genome Variation Society

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

InDel Insertion/Deletion

LOVD Leiden Open Variation Database

MeSH Medical Subject Heading

NCBI National Center for Biotechnology Information

NGS Next-Generation Sequencing

PM precision medicine

SNuPy Single NUcleotide PolYmorphism platform

SNV Single Nucleotide Variant

SQL Structured Query Language

SV Structural Variant

SVIWG Sequence Variant InterpretationWorking Group

VCF Variant Call Format (developed by the 1000 genomes project)
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Part IX

SUPPLEMENT





REPORT EXAMPLES

1 acmg / am p r e p o rt t em p l at e

The ACMG/AMP report template can be used as a standardized document for

variant interpretation afterusers have identified variants of interest from theirquery

results. The tables of the evidence framework can be edited using common word

processing programs (such as LibreOffice or Word). The report template can be

share amongmultiple users and after all details are filledout, can also be re-uploaded

to SNuPy to document the findings.

The first page shows an overview of the entities of the investigated entity group,

giving users the necessary information about available samples and states. The sec-

ond page shows the evidence framework as an overview, to help users navigate the

complex evidence framework. Thenextpages contain the same evidence framework

table, but augmented with information from SNuPy . Each page only displays in-

formation for a single variant. The last pages show the detailed descriptions used for

the evidence framework, again helping users to navigate the interpretation frame-

work.
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2 d g i d b d r ug i n t e r ac t i o n r e p o rt t em p l at e

TheDGIDBdrug interaction report is used to identifydruggable targets of a variant

list in a standardized fashion. The gene-drug interaction data is based on the work

by Cotto et al. 156.

The example report shows data from the AshkenazimTriob that is used as a gold

standard for variant datasets.

Tobetter illustrate a real reporting scenario, the sonof the family trio is exemplary

treated as amalignant sample with diagnosis for Burkitt Lymphoma. The first page

shows a summaryof the entity group,giving investigators thenecessary information

about the sample backgrounds. The second and following pages show a table with

the coordinates of the mutation, the affected genes and the gene-drug interaction

information, including the sources for the interaction. In order to make it easier

for users to identify variants potential functional variants CADD scores are added

to the table as well.

b ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/

OsloUniversityHospital_Exome_GATK_jointVC_11242015/HG002-HG003-HG004.

jointVC.filter.vcf
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3 q u e ry s umma ry r e p o rt t em p l at e

This report template displays a summary of the query result and can be used as a

generic report and template for users to mark variants of interest.

The example report shows data from the AshkenazimTrioc that is used as a gold

standard for variant datasets.

To better illustrate a real reporting scenario, the son of the family trio is exem-

plary treated as a malignant sample with diagnosis for Burkitt Lymphoma. The

first page shows a summary of the entity group, giving investigators the necessary

information about the sample backgrounds. Following pages of the report show

tables from three sections: Transcripts, Inheritance and Phenotypes. The transcript

category displays the mutation coordinates, gene and transcript location as well as

information from population and variant databases. The Inheritance table shows

the variant frequencies in the diseased entity, its parents and possibly the siblings.

This allows users to judge the penetrance of a variant. The last phenotype category

lists all OMIM and Clinvar phenotypes for the genes that a variant is associated

with, additional CADD scores are shown to support users in prioritizing variants

of interest.

On the last page, SNuPy documents which filter criteria have been used to filter

the variants, helping users to reproduce the query.

c ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/

OsloUniversityHospital_Exome_GATK_jointVC_11242015/HG002-HG003-HG004.

jointVC.filter.vcf
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