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VII Abstract 

Abstract 

In times of increasing scarcity of fossil raw materials, a growing world population and progressing climate 

change, more sustainable strategies are needed to secure global prosperity and to utilize available 

resources more responsibly. A bio-based economy can be part of the solution by transforming 

petrochemical-based processes into renewable, biomass-based processes. For establishing these 

large-scale microbial production processes metabolically versatile microorganisms, which can utilize a 

broad substrate spectrum, are required. In this context, the industrial workhorse Corynebacterium 

glutamicum was engineered for the efficient metabolization of the pentose D-xylose by systematic 

analysis and rational engineering of the metabolism. The following results have been obtained: 

(1) The growth of a recently constructed C. glutamicum strain, which is able to utilize D-xylose via the 

Weimberg pathway, has been improved by an Adaptive laboratory Evolution strategy. Afterwards, 

beneficial mutations were identified by performing genome sequencing. Mutational studies revealed that 

loss of the transcriptional regulator IolR was mainly responsible for the observed improved growth on 

D-xylose. However, this result raised the question which of the 22 IolR-regulated genes contribute to 

D-xylose metabolization. Further investigations identified the myo-inositol/glucose symporter IolT1 to be 

involved in the transport of D-xylose, for which transcription of the respective gene is repressed by IolR.,. 

By rational disruption of a IolR-binding site in the chromosomal iolT1 promoter, the repression could be 

abolished. Furthermore, it has been shown that the myo-inositol-2-dehydrogenase IolG, which is also 

transcriptionally repressed by IolR, contributes to the oxidation of D-xylose to D-xylonolactone, which is 

then hydrolyzed to D-xylonate spontaneously. By taking advantage of both effects, an efficient, 

non-GMO variant of C. glutamicum was constructed for the microbial production of D-xylonate from 

D-xylose. The achieved product yield matched the theoretical maximum yield of 1 mol mol-1. 

(2) A genome-wide search for additional endogenous genes potentially contributing to D-xylose 

utilization via the Weimberg pathway revealed a hitherto unknown α-ketoglutarate semialdehyde 

dehydrogenase capable of oxidizing α-ketoglutarate semialdehyde to α-ketoglutarate. This knowledge 

of endogenously encoded genes and enzymes catalyzing reactions of the Weimberg pathway allowed 

for the systematic reduction of the xylXABCD-operon from Caulobacter crescentus. In this context, it 

was demonstrated that expression of a heterologous 2-keto-3-deoxy-D-xylonate dehydratase or 

D-xylonate dehydratase is sufficient for establishing the five-step Weimberg pathway in C. glutamicum. 

Finally, application of the Weimberg pathway turned out to be more beneficial for the production of 

α-ketoglutarate from a D-glucose/D-xylose mixture compared to cultivations using D-glucose as sole 

substrate.  

 

 

 



 

 

VIII  Zusammenfassung 

Zusammenfassung 

In Zeiten zunehmender Verknappung fossiler Rohstoffe, einer wachsenden Weltbevölkerung und dem 

fortschreitenden Klimawandel werden nachhaltigere Strategien benötigt, um den erreichten 

Lebensstandard zu erhalten und gleichzeitig die verfügbaren Ressourcen verantwortungsvoller zu 

nutzen. Die Bioökonomie stellt hier eine vielversprechende Strategie dar, da sie Petrochemie-basierte 

Prozesse durch erneuerbare, Biomasse-basierte Prozesse ersetzt. Zur Etablierung solcher 

großtechnischen mikrobiellen Produktionsprozesse auf Basis nachwachsender Kohlenstoffquellen 

werden Mikroorganismen mit einem breiten Substratspektrum benötigt. Zu diesem Zweck wurde das in 

der industriellen Biotechnologie oft eingesetzte Bakterium Corynebacterium glutamicum durch 

systematische Analyse und rationales Engineering des Stoffwechsels in der Fähigkeit, die Pentose 

D-Xylose zu verstoffwechseln, verbessert. Dabei wurden die folgenden Ergebnisse erzielt: 

(1) Das Wachstum eines kürzlich etablierten C. glutamicum-Stammes, der in der Lage ist D-Xylose über 

den Weimberg-Stoffwechselweg zu metabolisieren, wurde durch Adaptive laboratory Evolution 

verbessert. Die anschließende Genomsequenzierung isolierter Varianten zeigte, dass insbesondere der 

Verlust des transkriptionellen Regulators IolR für das verbesserte Wachstum verantwortlich war. Daraus 

ergab sich die Frage, welche der 22 durch IolR regulierten Gene zur Verstoffwechselung von D-Xylose 

beitragen. Weitere Untersuchungen identifizierten, dass der myo-Inositol/Glucose-Symporter IolT1, 

dessen Transkription durch IolR reprimiert ist, an der Aufnahme von D-Xylose beteiligt ist. Durch 

gezieltes Ausschalten einer IolR-Bindestelle im chromosomalen iolT1-Promotor konnte die Repression 

durch IolR verhindert werden. Weiterhin wurde gezeigt, dass die ebenfalls durch IolR regulierte 

myo-Inositol-2-Dehydrogenase IolG maßgeblich an der Oxidation von D-Xylose zu D-Xylonolacton 

beteiligt ist, das anschließend spontan zu D-Xylonat hydrolysiert. Mit dem Wissen um beide Effekte 

konnte ein als nicht genetisch modifiziert einzustufender C. glutamicum-Stamm für die mikrobielle 

Produktion von D-Xylonat aus D-Xylose konstruiert werden, dessen Produktausbeute dem theoretischen 

Maximum von 1 mol mol-1 entspricht. 

(2) Weiterführende genomweite Untersuchungen ergaben, dass eine bisher unbekannte 

α-Ketoglutarat-Semialdehyd-Dehydrogenase in der Lage ist, α-Ketoglutarat-Semialdehyd zu 

α-Ketoglutarat zu oxidieren. Dieses Wissen über endogen kodierte Gene und Enzyme, die Reaktionen 

des Weimberg-Wegs katalysieren können, erlaubte die systematische Reduzierung des 

xylXABCD-Operon aus Caulobacter crescentus. Dabei zeigte sich, dass die heterologe Expression 

einer 2-Keto-3-Desoxy-D-Xylonat-Dehydratase oder einer D-Xylonat-Dehydratase für die Etablierung 

des fünfschrittigen Weimberg-Stoffwechselweges in C. glutamicum ausreichend ist. Abschließend 

wurde gezeigt, dass die Produktion von α-Ketoglutarat ausgehend von einem D-Glucose/D-Xylose-

Gemisch vorteilhafter im Vergleich zur alleinigen Nutzung von D-Glucose ist.  

 



 

 

IX Abbreviations 

Abbreviations 

ALE  Adaptive laboratory Evolution 
ATCC  American Type Culture Collection 
BGR  Federal Institute for Geosciences and Raw Materials 
BHI  brain heart infusion medium 
bp  base pair 
BS  backscatter 
DNA  deoxyribonucleic acid 
DO  dissolved oxygen 
ESI  electro spray ionization 
e.g.  (lat.) exempli gratia (for example) 
et al.  (lat.) et alii (and others) 
FACS  fluorescence activated cell sorting 
FAO  Food and Agriculture Organization 
GC-TOF-MS gas chromatography coupled to time-of-flight mass spectrometry 
GMO  genetically modified organism 
GRAS  generally recognized as safe 
IEA  International Energy Agency 
IPCC  Intergovernmental Panel on Climate Change 
IPTG  isopropyl-β-D-thiogalactopyranoside 
Kan  kanamycin 
KdxA  2-keto-3-deoxy-D-xylonate aldolase 
KdxD  2-keto-3-deoxy-D-xylonate dehydratase 
KgsaDh α-ketoglutarate semialdehyde dehydrogenase 
LB  lysogeny broth 
MNP  multi nucleotide polymorphism 
MOPS 3-morpholinopropanesulfonic acid 
MPP  mini pilot plant 
MTP  microtiter plate 
µ  growth rate 
NAD  nicotinamide adenine dinucleotide 
NGS  Next Generation Sequencing 
Ni-NTA nickel-nitrilotriacetic acid 
NOAA  National Centers for Environmental Information 
nt  nucleotide 
OD600  optical density at a wavelength of 600 nm 
ODHC  α-ketoglutarate dehydrogenase complex 
ORF  open reading frame 
PCR  polymerase chain reaction 
pH  negative decimal logarithmic value of hydrogen ion concentration 
RB  repetitive batch 
rbs  ribosomal binding site 
tRNA  transfer-ribonucleic acid 
rpm  revolutions per minute 
SNP  single nucleotide polymorphism 
Spc  spectinomycin 
TCA  tricarboxylic acid 
TRIS  trishydroxymethylaminomethane 
U  enzymatic activity unit (1 U = 1 µmol/min) 
UN  United Nations 
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WMB1 expression plasmid pEKEx3-xylXABCDCc  
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WT  wild type 
w/v  weight per volume 
XDh  D-xylose dehydrogenase 
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XK  D-xylulose kinase 
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XR  D-xylose reductase 
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1.   Scientific context and key results of this thesis 

1.1   Society challenges and the bio-based economy 

Over the past 43 years, the world’s total primary energy consumption rose by more 

than 200 % from 25.54 x 104 PJ in 1973 to 57.62 x 104 PJ in 2016 (IEA 2018). This 

increase goes hand in hand with the exploitation and use of fossil raw materials (crude 

oil, natural gas and coal). Since the availability of these raw materials on earth is 

limited, the goal is to reduce the energy consumption by using more efficient 

technologies. However, the International Energy Agency (IEA) estimates that, if all 

actions to increase energy efficiency, which have been previously agreed to, will be 

implemented by 2040, the demand can only be reduced by 26 %. Without this 

reduction, the Federal Institute for Geosciences and Raw Materials (BGR) estimates 

in its annual report that the fossil raw materials, that are currently available on a reliable 

base, will only suffice for further 55 (crude oil), 59 (natural gas) and 113 (coal) years 

(BGR 2017). This situation is aggravated by the fact that, besides of their energetic 

use, these raw materials are also used in production of everyday commodities such as 

plastics, cosmetics or chemicals.  

In addition to the limited availability, the combustion of these raw materials leads to 

high emissions of greenhouse gas, which contributes to climatic changes such as 

global warming. This was observed especially in the last twelve years of which nine 

have been considered to be the warmest years since the beginning of weather 

recordings (Gao et al., 2018; NOAA 2018; IPCC 2014).  

Furthermore, the global world population grows continuously and rose to its highest 

level of 7.63 billion people in October 2018. The United Nations (UN) estimate an 

increase to 9.7 billion people by 2050. Moreover, the UN evaluated that 821 million 

people already suffer from hunger (FAO 2018). This raises the question of how we are 

going to feed 9.7 billion people in the future.  

To sum up, the increasing scarcity of fossil raw materials, the growing world population 

and the progressing climatic change pose major challenges for the global society. More 

sustainable strategies are needed to secure global prosperity and to utilize the 

available resources more responsibly.  
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The bio-based economy can provide promising assistance, as it tries to replace 

selected fossil raw material-dependent production processes with renewable 

biomass-based production processes (Langeveld et al., 2010; Sanders et al., 2007). 

One field of the bio-based economy is the industrial biotechnology, whose main goal 

is to convert renewable biomass with the use of microorganisms or enzymes derived 

thereof into food and feed, bio-based products or bio-energy, thus contributing to 

sustainable economic growth (FitzPatrick et al., 2010).  

1.2   Lignocellulosic biomass 

Recently, the overall biomass composition of the biosphere was calculated to be 550 

gigatons of carbon (Gt C), which consists of archaea (7 Gt C), viruses (0.2 Gt C), 

bacteria (70 Gt C), protists (4 Gt C), fungi (12 Gt C), animals (2 Gt C) and plants 

(primarily terrestrial) (450 Gt C) (Bar-on et al., 2018).  

More than 90 % of the terrestrial plants contain lignocellulose, which can further be 

subdivided into the three major components: cellulose (50 %), hemicellulose (24 %) 

and lignin (20 %) (Acatech 2012; Rubin 2008). Cellulose is the main structural 

component of cell walls and consists of a chain of β-1,4-linked D-glucose molecules. 

Hemicellulose, the second most abundant fraction is a polysaccharide, which contains 

a mixture of different C5- and C6-sugars (mainly D-xylose, but alsoD-glucose, 

D-arabinose, D-galactose and D-mannose). Finally, lignin is a phenolic 

three-dimensional macromolecule composed of different phenylpropanoid units (such 

as p-coumaryl alcohol, coniferyl alcohol or sinapyl alcohol) (Fig. 1) (Rubin 2008).  
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Fig. 1: Schematic overview of the composition of lignocellulosic biomass. Source: (Rubin 2008) 

The economic significance of lignocellulosic biomass is reflected by the high 

abundance in many industrial waste streams. Consequently, this material has been 

identified as a potential source of fermentable sugars for the industrial biotechnology. 

However, unprocessed lignocellulosic material cannot be used as feedstock in the 

microbial production due to the complex structures of lignin and cellulose. In a suitable 

procedure such as steam-, hot water-, acid-, lime or ammonia pretreatments, these 

structures first have to be disrupted (Mosier et al., 2005). Ideally, after this procedure 

all monomers should be available for a potential production process. 

In addition to substrate pretreatment, it has to be considered that many industrially 

relevant microorganisms have a limited substrate spectrum by nature. In these cases 

genetic engineering of the microorganisms is necessary to metabolize the complex 

sugar compositions derived from lignocellulosic biomass.  
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1.3   D-Xylose-utilizing pathways  

Besides D-glucose, which can be readily metabolized by most organisms, D-xylose is 

the second most abundant fraction of lignocellulosic biomass. Several organisms such 

as bacteria, fungi and archaea are capable of utilizing D-xylose as carbon and energy 

source. In bacteria, usually the isomerase pathway is followed (Fig. 2). In this pathway, 

D-xylose is first isomerized to D-xylulose by a D-xylose isomerase (XI), which is 

subsequently phosphorylated by a xylulokinase (XK) yielding D-xylulose-5-phosphate 

(Anderson and Wood 1962; Chen 1980; Patrick and Lee 1968). As this compound is 

an intermediate of the pentose phosphate pathway it can be metabolized rapidly within 

the central carbon metabolism. In most fungi and yeast, D-xylose is first reduced to 

D-xylitol by a D-xylose reductase (XR) and subsequently oxidized to D-xylulose by a 

D-xylitol dehydrogenase (XyDh), which, similar to bacteria, is phosphorylated to 

D-xylulose-5-phosphate (Bolen et al., 1986; Bruinenberg et al., 1984; Rizzi et al., 1988; 

Rizzi et al., 1989; Wang and Jeffries 1990). In addition, yeast and filamentous fungi 

exhibiting a XI-activity have been reported (Banerjee et al., 1994; Harhangi et al., 2003; 

Vongsuvanlert and Tani 1988). In contrast, two oxidative and non-phosphorylating 

pathways have been discovered in most archaea and some bacterial and fungal 

strains. In these pathways, D-xylose is first oxidized by a D-xylose dehydrogenase 

(XDH) yielding D-xylonolactone, which is subsequently hydrolyzed by a D-

xylonolactonase (XL) to D-xylonate. In case of the Weimberg pathway, two molecules 

of water are eliminated successively by a D-xylonate dehydratase (XD) and a 2-keto-

3-deoxy-D-xylonate dehydratase (KdxD) yielding α-ketoglutarate semialdehyde, which 

is finally oxidized to α-ketoglutarate by an α-ketoglutarate semialdehyde 

dehydrogenase (KgsaDh). In case of the Dahms pathway, 2-keto-3-deoxy-D-xylonate 

is cleaved to pyruvate und glycolaldehyde by a 2-keto-3-deoxy-D-xylonate aldolase 

(KdxA) (Dahms and Donald 1982; Johnsen et al., 2009; Stephens et al., 2007; 

Weimberg 1961). 
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Fig. 2: Overview of different metabolic strategies for D-xylose utilization. Abbreviations: XDh: 
D-xylose dehydrogenase, XL: D-xylonolactonase, XD: D-xylonate dehydratase, KdxD: 
2-keto-3-deoxy-D-xylonate dehydratase, KgsaDh: α-ketoglutarate semialdehyde dehydrogenase, KdxA: 
2-keto-3-deoxy-D-xylonate aldolase, XR: D-xylose reductase, XyDh: D-xylitol dehydrogenase, XI: 
D-xylose isomerase, XK: D-xylulose kinase. Weimberg pathway: XDh, XL, XD, KdxD, KgsaDh. Dahms 
pathway: XDh, XL, XD, KdxA. Oxido-reductase pathway: XR, XyDh, XK. Isomerase pathway: XI, XK 
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1.4   Corynebacterium glutamicum and its industrial relevance 

Corynebacterium glutamicum is a Gram-positive, non-pathogenic and 

biotin-auxotrophic soil bacterium, which was first discovered in 1957 when scientists 

were searching for a natural L-glutamate-producing microorganism (Kinoshita et al., 

1957). The isolated microorganism was first named Micrococcus glutamicus No. 534 

and later renamed Corynebacterium glutamicum after a more detailed taxonomic 

characterization (Abe et al., 1967; Eggeling and Bott 2005). Thenceforward, 

application of this organism changed the amino acid producing industry, enabling the 

microbial production of L-glutamate and L-lysine with C. glutamicum at a million ton-

scale per year (Eggeling and Bott 2015; Wendisch et al., 2014).  

 

 

 

Fig. 3: Electron microscopic image of C. glutamicum ATCC13032 Source: (Sahm et al., 2000) 

Initially, strains have been optimized for amino acid production by mutagenesis and 

subsequent screening cycles and later by rational engineering (Becker et al., 2011; 

Ikeda 2006). Important milestones in the development of C. glutamicum as a model 

organism and industrial workhorse was the sequencing of the entire genome in 2003 

and the construction of numerous tools for genetic engineering such as expression 

plasmids or promoters (Kalinowski et al., 2003; Pátek and Nešvera 2013). During the 
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last years, C. glutamicum strains have been engineered for more than 70 

biotechnologically interesting compounds such as alcohols, organic acids, biofuels or 

polyphenols (Becker et al., 2018; Kallscheuer et al., 2016; Kallscheuer et al., 2017; 

Vogt et al., 2016; Wieschalka et al., 2013). Apart from the capability to produce many 

different biotechnologically relevant compounds, all products obtained by C. 

glutamicum have GRAS (generally recognized as safe) status. 

However, to date all large-scale applications for amino acid production with C. 

glutamicum use D-glucose from starch hydrolysates or D-fructose (and sucrose) from 

molasses. The substrate spectrum of C. glutamicum variants engineered for other 

small molecules is mostly limited to these hexoses (Blombach and Seibold 2010). For 

a more sustainable production using C. glutamicum, it is essential to expand its 

substrate spectrum with respect to the use of lignocellulose-containing material. In the 

recent past, some efforts have been made in engineering C. glutamicum for D-xylose 

metabolization, the key building block of the hemicellulose fraction. In 2006, the 

isomerase pathway was implemented in C. glutamicum by heterologous expression of 

a XI (encoded by xylA) from either Escherichia coli or Xanthomonas campestris with 

additional expression of the endogenous XK (encoded by xylB) yielding the pentose 

phosphate pathway intermediate xylulose-5-phosphate (Fig. 2) (Kawaguchi et al., 

2006; Kawaguchi et al., 2008). In contrast, the oxidative five-step Weimberg pathway 

was established in 2014 by heterologous expression of genes coding for XDh 

(encoded by xylB), XL (encoded by xylC), XD (encoded by xylD), KdxD (encoded by 

xylX) and KgsaDh (encoded by xylA) from Caulobacter crescentus (Radek et al., 

2014).  

1.6   Aims of this thesis 

The major objective of this thesis is to identify and engineer key genetic targets for the 

improvement of D-xylose utilization in recently established, D-xylose-metabolizing C. 

glutamicum strains. This includes the detailed genome-wide search of genes 

potentially coding for enzymes involved in D-xylose utilization as well as engineering 

of the host metabolic network. Based on the knowledge gained, the strains were 

supposed to be improved for D-xylose utilization and engineered towards production 

of D-xylonate and α-ketoglutarate as biotechnologically interesting compounds.  
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1.7   Key results on engineering C. glutamicum towards D-xylose utilization 

1.7.1   Adaptive laboratory evolution improves D-xylose utilization 

(Radek et al., 2017, Bioresource Technology, cf. chapter 2.1) 

C. glutamicum WMB1 was the first engineered strain for D-xylose utilization via the 

Weimberg pathway, but only reached a growth rate of µ = 0.07 h-1 in medium containing 

only D-xylose as carbon and energy source. In this strain, the native pentacistronic 

operon from C. crescentus comprised of genes coding for XDh (encoded by xylB), XL 

(encoded by xylC), XD (encoded by xylD), KdxD (encoded by xylX) and KgsaDh 

(encoded by xylA) was heterologously expressed. With the aim to improve the overall 

performance of the pathway in C. glutamicum, gene variants, codon-optimized for 

expression in C. glutamicum were synthesized and organized as synthetic 

pentacistronic operon on the expression plasmid pEKEx3. Subsequently, the wild-type 

strain C. glutamicum ATCC13032 (WT) was transformed, using the resulting plasmid 

pEKEx3-xylXABCDCc-opt, and subsequently cultivated in defined CGXII minimal 

medium containing 40 g L-1 D-xylose as sole carbon and energy source. The obtained 

strain C. glutamicum WMB2 strain allowed for a growth rate of µ = 0.10 h-1 

corresponding to an improvement of 43 % compared to the strain C. glutamicum 

WMB1.  

For further improving growth, an Adaptive laboratory Evolution (ALE) strategy was 

followed, in which faster-growing C. glutamicum variants in D-xylose containing 

medium were isolated. By using this technique, a strain was obtained that showed a 

maximum growth rate of µmax = 0.26 ± 0.01 h-1 when cultivated in defined CGXII 

minimal medium containing 40 g L-1 D-xylose as sole carbon and energy source. The 

isolated strain was named C. glutamicum WMB2evo. 

In order to identify the underlying reasons for the improved growth phenotype, genome 

sequencing of C. glutamicum WMB2evo was performed. This analysis revealed that 

mainly genes coding for enzymes presumably involved in the metabolism of 

myo-inositol were affected. A deletion of 98 nucleotides (nt) from position 133 to 232 

relative to the start codon in the open reading frame (ORF) of the transcriptional 

regulator gene iolR was identified, which most probably led to its inactivation. As this 

regulator is responsible for the regulation of 22 genes, it was assumed that this deletion 

had a large influence on cell metabolism. Furthermore, upstream of the myo-inositol 



 

 

- 9 - 1. Scientific context and key results of this thesis 

transporter gene iolT1 different single nucleotide polymorphisms (SNP) and multi 

nucleotide polymorphisms (MNP) were found. However, since it is not known how the 

repression of iolT1 through IolR can be prevented, it is unclear whether these 

mutations also have an effect on the expression of iolT1. Additional point mutations 

and partial gene deletions were identified in gene cg3388, which is assumed to encode 

a repressor controlling the expression of the putative myo-inositol transporter gene 

iolT2. Furthermore, mutations in gene cg0587 (tuf) coding for the elongation factor Tu 

(EF-TU) have been identified. This elongation factor enables binding of an aminoacyl-

transfer ribonucleic acid (tRNA) to the ribosome during translation.  

1.7.2   Rational engineering for improvement of D-xylose uptake 

(Brüsseler et al., 2018, Bioresource Technology, cf. chapter 2.2) 

After identification of different mutations in C. glutamicum WMB2evo, a detailed 

characterization of these mutations was performed. Structural similarity between 

D-xylose and the cyclic polyol myo-inositol led to the assumption that mutations in 

genes coding for enzymes involved in the metabolism of myo-inositol might be 

responsible for improved growth. For this reason, the observed deletion of 98 nt in the 

ORF of the transcriptional regulator gene iolR was chosen as the most promising target 

as this regulator controls the expression of 22 genes (Klaffl et al., 2013). Consequently, 

the iolR gene was deleted in C. glutamicum WT yielding C. glutamicum ∆iolR, which 

was subsequently transformed with the Weimberg pathway encoding plasmid 

pEKEx3-xylXABCDCc-opt. The constructed strain C. glutamicum ∆iolR WMB2 was 

cultivated in comparison to C. glutamicum WMB2 in defined CGXII medium 

supplemented with 40 g L-1 D-xylose as sole carbon and energy source. Astonishingly, 

the specific maximum growth rate of C. glutamicum ∆iolR WMB2 was µmax = 0.28 h-1 

which was twice as high as the growth rate of C. glutamicum WMB2 (µmax = 0.13 h-1). 

Beyond, growth of C. glutamicum ∆iolR WMB2 was characterized by a much shorter 

lag phase. 

This observed improvement in growth encouraged further investigations for uncovering 

the underlying physiological consequences of the absence of the transcriptional 

regulator. Among the IolR-regulated genes, there are several gene products involved 

in the degradation and transport of myo-inositol, which could also contribute to the 

metabolization of D-xylose. The most promising candidates included myo-inositol 
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dehydrogenase (OxiA, encoded by oxiA), aldehyde dehydrogenase (IolA, encoded by 

iolA), 2-keto-myo-inositol dehydratase (IolE, encoded by iolE), efflux carrier (IolP, 

encoded by iolP), and glucose permease/myo-inositol transporter (IolT1, encoded by 

iolT1). Among these candidates, iolT1 stood out as several mutations upstream of the 

iolT1-ORF were identified during the genome sequence analyses. In order to assess 

the contribution of these proteins during D-xylose utilization, all five genes were deleted 

individually in the strain background of C. glutamicum ∆iolR WMB2 and a comparative 

cultivation with respect to the parental strain was performed in defined CGXII medium 

with 40 g L-1 D-xylose as sole carbon and energy source. While the absence of oxiA, 

iolE, iolP or iolA led to the same growth behavior as the reference strain, deletion of 

iolT1 resulted in a very similar growth to C. glutamicum WMB2 with intact regulation 

by IolR. Monitored D-xylose concentrations in the supernatant revealed that C. 

glutamicum ∆iolR WMB2 consumed nearly all of the available pentose within 30 h 

(residual concentration in the supernatant: 0.70 ± 0.12 g L-1 D-xylose). In comparison 

to this only 25 % of the initial D-xylose amount were consumed by C. glutamicum ∆iolR 

∆iolT1 WMB2 in the same time (residual concentration in the supernatant: 27.36 ± 0.24 

g L-1 D-xylose). This shows that IolT1 indeed contributes to D-xylose uptake in C. 

glutamicum, which was hitherto unknown. However, potential negative effects could 

never be excluded because of the deregulation of all IolR-controlled genes. For this 

reason, a precise deregulation of the iolT1 expression was desired. In a previous study, 

the consensus DNA binding motif of IolR was determined and two IolR-binding sites in 

the iolT1-promotor could be identified (Klaffl et al., 2013). In context of this work, the 

IolR-binding site, designated as O6, was disrupted by substituting two highly 

conserved nucleotides at position -29 and -28 (A→G and C→G, respectively) relative 

to the transcriptional start site of iolT1. The resulting strain designated as C. 

glutamicum PO6 iolT1 was subsequently transformed with the Weimberg pathway 

encoding plasmid pEKEx3-xylXABCDCc-opt and cultivated in comparison to C. 

glutamicum ∆iolR WMB2. Interestingly, both strains showed the same growth behavior 

indicating that mutation of the IolR-binding site O6 efficiently prohibits repression of 

iolT1. 
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Fig. 4: Schematic representation of the intergenic region of tnp2f and iolT1 on the chromosome 
of C. glutamicum. The two white boxes with diagonal black bars indicate the IolR binding sites. 
Furthermore, the transcriptional start site and the wild-type sequence in comparison to the engineered 
sequence of C. glutamicum PO6 iolT1 are displayed.  

 

1.7.3   Production of the chemical building block D-xylonate 

(Tenhaef et al., 2018, Bioresource Technology, cf. chapter 2.3) 

During growth studies of C. glutamicum ∆iolR WMB2, and C. glutamicum PO6 iolT1 

WMB2 it was observed that the control strains C. glutamicum ∆iolR, C. glutamicum PO6 

iolT1 and C. glutamicum WT already accumulated the Weimberg pathway intermediate 

D-xylonate in the supernatant. This commercially available C5 sugar acid has a 

potential to replace or complement the available C6 sugar acid D-gluconate, which is 

derived from D-glucose and already biotechnological produced in a scale of 100,000 t 

per year. In case of D-gluconate many applications are described, e.g. for production 

of pharmaceuticals, solvents, food and additional products (Climent et al., 2011; Toivari 

et al., 2012).  

In contrast to C. glutamicum ∆iolR, C. glutamicum PO6 iolT1 and C. glutamicum WT 

accumulated D-xylonate to a much lower extend. This observation indicates that the 

loss of the transcriptional regulator IolR does not only have an impact on D-xylose 

uptake but additionally also affects either i) D-xylose oxidation or ii) D-xylonate export 

or iii) both.  

First, the gluconate permease (GntP, encoded by gntP) was identified as the most 

promising D-xylonate exporter candidate in C. glutamicum, as it has already been 

demonstrated in Pseudomonas putida that a similar gluconate permease is capable to 

export D-xylonate  as a side activity. Furthermore, the putative myo-inositol permease 

(IolP, encoded by iolP) as second transport protein might contribute to D-xylonate 

export. In order to find out whether one or both permeases are involved in the export 
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of D-xylonate, the corresponding genes were deleted individually in C. glutamicum 

∆iolR and a triple deletion strain was constructed by deleting both permease genes. 

All strains were examined in a comparative cultivation for their ability to accumulate 

D-xylonate in the supernatant. Therefore, defined CGXII minimal medium 

supplemented with 10 g L-1 D-glucose and 30 g L-1 D-xylose was chosen as cultivation 

medium since the constructed strains are not capable to use D-xylose as sole carbon 

and energy source due to the lack of the expression of genes coding for the Weimberg 

pathway. During this cultivation, no differences regarding D-xylonate formation were 

observable, indicating that neither the gluconate permease GntP nor the putative myo-

inositol permease IolP are involved in D-xylonate export. 

This reinforced the suspicion that the oxidation of D-xylose to D-xylonolactone is 

affected, which is usually catalyzed by dehydrogenases (Stephens et al., 2007; 

Weimberg 1961). The expression of genes coding for aldehyde dehydrogenase (IolA, 

encoded by iolA), 5-deoxy-glucuronate isomerase (IolB, encoded by iolB), 

myo-inositol-2 dehydrogenase (IolG, encoded by iolG), myo-inositol dehydrogenase 

(OxiA, encoded by oxiA) and myo-inositol catabolism isomerase/epimerase (IolH, 

encoded by iolH) are under the transcriptional control of IolR and could potentially 

contribute to the oxidation of D-xylose (Klaffl et al., 2013). Again, individual 

double-deletion strains were constructed and cultivated in defined CGXII minimal 

medium supplemented with 10 g L-1 D-glucose as carbon and energy source and 30 g 

L-1 D-xylose. While the deletion of iolA, iolB, oxiA and iolH had no influence on the 

D-xylonate accumulation capacity, the deletion of iolG resulted in a significant decrease 

in extracellular amounts of D-xylonate. C. glutamicum ∆iolR ∆iolG accumulated 7.8 g 

L-1 (47 mM) D-xylonate in the supernatant whereas C. glutamicum ∆iolR converted the 

entire D-xylose used. To validate the participation of IolG in the oxidation of D-xylose, 

plasmid-based complementation of the iolG-deletion was performed which indeed 

restored the ability to accumulate D-xylonate. These experiments revealed that IolG 

contributes to the oxidation of D-xylose in C. glutamicum ∆iolR. 

Due to the high product titers, process development for the production of D-xylonate 

was started with C. glutamicum ∆iolR. In a first step, batch cultivation in a bioreactor 

(1L) was performed using defined CGXII minimal medium with 10 g L-1 D-glucose and 

40 g L-1 D-xylose. In total, a final concentration of 24.0 ± 0.01 g L-1 D-xylonate with a 

yield of 1 mol mol-1 was achieved, which is also the theoretical maximum. Since the 
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production rate after D-glucose consumption was reduced significantly, it was assumed 

that the availability of the reduction equivalent nicotinamide adenine dinucleotide 

(NAD+) was limiting. For this reason, the next step was to investigate production under 

fed-batch conditions. Therefore, the D-glucose concentration was increased to 20 g L-

1 and after depletion of the initial D-glucose, a low feed rate of 7.5 ml h-1 with a 100 g 

L-1 D-glucose solution was started. At the end, the D-xylonate titer was increased by 50 

% to 35.7 ± 0.10 g L-1.  

In order to make a potential D-xylonate production process more sustainable and cost-

effective, the consumption of sugarcane bagasse instead of defined and purified sugar 

mixtures was investigated in a one-pot hydrolysis and fermentation process. First, 

optimization of the fermentation medium using sugarcane bagasse as carbon and 

energy source was investigated. In this context, it turned out that the optimal 

composition requires the addition of a nitrogen source (such as ammonium sulfate) 

and a phosphate source (such as dibasic potassium phosphate) as well as biotin. 

Based on these results, a one-pot process in a buffer system using 50 mM acetate 

was designed. After enzymatic hydrolysis (72 h), the nitrogen and phosphate sources 

as well as biotin were added and the cultivation was performed for 24 h. At the end, a 

D-xylonate concentration of 5.7 ± 0.03 g L-1 was achieved while the yield was close to 

the theoretical maximum.  

1.7.4   Reduction of the Weimberg pathway encoding operon 

(Brüsseler et al., 2019, Metabolic Engineering Communications, cf. chapter 2.4) 

The presence of the endogenously encoded transport (IolT1) and oxidation of D-xylose 

(IolG) led to accumulation of the Weimberg pathway intermediate D-xylonate in the 

supernatant when C. glutamicum strains were cultivated in D-xylose-containing 

medium (Fig. 5). This indicated that the expression of the heterologous XDh (encoded 

by xylB) and the XL (encoded by xylC) from C. crescentus might not be required for 

establishing the Weimberg pathway. Therefore, a new, reduced synthetic operon 

comprised of the codon-optimized genes coding for KdxD (encoded by xylX), XD 

(encoded by xylD) and KgsaDh (encoded by xylA) was constructed. The resulting 

pEKEx3-xylXADCc-opt expression plasmid was introduced in C. glutamicum PO6 iolT1 

yielding C. glutamicum PO6 iolT1 pEKEx3-xylXADCc-opt which was subsequently 

cultivated in comparison to C. glutamicum PO6 iolT1 WMB2 in defined CGXII minimal 
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medium containing 40 g L-1 D-xylose as sole carbon and energy source. Astonishingly, 

growth of both strains was indistinguishable (μmax = 0.26 ± 0.006 h-1, μmax = 0.26 ± 

0.004 h-1, respectively) indicating that the expression of genes coding for the 

heterologous XDh and XL was not necessary or beneficial for growth of C. glutamicum.  

 

 

Fig. 5: Schematic overview of the metabolic connection of the Weimberg pathway to the central 
carbon metabolism of C. glutamicum. Endogenously encoded enzymes of C. glutamicum capable of 
catalyzing reactions in the Weimberg pathway are shown in green. The corresponding analogous 
enzymes obtained from C. crescentus are highlighted in red. Abbreviations: XylB, xylose 
dehydrogenase; XylC, D-1,4-xylono lactonase; XylD, D-xylonate dehydratase; XylX, 2-keto-3-deoxy-D-
xylonate dehydratase; XylA, α-ketoglutarate semialdehyde dehydrogenase; IolG, myo-inositol-2-
dehydrogenase; KsaD, α-ketoglutarate semialdehyde dehydrogenase; ODHC, α-ketoglutarate 
dehydrogenase complex 

 

Motivated by these results, a genome-wide search was performed to identify additional 

endogenously encoded enzymes, which could potentially replace the activity of the 

heterologous XD (encoded by xylD), KdxD (encoded by xylX) or KgsaDh (encoded by 



 

 

- 15 - 1. Scientific context and key results of this thesis 

xylA). This analysis revealed a gene coding for a putative α-ketoglutarate 

semialdehyde dehydrogenase (encoded by cg0535). Although nothing was known 

about the regulation and natural expression conditions of cg0535, the synthetic 

Weimberg pathway encoding operon was reduced by the gene coding for the 

heterologous KgsaDh (encoded by xylA). The resulting pEKEx3-xylXDCc-opt 

expression plasmid was introduced in C. glutamicum PO6 iolT1 and a comparative 

cultivation of the resulting strain C. glutamicum PO6 iolT1 pEKEx3-xylXDCc-opt with 

respect to C. glutamicum PO6 iolT1 pEKEx3-xylXADCc-opt was performed. This 

cultivation experiments revealed that C. glutamicum harbors an endogenous KgsaDh 

activity as both strains exhibited the same growth rate (μmax = 0.26 ± 0.008 h-1, μmax = 

0.26 ± 0.006 h-1, respectively). Further experiments disclosed that the gene cg0535 

indeed encodes for a KgsaDh, which prefers the co-substrate NAD+. Therefore, the 

gene was designated as ksaD (α-ketoglutarate semialdehyde dehydrogenase). 

Additional analysis of the C. glutamicum genome did not identify genes coding for 

dehydratases potentially catalyzing the dehydration reactions of the Weimberg 

pathway. However, enzyme assays performed with the KdxD and XD from C. 

crescentus showed that both dehydratases accept D-xylonate as substrate. Besides, 

the substrates of both dehydratases, D-xylonate and 2-keto-3-deoxy-xylonate, are very 

similar in their structures. Therefore, the Weimberg pathway encoding operon was 

further reduced by constructing the two expression plasmids pEKEx3-xylXCc-opt and 

pEKEx3-xylDCc-opt which were subsequently introduced individually into C. 

glutamicum PO6 iolT1 yielding C. glutamicum PO6 iolT1 pEKEx3-xylXCc-opt and C. 

glutamicum PO6 iolT1 pEKEx3-xylDCc-opt. Comparative cultivation revealed that both 

strains could use D-xylose as sole carbon and energy source, whereas the control 

strain C. glutamicum PO6 iolT1 could not. The growth rates of C. glutamicum PO6 iolT1 

pEKEx3-xylXCc-opt and C. glutamicum PO6 iolT1 pEKEx3-xylDCc-opt were identical 

(μmax = 0.25 ± 0.006 h-1, μmax = 0.25 ± 0.004 h-1, respectively) indicating that expression 

of either xylX or xylD from C. crescentus is sufficient for enabling D-xylose utilization 

via the Weimberg pathway in C. glutamicum PO6 iolT1. 

Although, the Weimberg pathway represents a shortcut to the biotechnologically 

interesting TCA cycle intermediate α-ketoglutarate when compared to synthesis 

starting from D-glucose, microbial production of this dicarboxylic acid from D-xylose has 

not been investigated yet (Fig. 5) (Jo et al., 2012). Unfortunately, many competing 
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metabolic pathways use α-ketoglutarate. It is either consumed by the TCA cycle 

orserves as a direct precursor of L-glutamate and as an amino group acceptor for 

transamination reactions. It was already demonstrated that the deletion of the gene 

coding for the E1o subunit (OdhA, encoded by odhA) of the large multienzyme 

α-ketoglutarate dehydrogenase complex (ODHC) resulted in the accumulation of 

α-ketoglutarate in C. glutamicum (Asakura et al., 2007; Bott 2007, Usuda et al., 1996). 

With the goal of establishing microbial α-ketoglutarate production from D-xylose via the 

Weimberg pathway in C. glutamicum, the gene odhA coding for this particular subunit 

was deleted in C. glutamicum PO6 iolT1. In an initial cultivation, the resulting strain C. 

glutamicum PO6 iolT1 ΔodhA was able to accumulate 5.76 ± 0.06 g L-1 (39.43 ± 0.4 

mM) α-ketoglutarate in the supernatant when cultivated in defined CGXII medium 

supplemented with 40 g L-1 D-glucose. In contrast, the parental strain C. glutamicum 

PO6 iolT1 accumulated only 0.05 ± 0.00 g L-1 (0.37 ± 0.03 mM) α-ketoglutarate. 

Subsequently, C. glutamicum PO6 iolT1 ΔodhA was transformed with the expression 

plasmid pEKEx3-xylXABCDCc-opt and subsequently cultivated in a mixture of 

D-glucose/D-xylose as the deletion of odhA interrupts the TCA cycle and renders 

cultivation on D-xylose as sole carbon and energy source with this strain impossible. 

C. glutamicum PO6 iolT1 ΔodhA WMB2 accumulated 7.92 ± 0.13 g L-1 (54.21 ± 0.86 

mM) α-ketoglutarate in the supernatant when cultivated in defined CGXII medium with 

10 g L-1 D-glucose and 30 g L-1 D-xylose, which represents a 1.5-fold increase .  

1.8   Conclusions and Outlook 

The results obtained in this thesis demonstrate that C. glutamicum is an attractive host 

for the efficient utilization of D-xylose and therefore is a good candidate for establishing 

more sustainable microbial production processes with this pentose as substrate. 

Systematic analysis of constructed strains showed that C. glutamicum wild type, 

although not capable of D-xylose utilization via the Weimberg pathway or any other 

catabolic strategy by nature, already possess individual components enabling D-xylose 

transport, D-xylose oxidation and α-ketoglutarate semialdehyde oxidation. Beyond that, 

knowledge of genes and enzymes involved in this catabolic pathway could be used 

directly for the construction of a non-recombinant C. glutamicum strain capable of 

producing D-xylonate from D-xylose with a resulting yield matching the theoretical 

maximum. Secondly, it was shown that the utilization of D-xylose via the Weimberg 
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pathway combined with the utilization of D-glucose via the central carbon metabolism 

for the production of α-ketoglutarate leads to an increase in product yield compared to 

use of D-glucose alone. 

Although α-ketoglutarate production from D-xylose was achieved in C. glutamicum, the 

observed titers are far away from any industrial application. With the aim of developing 

C. glutamicum strains suitable for large-scale applications, several challenges have to 

be tackled. The α-ketoglutarate consumption has to be prevented by engineering 

competitive pathways in the cell metabolism. Additionally, fine-tuning of the expression 

of the Weimberg pathway encoding genes is beneficial to avoid the accumulation of 

pathway intermediates (e.g. D-xylonate). Finally, improved production can be 

addressed by strain engineering towards efficient export of α-ketoglutarate since the 

transport of this dicarboxylic acid in C. glutamicum is unknown by now. 
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2.   Peer-reviewed publications 

2.1   Evolution of a D-xylose metabolizing C. glutamicum strain 
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2.2   Discovery of a D-xylose transporter  
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2.3   Growth-decoupled production of D-xylonate 
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2.4   Discovery of an α-ketoglutarate semialdehyde dehydrogenase 
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