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Zusammenfassung
Einleitung: In den letzten Jahren haben epidemiologische Studien einen Zusammenhang 
zwischen Luftschadstoffen und kardiopulmonaler Morbidität und Mortalität gezeigt. 
Jüngst haben epidemiologische Studien darüber hinaus Hinweise für einen möglichen 
Zusammenhang zwischen Luftschadstoffen und einzelnen Komponenten des Metabolischen 
Syndroms (MetS) gefunden, einem Symptomkomplex, der mit erhöhten Risiken für 
kardiovaskuläre Morbidität, Mortalität und einer Diabeteserkrankung verbunden ist. Bis jetzt 
haben jedoch wenige Studien einen möglichen Zusammenhang zwischen Luftschadstoffen 
und MetS erforscht, einem möglichen Wirkungspfad über den Luftschadstoffe das 
kardiovaskuläre und metabolische Erkrankungsrisiko beeinflussen könnten. 

Zielsetzung: Ziel dieser Analyse ist es, die Auswirkungen von Langzeitexposition mit 
Luftschadstoffen auf die Prävalenz und Inzidenz von MetS zu untersuchen. 

Methodisches Vorgehen: Daten der populationsbasierten Heinz Nixdorf Recall Studie 
(Basiserhebung 2000-2003) wurden verwendet um einen möglichen Zusammenhang 
zwischen Luftschadstoffen und MetS-Prävalenz bei der Basiserhebung (n=4,457) und 
MetS-Inzidenz (n=3,074; durchschnittliche Follow-up Zeit: 5,1 Jahre) zu untersuchen. Die 
Langzeitexposition mit größenfraktioniertem Feinstaub (Particulate Matter (PM2.5, PM10, 
PMcoarse, PM2.5abs)) und Stickstoffdioxid (NO2) wurde anhand von zwei verschiedenen 
Expositionsmodellen erfasst: einem Landnutzungsmodel (LUR), welches die Luftbelastung 
punktspezifisch an der Wohnadresse modelliert, und einem Dispersionsmodel (CTM), 
welches die urbane Hintergrundbelastung in einem Raster von 1 km2 modelliert. MetS 
wurde wie folgt definiert: zentrale Fettleibigkeit plus zwei von vier weiteren Risikofaktoren 
(erhöhte Triglyceride, gesenktes High-Density-Lipoprotein-Cholesterin, erhöhten Blutdruck 
oder erhöhte Glukosewerte). Das Odds Ratio (OR) der MetS-Prävalenz und -Inzidenz wurde 
mit einer logistischen Regressionsanalyse pro Interquartilabstand (IQR) geschätzt und für 
soziodemographische und Lebensstilvariablen adjustiert. 

Ergebnisse: Die MetS-Prävalenz bei der Basisuntersuchung lag bei 20.7% (n=922) und die 
kumulierte MetS-Inzidenz über einen mittleren Zeitraum von 5.1 Jahren bei 9.7% (n=299). 
Sowohl die punktspezifische Belastung mit NO2 an der Wohnadresse als auch die urbane 
Hintergrundbelastung mit NO2 waren positiv mit der MetS-Prävalenz assoziiert (OR pro 
IQR: 1.12 (95%-KI 1.02-1.24) für punktspezifische NO2-Belastung). Die ORs pro IQR für 
PM10 und PM2.5 und MetS-Inzidenz betrugen 1.14 (95%-KI 0.98-1.32) und 1.19 (95%-KI 
0.98-1.44) für die punktspezifische Belastung. 

Schlussfolgerung: Diese Studie liefert Hinweise, dass eine Langzeitexposition mit 
Luftschadstoffen möglicherweise das Risiko für MetS erhöht, wobei sowohl NO2 als auch 
verschiedene Feinstaubfraktionen eine Rolle spielen könnten. 
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Introduction: In the last few decades, epidemiological studies have observed an association 
between air pollution (AP) and cardiopulmonary morbidity and mortality. Recent 
epidemiological studies have further found a possible link between air pollution and individual 
components of the metabolic syndrome (MetS), a condition characterized by a combination 
of different symptoms that together increase the risk of cardiovascular morbidity, mortality, 
and type 2 diabetes mellitus. However, very few studies have explored whether an association 
between air pollution and MetS, a possible pathophysiological intermediate on the pathway 
between AP exposure and increased risk of cardiovascular and metabolic diseases, exists. 

Objective: The aim of this analysis is to assess the effects of long-term exposure to AP on 
prevalence and incidence of MetS. 

Methods: We used data from the population-based prospective Heinz Nixdorf Recall 
study to investigate the association between AP exposure and MetS prevalence at baseline 
examination (2000-2003; n=4,457) and MetS incidence at follow-up examination (n=3,074; 
average follow-up: 5.1 years). Mean annual exposure to size-fractioned particulate matter 
(PM10, PM2.5, PMcoarse, and PM2.5abs) and nitrogen dioxide (NO2) was assessed using two 
different exposure models: a Land Use Regression model (LUR), which captures point-
specific AP exposure at each participant’s residential address, and a chemistry transport 
dispersion model (CTM), which captures urban background AP exposure on a 1 km2 grid 
cell corresponding to the participant’s residential address. MetS was defined as central obesity 
plus two out of four additional risk factors (i.e., elevated triglycerides, reduced high-density 
lipoprotein cholesterol, elevated blood pressure, or elevated fasting plasma glucose). We 
estimated odds ratios (ORs) of MetS prevalence and incidence per interquartile range (IQR) 
of exposure using logistic regression, adjusting for demographic and lifestyle variables. 

Results: We observed a MetS prevalence of 20.7% (n=922) at baseline and a cumulative 5.1-
year incidence of 9.7% (n=299). Point-specific and urban background NO2 exposures were 
positively associated with MetS prevalence (OR per IQR: 1.12 (95%-CI 1.02-1.24) for point-
specific NO2 exposure). ORs per IQR for PM10 and PM2.5 with MetS incidence were 1.14 
(95%-CI 0.98-1.32) and 1.19 (95%-CI 0.98-1.44), respectively for the point-specific model. 

Conclusion: This study suggests that long-term exposure to NO2 and size-fractionated 
particulate matter air pollution may be positively associated with prevalent and incident 
MetS. 

Abstract
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1 Introduction

1.1 Background

The metabolic syndrome (MetS) is considered to be a major public health problem, as it 
increases the risk of many noncommunicable diseases (NCDs), such as atherosclerotic 
cardiovascular diseases (CVDs), type 2 diabetes mellitus (T2D), and all-cause mortality 
(Alberti et al. 2009; Kaur 2014). Overall, MetS is defined as a collection of concurrent abnormal 
body measurements and laboratory tests, including elevated fasting plasma glucose, central 
obesity, elevated total cholesterol, and elevated blood pressure (Alberti et al. 2009; IDF 2006). 
(Matthiessen et al. 2018)

Because MetS increases a person´s risk for many NCDs, prior studies have aimed at identifying 
modifiable risk factors for the syndrome (Grundy et al. 2006; IDF 2006). The major risk 
factors for MetS observed were insulin resistance and central obesity, with other risk factors 
including a proinflammatory state, genetics, physical inactivity, ageing, and hormonal changes 
(Grundy et al. 2006; IDF 2006), of which only a few are potentially modifiable. Environmental 
exposures, such as air pollution (AP), have rarely been investigated as potential modifiable 
risk factors to develop MetS, even though AP has been shown to have a wide range of acute 
and chronic health impacts related to MetS (Thurston et al. 2017) and can be influenced by a 
wide range of interventions and air quality regulations.

Most studies up to now have focused on the association between AP and cardiopulmonary 
morbidity and mortality (Brook et al. 2010; Pope III and Dockery 2006), with recent studies 
also suggesting that exposure to major air pollutants may increase the risk of T2D (Eze et al. 
2014; Rao et al. 2015; Thiering and Heinrich 2015; Wang et al. 2014; Weinmayr et al. 2015; Yan 
and Wang 2014). Furthermore, epidemiological studies have observed associations between 
AP and specific components of MetS, such as obesity and insulin resistance (Li et al. 2016; 
Wolf et al. 2016; Robert D. Brook et al. 2015; Thiering et al. 2013). However, currently only 
two epidemiological studies exist that have looked at AP exposure and MetS as an outcome 
itself (Eze et al. 2015; Wallwork et al. 2016). „Both studies looked at long-term air pollution, 
one in a cross-sectional and one in a longitudinal design, and observed a positive association 
between AP exposure and MetS“ (Matthiessen et al. 2018).  

The aim of this study was therefore to investigate whether exposure to AP is associated with 
prevalent and incident MetS, using data from the Heinz Nixdorf Recall (HNR) cohort study 
in Germany.
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1.2.1 MetS Definition
The constellation of risk factors related to MetS have been known for many decades, but were 
first described by Reaven in 1988 as “Syndrome X” (Alberti et al. 2005). Since then, various 
names have been proposed, with the most popular name being metabolic syndrome and the 
most recent being cardiometabolic syndrome (Alberti et al. 2005; Moebus et al. 2007). 

Several different definitions of the metabolic syndrome have been proposed in the last two 
decades (Huang 2009; Kaur 2014; Parikh and Mohan 2012) (Table 1). The first was proposed 
in 1998 from the World Health Organization (WHO) (Alberti et al. 2009). This definition put 
forth insulin resistance as a major underlying risk factor for MetS and made insulin resistance 
a required criteria of its definition, plus two additional risk factors (obesity, hypertension, 
elevated triglycerides (TG), reduced high-density-lipoprotein (HDL), or microalbuminuria) 
(Alberti et al. 2009). In 2001, another major definition proposed by the National Cholesterol 
Education Program Adult Treatment Panel III (ATP III) was published. The ATP III definition 
weighted all MetS criteria equally, making insulin resistance no longer a requirement and 
instead requiring 3 out of 5 MetS risk factors to be fulfilled for the MetS diagnosis: obesity, 

1.2 The Metabolic Syndrome (MetS)

 

Table 1: Definition of the metabolic syndrome according to the WHO, ATP III, and IDF 
definition. 

 MetS Criteria 
WHO (1998): 
B +  
2 out of A, C, D, E, F 

ATP III (2005 Revision): 
3 out of  
A, B, C, D, E 

IDF (2006):   
A +  
2 out of B, C, D, E 

A Central Obesity 
Waist/hip ratio  
>0.90 ♂, >0.85 ♀ 
OR BMI > 30 kg/m2 

WC ≥ 102 cm ♂,  
WC ≥ 88 cm ♀ 

WC ≥ 94 cm ♂,  
WC ≥ 80 cm ♀ 

B Hyperglycemia  

Insulin resistance: 
IGT, IFG, or other 
evidence of insulin 
resistance2 

FPG ≥ 100 mg/dL2 FPG ≥ 100 
mg/dL2 

C Elevated TG TG ≥ 150 mg/dL TG ≥ 150 mg/dL1 TG ≥ 150 mg/dL1 

D Reduced HDL 
HDL  
< 35 mg/dL ♂  
< 39 mg/dL ♀ 

HDL  
< 40 mg/dL ♂1 
< 50 mg/dL ♀1 

HDL  
< 40 mg/dL ♂1 

< 50 mg/dL ♀1 

E Elevated BP 

Systolic BP  
≥ 140 mmHg OR  
Diastolic BP 
 ≥ 90 mmHg 

Systolic BP  
≥ 130 mmHg OR  
Diastolic BP  
≥ 85 mmHg1 

Systolic BP  
≥ 130 mmHg OR 
Diastolic BP  
≥ 85 mmHg1 

F Other Criteria 

Microalbuminuria: 
Urinary albumin 
excretion of ≥ 20 
µg/min OR 
Albumin-to-creatinine 
ratio of ≥ 30 mg/g 

  

1or pharmacological treatment; 2or previously diagnosed diabetes mellitus;  
WC, Waist Circumference; FPG, Fasting Plasma Glucose; TG, Triglycerides; HDL, High-Density-
Lipoprotein; BP, Blood Pressure; IGT, Impaired Glucose Tolerance; IFG, Impaired Fasting Glucose 
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hypertension, elevated TG, reduced HDL, or elevated fasting glucose (Alberti et al. 2009). In 
2005, a further revision of the ATP III definition was made, now also including individuals 
reporting a history of current antihypertensive drug or lipid lowering medication use, 
regardless of the measured values (Moebus et al. 2007). A third major definition was also 
published in 2005 by the International Diabetes Federation (IDF) (Huang 2009; IDF 2006). 
The IDF definition included the same criteria as the ATP III, but it required central obesity 
as an essential criteria to be present, suggesting it to be a major underlying risk factor in the 
pathomechanism of MetS development (Huang 2009) (Table 1).

1.2.2 Epidemiology of MetS
Overall, there is a wide variation in MetS prevalence depending on age, sex, ethnicity, as well 
as the criteria used for diagnosis (Rochlani et al. 2017). Large regional variation has also been 
seen, with estimates for MetS prevalence ranging from less than 10% to as much as 84% (Kaur 
2014). Globally, the International Diabetes Federation (IDF) suggests that about 25% of the 
world´s adult population has MetS (IDF 2006). In Germany, MetS prevalence is estimated 
to be between 13% and 31%, depending on the used MetS definition, study population, 
and region (Boehm et al. 2009; Moebus et al. 2007, 2008). The studies from Germany, in 
agreement with international literature (Rochlani et al. 2017; Santilli et al. 2017), found that 
MetS prevalence was higher among older individuals, men, persons with lower education, 
individuals living in rural areas, and those living in the eastern part of Germany (Boehm et 
al. 2009; Moebus et al. 2007, 2008).  

Further, among persons with MetS, variation in the MetS criteria most frequently fulfilled 
has been observed by sex and age (Ervin 2009; Kuk and Ardern 2010; Moebus et al. 2010; 
Santilli et al. 2017). Both Moebus et al. (2010) and Ervin (2009) found the MetS combination 
of central obesity, elevated blood pressure, and hyperglycemia to be most common, 
independent of sex and age. Central obesity and reduced HDL were more frequent in women 
than in men, whereas elevated triglycerides, elevated blood pressure, and hyperglycemia 
were more frequent in men than in women (Ervin 2009; Moebus et al. 2010). These studies 
also observed that reduced HDL is most commonly a part of the MetS combination among 
younger individuals, whereas elevated blood pressure and hyperglycemia are most common 
among older individuals (Ervin 2009; Kuk and Ardern 2010; Moebus et al. 2010). 

1.2.3 Health Impacts of MetS
NCDs are responsible for approximately 70% of all deaths globally (WHO 2017). 
Cardiovascular diseases, cancers, respiratory diseases, and diabetes, which represent the four 
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main types of NCDs, account for over 80% of premature NCD deaths globally (WHO 2017). 
Along with behavioral risk factors, such as tobacco use, high salt intake, alcohol use, and 
insufficient physical activity, metabolic risk factors (e.g., elevated blood pressure, obesity, 
hyperglycemia, hyperlipidemia) contribute greatly to an increased risk of NCD development 
(WHO 2017). While each individual component of MetS increases the risk of different NCDs, 
the risk is even more pronounced when MetS itself is present (IDF 2003).  

Overall, it is estimated that individuals with MetS are at twice the risk of developing CVD over 
the next 5 to 10 years compared to individuals without MetS (Alberti et al. 2009; Mottillo et 
al. 2010). Persons with MetS are also at 5-times increased risk of developing T2D, a 1.5 times 
increased risk for all-cause mortality, and a 2- to 4-times increased risk of stroke (Alberti et 
al. 2005; Kaur 2014). Increased cancer risk, most robustly for colorectal cancer, has also been 
shown for individuals with MetS (Esposito et al. 2012). Recent evidence suggests that persons 
with MetS or with MetS components may also be at a higher risk of non-alcoholic fatty liver 
disease, polycystic ovarian syndrome, and rheumatoid arthritis (Santilli et al. 2017). The 
value of MetS as a predictor of cardiometabolic risk, and whether this risk represents merely 
the sum of individual components or instead a synergistic effect related to the clustering of 
these components, is still under debate (Mottillo et al. 2010; Rochlani et al. 2017). 

1.2.4 Pathophysiological Mechanism of MetS
The pathophysiological mechanisms of MetS are complex and remain to be fully elucidated 
(Grundy et al. 2004; Rochlani et al. 2017). Nevertheless, the majority of pathophysiological 
hypotheses mention three potential etiological categories: 1) obesity and disorder of adipose 
tissue; 2) insulin resistance; and 3) different independent factors (e.g. hepatic, vascular, and/
or immunologic molecules) that mediate specific components of MetS (Figure 1) (Alberti et 
al. 2009; Grundy et al. 2004; Kaur 2014; Rochlani et al. 2017). 

1) Obesity: The WHO defines obesity as an abnormal or excessive fat accumulation that causes 
health problems (Moreira et al. 2015). Adipose tissue is primarily composed of subcutaneous 
adipose tissue and visceral adipose tissue (Santilli et al. 2017). Central obesity, characterized 
by an increase in visceral adipose tissue, is more correlated with MetS and cardiovascular 
risk than an increase in subcutaneous adipose tissue (Santilli et al. 2017). Adipose tissue has 
been recognized as a key endocrine organ, as it secretes endocrine, paracrine, and autocrine 
substances in response to different stimuli (Schindler 2007). It is suggested that increasing 
obesity leads to hypertrophy of adipose tissue and to a reduction in blood supply to adipocytes 
that results in hypoxia (Francisqueti et al. 2017; Kaur 2014). The hypertrophy and hypoxia 
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of adipose tissue then leads to an overproduction of adipocytokines (e.g., tumor necrosis 
factor alpha, Leptin, Interleukin-6) and free fatty acids, which are responsible for mediating 
multiple processes, including insulin sensitivity, oxidant stress, energy metabolism, blood 
coagulation, and inflammatory responses (Francisqueti et al. 2017; Grundy et al. 2004; Kaur 
2014) (Figure 1). Hypertrophy and hypoxia of adipose tissue, with consequent overproduction 
of adipocytokines, also results in localized inflammation that can become overall systemic 
inflammation, a condition which may eventually manifest itself as the abnormal measures 
that make up MetS (Kaur 2014; Schindler 2007).

2) Insulin Resistance: Insulin resistance occurs when the body cells become less sensitive and 
resistant to insulin, a hormone produced by beta cells of the pancreas and which facilitates 
glucose absorption (IDF 2006; Moreira et al. 2015). The primary targets for insulin are skeletal 
and cardiac muscle, adipose tissue, and the liver (Sesti 2006). Insulin-resistant individuals 
demonstrate an impaired glucose metabolism through an abnormal response to glucose 
(i.e., hyperglycemia) (Kaur 2014). In response, pancreatic beta cells secrete more insulin 
(i.e., hyperinsulinemia) than needed to compensate for the hyperglycemic state of insulin-
resistant individuals (Kaur 2014). Insulin resistance leads to changes in the activity of multiple 
biological molecules (e.g., free fatty acids, autonomic nerves, adipocytokines) involved in 
several signaling pathways (Schindler 2007). Insulin signaling imbalance may eventually lead 
to the manifestation of MetS through endothelial dysfunction, decreased glucose uptake in 
skeletal muscle and adipose tissue, and/or dyslipidemia (Kaur 2014; Schindler 2007). 

Because many of the same pathways and biomarkers are involved in the pathophysiologies 
of insulin resistance and obesity, it can be difficult to dissociate obesity and insulin resistance 
(Grundy et al. 2004). Indeed, in recent years the tradition of insulin resistance etiology being 
“glucocentric” has shifted to a more “lipocentric” perspective (Grundy et al. 2004; Sesti 2006). 
Nevertheless, it should be noted that insulin resistance can also be present in non-obese 
individuals (e.g., in South Asian populations) (Grundy et al. 2004). 

3) Independent Risk Factors of MetS: Apart from obesity and insulin resistance, genetics and 
acquired risk factors also play a role in the expression of MetS components (Grundy et al. 
2004). In addition to normal lifecourse factors, such as aging or hormonal changes (e.g., 
menopause), chronic inflammation or stress may also affect many levels of MetS pathogenesis 
(Grundy et al. 2004; Kaur 2014). More recently, air pollution and noise exposure have been 
raised as potential contextual risk factors for MetS (Münzel et al. 2016).

In summary, the interaction of many different genetic, behavioral and contextual risk factors, 
including obesity and insulin resistance, make the pathogenesis of MetS complex. 
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1.3 Air Pollution (AP)

Air pollutants are emitted from anthropogenic (e.g., transport, agriculture, industry) 
and natural (e.g., ocean salt, earth crust, volcano eruption) sources and can differ widely 
by region (EEA 2016). Ambient AP is a complex mixture of particulate and gaseous 
components, including, but not limited to, particulate matter (PM), nitrogen oxides (NOx), 
sulfur dioxide (SO2), ozone (O3), ammonia (NH3), volatile organic compounds (VOCs), 
carbon monoxide (CO), and methane (CH4) (EEA 2013). Particles are either directly emitted 
as primary pollutants or formed from precursor gases as secondary pollutants. In Europe, 
the main sources for anthropogenic AP emission are transport; commercial, institutional, 
and household electricity or heating; industry; energy; agriculture; and waste (EEA 2016). 
Overall, urban areas are more affected by air pollution exposure compared to rural areas, 
with road traffic being one of the most important within-city sources (Nieuwenhuijsen et al. 
2017; WHO 2016). 

1.3.1 Particulate Matter (PM) & Nitrogen Dioxide (NO2)
PM and nitrogen dioxides (NO2) are among the most intensively studied APs with negative 
impacts on human health (Brook et al. 2010; Faustini et al. 2014; WHO 2013). While PM 
emissions result primarily from commercial, institutional, and household electricity and 
heating, the transport sector makes up the largest contribution to NO2 emissions (EEA 2016).

Particulate matter is a mixture of aerosol particles of a wide range of sizes and represents 
a broad mixture of solid and liquid particles of both organic and inorganic origin (EEA 
2013). PM is both emitted directly to the atmosphere (primary pollutant) as well as formed 
in the atmosphere (secondary pollutant) through precursor gases such as SO2, NOx, or NH3 
(EEA 2016). By convention, airborne particles are often classified into groups by their size, 
irrespective of their sources or chemical composition, and measured as mass concentration, 
e.g., PM10 <10 µm, or PM2.5 <2.5 µm (Figure 2). PM has a wide range of negative health 
impacts, with respiratory and cardiovascular disease being the best known (Brook et al. 2010; 
Cohen et al. 2015; Thurston et al. 2017).

NOx is a group of gases consisting of nitrogen monoxide (NO) and NO2 and contributes to 
the formation of ozone and PM (EEA 2013). Most atmospheric NO2 is emitted as NO but is 
rapidly oxidized to NO2 (WHO 2005). NO2 can impact health via several different ways. In 
addition to being an irritant gas that can lead to local pulmonary and consecutive systemic 
inflammation, it is also a precursor gas for the formation of particulate matter (WHO 
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1.3.2 Air Pollution Concentrations
Two different air pollution reference values are primarily being used in Europe (Table 2). 
First, legislation regarding maximal acceptable air pollution concentrations is issued by the 
European Union (EU) (EU 2008). These limit values are the result of negotiations between 
the member states. They are binding for the EU member states and will lead to lawsuits 
and fines if exceeded for a specific time period (EU 2008). Secondly, the WHO publishes 
recommendations in the form of air quality guidelines (WHO 2005) (Table 2). 

Table 2: Annual mean of air-quality standards of the WHO and the EU for PM and NO2. 
Air Pollutant WHO Guidelines EU Legislation 
PM10 (µg/m3) 20 40 
PM2.5 (µg/m3) 10 25 
NO2 (µg/m3) 40 40 
 

  

	
	
	
	
	
	

Figure 2: Size comparison for PM10 and PM2.5. 
(Image courtesy by the United States Environmental Protection Agency (EPA))

2013). Further, NO2 has been used as a surrogate for traffic-related air pollution, which has 
been suggested to be particularly toxic due to its high fraction of ultrafine particles, diesel 
soot, and other components that may cause oxidative stress, including polycyclic aromatic 
hydrocarbons (PAH) (HEI 2009; WHO 2013). 

These guideline values are derived purely from epidemiological and other scientific studies 
and are designed to protect the public, including vulnerable populations, from adverse health 
effects due to air pollution (WHO 2005). For many air pollutants, the WHO guidelines are 
well below the current EU limit values. For PM, the WHO recommends an annual PM10 mean 
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of 20 µg/m3 and an annual PM2.5 mean of 10 µg/m3 to protect the public from its negative 
health effects, while the EU legislations have limit values of 40 µg/m3 and 25 µg/m3 per year 
for PM10 and PM2.5, respectively (EEA 2016). Current guidelines from the WHO as well as EU 
legislation set an annual NO2 limit of 40 µg/m3 (EEA 2016). 

Worldwide, AP concentrations vary strongly by region, with highest concentrations found in 
mega-cities in India and Asia (WHO 2016). In Europe, a north-south gradient of air pollution 
can be found with higher concentrations found in Mediterranean cities (EEA 2016; Eeftens et 
al. 2012). While AP concentrations have increased in more than half of the cities during the 
last 5 years, especially in the Western Pacific, South-East Asia, and Eastern Mediterranean 
regions, a general trend towards decreased exposure of AP has been seen in Europe and North 
America (WHO 2016). While air pollution concentration in Germany have decreased during 
the last 25 years, EU air quality limit values and WHO guidelines are still being exceeded for 
PM and NO2 (UBA 2017). In 2016, limits on NO2 concentrations were exceeded at around 
57% of the monitoring stations close to traffic, and WHO guidelines for PM10 were exceeded 
at around 24% of all monitoring stations (UBA 2017). 

1.3.3 Health Impacts of Air Pollution
In the last two decades, the impact of outdoor AP on human health has increasingly been 
recognized as a global public health concern and is today considered the single largest 
environmental health risk in Europe (Cohen et al. 2015). Air pollution was ranked fourth 
as risk factor for premature mortality, only exceeded by hypertension, smoking, and dietary 
risks (EEA 2016; GBD 2016). A recent global burden of disease (GBD) report also mentioned 
air pollution as a leading cause of death and lost disability-adjusted life years (DALYs), as it 
is estimated to account for more than 4 million premature deaths and more than 100 million 
DALYs annually worldwide (GBD 2016). Around 80% of premature death attributable to AP 
are due to heart diseases and stroke, followed by lung diseases and cancer (EEA 2016). Negative 
health effects have also been observed between AP and the central nervous system and the 
reproductive system (EEA 2013) (Figure 3). Depending on the duration of AP exposure, 
the severity of health effects range from subclinical findings (e.g., elevated inflammatory 
markers), to clinical symptoms (e.g., respiratory complaints), to overt clinical diseases, with 
the most severe being myocardial infarction, stroke, and lung cancer (Thurston et al. 2017). 
As no ‘safe’ exposure threshold is known for air pollution, the whole population is exposed to 
the adverse effects of air pollution exposure. However, not every person is equally susceptible 
to the negative health effects of air pollution, with children, the elderly, and chronically ill 
people being especially vulnerable (Sacks et al. 2011). 
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Cardiovascular and cerebrovascular effects: Both short-term and long-term exposure to AP 
has been linked to an increased incidence of acute cardiovascular events (Brook et al. 2010; 
Cesaroni et al. 2014). Not only has short-term exposure to AP over the previous few days been 
associated with an increase in cardiovascular mortality and stroke, arrhythmia and increase 
in blood pressure have also been found to be associated with short-term AP exposure (Brook 
et al. 2010; Song et al. 2016; Thurston et al. 2017). The risk of cardiovascular mortality was 
even greater with long-term exposure to AP and reduced life expectancy by anywhere from 
a month to a few years (Brook et al. 2010). Further, coronary atherosclerosis, cerebrovascular 
events, and hypertension have been found to be associated with long-term exposure to AP 
(Beelen et al. 2014; Fuks et al. 2016a; Hoffmann et al. 2009a; Kaufman et al. 2016; Stafoggia 
et al. 2014).

Respiratory effects: The respiratory tract is the primary portal of entry for AP, which can 
result in short-term as well as long-term consequences for respiratory health (Thurston et 
al. 2017). Several studies have found an association between short-term exposure to AP 
and exacerbation of asthma or chronic obstructive pulmonary disease (COPD) (Bloemsma 
et al. 2016; McCreanor et al. 2007; Orellano et al. 2017). Further, short-term exposure to 
AP has been linked to an increase in hospital emission due to COPD or asthma (Lim et al. 
2016; Zhang et al. 2016). Long-term exposure to AP has also been found to have negative 

Neurological Diseases:
Stroke
Dementia

Respiratory Diseases:
Asthma
COPD
Lung Cancer

Metabolic Diseases:
Diabetes
Insulin Resistance

Reproductive System Diseases:
Premature Birth
Decreased Birthweight

Cardiovascular Diseases:
Myocardial Infarction
Arterial Hypertension
Thrombosis

Figure 3: Examples of diseases affected by outdoor air pollution 
(Background Images adapted from Wikimedia Commons)



11

1 Introduction

respiratory effects, including the development of asthma, decreased lung function, or the 
development of lung cancer over many years (Adam et al. 2015; Hamra et al. 2014; Jacquemin 
et al. 2015; Khreis et al. 2017; Raaschou-Nielsen et al. 2013). Indeed, the International Agency 
for Research on Cancer has classified outdoor air pollution as carcinogenic to humans in 
2013, generating lung cancer (IARC 2013).

Air pollution exposure has also been linked to other health factors, including pneumonia, 
airway inflammation, increased blood coagulation, stroke, neurodegenerative diseases, 
congestive heart failure, premature birth, and decreased birthweight.

1.4 Potential Association between AP and MetS

„Previous reviews have described potential pathophysiological pathways that could explain 
the observed association between AP exposure and MetS“ (Matthiessen et al. 2018) and its 
downstream diseases (Brook et al. 2010; Franklin et al. 2015; Pope III and Dockery 2006). 
In order to provide a pathophysiological basis for the association of AP on health based on 
epidemiological studies, Brook et al. (2010) and Franklin et al. (2015) have described three 
potential mediating pathways after inhalation of particulate or gaseous air pollutants (Figure 
4). 

1) Release of Proinflammatory Mediators: Air pollution enters the body primarily through 
inhalation, in which components enter and interact with various regions of the respiratory 
tract (Brook et al. 2010; Franklin et al. 2015). In the first pathway, direct exposure to AP 
leads to oxidative stress and inflammation within the pulmonary tissue. Along with localized 
consequences for lung health, inflammatory mediators can “spill-over” into the systemic 
circulation (Franklin et al. 2015). Once there, several mediators have direct negative effects on 
the cardiovascular system (e.g., induce oxidative stress, blood coagulation) or on other organs 
(e.g., adipose tissue, liver). These systems and tissues subsequently release adipocytokines or 
acute phase proteins and instigate proinflammatory or oxidative stress mediators (Franklin et 
al. 2015). These same mediators are also involved in the pathophysiology of MetS development. 
(Matthiessen et al. 2018)

2) Perturbation of the Systemic Autonomous Nervous System: The second pathway is via the 
autonomous nervous system (ANS), with activation of several lung receptors after AP exposure 
resulting in an imbalance of the ANS favoring the sympathetic over the parasympathetic 
limb. This imbalance can cause short-term alterations in heart rate and blood pressure and, 
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with persistent sympathetic nervous system hyperactivity, possibly chronic diseases, such as 
hypertension and insulin resistance (Franklin et al. 2015). 

3) Translocation of PM into the Systemic Circulation: The third “direct” pathway is via intrusion 
of particles into the blood stream and eventually into specific organs, with negative effects 
eventually reaching cardiovascular tissue (Brook et al. 2010; Franklin et al. 2015). This is 

	
	
	
	
	
	

Figure 4: Potential biological mechanism linking AP with cardiovascular 
disease and its sequelae. 
ANS, autonomic nervous system; APR, acute phase response; AT2, angiotensin-2; DM, 
diabetes mellitus; CHF, congestive heart failure; CNS, central nervous system; DVT, deep 
venous thrombosis; EPCs, endothelial progenitor cells; ET, endothelins; FA, fatty acids; HDL, 
high-density lipoproteins; HR, heart rate; LDL, low-density lipoproteins; LT, leukotrienes; LV, left 
ventricle; PL, phospholipids; PSNS, parasympathetic nervous system; RV, right ventricle; SNS, 
sympathetic nervous system; UFP, ultrafine particles < 100 nm; WBCs, white blood cells. 
(Image courtesy by Franklin et al. 2015)

especially true for ultrafine particles and specific components attached to particle surfaces, 
for example, carcinogenic PAH attached to the carbon core of diesel soot (Brook et al. 2010; 
Franklin et al. 2015). 

These three pathways are not mutually exclusive, and a large degree of overlap between 
pathways can be expected (Franklin et al. 2015). Further, the pathways may be activated 
at different time frames after AP inhalation, as it has been hypothesized that imbalance of 
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the ANS occurs mainly in the acute phase (minutes to hours) after AP inhalation, while the 
release of proinflammatory mediators plays a larger role in the sub-acute (hours to days)  and 
chronic (weeks to years) development of NCDs (Franklin et al. 2015). 

The first and second pathophysiological pathways of AP effects on human health are suggested 
to be those mainly involved in the development and progression of MetS. 

The described pathophysiological mechanism of AP and MetS is supported by several 
toxicological studies. Sun et al. (2009) found an exaggeration of insulin resistance and visceral 
inflammation when mice were exposed to PM2.5. Furthermore, Brocato et al. (2015) found 
an upregulation of genes involved in inflammation, cholesterol and lipid metabolism, and 
atherosclerosis in mice exposed to PM10. Haberzettl et al. (2016) showed in mice exposed 
to PM2.5 that vascular insulin resistance and inflammation can be triggered by pulmonary 
oxidative stress. A very recent study found weight gain and metabolic dysfunction, as well 
as histological evidence of inflammation in the lungs, increased tissue markers of systemic 
oxidative stress when rodents were exposed to Beijing’s highly polluted air (Wei et al. 2017).

These findings are further supported by epidemiological studies. A study by Wu et al. (2015) 
found an association between AP and biomarkers of oxidative stress. These findings were 
supported by a recent study from Kim et al. (2016), who found that an association between 
AP with blood pressure (BP) was mediated by genes related to oxidative stress. Further, 
an association between PM and markers of systemic inflammation has previously been 
observed in different cohorts (Huels et al. 2017; Li et al. 2017; Pope et al. 2016; Wolf et al. 
2016), and also found within the HNR study (Hoffmann et al. 2009; Hennig et al. 2014; 
Viehmann et al. 2015). The associations between AP, insulin resistance, and/or obesity have 
also been observed in epidemiological studies (Brook et al. 2015b; Jerrett et al. 2014; Li et 
al. 2016; Thiering et al. 2013; Wolf et al. 2016). Furthermore, two studies have observed that 
persons with MetS may be particularly vulnerable to the effects of air pollution, as one study 
found stronger associations between long-term particulate matter exposure and markers 
of inflammation among participants with MetS (Chen and Schwartz 2008), while the other 
study found stronger associations between PM exposure and cardiovascular risk among 
participants with MetS (Park et al. 2010). Finally, two studies have observed an association 
between long-term exposure to AP and MetS as an outcome itself (Eze et al. 2015; Wallwork 
et al. 2016). Eze et al. (2015) found an association between PM10 and MetS prevalence as 
well as between NO2 and MetS prevalence. This study was conducted among 3,769 middle-
aged to elderly participants of the Swiss Cohort Study on Air Pollution and Lung and Heart 
Diseases in Adults (SAPALDIA). Wallwork et al. (2016), in a study conducted among 271 
elderly men of the Normative Aging Study (NAS), observed an association between PM2.5 and 
MetS incidence. (Matthiessen et al. 2018)
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In prior analyses, associations between AP and several diseases downstream of MetS, such 
as hypertension, T2D, and coronary atherosclerosis, have been observed in many cohort 
studies (Balti et al. 2014; Brook et al. 2008, 2010, 2015a; Tamayo et al. 2014), as well as within 
the HNR study (Fuks et al. 2016b; Hoffmann et al. 2006, 2007; Weinmayr et al. 2015). The 
associations between AP exposure and MetS’ downstream diseases suggest that MetS may 
be an intermediate on the pathophysiological pathway from AP exposure to other health 
conditions. (Matthiessen et al. 2018)

1.5 Role of Noise as an Environmental Risk Factor

„[...] It is hypothesized that noise, through annoyance and sleep disturbance, may induce 
activation of similar pathways as AP, including oxidative stress, vascular dysfunction, and 
autonomic imbalance (Babisch 2003; Münzel et al. 2016)“ (Matthiessen et al. 2018). Chronic 
noise exposure may affect health by activating the sympathetic-adrenal medullar axis and/
or the hypothalamic-pituitary-adrenocortical axis, generating an unspecific stress response 
and an overproduction of glucocorticoids such as cortisol (Babisch 2002; Münzel et al. 
2016). It has therefore been suggested that chronic noise exposure may represent another 
environmental risk factor for developing NCDs (Münzel et al. 2016). Prior studies have found 
a positive association between noise and MetS components or MetS’ downstream diseases 
such as hypertension, obesity, and T2D (Eriksson et al. 2014; Oftedal et al. 2015; Soerensen 
et al. 2013; van Kempen and Babisch 2012). In a meta-analysis, van Kempen & Babisch 
(2012) found a positive association between road traffic noise and hypertension. In addition, 
three studies have looked at either long-term aircraft or road traffic noise and a potential 
association to metabolic diseases in population-based cohort studies from Sweden, Norway, 
and Denmark. They found positive associations between noise and waist circumference 
(Eriksson et al. 2014), T2D (Soerensen et al. 2013), and markers of obesity in highly noise 
sensitive women and men with street-facing bedrooms (Oftedal et al. 2015). Since urban 
noise and air pollution have a common source, namely traffic, they may confound each other 
in their relationship to cardiometabolic outcomes. (Matthiessen et al. 2018)
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2.1 Aim of the Study

The aim of this study was to investigate whether long-term exposure to residential AP (PM 
and NO2) is associated with increased prevalence and incidence of MetS. For this analysis, 
data from the baseline (t0) and first follow-up (t1) examinations of the Heinz Nixdorf Recall 
(HNR) cohort study in Germany were used. PM10, PM2.5, and NO2 were the primary air 
pollution exposures of interest. In addition, coarse (PMcoarse) and PM2.5 absorbance (PM2.5abs), 
which is a marker for soot and black carbon, were analyzed as well. The associations of air 
pollutants with MetS were also estimated after taking potential confounding by ambient 
noise into account.

2.2 Hypotheses

I.	 Long-term exposure to residential PM and NO2 is associated with an increase in 	
	 MetS prevalence and incidence in the general population.

II.	 The association in I. is independent of sociodemographic and lifestyle factors as 	
	 well as of ambient noise exposure.

2.3 Specific Objectives

I.	 To study the current knowledge base about air pollution and the metabolic 
syndrome.

a.	 To conduct a literature search about the current knowledge on MetS regarding 
its burden of disease, health impacts, and pathophysiology.

b.	 To conduct a literature search about the current knowledge on AP regarding 
its burden of disease, health impacts, and pathophysiology.

c.	 To review the current knowledge on the association between AP and MetS 
and its components.



16

2 Study Aim and Hypotheses

II.	 To describe the HNR health and exposure data, including its strength and 
limitations.

a.	 To perform a descriptive analysis of the study population.

b.	 To perform a descriptive analysis of the exposure data.

c.	 To assess differences between excluded participants and those included in the 
cross-sectional analysis and/or the longitudinal analysis.

III.	To analyze the associations between residential long-term exposure to PM10, 
PM2.5, PMcoarse, PM2.5abs, and NO2 with MetS.

a.	 To perform a cross-sectional as well as a longitudinal analysis controlling for 
relevant confounders.

b.	 To assess noise as a potential environmental confounder.

c.	 To assess the robustness of the results through the application of two different 
exposure models.

d.	 To assess the robustness of the results through in-depth sensitivity analyses, 
including analysis of potential exposure and outcome misclassification.

e.	 To assess the robustness of the results using an alternative regression model.

IV.	To integrate and interpret the results, to discuss them, and to draw conclusions 
from them.
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3 Materials and Methods

3.1 Study Area and Study Design

This study was conducted using data from the baseline (t0: 2000-2003) and first follow-up (t1: 
2006-2008) examinations of the Heinz Nixdorf Recall (Risk factors, Evaluation of Coronary 
Calcium and Lifestyle) study, an ongoing prospective population-based cohort study 
located in three adjacent cities (Bochum, Essen, and Mülheim) within the highly urbanized 
German Ruhr-Area with a tight traffic and industrial network (Schmermund et al. 2002). 
The study region, with an area of approximately 600 km2, covers a population of 1.15 million 
inhabitants with almost one fifth of the working population being occupied in the industrial 
sector (Hennig et al. 2016; Stang et al. 2005). Further, the majority of the german steel and 
coal industry is located in Duisburg, a city in the western part of the Ruhr-Area, including 
Europe’s biggest steelwork and largest inland harbor with intensive shipping on the Rhine 
(Hennig et al. 2016).

The HNR study was originally initiated to evaluate the value of new tests in the detection of 
peripheral and coronary atherosclerosis for the prediction of myocardial infarction and cardiac 
death (Schmermund et al. 2002). Because a large amount of individual data, including health 
characteristics, biomarkers, socioeconomic indicators, and environmental exposures, was 
collected, data from the HNR study have been used in broad fields of research across several 
public health areas, among others the field of environmental risk factors and its impact on 
human health. The rationale and design of the cohort study have been described in detail in 
another paper (Schmermund et al. 2002). „In short, a sample of individuals aged 45-75 years 
were identified through a random selection process using local residency registries. In total, 
4,814 participants were enrolled into the HNR study between December 2000 and August 
2003 (recruitment efficacy proportion: 55.8%), and 4,157 participants returned for a follow-
up examination between 2006 and 2008“ (Matthiessen et al. 2018). Recruitment efficacy was 
highest among individuals between the age of 55-64 years (Stang et al. 2005). Participants 
were excluded from the study if they were institutionalized (e.g., nursing homes, prisons), had 
moved or died, had a wrong or nonexistent address, had insufficient command of German 
language, were severely ill (e.g., deafness, dumbness), were pregnant, or were relatives of the 
study personnel (Stang et al. 2005). During the follow-up period, self-reported questionnaires 
were sent to each participant annually via mail. „Assessment at both examinations included a 
self-administered questionnaire, face-to-face interviews for personal risk factor assessment, 
clinical examinations, and comprehensive laboratory tests“ (Matthiessen et al. 2018). 
Examinations were conducted in accordance to the recommendations for research on human 
subjects by the 18th World Medical Assembly’s revised Declaration of Helsinki (WMA 2013) 
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were approved by the institutional ethics committees of the University of Duisburg-Essen 
and the University Hospital of Essen (Number: 13-5412-BO, Date: 18.04.2013, Applicant: 
Dr. Lewin Eisele), and adhered to strict internal and external quality assurance protocols. All 
participants gave their written informed consent.

3.2 Environmental Exposures

An exposure includes the factors to which a person can be exposed to, such as smoking, 
alcohol, and environmental exposures such as air pollution.

3.2.1 Point-Specific Exposure Assessment (ESCAPE-LUR)
Exposure to PM10, PM2.5, NO2, PMcoarse, and PM2.5 abs was estimated with a Land Use 
Regression (LUR) model according to the European Study of Cohorts for Air Pollution 
Effects (ESCAPE) standardized procedure (ESCAPE-LUR) (Beelen et al. 2013; Eeftens et al. 
2012; Hennig et al. 2016; Hoogh et al. 2013). The ESCAPE project was designed to study the 
effects of long-term air pollution exposure on health using health data from existing cohort 
studies throughout Europe, of which the HNR cohort study is one (Eeftens et al. 2012). LUR 
models were developed as part of the ESCAPE study for 36 study areas to estimate temporally-
stable, spatially-variable concentrations of long-term exposure (Hennig et al. 2016). Within 
North-Rhine-Westphalia (the federal state where the HNR study population resides), three 
cohort studies in addition to the HNR study were included in the ESCAPE project, and the 
ESCAPE-LUR measurement campaign was designed to cover a range of environmental 
situations, ranging from the urban Ruhr-Area to the more rural city of Borken (Eeftens et al. 
2012; Hennig et al. 2016). 

Air pollution measurements were performed over one year between October 2008 and 
October 2009. Particulate matter of varying aerodynamic diameter was measured at 20 
sites, and concentration of NO2 was measured at 40 sites in three separate two-week periods 
in order to cover different seasons (Beelen et al. 2013; Eeftens et al. 2012). One additional 
background reference site was chosen to measure PM and NO2 continuously during a complete 
year (starting in October 2008) in order to be able to adjust for discontinuous site-specific 
measurements and derive a long-term annual average (Hennig et al. 2016). Particulate matter 
was divided into different sizes as followed: PM10 (aerodynamic diameter<10 µm), PM2.5 

(aerodynamic diameter <2.5 µm), and PMcoarse (2.5< aerodynamic diameter <10 µm) (Eeftens 
et al. 2012). Further, a measurement of the blackness of PM2.5 filters (PM2.5abs) was carried 
out as a proxy for soot and black carbon, which is the dominant light absorbing substance 
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(Eeftens et al. 2012). Annual averages of measured pollutant concentrations at the monitoring 
sites and predictor variables, derived from European-wide and local geographic information 
system databases, were used to develop the study-specific LUR model. These models were 
then used to predict annual exposure concentrations at each participant’s baseline address 
during the baseline year of the HNR study. An example of the estimated exposures is shown 
for PM2.5 in Figure 5 (Hennig et al. 2016). In the Ruhr-Area, the models explained 69% of 
the variability in the annual concentrations of PM10, 88% of that for PM2.5, 66% of that for 
PMcoarse, 97% of that for PM2.5 abs, and 89% of that for NO2 (Beelen et al. 2013; Eeftens et al. 
2012; Hennig et al. 2016). 

	
	
	
	
	
	

3.2.2 Urban Background Exposure Assessment (EURAD-CTM)
We also used the European Air Pollution Dispersion and Chemistry Transport Model 
(EURAD-CTM), an urban background exposure model with a spatial resolution of 1 km2 
grid cells, to assess individual AP exposure at participants´ home addresses (Memmesheimer 
et al. 2004). The particulate matter sizes were defined by aerodynamic diameter as in the   
ESCAPE-LUR model. EURAD-CTM is a validated, time-dependent, three-dimensional 
model that uses input data from official emission inventories from different sources (e.g., 
industrial sources, household heating, traffic and agriculture) and data on hourly meteorology 
and regional topography to estimate PM10, PM2.5, and NO2 concentrations on a scale of 1 

Figure 5: Visualization of point-specific PM2.5 exposure for the participants of the Heinz 
Nixdorf Recall Study, modeled with ESCAPE-LUR in the HNR study area (2008-2009 
annual mean). Ruhr Area, Germany. 
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km2. The EURAD-CTM is a multilayer, multigrid model system that simulates the transport, 
chemical transformation, and deposition of tropospheric constituents (Büns et al. 2012). The 
EURAD-CTM model uses a sequential nesting method, starting with the large Europe-wide 
scale then narrowing down to the Ruhr-Area, with 4 nests with grid sizes of 125 km, 25 km, 
5 km, and 1 km (Hennig et al. 2016; Memmesheimer et al. 2004; Nonnemacher et al. 2014) 
(Figure 6). This nesting method also includes the long-range transport and formation of 
secondary particles in the atmosphere (Hennig et al. 2016). Each participant of HNR was 
assigned daily mean PM and NO2 concentrations of the 1 km2 grid cell corresponding to his/
her given residential address (Hennig et al. 2016; Nonnemacher et al. 2014). From these daily 
values, concentrations for longer exposure periods were calculated. For this analysis, mean 
exposure concentrations for the years 2001-2003 were used to reflect the pattern of long-
term residential exposure prior to baseline examination. An example of the PM2.5 exposures 
generated using this model are shown in Figure 7.

Figure 6: Study area via the method of sequential nesting used for 
EURAD-CTM. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 
NRW, North-Rhine Westphalia; ds, nesting domains
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3.2.3 Traffic Exposure Indicator
An additional traffic exposure variable was used for the EURAD-CTM model to capture 
small-scale intraurban variations resulting from traffic, as the model is, unlike the ESCAPE-
LUR exposure model, not point-specific. We calculated distances (in meter (m)) between 
each participant´s residence and the next major road using official digitalized maps with a 
precision of at least ±0.5 m and daily traffic counts provided by the North Rhine Westphalia 
State Agency for Nature, Environment and Consumer Protection. A major road was defined 
as a federal or state highway with traffic density in the upper quintile of the daily traffic count 
(>26.000 vehicles/day). Distances were categorized as ≤50, 50 to 100, 100 to 200, and >200 m 
(reference category) (Hoffmann et al. 2006). 

3.2.4 Noise Exposure
Long-term road noise was modeled for the year 2007 in the study area at the most exposed 
façade points according to the European Union Directive 2002/49/EC (Handbook on the 
Implementation of EU Environmental Legislation). The noise level at each façade point was 
calculated as weighted 24–hour (Lden) and night-time (22-6 h) (Lnight) means (Tzivian et al. 
2016). Residential exposures were then assigned for participants using the maximum noise 
value at the most exposed façade point for the building of residence or, if lacking building-

	
	
	
	
	
	

Figure 7: Visualization of urban background PM2.5 exposure for the participants of the 
Heinz Nixdorf Recall Study, modeled with EURAD-CTM in the HNR study area (2003 
annual mean). Ruhr Area, Germany. 
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specific information, the maximum value in a 10-m buffer around each participant´s address 
(Tzivian et al. 2016). In this analysis, night noise (Lnight) was included as a continuous variable. 
(Matthiessen et al. 2018)

3.3 Outcome

An outcome is defined as the disease or injury under investigation. In this study, the outcomes 
are prevalent and incident MetS.

3.3.1 Definition
Based on the data available for this study population, two common definitions of MetS can 
be applied - the IDF and the ATP III definition. We chose to use a slightly adapted version 
from the IDF definition for the main analyses (Table 3), using body mass index (BMI) as 
a surrogate for waist circumference (WC) since the IDF states that central obesity can be 
assumed if BMI ≥ 30 kg/m2 (IDF 2006). BMI was used as a surrogate for waist circumference 
because there is still no consensus about the adequate waist circumference threshold for 
central obesity (Alberti et al. 2009). Data is lacking connecting WC thresholds confidently 
to NCDs, and sufficient research on WC differences between sexes and ethnic groups make 
the definition of the adequate WC threshold challenging (Alberti et al. 2009). The original, 
unmodified IDF definition and the revised ATP III definition of the year 2005 were used as 
part of the sensitivity analyses. (Matthiessen et al. 2018)

 

Table 3: Definition of the metabolic syndrome adapted from the IDF definition. 
Participants were defined as having MetS when they fulfilled A + 2 out of B, C, D, E 
criteria. 

 MetS Criteria Clinical Measure 

A Central Obesity BMI ≥ 30 Kg/m2 

B Elevated Triglycerides  Fasting TG ≥ 150 mg/dL (1.7 mmol/L)1 or 
Random TG ≥ 175 mg/dL (2.0 mmol/L)1 

C Reduced High- 
Density Lipoprotein  

HDL < 40 mg/dL (1.29 mmol/L) ♂1 
HDL < 50 mg/dL (1.29 mmol/L) ♀1 

D Elevated Blood Pressure Systolic BP ≥ 130 mmHg or Diastolic BP ≥85 mmHg1 

E Elevated Glucose  Fasting Plasma Glucose ≥ 100 mg/dL (5.6 mmol/L)2 or 
Random Plasma Glucose  ≥ 200 mg/dL (11.1 mmol/L)2 

1or pharmacological treatment; 2or previously diagnosed diabetes mellitus 
 
 

 

 

  

DOI: 10.1016/j.envint.2018.02.035
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3.3.2 Assessment
Anthropometric measurements (height, weight, WC) were taken at both examinations 
according to standard protocols, and BMI was calculated as kilograms per meter squared     
(kg/m2). TG, HDL, and blood glucose levels (mg/dL) were measured at each examination with 
participants being advised to fast prior to examination visit. Information on the time since 
the last meal was also collected at time of blood drawn in order to facilitate classification of 
each test as random/non-fasting or fasting (non-fasting defined as last meal less than 8 hours 
before blood draw). All analyses were performed in the central laboratory of the University 
Hospital of Essen following a standard procedure. 

BP was measured at each visit on the right arm three times (with a 3-minute interval in 
between) after at least 5 minutes of rest. The BP values used in this study were calculated as 
the mean of the 2nd and 3rd measurements (Stang et al. 2006). (Matthiessen et al. 2018)

Participants were asked to bring all packages of medication they had taken during the 7 days 
prior to each examination. Medication was then assigned to different classes via the WHO 
Anatomical Therapeutic Chemical Classification System (ATC) (Fuks et al. 2016). Statin 
medication use (Yes/No) was based on ATC code. Hypertensive medication use (Yes/No) 
was based on ATC code (blood pressure lowering medication (BPLM)) or on self-report 
(Fuks et al. 2016).

Diabetes mellitus status (Yes/No) was classified as positive if the participant reported a 
physician diagnosis, reported taking an anti-hyperglycemic drug, had a fasting blood 
glucose >125 mg/dL, or had a non-fasting blood glucose ≥200 mg/dL (Weinmayr et al. 2015). 
(Matthiessen et al. 2018).

3.3.3 Outcome Allocation
There were several challenges with the correct classification of the outcome (MetS; Yes/
No). The main challenges were participants with a non-fasting blood sample and/or missing 
information on individual components required for the MetS diagnosis. 

Non-fasting participants: Plasma triglycerides and glucose fluctuate depending on the 
individual’s fasting state (IDF 2015; Nordestgaard et al. 2016; Ridker 2008; Sundvall et al. 
2011). As a large percentage of the participants did not fast prior to blood draw (40% at t0 and 
24% at t1), we modified the MetS criteria by adding non-fasting cutpoints for the blood glucose 
and triglyceride criteria. The following cutpoints were created for non-fasting samples: a) 
plasma glucose level ≥200 mg/dL and b) plasma triglycerides ≥175 mg/dL (Nordestgaard et 
al. 2016) (Matthiessen et al. 2018).  
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Missing information on individual components required for the MetS diagnosis: For some 
participants with missing information on MetS variables, MetS allocation was still possible. 
For example, if a participant was missing a measure for blood pressure but had a BMI and 
three other MetS criteria in accordance with having MetS, the participant was assigned as 
having MetS. However, in the following cases, it was not possible to determine MetS status:

•	 Participants with missing information on BMI

•	 Participants with missing information on ≥ 3 MetS components   				 
(e.g., HDL, TG and BP)

•	 Participants who fulfilled the BMI criteria for MetS (BMI ≥30 Kg/m2),		
one other MetS criteria and

•	 had a random glucose between 100 – 200 mg/dL.

•	 had a random triglyceride between 150 – 175 mg/dL.

3.4 Covariates

3.4.1 Individual-Level Covariates
Individual-level characteristics, including age, sex, smoking status, exposure to environmental 
tobacco smoke (ETS), nutrition, and participation in regular physical activity, were assessed 
in standardized interviews and self-administered questionnaires. Smoking status was 
defined as current, former (>1 year since quitting), or never smoker. Cumulative smoking 
was assessed using pack-years for current and former smokers. Exposure to environmental 
tobacco smoke (ETS; Yes/ No) reflected any passive exposure to smoke at home, work, 
or other location. A nutrition index was calculated using a qualitative food frequency 
questionnaire with information on the consumption frequency of 13 food items (Winkler 
and Döring 1998). Frequency of the consumption was categorized into “hardly ever/never”, 
“1-3 times/month”, “1-3 times/week”, “4-6 times/week”, and “daily”, and then given points 
between 1-5. By summing up the points for the different food items, a score (Dietary Pattern 
Index (Ernährungsmusterindex – EMI)) was calculated with a range from 0 to 26, with a 
higher score indicating better accordance to the recommendations of the German Society of 
Nutrition (Winkler et al. 1995). Two physical activity measures were used, one according to 
self-reported activity (sport; Yes/No) and one using self-reported times of physical activity in 
a typical week (T/wk). (Matthiessen et al. 2018)
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3.4.2 Socioeconomic Status
Individual socioeconomic status (SES) was defined as years of formal education. Education 
was classified according to the International Standard Classification of Education as total 
years of formal education (UNESCO 1997) and divided into four categories for the analysis 
(≤10, 11-13, 14-17, ≥18 years). 

The study area was divided into 106 neighborhoods with a median size of 11,263 inhabitants 
(Dragano et al. 2009). Neighborhood SES was assessed as neighborhood unemployment rate 
(%), which was obtained from local census authorities for each residential neighborhood 
according to administrative bounds (Dragano et al. 2009). The unemployment rate was 
calculated by dividing the number of unemployed by the economically active population 
(Dragano et al. 2009). (Matthiessen et al. 2018)

3.5 Statistical Analysis

3.5.1 Descriptive Analysis
We conducted a complete case analysis, excluding participants with missing exposure, 
outcome, or covariate data. For the cross-sectional analysis of prevalent MetS at baseline 
examination as well as the longitudinal analysis of incident MetS, we conducted descriptive 
statistics on the study population. Additionally, we divided the study population of the cross-
sectional and the longitudinal analyses into subgroups of high and low air pollution exposure 
(defined as PM2.5 exposure from ESCAPE-LUR equal to or above the mean versus below 
the mean, respectively). Subsequently, we compared subgroups using unpaired t-tests for 
variables that followed normal distribution (e.g., age, nutrition), Wilcoxon tests for variables 
that differed from normal distribution (e.g., neighborhood SES, cumulative smoking), 
and chi-squared tests for categorical variables (e.g., sex, individual SES), with an α of 0.05. 
(Matthiessen et al. 2018)

We calculated Spearman correlation coefficients (r) to examine the correlations between the 
air pollutant estimates from the different air pollution exposure models (i.e., ESCAPE-LUR 
and EURAD-CTM) (Matthiessen et al. 2018). A strong positive correlation was defined as 
r ≥ 0.7, a moderate positive correlation was defined as 0.4 ≤ r <0.7, and a weak positive 
correlation was defined as r < 0.4.
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3.5.2 Selection Bias
Study validity can be comprised if a proportion of participants cannot be traced to determine 
the disease outcome or other important data for the analysis (Rothman 2012). The concern is 
that if data is missing selectively, a response or selection bias can occur (Rothman 2012). The 
more missing data there is, the greater the potential for selection bias (Rothman 2012). Since 
we excluded participants with incomplete data for the cross-sectional analysis and even more 
participants for the longitudinal analysis, an increasing risk of selection bias is present for 
our study populations. Due to this risk, population characteristics, comparing participants 
with complete versus incomplete data were assessed for both the cross-sectional and the 
longitudinal analyses. Comparison of participants with complete vs. incomplete data was 
carried out using same tests as described in the above section 3.5.2 (unpaired t-test, Wilcoxon 
test, and chi-squared test).  

3.5.3 Confounder Identification & Regression Models
Confounding is a major issue in observational studies, and there are many different definitions 
of confounding and confounder (Bonita et al. 2006; Greenland et al. 1999). Confounding 
can be considered as a type of systematic bias due to another factor in the study population 
that is associated both with the disease and the exposure being studied (Bonita et al. 2006; 
Rothman 2012). In our case, a confounder would be a third factor that is associated with 
the air pollutant as well as MetS. Three conditions must exist for a variable to be defined as 
a confounder (C): 1) a confounder must be associated with the disease (D) (e.g., MetS), 2) a 
confounder must be associated with the exposure (E) (e.g., air pollutant) (Rothman 2012). 

C

E                 D

The third condition states that if a factor is an intermediate (M) step between the exposure 
and the disease (i.e., on the causal pathway), then it is not a confounder (Rothman 2012). 

M

E                 D

Several different methods exist to control for confounding and to identify confounding factors. 
Control for confounding can either be carried out through the study design (e.g., randomization, 
matching, stratification) or during the analysis of data (e.g., adjustment) (Bonita et al. 2006; 
Rothman 2012). In this analysis, we controlled for confounding during the analysis of the 
results (Bonita et al. 2006). 
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The approach to identify confounding factors for the analytical phase can be either carried 
out based on data and statistical criteria or based on prior knowledge. The identification of 
confounding factors based on statistical criteria (data-based) can be accomplished via a 
stepwise construction of regression models by an algorithm that automatically selects which 
factors to include in the final model (e.g., change-in-point estimate of exposure, significance-
testing) (Rothman 2012). The identification of confounding factors based on prior knowledge 
can be approached through the concept of causality or based on knowledge from similar 
studies. 

For this analysis, we identified confounding factors based on prior knowledge. We used two 
different approaches to select regression models and their adjustment sets: a) based on the 
concept of causality via a Directed Acyclic Graph (DAG) and b) based on knowledge from 
similar studies. 

a) Based on the concept of causality via a Directed Acyclic Graph

Causality tries to understand the cause of a disease in order to prevent the disease and for 
correct diagnosis and treatment (Bonita et al. 2006). A cause of a disease must precede the 
disease/outcome (Bonita et al. 2006). 

A DAG is a useful tool for visualizing the causal relationship between exposure and outcome 
and for identifying potential confounders (Greenland et al. 1999). The graph is called 
directed because all variables in the graph are connected by arrows representing direct causal 
effects (Suttorp et al. 2015).  The graph is acyclic because causal paths cannot be cyclic, e.g., 
the outcome cannot cause the exposure (Suttorp et al. 2015). Based on prior biological and 
epidemiological knowledge, a DAG was constructed using DAGitty (Figure 8) (Textor et al. 
2011). 

According to the developers, ‘DAGitty is a web-based software for analyzing causal diagrams 
[…], (and) it contains some of the fastest algorithms available for this purpose.’ (Textor 
2013). With the help of these algorithms, Minimal Sufficient Adjustment Sets (MSAS) were 
identified to estimate the direct (causal) effect of air pollution on MetS (Textor 2013). MSASs 
try to identify the minimal set of factors one needs to adjust for in order to estimate an 
unbiased effect between exposure and outcome. Two MSASs were identified and included 
the following variables: MSAS 1) Age, sex, neighborhood SES, nutrition, physical activity, 
proximity to major road, smoking status, and ETS; MSAS 2) Individual SES and proximity 
to major road. 
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b) Based on knowledge from similar studies

In many epidemiological studies with the same or related research questions, similar 
adjustment sets based on prior biological and epidemiological knowledge are used. Known 
or assumed confounding factors in environmental epidemiology include demographic 
variables and SES as well as lifestyle variables. In order to ensure easier comparability of 
study results, we chose models with similar adjustment sets as those previously used in other 
epidemiological cohorts and within the HNR study. Two models (model 1 & model 2) of 
increasing covariate adjustment were conducted for each air pollutant exposure. In model 1, 
we adjusted for age, sex, individual SES, and neighborhood SES. In model 2 (main adjustment 
set), we additionally adjusted for lifestyle variables such as smoking status, cumulative 
smoking, ETS, and physical activity. For the EURAD-CTM exposures, we additionally added 
a small scale indicator for traffic to the model (model 3). Furthermore, a model adjusting for 
chronic night noise exposure (ESCAPE-LUR: model 2 + noise; EURAD-CTM: model 3 + 
noise) was conducted for each air pollutant (Table 4). (Matthiessen et al. 2018)

Figure 8: Directed acyclic graph with potential covariates between air pollution and the 
metabolic syndrome. 
Suggested minimal sufficient adjustment sets: 1) Age, Sex, Neighborhood SES, Nutrition, 
Physical Activity, Proximity to Major Road, Smoking Status, ETS; 2) Individual SES, Proximity 
to Major Road.
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Since there were no major differences in effect estimates between the two approaches to 
identify confounding factors (DAG-based vs. based on knowledge from similar studies), we 
used the models based on knowledge from similar studies for the analysis. Comparison of the 
models based on DAG versus knowledge from similar studies, can be found in the appendix 
(Figure A1-A4). 

During the covariate selection process, different likelihood ratio tests were carried out a priori 
in order to test for the best model fit of the main adjustment set because several variables 
were available to reflect similar confounding factors. For individual SES, an income variable 
was added to the model with the education variable in order to evaluate if both variables 
together would better account for individual SES than education only. No influence on the 
model was found, and education was kept solely as a marker for individual SES. Further, it 
was evaluated if a binary sport variable (Yes/No) was sufficient to reflect physical activity as 
a confounding factor. The model fit was significantly improved when both the binary sport 
variable (Yes/No)  and a continuous physical activity variable (times of physical activity per 
week) were included. Finally, alcohol consumption and season were tested for inclusion in the 
main adjustment set. As no change of the model was seen, alcohol consumption and season 
were omitted.

For this analysis, all covariates used were from the baseline examination. Age, neighborhood 
SES, cumulative smoking, physical activity, nutrition, and noise were introduced as 
continuous variables. Individual SES, and smoking status were introduced as categorical or 
ordinal variables, while sex, ETS, and sport were introduced as dichotomous variables. 

 

 

Table 4: Regression Models with different adjustment sets for ESCAPE-LUR and 
EURAD-CTM exposure models. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

Regression Model Variable 
Crude Air Pollutant 
Model 1 Crude + Sex, Age, Individual SES, Neighborhood SES 

Model 2A Model 1 + Lifestyle Variables (Smoking Status, Cumulative 
Smoking, ETS, Nutrition, Physical Activity) 

Model 2 + Noise Model 2 + Noise 
Model 3 Model 2 + Traffic Indicator 
Model 3 + Noise Model 3 + Noise 
Amain adjustment set 
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3.5.4 Logistic Regression
We evaluated the association between air pollution exposures (PM10, PM2.5, PMcoarse, PM2.5abs, 
NO2) and prevalent as well as incident MetS using logistic regression for all models. We 
used 95% confidence intervals (CIs) to help assess significant differences.  Logistic regression 
is a multiplicative model and the method most commonly used for the analysis of binary 
outcome variables, which is the case for this analysis (Kirkwood and Sterne 2003). Logistic 
regression models the association between exposure and outcome in terms of odds ratios 
(ORs) (Kirkwood and Sterne 2003). The general form of the logistic regression is as followed:

On the left-hand side of the equation, the dependent variable is inserted (e.g., MetS). On the 
right hand side, the βs represent the regression coefficients, with β0 being the intercept (the 
value of the y-axis when all x=0) and βi being the coefficients for the independent variables 
xi (Bonita et al. 2006; Kirkwood and Sterne 2003). The term βixi represents the proportion of 
the dependent variable (MetS) attributed to the independent variable (e.g., the air pollutant 
PM2.5) (Bonita et al. 2006). The error term, denoted as ε, represents what is left over after the 
other variables have been taken into account (Bonita et al. 2006).

Effect estimates of air pollution exposures were expressed per interquartile range (IQR) 
(Matthiessen et al. 2018). A distribution of continuous variables can be divided into four 
equal-sized groups called quartiles. The difference between the lower and upper quartile is 
known as the interquartile range. 

The IQR indicates the spread of the middle 50% of the distribution of the variable (e.g., the 
air pollutant) and tends to be more stable for variables with extreme values (Kirkwood and 
Sterne 2003). Using the IQR also prevents extrapolation beyond the measured exposure 
range and allows distribution-based comparison of the different air pollutants. 

Log of odds of outcome = β0 + β1 x1 + β2 x2 + ... + βk xk β1 + ε

IQR = upper quartile – lower quartile
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3.6 Sensitivity analyses

To evaluate the robustness of our results, several sensitivity analyses were performed. The main 
focus areas for the sensitivity analyses were potential exposure and outcome misclassification, 
which were performed for both the cross-sectional and the longitudinal analyses. Further, we 
evaluated the association between AP and incident MetS among participants free of MetS at 
baseline by estimating the relative risk (RR), instead of the OR, using Poisson regression for 
a binary outcome (Zou 2004).

Sensitivity analyses were performed for the pollutants PM10, PM2.5, and NO2 with the point-
specific exposure model ESCAPE-LUR. Sensitivity analyses with the urban background 
exposure model (EURAD-CTM) can be found in the appendix (Table A1-A5 & Figure A5).

3.6.1 Exposure Misclassification
Because environmental exposure was assessed at the participants´ home addresses without 
information on the actual hours spend in their residence, sensitivity analyses taking into 
account variables with information on relocation and working hours were carried out. First, 
all analyses were repeated only among participants who did not relocate between baseline and 
1st follow-up examination and additionally among participants who did not relocate during 
the 5 years before baseline examination. Further, we included only participants who reported 
working less than half-time, as these participants had a greater likelihood of spending the 
majority of their time in their residence. (Matthiessen et al. 2018)

3.6.2 Outcome Misclassification
Because there is no universally agreed upon MetS definition and the current definitions 
rely heavily on specific cutpoints, we conducted several sensitivity analyses using different 
cutpoints to evaluate the robustness of our results to changes in our outcome definition. We 
conducted one analysis using the IDF definition and one using the revised ATP III definition 
(Table 1) (Grundy et al. 2006; Huang 2009; IDF 2006). Further, we conducted two analyses 
where we varied the criteria for “elevated BP.” Depending on the MetS definitions (Table 
1), different cut points for hypertension are given: ≥140/90 mmHg or ≥130/85 mmHg. In 
addition, a prior study from our own group suggests that measured hypertension varies more 
than self-reported hypertension or intake of BPLM and may lead to fewer false positive cases 
(Fuks et al. 2016a). We therefore conducted two separate analyses: one using the cutpoint  
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to BP ≥140/90 mmHg and the other considering only participants with self-reported 
hypertension or taking BPLM as fulfilling the criteria for “elevated BP”. 

For the analysis of MetS prevalence, only participants with fasting blood draw were included. 
For analysis of the MetS incidence, similar as for the main analysis, participants with both 
fasting and non-fasting blood draw were included (Table 3). (Matthiessen et al. 2018)

3.6.3 AP and Incident MetS by Estimating Relative Risk
Kirkwood and Sterne (2003) mention that ‘(a) common mistake in the literature is to interpret 
an odds ratio as if it were a risk ratio.’ When the outcome is rare (less than 10%), the numerical 
value of the OR approaches the value of the RR. However, when the outcome is common, 
RRs are constrained but ORs are not (Kirkwood and Sterne 2003). Our outcome was not a 
rare disease in the analysis of prevalence of MetS (20.7%). The incidence of MetS was close 
to 10%, leading to a potential overestimation of the risk for MetS incidence. Therefore, we 
conducted sensitivity analyses estimating RRs using a modified Poisson regression with a 
robust variance estimator in the longitudinal analysis (Lindquist; Zou 2004).

All statistical analyses and processing of the data were conducted in R version 3.3.1. (R Core 
Team 2016). 
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„In total, 4,457 participants were available for cross-sectional analyses with a MetS prevalence 
of 20.7% (n=922). Participants were excluded from the cross-sectional analyses if MetS (Yes/
No) was not determinable at t0 or if exposure or covariate data were missing (n=357; Figure 
9).“ (Matthiessen et al. 2018)

For the longitudinal analysis, 3,074 participants were included with a cumulative MetS 
incidence of 9.7% (n=299) over a mean follow-up period of 5.1 years. Participants were 
excluded from the longitudinal analyses if they were lost to follow-up, if MetS (Yes/No) 
was not determinable at t0 or t1, if covariate or exposure data were missing, or if exposure 
data were not correctly assigned at t1 due to participants relocation outside of the study area 
(n=1,013; Figure 9). Participants with MetS at baseline (n=727) were also excluded from the 
longitudinal analysis. (Matthiessen et al. 2018)

Figure 9: Flowchart on the selection of the study population for the cross-sectional and 
the longitudinal analyses. Ruhr Area, 2017, Heinz Nixdorf Recall Study.
*These numbers are used to check for selection bias T0 and T1, respectively

DOI: 10.1016/j.envint.2018.02.035
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4.2 Descriptive Results

4.2.1 Description of Study Population
„(The) mean (±SD) age of participants at baseline examination was 59.6 (±7.8) and 58.8 
(±7.6) years for the cross-sectional and longitudinal analyses, respectively (Table 5 & 6). In 
both analyses, men and women were equally represented (women 50-51%), most participants 
(55-56%) had completed 11-13 years of education, and many were never-smokers (42-43%).“ 
(Matthiessen et al. 2018)

When comparing participants with high versus low exposure, a significant difference in most 
sociodemographic characteristics and lifestyle behaviors was observed for both the cross-
sectional and the longitudinal analyses (Table 5 & 6). Participants living in an area with 
higher AP exposure were more likely to have completed fewer years of education, to be more 
exposed to night-noise, and to be less physically active.  

 
Table 5: Baseline characteristics of the study population in the cross-sectional analysis 
stratified by exposure level (high versus low). Ruhr Area, 2017, Heinz Nixdorf Recall 
Study. 

Variable  
 
 

Study 
Population,  
n = 4,457 
 

PM2.5 (µg/m3) 

P-value1 

 

 

< 18.42 
n = 2,448 

≥ 18.42 
n = 2,009 

Age [Yrs],  mean ± SD 59.6 ± 7.8 59.5 ± 7.6 59.6 ± 8.0 0.6 
Sex, Women, N (%) 2,238 (50.2) 1,184 (48.4) 1,054 (52.5) <0.001 

Neighborhood Unemployment 
[%], median (IQR) 12.0 (5.0) 10.4 (3.5) 13.6 (5.2) <0.001 

Education     
     < 11 Yrs, N (%) 487 (10.9) 213 (8.7) 274 (13.6) <0.001 
      11-13 Yrs, N (%) 2,487 (55.8) 1,298 (53.0) 1,189 (59.2)  
      14-17 Yrs, N (%) 1,003 (22.5) 602 (24.6) 401 (20.0)  
      > 17 Yrs, N (%) 480 (10.8) 335 (13.7) 145 (7.2)  

Pack-Years for former & current 
smokers, median (IQR) 21.4 (29.8) 19.8 (28.4) 23.5 (31.1) <0.001 

Smoking Status     
      Never Smoker, N (%) 1,879 (42.2) 1,074 (43.9) 805 (40.1) <0.001 
      Former Smoker, N (%) 1,524 (34.2) 855 (34.9) 669 (33.3)  
      Current Smoker, N (%) 1,054 (23.6) 519 (21.2) 535 (26.6)  
Exposure to ETS, N (%) 1,628 (36.5) 832 (34) 796 (39.6)  

Physical Activity [T/wk], median 
(IQR) 

0.8 (3.0) 1.0 (3.3) 0.3 (3.0) <0.001 

Sport, Yes, N (%) 2,411 (54.1) 1,396 (57.0) 1,015 (50.5) <0.001 
Nutrition Index [EMI], mean ± SD 12.7 ± 3.1 12.7 ± 3.1 12.6 ± 3.1 0.4 
Night-Noise [dB], mean ± SD 45.1 ± 9.1 43.1 ± 8.9 47.7 ± 8.7 <0.001 
1P-values of covariate difference between participants with low versus high AP exposure were calculated 
using t-tests for continuous variables that followed a normal distribution, Wilcoxon tests for continuous 
variables that differed from a normal distribution, and chi-squared tests for categorical or dichotomous 
variables 
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Table 6: Baseline characteristics of the study population in the longitudinal analysis 
stratified by exposure level (high versus low). Ruhr Area, 2017, Heinz Nixdorf Recall 
Study. 

Variable  
Study 
Population, 
n = 3,074 

PM2.5 (µg/m3) 

P-value1 < 18.38 
n = 1,686 

≥ 18.38 
n= 1,388 

Age [Yrs],  mean ± SD 58.8 ± 7.6 58.8 ± 7.4 58.8 ± 7.9 0.9 
Sex, Women, N (%) 1576 (51.3) 837 (49.6) 739 (53.2) 0.1 

Neighborhood Unemployment 
[%], median (IQR) 11.8 (4.3) 10.3(3.3) 13.6 (4.2) <0.001 

Education     
     < 11 Yrs, N (%) 268 (8.7) 103 (6.1) 165 (11.9) <0.001 
      11-13 Yrs, N (%) 1,704 (55.4) 885 (52.5) 819 (59.0)  
      14-17 Yrs, N (%) 698 (22.7) 422 (25.0) 276 (19.9)  
      > 17 Yrs, N (%) 404 (13.1) 276 (16.4) 128 (9.2)  

Pack-Years for former & current 
smokers, median (IQR) 19.5 (28.0) 17.9 (26.1) 22.0 (29.9) <0.01 

Smoking Status     
      Never Smoker, N (%) 1,310 (42.6) 737 (43.7) 573 (41.3) <0.001 
      Former Smoker, N (%) 1,033 (33.6) 595 (35.3) 438 (31.6)  
      Current Smoker, N (%) 731 (23.8) 354 (21.0) 377 (27.2)  
Exposure to ETS, N (%) 1,114 (36.2) 569 (33.7) 545 (39.3) <0.01 

Physical Activity [T/wk], median 
(IQR) 1.0 (3.5) 1.0 (3.8) 0.8 (3.0) <0.001 

Sport, Yes, N (%) 1,807 (58.8) 1,043 (61.9) 764 (55) <0.001 
Nutrition Index [EMI], mean ± SD 12.7 ± 3.1 12.8 ± 3.1 12.6 ± 3.1 0.2 
Night-Noise [dB], mean ± SD 44.9 ± 9.0 42.9 ± 8.7 47.5 ± 8.7 <0.001 
1P-values of covariate difference between participants with low versus high AP exposure were calculated 
using t-tests for continuous variables that followed a normal distribution, Wilcoxon tests for continuous 
variables that differed from a normal distribution, and chi-squared tests for categorical or dichotomous 
variables 

 

	 	



36

4 Results

 
Table 7: Difference in baseline characteristics between participants with complete 
versus incomplete data for the cross-sectional analysis. Ruhr Area, 2017, Heinz Nixdorf 
Recall Study. 

Variable 

Participants 
with Complete 
Data  
 n=4,457 

Participants 
Excluded due to 
Incomplete Data  
n = 3572 

P-value1 

Age [Yrs],  mean ± SD 59.6 ± 7.8 60.5 ± 8.2 <0.001 
Sex, Women, N (%) 2,238 (50.2) 181 (50.7) 0.9 

Neighborhood Unemployment [%], 
median (IQR) 12.0 (5.0) 12.5 (5.5) <0.001 

Education [Yrs], N (%)    
       < 11 Yrs  487 (10.9) 60 (17.6) <0.001 
       11-13 Yrs 2,487 (55.8) 189 (55.4)  
       14-17 Yrs 1,003 (22.5) 65 (19.1)  
       > 17 Yrs 480 (10.8) 27 (7.9)  

Pack-Years in former & current 
smokers, median (IQR) 21.4 (29.8) 29.9 (33.5) 0.3 

Smoking Status    
       Never Smoker, N (%) 1,879 (42.2) 135 (38.9) 0.1 
       Former Smoker, N (%) 1,524 (34.2) 138 (39.8)  
       Current Smoker, N (%) 1,054 (23.6) 74 (21.3)  
Exposure to ETS, N (%) 1,628 (36.5) 117 (34.4) 0.5 
Physical Activity [T/wk], median (IQR) 0.8 (3.0) 0.0 (2.4) <0.001 
Sport, Yes, N (%) 2,411 (54.1) 176 (49.4) 0.1 
Nutrition Index [EMI], mean ± SD 12.7 ± 3.1 12.6 ± 3.1 0.8 
Night-Noise [dB], mean ± SD 45.1 ± 9.1 46.1 ± 9.4 0.1 
ESCAPE-LUR, mean ± SD    
        PM10 [µg/m3] 27.8 ± 1.9 27.8 ± 1.9 0.9 
        PM2.5 [µg/m3] 18.4 ± 1.1 18.5 ± 1.1 0.6 
        PMcoarse [µg/m3] 10.0 ± 1.8 10.0 ± 2.0 0.6 
        PM2.5abs [0.0001/m] 1.50 ± 0.4 1.60 ± 0.4 0.3 
        NO2 [µg/m3] 30.3 ± 4.9 30.2 ± 5.5 0.9 
1P-values of covariate difference between participants with complete versus incomplete data were 
calculated using t-tests for continuous variables that followed a normal distribution, Wilcoxon tests for 
continuous variables that differed from a normal distribution, and chi-squared tests for categorical or 
dichotomous variables 
2Number of missing values for variables were: Education (16), Pack-Years (49), Smoking Status (10), 
ETS (17), Phyiscal Activity (15), Sport (1), EMI (96), Night-Noise (41), ESCAPE-LUR pollutants (5) 
 

 

 

4.2.2 Selection Bias
„Participants who were excluded from cross-sectional analyses (n=357) due to incomplete 
data differed from participants with complete data (n=4,457) in several ways: they were 
more likely to be older, to live in a neighborhood with a higher unemployment rate, to have 
completed fewer years of education, and to be less physically active (Table 7).“ (Matthiessen 
et al. 2018)
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In the longitudinal analysis, the same covariates differed between participants with complete 
(n=3,801) versus incomplete (n=1,013) data (Table 8). In addition, participants with 
incomplete data for the longitudinal analysis were also more likely to have lifestyle variables 
associated with an unhealthy lifestyle (e.g., current smokers, exposure to ETS, low activity 
level) and higher exposure to PM2.5, PM2.5abs, and NO2 (Table 8). (Matthiessen et al. 2018)

Table 8: Differences in baseline characteristics between participants with complete 
versus incomplete data for the longitudinal analyses. Ruhr Area, 2017, Heinz Nixdorf 
Recall Study. 

Variable 

Participants  
with Complete 
Data 
 n=3,801 

Participants 
Excluded due to 
Incomplete Data  
n = 1,0132 

P-value1 

Age [Yrs],  mean ± SD 59.2 ± 7.6 61.4 ± 8.2 <0.001 
Sex, Women, N (%) 1,925 (50.6) 494 (48.8) 0.3 

Neighborhood Unemployment [%], 
median (IQR) 

11.9 (4.3) 12.5 (5.2) <0.001 

Education [Yrs], N (%)    
       < 11 Yrs  370 (9.7) 177 (17.8) <0.001 
       11-13 Yrs 2,121 (55.8) 555 (55.7)  
       14-17 Yrs 867 (22.8) 201 (20.2)  
       > 17 Yrs 443 (11.7) 64 (6.4)  

Pack-Years in former & current smokers, 
median (IQR) 

20.0 (28.5) 30.0 (34.3) <0.001 

Smoking Status    
       Never Smoker, N (%) 1,625 (42.8) 389 (38.8) <0.001 
       Former Smoker, N (%) 1,318 (34.7) 344 (34.3)  
       Current Smoker, N (%) 858 (22.6) 270 (26.9)  
Exposure to ETS, N (%) 1358 (35.7) 387 (38.9) 0.1 
Physical Activity [T/wk], median (IQR) 1.0 (3.0) 0.0 (2.0) <0.001 
Sport, Yes, N (%) 2,145 (56.4) 442 (43.7) <0.001 
Nutrition Index [EMI], mean ± SD 12.7 ± 3.1 12.6 ± 3.1 0.3 
Night-Noise [dB], mean ± SD 45.1 ± 9.1 45.6 ± 9.3 0.1 
ESCAPE-LUR, mean ± SD    
        PM10 [µg/m3] 27.8 ± 1.8 27.8 ± 1.9 0.3 
        PM2.5 [µg/m3] 18.4 ± 1.1 18.5 ± 1.1 <0.001 
        PMcoarse [µg/m3] 10.0 ± 1.8 10.0 ± 2.0 0.7 
        PM2.5abs [0.0001/m] 1.50 ± 0.4 1.60 ± 0.4 <0.001 
        NO2 [µg/m3] 30.2 ± 4.9 30.6 ± 5.0 <0.001 
1P-values of covariate difference between participants with complete versus incomplete data were 
calculated using t-tests for continuous variables that followed a normal distribution, Wilcoxon tests for 
continuous variables that differed from a normal distribution, and chi-squared tests for categorical or 
dichotomous variables 
2Number of missing values for variables were: Education (16), Pack-Years (49), Smoking Status (10), 
ETS (17), Phyiscal Activity (15), Sport (1), EMI (96), Night-Noise (41), ESCAPE-LUR pollutants (5) 
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4.2.3 Description of Exposure Variables
For the ESCAPE-LUR exposure model, mean PM10 and PM2.5 exposures in the cross-sectional 
analysis were 27.8 µg/m3 and 18.4 µg/m3, respectively (Table 9) (Matthiessen et al. 2018). For 
the EURAD-CTM exposure model, mean PM10 and PM2.5 exposures in the cross-sectional 
analysis were 21.3 µg/m3 and 17.7 µg/m3, respectively (Table 10). 

In addition, the interquartile ranges for the air pollution exposures in the two exposure 
models differed. While the IQR for PM was wider for the EURAD-CTM exposure model 
(e.g., PM10: 2.1 µg/m3 for ESCAPE-LUR versus 4.2 µg/m3 for EURAD-CTM), the IQR for 
NO2 was wider for the ESCAPE-LUR model (6.1 µg/m3 for ESCAPE-LUR versus 5.1 µg/m3 

for EURAD-CTM) (Table 9 & 10).

 

 

Table 9: Description of air pollution exposures (2008-2009 annual mean) from the 
ESCAPE-LUR model in the cross-sectional analysis, n=4457. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

 IQR Min Q1 Median Q3 Max Mean ± SD 
PM10 [µg/m3] 2.1 23.9 26.6 27.5 28.7 34.7 27.8 ± 1.9 
PM2.5 [µg/m3] 1.5 16.0 17.6 18.3 19.1 21.5 18.4 ± 1.1 
PMcoarse [µg/m3] 1.9 0.8 9.2 10.1 11.1 15.0 10.0 ± 1.8 
PM2.5abs [0.0001/m] 0.4 1.0 1.4 1.5 1.7   5.4   1.6 ± 0.4 
NO2 [µg/m3] 6.1 19.8 26.9 29.6 33.1 62.4 30.3 ± 4.9 
 

 

  
 

 

 

Table 10: Description of air pollution exposures (2001-2003, 3-year mean) from the 
EURAD-CTM model in the cross-sectional analysis, n=4,457. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

 IQR Min Q1 Median Q3 Max Mean ± SD 
PM10 [µg/m3] 4.2 17.3 18.8 21.4 23.0 29.5 21.3 ± 2.6 
PM2.5 [µg/m3] 2.1 15.4 16.7 17.7 18.7 22.1 17.7 ± 1.3 
NO2 [µg/m3] 5.1 28.6 38.7 41.5 43.8 53.8 41.4 ± 4.0 
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Table 11: Spearman correlation coefficients for air pollution and noise exposures for 
both ESCAPE-LUR and EURAD-CTM exposure models, n=4,457. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

 
 
 

 
ESCAPE-LUR 

 
EURAD-CTM 

 

 
Noise 

PM10 PM2.5 PMcoarse PM2.5 

abs 
NO2 PM10  PM2.5 NO2 Lnight 

ES
C

A
PE

-L
U

R
 PM10 1.00 0.88 0.66 0.90 0.54 0.34 0.19 0.37 0.32 

PM2.5  1.00 0.65 0.89 0.64 0.56 0.39 0.45 0,29 
PMcoarse 1.00 0.70 0.43 0.20 0.05 0.22 0.31 
PM2.5 abs   1.00 0.62 0.33 0.14 0.35 0.48 
NO2  1.00 0.49 0.39 0.37 0.36 

EU
R

A
D

-C
TM

 PM10   1.00 0.88 0.49 0.22 
PM2.5  1.00 0.62 0.14 
NO2  1.00 0.17 

Noise Lnight   1.00 
 

 

  

  

All exposure variables were positively correlated. Within the ESCAPE-LUR exposure model, 
PM2.5 was strongly correlated with PM10, and PM2.5abs was strongly correlated with PM10, 
PM2.5, and PMcoarse (Spearman correlation coefficients (r), 0.70-0.90) (Table 11). Within the 
EURAD-CTM exposure model, a strong correlation between PM10 and PM2.5 (r=0.88) was 
observed. Air pollutants showed a weak to moderate correlation between the two exposure 
models (ESCAPE-LUR and EURAD-CTM). Noise was weakly correlated with all air 
pollutants, except for PM2.5abs where noise was moderately correlated (r=0.48). (Matthiessen 
et al. 2018)
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4.3 Main Regression Analyses

4.3.1 Point-Specific Exposure Assessment (ESCAPE-LUR) - 
Cross-Sectional Analyses
In general, AP exposure was positively associated with prevalent MetS, but these associations 
weakened towards the null upon increasing covariate adjustment (Table 12 & Figure 10). 
In the crude model, all air pollutants were significantly positively associated with MetS 
prevalence. Upon full adjustment (model 2), the estimate for NO2 remained significantly 
elevated with an OR of 1.12 (95%-CI 1.02-1.24) per IQR, while the ORs for particulate air 
pollutants attenuated to the null. When noise was added to the models, point estimates 
decreased slightly for all air pollutants, e.g., for NO2, the OR decreased to 1.09 (95%-CI 0.98-
1.21). (Matthiessen et al. 2018)

Figure 10: Effect estimates for the associations between air pollutants and prevalent MetS 
at baseline per IQR using the ESCAPE-LUR model. Ruhr Area, 2017, Heinz Nixdorf Recall 
Study, n=4,457.

 

 
Table 12: Main analysis of the associations between air pollutants and prevalent MetS at 
baseline per IQR using the ESCAPE-LUR exposure model, n=4,457. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

 IQR CrudeA 
OR (95%-CI) 

Model 1B 

OR (95%-CI) 
Model 2C 
OR (95%-CI) 

Model 2 + Noise 
OR (95%-CI) 

PM10  2.1 1.11 (1.03-1.21) 1.03 (0.94-1.13) 1.02 (0.93-1.11) 0.99 (0.90-1.09) 
PM2.5  1.5 1.21 (1.10-1.34) 1.08 (0.96-1.22) 1.07 (0.94-1.20) 1.04 (0.92-1.17) 
PMcoarse  1.9 1.12 (1.03-1.21) 1.05 (0.96-1.14) 1.04 (0.96-1.13) 1.03 (0.94-1.12) 
PM2.5 abs  0.4 1.10 (1.03-1.17) 1.04 (0.97-1.12) 1.03 (0.96-1.11) 1.00 (0.92-1.08) 
NO2  6.1 1.23 (1.12-1.34) 1.14 (1.03-1.25) 1.12 (1.02-1.24) 1.09 (0.98-1.21) 
A+ Air pollutant, BCrude + Age, sex, and individual and neighborhood SES, CModel 1 + Lifestyle variables 
(smoking status, cumulative smoking, environmental tobacco smoking, Nutrition, and physical activity) 
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4.3.2 Point-Specific Exposure Assessment (ESCAPE-LUR) -  
Longitudinal Analyses
In general, exposure to AP was positively associated with incident MetS (Table 13 & Figure 
11). „Effects were strongest for PM10 and PM2.5 compared to the other air pollutants. In the 
fully adjusted model 2, the ORs for PM10 and PM2.5 were 1.14 (95%-CI 0.99-1.32) per IQR 
and 1.19 (95%-CI 0.98-1.44) per IQR, respectively. No associations were seen for PMcoarse, 
PM2.5abs, and NO2 in model 2. When noise was added to the model, associations increased 
slightly for all pollutants (e.g., PM2.5: 1.21 (95%-CI 0.99-1.48))“ (Matthiessen et al. 2018) 
(Table 13). 

Figure 11: Effect estimates for the association between air pollutants and incident MetS 
at first follow-up per IQR using the ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=3,074.

	
	
	
	
	
	

 

 

Table 13: Main analysis of the associations between air pollutants and incident MetS at first 
follow-up per IQR using the ESCAPE-LUR exposure model, n=3,074. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

 IQR CrudeA 
OR (95%-CI) 

Model 1B 

OR (95%-CI) 
Model 2C 
OR (95%-CI) 

Model 2 + Noise 
OR (95%-CI) 

PM10  2.1 1.19 (1.05-1.36) 1.15 (1.00-1.33) 1.14 (0.99-1.32) 1.16 (1.00-1-35) 
PM2.5  1.5 1.26 (1.07-1.48) 1.21 (1.00-1.46) 1.19 (0.98-1.44) 1.21 (0.99-1.48) 
PMcoarse  1.9 1.13 (0.98-1.29) 1.08 (0.94-1.24) 1.08 (0.94-1.24) 1.09 (0.95-1.26) 
PM2.5abs 0.4 1.06 (0.96-1.17) 1.02 (0.91-1.14) 1.00 (0.90-1.12) 1.02 (0.90-1.16) 
NO2  6.1 1.13 (0.98-1.30) 1.06 (0.90-1.24) 1.03 (0.88-1.21) 1.06 (0.89-1.25) 
A+ Air pollutant, BCrude + Age, sex, and individual and neighborhood SES, CModel 1 + Lifestyle variables 
(smoking status, cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 

 

  

DOI: 10.1016/j.envint.2018.02.035



42

4 Results

4.3.3 Urban Background Exposure Assessment (EURAD-CTM) - 
Cross-Sectional Analyses
In general, exposure to AP was positively associated with prevalent MetS, but these 
associations weakened towards the null with increasing covariate adjustment (Table 14 & 
Figure 12). In the crude model, all air pollutants were significantly positively associated with 
MetS prevalence. In the fully adjusted model 3, the ORs for PM2.5 and NO2 continued to be 
significantly positive associated with MetS prevalence, with an OR of 1.16 (95%-CI 1.03-
1.30) per IQR and 1.14 (95%-CI 1.03-1.26) per IQR, respectively. For PM10, the association 
with prevalent MetS was of borderline significance in model 3, with an OR of 1.11 (95%-CI 
0.99-1.25) per IQR. The positive associations for PM2.5 and NO2 were robust to adjustment 
for noise. (Matthiessen et al. 2018)

Figure 12: Effect estimates for the association between air pollutants and prevalent 
MetS at baseline per IQR using the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=4,457.

 

 

Table 14: Main analysis of the associations between air pollutants and prevalent MetS at baseline per 
IQR using the EURAD-CTM exposure model, n=4,457. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

 IQR CrudeA 
OR (95% CI) 

Model 1B 

 OR (95% CI) 
Model 2C  
OR (95% CI) 

Model 3D 
OR (95% CI) 

Model 3 + Noise 
OR (95% CI) 

PM10  4.2 1.17 (1.04-1.31) 1.12 (1.00-1.26) 1.11 (0.99-1.25) 1.11 (0.99-1.25) 1.09 (0.96-1.23) 
PM2.5  2.1 1.16 (1.04-1.30) 1.16 (1.03-1.30) 1.16 (1.03-1.30) 1.16 (1.03-1.30) 1.14 (1.01-1.28) 
NO2  5.1 1.19 (1.08-1.30) 1.15 (1.04-1.27) 1.14 (1.03-1.26) 1.14 (1.03-1.26) 1.12 (1.02-1.24) 

A+ Air Pollutant, BCrude + Age, sex, and individual and neighborhood SES, CModel 1 + Lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity), DModel 2 + Traffic indicator 
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4.3.4 Urban Background Exposure Assessment (EURAD-CTM) - 
Longitudinal Analyses
Overall, no clear association was found between AP and MetS incidence. Although all 
effect estimates for the association between AP and incident MetS were positive, confidence 
intervals included the null-value for all models and air pollutants (Table 15 & Figure 13). For 
example, the OR per IQR of PM10 was 1.10 (95%-CI 0.91-1.33) in model 3. When noise was 
added to the model, effects were similar to model 3. (Matthiessen et al. 2018)

Figure 13: Effect estimates for the associations between air pollutants and incident MetS 
at first follow-up per IQR using the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=3,074.

 

 

 

Table 15: Main analysis of the associations between air pollutants and incident MetS at first follow-up 
per IQR using the EURAD-CTM exposure model, n=3,074. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

 IQR 
CrudeA 
OR (95% CI) 

Model 1B  

OR (95% CI) 
Model 2C  
OR (95% CI) 

Model 3D 
OR (95% CI) 

Model 3 + Noise 
OR (95% CI) 

PM10  4.1 1.15 (0.95-1.39) 1.11 (0.92-1.34) 1.10 (0.91-1.32) 1.10 (0.91-1.33) 1.12 (0.92-1.36) 
PM2.5  2.2 1.11 (0.92-1.34) 1.10 (0.91-1.34) 1.09 (0.90-1.32) 1.11 (0.91-1.34) 1.12 (0.92-1.34) 
NO2  5.1 1.13 (0.97-1.31) 1.09 (0.93-1.28) 1.09 (0.93-1.27) 1.09 (0.93-1.27) 1.10 (0.93-1.29) 

A+ Air Pollutant, BCrude + Age, sex, and individual and neighborhood SES, CModel 1 + Lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity), DModel 2 + Traffic indicator 
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4.4 Sensitivity Analysis

4.4.1 Exposure Misclassification
MetS prevalence and incidence did not vary extensively when different sensitivity analysis 
were performed, MetS prevalence was between 20.4% to 23.5%, and MetS incidence was 
between 9.7% to 10.0% (Table 16 & 17). After restricting to participants who did not relocate 
between t0 and t1, results did not change substantially compared to the main analyses (Table 
16 & 17). However, when restricting to those who did not relocate five years before t0 or to 
participants who worked less than half-time, results were attenuated compared to the main 
analyses (Table 16 & 17). (Matthiessen et al. 2018)

Table 16: Sensitivity analyses of exposure misclassification for the association between AP 
and prevalent MetS at baseline per IQR, using the main adjustment set (model 2) and the 
ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main Analysis from Table 12.  
MetS prevalence: 20,7%, n=4,457 

PM10 1.02 (0.93-1.11) 
PM2.5 1.07 (0.94-1.20) 
NO2 1.12 (1.02-1.24) 

Analysis restricted to participants  
who did not move between t0 and t1. 
MetS prevalence: 21%, n=3,739 

PM10 1.02 (0.93-1.13) 
PM2.5 1.07 (0.94-1.21) 
NO2 1.16 (1.04-1.29) 

Analysis restricted to participants  
who did not move in the 5 years before t0. 
MetS prevalence: 20.4%, n=2,715 

PM10 0.98 (0.87-1.10) 
PM2.5 1.05 (0.89-1.25) 
NO2 1.07 (0.94-1.23) 

Analysis excluding participants working >15h/week. 
MetS prevalence: 23.5%, n=2,739 

PM10 1.00 (0.89-1.12) 
PM2.5 1.04 (0.89-1.20) 
NO2 1.09 (0.96-1.23) 

A+ Air pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, cumulative 
smoking, environmental tobacco smoking, nutrition, and physical activity) 

 

 

  

 

 

 

 

Table 17: Sensitivity analyses of exposure misclassification for the association between AP 
and incident MetS at first follow-up per IQR, using the main adjustment set (model 2) and the 
ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main Analysis from Table 13.  
MetS prevalence: 9,7%, n=3,074 

PM10 1.14 (0.98-1.32) 
PM2.5 1.19 (0.98-1.44) 
NO2 1.03 (0.88-1.21) 

Analysis restricted to participants  
who did not move between t0 and t1. 
MetS incidence: 9.8%, n=2,573 

PM10 1.10 (0.94-1.30) 
PM2.5 1.17 (0.94-1.44) 
NO2 1.01 (0.85-1.20) 

Analysis restricted to participants  
who did not move in the 5 years before t0. 
MetS incidence: 9.9%, n=1,892 

PM10 1.10 (0.91-1.33) 
PM2.5 1.09 (0.83-1.44) 
NO2 0.89 (0.72-1.10) 

Analysis excluding participants working >15h/week. 
MetS incidence: 10.0%, n=1,754 

PM10 1.07 (0.87-1.30) 
PM2.5 1.08 (0.83-1.41) 
NO2 1.00 (0.81-1.24) 

A+ Air pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, cumulative 
smoking, environmental tobacco smoking, nutrition, and physical activity) 
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4.4.2 Outcome Misclassification
For MetS prevalence and incidence, the highest estimates were found for the IDF definition 
(MetS prevalence 54.2% and MetS incidence 29.8%), while the lowest MetS prevalence 
(21.4%) and incidence (9.0%) were observed when using self-reported hypertension or 
known pharmacological treatment as the criteria for “elevated BP” (Table 18 & 19). 

Overall, sensitivity analyses for outcome misclassification supported the main analyses of a 
positive association between air pollutants and prevalent MetS (Table 18). For all analyses, 
exposure to NO2 was positively associated with MetS prevalence, with the strongest effect 
seen when the criteria for “elevated BP” was changed. For the incident MetS analyses, effect 
estimates were not very robust to variation in the definition of MetS, as they were either 
attenuated or slightly negative (Table 19).  (Matthiessen et al. 2018)

 

Table 18: Sensitivity analyses of outcome misclassification for the association between AP 
and prevalent MetS at baseline per IQR, using the main adjustment set (model 2) and the 
ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

Sensitivity Analysis,  n=2,629 AP Model 2A 
OR (95%-CI) 

Main outcome definition. 
MetS prevalence: 23.5%  

PM10 0.98 (0.88-1.10) 
PM2.5 1.03 (0.90-1.20) 
NO2 1.12 (0.99-1.27) 

Outcome definition in accordance with the IDF definition. 
MetS prevalence: 54.2%  

PM10 1.04 (0.94-1.15) 
PM2.5 1.10 (0.96-1.25) 
NO2 1.04 (0.93-1.16) 

Outcome definition in accordance with the ATP III definition. 
MetS prevalence: 36.5%  

PM10 1.06 (0.96-1.17) 
PM2.5 1.10 (0.96-1.25) 
NO2 1.12 (1.00-1.25) 

“Elevated BP” cutpoint changed to  ≥140/90 mmHg. 
MetS prevalence: 22.2%  

PM10 0.99 (0.88-1.11) 
PM2.5 1.05 (0.90-1.22) 
NO2 1.13 (0.99-1.28) 

“Elevated BP” criteria changed to only self-reported 
hypertension or taking pharmacological treatment. 
MetS prevalence: 21.4%  

PM10 1.01 (0.90-1.13) 
PM2.5 1.04 (0.89-1.21) 
NO2 1.13 (1.00-1.29) 

A+ Air pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, cumulative 
smoking, environmental tobacco smoking, nutrition, and physical activity) 
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Table 19: Sensitivity analyses of outcome misclassification for the association between AP 
and incident MetS at first follow-up per IQR, using the main adjustment set (model 2) and the 
ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main outcome definition from Table 15. 
MetS incidence: 9.7%, n=3,074 

PM10 1.14 (0.98-1.32) 
PM2.5 1.19 (0.98-1.44) 
NO2 1.03 (0.88-1.21) 

Outcome definition in accordance with the IDF definition. 
MetS incidence: 29,8%, n= 1,689 

PM10 0.98 (0.85-1.12) 
PM2.5 1.01 (0.85-1.21) 
NO2 0.96 (0.84-1.11) 

Outcome definition in accordance with the ATP III definition. 
MetS incidence: 20.9%, n=2,249 

PM10 0.90 (0.79-1.04) 
PM2.5 0.91 (0.77-1.08) 
NO2 0.96 (0.84-1.10) 

“Elevated BP” cutpoint changed to  ≥140/90 mmHg. 
MetS incidence: 9.7%, n=3,114 

PM10 1.11 (0.96-1.29) 
PM2.5 1.15 (0.94-1.39) 
NO2 1.02 (0.87-1.20) 

“Elevated BP” criteria changed to only self-reported 
hypertension or taking pharmacological treatment. 
MetS incidence: 9.0%, n=3,132 

PM10 1.07 (0.92-1.24) 
PM2.5 1.10 (0.90-1.35) 
NO2 1.03 (0.88-1.21) 

A+ Air pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, cumulative 
smoking, environmental tobacco smoking, nutrition, and physical activity) 

 

 

  

4.4.3 AP and Relative Risk of Incident MetS
Similar to the main analyses with logistic regression, positive effect estimates were observed 
for the association between AP and incident MetS using Poisson regression, with weakening 
of the effects towards the null with increasing covariate adjustment (Table 20 & Figure 14). 
All effect estimates were slightly attenuated compared to the main analyses, e.g., for PM2.5, the 
OR was 1.19 (95%-CI 0.98-1.44) and the RR was 1.16 (95%-CI 0.97-1.39) per IQR in model 
2. Similar to the main analysis, associations increased slightly for all pollutants when noise 
was added to the model. Even though effect estimates were slightly attenuated when using 
Poisson regression compared to the main analyses, results did not fundamentally change.

 

 

 

Table 20: Sensitivity analyses of the associations between air pollutants and incident MetS at 
first follow-up per IQR, using a modified Poisson regression and the ESCAPE-LUR exposure 
model, n=3,074. Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

 IQR Crude1 

RR (95%-CI) 
Model 12 

RR (95%-CI) 
Model 23 

RR (95%-CI) 
Model 2 + Noise 

RR (95%-CI) 

PM10  2.1 1.17 (1.04-1.32) 1.13 (0.99-1.30) 1.12 (0.98-1.28) 1.14 (1.00-1-31) 
PM2.5  1.5 1.23 (1.06-1.42) 1.18 (0.99-1.42) 1.16 (0.97-1.39) 1.19 (0.99-1.43) 
NO2  6.1 1.12 (0.99-1.26) 1.05 (0.92-1.20) 1.03 (0.90-1.17) 1.05 (0.91-1.21) 
1+ Air pollutant, 2Crude + Age, sex, and individual and neighborhood SES, 3Model 1 + Lifestyle variables (smoking 
status, cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 
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Figure 14: Effect estimates for the associations between air pollutants and incident MetS 
at first follow-up per IQR using the ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=3,074.

	
	
	
	
	
	



48

5 Discussion

„In general, our results suggest that a weak positive association may exist between long-term 
AP exposure and prevalent and incident MetS, with most consistent associations apparent 
between NO2 and prevalent MetS. PM10 and PM2.5 exposures were most strongly associated 
with incident MetS [...]“ (Matthiessen et al. 2018).

5.1 Comparison to Prior Literature

Little evidence is available so far about the relationship between air pollution exposure and 
MetS (prevalent or incident). Two prior studies have observed associations between at least 
one air pollutant and prevalent MetS (Eze et al. 2015) or incident MetS (Wallwork et al. 2016). 
Even though these two studies and our own work differ by study population, level of air 
pollution exposure, main air pollution sources and composition, and MetS definition, they 
all show associations between AP exposure and MetS. 

Prevalent MetS: Eze et al. (2015) observed ORs of 1.21 (95%-CI 0.99-1.49) and 1.10 (95%-CI 
0.97-1.24) per 10 µg/m3 for PM10 and NO2, respectively, using the IDF definition for MetS. 
Similar to our results, the estimates in the Swiss study were sensitive to different outcome 
definitions with an attenuation of estimates when using the ATP III definition (ORs per 10 
µg/m3: PM10 1.10 (95% 0.98-1.24); NO2 1.01 (95% CI 0.93-1.09)) (Eze et al. 2015). The size 
of our effect estimates for NO2 are in line with the results from Eze et al. (2015), showing an 
increase in the odds of MetS prevalence of approximately 20% to 29% per 10 µg/m3. While 
our findings do not suggest an association between PM10 and MetS prevalence using the 
ESCAPE-LUR exposure model (OR for PM10: 1.08 (95% CI 0.70-1.67) per 10 µg/m3), we did 
observe a positive association similar to Eze et al. (2015) using the urban background particle 
mass concentration as modeled with the EURAD-CTM (OR for PM10: 1.29 (95% CI 0.98-
1.71) per 10 µg/m3). 

Incident MetS: Our results for incident MetS were slightly weaker than those observed by 
Wallwork et al. (2016) in a cohort of elderly men in a low-exposure setting between 2000-
2011. The investigators conducted a time-to-event analysis with 517 observations and 140 
incident MetS cases (Wallwork et al. 2016). They found a hazard ratio of 1.27 (95%-CI 1.06-
1.52) per 1 µg/m3 for PM2.5 using the ATP III definition, while our analysis showed an odds 
ratio of 1.12 (95% CI 0.98-1.28) per 1 µg/m3 for PM2.5 modeled with the ESCAPE-LUR and 
an odds ratio of 1.04 (95% CI 0.95-1.14) for PM2.5 modeled with the EURAD-CTM exposure 
model. 
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Overall, our study partially supports the findings of the above-mentioned studies and adds to 
the current knowledge by strengthening the evidence for an association between air pollution 
and MetS. Specifically, the associations of NO2 and PM2.5 with MetS point to the possibility 
that traffic-related air pollution might be an important fraction of the overall air pollution 
mixture. (Matthiessen et al. 2018)

5.2 Exposure Models

Our results revealed that health effect estimates differ by exposure modeling techniques. 
While we observed stronger observations between air pollutants modeled with EURAD-CTM 
and prevalent MetS, air pollutants modeled with the ESCAPE-LUR model showed stronger 
associations with incident MetS. One possible explanation may be the modeling differences. 
First, the EURAD-CTM models grid-based, urban background air pollution concentrations, 
while the ESCAPE-LUR model estimates are point-specific (Hennig et al. 2016). Urban 
background exposures averaged over a 1 km2 grid cell represent different pollution mixtures 
than point-specific estimates, such as those modeled with a land use regression model. 
Second, the pattern of exposure misclassification is different, since even small differences in 
distances to a major road can lead to substantial changes in exposure estimates when using 
the land use regression model, while the grid-based estimates are the same for all subjects 
within one grid cell. Furthermore, the time of exposure assessment varies between the two 
exposure models. While the CTM models hourly exposures, which can then be averaged over 
the relevant exposure time (e.g., the years 2001-2003 during which the baseline examination 
was conducted), the land use regression model is based on measurements that were conducted 
from 2008 to 2009. While LUR-based exposure estimates are generally quite stable over time 
periods of up to 15 years, misclassification can occur if changes in the emissions occur (for 
example, restricted access zones). Due to these differences between exposure assessment 
models, different misclassification patterns may help explain the heterogeneity of the results.

5.3 Noise as a Potential Confounder

Among different environmental noise sources, road traffic presents the most dominant source 
of noise in Europe (EEA 2010). Since air pollution and noise exposure share some common 
sources, such as road transport, the role of noise as a potential confounder has become more 
important in recent years (Stansfeld 2015). 
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In this analysis, noise and air pollution exposure were only weakly to moderately correlated 
(r=0.14-0.48), with the highest correlation seen between noise and PM2.5abs (a proxy 
for soot and black carbon) (Table 11). Noise did not act as a relevant confounder in our 
analysis. Both AP and noise exposure increase systemic inflammation, oxidative stress, and 
the activation of the sympathetic nervous system. On the other hand, noise perception as 
a psychological stressor is somewhat subjective (e.g., sleep disturbance, arousal), whereas 
AP acts unconsciously (Münzel et al. 2016). Noise is influenced strongly by noise barriers 
and buildings, whereas AP dispersion is highly dependent on meteorological conditions 
(Stansfeld 2015), which may explain the relatively low correlations we observed between 
noise and air pollution exposures. Therefore, exposure to AP and noise may have affected our 
participants differently. In addition, the noise exposure variable might not have been precise 
enough. Because noise was assessed only as outdoor noise in this study (see also 3.2.4.) and 
other factors such as noise annoyance and indoor noise might be important factors for the 
association between noise and metabolic health, the noise variable used may not reflect the 
true noise exposure of study participants.  

5.4 Outcome

A common definition of MetS remains undecided, and discussions about inclusion criteria 
and cutpoints are ongoing (Alberti et al. 2009). „While Wallwork et al. (2016) used the 
ATP III definition, Eze et al. (2015) used both the ATP III and IDF definitions as well as 
the definition from the WHO. The uncertainty of the MetS definition led to our extensive 
sensitivity analyses with different outcome criteria (Table 18 & 19). Overall, the associations 
between AP and prevalent MetS were more robust to changes in MetS definition than those 
for incident MetS“ (Matthiessen et al. 2018). 

When the IDF definition was used, estimated associations between air pollution exposure and 
MetS prevalence were attenuated compared to the main outcome definition, while use of the 
ATP III definition and stricter “elevated BP” criteria yielded similar or slightly higher effect 
estimates (Table 18) (Matthiessen et al. 2018). In addition, the IDF definition had highest 
MetS prevalence (54.2%) and incidence (29.8%) compared to the other outcome definitions 
used in sensitivity analyses. Further, the IDF definition has stricter waist circumference 
criteria compared to the ATP III definition, even when using ethnic- and sex-specific values. 
Compared to the known MetS prevalence estimates for Germany (see 1.2.2), MetS prevalence 
in our cohort using the IDF definition seems very high, potentially suggesting the inclusion 
of false positive MetS cases. 
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In summary, the effect estimates for prevalent and incident MetS were highly dependent on 
the exact definition of MetS in our analyses. This variability is supported by the findings of Eze 
et al. (2015), who also found differences in OR by MetS definition, with the WHO definition 
having the highest OR and the ATP III definition having the lowest OR. (Matthiessen et al. 
2018)

5.5 Selection of the study population

Several mechanisms of selection of the study population took place in this study, which might 
have contributed to various forms of bias. (Matthiessen et al. 2018)

The first selection occurred during the initial recruitment process (Matthiessen et al. 2018). 
Stang et al. (2005) released a paper where nonresponders versus participants of the HNR 
study were compared. Nonresponders were asked to fill in a short questionnaire with basic 
information on sociodemographic factors and lifestyle indicators. Stang et al (2005) concluded 
that in comparison to known demographic characteristics within the Ruhr Area, a higher 
proportion of participants from a high social class and with good health status participated 
in the HNR cohort (Stang et al. 2005). This has also been found in other cohort studies, 
where nonresponders tended to be less educated and less healthy compared to responders 
(Barchielli and Balzi 2002; Brøgger et al. 2003; Korkeila et al. 2001). 

The second selection occurred due to the exclusion of participants with incomplete data 
from the cross-sectional analysis. These excluded participants were less educated and older 
compared to those included in the cross-sectional analysis (Table 7). (Matthiessen et al. 2018)

The third selection occurred due to an even higher proportion of study participants excluded 
for the longitudinal analysis due to loss to follow-up, more participants with missing variables, 
and inability to assign MetS status (Yes/No) to more participants. While the study population 
in the cross-sectional analyses (n=4,457) only differed slightly from those excluded due to 
incomplete data (n=357) (Table 7), the study population included in the longitudinal analysis 
(n=3,801) was substantially younger, healthier, and less exposed compared to those excluded 
(n=1,013) (Table 8). (Matthiessen et al. 2018)

In summary, these three important selection processes resulted in a relatively healthy study 
population. Prior studies have found that vulnerable populations, such as older or multimorbid 
participants, are more susceptible to the adverse effects of air pollution (Goldberg et al. 2001; 
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Rückerl et al. 2011; Sacks et al. 2011; Simoni et al. 2015). It may therefore be possible that even 
the selection during the initial recruitment process, with the HNR participants being healthier 
and having higher socioeconomic status, may have contributed to weaker estimates in this 
study compared to the general population in the Ruhr Area for both the cross-sectional and 
the longitudinal analyses. Furthermore, exclusion processes in the statistical analysis due to 
incomplete data may also have attenuated estimates towards the null. It may be possible that 
the greater instability of the effect estimates observed in the longitudinal analysis compared 
to the cross-sectional analysis was driven by the younger and healthier study population, as 
selection towards a less vulnerable population was more likely to occur in the longitudinal 
analysis. This may be one explanation for the greater variability in results for incident MetS 
compared to prevalent MetS upon adjustment for covariates and in sensitivity analyses. 
(Matthiessen et al. 2018)

Another explanation for the inconsistencies in the analysis of incident MetS may be that 
the five year follow-up period was not long enough to develop a sufficient number of MetS 
cases in this selected group of more healthy participants that were free of disease at baseline. 
(Matthiessen et al. 2018)

5.6 Air Pollution and its Health Impact on the General    
Population

While the effect sizes found in this analysis are small compared to other MetS risk factors, 
such as behavioural risk factors, the fact that air pollution exposure is ubiquitous can lead 
to a high attributable risk. This phenomenon has been explained in detail by Geoffrey Rose 
(1985) using smoking as an example. If every individual were to smoke 20 cigarettes per 
day, most studies would conclude that lung cancer was a genetic disease, since everyone 
is exposed to smoking. This phenomenon led to the following conclusion: ‘The hardest 
cause to identify is the one that is universally present, for then it has no influence on the 
distribution of disease.’ (Rose 1985). This is also the case with environmental risk factors such 
as air pollution. If a large number of individuals, or the whole population in the case of air 
pollution, is exposed to a weak risk factor, it may give rise to more cases of disease than a small 
number of individuals who are exposed to a strong risk factor (Rose 1985). This theory leads 
to two prevention strategies: the “high-risk” strategy from clinical medicine that produces 
interventions appropriate for the particular individual at high risk and the “population” 
strategy from public health that attempts to lower the mean level of highly prevalent risk 
factors and thereby shift the entire distribution of exposure in a favorable direction (Rose 
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1985). The latter is the strategy commonly applied in air quality regulations. It attempts to 
reduce an unhealthy exposure and to protect the general population from future adverse 
health effects.

5.7 Future Research Needs

There are several research needs in relation to air pollution and its potential association with 
MetS. First, studies in potentially more susceptible subgroups (e.g., effect modification by sex, 
age, unhealthy lifestyle, prevalent cardiovascular disease risk factors, or SES) may be beneficial, 
because MetS prevalence not only varies between age and sex (see 1.2.2), but susceptibility 
to air pollution and its health impacts also increases in chronically ill individuals (see 1.3.3). 
Second, different combinations of MetS criteria might be interesting to study, since they vary 
depending on sex and age (see 1.2.2). Different types of MetS (i.e., different combinations 
of the individual constituents of the syndrome) could be studied in order to assess whether 
certain combinations are more strongly related to air pollution than others. This might help 
to explain the partially inconsistent results of this study and could clarify whether MetS 
should be considered as an outcome itself or different MetS combinations, having partially 
diverging etiologies, should be considered separately. Third, the individual MetS components 
should be studied in relation to air pollution exposure with the aim to understand more 
clearly which components are more strongly associated with AP. Within the HNR and other 
studies, T2D, insulin resistance, and BP have already been studied, and an association with 
AP has been found in the HNR as well as in several other studies. However, little evidence is 
currently available for central obesity and dyslipidemia. Fourth, source-specific air pollution 
and its association with MetS should be studied, since specific sources, such as AP from 
traffic, seem to be more toxic and have greater impact on human health (Hennig et al. 2014; 
Hoffmann et al. 2007; Weinmayr et al. 2015). Fifth, it would be desirable to investigate the 
long-term effect of AP on incident MetS with longer longitudinal follow-up. Lastly, noise as 
a potential confounder with a more detailed noise assessment of indoor noise and personal 
perception of noise annoyance may prove to be another interesting avenue to better elucidate 
the correlation between AP and noise and their mutual impact on NCDs.

5.8 Strengths and Limitations of the Study

The HNR study is a well-characterized, population-based cohort with extensive covariate 
data, allowing us to adjust for multiple potential confounders. „In addition, we conducted 
comprehensive sensitivity analyses including different MetS outcome definitions and model 
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specifications. Furthermore, a thorough investigation of potential differences in study 
population of participants with complete versus incomplete data was carried out“(Matthiessen 
et al. 2018). One strength is that we were able to evaluate the association of interest using 
two comprehensive and complementary exposure assessment models. „We were also able to 
evaluate whether our estimates were sensitive to adjustment for chronic noise exposure, a 
covariate that is frequently unavailable in other studies“(Matthiessen et al. 2018). 

As mentioned previously, one limitation is the uncertainty of the MetS definition, with results 
being highly dependent on the exact definition of MetS. Another limitation is that differences 
between the study populations of the cross-sectional and longitudinal analyses, which may 
have resulted in the weaker effects observed in the younger and healthier participants of the 
longitudinal analysis. (Matthiessen et al. 2018)
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In summary, our results suggest that long-term exposure to AP may be positively associated 
with MetS in the general population, with most consistent effects observed between NO2 

and prevalent MetS as well as between PM10 and PM2.5 with incident MetS (Matthiessen et al. 
2018). Noise did not substantially confound the estimated AP effects. The main reasons for 
inconsistencies in the association between AP and incident MetS may have been a stronger 
selection bias and a relatively short follow-up for this middle-aged to elderly population to 
develop a sufficient number of MetS cases. Future studies using source-specific AP exposures, 
identifying particularly susceptible groups, and examining different MetS combinations could 
help to improve our understanding of the hypothesized mechanisms between AP exposure 
and MetS as well as the health impacts in the general population. 
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Figure A1 Effect estimates for the associations between air pollutants and prevalent MetS 
at baseline per IQR using the ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=4,457. 
Crude, +Air Pollutant; Model 2, Crude + Age, Sex, Individual and Neighborhood SES, Lifestyle 
Variables (Smoking Status, Cumulative Smoking, Environmental Tobacco Smoking, and Physical 
Activity); MSAS 1, Crude + Age, Sex, Neighborhood SES, Nutrition, Physical Activity, Proximity 
to Major Road, Smoking Status, ETS; MSAS 2, Crude + Individual SES, Proximity to Major Road. 
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Comparison of Regression Models: DAG-based vs. Based on Knowledge from 
Prior Studies.
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Figure A2: Effect estimates for the associations between air pollutants and prevalent 
MetS at baseline per IQR using the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=4,457. 
Crude, +Air Pollutant; Model 3, Crude + Age, Sex, Individual and Neighborhood SES, Lifestyle 
Variables (Smoking Status, Cumulative Smoking, Environmental Tobacco Smoking, and Physical 
Activity), Proximity to Major Road; MSAS 1, Crude + Age, Sex, Neighborhood SES, Nutrition, 
Physical Activity, Proximity to Major Road, Smoking Status, ETS; MSAS 2, Crude + Individual 
SES, Proximity to Major Road. 
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Figure A3: Effect estimates for the associations between air pollutants and incident MetS 
at first follow-up per IQR using the ESCAPE-LUR exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=4,457. 
Crude, +Air Pollutant; Model 2, Crude + Age, Sex, Individual and Neighborhood SES, Lifestyle 
Variables (Smoking Status, Cumulative Smoking, Environmental Tobacco Smoking, and Physical 
Activity); MSAS 1, Crude + Age, Sex, Neighborhood SES, Nutrition, Physical Activity, Proximity 
to Major Road, Smoking Status, ETS; MSAS 2, Crude + Individual SES, Proximity to Major Road. 
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Figure A4: Effect estimates for the associations between air pollutants and incident MetS 
at first follow-up per IQR using the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study, n=4,457. 
Crude, +Air Pollutant; Model 3, Crude + Age, Sex, Individual and Neighborhood SES, Lifestyle 
Variables (Smoking Status, Cumulative Smoking, Environmental Tobacco Smoking, and Physical 
Activity), Proximity to Major Road; MSAS 1, Crude + Age, Sex, Neighborhood SES, Nutrition, 
Physical Activity, Proximity to Major Road, Smoking Status, ETS; MSAS 2, Crude + Individual 
SES, Proximity to Major Road. 
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Sensitivity Analysis with the Exposure Model EURAD-CTM
Exposure Misclassification

 

Table A2: Sensitivity analyses concerning exposure misclassification for the associations 
between air pollutants and incident MetS at first follow-up per IQR, using the main 
adjustment set (model 2) and the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main Analysis from Table 15.  
MetS prevalence: 9,7%, n=3,074 

PM10 1.10 (0.91-1.32) 
PM2.5 1.09 (0.90-1.32) 
NO2 1.09 (0.93-1.27) 

Analysis restricted to participants  
who did not move between t0 and t1. 
MetS incidence: 9.8%, n=2,573 

PM10 1.08 (0.88-1.34) 
PM2.5 1.06 (0.85-1.32) 
NO2 1.09 (0.92-1.29) 

Analysis restricted to participants  
who did not move in the 5 years before t0. 
MetS incidence: 9.9%, n=1,892 

PM10 0.96 (0.79-1.17) 
PM2.5 0.95 (0.76-1.19) 
NO2 1.02 (0.81-1.27) 

Analysis excluding participants working >15h/week. 
MetS incidence: 10.0%, n=1,754 

PM10 1.05 (0.81-1.35) 
PM2.5 1.10 (0.86-1.41) 
NO2 1.15 (0.93-1.42) 

A+ Air Pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 

 

  

 

Table A1: Sensitivity analyses concerning exposure misclassification for the associations 
between air pollutants and prevalent MetS at baseline per IQR, using the main adjustment 
set (model 2) and the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall 
Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main Analysis from Table 14. 
MetS prevalence: 20.7%, n=4,457 

PM10 1.11 (0.99-1.25) 
PM2.5 1.16 (1.03-1.30) 
NO2 1.14 (1.03-1.26) 

Analysis restricted to participants  
who did not move between t0 and t1. 
MetS prevalence: 21%, n=3,739 

PM10 1.12 (0.99-1.27) 
PM2.5 1.17 (1.02-1.33) 
NO2 1.15 (1.03-1.28) 

Analysis restricted to participants  
who did not move in the 5 years before t0. 
MetS prevalence: 20.4%, n=2,715 

PM10 1.13 (0.99-1.27) 
PM2.5 1.19 (1.04-1.36) 
NO2 1.12 (0.98-1.29) 

Analysis excluding participants working >15h/week. 
MetS prevalence: 23.5%, n=2,739 

PM10 1.13 (0.98-1.30) 
PM2.5 1.14 (0.99-1.32) 
NO2 1.10 (0.97-1.24) 

A+ Air Pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 
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Outcome Misclassification

 

Table A4: Sensitivity analyses concerning outcome misclassification for the associations 
between air pollutants and incident MetS at first follow-up per IQR, using the main 
adjustment set (model 2) and the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz 
Nixdorf Recall Study. 

Sensitivity Analysis AP Model 2A 
OR (95%-CI) 

Main outcome definition from Table 15. 
MetS incidence: 9.7%, n=3,074 

PM10 1.10 (0.91-1.32) 
PM2.5 1.09 (0.90-1.32) 
NO2 1.09 (0.93-1.27) 

Outcome definition in accordance with the IDF definition. 
MetS incidence: 29,8%, n=1,689 

PM10 0.99 (0.83-1.18) 
PM2.5 0.94 (0.80-1.12) 
NO2 0.95 (0.82-1.08) 

Outcome definition in accordance with the ATP III definition. 
MetS incidence: 20.9%, n=2,249 

PM10 0.98 (0.83-1.16) 
PM2.5 0.99 (0.84-1.17) 
NO2 0.98 (0.86-1.12) 

“Elevated BP” cutpoint changed to  ≥140/90 mmHg. 
MetS incidence: 9.7%, n=3,114 

PM10 1.07 (0.89-1.30) 
PM2.5 1.08 (0.89-1.31) 
NO2 1.06 (0.91-1.24) 

“Elevated BP” criteria changed to only self-reported 
hypertension or taking pharmacological treatment. 
MetS incidence: 9.0%, n=3,132 

PM10 1.05 (0.86-1.27) 
PM2.5 1.08 (0.88-1.31) 
NO2 1.06 (0.90-1.25) 

A+ Air Pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 

 

 

  

 

 

Table A3: Sensitivity analyses concerning outcome misclassification for the associations 
between air pollutants and prevalent MetS at baseline per IQR, using the main adjustment 
set (model 2) and the EURAD-CTM exposure model. Ruhr Area, 2017, Heinz Nixdorf Recall 
Study. 

Sensitivity Analysis,  n=2,629 AP Model 2A 
OR (95%-CI) 

Main outcome definition. 
MetS prevalence: 23.5%  

PM10 1.08 (0.93-1.25) 
PM2.5 1.16 (1.00-1.35) 
NO2 1.20 (1.05-1.36) 

Outcome definition in accordance with the IDF definition. 
MetS prevalence: 54.2%  

PM10 1.06 (0.93-1.21) 
PM2.5 1.09 (0.96-1.24) 
NO2 1.13 (1.02-1.26) 

Outcome definition in accordance with the ATP III definition. 
MetS prevalence: 36.5%  

PM10 1.06 (0.93-1.21) 
PM2.5 1.11 (0.97-1.26) 
NO2 1.13 (1.01-1.26) 

“Elevated BP” cutpoint changed to  ≥ 140/90 mmHg. 
MetS prevalence: 22.2%  

PM10 1.10 (0.95-1.28) 
PM2.5 1.20 (1.03-1.39) 
NO2 1.21 (1.07-1.38) 

“Elevated BP” criteria changed to only self-reported 
hypertension or taking pharmacological treatment. 
MetS prevalence: 21.4%  

PM10 1.06 (0.91-1.24) 
PM2.5 1.16 (1.00-1.36) 
NO2 1.23 (1.08-1.41) 

A+ Air Pollutant, age, sex, individual and neighborhood SES, and lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity) 
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Estimating RR

Table A5: Sensitivity analyses of the associations between air pollutants and incident MetS at first 
follow-up per IQR, using a modified Poisson regression and the EURAD-CTM exposure model, n=3,074. 
Ruhr Area, 2017, Heinz Nixdorf Recall Study. 

 IQR 
Crude1 

RR (95%-CI) 
Model 12 

RR (95%-CI) 
Model 23 

RR (95%-CI) 
Model 34  

RR (95%-CI) 
Model 3 + Noise 

RR (95%-CI) 

PM10  4.2 1.14 (0.96-1.35) 1.10 (0.93-1.30) 1.08 (0.91-1.29) 1.08 (0.91-1.29) 1.11 (0.93-1.32) 
PM2.5  2.1 1.10 (0.93-1.30) 1.09 (0.92-1.30) 1.08 (0.90-1.29) 1.09 (0.92-1.31) 1.11 (0.92-1.31) 
NO2  5.1 1.11 (0.97-1.27) 1.08 (0.94-1.25) 1.08 (0.93-1.24) 1.08 (0.93-1.24) 1.09 (0.94-1.26) 

1+ Air pollutant, 2Crude + Age, sex, and individual and neighborhood SES, 3Model 1 + Lifestyle variables (smoking status, 
cumulative smoking, environmental tobacco smoking, nutrition, and physical activity), 4Model 2 + Traffic Indicator 

 

 

 

 

 

 

 

	
	
	
	
	

	

Figure A5: Effect estimates for the associations between different air pollutants and 
incident MetS at first-follow-up per IQR, using a modified Poisson regression and the 
EURAD-CTM model. Ruhr Area, 2017, Heinz Nixdorf Recall Study, n=3,074.                                         
Crude, + Air pollutant; Model 1, Crude + Age, sex, and individual and neighborhood SES; Model 
2, Model 2 + Lifestyle variables (smoking status, cumulative smoking, environmental tobacco 
smoking, and physical activity); Model 3 + Traffic Indicator
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