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Preface  
This doctoral thesis presents three manuscripts, along with additional chapters that relate them 

to the literature as well as to each other: Chapter 1 summarizes the background of my 

contributions, while Chapter 2 discusses the results. I generated and analyzed the results of all 

three manuscripts; detailed contributions are listed on the page preceding each manuscript.  

Manuscript 1 analyzed how the severity of a mutation affects pleiotropy in genome-scale 

metabolic networks. This work was published as: Alzoubi D., Desouki A. A., Lercher M. J., 

Scientific Reports 8: 17252, 22. November 2018, https://doi.org/10.1038/s41598-018-35092-

1. Manuscript 2 presents the predictions of epistasis from flux balance analysis with 

molecular crowding; it is currently under review at Scientific Reports (Alzoubi D., Desouki A. 

A., Lercher M. J., Epistasis predictions from flux balance analysis with molecular crowding). 

Finally, Manuscript 3, which has not yet been submitted to a journal, presents the inability of 

constraint-based methods to make quantitative predictions for non-lethal metabolic gene 

knockouts in E. coli and Saccharomyces cerevisiae, a finding with major implications for the 

interpretation of Manuscripts 1 and 2 (Alzoubi D., Desouki A. A., Papp B., Lercher M. J., 

Flux balance analysis and other constraint-based methods fail to predict mutant fitness for 

non-lethal metabolic gene knockouts in Escherichia coli and Saccharomyces cerevisiae).  

  

https://doi.org/10.1038/s41598-018-35092-1
https://doi.org/10.1038/s41598-018-35092-1
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Summary 
Understanding the relationships between genotypes and phenotypes remains a major 

challenge for biological research. Uncovering these relationships is hampered by the 

interconnectedness of biological systems, leading to non-independence of genes and of 

phenotypes. The most prominent emergent systems-level effects are summarized under the 

terms pleiotropy (one allele affecting multiple phenotypes) and epistasis (effects of one allele 

depend on the alleles of other genes). Metabolism is an ideal system to study pleiotropy and 

epistasis, as metabolic reactions can be studied in isolation. Constraint-based methods, in 

particular Flux Balance Analysis (FBA) represent the current state-of-the-art in genome-scale 

metabolic modelling. FBA has been successfully used to predict phenotypes such as growth 

rate, nutrient uptake rates, and gene essentiality(Edwards, Ibarra and Palsson 2001, Edwards and 

Palsson 2000, Famili et al. 2003, Forster et al. 2003, Ibarra, Edwards and Palsson 2002).  

In Manuscript 1, we used constraint-based simulations of the metabolic models for the 

bacterium Escherichia coli and the Baker’s yeast Sacchormyces cerevisiae to predict the 

pleiotropy of metabolic genes, allowing for mutations of variable severity. This work also 

represents the first analysis of how pleiotropy is associated with the generation of currency 

metabolites such as ATP and NADPH. We found that the knockout of a majority of genes that 

contribute to fitness has pleiotropic effects. For most of these genes, pleiotropy increases 

strongly with increasingly debilitating effects of mutations; in many cases, this was associated 

with increasing effects on currency metabolite production. 

While standard FBA ignores the concentrations of enzymes catalyzing met abolic reactions, 

FBA with molecular crowding (ccFBA) accounts for the need to solve them in cellular 

volumes of limited capacity. In Manuscript 2, we tested if ccFBA can significantly improve 

the prediction of epistasis in yeast. The results indeed show that FBA with molecular 

crowding can predict some positive epistatic interactions not detectable with other constraint-

based methods. However, the most important conclusion was that at least 70% of 

experimentally observed epistatic interactions are not detectable by any of the popular 

constraint-based methods. This result hinted at some fundamental problems of these methods.  

These problems were addressed in Manuscript 3, where we found that all tested constraint-

based methods are essentially useless when predicting the fitness effects of non-essential gene 

knockouts. If these models cannot quantify single gene knockout fitness reliably, it is no 

surprise that they fail to predict higher order effects (genetic interactions, i.e., epistasis). More 

generally, these results show that one has to be careful when interpreting computational 

predictions of gene knockouts, such as done in our analysis of pleiotropy in Manuscript 1.  
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Chapter 1 - Background 

Introduction: gene function and knockouts 
“Ultimately, one wishes to determine how genes—and the proteins they encode—function in 

the intact organism. Although it may sound counterintuitive, one of the most direct ways to 

find out what a gene does is to see what happens to the organism when that gene is missing … 

Because mutations can interrupt cellular processes, mutants often hold the key to 

understanding gene function”(Alberts 2002).  

A mutation can be beneficial, harmful, or neutral to its host, depending on the location and 

nature of the mutation and on the larger genomic and ecological context. A mutation in a gene 

introduces a new genotype. A genotype may be neutral and have no observable effects; but 

often it causes changes in the organism’s observable properties, and a new phenotype arises. 

The impacts of different mutations are crucial to our understanding of a biological system, 

and therefore researchers have devoted substantial efforts to the study of mutations. These 

efforts have led to the estimation of the distributions of mutational effects, where mostly the 

property of interest is fitness (Loewe 2008). 

A major challenge of biological studies is to understand the relationship between genotypes 

and phenotypes, as this provides the key for identifying genetic variants responsible for 

organismal effects of interest. A common and conventional approach to connect genotypes to 

phenotypes is to perform in vivo gene deletion experiments and observe the subsequent 

phenotype changes. However, many phenotypic traits are complex traits affected by many 

genes. For example, Mendelian disorders, which are caused by mutations to single genes, 

account for only a small fraction of rare human diseases, while most common diseases appear 

to have more complex genetic causes that remain largely unknown (see 

OMIM; http://www.ncbi.nlm.nih.gov/omim). Prominent examples include Alzheimer’s 

disease or type 2 diabetes in humans (Plomin, Haworth and Davis 2009, Mackay, Stone and 

Ayroles 2009). In other cases, the disease-related genes affect multiple traits, and hence a 

single genotype is mapped to multiple unrelated phenotypes, an example of pleiotropy 

(Stearns 2011, Wagner and Zhang 2011). These pleiotropic genes mostly do not work alone, 

but instead they cooperate with other genes to control different target phenotypes; their effect 

on trait variation often depends on their interactions with other genes, giving rise to epistatic 

effects (Phillips 2008, de Visser, Cooper and Elena 2011).  

Studies of the genotype-phenotype (GP) mapping have broad implications for our 

understanding of evolutionary biology, functional genomics, and disease (Segrè and Marx 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5215/
http://www.ncbi.nlm.nih.gov/omim
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2010). Figure 1 illustrates the concepts of pleiotropy and epistasis on the basis of the GP 

mapping. How pleiotropic and epistatic gene effects are organized, i.e., the network of 

connections between genotypes and phenotypes, plays a major role in the capability of 

organisms to adapt and evolve (Wagner, Pavlicev and Cheverud 2007, Wagner and Altenberg 

1996, Hansen 2006, Armbruster et al. 2014). Large-scale genetic interaction screens in yeast 

and other model systems have revealed common properties of genetic interaction networks, 

whose features appear to be maintained over extensive evolutionary distances (Botstein and 

Fink 2011). 

 

 

Figure 1: GP-map. P1, P2, and P3 are three phenotypes encoded by genes G1, G2, and 
G3. G3 encoding P3 has no pleiotropic effects and no epistatic interactions. G1 and G2 
both affect P1 and P2, and thus both genes have pleiotropic effects. Conversely, both P1 
and P2 are affected by G1 and G2, potentially giving rise to epistasis between G1 and 
G2 (dashed arrows E1, E2). 

 

Systems biology models summarize our current understanding of metabolism 
The aim of Systems Biology is to study “the structure and dynamics of cellular and 

organismal function”(Kitano 2002), typically utilizing different data types obtained from 

high-throughput measurements of cellular processes (Ideker, Galitski and Hood 2001, Kitano 

2002). System biologists utilize mathematical modeling methods to analyze biological 

interactions represented by different types of networks, such as metabolic pathways, 

transcriptional regulation networks, or signal transduction networks, in order to understand 

the behavior of the cell as a whole. System models are constructed using powerful 

computational tools in order to interpret specific mechanisms and cellular phenotypes from a 

systems or network perspective (Ashburner et al. 2000, Cherry et al. 1998, Gasch et al. 2000, 

Harbison et al. 2004, Stark et al. 2006, Teixeira et al. 2006).  
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Metabolism is arguably the subcellular system most suited for systems level GP analyses. 

This is because metabolic features such as energy generation and amino acid synthesis are 

closely related to observable phenotypic traits (Nielsen 2017). For many years, cellular 

metabolism has been studied by biochemists, and a comprehensive collection of metabolic 

reactions has been characterized. Molecular biology techniques helped to uncover gene-to-

enzyme-to-reaction (GPR) associations. Systems biology models of metabolism aim to 

summarize the current state of knowledge into a coherent, systems-level framework. While 

metabolism can be considered an extraordinarily well-characterized subcellular system, in 

many cases, phenotypes are still not predictable from genotypes, as changes in gene 

expression resulting from genetic changes are not well understood (Pavey et al. 2010). 

Accurate prediction of cellular phenotypes using genome-scale metabolic models is 

commonly confined to the prediction of gene essentiality (O'Brien, Monk and Palsson 2015).  

Metabolic Network Models 
A metabolic network connects metabolites and reactions. A node of the metabolic network 

represents a particular metabolite (chemical compound), and a link (or edge) between nodes 

represents a reaction that converts one set of metabolites into another. A reaction is catalysed 

by one or several enzymes, and thus can be linked to one or several genes encoding those 

enzymes. Through simulations, one can find out the flux of metabolites through the network; 

comparison of model predictions to experimental data often shows good agreement (Orth, 

Thiele and Palsson 2010).  

Genome-scale metabolic models (GSMs) are useful tools to analyze the metabolism of an 

organism, which represents the complete set of reactions a cell can perform based on the 

enzymes and transporters encoded in the genome. GSMs are constructed based on the 

sequencing and annotation of an organism’s genome (Thiele and Palsson 2010). To date, 

more than 100 manually curated GSMs for different organisms and strains, including humans, 

have been published (Aurich et al. 2015). Thiele et al. (Thiele and Palsson 2010) summarized 

the current paradigm in preparing GSM reconstructions, which involves five parts: (i) draft 

network reconstruction, (ii) refinement, (iii) conversion to model, (iv) evaluation, and (v) 

assembly. One example for models constructed in this way is the iJO1366 genome-scale 

metabolic model for E. coli (Orth et al. 2011), which contains 2583 reactions and 1805 

metabolites and accounts for the functions of 1366 genes. 
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Constraint-based analysis of metabolic models 
In recent years, many approaches have been introduced to predict gene function systemically. 

Constraint based methods (Edwards, Covert and Palsson 2002, Orth et al. 2010, Price et al. 

2003, Lewis, Nagarajan and Palsson 2012) applied to GSMs are among the most important in 

silico methods that have been used to evaluate the effects of gene deletions under various 

environmental conditions (e.g., (Harrison et al. 2007)). Constraint-based models formulate 

known (typically linear) constraints on a biological system, such as reaction stoichiometries 

and the directions of effectively irreversible reactions. They then typically try to find a 

cellular state (a distribution of reaction fluxes) that optimizes some objective, such as 

maximizing the biomass production rate of a microbial organism. Mathematical details of 

different constraint-based methods are given below.   

Flux Balance Analysis (FBA) 
Flux Balance analysis (FBA) (Orth et al. 2010) is a typical constraint-based modelling 

technique, which aims to predict the flux distribution of genome scale metabolic networks 

(Edwards et al. 2002). FBA was developed to predict the metabolic state of a strain optimized 

by natural selection or bioengineering for a particular function. Linear optimization is used to 

identify one or more optimal flux distribution. Metabolite balancing and stoichiometry of 

reactions in the system are used to construct constraints for the optimization under the steady-

state assumption that all internal metabolites must be consumed at the same rate at which they 

are produced. Reaction directions (which represent a coarse-grained consideration of 

thermodynamics), maximal reaction capacities (if known), and the availability of nutrients in 

different environments impose further constraints on the linear system (Orth et al. 2010).  

FBA applies these constraints in an optimization problem. The steady state assumption can be 

summarized as Sv=0. Here, v is a vector of fluxes, and S is the stoichiometric matrix, with 

each row representing a metabolite, each column representing a reaction, while each matrix 

entry is a stoichiometric coefficient sij , specifying the number of molecules of metabolite i 

produced (sij >0) or consumed (sij <0) in reaction j in a single reaction step (Orth et al. 2010). 

To find a solution, FBA solves the following linear programming (LP) problem: 

 

Maximize cT v 

s.t       Sv=0  

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 
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Here, c is a vector of constant weights; v is a vector of fluxes; S is the stoichiometric matrix; 

𝒗𝒎𝒊𝒏 and 𝒗𝒎𝒂𝒙 are vectors of fixed lower and upper bounds, respectively, for every reaction, 

with the inequalities to be read component-wise. The solution of the LP is a flux distribution 

maximizing the objective function cTv under the assumption of steady state. As objective 

function, one frequently chooses an artificial reaction that simulates the accumulation of 

biomass; this is done under the assumption that natural selection acted to maximize the rate of 

biomass production of the metabolic system. The solution space is typically of high 

dimensions, i.e., there are infinitely many solutions for v. 

FBA can simulate the metabolic model under different environmental conditions. A variety of 

applications for such models were introduced, such as the the prediction of gene knockout 

effects, the identification of drug targets, the study of the evolution of metabolic systems, as 

well as the improved annotation of genomes (Raman and Chandra 2009). 

FBA is one of the most important tools for analysis of the capabilities of a metabolic 

network  (Varma and Palsson 1994, Teusink et al. 2009, Terzer et al. 2009, Schuster, Pfeiffer 

and Fell 2008, Price et al. 2003, Orth et al. 2010, Mahadevan and Schilling 2003, Durot, 

Bourguignon and Schachter 2009). To understand the complicated characteristics of 

metabolism in living cells, the repertoire of constraint-based analysis methods has been 

expanded continuously. One example of a variant of FBA is flux variability analysis (FVA), 

which evaluates the minimum and maximum flux for each reaction across the multiple optima 

of the FBA problem (or, if desired, across all flux distributions compatible with the 

underlying set of constraints) (Mahadevan and Schilling 2003). There are also many 

extension of FBA to predict flux states.  

Applied to gene knockouts, FBA assumes optimality of growth, which might not accurately 

represent the behavior of real biological systems; hence, two widely recognized extensions of 

FBA were proposed for this case, namely MOMA (Segre, Vitkup and Church 2002) and 
ROOM (Shlomi, Berkman and Ruppin 2005). Both methods calculate the flux state of a 

knockout by minimizing a metric that estimates the distance between the wildtype and 

knockout flux distributions, assuming that gene regulation remains largely unchanged after 

the knockout.   

The distance metric used by MOMA is the Euclidean distance of the two flux vectors. This 

can be formally expressed through the following quadratic programming problem: 

min (𝒘 − 𝒗)𝟐 

s.t.       Sv=0 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 
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𝑣𝑗 = 0, 𝑗 ∈ 𝐺 

Here, w is the wildtype optimal flux vector obtained from standard FBA; v is a vector in the 

mutant flux space;  and G is the set of reactions that are deactivated by the gene deletion 

(knockout constraints).   

ROOM instead minimizes the total number of significant flux changes between the wildtype 

flux distribution (again estimated by FBA) and the mutant flux distribution. To solve this 

problem, ROOM is implemented using Mixed Integer Linear Programming (MILP): 

 

𝑀𝑖𝑛 ∑ 𝑦𝑖

𝑚

𝑖=1
 

s.t       Sv=0 

𝒗𝒎𝒊𝒏 ≤ 𝒗 ≤ 𝒗𝒎𝒂𝒙 

𝑣𝑗 = 0, 𝑗 ∈ 𝑮 

𝑦𝑖 ∈ {0,1} 

𝑣𝑖 − 𝑦𝑖  (𝑣𝑖
𝑢𝑏 − 𝑤𝑖

𝑢) ≤ 𝑤𝑖
𝑢 

𝑣𝑖 − 𝑦𝑖  (𝑣𝑖
𝑙𝑏 − 𝑤𝑖

𝑙) ≥ 𝑤𝑖
𝑙 

𝑤𝑖
𝑢 = 𝑤𝑖 − 𝛿|𝑤𝑖| + 𝜀 

𝑤𝑖
𝑙 = 𝑤𝑖 − 𝛿|𝑤𝑖| − 𝜀 

where 𝒚𝒊 is a Boolean auxiliary variable, which reflects the significant flux change between 

wildtype and mutant. 𝒘𝒊
𝒖 and 𝒘𝒊

𝒍 are used as a thresholds to distinguish significant from non-

significant flux changes. The tolerance parameters δ and ε are specifying absolute and relative 

ranges in tolerance. 

cost-constrained Flux Balance Analysis (ccFBA) 
FBA ignores important biological constraints. In particular, these include molecular 

crowding, which refers to a cellular constraint on total macromolecular concentrations due to 

the limited solvent capacity of the cytosol (Beg et al. 2007). FBA does not require any kinetic 

information about the reactions, but the price to be paid for this simplicity is FBA’s inability 

to model a range of metabolic phenomena such as overflow metabolism (Basan et al. 2015) or 

the evolution of cross-feeding in originally monoclonal bacterial populations grown on 

abundant glucose. Constraints from enzyme kinetics and cellular volume must be imposed in 

order to explain these phenomena (Pfeiffer and Bonhoeffer 2004). 
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cost-constrained FBA (ccFBA, available on CRAN) (Desouki 2016) is an improved general 

implementation of MetabOlic Modeling with ENzyme kineTics (MOMENT) (Adadi et al. 

2012) that includes parameterizations for E. coli and S. cerevisiae. ccFBA uses enzyme 

molecular weights to constrain total cellular enzyme concentration, and enzyme kinetic data 

to constrain the fluxes catalyzed by these enzymes. ccFBA improves the original 

implementation of MOMENT by explicitly considering multifunctional enzymes. 

ccFBA converts Boolean gene to protein (enzyme) to reaction mapping (GPR) rules into 

constraints as follows: 

 For a reaction j catalyzed by single enzyme i, this equation is used: 

𝒗𝒊 ≤ 𝒌𝒄𝒂𝒕,𝒋 ∗  𝒈𝒊 

 For a reaction j catalyzed by two isozymes a OR b, this equation is used: 

𝒗𝒊 ≤ 𝒌𝒄𝒂𝒕,𝒋 ∗  (𝒈𝒂 +  𝒈𝒃) 

 For a reaction j catalyzed by an enzyme complex consisting of gene 

products a AND b, this equation is used: 

𝒗𝒊 ≤ 𝒌𝒄𝒂𝒕,𝒋 ∗  𝒎𝒊𝒏(𝒈𝒂 , 𝒈𝒃) 

where 𝑣𝑖  is the metabolic flux of this reaction and 𝒌𝒄𝒂𝒕,𝒋 is the corresponding (apparent) 

turnover number. 𝑔𝑎  and 𝑔𝑏 are the molar concentrations of protein copies of a and b 

respectively.  In addition, ccFBA formulates a global constraint on the volume available for 

enzymes: 

 Cost constraint (crowding) using molecular weights: 

∑ 𝒈𝒊 ∗  𝑴𝑾𝒊 ≤ 𝑪 ∗ 𝑫𝑾 

where gi denotes molar enzyme concentration; MWi denotes the (molar) molecular weight of 

the protein encoded by gene i; C denotes the fraction of dry weight accounted for by 

metabolic proteins, assumed to be known and constant (and assumed to be proportional to the 

volume available for enzymes); and DW is the cellular dry weight per volume of cytosol. 

Minimization of Total Flux (MTF) 
The solutions in FBA are not unique and can contain thermodynamically infeasible cycles 

(Price et al. 2003, Orth et al. 2010, De Martino et al. 2013). MTF was developed to solve 

these problems by finding a solution with minimum total flux among the alternative optima, 

while maintaining an optimal value of the objective function (Holzhutter 2004). This strategy 

is often applied unter the name “parsimonious FBA” (pFBA).  
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Chapter 2 – Results and Discussion 

Pleiotropy and its importance in biology and medicine  
One of the fundamental phenomena in studying gene mutations is pleiotropy, where a single 

gene is responsible for more than one phenotypic traits (Wagner and Zhang 2011, Stearns 

2011). A mutation can result in different types of changes. It can cause a change to transcript 

regulation, a change in the amino acid sequence that affects its binding to a substrate, or – in 

the most extreme case – it can result in a gene deletion that abolishes expression completely 

(Alberts 2002). If a gene product participates in multiple cellular processes, its perturbation or 

deletion can affect some or all of its functions; the resulting effects can cascade down to all 

phenotypic traits affected by the gene.  

Experiments (Johnsson et al. 2012, Wright 2015, Gratten and Visscher 2016, Burstin et al. 

2007) performed on plants and animals in the past decade have shed important new light on 

pleiotropy. In particular, when selection is applied to one trait, the mean of other, 

pleiotropically related, traits also changes in the subsequent generations. If natural 

selection, sexual selection, or artificial selection on one trait favors one specific version of a 

gene, then pleiotropic effects may limit the rate of evolution. This is because while a mutation 

can have a positive effect on one trait, it can cause negative effects on other traits, thus 

counteracting the selected effects with negative fitness effects. This phenomenon is closely 

related to the Hill-Robertson effect of genetically linked genes (Hill and Robertson 1966), an 

effect that could be considered as due to pleiotropy of a haploblock rather than of a gene. 

The presence of pleiotropy has important implications on genomic medicine, i.e., the use of 

personalized medicine and genome editing. Because of the associated risks, we must 

thoroughly understand the implication of different effects of mutants of a gene, since specific 

genetic variants may show strong associations with multiple traits but in opposite directions 

(Parkes et al. 2013). This is important when we try to identify molecular targets for drug 

development (Sivakumaran et al. 2011), and when we try to “fix” mutations using genome 

editing approaches such as the CRISPR-Cas system (Gratten and Visscher 2016).  

Measuring the extent of pleiotropy for a single gene requires substantial experimental effort. 

Thus, systematic, genome-wide screens for pleiotropy can best be performed in silico. 

Computer simulations of pleiotropy have previously been based on modified versions of FBA 

that assess the contribution of a reaction to different constituents of biomass (Szappanos et al. 

2011). In other words, pleiotropy was measured as the number of biomass components whose 

maximal production is reduced by a given mutation, as shown in Figure 2. 



 

 14 

 

Figure 2. A graphical representation of pleiotropy. For three biomass components 
(A,B,C), maximal production is reduced by the mutation of gene X; thus, the degree of 
pleiotropy of gene X is 3. 

Contribution 1: Alleles of a gene differ in pleiotropy, often mediated through 

currency metabolite production, in E. coli and yeast metabolic simulations 
We used metabolic reconstructions of Escherichia coli (iJO1366 (Orth et al. 2011)) and 

Saccharomyces cerevisiae (Yeast v. 7.6, (https://sourceforge.net/projects/yeast (Aung, Henry 

and Walker 2013)) to study how the severity of a mutation affects pleiotropy in genome-scale 

metabolic networks. The production of so-called “currency metabolites”, such as adenosine 

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH), is essential 

to the functioning of many cellular processes, and hence it appears a priori likely that 

mutations affecting currency metabolite production will be highly pleiotropic. Thus, we 

specifically asked how pleiotropy is associated with the generation of currency metabolites in 

the studied networks.  

Following earlier work, we measured pleiotropy as the number of biomass components whose 

maximal production is reduced by a given mutation (Szappanos et al. 2011). Our results 

indicate that many essential genes affect the production of multiple biomass components: in 

E. coli, essential genes affect on average 20% of biomass components, while the 

corresponding number for S. cerevisiae is 34%. We also found that pleiotropy strongly 

depends on the severity of the mutation. Pleiotropy typically increases with increasing 

mutation severity: often, small reductions in flux affect the production of only a small number 

of biomass components, while large flux reductions (or full knockouts) may affect a much 

larger number of biomass components. Our model also allows us to quantify the relative 

contributions of pleiotropy type I, which arises due to multiple molecular functions of a gene 

product and is responsible for about 40% of metabolic pleitoropy, and type II, which is caused 

Gene X

Trait A

Trait B

Trait C

Component  A

Component  B

Component  C

https://sourceforge.net/projects/yeast
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by multiple physiological consequences of a single molecular function. We further find that 

metabolic pleiotropy networks are less modular than other pleiotropy networks. This suggests 

that the underlying metabolic network is more highly interconnected than the genetic 

networks underlying other types of traits, likely because of crosslinks provided by currency 

metabolites. As hypothesized, pleiotropy is indeed frequently mediated by currency 

metabolites: if we make currency metabolites (such as ATP or NADPH) freely available, 

55.3% of essential genes in E. coli and 87.4% of essential genes in S. cerevisiae show reduced 

pleiotropy. 

The importance of looking at flux reductions rather than full knockouts 
Mutations of different severity to the same gene may reduce the metabolic fluxes of the 

associated reactions to different degrees, but how the severity of a mutation affects pleiotropy 

in genome-scale metabolic networks was previously largely unknown. Xu et al. (Xu, Barker 

and Gu 2012) used FBA to investigate the epistatic landscape of different mutant alleles in the 

same gene, and I here transferred that approach to the study of pleiotropy.  

Pleiotropy plays an important role in many genetic diseases. Human disease-associated genes 

are typically not fully non-functional – at least not homozygously – and thus studying 

pleiotropy for different degrees of protein activity reduction is very important. Similarly, 

pleiotropy is important for genomic evolution (Stearns 2011); in long-term evolutionary 

processes, small effect mutations may be very abundant and may play a critical role in long-

term evolutionary processes, and thus it is equally important to analyze the pleiotropy of 

small-effect mutations in this context (Rutter, Shaw and Fenster 2010). 

The connection of currency metabolites to pleiotropy 
We can divide internal metabolites into “currency” metabolites, defined as those that are 

involved in many reactions, typically to provide energy or redox equivalents, and “primary” 

metabolites (Fritzemeier et al. 2017).  A mutated gene can directly affect a biomass 

component’s production if that gene catalyzes a reaction in its pathway of production. Instead, 

the mutated gene may affect the production of currency metabolites utilized in the 

component’s production rather than the primary metabolites. We found that the pleiotropy of 

many genes is indeed mediated through the generation of currency metabolites such as ATP, 

NADPH, or FADH2. This is true for more than half of the pleiotropic genes in E. coli, and for 

87% of pleiotropic genes in yeast. Two main factors appear to provide more potential for 

pleiotropic effects in yeast: the higher interconnectedness of the yeast pleiotropic network as 

well as the larger active metabolic network size. A generation of pleiotropy through effects on 
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currency metabolite production was expected a priori; however, we were the first to 

systematically test this hypothesis explicitly, and the first to quantify its contribution to 

genomic pleiotropy. 

Differences between E. coli & yeast 
For our analyses, we chose the two best studied model organisms among eukaryotes and 

prokaryotes, respectively, the baker’s yeast Saccharomyces cerevisiae and E. coli. Our 

analysis of pleiotropy reveals that yeast genes have generally higher pleiotropy than those of 

E. coli. As we considered only the active metabolic networks (755 reactions and 184 

metabolites for yeast, 462 reactions and 103 metabolites for E. coli), it appears that yeast 

metabolism is more complex and yet less flexible. The average number of reactions per 

metabolite is for yeast 4.10, slightly lower than the corresponding number for E. coli, 4.49. 

This indicates that reactions often connect non-distant parts of the network.  

Epistasis and its importance in biology and medicine 
Epistasis describes the situation that the consequences of a mutation in one gene depend on 

mutations at another gene (Harrison et al. 2007, He et al. 2010, Szappanos et al. 2011, Xu, 

Barker and Gu 2012). In complex genetic systems, understanding epistasis can help us to 

understand evolutionary dynamics, as epistasis plays a major role in shaping the fitness 

landscape (Hayden, Ferrada and Wagner 2011, Weinreich et al. 2006) and in maintaining 

sexual reproduction (Kondrashov 1988, Otto 2009), and as epistasis affects the speed of 

adaptation (Sanjuan et al. 2005, Kryazhimskiy, Tkacik and Plotkin 2009, Khan et al. 2011, 

Chiu, Marx and Segrè 2012). 

More generally, the study of epistasis is relevant to different branches of biology and 

medicine (Churchill 2001). For instance, for diverse traits of medical importance evidence for 

epistasis has been reported, which includes cancer, hypertension, kidney disease, epilepsy, 

and alcoholism (Churchill 2001). Further, there are many genetic modifiers of disease 

phenotypes that alter the severity of a trait depending on the genetic background in which 

they occur. Geneticists have used epistasis to analyze functional relationships between genes, 

the genetic ordering of regulatory pathways, and quantitative differences of allele-specific 

effects (Phillips 2008). For example, epistasis has been shown to be of critical importance in 

mouse models of epilepsy (Browman and Crabbe 2001). 

Mathematically, epistasis is defined based on the fitness of single and double mutants of two 

genes X and Y (Elena and Lenski 1997, Phillips 2000):  
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𝛆 =  𝑊𝑋𝑌 – 𝑊𝑋𝑊𝑌       

where WX and WY represent the fitness values of single mutants and WXY represents the fitness 

value of the corresponding double mutant. Based on the genetic interaction score ε, epistatic 

interactions can be broadly classified into three major classes, which we refer to as (1) 

negative epistasis, ε < 0; (2) positive epistasis, ε > 0; and (3) no epistasis, ε ≈ 0. 

An epistatic interaction is negative when the double mutant is less fit than the expectation 

based on the two single mutants (Figure 3). An extreme example of a negative genetic 

interaction is synthetic lethality, in which the combination of two mutations, each of which 

causes at most a slowing down of growth on its own, results in a fatal phenotype(Tong et al. 

2001, Novick and Botstein 1985). A positive epistatic interaction is found when a double 

mutant’s fitness is less than the expectation based on the two independent single mutants 

(Figure 2). One example is genetic suppression, which occurs when a mutation in one gene 

rescues the fitness defect associated with a mutation in another gene, such that the double 

mutant's fitness is greater than that of the worst single mutant(Baryshnikova et al. 2010). 

 
Figure 3. A graphical representation of the three main types of epistatic interactions; 
showing examples of negative epistatic interaction for genes A and B (red), positive 
epistatic interaction for genes C and D (green), and no epistatic interaction for genes E 
and B. Adapted from (Segre et al. 2005). 

 

Contribution 2: Epistasis predictions from flux balance analysis with molecular 
crowding 
Published analyses (Jacobs et al. 2017, Szappanos et al. 2011) show very low agreement 

between FBA predictions and experimental data on epistasis. In particular, Szappanos et al. 

(Szappanos et al. 2011) predicted negative and positive genetic interactions for genes in yeast 

metabolism based on FBA and MOMA. The results showed a very low agreement between 

FBA predictions and experimental data on epistasis. Only a small fraction of interacting genes 
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were recovered in silico, with recall values of 2.8% and 12.9% for negative and positive 

interactions, respectively.  

However, FBA predictions ignore important biological constraints; the most important of 

these may be macro-molecular crowding, arising through a limited solvent capacity of the cell 

and a corresponding maximal protein “budget”. Thus, we hypothesized that constraint-based 

modeling approaches that consider the enzymatic costs of metabolic pathways may be able to 

improve the prediction of epistatic interactions. We tested if FBA with molecular crowding 

(ccFBA) can significantly improve the prediction of genetic interactions in yeast in 

comparison to other constraint-based methods, in particular standard FBA and a linearized 

version of Minimization of Metabolic Adjustment (MOMA).  

FBA models with molecular crowding limit cell growth by imposing a maximal mass 

concentration of enzymes, which in turn limits the total flux through the reactions the 

enzymes catalyze. We calculated epistasis for all metabolic gene pairs in the yeast metabolic 

network (Yeast v. 7.6, https://sourceforge.net/projects/yeast (Aung et al. 2013)) at full gene 

knockouts based on the in silico biomass production rates of the single and double mutants, 

assumed to be proportional to fitness values. For this analysis, we used Cost Constrained Flux 

Balance Analysis (ccFBA) from the sybilccFBA R package (Desouki 2016), which represents 

an extension of the MOMENT model described in (Adadi et al. 2012). Our findings show that 

ccFBA was able to predict some positive epistatic interactions not detectable with other 

constraint-based methods. However, and more importantly, around two thirds of 

experimentally observed epistatic interactions are undetectable by any of the widely used 

constraint-based methods. 

Very low recall values by all tested constraint-based methods 
FBA appears to show the worst compromise between precision (fraction of predictions that 

are correct) and recall (fraction of interactions that are predicted correctly). However, 

although the recall increases when using ccFBA, there is also a rise in the number of false 

positives, especially for negative interactions. Regardless of what constraint-based method we 

used, the highest recall was 24% for negative and 30% for positive epistatic interactions, even 

with the most generous cutoffs. Accordingly, more that 70% of experimentally verified 

genetic interactions are not detectable, regardless of how many false positives we are willing 

to accept. In order to achieve 20% recall, the false positive rates are more than 10% for 

negative and 3% for positive interactions rates; due to the high number of comparisons made 

(71,994 experimentally verified genetic interactions in the dataset used here), such false 

https://sourceforge.net/projects/yeast
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positive rates are unacceptable for any practical purpose: true predictions of epistasis are 

drowned in a sea of false predictions. To achieve a recall value of around 12%, a reasonable 

false positive rate is 1% for both negative and positive interactions – but this means that 

almost 90% of interactions remain undetectable.   

It is conceivable that the failure of all tested constraint-based methods to recover a majority of 

interactions points to a general flaw in these types of metabolic models. However, we need to 

emphasize that the ccFBA model contains known enzyme turnover numbers (kcat) for only 

535 out of 4,594 protein-associated reactions, and an improved parameterization may well 

lead to a somewhat improved prediction accuracy in the future. 

Calculation of epistasis relies on quantitative estimates of mutant fitnesses for 

single and double knockouts 
Constraint-based methods show a very accurate prediction of gene essentiality (Orth et al. 

2010, O'Brien et al. 2015, Hartleb, Jarre and Lercher 2016). In contrast, as explored in the 

third contribution of this thesis (see below), quantitative predictions of non-lethal gene 

knockout fitness values correlate only weakly with experimental observations (Papp, 

Szappanos and Notebaart 2011). As genetic interactions are deduced from predictions based 

on single mutant fitness values, predictions for genetic interactions with a metabolic model 

can only be as good as the predictions for single mutant fitness. Therefore, if our models 

cannot quantify single gene knockout fitness reliably, maybe it is no surprise that they fail to 

predict epistatic interactions. When predicting synthetic lethals, i.e., gene pairs where the 

single mutants are viable while the double mutant is unviable, it is reasonable to expect that 

constraint-based methods also perform well – these models accurately predict gene 

essentiality, after all. However, all published results (Aziz et al. 2015, Harrison et al. 2007, 

Heavner and Price 2015) show very low agreement between FBA predictions and 

experimental data on synthetic lethal interactions in yeast and E. coli. In agreement with these 

earlier, small-scale analyses, we found that neither ccFBA nor any of the other tested methods 

could also predict synthetic lethality correctly. 

Contribution 3: Constraint-based methods fail to predict mutant fitness for non-

lethal gene knockouts 
As already mentioned above, FBA and related constraint-based methods have been shown to 

predict gene essentiality with high accuracy, while it is not fully clear to which extent they are 

capable of predicting mutant physiology of non-essential genes. Therefore, we systematically 

analyzed the ability of multiple constraint-based modeling methods to predict growth features 
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of S. cerevisiae and E. coli. As already hinted at by earlier work (Papp et al. 2011), we found 

that FBA and any of the alternative constraint-based methods, including ccFBA, fail to 

quantitatively predict knockout effects of non-essential genes. For a given metabolic model 

and environment, the predictions of biomass fluxes of different non-essential gene knockouts 

give a limited number of distinct values in contrast to the observations of growth rate, fitness, 

or biomass yield. Even in the best cases (dataset/model combinations), model-based 

predictions are only barely better than predictions by a trivial “prediction” model that assumes 

identical fitness of all knockouts. The models perform slightly better when attempting to 

classify non-essential gene knockouts into those with and without fitness effects. However, 

the best performing methods, linear and quadratic MOMA, still only predict between 20% 

and 40% of experimentally observed deleterious fitness effects. Even these methods never 

reach recall values above 0.5 for E. coli and 0.25 for yeast in any of the datasets tested, 

indicating that the majority of deleterious knockout effects are unpredictable by current 

constraint-based methodologies for non-essential genes. 

Why is knockout fitness prediction for non-essential genes so much harder than 

for essential genes? 
 
FBA has been shown to successfully predict gene essentiality, with reported accuracy values 

between 91% and 95% for the bacterium E. coli (Hartleb, Jarre and Lercher 2016a) and 

between 83% and 90% for different models of the yeast S. cerevisiae (Duarte, Herrgard and 

Palsson 2004, Forster et al. 2003, Kuepfer, Sauer and Blank 2005). The reason behind this 

high accuracy is likely that gene essentiality is largely a consequence of network topology 

only, and is independent of kinetic parameters and of regulatory circuits. In contrast, these 

details may strongly influence the physiological effects of non-essential gene knockouts. For 

example, consider a genome encoding two homologs of an enzyme, with different kinetics of 

the two isoforms. If only the catalytically more efficient enzyme is utilized in a given 

environment, its knockout will always reduce the growth rate, while the knockout of its 

homolog will have no effect. As FBA only sees the same stoichiometries of the reactions 

catalyzed by the homologs, it considers them as redundant and predicts that both knockouts 

have no physiological effects.  

More generally, the deletion of a non-essential gene encoding an enzyme active in the 

wildtype requires a global re-routing of reaction fluxes to re-establish a steady state. This will 

not happen “automatically”, as implicitly assumed by FBA. Rather, the knockout of a non-

essential enzyme that is active in the wildtype will result in a concentration increase of the 
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enzyme’s substrates as well as a concentration reduction of its products. These concentration 

changes will likely cascade through the system, perturbing a large number of metabolite 

concentrations. Such an avalanche of concentration changes may be sensed by regulatory 

circuits that misinterpret its details as resulting from environmental changes, leading to non-

optimal (and often even non-sensical) regulatory responses. Thus, it appears a priori likely 

that the effects of non-essential gene knockouts are much harder to predict by constraint-

based methods than those of essential gene knockouts. 

On the applicability of constraint-based model techniques on non-essential gene 

knockouts 
That all tested constraint-based methods fail when trying to predict the fitness of gene 

knockouts throws strong shadows of doubt on the applicability of such methods to all types of 

phenomena that are based on knockout analysis. In particular, calculations of epistasis are 

based on the difference between the fitness of single and double-mutant phenotypes. 

Therefore, it may not be surprising that only a small percentage of genetic interactions can be 

predicted successfully in the 2nd contribution of this thesis.  

In the 1st contribution, we analyzed how the severity of a mutation affects pleiotropy in 

genome-scale metabolic networks. As these analyses were based on optimality assumptions, 

they show how pleiotropic genes tend to be. They further show how pleiotropy would change 

with reduced gene function if optimal cellular physiology would be upheld, e.g., by allowing 

the corresponding strains to evolutionarily adapt to the changed enzyme 

expression/efficiency. Thus, these calculations – and our accompanying analysis of the role of 

currency metabolites in pleiotropy generation – certainly have theoretical merit. However, 

based on our 3rd contribution, it appears highly doubtful that these optimality-based 

predictions would apply to experimental data from enzyme knock-downs. Thus, while our 2nd 

contribution can elucidate the fundamental role and the characteristics of pleiotropy in the 

wildtype, they probably say little about pleiotropic effects of gene knock-downs or knockouts. 

However, no genome-scale experimental data of that type is currently available, and thus a 

final conclusion on whether the patterns we observe in silico are recovered at least 

qualitatively by such data is not currently possible. 

Conclusion 
In this thesis, I used various constraint-based methods for modeling genome-scale metabolism 

to assess the effects of genetic perturbations on microbial physiology, focusing on the two 

most fundamental systems-level characteristics, pleiotropy and epistasis. While the pleiotropy 
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estimates are of theoretical utility for understanding the systems-level organization of wild 

type cells, it is not clear if they can explain observations based on experimental genetic 

perturbations. In contrast, for epistasis, it is rather clear that none of the constraint-based 

models in widespread use can account for the majority of experimentally observed genetic 

interactions. 

The latter observation prompted us to examine in detail the ability of these methods to predict 

non-essential gene knockouts, with very discouraging results. Based on the observation that 

there is practically no biologically meaningful correlation between in silico predictions of 

non-essential knockout fitness and experimental observations, we have to conclude that all 

tested methods are unsuitable for the description of microbial physiology after genetic 

perturbations – except when looking at lethal phenotypes.  

In contrast, constraint-based methods such as ccFBA have been shown to predict growth rates 

of wildtype cells on a variety of carbon sources (Sanchez et al. 2017), indicating that such 

methods are capable of predicting wildtype physiology. This points to the conclusion that the 

phenotypic effects of genetic perturbations are fundamentally different from expectations for 

wildtype cells, probably because of the perturbations’ interference with regulatory systems 

that evolved in the wildtype, not the perturbed system. 
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Alleles of a gene differ in pleiotropy, 
often mediated through currency 
metabolite production, in E. coli 
and yeast metabolic simulations
Deya Alzoubi, Abdelmoneim Amer Desouki & Martin J. Lercher   

A major obstacle to the mapping of genotype-phenotype relationships is pleiotropy, the tendency 
of mutations to affect seemingly unrelated traits. Pleiotropy has major implications for evolution, 
development, ageing, and disease. Except for disease data, pleiotropy is almost exclusively estimated 
from full gene knockouts. However, most deleterious alleles segregating in natural populations do not 
fully abolish gene function, and the degree to which a polymorphism reduces protein function may 
influence the number of traits it affects. Utilizing genome-scale metabolic models for Escherichia coli 
and Saccharomyces cerevisiae, we show that most fitness-reducing full gene knockouts of metabolic 
genes in these fast-growing microbes have pleiotropic effects, i.e., they compromise the production of 
multiple biomass components. Alleles of the same metabolic enzyme-encoding gene with increasingly 
reduced enzymatic function typically affect an increasing number of biomass components. This 
increasing pleiotropy is often mediated through effects on the generation of currency metabolites 
such as ATP or NADPH. We conclude that the physiological effects observed in full gene knockouts of 
metabolic genes will in most cases not be representative for alleles with only partially reduced enzyme 
capacity or expression level.

A gene is pleiotropic if it affects more than one phenotypic trait1,2. A classic example is phenylketonuria, a human 
disease that is caused by a single gene defect but which affects multiple systems, with symptoms ranging from 
lighter skin color to mental disorders3. Pleiotropic effects can cause alleles to affect fitness differentially at different 
ages, a phenomenon believed to be a major cause of aging4–6; indeed, alleles contributing to increased longevity 
often show reduced fertility and stress tolerance7. Similar antagonistic epistasis may underlie other important 
biological phenomena such as speciation8 and cooperation9. Understanding the factors that contribute to pleiot-
ropy is of fundamental importance in genetics10–12, evolution13–16, development17,18, as well as in disease19,20 and 
ageing4. In comparison to its fundamental importance, empirical knowledge of the prevalence and especially on 
the causal mechanisms of pleiotropy is scarce2,21.

Pleiotropy may be classified according to the types of traits considered22. Molecular gene pleiotropy refers to 
the number of functions of a gene and its products, e.g., the number of reactions catalyzed by a single enzyme. 
Developmental pleiotropy describes the genetic and evolutionary interdependence of phenotypic aspects. Finally, 
selectional pleiotropy refers to the number of separate fitness components affected by mutations to a gene. In this 
study, we focus on the latter type of pleiotropy.

Experimental studies generally assess pleiotropy through the analysis of gene knockouts23–25. The degree of 
pleiotropy is then defined as the number of traits affected when a gene becomes fully non-functional. Wang et al.25  
analyzed phenotypes of large numbers of yeast, nematode, and mouse mutants. They found that pleiotropy is 
widespread: on average, yeast gene knockouts affect 8% of the examined traits; for the nematode, the correspond-
ing number is 10%, for the mouse 3% (see also24). The distributions of the degree of pleiotropy appear rather sim-
ilar across very different study systems, from the skeletal features of mice25 to metabolic systems26–28. Moreover, 
pleiotropy was found to be modular, such that sets of genes tend to affect the same sets of traits25.
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In E. coli, 36% of metabolic reactions are catalyzed by enzymes also involved in other reactions; the same is 
true for 27% of metabolic reactions in the yeast Saccharomyces cerevisiae28. Pleiotropic effects of mutations that 
affect enzyme activity can be simulated from genome-scale metabolic models using constraint-based modeling 
techniques such as flux balance analysis (FBA)29,30. The functional pleiotropy of a metabolic gene can then be 
defined as the number of biomass components whose maximal production is affected by the gene’s knockout26. 
Previous studies using this definition found that a metabolic gene’s functional pleiotropy is related to its propen-
sity to form negative epistatic interactions with other metabolic genes26,27.

While full gene knockouts are easily examined experimentally, they may not be representative of the effects 
of deleterious alleles segregating in natural populations: individual mutations may affect only a subset of all traits 
influenced by the gene31. Thus, it is important to distinguish between the pleiotropy of the gene and the pleiot-
ropy of individual mutations, especially in evolutionary and clinical contexts. For example, while 4.6% of human 
SNPs implicated in complex non-Mendelian phenotypes show pleiotropic effects, most of these do not fully abol-
ish protein function32. Experimental studies indicate that mutational pleiotropy tends to be smaller than gene 
pleiotropy31.

Genome-scale metabolic models allow us to dissect the relationship between gene and mutational pleiotropy 
in quantitative detail, without being hampered by the detection limits of experimental assays. Does the degree 
of pleiotropy depend on how severely a given allele of a metabolic gene reduces protein activity, i.e., are the same 
number of functions affected when protein function or expression is reduced only partially? How modular is 
metabolic pleiotropy? Currency metabolites, such as ATP and NADPH, are used as cofactors in many otherwise 
unrelated reactions; it thus appears highly likely that a substantial fraction of metabolic pleiotropy is due to effects 
on the production of currency metabolites. Is such an effect of currency metabolites on patterns of pleiotropy 
confirmed by simulated data?

Below, we address these questions by analyzing the metabolic networks of a representative bacterial model 
system, Escherichia coli, and a corresponding eukaryotic system, the baker’s yeast Saccharomyces cerevisiae. We 
find that most gene knockouts that impact fitness do so by affecting the production of multiple biomass compo-
nents, and that the number of affected biomass components typically increases with increasing mutation severity. 
Pleiotropy is rarely a consequence of multiple molecular gene functions, but is an emergent property of the met-
abolic network. For many genes, pleiotropy is indeed mediated through their involvement in the generation of 
currency metabolites.

Results
Estimating pleiotropy from contributions to biomass components within the wildtype flux dis-
tribution.  We first estimated wildtype flux distributions in the default growth condition for the genome-scale 
metabolic model of E. coli33 and the yeast S. cerevisiae34 (obtained from https://sourceforge.net/projects/yeast/
files/). The maximal biomass production rates were estimated using flux balance analysis (FBA)29,30. For both 
model systems, we identified the flux distribution compatible with maximal biomass production that had the 
smallest sum of absolute fluxes, a strategy often termed parsimonious FBA (pFBA), which approximates optimal 
utilization of limited cellular protein resources35.

To simulate mutations that cause different reductions of protein function or expression and correspond to 
different deleterious alleles of a metabolic gene, we restricted the maximal flux through all reactions requiring 
this gene to a fixed percentage of the estimated wildtype flux36, starting from 100% (the wildtype) down to 0% 
(a full gene knockout) in steps of 0.5%. For each flux reduction, we defined the degree of pleiotropy (referred to 
simply as “pleiotropy” below) as the number of biomass components whose production was reduced by at least 
0.01% compared to the maximal (wildtype) production. Note that with this definition, only genes with pleiotropy 
≥2 are pleiotropic, while genes with pleiotropy 0 (no affected biomass component) or pleiotropy 1 (one affected 
biomass component) are non-pleiotropic.

Flux distributions at maximal biomass production rate are usually not unique35, and so in many cases a flux 
restriction through one reaction may be compensated by a rerouting of fluxes through alternative pathways. Such 
rerouting would require the upregulation of the corresponding genes. While it has been observed experimentally 
that cells can survive many gene deletions in central metabolism without drastic changes in gene expression37, 
the necessary upregulation of protein expression will not occur spontaneously at least for some pathways38. More 
importantly, if we are interested in the de facto contribution of a given gene to the production of biomass compo-
nents, then it is of no consequence if alternative pathways could take over part of this functionality. Thus, when 
calculating the maximal (wildtype) production rate of individual biomass components as well as when simulat-
ing the effects of mutations to a given metabolic gene, we did not allow the redistribution of fluxes to alternative 
pathways: we allowed only decreases, not increases, of the absolute value of any flux compared to the wildtype flux 
distribution obtained with pFBA.

Note that experimental studies often employ a pragmatic working definition of pleiotropy that lies somewhere 
between the definitions of pleiotropy proposed here based on the wild type flux distribution on the one hand 
and a quantitative measure of essentiality based on an analogous calculation that allows the free redistribution 
of fluxes. In these studies, pleiotropy is typically estimated as the number of traits with observable phenotypic 
changes after the gene knockout, but before allowing the strain to adapt to its new genotype. In this case, some 
fluxes may be rerouted due to enzymes and transporters that are expressed either spuriously or because of other 
roles they play in wildtype physiology, while other fluxes that require the upregulation of the corresponding 
enzymes and transporters will not yet be active. Thus, our definition of pleiotropy describes a “worst case sce-
nario”, providing an upper limit on experimentally measured pleiotropy.

Many genes affect the production of multiple biomass components.  Pleiotropy varies widely 
between different genes. Mutations to the majority of genes affect no biomass components in the minimal growth 
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medium assayed, independent of mutation severity (E. coli: 1,067 genes or 78.1%; S. cerevisiae: 687 genes or 
75.6%). Among genes contributing to biomass production—and thus fitness—in the wildtype, non-pleiotropic 
cases are rare: in E. coli, only 54 full-gene knockouts (out of 299 knockouts with fitness contributions, 18.1%) 
affect exactly one biomass component, while the same is true for only 12 knockouts (out of 222 knockouts with 
fitness contributions, 5.4%) in S. cerevisiae. Conversely, knockouts of 32 genes in E. coli (10.7% of knockouts 
with fitness contributions) and 40 genes in S. cerevisiae (18.1% of knockouts with fitness contributions) affect the 
production of all biomass components. Many of the remaining genes show low degrees of pleiotropy, affecting 
the production of only a few biomass components; on average, full gene knockouts of fitness-relevant genes affect 
the production of 20% of biomass components in E. coli and 34% of biomass components in S. cerevisiae (Fig. 1, 
Table 1).

These percentages reflect functional pleiotropy, the de facto contribution of gene products to biomass com-
ponent production. If, instead, we are interested in the phenotypic effects of gene knockouts after allowing the 
mutant strain to adapt its physiology to its altered gene content, we must allow free redistributions of fluxes after 
the gene knockouts. Corresponding simulations show that after adaptation, genes with fitness contributions are, 
on average, essential for the production of 9.2% of E. coli biomass components and of 26.6% of S. cerevisiae bio-
mass components (Table 1, Supplementary Figure S1). The degree of gene pleiotropy for yeast is substantially 
higher than previous experimental estimates, which are around 2 (corresponding to 2–11% of considered traits 
depending on the types of traits analyzed)25; however, experimental estimates of gene pleiotropy tend be down-
wardly biased due to experimental detection limits2,22.

Pleiotropy is an emergent property of the metabolic network.  Pleiotropy can be classified by its 
origin into type I pleiotropy, caused by multiple molecular functions of a gene product, and type II pleiotropy, 
caused by multiple physiological consequences of a single molecular function2. Similar distinctions have been 

Figure 1.  Most complete gene knockouts of fitness-relevant genes have pleiotropic effects, i.e., they affect the 
production of multiple biomass components. For some genes, pleiotropy is reduced when NADPH is made 
freely available (cyan bars). For other freely available currency metabolites, see Supplementary Figure S2.

E. colic S. cerevisiaec

Number of biomass components 50 35

Standard model
Pleiotropya 10.0 (3) 12.1 (5)

Essentialitya 4.6 (2) 9.3 (2)

Free NADPHb
Pleiotropya 9.9 (3) 11.1 (4.5)

Essentialitya 4.3 (2) 8.0 (1)

Table 1.  Average number of biomass components whose production is affected by a full gene knockout. aIn the 
FBA calculations, fluxes are either constrained to not exceed the wildtype (WT) fluxes to estimate the de facto 
contribution of gene products to biomass production (Pleiotropy), or they are allowed to vary freely to assess 
the number of biomass components for which gene products are essential even after allowing the mutant strain 
to adapt (Essentiality). bSolution when allowing unlimited conversion of NADPH to NADP+ cMean (median) 
number of affected biomass components.
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made previously using the terms “horizontal” vs. “vertical”10 and “mosaic” vs. “relational”39 pleiotropy. Our model 
allows us to quantify the relative contributions of these two pleiotropy types. 41.7% of E.coli genes and 40.5% of 
yeast genes in our metabolic models catalyze multiple reactions. To what extent does this functional diversity 
cause functional pleiotropy as measured in the number of biomass components affected by a gene knockout? To 
answer this question, we compared the gene pleiotropy (Fig. 1) to the pleiotropy of individual reactions catalyzed 
by the gene product. For example, fully abolishing all functions of the purB (b1131) gene, whose gene product 
catalyzes two distinct biochemical reactions, reduced the production of 18 biomass components. In contrast, 
blocking only one of the catalyzed reactions results in a pleiotropy estimate of 16, while blocking only the other 
reaction results in a pleiotropy of 10. Thus, the pleiotropy of the b1131 gene is largely of type II, and is only in 
small part due to its multiple molecular functions.

This pattern is typical: the maximal pleiotropy arising from blocking only a single out of several reactions 
catalyzed by the same protein accounts for over 97% of the gene pleiotropy (E. coli 97.4%, yeast 97.6%). These 
numbers drop only marginally when we consider only gene products that are essential for multiple reactions, to 
92.2% in E. coli and to 94.5% in yeast (Supplementary Figure S3). We conclude that the vast majority of metabolic 
epistasis is of type II, i.e., is an emergent property of the metabolic network rather than a consequence of multiple 
molecular functions. This finding is consistent with the previous observation that the degree of pleiotropy in yeast 
is not significantly correlated with the number of molecular gene functions40.

Metabolic networks show significant but low modularity.  The relationship between genes and bio-
mass components (traits) can be represented as a bipartite graph, with links connecting genes with affected bio-
mass components. Modules are defined as sets of genes and traits with significantly more within-module than 
between-module links25. A high degree of modularity thus indicates that pleiotropic genes tend to affect groups 
of related traits (e.g., chemically related biomass components) rather than random sets of traits. Supplementary 
Figure S4 shows heatmaps that illustrate the modularity of both metabolic pleiotropy networks. To quantitatively 
assess the modularity, we used the LP&BRIM algorithm41, resulting in raw modularities of Q = 0.235 for E. coli 
and Q = 0.197 for S. cerevisiae. Both networks show highly statistically significant modularity: in each case, the 
modularity of 10,000 randomly rewired networks was always lower than observed for the real pleiotropy network 
(i.e., P < 0.0001; Supplementary Figure S5).

Following ref.25, we then defined a z-score for modularity (or “scaled modularity”)42 as the difference between 
the observed modularity and the mean modularity of randomly rewired networks, measured in number of stand-
ard deviations. The E. coli pleiotropy network exhibits a scaled modularity of 9.1, while the S. cerevisiae network 
has a scaled modularity of 4.9, i.e., the modularity of metabolic pleiotropy is about 9 and 5 standard deviations 
higher than for corresponding random gene-trait networks. These values are surprisingly low: for five different 
experimental study systems and trait definitions, Wang et al. found a median scaled modularity of 37 (range 
34–238). Thus, metabolic pleiotropy networks are less modular than other pleiotropy networks, suggesting that 
the underlying metabolic network shows more interconnections between the pathways producing different sets 
of biomass components than the genetic networks underlying other types of traits. Our findings on modularity 
may be related to the role of currency metabolites, which crosslink the diverse metabolic pathways (see below).

Pleiotropy typically increases with increasing mutation severity.  We next examined the pleiotropy 
of alleles with small-effect mutations, i.e., mutations that reduce enzyme capacity without fully abolishing enzyme 
function. About 20% of E. coli genes with fitness contributions have constant pleiotropy: small-effect mutations 
of these genes affect the same number of biomass components as full gene knockouts. In comparison, only 7.7% 
of yeast genes contributing to fitness exhibit constant pleiotropy.

All other genes contributing to fitness affect an increasing number of biomass components for increasingly 
deleterious alleles. Figure 2 shows this stepwise increase in pleiotropy for the example of Lipoamide dehydrogenase 
(gene names: E. coli b0116, S. cerevisiae YFL018C; for additional examples, see Supplementary Figure S6. In both 
organisms, pleiotropy typically increases in about a dozen steps from weakly to strongly deleterious alleles (Fig. 3; 
mean number of steps: E. coli 11.6, S. cerevisiae 12.6).

The pleiotropy of the full gene knockout constitutes an upper limit to the number of stepwise increases in 
pleiotropy. If there was otherwise no systematic relationship between maximal pleiotropy and the number of 
steps, we would expect the numbers of steps to be uniformly distributed between zero and the pleiotropy of 
the full knockout. However, the correlation between the number of steps and pleiotropy at full knockout was 
much stronger than expected from such a relationship (Supplementary Figure S7, Spearman’s ρ = 0.926 (E. coli) 
and ρ = 0.986 (S. cerevisiae), P < 10−6 in each case from randomizations; see Methods). Thus, genes whose full 
knockout showed higher metabolic pleiotropy also showed more stepwise increases in pleiotropy for increasingly 
debilitating mutations.

All genes whose mutations affect the production of at least one biomass component must also affect the overall 
production of biomass (i.e., in the common interpretation of FBA, fitness). The reverse is not true: a mutation to 
a gene may affect the maximal production of biomass, but not the production of any individual biomass compo-
nent. This is a consequence of the algorithm employed to estimate production capabilities for individual biomass 
components. If we maximize the production of a single compound, then pathways usually concerned with the 
production of other biomass components can be diverted to the production of this compound. While we find 
no such genes for S. cerevisiae, this is indeed the case for 3 essential E. coli genes, which encode transporters for 
acetate (b4067), magnesium/nickel/cobalt (b3816), and calcium/sodium (b3196, an antiporter).

The pleiotropy of most genes is mediated by currency metabolites.  We can conceptually parti-
tion internal metabolites into currency metabolites—those involved in many reactions, e.g., to provide energy or 
redox equivalents43—and primary metabolites. A deleterious allele may affect the production of a given biomass 
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component because the mutated gene catalyzes a reaction in a pathway of primary metabolites that directly leads 
to the component’s production. Conversely, a deleterious allele may affect not the primary metabolites, but the 
currency metabolites utilized in the component’s production. A list of 14 currency metabolites was obtained from 
ref.43. Excluding exchange reactions, 753 out of a total of 2,251 reactions (33.5%) in E. coli and 310 out of 3,324 
reactions (9.3%) in S. cerevisiae involved at least one of these metabolites.

A substantial fraction of pleiotropy is indeed associated with the generation of currency metabolites: 87.4% of 
previously pleiotropic genes show reduced pleiotropy when we make metabolites such as ATP, UTP, or NADPH 
freely available in yeast (Fig. 4). The free availability of ATP alone reduces the degree of pleiotropy of over half 

Figure 2.  Pleiotropy for the Lipoamide dehydrogenase gene increases for increasingly deleterious alleles. 
Pleiotropy is reduced when NADPH is made freely available (cyan curves). For additional examples, see 
Supplementary Figure S6.

Figure 3.  For the majority of genes contributing to biomass production, pleiotropy increases for increasingly 
deleterious alleles in multiple steps. Histograms for the number of pleiotropy steps in E. coli and the yeast S. 
cerevisiae. Cyan bars reflect the reduced numbers of pleiotropy increases when making NADPH freely available.
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of pleiotropic yeast genes. The influence of currency metabolite production on pleiotropy is weaker, yet still sub-
stantial in E. coli: here, 55.3% of pleiotropic genes are affected, with NADH making the biggest contribution (over 
40%) (Fig. 4).

Involvement in currency metabolite production is an important determinant of the number of biomass com-
ponents for which a gene knockout is essential even after allowing the mutant strain to adapt its protein expres-
sion to the altered gene content of its genome. This contribution is particularly striking in yeast: for over half of 
the tested currency metabolites, free availability reduces the number of biomass components for which a gene is 
essential for almost half of the genes (Supplementary Figure S8).

Discussion
Using constraint-based simulations of the metabolic models for E. coli and the yeast S. cerevisiae, we have char-
acterized the distributions of pleiotropy. Consistent with earlier computational26–28 and experimental23–25 studies, 
we found that the knockout of a majority of genes that contribute to fitness has pleiotropic effects. The vast major-
ity of this gene pleiotropy is not caused by multiple molecular functions of the gene product (type I), but is an 
emergent property of the metabolic network (type II). Pleiotropy is modular, but to a lower degree than estimated 
experimentally for non-metabolic systems25.

For most pleiotropic genes, pleiotropy increases strongly for alleles with increasingly debilitating effects. Thus, 
standard measures of pleiotropy based on gene knockout studies are more likely to reflect the maximal degree 
of mutational pleiotropy of a given gene2,31. Alleles that only knock down protein activity (by reducing enzyme/
transporter function or expression level) often affect only a subset of phenotypic traits, with additional traits 
affected progressively as alleles become more deleterious. Thus, the physiological effect of the full gene knock-
out will in most cases not be representative for the effects of deleterious alleles that retain some level of enzyme 
function. This type of effect is also evident from individual medical observations of pleiotropy. For example, some 
small-effect mutations affecting human SOX9 expression lead to minor skeletal malformations, while the conse-
quences of large-effect mutations can include sex reversals44.

How can we understand the dependence of pleiotropy on the degree to which an allele reduces protein activ-
ity? For increasingly deleterious alleles, more and more metabolic resources must be channeled into the com-
pensation of the compromised pathway; as a consequence of this increasing drain of resources, more and more 
other pathways are affected. Not surprisingly27, we found that the pleiotropy of many genes is mediated through 
the generation of currency metabolites such as ATP, NADPH, or FADH2. This is true for more than half of the 
pleiotropic genes in E. coli, and for 87% of pleiotropic genes in yeast.

While the overall patterns of pleiotropy appear qualitatively similar between E. coli and yeast, we found a 
number of quantitative differences. Compared to E. coli genes, yeast genes (i) showed generally higher pleiotropy 
and were rarely of pleiotropy 1; (ii) were less likely to have constant pleiotropy; and (iii) were more likely to show 

Figure 4.  Many genes show reduced pleiotropy when currency metabolites are made freely available. The 
bar chart shows the percentage of previously pleiotropic genes with reduced pleiotropy in response to the 
free availability of different currency metabolites. Abbreviations: Adenosine triphosphate (ATP); Cytidine 
triphosphate (CTP); Guanosine triphosphate (GTP); Uridine triphosphate (UTP); Inosine triphosphate (ITP); 
Nicotinamide adenine dinucleotide (NADH); Nicotinamide adenine dinucleotide phosphate (NADPH); Flavin 
adenine dinucleotide reduced (FADH2); Reduced flavin mononucleotide (FMNH2); Ubiquinol-8 (Q8H2); 
Menaquinol 8 (MQL8); 2-Demethylmenaquinol 8 (DMMQL8); Acetyl-CoA (ACCOA); L-Glutamate (GLU).
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reduced pleiotropy when supplied with currency metabolites. Moreover, (iv) the yeast pleiotropy network exhib-
ited lower modularity. In part, these differences may be related to network size. The E. coli metabolic network 
encompasses substantially more genes overall than the yeast network. However, we constrained network usage 
to reactions active in the wildtype. In contrast to total network sizes, the active metabolic network of yeast (755 
reactions and 184 metabolites) is substantially larger than the active metabolic network of E. coli (462 reactions 
and 103 metabolites); this difference is consistent with the notion that yeast metabolism is more complex, yet less 
flexible than E. coli metabolism. While the average number of reactions per metabolite is similar between E. coli 
(4.49) and yeast (4.10), the lower yeast modularity indicates that reactions more often connect otherwise distant 
network parts. A role of currency metabolites in such connecting reactions would be consistent with the larger 
effect of currency metabolite supply on pleiotropy in yeast. In sum, the higher interconnectedness of the yeast 
pleiotropic network, combined with the larger active metabolic network size, appears to provide more potential 
for pleiotropic effects.

Pleiotropy is a complex phenomenon: it is not constant, but varies between different alleles of the same gene, 
and its causes are often indirect. Thus, experimental as well as computational analyses of pleiotropy should move 
away from focusing on full gene knockouts, and instead consider explicitly the degree to which mutations reduce 
protein activity. The necessity of a corresponding nuanced view of pleiotropy may be particularly evident in 
studies of medically relevant mutations, where full knockouts are often lethal, while small-effect mutations may 
segregate at appreciable frequencies in the human population45.

Materials and Methods
Metabolic models.  To simulate Escherichia coli metabolism, we used the metabolic reconstruction 
iJO136633, encompassing 1,366 metabolic genes associated with 2,251 reactions. For the yeast S. cerevisiae, we 
used the yeast7.6 model (https://sourceforge.net/projects/yeast)34, accounting for 909 metabolic genes associated 
with 3,324 reactions. The published models were used without any modifications. The E. coli model contains a 
growth-independent maintenance energy consumption term (the ATPM reaction), which enforcies a minimal 
ATPase activity of 3.15 mmol/gDW/h. We utilized the default biomass reactions for E. coli (Ec_biomass_iJO1366_
core_53p95M), which comprises 50 essential biomass components (Supplementary Table S1), considering only 
“substrates” of the biomass reactions and excluding inorganic ions and H2O. For S. cerevisiae, we used the “yeast 
5 biomass pseudoreaction”, which comprises 35 essential biomass components (Supplementary Table S2), again 
considering only “substrates” and excluding inorganic ions and H2O.

Flux distribution constraints derived from wildtype simulations.  In order to approximate the de 
facto contribution of individual metabolic proteins to the production of individual biomass components in vivo, 
we should only consider flux distributions that are naturally active during growth (biomass production) in the 
nutritional environment studied, and fluxes should not exceed these wildtype fluxes. We thus first estimate the 
wildtype flux distribution vWT, by running a flux balance analysis (FBA) with the biomass reaction as the objective 
function, followed by a minimization of the sum of absolute fluxes at the previously determined maximal biomass 
production rate (parsimonious FBA35).

When simulating the production of individual biomass components, we constrained all fluxes vi to values 
between zero and the wildtype flux vi

WT for this reaction, i.e.,

≤ ≤ ≥

≥ ≥ <

v v v

v v v

0 for 0

0 for 0 (1)
i i i

i i i

WT WT

WT WT

Estimating pleiotropy.  For each essential biomass component (Supplementary Tables S1 and S2, respec-
tively), we added a new exchange reaction representing its secretion46. As some biomass components may be 
coupled through the biomass reaction, we allowed the free excretion of all other biomass components when 
maximizing the production of one selected biomass component (i.e., vj ≥ 0 for all added exchange reactions j).

We then calculated the maximum production of each biomass component by maximizing its exchange reac-
tion flux while enforcing the wildtype flux distribution constraints (Eq. 1). For each metabolic gene, we compared 
this unperturbed maximal production with the maximal production rate of alleles with increasingly reduced pro-
tein activity, simulated by restricting the flux through all reactions catalyzed by the gene to a fixed fraction of the 
wildtype flux36, which we reduced from 100% to 0% in steps of 0.5%. The flux through a specific reaction was con-
strained in this way only if the gene-protein-reaction (GPR) mapping contained the affected gene either alone or 
only in an “AND” relationship (i.e., as an essential part of a protein complex); if the GPR listed the affected gene in 
an “OR” relationship (i.e., as one of multiple isoenzymes or alternative transporters), the reaction was not affected.

We defined pleiotropy as the number of biomass components whose maximal production was reduced by at 
least 0.01% compared to the unperturbed state (WT) for the allele considered26. Thus, an allele not involved in the 
maximal production of any essential biomass component is considered to have pleiotropy 0; an allele that affects 
the production of exactly one essential biomass component has pleiotropy 1.

Our estimate of pleiotropy reflects the actual contribution of a gene product to biomass formation, based on 
estimated enzyme and transporter activities in the wildtype. If instead, one is interested in a quantitative measure 
of essentiality, defined as the number of biomass components affected by a deleterious allele after the mutant 
strain has been allowed to adapt its physiology to the gene deletion, a different algorithm is more appropriate. In 
this case, one needs to allow the free redistribution of fluxes after the simulated activity reduction of the protein 
encoded by the gene in question.
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Statistical test for the relationship between pleiotropy at full gene knockout and number of 
steps.  The full knockout (maximal) pleiotropy sets an upper limit to the possible number of pleiotropy steps at 
decreasing enzyme activity. The null hypothesis is that the number of steps is uniformly distributed between zero 
and maximal pleiotropy; i.e., the null hypothesis assumes that apart from the upper limit, there is no systematic 
relationship between maximal pleiotropy and number of steps. We tested this through a randomization protocol, 
where we constructed 106 datasets with the same maximal pleiotropies, but with step numbers drawn from the 
corresponding uniform distributions. All random datasets for both the E. coli and the yeast data had Spearman 
rank correlation coefficients between pleiotropy at full knockout and number of steps that were lower than the 
observed correlation coefficients. Thus, the empirical P-value was <10−6 for both data sets.

Currency metabolites.  In additional analyses, we made several cofactors freely available to study how plei-
otropy is associated with the generation of currency metabolites. We did this by adding a balanced biochemical 
reaction that interconverts the activated and inactivated versions of the cofactor and allowing unlimited flux 
of this reaction in both directions. For example, to simulate free NADPH, we added the following reversible 
reaction:

+ ++ + −
NADPH NADP H 2e

A list of currency metabolites was obtained from ref.43. Supplementary Table S3 lists the currency metabolites 
and the corresponding exchange reactions as well as the number of reactions utilizing each currency metabolite.

Software used.  All simulations were performed in R47 using sybil, a computer library optimized for efficient 
constraint-based modeling of metabolic networks48. We used IBM ILOG CPLEX as the linear solver, connected 
to sybil via the cplexAPI R package.

To calculate network modularities, we used the LP&BRIM algorithm (Label Propagation with Bipartite 
Recursively Induced Modules) implemented in Matlab49.

Data Availability
All input files, R scripts, and raw data used to generate the results and figures can be found on github at https://
github.com/deyazoubi/pleiotropy-.git. An overview over the individual files is given in the Readme file.
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Supplementary Figures 

Figure S1: Distribution of the number of biomass components for which genes are essential even after 
allowing the mutant strain to adapt its protein expression (excluding genes with no effect on biomass 
production). The number of biomass components for which a given gene is essential is often reduced 
when NADPH is made freely available (cyan bars).  
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Figure S2. Distribution of pleiotropy for full gene knockouts. Pleiotropy is reduced for many E. coli and 
S. cerevisiae genes when different currency metabolites (one per panel) are made freely available.  
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Figure S3. Comparison of gene pleiotropy (the number of biomass components affected by a full gene 
knockout) to the maximal pleiotropy observed when blocking the individual reactions for which this gene 
is essential. (A) E. coli, all genes; (B) E. coli, only genes essential for ≥2 reactions; (C) S. cerevisiae, all 
genes; (D) S. cerevisiae, only genes essential for ≥2 reactions. Dot size and color indicates the number 
of genes represented by each dot. 
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Figure S4. Graphical representation of the modularity of the bipartite pleiotropy networks for E. coli  and 
S. cerevisiae. The figures show heatmaps produced with the R function of the same name, which order 
biomass components (columns) and genes (rows) through hierarchical clustering. Dark blue means that 
the biomass component’s production is decreased through a knockout of the gene, light blue means it 
is not. Modularity shows up as blocks of dark blue, where several rows of gene affect the same 
neighbouring columns of traits. 
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Figure S5. Observed modularity Q (as calculated with LP&BRIM, blue arrow) compared to the 
distribution of modularities obtained for pleiotropy networks with randomized links between genes and 
biomass components (red). 
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Figure S6. The pleiotropy of genes contributing to biomass production typically increases for 
increasingly debilitating mutations. Shown are curves for one randomly chosen gene for each value of 
the number of pleiotropy increases (steps).  
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Figure S7. The number of step-wise increases in pleiotropy for increasingly debilitating mutations and 
the pleiotropy at full gene knockout are strongly correlated (Spearman’s rank correlation when 
considering only genes contributing to biomass production, wildtype: ρ=0.926 (E. coli) and ρ=0.986 (S. 
cerevisiae); when making NADPH freely available: ρ=0.922 (E. coli) and ρ=0.986 (S. cerevisiae)). The 
diameter of each point is proportional to the number of genes with this combination of pleiotropy and 
step number. 
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Figure S8. Percentage of genes for which free availability of a given currency metabolite reduces the 
number of biomass components for which this gene is essential even after allowing the mutant strain to 
adapt its protein expression to the altered gene content of its genome. Abbreviations: Adenosine 
triphosphate (ATP); Cytidine triphosphate (CTP); Guanosine triphosphate (GTP); Uridine triphosphate 
(UTP); Inosine triphosphate (ITP); Nicotinamide adenine dinucleotide (NADH); Nicotinamide adenine 
dinucleotide phosphate (NADPH); Flavin adenine dinucleotide reduced (FADH2); Reduced flavin 
mononucleotide (FMNH2); Ubiquinol-8 (Q8H2); Menaquinol 8 (MQL8); 2-Demethylmenaquinol 8 
(DMMQL8); Acetyl-CoA (ACCOA); L-Glutamate (GLU). 
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Supplementary Tables 

Table S1. Essential Biomass components in E. coli (excluding inorganic ions, H2O, and products of the 
biomass reaction)  

Components 
ala_DASH_L[c] gtp[c] 
arg_DASH_L[c] utp[c] 
asn_DASH_L[c] murein5px4p[p] 
asp_DASH_L[c] kdo2lipid4[e] 
cys_DASH_L[c] pe160[c] 
gln_DASH_L[c] pe160[p] 
glu_DASH_L[c] pe161[c] 

gly[c] pe161[p] 
his_DASH_L[c] 10fthf[c] 
ile_DASH_L[c] 2ohph[c] 
leu_DASH_L[c] amet[c] 
lys_DASH_L[c] btn[c] 
met_DASH_L[c] coa[c] 
phe_DASH_L[c] fad[c] 
pro_DASH_L[c] mlthf[c] 
ser_DASH_L[c] nad[c] 
thr_DASH_L[c] nadp[c] 
trp_DASH_L[c] pheme[c] 
tyr_DASH_L[c] pydx5p[c] 
val_DASH_L[c] ribflv[c] 

datp[c] sheme[c] 
dctp[c] thf[c] 
dgtp[c] thmpp[c] 
dttp[c] udcpdp[c] 
ctp[c] atp[c] 
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Table S2. Essential Biomass components in S. cerevisiae (excluding inorganic ions, H2O, and products 
of the biomass reaction)  

Components 
ATP [cytoplasm] L-proline [cytoplasm] 

(1->3)-beta-D-glucan 
[ t l ] 

L-phenylalanine [cytoplasm] 
lipid [cytoplasm] L-tyrosine [cytoplasm] 

mannan [cytoplasm] L-histidine [cytoplasm] 
glycogen [cytoplasm] UMP [cytoplasm] 
L-alanine [cytoplasm] AMP [cytoplasm] 
L-glycine [cytoplasm] GMP [cytoplasm] 

L-glutamate [cytoplasm] CMP [cytoplasm] 
L-glutamine [cytoplasm] L-methionine [cytoplasm] 

L-valine [cytoplasm] L-cysteine [cytoplasm] 
L-serine [cytoplasm] L-tryptophan [cytoplasm] 
L-leucine [cytoplasm] trehalose [cytoplasm] 
L-lysine [cytoplasm] dAMP [cytoplasm] 

L-threonine [cytoplasm] dTMP [cytoplasm] 
L-asparagine [cytoplasm] dCMP [cytoplasm] 
L-aspartate [cytoplasm] dGMP [cytoplasm] 
L-isoleucine [cytoplasm] riboflavin [cytoplasm] 
L-arginine [cytoplasm] 
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Table S3. Currency metabolites and the corresponding supply reactions 
Name Abbrev. Chemical equation E. coli model equation #Reactions 

in E. coli S. cerevisiae model equation #Reactions in 
S. cerevisiae 

Adenosine triphosphate  ATP ATP + H2O --> ADP + H(+) + Phosphate atp[c] + h2o[c] --> adp[c] + h(+)[c] + pi[c] 359 0434  +0803 --> 0394 + 0794 + 1322 158 

Cytidine triphosphate  CTP CTP + H2O --> CDP + H(+) + Phosphate ctp[c] + h2o[c] --> cdp[c] + h(+)[c] + pi[c] 18 0539 +0803 --> 0467 + 0794 + 1322 13 

Guanosine triphosphate  GTP GTP + H2O --> GDP + H(+) + Phosphate gtp[c] + h2o[c] --> gdp[c] + h(+)[c] + pi[c] 25 0785 + 0803 --> 0739 +0794 + 1322 13 

Uridine triphosphate  UTP UTP + H2O --> UDP + H(+) + Phosphate utp[c] + h2o[c] --> udp[c] + h(+)[c] + pi[c] 8 1559 + 0803 --> 1538 + 0794 + 1322 11 

Inosine triphosphate  ITP ITP + H2O --> IDP + H(+) + Phosphate itp[c] + h2o[c] --> idp[c] + h(+)[c] + pi[c] 4 0950 + 0803 --> 0846 + 0794 + 1322 3 

Nicotinamide adenine dinucleotide  NADH Nicotinamide adenine dinucleotide - reduced  
--> H(+) + Nicotinamide adenine dinucleotide nadh[c] --> h(+)[c] + nad[c] 119 1203 --> 0794 + 1198 36 

Nicotinamide adenine dinucleotide phosphate  NADPH Nicotinamide adenine dinucleotide phosphate – reduced 
 --> H(+) + Nicotinamide adenine dinucleotide phosphate nadph[c] --> h(+)[c] + nadp[c] 97 1212 --> 0794 + 1207 58 

Flavin adenine dinucleotide reduced  FADH2 Flavin adenine dinucleotide reduced  
--> 2 H(+) + Flavin adenine dinucleotide oxidized fadh2[c] --> 2 h(+)[c] +fad[c] 25 0689 --> 2 (0794) + 0687 2 

Reduced flavin mononucleotide  FMNH2 Reduced FMN --> 2 H(+) + FMN fmnh2[c] --> 2 h(+)[c] + fmn[c] 13 0717 --> 2 (0794) + 0714 3 

Ubiquinol-8  Q8H2 Ubiquinol-8 --> 2 H(+) + Ubiquinone-8 q8h2[c] --> 2 h(+)[c] + q8[c] 24 NA NA 

Menaquinol 8  MQL8 Menaquinol 8 --> 2 H(+) + Menaquinone 8 mql8[c] --> 2 h(+)[c] + mqn8[c] 25 NA NA 

2-Demethylmenaquinol 8  DMMQL8 2-Demethylmenaquinol 8  
--> 2 H(+) + 2-Demethylmenaquinone 8 2dmmql8[c] --> 2 h(+)[c] +  2dmmq8[c] 14 NA NA 

Acetyl-CoA  ACCOA H2O + Acetyl-CoA --> H(+) + Acetate + Coenzyme A h2o[c] + accoa[c] --> h(+)[c] + ac[c] + coa[c] 37 0803 + 0373 --> 0794 + 0362 + 0529 44 

L-Glutamate  GLU L-Glutamate + H2O --> 2-Oxoglutarate + Ammonium + 2 H(+) glu_dash_l[c] + h2o[c] --> akg[c] +nh4[c] + 2h(+)[c] 49 0991 + 0803 --> 0180 + 0419 +  2 (0794) 44 

13 
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Abstract 

The computational prediction of double gene knockout effects by flux balance 

analysis (FBA) has been used widely to characterize genome-wide patterns of 

epistasis in microorganisms. However, is it unclear how in silico epistasis predictions 

are related to in vivo epistasis, as FBA was unable to predict the vast majority of 

observed genetic interactions in a high-throughput experiment that generated double 

knockouts of non-essential metabolic genes in yeast. It has been proposed that FBA 

predictions, which are based purely on metabolic network stoichiometry and on the 

assumption of maximal biomass yield, can be improved by incorporating approximate 

enzyme kinetics and a constraint on macromolecular crowding. Here, we test if FBA 

with molecular crowding (ccFBA) can predict previously unexplained epistatic 

interactions in yeast. We find that while FBA with molecular crowding predicts some 

positive epistatic interactions not detectable with alternative constraint-based 

methods, more than 70% of epistatic interactions are undetectable by any of the 

widely used constraint-based methods.   
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Introduction 

Epistasis measures the extent to which the consequences of a mutation in one gene depend 

on mutations in another gene1. Epistasis is said to be negative (aggravating) if the double 

mutant has lower fitness than expected, i.e., if its fitness is lower than the product of the 

single-mutant fitnesses; epistasis is called positive (alleviating) if the double mutant has 

higher fitness. Understanding the distribution of epistasis is fundamental to our 

understanding of gene function and interaction2-4. Epistasis is important for a wide range of 

theoretical issues in biology, including the evolution of sex5,6, speciation7, ploidy8, mutation 

load9, and genetic buffering10; epistasis is also fundamental to our understanding of as 

human disease11,12 and drug resistance13. 

Epistasis can be assayed experimentally through the analyis of double gene knockouts14-23. 

However, such experiments are technically demanding, and the number of possible 

interactions grows quadratically with genome size. An attractive alternative to the generation 

of experimental knockouts for all possible gene combinations is the in silico prediction of 

double gene knockout effects.  One approach towards the computational prediction of 

epistasis uses machine learning based on various experimentally observed gene and gene 

pair properties; Table 1 of Ref.24 provides on overview over such predictions.  

Here, we will focus instead on prediction methods based on in silico models of gene function, 

which are inherently more suited to generate increased biological understanding. Epistasis is 

a property of functional links between genes, not of individual genes. Thus, large-scale 

predictions of epistasis from first principles are only possible with computational models that 

account for functional connections between gene products. The best-studied complex 

biological system is metabolism. Excellent representations of metabolic networks have been 

compiled for several unicellular organisms such as E. coli25 and the baker’s yeast 

Saccharomyces cerevisiae26. So far, all attempts at genome-scale in silico epistasis 

prediction27-34 have used flux balance analysis (FBA), which maximizes the yield of biomass 

production in the wild-type and in the mutants35,36, or a variant of FBA that attempts to 

minimize the difference between wild-type and knockout distributions of metabolic reaction 

rates (minimization of metabolic adjustment, MOMA37).  

Several studies used these simulation methods to perform large-scale characterizations of 

epistasis in silico. Segrè et al. first used FBA to study the spectrum of epistatic interactions 

between metabolic genes in S. cerevisiae27. These authors introduced a new concept of 

epistasis between functional modules rather than between individual genes, intended to 

describe functional relationships among metabolic pathways. They found that modules 

interact with each other 'monochromatically', i.e., epistatic interactions between two specific 

modules are either largely positive or largely negative27. Examining the metabolic networks of 
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E. coli and S. cerevisiae, He et al.28 found negative epistatic interactions largely among 

nonessential reactions with overlapping functions; in contrast, positive interactions were 

found predominantly between reactions without overlapping functions, and these were 

frequently essential28. 

Snitkin et al.29 studied epistatic interactions between yeast gene deletions based on their 

influence on the reaction rates of individual enzymatic reactions. They found that gene pairs 

interact incoherently relative to different phenotypes, and that genes involved in many 

genetic interactions across multiple phenotypes tend to be highly expressed, to evolve 

slowly, and to be associated with human diseases29.  

Xu et al.30 compared epistatic interactions for different alleles of the same gene; alleles of 

different enzymatic activities were simulated by reducing the admissible flux (reaction rate) 

relative to the wild-type by a given percentage. They found that different alleles of the same 

gene typically interact with very different gene sets in silico; they argued that the distribution 

of the sign of epistasis in their simulations can speed up the purging of deleterious mutations 

in eukaryotes30.  

Finally, Barker et al.31 studied epistatic relationships between genes under various 

environments, finding that epistatic interactions can differ substantially between growth 

conditions and that the epistasis network structure differs fundamentally between condition-

independent (stable) and condition-dependent interactions31. 

While these in silico analyses of epistatic landscapes purport to fundamentally advance our 

understanding of epistasis in nature, it is not clear that in silico and in vivo epistasis are 

correlated sufficiently on the genome-scale to allow such conclusions. Several experimental 

platforms for the high-throughput detection of epistasis have been developed, among them 

synthetic genetic arrays (SGA)15,23 , diploid-based synthetic lethality analyses with 

microarrays16,19, synthetic dosage-suppression and lethality screens14,17,18, and epistatic 

miniarray profiles20-22. The most comprehensive estimates of epistasis are available for the 

baker’s yeast Saccharomyces cerevisiae23,33, obtained through SGA.  

Synthetic lethality – an extreme case of epistasis – was successfully predicted for some 

genes using FBA already in 2007; however, these authors could correctly predict only 7 out 

of 29 previously described synthetic lethals, corresponding to a recall of only 24%32. Two 

further studies in 2015 compared FBA predictions of synthetic lethality to experimental 

observations in yeast38 and E. coli39, confirming that only a minority of observed synthetic 

lethal interactions can be predicted successfully. 

Szappanos et al.33 were the first to compare quantitative epistasis predictions from FBA and 

MOMA with high-throughput experimental data, examining 67,517 pairs of non-essential 

yeast genes (high-confidence empirical interactions from SGA). They also found that only a 
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minority of empirically observed interactions can be successfully predicted. For negative 

epistatic interactions, at 45% precision (percentage of predicted interactions that are indeed 

experimentally observed), they obtained a recall (percentage of observed interactions that 

are correctly predicted) of 2.8%. While the recall can be increased to slightly above 4% by 

lowering the prediction threshold, this comes at the cost of many false positive predictions, 

associated with a drastic reduction of precision to below 6%. For positive interactions, 

Szappanos et al. obtained a recall of 12.9% at a precision of around 10%, which could not be 

improved much further by lowering the prediction threshold. The quality of predictions could 

only be improved marginally by an automated model refinement procedure33. These results 

suggest that the physiological responses of yeast to double gene knockouts are not 

sufficiently captured by computational methods based on yield maximization such as FBA 

and MOMA. A later study that calculated epistasis from a new “function-loss cost” metric did 

not result in significantly improved predictions of the same data34. 

Why do the methods tested – FBA and MOMA – perform so poorly when predicting epistatic 

interactions? FBA captures epistasis based on the maximal biomass yield of the single and 

double mutants. MOMA assumes that the redistribution of reaction fluxes relative to the FBA 

wild-type solution is minimized upon the genetic perturbation37. Both FBA and MOMA 
predictions ignore the protein cost of enzymatic reactions, which arises from the necessary 

investment of cellular currencies, such as ATP and carbon, into enzyme production. 

Furthermore, it has been suggested that enzymes and the protein translation apparatus 

compete for the limited intracellular concentration space, a suggestion consistent with the 

observation that total cellular protein concentrations appear to be approximately constant 

across conditions40. In particular the latter constraint, summarized under the term (macro-) 

molecular crowding, has been explored in detail in the literature41-43. Instead of a largely 

arbitrary constraint on the uptake of a limiting nutrient, FBA models with molecular crowding 

limit cell growth by imposing a maximal mass concentration of enzymes, which in turn limits 

the total flux through the reactions the enzymes catalyze. Note that FBA and related 

constraint-based models do not consider internal metabolite concentrations explicitly, and 

thus FBA with molecular crowding methods calculate the enzyme concentration necessary 

for a given reaction flux v as [E] = keff v, with a ocnstant effective rate constant that is often 

approximated through the enzyme turnover number kcat
41,43. 

Could molecular crowding be responsible for epistatic interactions? FBA considers different 

yields of pathways, but pathways also differ in their kinetics, such that the same overall flux 

may require much more protein investment in one pathway compared to an alternative 

pathway; such differences in pathway costs of fluxes are believed to be the origin of overflow 

metabolism44,45. Accordingly, the fitness effect of a non-essential enzyme knockout will 

depend not only on the stoichiometry of the catalyzed reaction (which is what FBA 

considers), but also on the enzyme’s kinetics.  
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Two toy examples for positive and negative epistasis are given in Fig. 1. If multiple 

isoenzymes or pathways can convert metabolite A into B (Fig. 1a), then FBA will predict that 

the corresponding single and double knockouts are all without fitness effect. However, if the 

isoenzymes and pathways differ in the protein cost per catalyzed flux, then a double 

knockout involving the most efficient enzymes will result in a reduced total flux, unless 

protein investment into the remaining pathway is increased at the cost of reduced investment 

into other pathways that contribute to biomas. The least effective pathway is utilized only in 

the double knockout, and this will result in negative epistasis. Positive epistasis may arise, 

e.g., if two pathways are coupled by a downstream enzyme that jointly uses the products of 

both pathways as substrates (Fig. 1b). If there exists a catalytically less efficient alternative 

pathway for each of the two inputs, then the double knockout of the two efficient pathways 

will result – at identical protein investment – in a flux that is identical to the lower flux of the 

two single knockouts. 

Previous applications of MOMA37 suffer from a second problem. FBA solutions are generally 

redundant, i.e., multiple flux distributions lead to the same biomass yield. Thus, the distance 

of the MOMA to the FBA flux distribution may depend strongly on the particular FBA solution 

returned by the numerical solver of the wild-type optimization problem. A straightforward 

possibility to rectify this problem is to use the wild-type flux distribution returned by 

parsimonious FBA (pFBA), which attempts to minimize protein investment at a given 

biomass yield46 and has been shown to perform well in predicting the effects of single gene 

knockouts47.  

Here, to test if the poor performance of previous in silico predictions of epistasis33,34 can be 

improved by correcting the shortcomings discussed above, we compare epistasis predictions 

from (i) FBA with molecular crowding and (ii) MOMA starting from the pFBA solution to the 

double gene knockout data for yeast in Ref.33. 

 

Figure 1. Toy examples of epistatic interactions that arise because of different enzymatic costs of 

pathways. a. Negative epistasis between E2 and E3. b. Positive epistasis between E2 and E3. The 

example assumes equal protein costs for all enzymes.  
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Materials and methods 

Experimental data 

We used a high-confidence subset of S. cerevisiae epistasis data for metabolic genes 

identified in Szappanos et al.33. This data was generated using synthetic genetic array (SGA) 

screens. We excluded genes deemed to be essential by the metabolic model or that are 

blocked in the model. This resulted in 291 negative and 123 positive interactions among 

71,994 non-essential gene pairs. 

Metabolic models and Media 

To model S. cerevisiae metabolism, we used the metabolic reconstruction yeast7.6 

(https://sourceforge.net/projects/yeast)48. Following the authors of Ref.33, we removed a set of 

genes from the metabolic model (CAN1, LYP1, URA3, LEU2, MET17) to mimic the strain 

background used in the experiments; we also used the same definition of the growth medium, 

which mimics the experimental conditions33. The resulting, strain-specific model 

encompasses 904 metabolic genes associated with 3,326 reactions.  

We performed all simulations using sybil, a computer library for efficient modelling of 

metabolic networks49 in R50. Among other methods, sybil implements FBA, pFBA 

(minimization of total flux, MTF), and diverse methods for genome-scale simulation of 

genetic perturbations. 

Flux balance analysis (FBA) 

FBA identifies a flux distribution across the metabolic network that maximizes biomass yield 

under the constraints given by (i) the stoichiometry of enzymatic and transport reactions and 

(ii) lower and upper bounds on individual fluxes. The upper bounds on individual enzymatic 

fluxes are meant to reflect maximal enzyme capacity, and hence FBA could in principle also 

take enzyme kinetics into account; however, as enzyme capacities are generally unknown, the 

upper bounds are typically set to a value that is effectively infinite. Lower bounds on 

individual enzymatic reactions are set to zero for reactions deemed irreversible, and are 

(effectively) set to negative infinity for reversible reactions. Bounds on exchange reactions 

reflect maximal nutrient uptake or excretion rates. To estimate epistasis with FBA, we need to 

calculate the maximal biomass production yield of the double gene knockout, v12 , and the 

two single gene knockouts, v1 and v2 ; in each case, all fluxes through reactions for which one 

of the knockouts is essential are forced to zero. We convert the biomass yield values to fitness 

https://sourceforge.net/projects/yeast
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estimates by dividing them by the wild-type biomass yield, 𝑣𝑊𝑇: 𝑊𝑖 = 𝑣𝑖/𝑣𝑊𝑇 . The fitness 

of the single and double mutants then allows the calculation of epistasis as33:  

 𝜀 ≔ 𝑊12 − 𝑊1 × 𝑊2 (1) 

Minimization of metabolic adjustment (MOMA) 

MOMA is an extension of FBA for the prediction of gene knockouts. MOMA employs 

quadratic programming to identify the closest point (in terms of its Euclidean distance) in the 

permissible flux space of the knockout to the wild-type flux37. Previous applications of 

MOMA to epistasis predictions minimized the distance to an arbitrary FBA solution returned 

by the linear solver of the FBA problem33. As FBA flux distributions are highly degenerate, 

we instead use the parsimonious FBA (pFBA or MTF) solution to the wild-type problem46, 

which should lead to biologically more relevant results47. Following previous applications33, 

we minimize the Manhattan rather than Euclidean distance between wild-type and knockout 

flux distributions, which results in a linear optimization problem (lMOMA). As for FBA, 

epistasis was then estimated from the difference between the double knockout fitness and the 

product of the single knockout fitnesses (Eq. (1)).  

Cost-constrained FBA (ccFBA) 

ccFBA is a general implementation of FBA with molecular crowding33,41-43, which comes 

with an existing parameterization for yeast51. It is implemented in R50 and builds on the sybil 

package49. ccFBA improves on the MOMENT methodology for molecular modeling with 

enzyme kinetics43 by explicitly considering multifunctional enzymes. Put simply, ccFBA 

extends FBA by adding a global constraint on the total mass concentration (assumed to be 

proportional to volume concentration) of enzymes: 

 ∑ [𝐸𝑖] 𝑚𝑖𝑖 ≤ 𝐶 (2) 

where the sum runs over all enzymes (or enzyme complexes) i, [𝐸𝑖] is the molar concentration 

of enzyme i per gram dry weight, 𝑚𝑖 is the molar mass of the enzyme, and 𝐶 is an upper limit 

on the total enzyme mass per gram dry weight. As the maximal flux through a reaction is 

constrained by the corresponding enzyme concentration and turnover number, 𝑣𝑖 ≤ 𝑘𝑐𝑎𝑡,𝑖𝐸𝑖, 

Eq. (2) represents an additional linear constraint on the modeled fluxes. This constraint 

replaces the constraint on nutrient uptake rates imposed by FBA as the limiting factor for 

biomass production. We modified the yeast model distributed with ccFBA, which is based on 

the iMM904 model, matching it to the yeast 7.6 adapted to the experimental data (see above). 
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The resulting ccFBA model contains experimental kcat values for 535 enzymes; for the 

remaining enzymes, we use the median of the 535 known values, kcat,med=11.551. The 

proportion of biomass devoted to metabolic enzymes was set to C=0.27.  

Epistasis is again calculated according to Eq. (1) from the single and double gene knockout 

fitness estimates; in ccFBA, the maximal biomass fluxes vWT, v1, v2, and v12 represent 

maximal growth rates rather than yields. 

Data availability 

The empirical data, the modified yeast7.6 metabolic model, the turnover numbers (kcat) and 

molecular weigths used as input to ccFBA, and the raw data summarized in our results and 

figures can be found on github at https://github.com/deyazoubi/Epistasis-. An overview over 

the individual files is given in the Readme files. 

 

Results   

Comparing the predictions of different methods 

For each pair of non-essential genes contained in the metabolic model, we calculated Epistasis 

(Eq. (1)) based on three methods: flux balance analysis (FBA); a linear version of 

minimization of metabolic adjustment (lMOMA) that finds the knockout flux distribution 

most similar to the pFBA solution; and a recent implementation of FBA with molecular 

crowding (ccFBA). To obtain an overview over the differences between the three tested 

methods, we first classified gene pairs into those showing negative epistasis ( ≤ -0.0001), 

positive epistasis  ( ≥ +0.0001), or no epistasis  (|| < 0.0001).  

The Venn diagrams in Fig. 2a and 2b summarize the sets of gene pairs that show negative and 

positive epistasis, respectively, according to the three methods. 49 negative and 151 positive 

interactions are predicted jointly by all three methods. 48.8% of negative and 82.8% of 

positive epistasis predictions with FBA are also predicted by lMOMA. The numbers of 

interactions predicted uniquely by one of the methods differ substantially: While FBA 

predicts only 217 genetic interactions not predicted by any of the two other methods, ccFBA 

makes 640 unique predictions and lMOMA makes 1116 unique predictions. If ccFBA and/or 

lMOMA starting from the pFBA solution are better at capturing physiological knockout 

effects than FBA, or if they capture other types of physiological responses, then the additional 

predictions might improve the unsatisfactory recall of epistasis predictions by FBA. 
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Figure 2. Venn diagrams showing the overlap of negative (a,c) and positive (b,d) 

epistasis predictions by the three methods. Panels a and b show total predictions. 

Panels c and d show only those predictions confirmed by the high-confidence set of 

experimental epistasis estimates.  

 

 

Comparing predictions to experiments 

To test this possibility, we compared the epistasis predictions by the three methods to the 

high-confidence experimental epistasis data set provided by33. Figures 2c and 2d show Venn 

diagrams that compare the numbers of correctly predicted experimentally observed epistatic 

interactions between the three metabolic simulation methods. Only a small fraction of the 

predicted interactions are confirmed by the data in each case. Not surprisingly, the most 

reliable predictions are those that are jointly made by all three simulation methods (9 correct 

out of 49 joint predictions of negative epistasis, i.e., a precision of 9/49=18.4%; and 12 

correct out of 151 joint predictions of positive epistasis, i.e., a precision of 12/151=7.9%). In 

contrast, genetic interactions uniquely predicted by one of the three methods are confirmed 
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only rarely. Strikingly, none of the 217 interactions uniquely predicted by FBA were 

confirmed by the data. Unique ccFBA predictions were confirmed in 9/284=3.2% of cases for 

negative epistasis and in 6/356=1.7% of cases for positive epistasis. The very many unique 

predictions by lMOMA were confirmed only once each for negative epsistasis (1/367=0.3%) 

and for positive epistasis (1/749=0.1%).  

Both lMOMA and ccFBA recovered some epistatic interactions not detected with FBA, 

where those predicted by lMOMA – with only two exceptions – form a subset of those 

predicted by ccFBA. Accordingly, the precision of ccFBA (50/1096=4.6%) exceeds that of 

FBA (33/940=3.5%), which exceeds that of lMOMA (18/1322=2.1%). Thus, the 

consideration of molecular crowding in ccFBA indeed leads to an improvement of the recall 

achievable in epistasis predictions, while lMOMA does not.  

The cutoff of || = 0.0001 for epistasis used to select the predicted interacting gene pair sets in 

Figure 2 was chosen largely arbitrarily. Figure 3 shows the influence of other cutoffs for the 

simulated epistasis scores  on prediction accuracy. Overall, FBA seems to show the worst 

compromise between precision (fraction of predictions that are correct) and recall (fraction of 

interactions that are predicted correctly). ccFBA allows the highest recall; however, for 

negative interactions, high recalls come at the price of high false positive rates.  

Importantly, even with the most generous cutoffs, the highest recall reachable by any of the 

three methods is 24% for negative and 30% for positive epistatic interactions. Thus, at least 

70% of experimentally observed epistatic interactions are not detectable by any of the 

constraint-based methods tested, regardless of how many false positives we are willing to 

accept. To achieve recall values above 20%, we have to accept false positive rates of more 

than 10% for negative and 3% for positive interactions; given the high number of 

comparisons made (71,994 in the dataset used here), this means that true predictions of 

epistasis are drowned in a sea of false predictions. At a more reasonable false positive rate of 

1%, the highest achievable recall values are around 12%.  
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Figure 3. The accuracy of the three prediction methods for negative and positive 

epistatic interactions. The outer panels show precision (fraction of predictions that are 

correct) vs. recall (fraction of interactions that are predicted correctly), while the insets 

show a detail of the receiver operator characteristic (ROC) curve, tracing the 

dependence of recall on the false positive prediction rate (= 1 – specificity).  

 

Synthetic lethals 

To predict epistasis scores for viable double mutants, we need to calculate fitness values 

quantitatively for the single and double knockouts. It is conceivable that the underwhelming 

performance of constraint-based methods to predict genetic interactions (Figs. 2, 3) is due to 

this necessity. However, the strength of constraint-based methods may lie more in qualitative 

predictions: FBA has been demonstrated to accurately predict gene essentiality, i.e., genes 

whose knockout is lethal52,53. The likely reason is that knockout lethality often arises from the 

inability to produce a biomass component without the knocked out reaction, i.e., from an 

effect of the knockout on metabolic network topology rather than on kinetics, regulation, or 

biomass yield. Thus, it might be reasonable to expect that constraint-based methods also 

perform well when predicting synthetic lethals, i.e., gene pairs where the single mutants are 

viable but the double mutant is not. Previous studies showed recall values below 25% for the 

FBA prediction of synthetic lethals32,38. However, these observations were based on the 

analysis of small numbers of experimentally confirmed synthetic lethals drawn from diverse 

studies, and thus it seems advisable to compare model predictions of synthetic lethality to a 

systematic, genome-wide screen of metabolic genes. 
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To identify pairs of synthetic lethal genes in the raw data from Ref.33, we selected non-

essential gene pairs with experimentally confirmed negative epistasis ( < -0.08, see Ref.23) 

and with very low double mutant fitness (f < 0.2). Only 146 out of a total of 207,060 non-

essential gene pairs represented in the model and assayed by Szappanos et al.33 were labeled 

as synthetic lethal according to this definition. 

When using the same cutoffs ( < -0.08 and f < 0.2) for the computational epistasis 

predictions, we recover only 4 (FBA), 0 (ccFBA), and 4 (lMOMA) of the experimentally 

confirmed synthetic lethal pairs, corresponding to recall values of less than 3%. For FBA and 

lMOMA, recall cannot be improved by choosing less stringent cutoffs, as long as we require 

negative epistasis. For ccFBA, we can obtain 6 true positive predictions if we relax the double 

mutant fitness cutoff to f < 0.55 while requiring negative epistasis ( < -0.0001). These 

findings confirm the earlier results on smaller datasets of synthetic lethals32,38: constrained 

based methods appear no better at predicting synthetic lethality than at predicting epistasis in 

general.  

Discussion 
The essence of ccFBA is the incorporation of a tradeoff, where the expression of one pathway 

reduces the cellular resources available for other pathways. This interdependence between 

pathways in terms of available resources may underlie at least some epistatic interactions, and 

may hence contribute to explaining the slightly better performance of ccFBA compared to the 

two alternatives at methods. 

While ccFBA added a small number of correct epistasis predictions, the most important 

conclusion that can be drawn from the above analyses is a sobering one: We still fail to 

predict 70% of epistatic interactions, regardless of the constraint-based method and the 

cutoffs used. Neither the inclusion of molecular crowding, as in ccFBA, nor the use of a more 

realistic wild-type flux distribution in lMOMA led to a substantial improvement over the 

previously reported failure of FBA to predict a majority of experimentally observed 

interactions33.  

It is conceivable that a substantial fraction of observed epistatic interactions can only be 

understood through the consideration of detailed reaction kinetics and the associated cellular 

investment into enzymes. While ccFBA approximately accounts for enzyme kinetics and the 

corresponding cellular investment, we need to emphasize that the ccFBA model contains 

known enzyme turnover numbers (kcat ) for only 535 out of 4,594 protein-associated reactions, 

and an improved parameterization may well lead to improved prediction accuracy in the 
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future. However, ccFBA could also not correctly predict synthetic lethal interactions, which 

in most cases probably arise from changes in network topology rather than from enzyme 

kinetics; this failure suggests that the problem is more fundamental. 

A second potential explanation for the observed underperformance of constraint-based 

methods is the influence of regulatory feedbacks. Regulatory interactions evolved in the 

ancestors of the wild-type strain as responses to environmental conditions. Changes in 

metabolite concentrations resulting from the knockouts may be mis-interpreted by the cell’s 

regulatory system as environmental cues, and may thus lead to regulatory responses that cause 

suboptimal metabolic network usage. Such inappropriate cellular regulatory responses might 

lead to large discrepancies between mutant physiology and predictions by optimization-based 

methods. 

Such discrepancies should be evident not only for double knockouts, but also for single gene 

knockouts. FBA is highly accurate in the prediction of gene essentiality36,52,53. In contrast, 

quantitative predictions of non-lethal gene knockout fitness values correlate only weakly with 

experimental observations54. If our models cannot quantify single gene knockout fitness 

reliably, maybe it is no surprise that they fail to predict epistasis scores, which result from a 

comparison of single and double mutant fitness values. 
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Figure S1. Venn diagrams showing the overlap of negative (a,c) and positive (b,d) 

epistasis predictions by the three methods based on the iMM904 yeast model. Panels (a) 

and (b) show total predictions. Panels (c) and (d) show only those predictions confirmed 

by the high-confidence set of experimental epistasis estimates. See Fig. 2 of the main 

text for the corresponding figure based on the newer yeast7.6 model.  
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 Figure S2. The accuracy of the three prediction methods for negative (left) and positive 

(right) epistatic interactions based on the iMM904 yeast model. The outer panels show 

precision (fraction of predictions that are correct) vs. recall (fraction of interactions that are 

predicted correctly), while the insets show a detail of the receiver operator characteristic 

(ROC) curve, tracing the dependence of recall on the false positive prediction rate (= 1 – 

specificity). See Fig. 3 of the main text for the corresponding figure based on the newer 

yeast7.6 model.  
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Abstract 
FBA and related constraint-based methods are considered state-of-the-art for 
genome-scale metabolic modeling. These methods have been shown to predict gene 
essentiality with high accuracy. However, it is not clear how reliably they predict 
mutant physiology for non-essential gene knockouts, as systematic analyses that 
apply the different constraint-based methods proposed for this problem to genome-
scale data for multiple organisms. Here, we apply FBA and its popular extensions, 
including methods specifically developed for non-essential gene knockout predictions 
(MOMA, ROOM) and a method accounting for macro-molecular crowding (ccFBA), to 
data on knockout effects of non-essential genes in E. coli and Saccharomyces 
cerevisiae. For a given metabolic model, simulation method, and environment, we find 
that predicted biomass fluxes across non-essential gene knockouts are restricted to a 
small number of distinct values. In each case analyzed, predictions explain only a 
small fraction of the observed variance in growth rate, fitness, or biomass yield. Even 
in the best cases, model-based predictions lead to coefficients of determination that 
are barely better than those of a trivial “model” assuming identical fitness of all 
knockouts. The constraint-based models perform slightly better when attempting to 
qualitatively distinguish between non-essential gene knockouts with and without 
fitness effects. However, even the best-performing methods – linear or quadratic 
MOMA – predict only between 20% and 40% of experimentally observed deleterious 
fitness effects. What could be the reason for this poor performance of non-lethal 
knockout predictions? The physiological response of microbes to gene knockouts is 
based on regulatory systems that evolved in the wildtype. The flux changes resulting 
from metabolic gene knockouts lead to changes of metabolite concentrations both 
upstream and downstream of the knocked-out reaction. We speculate that these 
concentration changes cause misguided regulatory responses that are impossible to 
predict by optimization-based methods agnostic of regulatory interactions.  

  



 

 75 

Introduction 
Constraint-based methods such as flux balance analysis (FBA) 1-3 and its derivatives 4 are 
considered state-of-the-art methods for the genome-scale modeling of microbial physiology. 
These methods start from the known stoichiometry of metabolic reactions encoded in an 
organism’s genome. Assuming a steady state and constraints on the reversibility of 
reactions, FBA and related methods then impose the requirement that the fluxes producing 
and consuming each internal metabolite must be balanced. An optimal state (typically 
assumed to result from natural selection) is found, e.g., by maximizing the biomass 
production rate under these constraints. FBA solves a linear optimization problem and is thus 
computationally highly efficient. However, this efficiency comes at the price of ignoring many 
mechanistic details, including reaction kinetics and regulatory interactions 5.  
FBA models accurately predict gene essentiality, with reported accuracy values between 
91% and 95% for the bacterium Escherichia coli 6 and between 83% and 90% for different 
models of the yeast Saccharomyces cerevisiae 7-9. Gene essentiality refers to the inability of 
a gene knockout strain to produce biomass. If we assume that typically, each metabolic gene 
is expressed at least marginally in some cells of a microbial population, all metabolic genes 
encoded in the genome can contribute to alleviating deleterious knockout effects. Thus, gene 
essentiality is independent of kinetic parameters and of regulatory circuits, which may explain 
why FBA is able to predict gene essentiality despite ignoring such mechanistic details.  
However, the same details may strongly influence the physiological effects of non-essential 
gene knockouts. As a first example demonstrating such effects, consider a genome encoding 
two homologs of an enzyme with different kinetics. If only the catalytically more efficient 
enzyme is utilized in a given environment, then its knockout will reduce the growth rate, while 
the knockout of its homolog will have no effect. As FBA only sees the identical 
stoichiometries of the reactions catalyzed by the homologs, it considers them as redundant 
and predicts that both knockouts have no physiological effects.  
More generally, the deletion of a non-essential gene encoding an enzyme active in the 
wildtype requires a global re-routing of reaction fluxes to re-establish a steady state. The 
knockout of a non-essential gene encoding an enzyme that is active in the wildtype will result 
in a concentration increase of the enzyme’s substrates as well as a concentration reduction 
of its products. These changes will in turn affect concentrations further upstream and 
downstream of the reaction, which may be sensed by regulatory circuits that misinterpret 
them as resulting from environmental changes, leading to non-optimal (and potentially hard 
to predict) regulatory responses. Thus, it appears a priori likely that the effects of non-
essential gene knockouts are much harder to predict by constraint-based methods than 
those of essential gene knockouts. 
Indications that this may indeed be the case come from two previous studies. Following up 
on earlier small-scale analyses 10,11, Papp et al. analyzed observed competitive fitness, 
growth rates, and growth efficiencies (a proxy for yield) of a S. cerevisiae genome-wide gene 
knockout collection on two different media (minimal, SD; and rich, YPD) 5. They predicted 
biomass production rates using MOMA (Minimization Of Metabolic Adjustment) 12, a variant 
of FBA specifically designed for gene knockouts, which finds the permissible flux distribution 
in the knockout that is most similar to the wildtype flux distribution. Papp et al. found only 
weak correlations between the predicted biomass production rates and the observed data 
(Spearman rank correlation coefficients: ρ=0.46 for competitive fitness on SD, ρ=0.26 for 
competitive fitness on YPD, ρ=0.14 for growth rate on SD, and ρ=0.05 for growth efficiency 
on SD). While all correlations were statistically significant, the model was able to explain only 
between 0.25% and 21% of the observed variation across metabolic knockouts. 
In a later study, Vandersluis et al. analyzed growth rates of a genome-wide collection of 
prototropic gene knockout strains of S. cerevisiae across 28 metabolic environments 13. 
Instead of directly comparing growth rates with predicted biomass production rates, these 
authors calculated z-scores quantifying the deviation between growth in a given condition 
and a reference condition for experimental growth rates and biomass production rates 
predicted with FBA and MOMA, using two different metabolic models (iMM940 14 and yeast5 
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15). In many growth conditions, they found that FBA and MOMA predicted only a few discrete 
levels of biomass production, with the mode accounting for between 39% and 95% of 
predictions. Comparing z-scores between experiments and predictions, they found that 
Spearman’s rank correlations were statistically significant (P<0.05) in between 40% (iMM904 
with MOMA) and 70% (yeast5 with FBA) of growth conditions. Labeling gene knockouts as 
with and without fitness effects, they found average recall values (correct predictions among 
all knockouts with observed fitness effects) across growth conditions between 14% and 25%, 
at precision values (true positives among all predictions with fitness effects) between 49% 
and 18%, respectively (see Fig. 4 of Ref. 13). Note that in a given condition, only a small 
minority of knockouts show observable fitness effects. Thus, for relative changes in biomass 
production abilities, even modest recall values can be achieved only at the price of a massive 
number of false positive predictions (precision < 50%).   
In sum, the two previous studies that compared large numbers of predictions by FBA and/or 
MOMA with observed yeast growth data indicate that neither method is capable of predicting 
gene knockout effects quantitatively, and that at best a minority of fitness effects can be 
predicted even qualitatively. If these conclusions would apply more generally across 
organisms and constraint-based metabolic modeling methods, than these would be sobering 
conclusions for a suite of methods that is widely considered to be the state of the art 4. On 
one hand, it is conceivable that low predictive abilities are restricted to yeast (or to 
eukaryotes in general). On the other hand, several modifications aimed at improving the 
predictive abilities of constraint-based methods have been proposed 4,10,16-18. In particular, a 
minimization of the number of required regulatory changes in the knockout 10 or a 
consideration of enzyme kinetics and a limited enzyme “budget” 16-18 might alleviate some of 
the problems faced by the methods tested previously. Here, we systematically analyze the 
ability of multiple constraint-based modeling methods to predict growth features of the two 
best-studied unicellular model organisms, the yeast S. cerevisiae and the bacterium 
Escherichia coli.  

Methods 
Flux Balance Analysis (FBA) 19 
Flux balance analysis (FBA) is a mathematical approach for analyzing the flow of metabolites 
through a metabolic network 1. The central object in an FBA formulation (as in other 
constraint-based methods) is a stoichiometric matrix S. Its columns correspond to reactions 
Rj (with metabolite fluxes vj), while its rows correspond to individual metabolites i; the entries 
of S are the stoichiometric coefficients of metabolite i in reaction Rj, with negative signs for 
substrates and positive signs for products of the reaction. FBA then solves the following 
linear optimization problem 1: 

 max 𝑣𝑏𝑖𝑜 (1) 
  Subject to: 

 𝑆𝒗 = 0 (2) 

 𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝑚𝑎𝑥 (2) 

 𝑣𝑗 = 0 for any reaction that requires the product  

 of a knocked-out gene for its activity (3) 

Here, 𝒗 is a vector of steady-state metabolic fluxes, where 𝑆𝒗 = 0 enforces the steady state 
assumption (each internal metabolite is produced and consumed at the same rate); 𝑣𝑏𝑖𝑜 is 
the rate of biomass production. 𝑣𝑖

𝑚𝑖𝑛  and 𝑣𝑖
𝑚𝑎𝑥  are lower and upper bounds for the flux 

through reaction i; these bounds are typically enforced only for irreversible reactions (𝑣𝑖
𝑚𝑖𝑛 =

0) and to constrain the uptake rate for a limiting nutrient. Note that modeling gene knockout 
effects with FBA assumes that the biomass production rate in the knockout mutant is 
maximal (under the given constraints). 
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Minimization of Metabolic Adjustment (MOMA) 12 

MOMA is a variant of FBA for modeling gene knockouts. Its basic idea is that due to a gene 
regulatory system that evolved in (and is presumably optimized for) the wildtype, the flux 
distribution is not optimized for maximal biomass production, but is instead maximally similar 
to the wildtype flux distribution given the constraints. However, the wildtype flux distribution is 
not uniquely defined by FBA, as typically many flux distributions with the same maximal 
biomass production rate exist. Previous authors have often ignored this redundancy, and 
thus used a “random” maximal solution for the calculation of the MOMA flux distribution (e.g., 
5). Here, we generally use the parsimonious FBA (pFBA) solution for the wildtype; the pFBA 
solution corresponds to the FBA solution with a minimal sum of absolute fluxes 20, attempting 
to approximately minimize enzyme usage. pFBA has been shown to provide a reasonable 
approximation to biological reality 21.  
Below, we use three versions of MOMA, each of which replaces Eq. (1) with a different 
optimization:  

(i) qMOMA – This version was originally described by Segre et al. and minimizes the 
(squared) Euclidean distance between the two flux vectors,  
‖𝒗𝑘𝑛𝑜𝑐𝑘𝑜𝑢𝑡 − 𝒗𝑊𝑇‖

2

2
= ∑ (𝑣𝑖

𝑘𝑛𝑜𝑐𝑘𝑜𝑢𝑡 − 𝑣𝑖
𝑊𝑇)

2
𝑖  22.  

(ii) lMOMA – A linearized version that instead minimizes the Manhattan distance 
‖𝒗𝑘𝑛𝑜𝑐𝑘𝑜𝑢𝑡 − 𝒗𝑊𝑇‖

1
= ∑ |𝑣𝑖

𝑘𝑛𝑜𝑐𝑘𝑜𝑢𝑡 − 𝑣𝑖
𝑊𝑇|𝑖 ; this linear MOMA method has been 

used by several later authors because of its computational efficiency (e.g., 5).  
(iii) sqMOMA – The distances calculated by MOMA and linear MOMA weigh each 

flux equally. Thus, a 1% change of a wildtype flux  𝑣𝑗
𝑊𝑇 = 100 (in arbitrary units) is 

penalized exactly in the same way as the doubling of a much smaller flux 𝑣𝑗′
𝑊𝑇 =

1. This may not reflect biological reality: a flux change by 1% may easily be 
accommodated by an unchanged enzyme concentration, while a flux doubling will 
typically require upregulating the catalyzing enzyme. Thus, we additionally use a 
scaled version of MOMA that penalizes fractional flux changes rather than 
absolute flux changes. sqMOMA minimizes the weighted Euclidean distance 
between flux distributions, where each flux is scaled by dividing through the 
corresponding wildtype flux |𝑣𝑗

𝑊𝑇| (or, if |𝑣𝑗
𝑊𝑇| = 0, through the maximal absolute 

value of possible loopless fluxes 𝑣𝑗
𝑚𝑎𝑥  under maximal biomass production, 

calculated using cycleFreeFVA 23; in the implementation, we replace |𝑣| = 0 with 
|𝑣| < 0.0001). Thus, the optimization problem solved by sqMOMA (and replacing 
Eq. (1)) is: 

min ∑
(𝑣𝑖

𝑘𝑛𝑜𝑐𝑘𝑜𝑢𝑡 − 𝑣𝑖
𝑊𝑇)

𝟐

𝑣𝑖
∗

𝒊

 

with    𝑣𝑖
∗ = {

|𝑣𝑖
𝑊𝑇| if 𝑣𝑖

𝑊𝑇 ≠ 0

𝑣𝑖
𝑚𝑎𝑥  if  𝑣𝑖

𝑊𝑇 = 0 and 𝑣𝑖
𝑚𝑎𝑥 ≠ 0

1 else
     , 

𝑣𝑖
𝑚𝑎𝑥 = max {|min 𝑣𝑖

𝑐𝑐𝐹𝑉𝐴| , |max 𝑣𝑖
𝑐𝑐𝐹𝑉𝐴|}. 

Regulatory on/off minimization of metabolic flux (ROOM) 10 

ROOM minimizes the total number of significant flux changes in the knockout relative to the 
wild type flux distribution (pFBA) 20. We implemented two versions of ROOM: the published 
version 10; and a new version of ROOM (ROOMw), which penalizes only flux increases, but 
not flux decreases. The logic of ROOMw is that flux decreases do not require changes in 
enzyme expression, while flux increases require upregulation of enzyme expression. To 
implement ROOMw, first all reversible reactions are split into two independent forward and 
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backward reactions. Since all reactions in the modified model can only carry positive fluxes, 
we now minimize only the number of reactions with flux increases:  

 𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 ≔ min ∑ 𝑦𝑖𝑖  

 Subject to: 

 𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝑚𝑎𝑥 

 𝑣𝑗 = 0 for any reaction that requires the product  

 of a knocked-out gene for its activity 

 𝑦𝑖  ∈  {0,1} 

 𝑣𝑖 − 𝑦𝑖  (𝑣i
max − 𝑣𝑖

𝑊𝑇𝑢) ≤ 𝑣𝑖
𝑊𝑇𝑢 

 𝑣𝑖
𝑊𝑇𝑢 = 𝑣𝑖

𝑊𝑇 + 𝛿|𝑣𝑖
𝑊𝑇| + 𝜀 

Here, 𝛿 = 0.03  and 𝜀 = 0.0001  are relative and absolute tolerances, respectively, for 
“significant” flux changes. Note that a solution to this minimization problem is always given by 
𝒗 = 0. To avoid this trivial solution, we first enforce a minimal amount of biomass production, 
𝑣𝑏𝑖𝑜 ≥ 0.05 𝑣𝑏𝑖𝑜

𝑊𝑇  to obtain a lower bound 𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 = 𝑛∗  on the necessary number of flux 
increases. In a second step, we again solve the above optimization problem, now enforcing 
this lower bound: 𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 ≥ 𝑛∗. 

FBA with molecular crowding 18 
The constraint-based methods listed above ignore important cellular constraints beyond the 
stoichiometry of biochemical reactions. In particular, the enzymes that catalyze biochemical 
fluxes must be produced from limited cellular resources, and the total volume of 
macromolecules solved in a microliter of cytosol cannot become arbitrarily high: molecular 
crowding of enzymes and other macromolecules may hinder the efficient diffusion of proteins 
and metabolites {Atkinson}. Accordingly, Beg et al. introduced an upper limit on total 
enzymatic capacity into FBA (FBA with molecular crowding, FBAwMC) 17. They added a 
constraint on the volume available for enzymes, showing that this extension of FBA improved 
the prediction of phenotypes for E. coli. MetabOlic Modeling with ENzyme kineTics 
(MOMENT) 16 extended this approach by including detailed gene-protein-reaction (GPR) 
associations, and cost-constrained FBA (ccFBA) further improved this framework and added 
an explicit model for S. cerevisiae 18. Here, we use the ccFBA implementations for E. coli and 
S. cerevisiae (available on CRAN). ccFBA uses enzyme molecular weights to constrain total 
cellular enzyme concentration, and enzyme kinetic data (kcat) to constrain the fluxes 
catalyzed by these enzymes 18 

Numerical calculations 

All calculations were performed using sybil 24, an efficient computational framework for 
constraint-based analyses in the R environment for statistical computing 25. As external 
optimizer, we used IBM ILOG CEPLEX. We considered predicted changes in biomass 
production rates to be biologically significant if they exceeded 0.15% of the wildtype value, 
except for ROOM, where we set this “tolerance” to 4.5%; the higher value for ROOM reflects 
the high relative tolerance δ=0.03 in the determination of “significant” flux changes 10. As the 
calculations for cycleFreeFVA did not converge for many genes in the yeast7.6 model, we 
used standard flux variability analysis 26as implemented in sybil for sqMOMA for this model 
instead of cycleFreeFVA. 

S. cerevisiae data 

We analysed growth data for non-essential metabolic gene knockout strains from S. 
cerevisiae from three different sources. Genes assayed experimentally were mapped to the 
gene-protein-reaction associations of the yeast7.6 model    
(https://sourceforge.net/projects/yeast)) 27. 

https://sourceforge.net/projects/yeast)
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Dataset 1: Szappanos et al. 2011 28 

The first dataset was obtained from Szappanos et al., who performed single and double gene 
knockouts of 613 metabolic genes 28; only the single gene knockouts were considered here. 
Strains were grown on a nutrient-rich synthetic medium, and fitness was assessed 
quantitatively by measuring colony size 29. 
We removed CAN1, LYP1, URA3, LEU2, and MET17 from the yeast7.6 reconstruction to 
mimic the strain background used in the experiments 28. We defined the model growth 
medium as in 5, listed in Suppl. Table S1. Genes essential in the resulting model were 
excluded from further analysis, resulting in 796 non-essential genes covered by the reduced 
model. 532 genes were contained in both the experimental dataset and the model.  

We classified gene knockouts as having deleterious fitness effects by defining a z-score, ≔
1−𝑓

𝑆𝐷
 , where f is the mean fitness of the single gene mutant across replicates, and SD is the 

corresponding standard deviation. We considered knockouts with z>2 as having significant 
deleterious fitness effects. 
To examine if the details of the metabolic model have a major influence on the prediction 
accuracy, we analyzed Dataset 1 non only with the yeast7.6 model, but also with the older 
iMM904 model 14 after a correction of NAD metabolism 28. Again, we used the media 
definition utilized by Szappanos et al. and removed CAN1, LYP1, URA3, LEU2, and MET17 
to mimic the strain background 28. The merged experimental/model dataset contained 563 
genes.  

Dataset 2: Deutschbauer et al. 2005 30 

The second dataset was obtained from Deutschbauer et al., who examined 5922 single gene 
knockouts in a glucose-limited aerobic minimal medium and in YPD, estimating fitness 
through parallel fitness profiling 30. The minimal medium corresponds to the default medium 
of the yeast7.6 model. To simulate YPD, we used the same complex medium as for dataset 
1, but allowing uptake of the three amino acids histidine, arginine and lysine at a maximal 
rate of 0.36; we additionally allowed unlimited uptake of Ammonium, Sodium, Choline, 
Inosine, pyridoxine (see Suppl. Table S2 for the medium definition). After removing essential 
genes, the merged experiment/model datasets comprised 762 genes for YPD and 690 genes 
for the minimal medium, respectively.  
As Deutschbauer et al. examined only 2 replicates per gene, we could not define a 
meaningful z-score. Based on the approximately normal distribution of experimental fitness 
values f around 1.0 across knockouts, we classified genes as with fitness effect if f<0.97. 
This resulted in a total of 194 non-essential gene knockouts with experimentally observed 
deleterious fitness effects on YPD and a total of 222 non-essential gene knockouts with 
experimentally observed deleterious fitness effects on the minimal medium. 

Dataset 3: Breslow et al. 2008 31 

The final S. cerevisiae dataset was obtained from Beslow et al., who assayed 4204 single 
gene knockouts in a glucose-limited minimal medium, assessing competitive fitness using 
flow cytometry 31. The minimal medium was simulated as the default medium of the yeast7.6 
model. After removing essential genes, the merged experiment/model datasets covered 550 
genes.  
As for Dataset 2, genes did not consistently have >2 replicates, so we again considered 
genes with f < 0.97 to have a fitness effect. This resulted in a total of 130 non-essential gene 
knockouts with experimentally observed deleterious fitness effects.  

E. coli data 

For E. coli, we analysed growth data for non-essential metabolic gene knockout strains from 
two different sources. Genes assayed experimentally were mapped to the gene-protein-
reaction associations of the iJO1366 model 32. 
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Dataset 1: Fuhrer et al. 2016 33 

Fuhrer et al. assayed growth rates of 3901 gene knockouts on a minimal medium with 
glucose and casein hydrolysate 34. For 3631 genes, we were able to obtain mean and 
standard deviation (SD) of the knockout growth rate across replicates. We estimated the 
distribution of wildtype growth rates by fitting a normal distribution around the mode of the 
knockout growth rate distribution, resulting in a wildtype growth rate of (0.809 ± 0.126) h-1. 
We divided the mean growth rate across replicates for each gene knockout by the wildtype 
growth rate to estimate observed fitness values of gene knockouts. 
We simulated the growth medium using the default glucose-limited minimal medium 
definition with maximal glucose uptake rate -10, additionally allowing uptake of the 20 amino 
acids. We mapped  all other compounds and set the lower bounds of the associated 
exchange reactions to -1000. Allowing unlimited influx of all amino acids results in some 
internal reactions reaching their upper bounds in parsimonious FBA (pFBA) 20, indicating 
unrealistically high uptake rates. We therefore constrained all amino acid uptake rates to the 
same value -0.5, such that the predicted growth rate including the 20 amino acids (the 
simulated casein hydrolysate) was approximately twice the wildtype growth rate on glucose 
alone (µ=1.76 instead of µ= 0.98). The simulated medium definition is listed in Suppl. Table 
S3.  
Excluding essential genes resulted in a model that covers 1212 non-essential metabolic E. 
coli genes. Merging this model with the experimental data resulted in 1064 non-essential 
gene knockouts covered by both datasets. 
As for yeast Dataset 1, we classified gene knockouts as having deleterious fitness effects by 
defining a z-score, ≔ 1−𝑓

𝑆𝐷
 , where f is the mean fitness of the single gene mutant across 

replicates, and SD is the corresponding standard deviation. We considered the 168 
knockouts with z > 2 as having significant deleterious fitness effects. 

Dataset 2: Takeuchi et al. 2014 35 

Takeuchi et al. assayed growth curves for 4105 knockout strains grown on LB media 35. For 
3631 gene knockouts, we could obtain mean and SD across replicates for maximal growth 
rate and maximal optical density (KO_maxgrowth and KO_saturation in the Supplementary 
Information of Ref. 35, respectively); optical density provides a proxy for biomass yield. We 
fitted normal distributions around the modes of the two distributions to obtain wildtype mean 
and SD, estimated to be (0.981±0.094) for growth rate and (0.982±0.082) for yield (both in 
units of the data provided). For each knockout strain, we obtained two independent fitness 
estimates by dividing (i) its mean growth rate and (ii) its yield by the corresponding wildtype 
values. 
To simulate the growth medium, we started from the default minimal medium with glucose as 
the carbon source (max. uptake rate -10) and with Cob(I)alamin uptake limited to -0.01. We 
added all 20 amino acids, limiting the uptake of all carbon sources other than glucose to -0.5, 
such that the predicted wildtype growth rate was approximately twice that on glucose alone 
(µ=1.97 instead of µ= 0.98). The resulting media definition is listed in Suppl. Table S4. 
Merging the resulting model with the experimental data results, after exclusion of essential 
genes, in 1175 non-essential gene knockouts covered by both datasets. 
As before, we calculated z-scores from the observed means and standard deviations. 
Knockouts of 88 genes have z > 2 for growth rate, while knockouts of 84 genes have z > 2 
for biomass yield; these knockouts are considered to have deleterious fitness effects with 
respect to growth rate and yield, respectively. 
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Results and Discussion 
As detailed in the Methods section, we predicted biomass production rates with seven 
different constraint-based methods:  

(i) standard FBA;  
(ii) minimization of metabolic adjustment (qMOMA); 
(iii) a linear version of MOMA (lMOMA); 
(iv) a scaled version of MOMA (sqMOMA) introduced here, which minimizes relative 

rather than absolute flux changes between wildtype and knockout strain;   
(v) regulatory on-off minimization (ROOM); 
(vi) a version of ROOM introduced here that only penalizes flux increases, not flux 

decreases in the knockout relative to the wildtype (ROOMw); 
(vii) FBA with molecular crowding (ccFBA) 

 

Only weak correlations between predicted biomass production rates and 
observed fitness for non-essential S. cerevisiae metabolic gene knockouts  
All methods predict only a small number of distinct biomass production rates, as has been 
reported previously for FBA 13. For the 532 non-essential metabolic knockouts in the 
Szappanos et al. data 28, the number of distinct values ranges between 10 (ROOM) and 34 
(sqMOMA and ROOMw) (Suppl. Table S5). Figure 1 shows predicted biomass production 
rates vs. observed growth rate or fitness for the seven constraint-based methods across 
metabolic gene knockouts from four different experimental datasets. Visual inspection does 
not indicate any strong relationship between predictions and observations. This impression is 
confirmed by statistical analysis. While Spearman rank correlation coefficients are positive 
and are in almost all cases statistically significant (P<0.05), their values are always below 
ρ=0.3 (Suppl. Tables S5-S8).  
To estimate what proportion of the variation in observed fitness is explained by the model, 
we calculated coefficients of determination, defined as COD ≔ 1 – SSresidual/SStotal, where 
SSresidual is the residual sum of squares (a measure of unexplained variation), and SStotal is 
the total sum of squares (a measure of total variation). Almost all COD values are negative 
(Suppl. Tables S5-S8), indicating that the mean of the observed data provides a better 
description of the observations than does any of the constraint-based models. FBA with 
molecular crowding performs slightly better than the other methods according to this 
measure, and is the only method that provides a positive COD for at least one data set 
(Suppl. Table S5). 
Figure 1 and Suppl. Tables S5-S8 are based on the yeast7.6 model; qualitatively very 
similar results are obtained with the NAD-modified iMM904 model 28 (Suppl. Figures S1-S2 
and Suppl. Tables S9-S10). 
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Figure 1.  The (absence of) correlation between predicted and observed single-mutant 
growth rate and fitness for non-essential genes in the yeast S. cerevisiae for different 
knockout datasets. (a) Colony size (growth rate) data from Szappanos et al. 28. (b) 
Parallel fitness profiling data from Deutschbauer et al. 30 on YPD. (c) Parallel fitness 
profiling data from Deutschbauer et al. 30 on minimal medium. (d) Competitive fitness 
data from Breslow et al. 31. Note that the ROOM results are calculated with a relative 
tolerance δ=3%; this explains the large number of predicted fitness values at 0.97, 
which are indistinguishable from wildtype fitness within this tolerance.   
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Qualitative prediction of non-essential gene knockout fitness effects for S. 
cerevisiae  
The negative COD values indicate a failure of all tested methods to predict fitness effects of 
gene knockouts in S. cerevisiae quantitatively. At the same time, statistically significant 
positive Spearman rank correlation coefficients for all methods across all datasets (with only 
one exception, Suppl. Tables S5-S8) indicate that the models capture fitness effects of 
some knockouts at least qualitatively. To further explore the qualitative prediction capabilities 
of constraint-based simulation methods, we classified non-essential gene knockouts into 
those with and without observed fitness effects (Methods). This resulted in a total of between 
130 and 222 non-essential gene knockouts with experimentally observed deleterious fitness 
effects for the different datasets (Table 1). Suppl. Tables S11-S14 list the numbers of true 
and false positives and negatives of the individual methods and the resulting values for recall 
(sensitivity), precision, specificity, and accuracy across S. cervisiae datasets. We scored any 
detectable reduction in predicted biomass production rate f as a fitness reduction (i.e., 
f<0.9985 for all methods except ROOM, and f<0.0955 for ROOM; see Methods).  
Specificities are above 0.9 for all methods across all datasets and are above 0.95 in most 
cases (Suppl. Tables S11-S14). Thus, all methods correctly predict wildtype biomass 
production rates for more than 95% of the knockouts without experimentally observable 
fitness defects. In contrast, no method is able to predict more than 25% of confidently 
observed deleterious fitness effects, i.e., recall (sensitivity) is always below 0.25 (Table 1). 
We have to conclude that more than 75% of the fitness effects of metabolic gene knockouts 
in S. cerevisiae are not detectable with any of the tested methods. It is noteworthy that this 
low recall is still associated with precision values of around 0.6 (Suppl. Tables S11-S14), 
i.e., around 60% of the fitness defects predicted by any of the methods are not confirmed by 
data. The only exception is ROOM, which – at very low numbers of positive predictions – has 
precision values between 0.8 and 0.9 in three of the four datasets.  
As seen from Table 1, predictions with either the quadratic (qMOMA) or the linear (lMOMA) 
variant of MOMA appear to perform best in terms of their ability to predict deleterious 
knockout effects qualitatively, outperforming not only FBA but also FBA with molecular 
crowding (ccFBA) in terms of recall values (sensitivity). In contrast, the second method 
specifically developed to predict non-optimal physiological responses in non-essential gene 
knockouts, ROOM, exhibits the lowest recall values of all tested methods, less than half of 
those achieved with the two MOMA variants; note, however, that this is associated with a 
lower fraction of false positives (i.e., a higher precision).  
The results in Table 1 and in Suppl. Tables S11-S14 were obtained in an attempt to 
maximize recall by scoring the tiniest detectable reduction in predicted biomass production 
rate as a fitness defect. This was associated with high false positive rates (low precision, 
Suppl. Tables S11-S14), and it is generally more desirable to strike a balance between 
recall and precision. This can be achieved by scoring only fitness reductions larger than an 
appropriate cutoff c as deleterious. Each data point in Figure 2 corresponds to a possible 
value for c; the resulting receiver operator characteristic (ROC) curve maps the possible 
combinations of recall (true positive rate) and 1–specificity (false positive rate). The diagonal 
of the figure signifies random expectations, and data points far away from the diagonal are 
thus preferable; the area under the curve is a measure of prediction accuracy.  
Regardless of how many false positives are accepted (how low we allow specificity to drop), 
no individual method achieves recall values exceeding 0.25 in any of the datasets tested, 
consistent with what is seen in Table 1. When pooling all methods by labeling any knockout 
as deleterious for which at least one of the seven methods predicts reduced biomass 
production rates (“Min” in Figure 2), recall can be increased slightly, up to at most 0.31. 
Consistent with the resultsin Table 1, the best recall/specificity tradeoffs overall seem to be 
provided by the two MOMA variants (lMOMA and qMOMA, Figure 2). Thus, while ROOM 
was shown to perform better than qMOMA when tested on a small number of knockouts 10, 
this performance advantage cannot be replicated on large-scale datasets of S. cerevisiae 
metabolic knockouts.  



 

 84 

 
Table 1. Recall (sensitivity) values for the seven tested methods for the prediction of 
negative fitness effects in four S. cerevisiae datasets of metabolic gene knockouts 

 
N 1 FBA lMOMA qMOMA sqMOMA ccFBA ROOM ROOMw 

Szappanos 2011 133 0.195 0.218 0.241 0.248 0.180 0.113 0.233 
Deutschbauer 
2005, YPD 194 0.067 0.211 0.216 0.216 0.134 0.062 0.155 

Deutschbauer 
2005, minimal 222 0.180 0.198 0.221 0.221 0.185 0.086 0.162 

Breslow 2008 130 0.115 0.146 0.154 0.154 0.131 0.031 0.146 
1 Number of positives (strains with experimentally observed fitness at least 2 SD below the wildtype) 

 

 

 

 

Only weak correlations between predicted biomass production rates and 
observed fitness for non-essential E. coli metabolic gene knockouts  
We repeated the same analyses for metabolic non-essential gene knockout strains of E. coli. 
Biomass production rate predictions varied slightly more for the E. coli model than for the 
yeast model, with between 12 (ROOM) and 58 (ROOMw) distinct values for the 1175 non-
essential metabolic genes covered by the Takeuchi et al. data 35 (Suppl. Table S16). Figure 
3 shows the biomass production rates predicted with the seven methods vs. observed growth 
rate 34,35 and biomass yield 35. Similar to the yeast data, there is no obvious correlation 
between predictions and observations. Spearman’s rank correlation coefficients are at best 
marginally statistically significant for the Fuhrer et al. growth rate data (Suppl. Table S15). 
However, they are positive and highly statistically significant for both growth rate and yield 
observed by Takeuchi et al., with correlation coefficients around 0.17 for growth rate (Suppl. 
Table S16) and around 0.21 for yield (Suppl. Table S17). The only exception is ccFBA, for 
which the correlation is only marginally statistically significant also in the Takeuchi et al. data.  
As before, we calculated coefficients of determination, COD ≔ 1 – SSresidual/SStotal to estimate 
what proportion of the variation in observed growth rate or yield is explained by the model. 
For the growth rate data of Fuhrer et al., all COD values are again negative (Suppl. Table 
S15), indicating that the mean of the observed data provides a better quantitative description 
of the observations than does any of the constraint-based models. The situation is slightly 
improved for the Takeuchi et al. data. Standard FBA and ROOM provide at least slightly 
positive COD values for both growth rate and yield, while ccFBA provides a marginally 
positive value at least for yield (Suppl. Tables S16-S17). The highest predictive power is 
observed for standard FBA and the experimental yield data, with COD=0.136. Thus, the 
best-case scenario appears to be that constraint-based methods are able to explain around 
14% of the experimentally observed variation in biomass yield in E. coli.  
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Figure 2. ROC curves for the qualitative prediction of negative fitness effects of non-
essential gene knockouts in S. cerevisiae. “Min” uses the minimal fitness prediction for 
each knockout across all seven constraint-based methods, i.e., it designates a 
knockout as deleterious if at least one method predicts a reduced biomass production 
rate. (a) Colony size (growth rate) data from Szappanos et al. 28. (b) Parallel fitness 
profiling data from Deutschbauer et al. 30 on YPD. (c) Parallel fitness profiling data from 
Deutschbauer et al. 30 on minimal medium. (d) Competitive fitness data from Breslow et 
al. 30. “Positives” are gene knockouts whose experimentally observed fitness is at least 
2 standard deviations below the mean (z<2). See Suppl. Figure S3 for individual 
panels per method.  
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Figure 3.  The (absence of) correlation between predicted and observed single-mutant 
growth rates for non-essential genes in E. coli for different knockout datasets. (a) 
Growth rate data from Fuhrer et al. 34. (b) Growth rate data from Takeuchi et al. 35. (c) 
Yield data from Takeuchi et al. 35. Note that the ROOM results are calculated with a 
relative tolerance δ=3%; this explains the large number of predicted fitness values at 
0.97, which are indistinguishable from wildtype fitness within this tolerance. 

 

Qualitative prediction of non-essential gene knockout fitness effects for E. coli 
As for the yeast data, the statistically significant rank correlation between predicted biomass 
production rates and the growth rate and yield data of Takeuchi et al. (Suppl. Tables S16-
S17) indicates some ability of the models to predict deleterious fitness effects at least 
qualitatively. We thus again classified non-essential gene knockouts into those with and 
without observed fitness effects based on z-scores. This resulted in a total of between 84 
and 168 non-essential gene knockouts with experimentally observed deleterious effects for 
the different E. coli datasets (Table 2).  
Specificities are above 0.9 for all methods also across the E. coli datasets (Suppl. Tables 
S18-S20). As shown in Table 2, recall is extremely low for the Fuhrer growth rate data 
(<0.12). In contrast, for all methods except ROOM and ccFBA, recall is >0.31 for growth rate 
and >0.4 for yield data from Takeuchi et al., with only minor differences between methods. 
Note, however, that these seemingly good performances have their downside in very low 
precision values around 0.3 (Suppl. Tables S18-S20).  
The ROC curves (Figure 4, Supplementary Figure S4) confirm these impressions: 
predictions for the growth rate data of Fuhrer et al. (Figure 4a) are barely better than random 
guesses at any cutoff. In contrast, predictions by the merged classifier (“Min”) and by all 
MOMA variants perform favorably on the data from Takeuch et al.; they quickly reach recall 
values around 0.3 for growth rate (Figure 4b, Supplementary Figure S4b) and around 0.4 
for yield (Figure 4c, Supplementary Figure S4c), at false positive rates of only a few 
percent. Interestingly, this is not only true for the original (quadratic, qMOMA) and linear 
(lMOMA) variants of MOMA, but especially for the newly introduced scaled MOMA version 
(sqMOMA). FBA and ROOMw reach similar recall values as the MOMA variants, but only 
catch up at higher false positive rates (Figure 4). ROOM and ccFBA perform considerably 
worse on the Takeuchi et al. data, strengthening the above conclusion that the previously 
reported superior performance of ROOM compared to MOMA and FBA 10 cannot be 
replicated on large-scale datasets. 
Thus, the different MOMA versions appear to provide reasonable qualitative predictions for 
deleterious knockout effects on E. coli growth rate and yield. However, even these methods 
do not reach recall values above 0.5, indicating that also for E. coli, about half of deleterious 
knockout effects are unpredictable by current constraint-based methodologies.  
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Table 2. Recall (sensitivity) values for the seven tested methods for the prediction of 
negative fitness effects in three E. coli datasets of metabolic gene knockouts 

 
N 1 FBA lMOMA qMOMA sqMOMA ccFBA ROOM ROOMw 

Fuhrer growth rate 168 0.083 0.083 0.101 0.101 0.036 0.018 0.113 
Takeuchi growth 
rate 

88 0.318 0.318 0.341 0.341 0.114 0.159 0. 352 

Takeuchi yield 84 0.405 0.417 0.440 0.440 0.167 0.214 0.440 
1 Number of positives (knockout strains whose experimentally observed fitness / growth rate / yield is 
at least 2 SD below the wildtype)  

 

 

 

 

 

 
Figure 4. ROC curves for the qualitative prediction of negative fitness effects of non-
essential gene knockouts in E. coli. “Min” uses the minimal fitness prediction for each 
knockout across all seven constraint-based methods, i.e., it designates a knockout as 
deleterious if at least one method predicts a reduced biomass production rate. (a) 
Growth rate data from Fuhrer et al. 2014 34. (b) Growth rate data from Takeuchi et al. 
2014 35. (c) Yield data from Takeuchi et al. 2014 35. “Positives” are gene knockouts 
whose experimentally observed fitness is at least 2 standard deviations below the 
mean (z<2). See Suppl. Figure S4 for individual panels per method.  
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Conclusions 
We found that neither FBA nor any of the six examined alternative constraint-based methods 
is able to predict gene knockout fitness in S. cerevisiae or E. coli quantitatively to any 
reasonable degree of accuracy (Figure 1 and Figure 3; Suppl. Tables S5-S8 and S15-17). 
This sobering conclusion holds not only for methods that assume metabolic optimality (FBA, 
ccFBA), but also for methods specifically developed to predict the deleterious effects of non-
essential metabolic gene knockouts (the different variants of MOMA and ROOM). The 
quantitative estimates provided by the methods tested are not (substantially) better than a 
trivial “model” that predicts the same biomass production rate for all knockouts, as evidenced 
by the negative or very small COD values. 
Predicting epistasis relies on a comparison of estimated double-mutant and single-mutant 
fitness. Thus, predictions for genetic interactions with a metabolic model can only be as good 
as the quantitative predictions for single mutants. Given our above observations, it appears 
no wonder that only a small percentage of genetic interactions can be predicted successfully 
by FBA or MOMA 28.  
FBA with molecular crowding, as implemented in ccFBA, has been shown to predict maximal 
yeast growth rates across different media with an average relative error of only 8% 36. Thus, 
the failure of ccFBA to predict growth rates of yeast knockout mutants is likely not rooted in 
an erroneous wildtype model. Instead, it appears likely that non-essential metabolic gene 
knockouts result in changes in internal metabolite concentrations, which are misinterpreted 
by the cellular signalling systems as the result of external conditions. Accordingly, the 
resulting regulatory responses are misguided, and are thus not predictable by models 
ignorant of regulatory feedbacks.  
It has previously been argued that the physiology of knockout strains has not been optimized 
by natural selection unless sufficient time for evolutionary adaptation is provided, and thus 
that methods such as FBA and ccFBA that rely on the assumption of metabolic optimality 
may not be suited for the prediction of knockout effects 10,12. Our results demonstrate that 
methods such as MOMA and ROOM, which minimize the difference between the flux 
distributions of wildtype and knockout mutant, also do not provide a satisfactory 
approximation to the regulatory feedbacks.  
While quantitative growth predictions for metabolic gene knockouts appear to be outside of 
the scope reachable without explicit models of regulation, Figure 2 and in particular Figure 4 
show that qualitative predictions are indeed possible at least for some knockout mutants. At 
false positive rates of a few percent, around 20% of knockouts in S. cerevisiae with 
deleterious fitness effects and up to 40% of knockouts in E. coli with yield reductions are 
predictable by MOMA; interestingly, this is true both for the original (quadratic) as well as the 
linearized version of MOMA. 
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Supplemental Figures 

 
Figure S1. The (absence of) correlation observed single-mutant growth rates for non-
essential genes in the yeast S. cerevisiae and the corresponding predictions based on the 
NAD-modified iMM904 model. Note that the ROOM results are calculated with a relative 
tolerance δ=3%; this explains the large number of predicted fitness values at 0.97, which are 
indistinguishable from wildtype fitness within this tolerance. 
 

 

 

Figure S2. ROC curves for the qualitative prediction of negative fitness effects of non-
essential gene knockouts in yeast based on the NAD-modified iMM904 model. “Min” uses 
the minimal fitness prediction for each knockout across all seven constraint-based methods. 
“Positives” are gene knockouts whose experimentally observed fitness is at least 2 standard 
deviations below the mean. 
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Figure S3. Individual panels for the S. cerevisiae ROC curves shown in Figure 2.  
(a) Colony size data from Szappanos et al. (2011). 
(b) Parallel fitness profiling data from Deutschbauer et al. (2005) on YPD.  
(c) Parallel fitness profiling data from Deutschbauer et al. (2005) on minimal medium.  
(d) Competitive fitness data from Breslow et al. (2008). 
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Figure S4. Individual panels for the E. coli ROC curves shown in Figure 4.  
(a) Growth rate data from Fuhrer et al. 2014 (2017).  
(b) Growth rate data from Takeuchi et al. 2014 (2014).  
(c) Yield data from Takeuchi et al. 2014 (2014). 
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Supplemental Tables 

Table S1. Medium definition for the simulations for S. cerevisiae Dataset 1 
 
Metabolite Reaction  Uptake rate 
4-aminobenzoate [extracellular] 4-aminobenzoate exchange -2,00E-06 

adenine [extracellular] adenine exchange -3.01 

L-alanine [extracellular] L-alanine exchange -0.36 

L-asparagine [extracellular] L-asparagine exchange -0.36 

L-aspartate [extracellular] L-aspartate exchange -0.36 

biotin [extracellular] biotin exchange -1.42e-06 

L-cysteine [extracellular] L-cysteine exchange -0.36 

iron [extracellular] iron(2+) exchange -1000 

D-glucose [extracellular] D-glucose exchange -22.6 

L-glutamine [extracellular] L-glutamine exchange -0.36 

L-glutamate [extracellular] L-glutamate exchange -3.6 

L-glycine [extracellular] glycine exchange -0.36 

L-isoleucine [extracellular] L-isoleucine exchange -0.36 

myo-inositol [extracellular] myo-inositol exchange -0.11 

potassium [extracellular] potassium exchange -4.44 

L-leucine [extracellular] L-leucine exchange -1.8 

L-methionine [extracellular] L-methionine exchange -0.36 

pyruvate [extracellular] pyruvate exchange -0.75 

nicotinate [extracellular] nicotinate exchange -2,00E-06 

oxygen [extracellular] oxygen exchange -6.3 

L-phenylalanine [extracellular] L-phenylalanine exchange -0.36 

phosphate [extracellular] phosphate exchange -0.89 

(R)-pantothenate [extracellular] (R)-pantothenate exchange -2,00E-04 

L-proline [extracellular] L-proline exchange -0.36 

riboflavin [extracellular] riboflavin exchange -0.00092 

L-serine [extracellular] L-serine exchange -0.36 

sulphate [extracellular] sulphate exchange -100 

thiamine [extracellular] thiamine(1+) exchange -0.0032 

L-threonine [extracellular] L-threonine exchange -0.36 

L-tryptophan [extracellular] L-tryptophan exchange -0.36 

L-tyrosine [extracellular] L-tyrosine exchange -0.36 

uracil [extracellular] uracil exchange -3.36 

L-valine [extracellular] L-valine exchange -0.36 
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Table S2. Medium definition for the simulations for S. cerevisiae Dataset 2, YPD 
 
Metabolite Reaction Uptake rate 
4-aminobenzoate [extracellular] 4-aminobenzoate exchange -2,00E-06 

adenine [extracellular] adenine exchange -3.01 

L-alanine [extracellular] L-alanine exchange -0.36 

L-asparagine [extracellular] L-asparagine exchange -0.36 

L-aspartate [extracellular] L-aspartate exchange -0.36 

biotin [extracellular] biotin exchange -1.42e-06 

L-cysteine [extracellular] L-cysteine exchange -0.36 

iron [extracellular] iron(2+) exchange -1000 

D-glucose [extracellular] D-glucose exchange -22.6 

L-glutamine [extracellular] L-glutamine exchange -0.36 

L-glutamate [extracellular] L-glutamate exchange -3.6 

L-glycine [extracellular] glycine exchange -0.36 

L-isoleucine [extracellular] L-isoleucine exchange -0.36 

myo-inositol [extracellular] myo-inositol exchange -0.11 

potassium [extracellular] potassium exchange -4.44 

L-leucine [extracellular] L-leucine exchange -1.8 

L-methionine [extracellular] L-methionine exchange -0.36 

pyruvate [extracellular] pyruvate exchange -0.75 

nicotinate [extracellular] nicotinate exchange -2,00E-06 

oxygen [extracellular] oxygen exchange -6.3 

L-phenylalanine [extracellular] L-phenylalanine exchange -0.36 

phosphate [extracellular] phosphate exchange -0.89 

(R)-pantothenate [extracellular] (R)-pantothenate exchange -2,00E-04 

L-proline [extracellular] L-proline exchange -0.36 

riboflavin [extracellular] riboflavin exchange -0.00092 

L-serine [extracellular] L-serine exchange -0.36 

sulphate [extracellular] sulphate exchange -100 

thiamine [extracellular] thiamine(1+) exchange -0.0032 

L-threonine [extracellular] L-threonine exchange -0.36 

L-tryptophan [extracellular] L-tryptophan exchange -0.36 

L-tyrosine [extracellular] L-tyrosine exchange -0.36 

uracil [extracellular] uracil exchange -3.36 

L-valine [extracellular] L-valine exchange -0.36 

ammonium [extracellular] ammonium exchange -1000 

sodium [extracellular] sodium exchange -1000 

choline [extracellular] choline exchange -1000 

inosine [extracellular] inosine exchange -1000 

pyridoxine [extracellular] pyridoxine exchange -1000 

L-histidine [extracellular] L-histidine exchange -0.36 

L-arginine [extracellular] L-arginine exchange -0.36 

"L-lysine [extracellular] L-lysine exchange -0.36 
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Table S3. Medium definition for the simulations for E. coli Dataset 1 
 

Metabolite Reaction Uptake 
rate 

glc_DASH_D[e] EX_glc(e) -10 
k[e] EX_k(e) -1000 
thm[e] EX_thm(e) -1000 
na1[e] EX_na1(e) -1000 
ca2[e] EX_ca2(e) -1000 
nh4[e] EX_nh4(e) -1000 
mg2[e] EX_mg2(e) -1000 
fe3[e] EX_fe3(e) -1000 
zn2[e] EX_zn2(e) -1000 
cu2[e] EX_cu2(e) -1000 
mn2[e] EX_mn2(e) -1000 
cobalt2[e] EX_cobalt2(e) -1000 
cl[e] EX_cl(e) -1000 
co2[e] EX_co2(e) -1000 
h[e] EX_h(e)  -1000 
h2o[e] EX_h2o(e) -1000 
so4[e] EX_so4(e) -1000 
pi[e] EX_pi(e) -1000 
o2[e] EX_o2(e) -1000 
mobd[e] EX_mobd(e) -1000 
ni2[e] EX_ni2(e) -1000 
ala_DASH_L[e] EX_ala_L(e) -0.5 
arg_DASH_L[e] EX_arg_L(e) -0.5 
asn_DASH_L[e] EX_asn_L(e) -0.5 
asp_DASH_L[e] EX_asp_L(e) -0.5 
cys_DASH_L[e] EX_cys_L(e) -0.5 
gln_DASH_L[e] EX_gln_L(e) -0.5 
glu_DASH_L[e] EX_glu_L(e) -0.5 
gly[e] EX_gly(e) -0.5 
his_DASH_L[e] EX_his_L(e) -0.5 
ile_DASH_L[e] EX_ile_L(e) -0.5 
leu_DASH_L[e] EX_leu_L(e) -0.5 
lys_DASH_L[e] EX_lys_L(e) -0.5 
met_DASH_L[e] EX_met_L(e) -0.5 
phe_DASH_L[e] EX_phe_L(e) -0.5 
pro_DASH_L[e] EX_pro_L(e) -0.5 
ser_DASH_L[e] EX_ser_L(e) -0.5 
thr_DASH_L[e] EX_thr_L(e) -0.5 
trp_DASH_L[e] EX_trp_L(e) -0.5 
tyr_DASH_L[e] EX_tyr_L(e) -0.5 
val_DASH_L[e] EX_val_L(e) -0.5 
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Table S4. Medium definition for the simulations for E. coli Dataset 2 
 
 
Metabolite Reaction Uptake rate 
cbl1[e] EX_cbl1(e) -0.01 

ser_DASH_D[e] EX_ser_D(e) -0.50 

ade[e] EX_ade(e) -0.50 

ala_DASH_D[e] EX_ala_D(e) -0.50 

ala_DASH_L[e] EX_ala_L(e) -0.50 

arg_DASH_L[e] EX_arg_L(e) -0.50 

asn_DASH_L[e] EX_asn_L(e) -0.50 

asp_DASH_L[e] EX_asp_L(e) -0.50 

btn[e] EX_btn(e) -0.50 

csn[e] EX_csn(e) -0.50 

cys_DASH_D[e] EX_cys_D(e) -0.50 

cys_DASH_L[e] EX_cys_L(e) -0.50 

gln_DASH_L[e] EX_gln_L(e) -0.50 

glu_DASH_L[e] EX_glu_L(e) -0.50 

gly[e] EX_gly(e) -0.50 

gua[e] EX_gua(e) -0.50 

his_DASH_L[e] EX_his_L(e) -0.50 

hom_DASH_L[e] EX_hom_L(e) -0.50 

ile_DASH_L[e] EX_ile_L(e) -0.50 

leu_DASH_L[e] EX_leu_L(e) -0.50 

lys_DASH_L[e] EX_lys_L(e) -0.50 

met_DASH_L[e] EX_met_L(e) -0.50 

nmn[e] EX_nmn(e) -0.50 

phe_DASH_L[e] EX_phe_L(e) -0.50 

pro_DASH_L[e] EX_pro_L(e) -0.50 

pydxn[e] EX_pydxn(e) -0.50 

ser_DASH_L[e] EX_ser_L(e) -0.50 

thm[e] EX_thm(e) -0.50 

thr_DASH_L[e] EX_thr_L(e) -0.50 

thym[e] EX_thym(e) -0.50 

trp_DASH_L[e] EX_trp_L(e) -0.50 

tyr_DASH_L[e] EX_tyr_L(e) -0.50 

ura[e] EX_ura(e) -0.50 

val_DASH_L[e] EX_val_L(e) -0.50 

glc_DASH_D[e] EX_glc(e) -10 

h[e] EX_h(e) -1000 

h2o[e] EX_h2o(e) -1000 

ca2[e] EX_ca2(e) -1000 

cl[e] EX_cl(e) -1000 

co2[e] EX_co2(e) -1000 

cobalt2[e] EX_cobalt2(e) -1000 

cu2[e] EX_cu2(e) -1000 

fe2[e] EX_fe2(e) -1000 

fe3[e] EX_fe3(e) -1000 

k[e] EX_k(e) -1000 

mg2[e] EX_mg2(e) -1000 

mn2[e] EX_mn2(e) -1000 

mobd[e] EX_mobd(e) -1000 

na1[e] EX_na1(e) -1000 

nh4[e] EX_nh4(e) -1000 

ni2[e] EX_ni2(e) -1000 

o2[e] EX_o2(e) -1000 

pi[e] EX_pi(e) -1000 

sel[e] EX_sel(e) -1000 

slnt[e] EX_slnt(e) -1000 

so4[e] EX_so4(e) -1000 

tungs[e] EX_tungs(e) -1000 

zn2[e] EX_zn2(e) -1000 
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Table S5. Residual sum of squares for fitness predictions calculated across all non-essential 
genes in S. cerevisiae. Colony size data from Szappanos et al. (2011). 

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman 
rank 
correlation 
coefficient ρ 
 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 5.435 -0.029 0.278 6.47E-11 42 18 
lMOMA 7.319 -0.385 0.269 2.74E-10 50 23 
qMOMA 13.256 -1.509 0.258 1.57E-09 58 28 
sqMOMA 12.956 -1.452 0.264 6.56E-10 60 34 
ccFBA 5.214 0.013 0.261 1.05E-09 40 15 
ROOM 10.207 -0.932 0.237 3.07E-08 22 10 
ROOMw 17.593 -2.330 0.244 1.23E-08 58 34 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 

 
 
 
 
 
 
Table S6. Residual sum of squares for fitness predictions calculated across all non-essential 
genes in S. cerevisiae. Parallel fitness profiling data from Deutschbauer et al. (2005) on 
YPD. 
 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 64.497 -0.086 0.197 4.43E-08 14 7 
lMOMA 64.404 -0.085 0.294 1.25E-16 59 22 
qMOMA 69.190 -0.165 0.296 6.70E-17 62 18 
sqMOMA 68.204 -0.149 0.263 1.68E-13 68 28 
ccFBA 67.539 -0.138 0.193 8.06E-08 43 16 
ROOM 65.684 -0.106 0.171 2E-06 14 7 
ROOMw 78.468 -0.322 0.199 2.9E-8 53 31 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 
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Table S7. Residual sum of squares for fitness predictions calculated across all non-essential 
genes in S. cerevisiae. Parallel fitness profiling data from Deutschbauer et al. (2005) on 
minimal medium. 

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 68.876 -0.347 0.217 7.85E-09 56 19 
lMOMA 75.900 -0.484 0.219 6.36E-09 64 25 
qMOMA 77.451 -0.514 0.227 1.72E-09 73 32 
sqMOMA 81.421 -0.592 0.220 5.28E-09 74 36 
ccFBA 61.365 -0.200 0.179 2.19E-06 64 23 
ROOM 73.001 -0.427 0.164 1.56E-05 21 5 
ROOMw 81.631 -0.596 0.169 7.65E-06 55 35 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 

 

 

 

 

Table S8. Residual sum of squares for fitness predictions calculated across all non-essential 
genes in S. cerevisiae. Competitive fitness data from Breslow et al. (2008) on minimal 
medium. 

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman 
rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 7.368 -3.175 0.131 0.0021 32 16 
lMOMA 11.510 -5.521 0.138 0.0012 40 19 
qMOMA 14.073 -6.974 0.135 0.0015 45 26 
sqMOMA 17.550 -8.943 0.128 0.0027 46 29 
ccFBA 3.201 -0.814 0.119 0.0052 40 17 
ROOM 5.907 -2.347 0.061 0.15 5 3 
ROOMw 26.807 -14.188 0.104 0.014 40 32 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 
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Table S9. Residual sum of squares for fitness predictions with the NAD-corrected iMM904 
model, calculated across all non-essential genes in S. cerevisiae. Colony size data from 
Szappanos et al. (2011). 

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 4.989 0.013 0.275 3.38E-11 37 13 
lMOMA 5.964 -0.180 0.259 4.16E-10 39 17 
qMOMA 10.657 -1.109 0.247 2.87E-09 48 23 
sqMOMA 7.929 -0.569 0.251 1.63E-09 53 26 
ccFBA 5.071 -0.004 0.224 7.48E-08 48 18 
ROOM 5.963 -0.180 0.289 2.94E-12 24 13 
ROOMw 22.064 -3.366 0.281 1.2E-11 53 34 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 

 
 
 
 
 
 
Table S10. True and false predictions of a deleterious fitness effect in S. cerevisiae by the 
seven constraint-based methods based on the NAD-corrected iMM904 model. Colony size 
data for S. cerevisiae from Szappanos et al. (2011). 
 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.184 0.676 0.972 0.782 0.269 25 12 111 415 
lMOMA 0.184 0.641 0.967 0.778 0.255 25 14 111 413 
qMOMA 0.206 0.583 0.953 0.773 0.244 28 20 108 407 
sqMOMA 0.221 0.566 0.946 0.771 0.244 30 23 106 404 
ccFBA 0.199 0.563 0.951 0.769 0.229 27 21 109 406 
ROOM 0.140 0.792 0.988 0.783 0.271 19 5 117 422 
ROOMw 0.243 0.623 0.953 0.782 0.287 33 20 103 407 
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Table S11. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Colony size data for S. cerevisiae from Szappanos et al. (2011). 

 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.195 0.619 0.960 0.769 0.250 26 16 107 383 
lMOMA 0.218 0.580 0.947 0.765 0.245 29 21 104 378 
qMOMA 0.241 0.552 0.935 0.761 0.244 32 26 101 373 
sqMOMA 0.248 0.550 0.932 0.761 0.247 33 27 100 372 
ccFBA 0.180 0.600 0.960 0.765 0.230 24 16 109 383 
ROOM 0.113 0.682 0.982 0.765 0.207 15 7 118 392 
ROOMw 0.233 0.534 0.932 0.758 0.230 31 27 102 372 
 

 

 

Table S12. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Parallel fitness profiling data for S. cerevisiae from Deutschbauer et al. 
(2005) on YPD. 

 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.067 0.929 0.998 0.761 0.212 13 1 181 567 
lMOMA 0.211 0.695 0.968 0.776 0.293 41 18 153 550 
qMOMA 0.216 0.677 0.965 0.774 0.289 42 20 152 548 
sqMOMA 0.216 0.618 0.954 0.766 0.261 42 26 152 542 
ccFBA 

0.134 0.605 0.970 0.757 0.197 26 17 168 551 
ROOM 

0.062 0.857 0.996 0.759 0.189 12 2 182 566 
ROOMw 

0.155 0.566 0.960 0.755 0.195 30 23 164 545 
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Table S13. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Parallel fitness profiling data from Data for S. cerevisiae from Deutschbauer 
et al. (2005) on minimal medium. 

 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 
0.180 0.714 0.966 0.713 0.250 40 16 182 452 

lMOMA 
0.198 0.688 0.957 0.713 0.250 44 20 178 448 

qMOMA 
0.221 0.671 0.949 0.714 0.257 49 24 173 444 

sqMOMA 
0.221 0.662 0.947 0.713 0.253 49 25 173 443 

ccFBA 
0.185 0.641 0.951 0.704 0.218 41 23 181 445 

ROOM 
0.086 0.905 0.996 0.703 0.221 19 2 203 466 

ROOMw 
0.162 0.655 0.959 0.703 0.210 36 19 186 449 

 

 

 
Table S14. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Competitive fitness data for S. cerevisiae from Breslow et al. (2008) on 
minimal medium. 

 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.115 0.469 0.960 0.760 0.136 15 17 115 403 
lMOMA 0.146 0.475 0.950 0.760 0.157 19 21 111 399 
qMOMA 0.154 0.444 0.940 0.755 0.146 20 25 110 395 
sqMOMA 0.154 0.435 0.938 0.753 0.141 20 26 110 394 
ccFBA 0.131 0.425 0.945 0.753 0.124 17 23 113 397 
ROOM 0.031 0.800 0.998 0.769 0.127 4 1 126 419 
ROOMw 

0.146 0.475 0.950 0.760 0.157 19 21 111 399 
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Table S15. Residual sum of squares for fitness predictions calculated across all non-
essential genes in E. coli. Growth rate data for E. coli from Fuhrer et al. (2017). 
  

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman 
rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 14.834 -0.475 0.057 0.062 69 24 
lMOMA 19.342 -0.923 0.045 0.15 77 32 
qMOMA 26.388 -1.624 0.067 0.028 89 42 
sqMOMA 41.563 -3.133 0.067 0.028 88 41 
ccFBA 13.619 -0.354 0.052 0.092 47 15 
ROOM 16.875 -0.678 -0.015 0.63 34 13 
ROOMw 32.181 -2.200 0.079 0.0095 99 47 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 

 

 
 
 
 
 
Table S16. Residual sum of squares for fitness predictions calculated across all non-
essential genes in E. coli. Growth rate data for E. coli from Takeuchi et al. (2014).  

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman 
rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 7.072 0.105 0.218 4.13543E-14 85 28 
lMOMA 8.071 -0.022 0.190 5.50213E-11 95 40 
qMOMA 14.782 -0.871 0.183 2.41046E-10 117 48 
sqMOMA 32.506 -3.115 0.173 2.376E-09 113 50 
ccFBA 8.198 -0.038 0.067 0.021904913 44 15 
ROOM 7.611 0.037 0.149 3.08291E-07 37 12 
ROOMw 26.426 -2.345 0.154 1.04315E-07 120 58 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 
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Table S17. Residual sum of squares for fitness predictions calculated across all non-
essential genes in E. coli. Yield data for E. coli from Takeuchi et al. (2014). 

 

Method Residual 
sum of 
squares 
(RSS)1 

Coefficient of 
determination 

Spearman 
rank 
correlation 
coefficient ρ 

 

P Deleterious 
knockout 
fitness 
predictions 

Distinct 
predicted 
fitness 
values for 
deleterious 
knockouts 

FBA 5.988 0.136 0.249 4.2E-18 85 28 
lMOMA 7.347 -0.060 0.238 1.2E-16 95 40 
qMOMA 14.396 -1.077 0.222 1.6E-14 117 48 
sqMOMA 32.774 -3.728 0.229 2.1E-15 113 50 
ccFBA 6.824 0.016 0.070 0.016 44 15 
ROOM 6.498 0.063 0.178 7.6E-10 37 12 
ROOMw 25.869 -2.732 0.207 7.5E-13 120 58 

1 Observed “fitness” values >0.9985 were set to 1.0 for all methods except ROOM; for 
ROOM, values >0.955 were set to 1.0 (see “Numerical calculations” in Methods). 

 

 

 

Table S18. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Growth rate data from Fuhrer et al. (2017).  
 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.083 0.203 0.939 0.803 0.032 14 55 154 840 

lMOMA 0.083 0.182 0.930 0.796 0.018 14 63 154 832 

qMOMA 0.101 0.191 0.920 0.790 0.027 17 72 151 823 

sqMOMA 0.101 0.193 0.921 0.791 0.029 17 71 151 824 

ccFBA 0.036 0.128 0.954 0.809 -0.018 6 41 162 854 

ROOM 0.018 0.088 0.965 0.816 -0.035 3 31 165 864 

ROOMw 0.113 0.192 0.911 0.785 0.030 19 80 149 815 
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Table S19. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Growth rate data from Takeuchi et al. (2014). 
  

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.318 0.329 0.948 0.900 0.270 28 57 60 1030 

lMOMA 0.318 0.295 0.938 0.892 0.248 28 67 60 1020 

qMOMA 0.341 0.256 0.920 0.877 0.229 30 87 58 1000 

sqMOMA 0.341 0.265 0.924 0.880 0.236 30 83 58 1004 

ccFBA 0.114 0.227 0.969 0.905 0.114 10 34 78 1053 

ROOM 0.159 0.378 0.979 0.917 0.208 14 23 74 1064 

ROOMw 0.352 0.258 0.918 0.876 0.235 31 89 57 998 

 
 

 

 

 

 

 
Table S20. True and false predictions of a deleterious fitness effect by the seven constraint-
based methods. Yield data from Takeuchi et al. (2014). 

 

Method Recall Precision Specificity Accuracy Matthews’ 
correlation 
coefficient 

TP  FP FN   TN 

FBA 0.405 0.400 0.953 0.914 0.356 34 51 50 1040 

lMOMA 0.417 0.368 0.945 0.907 0.342 35 60 49 1031 

qMOMA 0.440 0.316 0.927 0.892 0.316 37 80 47 1011 

sqMOMA 0.440 0.327 0.930 0.895 0.324 37 76 47 1015 

ccFBA 0.167 0.318 0.973 0.915 0.189 14 30 70 1061 

ROOM 0.214 0.486 0.983 0.928 0.290 18 19 66 1072 

ROOMw 0.440 0.308 0.924 0.889 0.310 37 83 47 1008 
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