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Summary

The hard-core Yukawa potential has been widely used to describe the effective

interaction between like-charged colloids. The phase diagram of bulk hard-core

Yukawa systems is well studied. It shows the emergence of three different phases,

namely body-cantered cubic (BCC) crystal, face-centered cubic (FCC) crystal and

fluid, and lines of first-order transitions BCC-fluid, FCC-fluid and BCC-FCC that

intersect in a triple point

In this work, we investigate the phase behavior of hard-core Yukawa crystals

and fluid in confinement via extensive molecular dynamics (MD) simulations in

the NVT ensemble, i.e., with constant number of particles N, in fixed volume V ,

and at constant temperature T . We have studied these systems in two different

type of confinements. First we have studied the behavior of hard-core Yukawa

systems in presence of pair of short-range structureless flat hard walls and then

the same process has been performed to observe the effect of a pair of relatively

long-range flat charged walls on the hard-core Yukawa systems.

The FCC(111) crystal for different densities from the coexistence to slightly

higher than coexistence density is investigated at the confinement of a pair of

structureless flat hard walls. In this part due to the long-range interaction of

hard-core Yukawa particles and short-range interaction of flat hard walls the

multiple time step scheme for MD simulation is employed. We have observed

that the FCC crystals in confinement of flat hard walls are stable. By using a

thermodynamic integration scheme, we were able to calculate the free energy

contribution of the system to form a FCC-wall interface. We have observed that

the calculated values for FCC-wall interfacial free energies are negative and this

negativity is increasing by increment of the density. This negativity means that

the hard walls are attractive for the bulk particles.

The fluids at coexistence with FCC and densities lower than coexistence

density were examined in presence of the flat hard walls. These density profile
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analysis of these systems shows that some layers are forming in the vicinity of

the flat hard walls. An analysis of the structure shows the formation of hexagonal

layers (pre-freezing) at coexistence and slightly below the coexistence density.

Moreover, calculation of the 2D packing fraction for the first formed layer close

to the flat wall confirms that their density is close to the density of the first

layers in FCC crystals. The free energy of the fluid-wall interface is calculated via

thermodynamic integration scheme which shows the negative values. However,

the values for the systems with phase transitions are not reliable.

The flat hard wall confinement was also examined on the BCC(111) crystals

at coexistence and densities higher than the coexistence density. Our simulations

and structure analysis show that a confined configuration with a BCC structure

is divided into three regions. First one can observe the formation of hexagonal

layers in the vicinity of the walls. Next, we see an area which consists of melted

particles from the BCC crystal. The width of this region is decreasing by an

increment of density. And the last part is a stable BCC(111) crystal which is

located in the middle of the systems.

By investigating the behavior of the fluid which is at coexistence with the

BCC for coexistence density and some low dense systems, we observe that same

as FCC-fluid coexistence, the pre-freezing happens even for densities lower than

coexistence. Moreover, a thermodynamic integration scheme is employed to

calculate the fluid-wall interfacial free energy for systems at sufficiently low

densities where no pre-freezing is observed. The calculated values are negative.

The next confinement is studied by inserting a pair of flat charged walls into a

system with FCC(111) structure. As in the hard wall case, the crystals are stable;

however, the calculated FCC-wall interfacial free energies are positive, which

mean that the charged walls are not attractive for the bulk particles.

The confinement behavior of fluid hard-core Yukawa system at coexistence

with FCC for coexistence and densities lower than coexistence at the presence

of flat charged walls are studied. The structure analysis shows that the formed

layers in the vicinity of the charged walls are just amorphous layers and there is

no evidence for a phase transition. We have calculated the fluid-wall interfacial

free energies, and it turned out that they are positive.

In addition, we have investigated the BCC(111) crystal in presence of flat

charged walls. Our simulation and structure analysis show that some amorphous

layers are formed in the vicinity of the charged walls. Also, between these layers

and bulk BCC, there is a fluid area which is made by melted BCC particles.

For the fluid case in presence of charged walls, there is no evidence of pre-

freezing and the layers which are formed in the vicinity of the charged walls are

just amorphous layers. By performing thermodynamic integration scheme, we

were able to calculate the fluid-wall interfacial free energies which are positive.

These values are growing with respect to the densities but will saturate at
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densities close to the coexistence.

The results of this work open the door for targeted experimental and further

theoretical studies on charged colloids in confinement.
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1 Introduction

The phase behavior of a system of particles can be different from the one in

confinement. For the systems confined between a pair of parallel walls, the

competition between particle-particle and particle-wall interaction leads to a rich

variety of phase transitions. Specifically, freezing and melting phenomena in

confined geometries have been addressed in a large number of studies.

If we consider a fluid which is confined between a pair of flat walls, the

interaction between fluid and wall can lead to formation of dense layers (higher

than the bulk density) in the vicinity of the walls. These layers can be amor-

phous layers. Fluid systems such as hard-sphere fluids show a layering near

the hard walls and exhibit pronounced oscillation in number density profiles

(Courtemanche and van Swol, 1992; R. Roth and S. Dietrich, 2000; Snook and

Henderson, 1978).

Moreover, the formed layers in the vicinity of the wall can have specific

structure. In other words, a transition between fluid to the crystalline layer can

happen in the vicinity of the walls. These systems at flat hard walls confinement

experience freezing transition and a formation of the crystalline layer near the

walls ( Binder (1992), Kurt Binder, Horbach, Vink, and De Virgiliis (2008), Dijkstra

(2004), Fortini and Dijkstra (2006), and Schmidt and Löwen (1997)). These studies

show that the freezing of the fluid is happening slightly below the freezing point

(pre-freezing).

Also by applying confinement on a fluid system, it is possible that freezing

point gets below its actual value. This phenomenon which is called capillary

crystallization or capillary freezing is reported by Kegel (2001) by studying hard

spheres which are confined between hard walls. Laird and Davidchack, 2007

showed that for the confined hard sphere fluid between a pair of hard walls, the

pre-freezing transition is independent of the distance between the hard walls and

the formation of crystalline layers for the densities below the coexistence density,
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i.e., below the bulk freezing transition.

Most of colloidal systems are studied as charged colloids via experiments. In

contrast to the hard-sphere case, in charged colloids one can tune the particle-

particle interaction via changing their charges. In addition, if we confine a system

of charged colloids between flat hard walls due to the competition between

short-range wall-particle interaction and long-range particle-particle interaction

it is possible to observe the layering and freezing phenomena well below the

coexistence and more pronounced than the hard-sphere case. Experimental

studies of the phase behavior of charged colloids in the bulk show a first order

phase transition from a fluid to a body-centered cubic (BCC) crystal (Monovoukas

and Gast (1989)). Moreover, theoretical studies on charged colloids in slit pore

geometry (Gallardo, Grandner, Almarza, and Klapp (2012) and Grandner and

Klapp (2008)) as well as on the phase behavior of crystalline bilayers (Messina and

Hartmut Löwen (2003)) show a significant crystalline order in confined charged

colloids.

Interactions between charged colloids are well described via the hard-core

Yukawa model. In this work, we consider hard-core Yukawa system (El Azhar,

Baus, Ryckaert, and Meijer (2000) and Meijer and El Azhar (1997)) which its

phase diagram has been extensively studied by El Azhar, Baus, Ryckaert, and

Meijer (2000) and Hynninen and Dijkstra (2003) and consists of FCC, BCC, and

fluid phases. However, the phase behavior of the charged colloids at the bulk is

well studied, but their response to the confinement is which is not considered

widely via experiments and simulations.

In this work, we confined the charged colloids which are interacting via

hard-core Yukawa potential between a pair of flat hard walls as well as a pair of

charged walls, separately. In the case of hard wall confinement, we are dealing

with two different types of interactions as short-range particle-wall and long-

range particle-particle interactions. The competition between these two types of

interaction can lead to a variety of interesting phenomena. From previous studies

on hard-sphere confined between flat hard walls, we can expect the formation of

high-density layers in the vicinity of the walls. These layers can be amorphous or

hexagonal layers. Now the first question is if we confine the hard-core Yukawa

states (BCC, FCC, fluids) by flat hard walls (charged and hard walls), do we

expect to observe the same behavior at the walls? And what would be the

structure of possible formed layers? If we observe a transition to a hexagonal

layer in the vicinity of the walls, then how would be the interface between these

layers and BCC crystal?

Moreover, previous studies on confined hard sphere particles indicate that the

pre-freezing has happened slightly below the coexistence. The next important

question is this can be the same for the hard-core Yukawa system? And if yes,

how this pre-freezing is comparable to the one in hard-sphere case? Also, we
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understand that BCC crystal is not a stable state under confinement. So, What

are the possible structural change within this phase?

In the following, to answer these questions, we employ Molecular Dynamics

(MD) simulations in the NVT ensemble. Moreover, the interfacial free energy of

fluid-wall and crystal-wall have been calculated via performing the thermody-

namic integration scheme introduced by Benjamin and Horbach (2012).

The rest of this thesis is organized as follows: After the introduction (chapter

2), colloidal suspension and charged colloids are briefly introduced and we

discuss how their interaction can be described via point and hard-core Yukawa

potentials. We also describe how one can reach the hard-core Yukawa phase

diagram from the one for point Yukawa system. Moreover a brief description

about wetting, capillary freezing and pre-freezing phenomena is given. Also, in

this chapter, we discuss the phase behavior of hard-sphere and charged colloids

in confinement.

Then, in chapter 3 we introduce the computational scheme that we have used

in this study. In this chapter, we introduce the model which is used to describe

the hard-core Yukawa interaction. Moreover, a description of the different types

of confinements such as hard and charged walls and their computational models

are given. Besides, we briefly described the fundamentals of MD simulations and

multiple time step schemes.

Chapter 4 gives an introduction on the thermodynamic integration schemes.

In this chapter, we extensively discuss different thermodynamic integration

methods for computing free energy differences.

An extensive description of the local bond order parameters which have been

used to identify the structure of the particles in our studies is given in chapter 5.

In this chapter, we introduce several schemes to calculate the local bond order

parameters, and by combining with machine learning method, we give some

criteria to identify the specific orders in a system of particles.

By employing the methods mentioned above, chapter 6 presents the results

and findings of this study. These results can be divided into three main categories:

1. Hard wall confinement

• FCC-fluid coexistence, FCC/fluid-wall interfacial free energy, structure

analysis

• BCC-fluid coexistence, BCC/fluid-wall interfacial free energy, structure

analysis

2. charged wall confinement

• FCC-fluid coexistence, FCC/fluid-wall interfacial free energy, structure

analysis
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• BCC-fluid coexistence, BCC/fluid-wall interfacial free energy, structure

analysis

3. Crystal-fluid interfaces

• FCC-fluid interfacial free energy

• BCC-fluid interfacial free energy
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2 Charged Colloids And

Confinement

The screened Coulomb or Yukawa potential is widely used in elementary particles

physics, solid state physics, and soft matter to describe effective interactions

between charged particles. In this work, we use Yukawa potentials as models for

charged colloidal particles. These models are presented in the following.

2.1 Colloidal Suspension

A colloidal suspension is a system of solid particles with size in the range between

1nm and 10µm which are suspended in a solvent. Two criteria define the lower

and upper limits of the size of the colloidal particles. The lower limit is due to

the requirement that the size of the colloidal particles should be considerably

larger than that of the solvent. On the other hand, a colloidal particle behaves

like a large molecule, and to this end, it needs to exhibit a robust thermal motion

and the thermal motion when it is crucial that thermal displacement is a function

of particle size and for the colloidal particles this size is limited to 10µm (Dhont

(1996)). By considering the Stokes-Einstein equation for colloidal particles, the

diffusion coefficient D can be described via D = kBT
6⇡⌘a in which T is temperature, ⌘

represents the dynamic viscosity and a is the radius of the particle. If we consider

the upper limit of the size for colloidal particles (a = 10µm) , kBT = 300K,

and ⌘ = 8.9 ⇥ 10−4 Pa s then the value of the diffusion coefficient regarding

their thermal motion can be estimated as D ⇡ 4.94 ⇥ 10−15m2/s. This value for

diffusion coefficient means that the colloidal particles with size of a = 10µm can

move around 70nm in one second, and it would take ⇡ 142 s for such a colloidal

particle to move by its own size. So, if we consider a particle with the size larger

than the upper limit, its movement is too slow, and sedimentation due to the
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gravitational field is always an issue for large colloidal particles.

2.2 Charged Colloids

One can categorize all the charged species in the system in terms of the primitive

model as macroions, counterions, and coions. The charge of these species add

up to zero due to charge neutrality. For instance, in NaCl, a Cl anion is the

counterion for a Na cation. Macroions such as the charged colloids in a colloidal

suspension are very large ions. Often, one can describe the effective interactions

between like-charged colloidal particles in terms of a repulsive Yukawa potential,

integrating out the degrees of freedom of the counter- and coions in the solvent

in which the colloids are suppressed (Ivlev, LÃ, Morfill, Royall, et al. (2012) and

Russel, Saville, and Schowalter (1991)).

By inserting the colloids in a fluid, one can always expect the making of

charges. The degree of this charge directly depends on the medium in which

colloids are immersed. One can describe the relationship between the electrostatic

potential � and the charge density ⇢ of a system with dielectric constant ✏ via

the Poisson equation as

r2� = −

⇢

✏
. (2.1)

The charge density of the colloidal system ⇢ can be calculated via

⇢ =
X

i

zieni (2.2)

where the sum is over different charge species, e is the elementary charge, ni

the number density of species i and zi is the valence of species i. To solve the

Poisson equation (2.1), we need to calculate the charge density ⇢ associated with

the electrostatic potential �, and to this end, we need to know the number of

ions. One can calculate the number of ions ni as

ni = n0 exp
✓

−ezi�

kT

◆

(2.3)

in which n0 is the number density of species i when the electrostatic potential

� = 0. So we can re-write the charge density ⇢ as

⇢ =
X

i

zieni0 exp
✓

−ezi�

kT

◆

. (2.4)

Now by plugging ⇢ as given by equation (2.4 ) in equation (2.1) we obtain the

following equation

r2� = −

e

✏

X

i

zini0 exp
✓

−ezi�

kT

◆

. (2.5)
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This equation is known as the Poisson-Boltzmann equation.

As a nonlinear differential equation, the Poisson-Boltzmann equation does

not have any general analytic solution.

Hückel and Debye (1923) considered the linearized Poisson-Boltzmann equa-

tion that can be solved analytically. In a dilute solution and in a position far from

the macroions one can write the Debye-Hückel approximation as
�

�

�

�

e�

kT

�

�

�

�

⌧ 1 . (2.6)

With equation (2.6), the charge density as given by equation (2.4), can be expanded

as (Pistoor (1991) and Sharma (2012))

⇢ =
X

i

zieni0 exp
✓

−zie�

kT

◆

(2.7)

=
X

i

zieni0

✓

1 −

zie�

kT

◆

=
X

i

zieni0 −
X

i

 

z2
ie

2ni0�

kT

!

= −

X

i

 

z2
ie

2ni0�

kT

!

in which
P

i zieni0 = 0 due to the charge neutrality. Using equation (2.7) we

obtain the linearized Poisson-Boltzmann equation,

r2� =

 

e2

✏kT

X

i

z2
ini0

!

� (2.8)

= 2�

with

2 =
e2

✏kT

X

i

z2
ini0 . (2.9)

The inverse of  has the unit of length and is defined as

−1 =

 

e2

✏kT

X

i

z2
ini0

!

−1/2

. (2.10)

It is called Debye or screening length.

So equation (2.5) can be solved as

� = �0 exp (−r) (2.11)

in which � ! �0 when r ! 0.
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in which rij defines the distance between particles i and j and a = ⇢−1/3 is the

inter-particle distance where ⇢ denotes the number density of the system and

� = a. The prefactor U0 describes the strength of the interaction and is defined

as

U0 =
(Ze)2

✏a
(2.15)

where Ze is the charge of the like-charged point particles.

Figure 2.1 shows the phase diagram of the point Yukawa system as proposed

by Robbins, Kremer, and Grest (1988). This phase diagram shows kBT/Ua as a

function of � and consist of the points that they have studied. The phase diagram

indicates that for low values of � one can observe the body-centered cubic (BCC)

crystal (square points) while for high values of � there is a transition to a face-

centered cubic (FCC) crystal (triangles). However, at high temperature they

have observed a transition from BCC to fluid phase (circles). While Alexander

(1978) believed that below the melting point the BCC crystal should always be

stable when the transition is weakly first order, Robbins, Kremer, and Grest

(1988) showed that with increasing temperature the range of stability for BCC is

increasing, but the BCC phase is not stable for any large .

Hamaguchi, Farouki, and Dubin (1997) performed a variety of molecular

dynamics (MD) and Monte Carlo (MC) simulations on screened Coulomb systems

for both weak (Hamaguchi, Farouki, and Dubin (1996)) and strong screening

regimes. They were able to calculate the temperature for both solid-fluid and

solid-solid transition as a function of the screening parameter. The phase diagram

that they have provided (figure 2.2) also covers the triple point of Yukawa systems.

They have considered a system of point Yukawa particles and thus the potential

between a pair of particles is given by

�(r) =
Q2

4⇡"r
exp(−Dr) (2.16)

in which r stands for the distance between two particles and �D = −1
D is the

Debye length. In this form of the Yukawa potential one can characterize the

thermodynamics of them by defining the two dimensionless parameters

 = a/�D (2.17)

and

� =
Q2

4⇡"0akT
(2.18)

where a =
�3

4⇡n
�1/3

is the mean inter-particle distance and n stands for the

number density of the system. Moreover, � represents a ratio of the unscreened

Coulomb potential to the kinetic energy per particle. In their studies, they have

presented the energy ratio � and normalized temperature ⌧ as a function of
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1. Hard-core repulsion interaction

2. Screened Coulomb repulsion

3. Van der Waals attraction

In most of situations the magnitude of the Van der Waals attraction is negligible

in comparison to the other interactions. Then we can conclude the interaction

with hard-core and screened Coulomb parts which is known as repulsive hard-

core Yukawa interaction. So basically, the hard-core Yukawa system consists of

hard-core particles which interact via a Yukawa potential.

Meijer and El Azhar (1997) proposed a method in which by using the Clausius-

Clapeyron technique (Kofke (1993)) and numerical methods (Bennett (1976)) to

calculate the free energy difference they were able to determine the coexistence

line. The Clausius-Clapeyron technique is a method to identifying phase transi-

tion between two phases. If we consider a pressure-temperature (P-T) plane with

two phases and coexistence line is separating these two phases then Clausius-

Clapeyron relation can derive the slope of the tangent of the coexistence line.

This slope is defined by dP
dT = �S

�V , where �S is entropy change and �V denotes

the volume change. To calculate the free energy difference, Meijer and El Azhar

(1997) needed to know the free energy difference of the two coexistence points.

These two points are at an initial state near the coexistence line. They have

calculated the free energy difference of the coexisting phases near the coexis-

tence line. As a result, they have presented some points near the coexistence

line which made them able to predict the coexistence with high accuracy. The

Yukawa system consists of solid-fluid and solid-solid transition, and they decided

to use it as a general case for the calculation of coexistence line via computer

simulations. Moreover, they have considered this fact that the point Yukawa

model is neglecting the size of colloidal particles and due to this issue, they have

considered the modified Yukawa system with hard-core particles of diameter

� which interact via Yukawa potential. Their modified potential is defined as

follows

�U =

8
<

:

1 for r < �

�"
exp[−�(r/�−1)]

r/�
for r > �

(2.21)

in which " is the interaction strength and � = 1/kBT .

Their simulations with � = 5, led to a phase diagram of the hard-core

Yukawa system (figure 2.3) which proposed two triple points with FCC-BCC-

fluid phases. This extra triple point is the main difference between this model

and the point Yukawa model which is due to the fact that for the lower value of

�� the phase diagram of the hard-core Yukawa system is significantly different

regarding the point Yukawa system.
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of �", it is possible to map the point Yukawa to hard-core Yukawa systems. By

keeping the contact value �" as a fixed parameter, in the hard-core Yukawa, �✏

and � are independent of each other so it indicates that they are independent

of packing fraction ⌘ = (⇡/6)�N/V . In other words, at coexistence apart from

the equal chemical potential µ and pressure p we need to consider equal �" for

different values of the packing fraction ⌘.

To obtain this phase diagram, Hynninen and Dijkstra (2003) have introduced a

mapping scheme between point Yukawa (Hamaguchi, Farouki, and Dubin (1997))

and the hard-core Yukawa systems. In this case, there would be different units in

the case of hard-core Yukawa model to the point Yukawa one. For example, for

the point Yukawa model we consider the inter-particle distance a = n−1/3 as the

length scale, in which n corresponds to the number density. By considering a as

the length scale one can rewrite the point Yukawa potential as follows

�u (r) = �U0
exp (−a 0r/a)

r/a
, (2.23)

where a 0 = Ka is the inverse of screening length and �U0 is the constant

potential prefactor. If we consider that equations (2.21) and ( 2.23) are equal, then

exp(�)��" = �U0a (2.24)

and by considering a =
⇣

6⌘
⇡

⌘

−1/3
�, one can rewrite (2.24) as

�U0 = exp(�)��"
✓

6⌘
⇡

◆1/3

(2.25)

and also extract the equation for a 0

a 0 = �

✓

6⌘
⇡

◆

−1/3

. (2.26)

So one can use equations (2.24) and (2.26) to map the point Yukawa phase

diagram to the hard-core Yukawa one and vice versa. Moreover, Hynninen

and Dijkstra (2003) provided a couple of fit functions for the phase boundaries

of fluid-BCC and BCC-FCC. The fit function for the BCC-fluid boundary for

0 6 a 0 6 12 is given by

ln (�U0) = 4.67 − 0.417a 0 + 0.1329a 02
− 0.0104a 03 (2.27)

+ 4.343 ⇥ 10−4a 04
− 6.924 ⇥ 10−6a 05

while the phase boundary of BCC-FCC for 1.85 6 a 0 6 6.8 is

ln (�U0) = 97.65106 − 150.469699a 0 + 106.626405a 02

− 41.67136a 03 + 9.639931a 04
− 1.3150249a 05 (2.28)

+ 0.09784811a 06
− 0.00306396a 07 .
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assuming to have an ordered structure, e.g. hexagonal order near the hard wall

is not unusual, however, they have seen no evidence for such an arrangement.

Later on, studies on wetting phenomena in the hard sphere systems at con-

finement showed some fluctuation in density profiles. These fluctuations are

considered as freezing and melting layers for the fluid-solid interface (Courte-

manche and van Swol (1992)). During these studies, it has been observed that

by decreasing the pressure of the systems the number of formed layers close

to the walls are reducing and for low enough pressure all the layers will melt.

Moreover, a series of molecular dynamics (MD) simulations have performed

on the hard sphere systems which were in contact with a single smooth hard

wall (Courtemanche, Pasmore, and Van Swol (1993)). This type of wall was

coupled to the system in one dimension and acted like a piston to keep the

pressure constant. The density profiles of this study showed the observation of

crystal layers next to the wall. These layers are formed at the pressure under

the bulk crystallization pressure which made this work as the first study which

demonstrates pre-freezing for solid-fluid simulations.

Also, the phase diagram for a range of densities of the hard spheres which

are confined between parallel plates has been calculated by Schmidt and Löwen

(1997). They performed a Monte Carlo (MC) simulation on a system of hard

sphere particles which were confined by a pair of parallel glass plates to study

the phase diagram of this hard sphere system in confinement. By changing the

separation of two plates from the hard sphere diameter to infinity, they were able

to study the systems from 2D limits of hard disks to the 3D bulk hard sphere. By

providing the phase diagram for the confined hard sphere, they have observed

very weak and very strong first-order transition between crystals as well as a

freezing transition for the confined hard sphere fluid. Huisman, Peters, et al.

(1997) have used X-ray scattering experiments to study liquid gallium metal in

contact with a solid wall (diamond) with (111) orientation. Their results (density

profile) indicate a pronounced layering of the liquid near the wall, which this

layering is suppressed by increasing the distance of fluid from the wall. They

have mentioned that the liquid near this solid wall appears to be a solid-like

structure mostly at lower temperatures.

Dijkstra (2004) employed Monte Carlo (MC) simulations on hard sphere fluids

which were confined by two flat hard walls. The density profiles in this work

show the formation of a crystalline layer near the hard walls. Moreover, the study

indicates that the thickness of this crystalline layers is growing logarithmically by

the difference between fluid and bulk densities. Later on, Fortini and Dijkstra

(2006) considered a system of hard spheres confined between two parallel hard

plates. For this system, they were able to calculate the equilibrium phase diagram.

By changing the distance between two plates, they have shown that it is possible

to observe the freezing and melting transition and they have confirmed that by
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inducing the hard plates in a system of bulk hard spheres, the system will form

a (111) crystalline layer by increasing of the entropy.

Carbajal-Tinoco, Castro-Román, and Arauz-Lara (1996) studied the static

properties of colloidal suspensions which were confined by a pair of glass plates.

They have used the digital video microscopy and have calculated the statistic

properties for a wide range of colloidal particles concentration in the liquid

phase. Moreover, by considering a pair potential which they derived from the

Ornstein-Zernike equation Hansen and McDonald (1990), they found out that

the wall not only prevents the particles move to the plane but also it may modify

the particles move through the homogeneous system.

Grandner and Klapp (2008) performed Monte Carlo (MC) simulations in the

NPT ensemble to study the phase behavior of charged colloids in confinement

and investigate freezing. They considered macroions which are interacting via

DLVO interactions. They showed that the freezing for this confined system occurs

below the bulk freezing point. Moreover, Puertas, de las Nieves, and Cuetos (2015)

studied the phase behavior of charged colloids which are confined by a pair of

parallel planes by performing Monte Carlo simulations in the canonical ensemble.

They showed that for large charges and strong confinement the internal energy

of the confined charged colloids is decreasing. Moreover, they showed that the

repulsion is less strong in comparison with charged colloids at bulk.

Here, in this work, we study the phase behavior of charged colloids which

are described via hard-core Yukawa potential in confinement by performing

molecular dynamics (MD) simulations in the NVT ensemble. In the following,

we will explain the method and the results of these simulations in detail.
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3 Computer Simulation Details

In this chapter, we will introduce the simulation techniques, i.e. the numerical

algorithms, analysis methods, etc. that we have used in our studies. Moreover,

the potential used for particle-particle as well as particle-wall interactions will be

discussed in detail. In addition, we give an introduction on molecular dynamics

(MD) simulation, NVT ensemble and the corresponding thermostat that we

have used, and the methods for improving the simulation performance such as

multiple time-step schemes and neighbor lists.

3.1 Modeling Hard-Core Yukawa Interaction

In chapter 2, we have already mentioned that the interaction between charged

colloids can be described via a hard-core Yukawa potential as described by

eq. (2.21) (Hynninen and Dijkstra, 2003). This potential consists of a Yukawa

interaction for r > � and hard-core interaction for r < �, in which r is the distance

between each pair of particles and � is the diameter of a hard-core particle. For

convenience, we have replaced the hard-core interaction by an inverse power-

law potential / (1/r)256. So the interactions between charged colloids in our

simulation are given by

�u (r) = �"

✓

exp [−� (r/�− 1)]
r/�

+
⇣�

r

⌘256
◆

(3.1)

with  the screening parameter, � the diameter of hard-core particles, � = 1/kBT

the inverse thermal energy and " as energy of a pair of particles at contact.

This change from hard-core interaction to the inverse power-law potential

is chosen such that it does not have a significant effect on the structure and

behavior of hard-core Yukawa systems in the bulk. Benjamin and Horbach (2015)

show that the phase behavior and the free energy in FCC-fluid interface with
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inverse power-law potential (/ (1
r )

256) is very similar to the one for hard spheres.

Figure 3.1 shows the comparison between the potentials which are introduced via

equations (2.21) and (3.1). As already discussed in chapter 2, the phase diagram

Figure 3.1: shows the comparison of the potential Eq. (3.1) with the hard-core Yukawa potential
of Eq. (2.21).

of hard-core Yukawa systems are extensively studied by Hynninen and Dijkstra

(2003). Here, we use equations (2.27) and (2.28) to produce the phase diagram

of the systems that we want to study. In our study, we consider BCC, FCC and

fluid phases around BCC-fluid and FCC-fluid coexistence states.

Figure 3.2 shows the phase diagram of hard-core Yukawa systems as a function

of packing fraction ⌘ at the contact value �" = 81. This phase diagram includes

BCC, FCC, and fluid phases. Here, the coexistence boundaries are shown as

dashed lines. In the inset of figure 3.2, the densities are displayed that we consider

in the following for the fluid and BCC states at 1/� = 0.486 (see chapter 6).

3.2 Modeling Hard Flat Walls Interaction

An inverse power-law potential also models the interaction between hard-core

Yukawa particles and the hard flat walls. However, this potential is acting in

z-direction (/ (1/z)256) in which z indicates the distance between a particle and

the flat wall. Since we have placed these parallel walls at z = 0 and z = Lz, the

interaction between the hard flat wall and each hard-core Yukawa particle can be

written as

uh
p−fw = "

"

⇣�

z

⌘256
+

✓

�

Lz − z

◆256
#

(3.2)
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Figure 3.2: shows the phase diagram of the Hard-core Yukawa system in bulk which consists
of FCC, BCC and fluid phases. This phase diagram is calculated by equations (2.27) and (2.28)
as proposed by Hynninen and Dijkstra (2003).

Here, for the sake of simplicity, the parameter ✏ is set to one. The potential is

cut-off at zcut = 2.0�, and shifted to zero at zcut.

3.3 Modeling Charged Walls Interactions

The second type of confinement that we consider in this study is a pair of parallel

charged walls. This wall is similar to the hard-core Yukawa small-big particle

interaction, as introduced by Louis, Allahyarov, Löwen, and Roth (2002) and later

on modified by Karanikas, Dzubiella, Moncho-Jordá, and Louis (2008). Hence

the wall-particle interactions are given by

ufw =

8
<

:

1 for r < �
2

" exp
⇥

−
�

z− �
2

�⇤

for r > �
2 .

(3.3)

As for the hard wall case, we have used an inverse power-law term to model the

hard sphere part. So in our simulation model, the interaction between charged

walls and hard-core Yukawa particles is defined as

uc
p−fw = " exp

h

−
⇣

Lz − z−
�

2

⌘

− 
⇣

z−
�

2

⌘i

(3.4)

+ "

"

⇣�

z

⌘256
+

✓

�

Lz − z

◆256
#

.

Here, the walls are placed at z = 0 and z = Lz and for truncation of interaction

the cut off is set to zcut = 4.0�.

21



3.4 Molecular Dynamics (MD) Simulation

Due to the similarity to real experiments, molecular dynamics (MD) is one of

the most popular and well-known computer simulation method (Frenkel and

Smit (2001)). In a MD simulation, Newton’s equations of motion are solved for a

system consisting of N particles, interacting via a model potential as discussed in

the previous section. To this end, one has to solve the equations of motion until

the system reaches an equilibrated state where the thermodynamics of the system

no longer changes with time. After reaching equilibrium, one can perform the

analysis of the trajectories and calculate different thermodynamic properties.

3.4.1 Solving the Equations of Motion

After choosing an interaction model for the calculation of the forces between the

particles, one needs to integrate Newton’s equations of motion which are defined

as

mi
d2ri
dt2 = Fi (3.5)

in which Fi is the total force on particle i with mass mi and at position ri. The

force Fi can be directly calculated via

Fi (ri(t)) = −rriU (ri(t)) (3.6)

in which U is potential energy and rri is gradient with respect to ri. In this work,

we have employed a widely used integration method, known as the velocity

Verlet algorithm (Swope, Andersen, Berens, and Wilson (1982)). The position and

velocity update via velocity Verlet algorithm can be written as

ri (t+�t) = ri (t) + vi (t)�t+
Fi (t)

2mi
�t2 +⇥

⇣

�t4
⌘

(3.7)

vi (t+�t) = vi (t) +
�t

2mi
[Fi (t) + Fi (t+�t)] +⇥

⇣

�t4
⌘

(3.8)

where ri (t) and vi (t) correspond to the position and velocity of particle i at time

t, respectively.

The velocity Verlet algorithm allows to perform MD simulations in the mi-

crocanonical ensemble, i.e. for systems at constant particle number N, constant

volume V and constant energy E. It belongs to the class of symplectic algo-

rithms and thus it correctly describes the symmetries of the underlying Newton’s

equations of motion (e.g. time reversibility).

3.4.2 MD Simulations at fixed Temperature

When we are talking about performing molecular dynamics (MD) simulations

at constant temperature, we are coupling a large heat bath to a system of N
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particles with a fixed volume V to have average value of the temperature equal

to a constant.

In this work, we have kept the temperature constant, by coupling our system

of particles to the Berendsen thermostat which has been proposed by Berendsen,

Postma, et al. (1984). In this method, a system of N particles is coupled to

the heat bath with a fixed temperature T0 which is considered as the reference

temperature. To this end, one needs to insert the friction and stochastic terms

into the equations of motion (Schneider and Stoll (1978)). This coupling is done

in terms of a Langevin equation for each particle i that has the following form

(Berendsen, Postma, et al. (1984))

miv̇i = Fi −mi�ivi + Ri(t) (3.9)

in which i, �i is a damping constant and Ri(t) a Gaussian stochastic term with

a mean value of zero and
⌦

Ri(t)Rj(t+ ⌧)
↵

= 2mi�ikT0�(⌧)�ij. In equation (3.9),

the damping constant �i controls how strongly the heat bath and the system are

coupled. According to the Langevin equation (3.9), the system globally couples

to the heat bath and in the meantime locally couples to the random noises. Since

we need to have only the global coupling, we have to modify equation (3.9). One

can derive the time dependent temperature T from the derivative of the kinetic

energy Ekin as

dEkin

dt
= lim

�t!0

"

1
�t

 

3NX

i=1

1
2
miv

2
i (t+�t)−

3NX

i=1

1
2
miv

2
i (t)

!#

(3.10)

in which mi is the mass of particle i. The difference between the velocity at time

t and t+�t can be written as

�vi =
1
mi

Z t+�t

t

⇥

Fi(t
0)−mi�ivi(t

0) + Ri(t
0)
⇤

dt 0 (3.11)

and since R(t 0), vi(t), and R(t 0 +�t) are not correlated and if we consider the

damping constant �i = � for all particles then

3NX

i=1

Z t+�t

t
dt 0

Z t+�t

t
dt"Ri(t

0)Ri(t") = 6Nm�kT0�t

dEkin

dt
=

3NX

i=1

viFi + 2�
✓

3N
2

kT0 − Ek

◆

(3.12)

in which the first term is equal to minus the derivative of the potential energy

and the next term describes the global coupling to the heat bath. So one can

write the modified Langevin equations of motion which consist of only global

coupling to the heat bath as

miv̇i = Fi +mi�

✓

T0

T
− 1
◆

vi (3.13)
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Now to obtain the desired temperature we can scale the velocities regarding

this temperature. To scale the velocity one needs to introduce a scaling factor as

sf = 1 +
�t

⌧T

"

T0

T
�

t− �t
2

� − 1

#

(3.14)

This proper scaling minimizes the
P

imi(�vi)
2 and satisfies the global constraints

via a least square local disturbance.

The crucial parameter in this thermostat is ⌧T which controls the strength

of the coupling. If the value of the coupling parameter is too high, then the

thermostat is technically turned off, and the temperature will reach to the value

which is appropriate for the micro-canonical ensemble and won’t fluctuate over

the desired temperature for canonical ensemble. On the other hand, if the value

of ⌧ is too small, then it will cause a too small fluctuation which is not realistic

(Hünenberger (2005)). In fact, the special case of the Berendsen thermostat with

⌧ = �t which connects the controlling parameter of the thermostat to the time

step completely suppresses temperature fluctuations. Moreover, in our MD

simulation as an optimum value ⌧ ∼ 0.2 has been used.

3.5 Multiple time-step

As we have already mentioned in the previous sections, in some cases especially

when we are studying the behavior of hard-core Yukawa particles confined

by hard walls, basically, we are dealing with two different interactions ranges.

The hard walls introduce a short-range interaction while the hard-core Yukawa

interaction has a longer range. As a consequence of this difference, to integrate

the equations of motion, we need to use the time step which is appropriate

for the short-range interactions. This means that the long-range interactions

should be also considered with the same time step which is expensive regarding

computational time.

To overcome this timescale problem, Tuckerman, Berne, and Martyna (1992)

have proposed a multiple time step scheme to solve the equations of motion

using a Liouville formalism. If we consider a single particle system with force F

then one can write the Liouville operator as (Frenkel and Smit (2001))

iL = iLr + iLp (3.15)

in which iLr and iLp correspond to shifts in positions and momenta, respectively

and they can be defined as

iLr = v
@

@r
(3.16)

iLp =
F

m

@

@v
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where v represent velocity and r shows the position. Moreover, operators eLrt

and eLpt lead to the translation of coordinates and momenta, respectively.

The total Liouville operator iL can be defined as iLr + iLp, but since they

are non-commuting operators one can not substitute the exp(iLt) by exp(iLrt)⇥

exp(iLpt). To write the total Liouville operator iL in terms of the time evolution

operator exp(iL�t), we can extend them by considering the time step �t as

exp(iL�t) ⇡ exp(iLp
�t

2
) exp(iLr�t) exp(iLp

�t

2
) (3.17)

Now by applying the Liouville operator with initial condition for all particles

r(0), v(0) as

eiL�t (r(0), v(0)) =
⇣

r(0) +�tv(0) + (�t2/2m)F(0), v(0) + (�t2/2m)(F(0) + F(�t))
⌘

(3.18)

So we obtain the velocity Verlet algorithm form the application of the time

evolution operator over a time step �t.

r(�t) = r(0) +�tv(0) + (�t2/2m)F(0) (3.19)

v(�t) = v(0) + (�t2/2m)(F(0) + F(�t))

If we divide iLr and iLp into two short and long parts as

iLshort =
Fshort

m

@

@v
, (3.20)

iLlong =
Flong

m

@

@v
,

then with respect to equation (3.17) we can re-write the time evolution operator

as

eiL�t = ei(Lshort+Llong+Lr) (3.21)

⇡ eiLlong�t/2ei(Lshort+Lr)�teiLlong�t/2

= eiLlong
∆t
2

h

eiLshort
δt
2neiLr

δt
n eiLshort

δt
2n

i

eiLlong
∆t
2

in which �t and �t = �t/n are long and short time steps, respectively.

By using this expression we first make a step with the long range force and

then we performing n small steps with short range force using the velocity Verlet

algorithm.

The idea is that in the integration part of the simulation, after updating

velocities with the time step �t we introduce an inner iteration which is repeating

n = �t
�tshort

times. In this inner iteration which is a multiple time step cycle, the

velocities and positions will be updated via the short-range time step �tshort and,

after finishing this cycle, finally the velocities will be updated by long-range time

step again. The point is when the positions of particles are updated due to the
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short-range interaction, the movement of the particle which does not feel this

interaction is negligible.

The implementation of the multiple time step scheme in a MD simulation can

be described by the following programming code (using FORTRAN90 syntax).

!MD steps

do time = 1, nsteps

!update the velocity with half of the long time step

do i = 1, npart

do j = 1, 3

vel(j,i) = vel(j,i) * 0.5 * dt * flong(j,i)

end do

end do

!n small iterations with short time step

do mts = 1, nts

!update the velocity with half of short time step

do i = 1, npart

do j = 1, 3

vel(j,i) = vel(j,i) * 0.5 * (dt / nts) * fshort (j,i)

end do

end do

!update the positions

do i = 1, npart

do j = 1, 3

pos(j,i) = pos(j,i) + (dt / nts) * vel(j,i)

end do

end do

!update the short range forces

call force_short

!update the velocity with half of short time step

do i = 1, npart

do j = 1, 3

vel(j,i) = vel(j,i) * 0.5 * (dt / nts) * fshort (j,i)

end do

end do

end do

!update long range forces

call force_long

!update the velocity with half of the long time step

do i = 1, npart
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do j = 1, 3

vel(j,i) = vel(j,i) * 0.5 * dt * flong(j,i)

end do

end do

end do

3.6 Cell and Verlet neighbor lists

In a computer simulation, the calculation of forces and energies are the most

time-consuming tasks. To overcome this non-efficiency and save time, first of all,

we truncated the potential via a cut-off radius. With considering the cut-off radius

rrcut, we are limiting the calculation of forces and potentials to the particle which

are inside a sphere with a radius of rrcut with respect to a reference particle i. We

determine rrcut such that the pair potential and force beyond the rrcut should be

strictly zero. For instance when we are considering the cut-off radius of inverse

power-law potential / 1/r256 interaction as rrcut = 1.2� then u(rcut) ⇡ 10−20.

To be more efficient, alongside the cut-off strategy, it is a good idea to consider

the interaction between the reference particle i and its neighboring particles.

There are some methods which are developed for CPU time saving such as

Verlet list and cell list. We give a brief introduction about them and discuss their

efficiency in detail.

The cell list which is also known as the linked cell list was first proposed by

Hockney and Eastwood (1988). To be more clear in the case that we consider the

calculations for all the pairs, then our required time to do so is in scale with N2.

The idea of this method is that we are dividing the simulation box into cells with

linear dimensions of the order of the cut-off radius. By choosing a particle in

any cell, this particle will interact just with the particles in the same cell or in

the nearest and next-nearest neighbor cells. In a 2D simulation, the number of

neighboring cells is equal to 8, and this value for a 3D is 26. Figure 3.3, shows

the cell list arrangement.

Another scheme that one can use to reduce the required time to calculate the

force is the Verlet neighbor list (Verlet (1967)). In this method, we introduce a

radius which is called Verlet radius rv which is about 10-20% larger than the

cut-off radius of the particle-particle interaction. The particles inside this radius

are making the Verlet list. During the simulation when the displacement of any

particle is greater than rv − rcut then one needs to update the Verlet list to be

able to calculate the new forces and energies. Figure3.4, shows the Verlet list

arrangement.

Moreover, if the number of particles in the Verlet list nv is very less than the

total number of particles in the simulation box N, then this scheme becomes
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4 Calculation Of Interfacial Free

Energy

For a system in the canonical NVT ensemble, i.e., with constant particle number

N, volume V , and temperature T , one can define the Helmholtz free energy F as

F ⌘ E− TS (4.1)

in which E is the energy of the system and S denotes the entropy. The thermody-

namic potential in the NPT ensemble, i.e., at constant pressure P, is the Gibbs

free energy G that can be written as

G ⌘ F+ PV . (4.2)

Let’s consider a first order phase transition (Kurt Binder (1987)) at a constant

temperature T . Then, one can observe a discontinuous change of the entropy S at

this temperature which is associated with the production of latent heat L as

L = T�S . (4.3)

Thus, at the first-order phase transition there is a discontinuity of the deriva-

tives of the Gibbs free energy G, the entropy being one example

S = −

✓

@G

@T

◆

N,P
(4.4)

Also, the volume V given by

V =

✓

@G

@P

◆

N,T
, (4.5)

might be discontinuous at the transition. As an example, one can consider the

solid-liquid and liquid-gas transition as first order transitions.
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Consider two phases as phase A and phase B, and one can write their free

energy as FA and FB, respectively. So by comparing the free energy of these two

phases, we can understand how stable they are. The first step to calculate the free

energy difference �F is the computation of the ensemble average. Let’s consider

a system of N particles and observable A(~r1,~r2, · · · ,~rN), so the expectation value

of this observable can be written as

D

A
⇣

~r(N)
⌘E

=

R
d~r(N)A

⇣

~r(N)
⌘

exp
⇣

−�U
⇣

~r(N)
⌘⌘

R
d~r(N) exp

�

−�U
�

~r(N)
�� . (4.6)

But the direct calculation of this high dimensional integral in general is not

possible. As an example in classical statistical mechanics, one can define the

Helmholtz free energy F as

F = −kBT lnQ (N,V , T) (4.7)

in which Q (N,V , T) is the canonical partition function which is given by

Q (N,V , T) =

R
d~pNd~rN exp

⇥

−�H(~pN,~rN)
⇤

hdNN!
(4.8)

where h is the Planck constant, H is the Hamiltonian, � = 1
kBT

, and ~r and ~p

represent positions and momenta, respectively (Pathria and Beale (2012)). In

a simulation, it is not possible to directly calculate the free energy, entropy,

and related quantities because they are not the averages of the functions of the

coordinates of the system and the canonical partition function cannot be written

as a canonical average over phase space.

In an experiment, one can determine the derivative of the free energy with

respect to the temperature T and the volume V . One can write the partial

derivative of the Helmholtz free energy F with respect to the volume V at

constant number of particles N and temperature T as follows
✓

@F

@V

◆

N,T
= −P . (4.9)

On the other hand, we can define the partial derivative of Helmholtz free energy

F regarding the temperature T in a system with a fixed number of particles N

and volume V as
✓

@F/T

@1/T

◆

N,V
= −E . (4.10)

Note that the outcome of equations (4.9) and (4.10) are now mechanical quantities

and one can calculate them via a simulation (Frenkel and Smit (2001)).

The interfacial free energy � is the contribution to the free energy of a system

of the particles to form an interface which is separating to different phases

from each other. The calculation of the interfacial free energy between a crystal
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and a fluid as well as between crystal or fluid and walls plays a key role for

the understanding of wetting phenomena (De Gennes (1985) and de, Brochard-

Wyart, and Quere (2004)) as well as heterogeneous nucleation (Dietrich (1988)).

Experimental Calculation of interfacial free energy is a hard task to do, but

some few studies by Navascues (1979), Glicksman and Singh (1989) and Howe

(1997) have calculated the solid-solid, solid-vapor and solid-liquid interfacial free

energy.

Due to this lack of experimental data on the interfacial free energy, analytical

and computer simulation techniques have been used to calculate the interfacial

free energy for different physical systems. In this chapter, we will briefly discuss

thermodynamic integration method to calculate free energy differences of a given

system of particles, and finally, we will describe the method that we are using to

calculate interfacial free energies regarding confinements.

4.1 Thermodynamic Integration

Assume that we want to calculate the free energy of a system of N particles at a

given temperature T and number density ⇢. The thermodynamic integration (TI)

method is a scheme to calculate the free energy difference between a reference

phase or state and the final phase or state that we are interested to study. To

calculate the energy difference between initial and final state by tuning the

thermodynamic parameters, the system will take a path which connects these

two states from initial state to the state of interest such that in each point of

the path system is in equilibrium, therefore, this path can be reversible (Callen

(1998)).

Kirkwood and Buff (1949) proposed a formalism for parameterization of the

potential function to calculate the free energy difference. Here, for a system

of N particles and potential energy function U we assume that this potential

function has a linear relationship with the coupling parameter �. If we consider

our reference system as A and the desired one as B, then we can assume their

potential energy function as uA and uB, respectively. So, based on the Kirkwood

formalism, one can write the �-dependent potential energy function of the path

between states A and B as

U
⇣

~r(N), �
⌘

= (1 − �)UA(~r
(N))− �UB(~r

(N)) (4.11)

The corresponding partition function for such a system can be written as

Q (N,V , T , �) =
1

⇤3NN!

Z

d~r(N) exp
h

−�U
⇣

~r(N), �
⌘i

(4.12)

where � = 1/kBT and ⇤ = h

q

�
2⇡m is the de Broglie wavelength (with m the mass

of the particles). One can derive the derivative of the �-dependent Helmholtz free
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energy F (�) for a system of N particles and with fixed volume V and temperature

T as
✓

@F (�)

@�

◆

N,V ,T
= −

1
�

@

@�
lnQ (N,V , T , �) (4.13)

=
1

�Q (N,V , T , �)
@Q (N,V , T , �)

@�

=

R
d~rN

 

@U (�)

@�

!

exp [−�U (�)]

R
d~rN exp [−�U (�)]

=

⌧

@U (�)

@�

�

�

in which h· · · i� denotes the ensemble average over �. Now one can write the free

energy difference between states A and B as

�F (�) = F (� = 1)− F (� = 0) =
Z�=1

�=0
d�

⌧

@U (�)

@�

�

�

(4.14)

Now we have the free energy difference regarding an ensemble average which

we can calculate directly via a simulation.

Heni and Löwen (1999) employed square-barrier and triangular cleaving

potentials to perform the thermodynamic integration and calculate the interfacial

free energy of a hard sphere fluid in contact with a flat hard wall. They have also

completed the same process to calculate the interfacial free energy of an FCC

crystal with (111), (100), and (110) orientations. However, due to the pre-freezing

at coexistence density, they have to calculate the value for fluid-wall interfacial

free energy via an extrapolation from lower densities to the coexistence density.

Fortini and Dijkstra (2006) improved the calculation of Heni and Löwen (1999)

by using an exponential barrier function beside the square-barrier one to perform

the thermodynamic integration. They have calculated the fluid-wall interfacial

free energy of hard sphere fluids as well as crystal-wall interfacial free energy for

the hard sphere crystals with (111) and (100) orientations, however, the calculation

was for the densities below the bulk coexistence density. However, using this

scheme they were not able to distinguish between partial and complete wetting.

To calculate the interfacial free energy between crystal and liquid of Lennard-

Jones system, Davidchack and Laird (2003) have applied a thermodynamic

integration scheme by using the cleaving wall method. To obtain a reversible

thermodynamic path, they have divided the bulk crystal by a cleaving potential

(wall), but both parts of the system have interaction with each other via periodic

boundary conditions. The same setting is also done for the fluid. In the next step

by keeping the cleaving walls, they have put each part of the crystal in one side

of the fluid and gradually removed the walls. So the crystal-liquid interfacial
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free energy is proportional to the total work that has been done to perform these

steps.

By considering Lennard-Jones fluid and crystal with (111) orientation which

are confined between structured walls, Benjamin and Horbach (2012) proposed a

modified thermodynamic integration to compute the free energy of fluid-wall

and crystal-wall interfaces. As the first step, they have considered a reversible

thermodynamic path from a bulk Lennard-Jones system to a state where these

systems are in contact with structureless flat walls. In the second step, they

transformed the structureless walls into structured walls which are formed by

the crystal particles. These steps has been done via NPT ensemble, and by

considering a �-dependent Hamiltonian for these systems, they were able to

calculate the Gibbs free energy difference �G between initial and final state

of the thermodynamic path. By using Gibbs free energy difference �G they

could calculate the interfacial free energy for Lennard-Jones fluids and crystals

in contact with structured walls.

4.2 Present Work

In this work we have used Benjamin and Horbach (2012), Benjamin and Horbach

(2014a) and Benjamin and Horbach (2015) approach , but the � parameterization

of the Hamiltonian is changed with respect to the requirements of the hard-core

Yukawa systems. In the following, we explain our approach in detail.

4.2.1 Fluid-Wall And Crystal-Wall Interfacial Free Energy

To calculate the interfacial free energy of the fluid, FCC and BCC crystals with

(111) orientation we have used a reversible and smooth thermodynamic path

from a bulk fluid, FCC or BCC (� = 0) to the system which is confined by a pair

of flat structureless hard/charged walls (� = 1).

Through this smooth and reversible path, we need to gradually turn on the

interaction of the bulk particles with the walls and at the same time turn off

the periodic boundaries in the direction of flat walls. To this end, we need to

parameterize the Hamiltonian of the system. Let’s consider a system of N particles

in a volume V , and at temperature T . Then one can write the Hamiltonian of

such system as

H (�) =

NX

i=1

~p2
i

2mi
+
X

i

X

j6=i

uij (4.15)

in which uij describes the interaction between particle i and particle j. To

obtain our desired thermodynamic integration path, we should parameterize the

Hamiltonian such that � = 0 corresponds to the system with periodic boundary
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condition and � = 1 to the system confined between two walls. Now, the

�-dependent Hamiltonian of the system can be written as

H (�) =

NX

i=1

~p2
i

2mi
+Up−p +Up−im (�) +Up−fw (�) (4.16)

in which Up−p is the total potential energy of the particle-particle in the bulk,

Up−i is the total potential energy with respect to interaction of the bulk particles

with the ones which are in the other side of the wall (image particles), and this

interaction is due to the periodic boundary condition and Up−fw is the total

potential energy due to the interaction between particles and flat walls.

By turning off the periodic boundary condition and turning on the flat wall

interaction, we can parameterize Up−i and Up−fw as follows

Up−i (�) = (1 − �)
lUp−i (4.17)

Up−fw (�) = �m
✓

1 + �

2

◆n

Up−w (4.18)

in which l, m and n are parameters which control the smoothness of the ther-

modynamic path. The free energy difference between bulk (� = 0) and confined

(� = 1) states can be derived as

@H

@�
=

@Up−i (�)

@�
+

@Up−fw (�)

@�

�F =

Z1

0

⌧

@H

@�

�

�

d� (4.19)

So one can calculate the interfacial free energy of the fluid and crystal in contact

with the flat walls as

� =
�F

A
(4.20)

in which A = 2LxLy is the total area of the interface.

4.2.2 Fluid-Crystal Interfacial Free Energy

If we consider a crystal which is growing from its melt, then the calculation and

determination of the interfacial free energy between a crystal and its melt, �cf,

plays an important role for the rate of this growth (Turnbull (1952)) and also for

the wetting behavior of the growing crystal.

In many studies, the thermodynamic integration method (TI) has been used

to calculate the interfacial free energies between a crystal and a fluid. Broughton

and Gilmer (1986) performed a thermodynamic integration method for a system

of particles which are interacting with a modified Lennard-Jones potential to

calculate the crystal-fluid interfacial free energy �cf. They separated crystal

and fluid into two parts by inserting a modified cleaving wall. After bringing
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these two systems together, they removed the cleaving wall and calculated the

crystal-fluid interfacial free energy �cf. Their method is not general and requires

the different modification of a cleaving wall for any orientation of the crystal.

Instead of using a flat cleaving wall, Davidchack and Laird (2000) employ

structured cleaving walls which are made of several crystalline layers of frozen

particles. Their calculation was more accurate than Broughton and Gilmer (1986)

and could solve the anisotropy issue in the calculation of crystal-fluid interfacial

free energy �cf.

Both the above mentioned thermodynamic integration methods to calculate

crystal-fluid interfacial free energy �cf, have a common step in which after

bringing the crystal and fluid together, they tried to remove the cleaving walls

gradually. However, this removal led to a hysteresis which means because of the

thermal fluctuations the position of the crystal and fluid can change and they can

freeze and melt at the same time. So, this means that the path is not completely

reversible since the position of the fluid and crystal will not match with the initial

position of the cleaving walls.

To overcome these issues, Benjamin and Horbach (2014b) proposed a thermo-

dynamic integration scheme to calculate the crystal-fluid interfacial free energy

�cf for a system of particles interacting via a Lennard-Jones potential. The same

method is also employed to calculate the crystal-fluid interfacial free energy �cf

for a system of hard spheres (Benjamin and Horbach (2015)). In the following,

we are describing this method and will explain how they overcome the issue of

the movement of the crystal-fluid interface. In this work, we are using the same

approach to calculate the crystal-fluid interfacial free energy �cf for the hard-core

Yukawa system. This method can be categorized into six steps as follows:

Step 1: In this step, to avoid the movement of the crystal-fluid interface, we

are confining the fluid by a pair of flat and structureless short-range Gaussian

walls. We put these walls at the end of the fluid system in z-direction such that

the bulk particles cannot leave the box. Note that the range of the Gaussian wall

should be such that its contribution to the interfacial free energy is small. We

gradually switch on the interaction between particles and Gaussian walls, but

the periodic boundary condition is on for the whole step. The Hamiltonian of

the system for this step can be written as

H1 (�) =

NX

i=1

~p2
i

2mi
+Up−p +Up−im (�) +Up−fw (�) (4.21)

where

Up−fw (�) = �mUp−fw (4.22)

describes the total potential energy due to the interaction of particles with flat

Gaussian walls.
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box. One can write the Hamiltonian of this step as follows

H3 (�) =

NX

i=1

~p2
i

2mi
+Up−p +Up−i (�) +Up−pw (�) +Uf−w (4.25)

in which

Up−i (�) = (1 − �)nUp−i (4.26)

describes the total potential energy with respect to the interaction of the bulk

particles with image particles. Moreover, the total potential energy with respect

to the interaction of particles with structured walls can be defined as

Up−pw (�) = �pUp−pw . (4.27)

Step 4: This step is same as step 3, but we are confining the crystals from step

2 between the structured walls. So we can write the �-dependent Hamiltonian as

H4 (�) =

NX

i=1

~p2
i

2mi
+Up−p +Up−i (�) +Up−pw (�) +Up−fw (4.28)

in which

Up−i (�) = (1 − �)nUp−i (4.29)

and

Up−pw (�) = �pUp−pw . (4.30)

Step 5: In this step, we need to bring fluid and crystal together. To this end,

we need to turn on the fluid-crystal interaction gradually and in the meantime

turn off the interaction of each phase with the structured walls. So we can write

the Hamiltonian of this step as

H5 (�) =

NX

i=1

~p2
i

2mi
+U

c(l)
p−p +Uc+l

p−p (�) +U
c(l)
p−pw (�) +Up−fw (4.31)

in which

U
c(l)
p−pw (�) = (1 − �)nUp−pw (4.32)

and

Uc+l
p−p (�) = �pUc+l

p−p . (4.33)

Here, Uc+l
pp (�) describes the total potential energy due to the interaction of crystal

and fluid.

Step 6: Now it is time to remove the Gaussian walls and letting the liquid-

crystal system to relax. So we are gradually removing the Gaussian walls from

each side of the fluid and crystal phases as

H6 (�) =

NX

i=1

~p2
i

2mi
+U

c(l)
p−p +Up−fw (�) (4.34)
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in which

Up−fw (�) = (1 − �)mUp−fw . (4.35)

Figure 4.1 shows these six steps of the modified thermodynamic integration

method. The free energy difference of each step can be calculated via

�Fi =

Z1

0

⌧

@Hi

@�

�

d�, (4.36)

and the interfacial free energy can be calculated as

� =
�F1 +�F2 +�F3 +�F4 +�F5 +�F6

A
(4.37)

in which A = 2LxLy is the total area of the interface.
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5 Local Bond Order Parameters

One of the main outcomes of a computer simulation are the configurations which

are describing the position of the particles in each state of the simulations. In

our case of study we are interested to investigate the behavior of inhomogeneous

structures in confinement and characterize local order around each particles in

these systems. To analyze the structures of different systems confined between a

pair of hard walls or charged walls, we have used the local bond order parameters.

These parameters allow to distinguish between FCC, BCC and fluid local ordering

around a particle. In this study, we have considered three different approaches

to analyze the structure of the hard-core Yukawa systems in confinement which

will be discussed below in detail.

The starting point of the calculation of local bond order parameters is to

identify the neighboring particles of each particle inside the system. To min-

imize the effort we are considering Nb(i) nearest neighbors around particle i

by a cut-off radius which we can extract from the first minimum of the radial

distribution function g(r). The radial distribution function g(r) describes the

probability of finding a particle at distance r from a reference particle relative to

the corresponding case in an ideal gas. This quantity is defined by

g (r) =
V

N24⇡r2

*

NX

i=1

NX

j=1,j6=i

�
�

r− |ri − rj|
�

+

(5.1)

in which ri and rj represent the position of particles i and j, respectively, and h· · · i

stands for time or ensemble average. Figure 5.1 shows the radial distribution

function g(r) for different phases in the presence of a pair of flat hard walls.

By considering Nb(i) nearest neighbors, one can do an expansion into spheri-

cal harmonics Ylm and define a parameter Q̄lm(i) for particle i as

Q̄lm(i) =
1

Nb(i)

Nb(i)X

j=l

Ylm(i)
�

r̂ij
�

(5.2)
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Figure 5.1: shows the radial distribution function g(r) for three different systems as FCC (⌘ =

0.1397) , BCC (⌘ = 0.0900) and fluid (⌘ = 0.1366) in contact with a pair of flat hard walls.

where m 2 [−l, l] is an integer parameter and, r̂ij represents the unit distance vec-

tor between particles i and j. Steinhardt, Nelson, and Ronchetti (1983) suggested

a rotationally invariant combination of Q̄lm(i) as follows

Ql(i) =

 

4⇡
2l+ 1

lX

m=−l

�

�Q̄lm(i)
�

�

2

!1/2

. (5.3)

From this equation one can calculate the order parameters Q4 and Q6 which

can help us to distinguish between solid structures and fluid systems. For this

purpose we can produce a Q4 −Q6 map and based on that we can identify the

structure of each particle in the system.

Later on, Ten Wolde, Ruiz-Montero, and Frenkel (1995) argued that the above

approach of the global order parameters is not completely useful for solid-like

structures because due to the incoherently adding up of Q̄lm(i) in the fluid a

global order parameter Q6 can be vanished. This means that the single value of Q6

which assigned to all particles to identify the structure of whole system becomes

zero. So they proposed an approach to calculate the local order parameter as

q̃lm(i) =
Q̄lm(i)

⇣Pl
m=−l

�

�Q̄lm(i)
�

�

2
⌘1/2

(5.4)

Then one can calculate the product of this local parameter as

qlql(i) =
1

Nb(i)

Nb(i)X

j=l

ql(i) · ql(j) (5.5)
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Figure 5.2: shows the q4q4 − q6q6 plain (Ten Wolde, Ruiz-Montero, and Frenkel (1995)) which
is used to distinguish between bulk phases in hard-core Yukawa system of particles. The green
part indicated the particles with FCC structure, purple part belongs to the BCC structure and
light magma points shows the fluid phase. This plain is made by the first minimum of radial
distribution function g(r) as cut-off for considering the neighbors. The bulk systems in this
figure are correspond to the densities of figure 5.1

where the internal product ql(i) · ql(j) can be expressed as

ql(i) · ql(j) =

lX

m=−l

q̃lm(i)q̃⇤
lm(j) (5.6)

in which q̃⇤
lm is the conjugate complex of q̃lm. So if this dot product reaches

some specified value then one can say particle i and j are connected.

On the other hand, by calculating the local parameters such as q4q4 and q6q6

we can produce a q4q4 − q6q6 map ( see figure 5.2). In other words, we consider

bulk phases of BCC, FCC and fluid configurations and assign a point to each

particle in these systems in the q4q4 − q6q6 map. This map is created based

on the first shell of neighbors. Now if we also consider the second neighbor

shell using a cut-off corresponding to the second minimum of radial distribution

function g(r), we will end up with another map which is presented in figure 5.3.

Each phase in these maps is presented as a separated island which enables us to

distinguish between the three different phases.

Another approach which has been widely used has been proposed by Lechner

and Dellago (2008). They have shown that by using the following equations

(eq. (5.7), and eq. (5.8)) the calculated values for q4 and q6 parameters is not

enough to distinguish between different structures.

ql(i) =

 

4⇡
2l+ 1

lX

m=−l

|qlm(i)|2

!1/2

(5.7)
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Figure 5.3: illustrates the q4q4 − q6q6 map (Ten Wolde, Ruiz-Montero, and Frenkel (1995))
calculated by considering the second minimum of radial distribution function for the bulk
hard-core Yukawa systems with different phases. This pain is almost similar to the figure 5.2
which indicates that the first minimum of g(r) is already a good choice for the neighborhood
cut-off. The bulk systems in this figure are correspond to the densities of figure 5.1

where

qlm(i) =
1

Nb(i)

Nb(i)X

j=0

Ylm(rij) . (5.8)

In other words, these local bond order parameters or Steinhardt order parameters

are more useful in the case that one wants to distinguish between hexagonal

and cubic structures. In figure 5.4, we have shown that a q4 − q6 map with the

consideration of the first nearest neighbor shell is not sufficient to identify the

structure of a system with three different phases. Even using second sell of

neighboring particle did not help to get a better separation of the phases in the

q4 − q6 map as one can see in figure 5.5. The second approach is slightly better

than the last one but it is still not enough to give a clear separation between the

phases.

So they have suggested that one can improve this distinguishing process via

calculating the average of local bond order parameters. This average is defined

as

q̄l(i) =

 

4⇡
2l+ 1

lX

m=−l

|q̄lm(i)|2

!1/2

(5.9)

with

q̄lm(i) =
1

Ñb(i)

Ñb(i)X

k=0

qlm(k) . (5.10)

The idea is to consider not only the particles which are the neighbors of particle

i, but also one should consider the particle i as well. This method is similar to
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Figure 5.4: shows the q4 −q6 plain as a reference to determine the structure of the configurations
with respect to the first shell of neighbors. As one can see in the case of hard-core Yukawa
particles the local order parameters q4 and q6 are not a good choice to distinguishing between
the structures. The bulk systems in this figure are correspond to the densities of figure 5.1

Figure 5.5: shows the q4 − q6 map of the local bond order parameters with respect to the second
neighbors of hard-core Yukawa particles. Here we can observe that even by correcting the
neighbor list of particles one can not rely on the local bond order parameters q4 and q6 which
is also proven by Lechner and Dellago (2008). The bulk systems in this figure are correspond to
the densities of figure 5.1
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Figure 5.6: shows the calculated q̄4 − q̄6 map for hard-core Yukawa system of particles regarding
the first minimum of g(r) as cut-off. The resulted plain indicates that with respect to this
map one can easily determine the structure of a given configuration at bulk via the average
local bond order parameters q̄4 and q̄6. The bulk systems in this figure are correspond to the
densities of figure 5.1

the one that is introduced in equation (5.10) but it already took the second shell

of the neighbors into account. Figure 5.6 shows that if we just consider the first

minimum of the radial distribution function g(r) as the cut-off for calculation of

the averaged local bond order parameter, it does already exhibit a good separation

between different phases. But with changing of the cut-off from the first to the

Figure 5.7: shows the q̄4 − q̄6 by considering the second shell of the neighbors as the cut-
off. This plot proves that by considering the average local bond order parameters q̄4 and q̄6
and focusing on the second neighboring shell one can have clear vision about the structure
of a given configuration. The bulk systems in this figure are correspond to the densities of
figure 5.1
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second minimum of the radial distribution function g(r) (figure 5.7), same as the

original idea of Lechner and Dellago (2008), it is even easier to determine the

structure of the configuration.

5.1 Distinguish Between Structures Via Machine

Learning (ML)

From the above description of local bond order parameter, we are able to make

q̄4 − q̄6 and q4q4 − q6q6 planes which help us to determine the structure of

different configurations. As it is possible to see from figures 5.2, 5.6 and 5.7

it is possible to distinguish between different bulk phases. But, as discussed

in chapter 6, we are dealing with systems in confinement and if there is some

transition and interfaces in these type of systems, then distinguishing between

structures is not that easy. Based on the q̄4 − q̄6 and q4q4 − q6q6 maps one can

make some cut-off to determine the structures by hand, so it is also not unique

and depends on the definition of this criterion one can assign FCC, BCC or fluid

order to a particle.

Now, we demonstrate that one can also use computer science techniques to

deal with this issue. A field of computer science that can help us to overcome

this problem is called machine learning (ML) which is described by the statement

that is proposed by Samuel (1959) as the ability of a computer system to learn

the pattern of a data set with no needs to be programmed. The machine learning

algorithm can be divided two supervised and unsupervised learning categories

(Russell and Norvig (2016)). In supervised learning, one does have a target

variable which will be predicted through the given independent set of variables.

The most common supervised learning algorithm are regression methods like

linear regression and logistic regression, decision tree, random forest and K-

nearest neighbors (KNN).

We can use the regression and other supervised machine learning algorithms

when we have a clear target, and we want to optimize a lot of labeled data based

on this target. But here we need to use a technique to explore the pattern within

a data set that doesn’t have any clear target value.

Here we want to categorize our data set into several clusters (see fig. 5.8) .

This type of learning is called unsupervised learning. There are multiple ways

of clustering data but our focus is on centroid based clustering. This clustering

algorithm works well when the clusters resemble circles with centers (or centroids)

and the centroid represents the arithmetic mean of all of the data points in that

cluster. One of the most common used and popular centroid based clustering

algorithm is called K-means clustering which is proposed by MacQueen et al.

(1967).
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6 Results

In this chapter, we present the results that we have obtained from the study of the

charged colloids in confinement. As mentioned in chapter 2, we have modeled

the charged colloids via a hard-core Yukawa potential. Here, we present the

simulation results for the different hard-core Yukawa phases (BCC, FCC, fluid) in

confinement. First, we explore the effect of hard flat walls on the charged colloids,

followed by the investigation of the behavior of the charged colloids between

charged walls. All the simulation in this work have been done via a modifed

LAMMPS (Plimpton (1995)) that is tailored for this specific problem. Moreover

all the snapshots that are presented in this chapter are made by OVITO software

Stukowski (2009).

6.1 Hard Walls Confinement

As we already discussed in previous chapters, Davidchack and Laird (2003) and

Fortini and Dijkstra (2006) have observed the pre-freezing of hexagonal layers in

confined hard-sphere fluids induced by the hard walls even slightly lower than

the coexistence densities. In this part, we try to understand the behavior of the

hard-core Yukawa systems which are confined between two parallel flat walls.

We address the question about the possibility of a pre-freezing transition and

we compute the excess energy to form an interface between crystal and walls as

well as fluid and walls. The molecular dynamics (MD) simulation at constant

temperature (NVT) has been done to study the phase behavior of FCC, BCC

and corresponding fluids at confinement. We are dividing this section into two

part. In the first part, we are discussing the behavior of the FCC crystal and

corresponding fluid at flat hard wall confinement, and in the second part, we will

discuss the result for the confined BCC crystals, and the corresponding fluids.
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6.1.1 FCC-Fluid coexistence

Now, we consider states at � = 5.1738 around FCC-fluid coexistence in the

bulk phase diagram of the hard-core Yukawa system. Figure 6.1 represents the

Figure 6.1: shows the phase diagram of hard-core Yukawa particles at �" = 81, as introduced
by Hynninen and Dijkstra (2003). This phase diagram consists of FCC, BCC and fluid phases.
In the subset of the figure, one can see the systems that we have considered alongside the FCC-
fluid boundary line for a constant value of � = 5.1738 for a wide range of packing fraction
⌘.

different systems of particles of FCC and fluid phases that we have considered.

The calculation of the coexistence density has been done via the mapping scheme

of equations (2.24) and (2.25), as proposed by Hynninen and Dijkstra (2003).

These coexistence points correspond to packing fractions ⌘flcoex = 0.1366 and

⌘FCCcoex = 0.1397 and they are presented in figure 6.1. Moreover, to get a clear idea

about the behavior of these systems at coexistence, we approach them from lower

and higher packing fractions ⌘.

Moreover, to verify the accuracy of this calculation, we have performed

Molecular Dynamics (MD) simulations in the canonical (NVT) ensemble for the

bulk hard-Yukawa FCC phase and the corresponding coexistence fluid. The

calculated values for the total pressure indicate that these two phases have the

same pressure and exhibits that the calculated coexistence point due to the

equality of bulk pressure is the accurate coexistence points. Figure 6.2 shows the

calculated total pressure for the bulk FCC and fluid phases. The inset illustrates

that the bulk pressure of the chosen state points are equal.

After confirming the value of the packing fraction ⌘ for coexisting densities,

now we can investigate the behavior of these systems in the presence of hard

walls. To this end, we are approaching the coexisting densities from both sides
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Phases ⌘ N Lx ⇥ Ly ⇥ Lz

Fluid 0.1366 56784 45.6741 ⇥ 42.5976 ⇥ 112.6382
0.1352 45.8273 ⇥ 42.7405 ⇥ 113.0136
0.1339 45.9827 ⇥ 42.8854 ⇥ 113.3941
0.1325 46.1402 ⇥ 43.0323 ⇥ 113.7799
0.1311 46.2998 ⇥ 43.1812 ⇥ 114.1709
0.1298 46.4617 ⇥ 43.3322 ⇥ 114.5675
0.1229 47.3067 ⇥ 44.1202 ⇥ 116.6372
0.1161 48.2166 ⇥ 44.9689 ⇥ 118.8661
0.1093 49.2009 ⇥ 45.8869 ⇥ 121.2771

FCC 0.1397 56784 45.3364 ⇥ 42.2827 ⇥ 111.8290
0.1425 45.0381 ⇥ 42.0045 ⇥ 111.1064
0.1453 44.7475 ⇥ 41.7335 ⇥ 110.4026
0.1480 44.4643 ⇥ 41.4693 ⇥ 109.7189
0.1508 44.1881 ⇥ 41.2117 ⇥ 109.0504

Table 6.1: Shows the packing fractions, size, and geometries of different simulated hard-core
Yukawa fluid and FCC systems which are in confinement by a pair of parallel walls. The sys-
tems correspond to the triangles of figure 6.1.

Figure 6.2: Shows the pressure of the bulk FCC crystals and corresponding fluids as a function
of packing fraction ⌘ at a constant value of � = 5.1738. As one can expect the figure indicates
that by the increment of packing fraction, the values of pressure p are increasing. The subset
also verfies that the considered coexistence densities have the same pressure as we expect.
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(see figure 6.1). To study the behavior of these systems in the presence of a pair

of parallel flat hard walls, we put the walls at the z-boundaries of the simulation

boxes and switch off the periodic boundary conditions in this direction.

Table 6.1 gives the packing fraction, particle number and box dimensions of

the considered systems in the fluid and FCC state. The considered FCC crystal

in this study has the (111) orientation along the z-plane and the fluids obtained

from the melting of the corresponding crystals.

Now, we have confined the FCC crystal at the coexistence density as well as

four higher densities (up to 20% higher than coexistence from table 6.1) between

a pair of parallel flat hard walls. By performing MD simulation at constant

temperature for 2 ⇥ 106 MD steps, we were able to calculate a number density

profile in z-direction ⇢(z) which is averaged over 1000 different configurations for

each density. To keep the temperature constant, we have applied the Berendsen

thermostat with damping frequency of 500dt, in which dt = 0.001⌧ is the time

step of the simulation (⌧ =
p

m�2/").

Figure 6.3: shows the density profiles for the coexisting FCC crystal ⌘FCC
coex = 0.1397 and

considered nost dense system ⌘ = 0.1508. The density profiles indicate the changes in lattice
constant but the density in between remains equal to the density of the bulk.

Figure 6.3 represents the FCC crystal at coexistence with packing fraction

⌘FCCcoex = 0.1397 and the most dense considered FCC with packing fraction ⌘ =

0.1508. These density profiles show forming of high density layers next to the

hard walls, but in fact, FCC crystals in hard walls confinement are stable FCC

crystals. This dense layer is due to the change of the lattice constant in FCC

crystals in very first layers, but in the middle of the system, the density is equal

to the density of the bulk crystal. However, we did not show the systems between

⌘FCCcoex = 0.1397 and ⌘ = 0.1508, but our study shows that the behavior at those
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fractions ⌘flcoex = 0.1366, ⌘ = 0.1298 and ⌘ = 0.1093 as well as a 10� slice of the

system in z-direction. It turns out that in a system with a packing fraction of

⌘ = 0.1093 which is 20% lower than the coexistence density the first layer near

the hard walls is an amorphous layer. This result confirms that at sufficiently low

density system there is no evidence of pre-freezing. Also, for this density, there is

an agreement between the q4q4 − q6q6 and the q̄4 − q̄6 plane structure analysis.

However with both approaches, from the calculation of the local bond order

parameters, it turns out that at the packing fraction ⌘ = 0.1298 which is about 5%

lower than the coexistence density, we can observe the formation of a hexagonal

layer near the hard wall, i.e., there is pre-freezing. The exciting part of this

result is that the pre-freezing happens at densities well below the coexistence

density which has not been observed in the hard sphere fluid case, studied by

Davidchack and Laird (2003) and Fortini and Dijkstra (2006). The structural

analysis via q̄4 − q̄6 shows even a more pronounced hexagonal layer near the

hard wall (see figure 6.8e). Figures 6.8c and 6.8f indicate that the first layer near

the wall at coexistence with packing fraction ⌘flcoex = 0.1366 has a hexagonal

structure.

So far we have observed pre-freezing of hexagonal layers at the vicinity of the

flat hard walls even at densities lower than coexistence which correspond to the

dense layers that we can also observe in density profiles of figure 6.6. Now we

can calculate the 2D packing fraction of the first layer ⌘2D1st of the fluids and

compare them with the one for FCC crystals.

Figure 6.9: shows the 2D packing fraction of the first layer ⌘2D1st for both FCC and fluids as a
function of bulk packing ⌘. The packing fraction of the first formed layer from fluid near the
wall at coexistence is higher than the one for FCC crystal because for the FCC. This layer is just
one of its layers which has the bulk density, but for the fluid, it is a highly dense hexagonal
layer which is now formed in the vicinity of hard walls.
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Figure 6.9 shows the calculated values of 2D packing fraction of the first layer

⌘2D1st for both FCC and corresponding fluids. The values of ⌘2D1st are increasing

by the increment of bulk packing fraction in both phases. However, one can

observe that in the fluid systems with the evidence of pre-freezing the calculated

values are even bigger than the FCC crystals.

Moreover, we can study the evolution of local bond order parameters such as

q6q6 for the layer near the wall with respect to the pecking fraction ⌘ that enables

us to identify the densities at which the phase transition occurs. Figure 6.10

Figure 6.10: shows the average of q6q6 for the first layer in the vicinity of the wall for FCC
crystals and corresponding fluids. The result is in agreement with transition line in figure 6.9.

shows the average of local bond order parameter q6q6 for FCC crystals and fluids

and indicates the phase transition from a fluid to the hexagonal layers.

As we have already mentioned, the interfacial free energy between crystal

or liquid concerning the flat walls is a critical value that can help us to have a

more clear idea about nucleation or wetting phenomena in confinement. Here,

we calculated the fluid-wall �fw and crystal-wall �cw interfacial free energies for

the corresponding systems in flat hard wall confinement. In chapter 4 we have

introduced a modified thermodynamic integration method as our approach to

calculating interfacial free energies.

As the first step, we consider a �-dependent Hamiltonian of our system that

has the following form

H(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−fw (�) . (6.1)

The interaction between particles and image particles, Up−im(�), can be described
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as

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.2)
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It is important to mention that the exponents in equations (6.2) and (6.3)

is chosen such that the resulting integrands are smooth and reversible as it is

explained in chapter 4.

To calculate the interfacial free energy of crystal and fluid regarding the flat

hard wall one needs to calculate the partial derivative of the interaction terms.

If we consider the term Up−im, i.e., the total interaction of particles with image

particles then the derivatives of each particle’s contribution in this interaction can

be written as
@H

@�
=

@Up−im (�)

@�
+

@Up−w (�)

@�
(6.4)

in which
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And finally, the partial derivative of the Hamiltonian can be written as
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To calculate the fluid-wall �fw and the crystal-wall �cw interfacial free energies,

we have considered the system of particles which are described in table 6.1. To

have a smooth and reversible thermodynamic path from � = 0 which corresponds

to the bulk system to � = 1 which indicates the completely confined system of
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particles, we have performed 51 independent simulations. Moreover, to get a

smooth and reversible path the position of the wall is a function of �

z0(w) = zw + [(1 − �)zw↵w] for � > 0 (6.7)

where the zw = 0.4� is the position of the hard walls at � = 1 and ↵w = 0.4

controls where the wall is placed during the thermodynamics integration path.

To calculate the energies according to equations (6.5) and (6.6), we have run

our MD simulation for 106
− 2 ⇥ 106 steps with time step dt = 0.001⌧ where

⌧ =
p

m�2/" and m = 1.0. The simulations have been done at temperature

kBT = 1/�" ⇡ 0.01234568 using a Berendsen thermostat. With equations (6.5)

and (6.6) we compute @H
@�

for each value of �.

Figure 6.11: shows the corresponding smooth and reversible thermodynamic path for FCC
crystal at coexistence and some density above that. Due to the strong particle-image contribu-
tion it shows negative value at � < 0.8.

Figure 6.11 shows the resulting integrands of the confined FCC crystals for

the systems between ⌘FCCcoex = 0.1397 and ⌘ = 0.1508. As one can see, the path

between � = 0 and � = 1 is smooth for all the densities, and it is as we also

expected from the behavior of the FCC crystal in confinement. The integrands

for coexistence and higher densities are negative for � < 0.8 which is due to the

interaction with the image particles, described by equation (6.5).

The inset of this figure shows that in the path there is no jumps or any

discontinuity, and the paths are smooth. However from ⌘ = 0.1298 to the

coexistence ⌘flcoex = 0.1366 by calculating the bond order parameters we are

already aware of the phase transition of the fluids to hexagonal layers which

means that the thermodynamic integration at these densities is not valid.
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Figure 6.12: shows the calculated integrand for the fluid part of FCC-fluid path in the phase
diagram. Insets make us sure that even at some shady points there is no evidence of discon-
tinuity of any kink. Although, due to the transition of the fluid to hexagonal layers near the
walls, the integrand for packing fraction higher than ⌘ = 0.1289 are not reliable.

From the calculated integrand of figures 6.11 and 6.12 we can calculate the

free energy difference in these systems via

�F =

Z1

0

⌧

@H

@�

�

�

d� (6.8)

where h· · · i� denotes the ensemble or time average over �. And, finally, the

Figure 6.13: shows the calculated values for fluid-wall interfacial free energy �fw for the corre-
sponding fluids of FCC-fluid path in the hard-core Yukawa phase diagram. It is important to
know that due to the transition of the fluid to the hexagonal layers in the vicinity of the hard
walls, the �fw value for packing fraction of 0.1298 6 ⌘ 6 0.1366 are not reliable.

interfacial free energy of FCC and fluid with respect to the flat hard walls are
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calculated with

� =
�F

A
(6.9)

with A = 2LxLy as the total area of the interface.

Figure 6.13 represents the calculated values for the FCC-wall interfacial free

energy �cw as well as fluid-wall interfacial free energy �fw. Since the contribution

of equation (6.5) which corresponds to the interaction with the image particles

is bigger than the particle-wall interactions, in total it makes the values of the

interfacial free energies negative and this negativity raises by increasing of the

packing fraction ⌘ in both FCC and fluid phases.

Figure 6.14: shows the difference of entropy between bulk system (FCC crystal and fluid) and
confined system per particle. Same as the interfacial free energies �fw and �cw, �S/N are also
negative but they are increasing by the increment of packing fraction ⌘.

The difference of entropy between the bulk system (FCC crystal and fluid) and

confined system per particle, �S = (�E−�F)/�T , can also help us to understand

if our systems tend to be more ordered or disordered. Figure 6.14 shows �S as a

function of packing fraction ⌘. This figure indicates that the less ordered system

has the bigger negativity of difference of entropy between the bulk system (FCC

crystal and fluid) and confined system per particle, �S.

6.1.2 BCC-Fluid coexistence Line

As already mentioned, the phase diagram of the hard-core Yukawa systems

(Hynninen and Dijkstra (2003)) consists of BCC, FCC, and fluid phases. We

have studied the FCC crystal and corresponding fluids in the flat hard wall

confinements. Now, as the next step of this study, we are considering another

phase in the hard-core Yukawa phase diagram which is the BCC crystal. We
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have surveyed the behavior of the hard-core Yukawa system alongside the BCC-

fluid coexistence in the flat hard wall confinement. Figure 6.15 shows the phase

Figure 6.15: shows the phase diagram of the hard-core Yukawa system at contact value �" = 81
which is proposed by Hynninen and Dijkstra (2003). The inset indicate the specific densities
that we have considered in the BCC-fluid path at � = 2.0616.

diagram of the hard-core Yukawa system and its inset specifies the different

packing fractions that we have considered for a constant value of the � = 2.0616.

Phases ⌘ N Lx ⇥ Ly ⇥ Lz

Fluid 0.0896 57344 51.3499 ⇥ 51.8820 ⇥ 126.9811
0.0887 51.5222 ⇥ 52.0561 ⇥ 127.4032
0.0878 51.6969 ⇥ 52.2326 ⇥ 127.8310
0.0869 51.8739 ⇥ 52.4115 ⇥ 128.2646
0.0860 52.0534 ⇥ 52.5928 ⇥ 128.7043
0.0851 52.2354 ⇥ 52.7767 ⇥ 129.1501
0.0806 53.1854 ⇥ 53.7365 ⇥ 131.4770
0.0762 54.2084 ⇥ 54.7702 ⇥ 133.9829
0.0717 55.3150 ⇥ 55.8882 ⇥ 136.6935
0.0627 57.8327 ⇥ 58.4320 ⇥ 142.8607
0.0538 60.8820 ⇥ 61.5130 ⇥ 150.3299
0.0448 64.6968 ⇥ 65.3673 ⇥ 159.6742

BCC 0.0900 346800 54.4759 ⇥ 55.5029 ⇥ 668.5363
0.0945 53.5971 ⇥ 54.6075 ⇥ 657.7833
0.0990 52.7724 ⇥ 53.7673 ⇥ 647.6927
0.1035 51.9962 ⇥ 52.9765 ⇥ 638.1966

Table 6.2: Size and geometries of the simulated fluid and BCC systems, confined between hard
walls.

Table 6.2 shows the geometry of the BCC crystals and corresponding fluids

that we have studied in confinement. In the following, we will describe the
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simulation that we performed and the results that we have got by studying these

systems.

The calculation from the mapping method that Hynninen and Dijkstra (2003)

have proposed indicates that the coexistence packing fraction for BCC and fluid

is ⌘BCCcoex = 0.0900 and ⌘flcoex = 0.0896, respectively. To confirm this calculation,

Figure 6.16: shows the calculated total pressure for bulk BCC and fluid systems of table 6.2.
The inset indicates that two considered coexisting system have the same pressure and it means
that our estimation of coexistence densities are correct.

similar to the FCC case, we have performed MD simulations in the NVT ensemble

for bulk BCC and fluid around the expected coexistence packing fraction. We

have calculated the total pressure of these systems which are presented in figure

6.16. The inset of this figure confirms that these coexistence values are accurate.

So far, we have observed that the FCC crystals in confinement of flat hard

walls are stable, while the corresponding fluids showed pre-freezing even at

densities below coexistence. Now, we want to understand and study the behavior

of the BCC crystals and fluids in a pair of parallel flat hard wall confinement.

To this end, first, we consider BCC crystals with different densities equal to or

higher than the coexistence density ⌘BCCcoex = 0.0900 for which we have already

given the geometry in table 6.2. Two parallel flat hard walls are positioned

at the boundaries of these systems in the z-direction. As in the confined FCC

case, we defined the interaction between BCC particles and these hard walls via

Eq. (3.2). To see if these confined systems are showing any phase transitions and

study their behavior, we have produced the number density profile ⇢(z) for each

density.

Figure 6.17 shows the normalized number density profiles ⇢(z/Lz)
⇢̄

for BCC(111)

at coexistence ⌘BCCcoex = 0.0900 and a high density BCC crystal with ⌘ = 0.1035.

In the upper part of the figure which belongs to the BCC crystal at coexistence,
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Figure 6.17: shows the normalized number density profile ρ(z/Lz)
ρ̄

for coexistence BCC with

⌘BCC
coex = 0.0900 and a 15% higher density BCC crystal with ⌘ = 0.1035. Both profiles consist of

high-density layers close the wall, BCC crystal in the middle and a melted area between them.

one can see that the layering has happened near the hard walls and the density

of the first layer is extremely high. Later on, we should survey to see if the

formation of this highly dense layer is due to a phase transition, or it is just an

amorphous layer. Right after these layers, there is an area with a lower density

corresponding to the density of the bulk fluid. In the middle of the profile the

density becomes higher, and it is equal to the bulk BCC crystal density which

suggests that in the middle of the box the BCC(111) crystal remains stable. The

bottom part of figure 6.17 shows the density profile for a high-density of the

BCC(111) crystal with ⌘ = 0.1035 (15% higher than coexistence), and we can see

that at this specific density the area which has the density of the bulk fluid is

smaller than the coexistence case and the big part of the BCC(111) crystal is still

stable.

By now, we have understood that some transition has happened inside the

confined BCC crystals and so the question about the nature of these transitions

arises. We have calculated the local bond order parameters like q4q4, q6q6, q̄4

and q̄6 which help us to identify the structure and nature of these transitions for

the BCC(111) crystals in confinement.

Figure 6.18 consists of snapshots which show the BCC(111) crystals for both

coexistence ⌘BCCcoex = 0.0900 and the high density ⌘ = 0.1035 in confinement. We

have examined each configuration via two different approaches for the calculation

of bond order parameter, and we colored the particle according to the color maps

of figures 5.5 and 5.5. From this figure (see figs. 6.18a and 6.18c), one can see that
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in the vicinity of the walls. Moreover, in the confined BCC crystal the same

phenomena at the wall happen. Now we study the fluids at the BCC-fluid

coexistence line between a pair of flat hard walls. The main question is whether

we observe any phase transition in this case and if yes, from where this transition

will start and more important, what is the nature of that.

To this end, we have placed a pair of flat hard walls at the boundaries of

the simulation box in z-direction. The position of these walls should be such

that the density of the fluid in the middle should be equal to the bulk density.

We have performed a series of molecular dynamics simulations for 2 ⇥ 106 step

with a time step of � = 0.001⌧ (⌧ =
p

m�2/") for each fluid system. For keeping

the temperature constant, we have used the Berendsen thermostat with a time

constant of 0.2⌧. The geometry of these systems is presented in table 6.2.

To study the behavior of the fluid at the BCC-fluid coexistence path, we

can investigate the density profiles of these systems. By averaging over 1000

configuration during each simulation, we can calculate the number density profile

⇢(z) in z-direction. Figure 6.20 shows the normalized density profiles of the fluids

Figure 6.20: shows the density profiles for the BCC-fluid coexistence line (fluid part). These
density profiles indicate the formation of dense layers in the vicinity of the hard walls and the
inset shows that as we should expect the density at the middle of the system is equal to the
bulk density.

in z-direction ⇢(z/Lz)
⇢̄

. By studying these density profiles, it turns out that similar

to the FCC-fluid coexistence line some high dense layers form in the vicinity of

the flat hard walls. Moreover, the left inset shows that the density of these layers

increases by the increment of the packing fraction ⌘. The right inset of the figure

indicates that after the layering the density of the systems is equal to their bulk

densities which rationalize our choice of the wall positions.

The full snapshot of the coexistence fluid ⌘flcoex = 0.0896 in figure 6.21 shows

that the formation of the layers near the hard walls have some specific structures.

70





⌘flcoex = 0.0896. But even far from coexistence, one can observe these hexagonal

layers. Figure 6.22b and 6.22e, show the hexagonal layer which is formed near

the wall at a packing fraction of ⌘ = 0.0806 which is ∼ 10% lower than the

coexistence density. If we consider densities well below the coexistence, we can

observe the amorphous layers in the vicinity of the hard walls. Figure 6.22a and

6.22d display 2D snapshots of the first layer at ⌘ = 0.0448 which is ∼ 50% lower

than the coexistence value. So one can see that these layers are amorphous.

Now that we have observed that the fluids in the fluid-BCC path are forming

the hexagonal layers in the vicinity of the walls, we can investigate the 2D packing

fraction ⌘2D1st of these layers and compare them with BCC crystals. These 2D

Figure 6.23: shows the 2D packing fraction of the first layer ⌘2D1st for BCC-fluid coexistence
line at � = 2.0616 and �" = 81.

packing fractions of the first layer ⌘2D1st which are illustrated in figure 6.23

indicate that the packing fraction of the first formed layer in the vicinity of the

hard walls is increasing by the increment of the bulk packing fraction ⌘. Note

that ⌘2D1st in the case of formed hexagonal layers is close to ⌘2D1st for the BCC

crystals.

Moreover, by considering the average order parameter q6q6 for the first

formed layer (see figure 6.24)) we confirm the transition happens in densities

which is already presented by figure 6.23.

To calculate interfacial free energies between fluid and wall, we have per-

formed the thermodynamic integration scheme as introduced in chapter 4. As it

has been already mentioned to employing thermodynamic integration, we need

a system without phase transition along the thermodynamic path. So in the

systems that are presented in figure 6.24 we can calculate interfacial free energies

just for the system on the left-hand side of the transition line. These systems have

72



Figure 6.24: shows the average of q6q6 for the first layer in the vicinity of the wall for BCC
crystals and corresponding fluids. The result is in agreement with transition line in figure 6.23.

packing fractions of ⌘ = 0.0627, ⌘ = 0.0538, ⌘ = 0.0448 which are 30, 40 and 50%

lower than the coexistence density, respectively. The Hamiltonian of these fluids

Figure 6.25: shows the calculated integrand for the fluids that does not show any transition in
confinement. These smooth and reversible integrand show some negative values which can
lead to the negative interfacial energies and are due to the competition between different type
of interaction ranges.

in confinement of hard walls is given by

H(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−fw (�) . (6.10)

where the Up−im(�) describes the interaction of the bulk particles with image
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particles as follows

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.11)
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By calculating the partial derivative of the Hamiltonian with respect of � we

can calculate the corresponding integrand for each system.

@H

@�
=

@Up−im (�)

@�
+
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@�
(6.13)

These derivatives have two terms, the particle-image contribution,
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and the partial derivative of the particle-wall interaction,
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The obtained integrands are shown in figure 6.25 and indicate that these paths

are mostly located in the negative part of the y-axis (
⌦

@H
@�

↵

/A).

By integration over the integrands of figure 6.25, we can calculate the interfa-

cial free energy of the fluid for the hard walls, �fw. The calculated values of �fw

are shown in figure 6.26. As we could expect from the integrands, these values

are negative. The reason is that we have two different types of interaction ranges,

long-ranged interactions in the bulk and short-range ones with the hard walls. To

form the interface, the interaction between the bulk particle and image particles

has a bigger contribution than hard wall interaction which causes the effective

attraction by the walls and thus the negative values for �fw .
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Figure 6.26: shows the calculated value for fluid-wall interfacial free energy �fw at packing
fractions ⌘ = 0.0627, ⌘ = 0.0538 and, ⌘ = 0.0448. The values of �fw are negative because the
particle-image contribution can overcome the share of particle-wall interaction in the forming
of these interfaces.

6.2 Charged Walls Confinement

So far we have studied the FCC, BCC, and corresponding fluid phases in con-

finement of a pair of flat hard walls. We have observed that the FCC crystal is

stable in confinement but the BCC crystals are melting in the vicinity of the hard

walls and this phenomenon happens even slightly above the coexistence density.

Moreover, in both cases for the fluid phase, we have observed the pre-freezing in

terms of hexagonal layers. Now we can examine another type of the wall which

has a longer interaction range. This type of wall is called a charged wall which

is introduced by Karanikas, Dzubiella, Moncho-Jordá, and Louis (2008) and is

defined as

ufw =

8
<

:

" exp
⇥

−
�

z− �
2

�⇤

for r > �
2

1 for r < �
2

(6.16)

also, as it has already described in chapter 3, we substitute the hard-core interac-

tion by an inverse power law potential as follows

uc
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This section is divided into two parts. The first part belongs to the FCC-fluid

path in the phase diagram of the hard-core Yukawa system (see figure 6.1) and we

are confining these systems by a pair of parallel charged wall. In the second part,

we will put the systems alongside the BCC-fluid path (see figure 6.14) between

the same charged walls.
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this to see if this calculation confirms our findings from bond order parameters.

We have calculated the 2D packing fraction of this layer, ⌘2D1st, and compared

Figure 6.35: shows the 2D packing fraction of the first layer ⌘2D1st for both FCC and fluids as
a function of bulk packing ⌘ for both hard and charged walls confinement. It indicates that the
density of the first layer for the FCC(111) crystal is not changing while for the fluid the density
of the first layer in charged walls confinement is considerably lower than the hard walls case.

it with a similar system which is confined by flat hard walls. This comparison

(figure 6.35) shows that the density of the first layer both near the hard and

charged walls for the FCC(111) crystals are similar and it does make sense since

FCC(111) crystal is stable in both confinements. Moreover, one can see that

the density of the first layer in the fluid case decreases for the charged wall

confinement. This can explain that we can observe the hexagonal layers for hard

walls case in charged wall confinement and it shows that the hard walls are more

attractive for the fluid particles than the charged walls.

Moreover, one can examine these amorphous layers by calculation of an

average of local order parameter q6q6 for them. Figure 6.36 shows the average

values of q6q6 for the first layer near the wall and indicates that these layers

should have similar structures and are disordered.

Now that by studying the structure of the FCC and fluid we are sure that

there is no evidence of any transition, we can use our thermodynamic integration

method to calculate the interfacial energy of FCC-wall interfaces �cw, and fluid-

wall interfaces, �fw. The Hamiltonian of the FCC(111) crystal which is confined

by two parallel charged walls is defined as

H(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−fw (�) . (6.18)

82



Figure 6.36: shows the average of q6q6 for the first layer in the vicinity of the charged wall
for FCC crystals and corresponding fluids. The result is in agreement with transition line in
figure 6.35.

where the interaction between bulk particles and image particles can be described

by

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.19)
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and the interaction of the particles with flat charged wall is formulated as follows

Up−fw (�) =
X

i

up−fw (�, zi)

up−fw (�, z) = �4 (1 − �)
4
"

"

⇣�

z

⌘6
+

✓

�

Lz − z

◆6
#

(6.20)

+ �4
✓

1 + �

2

◆4

"

"

exp
h

−
⇣

Lz − z−
�

2

⌘

− 
⇣

z−
�

2

⌘i

+

"

⇣�

z

⌘256
+

✓

�

Lz − z

◆256
##

By calculating the partial derivative of the Hamiltonian with respect to � and

then integrating its average over � from the � = 0 which corresponds to the bulk

state and � = 1 which describes the confined system, we can have access to the

free energy difference between two steps. This partial derivative can be written

as
@H

@�
=

@Up−im (�)

@�
+

@Up−w (�)

@�
(6.21)

So the partial derivative of the particle-image interaction is given by

@up−im(�, r)
@�

= −2 (1 − �)

✓

exp [−� (r/�− 1)]
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+
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r

⌘256
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(6.22)
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value of �. Equation 6.24 shows the way that the charged wall are placed for the

fluids.

z0(w) = zw + [(1 − �)zw↵w] for � > 0 (6.24)

in which ↵w = 0.1 and zw is the value that we have obtained from figure 6.31.

Figure 6.38: shows the calculated integrand for the fluid in confinement of flat charged walls.
The major part of the integrands are positive and have direct dependency to increasing of
packing fraction ⌘.

The corresponding integrands for the fluids confined by the charged wall are

presented in figure 6.38. Similarly, the significant value of these integrands is pos-

itive which is because the bulk particle-wall interaction has a large contribution

of forming the interface between the fluid and charged walls.

Now we can calculate the free energy difference in both FCC(111) crystal and

corresponding fluids from the integrand of figures 6.37 and 6.38, respectively.

Figure 6.39 represents the calculated values for FCC-wall energy, �cw, and

fluid-wall energy, �fw. Since there is no evidence of the transition in flat charged

walls confinement, the calculated values are reliable. Moreover, as we can also

see in figures 6.37 and 6.38 the calculated values for �cw and �fw are positive.

As we have already mentioned, in addition to calculating the interfacial free

energies, we can calculate the difference in entropy between the bulk system

(FCC crystal and fluid) and confined system per particle �S. This value can lead

us to understand if our systems tend to be more ordered or disordered since the

discontinuity in entropy is a sign of a first order phase transition.

Figure 6.40 shows calculated the difference of entropy per particle �S/N for

FCC(111) and fluid systems. This figure indicates that the difference in entropy

between the bulk system (FCC crystal and fluid) and the confined system per

particle, �S, is decreasing with increasing of packing fraction ⌘, and it shows no

discontinuity.
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Figure 6.39: shows the calculated values for FCC-wall �cw and fluid-wall�fw interfacial free
energy �fw for the corresponding fluids of FCC-fluid path in the hard-core Yukawa phase dia-
gram. Since there is no evidence of transition, then all the values of �cw and �fw are reliable.
Moreover, the interfacial free energy values are positive.

Figure 6.40: shows the difference of entropy between bulk system (FCC(111) crystal and fluid)
and confine system per particle.
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Figure 6.41: shows a rough estimation of relation between crystal-fluid interfacial free energy
�cf and contact angle ✓

So far, for the flat charged wall confinement we have seen that there is no

evidence of pre-freezing and we could calculate the FCC(111)-wall and fluid-wall

interfacial free energies. So regarding the Young’s equation as follows

�cf cos ✓ = �fw − �cw (6.25)

we can have a rough estimation about the relation between �cf and cos ✓ which

are crystal-fluid interfacial free energy and contact angle, respectively (see fig-

ure 6.41).

6.2.2 BCC-Fluid coexistence Line

So far we have seen that by confining the BCC(111) crystal between two parallel

hard walls, some part of the crystal in the vicinity of the wall is melting and from

this melted part hexagonal layers are formed at the wall.

Now, we consider the same system of BCC(111) particles, but we confine them

by a pair of flat charged walls. The position of the walls is chosen such that

the density of the BCC(111) crystal in the middle of the system will be equal to

the bulk density and it is right before the first layer of the image particles. The

geometry of these systems is described in table 6.4.

We have performed MD simulations in the NVT ensemble at the temperature

kBT = 0.01234568 and � = 2.0616. The simulation has been done for 1⇥ 106 MD

steps after the equilibration. Moreover, we have collected the configuration every

1000 steps to calculate an accurate density profile ⇢(z). The calculated density

profiles for the BCC(111) at coexistence (⌘BCCcoex = 0.0900) and the crystal with the

density 20% higher than coexistence are presented in figure 6.42.
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Phases ⌘ N Lx ⇥ Ly ⇥ Lz

Fluid 0.0896 57344 51.3499 ⇥ 51.8820 ⇥ 126.9811
0.0887 51.5222 ⇥ 52.0561 ⇥ 127.4032
0.0878 51.6969 ⇥ 52.2326 ⇥ 127.8310
0.0869 51.8739 ⇥ 52.4115 ⇥ 128.2646
0.0860 52.0534 ⇥ 52.5928 ⇥ 128.7043
0.0851 52.2354 ⇥ 52.7767 ⇥ 129.1501
0.0806 53.1854 ⇥ 53.7365 ⇥ 131.4770
0.0762 54.2084 ⇥ 54.7702 ⇥ 133.9829
0.0717 55.3150 ⇥ 55.8882 ⇥ 136.6935
0.0627 57.8327 ⇥ 58.4320 ⇥ 142.8607
0.0538 60.8820 ⇥ 61.5130 ⇥ 150.3299
0.0448 64.6968 ⇥ 65.3673 ⇥ 159.6742

BCC 0.0900 69360 54.4759 ⇥ 55.5029 ⇥ 668.5363
0.0945 53.5970 ⇥ 54.6074 ⇥ 131.2852
0.0990 52.7728 ⇥ 53.7677 ⇥ 129.2664
0.1035 51.9962 ⇥ 52.9765 ⇥ 127.3642
0.1080 51.2634 ⇥ 52.2299 ⇥ 125.5692

Table 6.4: Size and geometries of the simulated fluid and BCC systems, confined between
charged walls.

Figure 6.42: It shows the density profile of coexistence BCC(111) crystal with ⌘BCC
coex = 0.0900

and a high-density system with ⌘ = 0.1080 which both are confined by a pair of flat charged
walls. At the coexistence on can see a melted area between the BCC crystal and the layers that
are formed in the vicinity of the walls. This area for higher density becomes narrower.

88











Figure 6.49: shows the average of q6q6 for the first layer in the vicinity of the charged wall
for BCC crystals and corresponding fluids. The result is in agreement with transition line in
figure 6.48.

figure 6.48 by calculating the average values of local order parameter q6q6 for

the first layer near the walls. Figure 6.49 shows the averaged q6q6 and indicates

that there is no evidence of transition in these systems.

By studying the structure of the fluid in charged wall confinement, we have

found out that there is no evidence of transitions in these systems. So now we can

calculate the fluid-wall interfacial free energies �fw for these systems. Here, we

need to consider the Hamiltonian of the fluid which is confined by two parallel

flat charged walls as follows

H(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−fw (�) . (6.26)

where the interaction between bulk particles and image particles can be described

by

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.27)

up−im(�, r) = (1 − �)
2
"

✓
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+
⇣�

r

⌘256
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and the interaction of the fluid particles with flat charged walls is formulated as
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follows
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By calculating the partial derivative of the Hamiltonian concerning the � and

then integrating its average over � from the � = 0 which corresponds to the bulk

state and � = 1 which describes the confined step, we can have access to the free

energy difference between two steps. This partial derivative can be written as

@H

@�
=

@Up−im (�)

@�
+

@Up−w (�)

@�
(6.29)

So the partial derivative of the particle-image interaction can be given by
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And partial derivative of the interaction between bulk particles and charged walls

is calculated as
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By using this calculation and considering the fluids that are described in

table 6.3 we have performed the thermodynamic integration scheme to calculate

interfacial free energy of the fluid with the charged walls. To this end, we have

performed MD simulation in the NVT ensemble for 51 independent values of �

from 0 to 1. Each simulation has been done for 1.1 ⇥ 106 steps with time-step of

dt = 0.001, and we have collected the thermodynamic properties in each 100 step

to calculate the integrand. The calculated smooth and reversible integrands are

shown in figure 6.46.

Now, from the integrand of figure 6.50 we can calculate the fluid-wall interfa-

cial free energy �fw. Figure 6.51 shows the calculated fluid-wall interfacial free

energies �fw for the fluids that are confined between parallel flat charged walls.

In contrast to the hard walls case, the values of the interfacial free energy, �fw, are

positive. The reason for this positive value is because the range of fluid-wall and
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Figure 6.50: shows the calculated integrand for the fluids confined by two parallel flat charged
walls. These smooth and reversible integrands show some positive values which can lead to
the positive interfacial energies which are in contrast to the hard wall confinement case.

Figure 6.51: shows the calculated value for fluid-wall interfacial free energy �fw at different
packing fractions equal and below the coexistence. The values of �fw are positive because the
particle-image contribution now has been overcome by the fluid-wall interaction contribution.
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fluid-fluid interactions are approximately the same and the fluid-wall interactions

have a more significant contribution to forming the interface between fluids and

flat charged walls.

6.3 Crystal-Fluid Interface

Previously we have shown in figure 6.41 that via equation (6.28) one can have

some rough estimation about solid-fluid interfacial free energy. In this section we

present the result of the study that we have done on the crystal-fluid interface.

We have investigated the FCC(100)-fluid interface at coexistence. By using

Thermodynamic integration that is introduced in chapter 4 we have tried to

directly calculate the interfacial free energy of solid-fluid interface.

6.3.1 FCC-Fluid Coexistence

To calculate the FCC-fluid interfacial free energy we have performed the thermo-

dynamic integration scheme (see chapter 4). In the first step we have confined the

fluid at � = 5.1738 and ⌘flcoex = 0.1366 with a pair of short-range Gaussian walls.

In this step of the thermodynamic integration, the Gaussian walls are gradually

turned on at the boundaries of the system in z-direction but periodic boundary

conditions are valid in all three spatial directions. The �-dependent Hamiltonian

of this step can be written as

H1(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−fw (�) . (6.32)

in which interaction between fluid particles and the Gaussian wall can be de-

scribed as

Up−fw (�) =
X

i

up−fw (�, zi) (6.33)
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where z is the distance of particle from the wall, A = 25/�" and B = 0.02739�.

Same process has been done for a system of FCC(100) crystal at � = 5.1738 and

⌘FCCcoex = 0.1396. So the Hamiltonian for this can be written as

H2(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−fw (�) . (6.34)

Figure 6.52 show the calculated integrand for first two steps of thermodynamic

integration. The corresponding free energy for these two steps are calculated
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Figure 6.52: shows the calculated integrands for fluid-Gaussian wall (step1) and FCC-Gaussian
wall (Step2) at at � = 5.1738, ⌘flcoex = 0.1366 and ⌘FCC

coex = 0.1396.

as �F1/A = 1.806 ⇥ 10−4 and �F2/A = 1.064 ⇥ 10−6. As one can see the value of

the contribution of the short-range in these two steps is too small which can be

neglected in the final value of FCC-fluid interfacial free energy.

In step three, we consider a fluid at ⌘flcoex = 0.1366 which is confined by its

own frozen version. To this end we consider several layers of the fluid from step

1 with width of 7� from each end of the system. Then we place the walls as we

have discussed in chapter 3 (see figure 4.1). In this step we gradually turn on

the interaction of the bulk particles with frozen walls and in meantime turn off

the particle-image interactions. The �-dependent Hamiltonian of this step can be

written as

H3(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−pw (�) . (6.35)

where the interaction between bulk particles and image particles can be described

by

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.36)
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and interaction between particles and structured wall (frozen fluid wall) can be

written as

Up−pw(�) =
X

i,pw

ui,pw(�, ri,pw) (6.37)

up−pw(�, r) = �12"
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Figure 6.53: shows the calculated integrands for step 3 and Step 4 at � = 5.1738, ⌘flcoex =

0.1366 (step 3), and ⌘FCC
coex = 0.1396 (step 4)

.

Step four is same as the step three but with this difference that we are

confining the final configuration of the FCC crystal with ⌘FCCcoex = 0.1396 from

step two with its frozen version. This frozen version is made by several layers of

the FCC crystal with a width of 7�. To simultaneously turning off the periodic

boundary condition in z-direction and turning on the interaction with structured

walls, the �-dependent Hamiltonian can be written as

H4(�) =

NX

i=1

~p2
i

2m
+Up−p +Up−im(�) +Up−pw (�) . (6.38)

in which the interaction between bulk particles and image particles can be written

as

Up−im(�) =
X

i,im

ui,im(�, ri,im) (6.39)
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and one can describe interaction between particles and structured wall (frozen

FCC wall)

Up−pw(�) =
X

i,pw

ui,pw(�, ri,pw) (6.40)
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The calculated integrands for Step three and four is presented in figure 6.53.

Moreover, values for free energy difference regarding step 3 and 4 are calculated

as �F3/A = 1.431 ⇥ 10−2 and �F4/A = 1.149 ⇥ 10−2.
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7 Conclusions & Outlook

In this work, we have studied the phase behavior of hard-core Yukawa BCC, FCC,

and fluid phases in confinements. We have investigated two different types of

confinements; a) flat hard walls, and b) flat charged walls. For these two types of

confinements, we considered states around BCC-fluid and FCC-fluid coexistence,

separately.

For the confined FCC(111) crystal confined between a pair of flat hard walls,

the calculated density profiles show that the FCC(111) crystal with coexistence

density ⌘FCCcoex = 0.1369 is stable in the hard wall confinement. The behavior

of the higher density FCC(111) crystals (up to 20% higher than coexistence)

also have been investigated, and we observed the same behavior as coexistence

FCC(111). Not only from the calculated density profiles it is obvious that FCC(111)

crystals are stable in confinement and there is no evidence for any transition

in these systems, but also the structure analysis of confined FCC(111) crystals

via calculation of local bond order parameters q6q6, q4q4, q̄6 and q̄4 confirms

this assumption. Furthermore, we have employed a thermodynamic integration

method to calculate the FCC-wall interfacial free energies �cw. These interfacial

free energies are negative. The reason for this negativity is that due to the

significant contribution of particle-interactions, particles tend to be attracted to

the flat hard walls.

We have also investigated the phase behavior of the fluid (corresponding to

FCC(111)) at coexistence ⌘flcoex = 0.1366 as well as densities below the coexistence

density. We have calculated the density profiles for these fluids. These density

profiles indicate that some dense layers are formed in the vicinity of the walls.

These layers appear to be denser than the bulk density, and the density of the first

layer in the vicinity of the wall is increasing by the increment of packing fraction

⌘. Moreover, the number of formed layers are growing by the packing fraction.

In the first sight, we can observe that the 2D packing fraction of the first layer
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near the wall at coexistence is even higher than the one for FCC(111) coexistence

density. This statement is valid also for densities well below coexistence. The

structure analysis via q6q6, q4q4, q̄6 and q̄4 as local bond order parameters for

the coexistence fluid showed that there is a transition from fluid to hexagonal

order in the vicinity of the wall. This phenomenon, known as pre-freezing,

was also observed for hard-sphere fluid in hard wall confinement. However,

in the case of hard-core Yukawa fluid, we have also observed the pre-freezing

phenomenon at densities well below coexistence. Calculation of an average local

bond order parameter for the first layers q6q6 in the vicinity of the hard wall

confirms that the transition is happening from a density around ⌘ = 0.1298

and below this density the layers in the vicinity of the walls are amorphous.

Moreover, by performing a thermodynamic integration method, we calculated

the free energy of the fluid-wall interface. Since the hard walls are attractive for

the bulk hard-core Yukawa particles, there is a trend of particles near the walls,

these interfacial free energies are negative. However, the obtained values for the

systems with phase transition are not reliable.

We have also studied the phase behavior of BCC(111) crystal at flat hard wall

confinement. We considered BCC(111) crystal at coexistence density ⌘BCCcoex =

0.0900 up to densities 20% above coexistence. At coexistence, we observed the

formation of several layers in the vicinity of the wall and structure analysis via

the local bond order parameter showed that the layer near the hard walls has

hexagonal order. Right after these layers, we observed a melting which is a sign

of pre-melting. Also, the rest of the particles remain with the BCC structure. We

have observed the pre-melting also for higher densities, but the only difference is

the width of the melted area which is decreasing by the increment of packing

fraction ⌘. Moreover, by having phase transitions for these confined systems, we

were not able to perform thermodynamic integration to calculate the free energy

of the BCC-wall interface.

By confining the fluid at coexistence density ⌘flcoex = 0.0896 with a pair of

flat hard walls, we have studied the phase behavior and structure of this system.

This fluid showed the pre-freezing phenomenon and formation of a hexagonal

layer near the hard wall. Besides, we have studied fluids with densities up to

50% below coexistence. These systems, up to ⌘ = 0.0717 which is 20% below

the coexistence, showed a transition from a of fluid to a hexagonal layers in

the vicinity of the hard walls. For the sufficiently low-density fluids (from 30%

below the coexistence) the layers near the hard walls are amorphous. Calculation

of local bond order parameters as well as the calculation of an average q6q6

for the first layer near the wall confirms that the transition has happened from

⌘ = 0.0717. Due to the phase transition in the confined fluid systems we were

able to perform a thermodynamic integration only for the low-density fluids. The

calculated values for the free energy of the fluid-wall interface are negative.
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To study the phase behavior of the hard-core Yukawa systems including BCC,

FCC, and fluids we have used a pair of flat charged walls. We have confined the

FCC(111) crystal at coexistence, ⌘FCCcoex = 0.1396, as well as crystals with densities

up to 20% above coexistence by a pair of flat charged walls. Our observation

of density profiles and calculation of a 2D packing fraction for the layer in the

vicinity of the walls confirm that the FCC(111) crystals are stable for the charged

wall confinement which we have also observed for the hard wall case. These

observations are also verified by a structure analysis via calculation of local bond

order parameters. By performing the thermodynamic integration scheme, we

were able to calculate the free energy of the FCC-wall interface. In contrast to the

hard wall case, these calculated values of free energy are positive. The reason is

now the range of both particle-particle, and particle-wall interactions are long,

and their contribution makes the walls less attractive than in the hard wall case.

Moreover, we studied the phase behavior of fluid at coexistence ⌘flcoex = 0.1366

as well as densities well below the coexistence in charged wall confinement.

However, same as the hard wall confinement, we have observed the formation

of several layers in the vicinity of the walls, but from the density profiles and

calculation of 2D packing fraction of these layers ⌘2D1st one can see that these

layers have a lower density than the ones for the hard wall case. Structure analysis

via calculation of local bond order parameters such as q6q6, q4q4, q̄6 and q̄4

showed that these layers in the vicinity of the charged walls are amorphous

and there is no evidence of a phase transition in these systems. So, we could

perform the thermodynamic integration scheme to calculate the free energy of

the fluid-wall interface for the density at coexistence and densities below the

coexistence density. Same as the confined FCC(111) case, here the charged walls

are less attractive for the particles, and it makes the positive values for interfacial

free energies.

We have confined BCC(111) crystals at coexistence and up to 20% above

coexistence between a pair of charged walls. The density profiles of these crystals

at confinement show that similar to the hard wall case the systems are divided

into three regions, several layers near the charged walls, a melted area with

a density corresponding to the bulk density and stable BCC crystal. We have

studied the structure of the layers in the vicinity of the wall by calculation of

local bond order parameters. It turns out that the layer in the vicinity of the

wall has no specific order and is amorphous. However, in a very high-density

crystal, the particles within the first layer tend to form a hexagonal structure.

Moreover, due to the phase transitions in these confined crystals, we could not

use the thermodynamic integration scheme to calculate the free energy of the

BCC-wall interface.

As the last confined system, we have considered the fluid state around the

BCC-fluid coexistence between a pair of charged walls. These systems are the
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coexistence density and the fluid up to 50% below the coexistence density. The

density profiles of these fluids show the formation of some dense layers which are

not as dense as the layers in a hard wall case. The structure analysis via local bond

order parameters shows that these layers in the vicinity of the walls do not have

any specific order and they are amorphous layers. Since no phase transition has

been observed in these cases, we were able to use the thermodynamic integration

scheme to calculate the free energy of the fluid-wall interface. In contrast to the

hard wall case, The calculated values for interfacial free energies are positive.

As the final step to calculate the free energy of the FCC-fluid interface at

coexistence, we have employed a modified thermodynamic integration method

consist of six steps. With these steps we tried directly calculate the FCC-fluid

interfacial free energy. However, due to the crystallization of the fluid in contact

with FCC crystal, this method is not valid to calculate the free energy of the

FCC-fluid interface.

The issues and results which we have presented in this thesis is have not been

considered and studied via experiment for charge colloids. In this point, we think

that would be a good model in the real system, and one could address them via

designing a specific experiment.
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