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Abstract

A theoretical description of the interactions between finite-sized particles in linearly

elastic or viscoelastic media is presented. Analogously to the famous Stokes flow

around a rigid sphere in low-Reynolds-number hydrodynamics, the displacement field

around a rigid spherical inclusion that is embedded in a continuous elastic environ-

ment can be analytically expressed in the framework of linear elasticity theory. The

embedding medium is considered as isotropic, homogeneous, and infinitely extended.

On this basis, ensembles of many spherical inclusions are addressed that are rigidly

translated and rotated by external forces and torques, respectively. The external

force and torque acting on each particle is transmitted to the surrounding medium

and affects the other particles through the embedding material via local material dis-

tortions, leading to mediated interactions between the individual particles. Resulting

effective interactions can formally be summarized by (mathematical) displaceability

and rotateability matrices in analogy to the case of hydrodynamic mobility matrices

describing interactions through incompressible fluid environments. These mathemat-

ical expressions are determined via expansions in the inverse interparticle separation

distances. Here, the interaction matrices were calculated up to (including) sixth in-

verse interparticle separation distance for a possibly compressible elastic medium.

In the limit of incompressibility, the hydrodynamic mobility matrices are formally

recovered.

The theory was employed to quantify the experimentally observed interactions

between rigid paramagnetic particles embedded in soft polymeric gels. When exposed

to an external magnetic field, magnetic moments were induced in the particles. This

resulted in magnetic interaction forces that displaced the particles from their initial

equilibrium positions. Using the theory, the elastic shear moduli of the embedding

polymeric gels, which were inaccessible to direct measurement, were extracted for

several experimental samples. Very good agreement was found for the theoretically

predicted and the measured particle displacements.

In a further experiment, a reversible collapse of two paramagnetic particles into
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contact, starting from an initially well-separated state, was observed, if the (non-

saturating) external field magnitude was large enough. Although the overall process

is highly nonlinear, both with respect to the elastic and the magnetic effects, the

theory could accurately determine the necessary field strength to initiate the collapse

and furthermore qualitatively predict a hysteretic behavior for a magnetization-and-

demagnetization cycle of the two-particle system.

Finally, a dynamic theory for particulate inclusions in linearly viscoelastic environ-

ments is presented. Viscoelastic materials possess both viscous and elastic properties.

The theory used to describe the viscoelastic media can be derived from a general con-

tinuum approach based on classical conservation laws and symmetry arguments. In

analogy to what has been described above, the interactions between rigid inclusions

in the viscoelastic media were characterized theoretically and evaluated for basic ex-

ample situations. For instance, the behavior of active self-propelled microswimmers

is briefly addressed in such viscoelastic surroundings.
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1 Introduction

1.1 Motivation

The question that at the very start initiated this thesis can be summarized as fol-

lows: two spherical particles are embedded at a given distance in a continuous elastic

environment; how are they displaced with respect to each other, if exposed to exter-

nal forces? Answers to this question and related ones were found and evaluated by

considering example systems within the field of soft matter physics.

Soft matter physics addresses materials that exhibit strong responses to compar-

atively weak forces [1]. This fact is owed to the size of the building blocks of these

materials, which are large enough to neglect quantum effects and typically small

enough so that thermal fluctuations remain important [2]. One of the subbranches

of soft matter physics deals with colloidal suspensions [1]. These are defined as mix-

tures consisting of small particles, typically ∼ 10nm–10μm, that are dispersed in a

medium, e.g., a liquid or a gel.

More precisely, the class of materials addressed by the initial question are soft

elastic composite materials, specifically magnetic elastomers and gels [3–6]. In that

case, the dispersion medium is represented by a polymeric network. Polymers are

macromolecules that, in the simplest case, are given by long chains of repeated small

segments, the so-called monomers [1]. The polymer chains exhibit entropic elas-

ticity [7], which means that they prefer curled over stretched chain configurations.

Thus, if a polymer is stretched by an external load, it tends to resume a curled shape

after the load is removed. A polymeric network is constituted by many such macro-

molecules. If the polymer molecules are chemically crosslinked, an overall elastic

behavior can be the result. In a polymeric gel, the polymer network is additionally

swollen by a solvent (liquid), which is trapped in the mesh of the polymeric material.

The extent of elasticity can be controlled, for instance, by the degree of chemical

crosslinking between individual polymeric chains. On the scales considered here, the

elastic dispersion medium can be regarded as continuous [6].
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1 Introduction

If magnetizable or magnetic colloidal particles are embedded in the elastic dis-

persion medium, then they can be addressed by external magnetic fields [3, 8]. For

instance, we consider a colloidal particle carrying a magnetic moment. Exposed to

an external magnetic field gradient, in general a force will be induced that displaces

the particle [8]. Since the particle is embedded in an elastic environment, the local

material will be reversibly distorted by the particle displacements. Let us now place

a second magnetic particle into the vicinity of the first particle. Then, the second

particle is necessarily affected by the deformation field created by the first particle.

Moreover, since the second particle is also subject to the external field, it will like-

wise, in general, distort the local surrounding material, which in turn affects the first

particle. Thus, a mutual interaction occurs between the two particles, mediated by

the embedding elastic material [6].

The study of such magneto-elastic composite materials constitutes a broad in-

terdisciplinary research field, involving physics [4, 6], chemistry [9, 10], biology and

biophysics [11–13], medicine [14–16], and engineering sciences [17–19]. Depending

on the considered length scales, these materials exhibit various characteristic ef-

fects. For instance, they allow for the tuning of their macroscopic shape (magne-

tostriction) [3, 20, 21] and mechanical properties like stiffness by external magnetic

fields [4,22,23]. This makes them attractive for technological applications, e.g., as soft

actuators, sensors, artificial muscles, or tunable dampers [24–29]. Moreover, research

is being conducted to combine the properties of nematic liquid crystals and magnetic

gels [30, 31]. Biological cells and tissue containing magnetic particles can likewise

be classified as magnetic gels. There, drug delivery via field-responsive magnetic

colloidal particles and hyperthermal cancer treatment are of medical interest [14–16].

On the mesoscopic scale, interesting magneto-mechanical coupling effects in magnetic

gels have been observed [32], involving long chain-like aggregates of magnetic parti-

cles that buckled characteristically under a perpendicular external magnetic field due

to an interplay of magnetic forces on the particles and the resistance of the embed-

ding elastic medium to deformation. Moreover, theoretical investigations of uniaxial

magnetic gels revealed a superelastic behavior [33, 34], i.e., pronounced nonlinear

stress-strain behavior.

Many different tools are available to investigate the properties of such systems

theoretically. For instance, in a simplified picture, the elastic medium can be modeled

by a network of harmonic springs, whereas the magnetic component is represented

by point-like or spherical particles with magnetic dipole moments [22, 32, 35–38].
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1.1 Motivation

This allows, for example, to effectively handle large particle numbers as well as to

study relaxational dynamics and dynamic material properties [37, 38]. Alternatively,

the colloidal particles and embedding medium can be described by finite-element

simulations and related methods [33, 34, 39–43], allowing for the spatially resolved

quantification of deformation fields. Often, it is sufficient to assume point dipoles for

the magnetic particles [22,38]. However, in some cases, the internal magnetization of

the magnetic particles needs to be resolved, which can likewise be addressed by finite-

element simulations [42]. Some studies explicitly resolve the microscopic details of the

embedding medium by modeling coarse-grained polymer chains in a discretized way

[36,44,45]. Statistical methods can provide further insight into particle distributions

for a better understanding of macroscopic properties [46]. Furthermore, magnetic

gels can be addressed by density functional theory [47]. The broad picture is finally

given by macroscopic theories that are derived from conservation laws and symmetry

considerations [48,49]. Such symmetry-based descriptions involve many undetermined

macroscopic material parameters that eventually must be functions of the micro- and

mesoscopic details. Combining the efforts of micro-, meso-, and macroscopic theory

and simulation, connecting these different length scales from the micro- via the meso-

to the macroscale is desirable to achieve a more complete understanding [36,50].

Here, we concentrate on the mesoscopic point of view. That is, the finite size of

the colloidal particles is still resolved, whereas the embedding material appears ho-

mogeneous and continuous [6]. (According to the definition of the term “mesoscopic”

when compared to the term “macroscopic” given in Ref. [6], a macroscopic theory in

this context does not resolve the individual magnetic particles but instead includes

their effect via a continuous magnetization field, while a mesoscopic theory resolves

them individually. Here, we stick to the latter concept.)

The focal point of this thesis lies on interactions between rigid particulate inclu-

sions mediated by the surrounding environment. A real quantitative analysis of such

mediated interactions requires to correctly resolve the three-dimensional distortional

fields that the particles may induce in the medium upon displacements or rotations.

If the considered composite material is predominantly elastic, then the theory of elas-

ticity [51] is used for this purpose. Especially in the regime of small deformations,

closed-form expressions can be derived.

We will here first approach the initially stated problem analytically in the frame-

work of linear elasticity theory, with the ambition to describe real experimental sam-

ples quantitatively. Later, we extend the theory to dynamic situations. This is
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1 Introduction

motivated by the fact that many composite systems composed of colloidal particles

in polymeric solutions do not only exhibit elastic but also viscous properties, i.e., they

combine features characteristic for solids and liquids [52]. The term viscoelastic has

been introduced to refer to this kind of behavior. In formulating a dynamic theory

to quantify the behavior of particulate inclusions in linearly viscoelastic materials,

our mesoscopic approach is considerably widened, extending, inter alia, also to the

description of the behavior of active self-propelled microswimmers [53, 54].

Since the background of this dissertation thesis is theoretic, we first include in

Sec. 1.2 some brief remarks on the used notation. Afterwards, we provide a brief

introduction to linear elasticity theory in Sec. 1.3. There, all concepts, quantities, and

formulae necessary for the understanding of the theoretical parts of our publications

are defined or derived. We then address our actual theoretical work in the framework

of this thesis and finally briefly summarize our results. A few words concerning our

theoretical analysis of experimental sample systems follow in Sec. 1.4. Furthermore, in

Sec. 1.5 our dynamic theory for linearly viscoelastic materials is summarized. Part 2

attaches the already peer-reviewed publications (I to IV) together with a statement

on the respective contributions of the author to each work. Furthermore, a link to

the published preprint version of our last work (V) is included. Finally, we end by

some concluding words in Part 3.

1.2 Remarks on notation

Two kinds of mathematical notations are used interchangeably throughout this intro-

duction and the papers, namely the index notation and the vector notation. Vectors

and tensors are written in bold in vector notation. In addition to that, tensors of

rank two are marked by an underscore, tensors of rank three by two underscores,

and so on, for instance, G and M. All considered vector fields are three-dimensional.

The individual components along the different coordinate axes are addressed by in-

dex notation: ri is the ith component of r with i ∈ {x, y, z} in Cartesian coordi-

nates. Likewise, the components of the tensors G and M are given by Gij and Mijk

(j, k ∈ {x, y, z}). Coordinate indices are always shifted to the subscript. The Eu-

clidian norm (magnitude) of a vector r is denoted by the scalar r := |r|. Moreover,

unit vectors are marked by a hat, e.g., r̂ := r/r and r̂i in vector and index notation,

respectively. Vectors and tensors can be labeled to refer to different particles, for

example, ri for the ith particle. Then, ri,j here denotes the jth component of the
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1.3 Linear elasticity theory

ri-vector (and not the derivative with respect to the jth coordinate as in some other

works).

The identity tensor is in vector notation written as Î. Its components are expressed

via the Kronecker-delta symbol

δij :=

⎧⎨
⎩1, for i = j,

0, else.
(1.1)

Furthermore, the frequently used Levi-Civita symbol is defined as

εijk :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if (i, j, k) is an even permutation of (x, y, z),

−1, if (i, j, k) is an odd permutation of (x, y, z),

0, else.

(1.2)

The Einstein summation convention, i.e., summation over repeated indices, is ap-

plied. In vector notation, polyadics are expressed without multiplication sign, e.g.,

rirj is the ij-component of the dyadic rr. Contractions over two indices are in vector

notation marked by a center dot, contractions over four indices by two vertical dots,

and so on, for example, r · ∇ = ri∇i and rr : ∇∇ = rkrl∇l∇k.

1.3 Linear elasticity theory

In the following, a brief introduction to the linear theory of elasticity is given. This

overview roughly follows Ref. [51], though paying more attention to the aspects that

are important in this thesis while neglecting issues less relevant here. Linear elastic-

ity theory is a continuum theory and is built upon symmetry considerations and the

axiomatic conservation laws of classical physics. It describes small reversible defor-

mations of solids. These deformations can be caused, e.g., by the gravitational field

or by an applied stress. In a composite material, the sources of local interior defor-

mations can also stem from particulate inclusions embedded into the material that

are displaced and rotated by external forces and torques, respectively [4,6]. The basic

problem of inclusions in an elastic material has been addressed previously [55–61].

Our goal here is to quantify the interactions between rigid inclusions of finite size

mediated by the embedding elastic medium, if external forces and torques act on

these inclusions.
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1 Introduction

Elastic materials can in general exhibit various anisotropies [51]. Here, we focus on

the simplest but in many cases well applicable case of an isotropic and homogeneous

medium. Moreover, we concentrate on the bulk of the material and therefore assume

the medium to be for this purpose infinitely extended throughout. We start by first

considering a simple elastic solid without any inclusions or other inhomogeneities.

1.3.1 Displacement, strain, and compressibility

In elastostatics, two states of a given elastic solid are distinguished: the undeformed

or ground state and the deformed state. Let r be the position of a material point of

the medium in the undeformed state and r′ its position in the deformed state. Then,

we can define the displacement

u := r′ − r. (1.3)

More precisely, u is a field, i.e., u = u(r), that describes the displacements at all

positions r. In the following sections, we omit the argument of all field quantities

for simplicity of notation. Let us now consider two neighboring material points sepa-

rated by the infinitesimal distance vectors dr and dr′ in the ground state and in the

deformed state, respectively. Then, according to Eq. (1.3), we can write

dr′ = dr+ du, (1.4)

with du the infinitesimal difference between the respective displacements of the two

material points. Their distance in the deformed state is thus described by the mag-

nitude dr′, or equivalently,

dr′2i = dr2i + 2dridui + du2
i . (1.5)

Inserting the identity dui = (∇jui)drj, we find

dr′2i = (δij + 2εij)dridrj, (1.6)

with

εij :=
1

2
[∇iuj +∇jui + (∇iul)(∇jul)] . (1.7)
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1.3 Linear elasticity theory

If infinitesimal deformations are considered, Eq. (1.7) can be linearized with respect

to the gradient of u to obtain

εij =
1

2
[∇iuj +∇jui] , (1.8)

which we call strain tensor in the following. The strain tensor is a tensor of rank two

and, being symmetric, possesses six independent and real components. It describes

the deformation of an elastic material. Deformations result if any two points of the

material are displaced relatively with respect to each other. We can distinguish two

kinds of displacements, for which no deformation occurs, namely uniform translations

and rotations. Uniform translations are described by constant displacements and thus

drop out when calculating the gradients in ε. These gradients quantify the relative

displacements between neighboring material points. Moreover, the symmetry of the

strain tensor automatically guarantees that uniform rotations of the form u = Ω× r

(with Ω constant) do not contribute to ε.

Let us now consider the volume elements d3r and d3r′ in the undeformed ground

state and in the deformed state, respectively. r and r′ are related by the transforma-

tion r′ = r+ u, see Eq. (1.3). The volume elements are then linked to each other by

the corresponding Jacobian determinant,

d3r′ =
(
det

∂r′

∂r

)
d3r. (1.9)

Thus, to linear order in deformation gradients the expression

d3r′

d3r
≈ 1 + εxx + εyy + εzz (1.10)

is obtained. Obviously, for εii = εxx + εyy + εzz = ∇ ·u = 0, the volume is conserved.

If this is generally the case, the elastic medium is called incompressible. Otherwise, a

finite εii describes a change in volume, which implies a compressible medium. Thus,

the compressibility of a given elastic medium is a fundamental material property

that can be quantified by an intrinsic material parameter. In order to introduce

such a parameter, we consider a situation, in which the elastic material undergoes

a uniaxial extension along the x-axis. In general, this is accompanied by a finite

strain in the transversal yz-plane. Since we assume an isotropic medium, εyy = εzz

due to symmetry and linearity. As a measure of the compressibility, we define the

7



1 Introduction

(dimensionless) Poisson ratio

ν := − εyy
εxx

= − εzz
εxx

. (1.11)

Then, Eq. (1.10) can be rewritten in the form

d3r′

d3r
= 1 + εxx(1− 2ν). (1.12)

Ideal incompressibility is thus described by ν = 1/2, for which the material is con-

tracted in the transversal plane antagonistically to uniaxial extension along the x-axis

so that the volume is conserved. For ν = 0, the material can be stretched uniaxially

without affecting the transversal plane. ν < 0 corresponds to transversal thickening

if the material is stretched along one direction. The converse applies for uniaxial

compression. We will return to the physical parameter range of ν for an isotropic and

homogeneous material in Sec. 1.3.3.

1.3.2 Stress tensor and static equilibrium

In order to generate a situation of finite strain ε, external forces must be applied

to the elastic material. By Newton’s third law, these forces induce internal counter-

forces in the elastic material, resulting in a final steady state of deformation. We

can understand this balanced deformed state by considering the forces that any two

adjacent regions in the elastic medium exert mutually onto each other. In a continuous

environment, forces between two regions are transmitted across their (imaginary)

contact surface. Let us, for instance, consider a plane that divides the medium

perpendicular to a uniaxially applied tensile load. The pulling force on the plane in

one direction must then be balanced by a force on the same plane but in the opposite

direction, otherwise the material would be ripped into two pieces at the dividing

plane. Thinking further, this must be true for any plane of any orientation. The final

deformed state is thus a static state of equilibrium, in which the imposed forces are

balanced by the resistance of the material. These surface forces at each point and

along every orientation can be represented by one single field quantity in the form of

a second rank tensor, which we call the stress tensor σ = σ(r). Let dS be the area

of a surface element somewhere in the infinitely extended medium with the outward

normal vector n̂. The components of the forces that act from the outside on the

surface element, i.e., from the direction to which n̂ points, can then be described in
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1.3 Linear elasticity theory

the form σijn̂jdS. By definition, σij has the units of pressure. Uniform compression

of a given volume element from all sides by convention corresponds to σij = −pδij

and uniform extension to σij = pδij, with p > 0 the pressure.

Let us now consider a given volume V in the elastic solid that is enclosed by the

surface ∂V . In addition to the surface forces described by the stress tensor, also forces

per volume element can be applied to the elastic material, which can be described

in terms of a bulk force density fb = fb(r). The static equilibrium condition then

directly follows from the conservation of momentum and reads

∫
∂V

dS σijn̂j +

∫
V

dV fb,i = 0, (1.13)

or, using Gauss’s divergence theorem,

∫
V

dV [∇jσij + fb,i] = 0. (1.14)

Since the choice of V is arbitrary, the equilibrium condition must also hold locally,

i.e.,

∇jσij + fb,i = 0. (1.15)

Angular momentum must be conserved as well, i.e., the total torque must vanish in

equilibrium. We may express the torque density as εilkrlfb,k for the bulk force density

and εilkrlσkjn̂j for the surface force density, with r the distance vector measured from

an arbitrary point. Then,

∫
∂V

dS εilkrlσkjn̂j +

∫
V

dV εilkrlfb,k = 0, (1.16)

or, using Gauss’s theorem and simplifying,

∫
V

dV
{
εilkrl[∇jσkj + fb,k] + εijkσkj

}
= 0. (1.17)

Again, this must hold true for any V . Moreover, using Eq. (1.15), the term in the

square brackets vanishes and we obtain εijkσkj = 0. From this it follows that σij = σji,

i.e., the stress tensor is symmetric.

Many situations can be described completely by an applied stress without bulk

forces. External forces are then introduced in the form of boundary conditions for

the stress tensor, so that ∇jσij = 0 is satisfied inside the material. As an example, a
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1 Introduction

homogeneous uniaxial compressive/tensile stress along the x-axis is given by setting

σxx = const �= 0 and all other stress components to zero. This results in a finite

strain εij in the material. Consequently, stress and strain are related to each other.

To obtain the stress-strain relation, the elastic energy (density) must be derived.

1.3.3 Elastic energy and stress-strain relation

In a closed system, the first law of thermodynamics for a reversible process reads [51]

dU = TdS − pdV (1.18)

for infinitesimal changes. Here, dU is the change in internal energy and TdS the

absorbed heat. The last term, pdV , represents a small increment in the work per

volume element performed by the system, with p the isotropic pressure and dV the

infinitesimal change in volume. It can be rewritten in terms of the elastic quantities

that have been introduced in the previous sections. Uniform compression from all

sides then corresponds to σij = −pδij, whereas the relative change in volume is

described by εii, see Eq. (1.10). Thus, dεii here is related to dV . Taken together,

σijdεij = −pdεii. Switching to internal energy density u and entropy density s, as

well as defining the free energy density f = u− Ts and d(Ts) = Tds+ sdT , we have

thus motivated its infinitesimal change of the form

df = − sdT + σijdεij. (1.19)

At constant temperature, the stress tensor therefore takes the form

σij =

(
∂f

∂εij

)
T

. (1.20)

(An explicit derivation proceeds by the method of virtual work resulting from virtual

displacements.)

This brings us to the stress-strain relation. Obviously, the elastic energy density

must be a function of the strain εij. In a series expansion of f , there cannot be

any linear term in εij, otherwise Eq. (1.20) would yield a constant stress σij even for

εij = 0. Hence, f is to lowest possible order quadratic in εij, and thus σij ∼ εij.

At this point, we assume that σij is a linear function of εij for small deformations.

Second-rank tensors can be mapped linearly onto each other via tensors of rank four.

10



1.3 Linear elasticity theory

The linear stress-strain relation may therefore be expressed as

σij = Cijklεkl. (1.21)

Equation (1.21) is also referred to as the generalized Hooke’s law. Inserting Eq. (1.21)

into Eq. (1.20), we arrive at

f =
1

2
Cijklεijεkl, (1.22)

discarding a constant contribution.

Cijkl is referred to as the stiffness or elasticity tensor and has units of pressure.

It describes the resistance of the material to strains. Since every of its four indices

refers to three distinct coordinates, it possesses 34 = 81 components, each of which

representing a material parameter. However, the number of independent components

is reduced to only 21 due to several inherent symmetries in Eq. (1.22), which we now

examine step-by-step. First, the symmetry of the strain tensor, i.e., εij = εji and

εkl = εlk, implies that Cijkl is separately symmetric with respect to i ↔ j and k ↔ l.

That is, each of the two pairs, (ij) and (kl), produces 6 independent components,

which in total leads to 62 = 36 independent components. We can thus understand the

stiffness tensor as a 6× 6-matrix, which is in fact the equivalent Voigt notation [62].

As a next step, Eq. (1.22) requires that the pairs (ij) ↔ (kl) are interchangeable

as well. Hence, in Voigt notation this means that the 6 × 6-matrix is symmetric.

Thus, of the 36 components only 6 diagonal and 15 off-diagonal elements remain

independent, in total 6 + 15 = 21. This is the case for a fully anisotropic elastic

material. Summarizing, the symmetries read

Cijkl = Cjikl = Cijlk = Cjilk = Cklij = Clkij = Cklji = Clkji. (1.23)

Here, we restrict ourselves to isotropic materials. In an isotropic solid, there are no

preferred axes. For instance, all planes in the (infinitely extended) material are planes

of symmetry. Technically, this means that the stiffness tensor can be decomposed into

identity matrices. For a fourth-rank tensor, this implies a linear combination of terms

∼ δijδkl. Since there are exactly three possible permutations of δijδkl, we may write

the stiffness tensor as Cijkl = λδijδkl+μδikδjl+ c3δilδjk, with the material parameters

λ, μ, and c3. However, from the symmetry i ↔ j or k ↔ l, it immediately follows

11



1 Introduction

that μ = c3. Therefore,

Cijkl = λδijδkl + μ(δikδjl + δilδjk). (1.24)

In other words, the elastic properties of an isotropic material are uniquely specified by

a set of two material parameters. Substituting this result into Eq. (1.22), we obtain

for the free energy density

f =
1

2
λε2ii + μεijεij. (1.25)

Moreover, the linear stress-strain relation in Eq. (1.21) can now be expressed via

σij = λδijεll + 2μεij, (1.26)

with its inverse reading

εij = − λ

2μ(2μ+ 3λ)
δijσll +

1

2μ
σij. (1.27)

λ and μ are referred to as Lamé parameters. From Eq. (1.25), it becomes clear that λ

is connected to the compressibility of the material, because it only contributes to the

energy if εii is finite, i.e., if the volume changes at least locally. In order to separate

this compressive part from the remaining part, we define λ := K − 2
3
μ. Then, the

trace of Eq. (1.26) becomes σii = 3Kεii. The parameter K must therefore be positive

in a real material. It quantifies the resistance of the material to compression or

dilation, i.e., to volume changes, and is referred to as bulk modulus. Next, for i �= j,

Eq. (1.26) simplifies to σij = 2μεij. The off-diagonal elements of σ and ε describe

remaining shear stresses and strains, respectively. Therefore, the parameter μ > 0

is often referred to as shear modulus. It quantifies the resistance of the medium to

shear deformations.

In the following, we describe the material solely by the Poisson ratio and the shear

modulus and thus need to express λ via ν and μ. To find the corresponding relation,

we now consider a uniaxial stress that is applied along the x-axis so that, of all

stress components only σxx is nonzero. From Eq. (1.27), we find the diagonal strain

12



1.3 Linear elasticity theory

components

εxx =
1

2μ

(
1− λ

2μ+ 3λ

)
σxx, (1.28)

εyy = εzz = − λ

2μ(2μ+ 3λ)
σxx. (1.29)

Using the definition of the Poisson ratio in Eq. (1.11), we therefore obtain

ν = − εyy
εxx

=
λ

2(μ+ λ)
=

3K − 2μ

2(3K + μ)
, (1.30)

and thus,

λ =
2μν

1− 2ν
. (1.31)

For K � μ, we find from Eq. (1.30) that ν → 1/2, which corresponds to the limit

of incompressibility as mentioned in Sec. 1.3.1. For μ � K > 0, we obtain ν → −1.

Thus, the Poisson ratio can assume values −1 < ν < 1/2 for an isotropic linearly

elastic material. (ν = 1/2 corresponds to ideal incompressibility.)

Finally, with Eqs. (1.8), (1.26), and (1.31), we may express the stress as a function

of the displacement, the shear modulus, and the Poisson ratio as

σij =
2μν

1− 2ν
δij∇ · u+ μ[∇iuj +∇jui]. (1.32)

1.3.4 Navier-Cauchy equations

For an isotropic and infinitely extended medium, the static equilibrium condition in

Eq. (1.15) can now be reformulated in terms of the material displacements, using the

field u. Moreover, we assume that the elastic medium is homogeneous, i.e., that the

elastic parameters ν and μ are constant everywhere. Then,

∇jσij = Cijkl∇jεkl = μ∇2ui +
μ

1− 2ν
∇i∇ · u. (1.33)

Inserting Eq. (1.33) into Eq. (1.15), and from now on explicitly including the spatial

arguments for clarity, we obtain the Navier-Cauchy equations [63],

∇2u(r) +
1

1− 2ν
∇∇ · u(r) = − 1

μ
fb(r). (1.34)

13
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This representation of the equilibrium condition is of importance because it directly

relates the imposed force densities to the local material displacements via the material

parameters that determine the elastic properties of the medium. The bulk force

density fb(r) can, for instance, represent the gravitational field that distorts an elastic

solid. Or, it can, e.g., describe an external force acting onto a particulate inclusion

and transmitted to the embedding medium. In the experimental systems that are

described theoretically later, the displacements of individual particles in the medium

represent the decisive measured quantities.

If the considered material is incompressible, i.e., for the limiting case of ν = 1/2,

see Sec. 1.3.1, the equations for the displacement field read

∇ · u(r) = 0, (1.35)

μ∇2u(r) = −fb(r). (1.36)

The Navier-Cauchy equations for an incompressible material will become important

in the context of our theory for linearly viscoelastic media.

1.3.5 Green’s function and particulate inclusions

As stated at the beginning of Sec. 1.3, our goal is to describe the interactions be-

tween finite-sized particles in the medium that are displaced and rotated by external

forces and torques, respectively. To proceed along these lines, let us first consider one

single particle that is embedded in the isotropic, infinitely extended, and homoge-

neous medium. If this particle is displaced by an external force, it distorts its elastic

environment, depending on the geometrical shape of the particle. These distortions

created by the displaced particle can be measured at a distance |r − r0| from the

particle center, located at r0. Let us for convenience put r0 to the origin. Then, we

can expect the deformations to decay with increasing distance r from the origin. If

r is sufficiently large, every finite-sized particle will appear to be point-like, i.e., with

increasing distance, the created displacement field will more and more loose the char-

acteristic features that are related to the shape of the displaced particle. (This fact

will become important later when we investigate the interactions between finite-sized

particles at distances of the order of magnitude of the particle diameters.) Techni-

cally, the created displacement far-field is equivalent to that created by a point force
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1.3 Linear elasticity theory

attacking at the origin. We may thus express the bulk force density in Eq. (1.34) by

fb(r) = δ(r)F, (1.37)

with F quantifying the external force that acts on a point-like particle at the origin

and δ(r) denoting the Dirac delta function. The displacement field u(r) that solves

Eq. (1.34) with Eq. (1.37) inserted can then be expressed in terms of a Green’s

function,

u(r) = G(r) · F, (1.38)

as a consequence of the linearity of the Navier-Cauchy equations. The Green’s func-

tion G(r) is necessarily a tensor of rank two because the created displacement field

may not only vary with the distance r but also with the orientation r̂. A detailed

derivation of G(r) is given, e.g., in Appendix A of Publication II. The solution

reads [51]

G(r) =
1

16π(1− ν)μr

[
(3− 4ν )̂I+ r̂r̂

]
. (1.39)

The two material parameters ν and μ have been introduced in Secs. 1.3.1 and 1.3.3,

respectively. In general, the Poisson ratio ν describes the compressibility of the

material and here also affects the orientation of the field lines. The shear modulus μ

quantifies the further resistance to the imposed deformations. Overall, the induced

displacement field described by Eqs. (1.38) and (1.39) decays as 1/r in magnitude.

In Fig. 1.1, the corresponding field lines are plotted for ν = 1/2.

The linearity of Eq. (1.34) allows us to superimpose the displacement fields created

by arbitrarily distributed point forces in the medium. We express the result in integral

form as

u(r) =

∫
R3

d3r′ G(r− r′) · fb(r′). (1.40)

Here, a possibly continuous distribution of point forces is described by the bulk force

density fb(r
′). This enables us to distribute the point forces on the closed surface ∂V

of an imaginary particle of finite size, which is here, for convenience, centered at the

origin. Then, fb(r
′) turns into a surface force density f(r)′ and the volume integral

over R3 becomes an integral over the particle surface ∂V ,

u(r) =

∫
∂V

d2r′ G(r− r′) · f(r′). (1.41)

In this representation, the material of the particle is thus not distinguished from
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Figure 1.1: (a) The displacement field u(r) created by a point force F for ν = 1/2, see
Eqs. (1.38) and (1.39). (This plot was prepared using Mathematica [64].)

the surrounding elastic environment. Instead, we are dealing with an imaginary

particle shell that is displaced according to a continuous force distribution over its

surface. This concept of a displaced particle shell is perfectly sufficient to describe the

measurable displacement field u(r) outside a finite-sized particle, see also Fig. 1.2. In

the following, we always assume that the medium sticks to the particle surface under

no-slip conditions.

The kind of particle that we intend to describe is rigid. That means that, irrespec-

tively of the displacements or rotations it undergoes, its geometrical shape always

remains unchanged. This situation represents a reasonable approximation for real

elastic composite materials, in which the shear modulus inside the particulate inclu-

sions is several orders of magnitude larger than in the enclosing material. In our

formalism, the rigidity of the (imaginary) particle surface is enforced by a boundary

condition, namely

u(r ∈ ∂V ) = U+Ω× r, (1.42)

with U and Ω the rigid net displacement and rotation of the particle, respectively.

On the right-hand side of Eq. (1.41), the only quantity that can ensure this boundary

condition is the surface force density f(r′). [Another necessary boundary condition,

u(r → ∞) = 0, is automatically satisfied due to the form of G(r), see Eq. (1.39).]
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1.3 Linear elasticity theory

(a) (b)

Figure 1.2: (a) Illustration of the displacement field u(r) created by a continuous
distribution of point forces (at some positions indicated by small black
arrows) on a spherical surface ∂V according to Eqs. (1.41) and (1.42).
The point forces are described by the surface force density f(r′) (with
r′ ∈ ∂V ). Here, f(r′) is constant and thus leads to a rigid displacement of
the whole spherical shell. From the outside, the created displacement field
is the same as if it were produced by a solid rigid sphere of no-slip surface
condition that is uniformly displaced by a constant force F. Clearly, in
the vicinity of the spherical shell, effects related to the finite size of the
sphere become important, whereas the far field resembles that induced by
a point particle, see also Fig. 1.1. (b) The same as in panel (a), but now
the force density additionally contains an antisymmetrical contribution
(indicated by small ocher arrows), resulting in the superposition of a rigid
displacement and rigid rotation of the spherical shell. From the outside,
this is equivalent to the effect of a solid rigid sphere that is displaced
and rotated by a constant force F and a constant torque T, respectively.
A derivation of the formulae used for panels (a) and (b) is provided in
Publication V. (This plot was prepared using Mathematica [64].)
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Equation (1.41) may be expanded in r′ as [59]

ui(r) =

[
Fj −Djk∇k +

1

2!
Mjkl∇k∇l − 1

3!
Njklm∇k∇l∇m + . . .

]
Gij(r), (1.43)

with ! denoting the factorial, and Fj, Djk, Mjkl, Njklm, . . . constant expansion ten-

sors containing the integral over polyadics of r′ and the force density f(r′), see also

Publication II and Publication V. At larger distances from the particle, the first term

of the expansion becomes dominant. This far-field limit is identical to the situation of

a point-like particle in the center as given by Eq. (1.38), see also Fig. 1.1. The closer

we get to the particle, the more the displacement field is characterized by the specific

shape of the particle, see Fig. 1.2. This information is contained in the mentioned

expansion tensors beyond F. Equation (1.43) is also called the multipole expansion

of the displacement field. It is an important tool that simplifies many calculations

and is used (directly or indirectly) throughout all our publications summarized later

in this thesis.

So far, a rigid finite-sized particle has been considered that is displaced and/or

rotated by an external net force and/or torque, thus creating a characteristic dis-

placement field u(r) in the medium as specified by Eqs. (1.41) and (1.42). In the

complementary situation, there are no external forces and torques acting directly on

the sphere. The particle may now be displaced or rotated by a given (arbitrary)

deformation field u0(r) resulting in the medium from the influence of some other

force. u0(r) can, e.g., stem from a macroscopic strain applied to the material or a

localized disturbance somewhere outside of ∂V . Then, to obtain the displacement

and rotation of the particle shell, u0(r ∈ ∂V ) needs to be evaluated. This will in

general imply a deformation of the shape. Therefore, if the particle is assumed to

be rigid, corrections to the surrounding displacement field will emerge. The effects

of these rigidity-induced corrections to the displacement field are described by the

higher-order expansion tensors in Eq. (1.43), see Publication II and Publication V.

Summarizing, we may thus generalize the boundary condition for a rigid particle from

Eq. (1.42) to

u(r) + u0(r) = U+Ω× r, (1.44)

with r ∈ ∂V , where on the left-hand side the expression in Eq. (1.43) is inserted.
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1.3 Linear elasticity theory

1.3.6 Interacting rigid spherical inclusions

If the surface ∂V of the rigid particle is spherical, the integral in Eq. (1.41) can be cal-

culated analytically [59]. Using the expansion of the displacement field in Eq. (1.43),

an explicit approach is presented in Publication V, which we have not found, for

instance, in Refs. [59,65]. From Eq. (1.44) it is possible to calculate the general form

of the expansion tensors in Eq. (1.43) as linear functionals of the imposed deforma-

tion u0(r). These tensors can be referred to as higher-order Faxén laws, following the

nomenclature of a similar formalism in low-Reynolds-number hydrodynamics [66–69].

In Publication II and Publication V, we have explicitly calculated the expansion ten-

sors of a rigid sphere, see Eq. (1.43), up to the fourth rank.

Finally, using these results, we can now describe a system consisting of many spher-

ical particles that are distributed at finite distances from each other in an elastic

environment. Then, the elastic material serves as a medium of interaction via defor-

mation between the individual spheres. Let us first consider a two-particle system.

If sphere i is displaced by an external force Fi, the medium gets distorted and the

other sphere j therefore in general experiences a displacement and rotation. However,

the rigidity of the sphere j requires the deformation field not to deform its surface in

accordance with Eq. (1.44). In turn, this results in a correction to the displacement

field of sphere i when compared to the situation in which sphere j is absent. This

correction can be understood as an (instantaneous) reflection of the displacement field

generated by sphere i due to the rigidity of sphere j. With the same argument, this

correction results in another reflection when hitting, after reflection, sphere i, and

so on. The associated description in terms of the so-called method of reflections is

described in detail in Publication II. As it turns out, the resulting net displacement

Ui and rotation Ωi of the ith sphere can be approximated by an expansion in the

inverse interparticle center-to-center distance rij between the two spheres in the ini-

tial, undeformed state. Likewise, external torques Ti can be included. Generalizing

the approach to an N -particle system, we can express Ui and Ωi as

Ui =
N∑
j=1

[
Mtt

ij · Fj +Mtr
ij ·Tj

]
, (1.45)

Ωi =
N∑
j=1

[
Mrt

ij · Fj +Mrr
ij ·Tj

]
. (1.46)

Here, all elastic interactions have been summarized in the mathematical matricesMtt
ij,

19



1 Introduction

Mtr
ij, M

rt
ij, and Mrr

ij, which we have termed displaceability and rotateability matrices.

In Publication II and Publication V, we have calculated these matrices up to fourth

and sixth orders in the inverse interparticle distances, respectively. We used them

successfully to describe results from measurements on experimental example config-

urations in gel-like environments with initial center-to-center interparticle distances

of about two to three particle diameters in Publication I and of about 3.5 particle

radii in Publication III. In Publication III, we have connected our displaceability

matrices to a simplified elastic spring model. Moreover, the limits of our linearly

elastic approach have been investigated in Publication III as well. A brief overview

is presented in the next section.

1.4 Description of interactions between magnetic

particles in soft elastic gels

In Publication I and Publication III, the theory was employed to perform a quantita-

tive analysis of experimental data. The experiments were conducted using paramag-

netic nickel particles that were embedded in a soft polymeric gel. Details concerning

the experimental set-ups are provided in the mentioned papers.

In the theoretical analysis, the elastic material was assumed to be homogeneous

and incompressible, hence we set ν = 1/2. Moreover, the carefully selected paramag-

netic particles to good approximation were rigid, spherical, and of equal size within

each system. Due to their comparatively large size, their thermal fluctuations were

neglected. The center-to-center distance in the initial undeformed state between each

two particles amounted to two to three particle diameters in Publication I (in the

system considered in the supplemental material of Publication I, the distances were

larger) and to about 3.5 radii in Publication III. The particles were located far from

any boundaries of the respective experimental samples. Compared to the dimensions

of the experimental samples, the particle diameters were small, thus justifying the

assumption of an infinitely extended embedding medium. Besides homogeneity, also

isotropy of the medium was assumed.

By means of a locally homogeneous external magnetic field, magnetic moments

were induced in the paramagnetic particles, resulting in magnetic interaction forces.

These forces caused measurable particle displacements and thus local distortions of

the elastic material. When the external magnetic field was switched off, the particles

lost their magnetization and returned to their initial positions, i.e., the displacements

20
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were fully reversible within the experimental resolution. The magnetization of the

magnetic particles as a function of the applied external field was determined from

an experimental magnetization curve that is plotted in Publication III, thus allowing

for the quantitative determination of the magnetic moments and interparticle forces.

Finally, as a consequence of the way the experimental samples were prepared (de-

scribed in Publication I and Publication III), it was impossible to directly measure in

a macrorheological experiment the shear moduli for the elastic medium surrounding

the magnetic particles in the different samples. Thus, our theoretical approach was

employed to extract these moduli by fitting the theoretical curves for the particle

displacements to the experimentally measured ones.

Throughout all our publications referred to in this thesis, the magnetic moments of

spherical inclusions were approximated by point dipoles, corresponding to the lowest-

order term in an underlying multipole expansion [70]. The finite extension of the

magnetic material was thus not resolved. For the interparticle distances considered

here, this assumption appears to be justified, as long as the interparticle distances

after the induced displacements remain large enough compared to the particle di-

mensions. In Publication I, strong external magnetic fields were applied, resulting

in virtual magnetic saturation. That is, the magnetization and hence the magnetic

moment of a magnetizable particle cannot be increased any further by exposing it to

stronger fields. In our context, the presence of other localized magnetic moments, i.e.,

the dipole moments of the other particles, did therefore not change the magnitude of

the magnetic moment of any considered particle. Moreover, all dipole moments were

assumed to be oriented by the dominant external magnetic field, i.e., the moments of

the particles were constant in magnitude and fixed in orientation. Furthermore, since

the considered particles were assumed to be identical, the same applies to their mag-

netic moments. We thus denote the orientation of the dipole moment of any particle

by m̂ and its magnitude by m. The magnetic force on the ith particle (i = 1, . . . , N)

is then given by [70]

Fi = − 3μ0m
2

4π

N∑
j=1

j �= i

5r̂ij(m̂ · r̂ij)2 − r̂ij − 2m̂(m̂ · r̂ij)
r4ij

, (1.47)

with μ0 the vacuum permeability, rij = ri − rj, and ri the position of the ith dipole

(and thus the center of the ith sphere). Obviously, the magnetic interaction forces

exhibit a dependence on the interparticle distances rij and will therefore in general
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Figure 1.3: A sketch illustrating the numerical scheme to determine the magnetic
dipole forces and displacements for two spherical particles in an elastic
environment. From top to bottom, the individual steps are depicted. In
the first step (top line), the magnetic forces F

(1)
i and F

(1)
j on particles i

and j, respectively, are calculated from the initial distance r
(0)
ij . Using

the displaceability matrix Mtt
ij in Eq. (1.45), the particle displacements

U
(1)
i and U

(1)
j are obtained (second line), resulting in a new interparticle

distance r
(1)
ij (third line). In the next step, r

(1)
ij is used to compute the

magnetic forces F
(2)
i and F

(2)
j (third line). F

(2)
i and F

(2)
j are then reinserted

into Eq. (1.45) (fourth and fifth line) to calculate the new distance r
(2)
ij

(bottom line), and so on. (To evaluate Mtt
ij, which depends on the particle

configuration as well, always the initial distance r
(0)
ij is used, otherwise

elastic memory would not be conserved.)

change during particle displacements. The actual forces in the steady deformed state

that are balanced by the elastic restoring forces are therefore determined by the final

interparticle distances after displacement. To determine the resulting displacements

and magnetic forces in the theoretical description, a numerical loop was employed,

which is illustrated in Fig. 1.3 for a two-particle system. This scheme proved to

converge quickly for the particle configurations considered in Publication I and Pub-

lication III. With this necessary refinement, we found very good agreement between

the experimentally measured and theoretically calculated particle displacements for

three different sample configurations in Publication I and for one additional in the

related supplemental material.
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In Publication III, a configuration of two identical particles is considered, labeled

by 1 and 2, that were exposed to a non-saturating external magnetic field. The in-

duced magnetic moments were oriented parallel to the center-to-center distance r12,

resulting in attractive forces F1 = −F2 between them due to symmetry. Stepwise

increasing the external magnetic field, the particles approached each other more and

more with every increment. The measured displacements in this regime could still

to good approximation be described by linear elasticity theory. At some point, how-

ever, the particles suddenly snapped into contact. After the field was switched off,

they returned to their initial positions in the undeformed state, i.e., the process was

fully reversible within the experimental resolution. These final displacements towards

contact amounted in total to more than one radius, which is thus well beyond the

range of linear elasticity theory. Hence, this experiment presented an ideal test con-

figuration for the limits of our linearly elastic approach. Moreover, since the external

magnetic field did not yield magnetic saturation of the particles, Eq. (1.47) alone did

not provide an adequate description of the magnetic dipole-dipole forces. Instead,

the particles mutually magnetized each other in a nonlinear procedure and they did

so even more the closer they approached. The technical details for a corresponding

iterative description in terms of point dipoles are given in Publication III.

While the dipolar approximation is justified at larger particle separation distances,

it loses its justification when the particles strongly approach each other. The mag-

netization then becomes quite inhomogeneous across the volume of each sphere. For

a more accurate description of both the nonlinear elastic processes as well as the

spatially resolved internal magnetization of the spheres, detailed finite-element (FE)

simulations were performed. This allowed for a direct comparison between the differ-

ent approaches as well as to the experimental results.

Altogether, we found a very good agreement between the different approaches in

the well-separated state before the collapse into the state of virtual touching of the

two particles. The exact field magnitude at which the spheres snapped into contact

could not be determined experimentally. However, our theoretically obtained value

was confirmed to good approximation by the FE simulations.

An additional interesting effect predicted theoretically and from the simulations

could not yet be confirmed experimentally due to technical limitations. Once the

particles are in the collapsed state, their mutual magnetization is strong enough to

withstand the elastic restoring forces, even if the external magnetic field is reduced

in magnitude to some degree below the magnitude at which the collapse occurred.
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Thus, magnetization and subsequent demagnetization of the sample reveals hysteretic

behavior. Finally, the symmetry of this specific configuration with respect to one axis

allowed us to map our quantitative theory onto reduced dipole-spring models. In these

models, the two point dipoles are connected by harmonic springs to each other and

to their environment. The spring constants could then be determined by inverting

the displaceability matrices. As an advantage of this picture, the elastic energy of

the system can be expressed in a very simple way. Using the resulting forms of the

total energy of the system, a further analysis of the mentioned hysteretic behavior

was performed.

In the analysis of the experimental systems mentioned above, we concentrated on

particle displacements. To illustrate the effects of additional rotational couplings

as well, see Eqs. (1.45) and (1.46), exemplary situations involving external torques

Ti (i = 1, 2, . . . , N) as well were presented in Publication II and Publication V. If

a magnetizable particle is magnetically anisotropic, it will in general rotate when

exposed to an external magnetic field in order to align its magnetic moment with

the external field. The simplest case is given by uniaxial magnetic anisotropy. Then,

the magnetically generated torques Ti can frequently be modeled using the idealized

Stoner-Wohlfarth picture [10, 71]. Different effects of the possible compressibility of

the surrounding medium on the displacements and rotations of interacting magnetic

spheres are demonstrated in Publication V.

More specifically, in Publication II, the displaceability and rotateability matrices

were calculated up to (including) fourth order in the inverse interparticle distances. In

Publication V, we extended these results up to (including) sixth order, allowing for a

better quantitative description of particle interactions at small distances. Concerning

the rotational behavior of the spheres, it is noteworthy that the Poisson ratio ν

enters the Mtr
ij-, M

rt
ij-, and Mrr

ij-matrices in Eqs. (1.45) and (1.46) only beyond the

fourth order. Moreover, “reflections” of torque-induced displacement fields to the

corresponding initiators also start beyond the fourth order. Furthermore, it was

found that the overall effect of the compressibility of the medium on the individual

particle displacements Ui and rotations Ωi in Eq. (1.46) can be split into two separate

effects. First, in a compressible medium, i.e., for ν < 1/2, already the displacement

of an isolated sphere due to an external force is larger when compared to the same

situation in an incompressible medium. If two or more particles are considered, the

distance-dependent magnetic dipole forces Fi (calculated from the end distances, see

above) can due to the larger displacements of the individual spheres in total lead to

24



1.5 Dynamics of particulate inclusions in linearly viscoelastic media

significantly altered particle displacements. Then, the mutual interactions via the

embedding medium also have a stronger impact on Ui and Ωi (described by the

Mtt
ij- and Mrt

ij-matrices in Eqs. (1.45) and (1.46)). Second, the compressibility of the

medium enters the Mtr
ij-, M

rt
ij- and Mrr

ij-matrices directly at the fifth or sixth order.

In our examples, we have found that, if two nearby rigid magnetic particles are

simultaneously displaced and rotated by magnetic forces and torques, respectively,

the direct magnetic torque Ti, even if weak (yielding particle rotations |Ωi| � 5◦),

clearly dominates the rotational behavior of the ith sphere, whereas the higher-order

contributions resulting from particle interactions are masked by these large direct

contributions. However, the situation is different, if torques act only on some of the

spheres and no direct forces are imposed (e.g., in a two-particle system, in which one

particle is subject to an externally imposed torque but the other is not). Then, the

higher-order contributions become increasingly relevant for center-to-center distances

of less than about three particle radii [72]. Overall, the effect of the higher-order

contributions in Publication V becomes particularly noticeable, if the medium is

(nearly) incompressible, i.e., for ν → 1/2, which often is the case for polymeric

gels [72], see also Publication I and Publication III.

1.5 Dynamics of particulate inclusions in linearly

viscoelastic media

Finally, we briefly introduce a dynamic theory of linearly viscoelastic media contain-

ing particulate inclusions as presented in Publication IV, building on the results of

our previous works. A viscoelastic material exhibits both viscous and elastic prop-

erties. So far, we have discussed interacting finite-sized particulate inclusions in the

framework of linear elasticity theory. There, material deformations are described in

terms of the displacement field u(r). Moreover, the properties of the isotropic, ho-

mogeneous, and infinitely extended elastic medium are uniquely determined by two

material parameters, for instance, the shear modulus μ and the Poisson ratio ν, see

Sec. 1.3.3. There exists an analogue to low-Reynolds-number or creeping flow hydro-

dynamics, where the interactions of colloidal particles in an isotropic, homogeneous,

and unbounded viscous fluid are described for incompressible fluid flow [69,73,74].

In hydrodynamics, the fluid flow is described by a velocity field v = v(r, t) defined

at every point r and time t [75]. Moreover, we introduce the mass density field

ρ = ρ(r, t). The amount of fluid mass per time that flows through the surface element
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dS oriented by the (outward) normal vector n̂ is then given by ρv · n̂dS, where for

better readability, arguments r and t are not written explicitly any longer. Let us

next consider a volume V that is fixed in space and enclosed by the surface ∂V . In

this case, the conservation of mass can be written in the form [75]

d

dt

∫
V

dV ρ = −
∫
∂V

dS ρv · n̂, (1.48)

i.e., an increase in the total mass in V is equal to the net mass influx into V through

the enclosing surface ∂V (hence the negative sign as n̂ is pointing outward), and vice

versa for a decrease in the total mass in V . The surface integral on the right-hand

side can be transformed into a volume integral using Gauss’s theorem. Moreover,

since V is arbitrary, this equation must also hold locally, i.e.,

∂ρ

∂t
+∇ · (ρv) = 0. (1.49)

Equation (1.49) is referred to as the continuity equation.

As a measure of relative motion, we introduce the (linear) rate-of-strain tensor

εhij =
1

2
[∇ivj +∇jvi] (1.50)

in analogy to the elastic strain tensor, see Eq. (1.8). Relative motion of nearby fluid

elements results in friction. The forces that adjacent regions of the fluid exert onto

each other due to friction can therefore be expressed by a viscous stress tensor σh
ij

in analogy to the elastic case, see Sec. 1.3.2. The viscous stress and rate of strain

can be linearly related to each other via a material tensor similar to Eq. (1.21).

Assuming isotropy, only two parameters determine the behavior of the medium, see

also Sec. 1.3.3. Then,

σh
ij =

(
ζ − 2

3
η

)
δijε

h
ll + 2ηεhij, (1.51)

with ζ being a constant that is related to the rate of change of the local volume, and

η often referred to as shear viscosity. σh
ij has the units of pressure. ζ and η play a

role analogous to the elastic bulk modulus K and shear modulus μ, respectively.

Even if v = 0, there still exists a hydrostatic pressure field p in the fluid [75], which

obviously is not directly included by the first term on the right-hand side of Eq. (1.51).

In general, the pressure can contribute to fluid flows, if it varies in space. Therefore,

we take into account the additional force that is exerted by the surrounding fluid onto
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1.5 Dynamics of particulate inclusions in linearly viscoelastic media

an enclosed volume V via its surface ∂V ,

−
∫
∂V

dS n̂p = −
∫
V

dV ∇p. (1.52)

Locally, this is equivalent to a force density −∇p.

Here, we restrict ourselves to creeping-flow hydrodynamics, for which the dynamics

is overdamped and time derivatives of the momentum of the fluid elements can be

neglected. In analogy to Eq. (1.15), the local balance of all force densities reads

−∇ip+∇jσ
h
ij + fb,i = 0, (1.53)

with fb an additional bulk force density (e.g., due to gravity). Moreover, we assume an

incompressible and homogeneous fluid. For an incompressible fluid, the mass density

ρ is constant as well and Eq. (1.49) simplifies to

∇ · v = 0. (1.54)

Then, the only remaining material parameter is η. (More precisely, Eq. (1.54) also

holds for volume-preserving flows, for which the fluid does not necessarily need to

be incompressible. However, for typical liquids [75] as well as for many aqueous

polymer solutions [53, 54] and polymeric gels, see Publication I and Publication III,

incompressibility of the medium itself is often a reasonable assumption. Volume-

preserving flow requires that the mass density of any moving material element remains

constant, whereas strict incompressibility means that ρ is constant everywhere and at

all times, no matter which influences the material is exposed to. Formally, there is no

difference for the continuity equation. We will assume incompressibility also for the

elastic contribution to the description of a viscoelastic material, see below.) Inserting

Eqs. (1.50), (1.51), and (1.54) into Eq. (1.53), we obtain the Stokes equations [75,76],

η∇2v(r, t) = ∇p(r, t)− fb(r, t), (1.55)

where we now have written out again the arguments r and t for clarity in what

follows. Obviously, Eqs. (1.54) and (1.55) are direct formal equivalents to Eqs. (1.35)

and (1.36), respectively.

In Publication IV, Eqs. (1.36) and (1.55) are combined into one single equation

describing an infinitely extended, isotropic, homogeneous, and incompressible linearly
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viscoelastic material,

μ∇2u(r, t) + η∇2v(r, t) = ∇p(r, t)− fb(r, t), (1.56)

now introducing the time t to the displacement field. Here, v(r, t) quantifies the

actual material transport, whereas u(r, t) describes at time t to which position a

given material element at position r would tend to relax back, when all external loads

are removed. u(r, t) is therefore connected to the memory of the individual material

elements in the continuous environment. Since viscoelasticity implies partial loss of

memory, there must be a corresponding loss or decay term in the memory field. A

simple linear choice reads

u̇(r, t) = v(r, t)− γu(r, t), (1.57)

with γ denoting the relaxation rate of the medium.

For a purely elastic material, the relaxation time 1/γ approaches infinity. In this

case, Eq. (1.57) reduces to u̇(r, t) = v(r, t), thus describing the reversible dynamics of

a solid. Contrary, in a purely viscous fluid environment, there is basically no memory.

Hence, the relaxation time 1/γ is infinitesimally small, so that the velocity field at a

certain time t is not directly affected by the velocity fields at earlier times. A finite

but nonzero γ marks the intermediate viscoelastic regime.

In Publication IV, we demonstrated that the correct limits of both linear elastic-

ity and low-Reynolds-number hydrodynamics can be recovered from Eqs. (1.56) and

(1.57) in these limits. These equations constitute our continuum theory of linearly

viscoelastic media, together with the incompressibility conditions ∇ · u(r, t) = 0 and

∇ · v(r, t) = 0. As is shown in Appendix A of Publication IV, this set of equations

is not arbitrary but can be derived from a general continuum approach [52]. More-

over, we addressed the corresponding Kramers-Kronig relations, see Appendix C in

Publication IV.

In analogy to what was summarized in Sec. 1.3.5, the displacement field induced

in the viscoelastic medium by a concentrated point force impact F that attacks the

medium at position r0 and time t0 can be expressed in terms of a Green’s function,

u(r, t) = G(r− r0, t− t0) · F. (1.58)

As a direct consequence, the dynamic behavior of embedded particulate inclusions
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1.5 Dynamics of particulate inclusions in linearly viscoelastic media

and interactions between them via the viscoelastic medium can be described in a way

similar to Secs. 1.3.5 and 1.3.6, however, generally not in closed form because of time

dependencies. In Publication IV, some selected examples illustrate the dynamics of

such particles in viscoelastic surroundings. First, a rigid sphere is considered that is

dragged during a certain time interval by a constant external force. Thereafter, the

force is switched off. The characteristic relaxational dynamics of the dragged sphere

in the elastic and hydrodynamic limits as well as in the intermediate viscoelastic

regime are illustratively demonstrated. Next, matrix-mediated interactions between

two spherical paramagnetic particles when magnetized from a certain time on by

an external magnetic field are evaluated, again for different degrees of viscoelastic

memory. After the magnetic field is switched off, the particles relax into their cor-

responding equilibrium positions, which depend on the memory of the viscoelastic

medium. In this case, we have, for instance, found that the paths of the individ-

ual particles during the states of magnetization and subsequent relaxation can be

different, depending on the initial spatial particle configuration. Finally, we briefly

touched the field of self-propelled active microswimmers in a viscoelastic environ-

ment, based on a recently derived minimal swimmer model for low-Reynolds-number

hydrodynamics [77]. In this model, two species of self-propelled swimmers are dis-

tinguished, namely pusher- and puller-like swimmers [77]. Both propel by setting

the surrounding fluid into motion. While pushers proceed by pushing out fluid into

opposite directions along one axis, pullers draw it inward by inducing inverted flow

fields. In a purely hydrodynamic environment, these pushers and pullers have the

same steady-state swimming speed. We have found that in a viscoelastic environ-

ment with a finite relaxation rate γ this is not the case. A quantitative description

thereof as well as an illustrative explanation is given in Publication IV.
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To describe many-particle systems suspended in incompressible low-Reynolds-number fluids, effective
hydrodynamic interactions can be introduced. Here, we consider particles embedded in elastic media.
The effective elastic interactions between spherical particles are calculated analytically, inspired by the
approach in the fluid case. Our experiments on interacting magnetic particles confirm the theory. In view of
the huge success of the method in hydrodynamics, we similarly expect many future applications in the
elastic case, e.g., for elastic composite materials.

DOI: 10.1103/PhysRevLett.117.238003

Hydrodynamics determines our daily life. Examples are
given by the flow of air into our lungs [1], drinking of
beverages and digestive processes [2], technical applica-
tions such as microfluidic devices [3], or shape optimiza-
tion of planes, vehicles, ships, and propellers [4]. All these
processes are described by the Navier-Stokes equations [5]
or variants thereof. This set of equations typically poses
significant challenges during solution due to a convective
nonlinearity reflecting inertial effects. Basically, turbulence
is driven by the inertial term. It often renders analytical
solutions impossible.
The situation changes for small dimensions and veloc-

ities or high viscosity. Then, the relative strength of inertial
effects, measured by the Reynolds number, is low. The
nonlinearity can be neglected. A Green’s function in terms
of the so-called Oseen matrix is then available, which
formally solves the problem analytically [6,7]. In this
way, semidilute colloidal suspensions, i.e., the dispersion
of nano- to micrometer-sized particles in a fluid [7,8], or
microswimmer suspensions [9] are described effectively.
The explicit role of the fluid is eliminated and replaced
by effective hydrodynamic interactions between the
suspended particles [6,7].
Despite the success of this theoretical approach for

colloidal suspensions, hardly any investigations consider
a surrounding elastic solid instead of a suspending fluid.
This is surprising, since, as we show below, the formalism
can be adapted straightforwardly to linearly elastic matrices
and is confirmed by our experiments. Our approach will,
for instance, facilitate describing the response of elastic
composite materials to external stimuli. Such materials
consist of more or less rigid inclusions embedded in an
elastic matrix. They are of growing technological interest
and may serve, e.g., as soft actuators or sound attenuation
devices [10].
In previous theoretical studies, the physics of one single

rigid or deformable inclusion was addressed [11,12], also
under acoustic irradiation [13]. For more than a single

inclusion, mainly the so-called load problem was analyzed
theoretically for a pair of rigid inclusions: One prescribes
displacements of two rigid inclusions in an elastic matrix
and then determines the forces necessary to achieve these
given displacements [14].
Here, we take the converse point of view, based on the

cause-and-effect chain in our experiments: External forces
are imposed onto the inclusions, ormutual forces between the
inclusions are induced, for example, to actuate thematerial or
to tune its properties. In response to the forces, the inclusions
are displaced. Since they cannot penetrate through the
surrounding elastic matrix, they transmit the forces to the
matrix and distort it. Such distortions lead to mutual long-
ranged interactions between the inclusions, in analogy to
hydrodynamic interactions in colloidal suspensions [6,7,15].
We present a basic derivation of analytical expressions

for these interactions from the underlying elasticity equa-
tions. Then, we verify the theory by experiments on rigid
paramagnetic particles embedded in soft elastic matrices.
Mutual particle interactions are induced by an external
magnetic field. As we demonstrate, theory and experiment
are in good agreement and also allow for microrheological
measurements [16].
For simplicity, we assume a homogeneous, isotropic,

infinitely extended elastic matrix and low-amplitude
deformations. Applying a bulk force density fbðrÞ to the
matrix, its equilibrated state satisfies the linear elastostatic
Navier-Cauchy equations [17]:

∇2uðrÞ þ 1

1 − 2ν
∇∇ · uðrÞ ¼ −

1

μ
fbðrÞ: ð1Þ

This is the elastic analogue to the linearized Stokes
equation in low-Reynolds-number hydrodynamics [7].
Instead of velocities, uðrÞ here denotes the displacement
field, describing the reversible relocations of the volume
elements from their initial positions during deformations.
μ is the shear modulus of the matrix and ν its Poisson
ratio, connected to its compressibility [18]. We consider
an incompressible matrix, i.e., ∇ · uðrÞ ¼ 0 along with
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ν ¼ 0.5. Yet, in contrast to the hydrodynamic case, also
compressible elastic systems are readily addressed, and we
present the corresponding expressions in the Supplemental
Material [19].
Importantly, for a point force density fbðrÞ ¼ FδðrÞ

acting on the matrix, the resulting deformation field can
be calculated analytically from Eq. (1) via Fourier trans-
form as uðrÞ ¼ GðrÞ · F. Here,

GðrÞ ¼ 1

8πμ

�
1

r
Îþ rr

r3

�
ð2Þ

is the corresponding Green’s function [18], Î is the identity
matrix, r ¼ jrj, and the underscore marks second-rank
tensors and matrices. Still, it is practically impossible to
explicitly solve Eq. (1) analytically in the presence of
several rigid embedded particles of finite size. An iterative
procedure resolves this problem; see Fig. 1.
We consider N rigid spherical particles of radius a, with

no-slip boundary conditions on their surfaces. First we
address only the ith particle at position ri, subject to an
external force Fi. The embedded particle transmits this
force to the surrounding matrix and induces a displacement
field

uð0Þ
i ðrÞ ¼

�
1þ a2

6
∇2

�
Gðr − riÞ · Fi: ð3Þ

This field is the elastic analogue of hydrodynamic Stokes
flow [6,7], for elastic media. Inserting Eq. (2) reproduces a
corresponding expression in Ref. [12]. Equation (3) is
confirmed as it satisfies Eq. (1), shows the correct limit

uð0Þ
i ðrÞ ¼ Gðr − riÞ · Fi for jr − rij > a when a → 0, and

for jr − rij ¼ a is constant on the particle surface. Thus,
Eq. (3) for jr − rij ¼ a reveals the rigid displacement

Uð0Þ
i ¼ uð0Þ

i ðjr − rij ¼ aÞ ¼ 1

6πμa
Fi ð4Þ

of the ith particle in response to Fi in accord with the
no-slip conditions at jr − rij ¼ a.
To find the effective elastic interactions between particles

i and j (j ≠ i), we take the induced displacement field

uð0Þ
i ðrÞ as given. We need to determine how particle j reacts

to the imposed field uð0Þ
i ðrÞ. In general, particle j can be

rigidly translated by a displacement vector Uð1Þ
j and rigidly

rotated by a rotation vector Ωð1Þ
j . Taking into account the

no-slip conditions on the surface ∂Vj of the jth particle, the
equality

Uð1Þ
j þΩð1Þ

j × ðr − rjÞ

¼ uð0Þ
i ðrÞ þ

Z
∂Vj

Gðr − r0Þ · fðr0ÞdS0 ð5Þ

must hold for all r ∈ ∂Vj. That is, the rigid displacement of
each point on the surface shell of particle j (lhs) must equal
the displacement field in the matrix at the same point (rhs).
The latter is given by the imposed displacement field, here

uð0Þ
i ðrÞ, plus the deformation that the particle surface itself

induces in the matrix, i.e., the integral term. Also an
externally imposed global displacement field could be
included (on the rhs). fðr0Þ describes the surface force
density exerted by the surface of particle j onto the matrix.
Such an embedded particle will translate and rotate as

dictated by the surrounding matrix. We obtain the expres-

sion for Uð1Þ
j by integrating Eq. (5) over ∂Vj. Similarly, for

Ωð1Þ
j , Eq. (5) is multiplied dyadically by r − rj, and after

integration over ∂Vj the antisymmetric part is extracted. To

perform the calculation, uð0Þ
i ðrÞ is Taylor expanded around

rj. Moreover, we use that Eq. (1) for r∉∂Vi leads to

∇4uð0Þ
i ðrÞ ¼ 0 and ∇ ×∇2uð0Þ

i ðrÞ ¼ 0. The last term in
Eq. (5) vanishes at this stage, as no total net external force
or torque is applied to particle j at the present step of
iteration. In the end, we recover the elastic analogues of the
hydrodynamic [6,7,20] Faxén laws:

Uð1Þ
j ¼

�
1þ a2

6
∇2

�
uð0Þ
i ðrÞ

����
r¼rj

; ð6Þ

Ωð1Þ
j ¼ 1

2
∇ × uð0Þ

i ðrÞ
����
r¼rj

: ð7Þ

This is how particle j is translated and rotated in the field

uð0Þ
i ðrÞ induced by particle i. Yet, elastic retroaction occurs

between the particles, as described in the following.
The force densities fðr0Þ in Eq. (5) that the particles exert

on their environment in general will not vanish identically.
Since the particles are rigid, they resist any deformation that

(a) (b)

(d) (c)

FIG. 1. Illustration of the reflection of a displacement field uð0Þ
i

induced by (a) the force Fi that displaces particle i by Uð0Þ
i .

(b) Because of uð0Þ
i , particle j gets displaced byUð1Þ

j and would be

distorted as described by a stresslet −Sð1Þ
j (rotations Ωð1Þ

j not
depicted for simplicity). (c) However, particle j is rigid and resists

deformation, expressed by a counteracting stresslet Sð1Þ
j , which

results in a displacement field uð1Þ
j . (d) The reflected uð0Þ

i , i.e.,

uð1Þ
j , displaces particle i by Uð2Þ

i .
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uð0Þ
i ðrÞ would imply. Thus, they exert counteracting

stresses onto the deformed matrix. The stresslet exerted by
particle j onto the matrix can be denoted as Sj ¼R
∂Vj

dS0(ffðr0Þr0 þ ½fðr0Þr0�Tg=2 − Î½fðr0Þ · r0�=3), where

½•�T marks the transpose. In our case, we can directly

calculate from Eq. (5) the stresslet Sð1Þ
j that particle j exerts

onto the matrix when it resists to the deformation described

by uð0Þ
i ðrÞ. To find the expression for Sð1Þ

j , one proceeds in

the same way as described above for Ωð1Þ
j but eventually

extracts the symmetric part. The latter contains the defi-

nition of Sð1Þ
j . We obtain

Sð1Þ
j ¼ 10πμa3

−3

�
1þ a2

10
∇2

�
f∇uð0Þ

i ðrÞ þ ½∇uð0Þ
i ðrÞ�Tg

����
rj

:

ð8Þ
This stresslet leads to additional distortions of the matrix
(see Fig. 1) described by a displacement field uð1Þ

j ðrÞ that
overlays uð0Þ

i ðrÞ. We find uð1Þ
j ðrÞ from the general expres-

sion ujðrÞ ¼
R
∂Vj

dS0Gðr − r0Þ · fðr0Þ by Taylor expanding
the Green’s function in r0 around r0 ¼ rj. The definition of
Sj shows up as the symmetric part of the second-order term
of the series, similarly to the hydrodynamic case [6,20],
leading to

uð1Þ
j ðrÞ ¼ −ðSð1Þ

j · ∇Þ ·Gðr − rjÞ: ð9Þ
This expression completes our first step of iteration.

In the second step, it is particle i that is exposed to the

field uð1Þ
j ðrÞ. Correspondingly, we find its reaction from

Eqs. (6)–(9) by replacing ðuð0Þ
i ;Uð1Þ

j ;Ωð1Þ
j ;Sð1Þ

j ;uð1Þ
j ; rjÞ

with ðuð1Þ
j ;Uð2Þ

i ;Ωð2Þ
i ;Sð2Þ

i ;uð2Þ
i ; riÞ. Particle i now feels

the consequences of its self-generated field uð0Þ
i ðrÞ

reflected by particle j in the form of uð1Þ
j ðrÞ. Therefore,

the procedure was termed method of reflections in hydro-

dynamics [6,7]. The displacement Uð2Þ
i in Fig. 1 results

from this reflection. We have not found in the hydro-
dynamic derivation [7] the above reasoning of explicitly
imposing on the matrix environment the rigidity-induced
stress.
In principle, this refinement of the deformation field via

back-and-forth reflections between the two particles can be
continued, leading to increasingly higher-order corrections
in a=rij, where rij ¼ jri − rjj. For our example systems
below, these iterations converge quickly [see Fig. 3(c)], so
that it is sufficient to consider contributions up to (including)
the order of r−4ij .
Because of the linearity of Eq. (1), we can sum up the

particle displacements obtained from the different steps of
iteration. Moreover, we can consider external forces Fi on
all particles and calculate the resulting net displacements
Ui due to the mutual elastic interactions (i ¼ 1;…; N).

These contributions superimpose. In analogy to the hydro-
dynamic [7] mobility matrix, we express the result by an
elastic displaceability matrix M:0

BB@
U1

..

.

UN

1
CCA ¼

0
BB@

M11 � � � M1N

..

. ..
. ..

.

MN1 � � � MNN

1
CCA ·

0
BB@

F1

..

.

FN

1
CCA: ð10Þ

Limiting ourselves to contributions up to (including) the
order of r−4ij , we find

Mi¼j ¼ M0

�
Î −

XN
k¼1
k≠i

15

4

�
a
rik

�
4

r̂ikr̂ik

�
; ð11Þ

Mi≠j ¼ M0

3

4

a
rij

�
ðÎþ r̂ijr̂ijÞ þ 2

�
a
rij

�
2
�
1

3
Î − r̂ijr̂ij

��

þMð3Þ
i≠j; ð12Þ

where M0 ¼ 1=6πμa and r̂ij ¼ rij=rij (i; j ¼ 1; 2;…; N).
In Eq. (11), Î represents the immediate displacement of

particle i due to the force Fi (U
ð0Þ
i in Fig. 1). The second

term ∼r−4ik describes the rigidity-induced reflection from

another particle (Uð2Þ
i in Fig. 1). It counteracts Uð0Þ

i or
vanishes for Fi⊥r̂ik.
In Eq. (12), Îþ r̂ijr̂ij expresses the consequence of the

force Fj acting on particle j: Particle i is relocated in the

induced displacement field (Uð1Þ
j in Fig. 1, for i ↔ j).

The term ∼r−3ij corrects this displacement field due to the
finite size of particle j, in analogy to the Rodne-Prager

formula in the fluid case [7]. Mð3Þ
i≠j describes additional

three-body interactions ∼r−4ij calculated in full analogy to
the above procedure for the two-body interaction:

Mð3Þ
i≠j ¼ M0

15

8

XN
k¼1
k≠i;j

�
a
rik

�
2
�

a
rjk

�
2

½1–3ðr̂ik · r̂jkÞ2�r̂ikr̂jk:

ð13Þ
That is, the deformation field induced by a force on a first
particle j spreads to a second particle k, from where it is
reflected towards the third particle i. The angular dependence
allows for configuration-dependent attractive, repulsive, or
bypass contributions; see Fig. 2.
Equations (10)–(13) represent the central theoretical

result. Up to (including) order r−4ij it is exact, higher-body
interactions for N > 3 do not enter (see Ref. [19] for
N ¼ 4). To confirm and illustrate the merit of the theory, we
performed experiments on small groups of paramagnetic
particles embedded in a soft elastic gel matrix. Applying an
external magnetic field induced mutual magnetic forces
between the particles. Rotating the magnetic field tuned
these forces. The resulting relative displacements of the
particles were tracked by optical microscopy.
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We used paramagnetic nickel (Ni) particles obtained
from Alfa Aesar (−100þ 325 mesh, purity 99.8%). The
magnetic hysteresis curves (measured by a vibrating
sample magnetometer, Lake Shore 7407) showed a low
remanence of ∼7.5 kA=m, a low coercive field of
∼2.4 mT, and a volume magnetization of 291�17kA/m
under an external magnetic field of ∼216 mT. We carefully
selected Ni particles of similar sizes (deviation less than
2% within each group) and a roundness ≳0.91 (measured
by image analysis [21]). These particles were embedded in
the middle plane of a soft elastic polydimethylsiloxane-
based [22] gel; see Fig. 3(a). First, a bottom gel layer with
a thickness of 3.3 mm and a diameter of 24 mm was
prepared in a plastic mold. Second, after sufficient stiff-
ening (∼0.5 h), the Ni particles were carefully deposited on
its top around the center. Third, a top gel layer with the
same composition and size as the bottom layer was added.
To ensure good connection between the two layers, at least
7 days of cross-linking were allowed.
Using a 32-magnet Halbach array to generate a homo-

geneous magnetic field [22], we applied ∼216 mT to the
embedded Ni particles, which is close to saturation.
Starting from the initial direction, the magnetic field was
rotated clockwise for 180° in 18 steps within the plane
containing the Ni particles. Their center-of-mass positions
were tracked by a CCD camera (MATRIX VISION
mvBlueCOUGAR-S) with the zoom macro lens (Navitar
Zoom 7000) mounted above the samples and subsequent
image analysis [21].
We measured the changes in particle distance Δrij

(i ≠ j) for a two- and three-particle system (see Figs. 3
and 4, respectively), when rotating the external magnetic
field. Forces Fi on the particles result from mutual
magnetic interactions. Because of substantial particle
separations, we approximate the induced magnetic
moments as point dipoles [23]. Thus, we find [24]

Fi ¼ −
3μ0m2

4π

XN
j¼1
j≠i

5r̂ijðm̂ · r̂ijÞ2 − r̂ij − 2m̂ðm̂ · r̂ijÞ
r4ij

; ð14Þ

with μ0 the vacuum permeability andm ¼ mm̂ the induced
magnetic moments, considered identical for all particles in
the close-to-saturating homogeneous external magnetic
field. Using as input parameters the experimentally

(a) (c)

(d)(b)

FIG. 3. (a) Schematic of the samples. After fabrication of the
bottom gel layer (I), the paramagnetic nickel (Ni) particles are
placed into the center plane (dashed line), before the top layer (II)
is added. The enclosing plastic molds are open to the top for
optical investigation. (b) Snapshot of a system of two Ni particles
(diameters 150.6� 1.9 μm) embedded in a soft elastic gel, here
for a vanishing external magnetic field. (c),(d) Change in distance
Δr12 between the two particles when applying an external
magnetic field along different directions in the particle plane
via clockwise rotation. The horizontal arrow in (b) defines the
angle of 0°. Data points in (d) were measured experimentally.
The line is calculated from the theory, where shaded areas arise
from uncertainties in the experimental input values. An elastic
modulus of μ ¼ 83.0� 14.3 Pa is extracted. The enlargement in
(c) highlights the rapid convergence of the theory.

(a) (c)

(b) (d)

FIG. 4. The same as in Figs. 3(b) and 3(d), now for a three-
particle system. (a) The snapshot was taken for a vanishing
external magnetic field (particle diameters 208.5� 2.3 μm).
(b)–(d) Changes Δrij in all three distances (i, j ¼ 1, 2, 3, i ≠ j).
The elastic modulus is μ ¼ 76.3� 11.7 Pa.

FIG. 2. Illustration of example three-body contributions in
Eq. (13). The force Fj on particle j induces a displacement field
that is reflected from particle k due to its rigidity. Depending
on its position, particle i is effectively attracted or repelled by
particle j (strongest under coaxial alignment), pulled towards
particle k (bypass), or not affected at all (dashed lines).
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determined particle positions, sizes, and magnetization,
we extracted the elastic shear modulus and calculated all
changes Δrij from Eqs. (10)–(14). The magnetic forces Fi

after displacement are determined iteratively. Perfect agree-
ment between the theory and experiment in Figs. 3 and 4
supports the significance of the theoretical approach and
highlights its potential for microrheological measurement
of the shear modulus.
In summary, we considered rigid spherical particles

displaced against a surrounding elastic matrix by externally
induced forces. We derived analytical expressions to
calculate the resulting particle displacements. Mutual
interactions due to induced matrix deformations are effec-
tively included. This renders the procedure a promising tool
to describe the behavior of elastic composite materials [25].
Our experiments on paramagnetic particles in a soft elastic
gel matrix and subject to tunable magnetic interactions
confirm the potential of the theory.
Upon dynamic extension, a prospective application

concerns macroscopic rheology [26] or nano- and micro-
rheology [16] where the matrix properties are tested by
external agitation of embedded probe particles. Also,
biological and medical questions are addressable in this
way, for instance, cytoskeletal properties [16,27]. An
extension of the theory to include imposed torques on
the particles, e.g., due to magnetic anisotropy, is straight-
forward and will be presented in the near future.
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As stressed in the main text, the derivation of the displaceability matrix can likewise be performed
for compressible systems. Following the same steps of derivation as in the main text, we present
below the corresponding expressions for completeness. Apart from that, we add further experimental
results and comparison with the theory for a four-particle system, in complete analogy to our
presentation for the three-particle system in the main text.

Expressions for a compressible elastic matrix

For clarity and to facilitate the comparison with the
hydrodynamic fluid case, we have presented in the main
text the expressions for an incompressible elastic system.
That is, the system tends to locally preserve the volume
of all its volume elements during any type of elastic defor-
mation. However, and in contrast to the hydrodynamic
fluid case [1–3], for elastic matrices it is straightforward
to allow for compressibility in the derivation. This ex-
tended derivation proceeds in direct analogy to the one
presented in the main text. Corresponding expressions
are presented in the following using the same equation
numbering as in the main text.

We again assume a homogeneous and isotropic elastic
matrix of infinite extension. Once more, we start from
the linear elastostatic Navier-Cauchy equations [4],

∇2u(r) +
1

1 − 2ν
∇∇ · u(r) = − 1

μ
fb(r). (1)

As in the main text, u(r) denotes the displacement field,
μ the shear modulus of the matrix [5], ν the Poisson
ratio [5], and fb(r) the bulk force density. Now, we do
not restrict our analysis to incompressible materials that
locally adhere to ∇ · u(r) = 0, and we do not assign a
specific value to ν.

The resulting Green’s function for a point force density
fb(r) = Fδ(r) then reads [5]

G(r) =
1

16π(1 − ν)μ

[
3 − 4ν

r
Î +

rr
r3

]
. (2)

Using this expression, if an external force Fi is acting on
a rigid spherical particle i of radius a embedded in the
matrix with no-slip boundary conditions on its surface,
a displacement field

u(0)
i (r) =

(
1 +

a2

6
∇2

)
G(r − ri) · Fi (3)

is induced. Eq. (3) has the same form as in the main
text, but G is different, see Eq. (2). Again, the validity

of Eq. (3) is confirmed as it satisfies Eq. (1), shows the
correct limit u(0)

i (r) = G(r−ri) ·Fi for |r− ri| > a when
a → 0, and for |r − ri| = a is constant on the particle
surface. For |r − ri| = a, it reveals the rigid displacement

U(0)
i = u(0)

i (|r − ri| = a) =
5 − 6ν

24π(1 − ν)μa
Fi (4)

of the ith particle in response to Fi.
The no-slip condition under our assumptions applies

on the surface ∂Vj of a particle j also for compressible
matrices. Thus Eq. (5) in the main text preserves its
shape, i.e.

U(1)
j +Ω(1)

j × (r− rj) = u(0)
i (r) +

∫
∂Vj

G(r− r′) · f(r′)dS′,

(5)
where U(1)

j denotes the translation of particle j, Ω(1)
j

is its rotation, the displacement field u(0)
i (r) is induced

by particle i, and f(r′) denotes the surface force density
that particle j exerts on the surrounding matrix. The
derivation of expressions for U(1)

j and Ω(1)
j in the form

of the Faxén laws follows the same strategy as described
in the main text and leads to

U(1)
j =

(
1 +

a2

6
∇2

)
u(0)

i (r)
∣∣∣∣
r=rj

, (6)

Ω(1)
j =

1
2
∇× u(0)

i (r)
∣∣∣∣
r=rj

. (7)

Also the stresslet Sj exerted by particle j onto the
matrix is derived in analogy to what is described in the
main text. In general, for compressible systems, this
stresslet is given by the expression Sj =

∫
∂Vj

dS′[f(r′)r′+
(f(r′)r′)T ]/2. This expression slightly differs from the
one introduced below Eq. (7) in the main text for in-
compressible systems. There, a trace-free definition was
used to exclude compressions and dilations of the ma-
trix, which needs to be the case for volume-conserving
systems. It can be seen from the main text that the dif-
ference in definitions plays no actual role for our deriva-
tion. The reason is Eq. (9), where the extra term ∼ Î



2

in the incompressible case only leads to a contribution
∼ ∇ ·G. Yet, ∇ ·G vanishes in the incompressible case.
Therefore, following the same strategy as described in
the main text, we obtain

S(1)
j = − 4π(1 − ν)μa3

4 − 5ν

(
1 +

a2

10
∇2

)[
1

1 − 2ν
Î∇·u(0)

i (r)

+
5
2

(
∇u(0)

i (r) +
(∇u(0)

i (r)
)T)]∣∣∣∣∣

r=rj

. (8)

Likewise, the displacement field u(1)
j (r) resulting from the

rigidity of particle j and its resistance to deformation,
expressed by the stresslet S(1)

j , is calculated as described
in the main text. Eq. (8) here contains a term ∼ 1/(1 −
2ν), which would diverge for ν → 0.5. However, it gets
canceled by a counter-factor ∼ (1−2ν) in the calculation.
More precisely, upon inserting Eq. (3) into Eq. (8), the
expression ∇ · G appears; straightforward calculation of
∇·G via Eq. (2) leads to a factor ∼ (1−2ν). In the end,
u(1)

j (r) has the same form as Eq. (9) in the main text,

u(1)
j (r) = −

(
S(1)

j · ∇
)
· G(r − rj). (9)

In the next step, again, the reaction of particle
i in response to the field u(1)

j (r) is obtained from

Eqs. (6)–(9) by replacing (u(0)
i ,U(1)

j ,Ω(1)
j ,S(1)

j ,u(1)
j ) with

(u(1)
j ,U(2)

i ,Ω(2)
i ,S(2)

i ,u(2)
i ).

Summing up the contributions from the different steps
of iteration and considering all N particles simultane-
ously leads to an expression in the form of an elastic
displaceability matrix M as given in the main text:⎛

⎜⎝
U1

...
UN

⎞
⎟⎠ =

⎛
⎜⎝

M11 . . . M1N
...

...
...

MN1 . . . MNN

⎞
⎟⎠ ·

⎛
⎜⎝

F1

...
FN

⎞
⎟⎠ . (10)

Limiting ourselves to contributions up to (including) or-
der r−4

ij , we find for a compressible system the more gen-
eral expressions

Mi=j =M0

{
Î −

N∑
k=1
k �=i

3
4(4 − 5ν)(5 − 6ν)

(
a

rik

)4
[(

37 − 44ν + 10(1 − 2ν)2
)
r̂ikr̂ik

+ 5(1 − 2ν)2
(
Î − r̂ikr̂ik

) ]}
, (11)

Mi �=j =M0
3

2(5 − 6ν)
a

rij

[(
4(1 − ν) − 4

3

(
a

rij

)2)
r̂ij r̂ij

+

(
3 − 4ν +

2
3

(
a

rij

)2)(
Î − r̂ij r̂ij

)]
+ M(3)

i �=j ,

(12)
where M0 = (5 − 6ν)/24π(1 − ν)μa and r̂ij = rij/rij

(i, j = 1, 2, ..., N). Here, the three-body interactions con-

tribute as given by M(3)
i �=j in the form

M(3)
i �=j =M0

3
8(4 − 5ν)(5 − 6ν)

N∑
k=1

k �=i,j

(
a

rik

)2(
a

rjk

)2
[
−10(1 − 2ν)

(
(1 − 2ν)

(
(r̂ik · r̂jk )̂I + r̂jkr̂ik

)
+3(r̂ik · r̂jk)(r̂ikr̂ik + r̂jkr̂jk) − r̂ikr̂jk

)
+3
(
7 − 4ν − 15(r̂ik · r̂jk)2

)
r̂ikr̂jk

]
. (13)

The corresponding expressions for incompressible sys-
tems in the main text readily follow from Eqs. (10)–(13)
by setting the Poisson ratio ν = 0.5. Here, we derived
and listed the more general expressions for compressible
elastic matrices.

Four-particle system

In addition to the two- and three-particle samples de-
scribed in the main text, we also generated and analyzed
four-particle systems. Their preparation, experimental
analysis, and the corresponding comparison with the the-
ory are in complete analogy to the three-particle system
described in the main text. We recall that our theoretical
description in the main text up to the investigated order
(including r−4

ij ) is exact for arbitrary particle numbers.
No higher-body interactions appear to this order. There-
fore, Eqs. (10)–(14) in the main text also apply to sys-
tems of particle numbers N > 3 up to (including) order
r−4
ij , i.e. if the particle separations are not significantly

reduced.
Thus, our four-particle results predominantly provide a

supplement to the results presented in the main text. Our
experimental and theoretical results for the four-particle
system are depicted in Fig. A. One could continue to
further increasing particle numbers in the same way.
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frères, Paris, 1828) pp. 160–187.

[5] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (El-
sevier, Oxford, 1986).



3

FIG. A. Same as in Figs. 3 and 4 in the main text, here for a four-particle system. (a) The snapshot was taken for vanishing
external magnetic field (particle diameters 204.4±2.2 μm). (b–g) Changes Δrij in all six distances (i, j = 1, 2, 3, 4, i �= j).
Good agreement between theory (red line) and experiments (blue squares) is observed, and the modulus of the gel matrix for
this system is obtained as 85.7±12.6 Pa.
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Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance,
for the fabrication of elastic composite materials.We theoretically analyze the following situation. Rigid spherical
inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques
are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions
respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads
to elastic matrix deformations, and in turn results in mutual long-rangedmatrix-mediated interactions between the
inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate
the displacements and rotations of the inclusions from the externally imposed or induced forces and torques.
Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and
rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the
resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion
configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to
the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present
the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method
will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to
accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

DOI: 10.1103/PhysRevE.95.053002

I. INTRODUCTION

It is safe to say that elastic composite materials are of huge
technological importance. This statement is backed by the
fact that concrete, the most abundant manmade material on
Earth [1], is frequently composed of a cementmatrix supported
by more rigid particulate inclusions [1–5]. Understanding the
mutual interactions between the inclusions as well as between
the inclusions and the matrix is crucial to understanding the
overall material performance.
While hardened concrete is a relatively rigid substance,

polymeric gel matrices or biological tissue can provide softer
elastic environments. Then, larger-scale displacements and
rotations of embedded inclusions can be observed when forces
and/or torques are externally imposed or induced. Magnetic
microrheology observes the displacements of probe particles
caused by externally applied magnetic field gradients [6–9].
For instance, the mechanical response of the cytoskeleton
[6–10] was analyzed in this way. Similarly, the rotational
motion of magnetic rods under externally imposed magnetic
torques can be used for microrheological purposes [11–13].
The same is true for tracking the relative displacements
between particles that respond to mutual magnetic forces
induced between them [14].
Thinking of rigid inclusions embedded in a soft elastic

polymeric gel matrix, artificial soft actuators represent a
natural type of application [15–18]. Different approaches are
possible. On the one hand, a net external force or torque
can be imposed onto the inclusions. For example, magnetic

*puljiz@thphy.uni-duesseldorf.de
†menzel@thphy.uni-duesseldorf.de

particles are drawn toward external field gradients [19], while
anisotropic particlesmay experience a torque under an external
electric ormagnetic field [20–23]. In these cases, the externally
imposed forces or torques are transmitted by the inclusions to
the embedding matrix and lead to overall deformations. On
the other hand, genuinely electrostrictive or magnetostrictive
effects can be exploited when external electric or magnetic
fields induce mutual attractions and repulsions between the
embedded inclusions and, in total, lead to macroscopic defor-
mations [24–26]. In addition to that, the overall mechanical
properties can be tuned from outside by external fields in such
materials. This allows, during application, reversibly adjusting
from outside the elastic properties to a current need. Examples
are the magnitudes of the elastic moduli [15,27–33], nonlinear
stress-strain behavior [23,34], or dynamic properties [35–39],
allowing, for instance, for the construction of tunable soft
damping devices [40–42].
In all these situations, for a theoretical characterization and

quantitative description of thematerial behavior, it is necessary
to determine the induced displacements and rotations of the
rigid inclusions. This is a many-body problem. The inclusions
are enclosed by the elastic matrix and transmit the forces and
torques to their embedding environment. As a consequence,
the matrix gets deformed. The other inclusions are exposed
to these induced deformations of their environment. As a
consequence, they are additionally displaced and rotated.
Moreover, the inclusions are rigid and resist deformations
that would result from the induced matrix deformations. This
resistance leads to further stresses on the embedding matrix
and in turn to additionalmatrix-mediated interactions between
the inclusions.
One can address this problem using simplified represen-

tations of the surrounding matrix, e.g., in elastic-spring [43]
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or elastic-rod [44,45] models. Alternatively, one can directly
perform complete finite-element simulations [46–49] or apply
related schemes of simulation [23,34] to explicitly cover the
matrix behavior.
Here, for rigid spherical particles embedded with stick

boundary conditions in the elastic matrix, we explicitly solve
the problem analytically. Following the above cause-and-effect
principle, we start from the forces and torques acting on the
embedded particles. We then calculate the resulting coupled
displacements and rotations of all particles, including the
described matrix-mediated interactions between them. Our
analytical results are given in terms of displaceability and
rotateability matrices that, when multiplied with the forces
and torques, lead to the caused displacements and rotations.
These expressions solely depend on the configuration of
the inclusions and implicitly contain the role of the elastic
environment. As a strong benefit, the deformations of the
elastic environment do not need to be calculated explicitly
anymore. Therefore, in the future, one can directly calculate
analytically the resulting displacements and rotations of the
inclusions, without needing to resolve the induced elastic
matrix deformations any longer. (To avoid confusion, we note
that the term “matrix” is used both for the elastic environment
as well as for the mathematical representation of second-rank
tensors.)
Our approach is based on the fact that for the static

linear elasticity equations a Green’s function is available
[50]. We then adapt a method from low-Reynolds-number
hydrodynamics, called the method of reflections [51,52].
There, hydrodynamic interactions, i.e., fluid flows induced
by suspended particles, play the role of the matrix-mediated
interactions in our case. In hydrodynamics, the approach
turned out to be extremely successful in characterizing the
behavior of suspensions of colloidal particles [53–60], i.e.,
nano- to micrometer-sized objects, and of self-propelled
microswimmers [61–64]. We expect similar benefits for the
characterization of elastic composite materials in the future.
In contrast to the hydrodynamic case, compressible elastic
matrices are readily described as well.
Technically, the method corresponds to an iterative proce-

dure in orders of the inverse separation distance between the
rigid inclusions. We here proceed to the fourth order in this
inverse distance, but in principle one can proceed to arbitrary
order. Parts of our results were presented before (for instance,
the elastic Faxén laws [65,66], see below, the derivation of
which we here, however, present by explicit calculation in
analogy to the hydrodynamic procedure in Refs. [52] and
[67]). Mostly, in the very few previous approaches on this
subject, the displacements were used as a starting point, and
expressions for the forces and torques necessary to achieve
these displacements were then derived [65,68]. Here, we
follow the converse route, i.e., the forces and torques are
used as known input, and we then calculate the resulting
displacements and rotations. This is in agreement with the
cause-and-effect chain that usually applies in experiments.
Our presentation has two main purposes. First, we provide
more explicitly the steps of derivation outlined already in
Ref. [14] for the displaceability matrix. Second, we amend
this procedure by the rotational component, so that now
also the influence of imposed torques and the couplings

between translational and rotational degrees of freedom are
included.
We start in Sec. II with a brief overview on the underlying

equations of linear elasticity theory, including the correspond-
ing Green’s solution. In Sec. III, we review the multipole
expansion (a Taylor expansion) of the Green’s solution around
the center of a rigid inclusion. Subsequently, the calculation
of the displacement field around a finite-sized sphere subject
to an external force or torque is explicitly described in
Secs. IV and V, respectively. In Sec. VI, the derivation of
the translational and rotational Faxén laws of elasticity is
presented explicitly; these expressions describe how a single
spherical inclusion is displaced and rotated in a given, imposed
matrix deformation. The Faxén laws enable us in Secs. VII–IX
to calculate the mutual matrix-mediated interactions between
spherical inclusions in elastic media. They contribute to the
displaceability and rotateability matrices defined in Sec. VII,
which allow to directly calculate from given forces and torques
on all inclusions their coupled displacements and rotations.
We explicitly calculate the components of these matrices to
fourth order in inverse inclusion separation distance. For this
purpose, we first restrict ourselves to two-sphere interactions
in Sec. VIII and after that include three-sphere interactions
in Sec. IX. Parts of our results are briefly illustrated by
considering simplified and idealized example situations in
Sec. X. Brief conclusions and a short outlook follow in Sec. XI,
while several technical details are added in the Appendices to
render the presentation fully self-contained.

II. GREEN’S FUNCTION IN LINEAR ELASTICITY
THEORY

Throughout, we consider an isotropic, homogeneous, and
infinitely extended elasticmatrix.Displacements of the volume
elements of the elastic matrix are described by the displace-
ment field u(r). We consider a point force F acting on the
matrix at position r0. If the deformations are restricted to the
linear regime, then u(r) obeys the Navier-Cauchy equations
[69] of linear elasticity theory,

∇2u(r)+ 1

1− 2ν ∇∇ · u(r) = − 1

μ
Fδ(r − r0), (1)

with ν the Poisson ratio connected to the matrix compressibil-
ity, μ the shear modulus, and δ(r) the Dirac delta function.
At positions different from r0, three relations arise from

Eq. (1) that will prove to be useful in subsequent sections.
First, taking the divergence of Eq. (1), we obtain (for r �= r0)

∇2∇ · u = 0. (2)

Second, working on Eq. (1) with ∇2 therefore leads to

∇4u = 0, (3)

which is referred to as biharmonic equation. The third relation
is obtained by taking the curl of Eq. (1), resulting in

∇ × ∇2u = 0. (4)

The general solution of Eq. (1) can be expressed by a
Green’s function,

u(r) = G(r,r0) · F, (5)
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with G(r,r0) a tensor of rank 2 (we mark second-rank tensors
and matrices by an underscore). Due to the homogeneity and
isotropy of the material,G(r,r0) is a function of the vector r −
r0 only. For completeness, we briefly reproduce its derivation
(see, e.g., Ref. [70]).
The generalized Hooke’s law [50] of linear elasticity theory

reads

σkp = λkpimuim, (6)

with σkp and uim the components of the stress and strain tensor,
respectively. λkpim summarizes the elastic coefficients, and the
Einstein summation rule is applied. For isotropic materials,
the tensor of elastic coefficients takes the form [50]

λkpim = λδkpδim + μ(δkiδpm + δkmδpi), (7)

with

λ = 2μν

1− 2ν , (8)

whereas the linearized strain tensor [50] reads

uim = 1
2 (∇ium + ∇mui). (9)

We assume an arbitrary simply connected volume V of the
elastic material. The only force acting on this material is our
point force F at position r0. In equilibrium, this point force is
balanced by the forces resulting from the surface stress:∫

∂V

dSpσkp + Fk = 0. (10)

Using the Gaussian divergence theorem, the surface integral
can be converted into a volume integral. Therefore, inserting
Eqs. (5), (6), and (9) yields the expression∫

V

dV [λkpim∇m∇pGij (r − r0)+ δjkδ(r − r0)]Fj = 0. (11)

Since the above equation must hold true for any arbitrary
volume and point of attack r0, the Green’s functionGij (r − r0)
must satisfy the equilibrium condition

λkpim∇m∇pGij (r − r0)+ δjkδ(r − r0) = 0. (12)

This equation can be solved by Fourier forth and back
transformation, see Appendix A, resulting in

G(r) = 1

16π (1− ν)μ

[
3− 4ν

r
Î + rr

r3

]
, (13)

with Î the identity matrix and rr a dyadic product. A graphical
representation of Eqs. (5) and (13) is given in Fig. 1. For
incompressible materials (in the regime of linear elasticity),
ν takes the value 1/2. In this case, the Green’s function
in Eq. (13) has the same form as the Oseen tensor in
low-Reynolds-number hydrodynamics [51,52,71], where the
hydrodynamic viscosity takes the place of μ. In general, G(r)
used in Eq. (5) solves Eq. (1) .

III. MULTIPOLE EXPANSION

Using the elastic Green’s function G(r), we can express
the matrix displacement field u(r) generated by an arbitrarily

FIG. 1. Illustration of the displacement field u(r) generated by a
point force F acting on the matrix at position r0. The displacement
field is obtained from Eq. (5) via the elastic Green’s function in
Eq. (13). Small arrows, for visibility rescaled to identical length, in-
dicate the direction of the displacement field, whereas the background
color represents the local magnitude of u(r) on a logarithmic scale.
The brighter the color, the higher the magnitude of u(r).

shaped embedded rigid particle centered at the origin as

u(r) =
∫

∂V

dS ′G(r − r′) · f(r′). (14)

Here, r′ is located on the particle surface ∂V and f(r′)
is the force per unit area exerted by the rigid particle
onto the matrix. This equation expresses a superposition of
displacement fields generated by point forces on the particle
surface. A similar situation arises in electrostatics, where a
localized continuous charge distribution can be expressed as
a superposition of point charges, each of which contributing
to the overall electric potential. Moreover, similarly to the
electrostatic potential of point charges, in Eq. (13) we have
G(r) ∼ r−1. Therefore, it is possible to perform a multipole
expansion of the Green’s function. This is well-known for
low-Reynolds-number hydrodynamics [51] and has previously
been adapted to elastostatics [72]. We follow the procedure as
described for the hydrodynamic case in Ref. [51].
In the far field, one has |r| � |r′| in Eq. (14). The Taylor

series of G(r − r′) in r′ around r′ = 0 reads

Gij (r − r′) =
∞∑

n=0

(−1)n
n!

(r′ · ∇)nGij (r). (15)

Inserting Eq. (15) into Eq. (14), we obtain the components of
the displacement field as

ui(r) =
∞∑

n=0

(−1)n
n!

∫
∂V

dS ′fj (r′) (r′ · ∇)nGij (r)

= Gij (r)Fj − ∂Gij (r)
∂rk

Djk + ..., (16)
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with

Fj =
∫

∂V

dS ′fj (r′), Djk =
∫

∂V

dS ′fj (r′)r ′
k. (17)

Here, F can be identified as the total force that the particle
exerts on the matrix. The D-tensor can be split into an
antisymmetric and a symmetric part,

Djk = Tjk + Sjk, (18)

with

Tjk = 1

2

∫
∂V

dS ′[fj (r′)r ′
k − fk(r′)r ′

j ], (19)

Sjk = 1

2

∫
∂V

dS ′[fj (r′)r ′
k + fk(r′)r ′

j ]. (20)

The symmetric tensor Sjk is called stresslet. Furthermore, we
set the components of the torque T that the particle exerts on
the matrix to

Ti := εijk

∫
∂V

dS ′r ′
j fk(r′) = − εijkTjk, (21)

with εijk the Levi-Civita symbol. Therefore, we can express
the corresponding part in Eq. (16) through

Tjk

∂Gij

∂rk

= − 1

2
εjklTl

∂Gij

∂rk

= 1

2
(T × ∇)jGij . (22)

In sum, we obtain the following expression for the first
terms of the multipole expansion,

u(r) = G(r) · F −
(
1

2
T × ∇ + S · ∇

)
· G(r), (23)

which corresponds to the displacement field around a rigid
particle in far-field approximation.

IV. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
TRANSLATED RIGID SPHERICAL INCLUSION

To facilitate our analytical approach, we now confine
ourselves to rigid spherical particles embedded in the elastic
matrix. The center of such a sphere of volume V is located at
position r0 and a is its radius. If an external force F uniformly
translates the sphere, it creates a displacement field in the
surrounding matrix. Assuming that the elastic matrix sticks to
the surface ∂V of the sphere and that the displacement field
vanishes at infinity, the boundary conditions for u(r) follow as

u(r ∈ ∂V ) = U, u(|r| → ∞) = 0. (24)

Here U is the translation of the sphere caused by the external
force, which due to the particle rigidity simultaneously applies
for all its surface points.
The resulting displacement field can be expressed in terms

of the elastic Green’s function G(r − r0); see Eq. (14). The
integral in Eq. (14), summing over all the contributions from
the point forces on the particle surface at positions r′ ∈ ∂V ,
can for a sphere be calculated explicitly, see Ref. [52] for the
case of low-Reynolds-number hydrodynamics. However, this
is a lengthy calculation, and we follow the elegant approach
outlined in Refs. [51] and [72].
Due to the linearity of the Navier-Cauchy equations Eq. (1),

there is only one unique solution satisfying the prescribed

boundary conditions. Assuming F ∼ U in the linear regime,
an ansatz u(r) ∼ G(r − r0) · F ∼ G(r − r0) · U appears
plausible. Moreover, since on ∂V the displacement field
u(r) ∼ G(r − r0) · U must satisfy Eq. (24), on ∂V the overall
multiplicand of U in this expression must be proportional to
Î. This is accomplished by an additional differential operator
acting on G(r − r0),(

1+ a2

6
∇2

)
G(r − r0)

∣∣∣∣
|r−r0|=a

= 5− 6ν
24π (1− ν)μa

Î. (25)

Altogether,

u(r) = 24π (1− ν)μa

5− 6ν
(
1+ a2

6
∇2

)
G(r − r0) · U (26)

satisfies the boundary conditions Eq. (24) as well as Eq. (1) and
thus, due to the uniqueness of the solution, is the desired result.
For a → 0 and |r − r0| > a, the contribution a2

6 ∇2 be-
comes negligible and we must reproduce Eq. (5). In this way,
we find

F = 24π (1− ν)μa

5− 6ν U (27)

or, equivalently,

u(r ∈ ∂V ) = U = 5− 6ν
24π (1− ν)μa

F. (28)

As a consequence, we may rewrite Eq. (26) as

u(r) =
(
1+ a2

6
∇2

)
G(r − r0) · F. (29)

This is the elastic analogue to the hydrodynamic Stokes flow
[52].
Since, as we just argued, the solution in Eq. (29) is exact,

we can for a spherical particle insert it into Eq. (14) to find for
|r − r0| � a the relation∫

∂V

G(r − r′) · f(r′)dS ′ =
(
1+ a2

6
∇2

)
G(r − r0) · F, (30)

which we will need later.

V. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
ROTATED RIGID SPHERICAL INCLUSION

In a similar way, we can ask for the displacement field
generated in an elastic matrix by a uniformly rotated rigid
spherical inclusion at position r0. For this purpose, we consider
an external torque T acting on the inclusion (see Refs. [51]
and [52] for the low-Reynolds-number hydrodynamic and
Ref. [72] for the elastic case). The rotation of the particle
is quantified by the absolute (static) rotation vector �. Then
the boundary conditions on the surface ∂V of the particle and
at infinity read

u(r ∈ ∂V ) = � × (r − r0), u(|r| → ∞) = 0. (31)

Inserting the displacement field

u(r) =
(

a

|r − r0|
)3

� × (r − r0) (32)
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into these boundary conditions as well as into Eq. (1) confirms
that it is the unique solution of the problem. As will be shown
in Sec. VI, see Eq. (53), the torque that is externally imposed
on the inclusion is related to the rotation vector � via

T = 8πμa3�, (33)

with a the radius of the sphere.

VI. FAXÉN’S LAWS

In low-Reynolds-number hydrodynamics, Faxén’s laws
describe how a spherical particle is translated, rotated, and
which stresses act onto it in an imposed fluid flow [51,52,67].
The fluid is typically considered as incompressible.
Due to the similarities of the underlying equations, the

procedure can be transferred to the elastic case. That is, we
now consider an (externally) imposed deformation of our
elastic matrix as described by a displacement field u(r). We
then calculate how a rigid spherical particle embedded in
the elastic matrix and exposed to this displacement field is
translated, rotated, and which stresses act onto it. A possible
compressibility of the elastic matrix is readily included. Such
elastic Faxén laws have been outlined before [65,66]. Here,
we present an explicit derivation by direct calculation. We
adapt the hydrodynamic approach in Refs. [52] and [67] by
transferring it to the elastic case.
We consider a rigid spherical inclusion of radius a em-

bedded in the elastic matrix at position r0. In addition to the
displacement field imposed onto the matrix, the embedded
particle may still be subject to external forces or torques.
Moreover, its rigidity resists the imposed matrix deformations.
Therefore, its surface elements exert additional forces onto
the matrix, summarized again by the surface force density
f(r′) with r′ ∈ ∂V and ∂V the surface of the particle. The
additional displacement field resulting from f(r′) is calculated
according to Eq. (14). Due to the linearity of Eq. (1), the
different contributions to the overall displacement field simply
superimpose. Describing again translations and rotations of
the sphere by a translation vector U and a (static) rotation
vector�, respectively, we obtain in total for the surface points
r ∈ ∂V the stick boundary condition,

Ui + [� × (r − r0)]i =
∫

∂V

Gij (r − r′)fj (r′)dS ′ + ui(r).

(34)
On the left-hand side of this equation, we find the

displacements of the surface points of the sphere by the rigid
translation U and the rigid rotation �. For each point r ∈ ∂V ,
these displacements must be identical to the displacements
of the matrix stuck to the sphere surface. The total matrix
displacement on the surface is given on the right-hand side.
There, the first term, i.e., the integral, includes all contributions
to the matrix displacements due to the surface force density
f(r′) exerted by the particle onto the matrix. The second term,
i.e., u(r), corresponds to the (externally) imposed deformation
field. At this point, one may be concerned with the validity
of the equation, as the Green’s function G was derived for
an infinitely extended matrix. This seems to contradict the
presence of a finite-sized rigid embedded sphere. However, for
our calculation it is irrelevant whether we consider the sphere

to be rigid inside, or whether it is filled with deformable elastic
matrix material as well. The only important point is that the
surface shell, which may be considered as infinitely thin, is
rigidly translated and rotated as one rigid object.
Integration of both sides of Eq. (34) over ∂V gives

4πa2Ui =
∫

∂V

∫
∂V

Gij (r − r′)fj (r′)dS ′dS +
∫

∂V

ui(r)dS.

(35)
Using Eq. (30), the first term on the right-hand side can be
connected to the displacement of the sphere due to an external
force F. On ∂V , the resulting expression is further simplified
using Eqs. (28) and (29).
For the evaluation of the second term on the right-hand side,

we insert the Taylor expansion of ui(r) around the particle
center at r = r0,

ui(r) = ui(r0)+ (r − r0)j [∇jui(r)]r=r0

+ 1

2
(r − r0)j (r − r0)k[∇j∇kui(r)]r=r0

+ 1

3!
(r−r0)j (r−r0)k(r−r0)l[∇j∇k∇lui(r)]r=r0+...

(36)

Since there are no body forces generating the imposed field
u(r) at r = r0, Eq. (3) must hold, i.e., ∇4u(r = r0) = 0. Thus,
under the integral, terms of fourth and higher even order in
∇ must vanish due to isotropy. Furthermore, all odd terms in
(r − r0) of the Taylor series must vanish during integration
due to symmetry. Taking this into account, the second term on
the right-hand side of Eq. (35) can be evaluated as∫

∂V

ui(r) dS =4πa2ui(r0)

+ 1

2

∫
∂V

(r − r0)j (r − r0)k[∇j∇kui(r)]r=r0dS

=4πa2
(
1+ a2

6
∇2

)
ui(r)

∣∣∣∣
r=r0

. (37)

Here, in the step to the last line, we have used that∫
∂V

rj rk dS = 4πa4

3
δjk. (38)

Collecting all results, Eq. (35) leads to

U = 5− 6ν
24π (1− ν)μa

F +
(
1+ a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (39)

In this expression, the first contribution to the rigid translation
is caused by the external force F, see our previous result in
Eq. (28). The second contribution is due to the imposed matrix
displacement field u(r). As we can see, the sphere is not simply
advected by the imposed displacement. Due to its finite size,
the additional contribution a2

6 ∇2 arises.
In the absence of an external force on the sphere, i.e., for

F = 0, we obtain what is referred to as Faxén’s first law in
hydrodynamics [67]:

UFaxén =
(
1+ a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (40)
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This relation describes the rigid translation of a rigid sphere in
an imposed deformation of the surrounding matrix.
To obtain corresponding expressions for the rotation vector

and for the stresslet, we multiply both sides of Eq. (34) with
(r − r0)k and integrate over ∂V ,∫

∂V

(r − r0)k[� × (r − r0)]i dS

=
∫

∂V

∫
∂V

(r − r0)k Gij (r − r′)fj (r′) dSdS ′

+
∫

∂V

(r − r0)kui(r) dS. (41)

The integral on the left-hand side is easily evaluated using
Eq. (38) and reads

4πa4

3
εilk	l. (42)

In order to calculate the inner integral of the first term on
the right-hand side, we substitute r′′ = r − r0 and express

the integral in terms of the Fourier transform of the Green’s
function,∫

∂V

Gij (r − r′) (r − r0)k dS

=
∫

∂V

Gij (r′′ − r′ + r0)r ′′
k dS ′′

= 1

(2π )3

∫
∂V

dS ′′
∫

d3k G̃ij (k)r ′′
k eik·(r′′−r′+r0). (43)

Now the integral with respect to r′′ can be evaluated as∫
∂V

dS ′′eik·r′′
r ′′
k = −i∇k,k

∫
∂V

dS ′′eik·r′′

= −4πia2k̂k

d

dk

sin(ka)

ka
. (44)

The integral
∫

d3k in Eq. (43) can be split into∫
dS(k̂)

∫∞
0 k2dk. Inserting Eq. (A3), Eq. (43) becomes

2π2μ

a2

∫
∂V

Gij (r − r′) (r − r0)k dS

= −i

∫
∂V

dS(k̂)
[
δij − 1

2(1− ν)
k̂i k̂j

]
k̂k

∫ ∞

0
dk eikk̂·(r0−r′) d

dk

sin(ka)

ka

= −i

∫
∂V

dS(k̂)
[
δij − 1

2(1− ν)
k̂i k̂j

]
k̂k

[
sin(ka)

ka
eikk̂·(r0−r′)

∣∣∣∣
∞

0

− ik̂l(r0 − r′)l
∫ ∞

0
dk
sin(ka)

ka
eikk̂·(r0−r′)

]

=
∫

∂V

dS(k̂)
[
δij − 1

2(1− ν)
k̂i k̂j

]
k̂k k̂l(r′ − r0)l

∫ ∞

0
dk
sin(ka)

ka
eikk̂·(r0−r′). (45)

In the last line, the imaginary part is odd in k̂ and therefore vanishes upon integration. The remaining real part is an even function
in both k̂ and k, so that, under the

∫
dS(k̂) integral, we may rewrite the

∫
dk integral as

1

2

∫ ∞

−∞
dk
sin(ka)

ka
eikk̂·(r0−r′) =

{
π
2a , for − 1 < k̂·(r′−r0)

a
< 1,

0, otherwise;
(46)

see Appendix B. We obtain∫
∂V

Gij (r − r′) (r − r0)k dS = a

4πμ
(r′ − r0)l

∫

S

dS(k̂)
(

δij − 1

2(1− ν)
k̂i k̂j

)
k̂k k̂l , (47)

where the surface of integration 
S is given by


S =
{

k̂

∣∣∣∣− 1 <
k̂ · (r′ − r0)

a
< 1

}
. (48)

Since r′ is located on the surface of the inclusion, i.e., |r′ − r0| = a, 
S corresponds to the surface of the unit sphere. Using
Eq. (38) (for k̂ instead of r) and ∫


S

k̂i k̂j k̂kk̂l dS(k̂) = 4π

15
(δij δkl + δikδjl + δilδjk) (49)

finally leads to∫
∂V

(r − r0)kGij (r − r′)fj (r′) dS = a

15μ

{
5(r′ − r0)kfi − 1

2(1− ν)
[(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik]

}
. (50)
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The second term on the right-hand side of Eq. (41) can be evaluated by inserting the Taylor expansion of u(r) from Eq. (36),∫
∂V

(r − r0)kui(r) dS =
∫

∂V

(r − r0)k(r − r0)j [∇jui(r)]r=r0dS

+ 1

6

∫
∂V

(r − r0)k(r − r0)j (r − r0)l(r − r0)m[∇j∇l∇mui(r)]r=r0dS

= 4πa4

3

(
1+ a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

, (51)

where again we have used Eqs. (38) and (49) [for (r − r0) instead of k̂ in the latter]. The other terms in the expansion again
vanish due to isotropy and symmetry upon integration.
Altogether, combining Eqs. (41), (42), (50), and (51), we find

4πa4

3
εilk	l = a

15μ

∫
∂V

dS ′
{
5(r′ − r0)kfi − 1

2(1− ν)
[(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik]

}

+ 4πa4

3

(
1+ a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

. (52)

This tensor equation can be split into a symmetric and an antisymmetric part. First, we calculate the antisymmetric part by
multiplying Eq. (52) by εijk . Since there are no body forces generating the imposed field u(r) at r = r0, Eq. (4) most hold for
the last term, i.e., ∇ × ∇2u(r = r0) = 0. Therefore, the a2

10∇2-term in Eq. (52) vanishes. Using the definition of the torque from
Eq. (21), we obtain

� = 1

8πμa3
T + 1

2
∇ × u(r)

∣∣∣∣
r=r0

. (53)

T corresponds to an external torque acting onto the sphere, which is transmitted by the sphere onto the surrounding matrix (with
the reference point of the torque at the center of the sphere).
Similarly to the previous case of rigid translations, in the absence of an external torque acting on the sphere, i.e., for T = 0,

we obtain a relation referred to as Faxén’s second law in hydrodynamics [67]:

�Faxén = 1

2
∇ × u(r)

∣∣∣∣
r=r0

. (54)

This relation quantifies the (static) rigid rotation of a rigid sphere in an imposed deformation of the surrounding matrix.
Finally, we calculate the symmetric part of Eq. (52). The �-term vanishes because of its antisymmetry. Thus, we find

0 = a

15μ

1

2(1− ν)

∫
∂V

dS ′
{
(4− 5ν)

[
(r′ − r0)ifk + (r′ − r0)kfi

]
− (r′ − r0)j fj δik

}

+4πa4

3

(
1+ a2

10
∇2

)
1

2
[∇iuk(r)+ ∇kui(r)

]∣∣∣∣
r=r0

=: 1
2
(Aik + Aki). (55)

To obtain an expression solely for the stresslet as defined in Eq. (20), we add a vanishing trace term

1

5(1− 2ν)Ajj δik = a

15μ

1

2(1− ν)

∫
∂V

dS ′(r′ − r0)j fj δik + 4πa4

15

(
1+ a2

10
∇2

)
1

1− 2ν ∇juj (r)δik

∣∣∣∣
r=r0

, (56)

leading to

0 = 1

2
(Aik + Aki)+ 1

5(1− 2ν)Ajj δik. (57)

Then, the definition of Sik appears in Eq. (57). Solving for Sik , we find the stresslet as

S = − 4π (1− ν)μa3

4− 5ν
(
1+ a2

10
∇2

)(
1

1− 2ν Î∇ · u(r)+ 5

2
{∇u(r)+ [∇u(r)]T }

)∣∣∣∣
r=r0

, (58)

where the superscript (•)T marks the transpose.
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Equation (58) expresses the stress that a rigid spherical
inclusion exerts onto the surrounding matrix in the imposed
displacement field u(r) of the matrix. The matrix deformation
is imposed from elsewhere, that is, not by the spherical
inclusion itself. However, the inclusion due to its rigidity
resists this deformation. This resistance leads to the described
stresslet.
Vice versa, the stresslet that the matrix exerts onto the

particle is given by

SFaxén = − S, (59)

which together with Eq. (58) may be referred to as Faxén’s
third law and was derived by Batchelor in the hydrodynamic
case [67].

VII. DISPLACEABILITY AND ROTATEABILITY MATRIX

Nowwe have all the ingredients to consider the coupled dis-
placements and rotations of N spherical inclusions embedded
in the infinitely extended homogeneous elastic medium. For
simplicity, we consider identical spheres of radius a, labeled
by 1,...,N .
We here adhere to the following cause-and-effect chain.

Each spherical inclusion j is subject to an external forceFj and
an external torque Tj , j = 1,...,N . As a consequence of these
forces and torques, the inclusions are displaced and rotated
by rigid translation vectors Ui and rigid rotation vectors �i ,
respectively, i = 1,...,N . Moreover, the spheres transmit the
forces and torques to the surrounding elastic medium, causing
additional deformations in their environment. Other inclusions
are exposed to these induced deformations and counteract due
to their rigidity. This leads to further distortions, acting back
on all other rigid spheres that likewise resist induced deforma-
tions, resulting in mutually coupled particle translations and
rotations. In the following, we derive analytical expressions
for these translations and rotations, using the external forces
and torques as an input.
In formal analogy to the hydrodynamic mobility matrices

[52,73], we can define elastic displaceability and rotate-
ability matrices. Given the external (quasi)static forces Fj

and (quasi)static torques Tj , j = 1,...,N , applied to the
spherical inclusions, thesematrices directly express the caused
displacements Ui and rotations �i in the resulting situation of
new (quasi)static equilibrium, i = 1,...,N :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1
...

UN

�1
...

�N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mtt
11 · · · Mtt

1N Mtr
11 · · · Mtr

1N
...

. . .
...

...
. . .

...
Mtt

N1 · · · Mtt
NN Mtr

N1 · · · Mtr
NN

Mrt
11 · · · Mrt

1N Mrr
11 · · · Mrr

1N
...

. . .
...

...
. . .

...
Mrt

N1 · · · Mrt
NN Mrr

N1 · · · Mrr
NN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1
...

FN

T1
...

TN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(60)

Here, the submatrices Mtt
ij express how the particles

are translated due to the forces acting on all the particles

(translation–translation coupling, i,j = 1,...,N ). Their com-
ponents have been derived already in a previous work [14].
The submatrices Mtr

ij include contributions to the translations
due to the torques acting on the inclusions (translation–rotation
coupling). Similarly, the submatrices Mrt

ij determine how
forces acting on the particles lead to their rotations (rotation–
translation coupling). The cause of rotations by torques is given
by the submatricesMrr

ij (rotation–rotation coupling).
We stress that the role of the surrounding elastic medium

is implicitly contained in these matrices. Their components
will solely depend on the configuration of the rigid inclu-
sions. Therefore, they significantly facilitate the problem of
calculating the coupled displacements and rotations described
above. It is not necessary any longer to explicitly calculate the
displacement field u(r) of the surrounding medium once the
expressions for these matrices have been derived.
Below, we shall explicitly perform this derivation for the

components Mtt
ij , Mtr

ij , Mrt
ij , and Mrr

ij as an expansion in
the inverse separation distance of the inclusions. Here, we
proceed up to (including) fourth order. This comprises pairwise
interactions mediated by the surrounding elastic medium, see
Sec. VIII, and three-body interactions, see Sec. IX.

VIII. TWO-BODY INTERACTIONS

In the following, we start from the forces and torques
acting on the inclusions, which as a consequence leads to
the coupled particle translations and rotations. Our approach
adapts the method of reflections from the hydrodynamic
literature as presented in Ref. [52]. In addition to that, we
here explicitly include the role of imposed torques as for
instance exerted by external magnetic fields on magnetically
anisotropic inclusions. Moreover, we take into account the
rigidity of the inclusions directly via the stresslets that follow
from their resistance to deformations [51,67].
The initial forces and torques acting on the inclusions are

either imposed externally, or they are induced between the
inclusions from outside. These are not the forces and torques
exerted by the elastic matrix onto the inclusions. For clarity,
we consider the influence of the imposed or induced forces
and torques separately in two steps. Due to the linearity of the
governing equations, the results of these two steps can in the
end simply be added/superimposed.

A. Forces imposed on or induced between the inclusions

In the following, we consider two rigid spherical inclusions
i and j , both of radius a. They are located at positions ri and
rj , respectively. The forces Fi and Fj are externally applied
to the spheres i and j , respectively, or induced between them.
As indicated before, we will proceed below by an expansion
in the inverse separation distance between the two spheres.
To zeroth order, the spheres are thus effectively considered

to be infinitely far away from each other. Consequently, the
interactions between the two spheres via the surrounding
elastic matrix do not enter. The actual translations of the
spheres, U(0)i and U(0)j , respectively, are then given by the
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FIG. 2. Illustration of the immediate effect that the displacement
of sphere j has on the translation and rotation of another sphere i. A
force Fj is externally imposed on sphere j . As a consequence, sphere
j gets rigidly translated as given by U(0)

j ; see Eq. (62). Moreover, the
surroundingmatrix is distorted, as described by the displacement field
u(0)j (r); see Eq. (64). The local directions of u(0)j (r) are indicated by the
small arrows that, for visibility, are rescaled to identical length. We
indicated the local magnitude of u(0)j (r) by background color, where
brighter color represents highermagnitude and the color values follow
an arc-tangent scale. Sphere i is exposed to the induced displacement
fieldu(0)j (r) and therefore gets translated as denoted byU(1)

i and rotated

as denoted by �
(1)
i . These quantities can be calculated from u(0)j (r)

via Eqs. (65) and (66), respectively, leading to Eqs. (72) and (73).
Overall, in this way we obtain the corresponding contributions to
the displaceability and rotateability matrices Mtt

i=j ,M
tt
i �=j ,M

rt
i=j , and

Mrt
i �=j in Eqs. (78), (79), (81), and (82), respectively, up to inverse

quartic order in the particle distances.

solution for isolated spherical inclusions, see Eq. (28), and
read

U(0)i = u(0)i (r ∈ ∂Vi) = 5− 6ν
24π (1− ν)μa

Fi , (61)

U(0)j = u(0)j (r ∈ ∂Vj ) = 5− 6ν
24π (1− ν)μa

Fj . (62)

Furthermore, to zeroth order, the induced displacement field
of the elastic matrix around each sphere i and j has been
calculated in Eq. (29), i.e.,

u(0)i (r) =
(
1+ a2

6
∇2

)
G(r − ri) · Fi , (63)

u(0)j (r) =
(
1+ a2

6
∇2

)
G(r − rj ) · Fj . (64)

In Fig. 2, u(0)j (r) is indicated by the small arrows.
Next, we take into account the mutual interactions between

the two spheres mediated by the surrounding elastic matrix.
For example, we consider particle i that is embedded in the
elastic matrix. Thus it is exposed to the displacement field

u(0)j (r) that results from the force Fj acting on sphere j . An

additional translation U(1)i and rotation �
(1)
i of sphere i are

induced in this way, which we can calculate from the Faxén
relations, Eqs. (40) and (54). They read

U(1)i =
(
1+ a2

6
∇2

)
u(0)j (r)

∣∣∣∣
r=ri

, (65)

�
(1)
i = 1

2
∇ × u(0)j (r)

∣∣∣∣
r=ri

. (66)

That is, u(0)j (r) now plays the role of the imposed matrix
displacement field u(r) in Eqs. (40) and (54).
In general, the displacement field u(0)j (r) would tend to

deform sphere i. In other words, a stress is exerted on particle
i. Yet, because of its rigidity, sphere i resists this deformation.
As a consequence, the overall displacement field induced by
sphere j , i.e., u(0)j (r), is disturbed via the presence of sphere
i. We can find this disturbance from the stress that the rigid
sphere i itself exerts back onto the matrix. The corresponding
stresslet follows from Eq. (58) and here takes the form

S(1)i = −4π (1− ν)μa3

4− 5ν
(
1+ a2

10
∇2

)(
1

1− 2ν Î∇ · u(0)j (r)

+ 5

2

{
∇u(0)j (r)+

[∇u(0)j (r)
]T })∣∣∣∣

r=ri

. (67)

Analogous expressions for sphere j are obtained by
swapping the indices i ↔ j in Eqs. (65)–(67).
We now proceed to improve our solution by iteration. For

this purpose, we calculate the mentioned disturbances u(1)i (r)
and u(1)j (r) that the stresslets S(1)i and S(1)j cause in the matrix,
respectively.Wefind corresponding expressions fromEq. (23):

u(1)i (r) = −(S(1)i · ∇) · G(r − ri), (68)

u(1)j (r) = −(S(1)j · ∇) · G(r − rj ). (69)

We should remark that Eq. (23) also contains the forces
imposed on the inclusions. However, at this stage of iteration,
they do not contribute. The direct influence of the forces has
already been determined in Eqs. (61)–(64). The spheres simply
follow the resulting induced displacement fields, without any
additional extra net force or torque resistance, see Eqs. (65) and
(66). Their only resistance is due to their rigidity as described
above, which now enters Eqs. (68) and (69) in the form of the
stresslets. Due to the linearity of the Navier-Cauchy equations,
Eq. (1), the disturbances in Eqs. (68) and (69) can in the end
simply be added/superimposed to the displacement fields in
Eqs. (63) and (64).
In the next step, each sphere is now additionally exposed to

one of these rigidity-induced displacement fields u(1)i (r) and
u(1)j (r) created by the other sphere. This leads to yet another

contribution to the translation (U(2)i and U(2)j ) and rotation

(�(2)
i and �

(2)
j ) of each sphere. Again, we can calculate these

contributions from the Faxén laws, see Eqs. (40) and (54), now
taking u(1)j (r) and u(1)i (r) as the imposed displacement fields,
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FIG. 3. Illustration of the rigidity-based reflection of an induced
displacement field by another sphere. (a) As in Fig. 2, an externally
imposed force Fj acts onto the spherical particle j . This directly
results in the particle translation U(0)

j and in the displacement field

u(0)j (r) in the surrounding elastic matrix; see Eqs. (62), (64), and
Fig. 2. The small arrows indicate the local direction of the induced
displacement fields. (b) Particle i is exposed to the displacement field
u(0)j (r) and is therefore translated by U(1)

i ; see Eq. (65). Rotations are
not considered here for simplicity. Simultaneously, the displacement
field tends to deform particle i as given by the stresslet −S(1)i ; see
Eqs. (58) and (59). (c)However, the rigid particle i resists deformation
and imposes the stresslet S(1)i onto the surrounding elastic matrix; see
Eq. (67). S(1)i induces yet another displacement field u(1)i (r) in the
elastic environment, see Eq. (68), which overlays the initial field
u(0)j (r). In this way, the initial field u(0)j (r) gets partially reflected by

the rigid particle i, leading to u(1)i (r). (d) Now, particle j is exposed to
u(1)i (r). Its initial translation U(0)

j thus gets corrected by a translation

U(2)
j ; see Eq. (75) after swapping indices i and j . Altogether, this leads
to the quartic contribution in the inverse particle separation distance
to the displaceability matrices Mtt

i=j in Eq. (78), after switching i ↔
j . In analogy, we may consider, instead of the initial particle j , a
different, third particle exposed to the reflected field. Following the
same scheme and calculating its induced translation, we obtain the
three-body interaction included by the contributionMtt(3)

i �=j in Eq. (104).
(For the latter purpose, the first, second, and third particle are referred
to as j , k, and i, respectively.)

respectively:

U(2)i =
(
1+ a2

6
∇2

)
u(1)j (r)

∣∣∣∣
r=ri

, (70)

�
(2)
i = 1

2
∇ × u(1)j (r)

∣∣∣∣
r=ri

, (71)

withU(2)j and�
(2)
j obtained by swapping the indices i ↔ j . The

overall situation resulting in the displacementU(2)j is illustrated
in Fig. 3 and has already been considered in Ref. [14].

Altogether, one can say that parts of the displacement fields
u(0)i (r) and u(0)j (r), initially generated by the first sphere, are

reflected by the respectively other sphere in the form of u(1)j (r)

and u(1)i (r). This is due to the rigidity of the spheres. Then
these fields are felt again by the corresponding first sphere.
In principle, one can continue this iteration by considering

further reflections. Also the first sphere is rigid and will
resist deformations in the reflected field, etc. We can use the
same formulae summarized above to continue this iteration.
Accordingly, this approach was called method of reflections
in the hydrodynamic literature [52]. Overall, it turns out that
this iterative procedure corresponds to an expansion in the
inverse particle separation distance r−1

ij , with rij = |ri − rj |.
Here, we proceed up to (including) the fourth order r−4

ij . Then,

counting factors r−1
ij and gradients shows that we may stop at

the presented stage.
To find the resulting explicit analytical expressions for the

matrix-mediated particle interactions, let us now explicitly
calculate the contributions in Eqs. (65), (66), (70), and (71).
From Eqs. (13), (64), and (65), using Eq. (3), we find for the
first correction of the translation of sphere i

U(1)i =
(
1+ a2

3
∇2

)
G(r − rj ) · Fj

∣∣∣∣
r=ri

= 1

16π (1− ν)μ

1

rij

{[
4(1− ν)− 4

3

(
a

rij

)2]
r̂ij r̂ij

+
[
3− 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
· Fj , (72)

with r̂ij = (ri − rj )/rij the unit vector pointing from sphere
j to sphere i; see Fig. 2. Similarly, using Eqs. (13), (64), (66),
and∇ × ∇2G(r) = 0, which follows from Eq. (4), we find for
the corresponding rotation of sphere i

�
(1)
i = 1

2
∇ ×

(
1+ a2

6
∇2

)
G(r − rj ) · Fj

∣∣∣∣
r=ri

= − 1

8πμr2ij
r̂ij × Fj ; (73)

see Fig. 2.
To determine U(2)i and �

(2)
i , we first have to calculate the

stresslet induced by sphere j and acting onto the matrix as
given by Eq. (67) with switched indices i ↔ j ,

S(1)j = 1

4(4− 5ν)
a3

r2ij
[5(1− 2ν)(Fi r̂ij + r̂ij Fi)

− 3Î r̂ij · Fi + 15r̂ij r̂ij r̂ij · Fi]+ O
(
r−4
ij

)
. (74)

It is sufficient to calculateS(1)j to this order because∇G(r − rj )

in Eq. (69) is already of order r−2
ij at r = ri . The additional

translation of sphere i induced by the stresslet S(1)j can now be
calculated from Eqs. (69) and (70). To our desired order, we
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may omit the a2

6 ∇2 term and obtain

U(2)i = − 1

32π (1− ν)(4− 5ν)μ
a3

r4ij
[5(1− 2ν)2(Î + r̂ij r̂ij )

+ (37− 44ν)r̂ij r̂ij ] · Fi . (75)

This expression for U(2)i corresponds to the lowest-order
correction to the displacement of sphere i resulting from a
reflection of the displacement field u(0)i (r) from sphere j . As
for the contribution to the rotation �

(2)
i of sphere i, since

u(1)j (ri) in Eq. (69) is already of order r−4
ij , Eq. (71) would

yield an expression of higher order O(r−5
ij ).

As indicated above, to obtain the next-order contributions,
we would have to calculate the stresslet S(2)i that results from

the rigidity-caused resistance of sphere i in the displacement
field u(1)j (r). This can be achieved again via Eq. (67) by
switching the indices ((0),(1)) → ((1),(2)). In analogy, the result-
ing additional displacement field u(2)i (r) follows via Eq. (68)
by replacing (1) → (2), and the additional contribution U(3)j

to the translation of sphere j via Eq. (70) by ((1),(2),i,j ) →
((2),(3),j,i). Also the O(r−4

ij ) terms in Eq. (74) then need to be

taken into account, and the rotations �
(2)
i contribute as well.

This scheme can basically be continued up to an arbitrary
iteration level.
Up to (including) order r−4

ij , the total translation of sphere

i is given by Ui = U(0)i + U(1)i + U(2)i and reads

Ui =
{

5− 6ν
24π (1− ν)μa

Î − 1

32π (1− ν)(4− 5ν)μ
a3

r4ij

[(
37− 44ν + 10(1− 2ν)2

)
r̂ij r̂ij + 5(1− 2ν)2(Î − r̂ij r̂ij )

]}
· Fi

+ 1

16π (1− ν)μ

1

rij

{[
4(1− ν)− 4

3

(
a

rij

)2]
r̂ij r̂ij +

[
3− 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
· Fj . (76)

Similarly, the total rotation of sphere i accurate up to (including) order r−4
ij is given by

�i = − 1

8πμr2ij
r̂ij × Fj . (77)

So far, we have only considered two particles i and j . However, since the governing Navier-Cauchy equations Eq. (1) are
linear, we can linearly superimpose the influence of additional inclusions. That is, we simply add contributions of identical form
to the right-hand sides of Eqs. (76) and (77) caused by each additional particle j .
Up to (including) order r−4

ij , the individual terms on the right-hand side of Eq. (76) then identify the components of the
displaceability matricesMtt

ij in Eq. (60) resulting from one- and two-body interactions [14] as illustrated in Figs. 2 and 3:

Mtt
i=j = M t

0

{
Î −

N∑
k=1
k �=i

3

4(4− 5ν)(5− 6ν)
(

a

rik

)4[(
37− 44ν + 10(1− 2ν)2

)
r̂ik r̂ik + 5(1− 2ν)2(Î − r̂ik r̂ik)

]}
, (78)

Mtt
i �=j = M t

0
3

2(5− 6ν)
a

rij

{[
4(1− ν)− 4

3

(
a

rij

)2]
r̂ij r̂ij +

[
3− 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
+ Mtt(3)

i �=j , (79)

with i,j ∈ {1,2,...,N} and

M t
0 = 5− 6ν

24π (1− ν)μa
. (80)

The contribution Mtt(3)
i �=j represents three-body interactions

and will be separately derived in Sec. IX.
Furthermore, from Eq. (77) we find for the components of

the rotateability matricesMrt
ij up to (including) order r

−4
ij

Mrt
i=j = 0, (81)

Mrt
i �=j = −M r

0
r̂ij

r2ij
× , (82)

see Fig. 2, with

M r
0 = 1

8πμ
. (83)

B. Torques externally imposed on or induced between
the inclusions

Instead of forces Fi and Fj , let us now consider torques Ti

and Tj externally imposed on or induced between two rigid
spherical inclusions i and j . The treatment of this situation
follows the same lines, therefore we will be significantly
briefer here.
To zeroth order, where matrix-mediated interactions

between the two spheres are ignored, the torques cause
rotations �

(0)
i and �

(0)
j of the particles, respectively, which

follow via Eq. (33) as

�
(0)
i = 1

8πμa3
Ti , (84)
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FIG. 4. Illustration of the immediate effect that the rotation of
sphere j has on the translation and rotation of another sphere i. A
torque Tj is externally imposed onto sphere j that, as a consequence,
gets rigidly rotated by �

(0)
j ; see Eq. (85). Moreover, the surrounding

matrix is distorted, as described by the displacement field u(0)j (r);

see Eq. (87). The local directions of u(0)j (r) are marked by the small

normalized arrows. We indicated the local magnitude of u(0)j (r) by the
background color, where brighter color represents higher magnitude
and the color values follow an arc-tangent scale. Sphere i is exposed
to the induced displacement field u(0)j (r) and therefore gets translated

by U(1)
i and rotated by �

(1)
i , see Eqs. (88) and (89), respectively.

Explicit results are given in Eqs. (92) and (93). Overall, in this way
we obtain the corresponding contributions to the displaceability and
rotateability matrices Mtr

i=j ,M
tr
i �=j ,M

rr
i=j , andMrr

i �=j in Eqs. (94)–(97),
respectively, up to inverse quartic order in the particle distances.

�
(0)
j = 1

8πμa3
Tj . (85)

Due to the stick boundary conditions, the rotated spheres
drag the surrounding matrix along and therefore generate
displacement fields as given by Eq. (32),

u(0)i (r) =
(

a

|r − ri |
)3

�
(0)
i × (r − ri), (86)

u(0)j (r) =
(

a

|r − rj |
)3

�
(0)
j × (r − rj ); (87)

see Fig. 4.
Similarly to the case of translated spheres, the displacement

field u(0)j (r) resulting from the rotation of sphere j affects the
total displacement and rotation of sphere i. Moreover, due
to its rigidity, additional stresses occur when sphere i resists
deformations that would be induced by the displacement field
u(0)j (r). The induced translation U(1)i , additional rotation �

(1)
i ,

and rigidity-based stresslet S(1)i exerted by sphere i can be
calculated using Eqs. (40), (54), and (58), respectively. There,

u(0)j (r) is inserted as the imposed displacement field. We find

U(1)i =
(
1+ a2

6
∇2

)
u(0)j (r)

∣∣∣∣
r=ri

, (88)

�
(1)
i = 1

2
∇ × u(0)j (r)

∣∣∣∣
r=ri

, (89)

S(1)i = −4π (1− ν)μa3

4− 5ν
(
1+ a2

10
∇2

)(
1

1− 2ν Î∇ · u(0)j (r)

+ 5

2

{∇u(0)j (r)+
[∇u(0)j (r)

]T })∣∣∣∣
r=ri

. (90)

Analogously to Eq. (68), the displacement field resulting from
the rigidity-based resistance of sphere i against deformation is
given by

u(1)i (r) = − (
S(1)i · ∇) · G(r − ri). (91)

Since the stresslet S(1)i here yields an expression of order r−3
ij ,

u(1)i (rj ) is already of order r−5
ij . Therefore, we can stop our

iteration at this point, confining ourselves to contributions up to
(including) order r−4

ij . Again, all corresponding expressions for
sphere j are obtained by simply switching all indices i ↔ j .
To derive explicit analytical expressions, we insert Eqs. (85)

and (87) into Eqs. (88) and (89). We obtain

U(1)i = − 1

8πμr2ij
r̂ij × Tj , (92)

�
(1)
i = 1

16πμr3ij
[3r̂ij r̂ij − Î ] · Tj , (93)

as illustrated in Fig. 4. From Eq. (92), we see that an additional
translation of sphere i only occurs, if r̂ij is not (anti)parallel to
Tj . Moreover, sphere i is translated in the same direction as the
nearest surface point of sphere j . The sense of the additional
rotation �

(1)
i that only vanishes at infinite particle separation

rij depends on the relative angular configuration according
to Eq. (93). For instance, if r̂ij ‖ Tj , i.e., both spheres and
the imposed torque Tj align along a common axis, then the
zero-order rotation �

(0)
j and the additional rotation �

(1)
i have

the same sense. For r̂ij ⊥ Tj , i.e., the imposed torque Tj is
perpendicular to the plane that contains both spheres, these
two rotations have opposite sense.
Overall, the total translation of sphere i to our desired order

is given byU(1)i in Eq. (92). The total rotation up to (including)
order r−4

ij equals�
(0)
i + �

(1)
i ; see Eqs. (84) and (93). Therefore,

with the same reasoning as in Sec. VIII A, we can read off the
components of the corresponding displaceability matricesMtr

ij

and rotateability matricesMrr
ij from Eqs. (84), (92), and (93) as

Mtr
i=j = 0, (94)

Mtr
i �=j = −M r

0
r̂ij

r2ij
× , (95)

Mrr
i=j = M r

0
1

a3
Î, (96)

Mrr
i �=j = M r

0
1

2r3ij
[3r̂ij r̂ij − Î], (97)
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where M r
0 was introduced in Eq. (83). See also the

illustration in Fig. 4. Based on the linearity of the governing
Navier-Cauchy equations in Eq. (1), we may sum up the
influence of imposed or induced forces in Sec. VIII A and the
ones just derived for imposed or induced torques and combine
them in an overall matrix equation as given in Eq. (60).

IX. THREE-BODY INTERACTIONS

Following the same strategy as in Sec. VIII, we now derive
similar expressions for the three-body interactions. In this way,
we determine the components of the matrixMtt(3)

i �=j in Eq. (79).
Again, we adapt the procedure for low-Reynolds-number
hydrodynamics presented in Ref. [52].
For this purpose, we now consider three rigid spherical

inclusions of radius a, located at positions ri , rj , and rk .
They are acted on by externally imposed or induced forces Fi ,
Fj , and Fk , respectively. To zeroth order, i.e., not taking into

account matrix-mediated interactions between the inclusions,
sphere i creates a displacement field as given by Eq. (63).
Corresponding expressions follow for spheres j and k by
switching indices i → j and i → k, respectively.
In analogy to Eq. (65), we can calculate from the first Faxén

law Eq. (40) the translation that sphere i acquires within the
linearly superimposed displacement fields u(0)j (r) and u(0)k (r).

Using u(0)j (r)+ u(0)k (r) as the imposed field on the right-hand
side of Eq. (40), we obtain

U(1)i =
(
1+ a2

6
∇2

)[
u(0)j (r)+ u(0)k (r)

]∣∣∣∣
r=ri

. (98)

Corresponding expressions follow for spheres j and k by
switching in this equation i ↔ j and i ↔ k, respectively.
Again, sphere i resists any deformation that would be

implied by the matrix deformations described by u(0)j (r) and

u(0)k (r). The resulting stresslet that sphere i thus exerts onto
the matrix can be calculated in analogy to Eq. (67) and using
Eq. (58),

S(1)i = −4π (1− ν)μa3

4− 5ν
(
1+ a2

10
∇2

)[
1

1− 2ν Î∇ · [u(0)j (r)+u(0)k (r)
]

+ 5

2

(∇[u(0)j (r)+u(0)k (r)
]+{∇[u(0)j (r)+u(0)k (r)

]}T )]∣∣∣∣
r=ri

. (99)

It produces the displacement field

u(1)i (r) = − (
S(1)i · ∇) · G(r − ri), (100)

see Eq. (23), due to the resistance of sphere i to deformations implied by u(0)j (r) and u(0)k (r). Once more, expressions for spheres
j and k are obtained from this equation by replacing i → j and i → k, respectively.
Next, we use the sum of the resulting displacement fields u(1)j (r)+ u(1)k (r) as the imposed field on the right-hand side of Faxén’s

first law, Eq. (40). In this way, we can calculate the additional translation U(2)i that sphere i experiences in these rigidity-induced
displacement fields,

U(2)i =
(
1+ a2

6
∇2

)[
u(1)j (r)+ u(1)k (r)

]∣∣∣∣
r=ri

. (101)

At first glance, this expression is of identical shape as Eq. (70) for the two-sphere interaction. The only difference seems to be
that here we take into account the two contributions from the two spheres j and k, instead of only one. Indeed, we here recover
all contributions that we have already identified in Sec. VIII A. However, there is now more to that.
For simplicity, let us for the moment only consider in Eq. (101) the effect of the displacement field u(1)k (r), where the latter

according to Eq. (100) is given by

u(1)k (r) = − (
S(1)k · ∇) · G(r − rk). (102)

Here, S(1)k is the stresslet that sphere k exerts onto the surrounding matrix due to its rigidity. It arises as sphere k opposes to
deformations implied by u(0)i (r) and u(0)j (r). The latter displacement fields directly result from the external forces Fi and Fj acting
onto spheres i and j , respectively. These two forces lead to two different scenarios.
The first scenario has already been described in Sec. VIII A. A force Fi acting onto sphere i generates the displacement field

u(0)i (r). This field is reflected by sphere k. Then it acts back onto sphere i in the form of u(1)k (r), contributing to U(2)i in Eq. (101).
We abbreviate this chain of matrix-mediated interactions as i ← k ← i.
In the second scenario, a force Fj acting onto a third sphere j induces a displacement field u(0)j (r). This field is then reflected by

sphere k due to its rigidity in the form of u(1)k (r). However, in the present three-body configuration, the reflected field also affects
sphere i and contributes to its displacement U(2)i in Eq. (101). This three-body interaction thus defines a further contribution in
addition to the pairwise interactions derived in Sec. VIII A.We abbreviate the corresponding chain ofmatrix-mediated interactions
as i ← k ← j .
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Altogether, we find two such three-body interactions contributing to U(2)i in Eq. (101) in addition to the pairwise interactions.
The first one works as described, i ← k ← j , and we denote it as U(2)ikj . The second one works via i ← j ← k, which would

then be termed U(2)ijk . Explicit calculation yields

U(2)ikj =−
(
1+ a2

6
∇2

)(
S(1)k · ∇) · G(r − rk)

∣∣∣∣
r=ri

= 1

64π (1− ν)(4− 5ν)μ
a3

r2ikr
2
jk

(−10(1− 2ν){(1− 2ν)[(r̂ik · r̂jk)Î + r̂jk r̂ik]

+ 3(r̂ik · r̂jk)(r̂ik r̂ik + r̂jk r̂jk)− r̂ik r̂jk} + 3[7− 4ν − 15(r̂ik · r̂jk)
2]r̂ik r̂jk) · Fj + O[(rik,rjk)

−5]. (103)

U(2)ijk is readily obtained from this expression by switching indices j ↔ k.
In summary, to our desired order, i.e., up to (including) quartic order in the inverse particle separation distances, two- and

three-body interactions contribute to U(2)i . The latter follow from Eq. (103) for i �= j . For i = j , Eq. (103) exactly reproduces the
two-body contributions listed already in Eq. (75). Again due to the linearity of the governing elasticity equations Eq. (1), we may
simply add the additional contributions U(2)ijk and U(2)ikj to our previous explicit analytical expression for the overall displacement
of sphere i.
Superimposing all contributions that result for the coupled displacements and rotations ofN identical spherical inclusions, we

return to our formalism in terms of the displaceability and rotateability matrices in Eq. (60). We can now read off from Eq. (103)
the additional three-body contribution Mtt(3)

i �=j to the displaceability matrix in Eq. (79) [14],

Mtt(3)
i �=j = M t

0
3

8(4− 5ν)(5− 6ν)
N∑

k=1
k �= i,j

(
a

rik

)2(
a

rjk

)2
(−10(1− 2ν){(1− 2ν)[(r̂ik · r̂jk)Î + r̂jk r̂ik]

+ 3(r̂ik · r̂jk)(r̂ik r̂ik + r̂jk r̂jk)− r̂ik r̂jk} + 3[7− 4ν − 15(r̂ik · r̂jk)
2]r̂ik r̂jk), (104)

whereM t
0 was introduced in Eq. (80). This expression is exact up to (including) order (rik,rjk)−4.

It can readily be seen that rotations caused by three-body interactions are of higher order than (rik,rjk)−4. The additional
rotation�

(2)
i of sphere i due to the reflected displacement fields u(1)j (r) and u(1)k (r) follows from Faxén’s second law Eq. (54) and

reads

�
(2)
i = 1

2
∇ × [

u(1)j (r)+ u(1)k (r)
]∣∣

r=ri
. (105)

This expression is already of order (rik,rjk)−5, because both
u(1)j (ri) and u(1)k (ri) are of order (rik,rjk)−4, which is obtained
by combiningEqs. (13), (63), (99), (100), and (102). Therefore,
to our desired order, we find

Mrt(3)
i �=j = 0. (106)

Similarly, we do not obtain any three-body contribution
to the remaining displaceability and rotateability matrices
up to our desired order. Reconsidering the above derivation
of Mtt(3)

i �=j , we find that solely the lowest-order parts of all
contributing expressions finally enter Eq. (104). When torques
are externally imposed on or induced between the individual
spheres, already the resulting zero-order displacement fields
are one order higher in the inverse separation distances. This
follows by comparing Eqs. (84)–(87) to the case of imposed
or induced forces, see Eqs. (13), (63), and (64). Therefore, the
reflected displacement fields due to the rigidity of the spherical
inclusions, see Eqs. (99) and (100), already yield expressions
of order (rik,rjk)−5. Thus, we find to our desired order

Mtr(3)
i �=j = 0, (107)

Mrr(3)
i �=j = 0. (108)

These results complete our derivation of the displaceability
and rotateability matrices up to (including) inverse quartic

order in the separation distances between the individual
spherical particles.
Naturally, for larger deformations, the more the nonlinear-

ities in the elastic response of the embedding matrix become
significant, the less exact our approach will become. In non-
linearly elastic situations, if an exact quantitative evaluation is
necessary, simulations are still mandatory. Yet, for a first and
quick qualitative scan in the absence of bifurcational behavior,
our analytical expressions will in many cases be helpful.
Moreover, our approach may still be valuable to significantly
speed up corresponding simulations. For this purpose, the
configuration calculated from our linearly elastic formalism
could be used as an initialization in iterative simulation
methods.

X. SOME ILLUSTRATIVE EXAMPLES

Confining ourselves to the sole effect of induced forces
between the embedded particles, we have in a previous
work determined the resulting coupled translations [14]. For
this purpose, we considered an example system of identical
spherical paramagnetic particles that were embedded in a
planar configuration into a soft elastic polymeric gel matrix.
Then, an externalmagnetic fieldwas applied and rotatedwithin
the configurational plane. In this way, magnetic interactions
between the particles were induced and tuned by rotating the

053002-14



FORCES AND TORQUES ON RIGID INCLUSIONS IN AN . . . PHYSICAL REVIEW E 95, 053002 (2017)

field. The elevated amplitude of the magnetic field caused a
close-to-saturation magnetization of the particles. Thus, the
induced magnetic dipole moments m = mm̂ (m = |m|) of
the particles could be considered identical and aligned along
the external magnetic field. Then, the magnetic dipole–dipole
force on a particle i is given by [74]

Fi = − 3μ0m2

4π

N∑
j =1
j �= i

5r̂ij (m̂ · r̂ij )2 − r̂ij − 2m̂(m̂ · r̂ij )

r4ij
,

(109)
where μ0 is the magnetic vacuum permeability and N the
total number of particles. We then evaluated the coupled
translations resulting for the magnetized particles in response
to the induced magnetic forces. Based on the magnetic nature
of the particles and their size, this pure focus on induced forces
and resulting translations was justified.
Here, we consider the effect of additional torques applied

to the particles. The translationally and rotationally coupled
situation is analyzed. We demonstrate for some minimal ex-
ample configurations how the additional torques and rotational
couplings modify our previous results.
For illustration, we assume the following idealized model

situation. Again, we consider identical spherical magnetizable
particles with no-slip surface conditions. As before, a strong
external magnetic field shall be applied that saturates the
magnetization of the particles and always keeps their mag-
netic moments oriented along the external field. However,
the particles shall now be magnetically anisotropic. More
precisely, we assume uniaxial magnetic anisotropy. That is,
an energetic penalty arises whenever the nonpolar axis n̂i of
magnetic anisotropy of each particle i is not aligned parallel to
the direction m̂ = B̂ of the external magnetic field. Assuming
particles of this kind and following the idealized Stoner-
Wohlfarth model [75], the energetic penalty for misalignment
is expressed as

ESW = KVS[1− (n̂i · B̂)2]. (110)

In general, VS denotes the volume of each particle and the
anisotropy parameter K quantifies the strength of its uniaxial
magnetic anisotropy. Its magnitude may vary significantly
with the magnetic nature of the particles and their shape.
One factor is the type of internal lattice structure in the
particles that may cause the magnetic anisotropy [76,77].
Moreover, an elongated, e.g., rod-like shape of the particles
may likewise cause magnetic uniaxiality [11,13]. Since here
we are considering spherical particles, our uniaxiality must
be due to a magnetocrystalline anisotropy axis. Below, we
set the rescaled relative strengths of magnetic interactions
m2μ0/μa6 = 22.5× 103 and 24.5× 103 for the considered
two- and three-particle systems, respectively, corresponding
to the experimental parameters in our previous study [14].
Moreover, we then choose a comparatively low value for the
rescaled anisotropy parameter of K/μ = 3 [78]. It leads to an
effect that shows up in an illustrative way when comparing
to corresponding results in the absence of imposed torques.
Using Eq. (110), we can calculate the imposed torque on each
particle i resulting from its orientation with respect to the

FIG. 5. (a) Schematic illustration of the modified initial spatial
configuration of a two-particle system that had been investigated
before in Ref. [14] in the absence of induced torques. The double ar-
rows indicate the initial orientations of additionalmagnetic anisotropy
axes. ϑ here is defined as the angle between the unit vector x̂ and
the direction B̂ of an external magnetic field (right-handed system).
This external magnetic field is initially applied parallel to x̂ and then
rotated counterclockwise in the xy plane until ϑ = 180◦. Magnetic
forces arise between the particles as given by Eq. (109) due to induced
magnetic momentsm ‖ B. (b) Plot of the z components of the rotation
vectors �i of the particles as functions of ϑ . In this configuration,
all rotations occur in the xy plane, therefore all other components of
�i vanish. The continuous line represents the rotations of particles
1 and 2, if induced torques are set to zero. The dashed and dotted
lines show the results when the torques are included as they result
from Eqs. (110) and (111). The maximum magnitudes of rotation
occur around ϑ = 45◦ and 135◦, respectively, as expected from the
underlying Stoner-Wohlfarth model, with opposite signs beyond 90◦

because the anisotropy axes do not have any preferred direction. (c)
The y components of the displacement vectorsUi without (continuous
lines) and with (dashed) inclusion of the torques. The curves are
labeled by the particle numbers; see (a). In this setup, the torques
amplify the magnitudes of the displacements due to their sense of
rotation.

external magnetic field,

Ti = 2KVS(n̂i · B̂) n̂i × B̂. (111)

Since the forces Fi change with altering interparticle distance
(during the process of particle displacement), we had imple-
mented an iterative loop to calculate the magnetic forces in
the final state [14]. Now, we have extended the approach to
include the torques Ti . Their magnitude finally decreases with
progressing rotation of the anisotropy axis towards the external
magnetic field.
In Figs. 5–9 we display our results for two- and three-

particle example configurations. The initial spatial arrange-
ments, distances, and material parameters are the same as
in Ref. [14]. In each of Figs. 5–9, a schematic sketch (a)
indicates the initial orientation of the magnetic anisotropy
axes. The external magnetic field is applied in the indicated
xy plane (right-handed coordinate system) and rotated in a
counterclockwise way, starting from B̂ · x̂ = 1. The plots (b)
in each figure illustrate the resulting rotations �i as functions
of the angle ϑ = arccos(B̂ · x̂) of the magnetic field direction.
Moreover, the plots (c) show the displacements Ui in distinct
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FIG. 6. The same as in Fig. 5, except for the orientations of the
anisotropy axes. They are now initially oriented along ŷ; see (a).
Therefore, the particles are rotated inverselywhen compared to Fig. 5,
as shown by the dashed and dotted lines in (b). Overall, this now leads
to an attenuation of the displacements in ŷ direction (c).

directions. Continuous lines represent the results without
imposed torques, whereas dashed and/or dotted lines represent
the results for the torques Ti included. For distinction, the
curves are labeled by the corresponding particle numbers.
Several different initial configurations of the anisotropy

axes were considered in Figs. 5–9. All plotted quantities
were calculated via Eqs. (60), (78)–(83), (94)–(97), (104),
and (109)–(111). The resulting calculated rotations and their
amplifying or dampening effects on the particle displacements
can be qualitatively comprehended with the help of simple
geometric considerations. For example, in Fig. 5(a) the
anisotropy axes of both particles 1 and 2 are initially oriented
along the x̂ axis. From Eq. (111) it then follows that the
torques T1 and T2 (and thus the directly induced rotations)
are maximized around ϑ = 45◦; see Fig. 5(b). Both particles
are therefore rotated in counterclockwise direction, thereby
creating displacement fields in the surrounding matrix (see
also Fig. 4). As a result of their matrix-mediated interactions,
particle 2 is pushed into the ŷ direction due to the torque
T1, whereas particle 1 is pushed into the (−ŷ) direction due
to T2, see the dashed lines in comparison to the continuous
lines in Fig. 5(c) around ϑ = 45◦. Overall, this leads to an
amplification of the particle displacements |Ui,y | for all ϑ .
In contrast to that, in Fig. 6 the anisotropy axes are initially

aligned along the ŷ axis, i.e., perpendicular to the anisotropy
axes in Fig. 5. All other parameters remain unchanged. As a
consequence, the sense of rotation of both particles is inverted
with respect to the previous configuration, see Figs. 5(b)
and 6(b). This leads to a mutual damping of the magnitudes
|Ui,y |, see Fig. 6(c), in opposition to the previous situation in
Fig. 5(c).
Another example is depicted in Fig. 7, where the anisotropy

axis n̂2 of particle 2 remains the same as in Fig. 5. However,
n̂1 now points out of the xy plane, along the ẑ axis. That is,
n̂1 is always oriented perpendicular to the external magnetic
field B̂. From Eq. (111) we find that T1 = 0 for all ϑ . Thus,
there is no directly induced rotation of particle 1 that would
modify the overall displacement of particle 2. In contrast to
that, the displacement U1,y in Fig. 7(c) remains identical to
U1,y in Fig. 5(c).

FIG. 7. The same as in Fig. 5, but now the anisotropy axis of
particle 1 is along ẑ; see (a). (b) Then, the induced torque T1 vanishes
for all ϑ and particle 1 is only weakly rotated due to the rotation–
translation coupling in Eq. (82). Therefore, we do not observe a
change in the displacementsU2,y in (c) when the torques are included.

In Fig. 8(a), the spatial configuration of the three-particle
system studied in Ref. [14] is illustrated. Additional anisotropy
axes are chosen such that they are rotated by 120◦ with respect
to each other, all of them confined to the xy plane. This is
reflected by the resulting phase-shift in the torque-induced
rotations, see Fig. 8(b). The displacement Ui of each particle

FIG. 8. Similar to Fig. 5 but now for a three-particle system. (a)
Schematic illustration of the initial spatial configuration of the three-
particle system in Ref. [14] and the orientations of the added initial
anisotropy axes. Here, the anisotropy axes n̂i are rotated with respect
to each other by 120◦, with n̂3 along ŷ. (b) Plot of the z components of
the rotation vectors �i . Again, in this configuration all rotations take
place in the xy plane. The individual curves are phase-shifted with
respect to each other according to the initial shifted orientations of
the anisotropy axes. (c) Projection of the displacements Ui onto the
interparticle unit vector r̂jk set by the respective other particles [with
(i,j,k) ∈ {(1,2,3),(2,3,1),(3,1,2)}]. The induced torques amplify the
magnitudes of displacements in the directions r̂jk (dashed lines). Due
to small deviations of the configuration from a perfect equilateral
triangle [14], the curves are not simply phase-shifted with respect to
each other.
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FIG. 9. The same as in Fig. 8, but now the anisotropy axes
are oriented “randomly” in all three dimensions as indicated in
(a). (b) Here, components of the rotations �i are plotted as
	1,z,	2,z,[(	3,x)2 + (	3,y)2]1/2. Since initially n̂3 is almost oriented
along ẑ, the torques T3 and therefore the rotations �3 are relatively
small compared to those of particles 1 and 2, which have a larger
projection onto the xy plane. Moreover, the symmetry of Fig. 8(b)
does not exist anymore. (c) Due to the additional torques, the
projections Ui · r̂jk for particles 1 and 2 are reduced (dashed lines),
whereas the result for particle 3 remains qualitatively the same as in
Fig. 8. Here, additional displacements out of the xy plane occur (not
shown).

i in Fig. 8(c) is projected onto the interparticle unit vector
r̂jk between the two other particles j and k, i.e., (i,j,k) ∈
{(1,2,3),(2,3,1),(3,1,2)}. An amplification is observed for
all of these displacement components. This can be directly
inferred from the sense of the imposed rotation of each particle,
see also Fig. 4 and Eq. (92).
Finally, a random initial configuration of the anisotropy

axes was chosen in Fig. 9(a) for the same spatial configuration
as in Fig. 8(a). In view of the initial setup, we plot in Fig. 9(b)
the components 	1,z, 	2,z, and [(	3,x)2 + (	3,y)2]1/2 of the
rotation vectors. Since n̂3 is nearly oriented along the ẑ axis,
the torque T3 and therefore the overall rotation �3 is mostly
relatively weak when compared to T1 and T2; see Fig. 9(b).
The orientations of the anisotropy axes of particles 1 and 2
can roughly be compared with those of particles 2 and 1
in Fig. 8(a), respectively, i.e., their roles are approximately
inverted. This leads to a mutual reduction of the depicted
displacement amplitudes of particles 1 and 2 in Fig. 9(c)
when the torques are included. In contrast to that, the depicted
displacement of particle 3 remains qualitatively the same as in
Fig. 9(c).
In addition to that, we have tested how the modifications

above would affect the induced changes in interparticle
distances that had been plotted in Ref. [14]. However, the
relative deviations from the situations without torques were
only of the order ∼10−2.

XI. CONCLUSIONS AND OUTLOOK

In summary, we have presented the derivation of explicit
analytical expressions to calculate from given forces and

torques acting on rigid spherical inclusions in an elastic
matrix their resulting coupled displacements and rotations.
The surrounding elastic matrix is assumed to be an infinitely
extended, homogeneous, isotropic elastic medium with stick
boundary conditions on the inclusion surfaces. Matrix defor-
mations are induced by the forces and torques acting on the
inclusions. These deformations lead to mutual, long-ranged,
matrix-mediated interactions between the rigid inclusions.
The role of such matrix-mediated interactions is implicitly
contained in our resulting analytical expressions. Technically,
to perform the derivation, the well-known approach in terms
of Faxén’s theorems and the method of reflections is adapted
from the field of low-Reynolds-number hydrodynamics [52].
Throughout, we have included the case of compressible
elastic environments. We summarize our results in terms of
displaceability and rotateability matrices that are functions
of the given inclusion configuration only. These matrices
express how given forces and torques on the inclusions lead to
their coupled displacements and rotations. In the considered
static, linearly elastic case of nontouching inclusions, these
expressions replace the need for finite-element simulations
that explicitly calculate the matrix deformations between the
inclusions.
As a next step, more complex inclusion geometries can

be addressed. Of particular interest are elongated particles
that can more directly be exposed to external torques and
are also used for microrheological purposes [11–13]. The-
oretically, it should be possible to derive expressions for
ellipsoidal inclusions [51,65], but due to the significantly
more complicated structure of such expressions they may
already be of limited use for practical applications. Long
thin rods could be approximated by long chains of spheres
[52]. Recent experiments observed a buckling of chains
of spherical magnetic particles in soft gel matrices under
perpendicular magnetic fields [79]. Possibly, such behavior
could likewise be interpreted more quantitatively in terms of
our formalism. As in low-Reynolds-number hydrodynamics,
more complex inclusion objects should become accessible
by the raspberry model, i.e., collections of rigidly connected
identical spheres that as an entity represent more complex
objects [80–82]. Moreover, similarly to low-Reynolds-number
hydrodynamics, the effect of system boundaries should be
analyzed [83,84]. Possibly, also hydrodynamic methods to
describe more concentrated colloidal suspensions [85,86]
could be transferred to the case of elastic environments.
Our results will be helpful in the quantitative interpretation

of microrheological experiments [6–13], as already indicated
in our previous work [14]. In principle, they should apply
to different sorts of elastic matrix environments, as long as
the material appears sufficiently homogeneous and isotropic
down to the scale of the probe particle. For example, a related
picture applies to the modeling of active forces generated
by and within biological cells, where particularly the effect
of active force dipoles is investigated [87,88]. Another field
of application is to further characterize the tunability of
composite materials by externally imposed fields [15,27–33].
For example, the change in the linear elastic moduli of
magnetorheological elastomers when applying an external
magnetic field could be addressed using our formalism. The
method could be combined with statistical descriptions that
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use a probability distribution to characterize the arrangement
of the inclusions in an elastic matrix [89].
One strength is that larger numbers of inclusions can

be handled than with simulation methods that explicitly
resolve the matrix environment [23,34,46–49], at least to the
accuracy given by the expansion in the particle distance and
as long as linear elasticity theory is sufficient to describe the
resulting matrix deformations to the desired degree of accu-
racy. Naturally, concerning the latter point, nonlinear elastic
effects arising in real materials with increasing amplitude of
deformation will first quantitatively affect the results and may,
for large degrees of deformation, even lead to qualitative
differences in the behavior. Extending such formalisms as
the present one to the nonlinear regime is a nontrivial future
task and incomparably more involved. Nevertheless, as we
have demonstrated, in many cases numerical and experimental

results are still well reproduced. Thus, considering the explicit
form of our resulting anlytical expressions and their efficient
numerical evaluation, our approach will still be beneficial for
analyzing the behavior of real materials. For example, it allows
to quickly qualitatively scan the response of a multitude of
different possible particle distributions and internal structural
realizations in elastic composites. In this way, our approach
shall help to quantitatively support the development of tunable
composite materials designed for a specific requested purpose.
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APPENDIX A

Equation (12) can be solved by Fourier forth and back transformation. The former replaces the nabla operator ∇ by ik and
the Dirac delta function δ(r − r0) by 1 in Eq. (12),

λkpimk̂mk̂pk2G̃ij (k) = δjk, (A1)

with the unit vector k̂ = k/k in k-space. Inserting

λkpimk̂mk̂p = μ

[
δik + λ + μ

μ
k̂i k̂k

]
(A2)

via Eq. (7), we can solve for the Green’s function in Fourier space:

G̃(k) = 1

μk2

[
Î − λ + μ

λ + 2μ k̂k̂
]

= 1

μk2

[
Î − 1

2(1− ν)
k̂k̂
]
, (A3)

with Î the identity matrix and k̂k̂ a dyadic product. Next, we transform back to real space,

G(r) = 1

(2π )3

∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ

∫ ∞

0
dkk2eik·rG̃(k) = 1

(2π )3μ

∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ

∫ ∞

0
dk eikr cosϑ

[
Î − 1

2(1− ν)
k̂k̂
]
.

(A4)

The Dirac delta function is linked to its Fourier transform via∫ ∞

−∞
dk eikx =

∫ ∞

−∞
dk[cos(kx)+ i sin(kx)] = 2πδ(x). (A5)

Keeping this in mind, the k-integral in Eq. (A4) is reformulated:∫ ∞

0
dk eikr cosϑ =

∫ ∞

0
dk cos(kr cosϑ)+

∫ ∞

0
dk i sin(kr cosϑ) = 1

2

∫ ∞

−∞
dk cos(kr cosϑ)+

∫ ∞

0
dk i sin(kr cosϑ)

= 1

2

∫ ∞

−∞
dk[cos(kr cosϑ)+ i sin(kr cosϑ)]− 1

2

∫ 0

−∞
dk i sin(kr cosϑ)

= πδ(r cosϑ)− 1

2

∫ 0

−∞
dk i sin(kr cosϑ). (A6)

We find that the second term in the last line of the previous expression does not contribute. Upon inserting it into Eq. (A4), it
leads to ∫ 2π

0
dϕ

∫ π

0
dϑ sinϑ

∫ 0

−∞
dk sin(kr cosϑ)

[
Î − 1

2(1− ν)
k̂k̂
]
. (A7)
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Substituting u = cosϑ and −du = sinϑ dϑ , it can easily be seen that the first term in the square brackets leads to an odd
function of u and therefore vanishes upon integration over du from u = 1 to −1. Calculating for the second term in the square
brackets all matrix components k̂i k̂j explicitly by inserting the components of k̂, the second term is found to vanish as well.
Thus, for the remainder of Eq. (A4), we obtain

G(r) = 1

8π2μr

∫ 2π

0
dϕ

∫ 1

−1
du δ(u)

[
Î − 1

2(1− ν)
k̂k̂
]

= 1

8π2μr

∫ 2π

0
dϕ

[
Î − 1

2(1− ν)
k̂k̂
]∣∣∣∣

k̂·r=0
, (A8)

with the condition k̂ ⊥ r arising from the delta function. Thus, k̂ can be expressed as

k̂ = α̂ cosϕ + β̂ sinϕ, (A9)

with the constant unit vectors α̂ and β̂, α̂ ⊥ β̂, and α̂ ⊥ r ⊥ β̂. Then, α̂, β̂, and r̂ = r/r form an orthonormal basis, and we can
write

α̂α̂ + β̂β̂ + r̂r̂ = Î. (A10)

Inserting Eq. (A9) into Eq. (A8), we evaluate the remaining integral over dϕ and obtain

G(r) = 1

8πμr

[
2Î − 1

2(1− ν)
(α̂α̂ + β̂β̂)

]
= 1

8πμr

[
2Î − 1

2(1− ν)
(Î − r̂r̂)

]
. (A11)

Finally, combining the prefactors of Î leads to the expression for the elastic Green’s function in Eq. (13).

APPENDIX B

Our goal is to evaluate the integral

1

2

∫ ∞

−∞
dk
sin(ka)

ka
eikk̂·r (B1)

appearing in Eq. (46). For this purpose, we rewrite the expression by substituting z = ka:

1

2

∫ ∞

−∞
dk
sin(ka)

ka
eikk̂·r = 1

4ia

∫ ∞

−∞
dz
1

z

[
eiz(1+ k̂·r

a
) − eiz(−1+ k̂·r

a
)
]
. (B2)

The evaluation can be accomplished in a straightforward way by using contour integration in the complex z plane. We start by
considering only the first term on the right-hand side and define the function

f (z) = 1

z
eiz(1+ k̂·r

a
). (B3)

Depending on the value of k̂ · r/a, the integration path is amended on a case-by-case basis over a semicircle of infinite radius
R in either the upper or the lower complex z half-plane. Starting with k̂ · r/a > −1, the integration path is closed in the upper
z half-plane. According to Cauchy’s integral theorem, in our case all closed integration paths that do not contain the origin are
zero, therefore

0 =
∮

dz f (z) = lim
R→∞

[ ∫ −ε

−R

dz f (z)−
∫
Cε

dz f (z)+
∫ R

ε

dz f (z)+
∫
CR

dz f (z)

]
, (B4)

with Cε = {εeiϕ | 0 � ϕ � π} and CR = {Reiϑ | 0 � ϑ � π}. The integral over the path CR vanishes for R → ∞. Combining
these relations with the principal value,

P
∫
(. . .) = lim

ε↘0

[ ∫ −ε

−∞
(. . .)+

∫ ∞

ε

(. . .)

]
, (B5)

we obtain in this first case

P
∫ ∞

−∞
dz f (z) = lim

ε↘0
i

∫ π

0
dϕ eiεeiϕ (1+ k̂·r

a
) = iπ. (B6)

Similarly, for k̂ · r/a < −1 we amend the integration path over the semicircle of infinite radius in the lower z half-plane and
obtain for the principal value

P
∫ ∞

−∞
dz f (z) = − lim

ε↘0
i

∫ 2π

π

dϕ eiεeiϕ (1+ k̂·r
a
) = − iπ. (B7)
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An analogous procedure for the second term on the right-hand side of Eq. (B2) yields

P
∫ ∞

−∞
dz
1

z
eiz(−1+ k̂·r

a
) =

{
iπ, for k̂·r

a
> 1,

−iπ, for k̂·r
a

< 1.
(B8)

Inserting Eqs. (B6)–(B8) into Eq. (B2) finally leads to [52]

1

2

∫ ∞

−∞
dk
sin(ka)

ka
eikk̂·r =

{
π
2a , for − 1 < k̂·r

a
< 1,

0, otherwise.
(B9)
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Reversible magnetomechanical collapse: virtual
touching and detachment of rigid inclusions
in a soft elastic matrix†

Mate Puljiz,a Shilin Huang,b Karl A. Kalina,c Johannes Nowak,d Stefan Odenbach,d

Markus Kästner,c Günter K. Auernhammer‡b and Andreas M. Menzel *a

Soft elastic composite materials containing particulate rigid inclusions in a soft elastic matrix are

candidates for developing soft actuators or tunable damping devices. The possibility to reversibly drive

the rigid inclusions within such a composite together to a close-to-touching state by an external

stimulus would offer important benefits. Then, a significant tuning of the mechanical properties could be

achieved due to the resulting mechanical hardening. For a long time, it has been argued whether a

virtual touching of the embedded magnetic particles with subsequent detachment can actually be

observed in real materials, and if so, whether the process is reversible. Here, we present experimental

results that demonstrate this phenomenon in reality. Our system consists of two paramagnetic nickel

particles embedded at finite initial distance in a soft elastic polymeric gel matrix. Magnetization in an

external magnetic field tunes the magnetic attraction between the particles and drives the process.

We quantify our experimental results by different theoretical tools, i.e., explicit analytical calculations in

the framework of linear elasticity theory, a projection onto simplified dipole-spring models, as well as

detailed finite-element simulations. From these different approaches, we conclude that in our case the

cycle of virtual touching and detachment shows hysteretic behavior due to the mutual magnetization

between the paramagnetic particles. Our results are important for the design and construction of

reversibly tunable mechanical damping devices. Moreover, our projection on dipole-spring models

allows the formal connection of our description to various related systems, e.g., magnetosome filaments

in magnetotactic bacteria.

1 Introduction

The fabrication of soft elastic composite materials that consist
of rigid particles embedded in a soft elastic environment serves
to develop soft actuators,1–7 tunable dampers and vibration
absorbers,8–11 components of tunable anisotropic electric con-
ductivity,12 or devices for energy storage.13–18 For instance,
actuation is achieved by exposing composites that contain para- or

ferromagnetic particles to an external magnetic field gradient.2,19,20

In this way, forces are directly imposed onto the embedded
particles that are drawn into the field gradient.21 Indirectly,
magnetic or electric moments can be induced on the particles
by external magnetic or electric fields. Then, overall distortions
result from the induced mutual particle interactions.22–30

At the same time, inducing, altering, or reorienting magnetic
moments by external magnetic fields affects the overall mecha-
nical properties of the materials due to the modified particle
interactions. As a consequence, the static and dynamic elastic
moduli are tuned,2,24,27,31–45 and also the nonlinear stress–strain
behavior can be qualitatively affected.46,47

In both situations of actuator applications and tuning the
mechanical properties it is often desired to achieve a maximum
of the externally induced relative displacements between the
particles. For inclusions that approach each other during such
displacements, the maximum is reached when the particles
come into close contact and virtually touch each other. In such
a situation, the overall material can significantly harden as the
steric interactions between the virtually touching particles now
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come into effect and contribute to the overall mechanical
stiffness.44,48 Moreover, as the magnetic interactions strongly
increase with reduced distance between the particles, such an
approach of the particles can show hysteretic behavior when
compared to a subsequent detachment.43,46,47,49–54 For instance,
ref. 51 and 52 address such hysteretic effects by theoretical and
simulation approaches in detail for a two-particle model set-up.

Experimentally, observing and tracking externally induced
rearrangements of magnetic particles within elastic environ-
ments is standard. For example, this concerns active mag-
netic microrheology,55–61 or, in fact, quantifying the structural
rearrangement within samples of magnetic elastic composite
materials.28,62–64 Recently, in different samples of initially
rather isotropically distributed and well separated inclusions,
the formation of short chain-like arrangements has been observed
experimentally.34,50,64,65 Still, in the final state of the induced
textures in ref. 64, there are gaps between the individual particles.
If the particles could be driven basically into contact by further
increasing the magnetic interactions between them, a strong
increase of the elastic moduli may be observed as indicated
above. To really observe such an approach in actual experiments
has so far been difficult to conceive. On the one hand, elastic
polymeric systems are typically rather incompressible. Yet, the
material between the particles would need to be significantly
compressed or be squeezed out laterally. On the other hand,
the elastic matrix could be ruptured by the particle approach to
allow a touching of the particles. However, in this case, the
desired reversibility of the whole process, to allow repeated
usage in practice, is questioned.

In spite of these legitimate concerns, we have found that the
described process is possible and actually observable in experi-
ments. We have embedded two magnetizable nickel particles
into a soft elastic polymeric gel matrix. Stepwise increasing the
magnetic attraction between the two particles by an external
magnetic field, the particles approached until they finally
snapped together into close contact. Switching off the magnetic
attraction, the particles returned to their initial state. The process
appeared reversible, and we were able to start this cycle repeatedly
from the beginning.

Reducedminimal models that come into question to describe
such situations address rigid spherical magnetic particles of
finite size. In suchmodels, some elastic contribution, representing
the embedding elastic environment, tries to maintain a preset
distance between the two particles. This can be achieved by an
elastic spring-like interaction,18,42,44,48,50,66–69 more refined
contributions such as elastic bars and rods,51,52 or discretized
volume elements describing the elastic matrix.30,46,47,70,71 Apart
from that, the elastic restoring forces resulting from deformations
of the surrounding elastic environment can also be calculated
analytically in the framework of linear elasticity theory.72–78 Often,
the magnetic moments on the particles are represented by mag-
netic dipoles of permanent magnitude.22,37,39,42,44,46–48,66,67,79–82

Addressing magnetization of dipolar particles by a non-
saturating external magnetic field is possible by including
‘‘loop corrections’’, i.e., an iterative numerical loop that calcu-
lates the additional contributions to the dipole moments

resulting from the mutually induced magnetization between
the magnetic particles.18,83 More refined approaches resolve the
finite size of the particles and take into account spatial variations of
the induced magnetization across the particle interior.30,39,52,70,84

Below, we first report our experimental observations in
Section 2. We then continue by an analytical description of
the situation in terms of linear elasticity theory in Section 3.
Despite the strong relative distortions, we find that the experi-
mental results can be described reasonably well by the linearly
elastic approach. An effective local elastic modulus for the
elastic matrix can be extracted in this way. This allows to
map the whole situation to simplified dipole-spring approaches
in Section 4. Moreover, we predict significant hysteretic behavior
on this basis. After that, we present results from significantly
more detailed finite-element (FE) simulations in Section 5. They
include nonlinear contributions to the response of the elastic
matrix and resolve the magnetization across the inside of the
magnetic particles. Particularly, they support the analytical
approaches in the still separated state, but imply quantitative
corrections close to touching of the particles and for the
predicted hysteretic behavior. Several conclusions are given in
Section 6.

2 Experimental observations

Our experimental system was generated in a way similar to the
one presented in ref. 76. Two nickel particles (purchased from
Alfa Aesar� 100� 325 mesh, purity 99.8%) were embedded in the
center plane of a polydimethylsiloxane-based soft gel28 enclosed
in a plastic mold (diameter B24 mm, height B6 mm). For this
purpose, we first filled the sample volume only to half height
with the reaction solution and allowed for a first cross-linking
(for about 0.5 h). We then placed the particles by hand on top of
the surface of this first gel layer with a center-to-center distance
of initially r12 = (302.4 � 1.9) mm as defined in Fig. 1(a). There-
after, we filled in the top half layer of the gel. To guarantee a
good connection between the two gel layers, a cross-linking for at
least 7 days at room temperature was allowed. Our samples were
prepared close to the percolation threshold of the resulting
cross-linked polymer network to achieve a pronounced mecha-
nical softness. As a consequence, small uncontrollable perturba-
tions and fluctuations during preparation lead to measurable
deviations in the elastic moduli for different samples. Therefore,
our elastic modulus cannot be determined by a measurement on
a rheometer, because this requires the preparation of a separate
sample in a different compartment. The nickel particles had a
diameter of 170 � 10 mm. Fig. 2 shows the corresponding
magnetization curve determined by a vibrating sample magneto-
meter, Lake Shore 7407. It indicates a small remanence of
B7.5 kA m�1 and a low coercive field of B2.4 mT. In our
experiment, an external magnetic field was applied along the
center-to-center vector of the two particles, see Fig. 1(a). This
field was generated by a Halbach array of four magnets.
To allow for an adjustable magnitude of the field, the magnets
in the array could be moved radially in discrete steps from
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distances of B2 cm to B10 cm from the center of the sample.
In this way, the magnetic field strength could be varied in a
range from 0 mT to B100 mT. For each used position of

the magnets, the magnetic field at the sample center was
measured by a Lake Shore Model 425 Gaussmeter with a
transverse probe.28

In the experiment, the magnetic field was increased in
6 steps from 0 mT to 60.8 mT. After applying the next possible
field strength B65.1 mT, the particles reversibly snapped into
close contact. To determine the center-to-center distance of the
particles, their positions were imaged using a CCD camera
(MATRIX VISION mvBlueCOUGAR-S) equipped with a zoom
macro lens (Navitar Zoom 7000). The particle tracker module
of ImageJ was employed.85 Due to little variations of the image
quality, the uncertainty in the measured particle positions
varied slightly during the experiment, but was always below 4%
of the particle diameter.

As a result, we observed that the center-to-center distance
with increasing magnetic field smoothly decreased up to a field
strength B60.8 mT. Fig. 3 contains the measured experimental
data points and Fig. 1(b–i) shows the corresponding snapshots.
Applying fields of strength B65.1 mT, we observed that the
particles snap into close contact, see Fig. 1(i). However, this
approach is reversible. Switching off the external magnetic
field, the particles separated again and took their initial posi-
tion, at least within the experimental errors. We also repeated
the procedure several times, reversibly observing the snapping
at the same magnetic field strength.

An interesting question is whether there is some hysteresis
involved in the approach of the particles. Does the separation
of the particles, when continuously reducing the strength of
the magnetic field, occur at lower field magnitudes than when
increasing the magnetic field?

Unfortunately, our experimental set-up does not allow to
clarify this question. To alter the field strength, we have to take
away the magnets, readjust their holders, and then reinsert the
magnets at the new distance from the center of the sample. The
reinsertion always corresponds to an increase of the magnetic
field amplitude, with an intermediate state of vanishing field.
It is therefore up to theoretical approaches and simulations to
clarify the question on possible hysteresis in our present set-up
when decreasing the magnetic field. The general possibility of
either hysteretic or continuous behavior has been theoretically
outlined and investigated before.48,51,52

3 Description by linear elasticity theory

Consequently, we now compare our experimental results in
Fig. 3 with different theoretical approaches. In this way, we can
extract from the theories the effective local elastic shear modulus
m that, as described above, could not be measured by a rheometer.
Using this result, we will be able to address the question of
underlying hysteresis.

We start by a description in the framework of linear elasti-
city theory.86 The advantage of this approach is that, assuming
a homogeneous, isotropic, and infinitely extended elastic
matrix, the situation of two displaced spheres can, in principle,
be solved analytically to any desired accuracy. On the downside,

Fig. 1 (a) Schematic illustration of our set-up. Two magnetic nickel parti-
cles are embedded in an elastic polymer matrix, separated by a distance r12.
An external magnetic field Bext is applied along the center-to-center vector
of the two particles. (b–i) Experimental snapshots for increasing the mag-
netic field strength as indicated by the given magnitudes. At high enough
field strengths (i) the particles come into close contact. This snapping
together is reversible, that is, switching off the field, the particles separate
again (b).

Fig. 2 Bulk magnetization curveM(Bext) for the investigated nickel particles.
The experimentally measured data curve (bright blue dots) reveals minor
remnant magnetization, where a small hysteresis between increasing and
decreasing external magnetic field can be identified (see also the inset). A fit
of the data points using a Langevin function, see eqn (1), is performed (purple
line). Linearizing the function, a slope of the curve at Bext = 0 T is found as
indicated by the orange dash-dotted line. It leads to a value for the relative
permeability of mr = 14.10 � 0.58. In the inset, the applied field strengths in
our two-particle experiment are marked by the vertical lines.
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of course, only a linearly elastic response of the matrix is
described. In Fig. 3, the experimental data points before the
collapse are confined to relative distance changes t15%
between the particle centers, in favor of a linearly elastic char-
acterization of the investigated soft elastic gel matrix. Moreover,
we consider the elastic matrix to be incompressible and in the
theory take the well-defined limit n - 1/2 for the Poisson ratio.
This, likewise, represents a reasonable approximation for the
system under investigation.

Our two idealized rigid spherical inclusions, both of
radius a and labeled by 1 and 2, are initially centered at
positions r1 and r2, respectively. If an external magnetic field
Hext is applied from outside, the spheres are magnetized. To
present our results, we use the quantity Bext = m0H

ext, where m0 is
the magnetic vacuum permeability. For an infinitely extended
bulk material, the corresponding magnetization curve is given
by Fig. 2.

Assuming magnetic isotropy within our particles, we
describe their internal magnetization M by the Langevin
function

M ¼ Ms coth a Hin
�� ��� �� 1

a Hinj j
� �

Hin

Hinj j; (1)

where Ms and Hin denote the magnitude of the saturation
magnetization and the magnetic field inside the material,
respectively. The parameter a determines the linearized rela-
tion between M and Hin for weak magnetic fields, given by
M = aMsHin/3. Considering only one spherical particle exposed
to a homogeneous external magnetic field Hext, also M and
Hin are homogeneous. Because of the spherical geometry, a
demagnetization effect with a demagnetization factor of 1/3 occurs,
so that21

Hin ¼ Hext � 1

3
M: (2)

Fitting eqn (1) to the experimental data given in Fig. 2, we find the
valuesMs = (3.333� 0.290)� 105 A m�1 and a = (1.179� 0.057)�
10�4 m A�1, respectively.

The experimentally measured data points displayed in Fig. 3
before the collapse were obtained at Bext t 61 mT, and the
collapse of the particles occurred below 65.1 mT. Fig. 2 demon-
strates that the overall magnetization curve of the material in
this regime can be well approximated by a straight line. We may
thus treat the problem within the framework of linear magne-
tization behavior by21

M = (mr � 1)Hin, (3)

with mr the relative magnetic permeability.21 A linearization of
eqn (1) for small values of Hin leads to mr = aMs/3 + 1, so that in
our case mr = 14.10 � 0.58.

Combining eqn (2) and (3) yields

Hin ¼ 3

mr þ 2
Hext; M ¼ 3

mr � 1

mr þ 2
Hext: (4)

Outside the spherical particle, the induced magnetic field
resulting from the internal magnetization coincides with the
one of a magnetic point dipole21

m ¼ 4p
3
a3M; (5)

located at the center of the sphere.
Since the magnetic particles in the states corresponding to

the experimental data points before the collapse are well sepa-
rated from each other, we maintain this picture also in our
situation of two particles. That is, we approximate the magnetic
moment of each particle by a point dipole mi, i = 1, 2, located at
the particle center. However, the role ofHext in eqn (4) is now not
only played by the external magnetic field itself. Also the field
induced by the other dipole contributes at this point. We denote
the magnetic field induced at position r by a dipole mj located
at rj as

H
dip
j ðrÞ ¼ 1

4p
3ðr� rjÞmj � ðr� rjÞ

jr� rj j5 � mj

jr� rj j3
� �

: (6)

Fig. 3 Interparticle center-to-center distance r12 as a function of the
magnitude Bext of the externally applied magnetic field. Open squares
with error bars mark the experimentally measured distances as a function
of the applied magnetic field. The solid (red) curve is obtained analytically
from linear elasticity theory and a magnetic dipole model as described
in Section 3. Fitting to the experimental data points, we extract a shear
modulus of m = 226.0 � 2.8 Pa. The shaded area corresponds to the
uncertainty in the theoretical result because of the uncertainties in the fit
and the experimental input parameters.76 A collapse of the separated state
is predicted at Bext E 61.7 mT (r12/a = 2 corresponds to a touching state
where the particle surfaces are in contact). For decreasing magnetic field
strength, the theory indicates pronounced hysteresis and a detachment at
Bext E 38.3 mT. We have mapped the theory to simplified dipole-spring
models as described in Section 4, represented by the dashed line. The
curve shows good agreement with the results obtained from linear
elasticity theory. Apart from that, we performed additional finite-element
simulations as detailed in Section 5 and marked by the light blue data
points. They include effects of nonlinear elasticity of the polymeric matrix,
nonlinear magnetization, and spatially resolved magnetization within the
spherical particles. To good approximation, they confirm the field magni-
tude at which the particles approach. As may have been expected, they
reveal an even more pronounced hysteresis relatively to the linearly elastic
theory. Additionally, we have included simulation results for linearized
magnetization behavior as marked by the (orange) triangles. Moreover, as
shown by the inset, the simulations indicate that a finite gap may remain
between the particles in the collapsed state.
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Together, from eqn (4)–(6), we obtain

mi ¼ 4pa3
mr � 1

mr þ 2
Hext þH

dip
j ðriÞ

h i
: (7)

Obviously, eqn (6) and (7) need to be solved by iteration.18,83

After convergence, the final magnetic moments are obtained for
a certain particle configuration. For the dipole configurations
resulting for the experimental data points in the separated state
in Fig. 3 we have estimated Hdip/Hext t 6%, which supports our
approximation in terms of magnetic dipoles.

Next, we need to determine the magnetic forces resulting
from the mutual interaction between the two induced magnetic
moments. For our set-up and in the regime of linear magneti-
zation, a corresponding expression for the change in overall
magnetic energy when including the magnetic particles into the
external magnetic field21 reads

Wmag ¼ �1

2
m1 þm2ð Þ � Bext: (8)

Here, m1 and m2 are the magnetic moments obtained from the
above iteration and contain the mutual magnetization between
the two particles. The magnetic forces on the two particles then
are obtained as

Fi = �rriW
mag (9)

for i = 1, 2. Our set-up is axially symmetric with respect to the
center-to-center direction r̂ij = rij/rij, with rij = ri � rj and rij = |rij|.
Moreover, it is symmetric with respect to the center position
between the two particles that we choose as the origin. Then,
we may discretize eqn (9) as

Fi ¼ �r̂i lim
D&0

Wmagj riþDð Þ̂ri �Wmagj ri�Dð Þ̂ri
2D

; (10)

where iA {1,2}, ri = rir̂i with ri = |ri|, and r̂1 = �r̂2 = r̂12.
In this expression, the mi for each modification in position D
need to be reevaluated by the iterative procedure described
above.

As the magnetic forces act on the particulate inclusions, the
particles are pressed against the surrounding elastic matrix.
This leads to matrix deformations and, in turn, to elastic
restoring forces on the particles that limit their induced dis-
placements. Moreover, the final displacements Ui of the parti-
cles are elastically coupled to each other through the induced
matrix deformations. If one of the particles distorts the environ-
ment, the other particle, likewise embedded in the elastic
matrix, is displaced together with the induced matrix reloca-
tion, and vice versa. Recently, we have derived analytical
expressions to quantify these coupled particle displacements
using no-slip boundary conditions for the matrix on the sur-
faces of the particles.76,77 The resulting displacements for our
two-particle system in response to the magnetic forces Fi are
given by

Ui ¼ Mii � Fi þMiaj � Fj ; (11)

where (i,j) A {(1,2),(2,1)}, while Mii and Miaj are called dis-

placeability matrices76,77 (we mark tensors of second rank and

mathematical matrices by an underscore). Here, the corres-
ponding expressions read

Mii ¼ M0 Î� 15

4

a

r
ð0Þ
ij

 !4

r̂
ð0Þ
ij r̂

ð0Þ
ij

2
4

3
5; (12)

Miaj ¼ M0
3

4

a

r
ð0Þ
ij

Îþ r̂
ð0Þ
ij r̂

ð0Þ
ij

	 

þ 2

a

r
ð0Þ
ij

 !2
1

3
Î� r̂

ð0Þ
ij r̂

ð0Þ
ij

� �2
4

3
5;
(13)

withM0 = 1/6pma, Î the unity matrix, r̂(0)ij = r(0)ij /r
(0)
ij , r

(0)
ij = |r(0)ij |, and

the distance vector r(0)ij = r(0)i � r(0)j referring to the initial state at
Hext = 0. These displaceability matrices essentially contain all
matrix-mediated elastic interactions between the two spheres
mediated by the embedding elastic environment up to (including)
order (a/r(0)ij )

4.
Naturally, the stronger the magnetic forces Fi on the particles,

the larger the particle displacements, see eqn (11). Simultaneously,
the magnetic forces Fi significantly increase with decreasing
particle separation. Therefore, another iteration loop is necessary
to calculate the final configuration at each magnitude of the
external magnetic field.76–78

Solving eqn (6)–(13) numerically by iteration as described,
we can for a given external magnetic field calculate the resulting
interparticle distance. Using a chi-square fit87 to the experi-
mental data points, we extracted in this way a local shear
modulus m = (226.0 � 2.8) Pa of the elastic matrix and an initial
interparticle distance r(0)12 = (303.0 � 0.1) mm within the experi-
mental error. The resulting theoretical fitting curve for the
interparticle distance r12/a as a function of the magnitude Bext

of the external magnetic field is shown in Fig. 3.
At an external magnetic field strength of Bext E 61.7 mT, the

linear elastic theory predicts a steep drop. Beyond this point,
the magnetic forces become larger than the linearly elastic
restoring forces. Since the magnetic forces strongly increase
with decreasing interparticle distance, they can grow signifi-
cantly more strongly than the restoring elastic forces. There-
fore, the separated state collapses. The particles are driven
towards each other, until their steric volume exclusion hinders
penetration when their surfaces virtually get into contact and
basically touch each other. Experimentally, the field strength
at which the collapse occurs could be located within the
interval Bext A [60.8 mT, 65.1 mT], in line with the prediction
of our theory.

Finally, we address the question of hysteresis within our
linearly elastic description. In our situation this would imply
that, starting from the collapsed state and subsequently reduc-
ing the magnitude of the field, the particles separate at a lower
magnetic field strength than the one at which they collapsed.
Such a behavior is conceivable in our picture. The magnitude of
the restoring elastic forces in the collapsed state is independent
of the strength of the external magnetic field. However, the
magnitude of the mutual magnetic interaction forces strongly
depends on the actual distance between the two particles.
It scales approximately with the inverse fourth power of the
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particle separation. Therefore, a stronger external magnetic
field is necessary to overcome the elastic barrier when the
particles are well separated than to maintain the collapsed
state when the particles have already approached.

To calculate the value of Bext at which the separation occurs,
we thus first determined the magnitude of the restoring
elastic force in the collapsed state. This was performed by
stepwise increasing an external force that drives the particles
together, the magnitude of which not depending on the particle
separation. The force at which we reach r12/a E 2 identifies
the strength of the elastic restoring forces. Then, artificially
keeping the particles in the collapsed situation, we decreased
Bext from a very high value until the attractive magnetic forces
just balanced the previously determined elastic restoring
forces. From this procedure, we obtained Bext E 38.3 mT for
the separation of the particles. This detachment is indicated
in Fig. 3 and, in this simplified picture, signals pronounced
hysteresis.

The interparticle distance at which the collapse starts is not
too far away from the last experimental data point, which is
still well represented by the theory. Moreover, its magnitude of
r12/a E 3 is still significantly larger than in the collapsed state
(r12/a E 2). Therefore, we expect that our theory, despite its
simplifications, particularly the dipolar picture and the restric-
tion to linear elasticity, still captures the point of collapse
reasonably well. The situation is different in the collapsed
state, when the surfaces of the particles virtually touch each
other. In this state, the material between the particles is
strongly distorted, and nonlinear elastic effects certainly play
a central role. Moreover, the magnetization across the interior
of the particles becomes inhomogeneous, which challenges our
reduced description in terms of magnetic dipoles. Therefore,
in the collapsed state a nonlinear approach and a spatially
resolved treatment of the magnetization are necessary to
describe the behavior quantitatively correctly, see Section 5.
Before we address this issue, however, we demonstrate that a
mapping onto significantly reduced models is possible in the
present set-up.

4 Mapping onto reduced dipole-spring
models

To the given order in the inverse particle separation and within the
framework of linear elasticity theory, our approach in Section 3 is
exact concerning the treatment of the elastic polymer matrix. In
previous approaches, simplified spring-like interactions had been
introduced to model the matrix elasticity.18,42,44,48,50,66–69 We now
argue that in the present highly symmetric and simplified set-up
the reduction to effective harmonic spring-like interactions is exact
within the framework of linear elasticity theory. Moreover, the
spring constants can be calculated as a function of the given
parameters.

We consider the interparticle unit vector r̂21 = �r̂12 to point
along Bext. Then, by the symmetry of the set-up, all particle
displacements, magnetic moments, and magnetic forces are

oriented parallel to r̂218B
ext. Thus, we project all vector quan-

tities by scalar multiplication onto this axis of symmetry. This
leads to a scalar formulation of the theory in Section 3 in terms
of Ui = Ui�r̂21, mi = mi�r̂21, and Fi = Fi�r̂21, i A {1,2}. In this way,
eqn (11) reduces to

U1
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1
CCCCCCCA

�
F1

F2

 !
:

(14)

4.1 Three-spring model

Illustratively, the matrix term in eqn (14) suggests to introduce
three harmonic springs to model the elastic situation, see
Fig. 4(a). On the one hand, its diagonal contains the zeroth-
order contributions in the particle separation that arise already
when one single particle is displaced against the surrounding
elastic matrix. The corresponding counteracting force by the
surrounding elastic matrix makes us introduce two harmonic
springs of constant K0 that anchor each particle to its ground
state position. The coefficient K0 further contains a fourth-order
correction that results from the displacement field induced
in the matrix by one particle when this field is ‘‘reflected’’
by the rigidity of the other particle.76,77 On the other hand,
the off-diagonal entries describe the displacements of the
particles due to the forces exerted on the respective other
particle. These particle interactions are mediated by the elastic
matrix. Consequently, we introduce another harmonic spring

Fig. 4 Two reduced spring models that exploit the symmetry of the
set-up (all vector quantities characterizing and affecting the particles are
projected onto the symmetry axis along Bext). (a) Three-spring model. Each
particle is anchored by one harmonic spring of spring constant K0 to its
ground-state position (red). Moreover, it is connected to the other particle
by one additional harmonic spring of spring constant K12 (blue). (b) One-
spring model. The three-spring approach can further be reduced to a one-
spring model involving only one effective harmonic spring of spring constant
K connecting the two particles.
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of constant K12 coupling the two particles to each other.
Together, this spring-model leads to the elastic potential
energy

W el ¼ 1

2
K0 U1

2 þU2
2

� �þ 1

2
K12 U1 �U2ð Þ2: (15)

From this expression, the elastic restoring forces Feli , i A {1,2},
follow as

F el
i ¼ � @

@Ui
W el: (16)

To calculate the spring constants K0 and K12 from our linear
elasticity theory, we invert eqn (14) and obtain, up to (including)
order (a/r(0)ij ),
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(17)

This equation lists the forces F1 and F2 that need to be imposed
onto the particles to achieve their displacements U1 and U2.
Corresponding expressions for the forces as functions of the
displacements have been derived directly, i.e., without the
intermediate inversion, already in ref. 74 and agree with ours
to the given order.

In a stationary state, the forces F1 and F2 in eqn (17) imposed
on the particles need to be equal in magnitude but oppositely
oriented to the forces Fel1 and Fel2 exerted onto the particles by
the elastic matrix, respectively. Comparing eqn (16) and (17), we
read off the spring constants

K0 ¼ 1

M0
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a
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K12 ¼ 1
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2
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3
5: (19)

Overall, in this dipole-spring model, the total energy char-
acterizing a certain configuration is given by

Wtot = Wmag + Wel. (20)

Here, the magnetic contribution follows from eqn (8) and is
calculated in the same way as described in Section 3.

To find the state of our system for a given Bext, we minimize
Wtot using a simple relaxational method.87 In this way, we can
stepwise increase and decrease Bext, inserting as an initial
condition after each modification of Bext the previously relaxed
state of the system. As a result, we naturally obtain the

hysteresis loop in the particle separation, depicted in Fig. 3
by the dashed line. There, the deviations from the solid line
obtained from the calculation using linear elasticity theory in
Section 3 can be traced back to our matrix inversion from
eqn (14) to eqn (17). As the overall formalism, this inversion is
exact only to (including) order (a/r(0)ij )

4. If, instead, we invert
eqn (16), i A {1,2}, and obtain the spring constants by compar-
ison with eqn (14), the two curves collapse. Thus the deviations
in Fig. 3 between the direct calculation using continuum elasti-
city theory as in Section 3 and our dipole-spring reduction
represent higher-order effects.

4.2 One-spring model

Further exploiting the symmetry of our geometry, it is straight-
forward to additionally reduce eqn (15) to the situation of one
effective spring of constant K connecting the two particles, see
Fig. 4(b). Mirror symmetry of the set-up dictates the relations
U1 = �U2, F1 = �F2, as well as m1 = m2 = m for the magnetic
moments. Defining U = U1 = �U2, we obtain

W el ¼ 1

2
KU2 (21)

with the effective spring constant K = 2K0 + 4K12 and the elastic
forces on the two particles given by 8qWel/2qU. Naturally, we
obtain the same hysteresis loop in Fig. 3 after rewriting the
theory into the effective one-spring model in eqn (21). To the
given order, it contains the same information as the linearly
elastic approach in Section 3, therefore representing an effec-
tive reduction of the theory.

Using the total energy of the systemWtot in eqn (20) together
with the elastic energy of the effective one-spring model in
eqn (21), we can readily illustrate the origin of the hysteretic
behavior. In spirit, this follows Landau’s theory of phase transi-
tions88 and has previously been discussed for the two-sphere
problem including nonlinear elasticity51,52 and for an infinitely
extended chain of magnetic particles under linear elasticity.48

Here it is directly connected to our experimental results via the
derivation above. Fig. 5 shows the corresponding shape of the
total energy for increasing amplitude of the external magnetic
field.

At Bext = 0 mT, the overall energy features one minimum at a
distance r12/a = r(0)12/a E 3.57 as displayed in Fig. 5(a). Starting
from Bext \ 37.9 mT, see Fig. 5(b), a second minimum begins to
develop at the distance of close approach r12/a E 2. That is, the
slope of the overall energy Wtot(r12) becomes zero at r12/a E 2
for Bext E 37.9 mT. Afterwards, with increasing amplitude Bext

of the external field and as depicted in Fig. 5(c), the point of
Wtot(r12) = 0 shifts to larger interparticle distances r12. In this
regime, two local minima in the overall energy coexist over
a broader range of external field amplitudes. Only around
Bext \ 60.9 mT, the initial minimum has vanished and the
one remaining minimum at r12/a E 2 represents the collapsed
state, see Fig. 5(d).

If thermal fluctuations and external perturbations are neg-
ligible, the energetic barrier separating the two minima in the
range of magnetic fields 37.9 mT t Bext t 60.9 mT cannot be
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crossed. Then, the state of the system in this regime depends
on its history. If the external field is increased and the particles
had previously been well separated, the system is trapped in
the minimum at r12/a \ 3. Only at the threshold amplitude
Bext E 60.9 mT, where this minimum vanishes, see Fig. 5(d), the
particles collapse to the state of r12/a E 2. Vice versa, upon then
decreasing the field amplitude, the particles only re-separate at
the lower threshold amplitude Bext E 37.8 mT. There, the
minimum at r12/a E 2 has vanished, see Fig. 5(b). In this
way, the hysteresis loop in Fig. 3 can be directly read off from
the energy curves in Fig. 5.

What we have achieved above was a reduction of the linearly
elastic description to a simple Hookean relation in terms of
one single linearly elastic spring. The elastic theory impli-
citly resolves the spatially inhomogeneous distortions sur-
rounding the magnetic particles, the effect of which is in this
way quantitatively contained in the resulting spring con-
stant K. For many practical applications, the decisive question
is, which magnetic field amplitude needs to be applied to
realize the collapse. This concerns the mentioned tunable
dampers8–11 as well as the search for large magnetostrictive
effects to exploit them in soft actuators.1–7 As Fig. 3 demon-
strates, the linearized theory is sufficient to predict this
threshold magnetic field strength quantitatively correctly.
Conversely, the separation of the particles in such applica-
tions will most likely be realized simply by switching off the
magnetic field.

5 Results from finite-element
simulations

To test our theoretical conclusions and the consequences of
our approximations, we performed additional FE simulations,
adjusted to the present experimental set-up. They are based on a
coupled magneto-mechanical continuum formulation including
nonlinear contributions to the magnetic and elastic properties
of the magnetic particles and elastic matrix, respectively.70,89

In addition to the theoretical approaches above, the magnetic
field is spatially resolved also within the two particles. In parts,
methods developed in an earlier theory and simulation study
on the hysteretic two-particle problem are adopted.51,52 The
simulations resolve in more detail the backward path of the
hysteresis loop in Fig. 3 of our experimental set-up, which is out
of quantitative reach for the linearized theory. From a funda-
mental material-science point of view concerned with the non-
linear elastic properties of the elastic polymer matrix under
strong deformation, this backward path is indeed the more
interesting one. Possibly, our experimental set-up can in the
farther future with higher resolution provide additional infor-
mation on the corresponding material properties.

5.1 Continuum approach

We consider a piece of the material described above with
density distribution r(r), containing the two spherical particles.
In the stationary case, the magnetic part of the corresponding
coupled continuum formulation is given by the two Maxwell
equations

r�Bin(r) = 0 with n̂(r)�1Bin(r)U = 0 on Sd (22)

and

r � Hin(r) = 0 with n̂(r) � 1Hin(r)U = 0 on Sd. (23)

In these expressions, Bin(r) andHin(r) denote the local magnetic
flux density and magnetic field inside the material, respectively,
both in the magnetic particles and in the elastic matrix.21 They
are connected via Bin(r) = m0(H

in(r) + M(r)), with M(r) describing
the magnetization field. Sd denotes a surface of discontinuity,
here the interface between the particles and the elastic matrix.
The brackets 1�U quantify the jump of the contained quantity
across Sd, while n̂(r) corresponds to the unit normal vector
on Sd.

The magnetic fields cause magnetic coupling terms that enter
the mechanical part of the problem, e.g., the magnetic body force
density fmag(r) = (rBin(r))T�M(r), with the superscript T marking
the transpose. Since fmag(r) can be expressed as the divergence
of the magnetic stress tensor smagðrÞ, the balance of linear
momentum is given by the relation70,89,90

r � stotðrÞ ¼ 0 with n̂ðrÞ � stotðrÞ� �� � ¼ 0 on Sd: (24)

Here, the total stress tensor stotðrÞ is defined as the sum
of the mechanical and the magnetic stress tensors, stotðrÞ ¼
sðrÞ þ smagðrÞ. A detailed discussion of the complete magneto-
mechanical field equations is given, e.g., in ref. 90 and 91.

Fig. 5 Total energy Wtot for the one-spring dipole-spring model as a
function of the interparticle distance r12 for increasing amplitude Bext of the
external magnetic field. (a) At Bext = 0 T,Wtot =Wel is given by eqn (21), with
one minimum at r12

(0)/a E 3.57. (b) Starting from the threshold field Bext E
37.9 mT, a second local minimum starts to develop at r12/a E 2, after the
slope of the curve Wtot(r12) has passed through zero at r12/a E 2. (c) With
increasing Bext, the minimum at r12/a E 2 deepens, whereas the minimum
for r12/a \ 3 flattens out. (d) Finally, for Bext \ 60.9 mT, only the minimum
at r12/a E 2 remains. In the absence of thermal fluctuations and external
perturbations, the system cannot cross the energetic barrier between the
two local minima at intermediate field strengths 37.9 mTt Bext t 60.9 mT.
Only when one of the two minima vanishes at one of the two threshold
strengths, a jump to the other minimum can occur, which explains the
hysteresis loop in Fig. 3.
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The constitutive behavior of the considered particle-matrix sys-
tem can be described by a specific free-energy density (per mass)C,
split into a magnetic and a mechanical part30,70,84,89,92

CðFðrÞ; HinðrÞÞ ¼ CmagðHinðrÞÞ þCelðFðrÞÞ (25)

In this expression, FðrÞ denotes the deformation gradient tensor.
Hence, the constitutive relations

MðrÞ ¼ �rðrÞ
m0

@Cmag HinðrÞ� �
@HinðrÞ (26)

and

sðrÞ ¼ rðrÞFðrÞ � @C
el FðrÞð Þ

@FTðrÞ � m0
2

MðrÞ �MðrÞð ÞÎ (27)

can be found from the evaluation of the second law of thermo-
dynamics, see, e.g., ref. 91.

Eqn (1) already defines a relation between the magnetization
and the magnetic field within the particles, while M(r) = 0
within the elastic matrix, so that we choose Cmag in eqn (26)
accordingly. We specify the mechanical part Cel in both compo-
nents, the particles and the elastic matrix, following an elastic
Neo–Hookean model.70,89 Accordingly, smagðrÞ is expressed as

stotðrÞ ¼ 1

JðrÞ mðrÞ bðrÞ � Î
	 


þ mðrÞnðrÞ
1� 2nðrÞ JðrÞð Þ2�1

	 

Î

� �

þ BinðrÞHinðrÞ � m0
2

HinðrÞ �HinðrÞ� �
Î; (28)

where bðrÞ is the left Cauchy–Green deformation tensor,
JðrÞ ¼ detFðrÞ denotes the Jacobi determinant of the deforma-
tion gradient tensor, m(r) is the local elastic shear modulus, and
n(r) is the local Poisson ratio. Within the elastic matrix, the
material is characterized by the shear modulus m determined in
Section 3 and the Poisson ratio n = 0.49, corresponding to a
nearly incompressible material. Inside the magnetizable nickel
particles, we set the parameters of elasticity to m = 80.77 GPa
and n = 0.3 (which is of the order of magnitude of the values
listed, e.g., in ref. 93). The exact numerical values for the nickel
particles are not significant because of their much higher
mechanical stiffness relatively to the polymeric matrix.

5.2 Numerical solution

In our FE simulations, we address a cuboid region of the system
with fixed boundary and dimensions 22a � 10a � 10a. Exploiting
the symmetries of the set-up, only one eighth of this region needs
to be evaluated explicitly with appropriate boundary conditions.
Major challenges result from the underlying bifurcation scenario
and the extremely high degrees of deformation of the elastic
matrix between the two particles in the virtual touching state. As a
consequence, it was not possible to solve the problem in a direct
way using the fully coupled FE solution scheme.70,89 Therefore, we
separately calculated the magnitudes Fmag of the attractive mag-
netic force and the magnitude Fel of the counteracting mechanical
restoring force on each particle for decreasing particle distances.
In parts, methods outlined in ref. 51 were utilized when
evaluating Fel. Afterwards, we identified the states in which
these two forces balance each other.

First, for each evaluated magnitude of the external magnetic
flux density Bext, we determined Fmag for 22 different particle
distances 2.001 r r12/a r 3.565. For this purpose, in total 22
different FE meshes were generated. Fmag is calculated for each
distance by fixing the center positions of the particles. We then
determine the necessary mechanical force to keep the particle
positions fixed within a coupled magneto-mechanical FE simu-
lation.30,70,89 The magnitude Bext of the external magnetic field
is increased in 100 increments from 0 mT to 65 mT. The
obtained values for Fmag for each considered magnitude Bext

are then interpolated between the evaluated distances r12 using
cubic splines. Example curves for Bext = 13 mT, 39 mT, and
65 mT are shown in Fig. 6.

Second, to determine Fel, the centers of the non-magnetized
particles are moved towards each other within another FE
simulation that addresses this purely mechanical problem of
nonlinear elasticity (see the ESI† for the illustration of three
different states of deformation). Yet, it is not possible to directly
simulate interparticle distances arbitrarily close to r12/a E 2
because of the strong distortion of the FE meshes. Consequently,
we are not able to directly evaluate the strong local displacement
and deformation fields within the elastic matrix in the state of
virtual touching. Therefore, a reduced fitting function of suffi-
cient physical significance needs to be employed to extrapolate
Fel in this regime. We chose the elastic rod model introduced in
ref. 51 as a workaround for this purpose. It replaces the action
of the elastic matrix by five nonlinearly elastic rods of lengths
l0,i and radii r0,i in the undeformed configuration (i = 1,. . .,5).

Fig. 6 FE simulation results for the magnitudes Fmag and Fel of the attractive
magnetic and counteracting elastic restoring forces, respectively, at various
separation distances r12 between the two particles (the values r12/a� 2 on the
abscissa label the separations of the two closest surface points of the two
spheres). Values for Fmag are interpolated using cubic splines, and example
curves for magnetic field amplitudes Bext = 13 mT, 39 mT, and 65 mT are
shown. For comparison, the corresponding forces calculated as in Sections 3
and 4 by the simplified magnetic dipole approach are included as gray lines to
demonstrate the agreement in the separated state. Values for the mechanical
restoring force Fel due to the deformation of the elastic matrix are fitted by an
elastic rod model according to eqn (29). Actual distances between the two
particles for a given value of Bext are identified from the intersections between
the curves for the two different forces.
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This rod model allows to calculate Fel analytically by quantita-
tively adjusting it to corresponding FE simulations in the
accessible regime and extrapolating the simulation results down
to r12/a - 2, as outlined in ref. 51. As a benefit, the constitutive
elastic behavior of the rods can be described by the same
Neo-Hookean material model that we use for the elastic matrix
in the FE simulation. In this framework, Fel is given by

Fel ¼
X5
i¼1

pr0;i2 m ll;i � 1

ll;i

� �
þ b

2
ll;ilt;i4 � 1

ll;i

� �� �

with lt;i ¼ � m
bll;i2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b2ll;i4
þ 2m
bll;i2

þ 1

ll;i2

s
:

(29)

Here, ll,i = li/l0,i and lt,i = ri/r0,i denote the deformation ratios of
the rods in the directions parallel (longitudinal) and perpendi-
cular (transversal) to the rod axes, respectively, with li and ri the
corresponding rod dimensions in the deformed state. Moreover,
b = 2mn/(1� 2n), where m is the elastic shear modulus and n is the
Poisson ratio of the elastic polymer matrix. This effective rod
model is fitted to the FE-simulation results using the radii r0,i as
fit parameters, with the corresponding values listed in Table 1.

Fig. 6 displays the results for Fel from the FE simulation
together with the fitted rod model according to eqn (29). With a
maximum error of 3.3%, the model shows acceptable deviations
from the FE simulation. Furthermore, for r12/a - 2 it describes
the qualitatively expected behavior of a diverging restoring force
in response to the high local distortion. Experimental results
providing quantitative information on the behavior of the pre-
sent gel matrix under the very extreme local deformations are
not yet available.

Finally, we determine the resulting particle center-to-center
distances r12 for each considered magnitude Bext of the external
magnetic field as a function of the history of the system. To this
end, we identify the intersections between the curves for Fmag(r12)
(spline curves) and Fel(r12) (rod model), see Fig. 6. As the figure
also illustrates, there are three qualitatively different situations:
(i) only one intersection between Fel(r12) and Fmag(r12) close to
r12/a E 3.5, see the case of Bext = 13 mT; (ii) three intersections,
one located at r12/a E 3.5, one at r12/a E 2, and one between
these values, see the case of Bext = 39 mT; and (iii) only one
intersection close to r12/a E 2, see the case of Bext = 65 mT.

Increasing the magnetic field from 0 mT, our evaluations
demonstrate that there are states of balanced magnetic and
mechanical forces and significant particle separation for center-
to-center distances down to r12/a E 2.95. Initially, this corre-
sponds to the intersection described by case (i), then to the
first intersection of case (ii). The intermediate intersection of

case (ii) corresponds to a metastable saddle configuration in
the overall energy, see Fig. 5(c). At an external field strength of
Bext E 63.05 mT, the simulation predicts a switch from case (ii) to
case (iii). Thus the state of separated particles collapses towards a
state of virtual touching of r12/aE 2. Subsequently decreasing Bext,
the system switches from case (iii) back to case (ii). However, the
particles now remain in the state of virtual touching of r12/a E 2
corresponding to the third intersection of case (ii). Only at
BextE 30.55mT, the set-up switches back to case (i), which implies
that the particles re-separate. Consequently, the FE simulations
confirm the scenario of hysteresis predicted qualitatively by the
theoretical analysis in Sections 3 and 4. The corresponding
simulation results are shown by the filled circles in Fig. 3.

More precisely, the FE simulations provide the following
additional and more quantitative insights. As Fig. 3 and the
comparison for the magnetic forces in Fig. 6 demonstrate, the
theoretical analyses in Sections 3 and 4 describe the system in
the non-collapsed state quantitatively correctly in a broad initial
interval of increasing amplitude of the magnetic field. Thus, for
well-separated spherical particles in an elastic matrix, the
theoretical schemes developed in ref. 73, 74 and 76–78 provide
an efficient and accurate characterization.

The point of collapse is predicted correctly by the analytical
theory to good approximation. Our FE simulations indicate a
slightly elevated amplitude of the magnetic field at which the
collapse occurs. We thus have repeated the simulations, now
following a linearized law of magnetization as in eqn (3) instead of
the nonlinear relation of eqn (1). The linearized law allows for an in
principle unbounded growth of the magnetization, resulting in
stronger magnetic attraction. Consequently, the corresponding
simulations predict a slightly earlier collapse of the separated state
in quite good agreement with the theoretical results, see the
triangles in Fig. 3. However, the situation is more complex than
might be expected from this agreement of the data. In the simula-
tions, which resolve the spatial inhomogeneity of the magnetiza-
tion across the particles, see below, the linearization mainly affects
those parts of the particles that are closest to each other and thus
are most strongly magnetized. In contrast to that, in our theory the
dipoles are concentrated in themore distanced particle centers and
are not as severely affected by the linearization.

In the collapsed state, the extrapolation of the simulation
curves predict that a complete touching of the particles does
not occur. In such a situation, an extreme compression of the
elastic material between the particles would be necessary, if
the assumed no-slip anchoring of the polymeric matrix on the
surfaces of the particles persists. This leads to values of r12/a
slightly larger than 2 as stressed by the inset in Fig. 3. Our
experimental resolution did not allow us to further clarify this
issue on the actual experimental system.

Most importantly, the FE simulations reveal an even more
pronounced hysteretic behavior of our experimental system. The
magnitude of the external magnetic field for re-separation of the
particles is found to be significantly lower than predicted from
the theoretical analyses in Sections 3 and 4, see Fig. 3. Particularly,
this is due to the approximation in terms of magnetic dipoles
located at the particle centers. Our FE simulations reveal that,

Table 1 Parameters of the rod model eqn (29): lengths l0,i and fitted radii
r0,i of the five rods

i 1 2 3 4 5

l0,i r12 � 2a r12 � a r12 � a (20a � r12)/2 (20a � r12)/2
r0,i/mm 2.80 72.17 72.17 273.15 273.15
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in the state of virtual touching, the magnetization within the
particles is strongly inhomogeneous. Around the virtual contact
points of the nearly touching particles, local magnetic field
amplitudes of up to 0.66 T are found inside the particles, despite
the relatively small value of the maximum external magnetic field
amplitude of 65 mT. In this case, a spatial resolution of the
magnetization field inside the particles becomes important,
together with the nonlinear magnetization behavior according
to eqn (1) in the vicinity of the virtual contact points between
the particles. The local magnitude of the magnetization within
quarters of the particles is illustrated in Fig. 7 for a separated
state at Bext = 63.05 mT and a state of virtual touching at
Bext = 65.00 mT. Naturally, not bounding the magnetization
by using a linearized magnetization law allows for even stronger
magnetization in the near-touching parts of the particles.
In such a case, corresponding simulation results predict an even
more pronounced hysteresis, see the triangles in Fig. 3.

Nevertheless, from Fig. 3 we note that the different ways
of description all lead to results that agree well with the
experimental data within the experimental error bars. A higher
resolution of measurement will allow to further develop and
specify the theoretical and numerical tools in the future.

6 Conclusions

In summary, we have experimentally observed the reversible
approach and separation of two paramagnetic metallic particles

in a soft elastic gel matrix, induced by adjusting the magnitude
of an external magnetic field. Above a certain threshold of the
magnetic field, the particles collapsed into a virtually touching
state. We have theoretically analyzed the behavior of our experi-
mental set-up using a dipolar approximation for the magnetic
interactions and linear elasticity theory to describe the distortions
of the elastic matrix. This description was further simplified by
projecting it onto reduced dipole-spring models. Significant
hysteretic behavior was revealed in this way. That is, the collapse
into the state of virtual touching occurred at a markedly larger
magnetic field than their sudden separation back into a
well-distanced state when subsequently decreasing the field
amplitude. Finally, we further quantified our experimental
observations by additional finite-element simulations adjusted
to our experimental set-up. They spatially resolve the magnetic
field also inside the magnetic particles and allow for nonlinear
elasticity of the elastic environment. Our simulations are in
agreement with the experimental observations and to good
approximation confirm our theoretical analysis until the collapse
into the virtually touching state occurs. However, they predict a
more pronounced hysteresis with the separation of the particles
occurring at a lower magnetic field amplitude than calculated
from the linearized analytical theory.

We expect our results, which explicitly demonstrate the
reversible externally induced virtual touching and separation
of hard particles in a soft elastic matrix, to be of high practical
relevance from an application point of view. A very illustrative
example is certainly a switchable damping device. Instead of
using only two particles, one may arrange many particles in
parallel rows.26 Then, in the absence of magnetic fields, the
material of separated particles is soft under compression along
the axis of the rows. When the particles enter a state of virtual
touching under magnetic fields, the resulting aggregates signi-
ficantly harden.48

In a broader framework, our investigations are related to
various studies in several other areas. Far away from the two
particles, the distortion induced in the elastic matrix resembles
that of a point-like mechanical force dipole. In such an approxi-
mation, for example, the stress exerted by active biological cells on
their environment has been addressed.94 For instance, preferred
mutual orientations were explained via induced long-ranged
elasticity-mediated interactions between the cells.95,96 Similarly,
localized force dipoles and their mutual interactions by distortion
of their elastic environment are treated in the theory of defects in
crystal structures.97 In a different framework, the question of
whether the separated state of the twomagnetic particles is stable,
and at which point this state collapses and the particles touch
each other, has recently been studied in the context of magneto-
some filaments.98 These elastic elements are found, for instance,
in magnetotactic bacteria that detect the magnetic field of the
earth for their orientation. Elastic filaments connecting the
magnetic particles need to provide sufficient rigidity to avoid
the particle collapse.

We believe that our results are important for the future construc-
tion of tunable dampers and vibration absorbers, soft actuators,
and energy storage devices from elastic composite materials.

Fig. 7 Color plot of the magnitudes of the spatially resolved magnetiza-
tion field within the spherical particles (a) for Bext = 63.05 mT shortly before
the collapse and (b) for Bext = 65.00 mT after the collapse in the state of
virtual touching of the particles.
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Particularly when exploiting the described effects in soft actua-
tion devices, it will be a central concern to reveal aspects of the
underlying dynamical processes. Moreover, we here mainly
concentrated on magnetically induced effects. Yet, many of
the described properties may carry over to the case of electric
fields.18 There, also the question of energy storage will be more
prevalent.13–18 In that case, however, touching of the particles
together with the formation of chained structures should be
hindered to avoid electric short circuits.
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J. Intell. Mater. Syst. Struct., 1996, 7, 613–622.

32 M. R. Jolly, J. D. Carlson and B. C. Muñoz, Smart Mater.
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In the figure on the next page, we illustrate the strong local deformation fields occurring

between the two approaching particles. There, we show results from direct purely elastic

finite-element simulations of the Neo-Hookean model when the two particles of radius

a are driven towards each other within the soft elastic matrix, see the main article. The

initial center-to-center particle separation was r(0)
12 /a ≈ 3.57. All results are obtained

directly from the simulations, without extrapolation of the deformations, down to center-

to-center particle distances r12/a ≈ 2.1. (This implies an approach of the surface-to-

surface distance down to a/10.) More precisely, states for (a) r12/a≈ 2.9, (b) r12/a≈ 2.4,

and (c) r12/a ≈ 2.1 are displayed.

We depict the components u1 and u2 of the local displacement field along the axes x1

and x2, respectively. Furthermore, to characterize the degree of compression of the de-

formed matrix along the corresponding principal axis, the spatial variation of the smallest

principal stretch λ3 is illustrated. The pure stretch of a line element is defined as

λ =
ds
dS

> 0 ,
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Figure: Results from the mechanical part of the direct finite-element simulations of the elastic Neo-

Hookean model in the set-up described in the main article. Components u1 and u2 along the axes

x1 and x2, respectively, of the local displacement field are shown, together with the spatial variation

of the smallest principal stretch λ3 within the polymer matrix. 0 < λ3 < 1 indicates compression

along the corresponding principal axis. From top to bottom, the inter-particle distance decreases

as (a) r12/a ≈ 2.9, (b) r12/a ≈ 2.4, and (c) r12/a ≈ 2.1.

where ds and dS denote the infinitesimal length in the deformed and in the undeformed

state, respectively. Basically, the quasi-incompressible matrix (ν = 0.49 within the simu-

lation) is squeezed out from between the particles by the particle approach. Between the

particles, a region of extreme compression occurs along the corresponding local principal

axis of deformation.
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Many practically relevant materials combine properties of viscous fluids and elastic solids to viscoelastic
behavior. Our focus is on the induced dynamic behavior of damped finite-sized particulate inclusions in such
substances. We explicitly describe history-dependent interactions that emerge between the embedded particles.
These interactions are mediated by the viscoelastic surroundings. They result from the flows and distortions of
the viscoelastic medium when induced by the rigid inclusions. Both viscoelastic environments of terminal
fluidlike flow and of completely reversible damped elastic behavior are covered. For illustration and to highlight
the role of the formalism in potential applications, we briefly address the relevant examples of dragging a rigid
sphere through a viscoelastic environment together with subsequent relaxation dynamics, the switching dynamics
of magnetic fillers in elastic gel matrices, and the swimming behavior of active microswimmers in viscoelastic
solutions. The approach provides a basis for more quantitative and extended investigations of these and related
systems in the future.

DOI: 10.1103/PhysRevE.99.012601

I. INTRODUCTION

To a large extent, real materials do not behave in a
purely liquid- or solidlike way. Substances that on long
timescales show a fluidlike terminal flow may feature re-
versible quasielastic deformations under sufficiently short ap-
plication of external forces. Prominent examples are melts or
solutions of entangled polymer molecules [1,2]. Vice versa,
the dynamics of materials that do feature reversible elastic
deformations on long timescales, like rubbers or soft elastic
polymeric gels, may still be damped by internal viscouslike
friction [1,2].
Materials combining such viscous and elastic character-

istics are termed viscoelastic. Studying their behavior on a
mesoscopic particulate length scale becomes important when
they contain immersed or embedded rigid inclusions. Es-
pecially, this concerns interactions between the embedded
particles mediated by the viscoelastic environment. They arise
when forces or torques imposed on or actively generated by
the particles are transmitted to their surroundings. Recently
studied experimental examples comprise microrheological in-
vestigations probing the environment of embedded colloidal
particles when driving them via external magnetic or optical
fields [3–7], switching the magnetic interactions between rigid
inclusions in soft elastic gel matrices by external magnetic
fields [8–11], or self-driven active microswimmers [12–15]
propelling through viscoelastic environments [16–20].
Here we provide a corresponding theoretical framework.

Our focus is on systems featuring discrete finite-sized partic-
ulate inclusions embedded in a surrounding viscoelastic con-
tinuous matrix. We concentrate on the overdamped dynamics
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of the embedded particles. The interactions between the em-
bedded particles that are mediated by the viscoelastic environ-
ment are covered. Moreover, our approach allows to describe
both long-time terminal flow and long-time reversible elastic
behavior of the viscoelastic surroundings. Accordingly, the
broad range of physical systems mentioned above can be ad-
dressed. Later our results will serve to study, e.g., by statistical
means, links between the collective behavior of embedded
particle ensembles and overall material properties [21–29].
Next, we introduce in Sec. II the continuum description

that we use to represent the viscoelastic environment. The
linearity of the employed approach allows to derive and
use the Green’s function associated with a localized force
impulse acting within the viscoelastic medium. We proceed
in Sec. III by inserting and quantifying the role of finite-sized
rigid spherical inclusions in this viscoelastic background. To
illustrate in Sec. IV the strength of the approach, we then
briefly and qualitatively address its possible application to
different examples. This opens the way to a broad range of
more detailed and quantitative studies in the future. Some
conclusions are listed in Sec. V. Apart from that, we illus-
trate in Appendix A how the continuum equation charac-
terizing our viscoelastic environment can be obtained from
a generalized hydrodynamic approach [30]. Moreover, we
include in Appendix B the detailed derivation of the Green’s
function mentioned above. In Appendix C we demonstrate
that this Green’s function satisfies the Kramers-Kronig rela-
tions as required. A basic example situation considered in
Appendix D serves to further illustrate our approach. We show
in Appendix E that the formalism used here to address the
role of net forces acting on rigid particles embedded in a
viscoelastic environment is readily extended to include net
torques as well. Finally, Appendix F lists some technical
details concerning our numerical discretization scheme.
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II. BASIC CONTINUUM DESCRIPTION
OF THE VISCOELASTIC ENVIRONMENT

To characterize the behavior of the viscoelastic environ-
ment, we consider an isotropic and homogeneous viscoelastic
continuum on the scale of the mesoscopic inclusions. A
simple linearized description will be employed to allow for
an effective analytical treatment. First, we recall the limits
of purely viscous and purely linearly elastic materials. In-
compressible viscous low-Reynolds-number fluid flows are
quantified by Stokes’s equations [25,31]

η∇2v(r, t ) = ∇p(r, t )− fb(r, t ), ∇ · v(r, t ) = 0, (1)

with η the dynamic viscosity, v(r, t ) the flow velocity field,
p(r, t ) the pressure field, and fb(r, t ) the bulk force density
acting on the fluid. Contrariwise, reversible deformations of
incompressible linearly elastic solids are quantified by the
Navier-Cauchy equations [32]

μ∇2u(r, t ) = − fb(r, t ), ∇ · u(r, t ) = 0, (2)

with μ the shear modulus, u(r, t ) the displacement field of the
material elements, and fb(r, t ) the bulk force density acting
on the solid. The assumed incompressibility represents a
reasonable approximation in many cases. Namely, this should
include (semi)dilute aqueous solutions of polymers [18,33]
and classes of swollen polymeric gels [11,34].
For an incompressible, infinitely extended, isotropic, and

homogeneous viscoelastic medium, we now combine these
balances of force densities, Eqs. (1) and (2), yielding

μ∇2u(r, t )+ η∇2v(r, t ) = ∇p(r, t )− fb(r, t ). (3)

This relation can be confirmed by linearizing a general con-
tinuum approach based purely on conservation laws and sym-
metry arguments [30], constricted to the regime of the over-
damped dynamics considered here. See Appendix A for the
details. Moreover, in this limit, Eq. (3) likewise follows when
combining the dynamic equations of a two-fluid approach that
contains frictional coupling between an elastic component and
a viscous fluid component [35–37].
Formally, linear elasticity theory does not distinguish

whether the coordinates r refer to the initial (undeformed)
or the present (deformed) state of a material [30,38]. Yet,
hydrodynamics dictates the latter, Euler point of view [30].
Thus, u(r, t ) describes the reversible elastic displacements
that have taken the material elements to the positions r. Or,
probably more appropriately in the present context, u(r, t )
quantifies the memory of those positions that the material
elements would tend to displace back to from their present
positions, if the material is relaxed from its current state.
In a viscoelastic medium, this memory of the initial posi-

tions stored in u(r, t ) may fade away over time. In addition
to changes in u(r, t ) arising from material motion v(r, t ), we
therefore assume a simple relaxation

u̇(r, t ) = v(r, t )− γ u(r, t ). (4)

The relaxation rate γ sets the “forgetfulness” of the medium,
implying complete reversibility for γ = 0. (This equation is
different from the corresponding one in Refs. [35–37], where
instead of the relaxational decay a diffusional contribution
appears.)

Here, the material parameters were chosen as constants,
not depending, for instance, on the length scale of the
induced distortions. If the building blocks of the viscoelastic
environment are significantly smaller than the inserted
rigid particles considered below, this should represent a
reasonable approximation in many cases. Then typical
distortions induced by the rigid particles in the viscoelastic
surroundings will often be observed to vary on a scale of the
size of the particles themselves, which thus is significantly
more extended than the building blocks of the environment.
Colloidal particles in polymeric surroundings can provide a
corresponding example.
Eliminating v(r, t ) from Eqs. (3) and (4), we obtain

(μ + γ η)∇2u(r, t )+ η∇2u̇(r, t ) = ∇p(r, t )− fb(r, t ). (5)

Due to the linearity in u(r, t ), the Green’s function can
be determined. It solves Eq. (5) for a given force impact F
at position R0 and time t0, setting fb(r, t ) = Fδ(r − R0)δ(t −
t0), which involves the corresponding delta functions in both
space and time. The procedure is well established, e.g., in low-
Reynolds-number hydrodynamics [25,39] or linear elasticity
theory [11,40,41]. After transforming to Fourier space, here
both in space and time, solving for the displacement field, pro-
jecting on transverse modes according to the incompressibility
relation in Eq. (2), and transforming back, we obtain

u(r, t ) = G(r − R0, t − t0) · F, (6)

with G(r, t ) the second-rank tensor

G(r, t ) = 1

8πη|r| [ Î + r̂r̂]�(t )e−
μ+γ η

η
t
. (7)

Î is the identity matrix, r̂r̂ a dyadic product with r̂ = r/|r|,
and �(t ) the Heaviside function. (For readers unfamiliar with
this common technique, we reproduce it in Appendix B,
together with a remark on the associated Kramers-Kronig
relations in Appendix C). We note that G(r, t ) = G(r)G(t ),
with

G(r) = 1

8πη|r| [ Î + r̂r̂], G(t ) = �(t )e−
μ+γ η

η
t
, (8)

where G(r) has the same form as the hydrodynamic Oseen
tensor [25]. The viscoelastic displacements resulting from a
general force density fb(r, t ) are thus obtained as

u(r, t ) =
∫

R
dt ′ G(t − t ′)

∫
R3

d3r ′ G(r − r′) · fb(r′, t ′). (9)

For illustration, we consider the example trajectory of one
material element subject to an interim constant and otherwise
vanishing concentrated force density in Appendix D.

III. RIGID SPHERICAL INCLUSIONS

We now turn to rigid spherical particles of radius a em-
bedded in the viscoelastic medium. No-slip conditions prevail
on their surfaces. An external force F(t ) exerted on a particle
centered at R(t ) is transmitted to the environment, distorting
it, and/or setting it into motion. Starting from the Green’s
function and the formal analogy of G(r) to the hydrodynamic
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case [39], we consider the displacement field

u(r, t ) =
∫

R
dt ′ G(t − t ′)

{[(
1+ a2

6
∇2

)
G(s(t ′))

]
· F(t ′)

×�(|s(t ′)| − a) + 1

6πηa
F(t ′)�(a − |s(t ′)|)

}
,

(10)

with s(t ′) := r − R(t ′) and a continuous integrand for each
|s(t ′)| = a. This expression solves inside the embedding
medium, for |s(t )| > a, the linear Eq. (5) for fb(r, t ) = 0,
together with the pressure field p(r, t ) = s(t )/4π |s(t )|3 · F(t )
as in the hydrodynamic case [39]. It satisfies ∇ · u(r, t ) = 0
and the boundary condition u(r, t ) → 0 for |s(t )| → ∞ [see
Eq. (7)] if all |R(t ′)| remain finite. At each instant in time t ′,
the expression in the square brackets is constant on the surface
of the sphere (|s(t ′)| = a), reflecting its rigid displacement
and confirmed by explicitly evaluating (1+ a2∇2/6)G(r −
R(t ′)). Similar relations can be obtained when applying a net
torque; see Appendix E. We determine the reaction of the
sphere at time t to the contributions generated by itself at
earlier times t ′ < t [see Eq. (10)] via Eqs. (12) and (13) below.
At each point in time t , the no-slip condition on the particle

surface r ∈ ∂V reads

U(t )+ �(t )× (r − R(t )) = u(r, t ). (11)

It states that the displacements of the particle surface points,
given by its rigid displacement U(t ) and rotation �(t ), must
be equal to the displacement u(r, t ) of the there anchored
surrounding medium. Here u(r, t ) contains the displacements
in the medium induced by the particle itself, also at earlier
times [see Eq. (10)] and all displacements generated by all
other sources. Due to the linearity of Eq. (5), all contributions
superimpose.
Equation (11) allows to determine at each time t how

a rigid sphere is displaced [U(t )] and rotated [�(t )] in a
given displacement field u(r, t ). The derivation of these so-
called Faxén laws follows the same lines as in low-Reynolds-
number hydrodynamics [25,39] and linear elasticity theory
[11,41–43]. Integrating both sides of Eq. (11) over the surface
∂V of the sphere, the antisymmetric �(t ) term vanishes, and
we obtain

U(t ) = 1

4πa2

∫
∂V

d2|r − R(t )| u(r, t ). (12)

Similarly, multiplying Eq. (11) by (r − R(t )) before the inte-
gration, we find

�(t ) = 3

8πa4

∫
∂V

d2|r − R(t )| (r − R(t )) × u(r, t ). (13)

These integrals can be evaluated numerically [44]. If u(r, t )
in Eqs. (12) and (13) is infinitely differentiable, we may
expand it in s(t ) = r − R(t ) as u(R(t )+ s(t ), t ) = (1+ s(t ) ·
∇ + s(t )s(t ) :∇∇/2+ · · ·)u(r, t )|r=R(t ). Uneven dyadics in
s(t ) vanish upon integration

∫
∂V

d2|s(t )|, even dyadics of
s(t ) lead to dyadic combinations of Î, and ∇ (2n)u(r, t ) = 0 =
∇ × ∇2u(r, t ) (n � 2 integer), which follows from directly
applying these differential operators to the Green’s function

in Eq. (7). Then the Faxén relations are again of the form
[11,25,39,41–43]

U(t ) =
(
1+ a2

6
∇2

)
u(r, t )

∣∣∣∣
r=R(t )

, (14)

�(t ) = 1

2
∇ × u(r, t )|r=R(t ). (15)

Correspondingly, the analog to Eq. (11) links the velocity
V(t ) and angular velocity W(t ) of the sphere to the velocity
field v(r, t ) of the environment. Repeating the above steps, we
obtain the associated Faxén laws in analogy to Eqs. (12)–(15),
simply replacing U(t ) → V(t ), �(t ) → W(t ), and u(r, t ) →
v(r, t ). These relations are consistent with Eq. (4), V(t ) =
U̇(t )+ γ U(t ), andW(t ) = �̇(t )+ γ�(t ).
We stress the physical importance of the velocity field

and the particle velocities. If one is interested in the local
material transport within the material, the important quantity
is the velocity field v(r, t ), and not predominantly thememory
displacement field u(r, t ). The latter at each instant in time
describes towards where the material points would tend to
relax, if all forces exerted on the material are switched off.
For γ �= 0, these in general are not the positions that the
material points had started from initially because the memory
decays over time. In our case, we consider the transport of the
rigid spheres. Their total net translation is given by integration
of their velocities V(t ) over their course of motion, and not
simply by the value of the current memory variables U(t ).
Accordingly, our picture is closed. From Eq. (10) we cal-

culate u(r, t ) at each requested position r and time t , resulting
from the forces exerted by the spherical particles on their
viscoelastic environment. v(r, t ) follows via Eq. (4). From
the Faxén relations we obtain the velocities V(t ) and angular
velocities W(t ) of the particles. Integrating these over time
leads to the particle trajectories R(t ) and courses of rotation.
What we neglect in this approach are additional contribu-

tions to the displacement field that arise from the resistance
of the rigid particles to their deformations under strong lo-
cal distortion [11]. In the hydrodynamic language, we here
stop at the common Rodne-Prager level [25], rendering the
results qualitative when our spheres meet areas of stronger
distortion. Moreover, our formulas are evaluated numerically.
By construction, this involves finite time steps and finite
displacements. Technically, to apply in our numerical dis-
cretization the force density fb(r, t ) in Eq. (5) at the positions
where it causes the resulting displacements, we shift back the
force centers at each time step according to the memorized
displacements to calculate the induced u(r, t ). This scheme
correctly reproduces complete elastic reversibility for γ → 0;
see Appendix F.

IV. EXAMPLES

To demonstrate the range of the theory and for illustra-
tion, we now briefly consider several examples. First, this
concerns a single sphere dragged by a net force through a
viscoelastic environment. In this context, we also demonstrate
that the familiar Green’s functions associated with incom-
pressible linearly elastic solids and low-Reynolds-number in-
compressible fluid flows are reproduced in the corresponding
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FIG. 1. Overall translation |R(t )− R(0)| for a spherical particle
of radius a, dragged by a constant force of magnitude |F| = 10μa2

during times 0 � t � 5η/μ. V = γ η/μ sets the memory of the vis-
coelastic environment and determines the degree of relaxation back
to the initial position for t > 5η/μ, when the drag force has been
switched off again. (a) V = 0 implies fully reversible elasticity, while
(b, c) intermediate values of V imply partial loss of memory and
partial reversibility. (d) V = 100 already shows the phenomenology
of viscous hydrodynamics (V → ∞). The ordinates feature different
scales, so that the magnitude of maximum translation grows from
panel (a) to (d).

limits. Next, the pairwise interactions between magnetizable
finite-sized particles are considered. These particles interact
both magnetically and via the flows and distortions induced
in their viscoelastic surroundings. Afterwards, we touch the
topic of self and mutual interactions of active self-propelled
microswimmers in viscoelastic media.

A. Dragged rigid sphere

Figure 1 starts with the basic scenario of dragging one
spherical particle through a viscoelastic medium by a con-
stant external force, switched on and off at given times. For
instance, this situation concerns active magnetic microrhe-
ological measurements, where colloidal particles are driven
by external magnetic field gradients to probe the viscoelastic
environment [3–7].
The description correctly reproduces the limiting cases. To

confirm this, we meanwhile measure lengths in particle radii
a, bulk force densities in units of μ/a, and time in units of
η/μ. Then the whole system behavior is controlled by one
remaining dimensionless number appearing in the exponent
in Eq. (7) or (8), and particularly as the relaxation parameter
in Eq. (4),

V = γ η

μ
. (16)

Indeed, for V → 0, complete elastic reversibility is re-
covered; see Fig. 1(a). Theoretically, this limit follows from
switching on a static force density fb(r) at t = t0 in Eq. (9)
via fb(r, t ) = fb(r)�(t − t0). After complete relaxation for
t → ∞, we obtain the correct steady-state displacements in
an incompressible linearly elastic solid [11,40,41,45]

u(r, t ) =
∫

R3
d3r ′ η

μ
G(r − r′) · fb(r′). (17)

Conversely, V � 1 implies the hydrodynamic limit of negli-
gible memory; see Fig. 1(d). In the theory, we take the time
derivative of Eq. (9), insert it as u̇(r, t ) into Eq. (4), and then
take the limit V → ∞ of vanishing elasticity. This leads to

v(r, t ) =
∫

R3
d3r ′ G(r − r′) · fb(r′, t ), (18)

reproducing the correct Oseen expression of low-Reynolds-
number hydrodynamics [25,39]. Intermediate finite values of
V > 0 imply viscoelasticity of partially decaying memory,
with example cases depicted in Figs. 1(b) and 1(c).

B. Magnetically induced particle interactions

A more specific example of practical relevance is given
by magnetic hybrid materials of magnetic or magnetizable
colloidal particles embedded in soft polymeric environments
[8,15,46,47]. Manipulating the magnetic particle interactions
by external magnetic fields allows to reversibly tune from
outside the mechanical material stiffness [8,48]. Studying
the switching dynamics on the particle scale [10,11,49–51]
becomes especially important in applications as soft actuators
[8,52–55].
Approximating the magnetic moments of the particles by

dipoles [56], we consider for illustration the effect of pairwise
interactions between two identical spherical paramagnetic
particles, labeled 1 and 2. For simplicity, a strong homoge-
neous external magnetic field is applied, leading to identical
saturated magnetic moments m. The dipolar interaction force
on particle i is given by [57]

Fi (t ) = 3μ0|m|2
4π

2m̂(m̂ · d̂(t )) + d̂(t )− 5d̂(t )(m̂ · d̂(t ))2

|d(t )|4 ,

(19)

with μ0 the magnetic vacuum permeability, m̂ = m/|m|,
d(t )=Ri (t )−Rj �=i (t ), and d̂(t )=d(t )/|d(t )| (i, j ∈ {1, 2}).
In Fig. 2 we consider two such magnetizable spherical

particles embedded in different viscoelastic background me-
dia. The solid circles indicate the initial positions in the
unmagnetized state. Next, the particles are magnetized by a
strong external magnetic field in a way that they repel each
other. After a longer time of magnetization, the positions in
the fully reversible elastic case (a) of V = 0 are set by the
balance of magnetic repulsive and counteracting mechanical
restoring forces, the latter resulting from the elastic distortion.
In the other cases (b) and (c) of V �= 0, an in principle
unbounded withdrawal of the particles from each other is
observed with elapsing time. Yet, the speed of withdrawal
decreases as the magnetic repulsion drops with increasing
mutual particle distance. Dashed circles mark the positions
attained when the field is switched off again.
The second row of Fig. 2 then shows the reaction after

switching off the induced magnetic repulsion. We depict
the positions after sufficient times of relaxation by dotted
circles. While complete reversibility is observed for V = 0 in
(a), virtually no relaxation takes place for the case of basically
absent memory (c). Intermediate amounts of relaxation occur
for intermediate strengths of the memory (b).
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FIG. 2. Two magnetizable spherical particles are exposed to a saturating external magnetic field. Repulsive magnetic dipole moments
m = 300(μa6/μ0 )1/2m̂ are induced during times 0 � t � 10η/μ (upper row) and then switched off again (bottom row), for (a) complete
elastic reversibility V = 0, (b) V = 0.1, and (c) basically absent memory V = 100. Circles mark the positions at t = 0 (solid), t = 10η/μ

(dashed), and t � 10η/μ (dotted). Black arrows indicate trajectories.

We stress that the depicted dynamical behavior is evaluated
by the formalism presented in Sec. III. Accordingly, the
mutual interactions mediated between the rigid particles by
the viscoelastic environment as well as the finite particle sizes
are taken into account to the degree specified above.
Similar situations, but for initially oblique particle separa-

tion vectors relatively to the induced magnetization, are shown
in Fig. 3. Interestingly, in this case the trajectories of initial
motion in the magnetized state and of relaxation after the
magnetic field has been switched off do not collapse. This
even applies to the fully reversible elastic case in Fig. 3(b),
although the spheres there return to their initial positions.
The reason can be associated with the nonreciprocity of the
induced magnetic forces during the process. On the forward
path, the nonvanishing magnetic forces change during the
motion because of their positional dependence. However, they
are zero throughout the subsequent relaxational return path.

FIG. 3. Same as in Fig. 2, but for an oblique configuration and
m = 200(μa6/μ0 )1/2m̂. (a) For V = 0.5, m is induced during times
0 � t � 2.5η/μ. Rearrangements affect the magnetic interactions,
while they are constant (zero) for t > 2.5η/μ. Significantly different
paths of induced rearrangement (brighter arrows) and subsequent
relaxation (darker arrows) result. (b) The cases V = 0 (reversibly
elastic solid) and V = 100 (nearly memoryless fluid) are shown
together for m induced during 0 � t � 1.8η/μ. For V = 0, the
spheres from their intermediate locations at t = 1.8η/μ (dashed
circles) relax back to their initial positions (solid circles) as the
closed darker trajectories and the inset demonstrate. For V = 100, the
spheres first cover longer paths (brighter arrows), but for t � 1.8η/μ

basically remain in their final locations (dotted circles).

C. Active self-propelled microswimmers

Another field of significantly growing interest concerns ac-
tive self-propelled microswimmers and their mutual hydrody-
namic interactions [12–15,58–60]. Increasingly, their behav-
ior in viscoelastic environments is addressed [16–20,61]. We
adapt a recently introduced minimal microswimmer model
[29,62,63]; see Fig. 4. A spherical swimmer body and two
concentrated force centers are arranged along a common
axis oriented by the unit vector �̂(t ). They form one rigid
entity that displaces and rotates as one object. The spherical
swimmer body is located at position R(t ), asymmetrically
between the two force centers. The latter are separated by a
distance L, exert axial but oppositely oriented forces±F(t ) =
±F (t )�̂(t ) onto the surrounding medium, thus distorting it
and setting it into motion. Pushing the medium outward along
the symmetry axis as in Fig. 4(a) identifies a so-called pusher.
Inverting the forces and �̂(t ) transforms it into a puller. The
latter pulls the medium inward along the symmetry axis; see
Fig. 4(b). This induced distortion of the surrounding medium
leads to a self-induced straight advective transport of an
isolated swimmer along �̂, if there are no other perturbations.
The velocity V(t ) of the swimmer is obtained from the mag-
nitude of the flow field at the location of the swimmer body.
That is,V(t ) = v(R(t ), t ), here neglecting the finite extension
of the center sphere [62].
First, we address individual, isolated microswimmers in

the absence of any perturbations. In this context, we analyze
how the steady-state swimming speed of the swimmers in
Fig. 4 changes with the rescaled “forgetfulness” of the vis-
coelastic environment as defined in Eq. (16). For this purpose,
the force density

fb(r, t ) = F �̂(t ){δ(r − (R(t )± bL�̂(t )))

− δ(r − (R(t )∓ (1− b)L�̂(t )))} (20)

is inserted into Eq. (9) [with δ(r) the Dirac delta function]
and then the velocity field is calculated from Eq. (4). The
upper signs in the ± and ∓ operators in Eq. (20) represent
the force density generated by a pusher and the lower signs
the case of a puller. For the resulting unperturbed straight
steady-state motion V ‖ �̂ of the microswimmer considered
here, a scalar expression for the swimming speed V = |V|
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FIG. 4. Illustration of our microswimmer model, adapted from Ref. [62]. Two concentrated force centers, separated by a distance L,
exert forces ±F = ±F (t )�̂(t ) onto the surrounding medium, set it into motion, and distort it. A sphere representing the swimmer body is
asymmetrically placed in between, as determined by the parameter b, and is thus subject to net displacements along �̂(t ). The resulting
minimal model microswimmer displaces and rotates as one rigid entity. A so-called pusher is shown in panel (a), while inverting the forces and
thus the flow directions of the background medium transforms it into a puller as depicted in panel (b). Background arrows indicate the flow
field in a viscous fluid. Panels (c) and (d) show a larger section of the corresponding flow fields in panels (a) and (b), respectively, extended
from the swimmer axes towards the top. Turning to vertical distances� L above the swimmer body, the flow lines bend away from the vertical
symmetry axis between the two force centers. The depicted flow fields are mirror symmetric to the bottom half space below the swimmer (not
shown). Here we fix b = 0.4 and F = μL2.

follows. Expressing the traveled distance vector in a time
interval τ = t − t ′ as R(t )− R(t ′) = V τ �̂, rescaling time by
(η/μ)−1, and rescaling velocity by (Lμ/η)−1, we obtain

V = F

4πμL2

[
1− 2b

b(1− b)
−
∫ ∞

0
dτ e−(1+V )τ

{
1

|V τ ∓ b|

− 1

|V τ ± (1− b)|
}]

, (21)

for pushers and for pullers, respectively. The first term on the
right-hand side is the exact hydrodynamic limit for a purely
viscous environment. Corresponding numerical evaluations
can be performed using Mathematica [64]. Figure 5 shows the

FIG. 5. Steady-state swimming speed V (V ) as a function of
the rescaled “forgetfulness” parameter defined in Eq. (16). Single,
isolated pusher and puller microswimmers are considered as intro-
duced in Fig. 4. We observe the hydrodynamic value for V � 1
and a continuous drop with decreasing V towards V (V → 0) = 0,
the latter reflecting the completely reversible elastic case. The inset
magnifies the behavior for small values of V .

steady-state swimming speed V (V ) for pushers and for pullers
obtained in this way.
As may have been expected, for V → ∞ the swimming

speed tends towards the hydrodynamic value obtained for a
microswimmer propelling through a purely viscous fluid. It
is identical for pushers and for pullers. In contrast to that, in
a completely reversibly deformable elastic environment, the
active microswimmer ultimately must come to a rest when
the forward drive is balanced by the elastic restoring forces.
Thus, V (V → 0) = 0. In between, V (V ) continuously drops
to zero with decreasing V . That individual pushers in the
intermediate regime tend to be slower than individual pullers
seems reasonable from Fig. 4. The swimmer bodies propel
into the trace that the heading concentrated force center has
left in the viscoelastic medium. Due to the time lag, set by
the swimming speed V , the memorized displacements that
were induced on this trace by the heading force center are
in the process of relaxation. While the medium around the
heading force center of the pusher has been displaced into
the swimming direction, it relaxes back into the opposite
direction when the swimmer body arrives. Along these lines,
a counteracting contribution results for pushers. The reverse
follows for pullers.
In addition to that, we here address the mutual interactions

mediated by the viscoelastic environment within a pair of
microswimmers that propel alongside each other. Since the
two microswimmers mutually attract or repel each other, see
below, there is no steady-state finite distance between the two
swimmers. Thus, as a measure for their mutual interaction,
we evaluate the flow field alongside one microswimmer in
a steady-state motion with velocity V; see Fig. 5. Another
microswimmer exposed to this flow field will be affected
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FIG. 6. Velocity field vd alongside one isolated swimmer in
steady-state motion (see Figs. 4 and 5) at a distance d and as a
function of the rescaled “forgetfulness” parameter V . vd is a measure
for the mutual interaction between two microswimmers propelling
in parallel. Here, the value of the component v‖

d pointing into the
direction of the isolated swimming velocity V is plotted. v

‖
d < 0

indicates mutual slow-down when compared to the speed of an
individual, isolated swimmer in Fig. 5. We here set d = 2L.

accordingly. That is, the second swimmer will be sped up
or slowed down along its swimming path, and it will be
attracted towards or driven away from the first swimmer.
Similar arguments apply to the displacements of nearby tracer
particles.
Accordingly, we evaluate the velocity field vd induced

in the viscoelastic medium at a distance d alongside the
swimmer. If the magnitude of the component v‖

d pointing into
the direction ofV is positive, i.e., v‖

d > 0, the nearby swimmer
propelling in parallel will be sped up. The opposite applies
for v

‖
d < 0. For d = 2L, corresponding results are depicted

in Fig. 6. Obviously, since v
‖
d < 0, two swimmers propelling

in parallel tend to weakly mutually slow each other down.
Figure 6 indicates a slightly weaker magnitude of slow-down
for pushers than for pullers.
The effect of mutual slow-down is in agreement with

the flow fields outlined in Figs. 4(c) and 4(d), as the field
lines bend away from the vertical center line when turning
to vertical distances �L above (and below) the swimmer
body. Thus, the flow fields there feature a component with
direction opposite to the propulsion direction �̂(t ). Swimmers
propelling in parallel with their swimmer bodies in such
positions will thus mutually slow each other down.
Similarly, if the magnitude of the component v⊥

d pointing
perpendicularly away from the first swimmer is positive,
i.e., v⊥

d > 0, a nearby swimmer propelling alongside will
be pushed away, while it will be attracted for v⊥

d < 0. The
corresponding results are depicted in Fig. 7. As can be in-
ferred already from the flow lines in Fig. 4, pushers attract
while pullers repel each other [65]. The effect decreases in
magnitude with decreasing V .
In the future, this approach should be pursued along several

different directions. First, the influence of a finite extension of
the swimmer body should be investigated, using the formalism
outlined in Sec. III. Second, the collective behavior of crowds
of active microswimmers in viscoelastic media should be
analyzed on the basis of our description, possibly combining
it with statistical theories [29,63]. This might even allow to

FIG. 7. Velocity field vd alongside one isolated swimmer in
steady-state motion (see Figs. 4 and 5) at a distance d and as a
function of the rescaled “forgetfulness” parameter V . In this case, the
value of the component v⊥

d pointing into a direction perpendicular
to V, away from the body of the steadily propelling swimmer, is
plotted. v⊥

d < 0 indicates mutual attraction between two swimmers
propelling alongside, while v⊥

d > 0 marks mutual repulsion. Again
we set d = 2L.

extend related theories on mesoscale turbulence [66,67] to
viscoelastic environments.

V. CONCLUSIONS

In summary, we have introduced and evaluated a formalism
to describe the dynamic behavior of particulate inclusions
in viscoelastic environments when driven by externally im-
posed, induced, or actively self-generated forces. Interactions
of the particles mediated by the viscoelastic surroundings
are covered explicitly. Both the limits of a reversibly elastic
solidlike and a memoryless viscous fluidlike environment are
comprised.
As examples, we characterized the drag of a sphere, the

dynamic behavior and mutual interactions of spherical mag-
netizable particles, as well as dynamic properties of active
microswimmers in viscoelastic media. We expect our results
to be important, for instance, for the future characteriza-
tion of the switching dynamics of soft actuation devices
[8,52–54,68], to describe the collective dynamics in large
ensembles of active microswimmers [16–19,37], to further
improve evaluations of active microrheological measurements
[3–5,69], or to extend previous studies on the interactions
between living cells in soft environments [70,71]. In principle,
the procedure can be carried over to other linear models of
viscoelasticity as well, to adjust it to the specific properties
of a given viscoelastic environment. In the present case, an
explicit analytical expression was available in real space for
the Green’s function and facilitated our evaluation.

ACKNOWLEDGMENTS

The authors thank Günter K. Auernhammer and J.
Ruben Gomez-Solano for stimulating discussions, as well
as the Deutsche Forschungsgemeinschaft for support of this
work through the priority program SPP 1681, Grant No.
ME 3571/3.

012601-7



MATE PULJIZ AND ANDREAS M. MENZEL PHYSICAL REVIEW E 99, 012601 (2019)

APPENDIX A: CONTINUUM DESCRIPTION FOR THE
VISCOELASTIC BACKGROUND MEDIA DERIVED FROM

A GENERALIZED HYDRODYNAMIC APPROACH

The continuum description in Eq. (3) for the dynamics
of the viscoelastic environment was motivated by combining
Stokes’s equations for the viscous low-Reynolds-number hy-
drodynamics [Eq. (1)] with the Navier-Cauchy equations of
linear elasticity [Eq. (2)]. Supplementing it by the simple re-
laxation relation in Eq. (4), we obtained the continuum charac-
terization in Eq. (5) for the memory displacement field u(r, t ).
Here we demonstrate that these relations can be obtained in
a different way as well. For this purpose, we systematically
linearize the continuum equations obtained by a previous
generalized hydrodynamic theory on viscoelastic materials
based on conservation laws and symmetry arguments [30].
In Ref. [30] the field a(r, t ) describes the positions that the

material elements currently located at positions r would tend
to take, if all stresses were absent. Thus, a(r, t ) = r − u(r, t ).
Accordingly, the components of the elastic strain tensor are
given by

Uik = 1
2 [δik − (∇ial )(∇kal )], (A1)

with δik the Kronecker delta. In the present case, we consider
isotropic, homogeneous, infinitely extended viscoelastic envi-
ronments and therefore do not keep track of reorientations of
anisotropy directions of the viscoelastic medium, quantified
in Ref. [30] by the rotation matrix R. Moreover, since in our
case the material displacements are assumed to vanish for
|r| → ∞, we here identify a(r, t ) ≡ r for |r| → ∞ (and use
Latin indices throughout).
Then our dynamic equation for the motion within the

viscoelastic medium is obtained from the dynamic equation
in Ref. [30] for the components of the momentum density
g(r, t ) = ρ(r, t )v(r, t ),

ġi + ∇j

(
σij − σDij

) = fb,i , (A2)

where we have added the bulk force density to the right-hand
side for our purpose. Assuming incompressibility, the mass
density ρ is constant.
In Eq. (A2), the components of the stress tensor σij

are given by σij = pδij + vigj + ψlj∇ial [30]. Here ψlj =
�km(∂Ukm/∂∇j al ) and �km = μUkm. The latter follows
via dε = �km dUkm from the harmonic elastic energy den-
sity ε = KijkmUijUkm/2 when expanding Kijkm = (KL −
KT /3)δij δkm + KT /2(δikδjm + δimδjk ) for isotropic materials
[30], assuming incompressibility, and identifying μ ≡ KT /2
in our notation.
To obtain the appropriate components of the dissipative

stresses σD
ij , we involve the quantity Aij = (∇ivj + ∇j vi )/2

[30], leading to σD
ij = ηijklAkl . Expanding the viscosity tensor

ηijkl similarly to Kijkl above, only one viscosity η remains in
the end for isotropic incompressible media.
Finally, we collect all these contributions and insert them

into Eq. (A2). After strict linearization in u(r, t ) and v(r, t ),
neglecting ġi in the overdamped situation and for low
Reynolds numbers, we indeed obtain our Eq. (3) from the
systematic hydrodynamic approach in Ref. [30] based on
conservation laws and symmetry properties.

In view of our dynamic equation for u(r, t ), Eq. (4), we
adopt the relation

U̇ij − Aij = − αT �0
ij − δij

3
αL�kk (A3)

from Ref. [30], where we have already dropped obviously
nonlinear contributions ∼vk∇kUij and ∼(∇ivk )Ukj . The su-
perscript zero indicates the trace-free part. αT and αL denote
transport coefficients. Inserting the relations listed above,
systematically linearizing in the fields u(r, t ) and v(r, t ), as
well as exploiting incompressibility, we obtain

∇i (u̇j − vj + 2μαT uj )+ ∇j (u̇i − vi + 2μαT ui ) = 0.

(A4)

Identifying γ ≡ 2μαT , our Eq. (4) is in line with this relation,
supported by u(r, t ) = 0 = v(r, t ) for |r| → ∞.

APPENDIX B: EXPLICIT DERIVATION
OF THE GREEN’S FUNCTION

Here, we repeat the explicit derivation of the expression for
the viscoelastic Green’s function G(r, t ) in Eq. (7) from the
underlying linear partial differential equation in Eq. (5). For
this purpose, the incompressibility relations stated in Eqs. (1)
and (2) are used. The method works by Fourier transformation
both in space and time, solution for the displacement field, and
subsequent inverse Fourier transformation.
Starting from Eq. (5), the Green’s function G(r, t ) quan-

tifies the displacement field u(r, t ) created by a point force
impact F resulting from

fb(r, t ) = Fδ(r − R0)δ(t − t0), (B1)

where R0 and t0 set the position and time of attack, respec-
tively. That is, the resulting displacement field reads u(r, t ) =
G(r − R0, t − t0) · F. Without loss of generality, we choose
R0 = 0 and t0 = 0, for simplicity, so that this relation be-
comes

u(r, t ) = G(r, t ) · F. (B2)

Integrating both sides of Eq. (5) over

1

(2π )2

∫
R3

d3r e−ik·r
∫

R
dt e−iωt , (B3)

we obtain its space-and-time Fourier transform as

k2(μ + γ η + iωη)ũ(k, ω) = − ikp̃(k, ω)+ f̃b(k, ω),

(B4)

with Fourier-transformed quantities marked by the tilde.
Equation (B1) implies

f̃b(k, ω) = 1

(2π )2
F. (B5)

Next, we involve the incompressibility relations stated in
Eqs. (1) and (2). Together with Eq. (4), they read

∇ · u(r, t ) = 0, ∇ · u̇(r, t ) = 0. (B6)

Their space-and-time Fourier transforms via Eq. (B3)
follow as

k · ũ(k, ω) = 0, k · ˜̇u(k, ω) = 0, (B7)
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from which the relations k ⊥ ˜̇u(k, ω) and k ⊥ ũ(k, ω) are
obtained. Multiplication of Eq. (B4) by the projection operator
Î − k̂k̂, with k̂ = k/|k| and Î denoting the unity matrix, then
solving for ũ yields

ũ(k, ω) = 1

k2(μ� + iωη)
(Î − k̂k̂) · 1

(2π )2
F, (B8)

where μ� := μ + γ η. We can rewrite Eq. (B8) as

ũ(k, ω) = G̃(k, ω) · F, (B9)

which corresponds to the Fourier transform of Eq. (B2).
Therefore,

G̃(k, ω) = 1

(2π )2k2(μ� + iωη)
( Î − k̂k̂) (B10)

is the space-and-time Fourier transform of the Green’s func-
tion. To obtain the Green’s function in real space, we then
need to calculate the inverse Fourier transformation,

G(r, t ) = 1

(2π )2

∫
R3

d3k eik·r
∫

R
dω eiωtG̃(k, ω). (B11)

First, we evaluate the
∫

dω integral,

1√
2πiη

∫
R

dω
eiωt

ω − i
μ�

η

, (B12)

with a singularity in the complex plane at ω = iμ�/η. For
t > 0, the integration path is closed in the upper half plane.
For t < 0, the integration path is closed in the lower half
plane, where there is no singularity. Using the residue theo-
rem, we thus find

1√
2πiη

∫
R

dω
eiωt

ω − i
μ�

η

=
√
2π

η
�(t )e− μ�

η
t
, (B13)

where �(·) denotes the Heaviside step function.
Then the inverse transformation in space remains as

G(r, t ) = C

∫
R3

d3k
eik·r

k2
( Î − k̂k̂), (B14)

with the abbreviation

C = �(t )

(2π )3η
e
− μ�

η
t
. (B15)

As an ansatz for G(r, t ), we choose [2]

G(r, t ) = AÎ + B r̂r̂, (B16)

implying A = A(r, t ), B = B(r, t ), r = |r|, and r̂ = r/r .
First, from the traceGjj (r, t ), where summation over repeated
indices is implied, we obtain the relation

3A + B = 2C
∫ 2π

0
dϕ

∫ 1

−1
dcosϑ

∫ ∞

0
dk eikr cosϑ

= 8πC

r

∫ ∞

0
dk
sin(kr )

k

= 8πC

r

∫ ∞

0
dξ
sin ξ

ξ

= 4π2C

r
. (B17)

Analogously, the contraction Gij (r, t )r̂i r̂j yields the relation

A + B = 2πC

∫ 1

−1
dcosϑ

∫ ∞

0
dk (1− cos2 ϑ )eikr cosϑ

= 2πC

r

∫ ∞

0
dξ

∫ 1

−1
dcosϑ

(
1+ ∂2

∂ξ 2

)
eiξ cosϑ

= 4πC

r

∫ ∞

0
dξ

(
1+ ∂2

∂ξ 2

)
sin ξ

ξ

= 2π2C

r
. (B18)

In combination, we find from Eqs. (B17) and (B18) that

A = B = �(t )

8πηr
e
− μ�

η
t
, (B19)

resulting in Eq. (7) for the viscoelastic Green’s function.

APPENDIX C: KRAMERS-KRONIG RELATIONS

Next, we briefly demonstrate that the Green’s function
derived in Eqs. (7) and (B10) indeed satisfies the famous
Kramers-Kronig relations [57]. To this end, we solve Eq. (B4)
for ũ(k, ω) and apply to both sides of the equation the
projection operator Î − k̂k̂; see above. Exploiting Eq. (B7),
this projection leaves ũ(k, ω) unchanged. From the resulting
equation of the form

ũ(k, ω) = χ (k, ω)(Î − k̂k̂) · f̃b(k, ω), (C1)

we thus obtain an effective susceptibility

χ (k, ω) = 1

k2

μ + γ η − iωη

(μ + γ η)2 + ω2η2
. (C2)

It has a shape related to the Kelvin-Voigt model [although
the additional parameter γ plays a decisive qualitative role in
the present case and controls the long-term system behavior;
this becomes clear from the rescaling at the beginning of
Sec. IVA, which identifies V = γ η/μ in Eq. (16) as the
one remaining parameter to quantify the behavior of the
viscoelastic environment]. We can rewrite χ (k, ω) as

χ (k, ω) = χ1(k, ω)+ iχ2(k, ω), (C3)

with χ1(k, ω) = �χ (k, ω) an even and χ2(k, ω) = �χ (k, ω)
an odd function of ω. A singularity is located in the
upper complex half-plane at ω = i(μ + γ η)/η. Then the
Kramers-Kronig relations for positive frequencies ω can be
formulated as

χ1(k, ω) = − 2

π
P
∫ ∞

0
dω′ ω′χ2(k, ω′)

ω′2 − ω2
, (C4)

χ2(k, ω) = 2ω

π
P
∫ ∞

0
dω′ χ1(k, ω′)

ω′2 − ω2
, (C5)

linking the real and imaginary parts of χ (k, ω) to each other.
Since χ (k, ω) vanishes as ∼ω−1 for ω → ∞ and η �= 0, the
requirements for the Kramers-Kronig relations Eqs. (C4) and
(C5) to be satisfied are met.
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APPENDIX D: BASIC EXAMPLE TRAJECTORY OF A
MATERIAL ELEMENT SUBJECT TO AN INTERIM
CONSTANT CONCENTRATED FORCE DENSITY

In this slightly academic example, we further illustrate
via analytical formulas the background of our description
introduced in Eqs. (3) and (4). For this purpose, we consider
the force density,

fb(r, t ) = F x̂ δ(r)(�(t )− �(t − te )), (D1)

spatially concentrated at the origin, pointing with constant
magnitude F > 0 into the x direction, switched on at time
t = 0, and turned off at time t = te. Moreover, we here only
consider positions r on the positive x axis, parameterized
by r = r x̂, with r > 0. Consequently, the spatial integral in
Eq. (9) reduces to∫

R3
d3r ′ G(r − r′) · fb(r′, t ′) = F

4πηr
x̂(�(t ′)− �(t ′ − te )).

(D2)

Obviously, for t < 0, there is no motion and displacement of
material elements.
For 0 < t < te, via Eqs. (4) and (9), we calculate the

velocity on the positive x axis as

v(r, t ) = F

4πηr
x̂
[
1− 1

1+ V
(
1− e− μ+γ η

η
t
)]

, (D3)

where we have used the definition in Eq. (16). The trajectory
R(t ) of a material element initially located on the positive
x axis at position R(t < 0) = R0x̂, with R0 > 0, therefore
remains confined to the x axis. From

dR(t )
dt

= v(R(t ), t ), (D4)

with R(t ) = R(t )x̂, we thus obtain

R(t )2 = R20 + F

2πη

1

1+ V
[
Vt + η

μ + γ η

(
1− e− μ+γ η

η
t
)]

.

(D5)

Afterwards, for t > te, the velocity field on the positive x

axis becomes

v(r, t ) = − F

4πηr
x̂

1

1+ V
(
e

μ+γ η

η
te − 1)e− μ+γ η

η
t
. (D6)

Consequently, the trajectory is determined by

R(t )2 = R20 + F

2πη

1

1+ V
[
Vte + η

μ + γ η

(
e

μ+γ η

η
te − 1)

× e− μ+γ η

η
t

]
, (D7)

which follows again via Eq. (D4) and upon inserting Eq. (D5)
for t = te.
If we measure time in units of η/μ and again use the

definition in Eq. (16), then Eq. (D7) becomes

R(t )2 = R20 + F

2πμ

1

1+ V
[
Vte + 1

1+ V (e
(1+V )te − 1)

× e−(1+V )t
]
. (D8)

We can infer from this basic example the relevance of the
parameter V . In the fully reversible elastic situation, i.e., for
V = 0, the material element at long times t → ∞ returns to
its initial position R(t = 0) = R0x̂. This is not the case for
V �= 0. Thus, the parameter V qualitatively determines the
behavior of the system. One could perform another rescaling
of time to remove the factor 1+ V from the exponents, but this
does not eliminate the influence of V on the first contribution
of te in Eq. (D8).

APPENDIX E: ADDITIONAL NET TORQUES APPLIED
TO THE SPHERICAL PARTICLES

The effect of net forces acting on the spherical particles has
been addressed in Eq. (10). Since the underlying equations
are linear in the displacement field [see Eq. (5)], the effects of
additional torques can simply be superimposed.
We proceed in the same way as in the case of the applied

forces. Applying a net torque T(t ) to a spherical particle of
radius a in analogy to the case of an applied force, we consider
the displacement field

u(r, t ) =
∫

R
dt ′ G(t − t ′)

{
−1
2

T(t ′) · [∇ × G(s(t ′))]

×�(|s(t ′)| − a) + 1

8πηa3
T(t ′)× s(t ′)

×�(a − |s(t ′)|)
}
, (E1)

with s(t ′) := r − R(t ′) and again a continuous integrand for
each |s(t ′)| = a. In analogy to Eq. (10), the expression in
Eq. (E1) solves for |s(t )| > a, i.e., inside the embedding
medium, the linear Eq. (5) for fb(r, t ) = 0, together with
∇ · u(r, t ) = 0. Moreover, u(r, t ) → 0 for |s(t )| → ∞ [see
Eq. (7)] if all |R(t ′)| remain finite. Additionally, at each instant
in time t ′, the expression in square brackets now leads to a
rigid rotation of all points on the surface of the sphere, i.e.,
for |s(t ′)| = a. The latter can be shown by explicitly eval-
uating ∇ × G(r − R(t ′)). As for the case of applied forces
in Eq. (10), the displacements and rotations of the sphere at
time t resulting from the contributions generated in Eq. (E1)
at earlier times t ′ < t can then be calculated via Eqs. (12)
and (13).

APPENDIX F: NUMERICAL DISCRETIZATION SCHEME

To trace the position R(t ) and orientation of a displaced
and rotated particle embedded in the viscoelastic environment
over time, we numerically evaluate our equations. For this
purpose, we use a discretization scheme as briefly summa-
rized below. For brevity, we here only describe the posi-
tional updates. We proceed in a similar way concerning the
rotational iteration, replacing velocities by angular velocities
and displacements by rotations, respectively. Moreover, we
here for illustration only consider displacements prescribed
on the particle by the surrounding medium. If additional
forces are exerted on a particle, their effect is superimposed.
Finally, we here assume a point particle, the displacement
of which coincides with the local displacement field of the
viscoelastic medium at the particle position R(t ). To evaluate
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the displacements of the particles of finite size, the additional
integrations according to the Faxén relations, Eqs. (12) and
(13), are performed, or Eqs. (14) and (15) are evaluated,
depending on the situation at hand.
Under the present assumptions, the position R(t ) of our

point particle is updated during the time step from time t to
time t + �t via

R(t + �t ) = R(t )+ �R(t ). (F1)

We calculate the particle displacement �R(t ) prescribed by
the environment by integrating the velocity field at the particle
position over time. This velocity field is obtained via Eq. (4)
from the displacement field. During the numerical discretiza-
tion one needs to be careful in distinguishing whether the

positional coordinates refer to the undeformed or the de-
formed state of the material. In the linearized analytical
theory, this difference is not resolved [30,38]. Yet, in our
numerical treatment, involving finite time steps and displace-
ments, this difference becomes relevant. Particularly, it must
be treated with care to find a final static elastic state under
constant applied forces. To solve this issue, we calculate in our
numerical discretization the displacement field from the posi-
tions in the undeformed state. Accordingly, we shift back our
particles as given by their present memorized displacements
U(t ), when we calculate during each time step the forces
they exert on the environment and to determine the additional
displacements they experience in the next time step.
Summarizing, the incremental new displacement of a par-

ticle �R(t ) at time t is calculated via

�R(t ) =
∫ t+�t

t

dt ′ v(R(t ′)− U(t ′), t ′) = u(R(t ′)− U(t ′), t ′)|t+�t
t + γ�t u(R(t )− U(t ), t ), (F2)

where Eq. (4) has been used. Obviously, this computation of�R(t ) formally involves the value of the displacement field u(R(t +
�t )− U(t + �t ), t + �t ) at the next time step. Technically, we address this issue by an iterative procedure at each time step.
In the following, we evaluate for illustration over the first N + 1 time steps the translation of a pointlike particle, assuming

an initially undistorted state at t = 0. The initial rest position of the particle is thus at R(0). Using Eqs. (F1) and (F2) together
with u(R(0), 0) = 0, while defining for brevity R̄(t ) = R(t )− U(t ), we obtain the positions at the N + 1 next time steps as

R(�t )2 = R(0)+ �R(0) = R(0)+ u(R̄(�t ),�t ), (F3)

R(2�t ) = R(�t )+ �R(�t ) = R(0)+ u(R̄(2�t ), 2�t ) + γ�t u(R̄(�t ),�t ), (F4)

R(3�t ) = R(2�t )+ �R(2�t ) = R(0)+ u(R̄(3�t ), 3�t ) + γ�t[u(R̄(�t ),�t ) + u(R̄(2�t ), 2�t )], (F5)

...

R((N + 1)�t ) = R(N�t )+ �R(N�t ) = R(0)+ u(R̄((N + 1)�t ), (N + 1)�t )+ γ�t

N∑
n=1

u(R̄(n�t ), n�t ). (F6)

In the completely reversible elastic limit of γ → 0, the displacements at all time steps are thus calculated from the memorized
initial positionR(0), as thenU(t ) = R(t )− R(0) and thus R̄(t ) = R(0). This guarantees that under a constant force field applied
to the elastic environment the particle finally comes to a rest at the correct final position.
If a force is exerted on the particle, it transmits this force to the surrounding viscoelastic environment. The resulting

displacement field in the environment is calculated from the Green’s function; see Eq. (7). Then, likewise, in the argument
of the Green’s function, R̄(t ) appears to specify the position of the force center given by our point particle to determine the
resulting distortion of the environment from its memorized undistorted state. That is, we use the Green’s function in the form
G(r − R̄(t )), or, after discretization, as

G(r − R̄((N + 1)�t ), (N + 1)�t )) = G

(
r − R(0)− γ�t

N∑
n=1

u(R̄(n�t ), n�t )

)
, (F7)

after inserting Eq. (F6), with u(R̄((N + 1)�t ), (N + 1)�t ) = U((N + 1)�t ) for our point particle. Again, the correct reversible
elastic limit is obtained for γ → 0, in which the effect of the pointlike force center is always calculated from its position R(0)
in the memorized undistorted state.
We stress that in Sec. III we considered particles of finite size. Addressing rotational degrees of freedom follows accordingly.
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3 Concluding remarks

We have presented a particle-resolved theoretical description of interactions between

rigid spherical inclusions mediated by linearly elastic environments, see Publication II

and Publication V. The spheres can be displaced and rotated by external forces and

torques, respectively, as well as by the deformation fields created by other spheres

in the surrounding medium. These interactions were summarized in (mathematical)

displaceability and rotateability matrices, which are formal analogs to the mobility

matrices in low-Reynolds number hydrodynamics [69,73,74]. Our theory has success-

fully been used to describe rearrangements in experimental sample configurations of

rigid paramagnetic particles embedded in soft polymeric gels, when exposed to ex-

ternal magnetic fields, see Publication I and Publication III. Especially for the linear

particle displacements in Publication I, a very good agreement between experiment

and theory was found using a refined method of calculating the magnetic dipole-dipole

forces. Moreover, it was possible to extract the shear moduli from the experimental

sample data, which in the present case were not accessible by direct measurements. In

Publication III, our micromechanical estimation of the local sample modulus was con-

firmed by a very good agreement between the experimental data and high-resolution

finite-element simulations that involved nonlinear and spatially resolved particle mag-

netization. A reversible magnetomechanical collapse of two paramagnetic particles

into (virtual) contact was described. In total, a pronounced magnetomechanical hys-

teretic behavior for a magnetization-and-demagnetization cycle of the two-particle

system was predicted both by theory and finite-element simulations.

The theory itself, as described particularly in Publication II and Publication V,

is not restricted to magnetic gels but can serve as a tool for the analysis of other

elastic composite materials as well, possibly, for example, materials that exhibit elec-

trostrictive effects [78,79]. Often, particulate inclusions have geometrical shapes other

than spherical so that in many cases closed-form expressions are unavailable in the

corresponding description. It is, however, possible to approximate any shape by

many-sphere compositions (raspberry model) [80,81]. This, for instance, shall enable
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3 Concluding remarks

to model the behavior of elongated particles [9,72,82,83] for an analysis of their rota-

tional characteristics and interactions between them under external magnetic torques

in an elastic environment. From the computational point of view, three-dimensional

systems with large particle numbers can quickly be analyzed numerically with our

theory, depending on the degree of deformation either quantitatively or at least still

qualitatively otherwise. These results could then be combined with finite-element

simulations or related methods [34,39,42,43,84], to partly reduce the computational

effort.

Finally, in Publication IV, we have introduced a dynamic theory to address par-

ticulate inclusions in incompressible linearly viscoelastic media that can be derived

from a general macroscopic continuum approach [52]. Both extreme limits of a purely

elastic solid and a viscous fluid are correctly reproduced. The key feature that dis-

tinguishes the viscoelastic regime from the two limits is the finite nonzero relaxation

rate of the medium, which specifies the degree of preserved memory of the initial state

during displacements. We have, inter alia, investigated the motion of magnetizable

spheres when exposed to external magnetic fields and found for active self-propelled

microswimmers that the hydrodynamic symmetry between model pushers and pullers

concerning their steady-state velocity is broken in the viscoelastic regime. The re-

lation to both low-Reynolds-number hydrodynamics and linear elasticity theory for

incompressible media allows to transfer many concepts from either field to our vis-

coelastic description. As one example, it might be possible to describe the effect

of a rigid wall on nearby particles by a viscoelastic Blake tensor in analogy to low-

Reynolds-number hydrodynamics [85–87] and linear elasticity theory [88].

Summarizing, we consider our elastostatic theory and our dynamic viscoelastic

theory to be of practical relevance for several future applications to characterize the

behavior of soft (visco-)elastic composite materials. The strength of our approach

when combined, e.g., with micromechanical measurements of the shear modulus in

elastic composite materials has been demonstrated in Publication I and Publication

III. Moreover, it can even be useful to analyze nonlinear situations in soft magnetic

gels as well, see Publication III, if the nonlinearity mainly results from the mag-

netic interactions. The dynamic theory could possibly be utilized to improve the

evaluation of microrheological measurements of complex fluids [89, 90]. Other pos-

sible fields of application involve the examination of cytoskeletal properties [11, 91],

elastic interactions between biological cells [92–95], as well as further investigations

of the dynamics of microswimmers [53, 96–98]. Our results can be important when
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describing in the future, starting from a particle scale, the applications of soft elastic

composite materials as tunable dampers and vibration absorbers [99–102], actuators

and sensors [19, 24, 25, 28, 103], as well as energy storage devices [79]. In conclusion,

we expect our theories to help to deepen the general understanding of complex elastic

and viscoelastic materials, also concerning scale-bridging efforts from the mesoscopic

to the macroscopic picture [6, 50].

103



3 Concluding remarks

104



Bibliography

[1] M. Doi. Soft Matter Physics. Oxford University Press, Oxford, 2013.

[2] R. A. L. Jones. Soft Condensed Matter, volume 6. Oxford University Press, Oxford,

2002.
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[38] S. Goh, A. M. Menzel, and H. Löwen. Dynamics in a one-dimensional ferrogel model:

relaxation, pairing, shock-wave propagation. Phys. Chem. Chem. Phys., 20:15037,

2018.
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for microswimmers. J. Chem. Phys., 144:024115, 2016.

[78] K. Wongtimnoi, B. Guiffard, A. Bogner-Van de Moortele, L. Seveyrat, C. Gauthier,
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[96] E. A. Gaffney, H. Gadêlha, D. J. Smith, J. R. Blake, and J. C. Kirkman-Brown.

Mammalian sperm motility: observation and theory. Ann. Rev. Fluid Mech., 43:501,

2011.

[97] G. Li and A. M. Ardekani. Collective motion of microorganisms in a viscoelastic fluid.

Phys. Rev. Lett., 117:118001, 2016.

[98] K. Yasuda, R. Okamoto, and S. Komura. A three-sphere microswimmer in a struc-

tured fluid. Europhys. Lett., 123:34002, 2018.

[99] H.-X. Deng, X.-L. Gong, and L.-H. Wang. Development of an adaptive tuned vibration

absorber with magnetorheological elastomer. Smart Mater. Struct., 15:N111, 2006.

[100] T. L. Sun, X. L. Gong, W. Q. Jiang, J. F. Li, Z. B. Xu, and W. H. Li. Study on

the damping properties of magnetorheological elastomers based on cis-polybutadiene

rubber. Polym. Test., 27:520, 2008.

[101] G. J. Liao, X. L. Gong, S. H. Xuan, C. J. Kang, and L. H. Zong. Development of a real-

time tunable stiffness and damping vibration isolator based on magnetorheological

elastomer. J. Int. Mater. Syst. Struct., 23:25, 2012.

[102] V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, E. Y. Kramarenko, A. R. Khokhlov,

Z.-D. Xu, and Y.-Q. Guo. Viscoelastic properties of magnetorheological elastomers

for damping applications. Macromol. Mater. Eng., 299:1116, 2014.

[103] L. Lanotte, G. Ausanio, C. Hison, V. Iannotti, and C. Luponio. The potentiality

of composite elastic magnets as novel materials for sensors and actuators. Sens.

Actuators A, 106:56, 2003.

112


