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I ZUSAMMENFASSUNG 

Die zwei Studien der vorliegenden Dissertation zielen darauf ab die Gehirnregionen und 

Netzwerke bezogen auf Persönlichkeit aufzudecken. Während die Debatte darüber wie Personen 

sich voneinander unterscheiden ziemlich überholt ist, haben nur wenige bildgebende Techniken 

geholfen der Frage nachzukommen warum sich Individuen bezüglich ihrer Persönlichkeit 

unterscheiden wie beispielsweise welche neuralen Mechanismen mit interindividuellen 

Persönlichkeitsunterschieden assoziiert sind. Das Fünf-Faktoren Modell (FFM) bietet einen 

verständlichen Zugang zur Persönlichkeit, welche als Kombination von fünf Hauptdomänen: 

Offenheit für Erfahrungen, Gewissenhaftigkeit, Extraversion, Verträglichkeit und Neurotizismus 

definiert ist. Obwohl schon einige Studien die strukturellen und funktionellen Korrelate dieser 

fünf Persönlichkeit-Traits untersuchten, ist es dennoch schwierig ein klares Bild über die 

neurobiologischen Ursprünge des FFM aufzuzeigen. Haupteinschränkungen stellen kleine 

Stichprobengrößen, das Fehlen von non-parametrischer Statistik, die Heterogenität in der 

Vorverarbeitung und der Einbezug vom Geschlecht als nicht interessierende Kovariate. Trotz des 

enormen Wissens zu Geschlechtereffekten auf die Gehirnorganisation und auf selbstberichtete 

Persönlichkeits-Scores, wird es in den meisten Studien im Bereich der Persönlichkeit- 

Neurowissenschaft nicht zur neuronalen Untermauerung der Persönlichkeit berücksichtigt. In 

Studie 1 wurde die Voxel-basierte Morphormetrie verwendet, welche geschlechterabhängige 

Veränderungen im Volumen der grauen Substanz aufzeigte. In der statistischen Analyse wurden 

über die gesamte Stichprobe keine signifikanten Korrelationen zwischen irgendeinem Trait und 

dem Volumen der grauen Substanz gefunden. Hingegen zeigten sich einige Effekte in der 

geschlechterspezifischen Stichprobe (nur Männer). Im Vergleich dazu trat in Studie 2 der 

Einfluss des Geschlechts auf die (funktionelle) Gehirn-Persönlichkeit Beziehung auf; während 

die funktionelle Resting-State-Konnektivität in meta-analytischen abgeleiteten Netzwerken, 

welche soziale, affektive, exekutive und mnemonische Funktionen sowie das gesamte 

Konnektom abdeckten, untersucht wurden. Die Relevance Vector Machine (RVM) erlaubte die 

Generalisierung der Ergebnisse zu testen, welche in den meisten Fällen, bei der 

Zusammenführung von Männern und Frauen zu einer Stichprobe, keine signifikante 

Vorhersageleistung ergab. Jedoch konnten Persönlichkeitseigenschaften entweder in Männern 

oder in Frauen signifikant vorhergesagt werden. Die Verwendung der beiden bildgebender 
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Techniken (VBM und RSFC) erlaubte eine detailliertere Charakterisierung vom männlichen und 

weiblichen Gehirn hinsichtlich der Persönlichkeit. Nach diesen beiden Studien konnten die 

weiblichen Gehirne während der Verwendung der Konnektivitätmessung besser charakterisiert 

werden. Ovariale Hormone könnten dies verursacht haben und möglicherweise zu einer 

Fluktuation in der Persönlichkeit und in der funktionellen Konnektivität geführt haben sowie die 

interhemisphärische Konnektivität und Dezentralisierung begünstigt haben, welches jedoch nicht 

für das lokale Gehirnvolumen gilt. Daher untermauert die Kombination von Studie 1 und 2 den 

Gedanken der neuralen Grundlage der fünf Domänen. Noch wichtiger ist jedoch, dass die 

strukturellen und funktionellen Veränderungen unterstützen, dass sich wahrscheinlich jedes Trait 

zwischen männlichen und weiblichen Gehirn unterscheiden lässt. 

 
 

II ABSTRACT 
 

The two studies presented in this dissertation aimed to elucidate the brain regions and networks 

related to personality traits. While the debate on how each person differs from each other is quite 

dated, only recently neuroimaging techniques have helped investigating why individuals differ in 

terms of their personality, i.e. studying which neural mechanisms can be associated with 

interindividual differences in personality. The Five-Factor Model (FFM) provides a 

comprehensive assessment of personality, defined as the combination of five major domains: 

Openness to Experience, Conscientiousness, Extraversion, Agreeableness and Neuroticism. 

Although several studies have already investigated structural and functional correlates of these 

five traits, it is still difficult to delineate a clear picture on the neurobiological correlates of the 

FFM. Major limitations can be found in the rather small sample size, lack of non-parametric 

statistics, heterogeneity in preprocessing pipelines and considering gender as covariate of no 

interest. Indeed, despite the vast knowledge of the effect of gender on both the brain organization 

and on the self-reported personality scores, most of the studies in the field of personality 

neuroscience did not consider it in the neural underpinnings of personality. In Study 1, whole- 

brain Voxel-based Morphometry (VBM) was carried out revealing changes in grey matter 

volume (GMV) as highly dependent on gender: in the statistical analysis across the entire sample 

no significant correlations between any personality trait and GMV were detected. In contrast, 

several effects emerged in the gender-specific sample (men only). Comparably, Study 2 revealed 
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gender influence in the (functional) brain-personality relationships, while investigating resting- 

state functional connectivity (RSFC) in meta-analytically derived networks, covering social, 

affective, executive and mnemonic functions, as well as the entire connectome. The Relevance 

Vector Machine (RVM) allowed to test the generalization of the findings, revealing in most of 

the case no significant prediction performance when men and women were pooled in  one 

sample. Conversely, personality traits could be significantly predicted in either men or women. 

The implementation of two different neuroimaging techniques, as VBM and RSFC, allowed a 

more detailed characterization of male and female brain in terms of personality, as from these 

two studies it emerged that female brains could be better characterized while using connectivity 

measurements. This might be caused by ovarian hormones, possibly leading to fluctuations in 

personality and functional connectivity, such as promoting interhemispheric connectivity and 

decentralization, but not on local brain volume. 

The combination of Study 1 and 2, therefore, corroborates the notion of a neural foundation for 

the Big Five, but, most importantly, that structural and functional changes supporting each trait 

might differ between male and female brains. 
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III GENERAL INTRODUCTION 
 

My dissertation project will focus on examining the biological correlates of personality traits, 

using a combination of high-quality structural and functional MRI and personality, described by 

the Five-Factor Model (FFM, McCrae and Costa 2004). This project will also explore how brain- 

personality relationships vary upon gender, a crucial factor in the self-reported personality 

questionnaires as well as in brain measurements. This project therefore aims to answer at least 

two questions: first, how are individual differences in brain structure and function associated 

with individual differences in the five-major human personality trait dimensions; second, can we 

generalize these associations across men and women or can they only be found in either one or 

the other group? Knowing which area of the brain can be linked to the differences in personality 

and whether these associations are gender-specific can thus provide new information in the 

recently born field of personality neuroscience and new insights into the biological bases of 

personality disorders (e.g. phobias, depression, eating disorders), which, in fact, also express a 

gender-specific predominance. 

 
 

3.1 Personality psychology: 2500 years of history 
 

While the term “personality” is easy to grasp in the daily life and immediately relates to the 

concept of “what makes yourself unique”, in the psychology research it has been often debated. 

Several theories, systems and classifications have been developed about the best way to describe 

it. The most antique can be traced back to the ancient Greece, with Hippocrates hypothesizing 

two poles on which temperament could vary (hot/cold and moist/dry). This idea results in four 

possible combinations (hot/moist, hot/dry, cold/moist, cold/dry) called “humors” that were 

thought to be the key factors in both health issues and personality characteristics. 

Since then, the study of personality has seen a growing abundance of theoretical traditions. The 

major theories include the psychodynamic perspective (Freud 1993) which proposed an  

influence of unconscious mind and childhood experience on personality. The humanistic view 

(Maslow 1968) emphasized the free will in determining how people behave (i.e. subjective 

experiences as opposed to forced, definitive factors that determine behavior). The behaviorist 

theory, of which Ivan Pavlov was a notable influencer (Pavlov 1927), explained personality in 
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terms of the effects external stimuli have on behavior. A modification of the behaviorist is the 

social learning perspective (Bandura 1989), which added to the theory two concepts: first, the 

existence of mediating processes between stimuli and responses. Second, the learning of 

behavior comes from the environment through the process of observational learning. 

Beside them, one important branch, known as dispositional perspective, or trait theory, was 

initiated by Gordon Allport in 1936, by showing that more than 4000 words in an English 

language dictionary described personality traits and thus laying the foundation for the modern 

personality neuroscience. Here, each trait is conceptualized on a spectrum instead of as 

dichotomous variables and are defined as a statistical generalization that can better predict the 

average behavior rather than individual’s behavior in any specific situation. 

 

3.1.1 The Five-Factor Model and the reconciliation in the personality taxonomy 
 

This multitude of personality factors taxonomy was eased by an increasing consensus among the 

trait psychologists on the use of the Five-Factor Model (FFM, Costa and McCrae 1992). It got 

vastly support as showing high internal consistency and validity. Additionally, these five factors 

(also known as Big Five) could be sufficient to account for the variance in the extended lists of 

adjectives in both self and peer ratings of personality (John 1990; Goldberg and Rosolack 1994). 

Indeed, the model was constructed on the so-called “lexical hypothesis” which assumes that 

basic individual differences are represented in the natural language by trait adjectives (Goldberg 

1981; Digman 1990). Evidences supporting the FFM over the other theories of personality 

showed that no recurrent and important dimensions beyond these five could be recovered when 

factoring the items of several major personality questionnaires (Costa and McCrae 1992a). 

Moreover, the model acquired the attribute of “universal”, by showing remarkable consistence 

across age and culture (McCrae and Costa 1997; McCrae 2004). Genetic studies proved the 

“universality” of the Big Five by localizing homogenous set of genetic influences, which led the 

traits to be grounded in the human genome (Yamagata et al. 2006). 

The five factors, Neuroticism (N), Extraversion (E), Openness to Experience (O), Agreeableness 

(A), and Conscientiousness (C) of the FFM can be measured by the Revised NEO Personality 

Inventory (NEO-PI-R, Costa and McCrae 1992) . Each domain is indexed by the sum of 

responses on six subscales or facets. Neuroticism’s facets are Anxiety, Hostility, Depression, 
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Self-consciousness, Impulsiveness, Vulnerability to Stress. Extraversion’s facets include 

Warmth, Gregariousness, Assertiveness, Activity, Excitement Seeking and Positive Emotion. 

Openness to experience/ Intellect is composed by the facets of Fantasy, Aesthetics, Feelings, 

Actions, Ideas and Values. For Agreeableness, the facets count Trust, Straightforwardness, 

Altruism, Compliance, Modesty, Tendermindedness. Lastly Conscientiousness’s facet are 

Competence, Order, Dutifulness, Achievement Striving, Self-Discipline and Deliberation. 

DeYoung and colleagues grouped them in two-aspect solutions appropriate for each trait 

(DeYoung et al. 2007), which resulted in the “aspects” for Neuroticism of Volatility and 

Withdrawal, for Extroversion Enthusiasm and Assertiveness, for Openness/Intellect Openness 

and Intellect, for Agreeableness Compassion and Politeness, and for Conscientiousness 

Industriousness and Orderliness. 

The Big Five not only can be sub-dived in narrow facets/aspects, but can also be grouped 

“superordinate factors” or meta-traits, forming in such a way a pyramidal hierarchy. The two 

higher-order solutions (Alpha and Beta factors) represented the concepts of Stability and 

Plasticity respectively (DeYoung et al. 2002): Alpha refers to a combination of Agreeableness, 

Conscientiousness and Emotional Stability (reversed for Neuroticism), while Beta is a 

combination of Extraversion and Openness. Scoring high in Stability (i.e. showing high level of 

A and C and low level of N) could be interpreted as the general ability to maintain stable 

relationships, motivation, and emotional states. On the other hand, the factor of Plasticity (high 

scores of both E and O), indicated the tendency in generating new goals, new interpretations of 

the present state, and new strategies to pursue existing goals, and more in general to the 

“cognitive flexibility”. 

The NEO-PI-R, which consisted of 240 items, was then revised as a shorter form (NEO-FFI; 

McCrae and Costa 2004), constituted of 60 questions, for a total of 12 item for each scale, which 

is nowadays the most widely used operationalization for the model. 

 
 

3.2 Personality neuroscience: the biological bases of personality 
 

A first link between personality traits and the brain was seen in the 19th century, with the 

neuroanatomist F. Gall. He promoted a science (or pseudo-science in the opinion of most) called 

Phrenology, where physical properties of different areas of the brain (such as size, shape, and 
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density) were associated to opinions, attitudes, and behaviors. Whereas Gall’s science never took 

off, in the same century, Phineas Gage’s accident, whose personality massively changed after an 

iron rod pierced his brain, showed some foundation in Gall’s intuition: personality was rooted in 

the brain. 

The first proper model on the biological bases of personality traits was proposed by Eysenck 

(Eysenck 1963), in which he assigned two “super-factors” to the dimensions of Extraversion (E) 

and Neuroticism (N) and later added a third, known as Psychoticism (P) (EPQ, Eysenck and 

Eysenck 1975). The three-factor model relied heavily on the functions of the brain’s ascending 

reticular activating system. Accordingly, E would be related with the reticulo-cortical circuit and 

N with the reticulo-limbic circuit. Eysenck hypothesized that extraverts, by having a higher 

threshold for cortical arousal than introverts, would choose more stimulating activities through 

which they would reach a preferred level of arousal. On the other hand, neurotics would be more 

easily aroused by emotion-inducing stimuli than emotionally stable people. Eysenck did not 

develop as well-specified biological model of P, but at different times he hypothesized that it was 

negatively associated with serotonergic function (Eysenck 1992) and positively associated with 

dopaminergic function (Eysenck 1997) (cf. Chapman 2011). 

Adding extensive animal research on Eysenck’s theory, his student J.A. Gray formulated a new 

biopsychological model known as “Reinforcement Sensitivity Theory” (RST, Gray 1982; Gray 

and Mcnaughton 2000), in which two motivational systems were subserving the behavior. The 

first, the Behavioral Inhibition System (BIS), was sensitive to cues of threat, punishment and 

conflicts in general. It activated responses of inhibition and avoidance via noradrenergic and 

serotonergic activity under the control of the septo-hippocampal system and amygdala (Gray 

1982; Depue and Iacono 1989; McNaughton and Corr 2004). The second opposite system was 

named Behavioral Activation System (BAS), sensitive to cues of reward via dopaminergic 

activity in the mesolimbic system (Gray 1994; Depue and Collins 1999). A more fine-grained 

division in aversion motivation can also distinguish BIS from a third system, the Fight–Flight– 

Freeze System (FFFS). While the BIS was theorized as sensitive to conditioned aversive stimuli, 

mediating therefore the emotion of anxiety, the FFFS would respond to unconditioned aversive 

stimuli, and thus mediating the emotion of fear. As can be seen in Figure 1, Gray’s modification 

on Eysenck’s theory was not only made on the neural bases of the emergent behaviors supported 

by these three systems (BIS, BAS, FFFS), but also on their location in the factor space: he 
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proposed a 30° rotation of the E and N scales so to create a more efficient reward and 

punishment sensitivity axes. Therefore, the emergent traits would be Anxiety (Neuroticism- 

Introversion axis), and Impulsivity (Emotional Stability – Extraversion axis). In fact, highly 

impulsive individuals would be, in Gray’s theory, most sensitive to signals of reward, relative to 

their low impulsive counterparts; on the other hand, highly anxious individuals would be most 

sensitive to signals of punishment, relative to low anxiety counterparts. Accordingly, Eysenck’s 

E and N dimensions are secondary factors of these more fundamental traits/processes. This new 

factor-space location allowed Gray also to explain why introverts were, generally, more 

cortically aroused: since punishment is more arousing than reward, introverts, by being more 

sensitive to first, usually display higher level of arousal. Conversely, extraverts, more sensitive to 

the second, are accordingly less aroused. 

Figure 1 
 

Figure 1. Position in factor space of the fundamental punishment sensitivity and reward sensitivity 

(unbroken lines) and the emergent surface expressions of these sensitivities, i.e., E and N (broken lines). 

Reprinted from The Cambridge Handbook of Personality Psychology (p. 356), by AL. Chapman, 2011. 

 
In 1993, C.R. Cloninger formulated a personality model also built in the biological context. His 

Temperament and Character Inventory (TCI) (Cloninger et al. 1993) was particularly oriented in 

providing a tool for diagnosis of personality disorders and the latest and final version consisted 

of three characters, (Self-Transcendence (ST), Self-Directness (SD), Cooperativeness (Coop)), 
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and four temperaments (Novelty Seeking (NS), Reward Dependence (RD), Persistence (P) and 

Harm Avoidance (HA)). The main distinction between a character and a temperament consisted 

in the fact that the first would reflect personality development in the context of insight learning 

and environmental experiences, whereas temperament mostly refers to automatic responses in 

information processing and learning, presumed to be heritable. However, the temperaments 

could only distinguish among subtypes of personality disorders, but did not consistently 

differentiate individuals with personality disorders or poor social adjustment from other well- 

adapted individuals with extreme personality profiles. Therefore, he later added the three 

characters ST, SF and Coop. On the biological level, the temperaments of NS, HA, RD were 

described as results of different functioning in the dopaminergic, serotonergic and noradrenergic 

systems respectively. However, genetic analyses not always supported these associations to be 

homogenous, i.e. not reflecting the influence of one specific gene, but rather a common set of 

genes (i.e. genetically heterogeneous) (Schinka et al. 2002). 

 
3.2.1 Neurobiological substrates of the Five-Factor Model 

 
In the personality neuroscience literature, many attempts have been made to functionally and 

structurally charactering the Big Five. Classical statistical analyses showed various correlations 

between either structural (as GMV, cortical thickness, structural connectivity) or functional 

(activations or connectivity) properties of the brain and the five scores. From here, often, the 

traits have been associated to psychological functions when regions correlating with a trait were 

also known to subserve a specific function. More specifically, Neuroticism has been associated 

with sensitivity to punishment, via functional or morphometric correlations to affective regions 

like amygdala, hippocampus, cingulate cortex, medial prefrontal cortex (Kumari 2004; Cremers 

et al. 2010; DeYoung et al. 2010; Tzschoppe et al. 2014; Madsen et al. 2015; Pang et al. 2016), 

all previously linked to respond to threat and punishment. Extraversion with sensitivity to reward 

due to associations with reward-related stimuli as nucleus accumbens, striatum, amygdala and 

orbitofrontal cortex (DeYoung et al. 2010; Adelstein et al. 2011; Lei et al. 2015; Pang et al. 

2016). Agreeableness associated to regions involved in the processing of social information, such 

as temporo-parietal junction, superior temporal gyrus and posterior cingulate cortex (Hooker et 

al. 2008; DeYoung et al. 2010; Adelstein et al. 2011). Conscientiousness and Openness to 
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executive functions and specifically to the lateral PFC, due to its role in planning, following 

complex rule and voluntarily control of behavior for Conscientiousness cortex (Asahi et al. 2004; 

Passamonti et al. 2006; DeYoung et al. 2010; Kunisato et al. 2011), while to its role in attention, 

working memory and cognitive flexibility for Openness (DeYoung et al. 2010; Kunisato et al. 

2011). 

However, this approach might be problematic for at least two reasons: i) brain regions can 

support many different mental functions (Laird et al. 2009) ii) many mental functions can 

contribute to a single trait (DeYoung 2015). Indeed, there are evidences in the personality 

neuroscience literature that support the “many-to-many” rather than the above “one-to-one” 

mapping among personality traits/ psychological functions/ brain. For example, a trait like 

Neuroticism, very often associated to affective regions, has been also linked to regions exerting 

cognitive functions, e.g. dlPFC (Kunisato et al. 2011; Pang et al. 2016), or behavioural 

performances probing attention (MacLean and Arnell 2010), working memory (Studer-Luethi et 

al. 2012), verbal fluency (Sutin et al. 2011) and explicit memory (Pearman 2009; Denkova et al. 

2012). It is therefore possible that these systems (mnemonic, affective and executive) all 

contribute in explaining variance in Neuroticism. 

Additionally, another recurrent methodological problem in the field is the low statistical power, 

which together with non-parametric statistics, recurrently led to Type I (false positive) or Type II 

(false negative) error rates, thus increasing the confusion and the inconsistent findings in the 

structural correlates of personality (Yarkoni 2009; Hu et al. 2011; Scarpazza et al. 2016). 

 
Following up the issue of inconsistent and heterogeneous, Study 1 will show that there were no 

consistent locations in the brain where GMV correlated with any of the Big Five in a gender-mix 

group. This null result represents therefore a strong warning toward previous findings, which 

conversely showed several regions positively or negatively correlated with the  personality 

scores, but with much smaller sample sizes. The fact that the only correlations could be detected 

in the gender-split groups further demonstrated an important role of gender, often disregarded in 

previous studies. Similarly, Study 2 also supports the notion of a crucial role of gender, revealing 

more and higher predictability power in the gender-split groups compared to the gender-mix 

group. Additionally, it also demonstrates that besides the most common associations between 

mental  functions  and  personality  traits  (e.g.  Neuroticism  and  emotional  processing),  other 
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functions appear to be also involved (e.g. Openness and pain processing), thus supporting the 

“many-to-many” mapping. 

 
 

3.3 From personality psychology to personality neuroscience 
 

A shift of focus from the how (how people differ from each other) to the why (why they differ 

from each other) is the main difference in the research question of personality psychology and 

neuroscience. The main goal of personality neuroscience is therefore the investigation at the 

neural level of the differences in processes like cognition, emotion and motivation, associated in 

differences in personality traits, making the brain a “proximal source” of personality 

characteristics (cf. DeYoung and Gray 2009). 

Nowadays there are at least two reasons supporting this shift of attention: i) the reconciliation in 

the taxonomy has allowed the field to move toward the investigation of the causes and the 

consequences of these individual differences, ii) the tools for investigating the biological 

underpinning of personality have enormously improved with the rise of neuroimaging techniques 

(EEG and MRI, PET) and molecular genetics. Since my two projects have been carried out 

within the first framework (Study 1 using structural MRI and Study 2 using functional MRI), an 

introduction to the MRI techniques will follow. 

 

3.3.1 Neuroimaging techniques: structural MRI 
 

Magnetic resonance imaging (MRI) is often divided into structural and functional MRI. 

Structural MRI (sMRI) identifies differences among tissues of the brain and further measures the 

density of each tissue (Symms et al. 2004). This thus provides information to quantitatively 

describe the size and integrity of (mainly) grey matter structures in the brain. Broadly speaking, 

MRI signal varies across tissue types because gray matter contains more cell bodies (e.g., 

neurons and glial cells) than white matter, which is primarily composed of long-range nerve 

fibers (myelinated axons), along with supporting glial cells. Voxel based morphometry (VBM) is 

one of the most commonly used methods to measure grey matter volume (GMV) (Good et al. 

2001). Here the aim is associating brain structural differences to inter-individual differences in 

some  phenotypical  aspects,  such  as  personality  traits.  Structural  brain  images  are  spatially 
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normalized, to match a brain template, classified into grey and white segments and smoothed so 

that each voxel reflects the average percentage of grey matter within itself and the surrounding 

voxels (Ashburner and Friston 2000). Please note that a detailed explanation of the VBM 

procedure can be found in Material and Methods of Study 1. 

 
3.3.2 Neuroimaging techniques: functional MRI 

 
With an even larger sample size, Study 2 targeted the functional bases of the Big Five, by 

investigating fluctuation of the blood-oxygen-level-dependent (BOLD) signal at rest. fMRI is 

based on the idea that blood carrying oxygen from the lungs behaves differently in a magnetic 

field than blood that has already released its oxygen to the cells. As a result, oxygen-rich blood 

and oxygen-poor blood have a different magnetic resonance. Since more active areas of the brain 

receive more oxygenated blood, the fMRI picks up this increased blood flow to pinpoint greater 

activity. Functional connectivity (FC) is defined as the statistical association or dependency 

among two or more anatomically distinct time-series (Friston 2011), thus reflecting the level of 

functional communication between regions (cf. van den Heuvel and Hulshoff Pol 2010). Several 

methods are used to mapping connectivity using fMRI time series data. A major distinction can 

be made between “model-free”, as principal component analysis (PCA, Friston et al. 1993) or 

independent component analysis (ICA, Beckmann et al. 2005), and “model-dependent” methods, 

as seed-based analysis (Biswal et al. 1997). In the former, the aim is to decompose the whole- 

brain data covariance matrix in eigenvariates, each one including regions that may constitute a 

functionally connected network. The seed-based approach, instead, examines the functional 

connections of a particular brain region against the time-series of all other regions in the whole- 

brain, thus producing a functional connectivity map defining the functional connections of the 

predefined brain region (Biswal et al. 1997; Jiang et al. 2004). A variation of this approach is 

constituted by the network-based analysis, where FC is computed among all the nodes of a given 

network. A more detailed description of this method can be found in Material and Methods of 

Study 2. 

Importantly, since 1995, it was shown that functional activity and connectivity was not only 

present while subjects are performing a certain task, but that it was possible detecting low BOLD 

frequencies also while participants were just lying in the scanner, resting (Biswal et al. 1995). 
 
 

12 



Afterwards, it has been demonstrated that the pattern of this intrinsic oscillatory behavior 

between regions mimics patterns of co-activation during task-based fMRI studies. Specifically, 

regions that work in concert during the performance of tasks seem to fluctuate together during 

resting-state (RS) scans (Smith et al. 2009; Cole et al. 2014). As a result of this, together with the 

easier acquisition of RS compared to task-based scans (i.e. fast acquisition of the data, 

logistically simpler, more standardize across studies and sites, independent of specific 

paradigms/designs) a gaining ground technique is the acquisition of functional scans at rest, i.e. 

subjects are not performing an explicit task. 

Study 2 also employed RSFC to capture patters of connectivity which could be associated to 

variations in personality level. Importantly, FC was computed in meta-analytically derived 

networks as proxy for specific mental functions. Indeed, networks revealed by a meta-analysis 

across tasks probing a specific mental function should be primarily reflecting that particular 

function. This approach is, so far, the best way to tackle the problem of experimental and 

analytical flexibility. In particular, the spatial convergence of activation across all available 

neuroimaging experiments testing a specific mental function should reflect those regions that are 

consistently recruited by this process. Conversely, other regions that are more specific to 

particular paradigms, implementations, data processing and analysis strategies should not reveal 

any convergence (Eickhoff et al. 2009; Laird et al. 2009; Fox et al. 2014). 

 

3.3.3 Statistical approaches 
 

Unlike the other previous studies investigating personality in the functional brain, in Study 2, a 

multivariate pattern analysis (MVPA) was implemented in order to overcome some limitations of 

the univariate pattern analysis (UVPA). First, UVPA infers on identical information from several 

single voxels (Gonsalves and Cohen 2010) and thus fails to explicate patterns based on 

integrated information from multiple voxels, even when the voxels share non identical variance. 

On the contrary, MVPA approach uses a weighted average of responses, treating each voxel as a 

distinct source of information (Lewis-Peacock and Norman 2013). In such a way, the entire 

pattern within each single functional brain is used to seek for personality-related information. 

Second, traditional univariate pattern analyses make use of “within-sample correlations”, while 

multivariate approaches use an “out-of-sample” prediction to evaluate the accuracy of the model. 
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This can therefore account for a highest generalizability and lower over-fitting of the results 

(Yarkoni and Westfall 2017). The combination of such approaches allowed, therefore, to relate 

with greater confidence a specific trait to a particular mental function in terms of the network 

that subserves them in previously unseen individuals, rather than relating a personality trait to a 

particular function only because a brain region correlates with both. Please refer to Material and 

Methods of Study 2 for more detailed description of RSFC and the MVPA algorithm (Relevance 

Vector Machine, RVM (Tipping 2001)). 

 
 

3.4 The influence of gender 
 

Study 1 and 2 jointly pointed to a crucial role of gender in the investigation of brain-personality 

relationships. Here it follows a description of the major lines of researches focusing on 

personality, brain and why this factor should be included in the investigation of the neural 

correlates of personality. 

 
3.4.1 The influence of gender on personality 

 
Personality traits have been demonstrated to be stable over time, across situation (Mischel 2004), 

and across culture (McCrae 2002). However, they were proved to differ depending on males and 

females (Feingold 1994; Budaev 1999; Costa et al. 2001; Weisberg et al. 2011; De Bolle et al. 

2015). It has been argued that these differences might arise as a result of either evolution, or 

social forces. According to the former, gender differences in personality can be explained 

through biologic factors such as genes, prenatal and postnatal exposure to sex hormones, and sex 

differences in neural development and brain structure – all ultimately molded by biologic 

evolution (Budaev 1999; Lippa 2010). Being the evolutionary reproductive success the main  

goal of the species, men and women would have developed differences in personality mostly in 

relation to reproduction. In men, therefore, higher levels of aggressiveness, risk-taking, and 

status-seeking presumably evolved as sexually selected traits that reached dominance and mates 

attraction. Higher female levels of nurturance, tender-mindedness, and people orientation 

evolved as sexually selected traits that fostered a successful raising of children. On the other 

hand,  social-environmental  theories on gender differences in  personality, propose  a  cascade of 
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social influences to be responsible for them, such that women and men are expected to serve 

different roles in society and are therefore socialized to behave differently from one another 

(Wood and Eagly 2002). 

As a result of the evolution, social factors, or the combination of the two, many researchers 

found consistent gender differences in personality operationalized by the Big Five: women 

significantly score higher than men in the traits of Agreeableness and Neuroticism (Chapman et 

al. 2007; Weisberg et al. 2011). However, subtler differences can be explored narrowing the 

factors to the aspects or even the lowest facets (DeYoung et al. 2007). For example, N which is 

usually scored higher from women at the trait level, but facets like Anger is usually scored  

higher in men (Costa et al. 2001). Extraversion, usually scored similarly across genders, shows 

opposite patters when considering its facets: while Warmth, Gregariousness and Positive 

Emotions are higher in women, Assertiveness and Excitement Seeking are higher in men 

(Feingold 1994; Costa et al. 2001). Similarly, Openness to experience at the trait level does not 

show a consistent gender difference, which is instead present in its facets, where women 

typically score higher in Esthetics and Feelings while men in Ideas (Feingold 1994; Costa et al. 

2001). No consistent (i.e. across culture) gender difference was found neither at the trait nor at 

the facets level for C; lastly, women scored higher in both the trait and facets for A (Feingold 

1994; Costa et al. 2001). It is important to note that these differences do not preclude men to be 

nurturing or women to be aggressive, but that the average response from one gender is usually 

higher or lower than the other (Weisberg et al. 2011). 

 
3.4.2 The influence of gender on brain and behavior 

 
Men and women do not only differ in psychological traits (Costa et al. 2001; Levant et al. 2009; 

Lippa 2010; Van de Velde et al. 2010), they were also shown to differ in their cognitive 

performances (cf. Miller and Halpern 2014) and neuroanatomy (cf. Cahill 2006). 

Especially three cognitive abilities (verbal, quantitative and visual-spatial abilities) were first 

identified by Maccoby and Jacklin (1974) as the loci of gender differences. Since then more 

studies investigated gender differences using neuropsychological batteries, either confirming or 

discrediting the originally proposed gender differences. Male advantages were consistently found 

in tasks encompassing visual-spatial working memory (Voyer et al. 2017), mathematical abilities 
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(Zhu 2007) and motor speed processing (Gur et al. 2012). On the other hand, it was often 

attributed to women an advantage in language, emotional and social tasks (for example verbal 

memory, non-verbal reasoning, emotion identification, empathy; Saykin et al. 1995; Zaidi 2010; 

Satterthwaite et al. 2015). Yet, a meta-analysis on more than 150 studies investigating verbal 

abilities yielded no evidence of substantial gender differences in any aspects of language 

processing (Hyde and Linn 1988). Quantitative and qualitative comprehensive analyses on 

cognitive empathy (Kirkland et al. 2013) and emotional processing (Kret and De Gelder 2012) 

agreed on a slight advantage displayed by women in such abilities. However, Kret and De Gelder 

highlighted the fact that performances on emotional discrimination might strongly depend on the 

type of emotion used in the paradigm: in case of facial expressions of fear and sadness, women 

were found to be better at their recognition (Mandal and Palchoudhury 1985; Nowicki and 

Hartigan 1988), while anger was better discriminated by men (Mandal and Palchoudhury 1985; 

Wagner et al. 1986; Rotter and Rotter 1988). 

On a neural level, gender influences on brain anatomy, chemistry and function have been 

intensively investigated (cf. Cahill 2006). The first more prominent difference is brain size: 

women have smaller brain volume compared to men (average brain volume excluding cerebral 

spinal fluid and non-brain tissues, 1130 cm3 for women against 1260 cm3 of men; Cosgrove et al. 

2007). However, when correcting for the intracranial volume, height and weight, women display 

a higher percentage of GMV. On the contrary, men display a higher percentage of white matter 

volume (WMV) and cerebrospinal fluid (CFS) (Gur et al. 1999; Luders et al. 2009). Also surface 

measurements, like cortical thickness (CT), supported this gender difference, as larger CT across 

the entire cortex of both hemispheres was detected in women compared to men (Im et al. 2006). 

As grey matter contains somatodendric tissues of neurons and neuropil and white matter is 

formed by myelinated connecting axons, Gur and colleagues suggested that women could rely on 

more “computational” tissue rather than “transfer” tissue of information across different regions 

(Gur et al. 1999). 

Gender differences at the behavioral level have be explained with differences in morphometric 

measurements. For example, regions with larger brain volume in women encompass the 

surroundings of the Sylvian fissure, engaged in language processing, as well as in limbic regions 

and orbito-frontal gyrus, subserving emotional processing (Gur et al. 2002). Conversely, there 

are evidences for a higher volume of grey matter in men in the parietal lobe along with best 
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performances on a mental rotation test (Koscik et al. 2009; Salinas et al. 2012). Also evidences 

on structural connectivity highlighted differences in the patterns of male and female brains:  

while in the first, connectivity was mostly intra-hemispheric, in the latter was mostly inter- 

hemispheric (Ingalhalikar et al. 2014). Accordingly, men’s brain is more asymmetric than 

women’s, who instead have a more bilateral organization. It has been argued that the size and 

shape of the corpus callosum, larger in women, may indeed provide a better communication 

between the hemispheres, such reducing the specialization and asymmetry (Luders et al. 2006; 

Grabowska 2017). 

In fact, also brain function was shown to differ between genders. For example it has been 

suggested that the advantage for men in performing mathematical reasoning is due to a higher 

activation (rather than volume) in regions forming the ventral (para-hippocampal gyrus and 

lingual gyrus) and dorsal (intraparietal sulcus and angular gyrus) visual stream (Keller and 

Menon 2009). A meta-analysis on working memory task-based fMRI also demonstrated gender- 

specific networks whereby females consistently activate more limbic (e.g., amygdala and 

hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a 

distributed network inclusive of more parietal regions (Hill et al. 2014). Also while performing 

decision-making tasks, men and women showed different pattern of activations, thus revealing 

that different brain mechanisms can be differently engaged by men and women for the same task 

(Bolla et al. 2004). 

Functional gender differences were also found using resting state data (Biswal et al. 2010; Tian 

et al. 2011; Filippi et al. 2013; Hjelmervik et al. 2014; but see Weissman-Fogel et al. 2010). A 

study from Satterthwaite and colleagues (2014) for the first time showed using MVPA that 

RSFC could be efficiently employed to classify male and female brains with the 71%  of 

accuracy (Satterthwaite et al. 2015). Tomasi and Volkow (Tomasi and Volkow 2012) identified 

in women 14% higher of local functional connectivity density in posterior cingulate/ ventral 

precuneus compared to men; Hjelmervik and colleagues (Hjelmervik et al. 2014) showed sex 

differences in two fronto-parietal networks (right dorsal and anterior) with women exhibiting 

higher functional connectivity. Conversely, another study showed increased RS connectivity in 

men in parietal and occipital networks, while women showed increased RS connectivity in 

frontal and temporal regions (Filippi et al. 2013). Allen et al. (2011) discovered no gender 

difference in the fronto-parietal network at all, but stronger RS connectivity within the DMN in 
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women. 

Despite some inconsistencies on the location of gender differences, there are strong evidences for 

functional and structural dimorphisms between male and female brains, which ultimately is 

reflected in behavior and personality traits. 

 

3.4.3 The influence of gender on personality and brain 
 

Even though there are strong evidences for gender effects on both personality and brain 

parameters, many researchers investigating the neural underpinnings of personality did not 

consider gender as a separate factor in their studies. On the contrary, gender has been often 

treated as covariate of no interest in both structural (Omura et al. 2005; Gardini et al. 2009; 

DeYoung et al. 2010; Cremers et al. 2011; Kapogiannis et al. 2013) and functional (Adelstein et 

al. 2011; Aghajani et al. 2013; Coutinho et al. 2013; Koelsch et al. 2013; Deris et al. 2017) 

studies of personality, assuming therefore same neuronal mechanisms across all who express a 

specific level of a trait. 

Although not many, there are studies showing exactly the opposite: men and women display 

different neural bases for the same trait. In the sMRI literature a VBM study from Blankstein et 

al. showed gender differences in the trait–brain relationship: in women, Extraversion correlated 

negatively with medial frontal gyrus GMV, and Neuroticism correlated positively with 

subgenual anterior cingulate cortex GMV. In men, the above correlations between GMV and 

personality showed exactly an opposite direction (Blankstein et al. 2009). Similarly, 

morphometry and functional connectivity analyses on the neural basis of Narcissism also 

enhanced the notion of a strong dependency on gender (Yang et al. 2015). In another VBM 

study, smaller right hippocampal volume was found to underlie the basis for higher anxiety- 

related traits to both genders, whereas anterior prefrontal volume contributed only in females 

(Yamasue et al. 2008). With regards to RSFC, Sutin and colleagues were able to show that 

Openness correlated positively with prefrontal activity in women, anterior cingulate activity in 

men, and orbitofrontal activity in both genders. Thus, while areas linked to reward and emotional 

processing could be engaged similarly by both genders, regions deputed to cognitive flexibility 

and monitoring processes underlie individual differences in Openness specifically for women 

and men respectively (Sutin et al. 2009). 
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A consideration on i) the well-known gender differences in brain structure and function (cf. 

Cosgrove et al. 2007; Zaidi 2010), ii) the effect of gender on the self-reported personality scores 

(Costa et al. 2001; Weisberg et al. 2011) and iii) the growing existing literature which started 

considering the two above together (Sutin et al. 2009; Yang et al. 2015), prompted the choice of 

carefully investigate the role of gender on the structural (Study 1) and functional (Study 2) 

correlates of the Big Five. 

 
 

3.5 Aim of the studies 
 

The main goal of my projects consisted in assessing gender-common or gender-specific neural 

correlates of the Big Five in a multi-modal approach. By the assumption that the brain is the 

“proximal” source of differences in each of the five scales (cf. DeYoung and Gray 2009), and 

that brain organization differs between men and women (cf. Cosgrove et al. 2007), variation of 

GMV (Study 1) and RSFC (Study 2) was used to investigate which neural regions could be 

associated with personality in men, in women or both. 

Specifically, Study 1, by exploiting gross but robust anatomical index for morphometric changes 

such as VBM (Palaniyappan and Liddle 2012), could delineate regions in the whole-brain where 

GMV was correlating with personality traits in males and females. Functional decoding (using 

the BrainMap database) was then implemented so to identify which types of experiments were 

associated with activation in the respective regions. Next, mental processes were investigated in 

relation to the traits within a network perspective, i.e. using RSFC in meta-analytically derived 

networks presumably most engaged in a given mental process. MVPA substituted more 

traditional statistical analysis to ensure a data-driven learning of relevant information regarding 

each trait, based on the entire patter of connectivity within each network, and higher 

generalizability. Again, brain-personality relationships were investigated by taking gender into 

account. 
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Abstract 
 

Previous studies have shown that males and females differ in personality and gender differences 

have also been reported in brain structure. However, effects of gender on this “personality- brain” 

relationship are yet unknown. We therefore investigated if the neural correlates of personality 

differ between males and females. Whole brain voxel-based morphometry was used to investigate 

the influence of gender on associations between NEO FFI personality traits and grey matter 

volume (GMV) in a matched sample of 182 males and 182 females. In order to assess 

associations independent of and dependent on gender, personality-GMV relationships were tested 

across the entire sample and separately for males and females. There were no significant 

correlations between any personality scale and GMV in the analyses across the entire sample. In 

contrast significant associations with GMV were detected for neuroticism, extraversion and 

conscientiousness only in males. Interestingly, GMV in left precuneus/parieto-occipital sulcus 

correlated with all three traits. Thus, our results indicate brain structure-personality relationships 

are highly dependent on gender, which might be attributable to hormonal interplays or 

differences in brain organization between males and females. Our results thus provide possible 

neural substrates of personality-behavior relationships and underline the important role of gender 

in these associations. 



1. Introduction 
 

Personality is what makes every human unique, as it denotes individual differences in behaviors, 

cognition and emotion, which are stable over time and across situations (Mischel 2004). It has been 

shown that personality affects various domains in human life, such as job performance (Rothmann 

and Coetzer 2003), social and political attitude (Riemann et al. 1993), quality and stability of social 

relationships (Asendorpf and Wilpers 1998), as well as risk for mental disorders (Costa and 

McCrae 1992a; Miller et al. 2001). One of the most widely recognized personality models is the 

NEO Five Factor Inventory (NEO FFI; (Costa and McCrae 1992b)), consisting of the dimensions 

neuroticism, extraversion, openness, agreeableness and conscientiousness. Previous studies have 

indicated that there are gender differences in neuroticism and agreeableness, with women scoring 

higher on these two traits than men (Costa et al. 2001; Chapman et al. 2007; Weisberg et al. 2011). 

Addressing the biological basis of personality, several voxel-based morphometry (VBM) studies 

have attempted to characterize the neural architecture of personality. For example, De Young 

(2010) suggested different brain systems might correlate with the traits of the NEO-FFI (DeYoung 

et al. 2010), but this view has been challenged by others (cf. (Hu et al. 2011; Koelsch et al. 2013)), 

illustrating the currently inconsistent and heterogeneous (with respect to both the associated regions 

and the direction of association) literature. Most importantly, the (generally rather low) sample size 

varies considerably between studies, and there is a substantial heterogeneity with regard to age and 

in particular gender distribution. For example, Barrós-Loscertales et al., 2006 (Barrós-Loscertales 

et al. 2006) only investigated males, Van Schuerbeck, 2011 (Van Schuerbeek et al., 2011) only 

females, while others investigated unbalanced samples of males and females (i.e. (Liu et al. 2013), 

(Yamasue et al. 2008)). It has, however, been shown that beyond mere brain size, males and 

females differ in brain structure. In particular, gender differences have been reported in grey matter 

volume  (Luders  et  al.  2009), cortical  thickness  (Im  et  al. 2006), and  structural   connectivity 



(Ingalhalikar et al. 2014). Given those gender differences in brain structure, as well as the fact that 

males and females differ also in traits such as the NEO-FFI (Costa et al. 2001; Chapman et al. 

2007; Weisberg et al. 2011), it is likely that gender also has an influence on the neural correlates 

of personality. However, effects of gender on personality/brain relationships have rarely been 

investigated to date. Rather, most studies investigating personality in association to brain structure 

treated gender only as covariate of no interest (Omura et al. 2005; Gardini et al. 2009; Cremers et 

al. 2011; Kapogiannis et al. 2013; Lu et al. 2014). 

The aim of the current study was thus to investigate brain regions associated with personality across 

both genders, as well as to assess a potential sexual dimorphism of the relationship between 

personality traits and local grey matter volume. Importantly, since personality traits in their extreme 

forms are considered as vulnerability factors of personality and mood disorders (Costa and McCrae 

1992a), which show important differences in prevalence for males and females (Afifi 2007), a 

better knowledge of the underlying neural correlates of personality and of potential gender 

differences of these should also contribute to a better understanding of those clinical conditions. 

 
 

2. Materials and methods 
 
 

2.1 Subjects 
 

Participants were selected from the data provided through the Human Connectome Project, WU- 

Minn Consortium, in the current “S500” release, (HCP, http://www.humanconnectome.org ((Van 

Essen et al. 2012), Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University. 



Analyses of the HCP data were approved by the ethics committee of the Heinrich Heine University 

Düsseldorf. 

The HCP sample is composed of monozygotic (MZ) and dizygotic (DZ) twins (at the moment of 

the selection of the subjects: 34 MZ males, 92 MZ females, 51 DZ males, 93 DZ females) and not- 

twins (132 males not-twins and 140 females not-twins). The category of the not-twins includes 

siblings of twins, just siblings and only-children (including those that have a not yet scanned sibling 

but not twin). 

Given this structure, we paid particular attention to select a well-matched sample from this data 

that is as large as possible while at the same time controlling for possible effects of heritability, age 

and education. Evidently, we first selected all participants from the HCP sample for whom MRI 

images and personality data were available. Out of this sample, we then selected groups of males 

and females, respectively, which were closely matched with regard to their age and years of 

education. Importantly, we included only participants who met the following constraints to control 

for family structure and effects of premature birth (which is the norm in twins): only one subjects 

per monozygotic twin pair was selected due to the high genetic similarity to the co-twin and the 

same amount of monozygotics was chosen for males and females, while for dizygotic pairs both 

twins were included since they are genetically equal to siblings. Although it would have been more 

straightforward to use only unrelated individuals, this would have extremely reduced the sample 

size and, consequently, the statistical power. 

Based on these criteria, a sample of 182 males (age 22-36 years, mean 29.0 ±  3.4,  education 14.7 
 

± 1.8) and 182 females (age 22-35 years, mean 29.2 ± 3.5, mean of years of education 14.7 ± 1.9) 

were selected.  The percentage of twins and non-twins participants did not differ by gender (X2
1= 



2.2 , n.s.). Moreover, no significant gender differences were detected for age (t362= -0.47, ns.) and 

years of education (t362= -0.25, ns.). 

Figure 1 illustrates the distribution of siblings in the male and female sample. Specifically, 17 

female-female dizygotic pairs and 27 females without the dizygotic twins were included in the 

female (for a total of 61 dizygotic females) and 15 pairs of male-male dizygotic twins and 17 

dizygotic males without the dizygotic twin in the male sample (for a total of 47 dizygotic males). 

Furthermore, the sample consists of 19 monozygotic female individuals and 19 monozygotic male 

individuals as well as 102 non-twin females and 116 non-twin males. Therefore 80 individuals with 

a twin status and 102 individuals with a non-twin status formed the female group, while 66 

individuals with a twin status and 116 individuals with a non-twin status formed the male group. 

The 364 subjects belonged to a total of 200 different families, distributed as follows: 85 families 

were composed by just one individual, 75 families by 2 individuals, 31 families by 3 individuals, 

8 families by 4 individuals and 1 family by 5 individuals. Thus, 85 subjects were unrelated (38 

males and 47 females) while 279 had at least one other subject in the sample that was related to 

him/her (144 males and 135 females). 38 of the males and 47 of the females have no siblings; 67 

of the males and 44 of the females have at least one male sibling, 47 of the males and 57 of the 

females have at least one female sibling; 30 of the males and 34 of the females have at least a male 

and a female sibling. 

Fig. 1 about here please 
 

2.2 Questionnaire 
 

Subjects completed the English version of the NEO Five Factor Inventory (NEO FFI, (McCrae and 

Costa 2004)). The NEO FFI consists of 60 items in form of statements, 12 for each of the five 

factors (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness). 



2.3 MR imaging and pre-processing 
 

3D structural T1w MRI scans were acquired (Glasser et al. 2013) on a Siemens Skyra 3T scanner 

using a 32-channel head coil and a 3D MPRAGE sequence (T1w MPR1, voxel size= 0.7x0.7x0.7 

mm, FoV= 224x224 mm, matrix = 320, 256 sagittal slices in a single slab, TR= 2400 ms, echo 

time; TE= 2.14 ms, TI= 1000 ms, flip angle 8◦). 

Data preprocessing was performed with SPM8 (Statistical Parametric Mapping, Wellcome 

Department  of Imaging Neuroscience,  London, UK,  http://www.fil.ion.ucl.ac.uk/spm/) and  the 

VBM8 toolbox (http://www.neuro.uni-jena.de/vbm8), running under Matlab R2014a (Mathworks, 
 

Natick, MA). Structural images were normalized using the DARTEL algorithm (Ashburner 2007) 

to the ICBM-152 template using both affine and non-linear spatial normalisation, bias-field 

corrected and segmented into grey matter, white matter and cerebrospinal fluid tissues. The 

normalized grey matter segments were then linearly and non-linearly modulated. Finally, images 

were smoothed with an isotropic Gaussian kernel (full-width-half-maximum = 8 mm). 

 
 

2.4 VBM analyses: Relationships between GMV and personality 
 

We performed multiple regression analysis in SPM8 using the voxel-wise grey matter volume 

(GMV) as dependent variable and the scores of the five factors of the NEO FFI as covariates of 

interest. Given the collinearity of the NEO FFI scores (Table 1), each factor was assessed by a 

separate GLM. For the analyses on the entire sample (364 participants) we included age, total brain 

volume (TBV) and gender as covariates of no interest. For the within-gender analyses only age and 

TBV were added. Inference was performed using threshold-free cluster enhancement (TFCE; 

(Smith and Nichols 2009)). The critical threshold to control the family-wise error at p < 0.05 was 

based on a non-parametric permutation framework (extend threshold of 50 voxels). In order to 

identify regions where GMV was correlated with more than one personality trait, conjunctions 



were performed using the minimum statistic (Nichols et al. 2005) and multiple linear regression 

analyses were conducted to examine how their predictive power on the correlation to the GMV 

was shared among them. All activations are reported in MNI space and were anatomically localized 

by using the SPM anatomy toolbox 2.1 (Eickhoff et al. 2005, 2007). 

We also calculated cortical thickness and cortical surface area in order to test whether the regions 

found in the VBM results were also detected in these other structural analyses. The description of 

method and results can be found in the supplement material. 

 
 

2.5 Follow-up: Gender differences in volume-personality association 
 

For regions where a significant correlation in either males or females was found, we further 

investigated if a significant difference in the correlation could be found between males and females. 

Therefore, Pearson correlations (r) between GMV and each personality score were calculated, 

separately for males and females, transformed into Fishers Z scores and compared between groups 

(Kenny 1987). For significant (p<0.05) group differences we estimated the effect sizes by using 

the Cohen’s q measure (Cohen 1988) ( q<0.1: no effect, 0.1<q< 0.3: small effect, 0.3<q<0.5: 

intermediate effect, q>0.5: large effect). 

 
 

2.6 Follow-up: Functional Decoding 
 

All significant clusters were in a last step functionally characterized using the Behavioral Domain 

meta-data from the BrainMap database (http://www.brainmap.org; (Fox and Lancaster 2002; Laird 

et al. 2009, 2011)). In particular, we identified those meta-data labels (describing the task that was 

performed [paradigm class] as well as the computed contrast [behavioral domain]) that were 

significantly more likely than chance to result in activation of a given cluster ((Henson 2005; 

Poldrack 2006)). That is, functions were attributed to the identified morphological effects by 



quantitatively determining which types of experiments are associated with activation in the 

respective region. 

 
 

3. Results 
 

3.1. Gender differences and factors correlations in NEO-FFI scores 
 

Comparison of the five personality scores between men and women (see Fig. 2) revealed a 

significant difference for neuroticism (t362 = -3.02; p <0.05, d = 0.31) and conscientiousness (t362= 

-2.7,   p<0.05,   d=0.29).  For  openness  (t362=  1.63,   ns.),   agreeableness  (t362  =-1.79,   ns) and 
 

extraversion (t362=0.43, ns) no significant gender differences were detected. 
 

Correlations between factors were calculated separately for males and females and across the whole 

sample using SPSS 20 (IBM Corp. Released, 2011). Most of them were significant at p<0.05 

(Bonferroni-corrected) for both males and females and across the entire sample; however openness 

was found to be independent of most of the other factors, especially in the female sample (see 

Table 1). Furthermore, neuroticism was the only factor correlating negatively with most of the 

others: with agreeableness, conscientiousness and extraversion in men and in the mixed sample, in 

women also with openness. 

Figure 2 and Table 1 about here please 
 
 
 

3.2. Association to GMV 
 

Across the entire sample, no significant correlation was found between any personality factor and 

GMV (controlling for age, TBV and gender). Likewise, our analyses revealed no significant 

relationships between any of the five personality factors and GMV in females (controlling for age 

and TBV). However, we found significant (p<0.05, FWE corrected) correlations in males. Negative 



correlations were found between neuroticism and GMV of bilateral parieto-occipital sulcus/cuneus 

(POS/Cun) extending into precuneus, left mid fusiform gyrus extending into cerebellum 

(lFFG/Cb), and right mid fusiform gyrus (rFFG). Positive correlations were found between 

extraversion and GMV of bilateral precuneus and parieto-occipital sulcus (Prc/POS), bilateral 

thalamus (Th), left mid FFG extending into the cerebellum (lFFG/Cb) and right cerebellum (rCb). 

Conscientiousness was positively correlated with GMV of left precuneus and parieto-occipital 

sulcus (Prc/POS) (Table 2 and Fig. 3, 4, 5). 

 
 

Table 2 and Figure 3, 4, 5 about here please 
 
 
 

Given that in the male sample, we found a significant relationship of GMV in the region of the left 

Prc/POS with conscientiousness, neuroticism and extraversion, we assessed a potential 

convergence between these effects by a minimum conjunction, confirming an association of a left 

left Prc/POS with all three NEO FFI scores (Table 3, Fig.6). The multiple regression model with 

all three predictors produced R² = 0.132, F(3, 178) = 9.0, p <0 .001; specifically, conscientiousness 

was the only significant predictor of the model (t178=2.3, p<0.05), while extraversion (t178=1.8, n.s.) 

and neuroticism (t178=-1.4, n.s.), did not explain any additional variance. 

Table 3 and Figure 6 about here please 
 
 
 

Another minimum conjunction was computed between the whole brain VBM results of neuroticism 

and extraversion revealing a further overlap in left FFG and right cerebellum (Table 4, Fig.7). 

 
 

Table 4 and Figure 7 about here please 



3.3. Follow-up: Gender differences in GMV-personality association 
 

All clusters that showed a significant association with one of the NEO FFI scores in males (cf. Fig. 

3.B, 4.B, 5.B ) also showed a significant gender-difference in the correlation between GMV and 

personality scores (Table 5). 

Table 5 about here please 
 

When comparing the GMV and NEO-FFI associations for the lPrc/POS, i.e., the core region 

identified in the three-way conjunction (relationship to conscientiousness, neuroticism and 

extraversion) between males and females, we also found a significant gender difference for all three 

scales (Table 6, Fig. 6.B). Likewise, assessing the clusters found in two-way conjunctions across 

NEO FFI scores (POS/Cun, left FFG and right cerebellum), also confirmed that the association 

between the GMV of these regions and the respective personality trait was significantly stronger 

in males (Table 6, Fig. 7.B). 

Table 6 about here please 
 
 
 

3.4. Follow-up: Functional characterization 
 

Functional decoding of the regions which correlated separately with neuroticism, extraversion and 

conscientiousness is shown in Fig. 3.C, Fig. 4.C and Fig. 5C. The functional decoding of the 

lPrc/POS found in the three-way conjunction (Fig.6.C) revealed that this region was significantly 

associated with explicit memory and perception of visual motion as well as action inhibition 

(p<0.05). The functional characterization of the clusters from the conjunction between neuroticism 

and extraversion (Fig 7.C), i.e., the only two-way conjunction yielding significant results outside 

the cluster already identified by the three-way conjunction, showed that the POS/Cun was 

associated with action observation, anxiety, olfactory and visual perception, as well as multiple 



cognitive processes (p<0.05). Finally, left FFG/Cb as well as right Cb were both associated to 

language processing, while the former was additionally related to emotion processing (p<0.05). 

4. Discussion 
 

The current morphometric study investigated the neural correlates of personality traits assessed by 

the NEO-FFI and potential gender differences thereof. We found no significant correlations 

between any personality scales and GMV when investigating relationships across the entire sample. 

In contrast, when the sample was split by gender, significant associations were observed in males 

but not females. This sexual dimorphism was corroborated by the significant differences in 

GMV/personality correlations between males and females for the respective clusters. Together, 

these findings thus demonstrate that gender is a fundamental factor to consider when trying to 

understand the morphological underpinnings of inter-individual differences in personality traits. 

 
 
 

4.1 Correlations among personality traits 

 
Correlations among the five personality traits (Table 1) revealed similar patterns as reported in the 

literature (Egan et al. 2000; McCrae and Costa 2004; van der Linden et al. 2010), with mostly 

negative correlations between neuroticism and the other factors, and positive ones between 

extraversion, agreeableness and conscientiousness. Furthermore, also in in line with previous 

reports (Egan et al. 2000; McCrae and Costa 2004; van der Linden et al. 2010) the lowest 

correlations were found between openness and the other factors, while the highest associations 

were observed for neuroticism with extraversion and neuroticism with consciousness (Egan et al. 

2000; McCrae and Costa 2004; van der Linden et al. 2010). However, several correlation 

coefficients that were observed when performing separate analyses for males and females were 

somewhat higher than those observed in previous studies (e.g. extraversion and neuroticism in 



males: -0.514; conscientiousness and extraversion in males: 0.449; conscientiousness and 

neuroticism in females: -0.428). It may be speculated that this may relate to the fact that some of 

our subjects were related to each other. However, when testing correlations only in a subsample of 

unrelated subjects, the higher than previously reported correlations persisted (Supplement Table 

1). It is important to note that the meta-analytic intercorrelations reported in Van Der Linden et al. 

(2010) were based on different personality questionnaires and that previous studies investigating 

the NEO-FFI computed correlations in gender-mixed samples (Egan et al. 2000; McCrae and 

Costa 2004; van der Linden et al. 2010). Therefore, the higher values might be due to the fact that 

we did separate analyses for males and females, while correlations across the entire sample are 

comparable to previous reports. We would therefor argue that the discrepancy between our (gender- 

separated) correlations and those previously observed for gender-mixed samples (which we 

confirmed when analyzing males and females from our sample together) indicate that not only the 

mean NEO-scores but also their correlation structure shows a sexual dimorphism. 

 
 
 

4.2 Gender differences in personality traits 

 
Previous studies investigating gender differences in NEO-FFI have shown that women score higher 

in neuroticism and agreeableness, while conscientiousness, extraversion and openness did not show 

significant differences (Costa et al. 2001; Chapman et al. 2007; Weisberg et al. 2011). In line with 

these studies, we observed higher neuroticism-scores for women but no significant gender 

differences in openness and extraversion. However, in contrast to previous studies, we failed to 

find a significant gender difference in agreeableness, and found that women scored higher for 

conscientiousness than men. We would propose that these discrepancies may be attributable to the 

constitution of the cohort, most importantly the parenting experience. Indeed agreeableness has 



been associated to motherhood and nurturance in females but not in males (Jokela et al. 2011) and 

this trait shows a significant increase around the age of 30 (Soto et al. 2011), when more often 

decisions about starting a family are taken. Since the HCP data consists of a young sample, we 

hypothesize that some women in our sample might not have had kids yet, resulting in a similar 

men’s mean score. When looking at mean agreeableness scores in older (32-35 years old) and 

younger females (22-27 years old) there is, indeed, an indication of an increasing score with age 

(younger: mean 30.8; older: mean 32.6) while in males the means are similar (younger: 30.5; older: 

30.7). On the other hand, our female sample scored significantly higher than males in 

conscientiousness. This might reflect a potential societal shift favoring (work-related) 

conscientiousness in young female cohorts and confirm the study from Jokela and colleagues 

(Jokela 2012), already demonstrating a birth-cohort effect on conscientiousness and agreeableness 

scores. 

 
 
 

4.3 Association of NEO-FFI scores to GMV across the entire sample 

 
The absence of any significant relationships between personality traits and regional GMV across 

the entire sample contradicts the biological model of the NEO-FFI suggested by De Young (2010) 

and other previous studies that supported such association (Omura et al. 2005; Gardini et al. 2009; 

Cremers et al. 2011; Kapogiannis et al. 2013; Lu et al. 2014). However, it may be noted that GMV- 

personality relationships are highly inconsistent over these previous studies in terms of location 

and direction. Part of this heterogeneity may be attributable to methodological differences and 

analytic variability between studies, including differences in personality questionnaires, whole- 

brain vs. regional analysis, differences in data preprocessing, variable types of statistical thresholds 

and (no) correction for multiple comparisons, different combinations of nuisance covariates (NCs, 



specifically age, gender and total brain size; cf (Hu et al. 2011)). However, we would argue that 

probably the usually rather small sample size, leading to spurious associations, is the major culprit. 

In that context, it is interesting to note that our findings are in line with those by Liu and colleagues 

(Liu et al. 2013) who assessed a large sample (227 subjects) in a similar age range using a 

comparable approach and likewise found no significant associations between NEO-FFI personality 

items and GMV. However, it has to be noted that Liu and colleagues neither found any correlations 

when investigating relationships separately for males and females. However, considering that the 

male sample only consisted of 59 subjects, small and moderate effects, like those in our study, 

might thus have been missed. 

Given that our study assessed a large and well-balanced sample, is by far the best powered to date, 

and capitalizes on the unprecedented data quality of the HCP project, the current negative result 

across both genders is particularly noteworthy given the backdrop of an inconsistent literature 

based on smaller samples. We would thus argue that the latter may have arisen from a combination 

of spurious associations in smaller samples (and/or liberal thresholding) and a publication bias 

towards positive findings (Wallentin 2009), a situation that may be a common problem in 

morphology/phenotype associations in basic and even more clinical neuroscience . 

 
 
 

4.4 Association of NEO-FFI scores to GMV in the male sample 

 
4.4.1 Convergence of Neuroticism, Extraversion and Conscientiousness 

 

It has already been reported that extraversion and conscientiousness scores correlate positively with 

each other and negatively with neuroticism (McCrae and Costa 2004). In our male subsample the 

neural correlates of all three traits overlap in the POS as well as in Prc (overlapping with cluster 1 

of the connectivity-based parcellation of Bzdok (Bzdok et al. 2014)), where their correlations with 



GMV resembled their correlation structure as higher extraversion and conscientious scores go 

along with higher GMV, whereas a lower amount of GMV is associated to higher neuroticism. 

We furthermore showed that this region is activated by task-fMRI studies probing visual (motion) 

perception, memory and action inhibition. It may thus be speculated that neuroticism, extraversion 

and conscientiousness should, via the morphological substrate of the lPrc/POS, relate to inter- 

individual performance in these functions. It has for example been shown that higher 

conscientiousness is associated to better performance in tasks requiring cognitive control and action 

inhibition, such as the Stroop (Bannon et al. 2002) and anti-saccade (Kelly et al. 2015) tasks. 

Similarly, higher extraversion goes along with an enhanced ability to ignore task-irrelevant 

information in a verbal Stroop task (Prabhakaran et al. 2012). Conversely, neuroticism is associated 

with a decreased ability to ignore irrelevant information (Prabhakaran et al. 2012). The later has 

been related to a “hypervigilance of threats” (Mogg and Bradley 1998; Richards et al. 2014), i.e., 

an adaptive behavior to perceive a potential risk faster, which comes at the cost of specificity and, 

consequently, less successful inhibition of irrelevant stimuli and response sets. While the 

association of personality traits to visual processing have received less attention, the positive 

relation between conscientiousness and (anti-) saccade task performance corroborates the above 

picture, as does the role of extraversion as a positive predictor of attentional control in visual 

classification or change detection tasks (Stenberc 1994). There have also been several reports 

linking higher extraversion, as well as lower neuroticism, to better (long-term) memory 

performance (Nakamura et al. 1979; Ashby et al. 1999; Allen et al. 2011). Finally, 

conscientiousness was shown to correlate positively with subjective memory (Pearman 2009), 

which in turn might reflects performance in objective mnemonic tasks (Zimprich and Kurtz 2015). 



In summary, we would thus argue that the observed convergence of morphometric substrates for 

neuroticism, extraversion and conscientiousness in the lPrc/POS may provide the structural 

correlate of the association between these personality traits and inter-individual performance- 

differences in the domains of action inhibition, visual perception and memory. 

 
 
 

4.4.2 Convergence of Neuroticism and Extraversion 
 

For the male subsample, additional convergence in the morphometric substrate for extraversion 

and neuroticism was found in the lFFG/Cb and rCb, regions associated to language and, in the case 

of lFFG/Cb, emotion, face and reward processing. This suggests a link between these personality 

traits and inter-individual performance difference in language tasks, which is supported, e.g., by 

previous work showing a positively association with extraversion, and a negative one with 

neuroticism for verbal fluency tasks (Sutin et al. 2011). Regarding the specific effects in the 

fusiform face region and the relation to emotion, we would speculate that individuals with higher 

extraversion spend more time with others resulting in use-dependent plasticity in face-selective 

regions. Alternatively, however, already higher GMV in face selective regions might lead to a 

stronger tendency to spend more time with others and hence even predispose towards an 

extraverted personality. 

In contrast, hypervigilance in high neuroticism might favor the detection of threats (Richards et al. 

2014), and concurrently impair the processing of the neutral faces and other emotions (Andric et 

al. 2015). With regard to reward sensitivity, there is evidence of an opposite role of approach 

(associated to extraversion) and avoidance (associated to neuroticism) on the anticipatory role of 

reward: approach relies on a higher sensitivity to social (Wilkowski and Ferguson 2014) and 



monetary (Ostaszewski 1996) rewards, while avoidance is associated with reduced responsiveness 

to incentives (Bress et al. 2013). 

4.5 Gender differences in brain structure-personality relationships 

 
Our analyses revealed not only several personality “hotspots” in males, but strikingly also failed to 

find any relationship in the female subgroup. This absence of localized morphology/personality 

relationships may well relate to observations that female brains are more decentralized (Zaidi 2010) 

and feature stronger interhemispheric structural connectivity (Ingalhalikar et al. 2014); i.e., are 

potentially ‘hard-wired’ towards multitasking (Zaidi 2010). In particular, such more distributed 

and integrated architecture may reduce the explanatory power of any local morphological effect. 

Another factor that likely plays a major role in the observed dimorphism is the effect of sex 

hormones, given their influence on personality (Daendee et al. 2013) and brain structure (De Vries 

2004). Both estrogens and progesterone, for example, influence neuroticism via antagonistic 

modulation of GABA receptors (Maggi and Perez 1986; Daendee et al. 2013), and have been 

hypothesized to play a crucial role in generating the higher neuroticism scores (Seeman 1997) that 

have been observed for females in several studies, including ours. These hormones also influence 

neuropsychological features related to personality obtained through the functional profile; for 

instance, estrogens positively modulate saccadic eye velocity (Wihlbäck et al. 2005), long-term 

memory (Barros et al. 2015) and self-regulation/inhibitory control (Hosseini-Kamkar and Morton 

2014), while progesterone negatively modulates saccadic eye velocity (van Broekhoven et al. 

2006), memory (Barros et al. 2015) and self-regulation (Hosseini-Kamkar and Morton 2014). 

Furthermore, their fluctuation over the menstrual cycle has been connected to neural changes, on 

both structural and functional level in different brain regions (Witte et al. 2010; Rasgon et al. 2014; 

Lisofsky et al. 2015). 



The influence of sex hormones on personality features and neurobiology, combined with their 

massive changes over the menstrual cycle in women and relative stability in men, may well explain 

the lack of significant results in the female sample. In particular, since we could not control for 

menstrual cycle in our sample, we must assume that female participants were scanned randomly in 

all phases of a natural menstrual cycle or under contraceptive medication, i.e., synthetic hormones. 

Given the ensuing variations in estrogens and progesterone levels, the female group should be 

substantially more heterogeneous than the male sample, which in turn should make it more difficult 

to detect associations between morphometric features and personality scores, if the increase in 

variance is not isomorphic between the phenotypical scores and (local) brain volume changes. In 

addition to the effects of female sex hormones, the higher levels of testosterone in males (Torjesen 

and Sandnes 2004) and its stable concentration across the life span (Liu et al. 2015) may also 

contribute to the differential findings. For example, testosterone is involved in regulating approach 

behavior and social status-seeking (Eisenegger et al. 2011) and therefore associated with 

extraversion (Smeets-janssen et al. 2015), but has also been shown to influence cortical thickness 

in cuneus and other visual areas (Bramen et al. 2012). Consequently, the above-discussed 

associations in males may reflect a common causal factor (i.e., testosterone) driving both 

morphometric features, personality and neuropsychological performance in various tasks. 

4.6 Clinical implications 

 
Personality traits may become themselves clinically relevant in their extreme forms as personality 

disorders (Miller et al. 2001). Rather and more importantly, they also seem to predispose towards 

multiple Axis-I disorders. For example, high neuroticism and low extraversion are associated with 

social, agora- and specific phobias (Bienvenu et al. 2007), high neuroticism, low extraversion and 

conscientiousness with depression (Weiss et al. 2009), low extraversion and high agreeableness 



with eating disorders (Tasca et al. 2009), high neuroticism and extraversion with substance abuse 

(Dubey et al. 2010). This strong link between personality traits and Axis-I disorders is corroborated 

by gender differences in prevalence. For example, mood, anxiety, social and eating disorders are 

more frequently found in females (Mclean and Hofmann 2011; Viana and Andrade 2012; Seney 

and Sibille 2014) c.f. (Afifi 2007), while substance abuse is more common in males (Compton et 

al. 2007; Viana and Andrade 2012). 

This convergence extends to the neurobiological level. For instance, depressed patients feature 

reduced GMV in the Prc/Cun (Grieve et al. 2013), which resonates well with its reduced volume 

in high neuroticism. Finally, in line with our result of decreased GMV in lPrc/POS going along 

with low extraversion, persistent GMV reduction of the precuneus has been demonstrated in 

anorexia (Joos et al. 2011). While more indirect evidence, it is also interesting to note that various 

Axis-I disorders also feature cognitive impairments in those domains that we found to be associated 

with the Prc/POS, i.e., the convergent structural substrate for multiple personality dimensions. In 

particular, it has been shown that patients with social anxiety demonstrate a lack of attentional 

control and difficulties in focusing on task-relevant stimuli (Derakshan et al. 2009; Wieser et al. 

2009) and that patients with depression show impairments involving visual attention, cognitive 

flexibility (Hoffstaedter et al. 2012; Doose-Grünefeld et al. 2015) and control (De Lissnyder et al. 

2012) as well as memory (Roca et al. 2015). 

In summary, our results in combination with previous findings suggest the Prc/POS as a key 

structure in the close relationship between personality traits, gender, major psychiatric disorders 

and changes in brain structure as well as neuropsychological profiles. Moreover, they also highlight 

the importance of assessing potential sexual dimorphisms of these relationships. 



4.7 Limitations 

 
It has to be acknowledged that our sample partially consists of related subjects, which might have 

influenced the present findings. Therefore, in order to test if the association of personality with 

GMV in POS, lFFG and rCB could be replicated in an unrelated (though substantially lower 

powered) sample, we reran our analysis again in a more restricted sample, consisting of 150 

unrelated subjects, with men and women matched for their zygosity, age and years of education. 

Also in this smaller group, we found a cluster located in the lPrc/POS, which GMV in males was 

positively associated to extraversion and negatively associated to neuroticism scores. However, 

correlations between lFFG and rCb with extraversion and neuroticism, as well as between lPrc/POS 

with conscientiousness could not be reproduced. These effects may thus have arisen from the 

family structure, although we would strongly argue that their absence could very likely be related 

to the much lower power in the now substantially smaller sample. In conclusion, the correlation 

between lPrc/POS and extraversion and neuroticism can be considered as stable and independent 

from genetic influences, while the associations with lFFG/Cb and rCb should be interpreted with 

caution, and should be replicated in a larger unrelated sample. 

Furthermore, the presented neuroanatomical changes associated with personality were found in 

males, who have generally larger brains than females (Ruigrok et al. 2014). It has previously been 

shown that volume of specific brain regions as well as inter- and intra-hermispheric connectivity 

differences between males and females may be related to brain size ((Hänggi et al. 2014; Pintzka 

et al. 2015) but compare (Im et al. 2006; Luders et al. 2009)). Therefore the question arises whether 

the effects of the current study, which are only observed in men, can be fully attributed to gender, 

or are (partially) also driven by brain size. While we controlled for total brain volume by using it 



as a covariate of no interest in our statistical models, we would still refrain from claiming that our 

results are purely attributable to gender. 

Lastly, we performed a surface-based analysis of cortical thickness and area in order to explore 

whether the correlations we found in VBM analysis could also be found in these more specialized 

measures of cortical morphometry. Results revealed a positive association in males between 

conscientiousness and cortical thickness of the lPOS at an uncorrected level (p<.001, uncorrected), 

while no correlations were observed with the traits of extraversion and neuroticism neither for the 

lPOS nor for lFFG. Thus, based on our results, we would argue that, though on an uncorrected 

level (p<0.001), the association between volume of lPOS and conscientiousness may be more 

related to changes in cortical thickness than surface area. However, given that the surface-based 

analyses yielded largely null-results it seems that grey matter volume is more sensitive in detection 

brain structure-personality relationships than either of its two constituents, i.e., cortical thickness 

or surface area. These results support the notion of GMV as a gross but robust anatomical index 

for morphometric changes, providing a mixed measure of regional grey matter properties including 

cortical surface area, thickness and potentially folding. Consequently, the more specialized SBM 

measures might fail to detect changes driven by interactions of multiple surface-based features and, 

consequently, when used in isolation, significant associations with performances might not be 

revealed (Smolker et al. 2015). 

4.8 Summary and Conclusion 

 
Our study challenges existing notions on morphological substrates for personality traits, by 

yielding a negative result in a well-powered analysis of high-quality data in a balanced sample. 

Additionally, it demonstrates that relationships between personality traits and brain structure are 

highly dependent on gender. This observation is corroborated by converging neuropsychological 



and clinical evidence supporting a similar sexual dimorphism. We also identified the left precuneus 

as a convergent substrate for neuroticism, extraversion and conscientiousness in males. This region 

was functionally implicated by our analysis in cognitive control, visual perception and memory, 

i.e., mental functions that show robust relationships to the aforementioned personality traits. 

Extraversion and neuroticism converged also in the left fusiform gyrus and right cerebellum, 

regions related to emotion processing and language skills that are likewise related to personality. 

Taken together, our study provides a critical view on previous links between brain structure and 

personality traits, revealing the precuneus as a key region linking personality, gender, mental 

functions and psychiatric disorders, and highlighting the need to account for sexual dimorphisms 

when trying to unravel the complex relationships between these aspects. 
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Table 1: Intercorrelations (Pearson’s r) among the five personality factors in males (n=182), 
females (n=182) and across the overall sample (n=364) 

 

 Neuroticism Extraversion Openness Conscientiousness Agreeableness 

Neuroticism Males - -0.5140*/ 0.1001/ 0.3996*/ -0.3260*/ 
 

Females 

Overall 

-0.3190*/ 
 

-0.416* 

-0.0204/ 

0.028 

-0.4287*/ 
 

-0.383* 

-0.3565*/ 
 

-0.320* 

Extraversion  Males 

Females 

Overall 

- - 0.0319/ 

0.0741/ 

0.055 

0.4490*/ 
 

0.2624*/ 
 

0.351* 

0.3398*/ 
 

0.2378*/ 
 

0.285* 

Openness  Males 

Females 

Overall 

- - - -0.1888*/ 
 

-0.0557/ 
 

-0.136* 

0.2009*/ 
 

0.1299/ 
 

0.157* 

Conscientiousness Males 

Females 

Overall 

- - - - 0.2802*/ 

0.1414/ 

0.225* 
 

 

Agreeableness - - - - - 
 

* marks significance at p < 0.05 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Regions where GMV was found to be correlated with Neuroticism, Extraversion and 

Conscientiousness in the male sample 



Regions 
 

(size in voxels) 
 

Parieto-occipital sulcus/ 

X Y Z Cytoarchitectonic Assignments 
 
 

Neuroticism 
0 -78 13 left hOc1 (left hOc3d; right hOc1; left 

 

Cuneus    hOc1) 

(6053 voxels)     

Left fusiform gyrus/ -46 -49 -28 left lobule VIIa Crus I (left FG2; left lobule 

cerebellum    VIIa crus II; left lobule VI) 

(1027 voxels)     

Right fusiform gyrus 42 -48 -25 right FG2 (right lobule VI; right lobule 

(297 voxels)   
 

E 

VIIa crus I) 
 
xtraversion 

Precuneus/parieto- -1 -69 33 left hOc1 (right hOc1; right Area 5L; left 

occipital sulcus    hOc3d) 

(11.001 voxels)     

Thalamus 9 -31 0 right Th-temporal (right Th-Parietal; left 

(621 voxels)    Th-Prefrontal; right Subiculum) 

Left fusiform gyrus/ -46 -48 -28 left lobule VIIa crus I (left FG2; left lobule 

Cerebellum    VI) 

(213 voxels)     

Right cerebellum 13 -81 -21 right lobule VIIa crus I (right lobule VI; 

(444 voxels)    right hOc4v; right hOc3v) 

 
Left precuneus/parieto- 

occipital sulcus 

(491 voxels) 

Conscientiousness 
-9 -73 30 left hOc4d (left hOc3d; left Area 7P; left 

Area 7M) 

 
 

x, y and z coordinates denote the center of gravity in MNI space. 

Reference for probabilistic cytoarchitectonic mapping of: hOc1 (Amunts et al. 2000); hOc3d, hOc4d (Kujovic et al. 
2013); lobule VIIa crusI and lobule VI (Diedrichsen et al. 2009); FG2 (Caspers et al. 2013); Area 5L, 7P, 7M 
(Scheperjans et al. 2008); hOc3v and hOc4v (Rottschy et al. 2007); Th-temporal, Th-parietal, Th-prefrontal and 
Subiculum (Behrens et al. 2003) 

Table 3: Results of the three-way conjunction across the analyses of Neuroticism, 

Extraversion and Conscientiousness in the male sample 



Regions X Y Z Cytoarchitectonic Assignments 

(size in voxels)     

 
Neuroticism, Extraversion and Conscientiousness 

Left precuneus/parieto- 

occipital sulcus 

(477 voxels) 

-9 -73 30 left hOc4d (left hOc3d) 

 
 

x, y and z coordinates denote the center of gravity in MNI space. 

Reference for probabilistic cytoarchitectonic mapping of: hOc4d (Kujovic et al. 2013) 
 
 
 

Table 4: Results of the two-way conjunction across the GMV results of Neuroticism and 

Extraversion 
 

Regions X Y Z Cytoarchitectonic Assignments 

(size in voxels)     

 
Neuroticism and extraversion 

Parieto-occipital sulcus/ -2 -76 19 left hOc1 (right hOc1, left hOc3d 

Cuneus    left hOc2) 

(4082 voxels)     

Left fusiform gyrus/ -46 -49 -27 left lobule VIIa crus I (left FG2, left 

cerebellum    lobule VI) 

(189 voxels)     

Right cerebellum 16 -78 -19 right lobule VI (right hOc4v, right 

(166 voxels)    lobule VIIa crus I, in right hOc3v) 

x, y and z coordinates denote the center of gravity in MNI space. 

Reference for probabilistic cytoarchitectonic mapping of: hOc1 and hOc2 (Amunts et al. 2000); hOc3d (Kujovic et 
al. 2013); lobule VIIa crusI and lobule VI (Diedrichsen et al. 2009); FG2 (Caspers et al. 2013); hOc3v and hOc4v 
(Rottschy et al. 2007) 



Table 5: Gender differences in GMV-Personality associations in regions individually 

correlating with neuroticism (POS/Cun, lFFG/Cb, rFFG), with extraversion (Prc/POS, Th, 

lFFG/Cb, rCb) and with conscientiousness (lPrc/POS) 

rmales rfemales Z value of gender comparison of r: 

(Zmales-Zfemales)/σ(Zmales-Zfemales) 

Neuroticism 

Cohen’s q of 

gender difference 

POS/Cun -0.27 * 0.01 -2.7* 0.31 

lFFG/Cb -0.36* 0.15 -4.8* 0.53 

rFFG -0.38* 0.07 -4.4* 0.38 

Extraversion 

Prc/POS 0.29* -0.05 3.3* 0.35 

Th 0.32* -0.07 3.8* 0.4 

lFFG/Cb 0.46* -0.11 5.7* 0.6 

rCb 0.31* -0.01 3.1* 0.3 

Conscientiousness 

lPrc/POS 0.3* 0.05 2.9* 0.3 

* marks a significant correlation coefficient or gender difference. 
 
 
 

Table 6: Gender differences in GMV-Personality associations of the regions found in the 

three-way conjunction region (lPrc/POS) and in the two-way conjunction (POS/Cun, 

lFFG/Cb, rCb) 

 
 
 

lPrc/POS 

rmales rfemales Z value of gender comparison of r: 

(Zmales-Zfemales)/σ(Zmales-Zfemales) 

Cohen’s q of 

gender difference 

 

Neuroticism -0.27* 0.04 -2.24* 0.31 

Extraversion 0.29* 0.07 2.16* 0.20 

Conscientiousness 0.30* 0.04 2.54* 0.27 

POS/Cun 

Neuroticism -0.3* 0.0 -2.9* 0.31 



Extraversion 

lFFG/Cb 

0.29 * -0.07 3.5* 0.37 

Neuroticism -0.33* 0.11 -4.7* 0.45 

Extraversion 0.33* -0.1 4.2* 0.35 

rCb 

Neuroticism 

 

-0.28* 

 

0.0 

 

-2.7* 

 

0.28 

Extraversion 0.31* 0.02 3.2* 0.3 
 
 

* marks a significant correlation coefficient or gender difference. 



Figure Legends 
 

Fig.1 Distribution of siblings in the male and female sample with their relative zygosity (Not 

Twin, Dizygotic, Monozygotic). Groups’ abbreviations: m (males with no siblings); f (females 

with no siblings); m:m (males who have at least another male sibling); f:f (females with at least 

another female sibling); m:f (males with at least a female sibling); f:m (females with at least a 

male sibling); m:f+m (males with at least a male and a female sibling); f:m+f (females with at 

least a male and a female sibling). 

Fig.2 Mean scores of the five NEO FFI personality scales (neuroticism, extraversion, openness, 

conscientiousness and agreeableness) separately for males (orange) and females (violet); error bars 

represent standard errors. Significant differences between males and females, marked by a star, 

were found for neuroticism and conscientiousness. 

Fig.3 Neural correlates of neuroticism in males. (A): Whole brain VBM results revealing negative 

relationships between neuroticism and GMV of POS/Cun, lFFG/Cb and rFFG in males. (B): 

Correlations between neuroticism and GMV in POS/Cun, lFFG/Cb and rFFG separately for males 

and females, with negative correlations in males but no correlation in females. (C): Functional 

decoding of the regions POS/Cun, lFFG/Cb and rFFG; behavioral domains at p<0.05 uncorrected 

for multiple comparison 

Fig.4 Neural correlates of extraversion in males. (A): Whole brain VBM results revealing positive 

relationships between extraversion and GMV of Prc/POS, Th, lFFG/Cb and rCb in males. (B): 

Correlations between extraversion and GMV in Prc/POS, Th, lFFG/Cb and rCb separately for 

males and females, with positive correlations in males but no correlation in females. (C): Functional 

decoding of the regions Prc/POS, Th, lFFG/Cb and rCb; behavioral domains at p<0.05 uncorrected 

for multiple comparison. 



Fig.5 Neural correlates of conscientiousness in males. (A): Whole brain VBM results revealing 

positive relationships between conscientiousness and GMV of Prc/POS in males. (B): Correlations 

between extraversion and GMV in Prc/POS separately for males and females, with positive 

correlations in males but no correlation in females. (C): Functional decoding of the regions 

Prc/POS; behavioral domains at p<0.05 uncorrected for multiple comparison. 

Fig.6 Three-way conjunction across the results of neuroticism, extraversion and conscientiousness. 

(A): Results of the minimum conjunction analysis across the three traits revealing a cluster in 

lPrc/POS where GMV significantly correlated with all 3 personality scores in the male but not 

female sample. (B): Individual correlations between neuroticism, extraversion and 

conscientiousness and GMV in lPrc/POS separately for males and females, with negative 

correlations in males but no correlation in females. (C): Behavioral characterization of lPrc/POS at 

p<0.05, uncorrected for multiple comparison. 

Fig.7 Two-way conjunction across the results of neuroticism and extraversion. (A): Results of the 

minimum conjunction analysis between these two traits revealing bilateral POS/Cun, lFFG and 

rCb. (B): Individual correlations between neuroticism and extraversion and GMV in POS/Cun, 

lFFG/Cb and rCb separately for males and females, with negative correlations in males but no 

correlation in females. (C): Behavioral domains significantly associated with POS/Cun, lFFG/Cb 

and rCb at p<0.05 uncorrected for multiple comparison. 



Supplementary Material 
 

Gender differences in questionnaire results 
 

Homogeneity of variances between groups was not violated for any factor, as assessed by Levene’s 

Test for Equality of Variances, and therefore independent-samples two-tailed t-tests were run on 

SPSS 20 to determine if there were differences in personality traits between males and females. 

Results were regarded as significant at p<0.05 (Bonferroni-corrected). In case of significant group 

differences, effect sizes (Cohen’s d) were calculated to quantify effect sizes. 

Females described themselves as being more neurotic (x̅ =17.8, s=7.2) and more conscientious (x̅ 

=35.2, s = 5.6) compared to males (N: x̅ = 15.5, s=7.6; C: x̅ =33.5, s=6.2), resulting in a significant 

difference (N: t362 = -3.02; p <0.05, d= 0.31; C: t362 =-2.7, p<0.05, d=0.29). For openness (t362= 

1.63, ns. males: x̅ =28.8, s =6.4; females x̅ =27.7, s=6.2), agreeableness (t362 =-1.79, ns; males: x̅= 
31, s =5 and females: x̅ = 31.9, s =4.9) and extraversion (t362=0.43, ns; males: x̅ = 30, s = 6.1 and 

females: x̅ =29.8, s=6.2) no significant gender differences were detected. 

 

Cortical thickness and surface area analyses 
 

In this follow-up analysis we tested whether brain structure-personality relationships in Prc/POS 

or FFG, as observed in the VBM analysis, could also be found when specifically assessing cortical 

thickness or surface area. 

 
 

Methods 
 

We used individual surface-based data obtained by the preprocessing pipelines of the Human 

Connectome Project (Glasser et al. 2013). Preprocessing was carried out using a modified 

Freesurfer implementation, a detailed description of which is available at 



http://www.humanconnectome.org/documentation/S500/HCP_S500_Release_Reference_Manual 
 

.pdf, in order to align individual surface models across subjects and perform a group analysis. 
 

Statistical analysis was implemented via the SturfStat Matlab toolbox 

(http://www.math.mcgill.ca/keith/surfstat). Multiple regression analysis was conducted using the 

same statistical models as were tested in the VBM study; i.e., for the analyses on the entire sample 

(364 participants) we included age, total brain volume (TBV), and gender as covariates of no 

interest. For the within-gender analyses only age and TBV were added. 

 
 

Results 
 

The cortical thickness (CT) analysis revealed no significant associations of CT with extraversion, 

neuroticism and conscientiousness in the regions indicated by the VBM when correcting for 

multiple comparisons, neither across the whole sample, nor in males or females separately. 

Nevertheless, on an uncorrected level (p<0.001), we were able to identify a positive significant 

association in males between the thickness of the left parieto-occipital sulcus (lPOS) and 

conscientiousness. 

The analysis of the cortical surface area revealed no significant associations with the three traits 

neither when correcting for multiple comparisons, nor at p<0.001 uncorrected. 

 
 
 
 

VBM analyses on sample of unrelated subjects 

 
The aim of this supplementary analysis was to test, whether we still find correlations between GMV 

of Prc/POS, lFFG, rCB with personality when restricting the analyses to unrelated subjects only. 



 
 
 
 
 

Unrelated subjects sub-sample 
 

Participants were selected from the initial sample of 364 individuals but, this time, we included 

only one individual per family. Males and females were matched with regard to zygosity (not twin, 

dizygotic and monozygotic) as well as age and years of education. This resulted in an unrelated 

sample of 75 men (58 not twins, 11 dizygotics and 6 monozygotics; mean age 28.64 ±   3.36, 

education 14.92 ±  1,68) and 75 women (58 not twins, 11 dizygotics and 6 monozygotics; mean 
 

age 28.75 ± 3.31, education 14.93 ± 1,76). 

 
Correlations among factors 

 

Supplementary Table 1: Correlations (Pearson’s r) among the five personality factors in an 

unrelated subsample of males (n=75), females (n=75). 

 
 
 
 
 
 
 
 
 
 

0.119/ 0.307*/ 0.310*/ 
 
 
 
 
 
 
 
 
 
 
 

Overall 
 

0.240* 
 

 

 Neuroticism Extraversion Openness Conscientiousness Agreeableness 

Neuroticism Males - -0.525*/ 0.244*/ -0.447*/ -0.303*/ 
 Females  -0.365*/ -0.099/ -0.471*/ -0.518*/ 
 Overall  -0.445* 0.071 -0.433* -0.412* 

Extraversion Males 
Females 

- - 0.045/ 0.501*/ 0.361*/ 

 
Overall 

 
0.040 0.405* 

 
0.333* 

Openness Males - - - -0.220/ 0.316*/ 
 Females -0.047/ 0.213/ 
 Overall -0.142 0.260* 

Conscientiousness Males 

Females 

- - - - 0.286*/ 

0.215/ 



 
 

Agreeableness - - - - - 
 

 
 

Association to GMV 
 

Across the entire sample, no significant correlation was found between any personality factors and 

GMV (controlling for age, TBV and gender). Likewise, our analyses revealed no significant 

relationships between any of the five personality factors and GMV in females (controlling for age 

and TBV). However, in males, a negative correlation with neuroticism and a positive correlation 

with extraversion were found for GMV of lPrc/POS. 
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Abstract 
Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory 
functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional 
connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting 
individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta- 
analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all 
networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males 
and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation 
prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing 
social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, 
Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males 
or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new 
insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC–personality rela- 
tions should not be considered independently of gender. 

Keywords Functional networks · Gender differences · Hormonal influence · Machine learning · NEO-FFI · Resting-state 
functional connectivity 
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Introduction 

Inter-individual differences in personality permeate all 
aspects of life, from affective and cognitive functioning to 
social relationships. One of the most comprehensive and 
most widely recognized models of personality is the Five- 
Factor Model (FFM; Costa and McCrae 1992), consisting 
of five broad dimensions: Openness to experience/Intel- 
lect, Extraversion, Neuroticism, Agreeableness, and Con- 
scientiousness. Openness to experience/Intellect reflects 
the engagement with aesthetic/sensory and abstract/intel- 
lectual information, as well as the degree of appreciation 
and toleration for the unfamiliar (Nicholson et al. 2002; 
Fleischhauer et al. 2010; Fayn et al. 2015). Extraversion 
relates to approach behaviour of driving toward a goal that 
contains cues for reward, and tendency to experience posi- 
tive emotions given by the actual attainment of that goal 
(Depue and Collins 1999; DeYoung 2015). Neuroticism 
relates to a person’s emotional life and reflects the tendency 
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to heightened emotional reactivity to negative emotions 
(Goldberg and Rosolack 1994; Rusting and Larsen 1997; 
Gray and Mcnaughton 2000). Agreeableness relates to inter- 
personal behaviour and reflects the degree of avoidance of 
interpersonal conflicts (stability between individuals) (Gra- 
ziano et al. 2007; Butrus and Witenberg 2013). Conscien- 
tiousness reflects the degree to which individuals perform 
tasks and organize their lives, exhibiting a tendency to show 
self-discipline, act dutifully, and aim for achievement (sta- 
bility within individuals) (Ozer and Benet Martínez 2006; 
Roberts et al. 2009) (cf. for more details McCrae and Costa 
2004; DeYoung and Gray 2009). 

Since the FFM of personality is based on language 
descriptors of adjectives applied to human and human 
behaviour in English lexicon, rather than neurobiological 
features, many attempts have been made to explore the 
neural bases of these five factors. At first, each trait has 
been associated with its most crucial and characterizing 
psychological functions (e.g., Neuroticism and Extraver- 
sion to sensitivity to punishment and reward, respectively, 
Agreeableness to social processes, Conscientiousness to 
top–down control of behaviour and Openness cognitive 
flexibility), and hypotheses have been developed about the 
associations between brain systems supporting those psy- 
chological functions, and the respective trait, paving the 
way for a biology of personality traits (c.f. DeYoung and 
Gray 2009). It has, therefore, been suggested that Neuroti- 
cism is associated (functionally or structurally) to affec- 
tive regions that had been linked to respond to threat and 
punishment like amygdala, hippocampus, cingulate cortex, 
and medial prefrontal cortex (Kumari 2004; Cremers et al. 
2010; DeYoung et al. 2010; Tzschoppe et al. 2014; Mad- 
sen et al. 2015; Pang et al. 2016). Extraversion has been 
linked to regions responding to reward-related stimuli like 
nucleus accumbens, striatum, amygdala, and orbitofron- 
tal cortex (DeYoung et al. 2010b; Adelstein et al. 2011; 
Pang et al. 2016, c.f.; Lei et al. 2015). Conscientiousness 
has been related to the lateral prefrontal cortex (Asahi 
et al. 2004; Passamonti et al. 2006; DeYoung et al. 2010; 
Kunisato et al. 2011), deputed to the planning, following 
complex rule and voluntarily control of behaviour. Simi- 
larly, Openness has also been associated with the functions 
of the lateral PFC (DeYoung et al. 2005; Kunisato et al. 
2011), but, in contrast to Conscientiousness, more because 
of its role in attention, working memory, and cognitive 
flexibility. Finally, Agreeableness has been associated 
with regions involved in the processing of social informa- 
tion, such as temporo-parietal junction, superior temporal 
gyrus and posterior cingulate cortex (Hooker et al. 2008; 
DeYoung et al. 2010; Adelstein et al. 2011). However, 
the associations between brain systems underlying spe- 
cific mental functions and personality traits might be more 
complex than such one-to-one mapping; instead, it is much 
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more plausible that the mapping between traits and brain 
systems is rather many-to-many (c.f. Yarkoni 2015; Allen 
and DeYoung 2016). One example is provided by Neu- 
roticism, which has not only been associated to affective 
regions, but also to regions exerting cognitive functions, 
e.g., dlPFC (Kunisato et al. 2011; Pang et al. 2016), or 
behavioural performances probing attention (MacLean and 
Arnell 2010), working memory (Studer-Luethi et al. 2012), 
verbal fluency (Sutin et al. 2011), and explicit memory 
(Pearman 2009; Denkova et al. 2012). It is, there- fore, 
possible that these systems (affective and executive) both 
contribute in explaining variance in Neuroticism. The 
potential contribution of other regions rather than the ones 
originally suggested also holds for other traits. For exam- 
ple, increasing evidence points to a link between Openness 
and the functional organization and global efficiency of the 
default mode network (DeYoung 2014; Sampaio et al. 
2014; Beaty et al. 2016). Similarly, even if not directly 
investigating the trait of Agreeableness, there is evidence 
(Gazzola et al. 2006; c.f.; Iacoboni 2009) showing a pos- 
sible association between one of its facet, empathy, with 
the mirror neuron system. 

Furthermore, one of the major challenges of using func- 
tional studies for the association between personality traits 
and brain systems is the fact that the latter can only be based 
on specific implementations such as behavioural tests or 
paradigms used in experimental research. Moreover, there 
is a general consensus that mental functions arise from the 
coordinated activity within distributed networks rather than 
any individual brain region (Eickhoff and Grefkes 2011). 
Therefore, relating a personality trait to a particular function 
only because a brain region correlates with both is problem- 
atic. These considerations have prompted a network-centered 
perspective of brain organization (c.f. De Vico Fallani et al. 
2014), highlighting the importance of functional integration 
for mental processes and their inter-individual differences. 
However, this approach, which requires a priori defined 
seeds, suffers from an important methodological limita- 
tion. That is, by choosing pre-defined nodes from a single 
task-based fMRI study, the findings might be biased toward 
that particular paradigm operationalization. Furthermore, 
task-based fMRI literature often suffers from low statistical 
power and low reproducibility, due to the small sample sizes 
typically used and considerable heterogeneity in the analysis 
pipeline (cf. Samartsidis et al. 2017). To solve the problem 
of a more objective definition of relevant nodes in a given 
functional network, quantitative meta-analyses of task-based 
neuroimaging studies aggregate the findings of many indi- 
vidual task-activation studies into a core network represent- 
ing those locations that are reliably recruited by engaging 
in a given kind of mental process (cf. Fox et al. 2014). The 
investigation of RSFC in meta-analytically defined networks 
representing specific social, affective, executive, or memory 
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functions, therefore, provides a viable approach to capturing 
the complex intrinsic neural architecture underlying person- 
ality (Adelstein et al. 2011; Sampaio et al. 2014). 

Given that network connectivity data are almost inevi- 
tably high-dimensional, consisting of many correlated fea- 
tures, univariate analyses of associations between connectiv- 
ity measures and phenotypical traits such as personality may 
not represent an optimal strategy (Orrù et al. 2012). Moreo- 
ver, univariate analyses will likely fail to elucidate associa- 
tions that depend on the pattern of connectivity within a 
network rather than any specific individual connection. On 
the other hand, machine learning and multivariate pattern 
analysis (MVPA), suitable for analysing neuroimaging data 
(cf. Oktar and Oktar 2015; Gael; Varoquaux and Thirion 
2014), provides an approach that overcomes these limita- 
tions by searching for patterns in the connectivity matrix that 
allow the prediction of a continuous target variable (Doyle 
et al. 2015). In this article, the term “prediction” refers to the 
out-of-sample evaluation of a statistical model’s ability to 
predict the personality score for previously unseen individu- 
als based on their RSFC. The potential of such approaches 
to predict behavioural scores from resting-state connectivity 
data has already been demonstrated with respect to sustained 
attention (Rosenberg et al. 2016), autistic traits (Plitt et al. 
2015), and impulsivity in economic decision-making (Li 
et al. 2013). Conversely, personality traits have been pre- 
dicted from cyber records such as personal websites (Marcus 
et al. 2006) or social networks (Golbeck 2011; Golbeck et al. 
2011; Bachrach et al. 2012) but not yet from neuroimaging 
data. 

Bringing together the different aspects outlined above, 
the current study explored whether individual levels of five 
major personality traits can be predicted from RSFC pro- 
files in a priori defined brain networks representing specific 
cognitive functions. The selection of the networks used a 
priori knowledge based on the associations reported in the 
literature between psychological functions (and deputed net- 
works) with personality. Accordingly, we chose functional 
networks associated with affective (emotion processing, 
reward, and pain) functions given their main associations 
with both Extraversion and Neuroticism, social (empathy 
and face processing) functions in relation to Agreeable- 
ness, executive functions as linked to Conscientiousness 
and Openness (vigilant attention and working memory to 
represent, respectively, rigid control and flexibility), and 
memory (autobiographic and semantic) functions as many 
traits were also found to be associated with them. However, 
it is important to note that we refrained from having hypoth- 
eses about network—predicted traits associations, since we 
believe that multiple brain systems, among the selected ones, 
can contribute to explaining inter-individual variance in one 
trait (e.g., Openness being predicted from networks outside 
the executive domain). We additionally used a network with 

whole-brain coverage consisting of 264 nodes (we here refer 
to it as Connectome; Power et al. 2011) to predict the five 
personality traits to test if personality can be better predicted 
by specific functional networks or a rather unspecific whole- 
brain network. In addition, in light of the previous findings 
of sexual dimorphism in the relationships between brain 
structure and personality traits (Nostro et al. 2016) as well as 
gender differences in RSFC (Allen et al. 2011; Filippi et al. 
2013; Hjelmervik et al. 2014; Weis et al. 2017) and person- 
ality (Yang et al. 2015), these analyses were performed in  
a gender-mixed sample as well as separately in male and 
female subsamples. 

 
Materials and methods 

Participants 
 

All data were obtained from the Human Connectome Pro- 
ject (HCP) WU-Minn Consortium as provided in the cur- 
rent “S1200” release (http://www.humanconnectome.org, 
Van Essen et al. 2013). The HCP was funded by the 16 NIH 
Institutes and Centers that support the NIH Blueprint for 
Neuroscience Research; and by the McDonnell Center for 
Systems Neuroscience at Washington University. Our analy- 
ses of the HCP data were approved by the ethics committee 
of the Heinrich Heine University Düsseldorf. 

The HCP sample is composed of monozygotic and dizy- 
gotic twins as well as not-twins, the latter including siblings 
of twins, just siblings, and only-children (including those 
that have an as-yet not scanned sibling but not twin). Given 
this structure of related and unrelated subjects, we paid par- 
ticular attention to select a well-matched sample of males 
and females that was as large as possible, while, at the same 
time, controlling for possible effects of heritability by creat- 
ing a sample of only unrelated subjects. Evidently, we first 
selected all participants from the HCP sample for whom 
resting-state fMRI volumes and personality data were avail- 
able. Out of this sample, we then selected groups of unre- 
lated males and females (i.e., only one representative of a 
given family), matched for age, years of education, and twin 
status. This last match (twin or not twin) was preferred over 
the match for zygosity (not twin, dizygotic or monozygotic) 
as it enabled us to select a higher number of participants 
while not introducing dependencies in the sample. In fact, 
Kolmogorov–Smirnov test showed that zygosity does not 
lead to any significant difference in the five scores distribu- 
tion, cf. supplementary Table S1. Importantly, we created a 
first main sample (Sample 1), where we aimed for the high- 
est number of participants according to the inclusion criteria, 
but, since a considerable number of individuals were left out 
from the first selection, we additionally created a “replica- 
tion” sample, (Sample 2). Sample 2 was thus created by 
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removing the subjects belonging to the Sample 1 from the 
main release (S1200) and re-applying the selection criteria 
on the remaining participants. 

The final selection procedure of Sample 1 resulted in a 
total of 420 subjects: 205 males (119 non-twins, 91 twin 
subjects; aged 22–37 years, mean: 28.3 ± 3.5; years of edu- 
cation: 14.9 ± 1.8) and 205 females (117 non-twins, 93 twin 
subjects; aged 22–36 years, mean: 28.8 ± 3.5; years of edu- 
cation: 15.0 ± 1.8). 

From the remaining subjects not selected for Sample 1, 
Sample 2 was obtained resulting in a sample of 302 subjects: 
151 males (75 non-twins, 76 twins subjects; aged 22–36 
years, mean: 28.2 ± 3.4; years of education: 14.8 ± 1.8) and 
151 females (76 non-twins, 75 twin subjects; aged 22–35 
years, mean: 28.9 ± 3.5; years of education: 15.0 ± 1.8). For 
an overview on the samples selection, see Fig. 1. 

In addition, Sample 1 and Sample 2 were combined to 
form the largest group of subjects available from the HCP 
data that are gender-balanced and matched for age and edu- 
cation (Sample 3). This allowed us to investigate the stability 
of the results discovered in the two unrelated samples (i.e., 
that did not contain related individuals) and screen for addi- 
tional relationships. The latter, however, need to be taken 
with caution, as the pooled sample does systematically con- 
tain closely related individuals (siblings and twins). Please 
refer to the supplementary material for a more detailed over- 
view of the sample and the results of this analysis. 

Self-report data 
 

Personality was assessed using the English-language ver- 
sion of the NEO Five-Factor Inventory (NEO-FFI; McCrae 
and Costa 2004). The NEO-FFI consists of 60 items in the 
form of statements describing behaviours that are char- 
acteristic for a given trait, 12 for each of the five factors 
(Openness, Conscientiousness, Extraversion, Agreeable- 
ness, and Neuroticism). Each factor is assessed by aggre- 
gating individual responses given on five-point Likert- 
type ratings scales, yielding sum scores between 0 and 60 
for each factor. Data were analyzed using SPSS 20 (IBM 
Corp. Released 2011); scores of males and females were 
compared via t tests (p < 0.05, Bonferroni-corrected for 
multiple comparisons) for each personality trait. In case 
of significant group differences, we estimated effect sizes 
using Cohen’s d measure (Cohen 1988). Furthermore, 
correlations among factors were calculated and tested 
for significance (Bonferroni-corrected) separately for 
males and females (for details, see supplementary mate- 
rial). Importantly, as  reported on  the HCP listserv (https 
://www.mail-archive.com/hcp-users@humanconnectome 
.org/msg05266.html), the Agreeableness factor score in the 
HCP database was erroneously calculated due to item 59 
not reversed. We addressed this issue by reversing it and 
using the correct score of Agreeableness. 

 
 
 
 
 

 
 

Fig. 1 Samples selection overview: first Sample 1 (or “main” sam- 
ple) was created aiming for the largest number of participants. Once 
430 subjects were selected for this sample, the same procedure was 
applied on the remaing subjects of the HCP to generate Sample 2 
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(or “replication” sample). The two samples result in this was related 
to each other (as siblings of the subjects in Sample 1 are present in 
Sample 2), but, within each sample, there are no subjects related to 
each other 
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the coordinates of this Connectome, please refer to the sup- 
plementary Table S2 of Power et al. 

Resting-state fMRI data: acquisition, preprocessing, 
We selected nine meta-analytic networks representing 
regions consistently activated by various social, affective, 
executive, and memory functions. Specifically, we used two 
networks related to social cognition: empathy (Emp; Bzdok 
et al. 2012) and static face perception (Face; Grosbras et al. 
2012); three networks related to affective processing: reward 
(Rew; Liu et al. 2011), physiological stress/pain (Pain; 
Kogler et al. 2015), and perception of emotional scenes and 
faces (Emo; Sabatinelli et al. 2011); two networks related to 
executive functions: working memory (WM; Rottschy et al. 
2012) and vigilant attention (VA; Langner and Eickhoff 
2013); two networks related to long-term memory: auto- 
biographic memory (AM; Spreng et al. 2008) and semantic 
processing (SM; Binder et al. 2009). 

Selection of coordinates 
 

From each meta-analysis, we selected the reported coordi- 
nates of the networks to include in our analyses and mod- 
elled a 6-mm sphere around each coordinate. This ensured 
that all nodes were represented by region of interest of 
equal size (ROIs) within and across networks. Within each 
single network, we only selected peaks that either repre- 
sented different anatomical regions, preventing multiple 
representations of a single region, or were at least 15 mm 
apart from each other [according to the SPM anatomy tool- 
box 2.1; (Eickhoff et al. 2005, 2007)]. In cases of multiple 
peaks within an anatomical region that were closer to each 
other, we included the peak showing the highest Z-score. 
Please note that these criteria were only applied for multiple 
regions within a single network, while we did not exclude 
any regions that were found also in another network. That is, 
even if different networks featured peaks at the same loca- 
tion, these presumably shared nodes were retained. Given 
that little is yet known about the effect of the networks’ sizes 
on the outcome predictability, we also had to consider the 
size of the networks (i.e., number of nodes) to make sure 
that possible differences in their predictive power were not 
due to the number of nodes included. As a result, the size of 
the networks ranged between 16 (VA) and 24 (Emo) nodes. 
Further details on the meta-analytic networks can be found 
in Table 1, supplementary Table S3 and supplement Fig S1. 

Connectome analysis 
 

In addition, we employed a brain-wide network of 264 
functional areas from Power and colleagues (Connectome; 
Power et al. 2011) to compare the predictive power of RSFC 
from the whole-brain and from meta-analytic networks. For 

and functional connectivity analyses 
 

As part of the HCP protocol (Glasser et al. 2013), images 
were acquired on a Siemens Skyra 3T Human Connec- 
tome scanner (http://www.humanconnectome.org/about/ 
project/MR-hardware.html) using a 32-channel head coil. 
Resting-state (RS)-BOLD data (voxel size = 2 × 2 × 2 mm3, 
FoV = 208 × 180 mm2, matrix = 104 × 90, 72 slices in a sin- 
gle slab, TR = 720 ms; TE = 33.1 ms, flip angle = 52°) were 
collected using a novel multi-band echo planar imaging 
pulse sequence that allows for the simultaneous acquisition 
of multiple slices (Xu et al. 2013). RS-fMRI data were then 
cleaned of structured noise through the Multivariate Explor- 
atory Linear Optimized Decomposition into Independ- 
ent Components (MELODIC) part of FSL toolbox (http:// 
www.fmrib.ox.ac.uk/fsl). This process pairs independent 
component analysis with a more complex automated com- 
ponent classifier referred to as FIX (FMRIB’s ICA-based 
X-noisifier) to automatically remove artefactual components 
(Salimi-Khorshidi et al. 2014). 

The FIX-denoised RS-fMRI data were further preproc- 
essed using SPM12 (Statistical Parametric Mapping, Well- 
come Department of Imaging Neuroscience, London, UK, 
http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab 
R2016a (Mathworks, Natick, MA). For each participant, 
the first four EPI images were discarded prior to further 
analyses. Then, EPI images were corrected for head move- 
ment by affine registration using a two-pass procedure: in the 
first step, images were aligned to the first image, and in the 
second step to the mean of all volumes. Next, the mean EPI 
image was spatially normalized to the non-linear MNI152 
template (Holmes et al. 1998) using the “unified segmenta- 
tion” approach to account for inter-individual differences in 
brain morphology (Ashburner and Friston 2005). Finally, 
images were smoothed with an isotropic Gaussian kernel 
(full-width at half-maximum = 5 mm). 

The activity time series of each voxel was further cleaned 
by excluding variance that could be explained by mean 
white-matter and cerebrospinal-fluid signal (Satterthwaite 
et al. 2013). Data were then band-pass filtered with cut-off 
frequencies of 0.01 and 0.08 Hz. 

To identify participants with aberrant RSFC patterns, 
we computed each subject’s entire connectome sampled 
on a 1-cm grid. We then computed the pairwise Euclid- 
ean distance between the subjects and identified the near- 
est neighbour for each subject. We excluded the subjects 
whose distance to their nearest neighbour was in the highest 
2.5% and at least 3 SD away from the average distance. This 
procedure was done separately for men and women (Sample 
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1: 5 males, 5 females; Sample 2: 4 males, 4 females). No 
subjects were excluded due to outlier motion parameters 
(DVARS and FD both displaying zero-centered values) 
(Salimi-Khorshidi et al. 2014; Varikuti et al. 2016; Ciric 
et al. 2017). For RSFC analyses, the subject-specific time 
series for each node of each network were computed as the 
first eigenvariate of the activity time courses of all gray- 
matter voxels within 6 mm of the respective peak coordinate. 
We then computed pairwise Pearson correlations between 
the eigenvariates of all nodes in each network, which then 
were transformed using the Fischer’s Z scores and adjusted 
(via linear regression) for the effects of age and movement. 

RSFC-based prediction of personality traits 
by relevance vector machine learning 

 
We examined if the RSFC patterns within each network pre- 
dicted personality scores by means of statistical learning 
via the Relevance Vector Machine (RVM; Tipping 2001) 
as implemented in the SparseBayes package (http://www. 
miketipping.com/index.htm). The RVM is a machine learn- 
ing technique that can learn to predict a continuous target 
value given explanatory variables (also called features). In 
our case, the features were the RSFC values between all 
nodes of a meta-analytic network, while the score of a spe- 
cific personality factor scale was the target value. 

Briefly, RVM is a multivariate approach that was devel- 
oped from the Support Vector Machine (SVM) to induce 
sparseness in the model’s parameters. The RVM, in contrast 
to SVM, implements a fully probabilistic Bayesian frame- 
work: for each possible value of the input vector (e.g., set 
of FC values), the RVM algorithm provides a probability 
distribution of the predicted target value (e.g., FFM person- 
ality score), unlike a point estimate obtained by the SVM: 

n 
ŷ(x, w) = w 

(
0; � 

) 
+ 
I 

w 
(
0; � 

)
K 

(
x , x

)
. 

In our study, we implemented the RVM algorithm with a 
10-fold cross-validation. That is, the sample was randomly 
split into 10 equally sized groups of which 9 were used for 
training, while one was held back and used for assessing the 
performance of the prediction in previously unseen data. 
Holding out each of the 10 groups in turn then allowed com- 
puting the prediction performance across the entire data set. 
Importantly, this procedure was repeated 250 times using 
random initial splits of the data to obtain robust estimates of 
the RVM performance for predicting a given NEO-FFI score 
from a particular network’s RSFC pattern. For each subject, 
the predicted values resulting from each cross-validation 
(i.e., one replication) were averaged over the 250 replica- 
tions and ultimately correlated with the real score. 

As we performed 250 replications of a 10-fold cross-val- 
idation, in total 2500 models were computed to predict each 
trait. We thus quantified the contribution of each connection 
by the fraction of these 2500 models in which the weight for 
the respective connection was non-zero. The connections 
that had a non-zero weight in at least 80% of all models were 
identified as the connections that were most robustly part of 
the predictive model. The brain networks were visualized 
with the BrainNet Viewer (http://www.nitrc.org/projects/ 
bnv/) (Xia et al. 2013). 

For both the “main” (Sample 1) and “replication” 
(Sample 2) samples, predictions were first carried out for 
all subjects with males and females combined  (AllSample1:  
n = 410 AllSample2: n = 302), and then separately for the male 
(MenSample1: n = 210; MenSample2: n = 151) and female groups 
(WomenSample1: n = 210; WomenSample2: n = 151) to assess 
gender differences in predictability. Predictive power was 
assessed by computing Pearson correlations between real 
and predicted NEO-FFI scores and mean absolute error 
(MAE). Importantly, results were only regarded as signifi- 
cant when they were significant at a threshold of p < 0.05 in 
both samples (Sample 1 and Sample 2). The p value was 

0 0 i 
i=1 

i � i computed via permutation testing between real and predicted 
values with 10,000 runs. For each run, we shuffled the pre- 

In the RVM formulation above, the kernel K is a mul- 
tivariate zero-centered Gaussian with standard deviation  
σ (estimated by the algorithm) and every parameter wi, 
assigned to each subject xi in the training set, is assumed to 
follow a Gaussian with mean zero and standard deviation 
σi. The standard deviations σi that describe the probability 
distribution of the parameters wi are iteratively estimated 
from the training data to maximize the likelihood of the 
model. Sparseness is achieved by discharging parameters 
wi converged to zero. Once σ0 and σi have been estimated, 
the trained model can be used to predict the target value 
(e.g., FFM personality score) from a previously unseen input 
vector (RSFC data from participants that were not part of the 
training data) by computing the predictive distribution (for a 
more detailed description, see Tipping 2001). 

dicted scores across subjects in either the entire sample (for 
“All”) or in the gender groups (for “Men” and “Women”) 
without replacement. From here, the definition of the p value 
as the fraction of runs when the correlation between real and 
the shuffled predicted score was higher than the one obtained 
between the real and the original predicted value. 

For all significant results in either “All”, “Men” or 
“Women”, we further tested for significant differences in 
prediction performance (i.e., correlation between real and 
predicted value) between males and females in the main 
sample. Pearson correlation coefficients (r) were trans- 
formed into Fisher’s Z and the difference between ZMen and 
ZWomen calculated and then 95% confidence intervals (CI) 
were computed based on these difference scores. The differ- 
ence in correlation coefficients between males and females 
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were regarded as significant if the 95% confidence interval 
did not contain zero (Lane 2013). 

 
Results 

NEO-FFI scores 
 

Subjects scored in the same range as reported by McCrae 
and Costa (McCrae and Costa 2004) in both the samples. 

Correlations between factors were calculated separately 
for males and females and in the entire sample (see Sup- 
plementary Table S2 for more detailed information). Most 
of them were significant at p < 0.05 (Bonferroni-corrected) 
in both males and females and the entire sample. Openness, 
however, was found to be independent of most of the other 
factors, except for Agreeableness (in Sample 1 for All, Men, 
and Women), and Conscientiousness (in All for both Sam- 
ple 1 and Sample 2). Furthermore, Neuroticism was the 
only factor correlating negatively with almost all the others 
(except for Openness in Men of Sample 1 and in All, Men, 
and Women of Sample 2). 

Comparison of the scores for the five personality traits 
between Men and Women revealed a significant difference 
for Agreeableness in both samples (Sample 1: t407 = − 4.95; 
p < 0.05, d = − 0.49; Sample 2: t299 = − 2.2; p < 0.05, d = 
− 0.27), with females scoring higher than males. For Neurot- 
icism, Women significantly scored higher than Men in Sam- 
ple 1 (t407 = − 2.8; p < 0.05, d = − 0.28), while in Sample 2, 
this difference only showed a trend (t299 = − 1.93; p = 0.055, 
d = − 0.2). For Openness (Sample 1: t407 = 0.1; p = 0.9; 
Sample 2: t299 = 1.64; p = 0.1) and Extraversion (Sample 1: 

 
Table 2 Results of the relevance 
vector machine 

t407 = 1.1; p = 0.3; Sample 2: t299 = − 0.68; p = 0.5) no sig- 
nificant gender differences were found. For Conscientious- 
ness, Women significantly scored higher than Men in Sam- 
ple 2 (t299 = − 2.11; p < 0.05, d = − 0.245), while in Sample 
1 Women scored higher than Men, but not significantly (t407 
= − 0.41; p = 0.15). 

RVM: predicting personality traits based on RSFC 
 

Results are only be reported if they were significant both in 
the main (Sample 1) and in the replication sample (Sample 
2). 

Predictions in the entire sample (balanced males 
and females) 

 
In the entire sample, the RSFC pattern of four networks 
significantly predicted personality factors: Pain and VA 
predicted Openness, AM predicted Agreeableness and Con- 
nectome predicted Neuroticism (see Table 2; Fig. 2 for an 
overview of the results and Fig. 3 for the correlation plots). 

Predictions of personality traits in the gender-split groups 
 

In the gender-split groups, we also found a significant pre- 
diction of Openness scores based on FC patterns within the 
Pain network in Women as well as prediction of Neuroticism 
based on the Connectome FC in Men. In contrast, the VA- 
and AM-related networks did not significantly predict Open- 
ness and Agreeableness in either sub-group. However, in 
the gender-specific groups, additional significant predictions 
were observed: in males, Extraversion was predicted by the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Predicted trait: O openness, E extraversion, A agreeableness, N neuroticism 
Predicting network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: autobiographic mem- 
ory; Face: face perception; Connectome: whole-brain network; Emo: emotional processing 
Correlation coefficients between real and predicted values which resulted significant at p < 0.05 in both 
samples in either across the entire sample (“All”), or in gender groups (“Men” or “Women”) 

 
1 3 

Predicted trait Predicting network Group r (Sample 1) p value 
(Sample 
1) 

r (Sample 2) p value 
(Sample 
2) 

O VA All 0.12 0.006 0.17 0.001 
O Pain All 0.1 0.018 0.2 0.0 
O Rew Women 0.17 0.006 0.2 0.006 
O Pain Women 0.12 0.048 0.29 0.0 
E Face Men 0.18 0.005 0.14 0.04 
E Rew Women 0.14 0.02 0.23 0.002 
E Connectome Women 0.29 0.0 0.23 0.002 
A AM All 0.1 0.018 0.18 0.001 
N Connectome All 0.14 0.018 0.14 0.04 
N Connectome Men 0.17 0.0 0.37 0.0 
N Emo Men 0.2 0.002 0.42 0.0 
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Fig. 2 Emp: empathy; AM: Autobiographic  memory;  WM:  work- 
ing memory; Emo: emotional processing; Face: face processing; 
Rew: reward; SM: semantic memory; VA: vigilant attention; Pain: 
pain processing. Summary of the networks for which FC patterns 
significantly predicted the five personality traits. For each network- 
trait combination in either Men or Women, and here, it is reported  
the conjunction between the correlation coefficients (i.e., minimum r 

 
RSFC patterns of Face and Neuroticism by Emo networks 
(Table 2; Figs. 2, 3). In females, Openness was predicted by 
Rew network. Furthermore, in females, Extraversion was 
predicted by Rew network and the Connectome (Table 2; 
Figs. 2, 3). 

 
Gender differences in personality predictability 

 
For all the predictions that were significant in at least one 
group (All/Males/Females), we tested if prediction perfor- 
mance was significantly different between the male and 
female sub-groups. Significantly better predictability in Men 
than Women was found for Neuroticism predicted from Emo 
network (Table 3, supplementary Fig S2). In Women com- 
pared with Men, Openness was significantly better predicted 
from Rew network and Extraversion from the entire Con- 
nectome (Table 3, supplementary Fig S2). 

value). Only predictions with r > 0.1 are displayed. While the nine 
meta-analytic networks are represented as slices (triangles) of the five 
personality circles, the connectome is represented as well as a circle. 
Triangles and circles are scaled based on the r values of the predict- 
ing networks (r values reported in the axis). Meta-analytic networks 
are underlined if a significant prediction is detected in either Men or 
Women. Asterisks mark significant gender differences in Sample 1 

 
Notably, not all associations that were only found pre- 

dictive in one sub-group showed significant differences in 
predictability between males and females. In particular, no 
gender differences were found in predicting Openness from 
Pain, and VA networks, Neuroticism from Connectome, 
Agreeableness from AM, and Extraversion from Face and 
Rew networks (Table 3, supplementary Fig S2). 

 
Discussion 

Here, we report associations between major dimensions of 
personality and RSFC in functional brain networks. In par- 
ticular, individual scores of various personality traits of the 
Five-Factor Model (McCrae and Costa 2004) could be pre- 
dicted from patterns of RSFC in specific meta-analytically 
defined networks as well as from the whole-brain FC pattern. 
In assessing the generalizability of our findings, we focused 
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◂Fig. 3 Scatter plots of the predictions of personality scores significant 

at p < 0.05 in both samples. Continuous regression lines, dashed lines, 
representing the standard deviation, and mean absolute errors (MAE) 
are displayed 

 
on the predictions that replicated in two different samples 
within the HCP data set. 

These results capitalize on the as-yet largely untapped 
potential (though cf. Schilbach et al. 2016; Varikuti et al. 
2016) of neuroimaging meta-analyses to provide robust, 
functionally specific ROIs to investigate individual task- 
free data (Lee et al. 2012). These can help to constrain the 
otherwise vast feature space for statistical learning on rest- 
ing-state data in a functionally meaningful and anatomically 
specific manner (Wang et al. 2010). As we demonstrate here, 
combining meta-analytic network definitions with statistical 
learning approaches allows, at a moderate level, not only 
predicting complex individual characteristics such as per- 
sonality traits, but also the characterization of functional 
brain networks by their capability to do so. Nonetheless, our 
results of prediction of personality based on whole-brain FC 
pattern highlight that, for some traits, it might be crucial to 
consider the global connectivity as well. 

In the overall (gender-mixed) sample, RSFC within net- 
works representing affective and executive brain systems 
predicted Openness, RSFC within mnemonic network pre- 
dicted Agreeableness, while RSFC from the whole brain 
predicted Neuroticism. In the gender-split samples, however, 
the prediction of Openness from the executive network VA 
and that of Agreeableness from the mnemonic network AM 
were not replicated in any of the two sub-groups, an effect 
likely related to the moderate effect present in the overall 
sample not specifically driven by a particular sex. In con- 
trast, the prediction from the affective network Pain was also 
predicted in the female-only subsample, indicating that more 
information on the respective phenotypes can be gained from 
RSFC data in one gender. The gender-specific analyses 
revealed further constellations in which personality traits 
could be predicted from particular networks (see Fig. 2). In 
fact, none of the network–trait combination was predictive in 
both female and male subsamples, but several functional net- 
works were found to differentially predict personality traits 
in females vs. males. In addition, Connectome successfully 
predicted Extraversion (in Women) and Neuroticism (in the 
entire sample, but then also in Men only). This underlines 
the notion that gender is a fundamental factor with regard to 
brain–personality relationships. 

Methodological considerations and limitations 
 

In our analysis, we combined a priori selection of networks 
of interest, built upon the existing literature (cf. Kennis  
et al. 2013; Hu et al. 2011; DeYoung 2010), together with a 

 
data-driven approach for learning of the predictive models. 
The benefits of this approach were twofolds: on one hand, 
with the a priori selection of networks, we could narrow 
down the networks of interest, which allowed us for a better 
functional interpretation of the results as the nodes repre- 
sent brain regions robustly associated with the respective 
mental functions; on the other hand, the data-driven predic- 
tive models allowed for an explanatory analysis investigat- 
ing which networks were informative in predicting a single 
trait, assuming, therefore, that many biological systems 
could contribute in explaining its inter-individual variance 
(Yarkoni 2015). Given that if only meta-analytically defined 
functional networks were employed, less consistently linked 
yet potentially critical regions might have been left out, we 
included also a purely explorative analysis employing the 
whole-brain FC. 

In addition, as noted above, using a sparsity inducing 
method (RVM) which yielded compact regional modes 
has the advantage of providing regionally specific predic- 
tion models. As outlined above, our procedure provided a 
biologically informed feature reduction, as only the most 
relevant connections were taken in account in the prediction 
models. This has the advantage of reducing the complexity 
of the models avoiding overfitting (Hastie et al. 2009). 

With respect to the prediction model, we here employed 
Relevance Vector Machine (RVM), which, in contrast to 
support vector regression or ridge regression, yields con- 
siderably sparser solutions (Tipping 2001). This allowed for 
identifying the most used connections and nodes (Fig. 4) that 
mainly drove the prediction and hence enabled a more spe- 
cific interpretation of its neurobiological underpinnings. In 
this context, it is important to note that, for any given model, 
the entire set of connections with non-zero coefficients pro- 
vides information about the personality trait (Orrù et al. 
2012). For interpretation, however, we focused on the most 
consistently utilized connections (over 250 replications) as 
key components of the given prediction. 

In accordance with recent recommendations, the current 
study used 10-fold cross-validation, which has been showed 
to be less susceptible to overly optimistic estimates as com- 
pared with a leave-one-out approach (LOO-CV) (Varoquaux 
et al. 2016). Moreover, we repeated the cross-validation pro- 
cedure 250 times, averaging the prediction performance over 
all replications to obtain robust and generalizable estimates 
of the capability of different brain networks to predict per- 
sonality scores in new individuals. 

A last important methodological reflection is that, 
although it might be tempting to make use of the entire 
HCP sample (which, if requiring an equal number of males 
and females, and if considered the matching factors of age, 
education and twin status, would yield about 800 individu- 
als), it systematically consists of related subjects (siblings 
and twins). In addition, there is considerable evidence for 
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Table 3 Gender differences in 
personality predictability 

Predicted trait Predicting network Group r (Sample 1) ZMen − ZWomen 
(Cohen’s q) 

CI (lower limit/ 
upper limit) 

 

O VA Men 0.06 0.013 − 0.176/0.205 
  Women 0.07   
O Pain Men 0.08 0.039 − 0.153/0.231 
  Women 0.12   
O Rew Men − 0.06 0.236* 0.044/0.428 
  Women 0.17   
O Pain Men 0.08 0.039 − 0.153/0.231 
  Women 0.12   
E Face Men 0.18 0.054 − 0.138/0.246 
  Women 0.12   
E Rew Men 0.08 0.055 − 0.137/0.247 
  Women 0.14   
E Connectome Men − 0.03 0.323 * 0.131/0.515 
  Women 0.29   
A AM Men 0.10 0.190 − 0.002/0.382 
  Women − 0.09   
N Connectome Men 0.17 0.119 − 0.073/0.311 
  Women 0.06   
N Emo Men 0.2 0.276* 0.084/0.468 
  Women − 0.07   

Comparison of the correlation coefficients between males and females and effect size of significant gender 
differences. Confidence intervals (CI) are computed on the Z-transformed difference between correlations 
in men and women for each prediction 
*Significant gender difference at 95% of confidence 

 

genetic influence on both personality (Jang et al. 1996; 
Bouchard and McGue 2003; Verweij et al. 2012; Power and 
Pluess 2015) and brain function (van den Heuvel et al. 2013; 
Colclough et al. 2017; Ge et al. 2017; Ktena et al. 2017). 
Consequently, the relationship structure in the HCP data is 
a critical aspect to this work, as the inclusion of related sub- 
jects would potentially hurt the model fitting but even more 
importantly would introduce an (optimistic) bias into the 
cross-validation. As a result, we thus performed our analyses 
primarily in the largest possible set of matched, unrelated 
subjects, replicate it in the then largest possible independent 
set of matched, unrelated subjects and only in a supplemen- 
tary analysis pooled both of these sets for the analysis of 
around 750 subject. 

Our approach, by building upon these methodologi- cal 
considerations, yielded insights into the relationships 
between brain, behaviour, and personality. However, there 
are some limitations which are worth consideration in the 
future studies. First, gender-stratified sub-analyses may 
reduce statistical power because of the smaller sample 
sizes. Further studies with a larger sample size, designed to 
separately analyze men and women, are required, espe- 
cially monitoring their hormonal levels (Arélin et al. 2015; 
Weis et al. 2017). Second, even though meta-analytic net- 
works are among the most reliable ways to infer a mental 

function given a set of brain regions, we acknowledge that 
some regions of different functional networks can overlap. 
As a matter of fact, the employment of meta-analytically 
derived networks does not necessarily ensure a stringent and 
univocal relationship between the mental function supported 
by a particular network and a personality trait. Nonetheless, 
this approach can at least provide some confidence for the 
implication that a specific trait is related to a particular men- 
tal function in terms of the network that subserves them. A 
third consideration relates to the measurement of personal- 
ity, i.e., the use of self-reported questionnaires. Self-reported 
questionnaire might have, indeed, contributed in increasing 
the noise in the data, as perception and report of own per- 
sonality traits can be affected by many factors, e.g., men 
usually scoring low on Neuroticism as socialization effect 
(Viken et al. 1994). 

Predicting Openness to experience 
 

Our results indicated that self-reported Openness to experi- 
ence can be linked to RSFC patterns in the networks sub- 
serving reward (Rew) and pain (Pain) processing in Women, 
while, in the overall sample, Openness was significantly pre- 
dicted by RSFC in the vigilant attention (VA) network and, 
again, from Pain. Openness to experience has been linked 
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Fig. 4 Summary of the most used nodes (i.e., above 80% of the mod- 
els) between regions from a the reward (Rew), vigilant attention (VA), 
and pain processing (Pain) networks in the prediction of Openness;  
b the Rew and face processing (Face) networks in the prediction 

of Extraversion. Summary of the most used connections between 
regions from c the autobiographic memory (AM) network in the pre- 
diction of Agreeableness, d the Pain and emotional processing (Emo) 
networks in the prediction of Neuroticism 

 
to “need for cognition,” that is, an individual’s tendency 
to engage in effortful cognitive processing (Fleischhauer 
et al. 2010): high levels of Openness were found to posi- 
tively affect work outcomes for highly complex jobs while 
increasing dissatisfaction when jobs become mechanical and 
unchallenging (Mohan and Mulla 2013). Such monotonous 
and intellectually unchallenging tasks were exactly the tasks 
investigated in the VA meta-analysis of Langner and Eick- 
hoff (2013), which revealed the brain network involved in 
dealing with sustained attentional demands in boring situ- 
ations. Thus, the predictability of Openness from FC in the 
VA network may reflect a neural substrate of the challenge 
experienced by individuals scoring high on Openness when 
faced with repetitive tasks and standardized routines. High- 
Openness participants might, therefore, need to recruit this 

network differently than low-Openness individuals to keep 
focused on a tedious, repetitive task over time. Indeed, con- 
nections used throughout all prediction models from the 
VA network of Openness in both samples is between pre- 
supplementary motor cortex and medial prefrontal cortex 
(both involved in task-set re-energizing and outcome moni- 
toring), between left inferior occipital gyrus (IOG) and right 
temporo-parietal junction (crucial for re-orienting the sig- 
nalling), and left IOG and inferior frontal junction (known 
for its contribution in the input/output transformation) (see 
Fig. 4 for the most informative connections and Langner and 
Eickhoff 2013 for more details on the regions’ functions). 

Behaviours associated with the trait of Openness, such as 
cognitive exploration, have been attributed to high dopamine 
(DA) functioning (DeYoung et al. 2005). This, indeed, led to 
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the inclusion of Openness in the meta-trait “β” (or plasticity, 
c.f. DeYoung 2010), a higher order factor representing the 
shared variance between Openness and Extraversion, which 
are suggested to be both modulated by the dopaminergic 
system. DA is the main neurotransmitter modulating the 
reward network (cf. Berridge and Robinson 1998), and, in 
line with this, RSFC within the Rew network could predict 
both Openness and Extraversion (in Women and in Men, 
respectively), possibly via affecting the reactivity of the 
dopaminergic system. Interestingly, in predicting Openness, 
the weights of the nodes (i.e., number of incident edges) 
most used across the predictive models showed a stronger 
involvement of the dlPFC, corroborating previous findings 
that showed an association between Openness and the dopa- 
minergic mesocortical branch, which projects directly onto 
the dlPFC (DeYoung 2013; Passamonti et al. 2015). On 
the other hand, regions like amygdala, nucleus accumbens 
(NAc), and orbitofrontal cortex (OFC), which constitute the 
other main dopaminergic branch, the mesolimbic pathway, 
were significantly less recruited. We would thus suggest that 
DA neurons populating the mesocortical branch, by encod- 
ing specifically the saliency of the stimulus (i.e., reward 
value of information, cf. Bromberg-Martin et al. 2010), can 
be potentially more informative for high-Open individuals, 
characterized by the automatic tendency to perceive sali- 
ent information in everyday experience (DeYoung 2013). 
Interestingly, we found that Openness could be predicted 
by FC of the Rew network significantly better in Women, 
compared to Men (r = 0.17 in Women and r = − 0.06 in Men 
of Sample 1). This might be explained by the fact that Rew 
functioning is highly influenced by the ovarian hormones 
estrogen and progesterone during the menstrual cycle (Dre- 
her et al. 2007). In addition, estrogens have been related 
to dlPFC functioning, going along with cognitive decline 
which follows the drop of estrogens in menopause (Shanmu- 
gan and Epperson 2014). Despite the lack of studies explor- 
ing a direct relationship between females’ hormonal cycling 
and the trait of Openness, there is evidence for its indirect 
modulation by estrogen. That is, the catechol-O-methyltrans- 
ferase gene, which is associated with the trait of Openness 
(Konishi et al. 2014), is influenced by estrogen (Harrison 
and Tunbridge 2008). We thus suggest that the influence of 
ovarian hormones on RSFC in the Rew network as well as on 
perceived Openness induces joint intra-individual variation 
(i.e., shared variance), which in turn increases the strength 
of the neural and phenotypical association across women. 
This should then result in the observed higher predictability 
of Openness in female participants. 

Across the entire sample, but then also in the female sub- 
group only, Openness could additionally be predicted in 
both samples based on FC within the pain network (Pain). 
Relationships between pain and Openness have been dem- 
onstrated in terms of a higher threshold for pain tolerance 

(Yadollahi et al. 2014) and as protective factor in migraine 
occurrence (Magyar et al. 2017) in individuals reporting 
higher levels of Openness. However, very little is known 
about the association between this trait and the neural cor- 
relates of pain. Indirect evidence, however, comes from 
research in avoidance learning, which suggests that the suc- 
cessful avoiding of an aversive stimulus is experienced as 
an “intrinsic” reward (Kim et al. 2006). Endogenous opioid 
peptides, which are highly dense in the pain network (Baum- 
gartner et al. 2006), were, indeed, found to modulate the 
dopaminergic system in response to aversive stimuli, result- 
ing in the enhancement of a pleasure feeling boosted by DA 
(Sprouse-Blum et al. 2010). We thus suggest that high- and 
low-Open individuals differ in their ability to detect possible 
aversive stimuli (via diverse reactivity of the Pain network) 
and, by avoiding them, differently experience “intrinsic” 
reward. 

In summary, the predictions from the Rew, VA, and Pain 
networks of Openness might, therefore, jointly point to the 
importance of saliency processing of stimuli, which can be 
rewarding (Rew), monotonous (VA), or aversive (Pain), turn- 
ing high Open individuals as highly receptive and permeable 
to relevant information. Ultimately, connections between 
regions specially targeted by ovarian hormones (e.g., dlPFC) 
might underlie the significant gender difference in the pre- 
dictability of Openness from FC in Rew network (Fig. 4). 

Predicting Extraversion 
 

Extraversion was predicted by the RSFC patterns within 
the networks of reward (Rew) in Women and face percep- 
tion (Face) in Men. Moreover, in Women, this trait was also 
significantly predicted by the whole-brain (Connectome) 
RSFC. Extraversion is generally described as behavioural 
exploration and sensitivity to specific rewards. Importantly, 
a distinction has been also made between “Agentic Extra- 
version”, reflected in assertiveness, dominance, and ambi- 
tion aspects, and a “Affiliative Extraversion” which is more 
related to sociability and affiliative social bonding (DeYoung 
et al. 2007; c.f. Allen and DeYoung 2016). 

As discussed previously in the paragraph “Predicting 
Openness to experience”, the traits of Extraversion and 
Openness exhibit a shared variance, known as “β” factor, 
and are genetically influenced by the dopaminergic system 
(c.f. Allen and DeYoung 2016). Notably, while for Open- 
ness, Rew’s most used nodes encompassed the mesocortical 
pathway (see above), for Extraversion, it was regions along 
the mesolimbic branch that were mostly used (amygdala, 
NAc and OFC). Thus, we suggest that even though FC of 
Rew predicts both Openness and Extraversion, the functional 
connectivity of two different subsystems of the Rew network 
is informative for the two different traits, namely the meso- 
cortical and mesolimbic pathway, respectively. In favour of 
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this distinction, extraverts were shown to be more sensi- 
tive toward the motivational content of the reward stimu- 
lus, encoded by DA neurons along the mesolimbic pathway 
(Bromberg-Martin et al. 2010; DeYoung 2013). We thus 
believe that the prediction of Extraversion from the FC 
within Rew might well-capture the “Agentic” dimension of 
Extraversion, given the motivational value of the rewarding 
stimuli and drive toward a goal prompted by the dopamin- 
ergic mesolimbic system. 

While extraversion in Women was found to be associ- 
ated with FC of Rew, relationships of this trait, in Men, 
were found with FC in Face network. Faces are arguably 
the most important social stimuli for humans and it has been 
shown that extraverts compared to introvert, by spending 
more time on people, are significantly better at recognizing 
faces (Li and Liu 2010). Extraversion’s hedonic experience 
of goal achievement is enclosed in the “Affiliative” compo- 
nent (DeYoung et al. 2007; c.f.; Allen and DeYoung 2016) 
and its genetic variation has been also pointed to the opiate 
system, due to its involvement in the hedonic response to the 
stimulus (Peciña et al. 2006). It is, therefore, possible that 
the endogenous opioid system via modulation of amygdala 
and medial prefrontal cortex (Tejeda et al. 2015; Selleck 
and Baldo 2017), most used regions in the connections of 
Face, mediate both the perception of faces (Martin et al. 
2006) and the social bonding (Pasternak and Pan 2013). We 
thus suggest that functional connectivity within the Face 
network in Men is mostly related to the “Affiliative” aspect 
of Extraversion. 

The last prediction of Extraversion is based on whole- 
brain FC in Women (Sample 1: r = 0.29; Sample 2: r = 0.23, 
both p < 0.05; for gender comparison in Sample 1, Cohen’s 
q = 0.323, p < 0.05). However, a major issue using whole- 
brain connectivity patter might be the lack of anatomical 
localization for the most informative features, as none of 
them resulted to be used more than 40% of the predictive 
models, indicating a heterogeneous mosaic of connections 
which contribute to the prediction of Extraversion. The only 
theory in personality neuroscience which relates the func- 
tioning of entire cortex to Extraversion (and Neuroticism, 
see below “Predicting Neuroticism”) is Eysenck’s biological 
theory of personality (Eysenck 1967). Here, Extraversion 
is thought to depend on the variability in cortical arousal, 
with introverted individuals having lower response thresh- 
olds consequently more cortical arousal compared to extra- 
verts. In favour of this hypothesis, the topological proper- 
ties of whole-brain RSFC have shown that brains of more 
extraverted individuals behave more similarly to a “small- 
world” compared to a “random” network, with higher clus- 
tering coefficient compared to introverts (Gao et al. 2013). 
A “small-world” clustered configuration, which supports 
a more modularized information processing and fault tol- 
erance, can, therefore, be associated with higher arousal 

threshold in extraverts’ cortex. We also observed that this 
prediction performance was significantly stronger in Women 
compared to Men (r = 0.29 in Women and r = − 0.03 in 
Men of Sample 1). Again, a possible cause might be the 
involvement of ovarian hormones, targeting specifically the 
most densely interconnected hub structures of the connec- 
tome (Alawieh et al. 2015) as well as influencing level of 
Extraversion (Jokela et al. 2009; Ziomkiewicz et al. 2012). 
However, more studies are needed to prove this interaction 
between Extraversion, estrogen, and the topographical prop- 
erties of whole-brain functional connectivity. 

To sum up, connectivity of regions encoding the moti- 
vational value and the drive toward a goal (Rew) and the 
hedonic processing of the goal itself (Face) were informa- 
tive to predict inter-individual variability in the trait of 
Extraversion possibly capturing the “Agentic” and “Affilia- 
tive” aspects of the trait, respectively (Fig. 4). Importantly, 
given the modulation of ovarian hormones on both the trait 
of Extraversion and on the topological properties of the Con- 
nectome, we would suggest that sex hormones might be a 
possible mediator of this trait–network relationship, result- 
ing in better prediction performance in Women. 

Predicting Agreeableness 
 

RSFC patterns in the AM network could predict the indi- 
vidual level of perceived Agreeableness while grouping men 
and women in both samples. This trait reflects a high desire 
to avoid interpersonal conflicts (Jensen-Campbell and Grazi- 
ano 2001) and strong affect regulation (Ryan et al. 2011). In 
line with this, positive correlations have been demonstrated 
between Agreeableness and regions supporting social func- 
tioning (Hooker et al. 2008; DeYoung et al. 2010; Hassabis 
et al. 2014) and midline regions of the default mode network 
(DMN), as deputed to self-referential process (Adelstein 
et al. 2011; Sampaio et al. 2014). Our prediction of Agree- 
ableness from the AM network supports a crucial role of 
self-reference, strongly linked to autobiographical memory 
(Molnar-Szakacs and Arzy 2009), in how high agreeable 
individuals deal with social demands. Self-related cognition 
has been often discussed at the neural level as the product 
of interaction between the DMN and the mirror neuron sys- 
tem (MNS), the first responsible for high-level mentalizing 
function and the second for embodied simulation-based rep- 
resentation (Keysers and Gazzola 2007; Qin and Northoff 
2011; c.f.; Molnar-Szakacs and Uddin 2013). As a result, 
the privileged access to the own physical and mental states 
would allow a better insight into others’ physical and mental 
states, and consequent appropriate social responses. 

Interestingly, within the AM network, most used connec- 
tions that informed about the trait in both samples reflected 
the interaction between the DMN and MNS systems: nodes 
with highest weights belonged, indeed, to DMN subsystem, 
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such as medial PFC, posterior cingulate cortex, medial tem- 
poral lobe (amygdala and hippocampus) and lateral parietal 
cortex (temporo-parietal junction). The remaining nodes 
with the highest weights belonged to the MNS, such as infe- 
rior frontal gyrus, precentral gyrus, inferior parietal cortex, 
and superior temporal sulcus. Our result, hence, supports 
the interplay of these two subsystems in the context of self- 
processing (here expressed via memory recollection about 
past experiences, AM) and that this knowledge about the 
self can significantly predict Agreeableness, the trait most 
reflecting enhanced social skills. 

Predicting Neuroticism 
 

In Men, self-reported Neuroticism was predicted by RSFC 
within the emotional processing network (Emo). In addition, 
the RSFC from the whole brain (Connectome) significantly 
predicted this trait across the entire sample and then specifi- 
cally in Men only. Neuroticism represents a broad dimen- 
sion of individual differences in the tendency to experience 
negative, distressing emotions. High-Neuroticism scores 
entail the experience of fear, anger, sadness, embarrassment, 
the incapacity to control cravings and urges, and to cope 
with stress (Costa and McCrae 1987). Within this trait, it  
is possible to delineate two major divisions: one related to 
the experience of anxiety, fear and passive avoidance, and 
referred in literature as the aspect Withdrawal, and the other 
related to irritability, anger and active defensive responses, 
or Volatility (DeYoung et al. 2007). Neuroticism is argu- 
ably the most studied personality trait and is an important 
predictor of many different mental and physical disorders 
(Lahey 2009). Furthermore, the two aspects of Neuroticism 
(Withdrawal and Volatility) highly reflect the dimension of 
Behavioural Inhibition System (BIS) and Fight-Flight-Free- 
ing System (FFFS) from the Gray’s Reinforcement Theory 
(Gray and Mcnaughton 2000), conceptualized in term of 
their neurobiology. Interestingly, this distinction between the 
Volatility/FFFS and Withdrawal/BIS seems to be captured 
by the two networks showing predictability power for Neu- 
roticism, Emo and Pain. Even though this last prediction 
(Pain) was found significant in Sample 1 (with r = 0.15, 
p < 0.05 in Men) but not fully replicated in the Sample   
2 (with r = 0.2, p = 0.05 in Men) (Fig. 4), we would still 
suggest that recruitment of this network in association to 
Neuroticism might indicate that perception of the aversive 
stimulus via the Pain network (Iannetti and Mouraux 2010; 
Hayes and Northoff 2012) could lead high-Neuroticism men 
to inhibit their behaviours such to avoid potential threats 
and punishments (Withdrawal). Conversely, Emo network 
would trigger emotional responses for either escaping or 
eliminating the threat, but in both cases showing a strong 
emotional lability (Volatility). Beyond associations with spe- 
cific networks, Neuroticism could also be predicted from 

the whole-brain RSFC (Connectome) in Men and across 
genders. This is nicely in line with graph analysis studies 
(Gao et al. 2013; Servaas et al. 2015), showing that the 
neurotic brain displays topological properties of a “random 
network” and overall weaker FC. Here, cortisol might play 
a specific role, the hormone that is most closely associated 
with a biological reaction to stress and found to correlate 
with Neuroticism. However, the directionality of correla- 
tion seems to depend on gender: many studies converged in 
discovering that Neuroticism was positively correlated with 
baseline cortisol in men, but the opposite was true in women 
(Zobel et al. 2004; Oswald et al. 2006; DeSoto and Salinas 
2015). Thus, especially in men, the overabundance of corti- 
sol by potentiating neuronal degeneration (Sapolsky 1994) 
might be responsible for the overall smaller brain volume 
(Liu et al. 2013), white-matter (Bjørnebekk et al. 2013), and 
gray-matter (Servaas et al. 2015) functional disconnectiv- 
ity found in high-Neuroticism individuals compared to the 
more emotional stable. Given that all the three networks 
(Emo, Pain, Connectome) showed a stronger predictability 
in Men compared to Women (statistically significant for the 
first two, and a strong trend for the third, see Table 3), we 
suggest that gender may moderate Neuroticism’s relation- 
ship to cortisol. However, more (direct) studies are needed to 
better understand this intricate relationship between RSFC, 
cortisol, Neuroticism, and gender, and to shed light on the 
neural mechanisms that make women’s brain more suscep- 
tible to Neuroticism-related mental disorders (Jorm 1987). 

Implications for the neurobiology of FFM 
 

Contrary to other important theories of personality, such 
as Cloninger’s Tridimensional Personality Questionnaire 
(TPQ) or Gray’s Reinforcement Sensitivity Theory (RST), 
the FFM is not based on biological grounds. However, vari- 
ability in its personality factors had been associated with 
the brain, given that personality traits are the product of our 
actions, emotions and, more generally, cognitive processes. 
In this way, the cognitive mechanisms work as intermediate 
bridge between the psychometric constructs of personality 
and plausible biological substrates. However, the relation- 
ships among these factors (brain, behaviour, and personality) 
can be misleading in the context of personality predictions, 
which, in fact, were significant only to a moderate level, 
compared to other findings: contrary to predictions of sus- 
tain attention (Rosenberg et al. 2016) or reading comprehen- 
sion (Cui et al. 2017) which tap predictability of cognitive 
process itself, personality traits are mostly modulators of 
these cognitive processes. This may make it more difficult 
to find brain correlates of personality in specific networks 
associated with those functions. 

In addition, the hierarchy of the FFM model might 
have contributed in enlarging the gap: in our findings, we 
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highlighted the possibility that the predictions of one trait 
from different networks could reflect different components 
within this trait, also known as aspects and facet (cf. DeY- 
oung et al. 2007; Koelsch et al. 2013; Haas et al. 2015). For 
example, we discussed the prediction of Extraversion from 
Rew and Face as potentially capturing the “Agentic” and 
“Affiliative” aspects, respectively, or the prediction of Neu- 
roticism from Pain and Emo as linked to Withdrawal and 
Volatility. Conversely, when the same network was predict- 
ing two different traits (e.g., Rew predicting Openness and 
Extraversion, discussed in light of the saliency and motiva- 
tional contribution for the two traits), the prediction might 
have, indeed, boosted if investigating the meta-trait “β”, 
which reflects their shared variance within the dopaminergic 
system and thus more prone to be predicted by the network 
of reward processing (DeYoung 2013). Therefore, the level 
of abstraction of the five traits might not mapped well to par- 
ticular brain systems, and more studies are encouraged for 
testing both more specific and homogeneous sub-dimensions 
as well as more heterogeneous higher order factor structure. 
Finally, many biological mechanisms participate in evoking 
the same cognitive process, e.g., changes in brain structure, 
function, or genetic, which are then intrinsically connected 
with personality. We here used RSFC as “marker” for the 
individual expression of personality traits, enduring across 
time and situations. However, a downside of FC in resting 
conditions might be that it has not so much to do with how 
personality factors come together to “produce” stable modu- 
lations of a whole range of cognitive processes. Therefore, 
other brain measurements (as structural connectivity, task- 
based functional activation, or molecular genetics) might 
be also useful in gaining more knowledge on the biology of 
personality and its relationship with specific mental func- 
tions. Keeping in mind that we cannot expect biological 
mechanisms to show clear-cut as the respective psycho- 
metric dimensions (Yarkoni 2015), but, conversely, many 
biological mechanisms (function, structure, neurotransmit- 
ters) as well as many mental functions can be informative 
for a given personality trait, we, therefore, support the need 
for a multi-level approach in future studies as proposed by 
Yarkoni to achieve a unified description of the biological 
bases of personality traits. 

However, even though all these aspects might affect the 
relationship between brain function (and structure) and per- 
sonality, we here do provide insights on the relation between 
brain and personality: when analysing the entire sample while 
adjusting for gender effects, only two predictions (VA predict- 
ing Openness and AM predicting Agreeableness) can be found 
not specifically driven by one gender-group. However, when 
looking at men and women separately, we observed much 
more and larger effects, evidence which highly remarks the 
importance of gender while investigating the neural correlates 
of personality. Specifically, the current findings propose a link 

between Openness and executive and affective domain. Agree- 
ableness with memory domain. Extraversion with social and 
affective networks and lastly Neuroticism with the affective 
system. Interestingly, these last two traits could be predicted as 
well from the entire Connectome. An interesting consideration 
is that Openness could be significantly predicted by three dif- 
ferent, barely overlapping networks (Pain, Rew, VA), but could 
not be predicted from the whole-brain, which was covering 
the nodes of all the three at the same time. We thus argue for 
a better predictability of Openness from specific and separate 
functional networks. Contrarily, Extraversion and Neuroti- 
cism could be significantly predicted by both meta-analytic 
networks and the whole brain, pointing to the importance of 
also global effects, besides specific functions. This is particu- 
larly true for Extraversion, which showed significantly higher 
prediction performance from global RSFC (Connectome) with 
a very vast nodes contribution, rather than from the specific 
networks of Rew and Face, thus favouring the global effects 
over the specific functions for this trait. 

Conclusions 

Using multivariate machine learning, we showed that person- 
ality traits can be predicted from RSFC patterns in affective, 
social, executive, and memory networks of the brain, as well 
as from the whole-brain. Our observation that for most of these 
networks predictive power was gender-specific complements 
previous morphometric findings (Nostro et al. 2016) in high- 
lighting the crucial role of gender when trying to understand 
the neurobiology of personality. In addition, the many-to-many 
associations between mental functions and personality traits 
indicate the complexity of the biological substrates of per- 
sonality, as many functional systems may contribute to the 
observable differences in each trait (for a critical review see 
Yarkoni 2015). Maybe, even more fundamental are the impli- 
cations for the concept of personality, given that even a trait 
as complex and broad as, for instance, Openness, seems to 
have a neurobiological underpinning in pre-defined functional 
networks that enables estimation of the individual level of that 
trait in a new subject. 
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Table S1: Influence of zygosity on the traits distribution 
 

We performed a Kolmogorov-Smirnov (KS) test in order to verify that the distribution for each 
trait in monozygotic and dizygotic twins was not significantly different (null hypothesis). 
Therefore, from the S1200 release we selected only twin participants (N= 563) and later 
extracted a subsample of unrelated subjects (N = 262, 131 males and 131 females). All the 
statistics result not significant, i.e. the distribution of each trait in Mz and Dz does not differ. 

 
Trait K-S statistic (Mz vs Dz) P value 

 
Openness 0.10 0.47 

Conscientiousness 0.06 0.96 

Extraversion 0.07 0.87 

Agreeableness 0.13 0.23 

Neuroticism 0.07 0.93 

 
 

Table S2: Correlations between factors 
 

Supplementary Table 1: Intercorrelations (Pearson’s r) among the 5 personality factors 
for Sample 1 and Sample 2, across the overall samples, in males, and females. 

 
 

Sample 1 
 

 Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall - -0.14*/ 0.07/ 0.17*/ 0.0/ 
Males -0.15/ 0.06/ 0.17*/ 0.07/ 
Females -0.11 0.09 0.18* -0.08 

Conscientiousness Overall - - 0.27*/ 0.19*/ -0.35*/ 
Males  0.32*/ 0.24*/ -0.37*/ 
Females  0.24* 0.12 -0.36* 

Extraversion Overall - - - 0.26*/ -0.32*/ 
Males   

0.23*/ -0.32*/ 
Females 0.34* -0.3* 

Agreeableness Overall - - - - -0.26*/ 
Males  -0.29*/ 
Females  -0.31* 

Neuroticism - - - - - 



 

Sample 2 
 

 Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall - -0.17*/ 0.13/ 0.13/ 0.07/ 
Males -0.11/ 0.09/ 0.13/ 0.09/ 
Females -0.2 0.18 0.18 0.08 

Conscientiousness Overall 

Males 

- - 0.25*/ 

0.32*/ 

0.21*/ 

0.26*/ 

-0.47*/ 

-0.54*/ 
Females  0.17 0.13 -0.43* 

Extraversion Overall 

Males 
- - - 0.43*/ 

0.40*/ 

-0.41*/ 

-0.42*/ 
Females 0.46* -0.41* 

Agreeableness Overall 

Males 

- - - - -0.39*/ 

-0.39*/ 
Females  -0.45* 

Neuroticism - - - - - 

 
 

* Marks significance at p<0.05 (Bonferroni corrected) 
 
 
 

Table S3: Coordinates of each network included in the RS functional connectivity 
network analysis 

 
Empathy 

Bzdok et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

2.0 56.0 18.0 rdmPFC dmPFC Area p32 

-8.0 54.0 34.0 ldmPFC dmPFC - 

36.0 22.0 -8.0 raIns/IFG raIns - 

54.0 16.0 20.0 rIFG rIFG Area45 

50.0 30.0 4.0 rIFG (p.Tr) rIFG - 

-30.0 20.0 4.0 laIns laIns - 

50.0 12.0 -8.0 rSTG rIFG - 

-44.0 24.0 -6.0 lIFG(p.Orb) lIFG - 

-4.0 18.0 50.0 SMA SMA  



-2.0 28.0 20.0 aMCC aMCC Area 33 

-4.0 42.0 18.0 pACC rostral ACC Areap32 

-2.0 -32.0 28.0 PCC PCC Retrosplenial Area a30 

52.0 -58.0 22.0 rTPJ rTPJ Area PGp 

-56.0 -58.0 22.0 lTPJ lTPJ Area PGa 

22.0 -2.0 -16.0 rAm rAm Amygdala: SF, CM 

54.0 -8.0 -16.0 rMTG rMTG - 

52.0 -36.0 2.0 rpSTS rpSTS - 

-12.0 -4.0 12.0 laTh laTh Th:Prefrontal, 

6.0 -32.0 2.0 rpTh rpTh  

26.0 -26.0 -12.0 r Hippo rHippo Subiculum 

2.0 -20.0 -12.0 Midbrain Midbrain - 

14.0 4.0 0.0 rGP rGP Th:Prefrontal 

Face processing 

Grosbras et al., 2012 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

42.0 -78.0 -8.0 r lOcC r lOcC hOc4la 

-40.0 -82.0 -8.0 lOcC l lOcC hOc4la 

26.0 -100.0 2.0 rOcPole rOcPole hOc2 

-14.0 -98.0 -4.0 lOcPole lOcPole hOc1 

52.0 -44.0 8.0 rMTG rMTG/pSTS - 

-56.0 -58.0 36.0 lTPJ lMTG/pSTS Area PFm 

28.0 -52.0 42.0 rIPS rSPL Area hIP1 

4.0 -58.0 28.0 rPrc rPCC - 

52.0 24.0 26.0 rIFS rIFG Area45 

-46.0 20.0 22.0 lIFG lIFG IFS1/IFS2 

0.0 20.0 54.0 l pre-SMA pre-SMA - 

42.0 12.0 30.0 rIFS rMFG IFS4 

12.0 52.0 16.0 pACC rMFG Area p32 

8.0 46.0 36.0 r amSFG rmPFC - 

14.0 28.0 50.0 r pmSFG rSFG - 

-24.0 24.0 42.0 lMFG lSFG - 

36.0 2.0 42.0 rMFG rPrG - 

20.0 -8.0 -14.0 rAm rAm Am: SF 

-16.0 -6.0 -12.0 lAm lAm - 

Reward 

Liu et al., 2011 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

12.0 10.0 -6.0 rNAc rNAc NAc_fundus 

-10.0 8.0 -4.0 lPal lPal Striatum_scgp 



36.0 20.0 -6.0 raIns rIns - 

-32.0 20.0 -4.0 laIns lIns - 

0.0 24.0 40.0 aMCC dmPFC Area 32’ 

0.0 54.0 -8.0 mOFC mOFC Fp2 

24.0 -2.0 -16.0 rAm rAm Am: LB 

4.0 -14.0 8.0 rTh rTh Th: Temp 

0.0 8.0 48.0 l pre-SMA SMA - 

8.0 -18.0 -10.0 rBrainstem rBrainstem - 

2.0 44.0 20.0 rpACC rACC Area p32 

-24.0 2.0 52.0 lpMFG lMFG - 

-38.0 -4.0 6.0 lpIns lIns Area Id3 

24.0 40.0 -14.0 r SOrbG r midOFC Area Fo3 

-16.0 42.0 -14.0 lSOrbG l midOFC - 

40.0 32.0 32.0 rpMFG rMFG - 

-28.0 -56.0 48.0 lIPS lIPL hIP3 

28.0 -58.0 50.0 rIPS rAG hIP3 

0.0 -32.0 32.0 PCC PCC  

-36.0 50.0 10.0 laMFG lFP - 

-46.0 42.0 -4.0 lIFG l lOFC - 

30.0 4.0 50.0 raMFG rMFG - 

-22.0 30.0 48.0 lSFG lSFG - 

Pain 

Kogler et al., 2015 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

38.0 18.0 0.0 rIns rIns - 

52.0 12.0 -4.0 rSTG rSTG Area 44 

60.0 6.0 2.0 rIFG rTP Area 44 

22.0 0.0 -4.0 rPal rPal - 

-38.0 14.0 4.0 laIns lIns OP7 

-58.0 0.0 6.0 lfOP lOP4 OP6 

-20.0 6.0 2.0 lPut lPut Striatum_PM 

4.0 6.0 46.0 rSMA rSMA Area 24dv 

0.0 14.0 36.0 laMCC lMCC Areas 24c’v,24c’d 

-42.0 -18.0 18.0 lpOP lOP3 OP3 

-54.0 -24.0 24.0 lSMG lSMG Area PFop 

-36.0 -20.0 2.0 lpIns lIns OP7, OP6 

-14.0 -12.0 10.0 lTh lTh Th: Pref 

10.0 -18.0 4.0 rTh rTh Th: Pref 

56.0 -24.0 24.0 rSMG rSMG Area PFop 

44.0 -14.0 16.0 r pOP rOP3 OP3 

38.0 50.0 12.0 rMFG rMFG - 

-24.0 -66.0 -26.0 lCb lCb LobuleVI 



Emotion perception 

Sabatinelli et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

4.0 47.0 7.0 pACC medPFC pv24c; pd24cv; pd24cd 

42.0 25.0 3.0 rIFG rIFG  

-42.0 25.0 3.0 lIFG(p.Tr) lIFG - 

48.0 17.0 29.0 rIFJ rMFG IFJ1 

-42.0 13.0 27.0 lIFJ lMFG IFJ1 

-2.0 8.0 59.0 l pmSFG lSFG  

20.0 -4.0 -15.0 rAm rAm Amygdala: SF 

-20.0 -6.0 -15.0 lAm lAm Amygdala:SF 

-20.0 -33.0 -4.0 lHippo lPHG . 

14.0 -33.0 -7.0 rHippo rPHG Subiculum 

53.0 -50.0 4.0 rMTG rMTG - 

38.0 -55.0 -20.0 r aFFG rFFG FG3 

-40.0 -55.0 -22.0 l aFFG lFFG Lobule VI 

38.0 -76.0 -16.0 r pFFG rpFFG hOc4v 

-40.0 -78.0 -21.0 lpFFG lpFFG hOc4v 

-4.0 52.0 31.0 lamSFG medPFC - 

36.0 25.0 -3.0 rIns rOFC - 

-38.0 25.0 -8.0 lIFG(p.Orb) lOFC - 

2.0 19.0 25.0 aMCC rACC Area a24a’, a23b’ 

0.0 -15.0 10.0 lTh Th Th: Temporal 

-2.0 -31.0 -7.0 Superior Colliculus Pulvinar - 

-28.0 -70.0 -14.0 lFFG lFFG FG1 

46.0 -68.0 -4.0 r lOcC r lOcC hOc4lp 

-48.0 -72.0 -4.0 l lOcC l lOcC hOc4lp 

Working Memory 

Rottschy et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

-32.0 22.0 -2.0 l aIns laIns - 

-48.0 10.0 26.0 lIFG lIFG (p.Orb) Area 44 

-46.0 26.0 24.0 lIFS l plPFC IFS1/IFS2 

-38.0 50.0 10.0 lMFG l alPFC - 

36.0 22.0 -6.0 r aIns raIns - 

50.0 14.0 24.0 rIFG rIFG (p.Tr) Area44 

44.0 34.0 32.0 rpMFG r plPFC - 

38.0 54.0 6.0 raMFG r alPFC - 

2.0 18.0 48.0 r dmPFC pmedFC - 

-28.0 0.0 56.0 lSFG l pSFG - 



30.0 2.0 56.0 rSFG r pSFG - 

-42.0 -42.0 46.0 lIPS lIPS hIP2 

-34.0 -52.0 48.0 lSPL lSPL/IPS hIP3 

-24.0 -66.0 54.0 lSPL lpSPL Area7A 

42.0 -44.0 44.0 rIPS rIPS hIP2 

32.0 -58.0 48.0 rIPS rIPS hIP3 

16.0 -66.0 56.0 rSPL rpSPL Area7A 

-12.0 -12.0 12.0 lTh lTh Th: Pref 

-18.0 4.0 6.0 lPutament lPutamen Striatum:PoStP 

12.0 -10.0 10.0 rTh rTh Th: Pref 

-34.0 -66.0 -20.0 lFFG/Cb lCb/FFG FG2 

32.0 -64.0 -18.0 rFFG/Cb rCb/FFG FG1 

Vigilant Attention 

Langner et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

-2.0 8.0 50.0 l pre-SMA a paracentral lobule - 

8.0 32.0 46.0 r mSFG r pmed SFG - 

0.0 26.0 34.0 l MCC l/r dorsal MCC Area 32’ 

50.0 8.0 32.0 r IFJ r IFJ  

40.0 22.0 -4.0 r aIns r aIns - 

46.0 36.0 20.0 r MFG r IFS - 

-40.0 -12.0 60.0 l PrG l PrG - 

-46.0 -68.0 -6.0 l IOG l IOG hOc4lp; hOc4d; hOc3d 

-48.0 8.0 30.0 l IFJ l IFJ area 44 

62.0 -38.0 17.0 r IPL r TPJ area PF 

8.0 -12.0 6.0 r Th r a/mTh Th: temporal 

32.0 -90.0 4.0 r MOG r MOG hOc4la 

-42.0 12.0 -2.0 l aIns l aIns - 

-10.0 -14.0 6.0 l Th l a/m Th Th: prefrontal 

6.0 -58.0 -18.0 r Cb l/r Cb lobule V 

44.0 -44.0 46.0 r IPS r IPL hIP2 

Autobiographical memory 

Spreng et al., 2008 

x y z Macroanatomical 

location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

-1.0 -53.0 21.0 lPrc l/rPrc - 

-26.0 -28.0 -17.0 lHippo lHippo Subiculum 

-49.0 -61.0 31.0 lTPJ lTPJ Area PGa 

-2.0 51.0 -11.0 lFP l medPFC Fp2 

-60.0 -9.0 -18.0 lSTS lSTS/MTG - 

-50.0 27.0 -12.0 lSOrbG l vlPFC Fo5 



26.0 -33.0 -15.0 rHippo rpHippo Subiculum 

-1.0 20.0 57.0 lmSFG MFG - 

55.0 -58.0 30.0 rTPJ rTPJ Area PGa 

-47.0 9.0 46.0 lPrG l plPFC - 

-42.0 53.0 7.0 lFP l lFP - 

26.0 -14.0 -23.0 rHippo raHippo DG 

52.0 -5.0 -18.0 rMTG rTP/MTG - 

-39.0 13.0 -41.0 lTP lTP - 

-38.0 -82.0 38.0 lIPL lOC Area PGp 

-48.0 29.0 17.0 lIFG l dlPFC Area 45 

52.0 31.0 -11.0 rSOrbG r vlPFC Fo5 

-11.0 62.0 9.0 lFP lmedFP Fp1 

4.0 -8.0 2.0 rTh rTh Th: Temporal 

-4.0 39.0 16.0 lACC lrACC Area pv24c, pd24cv, 

pd24cd 

-5.0 -34.0 36.0 lPCC lPCC - 

-29.0 16.0 51.0 lSFG lSFS - 

31.0 1.0 -26.0 rAm rAm Amygdala: LB 

Semantic Memory 

Binder et al., 2009 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta- 

analysis 

Cytoarchitectonic 

Assignment 

-46 -70 21 lIPL lSTG Area PGp 

-50 -56 31 lAG lSTG Area PGa 

-64 -44 -4 lMTG lMTG - 

-47 -24 -17 lMTG lFFG - 

-55 -3 -24 laMTG lMTG - 

-7 -57 17 lPrc lPCC - 

-20 36 44 lSFG lSFG - 

-31 29 45 lMFG lMFG - 

-53 26 -1 lIFG lMFG Area 45 

-39 17 44 lMFG lIFG - 

53 -59 29 rAG rSTG Area PGa 

43 -72 31 rpIPL rMTG Area PGp 

-1 51 -7 medFP lACC Area Fp2 

-5 56 24 lmSFG lSFG Area p32 

-31 -34 -16 lFFG lParaHippo - 

-8 29 -10 sACC lACC Area s32 

-46 25 23 lIFS lMFG IFS1/IFS2 

64 -41 -2 rMTG rMTG - 

-43 -53 55 rIPL lIPL Area PFm 

-1 -18 40 rMCC lCC - 

51 20 26 rIFJ rMFG IFJ1 



64 -38 32 raIPL rSMG Area PF 

-23 26 -16 rFP lIFG Area Fo3 

 
x, y and z coordinates denote the center of gravity in MNI space. 

Reference for probabilistic cytoarchitectonic mapping of amygdala and hippocampus (Amunts et al. 2005)); 
superior parietal cortex (Scheperjans et al. 2008); intraparietal sulcus (Choi et al. 2006); parietal operculum 
(Eickhoff et al. 2006); ventral extrastriate cortex (Rottschy et al. 2007); dorsal extrastriate cortex (Kujovic et al. 
2013); gyrus fusiformis (Caspers et al. 2013); lateral occipital cortex (Malikovic et al. 2016); Broca’s regions 
(Amunts et al. 1999); Cingulate cortex (Palomero-Gallagher et al. 2015). Cerebellar atlas (Diedrichsen et al. 2009). 
Thalamic connectivity atlas (Behrens et al. 2003). 

 
 

Abbreviations: r= right; l= left; a= anterior; p= posterior; s= sub-genual; m/med=medial; Tr.= pars; 
triangularis; Orb. = pars orbitalis; dmPFC= dorso-medial prefrontal cortex; SMA= supplementary motor area; 
MCC= middle cingulate cortex; ACC= anterior cingulate cortex; PCC= posterior cingulate cortex; Am= amygdala; 
Th= thalamus; Hippo= hippocampus; GP/Pal= globus pallidus; Prc= precuneus; mSFG= superior medial gyrus; 
Nac= nucleus accumbens; Put= putamen; PrG= pre-central gyrus; Ins= insula; IFS= inferior frontal sulcus; IFJ= 
inferior frontal junction; IFG= inferior frontal gyrus; MFG= middle frontal gyrus; SFG= superior frontal gyrus; 
OFC= orbito-frontal cortex; SOrbG= superior orbital gyrus; FP= frontal pole; STS= superior temporal gyrus; 
STG= superior temporal gyrus; MTG= middle temporal gyrus; ITG= inferior temporal gyrus; FFG= fusiform 
gyrus; SPL= superior parietal lobe; IPL= inferior parietal lobe; IPS= intra-parietal sulcus; fOP= frontal operculum; 
pOP= parietal operculum; TPJ= temporo-parietal junction; SMG= supramarginal gyrus; AG= angular gyrus; 
lOcC= lateral occipital cortex; OcPole= occipital pole; MOG= middle occipital gyrus; IOG= inferior occipital 
gyrus; Cb= cerebellum 

 
 

Predictions based on the pooled sample 
 

Subjects Selection 

From the “s1200” release, Sample 1 and Sample 2 were generated by selecting only one 

member per family and then matching the male and female subgroups by age, years of education 

and twin-status. To perform the analysis on the largest (balanced and matched) possible set of 

HCP subjects (henceforth Sample 3), we combined the two unrelated samples, noting that now 

virtually all subjects will have a close relative in the sample. This procedure was preferred over 

the use of the entire HCP sample (n = 1096 participants with FIX-denoised RS-fMRI data and 

personality measurements) in order to keep the gender-ratio balanced and maintain control over 

age, education and twin status, which is still matched between male and female. Thus, Sample 

3 resulted in a total of 740 subjects: 370 males (196 non-twin, 174 twin subjects; aged 22-37 

years, mean: 28.3 ± 3.5; years of education: 14.8 ± 1.8) and 370 females (196 non-twin, 174 

twin subjects; aged 22-36 years, mean: 28.7 ± 3.5; years of education: 14.9 ± 1.8). 



Results of the Relevance Vector Machine in Sample 3 

The analysis on the pooled Sample 3 revealed that the majority of the predictions discovered in 

the two unrelated samples could be replicated (see Table S4). This can be easily explained by 

the fact that whenever a prediction truly reflected an association between trait and brain 

network, the presence of related individuals in the training and in the test groups would not 

harm the prediction, but rather lead to an overestimation of the performance of the model due 

to the genetic shared variance between twins (100% between Mz twins, 50% between Dz). On 

the other hand, introducing related subjects in the analysis (Sample 3) yielded a consistent 

number of predictions not found in the unrelated Samples 1 and 2. However, it is impossible to 

disentangle, whether these additional results were driven by the higher power due to the larger 

number of subjects or the optimism-bias introduced by including related subjects. 

 
 

Table S4: Comparison of the significant predictions across the three samples 
 

 
Replication-analysis results Pooled-analysis results 

Predicted 

Trait 

Predicting 

Network 

Group r     

Sample 

1 

p-value 

Sample 

1 

r     

Sample 

2 

p-value 

Sample 

2 

r     

Sample 

3 

p-value 

Sample 

3 

O VA All 0.12 0.006 0.17 0.12 0.1 0.004 

O Pain All 0.1 0.018 0.2 0.1 0.16 0.0 

O Rew Women 0.17 0.006 0.2 0.17 0.11 0.017 

O Pain Women 0.12 0.048 0.29 0.12 0.15 0.018 

E Face Men 0.18 0.005 0.14 0.18 0.01 0.4 

E Rew Women 0.14 0.02 0.23 0.14 0.1 0.03 

E Conn Women 0.29 0.0 0.23 0.29 0.13 0.01 

A AM All 0.1 0.018 0.18 0.1 0.12 0.0 

N Conn All 0.14 0.018 0.14 0.14 0.07 0.06 

N Conn Men 0.17 0.0 0.37 0.17 0.12 0.02 

N Emo Men 0.2 0.002 0.42 0.2 0.05 0.1 

 
Predicted Trait: O: Openness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: autobiographic memory; 
Face: face perception; Conn: whole-brain network; Emo: emotional processing. Correlation coefficients between 
real and predicted values which resulted significant at p < 0.05 in both samples 1 and 2 (Replication-analysis 
results), compared with the performance of the same network-trait association in Sample 3 (Combination-analysis 
results). In red, predictions that resulted significant at p < 0.05 also in Sample 3. 



Table S5: Results of the Relevance Vector Machine in Sample 3 
 
 
 

Predicting 
Network 

Predicted 
Trait 

Group r 

Sample 

 

3 

p-value 

Sample 
3 

AM O All 0.09 0.01 

AM O Men 0.17 0.00 

AM O Women 0.15 0.00 

Emo O Women 0.11 0.02 

Emp O All 0.07 0.04 

Emp O Women 0.13 0.01 

Face O Women 0.21 0.00 

Pain O All 0.16 0.00 

Pain O Men 0.06 0.04 

Pain O Women 0.15 0.00 

Rew O All 0.10 0.00 

Rew O Men 0.07 0.03 

Rew O Women 0.11 0.02 

SM O All 0.07 0.03 

SM O Men 0.13 0.00 

VA O All 0.10 0.00 

VA O Women 0.18 0.00 

WM O Women 0.11 0.02 

Face C Women 0.13 0.01 

Conn C All 0.10 0.00 

Conn C Men 0.10 0.03 

WM C Women 0.12 0.01 

AM E Women 0.13 0.01 

Pain E Women 0.09 0.04 

Conn E All 0.16 0.00 

Conn E Women 0.13 0.01 

Rew E All 0.11 0.00 

Rew E Women 0.10 0.03 

AM A All 0.12 0.00 

AM A Men 0.12 0.00 

AM A Women 0.13 0.01 

Emp A Men 0.15 0.00 

Face A All 0.06 0.05 



Rew A All 0.14 0.00 

SM A All 0.12 0.00 

SM A Men 0.11 0.00 

VA A Men 0.14 0.00 

WM A All 0.09 0.01 

Emp N Women 0.18 0.00 

Face N All 0.08 0.02 

Conn N All 0.07 0.03 

Conn N Men 0.12 0.01 

Rew N Men 0.09 0.01 

 
 

Predicted Trait: O: Openness; C: Conscientiousness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: AM: Autobiographic Memory; Emp: Empathy; Emo: Emotional processing; Face: Face 
perception; Pain: Pain processing; Rew: Reward; SM: Semantic Memory; VA: Vigilant Attention; WM: Working 
Memory; Conn: Connectome. 

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 Sample 3. 
 
 

Supplement Fig S1: Meta-analytically derived networks 
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Perception of emotional scenes and faces 
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Autobiographic Memory 
 
 
 

 
Semantic Memory 

 

Regions constituting the meta-analytically defined network defined according to the SPM anatomy toolbox 2.1 
(Eickhoff et al. 2005, 2007). Red labels indicated regions already defined in previous sections. 



Supplement Fig 2: Comparison of the predictions across groups. Scatter plots of real and 
predicted personality score in the entire samples (all) as well as for males and females 
separately. Predictions are reported if they are significant in at least one out of the three 
groups. Only for the significant predictions, continuous regression lines and dashed lines, 
representing the standard deviation, are displayed. 
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VI SUMMARY AND GENERAL DISCUSSION 
 
These two studies investigated the structural and functional correlates of personality traits 

(assessed by the NEO FFI), with a critical attention on the gender-commonalities and differences 

in the brain-trait relationships. 

Specifically, in Study 1, whole brain voxel-based morphometry was used to investigate the 

influence of gender on the associations between personality traits and GMV in a large sample of 

182 males and 182 age-matched females. Personality-GMV relationships were assessed across 

the entire sample as well as separately for males and females. Core findings were no significant 

correlations between any personality scale and GMV in the overall sample, and, conversely, the 

significant associations with GMV detected for Neuroticism, Extraversion, and 

Conscientiousness only in males. Interestingly, GMV in left precuneus/parieto-occipital sulcus 

correlated with all three traits, such that the more emotionally stable, extrovert and conscientious 

men display higher GMV in Prc/POS. 

In Study 2, we aimed to predict scores of personality traits from resting-state functional 

connectivity in meta-analytically defined brain networks, and tested if prediction performance 

was influenced by gender. We assessed 9 meta-analytic networks representing regions 

consistently activated by different social (empathy, face perception), affective (reward, pain, 

emotion perception), executive (working memory, vigilant attention) and mnemonic 

(autobiographic and semantic memory) functions, all previously associated with personality in 

literature. For a more exploratory analysis, also the entire connectome was tested in its predictive 

power. RSFC of all networks was computed in a sample of 210 males and 210 well-matched 

females and in a replication sample of 155 males and 155 females. Using the relevance vector 

machine-learning algorithm, we attempted to predict the five scores based on FC between all 

nodes of each network, in the overall sample and then separately for males and females. Here, 

only two predictions resulted to be independent on gender (i.e. only detected in gender-combined 

sample). The rest of the predictions was significant either for one or the other gender group. It 

therefore indicated that more information can be found about personality trait – functional brain 

networks relationships while investigating men and women separately. 
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6.1 Personality is reflected in the neurobiology: Extraversion and Neuroticism 
 
Study 1 and 2 demonstrated that changes in brain structure and systematic co-activation patterns 

can be found in association with the Big Five, even though they were developed with a 

descriptive, lexical approach (Digman 1990; Costa and McCrae 1992b), and not based on a 

biological theory. 

It needs to be said that a major challenge in neuroimaging is still to clarify the relationships 

between brain structure and function: a region with higher GMV might be more functionally 

active, given the higher amount of somatodendric space and neuropil. At the same time, a region 

with lower GMV can also results as highly functioning, due to the more efficient compensatory 

mechanisms (Barulli and Stern 2013; Marques et al. 2016). However, we can still reach some 

conclusions by integrating the two studies together with the existing literature, especially for the 

traits Extraversion and Neuroticism which are by far the most studied in the field. 

Extraversion and Neuroticism, in Study 1, correlated with GMV in the occipito-parital cortex, 

which functional decoding pointed among others to social cognition (for E) and emotion (for N) 

domains, and in the left FFG/Cb, also linked to the emotion domain. Importantly, these results 

were exclusively in men. In Study 2, the same traits were predicted respectively by the Face and 

the Emo networks, again in men only. As a side note, even though not overlapping with the 

region resulting from Study 1 (POS/Cun), in Study 2, nodes encompassing occipital cortex and 

precuneus were present in both Emo and Face network, while left FFG/Cb (Study 1) was present 

only in Face network (Study 2). 

These results from different neuroimaging modalities (RSFC and VBM) jointly point to a crucial 

relationship of socio-emotional regions to N and E. With regards to E, a previous study showed 

increased amygdala-visual cortex FC, implicated in face recognition in highly extraverts (Pang et 

al. 2015), thus suggesting that the prediction of E from Face network might be reached by 

connectivity strength along with the score of E. Combination of (potentially) increased FC in the 

network deputed to perceiving and processing faces (Study 2) and increased GMV in occipito- 

parietal cortex and FFG, regions functionally characterized by the social and emotional domains 

(Study 1), hints to a relation between emotional face recognition and social communication skills 

with Extraversion. 

Similarly, N negatively correlated with GMV in the regions of occipito-parietal cortex and FFG, 
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functionally characterized by their link with the emotional domain (Study 1). It was then also 

predicted in Study 2 by the RSFC in the network deputed to the processing of emotions (Emo). 

Noteworthy, highly neurotics individuals have been found to display overall weaker functional 

connections (Servaas et al. 2015), as well as more specific impaired connection between  

fusiform gyrus and amygdala (Walter and Jensen 2014). Furthermore, on a behavioral level, 

neurotics performed worst in facial emotion recognition tasks than the more emotionally stable 

individuals (Andric et al. 2015). Building on these findings, the decreased GMV in regions 

deputed to facial emotional perception (as the Cun/POS and FFG) in Study 1, as well as RSFC 

pattern in Emo which allowed the prediction of N in Study 2, corroborate the hypothesis that 

neurotic individuals (especially men) might display an altered processing of facial emotions. 

In study 1, the functional decoding of left FFG revealed by the two-way conjunction (E and N) 

further showed that task-based activations within the emotion domain were more specifically 

paradigms of facial emotion discriminations (see above) and anticipation of monetary reward. 

Study 2 then also showed that E can be predicted based on FC within the Rew network. 

Noteworthy, the left FFG is not comprised in the employed meta-analytic Rew network, but yet, 

both studies pointed to an involvement of reward-related regions with the trait, via either local 

changes of GMV (exclusively in men) or more distributed pattern of FC (exclusively in women). 

Despite the “gender” incongruence, it is still important to highlight the association between E 

and reward, as this trait has been conceptually developed as behavioral exploration toward 

specific rewards (Costa and McCrae 1992; cf. Allen and DeYoung 2016). Therefore, either 

higher GMV in or RSFC between reward-sensitive regions in extravert men and women 

respectively seems to subserve the approach behavior toward rewarding and positive stimuli, 

manifested at high level of Extraversion (Lei et al. 2015). 
 
6.2 Personality is reflected in the neurobiology: Conscientiousness 

 
The remaining VBM finding was a small cluster in the Prc/POS, whose GMV positively 

correlated with Conscientiousness in men. In Study 2, no significant predictions of this trait were 

found (across the two samples) from any functional networks. Since C reflects the degree to 

which individuals perform tasks and organize their lives, exhibiting a tendency to self-discipline, 

act dutifully, and aim for achievement (Ozer and Benet-Martínez 2006), the functional network 

supporting vigilant attention (and thus rigid cognitive control) would have been expected, among 
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the ones employed, to predict C according to the previous literature (DeYoung et al. 2010; 

Kunisato et al. 2011; Farr et al. 2012). Additionally, given the behavioral correlation with 

subjective memory (Pearman 2009) and the structural correlation with Prc/POS, functionally 

associated to explicit memory (Study 1), also mnemonic networks were good candidates to 

predict C. Yet, neither of them was able to predict the trait in any of the gender-split or in 

gender-mix groups. 

The lack of predictions for C might be explained by two considerations. The first comes from the 

existing evidences on C, which seem to be better characterized in terms of structural (DeYoung 

et al. 2010; Jackson et al. 2011; Bjørnebekk et al. 2013; Kapogiannis et al. 2013; Forbes et al. 

2014) rather than functional (Adelstein et al. 2011; Kunisato et al. 2011) associations, thus 

suggesting a more structurally-based biology of C. Importantly, among the above structural 

studies, Bjørnebekk and colleagues reported, by using the NEO-PI-R (Costa, & McCrae 1992), 

positive correlations between cortical surface area around Prc/POS with the facets of 

Competence, Order, Dutifulness and Self-Discipline. This finding thus complements the 

structural association found in Study 1 between C and Prc/POS by specifically revealing the 

facets driving this association. From here, the second possible reason for the lack of predictions: 

the FFM hierarchy. As already discussed in the section 4.7 of Study 2, the FFM pyramid 

(superfactors/ factors/ aspects/ facets, respectively from the top to the bottom (cf. DeYoung et al. 

2007)) might have contributed in enlarging the gap between brain and personality traits. While 

this might not affect much GMV, a robust measure able to detect a coarse-grained signal at the 

trait level, FC in specific networks appear to be more affected, paving the possibility that they 

might be instead better at uncovering more fine-grained facets. Coinciding with this, VA  

network was shown to be specifically associated to Self-Discipline (Rueda et al. 2011), or Rew 

network to Achievement Striking (Cerasoli et al. 2014). The use of the NEO-PI-R allowing the 

investigation of the different facets of C might have therefore unrevealed more detailed 

predictions. 

Consequently, it seems plausible to conclude that, in the case of C, different modalities are 

entailed in studying different layers of the pyrimid, from the more coarse grained components 

(VBM) to the finest grained charecterizations (RSFC) (see below “6.5 Future Work”). 
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6.3 Personality is reflected in the neurobiology: Agreeableness and Openness 
 
While C was only related to GMV, Agreeableness and Openness did not have any structural 

relationships but could rather be predicted based on FC. Specifically, A was significantly 

predicted from RSFC within the AM network and O by RSFC within VA, Pain and Rew 

networks. 

There are evidences which support the hypothesis that these traits might be better studied by 

investigating RSFC rather than morphometric measurements. For example, the two largest VBM 

studies (Bjørnebekk et al. 2013; Liu et al. 2013) after Study 1, also failed in detecting GMV 

correlations with A, while studies with smaller sample sizes only found inconsistent results 

(DeYoung et al. 2010; Kapogiannis et al. 2013). Similarly for O, VBM findings have not 

revealed any consistent brain regions whose structure correlate with this trait (DeYoung et al. 

2010; Hu et al. 2011; Bjørnebekk et al. 2013; Liu et al. 2013). More evidences are instead 

available at the functional level for both A and O (Adelstein et al. 2011; Sampaio et al. 2014). 

These two studies by investigating FC among the major hubs of the default mode network 

(DMN), showed that A positively correlated with FC among its midline hubs (ACC, mPFC, 

Prc/PCC), deputed to self-referential processes. They also found results for O, in one case 

associated to FC in the midline hubs of mPFC and PCC (Adelstein et al. 2011), while in the 

another, with more the parietal components of the DMN (Sampaio et al. 2014). Additionally, FC 

studies investigating only O, revealed further associations with the entire efficiency of the DMN 

(Beaty et al. 2016) as well as with the dopaminergic mesocortical pathway subserving the reward 

system (Passamonti et al. 2014). 

As a matter of fact, the functional literature on these two traits (especially O) is much more 

abundant than their morphological characterization and our findings are well in line with this 

separation, given the lack of correlations in Study 1, while the predictions of those traits were 

significant in Study 2. More specifically, A was predicted by RSFC in the AM network, first 

“source of the self” (Fivush and Haden 2003) and composed by nodes belonging to the DMN 

and mirror neuron system (MNS). These systems are well known for their involvement in high- 

level mentalizing function (DMN) and for embodied simulation-based representation (MNS) 

(Keysers and Gazzola 2007; Qin and Northoff 2011), whose integration might support the social 

skills characterizing high agreeable individuals. It should be noticed that the network of Emp did 
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not predict A, probably because this trait might be explained by a more complex self-cognition 

(better represented by the AM network), rather than the specific empathic skill. 

Openness, on the other hand, was predicted by RSFC among regions supporting executive (VA) 

and affective (Rew and Pain) functions. In Study 2, discussion of these associations pointed to 

the importance for open individuals to detect the saliency of different kind of stimuli, either 

monotonous (VA), rewarding (Rew) or aversive (Pain). Thus, contrary to previous findings 

(Adelstein et al. 2011; Sampaio et al. 2014; Beaty et al. 2016) which, related O to internal mental 

activity detached from the external world (stimulus-independent thought) supported by the DMN 

(Mason et al. 2007), our results mainly suggest that O is more related to the attention toward an 

external stimulus (stimulus-dependent thought) and supported by the VA, Rew and Pain 

networks. 

 
 
6.4 Brain-personality relationships and the role of gender 

 
Study 1 revealed personality-brain structure relationships only apparent in males but not in 

females or in the entire sample. In line with Study 1, Study 2 also revealed that gender plays a 

crucial role in brain-behavior relationships. Specifically, i) none of the significant network-trait 

combinations was present in both female and male subsamples, but several functional networks 

showed different predictive power in males and females; ii) from the four predictions detected in 

the gender-mix group, only two of them were not replicated in any of the gender-split groups, 

while for the other two, the prediction performance increased while looking at men and women 

separately (e.g. Neuroticism being predicted by Connectome in All: r = 0.14; Neuroticism being 

predicted by Connectome in men only: r = 0.38), meaning that more information can be gained 

considering gender. 

Study 1 and 2 together thus point to the importance of gender influences on the morphometric as 

well as the functional neural correlates of personality. A first hypothesis advanced in Study 1 and 

2 on how gender could influence the neural correlates of personality, involved the role of sex 

hormones. They were indeed shown to be quite relevant in changes of perceived personality 

traits , for example in women over the menstrual cycle (Seeman 1997; Berlin et al. 2001; 

Sassoon et al. 2011; Daendee et al. 2013), as well to have prominent effects on a neural level. 

With  regards to  changes  in GMV,  consisting  findings  driven by  sex hormones  were reported 
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during puberty (Neufang et al. 2009; De Bondt et al. 2013) and aging (Boccardi et al. 2006; Ha  

et al. 2007), while less consistently during adulthood (Protopopescu et al. 2008; De Bondt et al. 

2013 but see Hagemann et al. 2011). It is in fact possible that in longer time window (as puberty 

and aging) structural connections (and possibly also GMV), are modified by a more gradual 

increase (in puberty) or decrease (in aging) of endogenous steroid levels (cf. Schulz et al. 2009). 

On the other hand, especially in women’s adulthood, variations of sex hormones happen in a 

much shorter time window (i.e. monthly fluctuations over the menstrual cycle) and it is still 

debated how much those changes are able to modify GMV in the brain over some days. There 

are indeed conflicting results showing either hormone-dependent changes (Protopopescu et al. 

2008) or a lack of them (Hagemann et al. 2011; Peper et al. 2011) over the menstrual cycle.  

What it does seem more established in women’s adulthood is the influence of sex hormones on 

functional connectivity: high levels of estradiol and progesterone were consistently shown to 

facilitate female RS interhemispheric connectivity, such decreasing brain lateralization (cf. Weis 

and Hausmann 2010), a mechanism that was proposed to ultimately underlie gender differences 

in functional cerebral asymmetries (FCA) (Hausmann 2002; Weis and Hausmann 2010). 

Functional connections, additionally, were shown to be activated by single administrations of sex 

steroids (Ottowitz et al. 2008; van Wingen et al. 2010), so to be more susceptible to changes  

over short time window. Also according to the review from Peper et al (2011), structural changes 

seem to happen over longer window of time, by a more gradual changing levels of sex steroids, 

such as during puberty or aging. Functional connections, conversely, seems to be modulated 

during rapidly changing hormonal fluctuation such as over the menstrual cycle or after a single 

administration of sex steroids (cf. Peper et al. 2011). In line with this explanation, we can thus 

speculate that it is this difference in the synchronization between changes happening at 

behavioral level (or at least with self-report of personality) and at neural level that allowed, in 

women, the characterization of personality functionally, but not structurally (Figure 2 for a 

schematic representation). 

Figure 2 
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Figure 2. Schematic representation of the monthly influence of sex hormones on brain structure and 

function, as well as the reported personality traits in women: GMV changes are not synchronous with 

personality fluctuation, while RSFC-personality fluctuations appear more synchronous 

 
In Study 2 we were also able to detect significant brain-personality relationships in women, that 

were not revealed in Study 1. A possible explanation might be found in the different brain 

organization between males and females. In fact, the short-time influence of ovarian hormones 

on RSFC seems to promote even more the decentralization and hemispheric connectivity of the 

female brain, such explaining the difference in functional brain organization between male and 

female brain (Weis and Hausmann 2010; Zaidi 2010; Ingalhalikar et al. 2014). As a result, the 

investigation of RSFC in brain networks, rather than local morphological effects, and the 

employment of MVPA rather than more traditional general linear model (i.e. exploiting  the 

entire pattern of FC in a distributed network vs. voxel-wise effects), might be better suitable to 

characterize the functional correlates of personality in women. 

 
 
6.5 Future work 

 
As previously discussed (see paragraph 4.1), the relationship between morphometric and 

activation measurements is not fully understood, while relationship between structural and 

functional connectivity seems to be by now better comprehended, given many studies showing 

that functional connectivity, even though not entirely, is driven and shaped by structural 

connectivity between brain systems (Honey et al. 2009; Van Den Heuvel et al. 2009; Messé et al. 

2014). Therefore the use of  structural connectivity measurements,  such as structural  covariance 
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(Mechelli 2005) as well as diffusion-tensor imaging (Johansen-Berg et al. 2004), can further 

elucidate whether regions found in Study 1 or in the networks employed in Study 2 are also less 

or more structurally connected. It is indeed important to pursue a characterization of the neural 

bases of personality in a multimodal manner, firstly, within the neuroimaging field to further 

reach an intersection with other fields such as molecular genetics, also highly involved in the 

neural investigation of personality. 

A multi-level approach is also recommended, for each modality, at different layers of the 

personality pyramid: instead of using the NEO-FFI questionnaire, the NEO-PI-R could allow 

researchers to specifically investigate personality from the top (Super-factors) to the bottom 

(Facets) of its hierarchy, revealing effects which cannot be detected by looking only at the traits. 

Lastly, a fundamental factor, by far underestimated, is the consideration of gender in such 

relationships. Much more studies are needed where gender is not treated as a covariate of NO 

interest, but where effects of gender are investigated. Importantly, given the very speculative 

arguments on the sex hormones role on the self-reported perceived personality as well as on the 

brain structure and function, an important step forward the understanding of such mechanisms 

would be to monitor the hormones level of the participants and investigate their effects on brain- 

behavior relationships. 

 
 
6.6 Conclusions 

 
In the present thesis, the neural bases of personality traits were investigating via multimodal MRI 

approaches, namely sMRI by carrying out a VBM analysis and fMRI by employing MVPA on 

network-based RSFC. Additionally, the gender differences in brain structure and function as well 

as the reported gender differences in personality scores, prompted the focus on the role of gender 

in brain-personality relationships. 

As a matter of fact, sexual dimorphisms emerged in both structural and functional correlates of 

the Big Five, as the findings revealed in the gender-mix analyses were either null (Study 1) or 

scarce (Study 2). On the contrary, for the gender-split groups, structural correlates of three traits 

(C, E, N) were specifically detected in male brains, and functional correlated of four traits (O, A, 

E, N) were differentially detected in male and female brains. These results remarkably showed 

the  importance  of  a multimodal  approach,  i.e. different  MRI  modalities  yielded  to  different 
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characterizations of brain-personality relationships, either according to the “gender of the brain” 

(with women’s personality preferentially being characterized by connectivity instead GMV), but 

also with regards to the personality trait under investigation: Openness and Agreeableness’ 

neural correlates resulted only depicted by RSFC, Conscientiousness’ by only GMV changes and 

lastly Extraversion and Neuroticism’ neural correlates by both modalities. In fact, RSFC in Face 

and Emo networks similarly to changes of GMV in regions subserving facial emotion 

discrimination, jointly pointed to the importance that perception of faces and emotions has with 

regard to Neuroticism and Extraversion, cues of threats for the first and of rewarding approach 

for the latter. 

The employment of different MRI techniques further elucidated that men and women might 

display different brain mechanisms supporting the same process. One instance of this was the 

reward characterization of Extraversion, in men supported by changes in GMV in regions 

associated to reward, while in women by the RSFC within the reward network itself. 

To conclude, the two studies together indicate that personality traits are related to the brain, 

structurally and functionally, thus providing new insights into the biology of personality. An 

even more profound reflection is the fact that personality traits were not only shown to correlated 

with brain structure, but that they could also be predicted in novel subjects only based on RSFC 

in specific networks. Furthermore, the lack of correlations with GMV in Study 1, together with 

several RSFC predictions in Study 2 indicated that female brains can be better characterized by 

measures of connectivity, thus promoting the need for a multimodal approach in the brain study 

of personality. 
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