
Schnelle parallele Fehlererholung in
verteilten In-Memory Key-Value

Systemen

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Kevin Beineke

geboren in
Düsseldorf

Düsseldorf, Juli 2018

aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Michael Schöttner

2. Prof. Dr. Martin Mauve

Tag der mündlichen Prüfung: 17. Dezember 2018

Abstract
Big data analytics and large-scale interactive graph applications require low-latency data access
and high throughput for billions to trillions of mostly small data objects. Distributed in-memory
systems address these challenges by storing all data objects in RAM and aggregating hundreds to
thousands of servers, each providing 128 GB to 1024 GB RAM, in commodity clusters or in the
cloud. This thesis addresses two main research challenges of large-scale distributed in-memory
systems: (1) fast recovery of failed servers and (2) highly concurrent sending/receiving of
network messages (small and large messages) with high throughput and low latency.

Masking server failures requires data replication. We decided to replicate data on remote disks
and not in remote memory because RAM is too expensive and volatile, resulting in data losses
in case of a data center power outage. For interactive applications, it is essential that server
recovery is very fast, i.e., the objects’ availability is restored within one or two seconds. This
is challenging for servers storing hundreds of millions or even billions of small data objects.
Additionally, the recovery performance depends on many factors like disk, memory and network
bandwidth as well as processing power for reloading the storage.

This thesis proposes a novel backup and recovery concept based on replicating the data of one
server to many backup servers which store replicas in logs on their local disks. This allows
a fast-parallel recovery of a crashed server by aggregating resources of backup servers, each
recovering a fraction of the failed server’s objects. The global replica distribution is optimized
to enable a fast-parallel recovery of a crashed server as well as providing additional options for
tuning data loss probability in case of multiple simultaneous server failures.

We also propose a new two-level logging approach and efficient epoch-based version management
both designed for storing replicas of large amounts of small data objects with a low memory
footprint. Server failure detection, as well as recovery coordination, is based on a superpeer
overlay network complemented by a fast, parallel local recovery utilizing multiple cores and
mitigating I/O limitations. All proposed concepts have been implemented and integrated into
the Java-based in-memory system DXRAM.

The evaluation shows that the proposed concept outperforms state-of-the-art distributed in-
memory key-value stores. Large-scale experiments in the Microsoft Azure cloud show that
servers storing hundreds of millions of small objects can be recovered in less than 2 seconds,
even under heavy load.

The proposed crash-recovery architecture and the key-value store itself require a fast and
highly concurrent network subsystem enabling many threads per server to synchronously and
asynchronously send/receive small data objects, concurrently serialized into messages and
aggregated transparently into large network packets. To the best of our knowledge, none of the
available network systems in the Java world provide all these features.

This thesis proposes a network subsystem providing concurrent object serialization, synchronous
and asynchronous messaging and automatic connection management. The modular design is
able to support different transport implementations, currently implemented for Ethernet and
InfiniBand. We combine several well-known and novel techniques, like lock-free programming,
zero-copy sending/receiving, parallel de-/serialization and implicit thread scheduling, to allow

low-latency message passing while also providing high throughput.

The evaluation of the developed network subsystem shows good scalability with constant
latencies and full saturation of the underlying interconnect, even in a worst-case scenario with
an all-to-all communication pattern, tested with up to 64 servers in the cloud. The network
subsystem achieves latencies of sub 10 µs (round-trip) including object de-/serialization and
duplex throughputs of more than 10 GB/s with FDR InfiniBand and good performance with
up to hundreds of threads sending/receiving in parallel, even with small messages (< 100
bytes).

iv

Zusammenfassung
Big-Data-Analysen und große interaktive Graphanwendungen erfordern Datenzugriffe mit
niedriger Latenz und hohem Durchsatz für Milliarden bis Billionen von zumeist kleinen Da-
tenobjekten. Verteilte In-Memory-Systeme bewältigen diese Herausforderung, indem sie alle
Datenobjekte im Arbeitsspeicher halten und Hunderte bis Tausende von handelsüblichen Ser-
vern, mit jeweils 128 GB bis 1024 GB Arbeitsspeicher, in Clustern oder in der Cloud aggregieren.
Diese Arbeit befasst sich mit zwei grundsätzliche Forschungsherausforderungen von großen
verteilten In-Memory-Systemen: (1) schnelle Wiederherstellung ausgefallener Server und (2)
nebenläufiges Senden/Empfangen von Netzwerknachrichten (kleine und große Nachrichten) mit
hohem Durchsatz und geringer Latenz.

Das Maskieren von Serverausfällen erfordert Datenreplikation. In dem vorgeschlagenen Konzept
werden Daten auf entfernten Festplatten bzw. SSDs und nicht im entfernten Speicher repliziert,
da Arbeitsspeicher zu teuer und flüchtig ist, was zu Datenverlusten im Falle eines Stromausfalls
im Rechenzentrum führt. Für interaktive Anwendungen ist es wichtig, dass die Serverwieder-
herstellung sehr schnell erfolgt, d. h. die Verfügbarkeit der Objekte innerhalb von ein bis zwei
Sekunden wiederhergestellt wird. Dies ist eine Herausforderung für Server, die Hunderte von
Millionen oder sogar Milliarden von kleinen Datenobjekten speichern. Zusätzlich hängt die
Wiederherstellungsgeschwindigkeit von vielen Hardware-Faktoren wie Festplatten-, Speicher-
und Netzwerkbandbreite sowie der Rechenleistung, welche für das Laden der Objekte in den
Arbeitsspeicher benötigt wird, ab.

Diese Arbeit schlägt ein neuartiges Backup- und Wiederherstellungskonzept vor, das darauf
basiert die Daten von einem Server auf viele Backup-Server zu replizieren, welche die Replikate
in Logs auf ihren lokalen Festplatten speichern. Dies ermöglicht eine schnelle, parallele Wieder-
herstellung eines abgestürzten Servers durch Aggregation der Ressourcen von Backup-Servern,
die jeweils einen Teil der Objekte des ausgefallenen Servers wiederherstellen. Die globale Backup-
verteilung ist optimiert, eine schnelle, parallele Wiederherstellung eines abgestürzten Servers
zu ermöglichen und zusätzlich die Wahrscheinlichkeit eines Datenverlustes im Falle mehrerer
gleichzeitiger Serverausfälle steuern zu können.

Diese Arbeit schlägt außerdem einen neuen zweistufigen Logging-Ansatz und ein effizientes
Epochen-basiertes Versionsmanagement vor, die beide für die Speicherung von Replikaten
vieler kleiner Datenobjekte mit geringem Speicherbedarf entwickelt wurden. Die Erkennung
von Serverausfällen sowie die Koordination der Wiederherstellung basiert auf einem Superpeer-
Overlay-Netz. Das Konzept wird ergänzt durch eine schnelle, parallele lokale Wiederherstellung,
welche für Mehrkern-Prozessoren optimiert ist und durch die parallele Ausführung die Lesezeiten
von Festplatte weitestgehend verdeckt. Alle vorgeschlagenen Konzepte wurden implementiert
und in das Java-basierte In-Memory-System DXRAM integriert.

Die Auswertungen zeigen, dass die vorgeschlagenen Konzepte deren von modernen verteilten
In-Memory Key-Value-Speichern überlegen ist. Große Experimente in der Microsoft Azure
Cloud zeigen zudem, dass Server, die Hunderte von Millionen kleiner Objekte speichern, auch
unter hoher Last in weniger als 2 Sekunden wiederhergestellt werden können.

Die vorgeschlagene Crash-Recovery-Architektur und der Key-Value-Speicher selbst erfordern ein
schnelles und hoch-paralleles Netzwerk-Subsystem, mit dem viele Threads pro Server synchron

und asynchron kleine Datenobjekte gleichzeitig senden/empfangen können. Zusätzlich müssen
die Datenobjekte parallel in Nachrichten serialisiert und transparent zu großen Netzwerk-
Paketen aggregiert werden können, um hohe Durchsätze mit kleinen Objekten zu erzielen. Nach
bestem Wissen bietet keines der für Java verfügbaren Netzwerksysteme alle diese Funktionen.

Diese Arbeit schlägt ein Netzwerk-Subsystem vor, das die parallele Serialisierung von Objekten,
synchrones und asynchrones Nachrichtenversenden und automatisches Verbindungsmanagement
bietet. Der modulare Aufbau unterstützt verschiedene Transport-Implementierungen, die derzeit
für Ethernet und InfiniBand implementiert sind. Es werden verschiedene bekannte und neuartige
Techniken, wie nicht-blockierende Synchronisierung, Senden/Empfangen ohne das Kopieren
von Daten, parallele De-/Serialisierung und implizites Thread-Scheduling kombiniert, um das
Senden/Empfangen von Nachrichten mit niedriger Latenz bei gleichzeitig hohem Durchsatz zu
ermöglichen.

Die Auswertung des entwickelten Netzwerk-Subsystems zeigt eine gute Skalierbarkeit mit kon-
stanten Latenzen und voller Sättigung des zugrundeliegenden Netzwerkes, selbst im schlimmsten
Fall mit einem jeder-zu-jedem-Kommunikationsmuster, getestet mit bis zu 64 Servern in der
Cloud. Das Netzwerk-Subsystem erreicht Latenzen von unter 10 µs (Umlaufzeit) inklusive
Objekt-De-/Serialisierung und Duplex-Durchsatz von mehr als 10 GB/s mit FDR InfiniBand
und gute Performance mit bis zu hunderten von Threads, die parallel senden und empfangen,
auch bei kleinen Nachrichtengrößen (< 100 Bytes).

vi

Danksagung

Ich möchte mich herzlichst bei Herrn Prof. Dr. Michael Schöttner für die Betreuung dieser
Dissertation bedanken, für den persönlichen Einsatz und die konstruktive Unterstützung. Des
Weiteren bedanke ich mich bei den Kollegen Stefan Nothaas und Florian Klein für die gute
Zusammenarbeit. Alle besagten Personen hatten einen wesentlichen Anteil an dieser Arbeit
und meiner persönlichen Entwicklung in dieser Zeit.

Weiterer Dank gilt Angela Rennwanz für Ihre organisatorische und Michael Braitmeier für die
technische Unterstützung. Außerdem bin ich den zahlreichen Studenten für den gegenseitigen
Wissenstransfer zu Dank verpflichtet.

Besondere Unterstützung habe ich von meiner Familie, insbesondere von meinen Eltern Marion
und Jürgen Beineke, und meinen Freunden genossen. Herzlichsten Dank für den Rückhalt und
die aufgebrachte Geduld!

Contents

1. Introduction 1
1.0.1. Application Domains Processing Many Small Data Objects 2
1.0.2. Categorization of In-Memory Storages 3
1.0.3. Fault-Tolerance Mechanisms . 3
1.0.4. Network Subsystems . 7
1.0.5. Big Data Analytics in the Industry . 8

1.1. Research Questions and Contributions . 9
1.1.1. Backup and Recovery . 9
1.1.2. Network Subsystem . 12

1.2. Structure of this Thesis . 13
1.3. DXRAM . 14

1.3.1. Overview . 14
1.3.2. Compute Platform . 18
1.3.3. Distributed Metadata Management . 19
1.3.4. Efficient Memory Management . 21
1.3.5. Concurrent Backup and Recovery . 23
1.3.6. DXNet: Lock-free Messaging . 27

2. Efficient Messaging for Java Applications running in Data Centers 31
2.1. Paper Summary . 31
2.2. Importance and Impact on Thesis . 32
2.3. Personal Contribution . 32

3. Scalable Messaging for Java-based Cloud Applications 44
3.1. Paper Summary . 44
3.2. Importance and Impact on Thesis . 45
3.3. Personal Contribution . 45

4. High Throughput Log-based Replication for Many Small In-memory Object 56
4.1. Paper Summary . 56
4.2. Importance and Impact on Thesis . 57
4.3. Personal Contribution . 57

5. Fast Parallel Recovery of Many Small In-memory Objects 68
5.1. Paper Summary . 68
5.2. Importance and Impact on Thesis . 69
5.3. Personal Contribution . 69

6. DXRAM’s Fault-Tolerance Mechanisms Meet High Speed I/O Devices 80
6.1. Paper Summary . 80

viii

Contents

6.2. Importance and Impact on Thesis . 80
6.3. Personal Contribution . 81

7. Conclusion 103
7.1. Future Directions . 105
7.2. Lessons Learned . 105

I. Appendix 107

8. Appendix 108
8.1. DXRAM - Additional Information . 108
8.2. Asynchronous Logging and Fast Recovery for a Large-Scale Distributed In-

Memory Storage . 115
8.2.1. Paper Summary . 115

ix

Chapter 1.

Introduction

With the rise of web applications like search engines [89] and social media networks [116, 57]
and the collection of continually increasing amounts of customer [69], health [50], spatial [131]
and sensor data [86], big data analytics have become indispensable for many companies and
introduced new challenges for the research community. Storing petabytes of data is a challenge
itself, but big data analytics and large-scale interactive applications also require fast processing
and low-latency data access to these huge amounts of data for real-time interactions [105]. The
growing capacities and the falling prices of Dynamic Random Access Memory (DRAM; referred
to as RAM throughout this thesis) allow loading large amounts of data from disk to RAM in
order to improve data access times [128]. RAM is around two orders of magnitude faster than
hard disk drives (HDD) and latencies are six orders of magnitude lower [46]. The difference is
even higher for random access. In comparison to much faster Solid State Drives (SSD; also called
flash memory or flash drive; the term disk is used for SSDs and HDDs), RAM is still one order
of magnitude faster, and latency is 1000x lower [46]. Operators of social media networks like
Facebook [116] and Twitter [57], as well as, other companies hosting large-scale web applications
like Google [22] and Amazon [28] reached the limits of disk-based storages and started using
in-memory caching-techniques [128, 80]. However, caches are difficult to synchronize with disk
storages and the latencies between read and write accesses vary significantly, as well as, between
read accesses served by the cache and cache misses [80]. Depending on the data access patterns,
caches can grow very large to hold the cache miss ratio low. Facebook, for example, cached
around 75% of all data on up to 1,000 Memcached [37] servers in 2009 [87].

Storing all data objects in RAM is a logical next step but is not a new idea as in-memory
databases are a research subject since the 1980s [29, 32]. However, in-memory storages have
become an important tool recently because of the large amounts of RAM available in commodity
servers of private clusters and in the cloud. Various big data applications consist of billions or
even trillions of mostly small objects [80, 75] rendering storing all objects in one server impossible.
In data centers or in the cloud, servers are often connected with high-speed interconnects like
10 GBit/s Ethernet or 56 GBit/s InfiniBand [112], allowing low-latency access across the entire
cluster. But, connecting hundreds of servers to store large-scale interactive applications or to
execute big data analytics, increases the server failure probability significantly. This thesis
focuses on two key aspects of distributed in-memory storages:

1. Fast parallel crash recovery: The primary goal is to mask server failures transparently
within a few seconds to ensure the quality of service for the application. For instance, big
data analytics benefit from the very low latency of the in-memory storage in a way that

1

Chapter 1. Introduction

single server failures do not noticeably affect the application if failures are handled within
one to two seconds.

2. Fast and parallel network subsystem: Storing all data in RAM allows low-latency access
on a single server. To enable low-latency access across the entire cluster, the distributed
in-memory storage needs a fast and efficient network subsystem. This is essential for many
graph algorithms and applications, e.g., social networks, because they have an irregular
access pattern resulting in a lot of cross-traffic [116].

Both subjects are interdependent as remote replication and parallel recovery also cause a high
load on the network and benefit from low latencies and high throughputs. Thus, it is important
to match the concepts of both subjects.

1.0.1. Application Domains Processing Many Small Data Objects

Numerous concepts for replicating and recovering in-memory data [84, 61, 100] and low-latency
interconnects [31, 87] have been proposed. Yet, solutions have a limited set of application
domains in which they are efficient (discussed in Section 1.0.3 and 1.0.4). Therefore, in this
Section, we introduce the primary application domains addressed within this thesis.

More and more big data applications demand low-latency access to mostly small objects [128], for
instance, in the form of states (e.g., status information) or attributes (e.g., object metadata) in
a social network [4]. These applications can be subdivided into two categories: online processing
and offline analytics. Many applications can make the transition from offline analytics to
online processing by using low-latency storages [88]. The first category primarily comprises
user-generated data like in social media networks [116, 57], health applications [50] and social
gaming [36]. A pleasant user experience requires keeping latencies for data accesses low [105].
Further online processing applications include real-time bidding [129], sensor data processing
[86], online state management [102] and graph processing for information retrieval on a web
graph and finding social influencers in a social media graph. The applications of the second
category benefit from low-latency access by reducing the runtime of analytics considerably. Big
data analytics can be found in various fields like advertising [69], telecommunications [102] and
bio-informatics (e.g., enumerating common molecular substructures [33]). Commonly, big data
applications have a graph-based data model with graph traversal algorithms (depth-first and
breadth-first search), are based on data mining (e.g., PageRank [89], random walk, centrality
measures, degree distribution, etc.) or machine learning (e.g., neural networks, deep learning,
topic modeling, etc.) [123].

Graph applications based on social media, sensor and neural networks, typically, consist of
many small data objects (the vertices of the graph) and even smaller edges. Some social media
networks have billions of users and store trillions of objects [80]. In Facebook, a production
workload analysis showed that around 70% of all requests served by the cache were less than 64
bytes in size, 99% less than 1 KB [80]. Bronson et al. [20] recorded 6.5 million requests from
TAO [20], the geographical cache system of Facebook, showing that 45% of all edges of the
social graph were empty and the rest of the edges had an average size of 97.8 bytes. Vertices
were larger. Still, more than half of all vertices were smaller than 256 bytes. They also stated
that 99.8% of all requests were reads. The analysis of Atikoglu et al. [4] covering 284 billion

2

Chapter 1. Introduction

requests confirms the small requests sizes, especially for user-account status information, and
that read access dominates over write access. Another example is the web graph. In 2005, the
web graph consisted of more than 11.5 billion indexed web pages which are highly connected
[44]. Meusel et al. analyzed a web graph with 3.5 billion web pages and 128.7 billion links
which fit entirely in one terabyte of RAM [75] showing the small vertex and edge sizes. The
distributed in-memory storage needs to be able to efficiently manage small objects (< 100 bytes)
in order to store graphs of this size.

1.0.2. Categorization of In-Memory Storages

Generally, in-memory storages can be categorized into two groups: in-memory databases and
RAM-based NoSQL storages.

In-memory databases, also called data management systems, include relational databases
(e.g., SAP HANA [107]), graph-based databases (e.g., GraphLab [64] and GraphX [125]),
stream-based databases (e.g, GridGain [99]) and document-based databases (e.g., MongoDB
[90]). Especially, relational in-memory databases share many design aspects with traditional
databases despite the different primary memory [128]. Database management systems both
disk-based and in-memory usually implement the ACID consistency model based on transactions
offering atomicity, consistency, isolation and durability for all database operations. However,
distributed databases require two-phase commits to apply transactions across multiple database
instances, which limits the scalability considerably [92].

RAM-based NoSQL storages use hash tables, tables or key-value tuples as a data model
[128]. Generally, other models are built upon the simple core data model (e.g., natural graphs).
In contrary to database management systems, NoSQL storages usually implement the BASE
consistency model providing basic availability, soft-state and eventual consistency favoring
scalability over consistency [92]. This thesis focuses on but is not limited to distributed in-
memory key-value stores which are a subset of this second category. The most related distributed
in-memory key-value stores for this thesis are Redis [21], Aerospike [117] and RAMCloud [84]
which are introduced in Section 1.0.3.

1.0.3. Fault-Tolerance Mechanisms

Distributed in-memory storages have specific characteristics which have to be considered when
designing fault-tolerance mechanisms.

• Performance is critical: the main advantage of in-memory storages in comparison to
traditional disk-based storages is the low latency and high throughput. Therefore, the
replication overhead must be as low as possible to avoid impacting the performance
considerably. Additionally, object availability must be restored as fast as possible after
server failures.

• Scalability: some in-memory storages are able to distribute the load to thousands of
servers to store billions to trillions of objects. The fault-tolerance mechanisms must scale

3

Chapter 1. Introduction

as well as other parts of the distributed storage.

• RAM is volatile and scarce: even with decreasing RAM prices, it is still more expensive
than disks (HDDs and SSDs), and RAM capacities are much lower. A commodity server,
today, has around 256 GB of RAM and several terabytes of disk storage [61]. Thus,
occupying large amounts of RAM for backup mechanisms increases the number of servers
to be aggregated or the cost of the servers by increasing the RAM size. In both cases, also
the maintenance costs of running the servers are higher. Consequently, the underutilized
disks should be used for storing replicas and backup metadata. Performance-sensible
metadata, stored in RAM, should be minimized, especially if the application consists of
billions of small data objects. Furthermore, when writing all data objects to disk, they
are persistent and can be recovered after a power failure, even if all servers were affected.

In this thesis, we propose a backup and recovery scheme considering the key aspects performance,
scalability and efficient RAM usage for applications with billions of small data objects accessed
in write-heavy random or zipfian distributions [116, 75]. However, most of the concepts are
versatile and can be implemented for various application domains and storage systems.

In the following, we introduce several existing techniques and in-memory storage systems with
relevant fault-tolerance mechanisms.

Failure detection: many distributed in-memory storages use overlays and heartbeats in order to
detect server failures. In this thesis, we cover consistent fail-stop, crash and omission failures.
Byzantine and arbitrary failures are beyond the scope of this thesis but are well studied and
can be prevented, for instance, by using a quorum and checksums [68]. Other failure sources
like network failures and partitions are not addressed because they are very seldom in data
centers [40] and solutions exist [130, 95].

Writing to disk must be optimized for the application pattern in order to provide high throughput.
Especially with many small data objects, data aggregation and sequential write patterns are
necessary to achieve optimal performance of disks favoring a log structure on disk. A log
is a data structure to record events or objects by appending them at the end. Distributed
in-memory storages typically use a circular log with a static size. When the end of the log is
reached new objects are written to the beginning. A reorganization is executed periodically
removing old and to be deleted objects from the log to compact it. A log is the preferred data
structure for backups on disk because the sequential (and possibly buffered) writing allows high
disk utilization.

With significant advances in flash memory over the past years, SSDs have become very attractive
for backup purposes as the write throughput for sequential access is not far from RAM
and network throughput [111]. Most in-memory storages use logs on SSDs, but the replica
distribution and recovery mechanisms differ significantly.

We distinguish two crash recovery models:

1. Cold start: in-memory data is written to disk locally. After a single server failure, the
server and the storage system is restarted. During the start of the storage system, all
objects are restored by reading them from disk and loading them back to RAM. Reloading

4

Chapter 1. Introduction

all objects on a single server can be slow. The distributed in-memory key-value store
Aerospike [117], for instance, takes more than 40 minutes to restore one billion objects
[35]. Some systems can maintain exact copies of a server, which store the same objects in
RAM and on disk, to improve availability. Obviously, storing all objects multiple times in
RAM (and on disk) is very expensive. Furthermore, this approach might require operator
assistance to restart the failed server and the storage.

2. Instant Recovery: the instant recovery model replicates the data of each server to remote
servers’ disks (ideally without storing them in RAM). In case of a server failure, multiple
servers, each storing a part of the data on disk, recover the data in parallel. In this thesis,
we propose backup and recovery concepts for many small data objects using the instant
recovery model.

In the next paragraphs, we describe state-of-the-art in-memory storages which implement the
cold start or instant recovery model.

SAP HANA [107] is an in-memory database which was designed for analytic and transactional
access in a highly scalable environment and is widely used in the industry (e.g., Bayer, Dell,
Reuters, Vodafone [101]). SAP HANA can distribute the load between multiple servers by using
multiple index servers or by partitioning and distributing the database. SAP HANA offers a
uniform data model based on row- or column-oriented tables and provides a temporal view by
maintaining a history for tables. SAP HANA implements the cold start recovery model and
uses a combination of checkpointing, delta backups which are incremental and/or differential
backups and redo logs, all stored persistently on disk [100]. Checkpointing is a fault-tolerance
technique saving snapshots of the current state in predefined scenarios (e.g., periodically). An
incremental backup stores all changed data since the last incremental backup or checkpoint
(for the first incremental backup) and is immutable whereas a differential backup contains
all changed data since the last checkpoint and grows with every change. Several incremental
backups can be combined to one differential backup. A redo log does not store data but changes
to the data, written asynchronously to disk after every committed transaction. If a database
instance fails, the server will be restarted and the data restored by loading the most recent
checkpoint, all incremental and differential backups younger than the checkpoint and applying
the changes recorded in redo log entries younger than the last delta backup [100].

Redis [21] is one of the most popular distributed in-memory systems which is used as an
in-memory database, as a cache or publish-subscribe service by many companies like Twitter,
GitHub, Stack Overflow and Flickr [124]. Redis provides data structures (numbers, strings, hash
tables, lists and sets) upon the key-value model, basic transactions to bundle operations, which
are executed atomically, and server-side scripting. In Redis, requests are served asynchronously
by a single thread limiting the scalability on multi-core CPUs (using one instance per core
has a high overhead). Redis differs from in-memory caches like Memcached [37] by providing
on-disk persistence. The extension Redis Cluster provides data sharding based on a hash slot
partition strategy requiring manual re-sharding for server upscaling [128]. Sharding describes
the partitioning and distribution of large datasets to multiple servers. Redis implements the
cold start recovery model. It provides a master-slave asynchronous replication and different
on-disk persistence modes. To replicate in-memory objects, exact copies of masters, called
slaves, are filled with all objects asynchronously. To overcome power outages and server failures,
Redis provides snapshotting and append-only logging with periodical rewriting. However, to
replicate on disk the server’s objects must also be replicated in RAM which increases the total

5

Chapter 1. Introduction

amount of RAM needed drastically. Redis reads in a full log to compress it which is fast but
introduces a lot of RAM overhead again. A crashed server is not recovered automatically but
on restart. Further, the recovery is not able to recover one server in parallel on multiple slaves
[15, 14].

Aerospike [117] is a distributed database platform providing consistency, reliability, self-
management and high-performance clustering. Aerospike uses Paxos [59] consensus for server
joining and failing, and balances load with the migration of partitions. Aerospike enables
different storage modes for every namespace. For instance, all data can be stored on SSD with
indexes in RAM or all data can be stored in RAM and optionally on SSD with a configurable
replication factor [15]. Aerospike can be configured to log the in-memory objects to remote
servers’ disks [117] by creating and maintaining shadow copies of the servers. The logging
architecture is optimized for flash memory. Like Redis, Aerospike does not offer a possibility to
recover servers during ongoing operation but provides data restore on cold start on a single
server [15, 14].

RAMCloud [87] is a distributed in-memory key-value store which uses a distributed hash
table, maintained by a central coordinator, to map 64-bit object IDs to servers. RAMCloud
implements a log-based replication of data on remote servers’ disks [84] (instant recovery model).
In contrast to Redis and Aerospike, RAMCloud organizes in-memory data also as a log which
is scattered for replication purposes across many servers’ disks in a master-slave coupling [98].
Scattering the state of one server’s log on many backup servers allows fast recovery of large
servers. However, the recovery is not optimized for small data objects. Thus, the recovery
throughput decreases considerably for smaller objects [114]. Obviously, logging throughput
depends on the I/O bandwidth of disks as well as on the available network bandwidth and
CPU resources for data processing. RAMCloud uses a centralized log-reorganization approach
executed on the in-memory log of the server which resends reorganized segments of the log
over the network to backup servers. As a result, remaining valid objects will be re-replicated
over the network after every reorganization iteration to clean-up the persistent logs on remote
servers. This approach relieves remote disks but at the same time burdens the master and the
network [15, 14].

FaRM [31] is a distributed in-memory computation platform by Microsoft Research. It combines
the RAM of multiple servers to a shared address space. The memory of the participating servers
is divided into 2 GB regions which are mapped using a form of consistent hashing with multiple
virtual rings in a distributed hash table. FaRM uses slab, block and region allocators to support
256 distinct sizes from 64 bytes to 1 MB [31]. Therefore, the fragmentation for objects smaller
than 64 bytes might be high. The data is accessed and modified by local and distributed
transactions, implementing an optimized two-phase protocol, lock-free reads and shipping of
transactions. FaRM uses replicated logging with strict serializability for transactions in order to
replicate the data and the commit/redo log. FaRM claims to support instant parallel recovery
of failed servers similar to RAMCloud, but no details have been published [31].

The Trinity Graph Engine [104] is a distributed in-memory graph database from Microsoft
designed to support algorithms executed on graphs with billions of vertices. It uses a key-value
data model implemented in C# on top of a memory cloud used for backup [104]. Every server
stores a few equally sized trunks of the overall RAM. To find a key-value pair, Trinity uses
two-level hashing [54]. Locally, the memory is organized as a log. Trinity uses a different
approach by writing replicas into a memory cloud [104]. Thus, the complexity is transferred

6

Chapter 1. Introduction

to the memory cloud. On server failure, the leader machine reloads the data of the failed
server by requesting the data from the memory cloud (instant recovery). Subsequently, the
leader machine sends the reloaded objects to other servers and updates the metadata [104].
Apparently, the leader machine is the bottleneck in this approach (no parallel recovery).

Another different approach is implemented by Alluxio [61] which is a distributed file system.
Alluxio provides fast data access times for all objects in cluster setups by holding all objects
in RAM and avoiding replication to other servers and slower secondary storage through a
lineage-based approach. This means that object updates are not stored on backups, but the
operations applied to the object which are defined in job binaries like a MapReduce [27] or Spark
[127] job. In case of a server failure, the data is reconstructed by re-executing the operations that
generated the data, assuming the input data is immutable and the job deterministic. Additional
asynchronous checkpointing to local disks limit the re-computation overhead. In case of a
failure, the latest completed snapshot can be restored, and younger jobs be re-executed (instant
recovery). While object creations and updates benefit from the replication-less approach, the
recovery is impaired for high throughput scenarios as checkpointing falls behind (bound to I/O
bandwidth). As a consequence, many objects have to be reconstructed based on possibly many
jobs which have been executed since the last completed checkpoint. This reduces the recovery
throughput, especially for many small objects [14]. Additionally, the lineage approach requires
a job-based execution which limits the application domains.

1.0.4. Network Subsystems

Designing a network subsystem for in-memory storages is challenging as low-latency access to
all objects is a key feature, as well as, providing high throughput. Logging and recovery even
increase the challenge as data objects have to be replicated efficiently and quickly. Furthermore,
in the primary application domains of this thesis, applications utilize many threads [128,
78, 108] and objects are small and, thus, messages often, too. This requires very efficient
aggregation of messages, and the network subsystem has to cope with up to hundreds of threads.
Interactive social media, large-scale graph applications, for instance, do not fit in a single server.
Distributing the graph leads to a significant amount of cross-traffic as social media networks
are rather dense [116]. Furthermore, the parallel execution of graph traversal algorithms like
breadth-first search or random walk often result in an all-to-all communication pattern on
graphs with a low diameter (e.g., the average distance between users on Facebook was just 4.7
hops in 2011 [116]). The objects (vertices and edges) of a social media graph are very small [20],
so are the messages, especially when using a vertex-centric approach [67]. Another important
aspect is the support for common data center network technologies like Ethernet and InfiniBand
which benefits from a transport agnostic network layer. Further objectives are:

• Server address abstraction: using IDs/handles instead of network addresses

• Automatic connection management: create and open connections transparently on demand

• Scalability: low-latency access and high throughput must be provided for hundreds of
servers, each running many threads, even in an all-to-all communication pattern

• Object serialization: efficiently serialize (complex) objects, relieving programs from reading

7

Chapter 1. Introduction

low-level network packets

• Application flow-control: avoid overburdening a server

• Low and predictable memory consumption

The concepts, proposed in this thesis, for a very fast message passing network subsystem are
applicable to other network frameworks. Furthermore, the network subsystem is a stand-alone
Java library and can be used for other Java applications or Java-based big data systems and is
not limited to in-memory storages. We do not discuss the Message Passing Interface (MPI) or
the message passing programming model here, but this can be found in Chapter 2.

In the following, we discuss the network subsystems of other in-memory storages (some of which
are introduced in Section 1.0.3) and describe best practices.

Redis, Aerospike and Trinity use TCP sockets over Ethernet for network communication [41,
110, 42]. MICA [62] a single-server in-memory key-value store introduced several network stack
optimizations to increase the performance of Ethernet networks. MICA bypasses sockets by
accessing the NIC directly and reduces inter-core contention by using different core affinity
techniques [62]. While this improves the performance, the applications need to implement
transport layer features like retransmits

Wenhui et al. implemented a network communication module for Redis enabling RDMA over
InfiniBand [115], but this module is not officially supported. FaRM also uses RDMA over
InfiniBand and, additionally, supports RDMA over Ethernet with a Converged Ethernet (RoCE)
link layer protocol. InfiniBand networks enable lower latencies and higher throughputs, e.g., 10
Gbit/s InfiniBand achieves 3.7 times more bandwidth and 5 to 6 times lower latencies than
10 Gbit/s Ethernet in simple ping-pong and throughput tests [26]. With RDMA, a server
can directly access the memory of a remote server without involving the operating system or
occupying CPU resources. Thus, RDMA accesses have very low latency and can achieve high
throughputs. However, the use cases are limited because of the necessity to know the remote
addresses which is hardly feasible for large clusters and billions or trillions of objects.

RAMCloud was specifically designed to utilize InfiniBand networks to serve remote procedure
calls (RPC) in 5 to 10 µs [87] (RAMCloud also supports Ethernet networks). RAMCloud does
not use RDMA for RPCs but uses message passing with messaging verbs. Many optimizations
(e.g., kernel bypassing, lock-free sending/receiving, avoiding batches in favor of latency [87])
and a new network stack have been introduced to utilize an InfiniBand network efficiently.

While all introduced key-value stores are written in C, C++ or C#, many big data applications
and platforms are written in Java [72, 122, 45] requiring communicating over a Java interface.
Furthermore, the application needs to de-/serialize Java objects itself or use the included Java
serializer which is slow and not space efficient [96]. In this thesis, we propose a Java network
subsystem with a novel, fast and efficient serialization architecture optimized for concurrency.

8

Chapter 1. Introduction

1.0.5. Big Data Analytics in the Industry

Many companies executing big data analytics use the Hadoop ecosystem [72] (e.g., Amazon,
eBay, Facebook, Google, IBM, LinkedIn, Microsoft, Twitter and Yahoo! [91]). It provides a great
variety of frameworks for interactive computations [127], MapReduce [27, 30], machine learning
[2, 74], searching/indexing [71, 43], streaming [23, 122] and graph [127, 125] applications
on big data sets. The applications rely on SQL [3, 56] and NoSQL databases included in
the Hadoop ecosystem like HBase [120] and Cassandra [58]. Apache Cassandra [58] is an
open-source column-based NoSQL database which was developed by Facebook (but Facebook
switched to HBase in 2010 [19]). Apache Spark [127] is a cluster computing framework which
tries to overcome the limitations of the MapReduce paradigm by supporting interactive data
analysis. The data is held in resilient distributed datasets (RDD), read-only sets of data objects
scattered across the cluster and accessed in a restricted form of distributed shared memory
[126]. Furthermore, the Hadoop ecosystem provides tools for scripting [38], scheduling [48],
management and coordination [47, 121], as well as, for cluster resource management [118]. Most
frameworks, databases and tools are based on the Apache Hadoop Distributed File System
(HDFS) [106] which is a distributed file system designed to run on commodity hardware and
applications with big data sets [63]. Typically, all data is stored on disks and depending on
the application huge amounts of data are cached in RAM [37] [85] [66]. Memcached [37], for
instance, is a distributed key-value cache used by many companies (Facebook [80], Twitter [73],
Reddit [94], YouTube [103] etc.) in order to reduce latency. Another example is TAO [20] a
geographically distributed cache designed and used by Facebook. Apache Spark can also hold
RDDs in cache. Another approach is to replace HDFS by an in-memory file system like Apache
Ignite [85] to employ a distributed in-memory storage.

Many big data analytics in the industry could benefit or already benefit from distributed
in-memory storages and therefore could also profit from the proposed concepts regarding fast
crash recovery and low-latency messaging.

1.1. Research Questions and Contributions

Big data analytics and large-scale interactive applications have high demands on the storage (see
Section 1.0.1). Dr. Florian Klein proposed and designed the distributed in-memory key-value
store DXRAM which stores small data objects with very low overhead and high performance
[55, 53]. In this thesis, we present a logging and recovery concept for distributed in-memory
key-value stores which have been integrated into DXRAM as a proof of concept. The proposed
concepts are optimized for large amounts of small data objects and implement the instant
recovery model allowing the recovery of crashed servers with 500,000,000 64-byte objects in less
than two seconds (see Chapter 5). Additionally, we propose a versatile network subsystem with
fast object de-/serialization optimized for small messages and support for high-speed networks
(see Chapter 2). Naturally, the logging and recovery also benefit from an optimized network
stack.

The management of billions of very small data objects opens new research questions in the two
areas discussed in the following sections.

9

Chapter 1. Introduction

1.1.1. Backup and Recovery

In Section 1.0.3, we introduced different existing fault-tolerance mechanisms with various
advantages and disadvantages. The cold start recovery model is easy to implement, but the
reloading of all objects on the restarted server is too slow. Using shadow copies (occupying
remote memory), on the other hand, requires too many resources for large-scale applications.
Using a memory cloud for backups transfers the complexity from the key-value store to the
memory cloud. Subsequently, directed replica placement in order to improve the recovery
performance is not possible as the memory cloud handles replica placement. Furthermore,
reloading all objects on one server and distributing the objects afterward is slow. The lineage
approach allows very fast write accesses for many job-based application patterns as replicating
the operation is generally faster than replicating the data. However, for given application
domains the advantage is insignificant as objects are small and read accesses dominate over
write accesses. On the other hand, the lineage approach impairs the recovery performance
because the jobs have to be re-applied to the input objects which is CPU- and thus time-intense.
We think RAMCloud’s approach scattering the data objects of one server into remote logs on
disk of many backup servers to be able to recover a server in parallel is a good foundation. Yet,
many key aspects require to be adapted to DXRAM (discussed below) and primarily to the
application domains opening many research questions. In the following, we discuss the most
substantial research questions.

• Backup zones: How can we distribute billions of small objects to other servers for
backup purposes? Determining backup servers for every single object is inefficient and
requires storing the backup server tuples for each object which consumes a lot of memory.
RAMCloud subdivides its in-memory log into 8 MB segments and replicates all objects of
the entire segment to the same set of backup servers [98]. This approach is not applicable
to DXRAM because the memory management differs significantly.

Contributions: In this thesis, we propose a partitioning concept for storages with in-place
memory management which subdivides the objects of one server into backup zones of
a fixed size (e.g., 256 MB). This concept benefits from ascending object IDs by storing
backup server affiliations in a B-tree bundling consecutive IDs in ranges in order to save
memory. Every storage server manages its affiliations. However, for recovery initialization
and coordination, a subset of this information has to be stored on another server. We
contribute by proposing a failure detection and recovery coordination concept based on a
virtual overlay.

• Backup distribution: The recovery performance depends considerably on the backup
distribution as parallelism is crucial for the recovery performance. Large backup zones
can be recovered more efficiently by many threads locally on a single server whereas small
backup zones can be scattered to more backup servers to recover the data of a failed
server in parallel. The backup distribution also has a substantial impact on the data loss
probability, i.e., using fewer combinations of backup servers reduces the frequency of data
loss events [24].

Contributions: Both aspects are discussed in this thesis and the recovery performance is
evaluated with varying numbers of backup servers.

10

Chapter 1. Introduction

• Backup consistency: Which consistency model should be applied? As RAM capacities
are limited, storing in-memory replicas is infeasible. Reading replicas from disk to
distribute the load onto multiple servers fails because of the higher latency and lower
throughput of disks. Therefore, replicas are used for backup purpose, only. Nevertheless,
a consistency model for distributing replicas has to be implemented. The strongest
consistency is provided by linearizability which guarantees that all servers see all updates
in the same order according to timestamps. However, the overhead of synchronizing clocks
and ordering accesses is high [5]. Therefore, we implement sequential consistency which
applies the same order of all updates for all servers. The difference is that the order can
differ from the calling order of remote servers because it is inflicted by the server storing
the in-memory object according to the FIFO principle.

• Backup logs: Is it feasible to store replicas on backup servers with a low memory overhead
while having a high write throughput? The goal is to provide backup mechanisms that
allow using backup servers also as storage servers storing its in-memory objects by
occupying a small fraction of RAM and CPU time for backup purposes, only. We adopt
the conventional approach of writing replicas to disks of backup servers by appending
them to a log. However, storing all objects of possible many storage servers in one log
on backup servers impairs the recovery performance because scanning the log requires
reading it from disk entirely although a fraction of the log is recovered, only.

Contributions: We describe a concept which sorts replicas by backup zones and stores
every backup zone in a separate log. When using one log for every backup zone, one has
to consider different access patterns for backup zones to ensure high throughput. We
thoroughly evaluated different access patterns in order to optimize our approach (see
Chapter 6).

• Log reorganization: How can we efficiently reorganize logs on backup servers? The
reorganization of logs is important to avoid overfilling of a log and in order to keep recovery
times low by removing invalid data frequently. RAMCloud reorganizes its in-memory logs
and distributes reorganized segments to backup servers. This requires re-replicating of
valid objects stressing the network.

Contributions: We propose an orthogonal approach by reorganizing logs on backup servers.
This reliefs the storage servers and the network, but increases the load on backup servers
and the disk. Our approach has significant advantages during the recovery because backup
servers have all the necessary information to recover and make available all valid objects
of a backup zone without network communication. In RAMCloud segments with a set of
arbitrary objects are recovered, i.e., all objects of the segment are read from disk and sent
to a dedicated server which rejects invalid objects and distributes valid object to other
servers to be loaded into the in-memory log. Furthermore, all recovered objects have to
be replicated several times after the recovery whereas our concept replicates once, only.
The evaluation shows that our approach is noticeably faster [14].

• Log entry version control management: How can invalid objects in logs of backup
servers be identified? A log is subdivided into segments (e.g., 8 MB) to allow an incremental
reorganization of a log which has a much lower memory overhead. Therefore, we cannot
deduce the validity of an object based on the position within the log.

11

Chapter 1. Introduction

Contributions: We designed a version management which allocates ascending version
numbers to incoming replicas to enable distinguishing valid from invalid object instances.
The novel approach has a low memory footprint but also provides high throughput by
using epochs in order to implement monotonic (not consecutive) version numbers.

1.1.2. Network Subsystem

Many distributed storages implement their own network subsystem. In this thesis, we describe a
standalone network subsystem which can be used by any Java application and several concepts
which can be adapted by different network subsystems. Conceptualizing a versatile network
subsystem also applicable to the specific applications demands (see Section 1.0.1) opens several
design and research questions:

• Network transport: Which network architectures should be supported? Most clusters
are connected with Ethernet and/or InfiniBand [112]. Therefore, all introduced storages in
Section 1.0.4 implement a transport implementation for one of these network architectures
(RAMCloud supports both).

Contributions: The network subsystem proposed in this thesis is designed modularly to
support different network architectures. We currently support Ethernet and InfiniBand,
and Loopback for evaluation purposes.

• Communication model: Different communication models have been proposed like
message passing, RDMA or message passing over RDMA. Which communication models
should be supported? CPU-driven message passing differs significantly from RDMA.
Thus, a fraction of the network subsystem, only, can be shared when implementing both
communication models. We decided to focus on traditional message passing because
RDMA implicates several disadvantages when using it for an in-memory storage:

– In large setups with billions or even trillions of objects, managing and gathering the
remote addresses of all objects is bothersome (e.g., addresses are hard to combine to
ranges, addresses of consecutively created objects cannot be determined directly) and
requires a static memory layout. A static memory layout is not suitable for an in-
memory storage because it obstructs resizing of objects and memory defragmentation.

– Many operations of an in-memory storage cannot be reduced to remote memory
access, i.e., message receipt often triggers an event which has to be executed by the
CPU.

– Often memory synchronization is required which is more complex (e.g., by using
self-verifying data structures [76]) or slower (e.g., by acquiring a remote lock first)
with RDMA.

– The concept of message aggregation is not applicable to RDMA.

– Many operations require more than one RDMA call. Typically, two RDMA calls are
slower than one RPC [87].

12

Chapter 1. Introduction

– RDMA over Ethernet requires compatible hardware. iWarp [93] and RoCE [119] is
not widely supported in data centers.

Some of the listed problems can be solved by implementing a message passing interface
on top of RDMA (like FaRM [31]). However, this requires additional RDMA calls for
sending a message to determine the memory address to write the message at negating the
advantage of lower latency access.

• Small messages: How can we achieve high throughput and low latency even for small
messages?

Contributions: We propose a combination of known and novel techniques to improve
throughput and latency for small messages:

– Lock-free programming: the entire sending and receiving process of the proposed
network system is a lock-free implementation. This increases the performance for
multithreading applications and improves latency (e.g., checking an atomic value
has a lower overhead than notifying a waiting thread).

– Zero-copy: we propose a concept to de-/serialize messages directly into/from native
memory which can be sent/received without copying.

– Parallel de-/serialization: the serialization architecture proposed in this thesis allows
efficient de-/serialization of messages with up to hundreds of threads. The de-
/serialization process can be interrupted at any point and continue later in order to
de-/serialize messages in smaller chunks sent/received over a congested network.

– Message aggregation: messages are serialized into a ring buffer, one after another.
This allows sending several messages in one large chunk of the ring buffer.

– Implicit thread scheduling: lock-free operations can overburden the CPU caused by
polling. We solve this with a situational multi-level waiting strategy.

– Buffer and object pooling: to unburden the Java garbage collector, all data structures
used for sending/receiving of messages are pooled or have a static size.

1.2. Structure of this Thesis

The focus of this thesis are the studied, developed and implemented crash recovery mechanisms
of the in-memory key-value store DXRAM. DXRAM is introduced in Section 1.3 and is essential
for all following chapters. The author of this thesis spent a lot of time and effort to improve the
network submodule of DXRAM as it is one of the foundations of the distributed system and all
proposed replication and recovery mechanisms highly depend on it. The network submodule is
described in Chapter 2, the Ethernet transport implementation in Chapter 3. The replication
of in-memory objects is detailed in the following chapter, followed by Chapter 5 which covers
the recovery of failed servers. Both related publications ([15] and [14]) were written and the

13

Chapter 1. Introduction

described designs implemented and evaluated prior to the two network publications ([13] and
[12]). Thus, not all discussed aspects of [13] and [12] affect the evaluations of [15] and [14].
Chapter 6 further discusses the replication and recovery but also brings together the revised
network submodule and the backup by evaluating the concepts on high-speed I/O devices in
[12]. Chapter 7 concludes this thesis and provides ideas for future work.

1.3. DXRAM

In this section, we present the distributed in-memory key-value store DXRAM [9] which is the
foundation for the implementation of the concepts proposed in this thesis. The DXRAM project
was started by Dr. Florian Klein in 2012 [52] and is supervised by Prof. Dr. Michael Schöttner.
The author of this thesis, Kevin Beineke, joined the project during his master thesis in 2013
[7]. In this doctoral thesis, DXRAM was continuously developed, optimized and extended by
Dr. Florian Klein (until June 2015), Stefan Nothaas (since October 2015) and Kevin Beineke.
This section discusses the basic architecture of DXRAM and focuses on the relevant internals
like the global metadata management, the memory management, the backup and the network
subsystem, but also gives an overview of the DXRAM ecosystem. Concepts proposed in this
thesis are included in this chapter. Some paragraphs are cited from project papers and are
clearly labeled at the end of the paragraph.

DXRAM enables low-latency access to billions of small data objects on a commodity cluster or
in the cloud by storing all objects in RAM, as key-value tuples. DXRAM can be used as a fast
back-end key-value store or as an interactive compute platform. The latter allows coordinated,
distributed and concurrent computations on storage servers and moving of compute tasks to
reduce inter-server communications caused by excessive data transfer. Furthermore, DXGraph,
an extended service of DXRAM, provides basic functionalities for loading and traversing a graph,
stored naturally in the key-value store. Computations and graph processing can be combined
by using a vertex-centric programming model coordinated by supersteps or a graph-centric
model requiring fine-grained synchronization.

1.3.1. Overview

DXRAM is an open source distributed in-memory system with a layered architecture (see
Figure 1.1), written in Java and available at GitHub [8]. Applications using DXRAM reside on
top of the back-end storage or compute platform. Applications can access DXRAM services of
the core or use extended services which are built on top of the DXRAM core. The extended
services, as well as the DXRAM core, access submodules to implement one or multiple services
which form the API for the applications.

Application Interfaces

DXRAM can be accessed in three different ways. Writing a DXRAM application which has
access to all (extended) services (see Section 1.3.1), writing and executing a compute task with

14

Chapter 1. Introduction

Figure 1.1.: DXRAM Architecture

explicit superstep synchronization (see Section 1.3.2) or accessing the system through a common
line interface (CLI) which provides basic access to services.

Objects in DXRAM

In DXRAM, a key-value tuple is called chunk. A chunk consists of a 64-bit globally unique chunk
ID and binary data. A chunk is the simplest data structure that can be stored in DXRAM. More
complex data structures are provided, too, or can be defined by implementing de-/serialization
methods (see Section 1.3.4). For example, for storing a graph, the data structures Vertex and
Edge of DXGraph can be used.

Application

Applications using DXRAM are called DXApps, must implement the DXApp interface and are
loaded during the runtime as separate compiled jar packages. A DXApp has access to the API
of DXRAM, whereas the API is a collection of all methods the core services provide (see Figure
1.1). The API can be accessed by loading services as needed by the application. Furthermore,
DXApps can also use the extended services. The application service of DXRAM loads DXRAM
applications during startup of a storage server. One may run multiple and different applications
on the same or different servers. DXApp instances run independently but can also be connected

15

Chapter 1. Introduction

and synchronized using services provided by the DXRAM core. For the configuration of a
DXRAM application, DXRAM provides a configuration environment with JSON configuration
files (see Section 8.1).

A DXRAM application can be a framework for other applications, as well. An example is the
graph framework DXGraph. This application belongs to the extended services of DXRAM
which are explained in the next section.

Extended Services

The extended services provide additional data models and functionalities beyond the key-value
foundation of the DXRAM core.

DXGraph: DXGraph extends the compute service of DXRAM by adding data structures and
algorithms for graph generation, loading and processing. Currently, it provides compute tasks
for the compute service to load graph data from disk to DXRAM’s key-value store and execute
a multithreaded distributed breadth-first search (BFS) on a loaded graph. Vertices of the graph
are represented naturally as vertex objects stored in DXRAM’s key-value store [81]. The BFS
algorithm is implemented as specified by the Graph500 benchmark [77] which allows us to use
the BFS algorithm to compare DXGraph with other distributed in-memory graph frameworks
like Grappa [79] and Graphlab [64]. The BFS algorithm is an informative benchmark because
of its highly random access.

While the BFS is primarily a benchmark to evaluate the performance of DXRAM and DXGraph,
the development of other graph applications is currently in progress, for example finding
common molecular substructures for purposive drug designing [33]. This requires determining
maximal cliques of two or more different graphs which is a common graph application and is
NP-hard. Another graph application is the interpretation of the scientific context of higher-order
citation graphs [109]. The scientific publishers and their relationships are represented in multi-
dimensional tensor models, and scientific fields are identified with tensor decomposition methods.
As a workload, the Microsoft Academic Graph with 120.887.883 papers from 119.892.201 unique
authors is used. The result, semantically connected subgraphs, are then further analyzed.

The initial version of the DXGraph library including the BFS benchmark was designed by Stefan
Nothaas. The application from bioinformatics emerges from cooperation with the workgroup
of Prof. Dr. Gunnar W. Klau and Philipp Helo Rehs who joined the DXRAM team for his
doctoral thesis. The second application was initiated by Prof. Dr. Dr. Sergej Sizov and is
ported to DXRAM by Mikel Bahn.

Other Data Models: Other data models as the plain key-value tuples and natural graphs
can easily be implemented on top of DXRAM. We provide a dynamic list data structure and
an index is currently in development by Kai Neyenhuys. Tables and sets allocated to tablets
and subsets will be implemented in the future.

Benchmark Interfaces: In order to compare DXRAM with other distributed in-memory
key-value stores like RAMCloud [84] or Redis [21], we implemented DXRAM interfaces for the
Yahoo! Cloud Serving Benchmark (YCSB) [25] and the BG benchmark [6].

16

Chapter 1. Introduction

The YCSB was designed to quantitatively compare distributed serving storage systems [25].
The benchmark offers a set of simple operations (reads, writes, range scans) and a tabular
key-value data model to evaluate online storage systems regarding their elasticity, availability
and replication. Furthermore, the YCSB is easily extensible for new storage systems and
workloads [15].

The BG benchmark evaluates the performance of data storages for interactive social media
networks [6]. It is developed at the Computer Science Department of the USC and supports a
variety of state-of-the-art storage systems like MongoDB [90] and Cassandra [58]. Furthermore,
BG has an open architecture and is extensible to be used with other storage systems. It follows
an application-like approach by simulating interactive social networking actions known from, for
example, Facebook, Twitter and YouTube. These include actions for viewing a profile, inviting
a friend (or respectively following a user), posting a comment, etc. In order to evaluate a data
store, it is loaded with a predefined number of users with optional profile pictures, friends
and resources like holiday pictures or plain comments. A very large graph evolves by adding
relationships between users or users and resources. How the graph is stored depends on the
underlying storage system and is implemented by the specific storage client, e.g., with tables
and indices for MongoDB and Cassandra or naturally with vertices and edges for DXRAM.
After the load phase has finished, several BG clients start executing social networking actions
to evaluate the data store. The BG coordinator increases the workload turn-based by adding
BG clients (physical servers) and/or socialities (threads) until the data store is overburdened.
Socialities are simulated users executing social networking actions. As the throughput of a data
store does not give detailed insights about the distribution of response times, BG defines a
Service Layer Agreement (SLA), which specifies the percentage of requests that have to be
answered in a given time. For example, 95% of all responses have to arrive within 100 ms after
sending the request. This way, BG can determine the maximal throughput that satisfies the
predefined SLA, which represents a much fairer comparison value (called Social Action Rating)
than the plain throughput. The distribution of social media actions can be configured as well
(e.g., zipfian distribution) [53].

Additional extended services are listed and described in the Appendix in Section 8.1.

Core

DXRAM’s core functionality is implemented as services and components. Services form the
API for applications and can be dynamically enabled as needed. Services can communicate with
services of the same type on remote servers but not with other service types (neither locally nor
remotely) to avoid dependencies on the API. Components, on the other hand, can be accessed,
locally, by all services and other components. Components implement local functionalities and
can also be enabled on demand. All core services and components are listed in the Appendix in
Sections 8.1 and 8.1.

Engine: The DXRAM engine provides the foundation to run components and services which
implement the actual functionality for the DXRAM system. The engine bootstraps using a JSON
formatted configuration file (see Section 8.1). A list of components and services including their
specific configurations are loaded into the DXRAM context. This allows enabling/disabling
of components or services to configure a DXRAM instance according to an application’s

17

Chapter 1. Introduction

requirements. Configuration parameters for components or services are embedded within each
class. After bootstrapping with a configuration file, DXRAM initializes all components using a
fixed order which ensures resolving component dependencies correctly. Next, all services are
initialized and the boot sequence is terminated by entering the main application loop in the
DXRAM class.

Submodules

The submodules are used in DXRAM and can be used by DXApps and extended services of
DXRAM. Additionally, the submodules are designed to be part of any Java application.

DXNet: DXNet is the network submodule of DXRAM and is described in Section 1.3.6.

Small Object Heap: The Small Object Heap is the major part of the efficient memory
management for small objects which is described in Section 1.3.4.

DXUtils: DXUtils is collection of utility classes used in DXRAM, DXNet, extended services
and applications of DXRAM. DXUtils contains classes for object serialization, accessing native
memory through Java.unsafe [70], collecting statistics, unit conversion, a bloom filter and many
more. Furthermore, it includes JNI interfaces for accessing a disk directly, bypassing the kernel’s
page cache (see Section 1.3.5), generating Cyclic Redundancy Check (CRC) checksums with
SSE4.2 CPU instructions and for thread pinning and priority manipulation.

1.3.2. Compute Platform

DXRAM provides services allowing executing parallel computations on storage servers. The
compute platform, which was developed by Stefan Nothaas, is composed of two services. The
compute service allows distributing and coordinating computations to a set of servers. The job
service deploys lightweight jobs locally. Naturally, the compute and job service can be used
intertwiningly.

Compute Service

DXRAM’s compute service is integrated into the DXRAM architecture adding functionalities
to execute computations locally and also remotely on storage servers. If a computation involves
more than one server, multiple servers have to be coordinated. The compute service, also
called master-slave service, implements compute groups within the DXRAM network topology
consisting of one coordinator (master) and an arbitrary number of compute servers (slaves). The
master server controls the slave servers of its group by managing the joining/leaving of slaves
to the compute group, accepting compute tasks, scheduling compute tasks to all slaves and
synchronizing slaves between compute tasks. When writing a compute task, the programmer
has access to the current compute group’s unique ID, the slave ID assigned to the server as
well as node IDs of all other slaves of the current compute group and all of the core DXRAM

18

Chapter 1. Introduction

Figure 1.2.: Superpeer Overlay

services. The programmer can use the IDs as indices for partitioning his data or controlling
the computation flow. Furthermore, slaves have access to all chunks, also from storage servers
outside the compute group [81].

Compute tasks are submitted to compute groups and run concurrently on a single core on every
slave server of the compute group. Naturally, a task is able to create threads to improve the
CPU utilization. The compute service provides a superstep synchronization for all slaves of a
compute group before and at the end of each task. Compute tasks are written in Java and are
semantically coherent, e.g., loading of data, a processing step, a map phase, a reduce phase
or printing of data, statistics and results. Multiple tasks can be combined in a JSON task
script. Tasks can simply be executed sequentially or condition-based (e.g., execute the task if
the return value of the previous task was > 0).

Job Service

The job service uses a per server configurable fixed size worker thread pool for deploying
lightweight jobs. A job is implemented in Java and runs on a single server on a single core
once per deployment. It also has access to all DXRAM services. A work-stealing approach
implements local implicit load balancing between threads of the job service [60]. If a job needs
to access data located on a remote server, the job can be delegated to the data-owning server.
This improves data locality when executing the job and thus increases the performance [81].

1.3.3. Distributed Metadata Management

In the next sections (1.3.3 to 1.3.6), we discuss the most relevant aspects of the distributed
key-value store DXRAM: the global metadata management, the local memory management,
the backup and recovery mechanisms and the network subsystem.

This section is about the distributed metadata management which was originally designed by
Dr. Florian Klein. The refinement of the concepts and the implementation was done by Kevin
Beineke.

19

Chapter 1. Introduction

Figure 1.3.: Lookup Tree: Range-based (CIDs) lookup of Node IDs

In DXRAM, every server is either a peer or a superpeer. Peers store chunks, may run com-
putations and exchange data directly with other peers, and also serve client requests when
DXRAM is used as back-end storage. Peers can be storage servers (with in-memory chunks),
backup servers (with logged chunks on disk) or both. Superpeers store global meta-data like
the locations of chunks, implement a monitoring facility, detect failures and coordinate the
recovery of failed peers, and also provide a naming service. The superpeers are arranged in a
zero-hop overlay which is based on Chord [113] (see Figure 1.2) adapted to the conditions in
a data center (e.g., every superpeer knows every other superpeers; low overhead to maintain
as churn is seldom). Moreover, every peer is assigned to one superpeer which is responsible
for meta-data management and recovery coordination of its associated peers. During server
startup, every server receives a unique node ID [12].

Every superpeer replicates its data on a configurable number (default three) of succeeding
superpeers in the overlay. If a superpeer fails, the first successor will automatically replace it
and repair the overlay. In case of a power outage, the meta-data can be reconstructed based on
the recovered peers’ data. Thus, storing the meta-data on disk on superpeers is not necessary
[12]. The metadata consists of location information, barriers for synchronization, a temporary
storage (see Appendix 8.1) and a nameservice.

Locations Every chunk in DXRAM has a 64-bit globally unique chunk ID (CID). This ID
consists of two separate parts: a 16-bit node ID of the chunk’s creator and a 48-bit locally
unique sequential number. With the creator’s node ID being part of a CID, every chunk’s
initial location is known a-priori. But, the location of a chunk may change over time in case
of load balancing decisions or when a server fails permanently. Superpeers use a modified
B-tree (see Figure 1.3) [65], called lookup tree, allowing a space efficient and fast server lookup
while supporting chunk migrations. Space efficiency is achieved by a per-server sequential ID
generation and ID re-usage in case of chunk removals allowing to manage chunk locations using
CID ranges with one entry for a set of chunks. In turn, a chunk location lookup will reply with a
range of CIDs, not a single location, only. This reduces the number of location lookup requests.
For caching of lookup locations on peers, a similar tree is used further reducing network load
for lookups [12].

Barriers DXRAM provides barriers for DXRAM applications needing explicit synchronization,
e.g., coordinating the start of a workload when all servers are initialized. The barriers are
managed on the superpeers. Thus, every peer sends all requests to its superpeer. Each barrier
is stored on the superpeer responsible for the peer who created the barrier and all barriers are

20

Chapter 1. Introduction

replicated to three succeeding superpeers to be able to continue if a superpeer crashes.

Nameservice In order to allow DXRAM applications to map a name on a chunk, the chunk
ID is registered with the selected name in DXRAM’s nameservice. The nameservice is managed
by the superpeers, as well. It is optimized for the efficient handling of four byte IDs (integers)
with a maximum of 231. Consequently, the usability with strings is limited to four bytes, too.
To increase the number of characters to six, we permit digits, upper- and lower-case letters and
"-", only. The nameservice must be configured either to store IDs or names before starting
DXRAM. By limiting the names, we can reduce the overhead of the nameservice to a minimum
without restraining most of the applications because they typically use the nameservice to
register a few anchor points with static names or to register ascending or arbitrary IDs.

In many applications, all nameservice entries are registered by a few peers, only, e.g., by a
coordinator. If all nameservice entries are stored on the responsible superpeers of those peers,
the distribution would be inferior and overburden some superpeers. To register a chunk in
DXRAM, the peer hashes the name/ID with CRC16 (16-bit Node ID) to identify the responsible
superpeer. The superpeer adds the entry to a hash table and sends three replicas to its
successors. The hash table uses linear probing and stores the name/ID (four bytes) and chunk
ID (eight bytes) in three consecutive elements of an integer array to minimize the overhead.

In case all superpeers crash and the metadata has to be recovered, all nameservice entries are
written to chunks which are automatically logged to disk. Every peer’s first chunk, with chunk
ID 0, contains all the peer’s registered nameservice entries.

1.3.4. Efficient Memory Management

The memory management of DXRAM, which handles small data objects very efficiently, was
initially designed by Dr. Florian Klein in his doctoral thesis [52]. As application demands
changed over time, the memory management was extended and improved by Stefan Nothaas.

The sequential order of CIDs (as described in section 1.3.3) allows us to use compact paging-like
address translation tables on servers with a constant lookup time complexity. Although, this
table structure has similarities with well known operating systems’ paging tables we apply it
differently. On each DXRAM server, we use the lower part (LID) of the CID as a key to lookup
the virtual memory address of the stored chunk data. The LID is split into multiple parts (e.g.,
four parts of 12 bit each) representing the distinct levels of the paging hierarchy. This allows
us to allocate and free page tables on demand reducing the overall memory consumption of
the local meta-data management. Complemented with an additional level indexed by node
ID, storing of migrated chunks is possible as well. DXRAM uses a tailored memory allocator
with very low footprint working on a large pre-reserved memory block outside the Java heap.
For performance and space efficiency reasons, all memory operations are implemented using
the Java Unsafe class [14]. The used and free blocks are connected by headers which contain
information for the succeeding and preceding block to allow iteration in both directions (see
Figure 1.4). The headers are very compact resulting in a metadata overhead (including CID
tables) of around 5% for 64-byte chunks.

21

Chapter 1. Introduction

Figure 1.4.: Memory Structure

The local memory management is synchronized with a single read-write lock in the chunk
service. The synchronization is necessary to avoid corrupting the metadata (CID tables and
block management). Concurrent access to the same chunk needs to be handled by the application
itself. Therefore, all read and write accesses are read-locked and create and remove accesses
write-locked. Consequently, the read and write accesses are very fast, whereas creates and
removes are slower especially when executed concurrently. Furthermore, creates and removes
also slow-down reads and writes as they need exclusive access to the memory management.
To alleviate the slow-downs, removes are executed asynchronously in a dedicated thread, i.e.,
every remove request is added to a queue and the dedicated thread processes the requests in
bundles. Create operations cannot be executed asynchronously because consecutive read and
write accesses would fail.

In order to increase the performance of create and remove operations, to enable fast and
concurrent defragmentation and also to prepare DXRAM for Remote Direct Memory Access
(RDMA), the synchronization of the memory management is being revised at the time of writing
this thesis. In the future, concurrent access will be synchronized by read/write locking of single
chunks in the CID table and locking of entire tables for metadata updates and batch processing.
The locking will be based on Compare-and-Set (CAS) operations to reduce the overhead.

Data Structures

An object is stored as binary data in the in-memory heap of DXRAM and is referred to as
chunk. A chunk consists of a unique chunk ID and binary data. The term chunk does not
further describe the binary data itself. To store (complex) Java objects, we provide the data
structure interface. Implementing the interface requires to define the de-/serialization of the

22

Chapter 1. Introduction

object from/to a byte array and the size of the serialized data. The serialization methods are
called whenever the data structure is written to the in-memory heap or sent over the network
(or written to a file etc.). Naturally, the deserialization methods are called for reading and
receiving. We provide importer and exporter with de-/serialization methods for primitives,
strings and arrays to simplify the definition of data structures. Typically, no reflection or type
information is de-/serialized as the type is known from the context in most cases. However, if
the type is unknown, e.g., when putting/getting arbitrary chunks in DXTerm, one has to add
type information during the serialization.

At the time of writing this thesis, we are working on a unified declarative language for defining
data structures and entire data models for DXRAM.

Migrations

Chunks can be migrated to another server for load balancing reasons or to improve access
locality. DXRAM supports migrating single chunks, chunk ranges and the entire chunk set of a
server. The migration can be initiated by an application or an extended service (e.g., DXTerm)
or dynamically to balance the load based on DXMonitor’s collected monitoring data.

Many fine-grained migrations might affect the performance and memory overhead of DXRAM’s
metadata management because the superpeers have to store all migrated ranges in the lookup
trees. Furthermore, the client-side caches become invalid requiring an additional remote lookup.
We expect the impact to be low, even for millions of migrations.

Locks

DXRAM provides a lock service which allows applications to lock single chunks. The chunks
are locked locally on the owner server. To avoid affecting the performance during lock-free
execution, lock operations are synchronized, only, i.e., a locked chunk can still be accessed with
get/put operations. Locks are stored in a concurrent hash map. Thus, the lock service should
not be used for an excessive amount of chunks as the hashmap has a relatively high overhead.

With the refined memory management, described above, the lock service can be implemented
more efficiently, as well, by locking chunks directly in the CID table. However, this does not
cover unlocking of chunks on server failure which will be addressed in the future.

1.3.5. Concurrent Backup and Recovery

The backup and recovery mechanisms of DXRAM were developed by Kevin Beineke and are
the main contributions of this thesis. This section presents the basic ideas, only. Detailed
descriptions can be found in Chapters 4, 5 and 6.

First, we describe the basic logging architecture of DXRAM which is subject of [15]. Below,

23

Chapter 1. Introduction

Figure 1.5.: The in-memory data of one server is subdivided into backup zones which are
scattered to backup servers across the cluster.

we distinguish two different roles: Masters are storage servers which create and store chunks
in RAM (see Section 1.3) and replicate them on backup servers. A backup server might also
be a master and vice versa. In DXRAM, an in-memory data object is called a chunk whereas
an object stored in a log on disk is referred to as log entry. The term disk is used for both
Solid-State Drives (SSD) and Hard Disk Drives (HDD).

Replicating multi-billion small data objects in RAM is too expensive and does not allow to mask
power outages. Therefore backup servers store backup zones on SSDs using logs to maximize
write throughput.

Two-Level Logging

We divide every server’s data into backup zones of equal size (see Figure 1.5). Backup zones are
chunk collections which are stored in one separate log (one per backup zone) on every assigned
backup server (default three per backup zone). Those logs are called secondary logs and are the
final destination for every replica and the only data structure used to recover data from. By
sorting backups per backup zone, we can speed up the recovery process by avoiding to analyze
a single log with billions of entries mixed from several masters. The two-level log organization
also ensures that infrequent written secondary logs do not thwart highly burdened secondary
logs by writing small data to disk and thus utilizing the disk inefficiently. At the same time,
incoming objects are quickly stored on disk to sustain power outages [12].

First, every object received for backup is written to a ring buffer, called write buffer, to bundle
small request (Figure 1.6). This buffer is a lock-free ring-buffer which allows concurrently
writing into the buffer while it is (partly) flushed to disk. During the flushing process, which is
triggered periodically or if a threshold is reached, the content is sorted by backup zones to form
larger piles of data in order to allow bulk writes to disk. If one of those piles is larger than a
predefined threshold (e.g., 32 flash pages of the disk), it is written directly to the corresponding
secondary log [12].

24

Chapter 1. Introduction

Figure 1.6.: Logging architecture. Every backup is buffered first. Depending on the amount
of data per backup zone, the objects are either directly written to the specific
secondary log or to primary log and to secondary log once there is enough data.
Versions are determined by inquiring the corresponding version buffer, which is
flushed to its version log frequently.

In addition to the secondary logs, there is one fixed-sized primary log for temporarily storing
smaller piles of all backup zones to guarantee fast persistence without decreasing disk throughput.
The smaller piles are also buffered in RAM separately, in so-called secondary log buffers, for
every secondary log and will eventually be written to the corresponding secondary log when
aggregated to a larger pile. Apparently, with this approach, some objects will be written to
disk twice, but this is outweighed by utilizing the disk more efficiently. Waiting individually for
every secondary log buffer until the threshold is reached without writing a copy to the primary
log, is not an option as the data is prone to get lost in case of a power outage [12].

Backup-side Version Control

Masters do not store version information in RAM. As versions are necessary for identifying
outdated data in the logs, the backup servers employ a version control used for the reorganization
and recovery. A naïve solution would be to manage every object’s version in RAM on backup
servers. Unfortunately, this approach consumes too much memory, e.g., at least 12 bytes (8-byte
CID and 4-byte version number) for every object stored in log easily summing up to many GB
in RAM which is not affordable. Storing version information exclusively on disk, is also not
practical because of performance reasons as this would require reads for each log write. Caching
recent versions in memory could help for some access patterns but for the targeted application
domain would either cause many read accesses for cache misses or occupy much memory.

We propose a novel version management concept running on every backup server and utilizing
one version buffer per secondary log. The version buffer holds recent versions for this secondary

25

Chapter 1. Introduction

log in RAM until it is flushed to disk. In contrary to a simple cache solution, DXRAM’s version
management avoids loading missing entries from secondary storage by distinguishing time spans,
called epochs, which serve as an extension of a plain version number. At the beginning of an
epoch, the version buffer is empty. If a backup arrives within this epoch, its CID will be added
to the corresponding version buffer with version number 0. Another backup for the same object
within this epoch will increment the version number to 1, the next to 2 and so on. When the
version buffer is flushed to disk, all version information is complemented by the current epoch,
together creating a unique version. In the next epoch, the version buffer is empty again. This
way, we create monotonic version numbers for consecutive write accesses to the same chunk.
During the reorganization and recovery, all version numbers are read from disk to identify
outdated log entries.

An epoch ends when the version buffer reaches a predefined threshold allowing to limit the
buffer size, e.g., 1 MB per log. During flushing to disk, a version buffer is compacted resulting
in a sequence of (CID, epoch, version)-tuples with no order. This sequence is appended to a file
on disk, creating a log of unique versions for every single secondary log. We call it a version log.
Over time, a version log contains several invalid entries which are tuples with outdated versions.
To prevent a version log from continuously growing, it is compacted during the reorganization
of the corresponding secondary log [12]. This new approach allows a high logging throughput
by providing a fast version computation (without reading from disk) but saves a lot of memory
in comparison to an in-memory version management (e.g., memory consumption is reduced by
around 4000% for backup zones storing 64-byte objects). In contrary to a version management
like done in RAMCloud, we can avoid tombstones with this approach. Tombstones are log
entries without payload to mark an object as deleted in order to avoid recovering it [98]. A
tombstone must not be deleted until all object versions are removed from the log which causes
several problems (e.g., finding the tombstone when all object versions have been removed,
deleting an object requires space in the log etc. [98]). The proposed approach does not need
tombstones because deleted objects are marked in the version management which is written to
disk persistently.

Recovery

As chunks are replicated to SSDs on remote servers, the recovery performance on a single server
is limited by its hardware. Thus, like RAMCloud [84] and Google’s Bigtable [22], DXRAM
scatters the chunks from one server to many backup servers to aggregate SSD bandwidth and
CPU processing power. Backup servers are not determined for each chunk but backup zones,
containing up to 256 MB of chunks, to minimize meta-data overhead for backups. Hence, a
server’s data is split into 256 MB blocks which can be recovered from a backup server within 1
to 2 seconds. Many backup servers can perform this process in parallel allowing high recovery
scalability. For every backup zone, three backup servers are assigned with a fixed replication
and recovery order. Superpeers store the backup zones of each of their associated peers to avoid
broadcasts during recovery. Thus, they can coordinate the recovery and directly contact the
correct backups in case of a server failure. However, they do not need to store CIDs per backup
zone; only storage servers need this information. Network limitations are masked by recovering
a backup zone in the memory of backup servers and resume normal operation. Chunks can be
migrated asynchronously to a fresh server later [14].

26

Chapter 1. Introduction

Every write access to a chunk (create, delete and update) is replicated to the backup servers of
the particular backup zone, according to the replication order. To efficiently resolve the backup
zone affiliation for billions of locally stored chunks, which is necessary to send the replicas
to backup servers, every DXRAM server utilizes a B-tree which is optimized for storing CID
ranges. This backup zone tree provides fast access times while being very space efficient because
of (CID-)range aggregation (e.g., an entire backup zone with millions of chunks is stored with 1
to 2 entries within the B-tree) [14].

Server failures are detected and recovery is coordinated by the superpeer next in the superpeer
overlay. This superpeer informs the responsible backup servers storing relevant backup zones.
Then, the backup servers recover all valid chunks from the associated secondary logs into
their local memory. All required information to initialize the recovery of a failed server is
available a-priori on the superpeer as backup servers of all backup zones are stored on superpeers
(including backups) as well. Thus, there is no need to gather information from backup servers
(in contrary to RAMCloud and Google’s Bigtable) [14].

The local recovery on a backup server is also challenging as regular secondary logs store
several millions of small log entries and for every single log entry, the validity (currentness and
status) and correctness (data integrity) have to be verified. To limit the temporary memory
consumption, a secondary log is recovered segment by segment. The segments are processed by
iterating over all log entries and restoring the valid log entries. The validity of a chunk is verified
by reading all current version numbers from SSD (stored in a version log) before the recovery
process and comparing them with the log entry version numbers. Obviously, gathering, storing,
reading and comparing millions of version numbers is time critical. Furthermore, parallelization
is crucial to speed up the recovery process and increase the overall system’s performance and
responsiveness by improving the availability of chunks [14].

Finally, the lookup meta-data of all recovered chunks must be updated on corresponding
superpeers. The necessary network transfer can be minimized by, again, aggregating CIDs into
ranges [14].

1.3.6. DXNet: Lock-free Messaging

The first version of the network subsystem of DXRAM was created by Dr. Florian Klein
and Mark Ewert. Kevin Beineke and Stefan Nothaas redesigned and optimized the network
subsystem to enable low-latency and high-throughput messaging. A detailed breakdown of the
contributions and more detailed explanations can be found in 2 and 3.

DXNet is a network library implemented in Java and designed for DXRAM but can be used
for other big data frameworks, too. DXNet implements an event-driven message passing
approach and provides a simple and easy to use application interface. It is optimized for highly
multi-threaded sending and receiving of small messages by using lock-free data structures, fast
concurrent serialization, zero copy and zero allocation. Split into two major parts, the core of
DXNet provides automatic connection management, serialization of message objects and an
interface for implementing different transports. Currently, an Ethernet transport using Java.nio
sockets and an InfiniBand transport using ibverbs is available [18].

27

Chapter 1. Introduction

Figure 1.7.: Simplified DXNet Architecture (from [13])

This section describes the most important aspects of DXNet and its core (see Figure 1.7) which
are relevant to this thesis. More details have been published in [13] and the source code is
available at Github [11].

Automatic Connection Management

All nodes are addressed using an abstract 16-bit node ID. Address mappings must be registered
to allow associating the node IDs of each remote node with a corresponding implementation
dependent endpoint (e.g., socket, queue pair). To provide scalability with up to hundreds of
simultaneous connections, our event-driven system does not create one thread per connection. A
new connection is created automatically once the first message is either sent or received to/from
a new destination. Connections are closed once a configurable connection limit is reached based
on a recently used strategy. Faulty connections (e.g., remote node not reachable anymore) are
handled and cleaned up by the connection manager. Error handling on connection errors or
timeouts is propagated to the application using exceptions [18].

Sending of Messages

Messages are Java objects and sent asynchronously. A message can be targeted towards one or
multiple receivers. Using the message type Request, it is sent to one receiver. The sender waits
until receiving a corresponding response message (transparently handled by DXNet) or skips
waiting and collects the response later [18].

One or multiple application threads can concurrently call DXNet to send messages. Every
message is automatically and concurrently serialized into the Outgoing Ring Buffer (ORB), a
natively allocated and lock-free ring buffer. When used concurrently, messages are automatically
aggregated to increase send throughput. The ORB, one per connection, is allocated in native
memory to allow direct and zero-copy access by the low-level transport. The transport runs one
decoupled dedicated thread (one for all connections) which removes the serialized and ready to
send data from the ORB and forwards it to the hardware [18].

28

Chapter 1. Introduction

Receiving of Messages

The network transport handles incoming data by writing it to pooled native buffers. We use
native buffers and pooling to avoid burdening the Java garbage collection. Depending on
how a transport writes and reads data, the buffer might contain fully serialized messages or
just fragments. Every buffer is pushed to the Incoming Buffer Queue (IBQ) which is based
on a ring buffer. Both, the buffer pool as well as the IBQ are shared among all connections.
Dedicated message handler threads (configurable) pull buffers from the IBQ and process them
asynchronously by de-serializing them and creating Java message objects. Finally, the messages
are passed to pre-registered callback methods of the application [18].

Flow Control

DXNet implements its own flow control (FC) mechanism to avoid flooding a remote node
with messages. This would result in an increased overall latency and lower throughput if the
remote node cannot keep up with processing incoming messages. When sending messages, the
per-connection dedicated FC checks if a configurable threshold is exceeded. This threshold
describes the number of bytes sent by the current node but not fully processed by the receiving
node. The receiving node counts the number of bytes received and sends a confirmation back to
the source node in regular intervals. Once the sender receives this confirmation, the number of
bytes sent but not processed is reduced. If an application send thread was previously blocked
due to exceeding this threshold, it can now continue with processing the message [18].

Transport Interface

DXNet provides a transport interface allowing implementations of different transport types.
One of the implemented transports can be selected at the start of DXNet. The transport and
its specific semantics are transparent to the applications [18]. The transport API is described
in the Appendix in Section 8.1.

Transport Implementations

DXNet has an open architecture supporting different network transport technologies. Currently,
we have transport implementations for TCP/IP over Ethernet (using Java.nio), reliable verbs
over Infiniband (based on JNI), and Loopback (for evaluation). We will only sketch some
important aspects of these transports. More details of the Ethernet transport can be found in
Chapter 3.

The Ethernet transport (EthDXNet) implementation is based on Java.nio and maps Direct-
ByteBuffers to the ORB allowing to send data without copying it in userspace. Furthermore,
two channels are opened for every connection to avoid channel duplication and for providing
a side-band flow control channel for each connection. Channel duplication may occur when

29

Chapter 1. Introduction

two servers create connections to each other simultaneously. The second channel allows ex-
changing flow control messages necessary to maximize throughput on a connection by using the
back-channel.

The InfiniBand transport accesses the IBDXNet library (C++) using JNI. IBDXNet utilizes
ibverbs to implement direct communication using the InfiniBand HCA. IBDXNet uses one
dedicated send and one dedicated receive thread, both processing outgoing/incoming data in
native memory. Context switching from C++ to Java was designed carefully and is highly
optimized to avoid latency.

The Loopback transport is used for the experiments allowing to study the performance of DXNet
without any bottlenecks from a real network. Data is not sent over a network device nor the
operating system’s loopback device (latency would be considerably high) but is directly copied
from the ORB to a pooled incoming buffer. Furthermore, the Loopback transport simulates a
server sending and receiving messages at the highest possible throughput allowing to evaluate
DXNet’s performance [18].

30

Chapter 2.

Efficient Messaging for Java
Applications running in Data Centers

This chapter summarizes the contributions and includes a copy of our paper [13].

Kevin Beineke, Stefan Nothaas and Michael Schöttner. "Efficient Messaging for Java
Applications running in Data Centers". In: Cluster, Cloud and Grid Computing (CC-GRID),
2018 18th IEEE/ACM International Symposium on, Workshop AHPAMA 18. May 2018, pp.

589-598

2.1. Paper Summary

In this publication, we describe DXNet, a low-latency and high-throughput messaging system
for Java applications. DXNet provides fast object de-/serialization, automatic connection
management with node ID abstraction and asynchronous sending/receiving of messages as well
as synchronous requests/responses. The API is small and intuitive enabling easy integration of
DXNet into existing Java applications. For elastic applications, DXNet allows dynamic adding
of servers and error propagation for lost connections.

The high performance of DXNet is achieved by using pooled data structures outside of the
Java heap and an interruptible de-/serialization both enabling zero-copy sending/receiving,
efficient work-sharing and highly parallel processing with lock-free endpoints and an adaptive
thread scheduling to utilize the CPU cores efficiently. The evaluation shows message processing
times of sub 300 ns and an aggregated throughput of more than 16 GByte/s for Loopback
communication on a typical server instance. With 56 GBit/s InfiniBand, the throughput reaches
10.4 GByte/s and an average RTT of sub 10 µs (sub 5 µs one way). DXNet saturates Ethernet
networks with >=256 byte messages and InfiniBand with >=2 KB, demonstrating the efficient
processing of small messages.

31

Chapter 2. Efficient Messaging for Java Applications running in Data Centers

2.2. Importance and Impact on Thesis

DXRAM’s primary application domains are very demanding regarding the underlying network
system (see Section 1.0.1). Information retrieval on large-scale graphs, for example, generates
a significant amount of cross-traffic and latency must be low for the interactive requests.
Furthermore, high throughput is necessary, if many requests have to be served in parallel.
The demands are even higher, if objects are replicated to remote servers in order to provide
fault-tolerance (see Chapter 4 to 5). While the object sizes and thus the message sizes are small
for given applications, DXRAM’s migration and recovery automatically aggregate objects before
sending. We designed DXNet to address given requirements which are the support for different
network technologies common in data centers like Ethernet and InfiniBand, high throughput
and low latency for small and large messages and requests, a dynamic connection management
for up- and downscaling, the support for multithreading (up to hundreds of threads) and a very
efficient de-/serialization of Java objects. Certainly, many other Java applications would benefit
from DXNet as well.

DXRAM’s logging and recovery, which are the major contributions of this thesis, are highly
depended on DXNet. Still, the evaluations in the papers [15] and [14] are based on an older
network module as DXNet was developed afterward. Because of the rather slow I/O devices
in the test environments (1 to 5 GB/s Ethernet and SSDs with less than 350 MB/s write
throughput), the benefits in using DXNet as described in this publication would be small. In
[12], we show the logging performance of DXRAM when using a PCI-e SSD and DXNet with a
high-speed network.

2.3. Personal Contribution

DXRAM’s initial network submodule was designed and implemented by Dr. Florian Klein in
collaboration with Marc Ewert who dedicated his bachelor thesis [34] to the parallelization of
the network submodule. The design was limited to Ethernet networks and optimized for Gigabit
Ethernet. Furthermore, the network submodule was deeply integrated into DXRAM. The
architecture and implementation were revised and replaced by Kevin Beineke, the author of this
thesis, and Stefan Nothaas. The first step was replacing slow data structures, optimizing thread
handling and buffer processing to improve throughput and latency. This was done primarily by
Kevin Beineke, as well as, the second step which enabled failure detection and handling used
for DXRAM’s node recovery, for instance. In the third step, Stefan Nothaas refactored the
network submodule to be (1) stand-alone and (2) modular regarding the underlying network
technology (particularly InfiniBand). The last step was to redesign most of the data structures
and the serialization, improve thread work-sharing and to reduce the overhead of inter-thread
communication in order to saturate high-speed networks like >10 GBit/s Ethernet and >56
GBit/s InfiniBand. This publication focuses primarily on the last step.

Stefan Nothaas develops IBDXNet, DXNet’s network transport for InfiniBand networks, which
is not part of the publication other than being used for the evaluation. Therefore, Stefan
Nothaas and Kevin Beineke worked in close collaboration to improve DXNet to be one of the
fastest messaging systems for Java applications. This paragraph describes the apportionment

32

Chapter 2. Efficient Messaging for Java Applications running in Data Centers

of work for this publication to the best of the knowledge of both mentioned authors. Stefan
Nothaas initiated many optimizations by designing IBDXNet and discovering bottlenecks in
the messaging system DXNet which were hardly detectable with slower networks. Furthermore,
Stefan Nothaas introduced the idea of using lock-free data structures to improve the performance
of DXNet. Despite contributing performance optimizations and debugging, Stefan Nothaas also
implemented interfaces for the serialization and accessing direct ByteBuffers with Java.unsafe.
Additionally, Stefan Nothaas invested much time in structuring the code, designing an error-
detecting configuration of DXNet and a statistics module which is a useful tool to investigate
DXNet’s performance. Kevin Beineke designed and implemented the concurrent de-/serialization
including work-flow optimizations and thread communication, the data structure pooling, the
loopback and Java.nio transports and the basic DXNet benchmark. Furthermore, most of the
ORB and CUB were designed by Kevin Beineke, with contributions by Stefan Nothaas. Other
lock-free data structures were inspired by the ORB and implemented by both authors as well
as the parking strategy which emerged in an incremental process.

Prof. Dr. Michael Schöttner took part in many discussions about the design and evaluation of
DXNet.

Kevin Beineke structured and wrote most of the paper, including all figures but figures 2 and
3 whose initial design was contributed by Prof. Dr. Michael Schöttner. Prof. Dr. Michael
Schöttner also helped in improving comprehensibility and reviewed the paper several times.
Stefan Nothaas contributed in writing the initial versions of section I and II and designing a
figure of DXNet’s architecture which was used for figure 1 and 5. Stefan Nothaas reviewed the
paper several times as well and helped improve it.

33

Efficient Messaging for Java Applications running in
Data Centers

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—Big data and large-scale Java applications often
aggregate the resources of many servers. Low-latency and high-
throughput network communication is important, if the appli-
cations have to process many concurrent interactive queries.
We designed DXNet to address these challenges providing fast
object de-/serialization, automatic connection management and
zero-copy messaging. The latter includes sending of asynchronous
messages as well as synchronous requests/responses and an event-
driven message receiving approach. DXNet is optimized for small
messages (< 64 bytes) in order to support highly interactive web
applications, e.g., graph-based information retrieval, but works
well with larger messages (e.g., 8 MB) as well. DXNet is available
as standalone component on Github and its modular design is
open for different transports currently supporting Ethernet and
InfiniBand. The evaluation with micro benchmarks and YCSB
using Ethernet and InfiniBand shows request-response latencies
sub 10 µs (round-trip) including object de-/serialization, as well
as a maximum throughput of more than 9 GByte/s.

Keywords—Message passing; Ethernet networks; InfiniBand;
Java; Data centers; Cloud computing;

I. INTRODUCTION

Today, many interactive applications are built upon very
large graphs, e.g., social networks [1], comparing molecu-
lar structures in bioinformatics [2] or mobile network state
management systems [3]. These graphs consist of billions of
small data objects which are typically held in memory to
provide low latency access. But, as data volumes grow fast
it becomes necessary to aggregate many servers or move to
expensive super computers. Usually, big data applications are
executed in cloud data centers or on high performance clusters
which provide fast networking with 10 GBit/s and beyond.
Distributed and parallel processing of in memory data based on
very fast networks requires the software stack to be designed
carefully, especially if latency is important.

Many big data applications are written in Java and benefit
from platform independence and a rich selection of libraries
supporting the programmer in designing distributed and paral-
lel applications [1], [4]–[8]. This includes many possibilities
to exchange data between Java servers, ranging from high-
level Remote Method Invocation (RMI) [9] to low-level byte
stream processing using Java sockets [10] or the Message
Passing Interface (MPI) for HPC applications [11]. DXNet
does not aim at replacing any of those solutions but to rather
complement the spectrum.

DXNet is a network library for Java-based applications
which has originally been designed for DXRAM a distributed
in-memory key-value store and DXGraph a graph processing

framework built on top of DXRAM. We provide DXNet as a
standalone library through GitHub [12] as we think it could
be useful for many other Java-based big data applications.

The contributions of this paper are:

• the DXNet architecture (highly concurrent and trans-
port agnostic);

• zero-copy, parallel de-/serialization of Java objects;
• lock-free, event-driven message handling;
• evaluations with 5 GBit/s Ethernet (Microsoft Azure)

and 56 GBit/s Infiniband networks.

The evaluation shows that DXNet efficiently handles high
loads with dozens of application threads concurrently sending
and receiving messages. Synchronous request/response pat-
terns can be processed in sub 10 µs RTT (Round-Trip Time)
with Infiniband transport (including object de-/serialization).
And, high throughput is achieved even with smaller payloads,
e.g., bandwidth saturation with 1-2 KB payload on InfiniBand
and 256 byte payload on Ethernet.

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section III.
In Section IV, we describe the lock-free Outgoing Ring Buffer
followed by the concurrent serialization in Section V. The
next section explains the event-driven processing of incoming
data. Sections VII and VIII present thread parking strategies
and transport implementation aspects. Evaluation results are
discussed in Section IX, followed by the conclusions.

II. RELATED WORK

DXNet combines high-level thread and connection man-
agement and a concurrent object de-/serialization with lock-
free, event-driven message handling and zero-copy data trans-
fer over Ethernet and InfiniBand (extensible). To the best of
our knowledge, no other Java-based network library provides
these communication semantics. Because of space constraints,
we compare DXNet with the most relevant related work, only.

Distributed shared memory (DSM) is re-gaining attraction
due to networks supporting RDMA but is not an option for
most existing Java applications as DSM requires a different
application architecture and an integration in the heap man-
agement of the Java Virtual Machine (JVM) [13].

Java’s RMI [9] provides a high level mechanism to
transparently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized and references result in a serialization
of the object itself and all reachable objects (transitive closure)
which can be costly [14]. Missing classes can be loaded from

remote servers during RMI calls which is very flexible but
introduces even more complexity and overhead. The built-in
serialization is known to be slow and not very space efficient
[14], [15]. Furthermore, method calls are always blocking.

Manta [16] improves runtime costs of RMI by using a
native static compiler. KaRMI [17], a drop-in replacement
for Java RMI, is implemented in Java without any native
code supporting standard Ethernet. KaRMI also replaces Java’s
built-in serialization reducing overhead and improving overall
performance. DXNet does not provide transparent remote
method calls but an efficient parallel serialization which avoids
copying memory. DXNet is primarily designed for parallel
applications and high concurrency, RMI for Web applications
and services.

MPI is the state-of-the-art message passing standard for par-
allel high performance computing and provides very efficient
message passing for primitive, derived, vector and indexed data
types [18]. As MPI’s official support is limited to C, C++ and
Fortran, Java object serialization is not provided. Nevertheless,
MPI is available for Java applications through implementations
of the MPI standard in Java [19] or wrappers of a native library
[20].

MPI-2 introduced multi-threading for MPI processes [18]
enabling well-known advantages of threads. Prior to MPI-2,
intra-node parallelization demanded the execution of multiple
MPI processes (and the use of more expensive IPC). To enable
multi-threading, the process has to call MPI_init_thread
(instead of MPI_init) and to define the level of thread
support ranging from single-threaded execution over funneled
and serialized multi-threading to complete multi-threaded ex-
ecution (every thread may call MPI methods at any time). A
lot of effort has been put into the last mode to provide a high
concurrent performance [21], [22]. Still, the performance is
limited compared to a message passing service designed for
multi-threading [21].

One of DXNet’s main application domains are on-
going applications with dynamic node addition and re-
moval (not limited to), e.g., distributed key-value stores
or graph storages. The MPI standard defines the re-
quired functionality for adding and removing processes (over
Berkeley Sockets with MPI_Comm_join or by calling
MPI_Open_port and MPI_Comm_accept on the server
and MPI_Comm_connect on the client). Unfortunately, most
recent MPI implementations are still not supporting these
features entirely [23], [24]. Furthermore, job shutdown and
crash handling is also limited [24]. MPI is particularly suitable
for spawning jobs with finite runtime in a static environment.
DXNet, on the other hand, was designed for up- and down-
scaling and handling node failures. In [25], DXNet was used
in the in-memory key-value store DXRAM to examine crash
behavior and scalability.

High level mechanisms for typical socket-like interfaces
supporting Gigabit Ethernet (and higher) are provided by
Java.nio [26], [27], Java Fast Sockets (JFS) [28] or High Per-
formance Java Sockets [29]. DXNet uses Java.nio to implement
a transport for commonly used Ethernet networks.

III. OVERVIEW

DXNet relieves programmers from connection manage-
ment, provides transferring Java objects (beyond plain Java.nio
stream sockets) and allows the integration of different under-

Figure 1. Simplified DXNet Architecture

lying network transports, currently supporting reliable verbs
over InfiniBand and TCP/IP over Ethernet. In this section, we
give a brief overview of the interfaces and functionality of
DXNet (see Fig. 1). Further details can be found in the GitHub
repository [12].

A. Basic Functionality

Automatic connection management. DXNet abstracts
physical network addresses, e.g., IP/Port for Ethernet or GUID
for InfiniBand, by using nodeIDs. The aforementioned node
address mappings are registered in the library and are mutable
for server up- and downscaling. A new connection is opened
automatically when a message needs to be sent to another
server which is not connected thus far. In case of errors, the
library will throw exceptions to be handled by the application.
Connections are closed based on a recently used strategy, if
the configurable connection limit is exceeded, or in case of
network errors which may be reported by the transport layer
or detected using timeouts, e.g., absent responses.

Sending messages. DXNet sends messages asynchronously
to one or multiple receivers but also provides blocking re-
quests (to one receiver) which return when the corresponding
response is received (association of response and requests
is transparently managed by DXNet). Messages are Java
objects and serialized by using DXNet’s fast and concur-
rent serialization (providing default implementations for most
commonly used objects, see Section V). The serialization
writes directly into the Outgoing Ring Buffer (ORB) which
aggregates messages for high throughput (see Section IV) and
is allocated outside of the Java heap. Sending data is performed
by a decoupled transport thread based on event signaling.
DXNet also includes a flow control mechanism, which is not
further described here.

Receiving messages. When incoming data is detected by the
network transport, it requests a pooled native memory buffer
(avoiding to burden the Java garbage collector) and copies the
data into the buffer (see Section VI and Fig. 1). The buffer con-
taining the received data is then pushed to the Incoming Buffer
Queue (IBQ), a ring buffer storing references on buffers which
are ready to be deserialized (see Section VI). The buffer pool
and the IBQ are shared among all connections. The buffers of
the IBQ are pulled and processed asynchronously by dedicated
threads. Message processing includes parsing message headers,
creating the message objects and deserializing the payload
data. Finally, the received message is passed back to the
application (as a Java object) using a pre-registered callback
method.

A brief overview of DXNet’s API is shown in Table I.

TABLE I. DXNET’S APPLICATION INTERFACE

new DXNet(config,nodeMap) initialize/configure (max. connections, server address mappings etc.)
MyMessage extends Message/Request/Response define message (serializable Java object) by implementing three methods

exportObject(exporter) serialize message with predefined methods from exporter
importObject(importer) deserialize message with predefined methods from importer
sizeOfObject() return payload length

sendMessage(message) send message asynchronously (receivers defined in message instance)
sendSync(request,timeout) send request/response synchronously
MyReceiver implements MessageReceiver receive messages/requests as Java objects

onIncomingMessage(message) pre-registered callback handler function

B. High Throughput and Low Latency

A key objective of DXNet is to provide high throughput
and low latency messaging even for small messages found in
many graph applications, for instance. We achieve this with
a thread-based and event-driven architecture using lock-free
synchronization, zero-copy, and zero-allocation.

Multithreading. All processing steps like serialization,
deserialization, message transfer and processing are handled by
multiple threads which are decoupled through events allowing
high parallelism.

Lock-free event signaling. Dispatching processing events
between threads is implemented using lock-free synchroniza-
tion allowing low-latency signaling. CPU load is managed
without impairing latency by parking currently idling threads.

Fast serialization. DXNet implements fast serialization of
complex data structures and writes data directly into an ORB.
The ORB can be accessed by many threads in parallel and
ORBs are not shared between different connections increasing
concurrency even more. The processing of incoming messages
is also highly scalable because of the event-driven architecture.

Zero copy. DXNet does not copy data for messaging
(except de-/serialization). For TCP/IP, we rely on Java’s Direct-
ByteBuffers and for InfiniBand on verbs pinning the buffers
used by DXNet.

Zero allocation. DXNet uses object pooling wherever
possible avoiding time-consuming instance creation and, even
more important, not burdening the Java garbage collector
which may block an application in case of low memory for
multiple seconds.

C. Network Transport Interface

DXNet supports different underlying reliable network
transports. The integration of a new transport protocol requires
implementing just five methods:

• signal data availability on connection (callback);
• pull data from ORB and send it;
• push received data to IBQ;
• setup a connection;
• close a connection.

IV. LOCK-FREE OUTGOING RING BUFFER

The Outgoing Ring Buffer (ORB) is a key component for
outgoing messages and essential for providing high throughput
and low latency. The latter is achieved by a highly concurrent
approach based on lock-free synchronization.

Each connection has one dedicated ORB allowing concur-
rent processing of different connections. The ORB itself allows

Figure 2. ORB for parallel serialization and aggregating out-
going messages.

many application threads serializing their outgoing objects
concurrently and directly into the ORB. The ORBs are allo-
cated outside of the Java heap in native memory allowing zero-
copy sending by the network transport. Directly serializing
Java objects into the ORB is more efficient than serializing
each object in a separate buffer and combining them later by
copying these buffers. The ORB preserves message ordering
as given by the application threads and aggregates smaller
messages in order to achieve high throughput. We decided to
use lock-free synchronization for concurrency control which
is more complex but more efficient with respect to latency
compared to locks.

A. Basic Lock-Free Approach

The ORB has a configurable but fixed size and is accessed
concurrently by several producers (application threads) and one
consumer (dedicated transport thread for sending messages).
The configurable buffer size limits the maximum number of
messages/bytes to be aggregated. For our experiments (see
Section IX), we used 1 MB and 4 MB ORBs.

Fig. 2 shows the ORB with three application threads
producing data (serialization cores). All pointers move forward
from left to right with a wrap around at the end. The white
area between FP and BP is free memory.

Messages available for sending (fully serialized) are found
by the consumer (sending core) between BP and FC . The
consumer sends aggregated messages and moves BP forward
accordingly but not beyond FC . All messages between FC and
FP are not yet ready for sending as parallel serialization is still
in progress.

FP is moved forward concurrently (if the buffer has enough
space left) by the producers using a Compare-and-Set (CAS)
operation, available in Java through Unsafe (see Section
IV-C). Therewith, each producer can concurrently and safely
store the position of FP in a local variable F ′

P and adjust FP

by its message size. All F ′
P pointers (thread-local variables)

are used by the associated producer for writing its serialization
data concurrently at the correct position in the ORB. The
light-colored arrows in Fig. 2 show the starting point of
each serialization core (producer) whereas the solid-colored

Figure 3. Catch-Up Buffer (CUB). Allowing faster producers
returning early and not wasting CPU cycles for waiting.

ones show the current position. In the example, the purple
producer finished its serialization first and the green and orange
producers are still working.

FC is moved forward by producers when messages are fully
serialized. In Fig. 2, the purple producer finishes before the
orange and green ones but cannot set FC to FP because the
two preceding messages (from the other producers) have not
been completely serialized yet. Each producer can easily detect
unfinished preceding messages by comparing its starting point
(light-colored arrow) with FC . Obviously, the purple starting
point is not equal to FC . A naive solution lets fast producers
wait for slower ones. As we do not want to impact latency
we cannot use locks/conditions here. An alternative solution is
to busy-poll until all preceding messages have been serialized.
Finally, FC can be set forward and the thread can return.

B. Optimized Lock-Free Solution

The basic solution already avoids the overhead of locks, but
with increasing number of parallel serializations the probability
of threads having to wait for slower ones increases. The busy-
polling can easily overload the CPU. Reducing the polling
frequency of producers by sleeping (> 1 ms) or parking (> 10
µs) increases latency too much. Instead, we propose a solution
which avoids having fast producers waiting for slower ones
by leaving a notice and returning early to the application. This
notice includes the message size so that slower producers can
move FP forward for the faster ones. But, message ordering
must be preserved.

Our solution is based on another configurable fixed-size
ring buffer called Catch-Up Buffer (CUB). As mentioned
before, we allocate one ORB for each connection which is
now complemented by one associated CUB (e.g., with 1000
entries) for every ORB. The CUB is implemented using an
integer array, each entry for one potential left-back notice from
faster producers. An entry will be 0 if there is no notice or
> 0 representing the message size if a producer finished faster
than its predecessors. In the latter case, a slower producer will
move forward FP by the left-back message size.

Fig. 3 shows a CUB corresponding to the ORB shown in
Fig. 2. The front pointer F is moved concurrently using a CAS
operation (similar to FP in the ORB). The colored F ′ are the
thread-local copies needed by the producers to leave back a
potential notice at the correct position in the CUB. The 64 is a
notice from the purple producer (its message size, filled purple
box in Fig. 2.) who finished fastest and returned already to the
application. The green and orange producers are still working
(0 = no notice). If the green producer would now finish before
the orange one it would also fill in its message size and return
immediately.

If the orange producer finishes next, it moves forward FC

in the ORB as well as B in the CUB (leaving no notice). The
green one will do the same, but twice as it will detect the notice

(64) after committing its serialization and thus move forward
FC in the ORB by 64 bytes and also B (now pointing to F
in the CUB, indicating we are done).

It is important that the order of entries in the ORB and
the CUB is consistent, meaning, we need to move forward F
and FP , as well as B and FC synchronously. We do this, by
storing each of those two indexes in one 64-bit long variable
in Java and, as the CAS operation is working atomically on
64-bit longs, we can avoid locks.

Two more challenges remain, namely large messages which
cannot be serialized at once and a potential ORB overflow
during the serialization (both discussed in Section V).

C. Native Memory

The ORB is allocated in native memory (off Java heap)
allowing the underlying network transports to send messages
without copying them. The class Unsafe provides basic meth-
ods for memory allocation, memory copy and reading/writing
primitives from/into native memory. Furthermore, Unsafe is
very fast because of extensive optimizations and is widely used
in third-party libraries [30].

We favor Unsafe over DirectByteBuffers [27] for two
reasons. First, access is faster (e.g., missing boundary checks
we already handle on higher level). Second, Unsafe is more
versatile because it allows accessing memory which was
allocated in C/C++ code (e.g., used for InfiniBand).

V. SERIALIZATION

DXNet is designed to send and receive Java objects which
need to be de-/serialized from/into a byte stream of messages.
The built-in serialization of Java (interface Serializable)
as well as file-based solutions are too slow and have a large
memory footprint [31] (because of automatic un-/marshaling
and the use of separators). Other binary serializer like Kyro
[32], for instance, either do not support writing directly into
native memory or interruptible processing which is needed
by DXNet (see Section V-A and V-B). We propose a new
serializer addressing all these limitations while still being
intuitive to use. The programmer has to implement two in-
terfaces Importable and Exportable. The former re-
quires implementing the method importObject(), the
latter exportObject() and both sizeOfObject().

A. Export

Exporter. The serialization (or export) of Java objects re-
quires an exporter which is passed to exportObject().
The exporter class provides default method implementations
for the serialization of all primitives, compact numbers and
Strings and can be extended for supporting custom types (all
types can also be arranged in arrays). Compact numbers are
coded integers using a variable number of bytes as needed to
reduce space overhead.

The exporter writes directly into the ORB by using Unsafe
(see Section IV). It stores the start position within the ORB, the
size of the ORB and the current position within the message.

Exporting an object involves two steps: exporting the mes-
sage header (see Fig. 4) which has a fixed size and exporting
the variable-sized payload by calling exportObject().

DXNet uses its default exporter for serialization
which is optimized for performance. It is complemented by

Figure 4. Message header. Cat.: message, request or response;
X: exclusive or not (ordering).

two other exporters (described below) for handling messages
which do not fit in the ORB without copying buffers.

Buffer overflow. If the end of the ORB will be reached
during the serialization of an object, DXNet switches to the
overflow exporter. The overflow exporter performs a
boundary check for each data item of an object and writes
bytes with a wrap-around to the beginning of the ORB, if
necessary. The resulting message is sent as two pieces over
the network stream avoiding copying data.

Large messages. Serialized objects resulting in messages
larger than the ORB must be written iteratively. First, the
entire unused section of the ORB (see Fig. 2) is reserved and
filled with the first part of the message. If the back pointer is
reached, the export is interrupted and its current state is stored
in an unfinished operation instance to allow resuming
serialization as soon as there is free space in the ORB again.

Unfinished operation. The instance stores the interrupt
position within the message and the rest of the current opera-
tion. Depending on the operation, the rest is either a part of a
primitive which can be stored in a long within the unfinished
operation or an object with partly uninitialized fields whose
reference can be stored.

Resume serialization after an interrupt. To continue the
serialization, the method exportObject() is called again
(threads return after being interrupted during serialization)
and all previously successfully executed export operations are
automatically skipped until the position stored in the unfinished
operation is reached. The rest of the object is serialized
from there (might be interrupted, again). For exporting large
messages, the large message exporter is used, which
extends the overflow exporter.

B. Import

All incoming messages are written into native memory
buffers taken from the incoming buffer pool and are pushed
to the IBQ (see Section VI). Each buffer contains received
bytes (one or several messages) from the connection stream.
The underlying network independently splits and aggregates
packets resulting in a buffer beginning and ending at any byte
within a message. DXNet is able to serialize split messages
without copying buffers.

The import works analogously to the export. Messages
are deserialized directly from native memory by using Un-
safe (message header and payload). The fast default
importer is complemented by three other importers (de-
scribed below) for handling split messages. This requires to
handle three situations: buffer overflow (tail of message/header
missing), buffer underflow (head of a message/header is miss-
ing) and both combined.

Buffer overflow. When the buffer’s end will be
reached before the message is complete, we switch to
the overflow importer. It does boundary checks and
uses the unfinished operation (see Section V-A) when
necessary. Furthermore, the serialization is aborted with
an IndexOutOfBoundsException handled by DXNet

Figure 5. Receiving and processing messages. Green: Native
memory access.

avoiding returning invalid values for succeeding operations.
Buffer underflow. This situation occurs after a buffer

overflow (on the same stream). It is known apriori and handled
by the underflow importer, which uses the unfinished
operation instance (passed from the overflow importer) con-
taining all information necessary to continue deserialization.

Buffer under- and overflow. When a message’s head and
tail is missing (likely for large messages), the message is
handled by the underoverflow importer.

C. Resumable Import and Export Methods

Messages may be split caused by DXNet’s buffering or
the underlying network. In order to avoid copying buffers, we
require both import and export methods to be interruptible
and idempotent as they may be called multiple times for one
object (to avoid blocking threads, see Sections V-A and V-B).
DXNet’s importer and exporter methods are sufficient for most
object types, but custom object structures must be aware of this
and avoid functions causing side effects (e.g., I/O access).

VI. EVENT-DRIVEN PROCESSING OF INCOMING DATA

Fig. 5 gives an overview of the parallel event-driven
processing of incoming data. Like for the ORB, we use multi-
threading, lock-free synchronization, zero-copy and zero-
allocation to provide high throughput and low latency.

Receiving process. The network transport pulls a buffer
from the incoming buffer pool when new data can be received
and fills it accordingly. The buffer is then pushed to the
IBQ and processed by the Message Creation Coordinator
thread (MCC) by deserializing the message headers. The
message headers are pushed to the message header store
afterwards. Multiple message handler threads concurrently
create the message objects, deserialize the messages’ payloads
and pass the received Java objects to the application using its
registered callback methods. When all data of a buffer has been
processed, it is released and pushed back into the incoming
buffer pool.

Incoming buffer pool. The buffer pool provides buffers,
allocated in native memory, in different configurable sizes
(e.g., 8 × 256 KB, 256 × 128 KB and 4096 × 16 KB). The
transport pulls buffers using a worst-fit strategy as the amount
of bytes ready to be received on the stream is unknown. It can
also scale-up dynamically, if necessary.

The buffer pool management consists of three lock-free ring
buffers optimized for access of one consumer and N producers
(similar to the ORB but without the CUB, see Section IV).

A. Parallel Message Deserialization

Filled buffers are pushed by the transport thread into the
IBQ. The IBQ is a basic ring buffer for one consumer and one
producer and is synchronized using memory fences. The IBQ
may be full and require the transport thread to park for a short
moment and retry (see Section VII).

High throughput requires a parallel deserialization. As the
received messages of the incoming stream can be split over
several incoming buffers (see Section V-B), the buffer pro-
cessing must be in-order and we need a two-staged approach
to enable concurrency. The MCC thread pulls the buffer entries
from the IBQ, deserializes all containing message headers
(using relevant state information stored in the corresponding
connection object) and pushes them into the message header
store. Message payload deserialization based on the message
headers can then be done in parallel by the message handler
threads. This approach is efficient as the time-consuming pay-
load deserialization and message object creation is parallelized.

The deserialization of split messages’ payload (last message
in buffer, which is not complete) must be in-order as well
because all preceding parts of a message must be available
to continue the deserialization of a split message. We address
this situation by the MCC detecting and deserializing not only
the header but the payload fraction within the current buffer,
as well, for the split message. The rest of the message in the
next buffer can be read by a message handler, again.

Split message headers are not a problem as deserialization of
message headers is always done by the MCC which can store
incomplete message headers within the connection object and
continue with the next buffer.

Message header store. As mentioned before, the MCC
pushes complete message headers to the message header store.
The latter is implemented as a lock-free ring buffer for N
consumers and one producer. Synchronization overhead is
reduced by the MCC buffering the small message headers and
pushing them in batches into the message header store. The
batch size is limited but configurable, e.g., 25 headers.

Message header pool. Message headers are pooled, as well,
in another single consumer, multiple producers lock-free ring
buffer. Furthermore, message headers are pushed and pulled in
batches. To reduce the probability of multiple message handler
threads returning message headers at the same time, the batch
sizes differ for every message handler.

Returning of buffers. A pooled buffer must not be returned
before all its messages haven been deserialized. Because of
the concurrent deserialization and split messages, we use
the MCC incrementing an atomic counter for every message
header pushed to the message header store (more precisely, the
counter is increased once for every batch of message headers).
Accordingly, the message handlers decrement the counter for
every deserialized message. When all messages have been
deserialized, the buffer can be safely returned to the pool.

We could run out of buffers during high throughput, if
the MCC deserializes headers faster than the message handler
threads can handle. Although we can scale up the number
of incoming buffers, we prefer to throttle the MCC when a
predefined number of used buffers is exceeded to reduce the
memory consumption. Another benefit of limiting the amount
of incoming buffers is that all buffer states like the message
counters, the buffers’ addresses or the unfinished operations
which are filled for incomplete messages can be allocated once

and reused for every incoming buffer to be processed.
Message Ordering. DXNet allows applications to mark

messages and thus ensure message ordering on a stream/con-
nection. All marked messages are guaranteed to be processed
by the same message handler. All other steps preserve mes-
sage ordering by default. For achieving maximum throughput,
marking all messages is not advisable.

VII. THREAD PARKING STRATEGIES

Lock-free programming allows low-latency synchroniza-
tion but can easily overload a CPU by uncontrolled polling
using CAS operations. DXNet implements a multi-level flow
control with explicit message flow regulation and implicit
throttling if memory pools drain and queues fill-up. We address
three thread situations: blocked (the thread waits for another
thread/server finishing its work because a pool is empty or
queue full), colliding (failing CAS operation because another
thread entered a critical section faster) and idling (the thread
has nothing to do and waits for another thread/server commit-
ting new work).

Blocked thread. When blocked, the thread can park to
reduce the CPU load because it is too fast compared to other
threads/servers. However, the thread should not park for a long
period to avoid restraining other threads/servers. Experiments
showed that a sane park period is between 10 and 100 µs.
Java allows minimum parking times of around 10 to 30 µs
for a thread with LockSupport.parkNanos() for Linux
servers with x86 CPUs.

Colliding thread. When colliding, the thread will repeat the
CAS operation with updated values until successful because
the thread is about to commit something and this should
be done as fast as possible. However, reducing the collision
probability (e.g., the ORB optimization described in IV-B)
reliefs the CPU significantly.

Idling thread. This situation occurs, if a thread has nothing
to do at the moment, e.g., a transport thread polls an empty
ORB, the MCC polls an empty IBQ or a message handler polls
an empty message header store. However, new work events
can arrive within nanoseconds. Latency is minimized when
threads do not park or yield, but only as long as the CPU is
not overloaded. In case of CPU overload situations, parking
threads can reduce latency.

We address this with an overprovisioning detection com-
bined with an adaptive parking approach (10 to 30 µs), if
the number of active threads (application threads and network
threads) reaches a threshold, e.g., four times the number of
cores, see also Section IX-A for the evaluation.

Idling for longer periods, e.g., applications not exchanging
messages for a longer period of time, must be addressed,
too. DXNet detects this, e.g., a network thread idling for one
second (configurable time), and starts parking threads, if idling,
reducing CPU load to a minimum.

VIII. TRANSPORT IMPLEMENTATIONS

DXNet has an open architecture supporting different net-
work transport technologies. Currently, we have transport
implementations for TCP/IP over Ethernet (using Java.nio),
reliable verbs over Infiniband (based on JNI), and Loopback
(for evaluation). Because of space constraints, we will only
sketch some important aspects of these transports.

The Ethernet transport (EthDXNet) implementation is
based on Java.nio and maps DirectByteBuffers to the ORB
allowing to send data without copying it in user-space. Fur-
thermore, two channels are opened for every connection to
avoid channel duplication and for providing a side-band flow
control channel for each connection. Channel duplication may
occur when two servers create connections to each other
simultaneously and must be avoided. The second channel al-
lows exchanging flow control messages necessary to maximize
throughput on a connection by using the back-channel.

The InfiniBand transport accesses the IBDXNet library
(C++) using JNI. IBDXNet utilizes ibverbs to implement direct
communication using the InfiniBand HCA. IBDXNet uses
one dedicated send and one dedicated receive thread, both
processing outgoing/incoming data in native memory. Context
switching from C++ to Java was designed carefully and is
highly optimized to avoid latency.

The Loopback transport is used for the experiments in this
paper allowing to study the performance of DXNet without
any bottlenecks from a real network. Data is not sent over
a network device nor the operating system’s loopback device
(latency would be considerably high) but is directly copied
from the ORB to a pooled incoming buffer. Furthermore, the
Loopback transport simulates a server sending and receiving
messages at highest possible throughput allowing to evaluate
DXNet’s performance.

IX. EVALUATION

We evaluate the proposed concepts using Loopback and
three different networks: 1 GBit/s Ethernet, 5 GBit/s Ethernet
and 56 GBit/s InfiniBand. The Loopback is used to evaluate
DXNet’s concepts without any limitations of an underlying
network.

Loopback and 5 GBit/s Ethernet tests were run in Mi-
crosoft’s Azure cloud in Germany Central with up to 18
virtual machines from the type Standard_DS13_v2 which are
memory optimized servers with 8 cores (Intel Xeon E5-2673),
56 GB RAM and shared 10 GBit/s Ethernet connectivity (two
instances per connect). We deployed a custom Ubuntu 14.04
image with 4.4.0-59 kernel and Java 8. The tests with 1 GBit/s
Ethernet and InfiniBand were executed on our private cluster
servers with 64 GB RAM, Intel Xeon E5-1650 CPU and
Ubuntu 16.04 with kernel 4.4.0-64.

We use a set of micro benchmarks for the evaluations in
Sections IX-A and IX-B which send messages or requests of
variable size with a configurable number of application threads.
All throughput measurements refer to the payload size which is
considerably smaller than the full message size, e.g., a 64-byte
payload results in 115 bytes to be sent on IP layer when using
Ethernet. Additionally, all runs with DXNet’s benchmarks are
full-duplex showing the aggregated performance for concur-
rently sending and receiving messages/requests.

A. Loopback

As mentioned before, we want to evaluate the efficiency
of DXNet’s concepts without any network limitations. Fig. 6
shows message processing times and throughputs for different
message sizes when using the Loopback transport on a typical
cloud server (Standard_DS13_v2). Messages up to 2 KB can
be processed in around 500 ns. Larger messages require

0

500

1000

1500

2000

2500

3000

 1 4 16 64 256 1024 4096 16384
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

P
ro

ce
ss

in
g
 T

im
e
 p

e
r

M
e
ss

a
g

e
 [

n
s]

T
h
ro

u
g
h
p

u
t

[M
B

/s
]

Message Size

Processing Time
Throughput

Figure 6. 107 Messages, 1 App. Thread, 4 Message Handlers.

0

1000

2000

3000

4000

5000

6000

7000

 1 2 4 8 16 32 64 128

P
ro

ce
ss

in
g
 T

im
e
 p

e
r

M
e
ss

a
g

e
 [

n
s]

Number of Application Threads

1 Handler
2 Handlers
4 Handlers
8 Handlers

16 Handlers
32 Handlers
64 Handlers

128 Handlers

Figure 7. 107 Messages, 1024 Bytes Payload.

increasing processing times, as expected. The throughput in-
creases linearly with the message size up to 8 KB messages
and is capped at around 14 GByte/s aggregated throughput for
sending and receiving of larger messages. The Linux tool mbw
determined a memory bandwidth of 7.19 GByte/s for a 16 GB
array and 16 KB block for the used servers which explains
the maximum throughput (saturation of the available memory
bandwidth).

In Fig. 6, we studied messages with up to 16 KB payload
size as DXNet is primarily designed to perform well with
small messages. We also tested larger messages (larger than
the ORB, configured with 4 MB here) and measured a message
throughput of around 5.4 GByte/s with 8 MB messages.
The throughput is lower as application threads and transport
thread work sequentially for larger messages (see Section
V-A). However, if the application needs to often handle large
messages, throughput can easily be improved by using a larger
ORB.

DXNet is designed to efficiently support concurrent appli-
cation threads sending and receiving messages in parallel. Fig.
7 shows that the processing time for 1 KB messages is stable
from one to 64 and only slightly increases with 128 application
threads. Additionally, Fig. 7 shows the performance with a
varying number of message handlers peaking with two to four.
Obviously, 128 application threads and 128 message handlers
overstress the CPU (8 cores) significantly. The results for all
other constellations are as expected showing DXNet’s capabil-
ity of efficiently handling hundreds of concurrent threads.

We also evaluated request-response latency by measuring
the RTT, which includes sending a request, receiving the

1

10

100

1000

10000

100000

 1 2 4 8 16 32 64 128

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Average
95th Percentile
99th Percentile

99.9th Percentile

Figure 8. 106 Requests, 2 Message Handlers, 1 Byte Payload.

Figure 9. Breakdown of Request-Response Latency for 1024-
byte Requests. One application thread (on top) and four (at the
bottom). Grey bars indicate inter-thread communication.

0

2000

4000

6000

8000

10000

 1 2 4 8 16 32 64 128
 0

 500

 1000

 1500

 2000

 2500

 3000

P
ro

ce
ss

in
g
 T

im
e
 p

e
r

M
e
ss

a
g
e
 [

n
s]

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Normal: Processing Time
Normal: Latency

Optimized: Processing Time
Optimized: Latency

Figure 10. 107 Message or 106 Requests, 2 Message Handlers,
1 Byte Payload.

request, sending the corresponding response and receiving the
response. Fig. 8 shows the latency for small requests with
increasing number of application threads. The average RTT
with one and two application threads is under 5 µs. With up
to eight threads the RTT increases slower than the number of
threads because requests can be aggregated for sending. With
more threads the increase rate is higher.

Fig. 9 shows the breakdown of request-response latency for
one and four application threads and 1024-byte requests. This
is a best-effort approximation as time measurement is costly
and influences the processing. As expected de-/serialization ac-
counts for the majority of the RTT and deserialization is slower
than serialization because of the message object allocation
and creation. With more application threads or asynchronous
messages, all depicted steps are executed in parallel.

1

10

100

1000

 1 2 4 8 16 32 64 128

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Never Park
Always Park

Detection

Figure 11. 106 Requests, 2 Message Handlers, 1 Byte Payload.

Optimized Outgoing Ring Buffer. The benefits of the
CUB, discussed in Section IV, can be seen in Fig. 10. Without
the optimization the message processing time increases signif-
icantly with more than four application threads sending mes-
sages (with 128 threads nearly 20 times higher). Furthermore,
the RTT diverges considerably with more than 32 application
threads as well.

Overprovisioning Detection. Fig. 11 shows the importance
of the thread parking strategy (see Section VII). The RTT is
25 times larger when using one application thread and always
parking network threads. All three strategies match with 32
threads and diverge a little with more threads. The never park
strategy is at disadvantage with many threads (128) and the
RTT is around 100 µs larger than with the adaptive approach.

The evaluation with Loopback transport shows the high
throughput and low latency of DXNet. Furthermore, DXNet
offers a high stability when used with many threads sending
and receiving messages in parallel.

B. Comparing Network Transports

Fig. 12 shows the message processing time and throughput
for all three network transports (Ethernet and Loopback on
cluster and cloud instances) with varying payload size. As
expected, InfiniBand has the lowest processing overhead and
highest throughput of all physical devices.

The comparison between the 1 GBit/s Ethernet of the private
cluster and 5 GBit/s Ethernet in Azure cloud reveals interesting
insights. Obviously, message throughput is higher in the cloud
for large messages. But, message throughput is higher and
processing time is lower on the cluster for messages smaller
than 64 bytes which is most likely caused by the virtualization
overhead of cloud servers. Loopback is also considerably faster
on cluster instances (< 300 ns processing time and > 16
GByte/s throughput).

Fig. 13 shows the request-response latency and throughput
for requests sent by four application threads. Again, 1 GBit/s
Ethernet on our cluster performs better for small payloads (<
1024) than 5 GBit/s Ethernet in the cloud. For larger requests
the bandwidth becomes more and more important favoring the
cloud network. Both Ethernet networks are far off the latencies
InfiniBand achieves. For small request (< 512 byte payload)
the RTT is consistently under 10 µs and rises to only 16 µs for
16 KB requests. Hence, the throughput is much higher with
InfiniBand as well.

The evaluation with three physical transports confirms the

100

1000

10000

100000

 1 4 16 64 256 1024 4096 16384

P
ro

ce
ss

in
g
 T

im
e
 p

e
r

M
e
ss

a
g
e
 [

n
s]

Message Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

 1 4 16 64 256 1024 4096 16384
 1

 10

 100

 1000

 10000

T
h
ro

u
g
h
p
u
t

[M
B

/s
]

Message Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

Figure 12. 108 Messages, 1 App. Thread, 2 Message Handlers.

4

16

64

256

1024

4096

 1 4 16 64 256 1024 4096 16384

R
e
q
u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Request Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

 1 4 16 64 256 1024 4096 16384

 10

 100

 1000

 10000

T
h
ro

u
g
h
p
u
t

[M
B

/s
]

Request Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

Figure 13. 107 Requests, 4 App. Threads, 2 Message Handlers.

results gathered with Loopback and DXNet performs strong
especially with InfiniBand (RTT < 10 µs, throughput > 9
GByte/s full-duplex).

C. Yahoo! Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) was de-
signed to quantitatively compare distributed serving storage
systems [33]. The benchmark offers a set of simple operations
(reads, writes, range scans) and a tabular key-value data model
to evaluate online storage systems regarding their elasticity,
availability and replication. Furthermore, YCSB is easily ex-
tensible for new storage systems and new workloads. For our
evaluation, we used the in-memory key-value store DXRAM
[34] which utilizes DXNet and created an individual workload:
one 64-byte object per key, 106 keys, uniform distribution,
90 % read and 10 % write operations, 107 operations. The
tests were run in the Microsoft Azure cloud with one storage
server and an increasing number of client servers (maximum
16) which each hosted up to 80 client threads.

Fig. 14 shows the average operation latency and throughput
with 10 to 1280 client threads. The operation latency starts
at around 230 µs which is in line with previous latency
measurements. The latency grows slowly up to 480 client
threads but then exponentially indicating server congestion.
The throughput rises up to 640 client threads with more than
one million operations per second and remains stable with
more client threads.

The evaluation with YCSB shows DXNet’s high perfor-
mance for a client-server scenario (one server can serve more
than 1000 clients).

0

200

400

600

800

1000

1200

 10 100 1000
 0

 200000

 400000

 600000

 800000

 1x106

O
p
e
ra

ti
o
n
 L

a
te

n
cy

 [
µ

s]

O
p
e
ra

ti
o
n
 T

h
ro

u
g

h
p

u
t

[o
p
s/

s]

Number of Client Threads

Latency
Throughput

Figure 14. 6 Message Handlers

X. CONCLUSIONS

Many big data applications as well as large scale interactive
applications are written in Java and aggregate the resources
of many servers in a cloud data center, high performance
cluster or private cluster. Efficient network communication is
very important for these application domains. RMI while being
comfortable to use is not fast enough for these applications.
Plain sockets are difficult to handle especially if efficiency and
scalability need to be addressed. MPI was designed for spawn-
ing processes with finite runtime in a static environment. Thus,
multi-threading performance and support for adding/removing
nodes to an existing environment are limited.

In this paper, we proposed DXNet, a Java open-source
network library complementing the communication spectrum.

DXNet provides fast parallel serialization for Java objects,
automatic connection management, automatic message ag-
gregation and an event-driven message receiving approach
including a concurrent deserialization. DXNet offers high-
throughput asynchronous messaging as well as synchronous
request/response communication with very low latency. Fi-
nally, its architecture is open for supporting different transport
protocols. It already supports TCP with Java.nio and reliable
verbs for Infiniband. DXNet achieves high performance and
low latency by using lock-free data structures, zero-copy and
zero-allocation. The proposed ring buffer and queue structures
are complemented by different thread parking strategies guar-
anteeing low latency by avoiding CPU overload.

Evaluations on a private cluster and in the Microsoft Azure
cloud show message processing times of sub 300 ns resulting
in throughputs of up to 16 GByte/s which saturate the memory
bandwidth of a typical cloud instance. For the request/response
pattern, DXNet is able to provide sub 10 µs RTT latency using
the InfiniBand transport (sub 4 µs over Loopback). Finally,
DXNet is also able to efficiently handle highly concurrent
processing of many small messages resulting in throughput
saturations for Ethernet with 256 bytes payload and InfiniBand
with 1-2 KB payload.

The InfiniBand transport IBDXNet is work in progress and
final results will be published separately (throughput: >10.4
GByte/s). Future work also includes more experiments at larger
scales including comparisons with other network middlewares,
as well as evaluations using a 100 GBit/s InfiniBand network.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, pp. 1804–1815, Aug. 2015.

[2] M. S. Engler, M. El-Kebir, J. Mulder, A. E. Mark, D. P. Geerke, and
G. W. Klau, “Enumerating common molecular substructures,” PeerJ
Preprints, vol. 5, p. e3250v1, Sep. 2017.

[3] P. Satapathy, J. Dave, P. Naik, and M. Vutukuru, “Performance com-
parison of state synchronization techniques in a distributed lte epc,” in
IEEE Conf. on Network Function Virtualization and Software Defined
Networks, 2017.

[4] S. Ekanayake, S. Kamburugamuve, and G. C. Fox, “Spidal java: High
performance data analytics with java and mpi on large multicore hpc
clusters,” in Proceedings of the 24th High Performance Computing
Symposium, 2016, pp. 3:1–3:8.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[6] “Cassandra,” http://cassandra.apache.org, accessed: 2018-03-14.
[7] “Interactive query with apache hive on apache tez,”

http://hortonworks.com/hadooptutorial/supercharging-
interactivequeries-hive-tez/, accessed: 2018-03-14.

[8] “Impala - cloudera,” https://www.cloudera.com/products/open-
source/apache-hadoop/impala.html, accessed: 2018-03-14.

[9] S. Microsystems, “Java remote method invocation specification,”
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html,
accessed: 2018-03-14.

[10] Oracle, “Package java.net,” https://docs.oracle.com/javase/8/docs/api/
java/net/package-summary.html, accessed: 2018-03-14.

[11] S. Mintchev, “Writing programs in javampi,” University of Westminster,
Tech. Rep. MAN-CSPE-02, Oct. 1997.

[12] K. Beineke, S. Nothaas, and M. Schoettner, “Dxnet project on github,”
https://github.com/hhu-bsinfo/dxnet, accessed: 2018-03-14.

[13] W. Zhu, C.-L. Wang, and F. C. M. Lau, “Jessica2: a distributed
java virtual machine with transparent thread migration support,” in
Proceedings. IEEE International Conference on Cluster Computing,
2002, pp. 381–388.

[14] S. P. Ahuja and R. Quintao, “Performance evaluation of java rmi:
A distributed object architecture for internet based applications,” in
Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, ser.
MASCOTS ’00, 2000, pp. 565–569.

[15] M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and rmi for java,” Concurrency: Practice and Experience, vol. 12,
pp. 495–518, 2000.

[16] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jac-
bos, and R. Hofman, “Efficient java rmi for parallel programming,”
ACM Trans. Program. Lang. Syst., vol. 23, pp. 747–775, Nov. 2001.

[17] C. Nester, M. Philippsen, and B. Haumacher, “A more efficient rmi
for java,” in Proc. of the ACM 1999 Conf. on Java Grande, 1999, pp.
152–159.

[18] M. P. I. Forum, Ed., MPI: A Message-passing Inter-
face Standard, Version 3.1 ; June 4, 2015. High-
Performance Computing Center, 2015, 2015. [Online]. Available:
https://books.google.de/books?id=Fbv7jwEACAAJ

[19] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
core hpc systems using java,” in Journal of Parallel and Distributed
Computing, 2009, pp. 532–545.

[20] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and X. Li, “mpijava: A
java interface to mpi,” http://www.hpjava.org/mpiJava.html, accessed:
2018-03-14.

[21] G. "Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in "Recent Advances
in the Message Passing Interface", 2010, pp. 11–20.

[22] H. V. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced thread
synchronization for multithreaded mpi implementations,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), May 2017, pp. 314–324.

[23] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg, 2006, pp.
275–284.

[24] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI ’13, 2013, pp. 43–48.

[25] K. Beineke, S. Nothaas, and M. Schoettner, “Fast parallel recovery of
many small in-memory objects,” in International Conference on Parallel
and Distributed Systems (ICPADS), vol. 23, in press.

[26] Oracle, “Java i/o, nio, and nio.2,”
https://docs.oracle.com/javase/8/docs/technotes/guides/io/index.html,
accessed: 2018-03-14.

[27] R. Hitchens, Java NIO. Sebastopol, CA, USA: O’Reilly Media, 2009.
[28] G. L. Taboada, J. Touriño, and R. Doallo, “Java fast sockets: Enabling

high-speed java communications on high performance clusters,” Com-
put. Commun., vol. 31, pp. 4049–4059, Nov. 2008.

[29] G. L. Taboada, J. Tourino, and R. Doallo, “High performance java
sockets for parallel computing on clusters,” in Parallel and Distributed
Processing Symposium, 2007, pp. 1–8.

[30] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom, “Use at your own risk: The java unsafe api in the wild,”
SIGPLAN Not., vol. 50, pp. 695–710, Oct. 2015.

[31] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat, “Pickling state in the
javatm system,” in Proc. of the 2nd Conf. on USENIX Conf. on Object-
Oriented Technologies, 1996, pp. 19–19.

[32] “Kryo - java serialization and cloning: fast, efficient, automatic.”
https://github.com/EsotericSoftware/kryo, accessed: 2018-03-14.

[33] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of the 1st
ACM symposium on Cloud computing, 2010, pp. 143–154.

[34] K. Beineke, S. Nothaas, and M. Schoettner, “High throughput log-
based replication for many small in-memory objects,” in IEEE 22nd
International Conference on Parallel and Distributed Systems, 2016,
pp. 535–544.

Chapter 3.

Scalable Messaging for Java-based
Cloud Applications

This chapter summarizes the contributions and includes a copy of our paper [18].

Kevin Beineke, Stefan Nothaas and Michael Schöttner. "Scalable Messaging for Java-based
Cloud Applications". In: ICNS 2018, The Fourteenth International Conference on Networking

and Services. May 2018, pp. 32-41

Selected to be published as an extended version in the International Journal On Advances in
Internet Technology, v 11, 2018. To be submitted.

3.1. Paper Summary

In Chapter 2 (based on [13]), we describe the messaging network system DXNet which is
transport agnostic and supports Ethernet and InfiniBand interconnect. In this publication, we
detail EthDXNet, the Ethernet transport implementation of DXNet. Our approach is based
on Java.nio’s socket channel and selector and provides a low-overhead interest handling and
scalable automatic connection management. In EhtDXNet, every connection consists of two
socket channels, one for incoming data and one for outgoing data, to use the back-channels
of both socket channels for out-of-band data like the application-level flow control of DXNet.
Additionally, using separate socket channels for incoming and outgoing traffic avoids channel
duplication, a well-known problem occurring when two servers create a channel to each other
simultaneously. Furthermore, EthDXNet uses direct ByteBuffers which can be copied into
kernel socket buffers directly, avoiding copying the buffers in user-space.

The evaluation shows the low latency and high throughput as well as the good scalability of
DXNet and EthDXNet even in an all-to-all communication pattern (worst case) with up to 64
servers in the Microsoft Azure cloud (each server connected with 5 Gbit/s Ethernet which is a
shared 10 GBit/s Ethernet connection).

44

Chapter 3. Scalable Messaging for Java-based Cloud Applications

3.2. Importance and Impact on Thesis

Ethernet is one of the most commonly used interconnects in data centers and clusters, even
in HPCs: 248 of the top 500 supercomputers are connected with Ethernet (204 using 10
GBit/Ethernet) [112]. Microsoft uses 10 GBit/s Ethernet for connecting the servers in the
Azure cloud data centers in Germany as well. Therefore, providing an Ethernet transport
implementation for DXNet and DXRAM is imperative to exploit new applications. For this
thesis, an earlier version of the Ethernet implementation, which shared many aspects described
in this publication, was used for the evaluation in [15] and [14].

3.3. Personal Contribution

This paper describes the Ethernet transport of DXNet (EthDXNet). Therefore, the contributions
of the DXNet paper are also applicable to this paper. However, all detailed contributions
in sections IV to VII were developed by Kevin Beineke, the author of this thesis. Stefan
Nothaas aided by revising and upgrading the DXNet benchmark for multi-node communications.
Furthermore, Stefan Nothaas optimized DXNet’s flow control to improve his InfiniBand transport
which was also applied to EthDXNet by Kevin Beineke.

Kevin Beineke structured the publication and wrote most of it. Stefan Nothaas contributed by
writing an outline of the DXNet paper (Section III) and proof-reading the paper. Prof. Dr.
Michael Schöttner participated in discussions regarding the proposed approaches and evaluation
and also reviewed the paper.

45

Scalable Messaging for Java-based Cloud
Applications

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—Many big data and large-scale cloud applications are
written in Java or are built using Java-based frameworks.
Typically, application instances are running in a data center
on many virtual machines which requires scalable and efficient
network communication. In this paper, we present the practical
experience of designing a Java.nio transport for DXNet, a low
latency and high throughput messaging system which goes beyond
message passing by providing a fast parallel object serialization.
The proposed design uses a zero-copy send and receive approach
avoiding copying data between de-/serialization and send/re-
ceive. It is based on Java.nio socket channels complemented by
application-level flow control to achieve low latency and high
throughput for >10 GBit/s Ethernet networks. Furthermore, a
scalable automatic connection management and a low-overhead
interest handling provides an efficient network communication
for dozens of servers, even for small messages (< 100 bytes)
and all-to-all communication pattern. The evaluation with micro
benchmarks shows the efficiency and scalability with up to 64
virtual machines in the Microsoft Azure cloud. DXNet and
the Java.nio-based transport are open source and available on
Github.

Keywords–Message passing; Ethernet networks; Java; Data
centers; Cloud computing;

I. INTRODUCTION

Big data processing is emerging in many application do-
mains whereof many are developed in Java or are based on Java
frameworks [1][2][3]. Typically, these big data applications
aggregate the resources of many virtual machines in cloud
data centers (on demand). For data exchange and coordination
of application instances, an efficient network transport is
very important. Fortunately, public cloud data centers already
provide 10 GBit/s Ethernet and faster.

Java applications have different options for exchanging
data between Java servers, ranging from high level Remote
Method Invocation (RMI) [4] to low-level byte streams using
Java sockets [5] or the Message Passing Interface (MPI)
[6]. However, none of the mentioned possibilities offer high
performance messaging, elastic automatic connection manage-
ment, advanced multi-threaded message handling and object
serialization all together. Therefore, we proposed DXNet [7],
a network messaging system which meets all of these require-
ments. DXNet is extensible by transport implementations to
support different network interconnects.

In this paper, we propose an Ethernet transport implemen-
tation for DXNet, called EthDXNet. The transport is based

on Java.nio and provides high throughput and low latency
networking over Ethernet connections.

The contributions of this paper are:

• the design of EthDXNet and practical experiences
including:

◦ scalable automatic connection management
◦ zero-copy approach for sending and receiving

data over socket channels
◦ efficient interest handling

• evaluations with up to 64 VMs in the Microsoft Azure
cloud

The evaluation shows that EthDXNet scales well while
per-node message throughput and request-response latency is
constant from 2 to 64 nodes, even in an high-load all-to-
all scenario (worst case). Furthermore, high throughput is
guaranteed for small 64-byte messages and saturation of the
physical network bandwidth (5 GBit/s) with 4 KB messages.
The latency experiments also show that EthDXNet efficiently
utilizes the underlying network as long as the CPU does not
get overstressed by too many application threads leading to a
natural increase in latency.

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section
III. In Section IV, we describe the sending and receiving
procedure of EthDXNet, followed by a presentation of the
connection management in Section V. Section VI focuses on
the flow control implementation and Section VII on the interest
handling. The evaluation is in Section VIII. The conclusions
can be found in Section IX.

II. RELATED WORK

In this section, we discuss the related work for this paper.

A. JavaRMI

Java’s RMI [4] provides a high level mechanism to trans-
parently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized and references result in a serialization
of the object itself and all reachable objects (transitive closure),
which can be costly. Missing classes can be loaded from
remote servers during RMI calls, which is very flexible but
introduces even more complexity and overhead. Additionally,
the built-in serialization is known to be slow and not very

space efficient [8][9]. Furthermore, method calls are always
blocking.

B. MPI

MPI is the state-of-the-art message passing standard for
parallel high performance computing. It is available for Java
applications by implementing the MPI standard in Java or
wrapping a native library. However, MPI was designed for
spawning jobs with finite runtime in a static environment.
DXNet’s and EthDXNet’s main application domain are ongo-
ing applications with dynamic node addition and removal (not
limited to). The MPI standard defines the required functionality
for adding and removing processes, but common MPI imple-
mentations are incomplete in this regard [10][11]. Furthermore,
job shutdown and crash handling is still improvable [11].

C. Java.nio

The java.io and java.net libraries provide basic
implementations for exchanging data via TCP/IP and UDP
sockets over Input- and OutputStreams [12][5]. To create a
TCP/IP connection between two servers, a new Socket is
created and connection established to a remote IP and port. On
the other end, a ServerSocket must be listening on given
IP-port tuple creating a new Socket when accepting an incom-
ing connection-creation request. The connection creation must
be acknowledged from both sides and can be used to exchange
byte arrays by reading/writing from/to the Socket hereafter.
While this is sufficient for small applications with a few con-
nections, this basic approach lacks several performance-critical
optimizations [13] introduced with Java.nio [12][14]. (1)
Instead of byte arrays, the read/write methods of Java.nio use
ByteBuffers, which provide efficient conversion methods
for all primitive data types. (2) ByteBuffers can be allocated
outside of the Java heap allowing system-level I/O operations
on the data without copying as the ByteBuffer is not subject to
the garbage collection outside of the Java heap. Obviously, this
relieves the garbage collector as well lowering the overhead
with many buffers. (3) SocketChannels and Selectors
enable asynchronous, non-blocking operations on stream-based
sockets. With simple Java Sockets, user-level threads have to
poll (a blocking operation) in order to read data from a Socket.
Furthermore, when writing to a Socket the thread blocks until
the write operation is finished, even if the Socket is not ready.
With Java.nio, operation interests (like READ or WRITE) are
registered on a Selector which selects operations when they
are ready to be executed. This enables efficient handling of
many connections with a single thread. The dedicated thread
is required to call the select method of the Selector which
is blocking if no socket channel is ready or returns with
the number of executable operations. All available operations
(e.g., sending/receiving data) can be executed by the dedicated
thread, afterwards.

D. Java Fast Sockets

Java Fast Sockets (JFS) is an efficient Java communication
middleware for high performance clusters [15]. It provides the
widely used socket API for a broad range of target applications
and is compatible with standard Java compilers and VMs. JFS
avoids primitive data type array serialization (JFS does not in-
clude a serializer), reduces buffering and unnecessary copies in

Figure 1. Simplified DXNet Architecture (from [7])

the protocol and provides shared memory communication with
an optimized transport protocol for Ethernet. DXNet provides
a highly concurrent serialization for complex Java objects and
primitive data types which avoids copying/buffering as well.
EthDXNet is an Ethernet transport implementation for DXNet.

III. DXNET

DXNet is a network library for Java targeting, but not
limited to, big data applications. DXNet implements an event
driven message passing approach and provides a simple
and easy to use application interface. It is optimized for
highly multi-threaded sending and receiving of small mes-
sages by using lock-free data structures, fast concurrent
serialization, zero copy and zero allocation. Split into two
major parts, the core of DXNet provides automatic connection
management, serialization of message objects and an interface
for implementing different transports. Currently, an Ethernet
transport using Java.nio sockets and an InifiniBand transport
using ibverbs is implemented.

This section describes the most important aspects of DXNet
and its core (see Figure 1) which are relevant for this paper.
However, a more detailed insight of the core is given in a
dedicated paper [7]. The source code is available at Github
[16].

A. Connection Management

All nodes are addressed using an abstract 16-bit node
ID. Address mappings must be registered to allow associating
the node IDs of each remote node with a corresponding
implementation dependent endpoint (e.g., socket, queue pair).
To provide scalability with up to hundreds of simultaneous
connections, our event driven system does not create one thread
per connection. A new connection is created automatically
once the first message is either sent to a destination or
received from one. Connections are closed once a configurable
connection limit is reached using a recently used strategy.
Faulty connections (e.g., remote node not reachable anymore)
are handled and cleaned up by the manager. Error handling on
connection errors or timeouts are propagated to the application
using exceptions.

B. Sending of Messages

Messages are Java objects and sent asynchronously. A
message can be targeted towards one or multiple receivers.
Using the message type Request, it is sent to one receiver. The

sender waits until receiving a corresponding response message
(transparently handled by DXNet) or skips waiting and collects
the response later.

One or multiple application threads call DXNet (concur-
rently) to send messages. Every message is automatically and
concurrently serialized into the Outgoing Ring Buffer (ORB),
a natively allocated and lock-free ring buffer. When used
concurrently, messages are automatically aggregated which
increases send throughput. The ORB, one per connection, is
allocated in native memory to allow direct and zero-copy ac-
cess by the low level transport. The transport runs a decoupled
dedicated thread which removes the serialized and ready to
send data from the ORB and forwards it to the hardware.

C. Receiving of Messages

The network transport handles incoming data by writing it
to pooled native buffers. We use native buffers and pooling
to avoid burdening the Java garbage collection. Depending on
how a transport writes and reads data, the buffer might contain
fully serialized messages or just fragments. Every buffer is
pushed to the ring buffer based Incoming Buffer Queue
(IBQ). Both, the buffer pool as well as the IBQ are shared
among all connections. Dedicated message handler threads
pull buffers from the IBQ and process them asynchronously
by de-serializing them and creating Java message objects. The
messages are passed to pre-registered callback methods of the
application.

D. Flow Control

DXNet implements its own flow control (FC) mechanism
to avoid flooding a remote node with messages. This would
result in an increased overall latency and lower throughput
if the remote node cannot keep up with processing incoming
messages. When sending messages, the per connection dedi-
cated FC checks if a configurable threshold is exceeded. This
threshold describes the number of bytes sent by the current
node but not fully processed by the receiving node. The
receiving node counts the number of bytes received and sends a
confirmation back to the source node in regular intervals. Once
the sender receives this confirmation, the number of bytes sent
but not processed is reduced. If an application send thread was
previously blocked due to exceeding this threshold, it can now
continue with processing the message.

E. Transport Interface

DXNet provides a transport interface allowing implemen-
tations of different transport types. One of the implemented
transports can be selected on the start of DXNet. The transport
and its specific semantics are transparent to the applications.

The following methods must be implemented for every
transport:

• Setup connection

• Close and cleanup connection

• Signal to send data available in the ORB of a connec-
tion (callback)

• Pull data from the ORB and send it

• Push received raw data/buffer to the IBQ

Figure 2. Data structures and Threads. Details of the Interest Queue can be
found in Figure 4.

IV. ETHDXNET - SENDING AND RECEIVING

In the following sections, we describe the Ethernet trans-
port of DXNet, called EthDXNet. An overview of the most
important data structures and threads of EthDXNet are depict
in Figure 2.

A. Sending of Data

To send messages, the DXNet API methods
sendMessage or sendSync are called by the application
threads (or message handler threads). In DXNet, messages are
always sent asynchronously, i.e., application threads might
return before the message is transfered. It is possible, though,
to wait for a response before returning to the application
(sendSync). After getting the ConnectionObject (a
Java object) from the Connection Manager, the message is
serialized into the ORB associated with the connection. For
performance reasons, many application threads can serialize
into the same or different ORBs in parallel (more in [7]). The
actual message transfer is executed by the SelectorThread, a
dedicated daemon thread driving the Java.nio back-end. Thus,
after serializing the message into the ORB, the application
thread must signal data availability for the corresponding
connection. This is done by registering a WRITE interest (see
Table I) for given connection in the Interest Queue (see
Section VII). When ready, Java.nio’s Selector wakes-up the
SelectorThread (which is blocked in the select method of
the Selector) to execute the operation and thus transferring
the message.

After returning from the select method, a SelectionKey
is available in the ready-set of the Selector. It contains the
operation interest WRITE, the socket channel and attach-
ment (the associated ConnectionObject). This SelectionKey
is dispatched based on the operation. In order to send the
message over the network, the SelectorThread pulls the data
block from the ORB of the corresponding connection and
calls the write method of the socket channel. From this
point, we cannot distinguish single messages anymore because

messages are naturally aggregated to data blocks in the ORBs,
which is a performance critical aspect. The write method is
called repeatedly until all bytes have been transferred or the
method returned with return value 0. The second case indicates
congestion on the network or the receiver and is best handled
by stopping the transfer and continue it later. After sending, the
back position (Bp, see Figure 2) of the ORB is moved by the
number of bytes transferred to free space for new messages
to send. Additionally, if the transfer was successful and the
ORB is empty afterwards, the SelectionKey’s operation is set
to READ which is the preset operation and enables receiving
incoming data blocks. If the transfer failed, the connection
is closed (see Section V). If the transfer was incomplete or
new data is available in the ORB, the SelectionKey is set
to READ | WRITE (combination of READ and WRITE by
using the bitwise or-operator) which triggers a new WRITE
operation when calling select the next time but also allows
receiving incoming messages. It is important to change the
SelectionKey to this state as keeping only the WRITE opera-
tion could result in a deadlock situation in which both ends try
to transfer data but none of them are able to receive data on
the same connection. This causes the kernel socket receive
buffers to fill up on both sides preventing further data transfer.

The ORB is a ring buffer allocated in native memory
(outside of the Java heap). In order to pass a ByteBuffer to the
socket channel, which is required for data transfer, we wrap
a DirectByteBuffer onto the ORB and set the ByteBuffer’s
position to the front position in the ORB and the limit to
the back position. A DirectByteBuffer is a ByteBuffer whose
underlying byte array is stored in native memory and is not
subject to garbage collection. This enables native operations of
the operating system without copying the data first. The socket
channel’s send and receive operations are examples for those
native operations, thus, benefiting from the DirectByteBuffer.
Java does not support changing the address of a ByteBuffer.
Therefore, on initialization of the ORB, we allocate a new
DirectByteBuffer by calling allocateDirect of the
Java object ByteBuffer and use the underlying byte array
as the ORB. To do so, we need to determine the memory
address of the byte array, which can be obtained with
Buffer.class.getDeclaredField("address").
That is, during serialization the ORB is accessed with
Java.unsafe by reading/writing from/to the actual address
outside of the Java heap, but the socket channel accesses the
data by using the DirectByteBuffer’s reference (with adjusted
position and limit). We do not access the ORB by using the
DirectByteBuffer during serialization because of performance
and compatibility reasons described in [7].

Although this approach prevents copying the data to be
sent on user-level, the data is still copied from the ORB
to the kernel socket send buffer which is a necessity of
the stream-based socket approach. Therefore, configuring the
kernel socket buffer sizes (one for sending and one for
receiving) correctly has a great impact on performance. We
empirically determined setting both buffer sizes to the ORBs’
size offers a good performance without increasing the memory
consumption too much (typically the ORBs are between 1 and
4 MB depending on the application use case).

B. Receiving of Data

Receiving messages is always initiated by Java.nio’s Se-
lector which detects incoming data availability on socket
channels. When a socket channel is ready to be read from,
the SelectorThread selects the SelectionKey and dispatches the
READ operation. Next, the SelectorThread reads repeatedly
by calling the read operation on the socket channel until
there is nothing more to read or the buffer is full. If reading
from the socket channel failed, the socket channel is closed.
Otherwise, the ByteBuffer with the received data is flipped
(limit = position, position = 0) and pushed to the IBQ (see
Figure 1). The buffer processing is explained in [7].

In order to read from the socket channel, a ByteBuffer is
required to write the incoming data into. Constantly allocating
new ByteBuffers decreases the performance drastically. There-
fore, we implemented a buffer pool. The buffer pool provides
ByteBuffers, allocated in native memory (which are Direct-
ByteBuffers), in different configurable sizes (e.g., 8×256 KB,
256× 128 KB and 4096× 16 KB). The SelectorThread pulls
DirectByteBuffers using a worst-fit strategy as the amount
of bytes ready to be received on the stream is unknown. It
can also scale-up dynamically, if necessary. The buffer pool
management consists of three lock-free ring buffers optimized
for access of one consumer and N producers [7].

The pooled DirectByteBuffers are wrapped to provide the
ByteBuffer’s reference as well as the ByteBuffer’s address.
The reference is used for reading from the socket channel and
the address is necessary to deserialize the messages within the
ByteBuffer.

V. AUTOMATIC CONNECTION MANAGEMENT

For sending and receiving messages, we have to manage
all open connections and create/close connections on demand.
A connection is represented by an object (ConnectionObject),
containing a node ID to identify the connection based on the
destination, a PipeIn and a PipeOut. The PipeOut consists
mostly of an ORB, a socket channel and flow control for
outgoing data. The PipeIn contains a socket channel, flow
control for incoming data, has access to the buffer pool (shared
among all connections) and more data structures important to
buffer processing, which are not further discussed in this paper.

1) Connection Establishment: Connections are created in
two ways: (1) actively by creating a new connection to a
remote node or (2) passively by accepting a remote node’s
connection request. In both cases, the connection manager
must be updated to administrate the new connection. Figure
3 shows the procedure of creating a new connection (active
on the left side and passive on the right). The core part is the
TCP handshake, which can be seen in the middle.

Active connection creation: A connection is created ac-
tively, if an application thread wants to send a message to
a not yet connected node. To establish the connection, the
application thread creates a new ConnectionObject (including
PipeIn and PipeOut and all its components), opens a new
socket channel and connects the socket channel to the re-
mote node’s IP and port. Afterwards, the application thread
registers a CONNECT operation, creates a ReentrantLock
and Condition and waits until the Condition is signaled or

Figure 3. Connection Creation

the connection creation was aborted. To correctly identify the
corresponding ConnectionObject to a socket channel, the Con-
nectionObject is attached to the SelectionKey when registering
the CONNECT interest and all following interests.

The SelectorThread continues the connection establishment
by applying the CONNECT interest and selecting the socket
channel when the remote node accepted the connection or the
connection establishment failed. After selecting the Selection-
Key, the socket channel’s status is checked. If it is pending,
the connection creation was successful so far and the socket
channel can be completed by calling finishConnect. If the
connection establishment was aborted, the application thread
is informed by setting a flag (which is checked periodically by
the application thread).

The remote node has to identify the new node currently
creating a connection. Thus, the node ID is sent to the
remote node on the newly created channel. Furthermore, the
SelectorThread marks the PipeOut as connected and signals the
condition so the application thread can continue. The applica-
tion thread adds the connection to the connection manager,
increments the connection counter and starts sending data,
afterwards.

Passive connection creation: For accepting and creating
an incoming connection, the Selector implicitly selects a Selec-
tionKey with ACCEPT operation interest which is processed by
the SelectorThread by calling accept on the socket channel.
This creates a new socket channel and acknowledges the
connection. Afterwards, the interest READ is registered in order
to receive the node ID of the remote node. After selecting and
dispatching the interest, the node ID is read by using the socket
channel’s read method.

At this point the socket channel is ready for sending
and receiving data, but the ConnectionObject has yet to be
created and pushed to the connection manager. This process is
rather time consuming and might be blocking if an application
thread creates a connection to the same node at the same
time (connection duplication is discussed in Section V-2).
Therefore, the SelectorThread creates a job for creating the
connection and forwards it to the ConnectionCreationHelper

thread. Additionally, the interest is set to NO-OP (0) to avoid
receiving data before the connection setup is finished and the
connection is attached to the SelectionKey.

The ConnectionCreationHelper polls the job queue period-
ically. There are two types of jobs: (1) a connection creation
job and (2) a connection shutdown job. The latter is explained
in Section V-3. When pulling a connection creation job, the
ConnectionCreationHelper creates a new ConnectionObject
(including the pipes, ORB, FC, etc.) and registers a READ
interest with the new ConnectionObject attached. Furthermore,
the PipeIn is marked as connected.

To be able to accept incoming connection requests, every
node must open a ServerSocketChannel, bind it to a
well-known port and register the ACCEPT interest. Further-
more, for selecting socket channels, a Selector has to be
created and opened.

2) Connection Duplication: It is crucial to avoid connec-
tion duplication which occurs if two nodes create a connection
to each other simultaneously. In this case, the nodes might
use different connections to send and receive data which
corrupts the message ordering and flow control. There are two
approaches for resolving this problem: (1) detecting connection
duplication during/after the connection establishment and (2)
avoiding connection duplication by using two separate socket
channels for sending and receiving.

Solution 1: Detect and resolve connection duplication
by keeping one connection opened and closing the other one.
Obviously, the other node must decide consistently which can
be done by including the node IDs (e.g., always keep the
connection created by the node with higher node ID). One
downside of this approach is the complex connection shut-
down. It must ensure that all data initially to be sent over the
closing connection has been sent and received. Furthermore,
message ordering cannot be guaranteed until the connection
duplication situation is resolved.

Solution 2: Avoid connection duplication by using two
socket channels per connection: one for sending and one
for receiving (implemented in EthDXNet). Thus, simultane-
ous connection creation leads to one ConnectionObject with

opened PipeIn and PipeOut (one socket channel, each) whereas
a single connection creation opens either the PipeOut (active)
or PipeIn (passive). This approach requires additional memory
for the second socket channel, Java.nio’s Selector has more
socket channels to manage and connection setup is required
from both ends. The additional memory required for the second
socket channel is negligible as the kernel socket buffers are
configured to use a very small socket receive buffer for the
outgoing socket channel and a very small socket send buffer
for the incoming socket channel. The second TCP handshake
(for connection creation, both sides need to open and connect
a socket channel) is also not a problem as both socket channels
can be created simultaneously and for a long running big
data application connections among application instances are
typically kept over the entire runtime. Finally, the overhead
for Java.nio’s Selector is difficult to measure but is certainly
not the bottleneck taking into account the limitations of the
underlying network latency and throughput. Sending out-of-
band (OOB) data is possible by utilizing the unused back-
channel of every socket channel. We use this for sending
flow control data in EthDXNet (see Section VI).

3) Connection Shutdown: Connections are closed on three
occasions: (1) if a write or read access to a socket channel
failed, (2) if a new connection is to be created but the config-
urable connection limit is reached or (3) on node shutdown.
In the first case, the SelectorThread directly shuts down the
connection. In the second case, the application thread registers
a CLOSE interest to let the SelectorThread close the connection
asynchronously. On application shutdown, all connections are
closed by one Shutdown Hook thread.

To shut down a connection, first, the outgoing and incoming
socket channels are removed from the Selector by canceling
the SelectionKeys representing a socket channel’s registration.
Then, the socket channels are closed by calling the socket
channels’ close method. At last, the connection is removed
from the connection manager by creating a shutdown job
handled by the ConnectionCreationHelper (case (1)) or directly
removing it when returning to the connection management
(cases (2) and (3)). The ConnectionCreationHelper also trig-
gers a ConnectionLostEvent, which is dispatched to the
application for further handling (e.g., node recovery).

When dismissing a connection (case (2)), directly shutting
down a connection might lead to data loss. Therefore, the
connection is closed gracefully by waiting for all outstanding
data (in the connection’s ORB) to be sent. Priorly, the con-
nection is removed from connection management to prevent
further filling of the ORB. Afterwards, a CLOSE interest is
registered to close the socket channels asynchronously. The
SelectorThread does not shut down the socket channels on
first opportunity but postpones shutdown for at least two
RTT timeouts to ensure all responses are received for still
outstanding requests.

VI. FLOW CONTROL

DXNet provides a flow control on application layer to avoid
overwhelming slower receivers (see Section III). EthDXNet
uses the Transmission Control Protocol (TCP) which already
implements a flow control mechanism on protocol layer. Still,
DXNet’s flow control is beneficial when using TCP. If the

application on the receiver cannot read and process the data fast
enough, the sender’s TCP flow control window, the maximum
amount of data to be sent before data receipt has to be acknowl-
edged by the receiver, is reduced. The decision is based on the
utilization of the corresponding kernel socket receive buffer.
In DXNet, reading incoming data from kernel socket receive
buffers is decoupled from processing the included messages,
i.e., many incoming buffers could be stored in the IBQ to be
processed by another thread. Thus, the kernel socket receive
buffers’ utilizations do not necessarily indicate the load on the
receiver leading to delayed or imprecise decisions by TCP’s
flow control.

This section focuses on the implementation of the flow con-
trol in EthDXNet. Flow control data has to be sent with high
priority to avoid unintentional slow-downs and fluctuations
regarding throughout and latency. Sending flow control data in-
band, i.e., with a special message appended to the data stream,
is not an option because the delay would be too high. TCP
offers the possibility to send urgent data, which is a single
byte inlined in the data stream and sent as soon as possible.
Furthermore, urgent data is always sent, even if the kernel
socket receive buffer on the receiver is full. To distinguish
urgent data from the current stream (urgent data can be at any
position within a message as transfer is not message-aligned),
a dedicated flag within the TCP header needs to be checked.
This flag indicates if the first byte of the packet is urgent data.
Unfortunately, Java.nio does not provide methods for handling
incoming TCP urgent data.

We solve this problem by using both unused back-
channels of every socket channel which are available because
of the double-channel connection approach in EthDXNet.
Thus, the incoming stream of the outgoing socket channel and
the outgoing stream of the incoming socket channel of every
connection are used for sending/receiving flow control data.

Sending flow control data: When receiving messages,
a counter is incremented by the number of received bytes
for every incoming buffer. If the counter exceeds a con-
figurable threshold (e.g., 60% of the flow control window),
a WRITE_FC interest is registered. This interest is applied,
selected and dispatched like any other WRITE interest. But,
instead of using the socket channel of the PipeOut, the PipeIn
is used to send the flow control data. The flow control
data consists of one byte containing the number of reached
thresholds (typically 1). If the threshold is smaller than 50%,
for example 30%, it is possible that between registering the
WRITE_FC interest and actually sending the flow control data,
the threshold has been exceeded again. For example, if the
current counter is 70% of the windows size which is more
than two thresholds of 30%. In this case 2 * 30% = 60% is
confirmed by sending the value 2. After sending flow control
data, the SelectionKey is reset to READ to enable receiving
messages on this socket channel, again.

Receiving flow control data: To be able to receive flow
control data, the socket channel of the PipeOut must be
readable (register READ). If flow control data is available
to be received, the socket channel is selected by the Selector
and the SelectorThread reads the single byte from the socket
channel of the PipeOut. When processing serialized messages
on the sender, a counter is incremented. Application threads
which want to send further messages if the counter reached

TABLE I. JAVA.NIO INTERESTS

Interest Description
OP_READ channel is ready to read incoming data
OP_WRITE set if data is available to be sent
OP_CONNECT set to open connection
OP_ACCEPT a connect request arrived

TABLE II. ETHDXNET INTERESTS

Interest Description (refers to attached connection)
CONNECT set OP_CONNECT for outgoing channel
READ_FC set OP_READ for outgoing channel
READ set OP_READ for incoming channel
WRITE_FC set OP_WRITE for incoming channel
WRITE set OP_WRITE for outgoing channel
CLOSE shutdown both socket channels

the limit (i.e., the flow control window is full) are blocked
until message receipt is acknowledged by the receiver. The
read flow control value is used to decremented the counter to
re-enable sending messages. Usually, the limit is never reached
as the flow control data is received before (if the threshold on
the receiver is low enough).

In Section IV-A, we discussed the end-to-end situation of
both nodes sending data to each other, but never reading (if the
SelectionKey’s operation stays at WRITE) causing a deadlock.
This situation cannot occur with two socket channels per
connection as reading and writing are handled independently.
But, a similar situation is possible where two nodes send data
to each other, but flow control data is not read for a while.
This does not cause a deadlock but decreases performance.
By setting the interest to READ | WRITE, flow control data is
read from time to time ensuring a contiguous high throughput.

VII. EFFICIENT MANAGEMENT OF OPERATION
INTERESTS

Operation interests are an important concept in Java.nio
and are registered in the Selector to create and accept a new
connection, to write data or to enable receiving data. The
operation interests are complemented by the ConnectionObject
(as an attachment) and the socket channel stored together in
a SelectionKey. As soon as the socket channel is ready for
any registered operation, the Selector adds the corresponding
SelectionKey to a ready-set and wakes-up the SelectorThread
waiting in the select method. If the SelectorThread is
not waiting in the select method, the next select call will
return immediately. The SelectorThread can then process all
SelectionKeys.

A. Types of Operations Interests

The operation interests can be classified into two cate-
gories: explicit operation interests and implicit operation
interests. Implicit operations are registered as presets after
socket channel creation and after executing explicit operations.
For example, a READ interest is registered for a socket channel
if data is expected to arrive on this socket channel. The opera-
tion is then selected implicitly by the Selector whenever data is

available to be received. Another example is the ServerSock-
etChannel which implicitly accepts new incoming connection
requests if the ACCEPT interest has been registered before.
Explicit operations are single operations which need to be
triggered explicitly by the application. For example, when the
application wants to send a message, the application thread has
to register a WRITE interest. When the socket channel is ready,
the data is sent and the socket channel is set to the preset (in
our case READ). It is not forbidden by Java.nio to keep explicit
operations registered. But, as a consequence the operations are
always selected (every time select is called) which increases
CPU load and latency. Therefore, in EthDXNet, every explicit
operation is finished by registering an implicit operation.

The set of Java.nio operation interests is extended
by EthDXNet to support flow control and to enable
closing connections asynchronously. Table I shows all in-
terests specified by Java.nio and Table II lists all interests
used in EthDXNet. The interests READ, WRITE and CON-
NECT are directly mapped onto OP_READ, OP_WRITE
and OP_CONNECT. OP_ACCEPT is registered and se-
lected by the Selector and must not be registered explicitly.
READ_FC and WRITE_FC are used to register OP_READ
and OP_WRITE interests for the back-channel used by the
flow control. The interest CLOSE does not have a counterpart
because the method close can be called explicitly on the
socket channel.

B. Interest Queue

None of the interests in Table II are registered directly
to the Selector because only the SelectorThread is allowed
to add and modify SelectionKeys. This is enforced by the
Java.nio implementation which blocks all register calls when
the SelectorThread is waiting in the select method. This
obstructs the typical asynchronous application flow and can
even result in a deadlock if the Selector does not have implicit
operations to select. This problem can be avoided by always
waking-up the SelectorThread before registering the operation
interest and synchronizing the register and select calls. How-
ever, this workaround results in a rather high overhead and
a complicated work flow. Instead, we address this problem
with an Interest Queue (see Figure 4) and register all interests
in one bulk operation executed by the SelectorThread before
calling select. This approach provides several benefits while
solving the above problem: first, the application threads
can return quickly after putting the operation interest into
the queue and even faster (without any locking) when the
interest was already registered (which is likely under high
load). Second, the operation interests can be combined
and put in a semantic order (e.g., CONNECT before WRITE)
before registering (a rather expensive method call). Finally,
the operation interest-set can be easily extended, e.g., by a
CLOSE operation interest to asynchronously shut down socket
channels.

Figure 4 shows the Interest Queue consisting of a byte array
storing the operation interests of all connections (left side in
Figure 4) and an ArrayList of ConnectionObjects containing
connections with new operation interests sorted by time of
occurrence (right side in Figure 4).

The byte array has one entry per node ID allowing access
time in O(1). The node ID range is limited to 216 (allowing

Figure 4. Interest Queue: the application threads add new interests to the
Interest Queue. If interest was 0 before, the ConnectionObject is added to an

ArrayList.

max. 65,536 nodes per application) which results in a fixed size
of 64 KB for the byte array. An array entry is not zero if at
least one operation interest was added for given connection to
the associated node ID. Operation interests are combined with
the bitwise or-operator to avoid overwriting any interest. By
combining operation interests, the ordering of the interests for
a single connection is lost. But, this is not a problem because
a semantic ordering can be applied when processing them.

The ordering within the interests of one connection can be
reconstructed but not the ordering across different connections.
Therefore, whenever an interest is added to a non-zero entry
of the byte array, the corresponding ConnectionObject is ap-
pended to an ArrayList. The order of operation interests is then
ensured by processing the interest entries in the ArrayList in
ascending order. The ArrayList also allows the SelectorThread
to iterate only relevant entries and not all 216.

Processing operation interests: The processing is initiated
either by the Selector implicitly waking up the SelectorThread
if data is available to be read or an application thread explicitly
waking up the SelectorThread if data is available to be sent. As
waking-up the SelectorThread is a rather expensive operation
(a synchronized native method call), it is important to call it
if absolutely necessary, only. Therefore, the SelectorThread is
woken-up after adding the first operation interest to the Interest
Queue across all connections (the ArrayList is empty after
processing the operation interests). If the SelectorThread is
currently blocked in the select call, it returns immediately and
can process the pending operation interests.

Listing 5 shows the basic processing flow of the Selec-
torThread. The first step in every iteration is to register all
operation interests collected in the ArrayList of the Interest
Queue. The SelectorThread gets the destination node ID from
the ConnectionObject and the interests from the byte array.
Operation interests are registered to the Selector in the follow-
ing order:

1) CONNECT: register SelectionKey OP_CONNECT with
given connection attached to an outgoing channel.

2) READ_FC: register SelectionKey OP_READ with given
connection attached to an outgoing channel.

3) READ: register SelectionKey OP_READ with given con-
nection attached to an incoming channel.

1 while (!closed) {
2 processInterests();
3

4 if (Selector.select() > 0) {
5 for (SelectionKey key :

Selector.selectedKeys()) {
6 // Dispatch key
7 if (key.isValid()) {
8 if (key.isAcceptable()) {
9 accept();

10 } else if (key.isConnectable()) {
11 connect();
12 } else if (key.isReadable()) {
13 read();
14 } else if (key.isWritable()) {
15 write();
16 }
17 }
18 }
19 }
20 }

Figure 5. Workflow of SelectorThread

4) WRITE_FC: change SelectionKey of an incoming chan-
nel to OP_WRITE if it is not OP_READ | OP_WRITE.

5) WRITE: change SelectionKey of an outgoing channel to
OP_WRITE if it is not OP_READ | OP_WRITE.

6) CLOSE: keep interest in queue for delay or close con-
nection (see Section V-3).

The order is based on following rules: (1) a connection must
be connected before sending/receiving data, (2) setting the
preset READ is done after connection creation, only, (3) all
READ and WRITE accesses must be finished before shutting
down the connection and (4) the flow control operations have
a higher priority than normal READ and WRITE operations.
Furthermore, re-opening a connection cannot be done before
the connection is closed and closing a connection is only pos-
sible if the connection has been connected before. Therefore
it is not possible to register CONNECT and CLOSE together.

Finally, the processing of registered operation interests
includes reseting the operation interest in the byte array and
removing the ConnectionObject from the ArrayList.

VIII. EVALUATION

We evaluated EthDXNet using up to 65 virtual machines
(64 running the benchmark and one for deployment) connected
with 5 GBit/s Ethernet in Microsoft’s Azure cloud in Germany
Central. The virtual machines are Standard_DS13_v2 which
are memory optimized servers with 8 cores (Intel Xeon E5-
2673), 56 GB RAM and a 10 GBit/s Ethernet connectivity,
which is limited by SLAs to 5 GBit/s. In order to manage the
servers, we created two identical scale-sets (as one scale-set is
limited to 40 VMs) based on a custom Ubuntu 14.04 image
with 4.4.0-59 kernel and Java 8.

We use a set of micro benchmarks for the evaluation send-
ing messages or requests of variable size with a configurable
number of application threads. All throughput measurements
refer to the payload size which is considerably smaller than the
full message size, e.g., a 64-byte payload results in 115 bytes to

TABLE III. ADDITIONAL PARAMETERS

Parameter Value
ORB Size 4 MB
Flow Control Windows Size 2 MB
Flow Control Threshold 0.6
net.core.rmem_max 4 MB
net.core.wmem_max 4 MB

 2 4 8 16 32 64
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
h
ro

u
g
h
p
u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 6. Message Payload Throughput per Node. 1 Application Thread, 2
Message Handler Threads

be sent on IP layer. Additionally, all runs with DXNet’s bench-
mark are full-duplex showing the aggregated performance for
concurrently sending and receiving messages/requests.

A. Message Throughput

First, we measured the asynchronous message throughput
with an increasing number of nodes in an all-to-all test
with message payloads of 64 and 4096 bytes. For instance,
when running the benchmark with 32 nodes each node sends
25,000,000 64-byte messages to all 31 other nodes and there-
fore each node has to send and receive 775,000,000 messages
in total. Additional network parameters can be found in Table
III.

Figure 6 shows the average payload throughput for single
nodes and Figure 7 the aggregated throughput of all nodes.

For 64-byte messages, the payload throughput is between
200 and 260 MB/s for all node numbers, showing a minimal
decrease from 2 to 16 nodes. With 4096-byte messages the
throughput improves with up to 8 nodes peaking at 1370 MB/s
full-duplex bandwidth (5.5 GBit/s uni-directional). With 64
nodes the throughput is still above 5 GBit/s resulting in an
aggregated throughput of 83,376 MB/s. The minor decline in
both experiments can be explained by an uneven deployment
of our network benchmark causing the last nodes starting
and finishing a few seconds later. The end-to-end throughput
between two nodes seems to be bound at around 3.2 GBit/s in
the Microsoft Azure cloud as tests with iperf showed, too.

The benchmarks show that DXNet, as well as EthDXNet
scale very well for asynchronous messages under high
loads.

 2 4 8 16 32 64
0

10000

20000

30000

40000

50000

60000

70000

80000

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 7. Aggregated Message Payload Throughput. 1 Application Thread, 2
Message Handler Threads

B. Request-Response Latency

The next benchmarks are used to evaluate request-response
latency by measuring the Round Trip Time (RTT) which
includes sending a request, receiving the request, sending the
corresponding response and receiving the response. Figure 8
shows the RTTs for an all-to-all scenario with 2 to 64 nodes
and 1, 16 and 100 application threads. Furthermore, all-to-
all tests with ping are included to show network latency
limitations.

The latency of the Azure Ethernet network is relatively
high with a minimum of 352 µs measured with DXNet and
one application thread (Figure 8). A test with up to 4032 ping
processes shows that the average latency of the network is
even higher (> 500 µs). In DXNet, own requests are combined
with responses (and other requests if more than one application
thread is used). This reduces the average latency for requests.
Additionally, the ping baseline shows an increased latency for
more than 32 nodes, by using one scale-set for the first 32
nodes and another one for the last 32 nodes. Different scale-
sets are most likely separated by additional switches which
increases the latency for communication between scale-sets.

EthDXNet is consistently under the ping baseline demon-
strating the low overhead and high scalability of EthDXNet
(and DXNet) when using one application thread. With 16
application threads, the latency is slightly higher and on the
same level as the baseline, but the throughput is more than
10 times higher as well (in comparison to DXNet with one
application thread). Furthermore, both lines have the same
bend from 32 to 64 nodes as the baseline.

With 100 application threads per node (up to 6,400 in total),
the latency increases noticeably, as expected, because the CPU
is highly overprovisioned. In this situation the latency between
writing a message into the ORB and sending it increases
dramatically with more open socket channels. Furthermore,
requests can be aggregated more efficiently in the ORBs with
less open connections masking the overhead with a few nodes.

The latency experiments show that EthDXNet scales
up to 64 nodes without impairing latency. With a very high
number of application threads (relative to the available cores)
the latency increases but is still good.

0

500

1000

1500

2000

 2 4 8 16 32 64

R
T
T
 [

µ
s]

Number of Nodes

1 Thread
16 Threads

100 Threads
Ping Baseline

Figure 8. Average Request-Response Latency. 1 to 100 Application Threads,
2 Message Handler Threads

IX. CONCLUSIONS

Big data applications, as well as large-scale interactive
applications are often implemented in Java and typically
executed on many nodes in a cloud data center. Efficient
network communication is very important for these application
domains.

In this paper, we described our practical experiences in
designing a transport implementation, EthDXNet, based on
Java.nio, integrated into DXNet. EthDXNet provides a double-
channel based automatic connection approach using back-
channels for sending flow control data and an efficient op-
eration interest handling which is important to achieve low-
latency message handling with Java.nio’s Selector.

Evaluation with micro benchmarks in the Microsoft Azure
cloud shows the scalability of EthDXNet (together with
DXNet) achieving an aggregated throughput of more than 83
GByte/s with 64 nodes connected with 5 GBit/s Ethernet (10
GBit/s Ethernet limited by SLAs). Request-response latency is
almost constant for an increasing number of nodes as long as
the CPU is not overloaded. Future work includes experiments
on larger scales with application traces.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, pp. 1804–1815, Aug. 2015.

[2] S. Ekanayake, S. Kamburugamuve, and G. C. Fox, “Spidal java: High
performance data analytics with java and mpi on large multicore hpc
clusters,” in Proceedings of the 24th High Performance Computing
Symposium, 2016, pp. 3:1–3:8.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[4] S. Microsystems, “Java remote method invocation specification,”
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html,
accessed: 2018-03-14.

[5] Oracle, “Package java.net,” https://docs.oracle.com/javase/8/docs/api/
java/net/package-summary.html, accessed: 2018-03-14.

[6] S. Mintchev, “Writing programs in javampi,” School of Computer
Science, University of Westminster, Tech. Rep. MAN-CSPE-02, Oct.
1997.

[7] K. Beineke, S. Nothaas, and M. Schoettner, “Efficient messag-
ing for java applications running in data centers,” Feb. 2018,
preprint on webpage at https://cs.hhu.de/en/research-groups/operating-
systems/publications.html.

[8] S. P. Ahuja and R. Quintao, “Performance evaluation of java rmi:
A distributed object architecture for internet based applications,” in
Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, ser.
MASCOTS ’00, 2000, pp. 565–569.

[9] M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and rmi for java,” Concurrency: Practice and Experience, vol. 12,
pp. 495–518, 2000.

[10] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg, 2006, pp.
275–284.

[11] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI ’13, 2013, pp. 43–48.

[12] Oracle, “Java i/o, nio, and nio.2,”
https://docs.oracle.com/javase/8/docs/technotes/guides/io/index.html,
accessed: 2018-03-14.

[13] W. Pugh and J. Spacco, MPJava: High-Performance Message Passing
in Java Using Java.nio. Springer Berlin Heidelberg, 2004, vol. 16.

[14] R. Hitchens, Java NIO. Sebastopol, CA, USA: O’Reilly Media, 2009.
[15] G. L. Taboada, J. Touriño, and R. Doallo, “Java fast sockets: Enabling

high-speed java communications on high performance clusters,” Com-
put. Commun., vol. 31, pp. 4049–4059, Nov. 2008.

[16] K. Beineke, S. Nothaas, and M. Schoettner, “Dxnet project on github,”
https://github.com/hhu-bsinfo/dxnet, accessed: 2018-03-14.

Chapter 4.

High Throughput Log-based Replication
for Many Small In-memory Object

This chapter summarizes the contributions and includes a copy of our paper [15]. A short
version of the contributions presented in [15] were transferred to a poster with a peer-reviewed
two-page abstract [16].

Paper: Kevin Beineke, Stefan Nothaas and Michael Schöttner. "High Throughput Log-Based
Replication for Many Small In-Memory Objects". In: IEEE 22nd International Conference on

Parallel and Distributed Systems. Dec. 2016, pp. 535–544

Poster: Kevin Beineke, Stefan Nothaas and Michael Schöttner. "High Throughput Log-Based
Replication for Many Small In-Memory Objects". In 2016 IEEE International Conference on

Cluster Computing (CLUSTER). Sept. 2016, pp. 160-161

4.1. Paper Summary

This paper describes and evaluates the logging architecture of DXRAM whose basic concepts
were firstly introduced in [10] (can be found in the Appendix 8.2).

DXRAM stores all data objects in RAM providing low-latency access to billions of small data
objects. As RAM is typically more expensive than disk space, replicating to other server’s
main memory to enable fault-tolerance comes at a high price. Additionally, if many servers fail
simultaneously, data might be lost as no persistent copy exists. Therefore, we transparently
store all replicas in logs on remote disks, preferably SSDs. In this publication, we propose a
two-level logging approach which combines high throughput with fast persistence while being
memory efficient. Furthermore, a novel backup-side version management and the concurrent
reorganization is detailed in this publication.

The evaluation shows that DXRAM outperforms other state-of-the-art in-memory key-value
stores like RAMCloud, Redis and Aerospike regarding the write throughput and memory
overhead of the backup components and also regarding scalability of the number of servers.

56

Chapter 4. High Throughput Log-based Replication for Many Small In-memory Object

4.2. Importance and Impact on Thesis

Replication is mandatory to enable fault-tolerance which is the main topic of this thesis. In
this paper, we describe the replication mechanism of DXRAM which logs all replicas to logs
on remote servers. All proposed concepts are optimized for DXRAM’s primary application
domains, i.e., the logging and version management was designed to handle billions of small data
objects and access patterns like Zipf and random distributions. Furthermore, the concepts were
developed to be least interfering in fault-free execution but also to enable a very fast recovery
(see Chapter 5). The replica placement is introduced in this publication and further discussed in
Chapter 5 and 6. The log selection strategy for the reorganization is also continued in Chapter
6.

4.3. Personal Contribution

The basic logging architecture was conceived by Dr. Florian Klein, Prof. Dr. Michael Schöttner
and Kevin Beineke, the author of this thesis, in discussions prior to the doctoral studies.
This includes the basic concept of the two-level logging and first thoughts regarding the
reorganization and recovery which were published in [10]. While the idea of the two-level logging
was transferred to this paper, major alterations to the backup distribution, reorganization
and recovery were applied by Kevin Beineke. Additionally, the novel backup-side version
management was introduced by Kevin Beineke in order to efficiently identify outdated log
entries during reorganization and recovery.

The implementation was based on a master thesis [51] by Yunus Kaplan. The thesis aimed at
implementing the first, basic concept described above. Because of the fundamentally refined
architecture and optimization reasons, most of the implementation was replaced by Kevin
Beineke. All depicted concepts were implemented in DXRAM and evaluated by the author of
this thesis.

Kevin Beineke structured and wrote most of the paper, including all figures. The local data
management of DXRAM (section II.B.) was outlined by Stefan Nothaas, who also reviewed
and proof-read the paper and participated in discussions. Prof. Dr. Michael Schöttner
reviewed this paper as well, advanced the structure and verbalization, and helped improving
comprehensibility.

57

High Throughput Log-based Replication for Many
Small In-memory Objects

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—Online graph analytics and large-scale interactive
applications such as social media networks require low-latency
data access to billions of small data objects. These applications
have mostly irregular access patterns making caching insuffi-
cient. Hence, more and more distributed in-memory systems are
proposed keeping all data always in memory. These in-memory
systems are typically not optimized for the sheer amount of
small data objects, which demands new concepts regarding the
local and global data management and also the fault-tolerance
mechanisms required to mask node failures and power outages.
In this paper we propose a novel two-level logging architecture
with backup-side version control enabling parallel recovery of in-
memory objects after node failures. The presented fault-tolerance
approach provides high throughput and minimal memory over-
head when working with many small objects. We also present a
highly concurrent log cleaning approach to keep logs compact. All
proposed concepts have been implemented within the DXRAM
system and have been evaluated using two benchmarks: The
Yahoo! Cloud Serving Benchmark and RAMCloud’s Log Cleaner
benchmark. The experiments show that our proposed approach
has less memory overhead and outperforms state-of-the-art in-
memory systems for the target application domains, including
RAMCloud, Redis, and Aerospike.

Keywords—Cloud computing; Data centers; Reliability; Remote
replication; Main memory; Secondary storage; Flash memory;
Buffering; B-trees; Graph-based database models

Large-scale interactive applications and online graph pro-
cessing often work with huge amounts of very small data
objects. Facebook, for example, stores billions of small data
objects with most of them smaller than 64 byte [1], building an
enormous graph. Other graph examples are brain simulations
with billions of neurons and thousands of connections each [2]
or search engines for billions of indexed web pages [3].

These applications all have a need for low-latency data-
access to process online analytics or interactive queries.
Storage systems such as traditional databases or in-memory
storages often fail to handle small data objects efficiently
and introduce a considerable large meta-data overhead on
a per object basis. Therefore, it is often recommended to
aggregate graph vertices and edges which impacts latency
and is burdening the developer. By holding all single objects
always in RAM, the latency is reduced dramatically, but storing
the objects as compact as possible becomes more important
because RAM is more expensive than flash or disk storage.

In-memory caches like Memcached [4] or Gemfire [5]
provide low latency but not fault-tolerance and thus the pro-
grammer is burdened to keep caches and back-end storage syn-

chronized which is challenging and error prone. Furthermore,
because of the often irregular data access patterns to reduce
costly cache misses, the majority of objects have to be cached.
Facebook, for instance, has used up to 1,000 memcached
servers to store around 75% of all data in RAM [6]. Still, for
every write access the back-end storage needs to be updated
impairing latency.

The excessive use of volatile memory, either as a cache or
primary storage, requires sophisticated fault-tolerance mecha-
nisms in order to avoid data loss in case of power outages
and node failures. It is important to minimize the impact
on throughput during fault-free execution while allowing to
quickly recover failed nodes. Distributed in-memory storage
systems like Redis [7], Aerospike [8], RAMCloud [9] and
DXRAM [10] address these problems by keeping all data
always in memory combined with a transparent logging mech-
anisms on secondary storage to prevent data loss in case
of errors. The architectures of state-of-the-art distributed in-
memory systems are described in section I.

DXRAM is a distributed in-memory storage designed to
efficiently support many small data objects. The latter covers
a minimal meta-data overhead, scalability regarding number
of storage nodes and high throughput for client requests.
The system is designed to run within a single data center
(currently over Gigabit Ethernet, Infiniband planned). The
memory management and the global meta-data management
are described briefly in this paper (for more information refer
to [10]). However, the focus of this publication is on the
logging mechanisms.

The contributions of this paper are:

• a novel two-stage logging approach enabling fast
recovery and providing high throughput while being
memory efficient

• a backup-side version control which was designed
with a very low memory footprint and allows a high
object creation and update throughput

• a highly concurrent log cleaning concept also designed
for handling many small data objects

• a backup performance evaluation and comparison with
state-of-the-art distributed in-memory systems

The evaluation with two benchmarks and comparisons with
state-of-the-art in-memory systems on a cluster show that the
proposed logging concepts are fast and efficient and allow a

high throughput. The results show that using DXRAM with
logging and reorganization enabled clearly outperforms similar
systems for a broad application domain.

The structure of this paper is as follows. Related work
is discussed in section I, followed by a brief overview of
relevant background information about DXRAM in section II.
In section III and IV the backup-side logging architecture is
presented first, followed by the log reorganization approach
described in section V. Conclusions and an outlook on future
work are found in the last section VII.

I. RELATED WORK

Numerous distributed in-memory systems have been pro-
posed to provide low-latency data access for online queries
and analytics for various graph applications. These systems
often need to aggregate many nodes to provide enough RAM
capacity for the exploding data volumes which in turn results
in a high probability of node failures. The latter includes
soft- and hardware failures as well as power outages which
need to be addressed by replication mechanisms and logging
concepts storing data on secondary storage. Because of space
constraints, we can only discuss the most relevant work.

RAMCloud is an in-memory system, sharing several ob-
jectives with DXRAM while having a different architecture,
providing a table-based in-memory storage to keep all data
always in memory. However, the table-based data model of
RAMCloud is designed for larger objects and suffers from
a comparable large overhead for small data objects [10].
It uses a distributed hash table, maintained by a central
coordinator, to map 64-bit global IDs to nodes which can
also be cached by clients. DXRAM on the other hand uses
a superpeer overlay with a more space-efficient range-based
meta-data management. For persistence and fault tolerance it
implements a log-based replication of data on remote nodes’
disks [9]. In contrast to other in-memory systems, RAMCloud
organizes in-memory data also as a log which is scattered for
replication purposes across many nodes’ disks in a master
slave coupling [11]. Scattering the state of one node’s log
on many backup nodes allows a fast recovery of 32 GB of
data and more. Obviously, logging throughput depends on the
I/O bandwidth of disks as well as on the available network
bandwidth and CPU resources for data processing. RAMCloud
uses a centralized log-reorganization approach executed on
the in-memory log of the server which resends re-organized
segments (8 MB size) of the log over the network to backup
nodes. As a result, remaining valid objects will be re-replicated
over the network after every reorganization iteration to clean-
up the persistent logs on remote nodes. This approach relieves
remote disks but at the same time burdens the master and
the network. DXRAM uses an orthogonal approach by doing
the reorganization of logs on backup nodes avoiding network
traffic for reorganization. Furthermore, DXRAM does not
organize the in-memory storage as a log but uses updates in-
place. Finally, RAMCloud is written in C++ and provides
client bindings for C, C++, Java and Python [12] whereas
DXRAM is written in Java.

Aerospike is a distributed database platform providing
consistency, reliability, self-management and high performance
clustering [8]. Aerospike uses Paxos consensus for node join-

ing and failing and balances the load with migrations. In com-
parison, DXRAM also offers a migration mechanism for load
balancing. The object lookup is provided by a distributed hash
table in Aerospike. Like DXRAM, Aerospike is optimized
for TCP/IP. Additionally, Aerospike enables different storage
modes for every namespace. For instance, all data can be stored
on SSD with indexes in RAM or all data can be stored in
RAM and optionally on SSD with a configurable replication
factor. As Aerospike is a commercial product, not many
implementation details are published except that it internally
writes all data into logs stored in larger bins optimized for
flash memory. The basic server code of Aerospike is written
in C and available clients include bindings for C, C#, Java,
Go, Python, Perl and many more.

Redis is another distributed in-memory system which can
be used as an in-memory database or as a cache [7]. Redis
provides a master-slave asynchronous replication and different
on-disk persistence modes. To replicate in-memory objects,
exact copies of masters, called slaves, are filled with all
objects asynchronously. To overcome power outages and node
failures, snapshotting and append-only logging with periodical
rewriting can be used. However, to replicate on disk the node
must also be replicated in RAM which increases the total
amount of RAM needed drastically. This is an expensive
approach and very different from the one of DXRAM where
remote replicas are stored on SSD only. Obviously, Redis
has no problems with I/O bandwidth as it stores all data in
RAM on slaves and can postpone flushing on disk as needed.
Furthermore, reorganization is also quite radical compared to
DXRAM as Redis just reads in a full log to compress it which
is of course fast but introduces again a lot of RAM overhead.
Redis is written in C and offers clients for many programming
languages like C, C++, C#, Java and Go.

Apache Spark is a cluster computing framework which
supports applications with working sets [13]. Data is held in
a resilient distributed dataset (RDD), "a read-only collection
of objects partitioned across a set of machines that can be
rebuilt if a partition is lost". Each RDD is a Scala object
and can be created in four ways: from a file, by dividing an
array, by transformation of an existing RDD and by changing
the persistence of an existing RDD. By default a RDD is
constructed every time it is accessed. If a RDD is used multiple
times, it is possible to cache a RDD in memory. If there is
not enough memory to hold a RDD partition, the system can
swap it to HDFS or delete it and recompute it on demand.
Typically, RDDs are large objects, containing large data sets.
For example the graph extension GraphX holds a complete
graph in a RDD. DXRAM, in contrast to Spark, is not a cache
but a storage service specifically designed for many small data
objects.

Log-structured File Systems are an important inspiration
for the log-based replication of RAMCloud and DXRAM.
A log is the preferred data structure for replication on disk
as a log has a superior write throughput due to appending
objects, only. But, a log requires a periodical reorganization
to discard outdated or deleted objects in order to free space
for further write accesses. In [14] Rosenblum and Ousterhout
describe a file system which is based on a log. Furthermore,
a cleaning policy is introduced which divides the log into
segments and selects the segment with best cost-benefit ratio

for reorganization. DXRAM divides a log into segments as
well. However, due to memory constrains the cost-benefit
formula is limited to the age of a segment (more in section
V).

Journaling is used in several file systems to reconstruct
corruptions after a disk or system failure. A journal is a
log that is filled with meta-data (and sometimes data) before
committing to main file system. The advantage is an increased
performance while writing to the log as appending to a log is
faster than updating in-place but requires a second write access.
The to be described two-level logging of DXRAM also uses
an additional log to efficiently utilize an SSD. In contrast to
journaling, we use this log only for small write accesses from
many remote nodes to allow bulk writes without impeding
persistence.

II. DXRAM ARCHITECTURE OVERVIEW

DXRAM is a distributed in-memory system written in
Java with a layered architecture which is open for additional
services and data models beyond the key-value foundation of
the DXRAM Core [10]. In DXRAM an in-memory data object
is called a chunk. Objects that are stored in a log, on the other
hand, are referred to as log entry. The term object is used
further on when the location (log or memory) is unspecified
or irrelevant.

A. Global Meta-Data Management

In DXRAM, every node is either a peer or a superpeer.
Peers store chunks, may run computations and exchange data
directly with other peers, and also serve client requests when
DXRAM is used as a back-end storage. Superpeers store
global meta-data like the locations of chunks, implement a
monitoring facility, detect failures and coordinate the recovery
of failed nodes, and also provide a naming service. The
superpeers are arranged in a Chord-like overlay [15] adapted
to the conditions in a data center (e.g. every superpeer has
a global view as maintaining it is unpretentious with far less
churn [16]). Moreover, every peer is assigned to one superpeer
which is responsible for meta-data management and recovery
coordination of its associated peers.

Every chunk in DXRAM has a 64-bit globally unique
chunk ID (CID). This ID consists of two separate parts: A 16-
bit node ID of the chunk creator and a 48-bit locally unique
sequential number. Thereby, 65,536 nodes with around 280
trillion chunks per node are addressable. With the creator’s
node ID being part of a CID, every chunk’s initial location
is known a-priori. But, the location of a chunk may change
over time in case of load balancing decisions or when a
node fails permanently. Superpeers use a modified B-tree
[17] allowing a space efficient and fast node lookup while
supporting chunk migrations. Space efficiency is achieved by
a per-node sequential ID generation and ID re-usage in case
of chunk removals allowing to manage chunk locations using
CID ranges with one entry for a set of chunks. In turn, a chunk
location lookup will reply with a range of CIDs, not only a
single location. This helps reducing the number of location
lookup requests. For caching of lookup locations on peers, a
similar tree is used further reducing network load for lookups.
More details about this data structure can bee found in [10].

B. Memory Management

The sequential order of CIDs (as described in section
II-A) allows us to use compact paging-like address translation
tables on peers with a constant lookup complexity. Although,
this table structure has similarities with well known operating
systems’ paging tables we apply it in a different manner. On
each DXRAM peer we use the lower part (LID) of the CID as
a key to lookup the virtual memory address of the stored chunk
data. The LID is split into multiple parts (e.g. 4 parts of 12 bit
each) representing the distinct levels of the paging hierarchy.
This allows us to allocate and free page tables on demand
reducing the overall memory consumption of the local meta-
data management. Complemented with an additional level
indexed by node ID storing of migrated chunks is possible
as well. DXRAM uses a tailored memory allocator with very
low footprint working on a large pre-reserved memory block
[10]. For performance reasons, all memory operations are
implemented using the Java Unsafe class.

III. LOGGING ARCHITECTURE

In this section we describe the logging architecture of
DXRAM. Regarding the logging backup system of DXRAM
we distinguish two different roles: Masters are DXRAM peers,
store chunks (like described in section II) and replicate them
on backup peers. A backup peer might also be a master and
vice versa.

A. Backup Data Structure

Replicating multi-billion small data objects in RAM is
too expensive and does not allow to mask power outages.
Therefore the backup data structures of DXRAM are designed
to maximize throughput of SSDs devices:

1) SSDs write at least one flash page (default: 4 KB), pages
are clustered to be accessed in parallel.

2) SSDs cannot overwrite a single flash page, but delete a
block (64 to 128 pages) and write on another.

3) It is faster to write sequentially than randomly on SSDs
because of the clustering.

With those characteristics in mind, it is apparent that
updating or deleting objects of a few dozen bytes in place
would slow down SSD throughput dramatically. Furthermore,
storing SSD object locations in RAM would result in an
additional meta-data overhead of at least 16 Byte (8-byte
address on SSD and 8-byte CID) per object or 48 Byte if
every object is replicated three times. For example, for a
billion of 32-byte objects this would result in around 48 GB
of additional RAM consumption or around 150% respectively
for keeping track of object locations on SSD. Storing these
location mappings on SSD, instead, either partially or fully
would heavily burden SSD throughput due to a write access
requiring an additional read access.

Therefore, we decided to use a logging approach for storing
replicas on persistent memory. This solution does not require
knowledge about the location of an object and ensures maximal
write throughput as log entries are always appended resulting
in sequential writing during normal operation. The log is only
read during reorganization and recovery also benefiting from
the sequential arrangement.

Figure 1: Log Entry Header. The size of the header is
dynamic, as the CID, length and version are only as large
as necessary. Type: Depending on the location and whether
the chunk was migrated or not. The purpose of the epoch field
is described in section IV.

B. Self-descriptive Log Entries

In DXRAM, all log entries are self-descriptive. This accel-
erates the recovery process as all necessary meta-data is always
stored with the data itself. Furthermore, we can avoid an
additional costly data structure for meta-data lookup. To reduce
memory consumption on SSD the log entry headers have
dynamically growing fields (Figure 1). This is very important
for small data objects as header size can be reduced by up to
70 %. This also increases the object processing performance
by reducing the data volume for I/O operations. For fault-
tolerance reasons the log entry header also include a CRC32
checksum that is checked during recovery process to guarantee
data integrity.

C. Backup Zones

DXRAM splits every master’s data into backup zones of a
configurable size (e.g. 256 MB, good value for fast recovery)
and scatters the set of all backup zones to many backup
peers in order to allow fast parallel recovery. When a master
fails the associated superpeer controls the recovery process
by interacting with backup peers to recover backup zones in
parallel either in their own memory if enough space is available
or on a fresh master. Consistency problems among the different
backup zone replicas are avoided by a sequential backup order.
The primary backup peer receives replica updates of a backup
zone always first, then the secondary, and so on; and the
primary is also prompted first to recover the backup zone if
the corresponding master failed (Figure 2).

D. Two-Level Log Organization

In contrast to RAMCloud, we store each backup zone in
one separate log on every assigned backup peer. Those logs are
called secondary logs and are the final destination for every
replica and the only data structure used to recover data from.
By sorting backups per node we can speed-up the recovery
process by avoiding to analyze a single log with billions of
entries mixed from several masters.

The two-level log organization also ensures that infrequent
written secondary logs do not thwart highly burdened sec-
ondary logs by writing small data to SSD and thus utilizing
the SSD inefficiently. At the same time, incoming objects are
quickly stored on SSD to sustain power outages.

First, every object received for backup is written to a
ring buffer, called primary buffer, to bundle small request.
This buffer is divided into buckets which allows concurrently
writing into the buffer while it is partly flushed to SSD. During
the flushing process, which is triggered periodically or if a
threshold is reached, the bucket is sorted by backup zones

Figure 2: Backup Zones The master’s data (node 1) is
scattered to three backup peers (nodes 2, 3 and 4). After failure
of node 1, the backup peers recover all backup zones respecting
the backup order (e.g. node 3 recovers the backup zone 1 from
node 1 as it is the primary backup peer for backup zone 1).

to form larger piles of data in order to allow bulk writes on
SSD. If one of those piles is larger than a predefined threshold
(e.g. 32 flash pages of the SSD), it is written directly to the
corresponding secondary log.

In addition to the secondary logs, there is one primary log
for temporarily storing smaller piles of all backup zones to
guarantee fast persistence without decreasing SSD throughput.
The smaller piles are also buffered in RAM separately, in
so called secondary log buffers, for every secondary log and
will eventually be written to the corresponding secondary log
when aggregated to a larger pile (Figure 3). For example, if
the primary buffer contains 256 KB of data, 128 KB from
backup zone 1 and 128 KB evenly split over 64 additional
backup zones (2 KB for each backup zone), then 128 KB will
be written directly to secondary log 1 and the other 128 KB
to the primary log. Additionally, the secondary log buffers of
the 64 other backup zones are filled with 2 KB each. If, by
appending the data, the threshold of one secondary log buffer
is reached, it will be flushed to the corresponding secondary
log. Obviously, with this approach some objects will be written
twice to SSD but this is outweighed by utilizing the SSD more
efficiently. Waiting individually for every secondary log until
the threshold is reached without writing to primary log, on the
other hand, is no option as the data is prone to get lost in case
of a power outage.

The proposed logging architecture can also efficiently
handle unbalanced access patterns. In social media networks,
for example, a zipfian access pattern is expected. This means
that the second most popular object is accessed half as often as
the most popular one resulting in a pattern where many objects
are rather seldom accessed but some very often. Transferred
to the backup zones, this results in some backup zones being
flooded with updates and lots of backup zones getting only a
few updates. With an unbalanced approach, either many small
write accesses would slow down the SSD (if every object is
directly written to SSD) or buffering would make infrequently
written logs vulnerable for data loss (if objects are buffered
until a threshold is breached). The two-level log organization
handles both situations effectively.

After a recovery process is initiated on a backup peer the
primary buffer and the specific secondary log buffer must

Figure 3: Logging architecture. Every object is buffered first.
Depending on the amount of data per backup zone, the objects
are either directly written to the specific secondary log or to
primary log and to secondary log once there is enough data.

be flushed in order to have all relevant log entries in the
corresponding secondary log. As the primary buffer is flushed
frequently and the secondary log buffers have a rather small
limited size, e.g. 128 KB, this is a fast operation. The primary
log is not involved in a normal recovery process as after
flushing of the secondary log buffer all log entries written to
primary log are also stored in the specific secondary log. If
the primary log is full, a flushing of all secondary log buffers
will be sufficient to clear the primary log.

IV. BACKUP-SIDE VERSION CONTROL

Masters do not store version information in RAM, as there
is no need when using updates in-place, but only backup peers
on SSD. All the logic for version control and reorganization
is outsourced to backup peers which only receive raw updates,
deletes and creates including CID and backup zone ID. The
backup-side version control, described in this section, is the
foundation for recovery and log reorganization.

A. Order-Preserving Network Message Processing

In order to enable a backup-side version control, one must
guarantee that the ordering of backup requests from one master
does not change until the data is written to SSD by the backup
peer. This does not require a global sequence but only a FIFO
guarantee between the application layers of master and backup
peer. On the network layer we are relying on the ordering
of TCP and the message processing steps implemented in
DXRAM are connected by synchronized queues allowing a
highly parallel execution without sacrificing ordering. Message
processing throughput is maximized by enforcing ordering
only for exclusive messages whereas normal messages are
handled concurrently by a thread pool. Every message type
can be declared exclusive by the programmer if sequential
processing is needed. Backup requests are exclusive messages
thus subject to enforced ordering until saved in the primary
buffer. The writing to SSD is then executed asynchronously.

B. Version Manager

Every log entry needs version information allowing to
detect outdated versions. This is important for the recovery
and also for the reorganization of logs which will be discussed
in section V. A naïve solution would be to manage every

object’s version in RAM on backup peers. Unfortunately, this
approach consumes too much memory, e.g. at least 12 bytes
(8-byte CID and 4-byte version) for every object stored in
logs easily summing up to many GB in RAM which is not
affordable. Storing version information on SSD, only, is also
not practical because of performance reasons as this would
require reads for each log write. Caching recent versions in
memory could possibly help for some access patterns but for
the targeted application domain would either cause many read
accesses for cache misses or occupy a lot of memory. Instead,
we propose a version manager which runs on every backup
peer and utilizes one version buffer per secondary log. The
version buffer holds recent versions for this secondary log in
RAM until it is flushed to SSD. In contrary to a simple cache
solution, DXRAM’s version manager avoids loading missing
entries from secondary storage by distinguishing time spans,
called epochs, which serve as an extension of a plain version
number.

At the beginning of an epoch, the version buffer is empty. If
a backup arrives within this epoch, its CID will be added to the
corresponding version buffer with version number 0. Another
backup for the same object within this epoch will increment
the version number to 1, the next to 2 and so on. When the
version buffer is flushed to SSD, all version information is
complemented by the current epoch, together creating a unique
version. In the next epoch the version buffer is empty again.

Two unique versions are in chronicle relation if:

[Version x, Epoch i] < [Version y, Epoch j],
where (i < j) or (i = j and x < y)

With the proposed approach, we can avoid reading version
information from SSD when appending a new log entry. Still,
unambiguous version are assigned.

As described before, the time between two flushes is called
an epoch. An epoch ends when the version buffer reaches a
predefined threshold allowing to limit buffer size, e.g. 1 MB
per log. Different logs can be in different epochs which makes
it unlikely that all version buffers reach the threshold at the
same time. Nevertheless, the peak memory usage for such a
situation is still acceptable, e.g. 128 MB for 32 GB payload
stored in 128 logs. In comparison, storing all versions always
in RAM for the given scenario and 32-byte objects would
permanently consume around 10 GB memory on each backup
peer.

For the version buffer we use a hash table with linear
probing providing fast access while having control over mem-
ory consumption. During flushing to SSD, a version buffer is
compacted resulting in a sequence of (CID, epoch, version)-
tuples with no ordering. This sequence is appended to a file
on SSD, creating a log of unique versions for every single
secondary log (Figure 4). We call it a version log. Over
time, a version log contains several invalid entries which are
tuples with outdated versions. To prevent a version log from
continuously growing, it is compacted during reorganization
(discussed in section V). The resulting version log includes
every CID at most once, discarding all invalid entries.

Overflow: In the presented approach, we try to minimize
the bit lengths for versions and epochs to reduce memory
usage for the version buffer in RAM and the version log on

Figure 4: Complete secondary log. A secondary log with
version log for 256 MB backup zones and 64-byte objects.

SSD. Thus, we can distinguish 216 epochs and 224 versions
per object which requires overflow handling. For versions, an
overflow can occur only for uncommon patterns like constantly
counting up a shared variable but this can be easily handled by
subsequently initiating flushing the version buffer. An epoch
overflow on the other hand is more difficult to address.

We call a complete epoch iteration (0, 1, 2, ..., 215-1,
215) an eon. At any time, two eons are distinguishable by
using the highest bit of the epoch number. The duration of an
eon depends on the update rate of a secondary log, e.g. for
10,000 updates/s the eon switches every 3 days. In general,
an epoch overflow poses no problem as for validity check
an (epoch, version)-tuple of a log entry is only checked for
equality against the current tuple in version manager.

There is however another rare case that requires an addi-
tional overflow handling: If an object is written very seldom, it
cannot be ruled out that there are two log entries with the same
version and epoch but separated by an entire eon. Thereby, it is
impossible to identify the invalid log entry of the two without
considering the eon. By comparing the eons of two entries
with the current eon of the secondary log the log entries are
stored in one can detect the more recent entry. But, this does
not work if two entries are separated by more than one eon
(version and epoch still the same). Thus, during one eon we
transfer every valid log entry that was created in the former
eon to the new eon by applying the following validity check:

Version currentVersion
= VersionManager.getVersion(logEntry.CID);

if(logEntry.epoch != currentVersion.epoch ||
logEntry.version != currentVersion.version){
// Either version, epoch or eon is unequal
// -> there is a more recent version in log
remove(logEntry);

} else {
if(currentVersion.eon != log.currentEon){

// Checked log entry is the most recent,
// but was created in last eon
// -> transfer to current eon
logEntry.eon = log.currentEon;
// -> update VersionManager as well
currentVersion.eon = log.currentEon;

}
}

This fast validity check is executed asynchronously by a
dedicated thread during reorganization of a secondary log. In
order to guarantee that every valid log entry is transferred to
the new eon, it has to be ensured that each object of a log
is processed during an eon. This is done by selecting some
logs randomly for reorganization in the first half of an eon
and selective in the second half. More details on selection
strategies for reorganization can be found in section V.

V. REORGANIZATION

Secondary logs grow over time and require a cleaning
policy, also called reorganization, which permanently frees
space by removing outdated and deleted (invalid) log entries.
The version manager, described in section IV, comes in hand
to distinguish invalid from valid log entries required for log
cleaning. The complete reorganization process, implemented
in DXRAM, is presented in this section.

The reorganization, same as the two-level logging and
version control, is designed with the objectives of minimizing
RAM consumption without sacrificing overall throughput (s.
section VI). In several cases, this is achieved by using the
SSD not only for storing the data itself but also for meta-data
(section IV) and as a temporary storage (section III). As SSD
storage is cheaper than RAM, we think this is reasonable.

To provide more time for the reorganization and also to
increase its efficiency, every secondary log is by default twice
as large as its backup zone. Furthermore, to allow logging
and recovery to be executed concurrently and to reduce the
maximal amount of used memory during reorganization, every
log is divided into segments of a size of 8 MB (configurable).
Therefore, during reorganization of a segment, every other
segment can be updated and vice versa. Overall, three threads
are involved in logging and reorganization. One network thread
at a time writing the received objects to the primary buffer, one
writer thread flushing objects from primary buffer to SSD and
one reorganization thread. We use a mutex-free implementation
with biased prioritization for optimal throughput.

The reorganization process of DXRAM covers four peri-
odically executed steps:

A. Secondary log selection
B. Loading associated version log
C. Segment selection and loading
D. Segment cleaning and flushing back

Steps C and D are repeated several times, e.g. 20 times, to
alleviate the overhead of step B.

A. Log Selection

A secondary log is chosen based on its utilization (occupied
space to all space ratio). The utilization is a useful metric
because all backup zones contain the same amount of payload
(except the last one which might not be filled completely).
Therefore, the log with the highest utilization has the most
invalid data which are outdated or deleted objects. These
objects can be discarded to free memory for other backups.
The discarding process is called reorganization or cleanup. For
the epoch overflow, discussed in section IV, we also enforce
each third log selection randomly. Towards the end of an eon
all unselected logs, if there are any, are chosen to guarantee
the processing of all logs during one eon.

B. Gathering All Versions

A backup peer stores one secondary and one associated
version log for each backup zone. The latter contains the
current versions of all objects of its corresponding secondary
log (data only in secondary log). If a reorganization is to be
started for a selected secondary log, its associated version

log is read into a hash table (similar to the version buffer).
As we reorganize only one secondary log at a time, the
memory consumption is limited, e.g. around 40 MB for 64-
byte objects and backup zones with 256 MB payload. After
the reorganization has finished, we flush the compacted version
log back to SSD. This cleaning ensures that version logs do
not contiguously grow and recovery can be performed faster.
After flushing, we increment the epoch number.

Access to the version buffer is blocked only for a short
period of time, while the epoch number is incremented.
During reading all entries into memory and writing back the
compacted logs, the version buffer can be filled and read in
parallel. In the reorganization process every log entry must be
compared to the current version stored in the hash table. In
addition, the version buffer is used to check if a log entry has
been created in the current epoch.

C. Segment Selection

A secondary log is never reorganized as a whole but
incrementally by reorganizing single segments (default: 8 MB).
Similar to the secondary log selection, the segment selection
tries to find the segment with the most outdated data. The seg-
ment selection is on a best-effort basis because determining the
segment with the best cost-benefit ratio [14] like in RAMCloud
would require to store a timestamp for each object stored in a
segment to calculate the segments average age. Furthermore,
during updating or removing of an object the previous version’s
location would have to be known to invalidate the log entry
and to update the segment’s cost-benefit ratio. This additional
meta-data would have to be stored in RAM which is again too
expensive for many small data objects. Instead, we calculate
a segment’s age based on its creation and last reorganization
and select the oldest segment for cleaning. We think this is a
good metric as there is a higher probability of finding outdated
objects in segments that have not been reorganized for a longer
period of time. In addition, we also choose segments randomly
from time to time and all unselected towards the end of an eon
to handle epoch overflows.

D. Segment Cleaning

This phase removes outdated data from a segment using
two buffers called old and new buffer (each 8 MB). A selected
segment is fully read into the old buffer, all entries are analyzed
and valid entries are copied to the new buffer. To check the
validity of a log entry, the previously loaded version log and
the version buffer (for log entries created within the current
epoch) are used. At the end of the segment cleaning we flush
the new buffer (containing valid log entries) to SSD whereas
the old buffer (containing outdated versions) is freed. We
always clean several segments, e.g. 20, of a selected secondary
log to not just read the version log for a single segment
reorganization.

Deletion of an object is implemented by assigning version
-1 in the corresponding version buffer for the CID to be
removed. Thus, we do not need to write a placeholder (e.g.
a log entry without payload and an invalid version number)
into the secondary log like tombstones in RAMCloud but only
update the version number in the corresponding version log.
The marker for an invalid version within the version log is

only relevant for the current log entry. All older log entries are
implicitly invalidated by the diverging unique version number.
Thus, reusing CIDs after removal is safe as any formerly most
current log entry will have a different unique version and is
therefore always invalid, if it has not already been removed
from the secondary log.

VI. EVALUATION

In this section we are evaluating the performance of the
proposed logging architecture using two benchmarks: YCSB to
compare the proposed concepts with Aerospike and Redis and
the Log-Cleaner benchmark for comparing with RAMCloud.
All benchmark runs were executed on a cluster consisting of
16 identical nodes connected with Gigabit Ethernet. All servers
have 16 GB RAM, an Intel Xeon E3-1220 CPU and an Intel
SSDSC2CW24 SSD connected via SATA-3 port (350 MB/s
write, 500 MB/s read throughput). Debian Jessie with kernel
4.3.0-0 was used as operating system and Java 8 (Oracle) as
runtime environment.

Data integrity of DXRAM’s logging module was verified
several times during the evaluation by recovering all data from
SSD and ensuring the number of recovered objects and the
object sizes are valid. Furthermore, after every test the log
utilizations (objects in log and number of updates during the
test) were verified.

A. RAMCloud’s Log-Cleaner Benchmark

1) Description: The Log-Cleaner Benchmark was devel-
oped at Stanford University to evaluate RAMCloud’s two-level
log cleaning by measuring the write throughput of a single
master under heavy write load [9]. The benchmark utilizes five
nodes: One master (stores all data in RAM), three backups (get
data from master and store it on disk) and a benchmark client
(writes remotely on master). The execution is divided into
two phases (loading and benchmarking). In the first phase, the
client creates objects on the master with concurrent multiwrite
requests until the master reaches a given memory utilization. In
the second phase, the client updates objects on the master with
a specific distribution (uniform or zipfian) until the cleaning
overhead converges to a stable value. Obviously, this workload
is unlikely but allows to examine the log reorganization in a
worst case scenario. We adopted the C++-Implementation to
DXRAM and discovered the maximum number of 100-byte
objects that RAMCloud can store on a single server with a
log utilization of 80 % and used the same amount of objects
for DXRAM for a fair comparison (DXRAM would be capable
of storing even more objects). The maximum for our hardware
is nearly 52 million objects. To get similar runtimes for the
experiments, for the second phase, we used 6 million updates
for RAMCloud and 60 million updates for DXRAM. For all
comparisons between DXRAM and RAMCloud, 512 objects
were aggregated per network message to maximize the update
rate and the objects were accessed randomly. Furthermore,
RAMCloud was configured (as recommended) to use pipelined
RPCs allowing 10 outstanding RPC requests on the client side
for improved throughput.

2) Results: As expected, the RAM usage of DXRAM is
much more efficient for the small data objects than RAM-
Cloud’s (Figure 5). In case of memory management, DXRAM

Figure 5: Log Cleaner Benchmark - RAMCloud vs. DXRAM.
*: Extrapolated.

Figure 6: Log Cleaner Benchmark - Loading Phase with 1
backup peer and 1 master.

Figure 7: Log Cleaner Benchmark - Loading Phase with 3
backup peers and 3 masters.

has an overhead of around 5 % in this scenario, whereas
RAMCloud’s in-memory log needs more than 250 % memory
because RAMCloud is not optimized for small objects. One
known bottleneck of RAMCloud is its hash table used for local
object lookups which needs more memory than the CID tables
of DXRAM (s. section II-B). Still, we think RAMCloud is a
good candidate for a comparison as it shares many objectives
with DXRAM.

The following experiments were indented to determine,
first, the maximum throughput for object creation including
backup (phase 1), and second, the maximum update rate (phase
2). Due to the generally limited performance of RAMCloud
for small objects (Figure 5), these tests were performed with
DXRAM, only. Figure 6 and 7 show the throughput with
one master and one backup peer, and three masters and three
backup peers respectively. The theoretical throughput presents

Figure 8: Log Cleaner Benchmark - Benchmark Phase with 3
backup peers and differing number of masters and clients.

the runtime divided by the payload size of all objects (object
creation rate). The network throughput and the SSD throughput
were measured externally on one backup peer during the
experiments. Additionally, the number of objects per request
were varied. In both scenarios, the network throughput is
near the theoretical maximum of Gigabit Ethernet. The small
difference is due to the overhead of the memory management
and network handler on the masters as all requests were issued
by one thread. Therefore, the logging does not slow down the
replication process and is as fast as in-memory replication.
With more masters and backup peers, the performance is stable
for 1,000 objects per request but increased for less objects per
request because every created object is replicated three times
reducing the management overhead per object.

Figure 8 shows the results for phase 2 where up to three
clients update objects on the masters with zipfian distribution.
In all three cases, three peers were used for backup. With
one master and one client, the master is the bottleneck. For
every update request from client the master must send every
object to three peers, being limited by network bandwidth.
Using three masters, the overall throughput is bound by the
backup peers, instead. This is because the SSD bandwidth
is shared with the reorganization process when objects are
frequently updated. The Log-Cleaner benchmark in phase 2
continuously updates without reading, creating a worst-case
scenario for logging. In this scenario the netto write throughput
to SSD is around 70 MB/s (including log entry headers and
updating version logs) which is good for our HW-setup, as
well as compared to RAMCloud. The reorganization tries
to free as much memory as possible to prevent the logs
from filling up resulting in a higher write throughput. In this
experiment the logs were never completely filled but converged
to around 90 % utilization. In detail, in phase 2 the SSD is
fully utilized with a write throughput of over 180 MB/s as the
reorganization must also free 70 MB/s to stabilize the logs’
utilization. With a utilization of 90 % around 20 segments
(160 MB) and one version log (30 MB) have to be read per
second resulting in a read throughput of at least 190 MB/s.
Due to the HW limitations parallel reading and writing is
very limited. Thus, with a write throughput of 180 MB/s and
a read throughput of 190 MB/s we reached the maximum
shared raw throughput for mixed read and write operations
of the SSD. Consequently, there is not enough bandwidth left
to write all incoming backups to SSD without restraining the
network threads. To increase the throughput for this worst-case
scenario, one can add backup peers to aggregate more disk

bandwidth. In practice, a scenario with all masters updating
objects all the time is very unlikely and the logging throughput
of many backup peers is aggregated.

As described in section I, RAMCloud tries to bypass the
SSD bandwidth limitation by using a log as in-memory data
structure and doing reorganization only in memory on the mas-
ters. The results of the reorganization are remotely replicated
on SSD. In [9] the Log-Cleaner benchmark was executed in
a similar setup but with higher network (24 Gb/s Infiniband)
and disk bandwidth (700 MB/s). The overall throughput does
not exceed 55 MB/s in this experiment for 100-byte objects. In
our test, as shown in Figure 8, DXRAM surpasses RAMCloud
even with Gigabit Ethernet and less disk bandwidth (70 MB/s).
This is surprising and we plan to compare both systems over
Infiniband in the future. Overall, DXRAM is inspired by
RAMCloud but uses different approaches in many cases for
supporting small data objects.

B. Yahoo! Cloud Serving Benchmark

1) Description: The Yahoo! Cloud Serving Benchmark
(YCSB) was designed to quantitatively compare distributed
serving storage systems [18]. The benchmark offers a set of
simple operations (reads, writes, range scans) and a tabular
key-value data model to evaluate online storage systems re-
garding their elasticity, availability and replication. Further-
more, YCSB is easily extensible for new storage systems
and new workloads. For our evaluation we used two default
workloads A and B and one individual G:

1) Workload A: Ten 100-byte objects per key, 10,000,000
keys, zipfian distribution, 50 % read and write operations,
10,000,000 operations.

2) Workload B: Identical to A, but 95 % read and 5 % write
operations.

3) Workload G: One 64-byte object per key, 100,000,000
keys, zipfian distribution, 90 % read and 10 % write
operations, 10,000,000 operations.

Aerospike, Redis and DXRAM were configured for same
behavior regarding logging and reorganization. In all system all
nodes were used as masters and backup peers. For Redis, the
total number of objects were decreased as Redis needs more
memory than the other systems (Workload A and B: 6,000,000
keys; Workload G: 30,000,000 keys), like described in section
I. The impact on the runtime and operation throughput is
negligible, the memory usage is extrapolated. In every experi-
ment one version of every object was held in RAM and three
versions were replicated and written on SSD. Furthermore,
Redis was configured to use append-only logs for persistence,
as recommended written once per second. Moreover, the
reorganization of aforementioned logs was enabled to prevent
the log from constant growing because of invalid (updated or
deleted) objects. The re-writing process is triggered when the
log size doubled since last re-writing. Aerospike was used with
replication to a log file as well. We left the parameters for the
compactification of the log file untouched, the sizes for in-
memory storage and log file were set properly.

We used 8 storage servers and up to 8 YCSB clients for
benchmarking. Each YCSB client was configured to emulate
180 clients using one thread per client (which has shown

Figure 9: YCSB - 8 Server, Workload A.

Figure 10: YCSB - 8 Server, Workload B.

Figure 11: YCSB - 8 Server, Workload G.

maximum throughput). Overall, 8 YCSB nodes emulate 1,440
clients.

2) Results: Workload A is a write intensive workload and
therefore the best indicator for logging performance. Figure 9
shows that DXRAM outperforms Aerospike and Redis. The
numbers also show that the logging approach of DXRAM
scales better as for 8 YCSB clients DXRAM is more than twice
as fast as the other two systems. Workload B is a read-heavy
workload more typical for many graph applications. Figure
10 shows that DXRAM and Aerospike utilize the network
perfectly and therefore being close up with up to 4 clients. With
8 clients, Aerospike seems to be once again slowed down by
the backup mechanism. Redis is in all cases slower. Workload
G is a typical workload for a social media network. The objects
are small (64 bytes) and the accesses are dominated by read
accesses. The results are similar to workload B for DXRAM
and Aerospike. Hence, the small object size does not restrain
the systems. Redis on the other hand falls further behind. With
1.4 million operations per second DXRAM is around 15 %
faster than Aerospike and more than 300 % than Redis.

Another important aspect revealed by the experiments is
that DXRAM needs far less memory compared to the other
systems, see Figure 12. Especially for small objects, the

Figure 12: YCSB - Memory Usage. *: Extrapolated.

difference is eminently as Aerospike needs more than 700
% the memory and Redis more than 2000 %. The RAM
usage values contain the memory management, only, as all
system usage is difficult to determine and compare. For optimal
performance, DXRAM’s logging module adds up to 3 MB
per secondary log for version buffer and secondary log buffer.
Additional space is required once per backup peer for the
primary write buffer (between 16 and 256 MB depending on
the workload) and reorganization (maximum around 50 MB
for two segment buffers and all versions of one secondary
log). Redis on the other hand stores all replicas in RAM and
eventually writes them to SSD [7]. Thus, the memory footprint
is much higher. In Aerospike the data is written in large blocks
on SSD [8] resulting in buffering large amounts of data in
RAM. The SSD usage is determined by accumulating the sizes
of all files used for backup. In DXRAM every secondary log
and every version buffer is one separate file, in Aerospike all
data is written to one file and Redis creates one file per slave.
The differences regarding the SSD usage between DXRAM,
Aerospike and Redis are negligible. For many small objects,
DXRAM uses less memory on SSD than Aerospike and the
same amount as Redis. For smaller amounts of larger objects,
Aerospike and Redis use less memory on SSD. But SSD space
is not as valuable as space in RAM because SSD storage is
less expensive and easier extendable.

VII. CONCLUSIONS

In this paper we proposed a novel log-based replication
scheme for many small data objects which provides a high
throughput while being memory efficient. The SSD-aware
two-level logging approach allows fast persistence and fast
recovery for varying application access patterns. Version con-
trol is delegated to backup peers avoiding additional memory
overhead on master peers. By introducing a version buffer and
version log we can provide a fast and memory-efficient version
management which, at the same time, makes marker objects
for deleted log entries obsolete. Marker objects are known to
be difficult to handle in traditional logging approaches.

Experiments with RAMCloud’s Log-Cleaner Benchmark
demonstrate DXRAM’s high object creation and replication
throughput and its memory efficiency. The measurements also
show a high reorganization throughput of our cleaning policy
for small objects (not requiring timestamps for log entries).

The comparison of DXRAM with Aerospike and Redis
(both commercial products) using the YCSB benchmark show
that the logging and cleaning concepts proposed in this paper

allow a higher throughput and better scalability regarding the
number of nodes for many small data objects.

Future work includes evaluation and optimization of
DXRAM on top of Infiniband including logging, parallel re-
covery and replica placement strategies. Furthermore, we have
already implemented a basic graph processing framework on
top of DXRAM which will allow us to study more applications,
also being used for evaluating the logging concepts proposed
in this paper.

REFERENCES

[1] R. Nishtala et al., “Scaling memcache at facebook,” in Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), Lombard, Illinois, 2013.

[2] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” 2010.

[3] A. Gulli and A. Signorini, “The indexable web is more than 11.5 billion
pages,” in Special interest tracks and posters of the 14th international
conference on World Wide Web. ACM, 2005, pp. 902–903.

[4] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[5] “Gemfire,” http://www.vmware.com/products/vfabric-gemfire/overview.
[6] J. Ousterhout et al., “The case for ramclouds: scalable high-performance

storage entirely in dram,” SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp.
92–105, Jan. 2010.

[7] S. Sanfilippo and P. Noordhuis, “Redis,” 2009.
[8] B. B. C. V. Srinivasan, “A real-time nosql db which preserves acid.”
[9] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The ramcloud storage system,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 7:1–7:55, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2806887

[10] F. Klein, K. Beineke, and M. Schöttner, “Memory management for
billions of small objects in a distributed in-memory storage,” in IEEE
Cluster 2014, Sep 2014.

[11] D. Ongaro et al., “Fast crash recovery in ramcloud,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11, New York, NY, USA, 2011.

[12] J. Ousterhout et al., “The case for ramclouds: scalable high-performance
storage entirely in dram,” SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp.
92–105, Jan. 2010.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[14] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” ACM Trans. Comput. Syst.,
vol. 10, no. 1, pp. 26–52, Feb. 1992. [Online]. Available:
http://doi.acm.org/10.1145/146941.146943

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
ser. SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.

[16] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, Handling churn
in a DHT. Computer Science Division, University of California, 2003.

[17] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: main memory database
index structure revisited,” in Database Conference, 2000. ADC 2000.
Proceedings. 11th Australasian, 2000, pp. 65–73.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

Chapter 5.

Fast Parallel Recovery of Many Small
In-memory Objects

This chapter summarizes the contributions and includes a copy of our paper [14]. A short
version of the contributions presented in [14] were transferred to a poster with a peer-reviewed
two-page abstract [17].

Paper: Kevin Beineke, Stefan Nothaas and Michael Schöttner. "Fast Parallel Recovery of
Many Small In-memory Objects". In: IEEE 23rd International Conference on Parallel and

Distributed Systems. Dec. 2017, pp. 248-257

Poster: Kevin Beineke, Stefan Nothaas and Michael Schöttner. "Parallelized Recovery of
Hundreds of Millions Small Data Objects". In 2017 IEEE International Conference on Cluster

Computing (CLUSTER). Sept. 2017, pp. 621-622

5.1. Paper Summary

While [15] covers the logging mechanism of DXRAM, this publication is focused on the fast
parallel recovery of a failed server by replaying the server’s remotely logged data. The proposed
approach is optimized for hundreds of millions of small data objects but can also be used for large
objects. The recovery process is executed on many backup servers in parallel, each recovering a
part of the failed server’s data, to aggregate disk and network bandwidth. Additionally, on each
backup server, the recovery is parallelized to many threads as well to further improve recovery
times. Another contribution is the distribution of a server’s data into backup zones with a
fixed size and replica ordering which is advantageous for the logging as well as the recovery
coordination.

The evaluation in the Microsoft Azure cloud with up to 72 instances shows recovery times
of under two seconds for servers storing 500 million 64-byte objects, even under heavy load.
Furthermore, DXRAM is able to recover failed servers up to nine times faster than RAMCloud.

68

Chapter 5. Fast Parallel Recovery of Many Small In-memory Objects

5.2. Importance and Impact on Thesis

In this publication, we describe the recovery approach of DXRAM which is the second essential
component towards a fault-tolerant in-memory key-value store. The evaluation shows that
DXRAM is able to mask server failures within seconds under high load. Furthermore, the
optimizations regarding the handling of very small objects are visible in comparison with
RAMCloud: DXRAM recovers small objects (64 bytes) more than nine times faster than
RAMCloud.

The recovery is built upon the remote logging, detailed in Chapter 4, and utilizes an older
version of EthDXNet, described in Chapter 3. The backup zone distribution is further discussed
in Chapter 6.

5.3. Personal Contribution

All described concepts were developed and implemented by Kevin Beineke, the author of this
thesis. Optimizations to the memory management, introduced by Stefan Nothaas, supported
the loading of the in-memory storage during the recovery.

The evaluation in the Microsoft Azure cloud was set up and executed by Kevin Beineke.

Prof. Dr. Michael Schöttner and Stefan Nothaas aided the author by providing helpful input in
discussions.

Kevin Beineke wrote most of the paper and created all figures. Parts of the introduction, related
work and section III.A. and III.B are based on [15]. Prof. Dr. Michael Schöttner and Stefan
Nothaas reviewed the paper several times and helped to improve the paper.

69

Fast Parallel Recovery of Many Small In-memory
Objects

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—Social media networks as well as online graph
analytics operate on large-scale graphs with millions of vertices,
even billions in some cases. Low-latency access is essential, but
caching suffers from the mostly irregular access patterns of
the aforementioned application domains. Hence, distributed in-
memory systems are proposed keeping all data always in memory.
These in-memory systems are typically not optimized for the
sheer amounts of small data objects, which demands new concepts
regarding the local and global data management as well as for
the fault-tolerance mechanisms to mask server failures and power
outages. In this paper, we propose a novel backup distribution
and parallel recovery approach aiming at fast recovery of servers
storing hundreds of millions of small objects.
All proposed concepts have been implemented within the open
source distributed system DXRAM and have been evaluated
in the Microsoft Azure cloud with up to 72 high performance
virtual machines in two scale-sets. For evaluation, we used
two benchmarks: the Yahoo! Cloud Serving Benchmark and a
recovery benchmark. The experiments show that the proposed
recovery strategy is able to recover servers with 500,000,000
small data objects in less than 2 seconds and, also, to efficiently
mask server failures under heavy load. Furthermore, DXRAM
outperforms the state-of-the-art system RAMCloud in additional
recovery experiments with large objects (2.4x faster) and even
more with small objects (> 9x).

Keywords—Cloud computing; Data centers; Reliability; Storage
recovery strategies; Remote replication; Main memory; Flash
memory; B-trees;

I. INTRODUCTION

Online graph processing or large-scale social media appli-
cations and networks demand low-latency access to billions of
very small data objects. On Facebook, for instance, data objects
(relationships, likes, shares, status updates etc.) are for the
greater part smaller than 64 bytes [1]. Other graph examples
are brain simulations with billions of neurons and thousands of
connections each [2] or search engines for billions of indexed
web pages [3].

Access latency can be reduced by replacing hard disks
with flash storage combined with caches in RAM. Due to
low-latency data access required by many application domains
numerous sophisticated distributed cache solutions have been
proposed, e.g. Memcached [1] or Gemfire [4]. While these
caches (running in clusters or data centers) successfully reduce
access latency, they still burden the programmer to keep
caches and back-end storage synchronized which is non-trivial
and error prone. Another observation is that caches need
to be very large for irregular access patterns. Facebook, for

instance, used up to 1,000 Memcached servers to store around
75% of all data in RAM [5]. Still, this approach requires
to synchronize updates to Memcached servers with back-end
storage systems. To avoid penalties because of cache misses
and back-end synchronization, distributed in-memory storages
like RAMCloud [6] or DXRAM [7] keep all data always
in RAM which is optimal for irregular access patterns seen
in many graph processing applications. This design decision
requires an efficient memory management to keep meta-data
overhead at a minimum as RAM is comparatively expensive.

As RAM is volatile and server failures are the rule not
an exception in clouds and large clusters, there is a strong
need for fault-tolerance mechanisms. In-memory data needs
to be replicated to secondary storage to be able to mask
power outages. Hence, in-memory systems provide automatic
persistence in the background, in contrast to cache solutions.
However, recovering 32 or 64 GB of small data objects of
a crashed server might take several minutes which is not
acceptable for interactive application domains. The solution
is to distribute the data of one server to many backup servers
in order to allow parallelization of the recovery process, [8],
[9] and [10]. While RAMCloud has shown very fast recovery
times of under 2 sec with 60 backup servers for a server storing
larger objects, we are focusing in this paper on the recovery of
servers storing very small data objects (32 - 128 byte) which
is even more challenging.

The contributions of this paper are:

• an efficient range-based backup replica management

• a fast parallel recovery of servers storing hundreds of
millions of small data objects

• evaluation of the proposed recovery concepts in the
Microsoft Azure cloud showing that a server storing
5× 108 data objects can be recovered within 2 sec

The evaluation with two benchmarks and a comparison
with RAMCloud show that the proposed recovery concepts are
very fast, even under heavy load and outperform RAMCloud.

The further structure of this paper is as follows. Related
work is discussed in section II, followed by a brief introduction
of the key features of DXRAM in section III. Section IV de-
scribes the distribution of a server’s data. Followed by a section
that discusses the recovery coordination. The processes of the
local recovery are presented in section VI. The evaluation is
discussed in section VII. Conclusions and an outlook on future
work are found in the last section VIII.

II. RELATED WORK

Numerous distributed in-memory systems have been pro-
posed to provide low-latency data access for online queries
and analytics for various graph applications. Because of space
constraints, we can only discuss the most relevant work related
to crash recovery of storage servers.

RAMCloud shares several objectives with DXRAM but
varies significantly regarding the architecture. RAMCloud
provides a table-based in-memory storage to keep all data
always in memory. It is designed for larger objects and suffers
from a comparably large overhead for small data objects
[10]. RAMCloud uses a distributed hash table, maintained
by a central coordinator, to map 64-bit global IDs to servers
which can also be cached by clients. For persistence and fault
tolerance, RAMCloud implements a log-based replication of
data on remote servers’ disks [9]. In contrast to other in-
memory systems, RAMCloud organizes in-memory data also
as a log which is scattered for replication purposes across many
servers’ disks in a master slave coupling [6]. Scattering the
state of one server’s log on many backup servers allows fast
parallel recovery.

In case of a server failure RAMCloud’s coordinator must
gather the locations of all crashed master’s replicas by querying
all backups in the system. Next, the coordinator groups the
tablets of the failed master into partitions which are assigned to
recovery masters. A recovery master coordinates the recovery
of its assigned partition by collecting the data from backup
servers which read the data from the log stored on SSD or
HDD [9]. Furthermore, the recovery masters must reconstruct
a hash table for the failed master’s key space in order to make
the objects available again. In contrast, DXRAM’s superpeers
know the locations of all backups a-priori and initialize the re-
covery instantaneously. Thereupon, the backup servers recover
the data from SSD and update the meta-data on the superpeers
by sending a list of the recovered objects aggregated to more
compact ID ranges.

Google’s Bigtable is a distributed storage system which is
used for web indexing, Google Earth and many more services
[8]. A Bigtable is a distributed sorted map which assigns a row
key, an arbitrary string, a column family that defines access
control and a time stamp to every value. A Bigtable cluster
consists of a number of tables whereas each table comprises a
set of tablets. Then again, a tablet contains the data of a row
range and is around 100 to 200 MB in size. The tablets are
distributed to several servers within the cluster to aggregate
storage and also to enable parallel recovery. Each Bigtable
server stores all update operations in a single log to bundle
writes and therefore improve the access to persistent storage
devices. However, this requires another step during recovery in
which the log has to be sorted in order to recover the data of
one tablet. DXRAM on the other side uses one log per backup
zone to avoid this sorting step and ensures efficient accesses
to flash storage by its two-level logging approach [11].

Aerospike is a distributed database platform providing
consistency, reliability, self-management and high performance
clustering [12]. Aerospike uses Paxos consensus for server
joining and failing, and balances load with migrating of
partitions. DXRAM also offers migration but at fine-grained
object level. The object lookup is provided by a distributed

hash table in Aerospike. Aerospike is optimized for TCP/IP.
Additionally, Aerospike enables different storage modes for
every namespace. For instance, all data can be stored on SSD
with indexes in RAM or all data can be stored in RAM and
optionally on SSD with a configurable replication factor. As
Aerospike is a commercial product, not many implementation
details are published. Aerospike does not offer a possibility
to recover servers during ongoing operation but provides data
restore on cold-start.

Redis is another well known distributed in-memory system
which can be used as an in-memory database or as a cache
[13]. Redis provides a master-slave asynchronous replication
and different on-disk persistence modes. To replicate in-
memory objects, exact copies of masters, called slaves, are
filled with all objects asynchronously in remote memory. This
is quite expensive as slaves need to provide as much RAM as
the servers they need to backup. To overcome power outages
and server failures, snapshotting and append-only logging with
periodical rewriting can be used. Like Aerospike, Redis offers
a recovery on startup, only. Further, the recovery is not able
to recover one server in parallel from different slaves.

Alluxio is a distributed file system which provides fast
data access times for all objects in cluster setups [14]. This
is achieved by holding all objects in RAM and avoiding
replication to other servers and slower secondary storage
through a lineage-based approach. In case of a server failure,
the data is reconstructed by re-executing the operations that
generated the data. The re-computation overhead is limited by
additional asynchronous checkpointing to remote disks.

While object creations and updates benefit from the
replication-less approach, the recovery is impaired for high
throughput scenarios as checkpointing falls behind (bound to
I/O bandwidth). As a consequence, many objects have to be
reconstructed based on possibly many jobs which have been
executed since the last completed checkpoint. This reduces
recovery throughput, especially for many small objects. Addi-
tionally, storing the job binaries for a long time increases the
RAM consumption.

III. DXRAM ARCHITECTURE OVERVIEW

DXRAM is an open source (https://github.com/hhu-
bsinfo/dxram) distributed in-memory system with a layered
architecture, written in Java. It is extensible with additional
services and data models beyond the key-value foundation of
the DXRAM core [10]. In DXRAM, an in-memory data object
is called a chunk whereas an object stored in a log on SSD is
referred to as log entry.

A. Global Meta-Data Management

In DXRAM, every server is either a peer or a superpeer.
Peers store chunks, may run computations and exchange data
directly with other peers, and also serve client requests when
DXRAM is used as a back-end storage. Peers can be storage
servers (with in-memory chunks), backup servers (with logged
chunks to SSD) or both. Superpeers store global meta-data
like the locations of chunks, implement a monitoring facility,
detect failures and coordinate the recovery of failed peers, and
also provide a naming service. The superpeers are arranged
in a Chord-like overlay [15] adapted to the conditions in a

data center. Moreover, every peer is assigned to one superpeer
which is responsible for meta-data management and recovery
coordination of its associated peers. During server startup,
every server receives a unique node ID employing ZooKeeper.

Every superpeer replicates its data on three succeeding
superpeers in the ring. If a superpeer becomes unavailable,
the first successor will automatically take place and stabilize
the overlay. In case of a power outage, the meta-data can
be reconstructed based on the recovered peers’ data. Thus,
storing the meta-data on SSD on superpeers is not necessary.
Superpeer failures will not be further discussed in this paper.

Every chunk in DXRAM has a 64-bit globally unique
chunk ID (CID). This ID consists of two separate parts: a
16-bit node ID of the chunk’s creator and a 48-bit locally
unique sequential number. With the creator’s node ID being
part of a CID, every chunk’s initial location is known a-priori.
But, the location of a chunk may change over time in case
of load balancing decisions or when a server fails perma-
nently. Superpeers use a modified B-tree [16], called lookup
tree, allowing a space efficient and fast server lookup while
supporting chunk migrations. Space efficiency is achieved by
a per-server sequential ID generation and ID re-usage in case
of chunk removals allowing to manage chunk locations using
CID ranges with one entry for a set of chunks. In turn, a chunk
location lookup will reply with a range of CIDs, not a single
location, only. This reduces the number of location lookup
requests. For caching of lookup locations on peers, a similar
tree is used further reducing network load for lookups.

B. Memory Management

The sequential order of CIDs (as described in section III-A)
allows us to use compact paging-like address translation tables
on servers with a constant lookup time complexity. Although,
this table structure has similarities with well known operating
systems’ paging tables we apply it in a different manner. On
each DXRAM server, we use the lower part (LID) of the
CID as a key to lookup the virtual memory address of the
stored chunk data. The LID is split into multiple parts (e.g. 4
parts of 12 bit each) representing the distinct levels of the
paging hierarchy. This allows us to allocate and free page
tables on demand reducing the overall memory consumption
of the local meta-data management. Complemented with an
additional level indexed by node ID storing of migrated chunks
is possible as well. DXRAM uses a tailored memory allocator
with very low footprint working on a large pre-reserved
memory block [10]. For performance and space efficiency
reasons, all memory operations are implemented using the Java
Unsafe class.

Chunks store binary data and each chunk ID (CID) contains
the creator. Chunks can be migrated to other servers for load
balancing reasons. Migrated chunks are then called immigrated
chunks on the receiver and emigrated chunks on the creator.
Finally, there are recovered chunks stored on a new owner after
a server failure.

C. Remote Logging

Each chunk is replicated asynchronously to multiple remote
SSDs for fault tolerance reasons. We use an active replication
approach with predefined replica ordering. For the expected

Figure 1: Logging Architecture

large amount of chunks, storing all replicas in RAM is too ex-
pensive and traditional HDDs cannot satisfy the applications’
demands on low latency and throughput. Furthermore, replicas
do not serve client requests as reading from SSD is too slow.
Writing chunks to SSD with in-place updates requires a lookup
data structure either stored in RAM or on SSD which is both
not efficient. Holding the locations of all replicas for billions
of chunks in RAM results in a far too large memory overhead
and accessing SSD to determine the location of an chunk prior
to each write access is too slow. Therefore, we decided to store
chunk backups in logs on SSD (figure 1) which allows high
throughput due to sequential appends.

We use a two-level logging approach allowing fast recov-
ery and fast persistence with high throughput: fast recovery is
provided by sorting incoming backups per server into different
secondary logs. This reduces the amount of log entries to be
analyzed during recovery. Fast persistence and high throughput
are conflicting objectives in case of small backup requests.
Forcing small backups, e.g. 64 bytes, directly onto SSD would
result in low throughput. Obviously, buffering and aggregating
small backups to be written in larger bundles helps to improve
throughput but delays persistence. We address these challenges
by buffering and using an additional log, called primary log.
It is likely that a backup server receives many backup requests
from different servers which are bundled in a buffer and
flushed into the primary log (without sorting). This ensures
fast persistence and in the unlikely case of backup idle phases,
we flush buffers based on a timeout, too. Backups flushed to
the primary log are kept in memory to be flushed later to
their associated secondary log, when enough backups from one
server have been collected. We assume typical battery backup
is available on all servers allowing to always flush data to the
primary log in case of a power outage. If backup requests
are large, e.g. 4 KB or more, they are directly flushed to
their corresponding secondary log. Furthermore, the incoming
buffer is sorted by secondary log to speed-up bundling backup
requests which have to be written into the same secondary log.

Every instance of a backed-up chunk needs a version
number for validation during reorganization and recovery.
DXRAM uses a backup-side version control which holds
only the most recent versions in RAM and stores all other
versions in one version log per secondary log on SSD. In order
to avoid overhead of globally applicable versions, the most
current log entry of all its backup servers is always found
through an enforced replication ordering. We use an epoch-
based approach for assigning and resolving version numbers
providing a low memory footprint and high throughput [11].

Many graph processing applications are read heavy and
updates are rather seldom [17]. Still, a secondary log must be
reorganized if updates and deletes reach a threshold to avoid

filling it up with outdated and deleted versions. For that pur-
pose, a log is split into segments (default: 8 MB each) enabling
incremental processing. For increased efficiency, the log with
most invalid data is chosen for reorganization. Subsequently,
all version numbers, which are stored en-bloc in a version log,
are read from SSD and a predefined number of segments is
reorganized. In that process, each chunk is validated against
the read-in version information and all valid chunks are written
back to SSD, omitting the invalid ones.

D. Recovery Overview

This section summarizes the full recovery process which
is presented in more detail in the following sections including
optimizations.

As chunks are replicated to SSDs on remote servers, the
recovery performance on a single server is limited by its hard-
ware. Thus, like RAMCloud and Google’s Bigtable, DXRAM
scatters the chunks from one server to many backup servers to
aggregate SSD bandwidth and CPU processing power. Backup
servers are not determined for each chunk but for backup
zones, containing up to 256 MB of chunks, to minimize meta-
data overhead for backups. Hence, a server’s data is split
into 256 MB blocks which can be recovered from a backup
server within 1 to 2 seconds. This process can be performed
by many backup servers in parallel allowing high scalability.
For every backup zone, three backup servers are assigned
with a fixed replication and recovery ordering. In order to
avoid a broadcast, superpeers store the backup zones of each
of their associated peers. Thus, they can coordinate recovery
and directly contact the correct backups in case of a failure.
However, they do not need to store CIDs per backup zone; this
information is needed by servers, only. Network limitations are
masked by recovering a backup zone in the memory of backup
servers and resume normal operation. Chunks can be migrated
asynchronously to a fresh server later. Further discussion on
the backup zones can be found in section IV-A.

Every write access to a chunk (create, delete and update) is
replicated to the backup servers of the particular backup zone,
according to the replication ordering. To efficiently resolve the
backup zone affiliation for billions of locally stored chunks,
which is necessary to send the replicas to backup servers, every
DXRAM server utilizes a B-tree which is optimized for storing
CID ranges. This backup zone tree provides fast access times
while being very space efficient because of range aggregation
(e.g. an entire backup zone with millions of chunks can be
stored with 1 to 2 entries within the B-tree). The architecture
and usage of the backup zone tree is described in section IV-B.

Server failures are detected and recovery is coordinated
by the superpeer next in the superpeer overlay. This superpeer
informs the responsible backup servers storing relevant backup
zones. Then, the backup servers recover all valid chunks from
the associated secondary logs into their local memory. All
required information to initialize the recovery of a failed server
is available a-priori on the superpeer as backup servers of all
backup zones are stored on superpeers (including backups) as
well. Thus, there is no need to gather information from backup
servers (in contrary to RAMCloud and Google’s Bigtable).

The local recovery on a backup server is also challenging
as a typical secondary log stores several millions of small log

entries and for every single log entry the validity (currentness
and status) and correctness (data integrity) has to be verified.
To limit the temporary memory consumption, a secondary log
is recovered segment by segment. The segments are processed
by iterating over all log entries and restoring the valid log
entries. The validity of a chunk is verified by reading all
current version numbers from SSD (stored in a version log)
before the recovery process and comparing them with the log
entry version numbers. Obviously, gathering, storing, reading
and comparing millions of version numbers is time critical.
Furthermore, parallelization is crucial to speed-up the recovery
process and increase the overall system’s performance and
responsiveness by improving the availability of chunks. Our
concepts for a highly efficient recovery of entire backup zones
are presented throughout section VI.

Finally, the lookup meta-data of all recovered chunks
must be updated on corresponding superpeers. The necessary
network transfer can be minimized by aggregating CIDs into
ranges, see section VI-C.

IV. BACKUP ZONES

In order to enable a fast parallel recovery, the chunks of
one server are partitioned into several backup zones which are
scattered across potentially many backup servers (e.g. a 64
GB server assigned with 256 different backup servers). Every
server determines its own backup zones, e.g. randomly, and
informs its associated superpeer on each backup zone creation.
This approach avoids global coordination regarding backup
zone selection between servers. We use a replication factor
of three by default but it is configurable.

A. Local Backup Zone Management

Each backup zone is identified by a zone ID (ZID). The
ZID alone is not globally unique but it is in combination with
the creator’s node ID derived from the context. A new backup
zone is created whenever a chunk does not fit into any existing
backup zone. If chunks were deleted, a backup zone will be
gradually refilled with new chunks. Furthermore, chunks with
reused CIDs are stored in the same backup zone as before,
if possible, to minimize meta-data overhead (see IV-B). Three
backup servers are assigned to each backup zone with a fixed
replication ordering guaranteeing consistency. According to the
ordering, the first backup server receives all backup requests
first, the second afterwards and so on. Furthermore, backup
requests are bundled whenever possible. If there are less
than three servers currently available for backup (e.g. during
startup), the next joining server will be used and receives all
previously replicated chunks of this zone. All backup servers
are chosen randomly, optionally with disjunctive first backup
peers. Other replication schemes like copyset replication [18]
or location aware approaches [19] can be used, too.

A server notifies its superpeer whenever a new backup zone
was created or a backup server was changed. This results in
a single message for every 256 MB (e.g. once after 3.5× 106

64-byte chunks have been created) and a few messages per
server failure (the failed backup server has to be replaced),
only. To further reduce memory consumption on superpeers
(resulting in just 10 bytes per backup zone in the best case),
a superpeer does not store backup zone affiliations of chunks.

Figure 2: Backup Zone Tree with order 4 - This tree stores a total of 6 backup zones: the first contains the locally created
chunks 0xXXXX 0000 0000 0001 to 0xXXXX 0000 0010 0000 (creator has the node ID 0xXXXX), the second 0xXXXX 0000 0010
0001 to 0xXXXX 0000 0020 0000, the third 0xXXXX 0000 0020 0001 to 0xXXXX 0000 002E 0000 with the immigrated chunks
0xYYYY 0000 00AC 0001 to 0xYYYY 0000 00AD 0000. The fourth contains 220 locally created chunks, the fifth contains locally
and immigrated chunks, again. The sixth backup zone is not yet concluded. The zone ID -1 defines the end of CID ranges whose
chunks are not stored on this server.

This information is exclusively stored on the owner of a chunk
as only this server must know the corresponding backup zone
of its chunks for sending backup updates.

B. Backup Zone Tree

A backup zone might consist of locally created, immigrated
and recovered chunks. To store the backup zone affiliation of
every chunk, we use a B-tree similar to the lookup tree, see
[20]. This tree is called backup zone tree and stores (beginning
chunk ID, end chunk ID, zone ID) tuples. A tree range can
be equal to one backup zone but only if all its CIDs are
consecutive (if all containing chunks were created on the same
creator and all deleted chunks’ CIDs were re-assigned, if at all,
to the particular backup zone).

One tuple is typically stored with two entries in the backup
zone tree (see figure 2). One for the beginning of the range and
one for the end. Directly succeeding ranges can be stored with
one entry per range, only, as the end of one range defines the
beginning of the next one. Limited to locally created chunks,
there is just one tuple per backup zone in the tree resulting in
a total of 3 to 4 KB of meta-data for 64 GB servers storing
nearly a billion 64-byte chunks. The memory consumption
depends also on the alignment and fill rate of the backup
zones, the order of the B-tree (default is 10) and access pattern.
Additionally, searching is very fast because the backup zone
tree has a height of 2 to 3, only, for a billion local chunks and
an order of 10, for instance.

The CIDs of locally created chunks are not registered
separately in the backup zone tree, but as one range as
soon as the current backup zone is completely filled. The
current backup zone’s end is thereby represented by the highest
possible CID (0xXXXX FFFF FFFF FFFF, where 0xXXXX
is the node ID of the server) and is replaced by the currently
highest used CID on creation of a new backup zone. Therefore,
the end of the current backup zone is always identified by the
highest used CID and the end of every preceding backup zone
is registered in the tree.

Emigrated and deleted chunks within the registered backup
zones can be ignored because they are no longer relevant.
This reduces the memory consumption noticeably as expensive
range splits are prevented [20]. For instance, removing a single
CID from a CID range would result in three ranges: first, all
CIDs from beginning up to the removed CID - 1. Second, the
removed CID and third, the CIDs up to the end.

On the contrary, it is imperative for replication purposes to
store the backup zone for immigrated and recovered chunks.
Immigrated chunks are registered range-wise if possible and
chunks of a recovered backup zone are added all at once for
efficiency reasons (see V-C).

V. RECOVERY COORDINATION

A. Failure Detection

Fail-stop server failures are detected based on the superpeer
overlay as every superpeer pings each of its peers periodically
(configurable interval). If any message (not limited to ping
messages) could not be delivered, an error occurred during
incoming or outgoing transmission or a response is missing,
the failure detection is started. This triggers either a Re-
sponseDelayedEvent or a ConnectionClosedEvent based on the
detected error. A ResponseDelayedEvent is less significant than
a ConnectionClosedEvent as it occurs whenever a response is
delayed. The cause can be diverse and is not restricted to a
network problem. If a ResponseDelayedEvent is triggered, a
message will be sent to the previously unresponsive server. If
the server receives the message, the event is ignored. Otherwise
a ConnectionClosedEvent will be triggered automatically as
the connection is either closed or the transmission is about to
fail. A ConnectionClosedEvent on the other side is handled
by creating a new connection to the supposedly failed server.
If the connection could be successfully established, the prior
disconnection is ignored. Otherwise failure handling is started.
Depending on the application access pattern, a peer might
detect the failure earlier than the corresponding superpeer. In
this case, the peer informs the superpeer to speed-up failure
detection and thus the whole recovery process.

Performance or omission failures need additional handling:
if a server is only temporarily unavailable, it will have to join
again. The superpeer can check if the server’s data was al-
ready recovered and, if necessary, command the corresponding
servers to roll back by writing the recovered chunks to SSD.
The server re-joining is finished when all backups are stored
in the same logs as before the incident. Chunks that have been
updated prior to the re-joining are included as they have been
written to the memory management of the replacement servers.
Updates during the re-joining are postponed.

Failure handling affects many parts of DXRAM, but only
backup- and recovery-relevant aspects are discussed here.

Peers and superpeers respond differently to a peer failure.
Peers replace the failed peer in every affected backup zone
by new backup servers and replicate the chunks accordingly
to maintain the replication factor. Superpeers, on the other
hand, notify all peers by propagating the server failure to all
superpeers first and then to all of its peers. This triggers the
failure handling on each affected peer. Then, the superpeer
responsible for the failed peer initializes the recovery.

B. Initializing Parallel Recovery

To initialize server recovery, the responsible superpeer
sends one RecoverBackupZoneRequest to the first backup
server of each backup zone of the failed server. The recovery
of the backup zone is then executed by the backup server. If the
first backup server is unavailable, the second will be notified
and so on. The superpeer sends all requests for all backup
zones of the failed server at once for maximal parallelization
and collects the responses after the recovery is finished. If
a response is missing, the recovery is initialized on the next
backup replica of that backup zone. The recovery of a backup
zone using the logs is described in section VI.

C. Finalizing Parallel Recovery

When all contacted backup servers reported recovery suc-
cess, the superpeers must update its meta-data to make all
recovered chunks available again. Therefore, the lookup trees
of the chunk creators (divergent from failed server for im-
migrated and previously recovered chunks) are modified on
the corresponding superpeers by adding CID ranges comple-
mented by the restorer of the backup zone which becomes the
new owner. For that purpose, the CIDs of the recovered chunks
must be aggregated to ranges beforehand. This is discussed in
subsection VI-C. At this point all chunks are available again.

The meta-data of the failed server’s backup zones are
deleted on the corresponding superpeers as they are not needed
anymore. To administer recurring failures, all servers that
recovered a backup zone of the failed server have to create
a new backup zone for the recovered chunks. Therefore, the
corresponding superpeer must be notified and the local backup
zone tree must be updated as well. Moreover, all backup
servers of the new backup zone must receive all recovered
chunks for backup. To avoid sending recovered chunks three
times to three new backup servers, the backup servers of the
old backup zone are reused. Thus, only one new backup server
must be determined if no additional failure occurred (one
backup server cannot be used as it is the restorer). Obviously,
the new backup zone must contain the same set of chunks.

The locality within backup zones is maintained during the
recovery but, in some cases, it could be reasonable to fully
reconstruct the original server by sending all recovered chunks
to a new server, which will increase recovery time but can be
done concurrently to minimize availability interruption.

VI. LOCAL RECOVERY OF MANY SMALL CHUNKS

The local recovery must be highly optimized to enable fast
recovery of millions of small chunks. For instance, a 256 MB
backup zone may consist of more than 3.5× 106 chunks with
an average payload size of 64 bytes per chunk. This results
in the associated secondary log storing between 3.5× 106 and

7 × 106 chunks depending on the backup rate and efficiency
of the reorganization (a secondary log is double the size of the
backup zone by default).

A. Overview

At the beginning of the local recovery, all corresponding
log buffers must be flushed to guarantee that every recoverable
chunk is stored in the associated secondary log. Then, the
version log for this secondary log is loaded from SSD for
fast access (see VI-B). The recovery is executed segment by
segment as follows: first, a segment is read into a byte buffer
(default segment size: 8 MB). Next, every chunk is analyzed by
iterating over the byte buffer. The analysis includes validation
and error detection. To validate a chunk, the read-in version
number is compared to the version number stored within the
log entry header of a chunk. If the chunk is invalid (outdated
or deleted), it will be ignored. The error detection is optional
and uses a 32 bit cyclic redundancy check.

Valid and error-free chunks are then stored to the local
memory management of DXRAM. Small chunks are bundled
in batches up to 100,000 chunks to benefit from fast batch al-
location of the memory management. Furthermore, the chunks
are not copied, but the byte buffer is passed to the memory
management along with an index buffer containing all CIDs,
offsets within the segment buffer and lengths of the chunks.
At the end, the secondary log is removed from SSD.

B. Version Log

During recovery, every chunk read from secondary log
must be validated to avoid recovering outdated and deleted
chunks. For efficiency reasons, we store all version numbers
for each secondary log in a separate version log (see figure
1). Version logs are also compacted during cleaning of their
corresponding secondary log [11]. This approach allows us to
read-in only relevant version numbers for log cleaning and
recovery ensuring fast processing and low memory footprint.
For recovery of a backup zone, the corresponding version log
is read from SSD and all version numbers are added to an
array or a hash table. The array is optimal for storing version
information for larger CID ranges which are heavily used in
DXRAM and thus likely to occur. For scattered CIDs, we
dynamically switch to the hash table.

Backup zones contain chunks that were created by the
backup zone creator but also immigrated for load balancing
reasons or recovered from a failed server. Accordingly, the
CIDs could be rather arbitrary within one backup zone. But,
typically, a backup zone contains one large range (all chunks
from one creator) with a few chunks outside of the range (such
as migrations for load balancing or chunks with reused CIDs
stored in another backup zone). Therefore, it is beneficial to
determine large ranges within a backup zone, whose versions
can be stored in the array, but only if it is lightweight
enough to not burden the logging throughput. We calculate
the arithmetical mean of all CIDs incrementally with every
write access. Every version number of a chunk with a CID
whose euclidean distance is smaller or equal half the average
number of chunks per backup zone is stored in the array with
its CID as index. All other version numbers are stored in the
hash table. For the validation process, the same metric is used

to decide whether to look in the array or in the hash table for
the current version number of a chunk. Therefore, the benefit
of faster access to the array is two fold.

To avoid that the average CID value drifts off because
of emigrated chunks with much higher or lower CID, all
CIDs with a large euclidean distance to the average value
are ignored. This mechanisms is delayed to reduce the impact
of early updates of emigrated chunks. This is a best-effort
approach limiting performance to a hash table level in worst
case, but improving performance considerably in other, more
likely, cases without burdening the CPU.

C. CID Range Determination

After executing the local recovery, the backup servers
notify the superpeers by sending a list with the CIDs of all re-
covered chunks. This information is used to update the lookup
trees of the superpeers to make recovered chunks available
again. A typical backup zone consists of several million small
chunks. Sending millions of 8-byte CIDs would result in large
message sizes (for 64-byte chunks close to 26 MB) and slow
processing (every CID must be processed locally). But, backup
zones typically store large CID ranges and a few migrations
and, usually, the migrations are also aggregated. Therefore, we
can combine CIDs into ranges during the recovery process.

The CID range determination requires a sorted list of all
CIDs. Gathering all CIDs during recovery by adding them with
insertion sort, for instance, is too time-consuming. Instead, the
already available data structures for the validation are used.

The array uses the CID as index by subtracting a non-
varying offset. Thus, it is already sorted but might contain
gaps for chunks that were deleted (and whose CIDs are not
yet reused).

The hash table is based on an array as well, but the
array stores (chunk ID, version number) tuples instead of
version numbers only. Moreover, the tuples are not sorted by
CID as the CIDs are hashed before insertion. To sort the array,
two different approaches are used. If the hash table is barely
filled and thereby contains many empty array entries, insertion
sort will be used. If the hash table is well-filled (threshold:
100,000 entries), quicksort will be used.

The ranges can be determined by iterating the sorted array
and adding the begin and end of every consecutive sequence to
another list. Subsequently, the ranges are sent to the superpeers
and stored in their lookup trees.

D. Parallelization of the Local Recovery

While the recovery is executed, all chunks of the failed
server are unavailable. Therefore, the recovery has highest
priority and is allowed to use all system’s resources. Unfortu-
nately, some recovery steps cannot be parallelized because of
I/O limitations (e.g. loading the version numbers and segments
from SSD) or enforced sequential processing (e.g. storing the
chunks in memory management). Therefore, parallelization is
focused on analyzing log entries which includes CPU and
memory intensive steps like reading the log entry headers, get-
ting and comparing the version numbers, calculating and com-
paring the checksums, assembling large chunks (see section
VI-E) and forwarding gathered data to memory management.

Figure 3: Parallelization - Thread flow chart for the recovery.

Additionally, a dedicated thread writes all recovered chunks
into memory management. DXRAM uses three thread types
for the recovery (fig. 3):

The RecoveryMainThread reads all version numbers
(hardly parallelizable), creates all other threads, determines
the CID ranges, recovers segments (includes analysis of log
entries) and returns once the other threads have finished.

At least one RecoveryHelperThread supports the Recov-
eryMainThread with recovering segments. The number of
RecoveryHelperThreads is configurable to adapt to the hard-
ware. Our tests showed a peak recovery performance with 4
RecoveryHelperThread.

The RecoveryWriterThread receives the read and verified
chunks from the other threads and writes them into the memory
management by utilizing batch processing mechanisms.

E. Large Chunks

Although we expect primarily small chunks for our target
application domains, large chunks (e.g. larger than 1 MB) can
be handled, too. Without modifications, chunks larger than one
segment cannot be processed. Furthermore, fragmentation can
reduce the maximal chunk size even more: after reorganization
of a fully utilized backup zone the corresponding secondary
log is half-full (as a secondary log is double the size by default
to increase efficiency of the reorganization). Without fragmen-
tation, half of the segments are filled completely, the other half
is empty. With largest possible fragmentation, every segment
is half-full. Accordingly, chunks larger than half a segment
cannot be stored without splitting as larger chunks might not
fit with adverse fragmentation, even after reorganization. The
segment size is configurable, but increasing it to match large
chunks is not an option as, first, the maximal chunks size is
not always known a-priori and, second, large segments raise
the temporal memory consumption during reorganization and
recovery.

To allow storing larger chunks, chunks are split into parts
of the size segment length / 2 (e.g. 4 MB for default config-
uration). Every part of a large chunk is one link in a chain
and possesses a complete log entry header complemented by
a chain ID (position within the chain) and the number of all
chain links. Thus, every chain link can be identified, validated
and error-checked without the other chain links.

When analyzing a chain link during recovery, a byte buffer
large enough (more later) to store all chain links is created
and the first link is copied at the correct position within the
buffer (chain ID × segment length / 2). Moreover, the byte
buffer and the CID is registered in a hash map. For every
additional link, the byte buffer is fetched from the hash map
and the link is copied analogously. The byte buffer can be
sized accurately if the first occurring link is the link with
highest chain ID because the last chain link is the only link
with a possibly different size. Chunk size: (chain length - 1)
× segment length / 2 + size of last chain link. Otherwise the
size is estimated to the upper bound: chain length × segment
length / 2. The byte buffer’s limit is then set, once the last
chain link is read (avoiding copying of the buffer). At the end
of the recovery, after recovering all segments, all large chunks
are written sequentially into memory management.

VII. EVALUATION

In this section, we present the evaluation of the proposed
recovery architecture using a recovery benchmark and YCSB,
and also compare it with the recovery of RAMCloud. All
benchmark runs were executed in Microsoft’s Azure cloud
in Germany Central with up to 72 virtual machines from the
type Standard_DS13_v2 which are memory optimized servers
with 8 cores (Intel Xeon E5-2673), 56 GB RAM, 112 GB
SSD capacity (maximal cached throughput: 256 MBps) and 5
GBit/s Ethernet connectivity. In order to manage the servers,
we created 2 identical scale-sets (as one scale-set is limited to
40 VMs) based on a custom Ubuntu 14.04 image with 4.4.0-59
kernel and a third scale-set with Debian 8 image and 3.16.0-4
kernel for RAMCloud (hardware and configuration identical).
We want to give thanks to Microsoft for providing us with a
Azure research sponsorship.

A. Recovery Benchmark

1) Description: The recovery benchmark is used to study
the parallel recovery of one server. In this test, the server cre-
ates 5×108 64-byte chunks with a total payload of more than
30 GB. Because of resource constraints of our sponsorship, we
could not use more than 72 backup servers. In order to study
the maximum recovery throughput we limit payload to 30 GB
(resulting in 144 backup zones, each 256 MB) although the
server could handle more. As a result each backup server stores
at least two backup zones as the data is replicated to x slaves,
with x ∈ [1, 72] during this test. After logging all chunks, the
master is killed which initiates the recovery process for all
144 backup zones. The used backup zone distribution strategy
chooses disjunctive first backup peers to enable maximum
parallelism during recovery. If all backup peers are used as
first backup peer already, the procedure is repeated.

2) Results: The logging performance is at maximum by
utilizing the entire I/O capacity (figure 4). With up to 4 backup
peers, the SSDs of the backup peers are the bottleneck. With
more aggregated SSD bandwidth, the network becomes the
limiting factor (> 500 MB/s).

As expected, the recovery times improve with the number
of backup peers (see figure 4). With 72 backup peers (2 backup
zones per backup peer) the complete recovery process takes
less than 2 seconds resulting in a recovery throughput of

Figure 4: Overall Recovery Performance

Figure 5: Recovery Performance in Detail

more than 16.5 GB/s. The recovery process includes failure
handling, ZooKeeper cleanup (to enable node ID re-usage),
peer failure propagation, superpeer overlay cleanup, recovery
initialization and finalization, and meta-data updating on the
superpeer. Additionally, all peers replace the failed peer in
every backup zone and recover all chunks from SSD. Re-
replication of the failed server’s chunks is excluded and
executed concurrently afterwards, which does not impair avail-
ability as every object is accessible after recovery, already.

Figure 5 shows the average local recovery times and also
the sequential times of all of its steps. The blue line shows
the average local recovery time achieved by parallelizing all
other steps resulting in about 500 ms for the local recovery of
one backup zone. The sum of all single steps is significantly
higher than the average recovery time as many threads work
in parallel during recovery increasing recovery performance
substantially. The local recovery of a single backup zone
(blue line) is reduced by up to 400 ms when using four or
more backup servers which can be explained by kernel buffer
caching effects on backup servers: the backup servers may still
have log entries in their caches when the recovery is started
and hence read some log entries from cache not from SSD.
With more than 4 backup peers the times to analyze all log
entries (yellow line) and thus the single backup zone recovery
times grow slightly as runtime optimizations are less effective
or not applicable with fewer iterations per backup peer.

The evaluation with the recovery benchmark shows that
DXRAM is able to recover 5 × 108 64 byte data objects in
parallel in less than 2 seconds. We expect even better recovery
times if we could use more backup peers.

B. A Comparison with RAMCloud

1) Description: Only a few distributed in-memory systems
provide a parallel live recovery whereof RAMCloud is a

Figure 6: Logging (left) And Recovery (right) Performance of
RAMCloud and DXRAM. Runtime in sec.

prominent example providing an own recovery benchmark. We
configured both recovery benchmarks in the same way: one
master server generates up to 108 objects with sizes between
64 bytes and 5 MB and replicates all data three times to 16
alternating backup servers’ SSDs. After the logging process,
the master server is killed and its data is recovered in parallel
on 16 backup servers (called recovery masters in RAMCloud).

2) Results: In figure 6, recovery and replication is split
for DXRAM, but not for RAMCloud as those two phases
are indistinguishable here. In RAMCloud replayed objects are
replicated during the recovery; in DXRAM after the recovery
to reduce unavailability times. Therefore, Figure 6 also shows
the re-replication times for DXRAM (gray boxes). Even when
including this step (not necessary for immediate availabil-
ity), DXRAM outperforms RAMCloud. With 1 MB objects
DXRAM logs around 30% faster (bottlenecked by the network)
and recovers around 140% faster. With smaller objects the edge
grows even further. With 64 byte objects, DXRAM’s recovery
is more than 9 times faster than RAMCloud’s (logging 3.5
times).

During the logging phase, RAMCloud creates all objects
first and then replicates entire segments (8 MB) to speed-up
this phase. DXRAM on the other side logs every single object
(1 MB and 5 MB objects) or logs in batches of ten which is a
more realistic behavior. Still, the logging phase is significantly
shorter in DXRAM.

The recovery phase in RAMCloud differs from DXRAM:
RAMCloud uses a log in RAM and distributes exact copies of
the log segments to SSD on backup servers. As a consequence,
during recovery, every object of the failed server could possibly
be in every segment (in different versions as well). Thus, when
recovery masters gather objects partition-wise, every single
segment must have been read (in parallel) and all objects of
all partitions must be sent over network to the right recovery
master. Furthermore, during replay, every recovered object
must be replicated three times as old backups are unusable.
Those segments might contain objects of all partitions and
not only the partition of one recovery master. Hence, in
RAMCloud, every object is sent over the network four times
during recovery whereas in our proposed approach only once.

The test with 5 MB objects could not be executed on
RAMCloud as RAMCloud’s maximum object size is 1 MB.
However, this test shows the functionality of handling large
chunks in DXRAM. The recovery is 0.5 sec slower than

with 1 MB objects because for each object every chain
link must be recovered before the object can be stored in
memory which impairs the parallelism between Recovery-
Main-Thread/Recovery-Helper-Threads and Recovery-Writer-
Thread. Yet, the recovery is still under 2 sec.

C. Yahoo! Cloud Serving Benchmark

1) Description: The Yahoo! Cloud Serving Benchmark
(YCSB) was designed to quantitatively compare distributed
serving storage systems [21]. The benchmark offers a set of
simple operations (reads, writes, range scans) and a tabular
key-value data model to evaluate online storage systems re-
garding their elasticity, availability and replication. Further-
more, YCSB is easily extensible for new storage systems and
new workloads. For our evaluation we used an individual
workload typical for social media networks (for an evalua-
tion of DXRAM’s performance with other systems and more
workloads refer to [11]): ten 64-byte objects per key, 15×106

keys per server, zipfian distribution, 90 % read and 10 % write
operations, 108 operations (either reading all 10 objects per key
or writing one object per key).

All storage servers are used as masters and backup servers.
We use 48 storage servers, with a total of 7.2 billion 64-
byte chunks in RAM and 21.6 billion log entries on SSD,
and 24 YCSB clients for benchmarking. Each YCSB client
is configured to emulate 100 clients using one thread per
client resulting in 2,400 clients. During the benchmark phase,
three masters are killed to analyze the recovery performance
with high overall system load. Operations are never aborted
but repeated until successful and the first backup peers are
chosen disjunctive. Additionally, we use 7 superpeers to divide
the load for lookup requests during recovery and to speed-up
failure propagation (90/10 default ratio for peers/superpeers).

D. Results

Figure 7 shows the operation throughput, maximum and
average response times of the first 300 seconds with 3 single
server failures at second 24, 78 and 184. The benchmark was
finished after additional 12 minutes and 42 seconds with no
reportable incidents. The 24 clients executed around 2 × 106

operations per second resulting in 18× 106 reads (10 chunks
are read per read operation) and 2× 105 writes every second.
The average response time for completed remote operations
(read or write) is around 1.3 ms. The maximum response time
represents the slowest operation of all operations of all 24
clients during the last second. The average maximum response
time is slightly above 100 ms and never over 500 ms in failure-
free intervals.

The server failures impair the system for a short pe-
riod, only (figure 7). The maximum response time of all
clients throughout the whole benchmark is around 2.6 seconds,
recorded during the first failure. The second and third failures
were masked even faster. The recovery took 1.8, 1.3 and 1.6
seconds. The remaining time is spent for failure detection
and ramping up of the clients. The evaluation with YCSB
shows that DXRAM can quickly recover after consecutive
single server failures even under heavy load, without disruptive
interruption to the running application.

Figure 7: YCSB - Maximum Client Request Times and Overall Throughput

VIII. CONCLUSIONS

Low-latency data access is important for many application
domains like online graph analytics or large-scale interactive
applications. Distributed in-memory systems address this chal-
lenge, but data needs to be stored on persistent storage to allow
masking server failures and power outages. Re-filling memory
storage from traditional databases in case of failures is too slow
and can result in long downtimes. Hence, parallel recovery
approaches have been proposed (e.g. Google’s Bigtable or
RAMCloud). However, those systems have not been designed
to efficiently handle small data objects found in many graph
applications. In this paper we propose a fast parallel backup
and recovery approach optimized for small data objects.

We propose a novel range-based backup replica manage-
ment and highly parallel recovery strategy based on a two-level
remote logging concept. The local recovery mechanisms are
highly optimized for small data objects but also support larger
objects. All concepts have been implemented in DXRAM
(open source) but can be applied to other systems, too.

The evaluation results of experiments in the Microsoft’s
Azure cloud show that DXRAM is able to recovery a server
storing 500 million 64-byte objects in under 2 sec; even under
heavy load (generated by 2,400 clients emulated by the YCSB
benchmark). And the recovery comparison with RAMCloud
shows that DXRAM outperforms RAMCloud up to a factor of
9 for small data objects.

Future work includes optimizations and evaluation of
DXRAM and the recovery using Infiniband. In addition, we
have already implemented a basic graph processing framework
on top of DXRAM and are adopting some bioinformatics graph
applications which will allow further insights on the proposed
concepts and likely introduce new challenges.

REFERENCES

[1] R. Nishtala et al., “Scaling memcache at facebook,” in Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), Lombard, Illinois, 2013.

[2] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” 2010.

[3] A. Gulli and A. Signorini, “The indexable web is more than 11.5 billion
pages,” in Special interest tracks and posters of the 14th international
conference on World Wide Web, 2005.

[4] “Gemfire,” http://www.vmware.com/products/vfabric-gemfire/overview.
[5] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The ramcloud storage system,” ACM Trans. Comput.
Syst., 2015.

[6] D. Ongaro et al., “Fast crash recovery in ramcloud,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11, 2011.

[7] F. Klein and M. Schöttner, “Dxram: A persistent in-memory storage for
billions of small objects,” in Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT), 2013 International Conference
on, 2013.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” in Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation
- Volume 7, ser. OSDI ’06, 2006.

[9] R. Stutsman, “Durability and crash recovery in distributed inmemory
storage systems,” dissertation, Stanford University, The Department of
Computer Science, Stanford, CA, USA, 2013.

[10] F. Klein, K. Beineke, and M. Schöttner, “Memory management for
billions of small objects in a distributed in-memory storage,” in IEEE
Cluster 2014, 2014.

[11] K. Beineke, S. Nothaas, and M. Schöttner, “High throughput log-
based replication for many small in-memory objects,” in 2016 IEEE
22nd International Conference on Parallel and Distributed Systems
(ICPADS), 2016.

[12] B. B. C. V. Srinivasan, “A real-time nosql db which preserves acid.”
[13] S. Sanfilippo and P. Noordhuis, “Redis,” 2009.
[14] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:

Reliable, memory speed storage for cluster computing frameworks,”
ser. SOCC ’14, 2014.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ser. SIGCOMM ’01, 2001.

[16] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: main memory database
index structure revisited,” in Database Conference, 2000. ADC 2000.
Proceedings. 11th Australasian, 2000.

[17] B. Atikoglu et al., “Workload analysis of a large-scale key-value store,”
in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’12, 2012.

[18] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss in cloud
storage,” in Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13), 2013.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer et al., “Oceanstore:
An architecture for global-scale persistent storage,” ACM Sigplan No-
tices, 2000.

[20] F. Klein, K. Beineke, and M. Schöttner, “Distributed range-based
meta-data management for an in-memory storage,” in LNCS Europar
Workshop Proceedings, 4th Big Workshop on Big Data Managements
in Clouds, 2015.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010.

Chapter 6.

DXRAM’s Fault-Tolerance Mechanisms
Meet High Speed I/O Devices

This chapter summarizes the contributions and includes a copy of our report [12].

Kevin Beineke, Stefan Nothaas and Michael Schöttner. "DXRAM’s Fault-Tolerance
Mechanisms Meet High Speed I/O Devices". In: ArXiv e-prints (July 2018). arXiv:1807.03562

[cs.DC]

6.1. Paper Summary

This report is based on [15] and [14]. We present optimizations of the logging and reorganization
and introduce additional backup placement strategies. Furthermore, the logging implementation
is described in greater detail with focus on direct disk access. To improve the logging performance,
we introduced concepts of DXNet [13] to the logging architecture like lock-free queues and
native memory access and also implemented direct access to the SSD bypassing the kernel page
cache. The latter allows keeping a constant performance even if DXRAM data occupies most
of the main memory. Furthermore, we refined the log selection strategy of the reorganization
to increase the efficiency of the reorganization. At last, the replica placement is extended by
an adapted copyset approach [24] to reduce the data loss probability without increasing the
replication factor.

6.2. Importance and Impact on Thesis

In this report, we cover details of the logging and backup placement which we could not address
in the publications [15] and [14] because of space constraints. Additionally, the author of this
thesis applied concepts from DXNet to the logging of DXRAM and upgraded the reorganization
and backup placement after the papers were published. Furthermore, this report concludes
the thesis by bringing together the backup mechanisms with the high-speed networking of
DXNet.

80

Chapter 6. DXRAM’s Fault-Tolerance Mechanisms Meet High Speed I/O Devices

6.3. Personal Contribution

This publication includes three contributions: (1) backup placement strategies, (2) optimized
logging architecture and (3) reorganization analysis. The backup placement strategies are
inspired by [24]. The basic concept of copysets was applied and adjusted to DXRAM by Kevin
Beineke, the author of this thesis, as well as, the optional locality-awareness and the disjunctive
backup peer selection. The reorganization analysis includes the segment selection optimization
based on timestamps. This idea was proposed by Rosenblum et al. in [97] and applied to
DXRAM by Kevin Beineke.

The optimized logging architecture uses many ideas of DXNet like lock-free ring-buffers and
zero-copy reading/writing from/to device. The concepts were applied by Kevin Beineke. The
direct access to the disk was firstly introduced by Christian Gesse whose bachelor thesis [39]
covers different disk access methods in Linux systems with focus on Solid State Drives. While
the bachelor thesis, which was guided by Kevin Beineke, addresses the access methods very
well, the conceptual formulation was limited and the result was not integrated into DXRAM’s
logging architecture. The author of this thesis integrated the work of Christian Gesse which
required modifications to the logging architecture and developed further optimizations for the
direct access to the disk.

The technical report was written and structured by Kevin Beineke. Prof. Dr. Michael Schöttner
and Stefan Nothaas participated in discussions and reviewed the report.

81

DXRAM’s Fault-Tolerance Mechanisms Meet High
Speed I/O Devices

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract—In-memory key-value stores provide consistent low-
latency access to all objects which is important for interactive
large-scale applications like social media networks or online
graph analytics and also opens up new application areas. But,
when storing the data in RAM on thousands of servers one
has to consider server failures. Only a few in-memory key-value
stores provide automatic online recovery of failed servers. The
most prominent example of these systems is RAMCloud. Another
system with sophisticated fault-tolerance mechanisms is DXRAM
which is optimized for small data objects. In this report, we
detail the remote replication process which is based on logs,
investigate selection strategies for the reorganization of these
logs and evaluate the reorganization performance for sequential,
random, zipf and hot-and-cold distributions in DXRAM. This is
also the first time DXRAM’s backup system is evaluated with
high speed I/O devices, specifically with 56 GBit/s InfiniBand
interconnect and PCI-e SSDs. Furthermore, we discuss the copy-
set replica distribution to reduce the probability for data loss and
the adaptations to the original approach for DXRAM.

Keywords—Reliability; Remote replication; Flash memory; In-
finiBand; Java; Data centers; Cloud computing;

I. INTRODUCTION

In [1] and [2], we described the distributed logging and
highly parallelized recovery approaches of DXRAM. While
we demonstrated that DXRAM outperforms state-of-the-art
systems like RAMCloud, Aerospike or Redis on typical cluster
hardware, we could not explore the limits of DXRAM’s
logging approach because of hardware limitations. In this
report, we evaluate the backup system of DXRAM with fast
hardware and present three different optimizations: (1) an
improved pipeline from network to disk on backup servers,
(2) a new segment selection strategy for the reorganization
of logs and (3) an adapted copy-set approach to decrease the
probability for data loss.

The evaluation shows that DXRAM is able to log more
than 4,000,000 64-byte chunks per second received over an
InfiniBand network. Larger chunks, e.g., 512-byte chunks, can
be logged at nearly 1 GB/s, saturating the PCI-e SSD. The
reorganization is able to keep the utilization under 80% most
times for all update distributions (sequential, random, zipf
and hotNcold) while maintaining a high logging throughput.
Furthermore, we show that the two-level logging concept
improves the performance up to more than nine times.

The structure of this report is as follows. Section II outlines
the basic architecture of DXRAM. In Section III, we depict

the related work on logging. In Section IV, we give a top-
down overview of DXRAM’s logging followed by a detailed
description of the logging pipeline. Section VII discussed the
related work regarding the log reorganization and segment
selection. DXRAM’s reorganization approach is presented in
Section VIII. The related work for backup distribution is
outlined in Section IX which is followed by the modified
copyset approach of DXRAM in Section X. In Section XI,
we evaluate the proposed concepts of Sections V and VIII.
Section XII concludes this report.

II. DXRAM

DXRAM is an open source distributed in-memory system
with a layered architecture, written in Java [3]. It is extensible
with additional services and data models beyond the key-value
foundation of the DXRAM core. In DXRAM, an in-memory
data object is called a chunk whereas an object stored in a
log on disk is referred to as log entry. The term disk is used
for Solid-State Drives (SSD) and Hard Disk Drives (HDD),
interchangeably.

A. Global Meta-Data Management

In DXRAM, every server is either a peer or a superpeer.
Peers store chunks, may run computations and exchange data
directly with other peers, and also serve client requests when
DXRAM is used as a back-end storage. Peers can be storage
servers (with in-memory chunks), backup servers (with logged
chunks on disk) or both. Superpeers store global meta-data
like the locations of chunks, implement a monitoring facility,
detect failures and coordinate the recovery of failed peers, and
also provide a naming service. The superpeers are arranged
in a zero-hop overlay which is based on Chord [4] adapted
to the conditions in a data center. Moreover, every peer is
assigned to one superpeer which is responsible for meta-data
management and recovery coordination of its associated peers.
During server startup, every server receives a unique node ID.

Every superpeer replicates its data on three succeeding
superpeers in the overlay. If a superpeer becomes unavailable,
the first successor will automatically take place and stabilize
the overlay. In case of a power outage, the meta-data can be
reconstructed based on the recovered peers’ data. Thus, storing
the meta-data on disk on superpeers is not necessary.

Every chunk in DXRAM has a 64-bit globally unique
chunk ID (CID). This ID consists of two separate parts: a
16-bit node ID of the chunk’s creator and a 48-bit locally

unique sequential number. With the creator’s node ID being
part of a CID, every chunk’s initial location is known a-priori.
But, the location of a chunk may change over time in case
of load balancing decisions or when a server fails perma-
nently. Superpeers use a modified B-tree [5], called lookup
tree, allowing a space efficient and fast server lookup while
supporting chunk migrations. Space efficiency is achieved by
a per-server sequential ID generation and ID re-usage in case
of chunk removals allowing to manage chunk locations using
CID ranges with one entry for a set of chunks. In turn, a chunk
location lookup will reply with a range of CIDs, not a single
location, only. This reduces the number of location lookup
requests. For caching of lookup locations on peers, a similar
tree is used further reducing network load for lookups.

B. Memory Management

The sequential order of CIDs (as described in section II-A)
allows us to use compact paging-like address translation tables
on servers with a constant lookup time complexity. Although,
this table structure has similarities with well known operating
systems’ paging tables we apply it in a different manner. On
each DXRAM server, we use the lower part (LID) of the
CID as a key to lookup the virtual memory address of the
stored chunk data. The LID is split into multiple parts (e.g.,
four parts of 12 bit each) representing the distinct levels of
the paging hierarchy. This allows us to allocate and free page
tables on demand reducing the overall memory consumption
of the local meta-data management. Complemented with an
additional level indexed by node ID storing of migrated chunks
is possible as well. DXRAM uses a tailored memory allocator
with very low footprint working on a large pre-reserved
memory block. For performance and space efficiency reasons,
all memory operations are implemented using the Java Unsafe
class.

Chunks store binary data and each chunk ID (CID) contains
the creator. Chunks can be migrated to other servers for load
balancing reasons. Migrated chunks are then called immigrated
chunks on the receiver and emigrated chunks on the creator.
Finally, there are recovered chunks stored on a new owner after
a server failure.

III. RELATED WORK ON LOGGING

Numerous distributed in-memory systems have been pro-
posed to provide low-latency data access for online queries
and analytics for various graph applications. These systems
often need to aggregate many nodes to provide enough RAM
capacity for the exploding data volumes which in turn results
in a high probability of node failures. The latter includes
soft- and hardware failures as well as power outages which
need to be addressed by replication mechanisms and logging
concepts storing data on secondary storage. Because of space
constraints, we can only discuss the most relevant work.

RAMCloud is an in-memory system, sharing several ob-
jectives with DXRAM while having a different architecture,
providing a table-based in-memory storage to keep all data
always in memory. However, the table-based data model of
RAMCloud is designed for larger objects and suffers from a
comparable large overhead for small data objects [6]. It uses
a distributed hash table, maintained by a central coordinator,

to map 64-bit global IDs to nodes which can also be cached
by clients. DXRAM on the other hand uses a superpeer
overlay with a more space-efficient range-based meta-data
management. For persistence and fault tolerance it implements
a log-based replication of data on remote nodes’ disks [7]. In
contrast to other in-memory systems, RAMCloud organizes in-
memory data also as a log which is scattered for replication
purposes across many nodes’ disks in a master slave coupling
[8]. Scattering the state of one node’s log on many backup
nodes allows a fast recovery of 32 GB of data and more.
Obviously, logging throughput depends on the I/O bandwidth
of disks as well as on the available network bandwidth
and CPU resources for data processing. RAMCloud uses a
centralized log-reorganization approach executed on the in-
memory log of the server which resends re-organized segments
(8 MB size) of the log over the network to backup nodes.
As a result, remaining valid objects will be re-replicated over
the network after every reorganization iteration to clean-up
the persistent logs on remote nodes. This approach relieves
remote disks but at the same time burdens the master and
the network. DXRAM uses an orthogonal approach by doing
the reorganization of logs on backup nodes avoiding network
traffic for reorganization. Furthermore, DXRAM does not
organize the in-memory storage as a log but uses updates in-
place. Finally, RAMCloud is written in C++ and provides
client bindings for C, C++, Java and Python [7] whereas
DXRAM is written in Java.

Aerospike is a distributed database platform providing
consistency, reliability, self-management and high performance
clustering [9]. Aerospike uses Paxos consensus for node join-
ing and failing and balances the load with migrations. In
comparison, DXRAM also offers a migration mechanism for
load balancing. The object lookup is provided by a distributed
hash table in Aerospike. Aerospike is optimized for TCP/IP.
Additionally, Aerospike enables different storage modes for
every namespace. For instance, all data can be stored on SSD
with indexes in RAM or all data can be stored in RAM and
optionally on SSD with a configurable replication factor. As
Aerospike is a commercial product, not many implementation
details are published except that it internally writes all data
into logs stored in larger bins optimized for flash memory. The
basic server code of Aerospike is written in C and available
clients include bindings for C, C#, Java, Go, Python, Perl and
many more.

Redis is another distributed in-memory system which can
be used as an in-memory database or as a cache [10]. Redis
provides a master-slave asynchronous replication and different
on-disk persistence modes. To replicate in-memory objects,
exact copies of masters, called slaves, are filled with all
objects asynchronously. To overcome power outages and node
failures, snapshotting and append-only logging with periodical
rewriting can be used. However, to replicate on disk the node
must also be replicated in RAM which increases the total
amount of RAM needed drastically. This is an expensive
approach and very different from the one of DXRAM where
remote replicas are stored on SSD only. Obviously, Redis
has no problems with I/O bandwidth as it stores all data in
RAM on slaves and can postpone flushing on disk as needed.
Furthermore, reorganization is also quite radical compared to
DXRAM as Redis just reads in a full log to compress it which
is of course fast but introduces again a lot of RAM overhead.

Redis is written in C and offers clients for many programming
languages like C, C++, C#, Java and Go.

Log-structured File Systems are an important inspiration
for the log-based replication of RAMCloud and DXRAM.
A log is the preferred data structure for replication on disk
as a log has a superior write throughput due to appending
objects, only. But, a log requires a periodical reorganization
to discard outdated or deleted objects in order to free space
for further write accesses. In [11] Rosenblum and Ousterhout
describe a file system which is based on a log. Furthermore,
a cleaning policy is introduced which divides the log into
segments and selects the segment with best cost-benefit ratio
for reorganization. DXRAM divides a log into segments as
well. However, due to memory constrains the cost-benefit
formula is limited to the age and utilization of a segment (more
in section VII).

Journaling is used in several file systems to reconstruct
corruptions after a disk or system failure. A journal is a
log that is filled with meta-data (and sometimes data) before
committing to main file system. The advantage is an increased
performance while writing to the log as appending to a log is
faster than updating in-place but requires a second write access.
The to be described two-level logging of DXRAM also uses
an additional log to efficiently utilize an SSD. In contrast to
journaling, we use this log only for small write accesses from
many remote nodes to allow bulk writes without impeding
persistence.

IV. LOGGING IN DXRAM - AN OVERVIEW

In this section, we describe the basic logging architecture
of DXRAM which is subject of [1]. Below, we distinguish two
different roles: Masters are DXRAM peers, store chunks (see
Section II) and replicate them on backup servers. A backup
server might also be a master and vice versa.

Replicating multi-billion small data objects in RAM is
too expensive and does not allow to mask power outages.
Therefore the backup data structures of DXRAM are designed
to maximize throughput of SSDs by using logs.

1) Two-Level Logging: We divide every server’s data into
backup zones of equal size. Each backup zone is stored in
one separate log on every assigned backup server (typically
three per backup zone). Those logs are called secondary logs
and are the final destination for every replica and the only
data structure used to recover data from. By sorting backups
per backup zone, we can speed-up the recovery process by
avoiding to analyze a single log with billions of entries mixed
from several masters (as required RAMCloud). The two-level
log organization also ensures that infrequent written secondary
logs do not thwart highly burdened secondary logs by writing
small data to disk and thus utilizing the disk inefficiently. At
the same time, incoming objects are quickly stored on disk to
sustain power outages.

First, every object received for backup is written to a ring
buffer, called write buffer, to bundle small request (Figure 1).
This buffer is a lock-free ring-buffer which allows concurrently
writing into the buffer while it is (partly) flushed to disk.
During the flushing process, which is triggered periodically or
if a threshold is reached, the content is sorted by backup zones

Figure 1: The Logging architecture. Every object is buffered
first. Depending on the amount of data per backup zone, the
objects are either directly written to their associated secondary
log or to both primary log and secondary log once there
is enough data. Versions are determined by inquiring the
corresponding version buffer, which is flushed to its version
log frequently.

to form larger batches of data in order to allow bulk writes
to disk. If one of those batches is larger than a predefined
threshold (e.g., 32 flash pages of the disk), it is written directly
to the corresponding secondary log.

In addition to the secondary logs, there is one primary log
for temporarily storing smaller batches of all backup zones to
guarantee fast persistence without decreasing disk throughput.
The smaller batches are also buffered in RAM separately,
in so called secondary log buffers, for every secondary log
and will eventually be written to the corresponding secondary
log when aggregated to larger batches. Obviously, with this
approach some objects will be written to disk twice but this
is outweighed by utilizing the disk more efficiently. Waiting
individually for every secondary log until the threshold is
reached without writing to the primary log, on the other hand,
is no option as the data is prone to get lost in case of a power
outage.

2) Backup-side Version Control: Masters do not store ver-
sion information in RAM. Versions are necessary for identi-
fying outdated data in the logs, so the backup servers employ
a version control used for the reorganization and recovery.
A naïve solution would be to manage every object’s version
in RAM on backup servers. Unfortunately, this approach
consumes too much memory, e.g., at least 12 bytes (8-byte
CID and 4-byte version) for every object stored in a log easily
sums up to many GB in RAM which is not affordable. Storing
the entire version information on disk is also not practical
because of performance reasons as this would require reads
for each log write. Caching recent versions in memory could
possibly help for some access patterns but for the targeted
application domain would either cause many read accesses for
cache misses or occupy a lot of memory. Instead, we propose
a version manager which runs on every backup server and
utilizes one version buffer per secondary log. The version
buffer holds recent versions for this secondary log in RAM

Figure 2: From Network to Write Buffer

until it is flushed to disk. In contrary to a simple cache solution,
DXRAM’s version manager avoids loading missing entries
from secondary storage by distinguishing time spans, called
epochs, which serve as an extension of a plain version number.
At the beginning of an epoch, the version buffer is empty. If a
backup arrives within this epoch, its CID will be added to the
corresponding version buffer with version number 0. Another
backup for the same object within this epoch will increment
the version number to 1, the next to 2 and so on. When the
version buffer is flushed to disk, all version information is
complemented by the current epoch, together creating a unique
version. In the next epoch the version buffer is empty again.
An epoch ends when the version buffer reaches a predefined
threshold allowing to limit the buffer size, e.g., 1 MB per log.
During flushing to disk, a version buffer is compacted resulting
in a sequence of (CID, epoch, version)-tuples with no ordering.
This sequence is appended to a file on disk, creating a log of
unique versions for every single secondary log. We call it a
version log. Over time, a version log contains several invalid
entries which are tuples with outdated versions. To prevent a
version log from continuously growing, it is compacted during
reorganization.

V. LOGGING IN DXRAM - FROM NETWORK TO DISK

In this section, we present all stages involved on a backup
server from receiving a chunk over a network connection to
writing the chunk to disk. This includes the deserialization
of the message object (in Section V-A), the creation of a log
entry header to identify a chunk within a log (in Section V-B)
and the aggregation of all chunks of all backup zones in the
write buffer (in Section V-C). Furthermore, this section covers
the sorting and processing of the write buffer to create large
batches which can be written to disk efficiently (in Section
V-D). After that, we briefly describe all data structures on
disk and how they are accessed (in Section V-E). Finally, we
discuss different disk access methods and describe all three
implemented methods thoroughly (in Section V-F).

A. Message Receipt and Deserialization

For sending replicas, DXRAM uses DXNet, a network
messaging framework which utilizes different network tech-
nologies, currently supporting Ethernet and InfiniBand. DXNet
guarantees packet and message ordering by using a special

network handler, which is used for logging. DXRAM defines
a fixed replication ordering for every backup zone enabling the
application of asynchronous messages for chunk replication.
Server failures are handled by re-replicating the chunks to
another backup server and adjusting the replication ordering
(the failed server is removed and the new backup server is
added at the end).

There are two major messages involved in the logging
process. One for replicating one or multiple chunks to a
specific backup zone (a log message) and one for creating a
new backup zone on a backup server which includes creating
the secondary and version log and their corresponding buffers.
All chunks of one log message belong to the same backup
zone (allocation is performed on masters). Therefore, the range
ID (identifier for a backup zone which is also called backup
range) and the owner is included in the message once, only,
followed by the chunk ID, payload length and payload of the
first chunk. Typically, messages are created and deserialized
entirely by DXNet, i.e., a new message object is created and
all chunks are deserialized (in this case into a ByteBuffer)
to be processed (logged) by the message handler. For the
logging, we optimized this step by deserializing directly into
the write buffer (see Section IV-1) to avoid creating a message
object (allocations are rather expensive) and copying from
the deserialized ByteBuffer into the write buffer. Whenever a
message is contained entirely in the received incoming buffer,
the log message is deserialized into the write buffer. If not, i.e.,
the log message is split into at least two buffers, we delegate
the deserialization to DXNet in order to reduce complexity (see
Figure 2). The performance is mostly unaffected by the latter,
as log message splitting is rather seldom. The detection is done
within DXNet: if the message size is smaller than the number
of remaining bytes in the buffer, a special message receiver is
called which is registered by the logging component on system
initialization. Otherwise, a normal message receiver is called.
The difference is that a normal message receiver operates on a
deserialized message object and the special message receiver
on a message header and not yet deserialized ByteBuffer.
We hide the complexity of the deserialization in the special
message receiver by using DXNet’s Importer which offers
deserialization methods for primitives, arrays and objects.

Figure 3: Log Entry Header. Orange: for write buffer and
primary log, only. Grey: for migrated or recovered chunks.
Green: optional/configurable. Purple: for chunks larger than
4 MB. Dark blue: mandatory, minimal size. Transparent blue:
maximum size

B. Log Entry Headers

We cannot simply copy a chunk (or a batch of chunks) from
message buffer to write buffer as every log entry consists of a
log entry header followed by the payload. The log entry header
has to be created just before writing the entry to the write
buffer as it contains a unique version number which has to
be determined by inquiring the version buffer of given backup
zone. Optionally, the log entry header contains a timestamp
and a CRC checksum which have to be recorded/generated as
well. Figure 3 shows all fields of a log entry header.

• Type: this field specifies the type of the log
entry header and stores the sizes of the Lo-
calID, length, version and chaining fields. There
are three different types of log entry headers:
(1) a DefaultSecLogEntryHeader which is
used for chunks stored in a secondary log. (2)
A MigrationSecLogEntryHeader for migrat-
ed/recovered chunks stored in a secondary log and
(3) a PrimLogEntryHeader for log entries stored
in write buffer or primary log. In write buffer, every
log entry is preceded by a PrimLogEntryHeader.
When the log entry is written to primary log,
the header remains unchanged. For writing the log
entry to secondary log (or secondary log buffer)
the PrimLogEntryHeader is converted into a
Default- or MigrationSecLogEntryHeader
by removing the RangeID and owner fields (both spec-
ified by the secondary log the entry is stored in). For
converting to a DefaultSecLogEntryHeader,
the creator is removed as well (the creator is the same
as the creator of the backup zone).

• RangeID and Owner: for log entries stored in write
buffer and primary log to identify the backup zone
the log entry belongs to.

• Creator: if the creator differs from the creator of the
backup zone (if migrated or recovered), it has to be
stored in order to restore the CID during recovery.

• LocalID: to identify a chunk within a backup zone.
Can be one, two, four or six bytes (defined in type
field).

• Length: the payload size. Can be zero, one, two or
three bytes. Maximum size for a log entry is 4 MB
(half the size of a segment which is configurable).
Larger chunks are split to several log entries (see
Chaining).

1 uint32_t i = 0;
2 while (i + 8 <= length) {
3 crc = _mm_crc32_u64(crc, *((uint64_t *)

&data[i + offset]));
4 i += 8;
5 }
6

7 if (i + 4 <= length) {
8 crc = _mm_crc32_u32(crc, *((uint32_t *)

&data[i + offset]));
9 i += 4;

10 }
11

12 if (i + 2 <= length) {
13 crc = _mm_crc32_u16(crc, *((uint16_t *)

&data[i + offset]));
14 i += 2;
15 }
16

17 if (i < length) {
18 crc = _mm_crc32_u8(crc, data[i +

offset]);
19 i++;
20 }

Figure 4: Fast Checksum Computation

• Timestamp: the timestamp represents the point in time
the log entry was created. More precisely, the seconds
elapsed since the log component was created. The
timestamp is optional and used for the optimized
segment selection of the reorganization (see Section
VIII).

• Epoch and Version: together epoch and version de-
scribe a unique version number for given CID. The
version field can be zero, one, two or four bytes. The
most used version 1 takes no space to store.

• Chaining: not available for chunks smaller than 4 MB.
Otherwise, the first byte represents the position in the
chain and the second byte the length of the chain.
Theoretical maximum size for chunks with default
configuration: 256 ∗ 4MB = 1GB. The segment size
can be increased to 16 MB to enable logging of 2
GB chunks which is the maximum size supported by
DXRAM.

• Checksum: the CRC32 checksum is used to check
for errors in the payload of a log entry during the
recovery. If available, the checksum is generated using
the SSE4.2 instructions of the CPU (see Figure 4).

C. Write Buffer

The write buffer is a ring-buffer which is accessed by a
single producer, the exclusive message handler (see Figure
2), and a single consumer, the BufferProcessingThread. Every
chunk to be logged is written to the write buffer first. Beneath
the data in the write buffer, we also store backup zone specific
information in a hash table. The keys for the hash table
are the owner and range ID (combined to an integer) of
the backup zone. The value is the length of all current log
entries belonging to the backup zone. We use a custom-made
hash table based on linear probing as it is faster than Java’s

hashmap and avoids allocations due to reusing the complete
data structure for the next iteration. Access to the hash table
is not atomic but must be in sync with the write buffer.
Thus, updating the write buffers positions and the hash table
is locked by a spin lock, even though the write buffer itself
could be accessed lock-free. However, the length information is
important to distribute the log entries to segments (see Section
V-D). We do not wait in case the lock cannot be acquired but
try again directly because the critical areas are small as well as
the collision probability (BufferProcessingThread is in critical
area for a short time every 16 MB or 100 ms, see Section
V-D).

If the write buffer is full, the exclusive message handler
has to wait for the BufferProcessingThread to flush the write
buffer. We use LockSupport.parkNanos(100) which is a good
compromise between reducing the CPU load while waiting and
being responsive enough. When writing to the write buffer, the
overflow needs to be dealt with by continuing at the buffers
start position.

D. Flushing and Sorting

The BufferProcessingThread flushes the write buffer peri-
odically (every 100 ms) and based on a threshold (half the
size of the write buffer; default: 32 MB). The flushing can be
done concurrently to further filling the write buffer once the
metadata (front and back pointer and the hash table) has been
read and set accordingly. Thus under load, half of the write
buffer is written to disk while the other half is filled enabling
a constant utilization.

Priority Flush: The flushing can also be triggered by the
recovery and reorganization to ensure all relevant data is stored
in the corresponding secondary logs. Additionally, whenever a
version buffer is full, a priority flush is triggered to flush the
version buffer consequently.

The flushing process does not simply write the data as it is
to the corresponding secondary logs, but sorts the log entries
by backup zone to create the largest possible batches which
can be written efficiently to disk. First, we use the information
about the total length of a backup zone’s data (stored in the
hash table) to supply ByteBuffers to store the sorted data. None
of the buffers exceeds the size of a segment as we want to
write the buffer’s content with one write access, if possible.
For example, 14 MB of data belonging to one backup zone
might be split to two 8 MB buffers. It could also be split to
one 8 MB and six 1 MB buffers depending on the available
buffers in the buffer pool (described below). All buffers of one
backup zone are collected in a Java object which is registered
with an identifier for the backup zone (combined range ID
and owner) in a hash table similar to the one for recording the
lengths. This enables a fast lookup during the sorting process.
The ordering within a backup zone is preserved because we
iterate the write buffer from back pointer to front pointer and
copy the log entries to the corresponding buffers. We do not
fill previous buffers to reduce fragmentation, either, because
of the ordering (a smaller succeeding log entry might fit in
the previous buffer). Again, when copying the log entries the
overflow of the write buffer must be considered. Additionally,
the log entry headers are truncated when written to the buffers
(see Figure 3).

1) Buffer Pool: To avoid constantly allocating new buffers
when sorting the data, we employ a buffer pool which stores
buffers in three configurable sizes (e.g., 64 x 0.5 MB, 32 x 1
MB and 8 x 8 MB for 8 MB segments) to support different
access patterns. The buffer pool consists of three lock-free
multi producer, single consumer ring buffers and buffers are
chosen with a best-fit strategy. If all ring buffers run dry,
the BufferProcessingThread waits for the next buffer being
returned. Buffers are returned after they have been written to
disk.

The buffers of all backup zones with less than 128 KB
(default value) of data are merged and written to primary
log. Additionally, the buffers are copied to the corresponding
secondary log buffers (with further truncated headers) to enable
fast flushing once a buffer is full. For backup zones with more
than 128 KB of data, the buffer is directly written to secondary
log. It might be necessary to flush the secondary log buffer first
(can be merged with buffer if both together are not larger than
a segment). The BufferProcessingThread does not execute the
write accesses to disk, but registers the write access in a lock-
free ring-buffer, called WriterJobQueue, to allow concurrent
sorting/processing of new data while the data is written to disk
(very important for synchronous access). The WriterJobQueue
is synchronized by using memory fences, only. The jobs are
pulled and executed by a dedicated writer thread.

After the flushing, the hash table is cleared and the back
pointer of the primary buffer is set to previous front pointer.

E. Data Structures on Disk

Everything DXRAM’s backup system writes to disk is
arranged in logs. The primary log and secondary logs store
replicas, the version logs version information for all logged
chunks.

1) Primary Log: The primary log is used to ensure fast
persistence for arbitrary access while efficiently utilizing the
disk, i.e., if the write buffer stores log entries of many backup
zones, all batches may be small and writing them to disk
would slow down the disk considerably. Thus, all data is
written to primary log with one large access and buffered in
corresponding secondary log buffers. If a secondary log buffer
is large enough to be written to disk efficiently (default: 128
KB), it will be flushed to secondary log.

The primary log is filled sequentially from beginning (po-
sition 0) to the end. It does not get reorganized or compacted
in any way, nor is it used to recover from during the online
recovery. Its only purpose, is to store small batches persistently
to be recovered in case of a power outage, i.e., all servers
responsible for at least one backup zone break down and not
all secondary log buffers could be flushed prior to the failure.

If the primary log is full, all secondary log buffers are
flushed and the position is set to 0. As secondary log buffers
are flushed frequently the amount of data to be flushed in this
scenario is rather small. Even in worst case scenario, only 128
KB per backup zone needs to be written to disk.

For the two-level logging, we assume the cluster servers
do not have non-volatile random access memory (NVRAM)
or battery backup. If they utilize NVRAM (with NVRAM
we refer to byte-addressable non-volatile memory on main

memory layer, not flash memory used in SSDs), logging to disk
is still necessary as replicating in NVRAM is too expensive
and failed servers may be irreparable. However, the two-level
logging is redundant as the write buffer and secondary log
buffers can be accessed after rebooting (not implemented).
For battery backed-up servers, the primary log is expendable,
as well, because all secondary log buffers can be flushed
while the server runs on battery (soft shut-down). We provide
two options to optimize the logging for NVRAM and battery
backup: (1) the threshold to decide whether the data is written
to primary log or secondary log can be set to 0 or (2) the
two-level logging can be disabled explicitly. In the first case,
all aggregated batches are written directly to secondary log
regardless of the size of the bulk. The second option disables
the primary log, as well, but still utilizes secondary log buffers
if batches are small.

2) Secondary Logs: Secondary logs eventually store all log
entries on disk and are used for the recovery (online and
global shut-down recovery). Secondary logs are subdivided
into segments (default size: 8 MB) which is beneficial for the
recovery and reorganization to limit the memory consumption
by processing the log segment by segment. Furthermore, the
segmentation allows reorganizing the parts of the log which are
more likely outdated (see Section VIII). For writing new log
entries to the secondary log, the segment boundaries must be
respected because log entries must not span over two segments
which would add unnecessary complexity to the recovery and
reorganization.

As described before, log entries are sorted and copied
into buffers with maximum size equal to the segment size.
Usually, we write an entire buffer into one segment. When
the buffer stores at least 6 MB (75% of the segment size),
we open a new segment and write the buffer to the beginning
of the new segment. If not (< 6 MB), we search for a used
segment with enough space to write the entire buffer into.
When none of the used segments have enough space to hold
the buffer, we open a new segment, too. If all segments of a
log are already in use, we split the buffer and gradually fill the
segments with most free space. This is a compromise between
maximum throughput while writing to the log (minimum write
accesses, page-aligned access) and maximum efficiency of the
reorganization (high utilization of the segments). If the buffer
contains more data than there is free space in the secondary
log, a high-priority request is registered for reorganizing the
complete secondary log and the writer thread waits until the
request was handled. If the secondary log’s utilization breaches
a configurable threshold (e.g., 85%) after writing to disk, a
low-priority reorganization request is registered and the writer
thread proceeds.

The presented writing scheme is used whenever the sec-
ondary log is not accessed by the reorganization thread. If the
reorganization is in progress for the secondary log to write to,
an active segment is chosen which can be filled concurrently
to other segments being reorganized as it is locked to the
reorganization. The active segment is exchanged if it is full
(next log entry does not fit), only. Obviously, the currently
reorganized segment cannot be used as an active segment. All
other segments are free to be chosen. Furthermore, during con-
current access all write accesses to disk have to be serialized
to avoid corrupting the file.

Secondary logs are recovered entirely by reading all log en-
tries of the log (segment by segment) and storing the valid (and
error-free) log entries in DXRAM’s memory management. In
order to keep recovery times low and to avoid secondary logs
completely filling up, secondary logs have to be reorganized
from time to time (see Section VIII). During the recovery, the
reorganization is completely locked to avoid inconsistencies
and to allocate all available resources to the recovery.

3) Version Logs: Version logs store the version numbers of
log entries belonging to the same secondary log. Every version
log is supported by a version buffer which holds all current
versions of the latest epoch. At the end of every epoch, the
version buffer is flushed to version log by appending all version
numbers of the version buffer to the end of the version log. An
epoch transition is initiated whenever the writer thread writes
to a secondary log and the version buffer breached its flushing
threshold (e.g., 65%). If the secondary log is reorganized
simultaneously, the version buffer is not flushed but a low-
priority reorganization request is registered. Prior to the actual
reorganization, the reorganization thread has to read the entire
version log and store all version numbers in a hash table which
is used to validate the log entries during the reorganization.
Then, the hash table is complemented by all version numbers
currently stored in the version buffer and the epoch number is
incremented. We exploit the situation to compact the version
log by writing all version numbers stored in the hash table
to the beginning of the version log. This way, we keep the
version log small without a dedicated reorganization.

In case of a power failure, a version log might be ahead
of its secondary log, i.e., a new version number might have
been stored in version log whose corresponding log entry
have not been written to secondary log prior to the hard
shutdown. Therefore, it is important to not use the version
log after a power failure to identify the most recent version
of a chunk as this could result in not recovering a chunk
at all by rejecting the most recent version in secondary log
(which has a lower version number than registered in version
log). Instead, we cache all chunks from all segments (in a
hash table) and overwrite an entry if the version number is
higher. The version log is used to determine deleted chunks,
only. For the crash recovery of a single server (or multiple
servers with at least one alive replica of every backup zone)
and the reorganization, the versions are gathered, first. Then,
the version log as well as the primary and secondary logs
are flushed, prior to recovering/reorganizing the secondary log.
Therefore, the version information cannot be more recent than
the data. However, the opposite is possible (data newer than
version). We solve this by considering all brand-new log entries
(logged during the recovery/reorganization) to be valid, i.e., log
entries created in the current epoch are kept (the epoch is not
incremented during the recovery/reorganization after reading
the versions).

F. Access Modes for Writing to Logs

DXRAM supports three different disk access modes to
write to logs (primary, secondary and version logs): (1)
writing to a RandomAccessFile, (2) writing to a file opened
with O_DIRECT and SYNC flags and (3) writing to a
RAW partition. The RandomAccessFile requires a byte array
stored in Java heap to read and write to disk. The other

two access modes operate on page-aligned native arrays.
In order to support both, we use ByteBuffers throughout
the entire logging module. The ByteBuffers used for the
RandomAccessFile are allocated in Java heap which allows
accessing the underlying byte array used to read/write to disk.
The ByteBuffers for direct access are stored in native memory
by using the method allocateDirect. The access to
the underlying byte array in native memory is done in a
Java Native Interface (JNI) module by accessing it directly
by address. The address is determined by using the call
Buffer.class.getDeclaredField("address").
To avoid calling the reflecting method every time the buffer
is accessed in the JNI module, we determine the address
once and store it alongside the reference of the ByteBuffer in
a wrapper which is used throughout the logging module. A
performance comparison between Direct-, HeapByteBuffers
and arrays can be found in Section XI-A.

Most of the ByteBuffers used to write to or read from
disk are pooled to relief the garbage collection and speed-up
the processing. The only two exceptions are the buffers used
to write to primary log (length of all log entries to write to
primary log differs significantly from write to write) and to
flush the secondary log buffer if the new bulk to write exceeds
the secondary log buffer size (e.g., 100 KB in secondary log
buffer and 150 KB in write buffer).

During fault-free execution the current position within a
log/segment and the length of a log/segment is stored in RAM
(for performance reasons). For the recovery of a failed master,
the information, stored on backup servers, is used as well.
However, in case of a power failure the lengths and positions
(irrelevant for the recovery) are unavailable. We cannot store
the lengths on disk because this is too slow. Instead, every
log’s file is initialized with zeros and every write access to
primary and secondary logs is followed by a 0 to mark the
end. Whenever a log entry is read which starts with a 0, we
know that the end of the segment/log is reached as the type
field of a log entry header cannot be 0. And we do not have
to mark the end of the version logs as the files are truncated
after every write.

1) RandomAccessFile: The RandomAccessFile is probably
the easiest and most comfortable way for random writes and
reads to/from a file in Java. The RandomAccessFile is based on
Java’s FileInput- and FileOutputStream which use
the read and write function of the operating system. In Linux
all write and read accesses are buffered by the page cache
(if the file was not opened with O_DIRECT flag), i.e., when
writing to disk the buffer is first written to the page cache and
eventually to disk (may be cached on disk as well). We discuss
the dis-/advantages of the page cache later.

We create one file for every log (primary, secondary and
version logs) in the file system (e.g., ext4). The files are opened
in read-write mode ("rw"). Before every read/write access we
seek to the position in file. The offset in the byte array can be
passed to the read/write method.

2) Direct Access: To directly access a file, we have to use
Linux functions, which cannot be accessed in Java. We use JNI
to integrate a C program which handles the low-level access
to files. Files are opened with open, read with pread and
written with pwrite. The Linux kernel functions pread and

Figure 5: Buffer and File Alignment

pwrite have the same behavior as read and write but do
not change the file pointer. The buffers’ addresses are passed
as longs and the file IDs as ints and are both managed in the
Java part. Accessing files directly, without page-cache, requires
the files to be opened with the O_DIRECT flag. We open logs
with the following flags:

• O_CREAT: create the file if it not already exists

• O_RDWR: this file is going to be read and written

• O_DSYNC: write accesses return after the data was
written (might be in disk cache). Metadata (e.g.,
timestamps) might not be updated yet

• O_DIRECT: this file is accessed directly without page-
cache

After opening the file, we write zeros to the file by calling
fallocate which also reserves the memory for the entire
log. If fallocate is not available (e.g., for ext2), we use

ftruncate, which is noticeably slower. It is mandatory to
reserve the memory for the entire log when creating/opening
the file as write accesses that require enlarging the file and
appending the data might use the page cache again.

The most important difference when accessing files directly
is that every read and write access must be page- and block-
aligned (typically, the page size is a multiple of the block-
size). This means, both the position in file and in buffer must
be page-aligned, as well as the end of the read/write access. In
Sections V-E1 to V-F, we described the different disk accesses.
In this section, we discuss the impact on the buffer and file
position and how to handle the accesses correctly.

There are only two read access patterns: (1) read an entire
segment from a secondary log and (2) read an entire version
log. In both cases, both the file position (either 0 or a multiple
of the segment size which is a multiple of the page size) as
well as the buffer position (always 0) is page-aligned. Thus,
for read accesses we do not have to consider the alignment.
The function pread might return before all data was read.
Therefore, all read accesses are executed in a loop which
breaks if all data have been read or the end of the file has
been reached.

We discuss the write access patterns separately:

Compacting a version log: Prior to the reorganization
of a secondary log, the version log is read-in, compacted
and written back to disk. In this case, the buffer position is
page-aligned because the entire buffer is written (from buffer
position 0). The file position is page-aligned as well because
we write to file position 0 (see Figure 5 situation 1). If the
end is not page-aligned (same for buffer and file), we write
the entire last page (see Figure 5 situation 2). This requires
the buffer being larger than the data. We discuss the buffer
allocation which considers writing over the data boundaries at
the end of this section. After the write access, the version log
is truncated with ftruncate.

Writing to a new segment in secondary log: When
writing to a new segment in a secondary log, the file position
is page-aligned as the position is a multiple of the segment size
(which is a multiple of the page size). If the buffer position is
0, the buffer can be written to the corresponding secondary log
like the version log (see Figure 5 situation 1 and 2). Secondary
logs are accessed segment-wise and within a segment, data is
always appended. The end of a segment is also the end of
a page. Therefore, writing to a segment does not affect the
following segment, even if the last page is filled with invalid
data to page-align the write access. The position in buffer is
not always 0. Sometimes, a segment is filled up and the rest
of the buffer is written to a new segment. In this situation, if
the position is not a multiple of the page size, we move the
complete data to the beginning of the page of the first byte
(with memmove) and write to the file from this position in the
buffer (see Figure 5 situation 3). The end is handled as before.

Flushing a version buffer to its version log: Whenever
the version buffer is full or the threshold is reached, the entire
version buffer is flushed to the end of the version log. In this
case, the buffer is aligned, but the file position most likely is
not as we append at the end of the version log and a version
number has a size of 13 bytes. Therefore, when writing to the
version log, all bytes from the last written page of the file have

to be read and put in front of the data in the ByteBuffer to
write (see Figure 5 situation 4). Then, the data is moved to the
offset in file (start position % page size) within the ByteBuffer.
All buffers have one additional free page in front of the start
position for this situation (see the end of this section). Again,
if the end position is not aligned, the last page must be written
entirely and the file is truncated afterwards.

Writing to primary log: This is mostly the same situation
as flushing to a version log. The buffer position is 0 and the
file position arbitrary (see Figure 5 situation 4). However, the
file is not truncated afterwards.

Appending to a segment in secondary log: When append-
ing to a segment, both the position in buffer as the position in
file is most likely not page-aligned. This is a combination of
situation 3 and 4 in Figure 5. However, as all bytes to write in
the buffer have to be moved anyway (in situation 4), the write
access is handled like described in situation 4 of Figure 5.

Freeing a segment in secondary log: If all log entries of
a segment are invalid during the reorganization, the segment
must be marked as free. This is done by writing a 0 to the
beginning of the segment. As it is not possible to write a single
byte, we write an entire page filled with zeros.

All write accesses are executed in a loop because pwrite
might return before all bytes have been written.

Buffer Allocation: The write accesses, as described, do
not need allocations or to copy data to other buffers. In some
cases, data is moved within the write buffer and data is read
from file to the buffer beyond the boundaries of the buffer.
This must be considered for the buffer allocation as well as
the page alignment of the buffer. All buffers used for writing to
disk are allocated in a wrapper class which stores the buffer’s
address and the ByteBuffer’s reference. The ByteBuffers are
allocated with ByteBuffer.allocateDirect() and the
byte order is set to little endian. A ByteBuffer created with
aforementioned method in most cases is not page-aligned.
Hence, we create a ByteBuffer which is exactly one page larger
than required. Then, we set the position to address % page
size and the limit to position + requested length. Finally,
we slice the ByteBuffer to create a second ByteBuffer instance
which refers to the same byte array in native memory but with
the position and limit of the first instance as beginning and
capacity.

The ByteBuffers must not only be page-aligned, but also
have one free page in front of it and the last page must be
allocated entirely, as well, if the end is not page-aligned.
Therefore, we add another page and the overlapping bytes
to the size of the ByteBuffer. Furthermore, the address and
the beginning of the sliced buffer is set to the page-aligned
offset plus one page. The additional memory is not a problem
because the buffers are rather large. For all buffers used in the
logging module, we need less than 160 KB additional memory
(see Section VI).

3) Raw Access: The RAW access is based on O_DIRECT
and shares the read and write functions. The difference is that
the direct access method uses files provided by the file system
whereas the RAW access method accesses a raw partition
instead. This way, we can reduce the overhead of a file system

Figure 6: Structure of the RAW partition

like timestamps, many indirections and journaling. Further-
more, we can optimize the structure for the only purpose of
storing logs (appends, no deletes).

The raw access requires structuring the partition to access
different logs. We divide the raw partition into three parts (see
Figure 6): a start block with a partition header (for identifying
a partition after failure), an index for finding logs and a data
block which stores the logs.

The index has a tabular form. Every row is a 64-byte index
entry containing an address within the partition pointing to a
log, the log’s name, type (primary, secondary or version log)
and size. One difficulty is that the version logs can grow and
shrink (the other logs have a fix size). Therefore, an index can
point to another index entry for indexing the next part of a log.
Initially, a version log is created by appending one index entry
and one 16 MB data block. If the version log grows beyond 16
MB, another index entry and 16 MB data block are created.
To find the second part of the version log, the first index entry
stores the address of the second index entry.

The index block is cached in RAM for fast indexing. When
the index was changed, the manipulated entries are written to
disk (page-wise). Obviously, write accesses to the index block
must be synchronized. The read and write accesses to the logs
must not.

4) Comparison of the Access Methods: The default ac-
cess method in DXRAM is direct access. Compared to the
RAW access, it is more versatile as logs can be stored on
every partition with a file system. RAW requires a dedicated
raw partition which cannot not be provided on every server.
Furthermore, the written logs can be analyzed with other
tools when stored as a file. Table I shows the dis-/advantages
of using O_DIRECT in comparison with using the page
cache. Generally, the disadvantages outweigh the advantages.
However, DXRAM’s demands are uncommon. First of all,
write and read accesses are quite large. Reads are usually at
least 8 MB, writes are as large as possible without impairing
the reliability. During a typical load phase, write accesses are
between 7 and 8 MB on average. Furthermore, a exemplary
backup server stores seven times the amount it stores in RAM
and most of the RAM is occupied by in-memory objects which
strictly limits the size of the page cache. Thus, caching is
not very effective for DXRAM’s logging. On the contrary, the
disadvantages of utilizing the page cache weigh much more.
The double buffering is not efficient and the page cache cannot
be restricted in size and may grow rapidly. Whenever the
application needs more memory and all memory is in use,
the page cache must be flushed to disk, which can take a
while. Furthermore, if the page cache contains many dirty

TABLE I: DIS-/ADVANTAGES OF USING O_DIRECT

Advantages:
Lower and predictable RAM consumption (no caching)
Synchronous access without copying
Disadvantages:
More complex to use
No performance benefits from caching
Dependent on the underlying system
No asynchronous write access supported

pages, flushing the cache can pause the entire system for
several seconds (amount of dirty pages can be configured).
Another problem is the reliability. When a server crashes
all dirty pages are lost. Since the DXRAM does not know
when the write access is flushed to disk, DXRAM and its
applications might be in an inconsistent state when rebooting.
The RandomAccessFile allows synchronous disk access, but
this is slow in comparison to the implemented access via
O_DIRECT as all data has to be copied to the page cache
anyway.

VI. LOGGING IN DXRAM - METADATA OVERHEAD

Table II shows the memory usage of all data structure
used in DXRAM’s backup system (logging, reorganization and
recovery). When a backup server stores 1000 backup zones
with an average chunk size of 64 bytes, resulting in around
1 TB on disk, the RAM usage would be 3.4 GB, which is
around 1

300 of the disk usage. All given values are optimized
for performance, i.e., if the load is very high and every update
belongs to the same backup zone, the performance would be
optimal. The best way to reduce the memory usage is to shrink
the version buffers. With 1 MB version buffers, DXRAM needs
1.4 GB or < 1

700 of the disk space and the performance would
be untouched for most situations (assuming that the access
distribution is not extreme).

VII. RELATED WORK ON SEGMENT SELECTION

In [11], Rosenblum et al. presented a file system which
is based on a log structure, i.e., file updates are appended to
a log instead of updating in-place. This allows aggregating
of write accesses in RAM in order to efficiently utilize the
disk by writing large batches. For given workloads the log-
structured file system (LFS) utilizes the disk an order of
magnitude more efficiently than an update-in-place file system.
The work was inspired by write-ahead logs of databases and
generational garbage collection of type-safe languages which
also need to clean-up in order to reclaim space by removing
invalid/outdated objects.

While not being the first developing a LFS, Rosenblum
et al. contributed by analyzing workloads to find an efficient
reorganization scheme. A fast reorganization is important
to keep a constant write throughput (provide enough free
space for writes) and to allow a fast crash recovery (less
invalid/outdated objects to process). In [11], a log is subdivided
into 8 MB segments. The reorganization selects a segment,
reorganizes it and proceeds with another segment. Important
for the efficiency of the reorganization is the segment selection.

TABLE II: MEMORY CONSUMPTION FOR N BACKUP ZONES

Data Structure Quantity Aggregated Memory Consumption
Write Buffer 1 32 MB
Secondary Log Buffers N N∗128 KB
Version Buffers N N∗3 MB
Pooled Buffers for Secondary Logs 8 ∗ 8 MB+32 ∗ 1 MB+64 ∗ 0.5 MB 128 MB
Pooled Read/Write Buffers for Version Logs 2 ∼ 50 MB
Pooled Buffer for Reorganization 1 8 MB
Pooled Buffers for Recovery 5 40 MB
Range Sizes Hash Table 1 28 KB
Range Buffers Hash Table 1 44 KB
Version Hash Table for Reorganization 1 ∼ 45 MB

Optimally, the segment with most invalid/outdated data is se-
lected for the cleaning. Rosenblum et al. stated the assumption
that "the older the data in a segment the longer it is likely
to remain unchanged" [11]. This leads to the following cost
benefit formula, which did well in the evaluation:

benefit

cost
=

free space generated ∗ age of data

cost

=
(1− u) ∗ age

1 + u

(1)

u is the utilization of the segment which is the fraction of
data still live, age is the age of the youngest block within a
segment.

Seltzer et al. did a more thorough performance analysis
on log-structured file systems showing the high performance
impact of the cleaning (more than 34 % degradation if cleaning
is necessary) [12]. In [7], Ousterhout et al. applied the ideas of
a LFS for the in-memory key-value store RAMCloud. RAM-
Cloud uses a log for storing in-memory objects and replicates
the objects segment-wise to remote disks. Furthermore, they
present a two-level cleaning approach which is a combination
of in-memory reorganization and disk compactification. In
RAMCloud, all complexity resides on the masters, storing
the objects in RAM. The backup servers are used for the
plain writing to disk. Therefore, the backup servers cannot
execute the reorganization (they miss information like the
current version numbers), but they can compact logs from
time to time. To avoid recovering already deleted objects,
RAMCloud’s masters write tombstones (difficult to remove)
to the logs. DXRAM, on the other hand, stores the in-memory
objects with a tailored memory management in RAM and
replicates the objects to backup servers as soon as they are
written. The backup servers perform the version control and re-
organization of all of its stored objects without communicating
with masters. DXRAM avoids tombstones as backup servers
can identify deleted objects through the version control.

In [13], Rumble et al. modified the cost benefit formula for
RAMCloud:

benefit

cost
=

(1− u) ∗ segmentAge

u
(2)

The first difference, regarding the denominator (from 1+u
to u), considers that RAMCloud does not have to read the
segment from disk prior to the reorganization as all segments
are stored in RAM on masters. The second change concerns
the age which is not the age of the youngest block, anymore,
but the average age of all objects in a segment. The latter
avoids the unnecessary reorganization of segments which have
a high utilization and store mostly old objects but one or a few
new objects.

VIII. SEGMENT SELECTION IN DXRAM

In DXRAM, the segment selection requires two steps
because DXRAM does not store one log with all objects of a
master but one secondary log per backup zone (a master can
have hundreds of backup zones). The first step is selecting
a secondary log to be reorganized and the second step is
selecting segments of this secondary log. The secondary log
to reorganize is chosen by its size: the largest log has the most
invalid data as backup zones are identical in size (assuming
there is no fragmentation). For selecting a segment, we cannot
adopt RAMCloud’s approach for DXRAM because instead
of an in-memory log on the masters DXRAM uses an in-
place memory management on the masters and a separated
log-structure on backups. Therefore, the log entries on the
backups are never read individually but as whole segments.
This allows us to spare storing the locations of log entries
within a log saving a lot of memory on masteres (e.g., for one
billion 64-byte chunks and three replicas: > 30 GB per master
are saved). But, without the location of invalid log entries,
it is not possible to determine the fraction of live data of a
segment. Obviously, searching for invalid versions to update
the segments’ utilizations is not an option.

In the following we use a different definition of the term
utilization (in comparison to [11] and [13]). We define the
utilization u as the plain filling degree of a segment (live,
outdated and deleted chunks).

1) Basic Approach: A secondary log is never reorganized
as a whole but incrementally by reorganizing single segments
(default: 8 MB). Similar to the secondary log selection, the
segment selection tries to find the segment with the most
outdated data. In the basic approach, we calculate a segment’s
age based on its creation and last reorganization and select
an old segment with high utilization for cleaning (max(age ∗
utilization)). We think this is a good metric as there is a

higher probability of finding outdated objects in segments that
are large and have not been reorganized for a longer period of
time. Additionally, this approach is very simple to implement
and comes at no cost as all required metadata is already
available.

2) Advanced Approach: The advanced approach tries to
improve the log selection, i.e., selected segments contain the
most outdated data, by including additional or more precise
indicators. The decision making must consider the following
constraints: (1) neither the exact location of an object nor
the segment an object is stored in is available because (2)
object specific information cannot be stored in RAM due to
the memory consumption being too high. Therefore, (3) the uti-
lization as described in [11] and [13] representing the fraction
of valid data is not available, either, because maintaining the
information would require the location of previous versions.

Utilization: The utilization (filling degree) is a good
indicator for the segment selection if all chunks are accessed
evenly because the segment with highest utilization would,
on average, have the most invalid data. But, segments with
much cold, long-living data are chosen repeatedly blocking the
reorganization of segments with (more) invalid data. Therefore,
the utilization alone is not a good indicator in every scenario.

Age: In Section VIII-1, we defined the age of a segment
as the time since the last reorganization or creation. While this
approach is easy to implement, the validity of the age is highly
limited as the age of long-living objects is not covered (the
time is reset regardless of whether much data was discarded
or not) and a freshly reorganized segment is not necessarily
used next to add new objects. The least recently reorganized
segment might even store the same still valid objects. In this
section, we discuss an approach to determine a segment’s age
based on the age of all containing objects.

Rosenblum et al. state that "the older the data in a segment
the longer it is likely to remain unchanged" [11]. This claim
cannot be transferred to DXRAM because it is based on the
assumption that updated and deleted data is marked invalid in
the segment headers and the age is determined for the valid
data, only. In DXRAM, instead, invalid data is exclusively
detected and discarded during the reorganization, i.e., a seg-
ment’s age is the average age of all, valid and invalid, objects.
Without the implication regarding the validity of an object,
an object’s age has to be interpreted differently: typically,
older objects are more likely to be deleted or updated. Thus, a
segment with more old objects might be the better choice for
the reorganization. But, often objects can be split into the two
categories: hot and cold data. Cold data consists of long-living
objects that are unlikely to be replaced/removed. Therefore, a
segment with very old objects might not be the best choice.
Altogether, the age of an object is an important indicator for
the validity of an object.

Average age per entry: To get a more accurate repre-
sentation of a segment’s age, we store a 4-byte timestamp
in the log entry header of all objects (stored in front of the
object on disk). An empty segment has the age 0. After the
reorganization of a segment its age is defined by:

asegi =

n∑
j=0

t− tcj |cj valid

m

(3)

n is the number of objects in segment i and m the number
of valid objects (c for chunk). As every object ages between
two reorganizations, when selecting a segment, we adjust the
average age of a segment by adding the time since its last
reorganization.

a′segi = asegi + (t− treg) (4)

Assuming we add a new object (cx) at the same time the
reorganization is executed, then the age is modified in the
following way:

asegi = asegi +
t− tcx − asegi

n+ 1

= asegi −
asegi
n+ 1

(5)

When adding an object after the reorganization, we have
to consider the time since the last reorganization to avoid
increasing the age too much during the segment selection as
a segment’s age is based on all objects’ ages at the time of
the last reorganization. The object did not exist at this time.
Therefore, we have to subtract the time difference.

asegi = asegi −
asegi + (t− treg)

n+ 1
(6)

Average age per byte: Objects might differ significantly
in size. To avoid missing segments with large old and invalid
objects (to be discarded) and many small young objects
(decreasing the age), we calculate the age per byte and not
per chunk. Furthermore, we exclude every object which is
older than a predefined threshold and still valid (hot-to-cold
transformation).

asegi =

n∑
j=0

(t− tcj) ∗ scj |cj valid and t− tcj < tmax

m∑
j=0

scj

(7)

asegi = asegi −
(asegi + (t− treg)) ∗ scx

usegi ∗ s+ scx
(8)

s is the segment size (e.g., 8 MB) and scj the size of chunkj .
usegi is the utilization (filling degree) of the segment.

Utilization & Age: The final segment selection is based
equally on the utilization and age of a segment:

seg = i ∈ {1, ..., l}|max(useg1 ∗ a′seg1 , ..., usegl ∗ a′segl) (9)

l is the number of segments of the secondary log, excluding
segments which have not been used yet (at the end of the log).

Timestamps: The used 4-byte timestamps show the
elapsed seconds since the secondary log creation. An overflow
occurs after more than 68 years and affects the segment
selection (wrong decisions) for a short time, only.

IX. RELATED WORK ON COPYSETS

In [14], Cidon et al. present a replication scheme which,
in comparison to random replication, significantly reduces the
frequency of data loss events in exchange for a larger amount
of lost data in case of a data loss event. The authors motivates
that restoring the data after a data loss event has fixed costs
regardless of the amount of lost data. Thus, losing a large
amount of data seldom is more attractive for cluster operators
than losing small amounts frequently. The probability for data
loss is rather high with random replication in large clusters
because, assuming the number of objects is high, every master
most-likely stores replicas on every available backup server.
Thus, a failure of x backup servers, where x is the number
of replicas for every object, results in a data loss event.
The basic idea in [14], is to limit the number of backup
servers one master replicates its data to. The limited set of
available backup servers for a master is called a copyset.
Subsequently, data loss is possible, if a set of x backup servers
of one copyset crash, only. Assuming the number of backup
servers per copyset R (which is also the replication factor)
is much lower than the total number of backup servers N ,
the probability will be much lower. The authors exemplify
two scenarios to prove their statement: (1) in a 5000-node
RAMCloud cluster, copyset replication reduces the data loss
probability from 99.99% to 0.15%. (2) In a HDFS cluster with
a workload from Facebook, the probability is reduced from
22.8% to 0.78%.

The copysets are created by permuting the N backup
servers and assigning R consecutive backup servers from the
permutations to a copyset. The number of permutations P is
determined by:

P = ceil(S/(R− 1)) (10)

R is the number of servers per copyset and S is the scatter
width that defines the number of backup servers one master
replicates its data to. If the scatter width is higher, more
permutations are generated which results in one server being
in more copysets.

Example: N = 6, R = 3, S = 4. The number of permu-
tations is 2 then and two permutations could be 5, 1, 3, 4, 6, 2
and 6, 1, 2, 3, 4, 5. Hence, the copysets are {5, 1, 3}, {4, 6, 2},
{6, 1, 2} and {3, 4, 5}. To determine the backup servers for an
object, the first backup server is chosen randomly. Afterwards,
one copyset that includes the randomly chosen backup server
is selected and the other servers in the copyset are assigned
as additional backup servers. In the example above, if backup
server 3 is chosen randomly, the other backup servers are either
5 and 1 or 4 and 5 (scatter width in example is 3, only, but with
N >> S a scatter width of 4 is very likely). Every primary
backups’ files are distributed to the same set of backups (1, 4
and 5). Only, if all nodes from one copyset fail simultaneously
data loss occurs. The scatter width is important for the recovery

Figure 7: Copyset Determination in HDFS

as it defines the number of servers which can recover a failed
server in parallel.

In the next two sections, based on X, we further discuss
copysets on two systems: HDFS and RAMCloud [14]. In
Section X-B, we use the same example to present the copysets
implementation of DXRAM.

A. Copysets in HDFS

The Apache Hadoop Distributed File System (HDFS) is
based on the Google File System (GFS) [15] but has significant
differences regarding the node allocation and chunk location
management. HDFS is part of the open source programming
MapReduce framework Hadoop. HDFS was designed to run on
commodity hardware and applications with big data sets [16].
It has a master-slave architecture with a single master, called
NameNode, and multiple slaves. The NameNode is responsi-
ble for the metadata and the slaves, also called DataNodes,
for storing the data. For fault-tolerance reasons the data is
replicated to other DataNodes, in 64 MB blocks.

When using copysets for HDFS, the NameNode creates
the copysets at system startup like described in the previous
section. Every time a new file has to be stored, the NameNode
chooses the first location randomly and then R−1 DataNodes
belonging to one of the copysets the first DataNode is in
(Figure 7).

When a new DataNode is added to the system, the Na-
meNode generates S/(R− 1) new copysets which contain the
new server. When a server crashes, it is replaced randomly
in all copysets. In the example from the previous section, if
DataNode 2 crashes, the copyset could be modified in the
following way: {5, 1, 3} {4, 6, 2 3} {6, 1, 2 5} {3, 4, 5}.

Subsequently, if another DataNode with ID 7 is added, two
additional copysets would be generated, for example: {7, 1, 4}
and {3, 7, 5}.

B. Copysets in RAMCloud

RAMCloud is described in Sections III and VII.

In RAMCloud copysets are created on the coordinator.
Whenever a master creates a new in-memory object, it queries
a set of backup servers from the coordinator (Figure 8). The
first backup server is chosen randomly, the others belong to a
copyset containing the first backup server. Every primary back-
ups’ objects are distributed to the same set of backup servers.
But, every masters’ in-memory chunks are scattered across

Figure 8: Copyset Determination in RAMCloud

the cluster. Only, if all nodes from one copyset and the master
fail simultaneously data loss occurs. The scatter width is not
important for recovery as every master replicates its chunks to
many copysets. Therefore, it is always S = R−1 = 2 and the
recovery time is nearly unaffected (1.1s instead of 0.73s [14]).

In HDFS for every new DataNode S/(R− 1) copysets are
added. In RAMCloud, one has S/(R − 1) = 1 and instead
of creating one new copyset directly, a new copyset is created
when three new servers joined (all three servers are in the new
copyset). When a server fails, it is replaced randomly like in
HDFS.

X. COPYSET REPLICATION IN DXRAM

In this section, we describe the most relevant aspects of
DXRAM’s backup zones in Section X-A, followed by the
copyset implementation of DXRAM in Section X-B.

A. Backup Zones

In order to enable a fast parallel recovery, in DXRAM,
the chunks of one server are partitioned into several backup
zones (with a size of 256 MB) which are scattered across
potentially many backup servers (e.g., a 64 GB server assigned
with 256 different backup servers). Every server determines
its own backup zones and informs its associated superpeer
on each backup zone creation. This approach avoids global
coordination regarding backup zone selection between servers.
We use a replication factor of three by default but it is
configurable.

Each backup zone is identified by a zone ID (ZID). The
ZID alone is not globally unique but it is in combination
with the creator’s node ID derived from the context. A new
backup zone is created whenever a chunk does not fit into
any existing backup zone. If chunks were deleted, a backup
zone will be gradually refilled with new chunks. Furthermore,
chunks with reused CIDs are stored in the same backup zone
as before, if possible, to minimize meta-data overhead. Three
backup servers are assigned to each backup zone with a fixed
replication ordering guaranteeing consistency. According to the
ordering, the first backup server receives all backup requests
first, the second afterwards and so on. Furthermore, backup
requests are bundled whenever possible. If there are less
than three servers currently available for backup (e.g., during
startup), the next joining server will be used and receives all
previously replicated chunks of this zone.

A server notifies its superpeer whenever a new backup zone
was created or a backup server was changed. This results in a

Figure 9: Copyset Determination in DXRAM

single message for every 256 MB (e.g., once after 3.5 × 106

64-byte chunks have been created) and a few messages per
server failure (the failed backup server has to be replaced),
only. To further reduce memory consumption on superpeers
(resulting in just 10 bytes per backup zone in the best case),
a superpeer does not store backup zone affiliations of chunks.
This information is exclusively stored on the owner of a chunk
as only this server must know the corresponding backup zone
of its chunks for sending backup updates.

B. Copysets in DXRAM

DXRAM does not have a coordinator, like the NameNode
in HDFS or the coordinator in RAMCloud, but a set of servers
responsible for the metadata (superpeers) and another set
responsible for storing the data and backups (peers). Hence, we
decided to create the copysets on every master independently
but consistently by using the same input and algorithm to
create copysets (no coordination needed). Consequently, every
master also determines its own backup servers accordingly
by choosing the primary backup server randomly and all
other backup servers from one copyset containing the primary
backup server (Figure 9). Optionally, the primary backup
server can be selected disjunctive and/or locality-aware. An-
other important difference is that DXRAM determines backup
servers not for single chunks but for backup ranges containing
many chunks (e.g., 256 MB). Therefore, the maximal number
of copysets is smaller, if random replication is used. Still, with
copyset replication the probability for data loss can be reduced.

For joining servers, we use the same strategy as RAM-
Cloud: we wait for R new servers to join and, then, create
a new copyset containing all three servers. When a server
crashed, it is replaced in all copysets. However, because of
the decentralized copyset determination, we have to replace
the failed server consistently on all masters. We do this, by
using a seed which is based on the copyset (aggregated node
IDs) for the pseudo random number generator.

The initial copyset determination is based on the nodes-
file (a file used for startup which lists all servers participating)
which is identical for all servers. Further un-/available servers
are propagated by join and failure events which are distributed
among superpeers first and to the peers afterwards. But,
copysets can differ when servers are added because masters
might detect the joining servers in different order. This case is
rather unlikely but can occur from time to time. Therefore, the
number of copysets (globally) can be higher than N/R but still
is a lot smaller (for N >> S) compared to random replication
which is

(
N
R

)
(e.g., with 512 backup servers >= 171 for

copyset replication and
(
512
3

)
= 22, 238, 720 for random

replication; the number of combinations is limited by the
number of backup zones in the system, for example 262,144).

In DXRAM, copyset replication can be combined with
additional replication schemes like disjunctive first backup
servers (to increase the throughput of the parallel recovery)
and/or locality-awareness.

XI. EVALUATION

In this section, we evaluate the byte array access methods
as well as the disk access methods. Furthermore, we provide
a thorough performance analysis on the logging and reorgani-
zation of DXRAM. The latter also includes a comparison of
both presented segment selection strategies.

All tests were executed on our non-virtualized cluster with
56 Gbit/s InfiniBand connection and servers with PCI-E nvme
SSDs (400 GB Intel DC P3600 Series), 64 GB RAM, Intel
Xeon E5-1650 CPU (six cores) and Ubuntu 16.04 with kernel
4.4.0-64.

A. Byte Array Access

Log entries are almost always aggregated in larger buffers
in the logging module. In order to find the best way to handle
these buffers, we evaluated the different byte array access
techniques provided by Java. We wrote a benchmark which
writes to and reads from 8 MB buffers by using the access
specific methods. The techniques are:

• DirectByteBuffer BE: A ByteBuffer allocated outside
the Java heap with big endianness.

• DirectByteBuffer LE: A ByteBuffer allocated outside
the Java heap with little endianness (native order).

• HeapByteBuffer BE: A ByteBuffer allocated in the
Java heap with big endianness (order of Java heap).

• HeapByteBuffer LE: A ByteBuffer allocated in the
Java heap with little endianness.

• Array: A byte array in Java heap.

• Unsafe: A ByteBuffer allocated outside the Java heap
with little endianness, accessed with methods provided
by sun.misc.Unsafe.

Every buffer is filled first and then read entirely. We
write/read a long value, followed by a short and three byte
values, which is the access pattern of the version buffer and
is also very similar to the access patterns of the primary and
secondary log buffers. For representative results, we fill and
read the buffers 1,000 times and ignore the first 100 iterations.
In every iteration, we access another buffer. The buffers are
allocated at the beginning of the benchmark to simulate the
buffer pooling. For Java’s Unsafe access, we also do boundary
checks before every read and write access. Every test was
executed five times.

Figure 10 shows the results of the presented benchmark.
The benchmark runs are very consistent for all access methods
but the DirectByteBuffer with big endianness. The native
memory order on the used server is little endian. Therefore,
the high variance can be explained by the byte swapping prior
to every write access which is a rather CPU intense step. On
the contrary, the Java heap is big endian. Thus, the variance of
the HeapByteBuffer with little endianness is also higher than

0

100

200

300

400

500

600

700

800

900

µs

Write Read

Figure 10: Evaluation of different byte array access methods.
Writing and reading an 8 MB buffer (one to eight bytes per
access) 900 times

with big endianness. But, the difference is minor in this case.
Nonetheless, using the endianness of the underlying memory
for the ByteBuffer is advisable.

The DirectByteBuffer performs considerably better than the
HeapByteBuffer and the heap array. Manipulating the data with
Unsafe is even faster than with the DirectByteBuffer’s meth-
ods. Subsequently, for the RandomAccessFile which needs
a heap array for writing and reading, the fastest technique
is the array itself. For O_DIRECT and RAW access which
requires the data to be off Java heap, Unsafe is the fastest
choice. However, as the performance is relatively close, e.g.,
writing an entire 8 MB segment with longs, shorts and bytes
is 120 ns slower with a DirectByteBuffer than Unsafe, and in
order to reduce complexity (no wrapper, branching, dedicated
serialization methods or boundary checks) and increase main-
tainability (debugging of segmentation faults is bothersome,
future of Unsafe is unclear), we use ByteBuffers (Direct-
ByteBuffer LE for O_DIRECT/RAW and HeapByteBuffer BE
for RandomAccessFile) for the logging module of DXRAM.
Furthermore, one has to consider that this are the results of
a micro benchmark and the real application’s behavior is not
identical.

B. Logging and Reorganization

In this section, we evaluate the logging and reorganization
performance of DXRAM. First, we analyzed the maximum
throughput of the SSD first. We used a SSD of the type Intel
DC P3600 Series with a capacity of 400 GB. It provides a
maximum throughput of 2.6 GB/s for read accesses and 1.7
GB/s for write accesses. The random I/O throughput of 4 KB
chunks is capped at 450 MB/s for reads, 56 MB/s for writes
and 160 MB/s for 70% reads and 30% writes. We measured the
SSD performance with dd by writing 1,024 8 MB (default seg-
ment size) files (/dev/zero) with direct access.The results
for 8 MB write accesses are significantly below the maximum
throughput, showing 914 MB/s. With two processes writing
concurrently, the throughput improves to 1,116 MB/s. With
more processes the throughput is consistent (e.g., 1,170 MB/s
with four processes). SSDs operate highly parallel and both the
nvme driver (no I/O scheduler) and the Linux kernel (Multi-
Queue Block IO Queueing [17]) take advantage of that if
read/write accesses are executed in parallel. DXRAM benefits

0

500

1000

1500

2000

2500

3000

 32 64 128 256 512 1024 2048 4096 8192 16384
 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

T
h
ro

u
g

h
p

u
t

in
 c

h
u
n
ks

/s

Chunk Size

RAF
RAF ForcedWrite

RAF ForcedWrite + LowMem
RAF DSYNC

ODIRECT

Figure 11: Evaluation of different disk access methods. Every
chunk is written once, in sequential order. Solid lines: through-
put in MB/s, dashed lines: throughput in chunks/s

from the parallelism by logging, reorganizing, recovering and
reading/writing versions concurrently. When writing smaller
chunks to disk, the throughput degrades, e.g., 477 MB/s for 8
KB chunks.

1) Logging: Figure 11 shows the logging throughput (in
MB/s and chunks/s) of the RandomAccessFile and O_DIRECT
for chunk sizes from 32 bytes to 16 KB. We evaluated the
RandomAccessFile in four different configurations explained
in the next paragraphs: (1) without limitations (RAF in Figure
11), (2) with forced writes (RAF ForcedWrite), (3) with forced
writes and with limited memory available (RAF ForcedWrite
+ LowMem) and (4) in synchronous mode (RAF DSYNC).

In order to provide resilience, DXRAM requires to store
logged chunks persistently without much delay. However, In
the default configuration, the OS caches many dirty pages
in the page cache before eventually flushing the pages to
disk. Therefore, when evaluating with forced writes, the OS is
configured to flush dirty pages of the page cache reaching 8
MB, if possible, and immediately flush when 32 MB is dirty.
The OS’s flushing threads are also configured to flush more
frequently (every 100 ms) than normal regardless of the two
thresholds.

Even with a limited amount of dirty pages in the page
cache, the page cache might grow critically for a memory-
heavy application, i.e., the page cache occupies memory the
application needs requiring to flush the page cache which
might require many seconds. Therefore, we tested the logging
with a limited amount of memory available by starting a pro-
gram apriori which occupies most of the memory (92.5%/59.2
GB).

Finally, the RandomAccessFile was opened in synchronous
mode (rwd). In this mode, a write access returns after the
data was written to disk. In contrary to rws, the file system’s
metadata (e.g., timestamps) might not have been updated. In all
other test, the RandomAccessFile was opened with rw which
is asynchronous.

The benchmark used to determine the logging throughput
(and reorganization throughput in Section XI-B2), creates ten
chunks (number configurable) and serializes them into a Di-
rectByteBuffer. The buffer is passed to the logging component

to be logged. For the next iteration the chunk IDs are incre-
mented and the buffer is logged, again. This is repeated until
the predefined number of chunks (e.g., 400,000,000 32-byte
chunks) has been logged. The benchmark does not involve the
network or any other components or services from DXRAM
but the logging component. Every experiment is executed three
times and old logs are removed and the SSD is trimmed
(fstrim) between runs to get consistent results.

The RandomAccessFile without limitations (RAF) is the
fastest disk access mode for chunks larger than 256 bytes. The
disk is saturated at 1.7 to 1.8 GByte/s with 2 KB (and larger)
chunks. The throughput is even higher in some cases than the
maximum throughput specified by the manufacturer showing
that not all data has been written to disk when the benchmark
was finished. Additionally, the good performance comes at the
cost of the page cache using more than 30 GB of the main
memory. When limiting the amount of dirty pages, as expected,
the performance degrades to around 1 GB/s for large chunks.
Increasing the memory pressure does not further degrade the
performance in this scenario because the logged data is never
read, rendering the read cache useless (it is still larger than 30
GB). Using the RandomAccessFile in synchronous mode has
a large penalty on the throughput, which is reduced to around
600 MB/s. When writing to disk with O_DIRECT, the access is
synchronous as well, but the performance is considerable better
than the synchronous RandomAccessFile as double buffering
is prevented. Actually, up to 256-byte chunks the logging
throughput is better than all RandomAccessFile configurations
mostly due to the DirectByteBuffer being faster than the
HeapByteBuffer (see Section XI-A). For the targeted chunk
sizes of 32 to 256 bytes, DXRAM is able to log more than three
million chunks per second, peaking at around 4.64 million 128-
byte chunks per second. With around 930 MB/s for 2 to 16 KB
chunks the DXRAM’s logging performance with O_DIRECT
is equal to copying 8 MB chunks with dd and a single thread
(914 MB/s) but is much faster than copying 8 KB chunks with
dd (477 MB/s).

2) Reorganization: For evaluating the reorganization or
more specific the logging performance when the reorganization
runs concurrently, we use four different access distributions:
sequential, random, zipf and hotNcold (see enumeration be-
low). The reorganization tests have two phases. First, all
chunks are written sequentially to disk (equal to the logging
test). Second, twice as many chunks are updated according to
the access distribution. For example, when using the sequential
distribution, all chunks are written three times in sequential
order. With random distribution, on the other hand, all x
chunks are written sequentially and then 2 ∗ x chunks are
chosen randomly to be updated. Chunks are written in batches
of ten to reduce the overhead for the benchmark itself. The
batch size does not affect the logging performance because
every chunk needs to be processed solely by the log component
(to create a log entry header with unique version, checksum
and more).

1) Sequential: Updating the chunks in ascending order from
first to last in batches of ten. Repeat until number of
updates is reached.

2) Random: Choosing a chunk randomly and update it with
the nine following chunks (locality). If the randomly
chosen chunk is at the end of a backup zone, the nine

preceding chunks are updated. Repeat until the number
of updates is reached.

3) Zipf: Every chunk has an allocated probability to be
selected according to the zipf distribution. Select nine
succeeding or preceding chunks to complete the batch.
Repeat until the number of updates is reached.
The zipf distribution follows Zipf’s empirical law which
is a power law probability distribution studied in physical
and social sciences. The zipf distribution allocates the fre-
quency (probability to be chosen) inversely proportional
to the rank in the frequency table. The nth most likely
chosen element has the probability:

1
∑N

1
1
ne

∗ 1

ne (11)

with e being the skew. The benchmark has a freely
selectable skew, but we consistently used 1 (harmonic
series) for the evaluation which is close to the distribution
in social media networks [18]. With the skew 1, the first
element has a probability of nearly 7% to be chosen, the
second 3.5%, the third 1.7%.
Efficiently accessing chunks with zipf distribution re-
quires to generate the distribution before starting phase 2
of the benchmark because calculating the distribution on-
the-fly is either too slow or mitigates the distribution. In
[19], the authors present a fast method to choose elements
according to the zipf distribution without creating the
distribution apriori. However, this method allocates the
highest probability to the first element, the second highest
to the second element and so on. Thus, the values need to
be hashed for scrambling the elements. This might destroy
the zipf distribution if the hash function does not scatter
uniformly (the value range is user-defined). Instead, we
create two arrays prior to phase 2 of the benchmark.
The first array contains the aggregated frequencies for
all chunks, i.e., the value at index x is the probability
of choosing the elements 0 to x − 1 according to the
zipf distribution. The second array is a permutation of
all chunk IDs. To choose a chunk, a random value p in
[0.0, 1.0) is generated. Afterwards, we search for p or the
succeeding value within the first array (binary search).
The index i of the searched value is used to index into
the second array. Finally, the chunk ID at i is selected to
be updated.

4) HotNcold: Divide all chunks into two partitions: hot and
cold. The hot partition contains 10% of the chunks (the
cold 90%) and 90% of all updates are chosen from the
hot partition (10% from the cold partition). Select nine
succeeding or preceding chunks to complete the batch.
Repeat until the number of updates was reached.
We create two arrays prior to phase 2 of the benchmark.
The first array has N ∗0.9 entries and the second N ∗0.1.
We store all cold chunks in the first array and the hot
chunks in the second array. Whether a chunk is hot or cold
is decided by generating a random value in [0.0, 1.0) for
every single chunk. If the value is < 0.1 it is considered
hot and its chunk ID is stored in the second array.
Otherwise, the chunk is cold and stored in the first array.
During phase 2, a chunk is chosen by generating a random
value in [0.0, 1.0). If the value is < 0.9, we choose a
random chunk from the second array (hot), otherwise we
choose a chunk from the first array (cold).

0

100

200

300

400

500

600

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

Sequential ODIRECT
Sequential RAF

Random ODIRECT
Random RAF

Zipf ODIRECT
Zipf RAF

HotNCold ODIRECT
HotNCold RAF

Figure 12: Evaluation of the reorganization. Every chunk is
written once, in sequential order. Then, twice as much updates
are written according to given distribution

Figure 12 shows the logging throughput during the reorga-
nization test with 200,000,000 64-byte, 50,000,000 256-byte
and 12,500,000 1024-byte chunks stored in 56 backup zones.
As chunks are in average updated three times during all runs,
the reorganization has to free space for updates to be written.
More precisely, during phase 1 the reorganization idles as
none of the secondary logs exceed their backup zone size,
which indicates that the logs have no invalid data. In phase
2, the reorganization must free at least the amount of chunks
written in phase 1 to have enough space in the logs to write all
updates. We compare the RandomAccessFile with O_DIRECT.
In contrary to the logging tests, we evaluated the RandomAc-
cessFile with forced writes and memory pressure (between
87.5 and 92.5% depending on the memory consumption of
the distribution), only, because the other configurations are not
applicable or too slow for real-world applications. Phase 1 is
not included in the throughput measurements.

Again, the direct access is considerably faster for small
chunks. For 64-byte chunks, around 2 ∗ 106 chunks can be
written to disk per second for all distributions. With larger
chunks, the RandomAccessFile surpasses O_DIRECT for all
distributions but the sequential distribution. This is because
(1) the write accesses for each backup zone are much smaller
because they are scattered across all backup zones. Therefore,
buffering write accesses in the page cache improves the
throughput (but increases the probability of data loss). (2)
The page cache stores frequently accessed pages of the disk
which can improve the throughput of the reorganization, too.
But, this comes at a high price because the page cache puts
the system under a high memory pressure which can lead
to processes even being killed by the operating system what
happened several times during the evaluation. From here on,
all tests were executed with O_DIRECT access as the partly
better performance of the RandomAccessFile is outweighed
by the problems described before and due to DXRAM being
design for very small chunks which are logged/reorganized
faster with O_DIRECT.

For all distributions but the sequential distribution, the
performance degradation in comparison to the logging test
is caused by the arbitrary access to backup zones which
make the aggregation much less efficient. For example, if
200,000,000 64-byte chunks are being accessed randomly, the

100

150

200

250

300

350

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

Activation Threshold: 55%
Activation Threshold: 60%
Activation Threshold: 65%

Prompt Threshold: 65%
Prompt Threshold: 75%
Prompt Threshold: 85%

Figure 13: Evaluation of the reorganization thresholds with
random distribution.

probability is very high that all 56 backup zones are contained
in every flush of the write buffer. During the loading phase
(sequential), at most two backup zones are contained producing
much larger write accesses. During all runs with random and
hotNcold distributions, not one log was filled-up. With the
zipf distribution the writer thread was blocked once in a while
due to the logs storing the hot spots being full (the two to
three most frequently updated chunks). Therefore, the zipf
distribution is a little slower than the random and hotNcold
distributions. For larger chunks, the three distributions are
still restrained by the scattered access. The throughput of the
sequential distribution, on the other hand, is dictated by the
reorganization throughput. Thus, the throughput is worse for
small chunks but improves significantly for larger chunks due
to the reorganization being more efficient for larger chunks.

In order to log two million 64-byte chunks per second in
phase 2, the reorganization has to free around two million
chunks per second as well. With a utilization of 80% this
results in reading 5.33 million and writing 4 million chunks
per second. Additionally, version numbers have to be read
from disk for the reorganization and written to disk after the
reorganization and during the logging. For 64-byte chunks,
this are around 3.3 million version numbers per log (without
invalid entries).

Activation of the Reorganization: We implemented three
mechanisms to activate the reorganization: (1) if a log is
larger than a given threshold (e.g., 60%), it is available for
the periodic reorganization, which selects the largest log for
reorganization. (2) If the log size exceeds another threshold
during writing to it (e.g., 80%), the writer thread prompts the
reorganization by registering a reorganization request for the
specific log. The reorganization thread prioritizes requests over
the largest log, but finishes reorganizing the currently selected
log first. At last, (3) if the writer thread is not able to write to a
log because it is full or the fragmentation is too high to write
all log entries, the writer registers an urgent reorganization
request and awaits its execution. Urgent requests have the
highest priority and are processed as soon as possible.

Figure 13 shows the logging throughput for a random
distribution with varying activation (case 1) and prompt (case
2) thresholds. An activation threshold of 65% and an prompt
threshold of 75% is the best choice in this scenario. With
a higher activation threshold (beyond 65% was not tested),

0

200

400

600

800

1000

1200

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

8 MB - Load Phase
16 MB - Load Phase
32 MB - Load Phase

8 MB - Update Phase
16 MB - Update Phase
32 MB - Update Phase

Figure 14: Evaluation of the reorganization with different
segment sizes

logs are reorganized too late which increases the pressure
on the reorganization. If many logs breach the threshold in
a short time, the reorganization cannot keep pace. With a
lower activation threshold, too much work is done with a low
utilization which is not efficient. With 55% an average of 2.98
MB are freed per reorganized segment, with 65% 3.95 MB.
With a large prompt threshold, the reorganization might miss
reorganizing a filling up log. If the prompt threshold is too
low, the request queue might grow large and not necessarily
the log with most pressure is reorganized but the first reaching
the threshold (could still be 65% whereas another log could
be at 95%, for instance). We uses 60% activation and 75%
prompt thresholds throughout all other tests.

Segment Size: We also evaluated the impact of the segment
size on the logging and reorganization performance (Figure
14). Interestingly, the reorganization benefits from larger seg-
ment sizes whereas the logging performance degrades. Larger
segments allow the reorganization to process more log entries
between I/O accesses which improves the performance. During
the loading phase (sequential distribution), write accesses can
be aggregated very efficiently because all chunks in the write
buffer belong to one or two backup zones, only. However,
while the average write access size with 8 MB segments is
around 76% of the segment size (6.06 MB), it is reduced for
32 MB segments to 51% (17.23 MB; with 16 MB segments:
54%, 9.06 MB). This results in more often stocking up the
larger segments which is slower than writing to the beginning
of a segment as the data likely needs to be moved within the
buffer. This also affects the reorganization, i.e., segments with
higher utilization are beneficial for the reorganization. In all
other tests, we use a segment size of 8 MB because it is a good
compromise between logging and reorganization performance
(especially for small chunks) and it has the lowest memory
consumption as pooled buffers are smaller.

Two-Level Logging: In Figures 15 and 16, we evaluated
the two-level logging by varying the secondary log buffer sizes.
The size of the secondary log buffers impacts the logging
significantly as it defines the threshold for log entry batches to
be written to secondary log or to the primary log and secondary
log buffer. For example, if the secondary log buffers have a size
of 128 KB, all sorted and aggregated batches from the write
buffer smaller than 128 KB are written to primary log and
secondary log buffer and all batches equal or larger than 128

0

50

100

150

200

250

300

350

400

450

 64 256 1024

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

A
v
e
ra

g
e
 W

ri
te

 A
cc

e
ss

 S
iz

e

Chunk Size

0 KB
128 KB
512 KB

2048 KB

Figure 15: Evaluation of the two-level logging with random
distribution and varying secondary log buffer size, 200,000,000
chunks. Solid lines: throughput in MB/s, dashed lines: average
write access size

0

50

100

150

200

250

300

350

400

 64 256 1024

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

T
h
ro

u
g
h
p
u
t

in
 M

B
/s

A
v
e
ra

g
e
 W

ri
te

 A
cc

e
ss

 S
iz

e

Chunk Size

0 KB
128 KB
512 KB

2048 KB

Figure 16: Evaluation of the two-level logging with ran-
dom distribution and varying secondary log buffer size,
2,000,000,000 chunks. Solid lines: throughput in MB/s, dashed
lines: average write access size

KB are directly written to the specific secondary log. With a
size of 0, all log entries are flushed to secondary logs disabling
the primary log and secondary log buffers.

Figure 15 shows that the two-level logging with secondary
log buffer sizes larger than 512 KB increases the throughput
by 20 to 25% for the random distribution and 200,000,000 64-
byte chunks and up to 117% for 1024-byte chunks. This is due
to the write accesses being much larger (dashed lines in Figure
15). However, using very large secondary log buffers increases
the wear on the disk as many log entries are written twice (first
to primary log, later to secondary log). Furthermore, the data
processing is more time consuming than writing to disk in this
scenario. This would not be the case for slower disks making
smaller secondary log buffers more attractive. In this workload,
using 128 KB secondary log buffers is as fast as disabling the
two-level logging because the average batch size in the write
buffer is considerably larger than 128 KB.

To decrease the log entry batch sizes, we repeated the test
from above with 2,000,000,000 64-byte chunks (500,000,000
256-byte and 125,000,000 1024-byte chunks). Figure 16 shows
that the performance advantage of utilizing the two-level
logging increases with more chunks and thus smaller batch

0

100

200

300

400

500

600

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

Basic
Timestamps - HTCTT 30 Seconds
Timestamps - HTCTT 90 Seconds

Timestamps - HTCTT 270 Seconds
Random Selection

Figure 17: Evaluation of the reorganization with timestamps.
Sequential access distribution

0

50

100

150

200

250

300

350

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

Basic
Timestamps - HTCTT 30 Seconds
Timestamps - HTCTT 90 Seconds

Timestamps - HTCTT 270 Seconds
Random Selection

Figure 18: Evaluation of the reorganization with timestamps.
Random access distribution

sizes when using the random distribution, as expected. With
128 KB secondary log buffers, the two-level logging improves
the performance for 64-byte chunks by more than seven times
in comparison to a normal logging scheme.

The random distribution is the worst case scenario regard-
ing the decrease of batch sizes with increasing number of
chunks because it scatters the accesses uniformly across all
logs making aggregation less efficient with many chunks. The
sequential distribution is unaffected by the number of chunks,
the zipf and hotNcold distributions are less affected than the
random distribution.

C. Timestamps

Figures 17 to 20 show the logging throughput with ongoing
reorganization. In contrary to Section XI-B2, we used three
different segment selection strategies: basic (time since last
reorganization or creation ∗ utlization), with timestamps
to determine the average age of a segment (age ∗ utilization)
and random selection. We also varied the hot-to-cold trans-
formation threshold (HTCTT) to study its impact on the
performance.

Surprisingly, Figures 17 to 20 show that the segment
selection has a negligible impact on the overall performance.
For the sequential, random and hotNcold distributions all five
selection strategy are equal regarding the logging throughput
with ongoing reorganization. Only, for the zipf distribution, the

0

50

100

150

200

250

300

350

 64 256 1024

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

Chunk Size

Basic
Timestamps - HTCTT 30 Seconds
Timestamps - HTCTT 90 Seconds

Timestamps - HTCTT 270 Seconds
Random Selection

Figure 19: Evaluation of the reorganization with timestamps.
Zipf access distribution

0

50

100

150

200

250

300

350

 64 256 1024

T
h
ro

u
g
h
p

u
t

in
 M

B
/s

Chunk Size

Basic
Timestamps - HTCTT 30 Seconds
Timestamps - HTCTT 90 Seconds

Timestamps - HTCTT 270 Seconds
Random Selection

Figure 20: Evaluation of the reorganization with timestamps.
HotNCold access distribution

throughput differs. However, the least elaborated strategy has
the highest throughput in this scenario.

The timestamp selection has to be considerably better than
the other strategies to outweigh the additional four bytes
in the log entry headers. This is not the case here. For
the random and hotNcold distribution the reorganization is
not under pressure because the logging is restrained by the
scattered access. Therefore, the segment selection cannot make
a difference in this scenario. For the sequential distribution, the
logging throughput is not restrained, but logs fill-up one after
another, quickly triggering urgent requests for the current log.
An urgent request initiates a reorganization of all segments
in ascending order rendering the segment selection strategy
irrelevant. For the zipf distribution, selecting older segments
can be misleading because new segments of logs with a
hotspot contain many already outdated versions of the very
frequently updated hotspot. Hence, selecting a new segment
for the reorganization can be better in this scenario. A low
HTCTT has a positive affect on the segment selection as older
segments appear much younger (older objects are left out for
the age determination), in some cases even younger than a new
segment.

D. Logging Remote Chunks

In this section, we evaluate the logging performance with
chunks transferred over an InfiniBand network. We used the

0

200

400

600

800

1000

1200

 32 64 128 256 512 1024 2048 4096 8192 16384
 0

 1x106

 2x106

 3x106

 4x106

 5x106

T
h
ro

u
g

h
p

u
t

in
 M

B
/s

T
h
ro

u
g

h
p
u
t

in
 C

h
u
n
ks

/s

Chunk Size

Throughput MB/s
Throughput Chunks/s

Figure 21: Logging Throughput over InfiniBand Network

O_DIRECT access, 8 MB segments, the two-level logging with
128 KB threshold and no timestamps. The checksums are used
like in all other tests. The benchmark creates all chunks (up to
400,000,000), first. Then, the chunks are updated sequentially
in batches of ten which are sent directly over the network to
the backup server.

Figure 21 shows that no performance is lost when chunks
are sent over the network instead of creating and logging
them locally. DXRAM is able to update, sent, receive and
log more than 4,000,000 64-byte chunks per second. The SSD
is saturated with up to 512-byte chunks with a throughput of
nearly 1 GB/s.

XII. CONCLUSIONS

In this report, we presented DXRAM’s logging architecture
in detail with focus on the data flow and the disk access
methods, extending the papers [1] and [2]. Furthermore, we
discussed the usage of timestamps to accurately calculate a
segments age in order to improve the segment selection for
the reorganization and we introduced copysets to DXRAM.

The evaluation shows the good performance of the logging
and reorganization and demonstrates that DXRAM utilizes
high throughput hardware like InfiniBand networks and nvme
PCIe SSDs efficiently. DXRAM is able to log more than
4,000,000 64-byte chunks per second received over an In-
finiBand network. Larger chunks, e.g., 512-byte chunks, can
be logged at nearly 1 GB/s, saturating the PCI-e SSD. The
reorganization is able to keep the utilization most times under
80% for realistic distributions (random, zipf and hotNcold)
while maintaining a high logging throughput.

REFERENCES

[1] K. Beineke, S. Nothaas, and M. Schoettner, “High throughput log-
based replication for many small in-memory objects,” in IEEE 22nd
International Conference on Parallel and Distributed Systems, Dec.
2016, pp. 535–544.

[2] ——, “Fast parallel recovery of many small in-memory objects,”
in IEEE 23rd International Conference on Parallel and Distributed
Systems, Dec. 2017, p. to appear.

[3] ——, “Dxram project on github,” https://github.com/hhu-bsinfo/dxram,
accessed: 2018-02-06.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ser. SIGCOMM ’01, 2001.

[5] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: main memory database
index structure revisited,” in Database Conference, 2000. ADC 2000.
Proceedings. 11th Australasian, 2000.

[6] F. Klein, K. Beineke, and M. Schoettner, “Memory management for
billions of small objects in a distributed in-memory storage,” in IEEE
Cluster 2014, Sep. 2014.

[7] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The ramcloud storage system,” ACM Trans. Comput.
Syst., vol. 33, pp. 7:1–7:55, Aug. 2015.

[8] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds:
scalable high-performance storage entirely in dram,” SIGOPS Oper.
Syst. Rev., vol. 43, pp. 92–105, Jan. 2010.

[9] B. B. V. Srinivasan, “Citrusleaf: A real-time nosql db which preserves
acid,” Aug. 2011.

[10] S. Sanfilippo and P. Noordhuis, “Redis,” 2009.
[11] M. Rosenblum and J. K. Ousterhout, “The design and implementation

of a log-structured file system,” ACM Trans. Comput. Syst., vol. 10, pp.
26–52, Feb. 1992.

[12] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and
V. Padmanabhan, “File system logging versus clustering: A performance
comparison,” in Proceedings of the USENIX 1995 Technical Conference
Proceedings, ser. TCON’95, 1995, pp. 21–21.

[13] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured memory
for dram-based storage,” in Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14), 2014, pp. 1–16.

[14] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss in cloud
storage,” in Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13), 2013, pp. 37–48.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, 2003, pp. 29–43.

[16] P. Londhe, S. Kumbhar, R. Sul, and A. Khadse, “Processing big data us-
ing hadoop framework,” in Proceedings of 4th SARC-IRF International
Conference, Apr. 2014, pp. 72–75.

[17] B. Caldwell, “Improving block-level efficiency with scsi-mq,” CoRR,
vol. abs/1504.07481, 2015.

[18] S. Chalasani, “On the Value of a Social Network,” ArXiv e-prints, Dec.
2008.

[19] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” SIGMOD Rec.,
vol. 23, pp. 243–252, May 1994.

Chapter 7.

Conclusion

This dissertation addressed two important research challenges for designing a fast, scalable and
fault-tolerant distributed in-memory key-value store. The first two chapters focused on an open-
source network library written in Java and integrated into the distributed in-memory key-value
store DXRAM. In this context, we answered research questions regarding the network transport
and communication model and presented our approach for achieving low-latency and high-
throughput sending and receiving of (small) messages. The next two chapters presented a crash
recovery concept for in-memory storages. In these chapters, we provided solutions answering
research questions regarding the backup distribution and consistency, the log reorganization and
the fast recovery of hundreds of millions of small data objects. Another chapter was dedicated to
the optimizations of the crash recovery implementation to utilize high-speed hardware efficiently
and to benefit from the proposed network subsystem which was developed after the logging
and recovery.

The primary application domains of this thesis are big data analytics and large-scale interactive
graph applications both demanding low-latency data access and high throughput for billions to
trillions of mostly small data objects.

By providing fast parallel serialization of Java objects and an automatic connection management,
the network subsystem can be used by many Java applications to send asynchronous messages
or synchronous requests/responses. DXNet is optimized for high-throughput implementing
an automatic message aggregation in lock-free data structures and an event-driven message
receiving approach. Additionally, DXNet provides low-latency synchronous communication
using a zero-copy and zero-allocation architecture. Typically, high throughput and low latency
are contrary objectives. However, we developed different thread parking strategies to reduce
latency for time-critical operations and relief the CPU when processing large batches. DXNet
has a modular design and can be extended by transport implementations. In this thesis, we
proposed an Ethernet transport and used an InfiniBand transport for evaluation purposes.
EthDXNet, the Ethernet transport, is based on Java.nio and offers a batch operation interest
handling to utilize Java.nio’s Selector efficiently. Furthermore, we proposed a double-channel
approach which allows concurrent bilateral connection establishment and sending/receiving of
out-of-band data like flow control messages.

The evaluation of DXNet showed that message processing times are low (sub 300 ns) and
throughput is high (> 16 GByte/s). DXNet supports many application threads by providing
constant processing times with up to hundred applications threads and increasing throughputs

103

Chapter 7. Conclusion

with up to thousand remote threads on commodity servers in the cloud. With the InfiniBand
transport, we measured average RTTs of under 10 µs and a duplex throughput of more than
10.4 GByte/s. We also showed that scalability of DXNet and EthDXNet is very good by
achieving an aggregated throughput of 83 GByte/s and almost constant latencies in an all-to-all
communication pattern with up to 64 nodes, connected with 5 GBit/s Ethernet (10 GBit/s
Ethernet limited by SLA) in the cloud.

We proposed a crash recovery concept which stores replicas persistently on disks to mask
server failures and power outages. The scalable range-based replica management distributes
replicas to remote backup servers which store the replicas in logs on disk. We adopted the
copyset idea from literature and integrated it into the replica management to reduce data loss
probability for multiple simultaneous server crashes. By using the existing disks and a resource
efficient logging approach, we do not need additional servers for backup as backup servers can
also serve as storage servers and execute computations. Writing the replicas to logs improves
the disk utilization, especially for small data objects. We further optimized disk utilization
with the two-level logging approach providing fast persistence and high-throughput logging
for varying application access patterns. Complemented by the novel fast and space-efficient
epoch-based version management and a zero-copy direct disk access architecture, impact on
fault-free execution is low and high-speed hardware, like InfiniBand interconnects and NVMe
PCI-e SSDs, is saturated, even for small data objects. Furthermore, we proposed an efficient
log cleaning approach which relies on different log and segment selection strategies.

The proposed backup architecture subdivides the data of one storage server into backup zones
and scatters them to many backup servers. On backup servers, incoming replicas are sorted
by backup zone. This enables a highly parallel recovery by reloading multiple backup zones
concurrently on different backup servers which only read relevant data from disk (a single
backup zone). Furthermore, invalid and outdated data can be excluded in the process as version
information is stored on backup servers, as well. The reloading of a backup zone is executed
by multiple threads locally to further reduce recovery times. Server failures are detected and
recovery is coordinated based on a superpeer overlay. Our concept bypasses inquiring backup
servers as superpeers know all backup zones and their backup servers of every storage server.

The evaluation showed that the proposed logging and reorganization approach is faster than
the approaches implemented by the state-of-the-art systems RAMCloud, Aerospike and Redis.
With InfiniBand and PCI-e SSD, more than 4,000,000 64-byte chunks per second can be logged
on a single backup server. 512-byte chunks already saturate fast SSDs with a throughput of
nearly 1 GByte/s. The reorganization keeps pace and holds the utilization most times under
80% for random, zipfian and hotNcold access distributions. A large-scale experiment in the
Microsoft Azure cloud showed that a server with 500,000,000 64-byte objects can be recovered
in under 2 seconds with 72 backup servers concurrently recovering fractions of the failed server’s
data. For small objects, our crash recovery approach outperforms RAMCloud’s by a factor of
nine without sacrificing performance for large objects. We also showed that fast consecutive
recoveries can be executed even under high load (2,400 application threads).

104

Chapter 7. Conclusion

7.1. Future Directions

Speaking of future directions, one has to consider hardware advances in the future. While the
proposed concepts should scale well with increasing I/O bandwidth (e.g., 100 GBit/s InfiniBand)
and processing power (like shown in Chapters 2 and 6), new technologies like byte-addressable
non-volatile RAM (NVRAM) and RDMA could be interesting prospectively. NVRAM could
not replace disk backups as NVRAM will most likely be too expensive to store backups as well.
However, the logging architecture could be optimized for NVRAM as write buffers would be
persistent. Furthermore, restarting after a cluster power outage could be considerably improved
because servers would have all data available on restart without reading from disks. With falling
prices of RAM, one could consider storing one replica in RAM providing instant availability
for single server failures. In the case of multiple server failures, the proposed recovery concept
would still be necessary. Implementing RDMA for DXNet could improve performance for
suitable operations of Java applications. For the proposed crash recovery concept, we do not
see applicable RDMA operations because writing to logs requires knowing the current write
position and determining a monotonic version number and checksum for the replica which is
slower if executed remotely.

The proposed online crash recovery concept requires backup servers having enough free memory
to load the objects of a failed server into their memory. One can ensure this by continuously
balancing the utilization of all storage and backup servers. Another approach is to stream
recovered objects to another server which have enough free space to load them into memory.
Neither of the two approaches has been implemented because of time constraints. This thesis
does not cover a coordinated cold start after a data center power outage, either. However, we
provide methods for recovering objects from files storing entire backup zones. The coordination
and data migration has to be done in the future to sustain data center power outages. Elastic
scaling is another feature to be considered for the future. Elastic scaling means automatically
shutting down servers when the load is low and adding new servers if the load is high. For
up- and downscaling, the replica distribution can be used to migrate entire backup zones
reducing the metadata overhead and bypassing re-replication as backup servers do not have to
be changed.

Because of time constraints, the crash recovery could not be evaluated with high-speed I/O
devices. We expect that the recovery scales as well as the logging with increased I/O bandwidths.
Furthermore, evaluating the crash recovery concept and the network subsystem with real-world
graph applications, is something to be done in the future as applications are in development at
the time this thesis is written.

7.2. Lessons Learned

DXRAM have become a large project with more than 100,000 lines of Java code (extended
services, native code and scripts not included). Thus, implementing new concepts in DXRAM
requires carefully designing, documenting and testing to obtain maintainable and extensible
code. Most parts of DXRAM are optimized regarding performance and to handle small data
objects with very low memory overhead. Therefore, much effort and time have been put into

105

Chapter 7. Conclusion

maintaining and even increasing the high optimization level, which is difficult for a complex
distributed system resulting in lengthy profiling and debugging sessions. Occasionally, problems
were not even software-related. For example, the performance was compromised by a low-budget
Ethernet switch whose actual switching capacity was significantly lower than specified (switch
was replaced). Another example: logging performance was subpar because the garbage collector
on the SSD affected the write throughput when experiments were executed consecutively.
Removing the log files and discarding unused blocks (by calling fstrim) before executing the
next experiment solved this problem. The configuration of the operating system can also impact
the performance significantly, e.g., socket buffer sizes or page-cache thresholds.

Many computer scientists, especially in the high-performance computing area, have reservations
regarding object-oriented, generic programming languages like Java. In this thesis, we showed
that the concepts and the code quality are more important than the programming language,
especially for distributed programs. All proposed concepts implemented in Java are highly
concurrent and provide low latency and high throughput. Evaluations showed that our Java-
based distributed in-memory key-value store was faster in all tested scenarios than, for example,
RAMCloud and Aerospike, both written in C/C++. Another critical performance aspect is to
adjust concepts to the primary application domain which in this thesis are applications with
billions to trillions of small data objects.

106

Part I.

Appendix

107

Chapter 8.

Appendix

8.1. DXRAM - Additional Information

Configuration

All applications, services and components of the DXRAM ecosystem can be configured using
JSON configuration files. We use the Google’s gson library [1] which enables automatic
serialization of Java objects to JSON files and vice versa. Every DXRAM component and
service is accompanied by a configuration class. In this configuration class, every configurable
value is marked with the annotation @Expose at declaration and the initialization value is
used as default value. Values are read during runtime through getters. Furthermore, every
configuration class contains a method to verify the configuration values (i.e., print a warning if
a value is set impractically or abort the DXRAM initialization if a value is not permitted).

During the initialization of DXRAM, the DXRAM engine creates a DXRAM context that
includes all configuration classes of all components and services. The DXRAM context is passed
to all services/components and the service-/component-specific configuration is available at all
times within the instance.

On first startup of DXRAM, all default configuration values are written into a file. Based on
this file, the user can manipulate the configuration values for the next start of DXRAM. At
last, configuration values can be passed as JVM arguments.

More Extended Services

DXTerm: DXTerm is a DXRAM application providing a CLI for DXRAM. DXTerm offers a
set of commands for configuring, debugging, monitoring and using DXRAM services (see Table
8.1). We use the jline library [49] which provides similar functionality as GNU readline. Thus,
the CLI is akin to most modern shells.

The application is loaded automatically on starting of DXRAM and one can connect to the
application at any time by executing an accompanying script. At the time of writing this thesis,
a web user interface is developed using a Representational State Transfer (REST) API based

108

Chapter 8. Appendix

on the Hypertext Transfer Protocol (HTTP). The web interface will provide comfortable access
to DXTerm’s functionality.

DXMonitor: DXMonitor is a monitoring and management service for DXRAM, developed by
Burak Agkül. The monitoring service collects live information of the server’s CPU, memory,
disk and network by reading from the ProcFS [82]. Furthermore, information from the JVM
(e.g., garbage collection utilization) is collected and information about DXRAM services and
components through an extended API. Different metrics (average, min, max, median and
percentiles) are used to calculate the monitoring data on data servers. The monitoring data is
sent to metadata servers periodically and the metadata servers can use the information of all
data servers to optimize the performance of DXRAM, for instance, by triggering migrations
in order to balance the load. The monitoring data is also written to CSV files on disk by
dedicated threads which are used to visualize the data in a monitoring web console. At last,
the monitoring information can be gathered using the monitoring command of DXTerm which
is available if DXMonitor was started, only.

cdepl: cdepl is a collection of scripts creating a framework to simplify the deployment of
distributed applications to different (Linux) cluster setups. It creates an abstraction layer to
the target cluster system for the application to deploy. This enables clear separation of the
actual hardware to deploy to and the application getting deployed. Different cluster (type)
implementations map to specific cluster setups with their dedicated environments. For example,
the localhost type maps the abstraction layer to the current machine for quick testing or simple
debugging tasks. The simple cluster type deploys to an arbitrary cluster setup by providing a
list of hostnames. Further types handle environment specific features for each cluster system.
Applications are implemented in separate modules, as well. With every application offering
different features and requiring different ways to control it, there is no unified abstraction layer
for them. However, creating abstractions of tasks makes it easier to write small and powerful
deploy scripts.

cdepl is entirely implemented as bash scripts and uses common Linux utilities, only, to avoid
further dependencies. In addition to the already mentioned cluster types, we support special
cluster types like the Microsoft Azure cloud, hilbert (the HPC of the Heinrich-Heine university)
and our private cluster. Additionally, applications like DXRAM, DXNet, Aerospike, RAMCloud,
Redis and ZooKeeper are supported. Furthermore, the YCSB can be started with cdepl using
DXRAM or RAMCloud as backend storage. Support for further applications or clusters can be
added easily.

When starting DXRAM or DXNet with cdepl, the configuration files (see Section 8.1) are gen-
erated automatically according to the deployment. The configuration is either based on default
configurations of all services and components or a previously generated (and possibly modified)
configuration file allowing user-specific adaptations. cdepl also allows remote debugging and
profiling of DXRAM.

Core Services

In the following, we give a brief overview of all DXRAM services available to the time of writing
this thesis.

109

Chapter 8. Appendix

• Application: Run DXApp jar packages as a per application dedicated thread (see Section
1.3.1).

• Boot: Expose own node ID, node ID mappings, capabilities, etc. (see Section 8.1).

• Chunk: Key-value storage interaction; Create, get and put chunks/data structures (see
Section 1.3.4). Uses the submodule SOH. To remove chunks, the remove service (see
below) is used.

• Compute: Run and coordinate task-based computations on data servers (see Section
1.3.2).

• Job: Enqueue new jobs either locally or to remote nodes running the job service (see
Section 1.3.2).

• Lock: Lock either local or remote chunks (see Section 1.3.4).

• Log: Write backup data to (remote) disks (see Section 1.3.5).

• Logger: Access the local or a remote (text) logger (e.g., set logger level). We use the
log4j library for message logging in six different levels (TRACE, DEBUG, INFO, WARN,
ERROR, DISABLED).

• Lookup: Access to the (remote) superpeer overlay, lookup tree, metadata, etc. (see
Section 1.3.3).

• Migration: Migrate chunk(s) from one peer to another (see Section 1.3.4).

• Nameservice: Stores name to chunk ID mappings on metadata servers (see Section 1.3.3).

• Network: Send and receive messages/requests. Uses submodule DXNet(see Section 1.3.6).

• Recovery: Coordinate the local recovery of backup zones (see Section 1.3.5).

• Remove: Remove chunks from memory in a dedicated dispatch thread to avoid remote
deadlocking (see Section 1.3.4).

• Statistics: Access to statistics collected in various components and services. Statistics are
used for debugging and can be disabled to increase performance.

• Synchronization: Barrier synchronization for computations on peers (see Section 1.3.3).

• Temporary Storage: Small, auxiliary and chunk-store-independent scratch pad on meta-
data servers (see Section 8.1).

110

Chapter 8. Appendix

Core Components

In the following, we give a brief overview of all DXRAM components available to the time of
writing this thesis.

• Application: DXApp package management for applications running on DXRAM servers
(see Section 1.3.1).

• Backup: Management of backup ranges and backup tree (see Section 1.3.5).

• Boot: Node bootstrapping, node ID assignment, node mappings and handling of capabili-
ties (see Section 8.1).

• Chunk: Access to local memory for DXRAM management data (see Section 1.3.4).

• Event: Event signaling and handling system (see Section 8.1).

• Failure: Server failure handling (see Section 8.1).

• Job: System running worker threads executing queued jobs (see Section 1.3.2).

• Lock: Storage for active locks on locally stored chunks (see Section 1.3.4).

• Log: Logging (persistent data backup) with access to disk (see Section 1.3.5).

• Lookup: Overlay management and lookup cache tree (see Section 1.3.3).

• Memory: Memory allocator and manager with access to native memory (see Section
1.3.4).

• Nameservice: Naming index structure (see Section 1.3.3).

• Network: Access to DXNet (see Section 1.3.6).

Temporary Storage

DXRAM provides a small volatile storage on superpeers for putting coordination information,
debug information or temporary results. The storage is replicated to three superpeers but is
not stored on disk. Thus, after a power failure, the data is lost and cannot be recovered. The
storage should be used for depositing temporary data like a job ID or a file path, only. Every
information stored in the temporary storage must have a unique ID. Data with the same ID is
overwritten and the order of concurrent access is non-deterministic. Thus, the storage cannot
be used for solving consensus.

The temporary storage will be replaced by a storage implementing the Raft consensus algorithm
[83] in the future. This avoids using ZooKeeper [47] for bootstrapping and extending the set of

111

Chapter 8. Appendix

participating servers which requires consensus (see Section 8.1).

Bootstrapping

The bootstrapping of DXRAM was part of the master thesis of Kevin Beineke [7].

To start a DXRAM server, a configuration file has to be passed to the DXRAM engine. The
configuration file defines all configurable values of all components and services and also describes
the role, address and capabilities of all participating servers. The first server in the configuration
must be a superpeer and is the bootstrap server for every other joining server. A bootstrap
server is necessary to avoid partitioning the superpeer overlay on startup. If the bootstrap
server fails, another server is selected and stored in ZooKeeper. Every joining server parses the
configuration file and adds all servers to an array, called the nodes configuration. The nodes
configuration stores the role (peer or superpeer), the address (e.g., IP and port), the location in
the cluster (rack and switch; used for location-aware replica placement), whether the server is
online or offline and the capabilities (e.g., whether the peer is available for backup) for every
known server. Furthermore, we distinguish if a server was registered in the configuration file or
added later.

While parsing the configuration file, the node IDs of all servers are determined. Every server
determines identical node IDs for all servers by using the same algorithm (CRC16 with equal
seed). To speed-up node ID determination, we use a bloom filter to detect collisions (same node
ID for two servers). This approach is much faster than using, for instance, a consensus algorithm
for propagating a servers node ID but requires that every server has the same configuration
file. Generally, DXRAM is deployed with a dedicated deployment script (cdepl; see Section 8.1)
which takes care of creating, adapting and copying the configuration file.

The set of DXRAM servers can be extended during runtime. These servers are not required to
be included in the configuration file. Joining servers use a free node ID from a failed server,
which are stored in ZooKeeper, or, if not available, creates a new node ID by hashing its address.
Subsequently, the new server registers the used node ID in ZooKeeper (might have to generate
a new one if the node ID is already in use). Every joining server also iterates the list of failed
and new servers on startup to update its nodes configuration.

The initial filling of the nodes configuration is important to enable establishing a connection
(on demand) to all participating servers. An event-based propagation protocol maintains the
state of a server (online or offline). Every server informs its responsible superpeer when the
startup is completed. Then, the superpeer sends the information to all other superpeers. The
other superpeers forward the message to all their assigned peers. On every server, the receipt
of the message fires a join event which is passed to all components/services registered for the
type of events. This includes the boot service which updates the node configuration (set server
state to online and update capabilities if necessary). If a server fails, a similar protocol is used
which is started by the superpeer detecting the failure. The status information and capabilities
can be used by every component/service, extended service and application. For example, the
backup component uses the nodes configuration to select backup servers.

112

Chapter 8. Appendix

DXNet - Transport Interface

The following methods must be implemented for every transport [18]:

• Setup connection

• Close and cleanup connection

• Signal to send data available in the ORB of a connection (callback)

• Pull data from the ORB and send it

• Push received raw data/buffer to the IBQ

113

Chapter 8. Appendix

Table 8.1.: DXTerm’s Command Set
Command Parameters Description
barrieralloc number of peers create a new barrier for synchronization of

multiple data servers
barrierfree barrier ID free an allocated barrier
barriersignon barrier ID sign on to an allocated barrier
barriersize barrier ID, number of

peers
change the number of servers to wait for

barrierstatus barrier ID get the current status of a barrier
chunkcreate size, node ID create a chunk on a remote node
chunkdump chunk ID, file dump the contents of a chunk to a file
chunkget chunk ID, format get a chunk
chunklist node ID get a list of chunk ID ranges
chunklock chunk ID lock a chunk
chunklocklist node ID get a list of all locked chunks
chunkmigrate chunk ID, source node

ID, destination node ID
migrate a chunk

chunkput chunk ID, data, format put data into a chunk
chunkremove chunk ID remove an existing chunk
chunkremoverange first chunk ID, last

chunk ID
remove a range of existing chunks

chunkstatus node ID get the status of the chunk service
chunkunlock chunk ID unlock a previously locked chunk
compgrpls get a list of available compute groups
compgrpstatus group ID get the current status of a compute group
comptask task, group ID submit a task to a compute group
comptaskscript file, group ID submit a list of tasks loaded from a file
loggerlevel level, node ID change the output level of the logger
loginfo node ID print the log utilizations
lookuptree node ID print the lookup tree of the specified node
memdump node ID, file create a full memory dump
metadata node ID print a summary of the metadata server’s

data
nameget name get a nameservice entry
namelist get a list of all nameservice entries
namereg chunk ID, name register a chunk in the nameservice
nodeinfo node ID get information about a node
nodelist role list all available servers with given role
nodeshutdown node ID shutdown a server
nodewait number of servers wait for a minimum number of servers
statsprint print all statistics
tmpcreate ID, size create a temporary storage
tmpget ID, format get a chunk from temporary storage
tmpput ID, data, format put a chunk into the temporary storage
tmpremove ID remove a chunk from temporary storage
tmpstatus get the status of the temporary storage

114

Chapter 8. Appendix

8.2. Asynchronous Logging and Fast Recovery for a
Large-Scale Distributed In-Memory Storage

This chapter summarizes the contributions and gives a copy of our paper [10].

Kevin Beineke, Florian Klein and Michael Schöttner. "Asynchronous logging and fast recovery
for a large-scale distributed in-memory storage". In: Plödereder, E., Grunske, L., Schneider, E.
& Ull, D. (Hrsg.), Informatik 2014. Bonn: Gesellschaft für Informatik e.V.. pp. 1797-1810

8.2.1. Paper Summary

This workshop paper describes the initial ideas and concepts of the backup and recovery
mechanisms. The mostly revised concepts are described in more detail in Chapter 4 and 5.

115

Asynchronous Logging and Fast Recovery for a Large-Scale
Distributed In-Memory Storage

Kevin Beineke, Florian Klein,
Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany
E-Mail: Kevin.Beineke@uni-duesseldorf.de

Abstract: Large-scale interactive applications and online graph analytic processing
require very fast data access to many small data objects. DXRAM addresses these
challenges by keeping all data always in memory of potentially many nodes aggregated
in a data center. Data loss in case of node failures is prevented by an asynchronous
logging on flash disks. In this paper we present the architecture of a novel logging
service designed to support billions of small data objects, flash disk characteristics
and fast node recovery. The latter is challenging if 32-64 GB of in-memory data of a
failed node needs to be recovered in seconds from the logs.

1 Introduction

Large-scale interactive applications and online graph computations must often manage
many billions of small data objects. Facebook for example supports more than one bil-
lion users by keeping around 150 TB of data in more than 1,000 memcached servers
[ORS+11a]. Around 70% of these objects are smaller than 64 byte [NFG+13] and as a
result each memcached server stores a few hundred million of objects. The sheer amount
of objects and the small data sizes can be found in many other online graph applications,
e.g. [SWW+12]. Another important aspect are the access patterns of these applications
where reads dominate over writes [BAC+13], [AXF+12]. And depending on the type of
data there are also deletes and updates but both less frequent than reads.

DXRAM is a distributed in-memory system aiming at managing billions of small data
objects [KS13]. The core implements a key-value data model for binary data with basic
get and put operations. The system design is open to execute algorithms on storage nodes
or to run DXRAM as an ultra-fast back-end storage. A super-peer overlay is used for
scalable node lookup and a paging-like translation scheme for efficiently mapping global
unique keys to local virtual addresses. On top of the core, we plan extended data services,
e.g. richer data models and naming/indexing services.
In this paper we present the design of our novel asynchronous logging approach, which
is storing replicas of objects on remote flash disks to prevent data loss potentially caused
by software and node failures. Replication in memory is not an option as memory is very
expensive and power outages may draw down many nodes resulting in data losses. The

logging is designed carefully, taking into account SSD characteristics, to maximize write
performance. The latter requires basically sequential writes, which results in a sequential
log. This however requires to provide a cleaning mechanism similar to the work published
in log-structured file systems [RO92].
Another aspect is that we design the log in a way to allow very fast recovery of nodes
states (32-64 GB of data), which is very challenging [ORS+11a]. Fast recovery will be
even more challenging as we aim at supporting billions of small data objects.

This paper is structured as follows. In section 2 we give a short overview of the DXRAM
system including the global meta-data and in-memory data management. Section 3 presents
the logging approach, followed by section 4 and 5 where we describe the recovery pro-
cess and the cleaning of logs. Related work is discussed in section 6 followed by the
conclusions and an outlook on future work.

2 DXRAM Architecture Overview

DXRAM is a distributed in-memory storage system designed for the management of bi-
nary data in data center environments. We aim at supporting billions of small data objects
(16-64 byte) which is for example required for managing very large graphs, e.g. social
networks. By keeping all data always in RAM we can provide low-latency data access for
all data. Furthermore, by providing transparent persistence we relieve programers from
synchronizing caches with secondary storage.

Figure 1: DXRAM architecture

Figure 1 shows the overall architecture of DXRAM. Extended data services include gen-
eral services and extended data-models built upon core services. Not all extended services
shown in the figure are implemented but we designed the core to be flexible allowing for
example to support different data models as needed without requiring to re-implement

everything from scratch.

Core services provide functionality for the management, storage and transfer of chunks
(key-value tuples). One of the main objectives in core services is to keep the functionality
and the interface for high layers as compact as possible. The minimal interface for chunks
includes following functions create, delete, get, put and lock.

The DXRAM core implements a key-value data model where a tuple is called chunk. A
chunk has a 64 bit globally unique chunk ID (CID) followed by the value (raw bytes). The
CID is composed of two parts. The first 16 bit is the node ID of the creating node (NIDC).
The remaining 48 bit is a locally unique value, named LID, which is incremented during
each local chunk creation. This results in a sequential CID generation scheme on every
node. The key size is configurable but with the described numbers we can address 65,536
nodes each storing up to 280 trillion chunks. We decided to use this scheme in favor of
user-defined keys to avoid hashing allowing us to keep IDs compact, to support locality-
based access patterns and to avoid adjusting hash functions in case of nodes scaling up and
down.
But the sequential ID generation is not a constraint for the applications. On the one hand
most applications which use databases as persistent storage access data through auto-
incremented row IDs similar to our LID. On the other hand DXRAM provides a name
service to address a CID using a user-defined key. The super-peers store the mapping of
keys and CIDs in a patricia-trie structure. The intention is that not each single object needs
a user-defined key but only a subset, e.g. the user records in a social network.

Chunks have variable sizes defined during their creation always stored en bloc. The basic
get and put operations on chunks read and update always full chunks. Because RAM is
expensive we replicate chunks for fault tolerance on multiple backup nodes only in flash
memory.

2.1 Global Meta-Data Management

A super-peer overlay is used for implementing a custom DHT allowing fast node lookup
of chunks. Because of the high-speed network and the limited number of super-peers, e.g.
8-10% of all nodes we decided to keep them knowing each other in contrast to traditional
internet-scale DHTs like Chord, CAN, etc. This in turn allows lookups with O(1) time
complexity. In addition peers cache node-lookup results reducing load on super-peers.
Meta-data is replicated on the neighboring super-peers to mask super-peer failures. How-
ever, we do not need a high replication factor, which would be very costly, as meta-data
can be dynamically re-constructed.
In a controlled environment like a data center we expect only small node churn caused by
failures. Of course a power outage may kill all our nodes and will require to restore all data
from all logs, which will take considerable recovery time; but we expect this disaster to
be very seldom. Otherwise we expect controlled up and down scaling of nodes as needed
dynamically using the super-peer overlay. If we reach a defined threshold a new super-peer
is promoted or respectively demoted. In both cases the hashing function for the DHT does

not need to be adjusted thus not requiring to re-hash entries (like for a traditional DHT).

The super-peer overlay can aggregate the meta-data of chunks because of the sequential
CID creation and bundles multiple CIDs to a CID Range (start, end) together with the
NIDO (o: actual owner). Note, the actual owner of an object may be different to the
creator if an object has been migrated, e.g. because of load-balancing reasons.
For example, if we have 1,024 chunks with CIDs 1 to 1024 created on one node, then we
have only one entry for this CID range on the associated super-peer. In addition to avoid
gaps in the CID ranges through deletions of chunks, we reuse free CIDs for new chunks.
As super-peers have to map billions of CIDs from all their associated peers this compact
representation is very space efficient.

As mentioned above DXRAM also supports chunk migrations to relieve load on peers
storing possibly several hot spots. For example in the context of social networks a hot spot
can be a famous artist whose profile is very often visited (some artists have up to 40 million
friends in Facebook [SWL13]). Although migration solves the load problem it results in
a range split of the global ID range on the super-peer responsible for the migrated object.
Still this is not a problem for the global meta-data management because we expect that
such chunk migrations are seldom as we do not expect billions of hot spots. A fast lookup
CIDs in chunk ranges is ensured by implementing a B-tree-like data structured described
in [KS13].

Beside meta-data management, super-peers are also responsible for recovery coordination
of failed nodes which is discussed in chapter 4 and for load monitoring which is beyond
the scope of this paper.

2.2 In-memory Data Management

We aim at managing up to one billion of small objects on one node, which is challenging
especially concerning the mapping of global IDs to local virtual addresses as well as the
local memory management. Although both topics are well studied in literature the sheer
amount of objects raise new challenges regarding space efficiency and access times.

Many systems use hash tables for the translation of global IDs to local addresses which
tend to waste memory or get slow when the load factor increases (causing collisions). In
contrast we implemented a paging-like translation scheme which is fast and space efficient.

Furthermore, most memory allocators are not optimized for many small allocations. On
the one hand they align memory for cache performance reasons (4/8 byte granularity) and
on the other hand they append a header (4 - 64 byte) depending on programming language
and runtime system. Obviously, the overhead is too large, e.g. for one billion objects, each
with a 16 byte header, we would need 16 GB RAM just for the headers. Because memory
is expensive we have decided to design a memory management trading cache performance
for minimizing internal fragmentation. Cache penalties are not critical for DXRAM (when
used as back-end storage service) as the time for client operation requests is dominated by
network transmissions.

The global ID mapping and the local memory management are described in a paper, cur-
rently submitted to another conference.

3 Organization of the Log

As mentioned before DXRAM keeps all data always in memory. In order to address node
failures, power outages and not to burden the programmer with persistence management
on secondary storage we introduce an asynchronous logging service described in this sec-
tion. Each object is replicated on a configurable number of remote nodes called backup
nodes. These backups are stored in a log optimized for SSDs (, which could also be ap-
plied to traditional disks). During fault-free execution only write operations of updates are
executed on the log but no reads. In case of a recovery request, when a node crashed, the
full log is read (described later in more detail). A fast recovery is only possible if the state
of one node is spread over many backup nodes. This allows to aggregate SSD and network
bandwidths during recovery [ORS+11a]. Therefore, we introduce backup zones, similar
to the segments in RAMcloud, although we do not use static sizes but allow dynamic size
adaption. Each node providing RAM is also providing SSD backup-capacity.

Before we start with the presentation of the log service we discuss the characteristics of
SSDs. In contrast to traditional disks, SSDs read and write clustered pages, each 4 KB
and each on another NAND flash memory accessed via multiple channels. This means,
writing one byte results in writing at least 4 KB. Obviously, as we aim at supporting many
small data objects (16 - 64 byte), we need to introduce some buffering for bundling write
accesses. To benefit from internal parallelism of SSDs it is even better to write multiple
pages at once [MKC+12]. Furthermore, SSDs cannot re-write a page, but instead have
to delete the block (64 to 128 pages) first. The write access will then be done on a page
the SSD controller chooses. To manage the complexity of that fact the SSD controller
uses a specific garbage collection and flash translation layer to hide the characteristics of
flash memory. This results in a much higher bandwidth while writing sequentially than
randomly [MKC+12]. Finally, two more aspects to be taken into consideration are to
avoid delete operations whenever possible because of the large erase block granularity
(depending on model, e.g. 256 KB - 2,048 KB) and not to mix read and write accesses as
both can harm each other [CKZ09]. The latter is no problem as read and write operations
are anyway separated (fault-free execution and recovery), see above.

3.1 Primary Log

DXRAM organizes logs into two levels, one primary log and several secondary logs, one
for each node requesting backups. The objective of the primary log is to store incoming
backup requests as soon as possible on SSD to avoid data loss caused by software or hard-
ware failures. The primary log is organized as a ring buffer similar to SpriteFS’ [RO92]
and all incoming backup requests (from any node) are bundled together in the primary log.

In contrast to log-structured file-systems the log is never read during fault-free execution.
Thus there is no need to store meta-data of the log in memory. However, the log is self
describing, each entry has a header with a length field, NID and LID for identifying the
object and optionally a CRC checksum, and is fully read-in during node recovery.

In order to avoid many small write accesses to the primary log, all incoming backup re-
quests are bundled in a write buffer. The buffer itself is organized as a ring buffer and
the access is performed using several producer and one consumer thread. The producer
threads decouple network threads processing backup requests, however, the node request-
ing a backup may force a synchronous operation, if requested by the above application.
This is optional in case of critical updates, under control by the applications.

It is important to note that the buffer will be filled by backup requests from potentially
many nodes, which partially backup their state on a backup node. So, it is likely that there
will soon be enough data in the buffer to flush one page out to the primary log or even
multiples of a page, depending on the update frequency in the overall system. However,
we set a configurable timeout (<1s) for the consumer thread to flush out data to SSD. The
idea is to avoid an increased data-loss probability in case of very low update frequency.

Figure 2: Interaction between write buffer and primary log

Obviously, there is a small time interval where an update is vulnerable to a power outage or
failure of all nodes storing the update in memory. Of course in the worst case scenario the
full data center could go down by a power outage. The latter is very unlikely, whereas the
first may happen. As a consequence we provide applications a sync command to enforce
write through for backups of critical updates.

Right now we would have to read in and analyze the full primary log during a recovery re-
quests to detect log entries of the crashed node and skip all other entries. This is obviously
inefficient, which in turn lead us to establishing the secondary log.

3.2 Secondary Logs

Each node distributes its state over numerous backup nodes, e.g. 64 GB RAM of one node
is distributed over 100 or more backup nodes. Thus each node will service as storage node
and as a backup node for potentially many other nodes. To speed up recovery we decided
to sort backups into one separate secondary log for each node. Thus we can avoid reading
in one large log storing backups from many nodes and analyzing which entries are needed

for a recovery.

After having written a backup request into the primary log, the data is also copied (in
memory) into the secondary log buffer using the NID, see Figure 3. The secondary log
buffer array grows dynamically to provide one write buffer for each node whose backups
are to be stored. The reason for buffering writes to secondary logs is again to bundle them
into at least one 4 KB page (similar to the primary log).

Figure 3: Log overview

It is important to note that the secondary log buffer does not introduce any risk of loosing
data because all backups are stored in the primary log on SSD. However, the write buffers
are flushed periodically (less frequently than the primary write buffer) by the copy thread.
The benefits are threefold: First, the primary log can remove all objects that are written
to the corresponding secondary logs by adjusting the read pointer only. Second, the reor-
ganization of secondary logs is more efficient with all objects in log (more in chapter 5).
And third, the recovery process is faster if no or only a few objects in the primary log have
to be processed (more in chapter 4).

In case of frequent updates from a node, backups may skip the primary log and secondary
log buffers and are directly copied from the primary write buffer into the secondary log.

The secondary logs also allows us to reduce the object header per entry. First, there is
obviously no need to store the NIDO in the headers because every object in a secondary
log has the same NIDO. Furthermore for consecutive object IDs it is sufficient to only
store the full LID of the first object and a flag for successor entries. We expect this case
to occur quite often as we allocate objects with consecutive IDs on each node and expect
updates to be rather seldom. Furthermore, during recovery we have to read in the full
secondary log and can reconstruct consecutive IDs easily.

4 Recovery

In large-scale clusters node failures are a rule, not an exception. Therefore, DXRAM keeps
the states of nodes in a log spread over backup nodes, see Section 3. Below we describe
how the recovery works for a failed node.

Node failures are detected using timeouts in case of data/backup requests by any node. In
addition we use the super-peer overlay (described in Section 2), to establish a hierarchical
heart beat protocol between each peer and its associated super-peer. Any peer suspecting
a peer failure informs the responsible super-peer, which may wait for the next heart beat.
The recovery of a failed node is controlled by its associated super-peer, see Figure 4. This
will allow distributing recovery control on different super-peers if several peers fail.

Figure 4: Recovery process: 1. Super-peer overlay with four super-peers (20, 52, 75, 104) and six
peers (15, 110, 29, 53, 65, 100) 2. Failure of peer 110 3. Failure detection 4. Distribution of recovery
messages

The first step of the super-peer during recovery is to determine backup nodes of the failed
peer. As mentioned in Section 2, super-peers provide fast node lookup using CID ranges.
These CID range entries do also include a list of backup nodes, typically 2-3 backup nodes.
Thus the super-peer can easily determine, which backup nodes to contact to recover the
full state of a crashed node. If objects have been migrated they belong to the node state
of the new node and no longer to initial creator. As object migrations are also stored in
the super-peers (resulting in a CID range split) this does not cause any problems during
recovery.

If a super-peer crashes it is recovered by the super-peer overlay by a neighbor super-

peer, which is holding replicas of the meta-data. In order to not burden the system much
by meta-data replication on super-peers, we only have 1-3 replica for each super-peer
state. As we use dedicated nodes as super-peers, we expect enough memory for such a
configuration. In rare cases several super-peers may crash simultaneously, resulting in
meta-data loss. Still this disaster scenario will not lead to data loss and after the super-
peer overlay structure has been repaired, the new super-peers will recover their meta-data
through a multicast to gather CID ranges from their associated peers, which will also
include backup nodes and migrated chunks. The chunk IDs of the latter cannot be re-used
locally and thus we can use the entry in the paging-like map tables for storing the node
where the chunk has been migrated to. This will however also require that if a chunk is
migrated from the creator to another node and from there again to a new node, that the
creator will be kept informed. This approach is also used after a full power outage, which
would require to rebuilt all super-peers, which can be done in parallel like described above.

If a super-peer has gathered all backup nodes to be contacted it will always start with
backup 1 and if this one is unavailable go to backup 2 and so on. The idea behind this
sequential backup node selection is supported by the strict backup update order during
fault-free execution, which is performed asynchronously for performance reasons. The
latter ensures that the newest versions are always found in backup 1 and if unavailable we
got for 2, where we still hope to find the most recent versions. Depending on the failure
situation we might lose the newest version of an object because the object holder crashed
and backup 1 crashed too and the other backups did not get updated because of message
loss on the network. Obviously, this is a rather seldom event in a data center, it still could
occur. In that situation we plan to recover some older version and inform the application.
Again we want to point out that the core API will include a sync command, which allows
applications to force synchronous backups for critical operations. But of course the overall
system performance would be burdened if an application programmer will place after each
put a sync.

After a backup node receives a recovery message for a given NID, it first flushes its write
buffer and the corresponding secondary write buffer. This will ensure that all backup
copies of the failed node are in its secondary log on SSD. It now depends on the configura-
tion regarding the number of backup nodes, which will affect the size of the secondary log,
e.g. if we have storage nodes with 32 GB RAM and distribute their state on 100 backup
nodes, each backup node will potentially store 320 MB of data in its secondary log. To
avoid pressure on the re-organization (described in the following section), we use at least
double size for the secondary log, for the example above resulting in 640 MB for the sec-
ondary log per node. This is no problem as storage capacity on SSDs is increasing and
getting cheaper, so we can expect at least 512 GB, which would allow each node to store
logs for around 800 storage nodes. Depending on the free memory of the backup node,
it might be possible to read in the full secondary log at once and analyze it in memory
with multiple threads benefiting of multiple cores. Analyzing is necessary to determine
the newest versions and also deleted chunks. Otherwise, if the backup node does not have
enough memory to load the full secondary log, it needs to analyze it step by step, e.g. 16
MB per step.

Assuming all backup nodes have enough memory, they all could recover the secondary

log in their memories, could inform the super-peer, and could from then on serve chunk
requests. This is the fastest possible recovery as this approach does run in parallel without
any data transfers over the network. However, data locality is not preserved, as the state of
the recovered node is now spread over numerous or many nodes. Therefore, it is planned to
asynchronously move data from backup nodes to a fresh node to rebuilt the crashed node.
In contrast to existing solutions, we plan to do this asynchronously, being able to serve
requests, while we move larger chunk sets to the fresh node. So far we have implemented
the local recovery, loading the full secondary log into the memory of the backup node and
run a multi-threaded analysis.

5 Reorganization

The write buffers and the primary log are flushed periodically or when running full (beyond
a given threshold), so there is no need for reorganizing them. However, the secondary logs
are contiguously filled with update and delete log entries appended to the end of the log.
For each chunk creation, update, and deletion we create one log entry.
Obviously, there is a strong need for reorganization in order to free space of outdated and
deleted log entries, at latest when the log size reaches a predefined threshold. This is a
known issue in log-structured file systems, which also benefit of the sequential high-speed
write operations but have to spend considerable efforts for cleaning the log when running
out of space.

Our current prototype uses a rather simple reorganization scheme. If the log size exceeds
75% of the overall capacity we trigger a log reorganization. The latter reads in a full sec-
ondary log and runs a multi-threaded cleaning using a thread pool with a work stealing
mechanism. The cleaner threads analyze the full log for valid, deleted, and outdated en-
tries. Because of the strict sequential write order we know that newer version are stored in
the log after older ones.

While this basic in-memory solution performs well, we are currently studying incremental
and more space-efficient approaches avoiding to load the full secondary log into memory.
This in turn requires to reason more about the log layout as we cannot afford millions of
small random gets and puts on SSD like in memory. Another aspect is related to the up-
date patterns, depending on the applications. If an application updates a few objects many
times with the described on-demand reorganization, the log is increasingly populated with
many outdated log entries. This slows down the recovery process as all log entry headers
need to be analyzed during recovery. We plan to address these problems by an incremental
and periodical reorganization scheme.
In [RO92] the authors have shown that the reorganization overhead can be reduced by di-
viding the log into segments and monitoring write frequency of each segment. The authors
then propose to prefer reorganizing segments that are updated less frequently as these seg-
ments tend to stay longer organized. This in turn avoids repeated moves of unchanged log
entries and leads to a categorization of log entries depending on their update frequency
(cold and hot segments). The selection of segments is based on the cost-benefit policy
(equation 1) in which ”u” the utilization of the segment and ”age” the age of the youngest

log entry in that segment is. This means the desired segment contains a few, for a long
unchanged entries, hence much space can be regained and the resulting new less-filled
segment includes data that was changed less frequently in the past.

benefit
cost

=
free space generated ∗ age of data

cost
=

(1− u) ∗ age
1 + u

(1)

While this strategy enables the reorganization of logs with low additional write costs there
are also some shortcomings. First of all this approach requires maintaining some monitor-
ing data in memory per log entry to determine the segment with best cost-benefit coeffi-
cient and to decide which log entries are alive. Furthermore, by reorganizing only a subset
of log entries at a given time, the system can no longer determine the newest version of
an log entry by its position in log (newer versions are nearer to the end of the log). Thus
we need to add a version number to the log entry headers. Considering the sheer amount
of chunks we expect, this might be an issue. On the other hand by giving up the strict
ordering of log entries, techniques like threading and hole-plugging [MRC+97] or slack
space recycling [OKC+10] are applicable.

Another interesting approach is to distribute log entries into different logs based on write
statistics. This means chunks that are changed frequently are bundled in one log and
those that are changed seldom in another one (more than two partitions conceivable). This
creates hot and cold zones like with the cost-benefit policy but with shifting the complex-
ity from reorganization to storing of backups. The advantage of this approach is the rather
simple reorganization, because the segment selection is less important. However both vari-
ants are adaptable which will be an important aspect in finding a space and time efficient
reorganization scheme for logging billions of small chunks.

6 Related Work

Logging has been used in different research areas but because of the limited space in this
paper we discuss only the most relevant related work.

As DXRAM is inspired by RAMCloud [OAE+10] it is sharing many ideas but there are
also important differences, including the logging approach. First of all, RAMCloud is pro-
viding a table-based data model and is not aiming at supporting billions of small data ob-
jects like DXRAM does. The in-memory layout is a 1:1 copy of the remote log which fits
well for a table-based model but not as good for many small objects. The reorganization
of the disk logs is controlled by the storage node reorganizing segments in memory and
writing the compacted results to new segments on potentially new backup nodes. While
the reorganization can run in memory this introduces a heavy network traffic. Therefore,
we decided to allow backup nodes to do a reorganization for their secondary logs indepen-
dent of other backup logs and the storage node. Furthermore RAMCloud does not have the
two stage logging approach with the sorting of log entries per node as we have. Finally, it
is worth to note that RAMCloud has successfully shown that it is possible to recover the
state of node with 35 GB of in-memory data in around 1.6 seconds [ORS+11b]. This is

a lower bound as the authors have used 1,000 backup nodes for recovering one node in
parallel and used an Infiniband high-speed network.

The idea behind log-structured file systems like SpriteFS [RO92] is to minimize the move-
ments of the actuator arm in traditional HDDs, because moving the actuator arm to the
right position and waiting for the rotation until the desired block is accessible can take
numerous milliseconds. As a consequence SpriteFS tried to write sequentially whenever
possible, which in turn means that block updates are appended with higher version in-
stead of replacing blocks in place. Read accesses are mostly served from the block cache
avoiding heavy random reads on the HDD. With time the log becomes overfilled with old
versions and lacks free space to store new objects or updates. SpriteFS addressed this by
dividing the log into segments and execute a cleaner on segments periodically. During the
cleaning, old versions are deleted and the segment is defragmented. After defragmenta-
tion the space of the old segment is freed and the remaining objects are appended to the
log. In addition the cleaner does not choose segments with the same probability but uses a
cost benefit policy to maximize the amount of space that is regained with every processed
segment.

SFS is a more recent work transferring the advantages of a log-structured file system from
HDDs to SSDs [MKC+12]. For better performance the segment size fits the block size
of the SSDs. Another interesting aspect is that the hot and cold zones are generated pro-
actively with statistics on block level to increase the efficiency of the defragmentation. It
is future work for DXRAM to refine the cost benefit policy and to optimize it for billions
of small data objects stored on SSDs.

Logging has also a long tradition in database systems, where typically a write-ahead log
(WAL) is used. However, these logs are totally different from the one proposed in this
paper. WAL logs do not store the data per se but the transaction’s meta-data to apply
transactions on backup databases or to repeat failed transactions. The data objects are
stored on persistent memory anyway. If the log is overfilled old log entries are flushed to
the database and will be overwritten. So, there is no need for a log cleaner.

Finally, there have been proposed many SSD-based key value stores, which however typ-
ically use SSDs as caches for HDDs in order to speed up data accesses. One example is
Flashstore [DSL10], which uses a cuckoo-based hash-table with compact key signatures as
index structure in RAM to improve access times for reading objects from SSD. While the
related insights are interesting for meta-data management in DXRAM, they do not affect
the log architecture.

7 Conclusion

DXRAM is a distributed in-memory system that is designed to manage billions of small
data objects. By keeping all data always in memory it is providing low-latency data ac-
cess to all data, while at the same time relieving programmers from keeping caches and
secondary storage synchronized. The latter requires an efficient asynchronous logging of
in-memory data on remote flash disks for providing fast recovery from node failures and

avoiding data loss.

We have presented a novel two stage logging approach sorting log entries per node allow-
ing fast recovery of failed nodes. The latter is also supported by spreading the state of one
node on potentially many backup node logs, which allows a parallel recovery from many
nodes. As known from the systems literature, sequential logging is fast but requires a
cleaner to remove outdated and deleted data and compact the log to free space. We believe
that the cost-benefit approach like proposed for log-structured files systems is a good base
for a more optimized custom solution for an in-memory based storage.

Future work includes the design of cleaner policies as well as evaluations with different
application access patterns (including recovery times depending on different configura-
tions). Currently, we are adopting the BGbenchmark [BG13], which allows to run actions
of social network applications on top of different storage technologies (e.g. MongoDB and
SQL-X with memcached). We plan to use this benchmark for comparing DXRAM perfor-
mance with key-value and distributed in-memory caches (e.g. Gemfire and Hazelcast) as
well as the recovery times for single and multiple node failures.

References

[AXF+12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-
load Analysis of a Large-scale Key-value Store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New York, NY,
USA, 2012. ACM.

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO: Face-
book’s Distributed Data Store for the Social Graph. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference, USENIX ATC’13, pages 49–
60, Berkeley, CA, USA, 2013. USENIX Association.

[BG13] Sumita Barahmand and Shahram Ghandeharizadeh. BG: A Benchmark to Evaluate
Interactive Social Networking Actions. In CIDR, 2013.

[CKZ09] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory Based Solid State Drives. In
Proceedings of the Eleventh International Joint Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’09, pages 181–192, New York, NY, USA,
2009. ACM.

[DSL10] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: high throughput persistent
key-value store. Proc. VLDB Endow., 3(1-2):1414–1425, September 2010.

[KS13] F. Klein and M. Schoettner. Dxram: A persistent in-memory storage for billions of
small objects. In Proceedings of the 14th International Conference on Parallel and
Distributed Computing, Applications and Technologies, PDCAT 13, 2013.

[MKC+12] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.
SFS: Random Write Considered Harmful in Solid State Drives. In Proceedings of the

10th USENIX Conference on File and Storage Technologies, FAST’12, pages 12–12,
Berkeley, CA, USA, 2012. USENIX Association.

[MRC+97] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and
Thomas E. Anderson. Improving the Performance of Log-structured File Systems with
Adaptive Methods. In Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles, SOSP ’97, pages 238–251, New York, NY, USA, 1997. ACM.

[NFG+13] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache at Facebook. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 385–398, Lombard, IL, 2013. USENIX.

[OAE+10] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich,
David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosen-
blum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The case for RAM-
Clouds: scalable high-performance storage entirely in DRAM. SIGOPS Oper. Syst.
Rev., 43(4):92–105, January 2010.

[OKC+10] Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Opti-
mizations of LFS with Slack Space Recycling and Lazy Indirect Block Update. In
Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR ’10,
pages 2:1–2:9, New York, NY, USA, 2010. ACM.

[ORS+11a] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast Crash Recovery in RAMCloud. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 29–41, New York,
NY, USA, 2011. ACM.

[ORS+11b] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 29–41, New York,
NY, USA, 2011. ACM.

[RO92] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a
Log-structured File System. ACM Trans. Comput. Syst., 10(1):26–52, February 1992.

[SWL13] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A Distributed Graph Engine on a
Memory Cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages 505–516, New York, NY, USA, 2013.
ACM.

[SWW+12] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient Sub-
graph Matching on Billion Node Graphs. Proc. VLDB Endow., 5(9):788–799, May
2012.

Acronyms

DRAM Dynamic Random Access Memory

RAM Random Access Memory

CLI Command Line Interface

RMI Remote Method Invocation

RPC Remote Procedure Call

MPI Message Passing Interface

DSM Distributed Shared Memory

RDMA Remote Direct Memory Access

IPC Inter-Process Communication

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

NVMe Non-Volatile Memory Express

PCI-e Peripheral Component Interconnect Express

HDD Hard Disk Drive

SSD Solid State Disk

JVM Java Virtual Machine

JNI Java Native Interface

SLA Service Layer Agreement

TCP Transmission Control Protocol

IP Internet Protocol

130

Chapter 8. Appendix

CRC Cyclic Redundany Check

RTT Round Trip Time

FC Flow Control

OOB Out-Of-Band Data

HCA Host Channel Adapter

CAS Compare-And-Set

RDD Resilient Distributed Dataset

RAF Random Access File

YCSB Yahoo! Cloud Serving Benchmark

ORB Outgoing Ring Buffer

IBQ Incoming Buffer Queue

CUB Catch-Up Buffer

MCC Message Creation Coordinator

BFS Breadth-First Search

CID Chunk ID

LID Local ID

ZID Zone ID

131

Bibliography

[1] A Java serialization/deserialization library to convert Java Objects into JSON and back.
https://github.com/google/gson. Accessed: 2018-06-05 (Page: 108).

[2] Apache Mahout. https://mahout.apache.org/. Accessed: 2018-06-21 (Page: 8).

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. “Spark SQL: Relational Data Processing in Spark”. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. SIGMOD ’15. 2015,
pp. 1383–1394 (Page: 9).

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. “Work-
load Analysis of a Large-scale Key-value Store”. In: Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems. SIGMETRICS ’12. 2012, pp. 53–64 (Page: 2).

[5] Hagit Attiya and Jennifer L. Welch. “Sequential Consistency versus Linearizability.” In:
12 (May 1994), pp. 91–122 (Page: 11).

[6] Sumita Barahmand and Shahram Ghandeharizadeh. “BG: A Benchmark to Evaluate
Interactive Social Networking Actions”. In: CIDR. 2013 (Pages: 16, 17).

[7] Kevin Beineke. “Scalable Distributed Metadata Management of Many Small Objects”.
Master’s Thesis. Universitaetsstrasse 1, 40225 Duesseldorf, Germany: Institute for Com-
puter Science, Heinrich-Heine University Duesseldorf, Dec. 2013 (Pages: 14, 112).

[8] Kevin Beineke, Florian Klein, Stefan Nothaas, and Michael Schoettner. DXRAM Project
on Github. https://github.com/hhu-bsinfo/dxram. Accessed: 2018-06-02 (Page: 14).

[9] Kevin Beineke, Florian Klein, Stefan Nothaas, and Michael Schoettner. DXRAM Project
Website. https://dxram.io. Accessed: 2018-06-04 (Page: 14).

[10] Kevin Beineke, Florian Klein, and Michael Schoettner. “Asynchronous logging and fast
recovery for a large-scale distributed in-memory storage”. In: Informatik 2014. Ed. by
E. Plödereder, L. Grunske, E. Schneider, and D. Ull. Bonn: Gesellschaft für Informatik
e.V., 2014, pp. 1797–1810 (Pages: 56, 57, 115).

[11] Kevin Beineke, Stefan Nothaas, Florian Klein, and Michael Schoettner. DXNet Project
on Github. https://github.com/hhu-bsinfo/dxnet. Accessed: 2018-06-02 (Page: 27).

[12] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “DXRAM’s Fault-Tolerance
Mechanisms Meet High Speed I/O Devices”. In: ArXiv e-prints (July 2018). arXiv:
1807.03562 [cs.DC] (Pages: 13, 20, 24–26, 32, 80).

[13] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “Efficient Messaging for Java
Applications Running in Data Centers”. In: 2018 18th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). May 2018, pp. 589–598
(Pages: 13, 27, 28, 31, 44, 80).

132

https://github.com/google/gson
https://mahout.apache.org/
https://github.com/hhu-bsinfo/dxram
https://dxram.io
https://github.com/hhu-bsinfo/dxnet
http://arxiv.org/abs/1807.03562

Bibliography

[14] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “Fast Parallel Recovery of Many
Small In-Memory Objects”. In: 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS). Dec. 2017, pp. 248–257 (Pages: 6, 7, 11, 13, 21, 26,
27, 32, 45, 68, 80).

[15] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “High Throughput Log-Based
Replication for Many Small In-Memory Objects”. In: IEEE 22nd International Conference
on Parallel and Distributed Systems. Dec. 2016, pp. 535–544 (Pages: 6, 13, 17, 23, 32, 45,
56, 68, 69, 80).

[16] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “High Throughput Log-Based
Replication for Many Small In-Memory Objects”. In: 2016 IEEE International Conference
on Cluster Computing (CLUSTER). Sept. 2016, pp. 160–161 (Page: 56).

[17] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “Parallelized Recovery of
Hundreds of Millions Small Data Objects”. In: 2017 IEEE International Conference on
Cluster Computing (CLUSTER). Sept. 2017, pp. 621–622 (Page: 68).

[18] Kevin Beineke, Stefan Nothaas, and Michael Schoettner. “Scalable Messaging for Java-
based Cloud Applications”. In: ICNS 2018, The Fourteenth International Conference on
Network and Services 14 (May 2018), pp. 32–41 (Pages: 27–30, 44, 113).

[19] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nico-
las Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind Menon,
Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. “Apache Hadoop Goes Realtime
at Facebook”. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’11. 2011, pp. 1071–1080 (Page: 9).

[20] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri
Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. “TAO: Facebook’s
Distributed Data Store for the Social Graph”. In: Proceedings of the 2013 USENIX
Conference on Annual Technical Conference. USENIX ATC’13. 2013, pp. 49–60 (Pages: 2,
7, 9).

[21] Josiah L. Carlson. Redis in Action. Greenwich, CT, USA: Manning Publications Co.,
2013 (Pages: 3, 5, 16).

[22] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. “Bigtable: A
Distributed Storage System for Structured Data”. In: ACM Trans. Comput. Syst. 26
(June 2008), 4:1–4:26 (Pages: 1, 26).

[23] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K.
Nusbaum, K. Patil, B. J. Peng, and P. Poulosky. “Benchmarking Streaming Computation
Engines: Storm, Flink and Spark Streaming”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). May 2016, pp. 1789–1792
(Page: 8).

[24] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and
Mendel Rosenblum. “Copysets: Reducing the Frequency of Data Loss in Cloud Storage”.
In: Presented as part of the 2013 USENIX Annual Technical Conference (USENIX ATC
13). 2013 (Pages: 10, 80, 81).

[25] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
“Benchmarking cloud serving systems with YCSB”. In: Proc. of the 1st ACM symposium
on Cloud computing. 2010, pp. 143–154 (Page: 16).

133

Bibliography

[26] HPC Advisory Council. Interconnect Analysis: 10GigE and InfiniBand in High Per-
formance Computing. White Paper. 350 Oakmead Pkwy, Sunnyvale, CA 94085, 2009
(Page: 8).

[27] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: Commun. ACM 51 (Jan. 2008), pp. 107–113 (Pages: 7, 8).

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. “Dynamo: amazon’s highly available key-value store”. In: SIGOPS Oper. Syst.
Rev. 41 (Oct. 2007), pp. 205–220 (Page: 1).

[29] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R Stonebraker,
and David A. Wood. “Implementation Techniques for Main Memory Database Systems”.
In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’84. 1984, pp. 1–8 (Page: 1).

[30] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. “Efficient Big Data Processing in Hadoop
MapReduce”. In: Proc. VLDB Endow. 5 (Aug. 2012), pp. 2014–2015 (Page: 8).

[31] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. “FaRM:
Fast Remote Memory”. In: 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). Apr. 2014, pp. 401–414 (Pages: 2, 6, 12).

[32] Margaret H. Eich. “Mars: The Design of a Main Memory Database Machine”. In: Database
Machines and Knowledge Base Machines. Ed. by Masaru Kitsuregawa and Hidehiko
Tanaka. Boston, MA: Springer US, 1988, pp. 325–338 (Page: 1).

[33] Martin S Engler, Mohammed El-Kebir, Jelmer Mulder, Alan E Mark, Daan P Geerke, and
Gunnar W Klau. “Enumerating common molecular substructures”. In: PeerJ Preprints 5
(Sept. 2017), e3250v1 (Pages: 2, 16).

[34] Marc Ewert. “A thread-pool-based network interface for a distributed in-memory stor-
age”. Master’s Thesis. Universitaetsstrasse 1, 40225 Duesseldorf, Germany: Institute for
Computer Science, Heinrich-Heine University Duesseldorf, Feb. 2015 (Page: 32).

[35] Fast Restart. https://www.aerospike.com/docs/operations/manage/aerospike/
fast_start/index.html. Accessed: 2018-07-03 (Page: 5).

[36] T. Fields and B. Cotton. Social Game Design: Monetization Methods and Mechanics.
Morgan Kauffman Publishers, 2011 (Page: 2).

[37] Brad Fitzpatrick. “Distributed caching with memcached”. In: Linux journal 2004 (2004)
(Pages: 1, 5, 9).

[38] A. Fuad, A. Erwin, and H. P. Ipung. “Processing performance on Apache Pig, Apache
Hive and MySQL cluster”. In: Proceedings of International Conference on Information,
Communication Technology and System (ICTS) 2014. Sept. 2014, pp. 297–302 (Page: 9).

[39] Christian Gesse. Optimizing Access to SSD for Backups in In-Memory Systems. Univer-
sitaetsstrasse 1, 40225 Duesseldorf, Germany, Nov. 2016 (Page: 81).

[40] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. “Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications”. In: SIGCOMM Comput.
Commun. Rev. 41 (Aug. 2011), pp. 350–361 (Page: 4).

[41] GitHub - antirez/redis: Redis is an in-memory database that persists on disk. The data
model is key-value, but many different kind of values are supported: Strings, Lists, Sets,
Sorted Sets, Hashes, HyperLogLogs, Bitmaps. https://github.com/antirez/redis.
Accessed: 2018-07-02 (Page: 8).

134

https://www.aerospike.com/docs/operations/manage/aerospike/fast_start/index.html
https://www.aerospike.com/docs/operations/manage/aerospike/fast_start/index.html
https://github.com/antirez/redis

Bibliography

[42] GitHub - Microsoft/GraphEngine: Microsoft Graph Engine. https://github.com/
Microsoft/GraphEngine. Accessed: 2018-07-02 (Page: 8).

[43] Trey Grainger and Timothy Potter. Solr in Action. Greenwich, CT, USA: Manning
Publications Co., Mar. 2014 (Page: 8).

[44] Antonio Gulli and Alessio Signorini. “The indexable web is more than 11.5 billion pages”.
In: Special interest tracks and posters of the 14th international conference on World
Wide Web. 2005, pp. 902–903 (Page: 3).

[45] Hazelcast Homepage. http://www.hazelcast.com (Page: 8).

[46] Joel Hruska. Intel, Micron reveal Xpoint, a new memory architecture that could outclass
DDR4 and NAND. https://www.extremetech.com/extreme/211087-intel-micron-
reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-
ddr4-and-nand. Accessed: 2018-06-20. 2015 (Page: 1).

[47] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. “ZooKeeper:
Wait-free Coordination for Internet-scale Systems”. In: Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference. USENIXATC’10. 2010, pp. 11–11
(Pages: 9, 111).

[48] Mohammad Islam, Angelo K. Huang, Mohamed Battisha, Michelle Chiang, Santhosh
Srinivasan, Craig Peters, Andreas Neumann, and Alejandro Abdelnur. “Oozie: Towards
a Scalable Workflow Management System for Hadoop”. In: Proceedings of the 1st ACM
SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies. SWEET
’12. 2012, 4:1–4:10 (Page: 9).

[49] Jline 2.x. https://github.com/jline/jline2. Accessed: 2018-06-05 (Page: 108).

[50] E. Jovanov. “Wireless Technology and System Integration in Body Area Networks for
m-Health Applications”. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual
Conference. Jan. 2005, pp. 7158–7160 (Pages: 1, 2).

[51] Yunus Kaplan. “A SSD-aware logging service for a distributed in-memory storage”. Mas-
ter’s Thesis. Universitaetsstrasse 1, 40225 Duesseldorf, Germany: Institute for Computer
Science, Heinrich-Heine University Duesseldorf, Mar. 2014 (Page: 57).

[52] Florian Klein. “Metadata-Management in a distributed In-Memory Storage”. PhD thesis.
Universitaetsstrasse 1, 40225 Duesseldorf, Germany: Institute for Computer Science,
Heinrich-Heine University Duesseldorf, Nov. 2015 (Pages: 14, 21).

[53] Florian Klein, Kevin Beineke, and Michael Schoettner. “Distributed Range-Based Meta-
Data Management for an In-Memory Storage”. In: LNCS Europar Workshop Proceedings,
4th Big Workshop on Big Data Managements in Clouds. Sept. 2015 (Pages: 9, 17).

[54] Florian Klein, Kevin Beineke, and Michael Schoettner. “Memory Management for Billions
of Small Objects in a Distributed In-Memory Storage”. In: IEEE Cluster 2014. Sept.
2014 (Page: 6).

[55] Florian Klein and Michael Schoettner. “Dxram: A persistent in-memory storage for
billions of small objects”. In: Proceedings of the 14th International Conference on Parallel
and Distributed Computing, Applications and Technologies. PDCAT 13. 2013 (Page: 9).

135

https://github.com/Microsoft/GraphEngine
https://github.com/Microsoft/GraphEngine
http://www.hazelcast.com
https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand
https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand
https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand
https://github.com/jline/jline2

Bibliography

[56] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching,
Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi,
Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis, Henry Robinson,
David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne,
and Michael Yoder. “Impala: A Modern, Open-Source SQL Engine for Hadoop”. In:
CIDR. 2015 (Page: 9).

[57] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. “What is Twitter, a
Social Network or a News Media?” In: Proceedings of the 19th International Conference
on World Wide Web. WWW ’10. 2010, pp. 591–600 (Pages: 1, 2).

[58] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured storage
system”. In: SIGOPS Oper. Syst. Rev. 44 (Apr. 2010), pp. 35–40 (Pages: 9, 17).

[59] Leslie Lamport. “Paxos Made Simple”. In: (Dec. 2001), pp. 51–58 (Page: 6).

[60] Charles E. Leiserson and Tao B. Schardl. “A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers)”. In: Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures. SPAA ’10. 2010,
pp. 303–314 (Page: 19).

[61] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. “Tachyon:
Reliable, Memory Speed Storage for Cluster Computing Frameworks”. In: SOCC ’14.
2014 (Pages: 2, 4, 7).

[62] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. “MICA: A
Holistic Approach to Fast In-Memory Key-Value Storage”. In: 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 14). 2014, pp. 429–444
(Page: 8).

[63] P.D. Londhe, S.S. Kumbhar, R.S. Sul, and A.J. Khadse. “Processing big data using
hadoop framework”. In: Proceedings of 4th SARC-IRF International Conference. Apr.
2014, pp. 72–75 (Page: 9).

[64] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. “Distributed GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud”. In: Proc. VLDB Endow. 5 (Apr. 2012), pp. 716–727 (Pages: 3,
16).

[65] Hongjun Lu, Yuet Yeung Ng, and Zengping Tian. “T-tree or B-tree: main memory
database index structure revisited”. In: Database Conference, 2000. ADC 2000. Proceed-
ings. 11th Australasian. 2000, pp. 65–73 (Page: 20).

[66] Yifeng Luo, Siqiang Luo, Jihong Guan, and Shuigeng Zhou. “A RAMCloud Storage
System Based on HDFS: Architecture, Implementation and Evaluation”. In: J. Syst.
Softw. 86 (Mar. 2013), pp. 744–750 (Page: 9).

[67] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. “Pregel: A System for Large-scale Graph Pro-
cessing”. In: Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’10. 2010, pp. 135–146 (Page: 7).

[68] Dahlia Malkhi and Michael Reiter. “Byzantine quorum systems”. In: Distributed Com-
puting 11 (Oct. 1998), pp. 203–213 (Page: 4).

[69] W. Glynn Mangold and David J. Faulds. “Social media: The new hybrid element of the
promotion mix”. In: Business Horizons 52 (2009), pp. 357–365 (Pages: 1, 2).

136

Bibliography

[70] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. “Use at Your Own Risk: The Java Unsafe API in the Wild”. In:
SIGPLAN Not. 50 (Oct. 2015), pp. 695–710 (Page: 18).

[71] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications Co.,
2010 (Page: 8).

[72] Sneha Mehta and Viral Mehta. “Hadoop Ecosystem: An Introduction”. In: International
Journal of Science and Research (IJSR). Vol. 5. June 2016 (Page: 8).

[73] Memcached SPOF Mystery. https://blog.twitter.com/engineering/en_us/a/
2010/memcached-spof-mystery.html. Accessed: 2018-06-25 (Page: 9).

[74] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold
Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. “MLlib:
Machine Learning in Apache Spark”. In: Journal of Machine Learning Research 17
(2016), pp. 1–7 (Page: 8).

[75] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. “Graph Struc-
ture in the Web — Revisited: A Trick of the Heavy Tail”. In: Proceedings of the 23rd
International Conference on World Wide Web. WWW ’14 Companion. 2014, pp. 427–432
(Pages: 1, 3, 4).

[76] Christopher Mitchell, Yifeng Geng, and Jinyang Li. “Using One-Sided RDMA Reads to
Build a Fast, CPU-Efficient Key-Value Store”. In: Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 2013, pp. 103–114 (Page: 12).

[77] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. “Introducing
the graph 500”. In: (2010) (Page: 16).

[78] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya,
Randall Wald, and Edin Muharemagic. “Deep learning applications and challenges in
big data analytics”. In: Journal of Big Data 2 (Feb. 2015) (Page: 7).

[79] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Grappa: A
latency-tolerant runtime for large-scale irregular applications. Technical Report. 2014
(Page: 16).

[80] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski and Herman Lee, Harry
C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,
and Venkateshwaran Venkataramani. “Scaling Memcache at Facebook”. In: Presented as
part of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). 2013, pp. 385–398 (Pages: 1, 2, 9).

[81] Stefan Nothaas, Kevin Beineke, and Michael Schöttner. “Distributed Multithreaded
Breadth-first Search on Large Graphs Using DXGraph”. In: Proceedings of the First
International Workshop on High Performance Graph Data Management and Processing.
HPGDMP ’16. 2016, pp. 1–8 (Pages: 16, 18, 19).

[82] S. Oikawa and R. Rajkumar. May 1998 (Page: 109).

[83] Diego Ongaro and John Ousterhout. “In Search of an Understandable Consensus Al-
gorithm”. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14). 2014,
pp. 305–319 (Page: 111).

137

https://blog.twitter.com/engineering/en_us/a/2010/memcached-spof-mystery.html
https://blog.twitter.com/engineering/en_us/a/2010/memcached-spof-mystery.html

Bibliography

[84] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. “Fast Crash Recovery in RAMCloud”. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’11. 2011, pp. 29–41 (Pages: 2,
3, 6, 16, 26).

[85] Open source memory-centric distributed database, caching and processing platform -
Apache Ignite. https : / / ignite . apache . org / index . html. Accessed: 2018-06-21
(Page: 9).

[86] Mohd Fauzi Othman and Khairunnisa Shazali. “Wireless Sensor Network Applications: A
Study in Environment Monitoring System”. In: Procedia Engineering 41 (2012), pp. 1204–
1210 (Pages: 1, 2).

[87] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. “The case for
RAMClouds: scalable high-performance storage entirely in DRAM”. In: SIGOPS Oper.
Syst. Rev. 43 (Jan. 2010), pp. 92–105 (Pages: 1, 2, 6, 8, 12).

[88] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam
Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rumble,
Ryan Stutsman, and Stephen Yang. “The RAMCloud Storage System”. In: ACM Trans.
Comput. Syst. 33 (Aug. 2015), 7:1–7:55 (Page: 2).

[89] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Previous number
= SIDL-WP-1999-0120. Nov. 1999 (Pages: 1, 2).

[90] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to MongoDB:
The NoSQL Database for Cloud and Desktop Computing. 1st. Berkely, CA, USA: Apress,
2010 (Pages: 3, 17).

[91] PoweredBy - Hadoop Wiki. https://wiki.apache.org/hadoop/PoweredBy. Accessed:
2018-06-21 (Page: 8).

[92] Dan Pritchett. “BASE: An Acid Alternative”. In: Queue 6 (May 2008), pp. 48–55
(Page: 3).

[93] M. J. Rashti and A. Afsahi. “10-Gigabit iWARP Ethernet: Comparative Performance
Analysis with InfiniBand and Myrinet-10G”. In: 2007 IEEE International Parallel and
Distributed Processing Symposium. Mar. 2007, pp. 1–8 (Page: 12).

[94] reddit’s May 2010 “State of the Servers” report. https://redditblog.com/2010/05/11/
reddits-may-2010-state-of-the-servers-report/. Accessed: 2018-06-25 (Page: 9).

[95] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. “Handling Churn
in a DHT”. In: Proceedings of the Annual Conference on USENIX Annual Technical
Conference. ATEC ’04. 2004, pp. 10–10 (Page: 4).

[96] Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat. “Pickling State in the
javaTM System”. In: Proc. of the 2nd Conf. on USENIX Conf. on Object-Oriented
Technologies. 1996, pp. 19–19 (Page: 8).

[97] Mendel Rosenblum and John K. Ousterhout. “The Design and Implementation of a
Log-structured File System”. In: ACM Trans. Comput. Syst. 10 (Feb. 1992), pp. 26–52
(Page: 81).

138

https://ignite.apache.org/index.html
https://wiki.apache.org/hadoop/PoweredBy
https://redditblog.com/2010/05/11/reddits-may-2010-state-of-the-servers-report/
https://redditblog.com/2010/05/11/reddits-may-2010-state-of-the-servers-report/

Bibliography

[98] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. “Log-structured Memory
for DRAM-based Storage”. In: Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14). 2014, pp. 1–16 (Pages: 6, 10, 26).

[99] M. Samovsky and T. Kacur. “Cloud-based classification of text documents using the
Gridgain platform”. In: 2012 7th IEEE International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI). May 2012, pp. 241–245 (Page: 3).

[100] SAP HANA Backup and Recovery (Overview). https://www.sap.com/documents/
2015/03/c86ff654- 5a7c- 0010- 82c7- eda71af511fa.html. Accessed: 2018-07-10
(Pages: 2, 5).

[101] SAP HANA Customer Reviews. https://www.sap.com/products/hana/customer-
reviews.html. Accessed: 2018-06-26 (Page: 5).

[102] Pratik Satapathy, Jash Dave, Priyanka Naik, and Mythili Vutukuru. “Performance
Comparison of State Synchronization Techniques in a Distributed LTE EPC”. In: IEEE
Conf. on Network Function Virtualization and Software Defined Networks. 2017 (Page: 2).

[103] Seattle Conference on Scalability: YouTube Scalability. https://www.youtube.com/
watch?v=ZW5_eEKEC28. Accessed: 2018-06-25 (Page: 9).

[104] Bin Shao, Haixun Wang, and Yatao Li. “Trinity: A Distributed Graph Engine on a
Memory Cloud”. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’13. 2013, pp. 505–516 (Page: 6).

[105] E. Shurman and J. Brutlag. Performance related changes and their user impact. http:
//oreil.ly/fTmYwz. 2009 (Pages: 1, 2).

[106] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop Distributed File
System”. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). May 2010, pp. 1–10 (Page: 9).

[107] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof
Bornhövd. “Efficient transaction processing in SAP HANA database: the end of a column
store myth”. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’12. 2012, pp. 731–742 (Pages: 3, 5).

[108] Dilpreet Singh and Chandan K. Reddy. “A survey on platforms for big data analytics”.
In: Journal of Big Data 2 (Oct. 2014), p. 8 (Page: 7).

[109] Sergej Sizov and Mikle Bahn. “Disciplinary assessment of scientific content by higher-
order citation mining”. In: Proceedings of the Association for Information Science and
Technology 54 (Oct. 2017), pp. 383–393 (Page: 16).

[110] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Gooding,
Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic. “Aerospike: Architecture of a
Real-time Operational DBMS”. In: Proc. VLDB Endow. 9 (Sept. 2016), pp. 1389–1400
(Page: 8).

[111] SSD Ranking: The Fastest Solid State Drives 2018. http://www.fastestssd.com/
featured/ssd-rankings-the-fastest-solid-state-drives/#m2. Accessed: 2018-
07-03 (Page: 4).

[112] Statistics | TOP500 Supercomputer Sites. https://www.top500.org/statistics/.
Accessed: 2018-03-17 (Pages: 1, 12, 45).

139

https://www.sap.com/documents/2015/03/c86ff654-5a7c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2015/03/c86ff654-5a7c-0010-82c7-eda71af511fa.html
https://www.sap.com/products/hana/customer-reviews.html
https://www.sap.com/products/hana/customer-reviews.html
https://www.youtube.com/watch?v=ZW5_eEKEC28
https://www.youtube.com/watch?v=ZW5_eEKEC28
http://oreil.ly/fTmYwz
http://oreil.ly/fTmYwz
http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#m2
http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#m2
https://www.top500.org/statistics/

Bibliography

[113] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications”. In: Proceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. SIGCOMM ’01. 2001, pp. 149–160 (Page: 20).

[114] Ryan Stutsman. “Durability and crash recovery in distributed inmemory storage systems”.
dissertation. Stanford University, The Department of Computer Science, Stanford, CA,
USA, 2013 (Page: 6).

[115] Wenhui Tang, Yutong Lu, Nong Xiao, Fang Liu, and Zhiguang Chen. “Accelerating Redis
with RDMA Over InfiniBand”. In: Data Mining and Big Data. Ed. by Ying Tan, Hideyuki
Takagi, and Yuhui Shi. Cham: Springer International Publishing, 2017, pp. 472–483
(Page: 8).

[116] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. “The Anatomy of
the Facebook Social Graph”. In: CoRR abs/1111.4503 (2011) (Pages: 1, 2, 4, 7).

[117] Brian Bulkowski V. Srinivasan. “Citrusleaf: A Real-Time NoSQL DB which Preserves
ACID”. In: (Aug. 2011) (Pages: 3, 5, 6).

[118] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas
Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-
schwieler. “Apache Hadoop YARN: Yet Another Resource Negotiator”. In: Proceedings
of the 4th Annual Symposium on Cloud Computing. SOCC ’13. 2013, 5:1–5:16 (Page: 9).

[119] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni, and D. K. Panda.
“Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE on HPC
and Cloud Computing Systems”. In: 2012 IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI). Aug. 2012, pp. 48–55 (Page: 12).

[120] Mehul Nalin Vora. “Hadoop-HBase for large-scale data”. In: Proceedings of 2011 Inter-
national Conference on Computer Science and Network Technology. Vol. 1. Dec. 2011,
pp. 601–605 (Page: 9).

[121] Sameer Wadkar and Madhu Siddalingaiah. “Apache Ambari”. In: Pro Apache Hadoop.
Berkeley, CA: Apress, 2014 (Page: 9).

[122] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad
Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. “Building a Replicated
Logging System with Apache Kafka”. In: Proc. VLDB Endow. 8 (Aug. 2015), pp. 1654–
1655 (Page: 8).

[123] S. Wang. Graph Analytics and Machine Learning. https://de.slideshare.net/
stanleywanguni/graph-analytic-and-machine-learning. 2016 (Page: 2).

[124] Who’s using Redis. https://redis.io/topics/whos-using-redis. Accessed: 2018-06-
25 (Page: 5).

[125] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. “GraphX: A
Resilient Distributed Graph System on Spark”. In: First International Workshop on
Graph Data Management Experiences and Systems. GRADES ’13. 2013, 2:1–2:6 (Pages: 3,
8).

140

https://de.slideshare.net/stanleywanguni/graph-analytic-and-machine-learning
https://de.slideshare.net/stanleywanguni/graph-analytic-and-machine-learning
https://redis.io/topics/whos-using-redis

Bibliography

[126] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing”. In: Presented
as part of the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). 2012, pp. 15–28 (Page: 9).

[127] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
“Spark: Cluster Computing with Working Sets”. In: Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing. HotCloud’10. 2010, pp. 10–10 (Pages: 7–
9).

[128] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and M. Zhang. “In-Memory Big Data
Management and Processing: A Survey”. In: IEEE Transactions on Knowledge and Data
Engineering 27.7 (July 2015), pp. 1920–1948 (Pages: 1–3, 5, 7).

[129] Weinan Zhang, Shuai Yuan, and Jun Wang. “Optimal Real-time Bidding for Display
Advertising”. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’14. 2014, pp. 1077–1086 (Page: 2).

[130] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. “Tapestry: A Fault-tolerant
Wide-area Application Infrastructure”. In: SIGCOMM Comput. Commun. Rev. 32 (Jan.
2002), pp. 81–81 (Page: 4).

[131] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. “Understanding
Mobility Based on GPS Data”. In: Proceedings of the 10th International Conference on
Ubiquitous Computing. UbiComp ’08. 2008, pp. 312–321 (Page: 1).

141

Curriculum Vitae

Kevin Beineke

Personal Details

Name: Kevin Josef Beineke
Birth: November 25th 1987 in Düsseldorf, Germany
Nationality: German

Languages

German: native
English: written and spoken
Spanish: school knowledge
Latin: qualification in Latin

142

Curriculum Vitae

Academic and professional experience

Since 01/2014 Doctoral studies at the Heinrich-Heine University Düsseldorf

12/2013 Degree: Master of Science (Final grade: 1.1)

Master thesis:
„Scalable Distributed Metadata Management for Many Small Objects“
Grade: 1.0

10/2011 - 12/2013 Studies of Computer Science (Master)
Heinrich-Heine University Düsseldorf
Focus: distributed and parallel systems, computer networks,
peer-to-peer networks, neural networks

10/2011 Degree: Bachelor of Science (Final grade: 1.5)

Bachelor thesis:
„Adaptive Replication in a Distributed In-Memory System“
Grade: 1.0

10/2008 - 9/2011 Studies of Computer Science (Bachelor)
Heinrich-Heine University Düsseldorf
Focus: operating systems, computer networks
Secondary subject: biology

1/2008 - 9/2008 Basic military service
Award: Bestpreis

6/2007 Abitur (Final grade: 2.3)
Comenius Gymnasium, Düsseldorf, Germany

143

Curriculum Vitae

Practical experiences

04/2010 - 07/2010 Heinrich-Heine University Düsseldorf
Department: Computer Networks
Student assistant
Tutor for "Computer Science II"
Participated in a course regarding the principles of teaching

10/2010 - 12/2013 Heinrich-Heine University Düsseldorf
Department: Operating Systems
Student assistant
Writing an application for OSS (Object Sharing Service)
Developing, porting and extending benchmarks for ECRAM
Developing and extending the function set of ECRAM
Adding fault-tolerance aspects to ECRAM
Evaluating ECRAM: scalability comparison between cluster and HPC
(HP DL980; Future SOC Lab of the Hasso-Plattner institute)
Developing an adaptive replication scheme for ECRAM
Developing the global metadata management of DXRAM
Porting a social media benchmark for DXRAM (new data model)

01/2014 - 06/2015 Heinrich-Heine University Düsseldorf
Centre for Information and Media Technology
Research assistant
Deployment and maintenance of databases
(IBM Informix, PostgreSQL, MySQL and Microsoft SQL Server)
License demand calculation
Porting online database from IBM Informix to PostgreSQL

Since 01/2014 Heinrich-Heine University Düsseldorf
Department: Operating Systems
Research assistant
Distributed and parallel infrastructures for big data processing

144

Curriculum Vitae

Research projects

2010 OSS (Object Sharing Service)
Distributed shared memory system with transactional consistency
Part of the European project XtreemOS
Tasks: benchmarking and evaluation

2011 - 2013 ECRAM (Elastic Cooperative Random Access Memory)
Distributed shared memory system with transactional consistency
Based on OSS, extended by a MapReduce framework and file system
Tasks: adaptive replication, fault-tolerance, benchmarking

Since 2013 DXRAM (Distributed eXtreme Memory)
Distributed in-memory key-value store
Optimized for low-latency access and resource efficiency

Since 2017 DXNet
Network messaging system for Java applications
Standalone; used by DXRAM

Teaching

Involvement in the following courses at the Heinrich-Heine University Düsseldorf:

Exercises/Project Distributed and Parallel Systems SS 2014
Exercises Computer Science I WS 2014/2015
Lab exercises Operating Systems WS 2015/2016
Exercises Fundamentals Distributed Systems WS 2015/2016
Seminar Architecture Distributed Systems SS 2016
Lab exercises Distributed and Parallel Systems SS 2016
Exercises Computer Science I WS 2016/2017
Seminar Virtual & Augmented Reality WS 2016/2017
Exercises/Project Operating Systems SS 2017
Exercises Fundamentals Distributed Systems SS 2017
Seminar Architecture Distributed Systems WS 2017/2018
Lab exercises Distributed and Parallel Programming WS 2017/2018
Lab exercises Operating Systems and System Programming 2018

145

Personal Publications

Reviewed conference papers

Kim-Thomas Rehmann, Kevin Beineke and Michael Schöttner. “Smart Replication for In-
memory Computations”. In: Proc. of the 18th IEEE International Conference on Parallel and
Distributed Systems (ICPADS). 2012. Acceptance Rate: 29.6%.

Florian Klein, Kevin Beineke and Michael Schöttner. “Memory Management for Billions of
Small Objects in a Distributed In-Memory Storage”. In: Proc. of the 2014 IEEE International
Conference on Cluster Computing (CLUSTER). 2014. Acceptance Rate: 23.8%.

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “High Throughput Log-based Replication
for Many Small In-Memory Objects”. In: Proc. of the 22nd IEEE International Conference on
Parallel and Distributed Systems (ICPADS). 2016. Acceptance Rate: 29.9%.

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “Fast Parallel Recovery of Many Small
In-memory Objects”. In: Proc. of the 23rd IEEE International Conference on Parallel and
Distributed Systems (ICPADS). 2017. Acceptance Rate: 32.8%.

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “Scalable Messaging for Java-based
Cloud Applications”. In: ICNS 2018, The Fourteenth International Conference on Networking
and Services. 2018. Acceptance Rate: 29%.

Reviewed workshop papers

Kevin Beineke, Florian Klein and Michael Schöttner. “Asynchronous Logging and Fast Recovery
for a Large-Scale Distributed In-Memory Storage”. In: INFORMATIK 2014 proceedings,
BigSys14 workshop. 2014.

Florian Klein, Kevin Beineke and Michael Schöttner. “Distributed Range-Based Meta-Data
Management for an In-Memory Storage”. In: LNCS Europar Workshop Proceedings, 4th Big
Workshop on Big Data Managements in Clouds. 2015.

Stefan Nothaas, Kevin Beineke and Michael Schöttner. “Distributed Multithreaded Breadth-
First Search on Large Graphs using DXGraph”. In: Proc. of the 1st High Performance Graph
Data Management and Processing workshop (HPGDMP). 2016.

146

Personal Publications

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “Efficient Messaging for Java Applications
running in Data Centers”. In: Cluster, Cloud and Grid Computing (CC-GRID), 2018 18th
IEEE/ACM International Symposium on, Workshop AHPAMA. 2018.

Reviewed two-page short papers for poster presentation

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “High Throughput Log-based Replication
for Many Small In-Memory Objects”. In: Proc. of the 2016 IEEE International Conference on
Cluster Computing (CLUSTER), Poster. 2016.

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “Parallelized Recovery of Hundreds
of Millions of Small Data Objects”. In: Proc. of the 2017 IEEE International Conference on
Cluster Computing (CLUSTER), Poster. 2017.

Reports

Kevin Beineke, Stefan Nothaas and Michael Schöttner. “DXRAM’s Fault-Tolerance Mechanisms
Meet High Speed I/O Devices”. In: ArXiv e-prints (July 2018). arXiv:1807.03562 [cs.DC].

147

Eidesstattliche Erklärung
laut §5 der Promotionsordnung vom 06.12.2013

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige
fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an
der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.

Ort, Datum Kevin Beineke

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Content
	1 Introduction
	1.0.1 Application Domains Processing Many Small Data Objects
	1.0.2 Categorization of In-Memory Storages
	1.0.3 Fault-Tolerance Mechanisms
	1.0.4 Network Subsystems
	1.0.5 Big Data Analytics in the Industry

	1.1 Research Questions and Contributions
	1.1.1 Backup and Recovery
	1.1.2 Network Subsystem

	1.2 Structure of this Thesis
	1.3 DXRAM
	1.3.1 Overview
	1.3.2 Compute Platform
	1.3.3 Distributed Metadata Management
	1.3.4 Efficient Memory Management
	1.3.5 Concurrent Backup and Recovery
	1.3.6 DXNet: Lock-free Messaging

	2 Efficient Messaging for Java Applications running in Data Centers
	2.1 Paper Summary
	2.2 Importance and Impact on Thesis
	2.3 Personal Contribution

	3 Scalable Messaging for Java-based Cloud Applications
	3.1 Paper Summary
	3.2 Importance and Impact on Thesis
	3.3 Personal Contribution

	4 High Throughput Log-based Replication for Many Small In-memory Object
	4.1 Paper Summary
	4.2 Importance and Impact on Thesis
	4.3 Personal Contribution

	5 Fast Parallel Recovery of Many Small In-memory Objects
	5.1 Paper Summary
	5.2 Importance and Impact on Thesis
	5.3 Personal Contribution

	6 DXRAM's Fault-Tolerance Mechanisms Meet High Speed I/O Devices
	6.1 Paper Summary
	6.2 Importance and Impact on Thesis
	6.3 Personal Contribution

	7 Conclusion
	7.1 Future Directions
	7.2 Lessons Learned

	I Appendix
	8 Appendix
	8.1 DXRAM - Additional Information
	8.2 Asynchronous Logging and Fast Recovery for a Large-Scale Distributed In-Memory Storage
	8.2.1 Paper Summary

	Acronyms
	Bibliography
	Curriculum Vitae
	Personal Publications
	Declaration

