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A B S T R A C T

Statistical machine translation (SMT) has evolved from simple word-
based models over feature-rich phrase-based approaches to tree-based
methods. The latter employ synchronous grammars, usually some
form of a Synchronous Context-Free Grammar (SCFG), to model hier-
archical as well as translational relationships between language pairs.

In this thesis, an approach to tree-based SMT is explored which
makes use of a grammar formalism beyond Context-Free Grammar
(CFG). I define and implement the first SMT system based on Linear
Context-Free Rewriting System (LCFRS), including training proce-
dures and a cube-pruning decoder. At the same time, it is also the
first hierarchical phrase-based system which allows for discontinuous
phrases on the source as well as on the target side.

To that end, I define Synchronous Linear Context-Free Rewriting
System (SLCFRS), a natural extension to SCFG. SLCFRS non-terminals
may span more than one continuous block on each side of the bitext
and can thus represent synchronous discontinuous constituents in a
straightforward manner. In the domain of data-driven syntactic pars-
ing, LCFRS is a well-studied formalism for modeling discontinuities
while still being fairly efficient to handle. Experiments for translating
from German to English demonstrate the feasibility of training and
decoding with more expressive translation models such as SLCFRS
and show a modest improvement over a context-free baseline.

The extension beyond context-freeness in the context of machine
translation is motivated by a set of alignment configurations that are
beyond the alignment capacity of current translation models based on
SCFG. In quantitative and qualitative investigations, I show that an
SCFG-based approach to translation modeling is not capable of deriv-
ing all alignments which occur in a wide range of manually aligned
bilingual data sets, and that only very few of those configurations can
be attributed to alignment errors. In order to not a priori exclude the
corresponding translation options from the search space, a more ex-
pressive grammar formalism than SCFG is required in the context of
tree-based translation.
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1
I N T R O D U C T I O N

This thesis aims at transferring findings from formal grammar theory
and parsing in the context of language modeling beyond Context-Free
Grammar (CFG) to the field of statistical machine translation. In the
following section, the background of these research topics will be out-
lined. A more detailed introduction to the individual concepts and
topics will be presented later in chapter 2. Section 1.2 summarizes the
contributions of this thesis. An overview of the following chapters is
provided in section 1.3.

1.1 background

The goal of machine translation is to automatically translate an input
text in a certain language into another language, as a human translator
would perform the translation, e. g. translating the German example
in (1a) to English; see (1b).

(1) a. Ich möchte die Präsidentschaft auch für ihre Arbeit loben.

b. I also wish to praise the Presidency for its work.

The computer program performing the translation is called a decoder.
In the case of statistical machine translation (SMT), the translation task
is formulated as a machine learning problem. The decoder operates
on the basis of a model which defines a probability distribution P(e| f )
over all possible translations e for a given input f , and it is precisely
the task of the decoder to find the most probable translation for f
given the model. The most popular SMT models make use of a com-
bination of different components (or features) which model different
characteristics of the translation. Typically, at least a translation model,
assigning probability to the correspondence between the source and
the target sequence, and a language model, assessing the fluency of the
target sequence, are used. The parameters of such statistical models
are estimated from large amounts of (parallel) text. This work is ex-
clusively concerned with translation modeling. The language model

1
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Ich möchte die Präsidentschaft auch für ihre Arbeit loben .

I also wish to praise the Presidency for its work .

Figure 1: A word-based translation example. The links are word alignment
links.

Ich möchte die Präsidentschaft auch für ihre Arbeit loben .

I also wish to praise the Presidency for its work .

Figure 2: A phrase-based translation example. The links express correspon-
dences between phrases.

will not be given further attention, except for the interaction of the
language model and the translation model during decoding.

The first successful probabilistic translation models made use of
translational correspondences on the word or phrase level. Examples
are shown in figure 1 and 2 respectively. The translation process itself
is performed sequentially from left to right. The past decades have
however shown a trend towards more structural models, which allow
to translate recursively. Such tree-based (also called syntax-based) trans-
lation models employ synchronous grammars that derive hierarchical
structure on the source and the target side in parallel. Figure 3 depicts
an example. Nodes which carry the same index have been derived syn-
chronously. Translation is usually performed by parsing the input sen-
tence with the monolingual source projection of the grammar using
standard parsing algorithms, thereby inducing the derivation on the
target side in parallel. The most prominent formalism is Synchronous
Context-Free Grammar (SCFG), originally known as Syntax-Directed
Transduction Grammar (SDTG), a generalization of CFG that gener-
ates pairs of strings instead of just strings. Figure 4 shows sample
SCFG rewriting rules to derive the synchronous tree in figure 3. These
rules do not only encode lexical and phrasal translational correspon-
dence, as the word-based and phrase-based models do as well, such
as die Präsidentschaft translates to the Presidency (rule r4). They also
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X 5

X 4

X 3

X 1 X 2

Ich möchte die Präsidentschaft auch für ihre Arbeit loben .

I also wish to praise the Presidency for its work .

X 1 X 2

X 3

X 4

X 5

Figure 3: A tree-based translation example. The gray links represent phrasal
alignments which are induced by the synchronous derivation.

contain reordering information, for instance that in German two (po-
tentially hierarchical) phrases X 1 and X 2 intervene between the verbs
möchte and loben, whereas in English they are placed after the verbal
elements (rule r3). Such information is particularly beneficial for lan-
guage pairs with substantially different word orders.

There exist a variety of different flavors of SCFG translation models
and also approaches for learning them from bitext. Hierarchical phrase-
based (Hiero) translation grammars (Chiang, 2007) are syntactic only
in a formal sense. They use a single non-terminal category, as in fig-
ure 3 and 4, and do not apply any notion of linguistics at all. Usually,
Hiero grammars are extracted from automatically word-aligned text,
applying a set of heuristic constraints to limit the type and number of
extracted rules. Non-parametric approaches to infer such rules have
also been proposed (e. g. Levenberg et al., 2012). Furthermore, a vari-
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r1 : X → 〈Ich X 1 , I X 1 〉
r2 : X → 〈X 1 . , X 1 .〉
r3 : X → 〈möchte X 1 auch X 2 loben , also wish to praise X 1 X 2 〉
r4 : X → 〈die Präsidentschaft , the Presidency〉
r5 : X → 〈für ihre Arbeit , for its work〉

Figure 4: Sample SCFG rules

ety of translation models that indeed make use of monolingual syn-
tactic information and corresponding labels on the source and/or the
target side have been worked out (e. g. Galley et al., 2004; Zollmann
and Venugopal, 2006; Hoang and Koehn, 2010). As an example of the
type of linguistic information which is integrated, consider figure 6.

The concept of a word alignment - a set of links between the source
and target words of a sentence or paragraph that represent transla-
tional equivalence - is a central concept in SMT. Consider figure 1
as an example. As already mentioned, phrase-based and tree-based
translation models are commonly learned on the basis of word align-
ments, or they are induced jointly. Unsupervised machine learning ap-
proaches to create word alignments are typically based on sequence
models and the original word-based translation models of Brown et al.
(1993). Synchronous grammars can also be viewed in the context of bi-
text parsing and alignment: When applying a synchronous rule, align-
ments between the terminals, i. e. the words of the parallel text, are
induced. For instance, in figure 3 and 4, when applying rule r1 to
translate Ich, it becomes aligned to I.

However, the space of alignments that can be generated with SCFGs,
and hence the space of translation options during decoding, is limited.
Some alignment configurations, e. g. inside-out (IO) alignments (Wu,
1997) and certain discontinuous translation units with multiple gaps,
are beyond the alignment capacity of SCFGs of rank 2.1 Cross-serial
discontinuous translation units (CDTUs) and bonbon configurations can
be induced by neither SCFGs of any rank nor phrase-based translation
systems (Søgaard and Kuhn, 2009; Wellington et al., 2006). It is thereby

1 The rank of an SCFG is the maximal number of non-terminals in the right-hand
side (RHS) of the rules in the source or target projection. The grammar in figure 4
has rank 2. Grammars are often restricted to rank 2 for parsing efficiency.
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(i) (ii) (iii)

a b c d a b a1 b a2

b d a c a1 b1 a2 b2 b1 a b2

Figure 5: (i) IO alignment, (ii) CDTU, (iii) bonbon alignment

assumed that a translation unit, containing the transitive closure of
some set of nodes of the bipartite alignment graph, represents minimal
translational equivalence, and therefore that an adequate translation
grammar should be able to generate each translation unit separately.
Figure 5 schematically depicts some of the aforementioned alignment
configurations.

Several studies addressing the empirical alignment capacity of vari-
ous formalisms have found that those alignment configurations occur
relatively frequently in manually aligned data. For instance, Welling-
ton et al. (2006) report that 5% of their English-Chinese sentence pairs
contain IO alignments, and Søgaard and Kuhn (2009) report that, on
average, about every second sentence pair in their English-Spanish
data contains a CDTU. Such findings have consequently put the em-
pirical adequacy of SCFG translation models into question. A few ef-
forts towards more powerful translation models in order to capture
the described alignment configurations have appeared in the litera-
ture (Søgaard, 2008b; Galley and Manning, 2010).

In the parsing and formal linguistics community, a related develop-
ment has taken place. For many years, CFG has been the grammar for-
malism of choice for describing the hierarchical structure of the syntax
of languages in constituency-based frameworks (Chomsky, 1956). For
illustration, consider the tree in figure 6 which shows a CFG analysis
for an English sentence. Different parsing strategies were developed
for CFG (e. g. Cocke and Schwartz, 1970; Earley, 1970; Rosenkrantz
and Lewis, 1970). Data-driven probabilistic parsing has concentrated
as well on approaches for CFG parsing (e. g. Charniak, 1997; Collins,
1999; Charniak, 2000; Klein and Manning, 2001; Petrov, 2009).

However, it is known since the 80’s that CFG does not provide
enough expressivity to model all natural language phenomena. In
particular, CFG is only able to model continuous constituents, i. e. the
words in the yield of a constituent always form a continuous sequence.
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S

VP

VP

VP

Comp NP V NP V NP V

that Jan saw Piet help the children swim

Figure 6: Constituency structure

Yet, the constituency analysis of certain phenomena, such as cross-
serial dependencies in Dutch and Swiss-German, unbounded scram-
bling of constituents in German and, generally, non-local dependen-
cies, requires discontinuous constituents. For illustration, consider ex-
ample (2) (Bresnan et al., 1982), which is a literal Dutch translation of
the English sentence in figure 6, and its analysis in figure 7.

(2) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen
swim

‘[. . . ] that Jan saw Piet help the children swim’

Both in the English and the Dutch tree, each verb is grouped with its
respective arguments under one verb phrase (VP). The discontinuous
constituents in figure 7 can be easily spotted by paying attention to
crossing branches. The two embedded lower VPs are discontinuous be-
cause their yields have a gap. They are interrupted by zag helpen and
zag respectively. Such a tree cannot be derived with a CFG.

In order to characterize the amount of context-sensitivity which
is required beyond context-freeness in order to describe natural lan-
guage adequately, the notion of mild context-sensitivity was introduced
(Joshi, 1985). Roughly, an adequate formalism includes at least CFGs,
it is able to describe a limited amount of cross-serial dependencies, it
is polynomially parsable and the lengths of the words of its languages
grow linearly. Subsequently, several grammar formalisms which fall
into the category of generating mildly context-sensitive languages and
corresponding parsing algorithms were developed. The most influen-
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S

VP

VP

VP

Comp NP NP NP V V V

dat Jan Piet de kinderen zag helpen zwemmen

Figure 7: Constituency structure with discontinuous constituents. Adapted
from Kallmeyer (2010, figure 1.2).

tial formalisms probably are, with increasing expressivity, Tree-Ad-
joining Grammar (TAG) (Joshi et al., 1975) and its variants, Linear
Context-Free Rewriting System (LCFRS) (Vijay-Shanker et al., 1987)
and Multiple Context-Free Grammar (MCFG) (Seki et al., 1991), and
(restricted forms of) Range Concatenation Grammar (RCG) (Boullier,
2000).

LCFRS can be considered a generalization of CFG. Intuitively, the
rules are still context-free, but instead of rewriting continuous strings,
tuples of continuous strings are rewritten.2 The length v of a tuple
of strings which is spanned by a non-terminal is termed its fan-out.
LCFRSs are parsable in polynomial time, but the degree depends di-
rectly on the fan-out v of the grammar. Several symbolic parsing al-
gorithms for LCFRS and equivalent formalisms have been published
(e. g. Seki et al., 1991; Burden and Ljunglöf, 2005; Kallmeyer and Maier,
2009). LCFRS derivations can be interpreted as parse trees with cross-
ing branches. Figure 8 shows LCFRS rules which can be used to gen-
erate the tree in figure 7.3 The third VP rule, for instance, explains
that a discontinuous VP constituent may consist of an NP and a V

2 The original formulation of LCFRS is more general, in the sense that other objects,
such as trees or graphs, can be rewritten as well. Within this work, we will only
consider string-rewriting LCFRS. We furthermore use the notation of RCG.

3 In fact, the LCFRS rules have been generated from the tree in figure 7 using the
approach in Maier and Søgaard (2008).
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S(X1X2) → Comp(X1) VP(X2)

VP(X1X2X3X4) → NP(X1) VP(X2, X4) V(X3)

VP(X1X2, X3X4)→ NP(X1) VP(X2, X4) V(X3)

VP(X1, X2) → NP(X1) V(X2)

Comp(dat) → ε

NP(Jan) → ε

NP(Piet) → ε

NP(de kinderen)→ ε

V(zag) → ε

V(helpen) → ε

V(zwemmen) → ε

Figure 8: Sample LCFRS rules

constituent and that there is a gap between the material coming from
the NP and the material from the V.

In the last decade, LCFRS has attracted increased interest in the pars-
ing community, in particular in the context of data-driven probabilistic
parsing. Such parsers are trained on treebanks, which are text collec-
tions with a manually annotated syntactic analysis for each sentence.
Some treebank annotation schemes, e. g. the one of the German Negra
and Tiger treebanks (Skut et al., 1997; Brants et al., 2002), account for
discontinuous constituents by directly annotating trees with crossing
branches, as the one in figure 7. LCFRS has been established as an
appropriate formalism for the modeling of discontinuous structures
as they occur in treebanks (Maier and Lichte, 2011; Kuhlmann and
Satta, 2009). In the Negra treebank, approximately 25% of all sentences
have at least one discontinuous constituent (Maier and Lichte, 2011).
Treebank trees with crossing branches can be directly interpreted as
LCFRS derivation trees and wide-coverage probabilistic LCFRS gram-
mars can be extracted in a natural way (Maier and Søgaard, 2008;
Kallmeyer and Maier, 2013). Other annotation mechanisms to account
for discontinuity in treebanks, such as the trace and co-indexation an-
notation of the English Penn Treebank (Marcus et al., 1994), which
otherwise annotates context-free trees, can be transformed to trees
with crossing branches first (Evang and Kallmeyer, 2011). It has been
shown that data-driven probabilistic parsing with LCFRS is feasible
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and gives acceptable results (Maier, 2010; Evang and Kallmeyer, 2011;
van Cranenburgh, 2012; Maier et al., 2012; Kallmeyer and Maier, 2013).

For data-driven probabilistic CFG parsing, it is common practice
to simply discard the additional information about the non-local de-
pendencies in Penn Treebank style annotations, and to convert trees
with crossing branches to CFG trees using a lossy conversion algo-
rithm. This means that the correct syntactic dependencies get lost and
that such CFG parsers are not able to produce trees which contain the
same level of information as represented in the original constituency
structures of the treebanks.4 The direct parsing of discontinuous con-
stituents with LCFRS remedies this deficiency.

1.2 contributions

1.2.1 What this Thesis is About

The focus of this thesis is translation modeling, in particular transla-
tion modeling beyond SCFG, and its application in an SMT system.
It seems timely to transfer recent advances of the parsing commu-
nity concerning parsing with mildly context-sensitive grammar for-
malisms to tree-based SMT. This step is motivated by the limitations
which SCFG imposes on the space of alignments and the resulting
questionable adequacy of SCFG translation models. Our major contri-
butions are the following:

lcfrs for translation modeling We propose LCFRS for the
modeling of translation in order to be able to generate the alignment
configurations which SCFG-based and phrase-based translation mod-
els cannot generate, and, to the best of our knowledge, we are the
first to do so. By using a grammar formalism which is more powerful
than SCFG for that purpose, we follow the line of work of Søgaard
(2008b). LCFRS, the primary representative of the class of mildly con-
text-sensitive grammar formalisms, is a promising candidate for trans-
lation modeling. As it is a direct generalization of CFG, many concepts
and techniques can be adapted in a straight-forward fashion. Further-

4 Approaches which enhance a probabilistic CFG parser with pre- and/or post-
processing techniques and which use machine learning to recover discontinuous
constituents have been published as well (Johnson, 2002; Dienes and Dubey, 2003;
Levy and Manning, 2004).
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more, LCFRS has proven to be successful in the context of data-driven
probabilistic parsing. We consequently introduce a novel synchronous
grammar formalism, the synchronous version of LCFRS, namely Syn-
chronous Linear Context-Free Rewriting System (SLCFRS). We establish
SLCFRS as a formalism for translation modeling beyond CFG and
provide a deduction system for bitext parsing.

extensive investigation with respect to alignment con-
figurations beyond scfg In order to thoroughly motivate the
move from SCFG to SLCFRS for translation modeling, we contribute
an extensive investigation of the empirical alignment capacity of SCFG
and the alignment configurations beyond. To that end, we investigate
manual alignments of 16 language pairs in 19 data sets using a bottom-
up hierarchical aligner based on SLCFRS, for which we contribute the
deduction system as well as the actual implementation. We confirm
previous similar experiments of a smaller scale in that SCFG of rank 2
is not expressive enough to cover all alignment configurations which
occur in natural data. Moreover, we extend previous experiments by
investigating the amount of discontinuity which is required in order
to derive the manual alignments. In addition, we conduct a manual
investigation of the alignment configurations beyond SCFG for four
data sets in order to preempt arguments towards these alignment con-
figurations being annotation errors. We also contribute the discovery
of a class of alignment configurations beyond SCFG of rank 2 which
have not been reported in the literature before. We call them inside-out
discontinuous translation units (IO-DTUs).

the first smt system based on slcfrs Finally, we contribute
the first SMT system which is based on weighted SLCFRS, that is
the first hierarchical phrase-based machine translation system with
discontinuous phrases on the source and the target side. Our model
includes features that are specific to translation models which allow
for discontinuities such as the source and target gap degree of the
rules. Decoding is performed with an extended LCFRS bottom-up
chart parser which generates possibly discontinuous partial transla-
tions. The decoding process also includes language model scoring and
applies cube pruning to narrow down the translation search space.
We also provide the first evaluation of this SMT system and show
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modest, but significant improvements over an SCFG-based baseline
for German-to-English translation.

1.2.2 What this Thesis is not About

Neural Machine Translation

During writing up this thesis, a new machine translation paradigm
emerged. While traditional5 SMT approaches model the distribution
P(e| f ) with a log-linear model that combines several feature func-
tions (see section 2.2.1, in particular equation (2.7)), neural machine
translation (NMT) uses a deep artificial neural network for this task
(Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015). Cur-
rently, it is state of the art to use a recurrent neural network encoder-
decoder setup with a bidirectional encoder, an additional attention
mechanism and a softmax layer as the output layer which provides
a probability distribution over the target vocabulary. To find the best
translation, beam search with a small beam size is performed over the
output states. This approach has been shown to outperform phrase-
based and tree-based SMT approaches for many language pairs by a
wide margin (e. g. Junczys-Dowmunt et al., 2016).

We would like to emphasize that the main points of this thesis were
published in the years 2013 to 2015, i. e. before NMT emerged and
became accepted as a disruptive technology and state of the art. Thus,
even though this thesis is published at a time where deep learning
and NMT dominate the field, it is still located in the old world, and
deep artificial neural networks will not be a topic anymore after this
section. If one is not merely interested in achieving high translation
quality, but also in the process of translation generation and in the
structures and alignments used therein, then the work at hand will
nevertheless provide insights.

Furthermore, there is the chance that the two approaches to ma-
chine translation will eventually benefit from each other. Finally, we
see opportunities to position language and translation modeling us-
ing grammar formalisms beyond CFG in the context of deep learning,
e. g. by using a tree-structured network on the encoder side for NMT.
Working out those ideas will be left for future work.

5 What is called traditional in this section, is called state of the art elsewhere in this
thesis.
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Dependency Structure

Besides constituency-based descriptions of the hierarchical structure
of language, dependency-based frameworks provide another approach
to syntactic description, in which the words themselves are nodes (of
a tree) and the edges between them represent relations, so-called de-
pendencies. Dependency and constituent structures are closely related,
as CFG is equivalent to the class of projective dependency structures
(Gaifman, 1965). The equivalent of discontinuous constituents in the
dependency-based framework are non-projective dependencies.

Different parsing strategies for data-driven dependency parsing
have been presented in the literature, including parsers which also
generate non-projective dependencies. A few translation models have
been developed specifically for dependency structures (Quirk et al.,
2005; Menezes and Quirk, 2007, 2008; Shen et al., 2010). With the ex-
ception of Carreras and Collins (2009) who use a variant of TAG as a
proxy to model dependencies, it seems that none of them deal with
non-projective dependencies. In this thesis, we focus on constituency-
based approaches to tree-based SMT. In favor of a clear scope, we will
not further discuss dependency-based models.

1.3 overview

Chapter 2 represents the foundation of all later chapters. We present
basic definitions and notations, terminology and concepts. The chap-
ter is divided into two parts. The first one concentrates on the monolin-
gual modeling of language and introduces grammar formalisms and
parsing. The second part is dedicated to SMT. It explains the general
framework and largely concentrates on tree-based translation models.

Chapter 3 provides the motivation for using translation models be-
yond CFG. Besides presenting the alignment configurations for which
phrase-based and SCFG-based translation models are not powerful
enough, we investigate to which extend manual word alignments are
affected. We furthermore present a qualitative analysis of affected
alignment configurations.

In chapter 4, we show that discontinuous constituents are required
in order to generate the alignment configurations beyond SCFG and
introduce the novel synchronous grammar formalism SLCFRS to that
end. We present a CYK-style bitext parsing algorithm for SLCFRS and
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extend the investigation of chapter 3 in order to quantify the number
of gaps which are required to generate the manual word alignments
at hand.

Chapter 5 is dedicated to the SLCFRS-based SMT system, i. e. to
hierarchical machine translation with discontinuous phrases on both
the source and the target side. We present the model itself, grammar
learning, and decoding including integration of the language model.

In chapter 6, the hierarchical machine translation approach with
discontinuous phrases is evaluated. Besides automatic metrics on a
German-to-English translation task, we present the results of a manual
evaluation and individual translation examples.

Chapter 7 concludes this thesis. We furthermore provide perspec-
tives for future work.

Related work is presented throughout this thesis in the correspond-
ing relevant context.





2
F O U N D AT I O N A L M AT T E R S

The work at hand combines research and findings from formal lan-
guage theory and parsing with the world of statistical machine trans-
lation (SMT). This chapter introduces the notions and notations, con-
cepts and approaches which the later chapters build on. Section 2.1
covers grammar formalisms and syntactic parsing, while section 2.2
focuses on SMT.

2.1 grammar formalisms and syntactic parsing

Parsing is one of the core tasks of computational linguistics. It refers to
the automatic syntactic analysis of a natural language sentence. In this
thesis, we focus on constituency-based1 syntactic structures, which de-
scribe the hierarchical relationship between constituent phrases (con-
stituents) of a sentence. A constituent comprises all words which form
a (linguistically) meaningful unit. Its label usually denotes a linguistic
type of an underlying linguistic theory, e. g. VP for verb phrase, S for
sentence or NP for noun phrase.2 A constituency structure is a hierarchical
structure of constituents.

Grammar formalisms are used as mathematical devices to precisely
formulate linguistic and, in particular, syntactic theories about natural
languages. They allow to define grammars, which basically are finite
sets of rules. The set of strings that can be generated with a gram-
mar is called the language of the grammar. A derivation is a sequence
of rule applications whose results can be visualized as a parse tree.
Constituency grammars, i. e. grammars which describe constituency
structures, are also known under the name of phrase structure grammar,
as they were originally called by N. Chomsky.

In this section, first, basic concepts which will be used throughout
this thesis are defined. Those are trees for syntactic modeling and the
grammar formalisms Context-Free Grammar (CFG) and Linear Con-

1 As opposed to dependency-based descriptions, see also p. 12.
2 Arguing for or against particular linguistic theories is beyond the scope of this thesis.

15
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text-Free Rewriting System (LCFRS). Then the concept of parsing as
deduction and the relation between parsing and hypergraphs is intro-
duced. Those concepts also carry over to tree-based SMT. We will then
move on to the modeling of natural language syntax, motivate why
CFG, the prevalent formalism in natural language processing (NLP),
is not suitable, and provide an overview over grammar formalisms
beyond CFG. Finally, the direct parsing of discontinuous constituents
with LCFRS will be described.

This section can only provide selective insights into parsing and
syntactic description of natural language. For a detailed overview of
formal language theory, see Hopcroft and Ullman (1979), for parsing
in general, see Grune and Jacobs (2008), and for parsing beyond CFG,
see Kallmeyer (2010).

2.1.1 Basic Definitions

This section provides definitions for basic mathematical concepts in
the context of syntactic description and the grammar formalisms CFG
and LCFRS.

Trees

Information about syntax is usually encoded by means of trees. Trees
are a particular kind of graphs. The presentation here loosely follows
Kallmeyer (2010, sec. 1.5.4).
Definition 2.1 (Directed Graph).

1. A directed graph is a pair G = 〈V, E〉 where V is a finite set of
vertices (or nodes) and E ⊆ V × V is a set of edges.

2. E+ is the transitive closure of E, and E∗ is the reflexive transitive
closure of E.

3. For every v ∈ V, the out-degree fout(v) is defined as

|{u | 〈v, u〉 ∈ E}|

and the in-degree fin(v) is defined as

|{u | 〈u, v〉 ∈ E}| .
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4. G is acyclic iff it does not contain cycles, i. e. there is no v ∈ V
such that 〈v, v〉 ∈ E+.

Definition 2.2 (Labeling (Graph)). Let G = 〈V, E〉 be a directed graph.
G is (node) labeled iff it has a node labeling over an alphabet L. A (node)
labeling over an alphabet L is a function l : V → L.

Definition 2.3 (Tree). A tree is a triple D = 〈V, E, r〉 such that

1. 〈V, E〉 is a directed, acyclic graph,

2. r is a distinguished root node with fin(r) = 0,

3. every vertex v ∈ V is accessible from r, i. e. 〈r, v〉 ∈ E∗, and

4. for all v ∈ V \ {r}, fin(v) = 1.

Definition 2.4 (Properties of trees). Let D = 〈V, E, r〉 be a tree.

1. D is (node) labeled iff 〈V, E〉 is (node) labeled.

2. For all vertices v ∈ V, if fout(v) = 0, then v is a leaf, otherwise v
is an internal node.

3. For all vertices v1, v2 ∈ V, v1 directly dominates v2 iff 〈v1, v2〉 ∈ E,
and v1 dominates v2 iff 〈v1, v2〉 ∈ E∗. If v1 directly dominates v2,
then v1 is referred to as the mother or parent node of v2, and v2 is
called a daughter or child node of v1.

4. D is ordered if it has a linear precedence relation relation ≺⊆
V × V which is antisymmetric, irreflexive and transitive.

Syntactic constituency structures are ordered labeled trees. The or-
dering is defined on the basis of the natural ordering of the leaf nodes.
They correspond to the words of the natural language sentence and
are labeled with integers which denote the position of the respective
word. The internal nodes are ordered by the label of the respective
leftmost leaf that they dominate.

Our definitions of syntactic structures and related notions like yield,
yield block set, gap and block degree and well-nestedness closely fol-
low the presentation in Maier (2013, sec. 2.1.2, sec. 5.2.1).
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Definition 2.5 (Syntactic constituency structure). Let w = w1 . . . wn
with n ∈ N be a string, and let D = 〈V, E, r〉 be an ordered tree
with a node labeling l. D is a syntactic constituency structure for w if
L = {1, . . . , n} ∪ N, with N being a set of syntactic category labels
disjoint from {1, . . . , n}, and l is such that

1. for all 1 ≤ i ≤ n, there is exactly one vi ∈ V with fout = 0 (i. e. a
leaf) and l(vi) = i, and

2. for all v ∈ V with fout > 0, l(v) ∈ N.

Furthermore, ≺ is such that

1. for all v1, v2 ∈ V with l(v1), l(v2) ∈ N and l(v1) < l(v2): v1 ≺ v2,
and

2. for all v1, v2 ∈ V with l(v1), l(v2) ∈ N: v1 ≺ v2 iff min({l(v) | v ∈
V and l(v) ∈ N and 〈v1, v〉 ∈ E+}) < min({l(v) | v ∈ V and
l(v) ∈ N and 〈v2, v〉 ∈ E+}).

When depicting the graphical representation of a syntactic structure,
we will usually represent internal nodes with their label l(v) ∈ N and
leaves with the word wi of the sentence that corresponds to their label
l(v) = i. See ex. 2.6. Internal nodes of constituency structures are also
referred to as constituents.
Example 2.6 (Constituency structure). We consider again (2), repeated
here as (3), and figure 9, which shows the graphical representation of
the syntactic constituency structure of the sentence.

(3) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen
swim

‘[. . . ] that Jan saw Piet help the children swim’

We would like to point out the following:

• By convention, trees are drawn such that all edges point down-
wards. We therefore omit the arrowhead.

• Each leaf is labeled with its index as well as the word which
corresponds to the index. In other graphical representations of
constituency structures throughout this thesis, we usually omit
the indices. See figure 7 for example.
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S

VP

VP

VP

Comp NP NP NP V V V

1 2 3 4 5 6 7 8

dat Jan Piet de kinderen zag helpen zwemmen

Figure 9: Syntactic structure for ex. 2.6

• The leaf nodes are depicted according to their ordering. How-
ever, we refrain here and throughout the thesis to depict the
internal nodes of trees according to the ordering for the sake
of readability. As an example consider the children NP2, V6 and
VP3 of the highest VP node. The indices indicate the positions
according to which the nodes are ordered (i. e. their leftmost ter-
minal child). The ordering thus is NP2 ≺ VP3 ≺ V6, even though
this is not depicted in figure 9.

We will later define the yield of a node in a syntactic structure as a
set of natural numbers. Sets of natural numbers will also occur else-
where in this thesis. In such sets, blocks are sequences of continuous
integers, they have an ordering, and in between the blocks, there are
gaps.
Definition 2.7 (Block set). Let S ⊂ N. The block set ΩS is a partition
of S given by the equivalence relation D on S. For all i, j ∈ S, i ∼D j iff

1. i < j and i + 1 ∈ S and i + 1 ∼D j, or

2. i > j and i − 1 ∈ S and i − 1 ∼D j, or

3. i = j.

We call any o ∈ ΩS a block of S.

Definition 2.8 (Block set ordering). Let S ⊂ N. The following holds
for the block set ΩS.
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1. ΩS is ordered according to a strict total order ≺ called block or-
dering such that for all o1, o2 ∈ ΩS, o1 ≺ o2 iff min(o1) < min(o2).

2. Any o ∈ ΩS is the ith block of S iff |{o′ ∈ ΩS | o′ ≺ o}| =
i − 1.

Definition 2.9 (Gap). Let S ⊂ N. A gap in S is a pair (i1, i2) with
i1, i2 ∈ S and i1 + 1 < i2 and for all i in i1 < i < i2 it holds that i /∈ S.
The size of the gap (i1, i2) is i2 − i1 − 1.

The yield of a node in a syntactic tree are the labels of all leaves
which are dominated by this node.
Definition 2.10 (Yield). Let D = 〈V, E, r〉 be a syntactic constituency
structure. The yield function π : V → P(N) is defined such that for all
v ∈ V, π(v) = {i ∈ N | there is a v′ ∈ V with 〈v, v′〉 ∈ E∗ and l(v′) =
i}.

Definition 2.11 (Yield block set). Let D = 〈V, E, r〉 be a syntactic con-
stituency structure. For all v ∈ V, the yield block set Ωv of v is defined
as the block set Ωπ(v) of the yield of v.

All other notions related to block sets naturally extend to yield block
sets. We call a gap in π(v) a gap of v.

To quantify the amount of discontinuity in a syntactic structure, gap
degree and block degree have been defined (Kuhlmann, 2007; Maier and
Lichte, 2011).
Definition 2.12 (Gap degree). Let D = 〈V, E, r〉 be a syntactic con-
stituency structure. For all v ∈ V, the gap degree of v is the number of
gaps in π(v). The gap degree of D is the maximal gap degree of any
of its nodes.

Definition 2.13 (Block degree). Let D = 〈V, E, r〉 be a syntactic con-
stituency structure. For all v ∈ V, the block degree is a function dim :
V → N. dim yields the cardinality of the block set of v.

It is obvious that the gap degree of a node v equals dim(v) − 1.
Furthermore, a node v with at least one gap in its yield, or equally
dim(v) > 1, is discontinuous, and a constituency structure with a gap
degree > 0 is discontinuous.

Another characteristic of syntactic structures is well-nestedness as op-
posed to ill-nestedness (Maier and Lichte, 2011). Intuitively, two nodes
of a syntactic structure that do not dominate each other are well-
nested if their yields do not interleave.
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Definition 2.14 (Well-Nestedness). Let D = 〈V, E, r〉 be a syntactic
constituency structure.

1. A pair of nodes v1, v2 ∈ V with π(v1) ∩ π(v2) = ∅ is well-nested
iff there are no i1, i2 ∈ π(v1) and j1, j2 ∈ π(v2) such that i1 <
j1 < i2 < j2.

2. D is well-nested iff all pairs of nodes in V with disjoints yields
are well-nested.

We define the depth of a gap of v as the length of the upward path
from v to the lowest node which dominates v and fills its gap.
Definition 2.15 (Gap filler, gap depth). Let D = 〈V, E, r〉 be a syntac-
tic constituency structure and (i1, i2) a gap of some v0 ∈ V. A node v1
is called a gap filler of (i1, i2) iff for all i1 < i < i2 it holds that i ∈ π(v1).
The depth of (i1, i2) is defined as n ∈ N being the length of the path
(vn, . . . , v0), vi ∈ V for all 0 ≤ i ≤ n, for which the following holds:

1. 〈vj, vj−1〉 ∈ E for all 0 < j ≤ n (i. e. 〈vn, v0〉 ∈ E+),

2. vn is a gap filler of (i1, i2),

3. no vi for all 0 < i < n is a gap filler of (i1, i2).

Example 2.16 (Yield, block set, block degree, gap degree, gap depth,
well-nestedness). Let us consider again the syntactic structure D in
figure 9, in particular the node labeled S. Its yield is {1, 2, 3, 4, 5, 6, 7, 8},
its yield block set is {{1, 2, 3, 4, 5, 6, 7, 8}} and its block degree is |{{1, 2,
3, 4, 5, 6, 7, 8}}| = 1. Its yield does not have any gaps.

Now consider the central VP node, the grandchild of the node la-
beled S. Its yield is {3, 4, 5, 7, 8}. Its yield block set is {{3, 4, 5}, {7, 8}}
where {3, 4, 5} is the first block and {7, 8} is the second block. Its yield
has one gap, which is (5, 7). The depth of this gap is 1. The block de-
gree of this node is |{{3, 4, 5}, {7, 8}}| = 2 and its gap degree is 1.

The lower VP node also has gap degree 1. The depth of the gap
(5, 8) is 2. All other nodes in D have gap degree 0. Accordingly, D has
gap degree 1. D is furthermore well-nested.

Context-Free Grammar (CFG)

CFG is the prevalent formalism in natural language processing, and
its synchronous variant and corresponding parsing techniques are also
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applied in SMT. We loosely follow Hopcroft and Ullman (1979) in the
presentation of the definition of CFG and related notions.
Definition 2.17 (Context-Free Grammar). A Context-Free Grammar
(CFG) is a tuple G = (N, T, P, S) where

1. N and T are finite, disjoint sets of non-terminal and terminal
symbols,

2. S ∈ N is a distinguished start symbol, and

3. P is a finite set of (rewriting) rules of the form A → α with A ∈ N
and α ∈ (N ∪ T)∗.

Generally, in rewriting rules, the part left of the rewriting symbol →
is called its left-hand side (LHS), and the part right of the rewriting
symbol is called its right-hand side (RHS), i. e. in a CFG rule A → α, A
is the LHS and α constitutes the RHS. Furthermore, we can call a rule
A → α ∈ P a terminal rule if its RHS consists of terminal symbols only,
i. e. α ∈ T∗, and we can call it a mixed rule if its RHS consists of at least
one terminal and one non-terminal symbol.
Definition 2.18 (Rank (CFG)). Let G = (N, T, P, S) be a CFG. The
rank of a rule A → α ∈ P is the number of non-terminals occurring
in α. The rank of G is the maximal rank of any of its rules r ∈ P. G is
called a u-CFG if it has rank u.

In order to formally define the language of a CFG, we first provide
the derives relation.
Definition 2.19 (Derivation (CFG)). Let G = (N, T, P, S) be a CFG.

1. ⇒G⊆ (N ∪ T)+ × (N ∪ T)∗ is a relation called derives between
two strings. It is defined as follows: β ⇒G β′ iff there is a A →
α ∈ P and β = γAγ′ and β′ = γαγ′ with γ, γ′ ∈ (N ∪ T)∗. If G is
given by the context, we can use ⇒ instead of ⇒G. To make the
applied rule explicit, we can use ⇒A→α

G .

2. ∗
=⇒G is the reflexive transitive closure of ⇒G.

3. Let β1, . . . , βm ∈ (N ∪ T)∗, m ∈ N. β1 ⇒G . . . ⇒G βm is a deriva-
tion of length m.

Definition 2.20 (Language (CFG)). Let G = (N, T, P, S) be a CFG. The
(string) language of G is L(G) = {w | w ∈ T∗ and S ∗

=⇒G w}.



2.1 grammar formalisms and syntactic parsing 23

Derivations can also be represented as trees, called derivation or parse
trees. Recall the definition of a tree (def. 2.3, p. 17) and its properties
(def. 2.4, p. 17).
Definition 2.21 (Derivation tree (CFG)). Let G = (N, T, P, S) be a
CFG. A labeled ordered tree D = 〈V, E, r〉 is a derivation tree for G iff
the following conditions hold.

1. The order ≺ is such that for all v1, v2 ∈ V with 〈v1, v2〉 /∈ E∗ and
〈v2, v1〉 /∈ E∗,

a) either v1 ≺ v2 or v2 ≺ v1, and

b) if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2 or a 〈v4, v2〉 ∈ E
with v1 ≺ v4, then v1 ≺ v2, and

c) nothing else is in ≺.

2. The node labeling l over N ∪ T ∪ {ε} is such that

a) for all v ∈ V, if fout(v) = 0 (i. e. v is a leaf ), then l(v) ∈
T ∪ {ε}, otherwise l(v) ∈ N, and

b) for all v, v1, . . . , vn ∈ V, n ∈ N where v1, . . . , vn are the only
and all children of v and vj ≺ vj+1 for 1 ≤ j < n, there
exists a rule l(v) → l(v1) . . . l(vn) ∈ P.

D is called a partial derivation tree if l(r) �= S.

Reading off the labels of the leaves according to the ordering of the
tree provides the yield of the derivation tree (cf. def. 2.10, p. 20). If β is
the yield of some derivation tree for G = (N, T, P, S), then S ∗

=⇒G β.
Normal forms impose restrictions on the form of the rules of the

grammar. The availability of a grammar in normal form can be useful
for parsing.
Definition 2.22 (Chomsky Normal Form). Let G = (N, T, P, S) be a
CFG with ε /∈ L(G). G is in Chomsky Normal Form (CNF) iff all rules
r ∈ P have either the form A → BC or A → a with A, B, C ∈ N and
a ∈ T.

Definition 2.23 (ε-free CFG). Let G = (N, T, P, S) be a CFG. A rule
A → α ∈ P is called an ε-rule if α = ε. G is ε-free if either P does not
contain any ε-rules or the only ε-rule it contains is the rule S → ε and
S does not appear in any RHS of the other rules in P.
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Figure 10: CFG derivation tree

For each context-free language L that does not generate ε, there is a
CFG G in CNF with L = L(G), and every CFG G can be transformed
into a weakly equivalent ε-free CFG G′ (Hopcroft and Ullman, 1979).
Example 2.24 (Context-Free Grammar). Let G = ({S, A, C}, {a, b}, P,
S) be a CFG with P = {S → AC, A → aAb, A → ab, C → ab}. The
language of G is L(G) = {anbnab | n ∈ N}. G is not in CNF, but it is
ε-free. Figure 10 shows the derivation tree for aabbab.

In a weighted grammar, the rules of the grammar are equipped with
weights, which extend to weights of derivations of that grammar. A
probabilistic grammar is the special case in which the weights define a
probability distributions over derivations or strings. Weights (or prob-
abilities) are useful for disambiguation, i. e., for determining which
derivation of a string w is the most probable one, or, generally, for
ranking parse trees.

Weighted and probabilistic CFG have been defined and discussed
in various places in the literature, e. g. in Booth and Thomson (1973),
in Wetherell (1980) and in Smith and Johnson (2007).
Definition 2.25 (Weighted Context-Free Grammar). A weighted Con-
text-Free Grammar (CFG) is a tuple G = (N, T, P, S, ω) where (N, T,
P, S) is a CFG and ω : P → R≥0 is a weight function which maps
from rules to positive real numbers.3

Definition 2.26 (Weight of a derivation (Weighted CFG)). Let G =
(N, T, P, S, ω) be a weighted CFG, and let β, β′ ∈ (N ∪ T)∗.

3 Assigning a rule r a weight of zero is technically possible, but means that r is ex-
cluded from P. This holds for all definitions of weighted grammars in this work.
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1. Let A → α ∈ P. The weight of one derivation step β ⇒A→α
G β′ is

defined as

ω(β ⇒A→α
G β′) = ω(A → α)

2. Let A1 → α1, . . . , Am → αm ∈ P, m ∈ N. The weight of a deriva-
tion β ⇒A1→α1

G . . . ⇒Am→αm
G β′ is defined as

ω(β ⇒A1→α1
G . . . ⇒Am→αm

G β′) =
m

∏
i=1

ω(Ai → αi)

Definition 2.27 (Probabilistic Context-Free Grammar). A probabilistic
Context-Free Grammar (CFG) is a weighted CFG G = (N, T, P, S, ω)
with ω : P → [0, 1] being such that for each A ∈ N the following
holds:

∑
A→α∈P

ω(A → α) = 1

In this case, ω(A → α) expresses the conditional probability p(A →
α|A).
Example 2.28 (Weighted CFG). Let G = (N, T, P, S, ω) be a weighted
CFG with (N, T, P, S) as given in ex. 2.24 and ω as follows:

i ri ω(ri)

1 S → AC 1.0
2 A → aAb 0.4
3 A → ab 0.6
4 C → ab 1.0

G is not only a weighted, but a probabilistic CFG. As an example,
consider the derivation of aabbab and its probability:

ω(S ⇒ AC ⇒ Aab ⇒ aAbab ⇒ aabbab) = 1.0 · 1.0 · 0.4 · 0.6
= 0.24



26 foundational matters

Linear Context-Free Rewriting System (LCFRS)

We now define LCFRS (Vijay-Shanker et al., 1987; Weir, 1988) and re-
lated notions. Only the string-rewriting variant of LCFRS will be con-
sidered throughout this work. We mostly follow the definitions given
in Maier (2013), and use the syntax of Simple Range Concatenation
Grammar (SRCG)4, which is equivalent to LCFRS (Boullier, 1998).

LCFRS has been established as an appropriate formalism for the
modeling of the syntax of natural languages, as it has the capability to
model discontinuities (see section 2.1.3). It has also been demonstrated
that data-driven LCFRS parsing is feasible (see section 2.1.4). LCFRS
will furthermore be used within this work as the translation grammar
formalism for SMT.
Definition 2.29 (Linear Context-Free Rewriting System). A Linear
Context-Free Rewriting System (LCFRS) is a tuple G = (N, T, V, P, S)
where

1. N is a finite set of non-terminals with a function dim: N → N;

2. T and V are disjoint finite sets of terminals and variables;

3. S ∈ N is the distinguished start symbol with dim(S) = 1; and

4. P is a finite set of (rewriting) rules of the form

A(α1, . . . , αdim(A)) → A1(Y
(1)
1 , . . . , Y(1)

dim(A1)
)

· · · Am(Y
(m)
1 , . . . , Y(m)

dim(Am)
)

where, for m ≥ 0, A, A1, . . . , Am ∈ N are non-terminals, Y(i)
j ∈ V

for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) are variables, and αi ∈ (T ∪ V)∗

for 1 ≤ i ≤ dim(A) are arguments.
Furthermore, for all r ∈ P, it holds that every variable Y ∈ V
that occurs in r occurs exactly once in the LHS and exactly once
in the RHS of r.

We now define the rank and the fan-out of LCFRS.

4 A rewriting rule in the SRCG notation can be viewed as a rule in the original formu-
lation of LCFRS encoding the corresponding yield function at the same time.
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Definition 2.30 (Rank, fan-out (LCFRS)). Let G = (N, T, V, P, S) be
an LCFRS. The rank of a rule r ∈ P is m, the number of non-terminals
in the RHS of r. The fan-out of a non-terminal A ∈ N is dim(A). The
rank of G is the maximal rank of any of its rules r ∈ P, and the fan-out
of G is the maximal fan-out of any if its non-terminals A ∈ N. G is
called a v-LCFRS if it has fan-out ≤ v and a (u, v)-LCFRS if it has rank
≤ u and fan-out ≤ v.

We may call a rule A(α1, . . . , αdim(A)) → Ψ ∈ P a terminal rule if
all arguments of the LHS non-terminal consist of terminal symbols,
i. e. αi ∈ T∗ for 1 ≤ i ≤ dim(A), and we may call it a mixed rule if
the arguments of the LHS non-terminal contain at least one terminal
and one variable. We may call the rule a discontinuous rule if its LHS
non-terminal A has fan-out v > 1, the reason being its ability to build
discontinuous constituents.

Intuitively, an LCFRS rule r describes how to compute the yield of
the LHS non-terminal from the yields of the RHS non-terminals. The
rules can be instantiated with respect to some input string w. This is
a useful concept for, e. g., defining the language of an LCFRS or for
parsing. For this, we will first define the ranges of a certain string and
a vector of ranges.
Definition 2.31 (Range). Let Σ be an alphabet and w ∈ Σ∗ a string
with w = w1 . . . wn, n ∈ N. We define:

1. Pos(w) = {0, . . . , n}.

2. A range in w is a pair 〈l, r〉 ∈ Pos(w) × Pos(w) with l ≤ r. Its
yield 〈l, r〉(w) is the substring wl+1 . . . wr.

3. For two ranges ρ1 = 〈l1, r1〉 and ρ2 = 〈l2, r2〉, if r1 = l2, i. e. if the
two ranges are adjacent, then the concatenation of ρ1 and ρ2 is
ρ1 · ρ2 = 〈l1, r2〉, otherwise the concatenation ρ1 · ρ2 is undefined.

Definition 2.32 (Range vector). Let Σ be an alphabet and w ∈ Σ∗.

1. A k-dimensional range vector for w is defined as ρ ∈ (Pos(w)×
Pos(w))k with ρ = 〈〈l1, r1〉, . . . , 〈lk, rk〉〉, k ∈ N, where each
〈li, ri〉, 1 ≤ i ≤ k, is a range in w.

2. ρ(i), 1 ≤ i ≤ k, denotes the ith range 〈li, ri〉 of ρ. ρ(i).l (respec-
tively ρ(i).r) denotes the first (respectively second) component
of ρ(i), which is li (respectively ri).
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3. The yield of a range vector ρ(w) is defined as

〈ρ(1)(w), . . . ,ρ(k)(w)〉,

i. e. as the vector of the yields of the individual ranges.

4. The (yield) length of range vector ρ, notated as |ρ|, is defined as

k

∑
i=1

(ρ(i).r − ρ(i).l).

In an instantiated rule, variables and terminals of the rule are consis-
tently mapped to ranges (Boullier, 2000; Kallmeyer, 2010). We follow
the definition in Maier (2013) and first introduce a numbering of the
argument elements.
Definition 2.33 (Argument numbering). Let G = (N, T, V, P, S) be an
LCFRS. For each r ∈ P,

1. we first assume all occurrences of terminals, all occurrences of
ε and the respective first occurrences of variables in r to be con-
secutively numbered with a unique index with respect to their
occurrence from left to right, starting with 1, and

2. ξmax
r stores the maximal index of r under the numbering of r,

and

3. ξr is a function which yields the variable or the occurrence of a
terminal, or the occurrence of ε in r at index i, 1 ≤ i ≤ ξmax

r .

Definition 2.34 (Rule instantiation). Let G = (N, T, V, P, S) be an
LCFRS. Let w ∈ T∗ be a string. For a rule r ∈ P with ξmax

r = k,
the following is defined:

1. An instantiation of r with respect to w is given by a k-dimensional
range vector φ where φ(i), for 1 ≤ i ≤ k, contains the range to
which ξr(i) is bound. Thereby,

a) variables which are adjacent in r must be mapped to adja-
cent ranges, and

b) for 0 ≤ j < |w|,
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i. if ξr(i) is an occurrence of a terminal t, it must be
mapped on a range φ(i) = 〈j, j + 1〉 with wj+1 = t,
and

ii. if ξr(i) is an occurrence of ε, it must be mapped on a
range φ(i) = 〈j, j〉.

2. Applying φ to a non-terminal A(α) in r, notated as φ(A(α)),
is defined as a mapping of all occurrences of terminals and ε

and all variables in α to elements of φ such that each ξr(i), for
1 ≤ i ≤ k, is mapped to φ(i).
If the result is defined, i. e. if the range images of adjacent vari-
ables and terminals can be concatenated, then it is called an in-
stantiated non-terminal. We write A(ρ) to designate a non-termi-
nal A(α) that is instantiated with φ.
If the result of applying φ to all non-terminals in r, notated as
φ(r), is defined, then the result of the mapping is called an in-
stantiated rule.

In an LCFRS derivation step, the LHS of an instantiated rule is re-
placed with its RHS.
Definition 2.35 (Derivation (LCFRS)). Let G = (N, T, V, P, S) be an
LCFRS and w ∈ T∗ a string.

1. ⇒G,w is a relation called derives between two strings of instanti-
ated non-terminals. It is defined as follows: If A(ρ) → A1(ρ1) . . .
Am(ρm) is an instantiated rule r ∈ P with respect to w, then

ΓA(ρ)Γ′ ⇒G,w ΓA1(ρ1) . . . Am(ρm)Γ′.

Γ, Γ′ are strings of instantiated non-terminals. If G and w are
clear in the context, we can use ⇒ instead of ⇒G,w. To make the
applied rule explicit, we can use ⇒r

G,w.

2. ∗
=⇒G,w is the reflexive transitive closure of ⇒G,w.

3. Let Γ1, . . . , Γm be strings of instantiated non-terminals, m ≥ 1.
Γ1 ⇒G,w . . . ⇒G,w Γm is a derivation of length m. We also write
Γ1

m
=⇒G,w Γm.

Note that the set of instantiated rules with respect to some input
w is a CFG whose rules are the instantiated LCFRS rules and whose
non-terminals are the instantiated LCFRS non-terminals.
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The set of all strings that can be reduced to the empty string is the
language of an LCFRS.
Definition 2.36 (Language (LCFRS)). Let G = (N, T, V, P, S) be an
LCFRS. The language of G is L(G) = {w | S(〈0, |w|〉) ∗

=⇒G,w ε}.

One way of encoding an LCFRS derivation as a tree is presented in
Boullier (1998), namely as the derivation tree of the previously men-
tioned CFG, in which the nodes are instantiated non-terminals. Alter-
natively, we use the definition presented, e. g., in Kallmeyer (2010) and
Maier (2013). In correspondence to CFG derivation trees, the leaves are
labeled with terminals and they are ordered, and the inner nodes are
labeled with non-terminal symbols.
Definition 2.37 (Derivation tree (LCFRS)). Let G = (N, T, V, P, S) be
an LCFRS. Let w = w1 . . . wn, w ∈ T∗ be a string. A derivation tree for G
for a derivation S(〈0, |w|〉) ∗

=⇒G,w ε is an ordered tree D = 〈VD, ED, r〉
with a node labeling l : VD → N ∪ T ∪ {ε} and a function pos : {v ∈
VD | fout(v) = 0, i.e. v is a leaf} → N. The following must hold for D:

1. The labeling l is such that

a) for all v ∈ VD, if fout(v) = 0, then l(v) ∈ T ∪ {ε}, otherwise
l(v) ∈ N,

b) for all wi, 1 ≤ i ≤ n, there is exactly one v ∈ VD with
l(v) = wi.

2. For all v, v1, . . . vk ∈ VD where v1, . . . , vk are the only and all
children of v, let VD,N = {vi | vi ∈ {v1, . . . , vk} and l(vi) ∈ N},
there exists a rule r = A(α) → A1(α1) . . . Am(αm) ∈ P, m ≥ 0,
which can be instantiated with respect to w by a range vector φ,
such that

a) |{q | 1 ≤ q ≤ |φ| and ξr(q) /∈ V}| = k − m

b) for all 1 ≤ q ≤ |φ| where ξr(q) /∈ V, there is exactly one v′ ∈
{v1, . . . , vk} such that l(v′) = ξr(q) and pos(v′) = φ(q).l,

c) l(v) = A,

d) |VD,N | = m and VD,N can be ordered in such a way that the
jth element of VD,N has label Aj, for 1 ≤ j ≤ m.

3. ≺ is as follows: for all v′, v′′ ∈ {v ∈ VD | l(v) ∈ T ∪ {ε}}, v′ ≺ v′′

iff pos(v′) < pos(v′′).
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Figure 11: LCFRS derivation tree

Again, D is called a partial derivation tree if l(r) �= S.

Example 2.38 (Linear Context-Free Rewriting System). Consider
the following LCFRS G = ({S, A, B}, {a, b, c, d}, {Y1, Y2, Y3, Y4}, P, S)
where P contains the following rules:

r1 : S(Y1Y2Y3Y4)→ A(Y1, Y3)B(Y2, Y4)

r2 : A(aY1, cY2) → A(Y1, Y2)

r3 : B(bY1, dY2) → B(Y1, Y2)

r4 : A(a, c) → ε

r5 : B(b, d) → ε

The language of G is

L(G) = {anbmcndm | n, m > 0},

i. e. it generates cross-serial dependencies which are beyond the ex-
pressivity of CFG. The rank of G is 2 and its fan-out is 2. In the fol-
lowing, we give the derivation of w = 0a1a2b3c4c5d6 under G. The
subscripts in w denote the positions. Figure 11 shows the correspond-
ing derivation tree.

S(〈0, 6〉)⇒r1 A(〈0, 2〉, 〈3, 5〉) B(〈2, 3〉, 〈5, 6〉)
⇒r2 A(〈1, 2〉, 〈4, 5〉) B(〈2, 3〉, 〈5, 6〉)
⇒r4 B(〈2, 3〉, 〈5, 6〉)
⇒r5 ε

We further illustrate rule instantiation at the example of rule r2 with
respect to w. The argument numbering of r2 is given by ξr2(1) =
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a, ξr2(2) = Y1, ξr2(3) = c, ξr2(4) = Y2. φ = 〈〈0, 1〉, 〈1, 2〉, 〈3, 4〉, 〈4, 5〉〉
represents an instantiation of r2 with respect to w. We associate each
occurrence of a variable or terminal in r2 to a range by using the map-
ping from ξr2(i) to φ(i). The result is defined according to def. 2.34,
p. 28, i. e. we obtain the following instantiated rule:

A(〈0, 2〉, 〈3, 5〉) → A(〈1, 2〉, 〈4, 5〉).

As an example of a failing rule instantiation, consider φ′ = 〈〈0, 1〉,
〈1, 2〉, 〈2, 3〉, 〈4, 5〉〉. ξr2(3) is the occurrence of the terminal c, but the
mapped range 〈2, 3〉 yields b. Furthermore, c and Y2 are adjacent, but
the concatenation of their mapped ranges 〈2, 3〉 · 〈4, 5〉 is undefined.

LCFRS is equivalent to a range of formalisms which are used for
natural language description, amongst others, SRCG and Multiple
Context-Free Grammar (MCFG). Furthermore, 1-LCFRS is strongly
equivalent to CFG.

The LCFRS terminology differs from the SRCG terminology. The
elements of N are called predicates and the elements of P are called
clauses in the SRCG literature. Furthermore, the fan-out of an LCFRS
corresponds to the arity of a SRCG. The SRCG terms are mentioned
for reference here, but we will continue to use the LCFRS terminology
in the following.

Parsing can be facilitated if an ordering on the variables is assumed
(Villemonte de la Clergerie, 2002).
Definition 2.39 (Monotone LCFRS). An LCFRS G = (N, T, V, P, S) is
monotone if for every rule A(α) → A1(α1) . . . Am(αm) ∈ P it holds
that if a variable Y1 precedes a variable Y2 in αi, for all 1 ≤ i ≤ m,
then Y1 also precedes Y2 in α.

For every LCFRS, there exists an equivalent monotone LCFRS (Ville-
monte de la Clergerie, 2002; Kracht, 2003; Kallmeyer, 2010, p. 145).
Generally the construction is exponential in the size of the original
grammar. However, usually, natural language LCFRS extracted from
treebanks are monotone by nature of the extraction algorithm (Maier
and Søgaard, 2008). The property of being monotone is called ordered
for SRCG.

Furthermore, parsing algorithms often assume that grammars are
ε-free.
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Definition 2.40 (ε-free LCFRS). Let G = (N, T, V, P, S) be an LCFRS.
A rule r ∈ P is called an ε-rule if one of its LHS arguments is the empty
string ε. G is ε-free if either P does not contain any ε-rules or the only
ε-rule it contains is the rule S(ε) → ε and S does not appear in any
RHS of the other rules in P.

Just as CFG, LCFRS and equivalent formalisms have also been ex-
tended with the notions of weights and probabilities; see, for example,
Levy (2005), Kato et al. (2006), Maier (2013) and Denkinger (2015).
Definition 2.41 (Weighted Linear Context-Free Rewriting System). A
weighted Linear Context-Free Rewriting System is a tuple

G = (N, T, V, P, S, ω)

where (N, T, V, P, S) is an LCFRS and ω : P → R≥0 is a weight func-
tion which maps from rules to positive real numbers.

Definition 2.42 (Weight of a derivation (Weighted LCFRS)). Let G =
(N, T, V, P, S, ω) be a weighted LCFRS. Let w ∈ T∗ be a string and
Γ, Γ′ strings of instantiated non-terminals of rules in P with respect to
w.

1. Let A(α) → Ψ ∈ P. The weight of a derivation step Γ ⇒A(α)→Ψ
G,w

Γ′ is defined as

ω(Γ ⇒A(α)→Ψ
G,w Γ′) = ω(A(α) → Ψ)

2. Let A1(α1) → Ψ1, . . . , Am(αm) → Ψm ∈ P, m ∈ N. The weight
of a derivation Γ ⇒A1(α1)→Ψ1

G,w . . . ⇒Am(αm)→Ψm
G,w Γ′ is defined as

ω(Γ ⇒A1(α1)→Ψ1
G,w . . . ⇒Am(αm)→Ψm

G,w Γ′) =
m

∏
i=1

ω(Ai(αi) → Ψi)

Definition 2.43 (Probabilistic Linear Context-Free Rewriting System).
A probabilistic Linear Context-Free Rewriting System is a weighted LCFRS
G = (N, T, V, P, S, ω) with ω : P → [0, 1] being such that for all A ∈ N
of a fixed dimension dim(A) = k the following holds:

∑
A(α1,...,αk)→Ψ∈P

ω(A(α1, . . . , αk) → Ψ) = 1
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2.1.2 Parsing Fundamentals

Fundamental concepts and algorithms of parsing are covered in this
section. As such, it also serves as the basis for tree-based decoding in
the context of SMT.

Given a grammar G and an input string w = wn
1 = w1 . . . wn with

n ∈ N over some alphabet Σ, deciding whether G generates w, i. e.
whether w ∈ L(G), is called the recognition problem. We can speak
of the fixed recognition problem if G is fixed, otherwise of the universal
recognition problem. In the first case, we are interested in the complexity
of the problem with respect to the input size n only, while in the latter
the size of the grammar G is also taken into account. Since natural
language grammars tend to be rather large, the universal recognition
problem is of interest in NLP.

An algorithm which solves the recognition problem is called a recog-
nition algorithm or just a recognizer. A parser (or parsing algorithm) in
addition also records the individual derivation steps that are taken
and emits the resulting structure (the parse tree) if w is recognized.

Parsing as Deduction

Parsing strategies can be notated as algorithmic descriptions, for ex-
ample pseudo code. Such formulations usually involve data structures
and control structures which the parsing strategy itself does not depend
on. Parsing as deduction (Pereira and Warren, 1983; Shieber et al., 1995;
Sikkel, 1997) offers a way to separate the parsing algorithm from the
control strategy.

A deduction system specifies a parsing algorithm in a declarative way,
which allows to concentrate on the properties of the algorithm instead
of on the implementation. The specification of a parsing strategy as a
deduction system requires the following concepts:

1. Items designate intermediate parsing results. They characterize
the status of (parts of) the input string w with respect to the
given grammar G.

2. A finite set of deduction rules (also called inference rules) which
determine how to deduce new items from existing ones.
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3. Goal items characterize successful parses. If a goal item can be
deduced for a given string w, the string is recognized by the
grammar.

Deduction rules have the general form

A1 . . . Am

B
c1 . . . ck

with m, k ∈ N0. The antecedents A1 . . . Am and the consequent B are
items. c1 . . . ck are conditions on A1 . . . Am and B which usually provide
a link to the grammar G and the input w. The interpretation is that if
A1 . . . Am can be deduced and the conditions c1 . . . ck hold, then B can
be deduced. For m = 0, i. e. deduction rules without antecedents, B is
called an axiom.
Example 2.44 (Deduction System). As an example, we now present
one of the most popular parsing strategies, the CYK algorithm (Cocke
and Schwartz, 1970; Younger, 1967; Kasami, 1965) for CFG as a deduc-
tion system. CYK is a bottom-up non-directional parsing strategy.

Given a CFG G = (N, T, P, S) in CNF and an input string w =
w1 . . . wn, items have the form [A, i, j] where A ∈ N and 0 ≤ i < j ≤ n.
Their interpretation is that A ∗

=⇒ wi+1 . . . wj. The deduction rules are
the following:

scan :
[A, i, i + 1]

A → wi+1 ∈ P

complete :
[B, i, j] [C, j, k]

[A, i, k]
A → BC ∈ P

The scan deduction rule creates items for the terminals in the input
string w. The complete operation combines two adjacent items to
derive a new item. The input string w is recognized if the goal item
[S, 0, n] is derived

The time complexity for CYK parsing with CFG is O(n3). This can
be seen from the deduction system as well. The most complex in-
ference rule is the complete operation, which involves three inde-
pendent indices i, j and k ranging from 0 to n − 1 or from 1 to n.
They determine the number of inference rules instantiations c, which
is c ≤ |P| n3.
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Natural language grammars are usually highly ambiguous. During
parsing, it is necessary to be able to compute several or all possi-
ble analyses for one input string. Furthermore, different analyses can
have common sub-analyses for specific substrings. They need to be
stored and retrieved efficiently in order to avoid recomputing them
over and over again. Implementations of parsers therefore commonly
store intermediate parsing results, which can then be reused in differ-
ent contexts (computation sharing). This corresponds to the approach
of dynamic programming where sub-problems are solved first and then
combined in order to solve the overall problem (Bellman, 1957). The
formulation of a parsing algorithm as a deduction system lends it-
self perfectly to this paradigm. Items represent intermediate parsing
results. Once they are deduced, they can serve as antecedents in dif-
ferent rule applications.

The standard data structure for storing items is a chart. It should
be indexed in a way to enable efficient retrieval of items. For instance,
the chart in which CYK items [A, i, j] (cf. ex. 2.44, p. 35) are stored is
typically implemented as a 3-dimensional table with dimensions for
the start index i, the end index j and the non-terminal label A.

A general algorithm for chart parsing is provided in algorithm 1. Be-
sides the chart C, it uses an additional data structure A, an agenda,
which controls how consequents are produced. If in the end, C con-
tains a goal item, we can conclude that the input string w is recognized
by the grammar, i. e. that w ∈ L(G), otherwise w /∈ L(G),

As formulated so far, the chart parsing algorithm is only a recognizer.
In order to extend it to a real parser, each item needs to keep track of
its antecedents. This is usually done via references, called backpoint-
ers. Obviously, because of ambiguity and computation sharing, each
item needs a list of backpointers. The items in the chart together with
the backpointers compactly represent a parse forest. Individual parse
trees are obtained by following the backpointers starting with a goal
item. For an example of a parse chart with backpointers, the reader is
referred to ex. 2.46, p. 40.

For weighted parsing, the rules of the grammar G and the derivations
are equipped with weights. The weights can be used, e. g., for disam-
biguation or for ranking parse trees. Given such a weighted grammar
and an input string w, finding the most probable derivation for w, or
the derivation with the best (often minimal, however throughout this
thesis maximal) weight, is one of the predominant problems in NLP.
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1: G: a grammar of formalism F

2: w: the input string
3: C = ∅
4: A = ∅
5: for all items I′ which are consequents of inference rule applications with

empty antecedent set, instantiated with rewriting rules from G and posi-
tions in w do

6: add I′ to A and C
7: end for
8: while A �= ∅ do
9: remove an item I from A

10: for all items I′ which are consequents of inference rule applications
with I and possibly other items from C in their antecedent, instanti-
ated with rewriting rules from G and positions in w do

11: if I′ /∈ C then
12: add I′ to C and A
13: end if
14: end for
15: end while

Algorithm 1: Generic chart parsing (from Kallmeyer (2010, p. 47))

The corresponding probability or weight is sometimes referred to as
the Viterbi score according to one of the earliest algorithms for finding
it (Viterbi, 1967).

Weighted deduction systems are useful to specify weighted parsers
(Goodman, 1999; Nederhof, 2003). They are based on the deduction
systems as presented earlier in this section. The deduction rules are
extended with weights. They have the form

x1 : A1 . . . xm : Am

f (x1, . . . , xm) : B
c1 . . . ck

with again m, k ∈ N0, the antecedents A1 . . . Am and the consequent B be-
ing items and c1 . . . ck being side conditions. x1 . . . xm are unique weight
variables for each antecedent and f is the weight function assigning a
weight to the instantiated consequent when the rule is applied.

The definition of the weight function obviously depends on the def-
inition of the weight of a derivation of a specific grammar formalism.
Commonly the logarithms of the weights of the weighted or proba-
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bilistic grammar G are used as weights in the deduction system, to-
gether with a summation weight function fΣ.
Example 2.45 (Weighted Deduction System). We present a weighted
deduction system for CFG parsing. In contrast to the CYK algorithm
in ex. 2.44, p. 35, this modified CYK algorithm does not require the gram-
mar G to be in CNF (Chiang, 2007). However, it is assumed that G
is ε-free and has maximally rank 2. Notably, G is allowed to have
mixed rules.5 The items I also have the form [A, i, j] and the inter-
pretation A ∗

=⇒ wi+1 . . . wj. The weight function f is f (x1, . . . , xm) =
x1 · . . . · xm · ω(r). The deduction rules and the goal item are as given
in the following:

scan :

ω(r) : [A, i, j]
r = A → wj

i+1 and r ∈ P

unary:

x1 : [B, i1, j1]
x1ω(r) : [A, i, j]

r = A → wi1
i+1B wj

j1+1 and r ∈ P

binary:

x1 : [B, i1, j1] x2 : [C, i2, j2]
x1x2ω(r) : [A, i, j]

r = A → wi1
i+1B wi2

j1+1 C wj
j2+1

and r ∈ P

goal: x : [S, 0, n]

The scan deduction rule again builds items from terminal rules. The
deduction rules unary and binary create new items from one, re-
spective two antecedents and a rule r.

The time complexity of this parser is also O(n3). This can be seen
from the binary rule, which is the most complex one in the deduction
system. In the case when r does not contain any terminals in the RHS,
i. e. when wi1

i+1, wi2
j1+1 and wj

j2+1 are all empty, none of the indices is
already fixed. Furthermore, in this case, i = i1, j1 = i2 and j = j2, and

5 While grammars for parsing obtained from treebanks usually do not contain
mixed rules, they are frequent and essential in tree-based translation models
(cf. section 2.2.5). This kind of parser therefore has its application, e. g., in decod-
ing with translation models based on Synchronous Context-Free Grammar (SCFG).
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1: G: a grammar of formalism F

2: w: the input string
3: C = ∅
4: A = ∅
5: for all items x : I′ which are consequents of inference rule applications

with empty antecedent set, instantiated with rewriting rules from G and
positions in w do

6: add x : I′ to A
7: add a backpointer from I′ to ε

8: end for
9: while A �= ∅ do

10: remove a smallest item y : I from A according to ≺
11: add y : I to C
12: for all items x : I′ which are consequents of inference rule appli-

cations with I and possibly other items from C in their antecedent,
instantiated with rewriting rules from G and positions in w do

13: if I′ /∈ C ∪A then
14: add x : I′ to A
15: add a backpointer from I′ to its antecedents
16: else if z : I′ ∈ A for some z and x > z then
17: update weight z of I′ in A to x
18: update the backpointer of I′

19: end if
20: end for
21: end while

Algorithm 2: Generic Viterbi chart parsing

the rule is reduced to the complete rule of the deduction system
for CYK parsing with CFG in CNF in ex. 2.44, p. 35. A non-empty
wi1

i+1 means that i and i1, i. e. the beginning of B, are already fixed,
resulting in one free index less and therefore a lower complexity. The
same argument holds for wi2

j1+1 and wj
j2+1.

To find the goal item with the best (highest) weight, an extension
of algorithm 1 can be used (Viterbi, 1967; Jelinek et al., 1992; Neder-
hof, 2003), see algorithm 2. It is applicable if the weight function f
is monotonic (cf. def. 2.49, p. 43) and a partial order ≺ on the items
exists such that the antecedents of an instantiated inference rule are
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always strictly smaller than the consequent.6 In this case, items can be
treated from small to large to compute their best weight. As an exam-
ple consider the deduction system in ex. 2.44, p. 35 for CYK parsing
of a CFG in CNF: the partial order is determined by the sizes of the
spans of the items, i. e. j − i for an item of the form [A, i, j]. Nederhof
(2003) also notes that, in the case of acyclic derivations and no partial
order being a priori available, a topological sorting of all derivable
items can be determined instead, to then compute the weights of the
items according to that order.

In algorithm 2, the agenda A returns items respecting their par-
tial order. When an item I is taken off the agenda, it is guaranteed
to have reached its maximum weight as all possible analyses and an-
tecedents have been considered before and I has been updated accord-
ingly. Again, in the end, if C contains a goal item, w is recognized, and
the backpointers can be used to trace back the derivation with the
highest weight.

Instead of using the generic chart parsing algorithm in algorithm 2,
for many parsing algorithms, more specific procedures can be used
to enumerate items according to the item order. Reconsider ex. 2.45,
p. 38 for instance. For a weighted CYK deduction system for CFG,
items are typically produced from small to large using three nested
loops ranging from 1 to n, one for each index i, j, and j1 = i2. From
an efficiency perspective, this alleviates the overhead incurred by the
priority queue A.

6 Another algorithm for weighted deductive parsing based on Knuth’s (1977) algo-
rithm is presented in Nederhof (2003). It is commonly used for probabilistic parsing,
but does not fit our presentation here as it solves the problem of finding the item
with the smallest weight. It does not require an order on the items, but an additional
condition on the weight function: f (x1, . . . , xm) ≥ max(x1, . . . , xm) for all x1, . . . , xm.
In contrast to algorithm 2, Knuth’s algorithm does not necessarily compute all deriv-
able items in order to find the one with the best weight. However, a priority queue
which sorts the items according to their weight is required in any case and adds
some computational overhead. The reader is referred to Nederhof (2003) for more
details and a comparison.
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Example 2.46 (Weighted CFG CYK parsing). Let G = ({S, A, B, C},
{a, b, c, d, x}, P, S, ω) be a weighted CFG with P and ω as follows:

i ri ω(ri)

1 S → B d 1.0
2 B → AC 0.8
3 B → abc 0.2
4 A → ab 0.4
5 A → x 0.6
6 C → c 1.0

All items which are generated when parsing the input w = abcd us-
ing the modified CYK deduction system for CFG in ex. 2.45, p. 38
and algorithm 2 are shown in table 1. Note that item [B, 0, 3] has two
derivations. The one with the larger weight (3b) is retained. The goal
item is item 4. Items 1, 2 and 3b lead to it. The corresponding CFG
derivation and its weight is

ω(S ⇒ Bd ⇒ ACd ⇒ abCd ⇒ abcd) = 1.0 · 0.8 · 0.4 · 1.0 = 0.32

The corresponding chart is depicted in figure 12. The horizontal
dimension denotes the start index i of an item, while the vertical di-
mension denotes its end index j. Each item itself is represented by
its non-terminal label (and its best weight). The arrows are the hyper-
edges (or the inverted backpointers). Note that with algorithm 2 each
item has only one backpointer/incoming hyperedge. The dashed hy-
peredge corresponds to derivation 3a, which is inferior to 3b.

Parsing and Hypergraphs

Besides the formalization of parsing as a deductive process, parsing is
also closely connected to hypergraphs and algorithms thereon (Klein
and Manning, 2001). More specifically, the search space of a (weighted)
deduction system can be represented by a hypergraph. This perspec-
tive is in particular suitable for k-best parsing, i. e. for finding the k-best
derivations for an input w, which is usually formulated as a search on
a hypergraph (Huang and Chiang, 2005). These works have also been
highly influential for SMT, e. g., in the context of generating the k-best
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No. Item Rule Antecedents Weight

1 [C, 2, 3] scan - 1.0

2 [A, 0, 2] scan - 0.4

3a
[B, 0, 3]

scan - 0.2

3b binary 1 & 2 1.0 · 0.4 · 0.8 = 0.32

4 [S, 0, 4] unary 3b 0.32 · 1.0 = 0.32

Table 1: Parse items for ex. 2.46

0 1 2 3 4

0

1

2 A: 0.4

3 B: 0.32 C: 1.0

4 S: 0.32

ε

Figure 12: Parse chart/hypergraph for ex. 2.46
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translations for feature weight optimization, and for the efficient in-
tegration of the language model into the decoding process (Huang
and Chiang, 2007). Throughout this thesis, both concepts, parsing as
deduction and parsing based on hypergraphs, will be used.

A parse forest (p. 36), i. e. an instantiated (weighted) deduction sys-
tem, can also be viewed as a (weighted) directed hypergraph (Gallo et al.,
1993).7

Definition 2.47 (Hypergraph). A directed, ordered hypergraph is a tuple
〈V, E〉 where V is a finite set of nodes (also called vertices) and E is a
finite set of directed hyperedges. Each directed hyperedge e ∈ E is a
pair 〈T (e), H(e)〉 where H(e) ∈ V is the head of e and T (e) ∈ V∗ is a
vector of tail nodes.

The items in the parse chart are the nodes of the hypergraph, and the
hyperedges correspond to the inverted backpointers. The ordering of
the nodes in the tail is arbitrary, but usually implicitly defined by some
characteristics contained in the item, e. g. the start position in w of the
item. The ith node of the tail T (e) is referenced with Ti(e). Some more
definitions in relation to hypergraphs are provided here which will be
used later on.
Definition 2.48 (Hyperedge weight function). Given a hyperedge e ∈
E of a hypergraph 〈V, E〉 and a set of weights R,

fe : R|T (e)| → R

is a hyperedge weight function which assigns a weight to the hyperedge
e.

When the hypergraph represents an instantiated weighted deduc-
tion system, then fe corresponds to the weight function f of one rule
application of the deduction system.
Definition 2.49 (Monotonicity). Let H = 〈V, E〉 by a hypergraph and
fe a weight function of a hyperedge e ∈ E. fe is monotonic if there is a
total order8 � on R such that fe is monotonic in each of its arguments,
i. e. if xi � x′i, then fe(x1, . . . , xi, . . . xm) � fe(x1, . . . , x′i, . . . xm) for each
1 ≤ i ≤ m. H is monotonic if the weight function fe of each e ∈ E

7 Only the specific definition of a hypergraph which is useful for parsing is provided
here. The definitions in this section mostly follow those given in Huang and Chiang
(2005).

8 We deliberately use � for the order instead of ≤ as it will be extended beyond R.
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is monotonic under �. max�(x1, x2) returns x2 if x1 � x2, otherwise
x1.

Definition 2.50 (Derivation (Hypergraph)). Given a hypergraph
〈V, E〉, a derivation D of a node v ∈ V and its weight w(D) are re-
cursively defined as follows:

• If e is an incoming hyperedge of v and |T (e)| = 0, then D = 〈e, ε〉
is a derivation of v and its weight is w(D) = fe().

• If e is an incoming hyperedge of v with |T (e)| > 0 and, for 1 ≤
i ≤ |T (e)|, Di is a derivation of Ti(e), then D = 〈e, D1 . . . D|T (e)|〉
is a derivation of v and its weight is w(D) = fe(w(D1), . . . ,
w(D|T (e)|)).

The order on weights is extended to an order on derivations: D � D′

iff w(D) � w(D′). We use the notation D(v) to denote the |D(v)|-best
derivations of v, where D1(v) is the best derivation of v, D2(v) the
second best and so forth.

We use the notion of ranked derivations of v to give an alterna-
tive, non-recursive representation of derivations. It uses backpointers
which point back to a specific kth-best derivation of each tail node of
v.
Definition 2.51 (Derivation with backpointers (Hypergraph)). Let
〈V, E〉 be a hypergraph. A derivation with backpointers D̂ of v ∈ V
is a tuple 〈e,x〉 where e is an incoming hyperedge of v and x ∈
{1, . . . , k}|T (e)| is a vector, the backpointer. The one-to-one correspon-
dence ∼ between derivations of v and derivations with backpointers
of v is the following:

〈e, (x1, . . . , x|T (e)|)〉 ∼ 〈e, Dx1(T1(e)) . . . Dx|T (e)|(T|T (e)|(e))〉

Accordingly, w(D̂) = w(D) if D̂ ∼ D, and D̂ � D̂′ iff w(D̂) � w(D̂′).
We use the notation D̂i(v) to denote the ith-best derivation with back-
pointers of v. We will often refer to derivations with backpointers as just
derivations.
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v2

v1

ε

v4

v3

e1

e2

e3

e4

e5

d w(d)

D̂1(v1) = 〈e1, ()〉 1

D̂1(v2) = 〈e4, (1)〉 1 + 4 = 5

D̂2(v2) = 〈e2, ()〉 2

D̂1(v3) = 〈e3, ()〉 3

D̂1(v4) = 〈e5, (1, 1)〉 5 + 3 + 5 = 13

D̂2(v4) = 〈e5, (2, 1)〉 2 + 3 + 5 = 10

Figure 13: An example hypergraph, the derivations of the nodes and their
weights

Example 2.52 (Hypergraph). Let H = 〈{v1, v2, v3, v4}, {e1, e2, e3, e4, e5}〉
be a hypergraph with

e1 = 〈(), v1〉 fe1() = 1
e2 = 〈(), v2〉 fe2() = 2
e3 = 〈(), v3〉 fe3() = 3
e4 = 〈(v1), v2〉 fe4(x1) = x1 + 4
e5 = 〈(v2, v3), v5〉 fe5(x1, x2) = x1 + x2 + 5 .

A graphical representation of H is given in figure 13. The derivations
(with backpointers) of the nodes in H and their weights are given in
the table next to it. v2 has two derivations, one via e2 and one via e1
and e4. Accordingly, v4 also has two derivations, both via e5, one which
points back to the 1th-best derivation of v2 and one which points back
to the 2nd-best derivation of v2.

Given a hypergraph H = 〈V, E〉, the derivation of the goal item
with the best weight can be found using a generic Viterbi algorithm. See
the pseudocode in algorithm 3. It traverses the hypergraph in topologi-
cal order, i. e., in any order in which, for all nodes v ∈ V, all tail nodes
of v are visited before v. For each node v, its best derivation D̂1(v)
is found by considering the best derivation 〈e,1〉 along each incom-
ing hyperedge e. 1 denotes a vector whose elements are all 1, and we
assume that is has the appropriate size, i. e. |1| = |T (e)| in this case.

The creation of the hypergraph H is not part of this generic algo-
rithm. In the context of parsing, it can be created by using a deduction
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1: 〈V, E〉: a directed, ordered acyclic hypergraph for w with a goal node
2: function Viterbi(〈V, E〉)
3: for v ∈ V in topological (bottom-up) order do
4: for e ∈ E where H(e) = v do � For all incoming hyperedges
5: D̂1(v) = max�(D̂1(v), 〈e,1〉) � Update
6: end for
7: end for
8: return D̂1(goal)
9: end function

Algorithm 3: Generic Viterbi algorithm

system and a slightly extended version of algorithm 1, which con-
struct a hyperedge between each consequent and its antecedent items
(in analogy to backpointers). H is either constructed in advance, or
dynamically if the topological order of the nodes is known a priori.
For a bottom-up CYK-style parser, this roughly means that items cov-
ering n words are created/visited before items covering m words, for
all n < m. Note that then algorithm 3 coincides with algorithm 2.

For k-best parsing, Huang and Chiang (2005) present two efficient
algorithms, called algorithm 2 and 3 in the original paper. Following
Williams et al. (2016), we will refer to them as the eager and lazy k-best
algorithm respectively. Even though the lazy algorithm is more favor-
able in terms of time complexity, we still present the eager algorithm
in detail, as it serves as the basis for cube pruning, which will be dis-
cussed later in this thesis (see sections 2.2.5 and 5.3.2).
Example 2.53 (k-best parsing). To illustrate the main idea of k-best
parsing, consider a node v, somewhere in a hypergraph, for which we
wish to compute the k-best derivations. Let’s say it has one incoming
hyperedge e with T (e) = (v1, v2) where v1 and v2 themselves might
have many derivations. See figure 14 for the graphical representation.
Suppose that we have already found the k-best derivations for each v1
and v2. Then the 1-best derivation of v is constructed from the 1-best
derivations of v1 and v2: 〈e, (1, 1)〉. This is exactly what the Viterbi
algorithm would do. For the 2-best derivation of v, we have two can-
didates:

• 〈e, (1, 2)〉 containing the 1-best derivation of v1 and the 2-best
derivation of v2, or
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v

v1 v2

e

Figure 14: Hypergraph fragment for ex. 2.53

• 〈e, (2, 1)〉 containing the 2-best derivation of v1 and the 1-best
derivation of v2.

This follows from the fact that the weight function is monotonic. Sup-
pose that 〈e, (1, 2)〉 has the larger weight of the two. It thus constitutes
the 2-best derivation of v. For the 3-best derivation of v, 〈e, (2, 1)〉 is
still a candidate. In addition, there are two more candidates, the neigh-
bors of the 2-best derivation 〈e, (1, 2)〉: 〈e, (2, 2)〉 and 〈e, (1, 3)〉.

The eager k-best parsing algorithm is presented as algorithm 4. Stan-
dard implementations of the list procedure Append and the priority
queue procedures Push and PopMax (e. g. in Cormen et al. (2001))
are assumed here and in related algorithms. Furthermore, with 1, we
again denote a vector whose elements all have the value 1, and with
bi, a vector whose elements are all 0 except for the ith element which
is 1.

In algorithm 4, the procedure lined out in ex. 2.53 is executed un-
til the k-best derivations of v have been found (or no candidates are
available anymore, line 13). The candidates are organized in a prior-
ity queue cand, sorted by their weight according to �. In each iter-
ation, the candidate with the maximal weight is popped from cand,
appended to the list of best derivations of v and new candidates, its
neighbors, are added to the priority queue (lines 14 to 16). The com-
putation of the neighboring derivations is given in lines 26 to 33. They
are the next best derivations of each of the tail nodes, exploiting the
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1: 〈V, E〉: a directed, ordered acyclic monotonic hypergraph for w with a
goal node

2: k ∈ N

3: function Kbest(〈V, E〉, k)
4: for v ∈ V in topological (bottom-up) order do
5: Kbest(v, k)
6: end for
7: return D̂(goal)
8: end function
9:

10: procedure Kbest(v, k)
11: cand = ∅ � Priority queue
12: GetFirstBest(cand, v, k) � Initialize the priority queue
13: while |D̂(v)| < k and |cand| > 0 do
14: d = PopMax(cand)
15: Append(D̂(v), d)
16: PushNeighbors(d, cand)
17: end while
18: end procedure
19:
20: procedure GetFirstBest(cand, v)
21: for e ∈ E where H(e) = v do � For all incoming hyperedges
22: Push(cand, 〈e,1〉)
23: end for
24: end procedure
25:
26: procedure PushNeighbors(〈e,x〉, cand)
27: for all i s.t. 1 ≤ i ≤ |T (e)| do
28: x′ = x+ bi

29: if x′i ≤ |D̂(Ti(e))| and 〈e,x′〉 has not been seen before then
30: Push(cand, 〈e,x′〉)
31: end if
32: end for
33: end procedure

Algorithm 4: Eager k-best parsing algorithm from Huang and Chiang (2005)
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fact that the tail nodes as well as the k-best derivations of each node
are ordered vectors. To accommodate for more than one incoming hy-
peredge, cand is initialized with the 1th-best derivation along each
hyperedge (lines 20 to 24).

It is the monotonicity of the hypergraph 〈V, E〉 which guarantees
that the derivations which are popped from cand are in the correct
order and constitute the true k-best derivations.

While the eager k-best algorithm computes the k-best derivations for
each v ∈ V in a bottom-up fashion, the lazy k-best algorithm operates
in a top-down fashion. It starts by generating the k-best derivations
of the goal item and only calls itself recursively if necessary. The
pseudocode of the lazy algorithm is given as algorithm 5.
Example 2.54. As an example, consider the setup from ex. 2.53, p. 46,
and k = 5. For instance, the 4th-best derivation of v1 would only
be considered and assigned a weight if the 3rd-best derivation of v1
is part of a candidate which has been taken from cand of v. This
might however never actually happen, depending on the weights of
the derivations of v2.

For details on the complexity characteristics of the two algorithms,
consult Huang and Chiang (2005).

2.1.3 Modeling the Syntax of Natural Languages

This section discusses the modeling of the syntax of natural languages
with formal grammars. Its content is based on the presentation of simi-
lar material by L. Kallmeyer and W. Maier (e. g. Kallmeyer, 2010, ch. 1,
ch. 2; Maier, 2013, sec. 1.1).

Natural Languages and Formal Grammars

The two main factors which generally influence the decision of a com-
putational linguist for a specific grammar formalism are its expres-
sivity and its computational complexity. The expressivity of a gram-
mar formalism usually designates its weak or strong generative capac-
ity. The weak generative capacity refers to the class of languages that it
can generate, while the strong generative capacity refers to the class of
syntactic structures which are induced. Ideally, the chosen formalism
should be able to generate all and only the grammatical sentences of
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1: 〈V, E〉: a directed, ordered acyclic monotonic hypergraph for w with a
goal node

2: k ∈ N

3: function LazyKbest(〈V, E〉, k)
4: LazyJbest(goal, k) � Start with the goal item
5: return D̂(goal)
6: end function
7:
8: procedure LazyJbest(v, j)
9: if cand[v] is not defined yet then

10: GetFirstBest(cand[v], v) � Initialize the priority queue, alg. 4
11: end if
12: while |D̂(v)| < j do
13: if |D̂(v)| > 0 then
14: d = D̂|D̂(v)|(v) � Get last derivation
15: LazyPushNeighbors(d, cand[v]) � and update cand
16: end if
17: if |cand[v]| = 0 then
18: break
19: end if
20: d =PopMax(cand[v]) � Get the next best derivation
21: Append(D̂(v), d)
22: end while
23: end procedure
24:
25: procedure LazyPushNeighbors(〈e,x〉, cand)
26: for all i s.t. 1 ≤ i ≤ |T (e)| do
27: x′ = x+ bi

28: LazyJbest(Ti(e), x′i) � Recursion
29: if x′i ≤ |D̂(Ti(e))| and 〈e,x′〉 has not been seen before then
30: Push(cand, 〈e,x′〉)
31: end if
32: end for
33: end procedure

Algorithm 5: Lazy k-best parsing algorithm from Huang and Chiang (2005)
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I saw a man with a telescope

Figure 15: CFG parse trees

a language, producing all and only the syntactic structures which are
consistent with the implemented linguistic theory. Usually, computa-
tional linguists are a lot less concerned with overgeneration, i. e. the
generation of ungrammatical sentences or syntactic structures which
do not conform with the linguistic theory, than with undergeneration.
This holds in particular in probabilistic, data-driven contexts where
weights are used to disambiguate between competing analyses. Com-
monly, the more expressive a grammar formalism, the more compu-
tationally complex is the task of recognizing or parsing a string. In
practical applications, the choice for a grammar formalism therefore
involves a trade-off between expressivity and tractability.

Context-Free Grammar (CFG) was proposed as a first formalism for
syntactic description in the constituency-based framework (Chomsky,
1956). By definition, CFG constituents are continuous, i. e. they consist
of a continuous sequence of words of the sentence (cf. def. 2.17, p. 22).
Figure 15 shows two CFG analyses for the ambiguous English sen-
tence I saw a man with a telescope. Syntactic theories based on CFG, in-
cluding work which extends the base formalism with transformations
(Chomsky, 1956) or features (Gazdar et al., 1985), have been used to
model a wide range of linguistic phenomena.

However, in the 80’s, it was shown that CFGs are not powerful
enough to generate all phenomena of natural languages (Bresnan et al.,
1982; Shieber, 1985). The examples which have been discussed to ex-
ceed the generative power of CFG are cross-serial dependencies. Those
are structures in which constituents are intertwined in a way that ma-
terial from one constituent interrupts the other constituent and vice
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S

VP

VP

NP NP

. . . mer em Hans es huus hälfed aastriiche

Figure 16: Constituent tree for (4)

versa. One such example from Dutch has already been presented in
chapter 1, see (2) and figure 7. Another one from Shieber (1985) is
the Swiss-German sentence in (4). The co-indexation denotes that the
noun phrase is an argument of the correspondingly indexed verb. To
adequately model this dependency, each verb and its co-indexed argu-
ment would form one constituent, thus giving rise to interwined con-
stituents. A potential syntactic constituency analysis of (4) is shown
in figure 16. Notice how the VPs are intertwined, and that the yield
of the lower VP is discontinuous. The phenomenon can be iterated, as
shown in (5), and is in principle unbounded. Shieber (1985) proves
that the strong as well as the weak generative capacity of CFG is too
limited to model the Swiss-German cross-serial dependencies.

(4) mer
we

em Hansi

Hansdat

es huusj

the houseacc

hälfedi

help
aastriichej

paint
‘[. . . that] we help Hans paint the house’

(5) mer
we

d’chindi

the kidsacc

em Hansj

Hansdat

es huusk

the houseacc

löndi

let
hälfej

help
aastriichek

paint
‘[. . . that] we let the kids help Hans paint the house’

Besides the rather particular cross-serial dependencies of Dutch and
Swiss-German, generally, no non-local or long-distance dependencies can
be described with CFG. Those are structures which consist of several
elements which syntactically belong together, but are separated by
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S
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Ein Gen scheint preiszugeben , was Neugierige vom Kaffeesatz zu erfahren hofften

Figure 17: Constituent tree for (6) as provided by the Tiger Treebank

some intervening material. Non-local dependencies are frequent in
languages with a rather free word order, such as German, but they
also occur in languages with a more rigid word order, such as English.

As a first example consider the relative clause in the German sen-
tence (6). Figure 17 shows the constituency tree as annotated within
the Tiger Treebank (Brants et al., 2002).9 The direct object (was) of the
embedded verb erfahren is realized as a relative pronoun and thus
fronted. The lower VP node, which also dominates a PP modifier
in addition to the verb, has a gap, which is filled with the subject
(Neugierige) of the main verb. It is a discontinuous constituent.

(6) Ein
A

Gen
gene

scheint
seems

preiszugeben
to reveal

,
,

was
what

Neugierige
curious people

vom
from the

Kaffeesatz
coffee grounds

zu
to

erfahren
learn

hofften
hope

‘A gene appears to reveal what curious people had hoped to read
from the tea leaves’

Sentence (7) demonstrates that non-local dependencies also occur in
English. The PP modifier of the subject has been extraposed, leading to

9 A lean version of the constituency structure provided by the Tiger Treebank is re-
produced here. Specifically, the part-of-speech nodes and the edge labels as well as
some modifiers are omitted for clarity of presentation.
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S

NP

VP PP

NP ADVP NP

NNS VBD RB IN NN CC NN $.

Prices fell marginally for fuel and electricity .

Figure 18: Constituent tree for (7) as annotated by the Penn Treebank

a discontinuous NP. The sentence and its syntactic analysis in figure 18
are taken from the Penn Treebank (Marcus et al., 1993).10

(7) Prices fell marginally for fuel and electricity.

Discontinuous constituents (def. 2.13, p. 20) in syntactic constituen-
cy structures such as in figure 7, 16, 17 and 18 are easy to identify by
looking for crossing branches. For instance, the edge from S to VP in
figure 18 crosses into the yield of the (discontinuous) NP. Besides di-
rectly representing discontinuous constituents, as we have done so far
and as it is done in the German Negra and Tiger treebanks (Skut et al.,
1997; Brants et al., 2002), alternative strategies may be chosen. For
instance, in the Penn Treebank annotation scheme, trace nodes and co-
indexation are used to indicate non-local dependencies which exceed
context-free trees (cf. footnote 10). Generally, phenomena whose anal-
yses involve discontinuities, such as cross-serial dependencies, cannot
be described using CFGs only.

To model discontinuous constituents with a formal grammar, a for-
malism beyond the expressivity of CFG is required. In order to char-

10 The annotation scheme of the Penn Treebank does not directly annotate discontinu-
ous constituents. Instead, context-free trees are annotated, and non-local dependen-
cies are described using a co-indexation mechanism (Marcus et al., 1994). However,
discontinuous constituents can be recovered from that annotation, as done in Evang
and Kallmeyer (2011). The example has been taken from the latter paper.
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acterize the formal properties of a grammar formalism that can ad-
equately describe natural languages, Joshi (1985) introduced the no-
tion of mild context-sensitivity. The class of mildly context-sensitive lan-
guages contains at least the context-free languages, it allows a lim-
ited amount of cross-serial dependencies, its languages can be parsed
in polynomial time, i. e. the recognition problem is tractable, and the
lengths of the words of its languages grow in a linear way. A grammar
formalism is called mildly context-sensitive if the set of all languages
which can be generated with grammars of that formalism is mildly
context-sensitive.

Grammar Formalisms beyond CFG

As it has become clear that CFG is not enough for the modeling of nat-
ural language syntax, extensions thereof which fall into the category
of mildly context-sensitive formalisms have been proposed. One of
the weakest extensions is Tree-Adjoining Grammar (TAG), originally
proposed in Joshi et al. (1975). The basic units of a TAG are so-called
elementary trees, templates for syntactic structure which, when imple-
menting natural language grammars, encode a grammatical relation-
ship, e. g., between a verb and its arguments. Starting from such an
elementary tree, larger trees are derived by replacing a leaf node with
another elementary tree (substitution) or replacing an internal node
with a special kind of elementary tree, an auxiliary tree (adjunction).
Figure 19 shows a sample derivation. The tree for Peter is substituted
at the NP subject slot of the elementary tree of laughs. The auxiliary
tree for the modifier often is adjoined at the VP node.

TAGs are more expressive than CFGs due to their extended do-
main of locality and the factoring of recursion which is contributed
by the adjunction operation. The elementary trees may be arbitrar-
ily large, and even elements which are local in one elementary tree,
e. g. the verb and its subject, can be arbitrarily far apart in the final de-
rived tree given that other lexical material is adjoined between them.
Nevertheless, TAGs are still not expressive enough to model certain
phenomena in a linguistically adequate way, e. g. certain extraction
and scrambling phenomena (Becker et al., 1991; Kahane et al., 2000).
Accordingly, more expressive variants of TAG have been developed,
e. g. Multi-Component Tree-Adjoining Grammar (MCTAG).
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NP

Peter

S

NP↓ VP

V

laughs

⇒

S

NP VP

Peter ADV VP

often V

laughs

VP

ADV VP*

often

Figure 19: TAG derivation

TAG is a popular formalism amongst (computational) linguists. It
has been shown that a wide range of linguistic phenomena can be ad-
equately handled with TAG (e. g. in Abeillé (1988)). TAG and its vari-
ants have also been used to implement grammars of varying coverage
for several languages, e. g. the XTAG grammar for English (XTAG Re-
search Group, 2001). Various parsing algorithms for TAG have been
proposed (e. g. Earley-style parsing by Schabes and Joshi (1988)), and
work has been dedicated to the extraction of wide-coverage grammars
from treebanks for statistical parsing (e. g. in Xia (2001) and Kaesham-
mer and Demberg (2012)).

Linear Context-Free Rewriting System (LCFRS) (Vijay-Shanker et al.,
1987) (def. 2.29, p. 26) is a mildly context-sensitive grammar formalism
which is more powerful than TAG.11 LCFRS is furthermore a some-
what more natural extension to CFG than TAG as it also uses rewrit-
ing rules. In LCFRS, non-terminals span tuples of strings, instead of
just strings, as CFG non-terminals do. Accordingly, LCFRS lends itself
very well for the modeling of discontinuous constituents. The trees
that are generated by grammars of LCFRS and related formalisms ex-
hibit crossing branches in the case of discontinuous constituents. The
syntactic structures in figures 16, 17 and 18 can be considered as pos-
sible LCFRS parse trees of (4), (6) and (7) respectively.

11 Another formalism which is very similar to LCFRS and weakly equivalent is Multi-
ple Context-Free Grammar (MCFG) (Seki et al., 1991).
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It has been argued that there exist linguistic phenomena which are
beyond the generative capacity of LCFRS. They are however rather of
theoretical interest, as LCFRS can nevertheless generate the syntactic
structures in question, though at the expense of potentially missing
generalizations. For instance, Becker et al. (1992) argue that scram-
bling in German is in principle unbounded in the number of argu-
ments that are scrambled and the distance over which arguments are
scrambled, and show that LCFRS is too restricted for the modeling of
this phenomena. However, when assuming scrambling to be bounded,
the required structures for scrambling can well we generated.

In recent years, LCFRS has received attention from the data-driven
parsing community. Due to the direct correspondence between syn-
tactic structures annotated in constituency treebanks and the LCFRS
parse trees, probabilistic LCFRS can be extracted in a natural way
(Maier and Søgaard, 2008), and data-driven LCFRS parsing has been
shown to be feasible (Maier, 2010; Evang and Kallmeyer, 2011; van
Cranenburgh, 2012; Maier et al., 2012; Kallmeyer and Maier, 2013).
See section 2.1.4 for more details. LCFRS is also of interest for data-
driven grammar-based dependency parsing (Kuhlmann and Satta,
2009; Maier and Kallmeyer, 2010).

Range Concatenation Grammar (RCG) (Boullier, 1998, 2000) is an-
other interesting formalism beyond CFG, which is however not mildly
context-sensitive. In contrast to LCFRS, RCG has a copying (and a
deleting) mechanism. Intuitively, the copying allows a substring of the
input to be part of several constituents which do not dominate each
other. It is therefore possible to generate syntactic structures like the
one in figure 20. It shows an example of right node raising. The parse
tree expresses that the noun phrase broccoli is the object of both VPs.

RCG is an interesting formalism in many aspects. It can poten-
tially model scrambling and other phenomena beyond LCFRS (Boul-
lier, 1999). Unlike the languages of CFGs, range concatentation lan-
guages are closed under intersection. RCG has therefore been argued
to be more modular than other formalisms, since different aspects
of language can be modeled independently.12 RCG has been used as
the base formalism for grammar implementation (Sagot, 2005). Even
though RCG is not mildly context-sensitive, RCG parsing is still rel-
atively tractable. Published parsing algorithms are polynomial in the

12 Chiang (2004) questions the usefulness of this property and also the account pro-
vided for scrambling.
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S

S S

VP VP

NP NP NP

John likes and Tom hates broccoli

Figure 20: RCG parse tree, reproduced after Kallmeyer (2010, p. 5)

input size, but in practice the cost for the instantiation of the rewriting
rules should not be neglected (Boullier, 1998; Bertsch and Nederhof,
2001; Maier, 2013, sec. 3.1). A restricted form of RCG, SRCG, is equiv-
alent to LCFRS, and the RCG notation provides an attractive syntactic
variant to original LCFRS notations.

To close this section, figure 21 shows a schematic representation of
the domains of locality of the grammar formalisms presented and the
resulting tree structures. In a CFG, only one continuous string at a
time can be inserted into the yield of a non-terminal (β for B). Due
to the adjunction operation, TAG allows for the insertion of two non-
adjacent strings simultaneously (β1 and β2). In an LCFRS, arbitrarily
many strings can be inserted. They then actually interrupt the yield
of other non-terminals, leading to crossing branches. In figure 21, the
yield of A is interrupted by β and γ. Node A neither dominates C nor
D. RCG allows for the same kind of interruption as LCFRS. In addi-
tion, yields of non-terminals may overlap. α3 belongs to constituent A
as well as C.

2.1.4 Parsing Discontinuous Constituents

In NLP, nowadays usually data-driven parsing is performed. This
means that the parsing models, e. g. the grammar rules together with
their probabilities or weights, are obtained from treebanks, as opposed
to manually designing grammar rules. Treebanks are collections of
sentences which are annotated with syntactic trees.
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CFG:

A

B
α1 α2

β

TAG:
A

B

α1 α3

B∗

β1 β2

α2

LCFRS: B

A

C D
α1 α2 α3

β γ

RCG: B

A C

D E
α1 α3 α4

β γ

Figure 21: Locality in different grammar formalisms; adapted from Kall-
meyer (2010, p. 3)/Maier (2013, p. 10)
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Treebanks and CFG Parsing

Even though it was known that CFG is not an adequate formalism
for the modeling of natural language syntax (cf. section 2.1.3), a large
portion of the published literature on (data-driven) natural language
parsing concentrates on CFG parsing.

To extract a (weighted) CFG from a treebank for data-driven pars-
ing, CFG parse trees are required. Some treebanks, such as the English
Penn Treebank (Marcus et al., 1993), provide such trees. If an addi-
tional mechanism is used to annotate non-local dependencies, e. g. the
trace and co-indexation annotation of the Penn Treebank (see p. 54
and Marcus et al. (1994)), this additional information is usually dis-
carded for data-driven CFG parsing. Other constituency treebanks,
such as the German Negra (Skut et al., 1997) and Tiger (Brants et al.,
2002) treebanks, allow crossing branches for non-local dependencies
and group all parts of a discontinuous constituent under one node.
For data-driven CFG parsing, the crossing branches need to be re-
solved in some way such that the trees are CFG parse trees. Usually,
an undocumented implementation shipped with Negra is used for
that purpose. It first identifies head words and then moves non-head
constituents higher up in the tree.13 In Maier et al. (2012), we first re-
duce the number of spurious discontinuous constituents by attaching
punctuation low in the tree instead of to the root node and applying
a series of linguistically motivated transformations, before using the
standard method to resolve crossing branches. In Boyd (2007), an ad-
ditional node is inserted into the tree for each block of a discontinuous
constituent when resolving the crossing branches.

A consequence of the described techniques is that information about
non-local dependencies is lost with CFG parsing, even though the cor-
responding annotation might have been present in the treebank. To re-
store the non-local dependencies annotated in the treebank, one line of
work resorts to more sophisticated pre-and post-processing, and aug-
ments a weighted CFG parser with additional machine learning tech-
niques (e. g. Johnson, 2002; Dienes and Dubey, 2003; Levy and Man-
ning, 2004). Another possibility is to use a more expressive grammar
formalism than CFG which is able to represent the non-local informa-
tion directly in the parse trees, for instance by means of discontinuous

13 See Maier (2013, sec. 7.2) for a detailed reverse-engineered description of the algo-
rithm.
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constituents. Some options for such formalisms have been discussed
in section 2.1.3 (p. 55ff.), and LCFRS parsing will be the topic of the
upcoming section.

LCFRS Parsing

For the direct parsing of discontinuous constituents, LCFRS and its
equivalents (def. 2.29, p. 26) have become popular candidates. The rea-
sons include the following:

• Treebank trees with crossing branches can be directly interpreted
as LCFRS parse trees. Grammar extraction is thus a straightfor-
ward procedure.

• The proximity of LCFRS to CFG allows the direct extension of
(data-driven) CFG parsing techniques to LCFRS.

• LCFRS is polynomially parsable, and therefore its processing is
fairly efficient.

We will first sketch grammar extraction, then provide a deduction sys-
tem for LCFRS parsing and finally provide an overview of applied
parsing techniques.

For grammar extraction, the treebank trees with crossing branches
are interpreted as LCFRS derivations. LCFRS rules are extracted from
each such constituency structure. They are counted for the maximum
likelihood estimation of the probabilities, and all rules together con-
stitute the grammar. The rule extraction itself roughly works as fol-
lows.14 For each node v0 with a single child v1 such that l(v0) ∈ N
and l(v1) ∈ T, a terminal rule of the form l(v0)(l(v1)) → ε is created.
For each node v0 with children v1, . . . , vn with n ≥ 1 and l(vi) ∈ N for
0 ≤ i ≤ n, a rule of the form l(v0)(α0) → l(v1)(α1) . . . l(vn)(αn) is cre-
ated. The number of arguments of each non-terminal (i. e. the length
of each αi) is the number of continuous blocks in the yield of the corre-
sponding node. α0 contains variables that explain how the yield of v0
is obtained from the yields of v1, . . . , vn. The algorithm originally has

14 Usually, a treebank tree is a special type of constituency structure: each internal
node either has only children labeled with elements from the syntactic categories
N, or exactly one child which is labeled with a lexical element from T. The rule
extraction procedure only works for this kind of treebank trees. In particular, it does
not extract any mixed rules.
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been presented in Maier and Søgaard (2008). A detailed description is
also given in Kallmeyer and Maier (2013, sec. 5.1).
Example 2.55 (LCFRS grammar extraction). Consider figure 18 as a
syntactic analysis provided in a treebank. The following LCFRS rules
are extracted:

r0 : S(X1X2X3X4) → NP(X1, X3) VP(X2) $.(X4)

r1 : NP(X1, X2) → NP(X1) PP(X2)

r2 : PP(X1X2) → IN(X1) NP(X2)

r3 : VP(X1X2) → VBD(X1) ADVP(X2)

r4 : NP(X1X2X3) → NN(X1) CC(X2) NN(X3)

r5 : NP(X1) → NNS(X1)

r6 : ADVP(X1) → RB(X1)

r7 : NNS(Prices) → ε

r8 : VBD( f ell) → ε

r9 : RB(marginally) → ε

r10 : IN( f or) → ε

r11 : NN( f uel) → ε

r12 : CC(and) → ε

r13 : NN(electricity) → ε

r14 : $.(.) → ε

Note how the discontinuous NP node leads to rule r1 whose LHS non-
terminal has two arguments. Rule r0 describes how the two parts of
the NP node wrap around the yield of the VP.

For LCFRS parsing, a CYK algorithm can be used. The correspond-
ing symbolic parser goes back to Seki et al. (1991). Probabilistic parsers
for LCFRS have been described as a straightforward extension thereof
and implemented. W. Maier and colleagues present a chart parser
based on probabilistic LCFRS (Maier, 2010; Kallmeyer and Maier,
2013). It is used for treebank parsing, i. e. the applied grammars are ex-
tracted from treebanks on the basis of the aforementioned approach of
Maier and Søgaard (2008). A. van Cranenburgh and colleagues extend
this approach to parsing with discontinuous tree fragments within
the Data-Oriented Parsing (DOP) framework (van Cranenburgh et al.,
2011; van Cranenburgh and Bod, 2013; van Cranenburgh et al., 2016).
The parsing results are competitive to probabilistic CFG parsers (avail-
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able at the respective time) while providing richer syntactic descrip-
tions.

We present the CYK parser for LCFRS as a weighted deduction
system. Let G = (N, T, V, P, S, ω) be a weighted LCFRS (def. 2.41,
p. 33) and let w = w1 . . . wn be the input string. The items have
the form [A,ρ] where A ∈ N is a non-terminal symbol and ρ is
a dim(A)-dimensional range vector for w (def. 2.32, p. 27), i. e. ρ ∈
(Pos(w)× Pos(w))dim(A). The range vector ρ characterizes the ranges
in w which are derived by A, i. e. A(ρ)

∗
=⇒G,w ε.

The scan deduction rule creates items for terminal rules:

ω(r) : [A,ρ]

with the following side conditions:

1. r = A(α) → ε and r ∈ P,

2. there exists a φ s.t. φ(A(α)) = A(ρ) where φ is an instantiation
of r with respect to w.

Note that by definition of the instantiation it holds that ρ(w) = α.
The complete operation combines already established items to a

new item:

x1 : [A1,ρ1] . . . xm : [Am,ρm]

x1 · . . . · xm · ω(r) : [A,ρ]

with the following side conditions:

1. r = A(α) → A1(α1) . . . Am(αm) and r ∈ P,

2. there exists an instantiation φ for r s.t. A(ρ) →
A1(ρ1) . . . Am(ρm) is the corresponding instantiated rule
with respect to w.

The goal item is an item which covers the complete input:

x : [S, 〈〈0, n〉〉]

The parse items and the parse hypergraph for w can be com-
puted, for example, by using the generic chart parsing algorithm (algo-
rithm 1). With the resulting parse hypergraph H, the best or the k-best
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No. Item Rule Antecedents Weight

1 [A, 〈〈0, 1〉, 〈3, 4〉〉] scan with r5 - 0.1

2 [A, 〈〈0, 1〉, 〈4, 5〉〉] scan with r5 - 0.1

3 [A, 〈〈1, 2〉, 〈3, 4〉〉] scan with r5 - 0.1

4 [A, 〈〈1, 2〉, 〈4, 5〉〉] scan with r5 - 0.1

5 [B, 〈〈2, 3〉, 〈5, 6〉〉] scan with r6 - 0.1

6a
[A, 〈〈0, 2〉, 〈3, 5〉〉] complete with r2 4 0.07

6b complete with r3 2 0.02

7 [S, 〈〈0, 6〉〉] complete with r1 5 & 6a 0.007

Table 2: Parse items for ex. 2.56

derivations can be found in the same fashion as for CFG (algorithms 3
and 4 or 5). Similarly, if a partial order on the items is guaranteed,
then the generic Viterbi chart parsing algorithm in algorithm 2 can be
applied to find the best derivation for w.
Example 2.56 (LCFRS Parsing). Let G = ({S, A, B}, {a, b, c, d}, {Y1, Y2,
Y3, Y4}, P, S, ω) be a weighted LCFRS with P and ω as follows:

i ri ω(ri)

1 S(Y1Y2Y3Y4) → A(Y1, Y3) B(Y2, Y4) 1.0
2 A(aY1, cY2) → A(Y1, Y2) 0.7
3 A(Y1a, cY2) → A(Y1, Y2) 0.2
4 B(bY1, dY2) → B(Y1, Y2) 0.9
5 A(a, c) → ε 0.1
6 B(b, d) → ε 0.1

As an example, consider table 2 which shows the items that are cre-
ated when parsing w = aabccd with G using the generic Viterbi chart
parsing algorithm in algorithm 2.

The complexity of the CYK parser for LCFRS is polynomial in the
input size n: O(nv(u+1)) for G being a (u, v)-LCFRS. For a justification,
let us consider again the most complex rule of the deduction system,
the complete rule. The most complex case within the complete
rule is a rewriting rule r which has rank m = u and where each non-
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terminal has fan-out v. Such a rule provides u · v variables in the RHS
which have to be combined in the arguments of the LHS non-terminal.
Consider the case where the LHS arguments do not contain any ter-
minals that constrain the ranges of the variables. If two variables Y1
and Y2 are adjacent in an argument, they share one index, i. e. 〈i, j〉 for
Y1 and 〈j, k〉 for Y2, which makes three independent indices for two
adjacent variables. Combining uv variables into v arguments, yields
uv + v = v(u + 1) independent indices.

Since the parsing complexity depends on the fan-out as well as on
the rank of the grammar, the grammar is usually binarized before
parsing such that the resulting grammar G′ has rank 2. Generally, bina-
rization can increase the fan-out of the grammar. In order to minimize
parsing complexity, a binarization strategy which also minimizes the
fan-out of the binarized grammar can be chosen (Gómez-Rodríguez
et al., 2009; Kallmeyer and Maier, 2013).

One disadvantage of the CYK algorithm is that all m antecedents
have to be found in order to create a new item with the complete
rule. This involves a lot of index checking at the same time. Directional
and Earley parsing strategies have been proposed to alleviate this
shortcoming (Ljunglöf, 2004; Burden and Ljunglöf, 2005; Kallmeyer
and Maier, 2009).

To provide efficient parsers despite the high parsing complexity
of O(n3v) for LCFRS of fan-out v and rank 2 and the large search
space (algorithm 1, line 10), several strategies have been followed. In
Kallmeyer and Maier (2013), outside estimates which estimate the cost
for completing each item are used to speed up parsing. Maier et al.
(2012) restrict the fan-out to 2 and present a specialized parser and
treebank transformation. In van Cranenburgh (2012), a coarse-to-fine
strategy is introduced, which first parses with a probabilistic CFG in
order to prune the search space for the actual LCFRS parsing.

Lately, extremely competitive results for parsing discontinuous con-
stituents in terms of parsing accuracy and especially speed have been
produced which do not rely on a probabilistic grammar and a chart
parser. They either resort to non-projective feature-rich dependency
parsing (Hall and Nivre, 2008; Fernández-González and Martins, 2015)
or employ a classifier-based transition parser (Versley, 2014; Maier,
2015; Maier and Lichte, 2016; Coavoux and Crabbé, 2017).
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2.2 statistical machine translation

This section provides a high-level overview over statistical machine
translation (SMT) and the corresponding models that are referenced in
this thesis. As the focus is on tree-based approaches to SMT, empha-
sis will be put on models based on Synchronous Context-Free Gram-
mar (SCFG) in section 2.2.5.

A comprehensive and in-depth review of approaches to SMT and
methods used therein is beyond the scope of this work. For more com-
plete reports, the reader is referred to Lopez (2008) and Koehn (2010),
and to Williams et al. (2016) for tree-based SMT.

2.2.1 General Framework

Translation in the context of SMT is formulated as an optimization
problem. Given a foreign source sentence f , the task is to find the
target sentence e with the highest conditional probability:

ê = arg max
e

P(e| f ) (2.1)

This is called decoding. f = f J
1 = f1 . . . f J is a sequence of J words from

the source language vocabulary VF, and e = eI
1 = e1 . . . eI is a sequence

of I target words from the target language vocabulary VE.
Traditionally, in the early word-based models (Brown et al., 1993),

the objective has been framed as an instance of the noisy-channel ap-
proach (Shannon, 1948), where the conditional probability is rewritten
according to Bayes’ rule:

ê = arg max
e

P(e| f ) = arg max
e

P(e)P( f |e)
P( f )

= arg max
e

P(e)P( f |e)
(2.2)

The prior P( f ) can be dropped because it is constant for a given sen-
tence f . The model is thus factorized into two parts. P(e), the language
model (LM), henceforth called PLM(e), is modeling the fluency of the
candidate translation e. The language model probability is mostly ap-
proximated by an n-gram language model which takes into account
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the previous n − 1 words when determining the probability of a word
in a sequence:

PLM(e) =
I

∏
i=1

PLM(ei | e1 . . . ei−1)

≈
I

∏
i=1

PLM(ei | ei−n+1 . . . ei−1)

(2.3)

P( f |e) is called the translation model. It models the translational cor-
respondence between f and e. The following sections will provide
an overview of the various types of translation models. Each type of
translation model defines its own notion of derivation, explaining how
a translation e is generated from f . We define f(d) and e(d) to denote
the source and target side yields of a derivation d respectively.

One specific translation e can usually be derived in various ways
under one given model. Accordingly, the calculation of P(e| f ) involves
a summation over derivations:

P(e| f ) = ∑
d

P(e, d| f ) (2.4)

where d ∈ {d | e(d) = e, f(d) = f } and again

P(e, d| f ) =
P(e)P( f , d|e)

P( f )
. (2.5)

For many translation models, this sum over derivations is computa-
tionally intractable. The objective function is therefore approximated
using a single derivation:

ê ≈ e

(
arg max

d s.t. f(d)= f
P(e, d| f )

)
(2.6)

Instead of the direct noisy-channel approach, see equation (2.2) and
(2.5), nowadays, a log-linear model of the form

P(e, d| f ) ∝ ∏
i

φi(d)λi

∝ ∑
i

λi log φi(d)
(2.7)
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is generally applied (Och and Ney, 2002), where φi(d) are feature func-
tions defined on derivations d, e and f , and λi are feature weights. Fea-
tures of course include the language model and the translation model,
but also many more that have been proven to be useful for translation
modeling, such as an inverse translation model feature and a target
word count feature.

The weights λi are trained discriminatively on held-out data to max-
imize translation quality as measured by automatic metrics. This step
is called parameter tuning. The objective of minimizing the error rate
can be solved with, e. g., line search (Och, 2003) or downhill simplex
(Nelder and Mead, 1965).

The search space for finding the best translation according to equa-
tion (2.1) or (2.6) is dependent on the type of translation model used
and the respective notion of derivation. Depending on the generative
process of a specific type of translation model and the types of fea-
tures which are used, efficient dynamic programming algorithms have
been designed to search for the most likely translation. They will be
discussed later in this chapter. In most models, certain independence
assumptions are made, which lead to features that are local to each
translation rule used in the derivation, and therefore allow to com-
pute solutions to sub-problems. An exception to the local features is
the n-gram language model, and a distortion model which is used for
phrase-based translation models.

The evaluation of machine translation systems is an active research
topic on its own. Since human evaluation is costly in terms of time
and money, automatic metrics have been developed which compare
the machine translation output of test sentences against available hu-
man reference translations. Their declared goal is to correlate well with
human judgment. They are low-cost, consistent and fast to compute,
and therefore they are used for iterative system development, as the
objective for parameter tuning and for system comparison and bench-
marking, despite their flaws.

The most widely used metric still is bleu (Papineni et al., 2002),
which is based on the overlap of n-grams in the translation and the
references. More precisely, bleu is a weighted n-gram precision, typ-
ically for 1 ≤ n ≤ 4, including a penalty for translations which are
shorter than the reference. meteor (Denkowski and Lavie, 2011) rep-
resents an extension of bleu which puts more emphasis on recall.
Furthermore, meteor also incorporates stemming and synonyms to
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allow to also reward words which are not exact matches with the ref-
erence. Lately, character-based metrics, e. g. F-measure computed on
character level (Popović, 2016), have gained in popularity.

2.2.2 Word-based Models

Chronologically, the word-based models developed by IBM (Brown et al.,
1990, 1993) were the first translation models in SMT. While nowadays
they are not used as translation models anymore, they introduce many
important concepts that are still in use in SMT. Furthermore, word-
based models are still applied for certain subtasks of SMT, namely for
the task of automatic word alignment (see section 2.2.3) and for some
feature functions in translation modeling.

The idea of the word-based models is to view the translation of a
sentence as a combination of lexical translations. They make the sim-
plifying assumption that each source word f j corresponds to exactly
one target word ei (or a null token e0) and that each of those J align-
ments is independent. This relation is captured by a latent alignment
variable a, which is a function a : {1, . . . , J} → {0, 1, . . . , I}, the deriva-
tion of the word-based models. For illustration, figure 22 depicts two
possible alignments a for the example sentence pair (8).

(8) Ich
I

möchte
would like

die
the

Präsidentschaft
Presidency

für
for

ihre
its

Arbeit
work

loben
to praise

.

.
I wish to praise the Presidency for its work.

The translation probability of the sentence pair is then expressed
as the sum of the translation probabilities under different alignment
functions:

P( f |e) = ∑
a

P( f , a|e) (2.8)

The simplest of the word-based models, IBM Model 1, additionally
makes the assumption that all alignments a for a given sentence pair
are equally likely. P( f , a|e) then decomposes as follows:

P( f , a|e) = P(a|e)P( f |a, e) =
ε

(I + 1)J

J

∏
j=1

P( f j|ea(j)) (2.9)
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Ich möchte die Präsidentschaft für ihre Arbeit loben .

null I wish to praise the Presidency for its work .

Ich möchte die Präsidentschaft für ihre Arbeit loben .

null I wish to praise the Presidency for its work .

Figure 22: Two possible alignments under the word-based models. The
model will (hopefully) learn that the lexical translations in the
upper graphic are more likely than those in the lower graphic.

The computation of the translation probability thus boils down to a
product of the individual lexical translation probabilities P( f j|ei). ε is
a uniform length probability P(J|I).

IBM Model 2 extends this model by an absolute alignment model
which replaces the uniform alignment model P(a|e). The probability
of a target word at position i being aligned to a source word at position
j then depends on j itself, J and I .

Due to the simple form of these models, P( f |e) can be computed ef-
ficiently, as shown in equation (2.10) for IBM Model 1. This means that
the exponential number of possible alignments can be compactly rep-
resented, making expectation-maximization to train the parameters
tractable.

P( f |e) = ε

(I + 1)J

J

∏
j=1

I

∑
a(j)=0

P( f j|ea(j)) (2.10)

The subsequent IBM Models 3–5 increasingly add improvements to
Model 2, however at the price of additional complexity for training.

2.2.3 Word Alignment

A central concept of SMT in general, that relates to the word-based
models, is the word alignment A of a sentence pair 〈 f J

1 , eI
1〉, capturing

the word-to-word correspondences of the two sentences. A is a set of
alignment links A ⊆ [1, J]× [1, I]. A target word ei and a source word
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f j are aligned if (j, i) ∈ A. Words can be unaligned, and words can be
aligned to multiple words. Note that this notion of word alignment is
symmetrical while the alignment variable a in word-based translation
models is asymmetric (cf. section 2.2.2).

Graphically, a word alignment can be viewed as a bipartite graph.15

Definition 2.57 (Word alignment graph). Let A be a word alignment
of a sentence pair 〈 f J

1 , eI
1〉. G = 〈V, E〉 is a word alignment graph of A

if it holds that V = { f1, . . . , f J} ∪ {e1, . . . , eI} and E = {( f j, ei) | (j, i) ∈
A} ∪ { f j ≺ fk | j < k} ∪ {ei ≺ el | i < l}.

We will often refer to a word alignment A as its alignment graph G
or just call it an alignment structure.

A translation unit is a maximal connected subgraph of A. We use the
notation 〈Df , De〉 to denote a specific translation unit t where Df =
{j | f j is part of t} and De = {i | ei is part of t}. Where using words
instead of indices is unambiguous, we may also use 〈α f ;αe〉 to refer
to t where α f and αe are vectors of words from f and e respectively.
They contain the words which constitute t, obeying the precedence
relation of the alignment graph.

By this definition, the translation units of a given alignment graph
do not overlap. A translation unit is viewed as representing minimal
translational equivalence. Note that we do not further constrain trans-
lation units; for example, they are not required to consist of contiguous
sequences of source and target words. An alignment configuration con-
sists of several translation units that are part of one alignment graph.

A word alignment graph is called complete if the following condition
holds: If fk is aligned to em and en, then any fl that is aligned to em
must also be aligned to en. Goutte et al. (2004) call this property closed
under transitivity. If an alignment graph is complete, then its transla-
tion units are also complete. In Goutte et al. (2004) they are then called
cepts. We generally assume complete alignment graphs. In the case of
a provided alignment structure not being complete, we just stipulate
the missing alignment links.

15 Our definitions of alignment graph and its properties and translation units loosely
follow those given by Søgaard (2009) and Søgaard and Kuhn (2009).



72 foundational matters

a b c d e

x y z

Figure 23: Word alignment example

Example 2.58 (Word alignment and translation units). As an example,
consider the following word alignment for the sentence pair 〈a b c d e ,
x y z〉:

A = {(1, 1), (2, 2), (4, 1), (4, 2), (5, 3)}

The corresponding alignment graph is given in figure 23. Note that
word c is unaligned. This word alignment consists of 3 translation
units, which are 〈{1, 2, 4}, {1, 2}〉, 〈{3}, {}〉 and 〈{5}, {3}〉 or, using
the other notation, 〈a b , d ; x y〉, 〈c ; ε〉 and 〈e ; z〉. To make this align-
ment graph complete, the links (1, 2) and (2, 1) need to be stipulated.
They are shown as dashed lines in figure 23.

The goal of the word alignment task is to identify the word align-
ment A of a given sentence pair 〈 f J

1 , eI
1〉. Large-scale word alignments

are created automatically, usually in an unsupervised fashion. Many
models and methods have been proposed for this task.

Using the word-based translation models is one option. According
to IBM Model 1, the best alignment is computed as:

â = arg max
a

J

∏
j=1

P( f j|ea(j)) (2.11)

In order to obtain a symmetric word alignment from the asymmetric
alignments provided by the IBM models, the parallel data is aligned
in both directions. The alignments are then combined to a symmetric
word alignment by taking the intersection or the union of the align-
ment links or something in between (Koehn et al., 2003). The IBM
models for word alignment and various extensions are implemented
as open-source software.16

16 GIZA++ (Och and Ney, 2003) is available at https://github.com/moses-smt/

giza-pp, accessed on May 19, 2017.
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2.2.4 Phrase-based Models

Phrase-based translation models are widely used in research and in-
dustry today. They are introduced here because they present an in-
termediate step in the development of hierarchical translation models
(section 2.2.5).

In phrase-based SMT (Och et al., 1999; Koehn et al., 2003), the trans-
lation of a sentence is formulated as the translation of phrases: the
source sentence is segmented into phrases, each phrase is translated
independently and the target phrases are reordered. Figure 24 illus-
trates this. A phrase in this context is a contiguous sequence of words
and does not carry any linguistic meaning. Mathematically:

P( f , d|e) = P(d|e)P( f |d, e)

=
L

∏
l=1

r(l)P( f̄l|ēl)
(2.12)

A derivation d for phrase-based models captures the segmentation
into phrases and the reordering of the phrases. This corresponds to a
one-to-one alignment of phrases, and is sometimes called phrasal align-
ment. For a derivation d segmenting the source sentence into L phrases,
we notate the target sentence as a sequence of phrases ē1, . . . , ēL. f̄l is
the source phrase that corresponds to the lth target phrase ēl, i. e. the
source sentence is a permutation of f̄1, . . . , f̄L. P(d|e) is the derivation
probability. The segmentation itself is not explicitly modeled in this for-
mulation of the phrase-based model, i. e. all segmentations are equally
likely. r(l) models the reordering. In the original formulation, it is a
distance-based measure of the amount of source phrase reordering
compared to the aligned target phrases, penalizing (long-distance) re-
orderings. More refined reordering models have been proposed that
also take into consideration the words that make up the phrases (Till-
mann, 2004; Koehn et al., 2005; Galley and Manning, 2008).

P( f̄l|ēl) is the phrase translation probability of translating phrase ēl
into phrase f̄l. Those probabilities are learned from a parallel train-
ing corpus. Usually the corpus is word-aligned first (see section 2.2.3),
then all phrase pairs 〈 f̄l, ēl〉 that are consistent with the word align-
ment are extracted. They serve as the hypothesized distribution from
which maximum likelihood estimates are computed. For reasons of
practicability, a set of heuristics is applied, e. g. phrase pairs are only
extracted up to a certain length (e. g. five words).
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Ich möchte die Präsidentschaft für ihre Arbeit loben .

I wish to praise the Presidency for its work .

Ich möchte die Präsidentschaft für ihre Arbeit loben .

I wish to praise the Presidency for its work .

Figure 24: Two possible phrase-based derivations for (8). Which one is cho-
sen depends on the phrase pair inventory of the translation model
and the feature values.

As mentioned before, modern SMT systems follow a log-linear
approach. The core features which have been established besides
the language model feature PLM(e), the phrase translation probabil-
ities ∏L

l=1 P( f̄l|ēl) and the distortion feature ∏L
l=1 r(l) are the inverse

phrase translation probabilities ∏L
l=1 P(ēl| f̄l), lexical weighting scores

in both directions which are based on lexical translation probabilities
(see section 2.2.2), a target sentence length penalty and a phrase count
penalty.

During decoding, translation hypotheses are built from left to right
on the target side (Koehn, 2004). The search proceeds through a di-
rected acyclic graph of nodes which represent (partial) translation
hypotheses. Hypotheses are extended by translating one additional
phrase. Hypotheses which are equal in terms of the subsequent trans-
lation process are combined. A beam search algorithm using stacks is
applied to enumerate hypotheses efficiently. For that, hypotheses are
organized in priority queues (called stacks in the SMT literature) of
comparable hypotheses, e. g. same number of source words already
translated.

Phrase-based translation, including training and decoding, has been
implemented in various open-source toolkits, the one with the largest
community probably being Moses17 (Koehn et al., 2007).

Since the decoding search problem of phrase-based models is ex-
ponential in the source sentence length (Knight, 1999), the amount of

17 http://www.statmt.org/moses/, accessed on May 23, 2017.
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allowed reordering is usually restricted to a rather small value in prac-
tice. This has the shortcoming that many reorderings which would
be necessary to correctly translate between languages with different
word orders are a priori excluded from the search space. Furthermore,
using phrase pairs as translation rules does not allow to learn gen-
eralizations which could potentially be useful for translating unseen
sentences. Consider the phrase pair die Präsidentschaft für ihre Arbeit
loben / to praise the Presidency for its work in figure 24. Knowing this
phrase pair does not help to translate, e. g., (9). This shortcoming is
addressed by the models presented in the next section.

(9) . . . den
. . . the

Jungen
boy

für
for

seine
his

Aufmerksamkeit
mindfulness

loben
to praise

.

.
. . . to praise the boy for his mindfulness.

2.2.5 SCFG-based Models

In contrast to the word-based and phrase-based models, tree-based
(also called syntax-based) models allow for a hierarchical modeling of
translational equivalence. The notion of a phrase is extended to hier-
archical phrases which can be recursively nested. See figure 25 for an
example. The concept of hierarchical phrases is usually formalized by
some form of a Synchronous Context-Free Grammar (SCFG), a gener-
alization of Context-Free Grammar (CFG) (def. 2.17, p. 22) that gener-
ates pairs of related strings instead of just strings. Translation between
string pairs is thus performed via a hierarchical structure, i. e. a parse
tree of the source string synchronized with a parse tree of the target
string.

Training and decoding for models based on SCFG and related for-
malisms have been implemented in a wide range of toolkits. They
differ in the types of supported models, programming language used,
scope and goals, and the size of the community. Three well-known
toolkits are Joshua18, cdec19 and Moses20.

18 http://joshua.incubator.apache.org/, accessed on May 23, 2017.
19 http://www.cdec-decoder.org/, accessed on May 23, 2017.
20 http://www.statmt.org/moses/ and http://www.statmt.org/moses/?n=Moses.

SyntaxTutorial, accessed on May 23, 2017.
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Ich möchte die Präsidentschaft für ihre Arbeit loben .

I wish to praise the Presidency for its work .

Figure 25: A hierarchical phrase alignment

Formalism

Several definitions for SCFG have been proposed in the literature,
e. g. in Chiang (2007) and in Satta and Peserico (2005), in Lewis and
Stearns (1968) and Aho and Ullman (1972) as Syntax-Directed Trans-
duction Grammar. We will first define an index annotation of grammar
symbols and then move on to SCFG.
Definition 2.59 (Index annotation (SCFG)). Let N and T be sets of
non-terminal and terminal symbols respectively. We define I(N) =
{A k | A ∈ N, k ∈ N} and I = I(N)∪T. The set of all indices (integers
k) that occur in symbols in γ ∈ I∗, is denoted by ind(γ). Two strings
γ1, γ2 ∈ I∗ are synchronous if ind(γ1) = ind(γ2), each index in ind(γ1)
occurs exactly once in γ1 and each index in ind(γ2) occurs exactly once
in γ2. We call γ1 and γ2 independent iff ind(γ1) ∩ ind(γ2) = ∅.

Definition 2.60 (Synchronous Context-Free Grammar). A
Synchronous Context-Free Grammar (SCFG) is a tuple G =
(Ns, Nt, Ts, Tt, P, Ss, St) where

1. Ns and Nt are finite sets of source and target non-terminal sym-
bols,

2. Ts and Tt are finite sets of source and target terminal symbols,

3. Ns and Ts, respectively Nt and Tt are disjoint,

4. Ss ∈ Ns and St ∈ Nt are distinguished start symbols,

5. P is a finite set of synchronous (rewriting) rules of the form

〈A → αs, B → αt〉

with A ∈ Ns, B ∈ Nt, αs ∈ I∗s , αt ∈ I∗t , where Is = I(Ns) ∪ Ts and
It = I(Nt) ∪ Tt, and αs and αt being synchronous strings.
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In certain contexts, it is necessary to refer to the individual compo-
nents of a synchronous grammar separately.
Definition 2.61 (Source and target projections (SCFG)). Let G = (Ns,
Nt, Ts, Tt, P, Ss, St) be an SCFG and r ∈ P with r = 〈rs, rt〉 a syn-
chronous rule. The source and target projection of r are projs(r) = rs
and projt(r) = rt respectively. The source and target projections of
G, projs(G) and projt(G), are the CFGs Gs = (Ns, Ts, Ps, Ss) and
Gt = (Nt, Tt, Pt, St) with the rule sets Ps = {projs(r) | r ∈ P} and
Pt = {projt(r) | r ∈ P}.

If the source projection of a rule 〈A → αs, B → αt〉 ∈ P has the same
left-hand side (LHS) as its target projection, i. e. A = B, then we can
also use the following notation: A → 〈αs, αt〉.
Definition 2.62 (Rank (SCFG)). Let G = (Ns, Nt, Ts, Tt, P, Ss, St) be an
SCFG. The rank of a rule 〈A → αs, B → αt〉 ∈ P is the number of
non-terminals occurring in αs or αt. The rank of G is the maximal rank
of any of its rules r ∈ P. G is called a u-SCFG if it has rank u.

The derives relation for SCFG simultaneously rewrites two non-ter-
minals with the same index, starting with a pair of co-indexed start
symbols. During a derivation step, pairs of fresh indices are intro-
duced. We therefore first establish the notion of a reindexing.
Definition 2.63 (Reindexing). A reindexing is an injective function f :
N → N. f is extended to I in the following way: f (A k ) = A f (k) for

A k ∈ I(N) and f (a) = a for a ∈ T. f is furthermore extended to
strings in I∗ such that f (ε) = ε and f (Xγ) = f (X) f (γ), for X ∈ I and
γ ∈ I∗.

Definition 2.64 (Derivation (SCFG)). Let G = (Ns, Nt, Ts, Tt, P, Ss, St)
be an SCFG. Let γs ∈ I∗s , γt ∈ I∗t be synchronous strings.

1. ⇒G is called the derives relation. It is defined as follows:

〈γs, γt〉 ⇒G 〈δs, δt〉
iff there exists an index k in ind(γs), a synchronous rule 〈As →
αs, At → αt〉 ∈ P and some reindexing f such that

a) f (αsαt) and γsγt are independent, and

b) γi = γ′
i Ai k γ′′

i , δi = γ′
i f (αi)γ

′′
i for i ∈ {s, t}.

If G is clear in the context, we can use ⇒ instead of ⇒G. To make
the applied rule r = 〈As → αs, At → αt〉 explicit, we can use ⇒r

G.
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2. ∗
=⇒G is the reflexive transitive closure of ⇒G.

3. Let m ∈ N and γ
(i)
s ∈ I∗s , γ

(i)
t ∈ I∗t be synchronous strings, for

1 ≤ i ≤ m. 〈γ(1)
s , γ

(1)
t 〉 ⇒G . . . ⇒G 〈γ(m)

s , γ
(m)
t 〉 is a derivation d of

length m.

Like derivations of a CFG can be represented as trees, an SCFG
derivation can be viewed as a pair of derivation trees (one source tree
and one target tree). In such a representation, synchronously derived
non-terminals are usually linked with lines or they are annotated with
the same index k.

In correspondence to the language of a CFG, we define the transla-
tion of an SCFG.
Definition 2.65 (Translation (SCFG)). Let G = (Ns, Nt, Ts, Tt, P, Ss, St)
be an SCFG.

1. The translation generated by G is a binary relation over T∗
s × T∗

t :
T (G) = {〈 f , e〉 | 〈Ss 1 , St 1 〉

∗
=⇒G 〈 f , e〉, f ∈ T∗

s , e ∈ T∗
t }. We also

call T (G) the language of G.

2. Let f = f1 . . . fn be a string. The set of translations of f generated
by G is the following: T (G, f ) = {e | 〈 f , e〉 ∈ T (G)}.

Example 2.66 (Synchronous Context-Free Grammar). Let G = ({S, A},
{S, B}, {a, b}, {a, b, c}, P, S, S) be an SCFG with P as follows:

〈S → A 1 , S → B 1 〉
〈A → aA 1 b , B → abcB 1 〉
〈A → ab , B → abc〉

The translation generated by G is T (G) = {〈anbn, (abc)n〉 | n ∈ N}.
Figure 26 shows the synchronous derivation tree for the following
derivation of 〈aabb, abcabc〉:

〈S 1 , S 1 〉 ⇒ 〈A 2 , B 2 〉
⇒ 〈aA 3 b, abcB 3 〉
⇒ 〈aabb, abcabc〉

An Inversion Transduction Grammar (ITG) is a restricted type of SCFG
in which the indexed right-hand side (RHS) non-terminals in the



2.2 statistical machine translation 79

S 1 S 1

A 2 B 2

A 3 B 3

〈 a a b b , a b c a b c 〉

Figure 26: SCFG derivation tree

source projection occur in the same order or in exactly the inverse or-
der as their counterparts in the target projection. ITG was the first for-
malism used for tree-based SMT (Wu, 1997). Often, a specific notional
variant is used for ITG, but we keep the introduced SCFG notation.
Definition 2.67 (Inversion Transduction Grammar). Let G = (Ns, Nt,
Ts, Tt, P, Ss, St) be an SCFG. G is an ITG iff for any rewriting rule

〈A → αs, B → αt〉 ∈ P

with

αs = α0
s A1

l1
α1

s A2
l2

. . . Au
lu

αu
s ,

αt is exactly such that

αt = α0
t B1

l1
α1

t B2
l2

. . . Bu
lu

αu
t or αt = α0

t B1
lu

α1
t B2

lu−1
. . . Bu

1 αu
t

with A1 . . . Au ∈ Ns and B1 . . . Bu ∈ Nt, α0
s . . . αu

s ∈ T∗
s and α0

t . . . αu
t ∈

T∗
t , l1 . . . lu ∈ N, and u being the rank of the rule.

Under this defintion of ITG, SCFG and ITG are equivalent for gram-
mars of maximally rank 2.

Most often, ITG makes an appearance in its normal form in the
literature, where the rank of the grammar is at most 2 and the RHSs
of the rules contain either terminals or non-terminals, but not both.
Definition 2.68 (Normal Form (ITG/SCFG)). Let G = (Ns, Nt, Ts, Tt,
P, Ss, St) be an SCFG. G is in normal form iff all rules r ∈ P have one of
the following forms:

1. 〈A0 → A1
l1

A1
l2

, B0 → B1
l1

B2
l2
〉
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2. 〈A0 → A1
l1

A1
l2

, B0 → B1
l2

B2
l1
〉

3. 〈A0 → ts, B0 → tt〉

with A0, A1, A2 ∈ Ns, B0, B1, B2 ∈ Nt, ts ∈ T∗
s , tt ∈ T∗

t and l1, l2 ∈
N.

Other definitions of ITG are more restrictive in that the RHSs of the
terminal rewriting rule 3 in def. 2.68 is often limited to at most one
source-side and one target-side symbol. The given definition loosely
follows Søgaard and Wu (2009) who argue that, even in the original
paper, the idea of lexical rules with more than one lexical unit is put
forward (Wu, 1997, section 6).

For any ITG G, there exists an equivalent Normal-form Inversion
Transduction Grammar (NF-ITG) G′, i. e. T (G) = T (G′) (Wu, 1997).
As will be explained in chapter 3, G and G′ however differ in their
alignment capacity.

In contrast, it is not generally the case that any SCFG G can be con-
verted into an equivalent Normal-form Synchronous Context-Free Gram-
mar (NF-SCFG) G′ because not every SCFG is binarizable (Aho and
Ullman, 1972; Zhang et al., 2006). See ex. 2.69. However, when creat-
ing grammars, may it be manually or automatically, one can of course
stipulate that grammars must be in normal form or that rules must
have at most rank 2 from the very beginning.
Example 2.69 (Binarization of ITG/SCFG). Let us consider the follow-
ing ITG rule:

A → 〈B 1 C 2 D 3 E 4 , E 4 D 3 C 2 B 1 〉

It can be binarized by iteratively grouping two synchronous and adja-
cent non-terminals under a new non-terminal symbol, e. g.,

A → 〈B 1 A′
2 , A′

2 B 1 〉
A′ → 〈C 1 A′′

2 , A′′
2 C 1 〉

A′′ → 〈D 1 E 2 , E 2 D 1 〉

However, the following SCFG rule cannot be binarized since no two
non-terminals are synchronous and adjacent on both sides:

A → 〈B 1 C 2 D 3 E 4 , D 3 B 1 E 4 C 2 〉
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The translations which are produced by SCFGs fall into the same
class as translations by some other formalisms. First, Linear Context-
Free Rewriting Systems (LCFRSs) (def. 2.29, p. 26) where each non-ter-
minal has exactly fan-out 2 are equivalent to SCFGs. Furthermore, Syn-
chronous Tree-Substitution Grammar (STSG) generates the same class
of translations as SCFG. Tree-Substitution Grammars (TSGs) are Tree-
Adjoining Grammars (TAGs) (see p. 55) without adjunction operation
and auxiliary trees. STSG is the generalization of TSG to pairs of trees
and the generation of pairs of strings (Eisner, 2003).
Definition 2.70 (Synchronous Tree-Substitution Grammar). A Syn-
chronous Tree-Substitution Grammar (STSG) is a tuple G = (Ns, Nt, Ts, Tt,
P, Ss, St) where Ns, Nt, Ts, Tt, Ss and St are defined as for SCFG
(def. 2.60, p. 76) and P is a finite set of synchronous (rewriting) rules.
Each rule r ∈ P is a pair of trees 〈πs, πt〉 where the labels of the nodes
in πx are drawn from Nx except the leaf nodes whose labels are drawn
from Nx ∪ Tx, for x ∈ {s, t}. Each non-terminal leaf (a substitution node)
in πs is paired exactly with one non-terminal leaf in πt and vice versa
(denoted by boxed indices).

An STSG derivation starts with a tree pair 〈πs, πt〉. While in an
SCFG derivation, synchronous non-terminals are rewritten with se-
quences of symbols, in an STSG derivation, paired substitution nodes
in 〈πs, πt〉 are rewritten with a pair of trees 〈π′

s, π′
t〉 ∈ P. The label pair

of the root nodes of 〈π′
s, π′

t〉 has to match the labels of the substitution
nodes.

We do not formalize STSGs here any further since conceptually they
are included in the context-free grammar formalisms for translation
modeling. Even though the trees as basic units for rewriting offer an
extended domain of locality compared to SCFG and are therefore inter-
esting for linguistic description of syntax, STSG is weakly equivalent
to SCFG. Ignoring the internal structure of the trees 〈πs, πt〉 ∈ P, each
tree pair can be converted to an SCFG rule in which the LHSs are the
root labels and the RHSs are the flattened trees, i. e. they consist of the
frontier nodes.

Translation modeling using SCFG or STSG involves a mapping be-
tween two trees. This relationship can also be formalized as a tree trans-
ducer.21 Accordingly, some approaches to SMT have been formulated

21 See Knight and Graehl (2005) for tree transducers and their application in natural
language processing.
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as tree transductions (e. g. Galley et al., 2006; Graehl et al., 2008). While
tree transducers in their general form are more powerful than SCFG
and STSG, for SMT usually a restricted form is employed (linear and
non-deleting) which is equivalent to STSG (Shieber, 2004). Throughout
this work, the grammar view will be adopted, but the tree transducer
literature will still be referenced where appropriate.

Statistical Model Definition

To weight the translation options in T (G, f ), the features of the log-
linear model (cf. equation (2.7)) are defined in the following manner
(e. g. Chiang, 2007):

P(e, d| f ) ∝ ∏
i

φi(d)λi

∝ PLM(e)λLM ω(d)
(2.13)

PLM provides the language model feature score. The other features
(i �= LM) are defined on the synchronous rules of a weighted SCFG
which are applied during the derivation d. The weight of a derivation
d is the product of the weights of the rules that constitute d.
Definition 2.71 (Weighted Synchronous Context-Free Grammar). A
weighted Synchronous Context-Free Grammar is a tuple

G = (Ns, Nt, Ts, Tt, P, Ss, St, ω)

where (Ns, Nt, Ts, Tt, P, Ss, St) is an SCFG and ω : P → R≥0 is a weight
function which maps from rules to real numbers.

Definition 2.72 (Weight of a derivation (Weighted SCFG)). Let G =
(Ns, Nt, Ts, Tt, P, Ss, St, ω) be a weighted SCFG. Let γs ∈ I∗s and γt ∈ I∗t ,
and δs ∈ I∗s and δt ∈ I∗t be synchronous strings.

1. Let r ∈ P. The weight of one derivation step 〈γs, γt〉 ⇒r
G 〈δs, δt〉

is defined as

ω(〈γs, γt〉 ⇒r
G 〈δs, δt〉) = ω(r)

2. Let r1, . . . , rm ∈ P, m ∈ N. Let d be a derivation 〈γs, γt〉 ⇒r1
G

. . . ⇒rm
G 〈δs, δt〉. The weight of d is defined as

ω(〈γs, γt〉 ⇒r1
G . . . ⇒rm

G 〈δs, δt〉) =
m

∏
j=1

ω(rj)
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To fit the log-linear model, ω is usually computed as follows:

ω(r) = ∏
i �=LM

φi(r)λi (2.14)

where r ∈ P is a synchronous rule of G, φi are feature functions and
λi are feature weights.

Putting everything together, the search task for translation given a
source sentence f is the following:

ê ≈ e

(
arg max

d s.t. f(d)= f
PLM(e(d))λLM

m

∏
j=1

∏
i �=LM

φi(rj)
λi

)
(2.15)

where d consists of m rule applications.
The base features that have been proven to be useful are the same as

for phrase-based translation: the language model probability for the
target sentence PLM(e), the direct and the inverse conditional transla-
tion probabilities on a rule basis P(rs|rt) and P(rt|rs), lexical weighting
scores in both directions lex(rs|rt) and lex(rt|rs) which are based on
lexical translation probabilities, a rule count penalty and a target sen-
tence length penalty. Note that the language model probability PLM
cannot be computed on a rule basis and is therefore not part of the
main product in equation (2.15). We will return to this issue in the
section about decoding.

Model Classification and Grammar Learning

Many different SCFG- and STSG-based translation models have been
proposed. Following the classification in Williams et al. (2016), they
can be grouped along the dimension of whether the derived trees
are supposed to resemble syntactic constituency trees which allow for
a linguistic interpretation or not (see def. 2.5, p. 18 and section 2.1.3
in general). We will first focus on string-to-string models which do
not build linguistic syntax trees, and then shortly describe the other
classes of tree-based translation models.

Hierarchical phrase-based models (Hiero) (Chiang, 2005, 2007) are the
most prominent representative of the class of string-to-string models.
They do not allude to syntactic parse trees neither during training
nor during decoding, and the translation grammar G is only syntactic
in a formal sense. The motivation is to extend phrase-based models
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Ich möchte die Präsidentschaft für ihre Arbeit loben .

I wish to praise the Presidency for its work .

Figure 27: Word alignment for ex. 2.73

(section 2.2.4) by allowing for holes (also called gaps) in the phrases to
make them more general. The holes are represented by non-terminals
labeled X.

Hiero rules are extracted from the parallel word-aligned training
corpus in a two-step procedure. Firstly, for a word-aligned sentence
pair, all conventional phrase pairs (called initial phrase pairs) are ex-
tracted (see section 2.2.4). From the set of initial phrase pairs, hierarchi-
cal phrase pairs are then created by substituting smaller initial phrase
pairs which are embedded in larger phrase pairs by a synchronous
non-terminal. See ex. 2.73 for illustration. This rule extraction is usu-
ally constrained by a list of heuristics in order to obtain grammars of
manageable size and to make parsing more efficient (Chiang, 2007):

1. The maximum length of initial phrase pairs is limited, e. g., to 10
words on either side.

2. Unaligned words are not allowed on the boundaries of initial
phrase pairs.

3. The length of the RHS of the source projection of SCFG rules is
limited, e. g., to five symbols (terminals or non-terminals).

4. The maximum rank of each SCFG rule is 2.

5. Non-terminals in the source projection of SCFG rules are not
allowed to be adjacent.

Example 2.73 (Hierarchical phrase-based rule extraction). We provide
a non-exhaustive list of the rules which are created for the sentence
pair (8) and its the word alignment A in figure 27. The rules on the top
are lexical rules from initial phrase pairs, while the rules on the bot-
tom are rules create from hierarchical phrase pairs. The rules marked
with a diamond correspond to the hierarchical phrase pairs shown in
figure 25.
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X → 〈Ich , I〉
X → 〈Ich möchte , I wish〉 ♦

X → 〈loben , to praise〉
X → 〈die Präs. , the Pres.〉
X → 〈Präs. , Pres.〉 ♦

X → 〈Präs. für , Pres. for〉
X → 〈die Präs. für , the Pres. for〉
X → 〈ihre Arbeit , its work〉 ♦

X → 〈die Präs. für ihre Arbeit , the Pres. for its work〉
X → 〈die Präs. für ihre Arbeit loben , to praise the Pres. for its work〉
X → 〈. , .〉 ♦

. . .

X → 〈Ich X 1 , I X 1 〉
X → 〈X 1 möchte , X 1 wish〉
X → 〈Ich möchte X 1 . , I wish X 1 .〉
X → 〈die X 1 , the X 1 〉 ♦

X → 〈X 1 für X 2 , X 1 for X 2 〉
X → 〈X 1 für X 2 loben , to praise X 1 for X 2 〉 ♦

X → 〈X 1 für X 2 loben . , to praise X 1 for X 2 .〉
X → 〈die Präs. X 1 ihre X 2 , the Pres. X 1 for X 2 〉
. . .

In addition to the automatically extracted rules, a few further rules,
the so-called glue rules, are added to the grammar. They allow to mono-
tonically combine X trees to produce S trees, where S is the start sym-
bol of the grammar, and model the beginning and end of sentences.

S → 〈S 1 X 2 , S 1 X 2 〉
S → 〈〈s〉 , 〈s〉〉
S → 〈S 1 〈/s〉 , S 1 〈/s〉〉

As an example, consider figure 25. Glue rules would be used to com-
bine the synchronous tree for Ich möchte/I wish with the tree cover-
ing the middle part of the sentence, and then to combine it with the
sentence-final period.
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Now SCFG rules have been extracted, but the actual derivations d
of the sentence pairs in the training corpus are latent. In order to nev-
ertheless estimate values for the conditional translation probabilities
P(rs|rt) and P(rt|rs), the SCFG rules which have been extracted from
the training corpus are taken as the distribution from which to obtain
maximum likelihood estimates.

We will now point out the other classes of tree-based translation
models. In contrast to the string-to-string models, they produce deriva-
tions which resemble linguistic parse trees either on the source side,
on the target side, or both. This in turn means that the respective side
of the training corpus needs to be parsed using a monolingual syntac-
tic parser (see section 2.1).

String-to-tree models aim at producing a linguistic parse tree for the
translation. The intuition is that this kind of approach should lead to
more syntactically well-formed, fluent translations. Two well-known
lines of work can be classified as string-to-tree: Syntax-Augmented Ma-
chine Translation (Zollmann and Venugopal, 2006) is a variant of Hiero
which uses syntactic categories from target side parse trees to learn
rules with more refined target non-terminal labels. The GHKM ap-
proach (Galley et al., 2004, 2006), named after its authors, uses an
STSG with target side tree fragments which are extracted from parse
trees. Decoding is performed in the same way as for string-to-string
models: the source string is parsed using the grammar while building
a target side derivation according to the grammar rules. More details
will be presented in the next section.

In tree-to-string models, a syntactic parse tree is derived on the
source side. Instead of performing syntactic parsing and decoding in
one step, these models provide the possibility to firstly use a mono-
lingual syntactic parser to parse the source sentence (the one which
has been used to provide syntactic analyses of the source sentences in
the training data) and to secondly match the synchronous translation
rules against this parse tree (tree decoding). This reduces the transla-
tion search space and makes tree-to-string decoding fast in practice.
The first systems in this category have been presented by Huang et al.
(2006) and Liu et al. (2006) and are known under the name Syntax-
Directed Translation. The drawback of potential mistakes in the one
parse tree which is generated for the input sentence is addressed in
forest-to-string models.
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Tree-to-tree models can also make use of the efficient tree decoding
process. However, they suffer from the fact that source and target lin-
guistic parse trees are usually non-isomorphic, leading to large, non-
modular STSG tree fragments and data sparsity, and in turn to a de-
creased translation quality compared to models which use less syntac-
tic constraints (Chiang, 2010). Instead, syntax is often used as a soft
constraint (e. g. Zhang et al., 2011); however, strictly speaking, those
models do not fall into the tree-to-tree category.

Decoding as Parsing

Decoding with an SCFG-based translation model boils down to CFG
parsing (Melamed, 2004; Yamada and Knight, 2002) with beam search
to integrate the language model component into decoding (Chiang,
2007). We describe the most common approach within this section.
Recall equation (2.15). The goal of tree-based decoding is to find the
highest-scoring derivation d, according to a product of weighted fea-
ture scores, which yields the input string f on the source side. The
target yield of d provides the translation of f .

As it turns out, the main challenge in this search is the feature con-
tributed by the n-gram language model φLM(d) = PLM(e) in equa-
tion (2.13) and (2.15). Without this term, the task could be solved
exactly using dynamic programming (e. g. by using the weighted de-
ductive system in ex. 2.45, p. 38). However, the language model score
cannot be decomposed in the same way as the other feature scores
since it is not local to the rules of the grammar. It cannot be (exactly)
calculated on (S)CFG sub-derivations: when determining the weight
of an item ranging from j1 to j2, language model scoring needs to
know about the translations of words outside of this item in order to
calculate the correct score. This means that the optimality of an item
cannot be guaranteed without knowing the context in which this item
will be used.

For a moment, we will ignore the term contributed by the language
model. The decoding task can then be solved by parsing f using
the source projection of the synchronous grammar (def. 2.61, p. 77),
thereby making sure that valid target side derivations are created, and
reading off e from the corresponding target side tree. The machine
translation community here draws from efficient dynamic program-
ming algorithms, such as CYK parsing. Note that translation gram-



88 foundational matters

0für1 1ihre2 2Arbeit3

[X, 1, 2]

[X, 1, 3]

[X, 0, 3]

{r5, r6}

{r3, r4}

r2

r1

Figure 28: SCFG parse hypergraph for translation

mars are highly lexicalized, in contrast to grammars used for treebank
parsing for example, which means that algorithms which require the
grammar to be in Chomsky Normal Form (CNF) are probably not a
smart choice. One option is the modified CYK algorithm presented as a
deduction system in ex. 2.45, p. 38. Another popular algorithm in tree-
based machine translation systems is CKY+ (Chappelier and Rajman,
1998). It does not require the grammar to be of rank 2, but implic-
itly binarizes the grammar on the fly using Earley-style dotted items.
Other chart parsing algorithms have been developed for translation
grammars specifically (e. g. DeNero et al., 2009; Hopkins and Lang-
mead, 2010). Which algorithm to choose depends on characteristics of
the grammar, e. g. its rank and the number of non-terminal symbols.

The result of parsing f with the monolingual source projection of
the grammar is a parse hypergraph (see section 2.1.2) which represents
the full space of derivations of f . Since each source-projected rule of
the grammar maps to one or more target projections (sometimes called
a rule bundle), each hyperedge in the parse hypergraph represents one
or more SCFG rule applications.
Example 2.74 (SCFG parse hypergraph for translation). Consider the
following SCFG translation grammar fragment G:

r1 : X → 〈für X 1 , for X 1 〉
r2 : X → 〈ihre Arbeit , its work〉
r3 : X → 〈X 1 Arbeit , X 1 work〉
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r4 : X → 〈X 1 Arbeit , X 1 activities〉
r5 : X → 〈ihre , its〉
r6 : X → 〈ihre , her〉

It contains two rule bundles: {r3, r4} and {r5, r6}. Figure 28 shows the
parse hypergraph representing the parse forest which is generated
by parsing für ihre Arbeit with G. There are two derivations leading to
[X, 0, 3]. One is depicted with solid arrows. The other one differs in the
derivation of [X, 1, 3] which is shown with the dashed hyperedge.

We now augment the parse hypergraph to a more fine-grained
search hypergraph from which we can determine the highest scoring
translation according to equation (2.15). For this, we take advantage
of the independence assumptions of language modeling. See equation
(2.3). While a parse item (i. e. a node in the parse hypergraph) repre-
sents all subderivations which share the same source span f j1 . . . f j2
and the same non-terminal which covers this span (see CYK items in
ex. 2.45, p. 38, and the nodes in figure 28), a search item (i. e. a node
in the search hypergraph) also contains the information which is rel-
evant for n-gram language model scoring when combining items to
superderivations. This information is sometimes called the language
model state. Put simply, those are the n − 1 first and last target words
of the partial translation generated by the search item. In the search
hypergraph, each hyperedge represents the application of one SCFG
rule.
Example 2.75 (SCFG search hypergraph for translation). We continue
with ex. 2.74, p. 88. Figure 29 shows the corresponding search hyper-
graph which expands the parse hypergraph. It assumes the use of a
bigram language model (n = 2). The search items therefore record the
one rightmost and leftmost word of each translation hypothesis.

Unfortunately, exploring the complete search hypergraph in order
to find the best translation (e. g. using algorithm 3) is usually unfea-
sible. It amounts to a time complexity of O(|P|Ju+1|T|u·2(n−1)), with
|P| the number of rules in the grammar G, J the length of the input
sequence f , |T| the number of possible target side words, u the rank
of G, typically u = 2, and n the order of the language model. This
is clearly an explosion of the search space in comparison to standard
monolingual syntactic parsing with O(|P|Ju+1).
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Figure 29: SCFG search hypergraph for translation. Some hyperedges are
dashed for better readability.

Several approximate algorithms making this decoding task tractable
have appeared in the literature. They use beam search methods to sig-
nificantly reduce the search space and only compute a limited amount
of search items for each parse item. We will present cube pruning (Chi-
ang, 2007; Huang and Chiang, 2007) here, which is probably the most
popular one. The pseudocode is provided in algorithm 6.

Cube pruning visits the nodes of the parse hypergraph in a bottom-
up manner, thereby filling a beam of maximally size k with derivations
of search items (lines 3–5). Instead of computing and scoring all search
items at one parse node and then selecting the k best ones, cube prun-
ing only considers the most promising items using the eager k-best
parsing algorithm of Huang and Chiang (2005). See algorithm 4 on
p. 46ff. However, contrary to standard parsing tasks, the weight func-
tion is only approximately monotonic due to the language model score
that is incurred for the boundary words when combining search items.
This means that the derivations which are popped from the candidate
queue cand (see line 16) are not in the true best-first order. To account
for that, they are first stored in an auxiliary data structure (beam) be-
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1: 〈V, E〉: parse hypergraph with a goal node
2: function CubePruning(〈V, E〉)
3: for v ∈ V in bottom-up order do
4: CubePrune(v)
5: end for
6: return D1(goal)
7: end function
8:
9: procedure CubePrune(v)

10: cand = ∅ � Priority queue
11: beam = ∅ � List
12: for all e where e is an incoming hyperedge of v do
13: Push(cand,〈e,1, 1〉)
14: end for
15: while |beam| < k and |cand| > 0 do
16: d = PopMax(cand)
17: Append(beam, d)
18: PushNeighbors(d, cand)
19: end while
20: sort beam to D(v)
21: end procedure
22:
23: procedure PushNeighbors(〈e,x, y〉, cand)
24: for all i s.t. 1 ≤ i ≤ |T (e)| do
25: if xi < |D(Ti(e))| then
26: x′ = x+ bi

27: Push(cand, 〈e,x′, y〉)
28: end if
29: end for
30: if y < |rule bundle of e| then
31: Push(cand, 〈e,x, y + 1〉)
32: end if
33: end procedure

Algorithm 6: Cube pruning (Huang and Chiang, 2007)
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fore they are sorted to the final list of derivations of search items of v
(line 20), and also the beam size k is usually increased. Search errors
can still happen, but are accepted given the obtained speed-up.

Recall the definition of derivations with backpointers in a hyper-
graph (def. 2.51, p. 44) since a similar concept is used here. To identify
a derivation of a search item (which expands a parse item v), we use
the notation 〈e,x, y〉 to denote a derivation along the hyperedge e,
with the fine-grained search item antecedents being the xith deriva-
tion Dxi(v

′) of the tail node v′ = Ti(e) for 1 ≤ i ≤ |x|. y is an index
into the list of target projections of the rule bundle that is associated
with the hyperedge e, sorted by weight. D(v) is used to denote the k
highest weighted derivations of search items which correspond to the
parse item v, sorted according to their weight (see also def. 2.50, p. 44).

The cube in the name of the algorithm refers to the search grid which
is represented along one hyperedge e: one dimension for the rule,
i. e. the different target sides of the rule bundle, and the other two
dimensions for the typically two antecendents due to the application
of a rule of rank 2. The core of the algorithm starts by constructing the
supposedly best derivation (the one in the corner of the cube), using
the rule with the highest weight and the best search item derivation of
each of the tail nodes, scoring it and putting it on the priority queue
cand (line 13). For each derivation that is popped from cand, its neigh-
boring derivations, using the next best derivations of the antecedents
(lines 24–29) and the next best rule (lines 30–32), are processed in the
same way (lines 15–19).

Finally, the best search item derivation of the goal parse item
D1(goal) provides the translation ê we are looking for. For obtain-
ing the k-best translations22, one of the k-best parsing algorithms of
Huang and Chiang (2005) (see algorithms 4 and 5) can be applied to
the pruned search hypergraph.

2.3 conclusion and outlook

The reader should now be equipped with the required background
knowledge to follow along the work at hand. We have introduced
the concepts with respect to grammar formalisms and parsing on the

22 This k is different from and usually a lot smaller than the parameter k used within
the cube pruning algorithm.
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one hand and machine translation on the other hand which build
the groundwork of this thesis. We have learned that CFG lacks the
capability to model non-local dependencies as they occur in natural
language, and that LCFRS allows for data-driven constituency pars-
ing while modeling discontinuous constituents in a direct manner. We
have reviewed how statistical machine translation evolved from sim-
ple word-based translation models over phrase-based to hierarchical
models. The latter provide a link to grammar formalisms and parsing
as they employ CFGs in a synchronized manner and rely on parsing
for decoding.

The following chapter will show that SCFG is not powerful enough
to model all alignment configurations which occur in alignments of
parallel natural language texts. We therefore propose to use a gram-
mar formalism beyond CFG for translation modeling, and define, im-
plement and evaluate a hierarchical phrase-based translation system
which allows for discontinuous phrases.





3
M O T I VAT I O N

This chapter will provide motivation for going beyond Context-Free
Grammar (CFG) for translation modeling. Translational correspon-
dences in the form of manual word alignments are investigated as to
how far they can be covered with current popular translation models.
Furthermore, a qualitative analysis of the alignment configurations
that are beyond the alignment capacity of those models is provided.

The main findings of section 3.2 have already been published in
Kaeshammer (2013), and the material in section 3.3 has been published
in Kaeshammer and Westburg (2014):

Kaeshammer, M. (2013). Synchronous linear context-free
rewriting systems for machine translation. In Proceedings
of the Seventh Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 68–77, Atlanta, Georgia. Asso-
ciation for Computational Linguistics.

Kaeshammer, M. and Westburg, A. (2014). On complex
word alignment configurations. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation
(LREC’14), pages 1773–1780, Reykjavik, Iceland. European
Language Resources Association (ELRA).

3.1 complex alignment configurations

The space of alignment configurations that can be generated with a
certain class of translation models is limited. This is due to constraints
inherent in the translation model itself and potentially imposed by the
decoding strategy, and, in the case of tree-based statistical machine
translation (SMT), due to structural constraints imposed by the partic-
ular synchronous grammar formalism. It is therefore also meaningful
to talk about the alignment capacity of a synchronous grammar formal-
ism (Søgaard and Wu, 2009; Saers et al., 2011) besides its weak and
strong generative capacity (see p. 49). This term refers to the ability of

95
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the (synchronous) grammar formalism to generate a set of alignments
or translation units.

We call alignment configurations that are beyond the alignment ca-
pacity of current translation models, i. e. phrase-based (section 2.2.4)
and 2-SCFG-based models (section 2.2.5), complex alignment configura-
tions. They have been the matter of some debate in the machine trans-
lation community, as they call for more powerful translation models.

3.1.1 Preliminaries

When referring to the alignment capacity of a formalism, the follow-
ing assumption is made in this and related work: words that are
recognized or generated simultaneously, by the application of a syn-
chronous rule, are aligned (Wu, 1997; Wellington et al., 2006; Søgaard
and Kuhn, 2009; Søgaard, 2010). Accordingly, we call a synchronous
derivation tree a hierarchical alignment. Each synchronous constituent
can be interpreted as directly aligning its immediate lexical children
as well as transitively providing alignment information for the other
terminals in its yield.

In the interpretation of multi-word translation units, we follow the
methodology of interpreting the many-to-many alignments conjunc-
tively, as advocated by Søgaard and Kuhn (2009). This means that
all alignment links in a translation unit have to be induced in order
to say that the respective translation unit or alignment configuration
is induced. This differs from the methodotology of Wellington et al.
(2006) where multi-word translation units are interpreted in a disjunc-
tive manner, i. e. it is enough to generate one link of a translation unit
in order to say that the translation unit is induced.

Based on these assumptions and the definition of translation unit in
section 2.2.2, the terminals that are recognized or generated by a syn-
chronous rule correspond to one or more translation units. Alignment
structures induced by synchronous grammars are complete (Søgaard
and Kuhn, 2009).

It is assumed that translation units represent minimal translational
equivalence and that they are crucial for translation. An adequate for-
malism for the modeling of translation should thus be able to induce
each translation unit separately.
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(i)

a b c d

b d a c

(ii)

a b c d

c a d b

Figure 30: Schematic IO alignments

That, I believe, we all find unacceptable, regardless of political party

Je pense que, indépendamment de notre parti, nous trouvons tous cela inacceptable

Figure 31: English-French example of an IO alignment from Wellington et al.
(2006). Only the links which constitute the complex alignment con-
figuration are depicted.

3.1.2 Inside-out Alignments

Wu (1997) identifies two configurations, the so-called inside-out (IO)
alignments, that the full class of Inversion Transduction Grammars
(ITGs) (def. 2.67, p. 79) cannot induce. Figure 30 schematically depicts
those alignment configurations. The reason is that there is no way to
put four constituents together with purely straight or inverted opera-
tions such that the shown alignments are generated. See figure 31 for
a natural language example.

Synchronous Context-Free Grammars (SCFGs) (def. 2.60, p. 76) of
rank 2 neither induce IO alignments. Every context-free derivation of
rank 2 on one side, either source or target side, leads to at least one
discontinuous constituent on the respective other side and is therefore
beyond context-free expressivity. The full class of SCFGs in contrast
is able to generate IO alignments, due to higher ranks. However, for
reasons of parsing complexity, in practice usually grammars with a
maximal rank of 2 are used for translation.
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Example 3.1 (SCFG rules for IO alignment).

〈X → a , X → a〉
〈X → b , X → b〉
〈X → c , X → c〉
〈X → X 1 X 2 X 3 d , X → X 2 d X 1 X 3 〉

The example shows sample SCFG rules of rank 3 that generate the
IO alignment configuration in figure 30(i). Note that this grammar is
beyond the expressivity of ITG since, in the last rule, the right-hand
side (RHS) non-terminals on the target side do neither occur in the
same order as on the source side nor in exactly the inverse order.

Phrase-based translation systems are generally able to generate IO
alignments due to the reordering component that is usually employed
in corresponding decoders. In practice, a distortion limit might how-
ever limit the generation of IO alignments that involve large phrases.

3.1.3 Discontinuous Translation Units

Discontinuous translation units (DTUs) are translation units which have
at least one gap, i. e. the sequence of words that belong to the transla-
tion unit is interrupted by at least one word which is not part of this
translation unit. The alignment in ex. 3.2 features one DTU.

Unrestricted ITG and SCFG can induce some DTUs, while the corre-
sponding normal forms cannot (Søgaard and Wu, 2009). For a Normal-
form Synchronous Context-Free Grammar (NF-SCFG), a terminal rule
which generates the DTU would be required. Since by definition the
DTU is not continuous on the source or the target side (or both), such a
rule is not possible. With unrestricted SCFG, in contrast, a mixed rule
can be used which combines the DTU with an already established
constituent filling the gap.
Example 3.2 (SCFG rules for DTU).

a1 b a2

b a

〈X → b , X → b〉
〈X → a1X 1 a2 , X → X 1 a〉

The example shows a schematically depicted DTU and corresponding
SCFG rules that derive it.
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Two configurations of DTUs cannot be induced by the full class
of ITG nor SCFG. Those are cross-serial discontinuous translation units
(CDTUs) (Søgaard and Kuhn, 2009) and bonbon alignments (Simard
et al., 2005). A CDTU consists of two DTUs which are discontinuous
on the same side and grouped in such a way that material from each
DTU is in the gap of the other DTU. A bonbon alignment is similar,
but the DTUs are discontinuous on different sides. See figure 32 for
schematic representations of the configurations, and figure 33 and 34
for natural language examples.

Other interesting DTUs are multigap DTUs, i. e. DTUs with arbitrar-
ily many gaps. As already pointed out before, Normal-form Inversion
Transduction Grammar (NF-ITG) and NF-SCFG do not induce them.
Unrestricted ITGs induce a particular subclass of multigap DTUs,
namely those where the aligned material in the gaps occurs on the
target side in the same order or in the inverse order compared to the
source side (Søgaard and Wu, 2009). Unrestricted SCFG in contrast
also induces multigap DTUs where the material in the gaps does not
adhere to this constraint.

A 2-SCFG, or equivalently a 2-ITG, also induces only a particular
subclass of multigap DTUs, namely those where the words in the gaps
form at most two continuous sequences of aligned source and target
words. This means that, e. g., DTUs with three or more gaps on one
side cannot be generated.

During our investigation (see section 3.2), we found that there is
another class of configurations that is beyond the alignment capacity
of 2-SCFG and phrase-based systems, which has not been reported in
the literature before. They consist of a DTU with one gap and three
other translation units. The four translation units are configured in a
similar way as the IO alignment, i. e. no three of the four translation
units form a continuous sequence in the source and target strings. We
name the configurations in this class inside-out discontinuous translation
units (IO-DTUs).

More specifically, the configurations can be described by the follow-
ing patterns, where x is the DTU and a, b and c are the other three
translation units: (i) one of the set {xabc, abxc} on one side, and one
of the set {bx1acx2, x1cax2b} on the other side, or (ii) one of the set
{axbc, abcx} on one side and one of the set {bx1cax2, x1acx2b} on the
other side, assuming that same letters are aligned and therefore form
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(i)

a b

a1 b1 a2 b2

(ii)

a1 b a2

b1 a b2

Figure 32: Schematic CDTU (i) and bonbon alignment (ii). They can also oc-
cur upside down.

There was a discussion between two women

Der fandt en diskussion sted mellem to kvinder

Figure 33: English-Danish example from Søgaard (2008a) which includes a
CDTU. Søgaard (2008a) argues that fandt . . . sted (lit. found place)
is fully idiomatic and therefore one translation unit, and further-
more that the noun-preposition pairs are idiosyncratic in that the
preposition to chose is stored with the lexical entry of the noun
and that therefore they are also best treated as translation units.

Pierre ne mange pas

Pierre does not eat

Figure 34: French-English example of a bonbon alignment from Simard et al.
(2005).
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(i)

a b x c

b x1 a c x2

(ii)

a b c x

x1 a c x2 b

Figure 35: Two schematic IO-DTUs. They can also occur upside down.

The Commission ’s proposal looks at the question of migration [. . . ]

In ihrem Vorschlag geht die Kommission die Frage der Migration [. . . ] an

Figure 36: English-German example of a IO-DTU. It corresponds to the
schematic configuration (i) in figure 35. The configuration has
been found in the manually aligned Europarl data of Padó and
Lapata (2006).

a translation unit. Figure 35 shows two instances of IO-DTUs, and
figure 36 depicts a natural language example.

Some other combinations of the translation units a, b, c and x are
also beyond the alignment capacity of 2-SCFG, but they coincide with
the already known IO alignments.

Standard phrase-based translation models cannot induce any of the
alignment configurations involving a DTU since phrases are by defini-
tion continuous.

3.2 empirical alignment capacity of synchronous con-
text-free grammar

The alignment capacity of a formalism can be studied from a theo-
retical point of view, e. g. by identifying and characterizing alignment
structures that a formalism cannot generate in contrast to the align-
ment structures that are induced. In addition, the alignment capacity
of a formalism can also be studied empirically by evaluating it on
word-aligned sentence pairs. Such sentence pairs can be generated au-
tomatically in large amounts using machine learning or by human
annotators in smaller quantities. The empirical alignment capacity of
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a formalism allows to quantify the structures which cannot be gener-
ated by the formalism under question.

In this section, we investigate the empirical alignment capacity of
different variants of SCFG with respect to manually aligned data. We
focus on SCFGs of rank 2 (equivalent to 2-ITG) since this is the preva-
lent formalism in tree-based machine translation.

3.2.1 Alignment Validation

Our study is based on alignment validation (Søgaard, 2010). This term
refers to checking whether a given alignment structure A is valid with
respect to a formalism, meaning that an all-accepting grammar of the
formalism under question can generate the alignment. An all-accepting
grammar is a grammar which contains all possible rules that can be
expressed in the respective formalism.
Example 3.3 (All-accepting grammar).

〈M → w+ , M → w+〉
〈A → M 1 , A → M 1 〉
〈A → A 1 A 2 , A → A 1 A 2 〉
〈A → A 1 A 2 , A → A 2 A 1 〉

This example shows the rules for an all-accepting SCFG in normal
form, which is equivalent to an ITG in normal form. Both M and A
are generic non-terminals; M serves as a pre-terminal. w is a word in
the source or target vocabulary.

For alignment validation, we use the idea of a bottom-up hierarchical
aligner (Wellington et al., 2006). It works very much like a synchronous
parser. However, the constraints for inference are not the rewriting
rules of a synchronous grammar, but the word alignments and poten-
tially other things, such as the normal form constraints specified in
the all-accepting grammar in ex. 3.3. Initial constituents are built from
the word alignments, then constituents are combined with each other,
obeying the specified constraints. The goal is to find a constituent that
completely covers the input pair 〈s, t〉 = 〈s1 . . . sn, t1 . . . tn′ 〉.

We specify the hierarchical aligner in terms of a deduction sys-
tem (see section 2.1.2). Our items have the form [X,ρs,ρt] where
X ∈ {A, M} is a non-terminal symbol of the simulated grammar. All-



3.2 empirical alignment capacity of scfg 103

accepting grammars usually have only one non-terminal symbol, but
we need a distinction between pre-terminal constituents M and gen-
eral constituents A for simulating SCFG in normal form as well as
the full class. ρs and ρt are bit vectors that characterize the spans of
the synchronous constituent on the source and target side respectively.
Their interpretation is that si is in the yield of X if ρs(i) = 1; otherwise
si is not in the yield of X. Accordingly for the target side, ti is in the
yield of X if ρt(i) = 1; otherwise ti is not in the yield of X.

We furthermore specify some useful operations for bit vectors. The
∪ operator combines bit vectors of the same length to a new bit vector
by an element-wise or operation. The intersection ∩ of two bit vectors
of the same length is the element-wise and operation. 0l is a bit vec-
tor ρ of length l such that ρ(i) = 0 for all 0 < i ≤ l. The function
b(ρ) returns the number of blocks of ρ, i. e. the number of continuous
sequences of 1s in ρ.

The input sentence pair 〈s, t〉 is segmented into m disjoint transla-
tion units 〈D(j)

s , D(j)
t 〉 (1 ≤ j ≤ m) based on the given word alignment

A. D(j)
s and D(j)

t are sets of word indices into s and t respectively.
We now specify the deduction rules of the hierarchical aligner

which simulate an all-accepting NF-SCFG. Each rewriting rule in
ex. 3.3 gives rise to one deduction rule. The scan operation builds
pre-terminal items from the translation units of the input sentence
pair:

[M,ρs,ρt]
a translation unit 〈D(j)

s , D(j)
t 〉

where ρs(i) = 1 if i ∈ D(j)
s , otherwise ρs(i) = 0, and ρt(i) = 1 if

i ∈ D(j)
t , otherwise ρt(i) = 0.

The unary rule creates A items from pre-terminal M items:

[M,ρs,ρt]

[A,ρs,ρt]
b(ρs) = 1, b(ρt) = 1

The side condition specifies that only A items with continuous spans
can be built. This is because we are simulating an SCFG.

Two A items are combined to a larger A item with the binary
operation:
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[A,ρ1
s ,ρ1

t ], [A,ρ2
s ,ρ2

t ]

[A,ρ3
s ,ρ3

t ]

ρ1
s ∩ ρ2

s = 0n,ρ1
t ∩ ρ2

t = 0n′
,

ρ3
s = ρ1

s ∪ ρ2
s ,ρ3

t = ρ1
t ∪ ρ2

t ,
b(ρ3

s ) = 1, b(ρ3
t ) = 1

The side conditions specify that the spans of the two antecedent items,
characterized by the bit vectors, may not overlap and, again, that only
new items with continuous spans can be built.

The goal item is an item of the form [A,ρs,ρt] with ρs(i) = 1
for all 0 < i ≤ n and ρt(i) = 1 for all 0 < i ≤ n′, i. e. an A item
which spans the complete input sentence pair 〈s, t〉. If the hierarchical
aligner finds such a goal item, the alignment structure A of 〈s, t〉 is
valid, i. e. can be induced with an SCFG in normal form.

We are also interested in the empirical alignment capacity of SCFG
without normal-form restriction since this is the grammar formal-
ism behind the prevalent hierarchical phrase-based translation model;
see section 2.2.5. We therefore present an extended deduction system
which features two additional rules. They lead to the simulation of an
SCFG of rank 2. Terminals and non-terminals can be combined on the
RHS of a rewriting rule.

The unarymixed rule combines an M item with an A item:

[M,ρM
s ,ρM

t ], [A,ρA
s ,ρA

t ]

[A,ρs,ρt]

ρM
s ∩ ρA

s = 0n,ρM
t ∩ ρA

t = 0n′
,

ρs = ρM
s ∪ ρA

s ,ρt = ρM
t ∪ ρA

t ,
b(ρs) = 1, b(ρt) = 1

This simulates an SCFG rule of rank 1 which combines terminals with
an already created A constituent.

The binarymixed rule combines an M item with two A items
simulating an SCFG rule of rank 2:

[M,ρM
s ,ρM

t ], [A,ρ1
s ,ρ1

t ], [A,ρ2
s ,ρ2

t ]〉
[A,ρ3

s ,ρ3
t ]

ρM
s ∩ ρ1

s = 0n,ρ1
s ∩ ρ2

s = 0n,
ρ2

s ∩ ρM
s = 0n,ρM

t ∩ ρ1
t = 0n′

,
ρ1

t ∩ ρ2
t = 0n′

,ρ2
t ∩ ρM

t = 0n′
,

ρ3
s = ρM

s ∪ ρ1
s ∪ ρ2

s ,
ρ3

t = ρM
t ∪ ρ1

t ∪ ρ2
t ,

b(ρ3
s ) = 1, b(ρ3

t ) = 1

Note that the creation of M items in the scan rule is not con-
strained by the number of blocks of the bit vectors. According to the
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deduction system, the span of M items is only dictated by the transla-
tion units which are based on the alignment A. M items can therefore
have discontinuous spans, i. e. the covered words are not necessarily
adjacent. This is crucial for alignment validation with the full class of
SCFGs since they can cover certain discontinuous translation units by
means of rules with mixed right-hand sides. The lack of the continuity
constraint in the scan rule does however not lead to derivations that
exceed the power of SCFG. The reason is that M items are not goal
items and that all other rules obey the continuity constraint.

For the computation of the items, we use standard chart parsing
techniques, maintaining a chart and an agenda; see algorithm 1.

3.2.2 Experiments

We apply the bottom-up hierarchical aligner to each manually aligned
sentence pair in our data sets. If a goal item is found, its alignment
structure can be induced with the formalism in question. We measure
the number of sentence pairs for which a hierarchical alignment was
reached over the total number of sentence pairs. Søgaard (2010) refers
to this as alignment reachability, which is the inverse of parse failure rate
(Wellington et al., 2006).

Data

While large-scale word alignments are created automatically, mostly in
an unsupervised fashion, e. g. (Och and Ney, 2000), a number of gold
alignment data sets for several language pairs exist. They are man-
ually created, high quality reference alignments that have emerged
from various projects and shared tasks on word alignment. They vary
in size, annotation methodology, alignment guidelines and original
purpose.

For our study, we use such manually aligned parallel corpora, as-
suming that they represent gold translational equivalence.1 The fol-
lowing data sets have already been used in previous similar experi-
ments, e. g. in Wellington et al. (2006), Søgaard and Wu (2009) and
Søgaard (2010): English-Romanian and English-Hindi sentence pairs
from Martin et al. (2005), English-French data from Mihalcea and Ped-
ersen (2003), the Europarl data sets described in Graça et al. (2008a)

1 Whenever there are sure (S) and possible (P) alignments annotated, we use both.
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for the six combinations of English, French, Portuguese and Spanish,
the English-German Europarl data that was created for Padó and La-
pata (2006), and the data sets with Danish as the source language that
are part of the Parole corpus of the Copenhagen Dependency Tree-
bank (CDT) (Buch-Kromann et al., 2009).

We furthermore perform our study on data sets that, to the best
of our knowledge, have not been evaluated in a similar setting before.
Those are English-Swedish gold alignments documented in Holmqvist
and Ahrenberg (2011), the English-Inuktitut data used in Martin et al.
(2005), more English-German Europarl data aligned by T. Schoene-
mann2, the English-Spanish data set in Lambert et al. (2005) and En-
glish-Dutch alignments that are part of the Dutch parallel Corpus
(Macken, 2010). Characteristics about the data sets are presented in
table 3.

Results

Table 4 shows the results of our experiments, namely alignment reach-
ability scores for NF-SCFG and 2-SCFG (or equivalently NF-ITG and
2-ITG) on a large variety of data sets. They confirm results of previous
similar studies, namely that NF-SCFG is not capable of generating the
majority of alignment configurations.

For grammars without normal-form constraint, alignment reacha-
bility is generally higher. We tested grammars of rank 2, and we
found that for each data set over 90% of the sentence pairs can be
induced with a 2-SCFG, i. e. without the necessity of discontinuous
constituents. One exception are the alignments in the Schoenemann
data set. 2-SCFG is the grammar formalism behind successfully ap-
plied translation models, e. g. in Hiero (Chiang, 2007).

Nevertheless, our experiments clearly show that the gold align-
ments contain a proportion of structures that cannot be generated by 2-
SCFGs. They range from 1% in the Portuguese-Spanish data to 23.89%
in the English-German Schoenemann data. Only the English-Inuktitut
alignments can be completely derived with a 2-SCFG.

2 Obtained from http://user.phil-fak.uni-duesseldorf.de/~tosch/downloads.

html, accessed on February 12, 2013.
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#SPs min med max

Martin et al.
en-ro 447 2|2 20|19 96|94
en-hi 115 1|1 10|12 45|58
en-iu 100 10|3 26|10 79|26

Padó & Lapata en-de 987 5|5 23|23 40|40

Mihalcea & Pedersen en-fr 447 2|2 16|17 30|30

Graça et al.

en-fr 100 4|4 11|13 14|21
en-pt 100 4|3 11|12 14|21
en-es 100 4|4 11|11 14|24
pt-fr 100 3|4 12|13 21|21
pt-es 100 3|4 12|11 21|24
es-fr 100 4|4 11|13 24|21

CDT

da-en 5464 1|1 16|17 89|98
da-de 449 1|1 17|18 75|74
da-es 807 1|1 16|18 78|97
da-it 1514 1|1 16|19 78|268

Holmqvist & Ahrenb. en-sv 1164 1|1 21|19 40|40

Schoenemann en-de 300 1|1 21|22 77|79

Lambert et al. en-es 500 4|4 26|27 90|99

Macken en-nl 699 1|1 20|19 107|105

Table 3: Characteristics of the manually aligned data sets: number of sentence
pairs, minimal, median and maximal sentence length on the source
and the target side
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NF-
2-SCFG

Søgaard (2010)
SCFG NF-ITG ITG

Martin et al.
en-ro (30) 45.07 95.07 - -
en-hi (40) 82.73 96.36 - -
en-iu (40) 40.66 100.00 - -

Padó & Lapata en-de (15) 73.74 94.41 38.97 45.13

Mihalcea & Pedersen en-fr 67.56 95.30 *76.98 *81.75

Graça et al.

en-fr 73.00 95.00 65.00 68.00
en-pt 76.00 98.00 65.00 67.00
en-es 82.00 96.00 73.00 74.00
pt-fr 73.00 92.00 63.00 63.00
pt-es 90.00 99.00 80.00 81.00
es-fr 74.00 91.00 68.00 68.00

CDT

da-en (25) 72.90 97.80 - -
da-de (25) 64.87 94.94 *47.62 *49.35
da-es (25) 66.61 97.50 *30.68 *35.54
da-it (25) 69.01 97.95 *60.00 *60.00

Holmqvist & Ahrenb. en-sv (30) 82.83 95.60 - -

Schoenemann en-de (40) 29.15 76.11 - -

Lambert et al. en-es (40) 47.15 94.85 - -

Macken en-nl (30) 57.14 94.86 - -

Table 4: Alignment reachability scores of our experiments and those of Sø-
gaard (2010) for reference. The numbers in parentheses are the sen-
tence length cut-offs that were used in our experiments. The results
marked with * are not directly comparable to ours because different
versions of the data sets were used.
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Discussion

Our alignment validation study shows that, even though translation
models based on 2-SCFG are successfully applied and can currently
be considered state-of-the-art, they fail to cover a considerable portion
of alignment configurations. This observation is based on a variety of
language pairs from a wide range of data sets.

It should be mentioned that it is not clear yet how alignment reach-
ability relates to machine translation quality and evaluation. In the
end, experimental evidence will have to show how alignment capacity
relates to machine translation quality. The results in Galley and Man-
ning (2010) for Chinese-English translation indicate that more power-
ful translation models also lead to better translations.

We can nevertheless infer from the presented results that what is
considered as translationally equivalent by the various annotators of
the data sets and their guidelines is beyond the search space of SCFG.
This finding motivates investigations towards more powerful transla-
tion models which can induce the complex alignment configurations.

3.2.3 Related Work

Our empirical investigation is similar to previous studies concerning
the alignment capacity of grammar formalisms, but differs in some
crucial points. Wu (1997), Zens and Ney (2003), Wellington et al. (2006)
and Søgaard (2010) all use some sort of hierarchical alignment algo-
rithm based on a given word alignment with the goal of investigating
the alignment complexity. Most notably, the number of corpora and
the variety of language pairs investigated in our study exceeds all pre-
vious investigations.

In Zens and Ney (2003), a weaker normal-form for ITG is assumed,
and only two automatically aligned data sets are tested.

The methodology of Wellington et al. (2006) differs from ours in the
interpretation of alignment links. While we treat them conjunctively,
which has been argued for in Søgaard and Kuhn (2009), Wellington
et al. (2006) treat them disjunctively, which means that in the case of
n-to-m alignments with n, m ≥ 1, it is enough to induce one of the
involved alignment links. With this methodology one issue of transla-
tional equivalence modeling, namely discontinuous translation units,
is ignored. The failure rates they present are therefore much lower
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than ours. Wellington et al. (2006) in addition show that allowing dis-
continuities in translation models becomes even more essential for in-
ducing gold alignments when the synchronous derivations are further
constrained by monolingual syntactic parse trees on the source and/or
the target side.

The results by Søgaard (2010) are based on the same methodology
as ours, and even on some of the same data sets. However, his align-
ment reachability scores, repeated for convenience in table 4, are much
lower than ours. We found that they are faulty, and that they therefore
present a highly distorted picture about the need of more expressive
translation models. The problem is caused, amongst others, by the fact
that the implementation3 used for his experiments handles unaligned
words incorrectly. They are added deterministically to the first con-
stituent that encounters them, which leads to false negatives as further
explained in figure 37. After fixing this issue, the same results as for
NF-SCFG are obtained. Another problem of the implementation con-
cerns discontinuous translation units. Søgaard’s alignment validation
returns false if the words in the gap are aligned, although many of
such configurations are in fact induced by unrestricted ITG (Søgaard
and Wu, 2009, section 3.2.1). In summary, our presented results correct
and extend the results provided by Søgaard (2010).

Both Søgaard and Wu (2009) and Søgaard and Kuhn (2009) are also
interested in the empirical alignment complexity of manually aligned
parallel corpora, but their approach differs from ours. They induce
lower bounds on the translation unit error rate (TUER) of various syn-
chronous context-free grammar formalisms: they identify alignment
structures that cannot be induced with a particular formalism and
then simply count how often those configurations occur in the data.
For example, Søgaard and Kuhn (2009) report that, in the English-
German data set from Padó and Lapata (2006), 1.75% of the transla-
tion units are involved in IO alignments, 0.45% in CDTUs and 0.05% in
bonbon alignments. Søgaard and Kuhn (2009) report amongst others
that between 1.6% (for Danish-English data) and 12.1% (for Danish-
Spanish data) of all translation units are discontinuous and therefore
not derivable by ITG in normal form.

Our finding of a new class of configurations beyond ITG, the
so-called IO-DTUs (cf. section 3.1.3), furthermore means that lower

3 http://cst.dk/anders/itg-search.html, accessed in February 2013.
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[ ] 6
[ ] 5
[ ] 4
[ ] 1 [ ] 2 [ ] 3
a b c d

a’ b’ c’ d’

[ ] 1 [ ] 2 [ ] 3
[ ] 4
[ ] 5
[ ] 6

Figure 37: Synchronous ITG parse chart provided by the implementation
from Søgaard (2010): Word c is already part of constituent 6 , while
c’ is part of constituent 5 . When trying to combine, e. g., 4 and 3 ,
c and c’ are not considered as unaligned because they are already
part of a constituent. Consequently, neither 4 nor 5 nor 6 can
be combined with 3 without creating a discontinuous constituent.
The algorithm cannot find a larger continuous constituent, the
alignment validation therefore returns false. However, this simple
alignment structure clearly lies within the power of NF-ITG and
ITG.

bounds on TUER for ITG are higher than reported in Søgaard and
Wu (2009).

What we have termed alignment validation, is referred to as parsing
word alignments by Maillette de Buy Wenniger and Sima’an (2013) and
formalized therein. They also implement their approach for NF-ITG
and provide empirical evidence for some data sets which we also
used in our study, e. g. the Europarl data sets described in Graça
et al. (2008a). The numbers they provide for alignment reachability
(Table 1, column GC discontiguous TEs) are higher than what we re-
ported for NF-SCFG. The reason is a different treatment of unaligned
words. While we do not have a special treatment for unaligned words,
i. e. they are monolingual translation units according to our definition,
Maillette de Buy Wenniger and Sima’an (2013) argue that they would
be attached to a neighboring translation unit, and they basically delete
them before alignment validation. Ex. 3.4 demonstrates the difference.
When deleting unaligned words from the Graça et al. (2008a) data set
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and then performing our alignment validation algorithm, we obtain
the same results as Maillette de Buy Wenniger and Sima’an (2013).
Example 3.4 (Unaligned words and DTUs). This example shows a
DTU with an unaligned word in the gap. Modeling unaligned words
is allowed in all definitions of ITG and NF-ITG that are around.
Nevertheless, strictly speaking, NF-ITG is not able to induce this
alignment structure as it includes a DTU. ITG rules which induce the
configuration are given below.

a1 b a2

a

〈X → b , X → ε〉
〈X → a1X 1 a2 , X → X 1 a〉

By deleting the unaligned word b, the DTU is not discontinu-
ous anymore and can be induced with the simple NF-ITG rule
〈X → a1a2, X → a〉.

Other studies that are loosely related to our work in this section are
concerned with translation model search spaces (Zens and Ney, 2003;
Dreyer et al., 2007) and translational equivalence modeling (Zhang
et al., 2008a).

3.3 manual alignment investigation

Knowing of the limitations of the alignment space of current trans-
lation models, their empirical adequacy has been put into question.
As has been detailed in section 3.2, the empirical alignment capacity
of various formalisms with respect to mostly manually aligned data
has been investigated in different setups in several studies. We have
confirmed for a wide range of language pairs and data sets that a pro-
portion of the aligned sentence pairs cannot be induced with an SCFG
of rank 2.

As we will see in later chapters, more expressive translation models
that capture the complex alignment configurations come with further
complications, such as the cost of higher decoding complexity, loss
of translation speed or no tight probability estimators. A verification
of the substantiality of the complex alignment configurations would
serve as a justification for the use of more powerful translation models
and further research in this area. To this end, it is necessary to exam-
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ine instances of complex alignment configurations instead of merely
relying on their frequency counts.

In this section, we thus investigate the nature of the complex align-
ment configurations that occur in hand-aligned data. We approach
this task by manual categorization of the complex alignment configu-
rations. Our categories address the issue of whether the involved align-
ments adhere to the corresponding alignment guidelines or whether
they are annotation errors. We furthermore identify alignments that
are correct with respect to the guidelines of the data set, but which
could be questioned since other guidelines would align them in a dif-
ferent way, leading to fewer complex alignment configurations. We
furthermore point out which linguistic phenomena cause the complex
alignment configurations in our data, and we address the question of
how necessary they are for translation. To the best of our knowledge,
the available word alignment resources have not been studied with
respect to these aspects so far.

3.3.1 Alignment Data Sets and Guidelines

In this investigation, we concentrate on data sets that we have also
explored in the previous study on empirical alignment capacity: the
manual alignments of 987 English-German (en-de) sentence pairs from
Europarl, whose original purpose was the projection of semantic roles
(Padó and Lapata, 2006), and the Europarl data sets described in Graça
et al. (2008a) for the combinations of English (en), French (fr) and Span-
ish (es), each containing 100 sentence pairs.

Annotating word alignment is a non-trivial, complex and ambigu-
ous task for a human annotator. Accordingly, different sets of align-
ment guidelines have been developed. The en-de data is aligned follow-
ing the style guide of the Blinker Project, specified in Melamed (1998),
which was originally concerned with English-French alignment. We
will refer to it as the Blinker style guide in the following. No doc-
umentation is provided on how the guidelines were transferred to
language specific, i. e. English-German, phenomena. Some other align-
ment projects have also used the Blinker guidelines as a starting point,
e. g. Yadav and Gupta (2010). The en-fr-es data is aligned according
to guidelines provided in Graça et al. (2008b). They are a refined ver-
sion of the style guide for English-Spanish alignment by Lambert et al.
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(2005). We will call them the Graça and the Lambert guidelines respec-
tively.

The basic assumptions in the guidelines are similar. Their goal are
full-text alignments, as opposed to sample word alignments. They
strive to align units of the same meaning on both sides that are as
small as possible, but that include as many words as necessary. While
in the Blinker style guide only one type of alignment link is used, the
en-fr-es data is aligned with S(ure) and P(ossible) links if the corre-
spondence is valid in every respectively some context. However, since
in our previous experiments and related work no distinction is made
between the types of links, we will not differentiate between them
either.

The style guides differ, of course, in many, sometimes language-
specific, details. We only review those which we came across when
studying the complex alignment configurations in the data.

anaphora The Blinker guidelines specify that, if a pronoun oc-
curs in one sentence with its antecedent and does not have a transla-
tion in the other language, both the antecedent and the pronoun are
aligned to the translation of the antecedent. According to the Lam-
bert guidelines, however, such anaphoric links between a pronoun in
one language and a co-referent noun or proper noun in the other lan-
guage are not licensed because they cannot be considered translations
of each other.

repetitions According to the Blinker guidelines, for repetitions
that occur only in one language, but not in the other, all instances of
the repetition are linked to the one translation. This stands in contrast
to the Lambert guidelines which state that only the first instance of
the repetition is aligned while the subsequent ones are without corre-
spondence.

punctuation The style guides generally agree on how to align
punctuation marks. However, the Blinker guidelines explicitly advise
to align similar punctuation symbols which occur in different quanti-
ties on the two sides such that as few crossing links as possible arise.
This can also mean that punctuation symbols remain unaligned. Even
though the Lambert and Graça style guides do not contradict this
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en-de (30) en-fr en-es es-fr
Sentence pairs 694 100 100 100
Sentence pairs with

116 5 4 9
at least one compl. config.

IO 92 2 4 1
IO-DTU 38 1 0 2
CDTU 34 1 0 6
Bonbon 5 2 0 0
Multigap 8 0 0 0

Table 5: Data characteristics and frequency of the complex alignment config-
urations (number in parentheses: sentence length cut-off)

(i)

a b c d e

b d a e c

(ii)

a b c d e

b d e a c

Figure 38: Example for the counting of complex alignment configurations for
the manual classification. In (i), two IO configurations are counted:
a, b, c, and d, and a, c, d, and e. In (ii), only one IO is counted as
the links d and e are considered in one go. Bold links indicate
overlapping links.

guideline, the en-fr-es data set by Graça et al. (2008a) contains align-
ments that do not adhere to it.

3.3.2 Categories and Classification

We automatically identified the complex alignment configurations in
our data, leaving aside unaligned words. We then inspected each in-
stance and classified it into one of the categories explained in the fol-
lowing. For visualization of the word alignments, we used the Tree-
Alignment Visualizer (Maillette de Buy Wenniger et al., 2010).

Table 5 shows the number of analysed complex alignment configu-
rations. Two overlapping configurations are counted as distinct here
if the differing alignment link does not occupy the same position in
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the configuration. See figure 38 for illustration.4 The evaluators were
three German native speakers with very good command of English,
two of them also with good to excellent knowledge of French and
Spanish, one of them being the author herself. Each complex align-
ment configuration was classified by two evaluators with command
of the corresponding languages. Unclear cases were discussed until
the evaluators agreed.5 The categories for classification were the fol-
lowing:

annotation error A link is an obvious annotation error if we
can neither find a guideline that justifies the link nor think of any
context in which the indicated translational equivalence would hold.
By removing it, the alignment configuration is not complex anymore.
See figure 39 for an example.6

artifact of style guide A link is correct with respect to the
style guide of the data (the Blinker guidelines for the en-de alignments
for example). However, its existence is arguable since a different estab-
lished style guide (the Lambert guidelines for example) would have
aligned the phenomenon differently, thereby simplifying the configu-
ration. The details about such differences in the style guides have been
worked out in section 3.3.1. Figure 40 shows an example of anaphor
alignment.

correct alignment All translation units that are part of the
complex configuration are correctly aligned.

4 This is different than the methodology of Søgaard and Wu (2009) where configura-
tions have to differ on all translation units to be counted as distinct configurations
when they determine lower bounds on TUER. This is because in their scenario any
of the links could be removed in order to simplify the overlapping configurations.

5 Note that none of the evaluators, including the author, were part of the original
annotation body of any of the data sets. We have drawn our knowledge from the
published annotation style guides and patterns observed in the annotated data. Our
decisions have been made to the best of our knowledge on the basis of this informa-
tion.

6 For the sake of clarity, all alignment figures in this section show only the links of
the alignment which make up the complex alignment configuration. It should be
assumed that the other words are aligned appropriately.
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the EU ’s budget planning must be flexible enough to cope with unforeseen expenditure

der EU-Haushaltsplan muss flexibel genug sein , um unvorhergesehene Ausgaben decken zu können

Figure 39: IO alignment due to an annotation error: unforeseen is aligned to
EU-Haushaltsplan (en-de, sent. 183)

I have a question concerning the last comment made by the Commissioner

Zur letzten Bemerkung der Frau Kommissarin möchte ich ihr eine Frage stellen

Figure 40: CDTU due to an artifact of the style guide: Commissioner - ihr is cor-
rectly aligned according to the Blinker guidelines (en-de, sent. 887)

Table 6 shows the classification results. If several overlapping con-
figurations are caused by the same dubious link, we only count them
once.

For all of the investigated data sets, no or very few complex align-
ment configurations are due to real annotation errors. In the en-de data,
quite a large portion of complex configurations (32.8%) are caused by
artifacts of the Blinker guidelines. Thereof 58.1% are due to anaphora,
and 41.9% are due to repetitions. In the en-fr-es data, all complex con-
figurations in the artifact category are due to questionable punctuation
alignment.

The remaining complex alignment configurations, 55.7% in the en-
de data and >83% in each of the en-fr-es data sets, see table 6, are those
which are correctly aligned and therefore interesting for translation
modeling. We will therefore further examine them in the following
section.

3.3.3 Phenomena

First, we shed more light on which linguistic phenomena elicit the
complex alignment configurations. This is of course dependent on the
language pair. The issue of how important those configurations are
for translation will also be considered.
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en-de (30) en-fr en-es es-fr
(I) annotation error 0.115 0.000 0.000 0.000
(II) artifact 0.328 0.167 0.000 0.111
(III) correct alignment 0.557 0.833 1.000 0.889

from (III)

IO 0.822 0.200 1.000 0.125
IO-DTU 0.096 0.200 0.000 0.125
CDTU 0.068 0.200 0.000 0.750
Bonbon 0.014 0.400 0.000 0.000

Table 6: Classification results: ratio of the classes of complex alignment con-
figurations

English-German

In the en-de data, most complex alignment configurations are caused
by the different word orders of the English and German sentences.
While English sentences follow subject-verb-object (SVO) order, the
order of German constituents in a sentence is less rigid, traditionally
described within the topological field model (Höhle, 1983).7 In a nut-
shell, the positions of the verbs in a German sentence are fixed: in
main clauses, the finite verb occupies the second position of the sen-
tence, the left bracket (lb); in subordinate clauses, it occupies the fi-
nal position, the right bracket (rb). Non-finite verbs are also located
in the right bracket, but left of the finite verb if there is one. Argu-
ment and modifier constituents of the sentence are located between
this verbal frame, in the middle field. However, in verb-second clauses,
the initial position (the initial field) is filled by one constituent. The
position right of the right bracket is called the final field. It can be
occupied by certain types of large constituents to improve the compre-
hensibility of the sentence. The preference for a specific position and
ordering of the arguments and modifiers is influenced by many syn-
tactic and non-syntactic factors, e.g. pronominalization, information
structure and pragmatic constraints. Certain word orders lead to IO
alignments, as will be exemplified in the following.

Figure 41 shows an example of a German main clause, in which both
sentence brackets are filled, showing how the auxiliary-participle com-

7 For an introduction to the topological field model, the reader is referred to Telljo-
hann et al. (2012), section 3.1.
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bination which is adjacent in English is placed in very distant parts of
the German sentence. The subject 1813 Menschen and the prepositional
phrase in 31 Ländern are located in the middle field of the German sen-
tence. Together with the verbs, they are ordered in such a way that an
IO alignment is created.

Figure 42 shows a similar example, but where the German sentence
is verb-final since it is a subordinate clause. The complementizer dass
is usually analysed as filling the left bracket. Here, the subject (die
israelischen Streitkräfte), a prepositional phrase (aus einer Stadt) and a
reflexive pronoun (sich), elicited by the fact that the English verb with-
draw translates into the German reflexive verb sich zurückziehen, are
located in the German middle field. Together with the finite verb, the
IO alignment is created. Even though not shown in the examples, the
German initial field can also be involved in creating IO alignments.

A related phenomenon is the translation of an English verb into a
German separable particle verb. While the core of the German finite
verb remains in the left sentence bracket in main clauses, the particle
is found at the end of the clause in the right bracket. Together with the
English verb, this configuration forms a DTU which, in combination
with the other arguments and modifiers of the clause, can lead to
an IO alignment or IO-DTU. An example has already been shown in
figure 36. The particle an of the German verb angehen is located in the
right bracket.

While 56.5% of the aforementioned IO alignments and IO-DTUs oc-
cur with fairly literally translated translation units that differ in their
ordering (as in the sentence pairs in figures 41, 42 and 43), the oth-
ers are part of rather free translations or freely translated translation
units, sometimes crossing clause boundaries. Figure 44 shows an ex-
ample. Free translations also give rise to a few CDTUs and bonbon
alignments.

A question that often arises when considering the complex align-
ment configurations is whether they are essential for translation. For
the examples of IO/IO-DTU alignments due to different word orders
of literally translated translation units on the clause level, we therefore
additionally investigated the sentence pairs according to the following
criterion: Given one sentence of the sentence pair (e. g. English) as input to a
translation system, and given that the translation model yields the provided
target (e.g. German) translations of each translation unit, is the provided
target (e. g. German) sentence the only valid translation?
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in 1999 , 1813 people were executed in 31 countries

1999 wurden in 31 Ländern 1813 Menschen hingerichtet
lb rb

Figure 41: IO alignment due to different word orders; verb-second clause in
German (en-de, sent. 119)

. . . that Isreali forces have withdrawn from a city

. . . dass sich die israelischen Streitkräfte aus einer Stadt zurückgezogen haben
lb rb

Figure 42: IO alignment due to different word orders; verb-final clause in
German (en-de, sent. 306)

I also wish to praise the Presidency for its hard work

Ich möchte die Präsidentschaft auch für ihre umfangreiche Arbeit loben
lb rb

Figure 43: IO alignment due to different word orders, includes a focus adverb
(en-de, sent. 389)

It is estimated that since 1987 , two million children have been killed in armed conflict

Seit 1987 wurden etwa 2 000 000 Kinder in bewaffneten Konflikten getötet

Figure 44: IO alignment due to different word orders in a rather free transla-
tion (en-de, sent. 876)
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Let us consider figure 41 as an example. When translating from En-
glish to German, a German sentence with the provided translation
units but with a simpler, i. e. non-complex, alignment could be pro-
duced, e. g. 1999 wurden 1813 Menschen in 31 Ländern hingerichtet. The
same holds for the other direction, e. g. in 31 countries, 1813 people were
executed in 1999. In contrast to that, given the German sentence in fig-
ure 42 as input, and given that the model provides the shown English
translation units, the English sentence in figure 42 is the only valid
translation, due to the strict English word order. Only the preposi-
tional phrase from a city could potentially be placed at the beginning
of the clause. However, it is very marked in this position and it there-
fore obtains a strong focus which it does definitely not have in the
original sentence.

Figure 43 shows an IO alignment which involves a focus adverb
(also/auch). The complicacy of this is that it is often impossible to un-
ambiguously determine the focus denoted by the adverb in a single
sentence (Sudhoff, 2010). Since our data sets neither include context
beyond the aligned sentence pair nor intonation information, we are
not able to judge whether a reordering of the involved constituents
would lead to an equally good translation (without complex align-
ment). In the given sentence pair, for the direction en→de, it is for
instance grammatical to place auch at the very beginning or end of the
middle field, which would simplify the configuration. However, this
probably changes the focus, so we decide against making a statement
about alternative translations via a different word ordering. A further
complication is that in some sentence pairs, the focus denoted by a
focus adverb in the English sentence is obviously different than in the
German sentence. Negation particles and their scope are similar to the
focus adverbs.

Under the given criterion, for 48.6% of the IO/IO-DTU alignments
caused by word order, an equally good translation without complex
configuration can be found when translating from English to German.
For the remaining ones, a different translation would involve possi-
ble scope/focus changes. In the other direction (de→en), 31.4% of the
cases can be simplified, and 28.6% involve a possible change in scope/
focus. Remarkably, in 40% of the cases, the word order that involves
the IO/IO-DTU configuration is the only possible one, under the cri-
terion defined above.
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Only 11 of the complex alignment configurations in category (III)
are not due to the above explained word order phenomena. They arise
from a variety of different phenomena, including local nominal discon-
tinuities on both sides which lead to a bonbon alignment, infinitive
clauses where um . . . zu in German and to in English form a DTU in
combination with a verbal DTU such that zu is in its gap creating a
CDTU, and coordinations where the order within the conjuncts is dif-
ferent in English and German creating an IO or IO-DTU together with
the verb.

English-French

The en-fr data of course includes the often cited bonbon alignment
due to the French two-part negation that frames the finite verb, and
a verbal DTU with the gap on the English side that is usually elicited
by the use of an auxiliary because of the negation. Figure 45 (top half)
shows an example from the data set.

If the French negation occurs in combination with a complex French
verbal unit, e. g. in a compound tense, a CDTU is formed, since ne
precedes the verbal translation unit and pas interrupts it.

CDTUs and bonbon alignments caused by the French negation can
generally not be resolved by reordering in analogy to the IO/IO-DTU
alignments, because of the strict rules of placement of negation in
relation to verbs in the involved languages. For generating these con-
figurations, translation models beyond phrase-based and SCFG-based
models are thus necessary. Further considerations about the transla-
tion of these structures are presented in section 3.3.4.

The IO/IO-DTU configurations in the en-fr data are again caused
by different word orders. They involve an adverb, which is placed at
the beginning of the sentence in English, but between the finite and
the non-finite verb in French compound tenses. They are either free
translations, or, if not, a different word order without the complex
configuration is possible.

English-Spanish

All complex alignment configurations in the en-es data are IO align-
ments. Most of them reside in rather free translations. One that is
created by a relatively literal translation is shown in figure 46. It is
caused by the different adjectival placement in English and Spanish
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We have not yet moved on to . . .

Nous n ’ en sommes pas encore à . . .

Aún no hemos llegado a . . .

Figure 45: Bonbon alignment and CDTU due to French two-part negation
(en-fr-es, sent. 13)

This is therefore , to a certain extent , an unnecessary debate

En consecuencia , es un debate en cierta medida innecesario

Figure 46: IO alignment due to modifier placement (en-es, sent. 59)

(pre-nominal vs. post-nominal) and the fact that the adverbial phrase
to a certain extent is located on the clause level in English, but within
the noun phrase in Spanish. In this case, a more direct translation
that does not require an IO alignment is possible in both translation
directions.

Spanish-French

In the es-fr data, all CDTUs involve a French two-part negation. We
observe two different phenomena. First, if the French verb is com-
plex, e. g. in a compound tense, the second part of the negation (pas)
is placed after the finite verb, thus creating a CDTU. The same phe-
nomenon is also found in the en-fr data, as previously described. Sec-
ond, Spanish usually does not realize pronouns in subject position.
The French pronoun is then aligned to the verbal translation unit. In
combination with a negation, the first part of the negation (ne) inter-
rupts this verbal translation unit, creating a CDTU. An example is
shown in figure 45 in the lower half.

Just as in the en-fr data, the IO/IO-DTU configurations are also due
to different word orders involving adverbial phrases. In the French
sentences, the adverbials are placed between the finite and the infinite
verb, while in Spanish they are found at the beginning of the sentence
or on the right of the verb. One of the configurations occurs in a rather



124 motivation

free translation, the other in a sentence pair that could be reordered
for a simpler alignment, but possibly involving a change of focus.

3.3.4 Discussion

The results of our manual investigation show that, while only very
few of the complex alignment configurations are true annotation er-
rors, many can be argued away with reference to other annotation
guidelines. The remaining ones are those of interest for translation
modeling.

Within the limited context of our analysis, we can certainly not gen-
erally answer how crucial it is for an SMT system to be expressive
enough to induce complex alignment configurations. When thinking
about this question, it is important to keep the following points in
mind: Translation is concerned with producing a good/correct output
string, not with producing a correct alignment. This means that gener-
ating a specific alignment is not necessarily important for generating
a specific translation. It might even happen that a system produces a
translation that corresponds to a complex alignment configuration on
the surface, without actually having generated this complex configu-
ration.

Furthermore, it is absolutely clear that, by paraphrasing, a good
translation that is different from the one with the complex configu-
ration present in our data can usually be found. It is not possible to
answer the question of whether the translation in our data is the best
from all possible translation options. Deciding whether one transla-
tion is better than another one is highly subjective and depends on
many factors outside the context of one sentence.

What we argue for is that there exist good translation options that
involve complex alignment configurations (category III). As we have
found, many of them are fluent and relatively literal translations. A
machine translation system should thus not exclude them a priori
from the translation search space. This entails the usage of more ex-
pressive translation models than those based on 2-SCFG. In particular,
when translating from a language with a rather free word order to a
language with a rather rigid word order, it seems important to be able
to induce IO and IO-DTU alignments: for 40% of the en-de complex
configurations caused by different word orders of literal translation
units, the English word order present in the data is the only possible
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one when translating the German sentence. If focus and scope con-
siderations are also taken into account, the number will certainly be
higher.

For the en→de direction, we always found a reordered translation
alternative without complex configuration (or a focus/scope ambigu-
ity). This is not surprising due to the flexible word order of German.
However, as already pointed out before, in a given context, pragmatic
constraints can lead to a strong preference for one of the word orders.
This can certainly be the one induced by the complex alignment con-
figuration. The same holds for the instances of word order phenomena
in the en-fr-es data sets: even though a translation with reordered trans-
lation units is possible, the other one might be the more canonical one
in a certain situation. Thus, even for those language pairs and transla-
tion directions, there is reason to investigate more powerful translation
models.

It should furthermore be noted that being able to induce the com-
plex configurations is especially of importance if the involved con-
struction is productive. This is certainly the case for the word order
phenomena. If a construction is not productive, the translation model
can just memorize the non-productive parts as a whole, without be-
ing able to induce each translation unit individually. As an example,
consider the English-French bonbon alignments, caused by the French
two-part negation and the requirement of an auxiliary verb by the
English negation (figure 45). While the two DTUs are certainly per-
fectly aligned in terms of the style guides and in terms of lexical trans-
lational correspondence, one could argue that an SMT model could
memorize all non- or less productive parts, i. e., the negation trans-
lation unit together with the English auxiliary. Combining this with
the productive main verbal translation unit does not involve a bonbon
anymore. Such considerations, however, come at the price of a less
modular translation model.

For correctly aligned, but relatively free translations, we did not
make statements about how essential generating the complex configu-
ration is. The reason is twofold: First, a more literal translation could
be produced. Second, in a machine translation system, ideally, free
translations are not generated by composing individual translation
units, but as larger structures/blocks, since it is only together that
they make sense. This means that, in those cases, being able to gener-
ate the complex alignment configuration is less important. However,
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especially if the free translation option involves productive parts, a
perfect translation model should of course also be able to generate
them.

3.4 conclusion

This chapter started with a description of complex alignment config-
urations, i. e. configurations that cannot be induced with SCFGs of
rank 2, the grammar formalism behind the most popular tree-based
translation model. Those are inside-out alignments and certain config-
urations of discontinuous translation units.

We then presented a large study concerning the empirical align-
ment capacity of 2-SCFG which corrects previous similar studies and
provides new results for language pairs that have not been tested be-
fore. We confirmed that normal-form SCFG is not adequate for repre-
senting the translational equivalence found in a variety of manually
aligned corpora. For unrestricted 2-SCFG, our empirical investigation
shows that more manual alignments can be captured than previously
reported. However, there remains a portion of aligned sentence pairs
that cannot be generated; for example more than 5% of the English-
Dutch, Danish-German and English-German sentence pairs, and 9%
of the Spanish-French sentence pairs.

The status of the alignment configurations beyond 2-SCFG has been
debated in the SMT community. Several different empirical studies
have investigated them quantitatively. We complemented this body of
work with a small qualitative investigation of the complex alignment
configurations in manually aligned data sets. While some of those
configurations are caused by annotation errors or artifacts of a specific
annotation style guide, we found that more than half of the complex
configurations in the en-de data and between 83% and 100% in the en-
fr-es data sets are indeed correctly aligned. Mostly, especially in the
en-de data, it is the word order on the clausal level which leads to IO
alignments and IO-DTUs. In the en-fr and es-fr data, the French two-
part negation is often involved in CDTUs and bonbon alignments.

Even though the translations generated by the complex alignment
configurations certainly do not represent the only translation options,
they are correct, often fairly literal translations. Especially if they in-
volve productive constructions, one should not exclude them a priori
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from the translation search space. This motivates translation modeling
beyond phrase-based and context-free grammars.





4
T R A N S L AT I O N M O D E L I N G B E Y O N D
C O N T E X T- F R E E G R A M M A R

Chapter 3 has elaborated on the alignment configurations that are
beyond the alignment capacity of Synchronous Context-Free Gram-
mar (SCFG) of rank 2. In this chapter, we will introduce Synchronous
Linear Context-Free Rewriting System (SLCFRS), a more powerful
formalism which is able to model those alignment configurations.

The main ideas of this chapter have previously been published in a
conference publication:

Kaeshammer, M. (2013). Synchronous linear context-free
rewriting systems for machine translation. In Proceedings
of the Seventh Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 68–77, Atlanta, Georgia. Asso-
ciation for Computational Linguistics.

4.1 introduction

The complex alignment configurations are inside-out (IO) alignments,
bonbon alignments and cross-serial discontinuous translation units
(CDTUs) among others (p. 96). In order to induce them in a grammar-
based framework, discontinuous constituents are necessary. Discontinu-
ous constituents are constituents whose yield is interrupted by mate-
rial which is not part of the constituent itself. To be able to talk about
the alignment capacity of grammar formalisms, this chapter makes the
same assumptions as the previous chapter, see section 3.1.1. In partic-
ular, it is assumed that the terminals generated by the application of
one rewriting rule form one translation unit (i. e. they are aligned), and
we require each translation unit to be generated by one (synchronous)
rule for an adequate modeling of translational equivalence.

Figure 47 illustrates the necessity for discontinuous constituents. It
shows sample derivations for three of the complex alignment configu-
rations. Co-indexed non-terminals are generated synchronously. In (i),
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(i) (ii) (iii)

X 4

X 3

X 2 X 2 X 2

X 1 X 1 X 1

a b c d a b a1 b a2

b d a c a1 b1 a2 b2 b1 a b2

X 1 X 1 X 1

X 2 X 2

X 3 X 2

X 4

Figure 47: Synchronous derivations for an IO alignment (i), a CDTU (ii), and
the bonbon alignment (iii).

X 2 and X 3 are discontinuous on the target side. X 1 is discontinuous
on the target side in (ii) and on the source side in (iii). Note that many
other derivations of maximally rank 2 which comply with our assump-
tions and which induce the same alignment structure are possible.
However, all of them involve at least one discontinuous constituent.

We propose to augment tree-based approaches to statistical ma-
chine translation (SMT) (cf. section 2.2.5) such that they can account
for discontinuous constituents in the source and/or the target deriva-
tion. In section 2.1.3, we have seen for monolingual syntactic descrip-
tions that this implies going beyond the power of Context-Free Gram-
mar. The same obviously holds for the synchronous case: synchronous
derivations with possibly discontinuous synchronous constituents lie
beyond the expressivity of SCFG. Linear Context-Free Rewriting Sys-
tem (LCFRS) has been established in the monolingual parsing commu-
nity as an appropriate formalism for the modeling of discontinuous
constituents (Maier and Lichte, 2011; Kuhlmann and Satta, 2009) (cf.
sections 2.1.3 and 2.1.4). In particular, it has been shown that prob-
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abilistic, data-driven parsing with highly ambiguous treebank gram-
mars is feasible (e. g. Kallmeyer and Maier, 2013; van Cranenburgh,
2012). We will transfer those findings to statistical machine transla-
tion.

We are aware of the potential argument that this step is not neces-
sary because SMT does not necessarily require the alignment model-
ing of each individual translation unit. Instead all translation units in
one complex alignment configurations could be covered by one rewrit-
ing rule or phrase pair together, thereby defeating the requirement
for more expressive alignment and translation models. This line of
thought has already been picked up in section 3.3.4. We think that,
since there is at least one interpretation in which current translation
models are not powerful enough, it is worth pursuing the idea of us-
ing more expressive translation models.

4.2 synchronous linear context-free rewriting systems

Synchronous Linear Context-Free Rewriting System (SLCFRS) retains
many characteristics of Synchronous Context-Free Grammar (SCFG),
with the crucial difference being that pairs of tuples of strings are
rewritten instead of pairs of strings.

4.2.1 Formalism

We define SLCFRS in parallel to SCFG (def. 2.60, p. 76). Rewriting
rules consist of paired LCFRS rules (def. 2.29, p. 26) in which the right-
hand side (RHS) non-terminals are synchronized by index annotation.
Recall def. 2.32, p. 27 for range vectors.
Definition 4.1 (Index annotation (LCFRS)). Let N be a set of non-
terminal symbols and V be a set of variables. We define I(N) =
{A k | A ∈ N, k ∈ N}, and I = {A k (α) | A k ∈ I(N), and αi ∈
V for 1 ≤ i ≤ |α| , αi �= αj for all i �= j, or α is a range vector}. The
set of all indices (integers k) that occur in γ ∈ I∗, is denoted by ind(γ).
Two strings γ1, γ2 are synchronous iff ind(γ1) = ind(γ2), each index
in ind(γ1) occurs exactly once in γ1 and each index in ind(γ2) occurs
exactly once in γ2. γ1 and γ2 are independent iff ind(γ1) ∩ ind(γ2) =
∅.
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Definition 4.2 (Synchronous Linear Context-Free Rewriting System).
A Synchronous Linear Context-Free Rewriting System (SLCFRS) is a tuple
G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) where

1. Ns and Nt are finite sets of source and target non-terminal sym-
bols with a function dim : Ni → N for i ∈ {s, t}, N = Ns ∪ Nt,

2. Ts and Tt are finite sets of source and target terminals,

3. Vs and Vt are finite sets of source and target variables,

4. Ts and Vs, respectively Tt and Vt are disjoint,

5. Ss ∈ Ns and St ∈ Nt are distinguished start symbols,

6. P is a finite set of synchronous (rewriting) rules of the form

〈A(α1, . . . , αdim(A)) → γs , B(β1, . . . , βdim(B)) → γt〉

with A ∈ Ns, αi ∈ (Ts ∪ Vs)∗ for 1 ≤ i ≤ dim(A), B ∈ Nt,
βi ∈ (Tt ∪ Vt)∗ for 1 ≤ i ≤ dim(B), and

γs = A
1 l1

(Y(1)
1 , . . . , Y(1)

dim(A1)
) · · · A

m lm (Y(m)
1 , . . . , Y(m)

dim(Am)
)

γt = B
1 l1

(Z(1)
1 , . . . Z(1)

dim(B1)
) · · · B

m lm (Z(m)
1 , . . . , Z(m)

dim(Bm)
)

where, for m ≥ 0,

a) l1, . . . , lm ∈ N,

b) A
1 l1

, . . . , A
m lm ∈ I(Ns),

c) B
1 l1

, . . . , B
m lm ∈ I(Nt),

d) Y(i)
j ∈ Vs for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai), and

e) Z(i)
j ∈ Vt for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Bi).

Furthermore, for all 〈rs, rt〉 ∈ P, it holds that every variable Y ∈
Vs that occurs in rs occurs exactly once in the left-hand side (LHS)
and exactly once in the RHS of rs, and that every variable Z ∈ Vt
that occurs in rt occurs exactly once in the LHS and exactly once
in the RHS of rt.
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Note that γs and γt in def. 4.2 are synchronous. SLCFRS are equiva-
lent to Simple Range Concatenation Transducers (SRCTs) (Bertsch and
Nederhof, 2001). See the related work in section 4.4.2.

In certain contexts, it is useful to consider the source side and the
target side of a synchronous grammar separately.
Definition 4.3 (Source and target projections (SLCFRS)). Let G =
(Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) be an SLCFRS and r = 〈rs, rt〉 ∈ P a syn-
chronous rule. The source and target projection of r are projs(r) = rs
and projt(r) = rt respectively. The source and target projections of
G, projs(G) and projt(G), are the LCFRSs Gs = (Ns, Ts, Vs, Ps, Ss) and
Gt = (Nt, Tt, Vt, Pt, St) with the rule sets Ps = {projs(r) | r ∈ P} and
Pt = {projt(r) | r ∈ P}.

Rank and fan-out are important properties of LCFRS as well as its
synchronous counterpart SLCFRS.
Definition 4.4 (Rank, fan-out (SLCFRS)). Let G = (Ns, Nt, Ts, Tt, Vs, Vt,
P, Ss, St) be an SLCFRS. As for LCFRS, the rank of a rule r ∈ P as
defined in def. 4.2 is m. The rank of G is the maximal rank of any
of its rules r ∈ P. The fan-out v of G is the sum of the fan-outs of
the source projection Gs = projs(G) and the target projection Gt =
projt(G), v = vGs + vGt . We sometimes write vvGs |vGt

to express how
the fan-out of G is distributed over the source and the target side. As
in the monolingual case, G is called a v-SLCFRS if it has fan-out v and
a (u, v)-SLCFRS if it has rank u and fan-out v.

In the context of parsing, it will be useful to assume monotone and
ε-free grammars.
Definition 4.5 (Monotone SLCFRS). An SLCFRS G = (Ns, Nt, Ts, Tt,
Vs, Vt, P, Ss, St) is monotone if its source projection projs(G) as well as
the target projection projt(G) are monotone (def. 2.39, p. 32).

Definition 4.6 (ε-free SLCFRS). An SLCFRS G = (Ns, Nt, Ts, Tt, Vs, Vt,
P, Ss, St) is ε-free if its source projection projs(G) as well as the target
projection projt(G) are ε-free (def. 2.40, p. 32).

Example 4.7 (Synchronous Linear Context-Free Rewriting System).
Consider the following SLCFRS G = ({S, A, B}, {S, C, D}, {a, b, c, d},
{a, b, c, d}, {Y1, Y2, Y3, Y4}, {Z1, Z2, Z3}, P, S, S) where P contains the
following rules:
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〈S(Y1Y2Y3Y4) → A 1 (Y1, Y3)B 2 (Y2, Y4) ,

S(Z1Z2Z3) → C 1 (Z1, Z3)D 2 (Z2)〉
〈A(aY1, cY2) → A 1 (Y1, Y2) , C(aZ1, Z2c) → C 1 (Z1, Z2)〉
〈B(bY1, dY2) → B 1 (Y1, Y2) , D(bZ1d) → D 1 (Z1)〉
〈A(a, c) → ε , C(a, c) → ε〉
〈B(b, d) → ε , D(bd) → ε〉

The rank of G is 2 and its fan-out is 42|2. It is monotone and ε-free.

We will now introduce the notions of derivation and translation of
SLCFRS. Intuitively, during a derivation step, the yields of two co-
indexed non-terminals have to be explained from one synchronous
rule. Given an input pair 〈ws, wt〉, the start of the derivation is

〈Ss 1 (〈0, |ws|〉), St 1 (〈0, |wt|〉)〉,

i. e. the source start non-terminal Ss yielding ws and the target start
non-terminal St yielding wt, and Ss and St are co-indexed. We will
first establish the helpful concepts of rule instantiation and reindexing
before moving on to the definitions of derivation and translation.
Definition 4.8 (Rule instantiation (SLCFRS)). Let G = (Ns, Nt, Ts, Tt,
Vs, Vt, P, Ss, St) be an SLCFRS and 〈ws, wt〉 ∈ T∗

s × T∗
t a pair of strings.

A rule 〈rs, rt〉 ∈ P is an instantiated rule

〈A(ρ) → A
1 l1

(ρ1) . . . A
m lm (ρm), B(σ) → B

1 l1
(σ1) . . . B

m lm (σm)〉

with respect to 〈ws, wt〉 if there exists an instantiation 〈φ,ψ〉 for which
the following holds when applying it to 〈rs, rt〉:

1. applying φ to the source side rule rs leads to an instantiated
LCFRS rule A(ρ) → A1(ρ1) . . . Am(ρm) with respect to ws, and

2. applying ψ to the target side rule rt leads to an instantiated
LCFRS rule B(σ) → B1(σ1) . . . Bm(σm) with respect to wt.

See def. 2.34, p. 28 for the definition of rule instantiation for LCFRS.
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Definition 4.9 (Reindexing (SLCFRS)). A reindexing is an injective
function f : N → N. f is extended to I such that f (A k (α)) =
A f (k) (α), and to strings in I∗ such that f (ε) = ε and f (XΓ) =

f (X) f (Γ), for X ∈ I and Γ ∈ I∗.

Definition 4.10 (Derivation (SLCFRS)). Let G = (Ns, Nt, Ts, Tt, Vs, Vt,
P, Ss, St) be an SLCFRS and 〈ws, wt〉 ∈ T∗

s × T∗
t a pair of strings. Let

Γs, Γt ∈ I∗ be synchronous.

1. ⇒G,〈ws,wt〉 is a relation called derives between two pairs of syn-
chronous strings of instantiated non-terminals. It is defined as
follows:

〈Γs, Γt〉 ⇒G,〈ws,wt〉 〈Δs, Δt〉

iff 〈A(ρ) → γs, B(σ) → γt〉 is an instantiated rule r ∈ P with
respect to 〈ws, wt〉, there exists an index k in ind(Γs) and some
reindexing f such that

a) f (γsγt) and ΓsΓt are independent, and

b) Γs = Γ′
s A k (ρ)Γ

′′
s , Δs = Γ′

s f (γs)Γ′′
s and Γt = Γ′

tB k (σ)Γ
′′
t ,

Δt = Γ′
t f (γt)Γ′′

t

with Γs, Γt, Γ′
s, Γ′′

s , Γ′
t, Γ′′

t , Δs, Δt ∈ I∗.
If G, ws and wt are given in the context, we can use ⇒ instead of
⇒G,〈ws,wt〉. To make the applied rule r = 〈A(α) → γs, B(β) →
γt〉〉 explicit, we can use ⇒r

G.

2. ∗
=⇒G,〈ws,wt〉 is the reflexive transitive closure of ⇒G,〈ws,wt〉.

3. For 1 ≤ i ≤ m, let ri ∈ P be rules and let Γ(i)
s , Γ(i)

t ∈ I∗ be
synchronous strings of instantiated non-terminals.

〈Γ(1)
s , Γ(1)

t 〉 ⇒r1
G,〈ws,wt〉 . . . ⇒rm−1

G,〈ws,wt〉 〈Γ
(m)
s , Γ(m)

t 〉

is a derivation of length m.

In the following, we will sometimes write r ∈ d to denote the rules
r1, . . . , rm−1 which constitute a derivation d of length m. It should how-
ever be clear that d is not just a set of rules. In fact, it is not a set at all
since rules can occur more than once in a single derivation.
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An SLCFRS derivation can be represented as a pair of two LCFRS
derivation trees (def. 2.37, p. 30). The synchronization of two non-
terminals that have been derived in parallel is usually shown by index
annotation (indices k after applying the reindexing function). Alterna-
tively the synchronized non-terminals can be linked with lines, just as
it is sometimes done for SCFG derivation trees (p. 78).

We define the translation of an SLCFRS in analogy to the language
of an LCFRS.
Definition 4.11 (Translation (SLCFRS)). Let G = (Ns, Nt, Ts, Tt, Vs, Vt,
P, Ss, St) be an SLCFRS.

1. The translation generated by G is a binary relation over T∗
s ×

T∗
t : T (G) = {〈ws, wt〉 | 〈Ss 1 (〈0, |ws|〉), St 1 (〈0, |wt|〉)〉 ∗

=⇒G,〈ws,wt〉
〈ε, ε〉, ws ∈ T∗

s , wt ∈ T∗
t }. We also call T (G) the language of G.

2. Let w = w1 . . . wn be a string. The set of translations of w
generated by G is the following: T (G, w) = {wt | 〈w, wt〉 ∈
T (G)}.

Example 4.12 (Derivation (SLCFRS)). Let G be the SLCFRS in ex. 4.7,
p. 133. The translation or language of G is

T (G) = {〈anbmcndm, anbmdmcn〉 | n, m > 0},

i. e. G translates cross-serial dependencies into nested ones. As an ex-
ample, we give the derivation of 〈aabccd, aabdcc〉 under G. Figure 48
shows the corresponding derivation tree pair.

〈S 1 (〈0, 6〉) , S 1 (〈0, 6〉)〉 ⇒
〈A 2 (〈0, 2〉, 〈3, 5〉)B 3 (〈2, 3〉, 〈5, 6〉) , C 2 (〈0, 2〉, 〈4, 6〉)D 3 (〈2, 4〉)〉 ⇒

〈A 4 (〈1, 2〉, 〈4, 5〉) , C 4 (〈1, 2〉, 〈4, 5〉)〉 ⇒
〈ε , ε〉

An alternative to the definition of SLCFRS for translation modeling
beyond SCFG would have been to use an LCFRS in which the fan-out
of each non-terminal is ≥ 2 with a dedicated source/target argument
boundary. The synchronization would then be formulated between
the arguments of the non-terminals. This is an extension to viewing
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S 1 S 1

B 3 D 3

A 2 C 2

A 4 C 4

〈 a a b c c d , a a b d c c 〉

〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈4, 5〉 〈5, 6〉 〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈4, 5〉 〈5, 6〉

Figure 48: SLCFRS derivation tree pair, including ranges, for ex. 4.12

SCFG as LCFRS of fan-out 2 (see p. 81). However, the direct LCFRS for-
malization seems to be less perspicuous than SLCFRS, when moving
from SCFG to mild context-sensitivity. Synchronous modeling on the
non-terminal level is a very straight forward approach. Another dis-
advantage is that this sort of modeling with LCFRS requires Ns = Nt.

The relationship between Context-Free Grammar (CFG) and LCFRS
naturally carries over to the synchronous case: A 21|1-SLCFRS is
strongly equivalent to an SCFG, i. e. an SCFG is an SLCFRS with a
source and target fan-out of 1 respectively. While Inversion Transduc-
tion Grammar (ITG) (def. 2.67, p. 79) constrains the order of the non-
terminals on the RHS of the target projection of a rule to be in the
same or exactly in the reverse order compared to the non-terminals in
the RHS of the source projection, SLCFRS does not impose such order-
ing constraints on its variables. However, it is obvious that a (2, 21|1)-
SLCFRS is equivalent to an ITG of rank 2.

In correspondence to SCFG and Normal-form Synchronous Context-
Free Grammar (NF-SCFG) (p. 80), the notion of a normal form is also
introduced for SLCFRS.
Definition 4.13 (Normal form (SLCFRS)). Let G = (Ns, Nt, Ts, Tt, Vs,
Vt, P, Ss, St) be an SLCFRS. G is in normal form if the following holds:

1. for all 〈A(α1, . . . , αdim(A)) → γs, B(β1, . . . , βdim(B)) → γt〉 ∈ P, it
holds that either αi ∈ V∗

s and β j ∈ V∗
t or αi ∈ T∗

s and β j ∈ T∗
t

for 1 ≤ i ≤ dim(A) and 1 ≤ j ≤ dim(B); i. e. the arguments of
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the LHS non-terminals consist either of variables or of terminals,
but not of a mixture of both, and

2. the rank of G is at most 2.

We then call G a Normal-form Synchronous Linear Context-Free
Rewriting System (NF-SLCFRS).

NF-SCFG and 21|1-SLCFRS in normal form are equivalent. Gener-
ally, to transform an SLCFRS G into an equivalent NF-SLCFRS G′,
two major steps are necessary to fulfill the two conditions of def. 4.13.
First, in mixed rules, i. e. in rules where the source and/or the target
LHS non-terminal contains variables as well as terminal symbols, a
new synchronous RHS non-terminal is introduced which captures all
lexical material. Second, the rules of G are binarized. The procedure
for that is a combination of the binarization of LCFRS (see e. g. Kall-
meyer (2010), p. 147) and the binarization of SCFG (see e. g. Zhang
et al. (2006). Roughly speaking, in each rule with rank > 2 a new
non-terminal and corresponding rule is introduced which covers all
but one synchronous RHS non-terminal. If G has fan-out v, then the
fan-out of G′ will be v′ = v + c, c ∈ N0, where the value of c depends
on the chosen binarization strategy and the grammar G itself. Since
the SLCFRSs in the context of this thesis are always guaranteed to be
in normal form or of rank 2 by means of their design, the detailed
algorithm for the transformation to normal form is not provided here.
Example 4.14 (NF-SLCFRS). The SLCFRS G in ex. 4.7 is not in normal
form, while the following SLCFRS G′ with T (G) = T (G′) is. We only
provide the rules in P. The remainder of the definition of G′ is trivial.

〈S(Y1Y2Y3Y4) → A 1 (Y1, Y3)B 2 (Y2, Y4) ,

S(Z1Z2Z3) → C 1 (Z1, Z3)D 2 (Z2)〉
〈A(Y1Y2, Y3Y4) → A 1 (Y2, Y4)A’ 2 (Y1, Y3) ,

C(Z1Z2, Z3Z4) → C 1 (Z2, Z3)C’ 2 (Z1, Z4)〉
〈B(Y1Y2, Y3Y4) → B 1 (Y2, Y4)B’ 2 (Y1, Y3) ,

D(Z1Z2Z3) → D 1 (Z2)D’ 2 (Z1, Z3)〉
〈A(a, c) → ε , C(a, c) → ε〉
〈A’(a, c) → ε , C’(a, c) → ε〉
〈B(b, d) → ε , D(bd) → ε〉
〈B’(b, d) → ε , D’(b, d) → ε〉
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The non-terminals A’ and B’ on the source side and C’ and D’ on the
target side have been newly introduced in comparison to G in order to
remove mixed rules. This grammar already has rank 2, thus no further
binarization is required.

4.2.2 Alignment Capacity

In this section, it is demonstrated that SLCFRS is able to induce the
complex alignment configurations. In the following, grammar frag-
ments are presented which generate the hierarchical alignments (i),
(ii) and (iii) in figure 47.
Example 4.15 (SLCFRS rules for the IO alignment (i)).

〈X(a) → ε , X(a) → ε〉
〈X(Y1b) → X 1 (Y1) , X(b, Z1) → X 1 (Z1)〉
〈X(Y1c) → X 1 (Y1) , X(Z1, Z2c) → X 1 (Z1, Z2)〉
〈X(Y1d) → X 1 (Y1) , X(Z1dZ2) → X 1 (Z1, Z2)〉

Each rule generates one translation unit of the IO alignment. The sec-
ond and the third rule are used to derive constituents which are dis-
continuous on the target side.

Example 4.16 (SLCFRS rules for the CDTU (ii)).

〈X(a) → ε , X(a1, a2) → ε〉
〈X(Y1b) → X 1 (Y1) , X(Z1b1Z2b2) → X 1 (Z1, Z2)〉

The first rule derives the translation unit 〈a; a1, a2〉 which is discontin-
uous on the target side. The second rule generates the translation unit
〈b; b1, b2〉.
Example 4.17 (SLCFRS rules for the bonbon alignment (iii)).

〈X(a1, a2) → ε , X(a) → ε〉
〈X(Y1bY2) → X 1 (Y1, Y2) , X(b1Z1b2) → X 1 (Z1)〉

The first rule derives the translation unit 〈a1, a2; a〉 which is discontin-
uous on the source side. The second rule contributes the translation
unit 〈b; b1, b2〉.
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As has been indicated before, generally, the same word alignment
configuration can be induced by a set of different hierarchical align-
ments. An alternative set of rules for the CDTU configuration is pre-
sented in ex. 4.18 and for the bonbon alignment in ex. 4.19.
Example 4.18 (Alternative SLCFRS rules for the CDTU (cf. ex. 4.16)).

〈X(b) → ε , X(b1, b2) → ε〉
〈X(aY1) → X 1 (Y1) , X(a1Z1a2Z2) → X 1 (Z1, Z2)〉

The first rule derives the translation unit 〈b; b1, b2〉, while the second
rule derives the translation unit 〈a; a1, a2〉.
Example 4.19 (Alternative SLCFRS rules for the bonbon alignment (cf.
ex. 4.17)).

〈X(b) → ε , X(b1, b2) → ε〉
〈X(a1Y1a2) → X 1 (Y1) , X(Z1aZ2) → X 1 (Z1, Z2)〉

The first rule derives the translation unit 〈b; b1, b2〉, while the second
rule generates the translation unit 〈a1, a2; a〉.

For the IO alignment, many more derivations than the one pre-
sented in figure 47 (i) are possible: there exist 4! possibilities to com-
bine the four translation units in a binary way. One such alternative is
presented in ex. 4.20. Further combinations are possible if we do not
restrict the space of grammars to those of rank 1. A grammar of rank
2 which also generates the same IO alignment is provided in ex. 4.21.
The corresponding derivations are depicted in figure 49.
Example 4.20 (Alternative SLCFRS rules (rank 1) for the IO alignment
(cf. ex. 4.15)).

〈X(c) → ε , X(c) → ε〉
〈X(Y1d) → X 1 (Y1) , X(d, Z1) → X 1 (Z1)〉
〈X(a, Y1) → X 1 (Y1) , X(Z1aZ2) → X 1 (Z1, Z2)〉
〈X(Y1bY2) → X 1 (Y1, Y2) , X(bZ1) → X 1 (Z1)〉
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Figure 49: Two alternatives to the derivation in figure 47(i) for the IO align-
ment. They correspond to the rules provided in ex. 4.20 and
ex. 4.21 respectively.

Example 4.21 (Alternative SLCFRS rules (rank 2) for the IO alignment
(cf. ex. 4.15)).

〈X(c) → ε , X(c) → ε〉
〈X(d) → ε , X(d) → ε〉
〈X(a, Y1Y2) → X 1 (Y1)X 2 (Y2) , X(Z1aZ2) → X 1 (Z1)X 2 (Z2)〉
〈X(Y1bY2) → X 1 (Y1, Y2) , X(bZ1) → X 1 (Z1)〉

It has been noted that ITG and Normal-form Inversion Transduc-
tion Grammar (NF-ITG) do not generate the same class of alignments
(Søgaard and Wu, 2009). The same holds for SLCFRS: a v-SLCFRS in
normal form does not generate the same class of alignments as an
unrestricted (2, v)-SLCFRS. For illustration, consider a discontinuous
translation unit a with two gaps on the source side, e. g. 〈a1, a2, a3; a〉,
and an SLCFRS G with fan-out v = 32|1. If G is in normal form, it
cannot induce a. This is because a non-terminal of source fan-out 3
would be required to induce a. Generally, for generating x gaps with a
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rule in normal form, a LHS non-terminal of fan-out x + 1 is required.
However, if G is not constrained to the normal form, it is possible that
G induces a by a rule which generates all terminals of a and combines
them with some other constituents that fill at least one of the two gaps.
This case is shown in ex. 4.22.
Example 4.22 (Alignment capacity of NF-SLCFRS). Consider the align-
ment structure below. It consists of three translation units, one of them
having two gaps on the source side. The shown rules provide one pos-
sibility to derive this alignment structure. This grammar fragment has
a fan-out of v = 32|1 and is not in normal form.

a1 b a2 c a3

b a c

〈X(b) → ε , X(b) → ε〉
〈X(a1Y1a2, a3) → X 1 (Y1) , X(Z1a) → X 1 (Z1)〉
〈X(Y1cY2) → X 1 (Y1, Y2) , X(Z1c) → X 1 (Z1)〉

To derive the alignment structure with a NF-SLCFRS the rule

〈X(a1, a2, a3) → ε, X(a) → ε〉

would be required. It has fan-out v = 43|1, i. e. this alignment structure
cannot be induced by an 32|1-NF-SLCFRS.

4.2.3 Parsing

We now consider bitext parsing with SLCFRS. The presented parser
is an extended version of the CYK parser for LCFRS lined out in sec-
tion 2.1.4. The addition is that one has to keep track of the source and
the target side.

Deduction rules

A pair 〈ws, wt〉 ∈ T∗
s × T∗

t is the input. The task is to decide whether
a given SLCFRS G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) generates 〈ws, wt〉,
i. e. whether 〈ws, wt〉 ∈ T (G). The items have the form [A,ρ, B,σ]
where A ∈ Ns is a source non-terminal, B ∈ Nt is a target non-
terminal, ρ is a dim(A)-dimensional range vector in ws and σ is a
dim(B)-dimensional range vector in wt.

The scan deduction rule creates items for terminal rules, i. e. rules
where the source and the target RHS are ε.
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[A,ρ, B,σ]

The side conditions are the following:

1. 〈rs, rt〉 = 〈A(α) → ε, B(β) → ε〉 ∈ P, and

2. there exists an instantiation 〈φ,ψ〉 with respect to 〈ws, wt〉 s.t.
〈φ,ψ〉(〈rs, rt〉) yields the instantiated rule 〈A(ρ) → ε, B(σ) →
ε〉.

By definition of the instantiation it then holds that ρ(ws) = α and
σ(wt) = β.

The complete operation combines already established items to a
new item:

[A1,ρ1, B1,σ1] . . . [Am,ρm, Bm,σm]

[A,ρ, B,σ]

The side conditions are the following:

1. 〈rs, rt〉 ∈ P with rs = A(α) → A
1 l1

(α1) . . . A
m lm (αm) and rt =

B(β) → B
1 l1

(β1) . . . B
m lm (βm), and

2. there exists an instantiation 〈φ,ψ〉 with respect to 〈ws, wt〉 s.t.
〈φ,ψ〉(〈rs, rt〉) yields the instantiated rule

〈A(ρ) → A
1 l1

(ρ1) . . . A
m lm (ρm), B(σ) → B

1 l1
(σ1) . . . B

m lm (σm)〉

The goal item is an item which covers the complete input pair:

[Ss, 〈〈0, |ws|〉〉, St, 〈〈0, |wt|〉〉]

Complexity

Parsing with LCFRS can be performed in O(nv(u+1)), where n is the
length of the input, u the rank and v the fan-out of the grammar (sec-
tion 2.1.4). This result can be transferred to bitext parsing with SLCFRS
as lined out in the following.

The most complex case of CYK bitext parsing for a (u, vvs|vt)-
SLCFRS is the complete operation with a rule r = 〈rs, rt〉 which
has rank u and all non-terminals occurring in rs have a fan-out of
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vs and all non-terminals occurring in rt have a fan-out of vt. In this
case, uvs source variables from the RHS are combined into vs argu-
ments on the LHS, and uvt target variables are combined into vt argu-
ments. This amounts to uvs + vs + uvt + vt = vs(u + 1) + vt(u + 1) =
(vs + vt)(u + 1) independent indices. Indices on the source side range
from 1 to |ws| and on the target side from 1 to |wt|. With this we obtain
a time complexity of O(|ws|vs(u+1) |wt|vt(u+1)). Given our definition of
v = vs + vt and with the approximation n = max(|ws| , |wt|), we can
simplify the expression to O(nv(u+1)).

The same complexity result is achieved when using LCFRS with a
dedicated source/target argument boundary instead of SLCFRS for
translation modeling (cf. p. 136). An SLCFRS G1 with fan-out vvs|vt is
essentially an LCFRS G2 with fan-out v. The special argument bound-
ary separates the source side arguments (of maximal size vs) from
the target side arguments (of maximal size vt) of the non-terminals of
G2. Source side arguments are only matched against ws, while target
side arguments are only matched against wt. Then the same reason-
ing as for SLCFRS above holds, leading to the known complexity of
O(nv(u+1)), with the approximation n = max(|ws| , |wt|).

Note that when using SLCFRS as the base formalism for machine
translation, bitext parsing is not performed. In order to obtain the
set of translations of a given string ws generated by an SLCFRS G,
monolingual LCFRS parsing using the source projection grammar Gs
is conducted. By keeping track of the applied rules, source derivations
can be mapped to target derivations as a post-processing step, thereby
providing the translations. This method is the same as for translating
with SCFG (section 2.2.5) and will be elaborated on extensively in
section 5.3.

4.3 empirical investigation

We have just seen that the complexity for bitext parsing and for trans-
lating with SLCFRS is determined by the fan-out v and the rank u of
the grammar (section 4.2.3). For the very same reason, SCFGs used for
SMT are usually of rank u = 2 (section 2.2.5). If we also restrict the
space of translation grammars to consider to SLCFRSs of maximally
rank u = 2, then the fan-out v of the grammar is the key factor for the
parsing complexity.
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In this section, an empirical investigation is presented. It aims at
finding out which fan-out v is necessary to fully cover the alignment
configurations that occur in manually aligned parallel corpora. It con-
tinues the investigation presented in section 3.2, which studied the
alignment capacity of 2-SCFG by means of alignment validation.

4.3.1 Alignment Validation

Recall the bottom-up hierarchical aligner presented in section 3.2.1.
We use a modified version it. The all-accepting grammar for our new
scenario is an vvs|vt-SLCFRS.
Example 4.23 (All-accepting grammar). This example shows the rules
for an all-accepting SLCFRS G = (Ns, Nt, Ts, Tt, Vs, Vt, P, M(1)

s , M(1)
t ) in

normal form with fan-out vvs|vt . M(k)
s , A(k)

s ∈ Ns and M(l)
t , A(l)

t ∈ Nt

are generic non-terminals; M(k)
s and M(l)

t represent pre-terminals. We
use the superscript here to differentiate between non-terminals of the
same label (and interpretation), but different fan-outs. The fan-out of
the non-terminals is constrained by vs respectively vt, i. e. 1 ≤ k ≤ vs
and 1 ≤ l ≤ vt.

(1) 〈M(k)
s (α) → ε , M(l)

t (β) → ε〉

where α ∈ (T∗
s )

k with 1 ≤ k ≤ vs, and β ∈ (T∗
t )

l with 1 ≤ l ≤ vt.

(2) 〈A(k)
s (α) → M(k)

s 1
(α) , A(l)

t (β) → M(l)
t 1
(β)〉

where α ∈ Vk
s with 1 ≤ k ≤ vs and β ∈ Vl

t with 1 ≤ l ≤ vt.

(3) 〈A(k)
s (α) → A′(k′)

s 1
(α′) A′′(k′′)

s 2
(α′′) ,

A(l)
t (β) → A′(l′)

t 1
(β′) A′′(l′′)

t 2
(β′′)〉

where α ∈ (V+
s )k, α′ ∈ Vk′

s , α′′ ∈ Vk′′
s with 1 ≤ k ≤ vs, 1 ≤ k′ ≤ vs,

1 ≤ k′′ ≤ vs and β ∈ (V+
t )l, β′ ∈ Vl′

t , β′′ ∈ Vl′′
t for 1 ≤ l ≤ vt,

1 ≤ l′ ≤ vt, 1 ≤ l′′ ≤ vt.
Rule (1) builds pre-terminal constituents from terminals. To create

a general purpose constituent from a pre-terminal constituent, rule (2)
would be used. Hierarchical structures are created with rule (3).
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The bottom-up hierarchical aligner builds initial constituents la-
beled M based on the m translation units 〈D(j)

s , D(j)
t 〉 (1 ≤ j ≤ m)

of a given word alignment A for a sentence pair 〈s, t〉. Constituents
are then combined with each other obeying the constraints of the sim-
ulated all-accepting grammar G. In the case at hand those are G being
of the formalism SLCFRS, G having a rank of u = 2 and G having
a specific fan-out vvs|vt . We again specify the hierarchical aligner as
a deduction system. It is a generalization of the deduction system
provided in section 3.2.1 for SCFG. Indeed, the deduction rules are
almost the same. The only difference is in the side conditions, where
the number of blocks that a bit vector ρ may span is not restricted to 1
anymore, but more general to vs for source bit vectors and vt for target
bit vectors. This is due to the relationship of SCFG and SLCFRS with
SCFG being a specific case of SLCFRS with fan-out v = 21|1. The inter-
pretation is that the span of a non-terminal can cover several blocks,
i. e. the non-terminal has a discontinuous yield.

For our convenience, the modified deduction rules are shown in
the following. The definitions of the unary operation and the goal
item stay the same. The source and target fan-out of the non-terminals
M and A is implicitly given by the number of blocks of ρs and ρt
respectively.
scan:

[M,ρs,ρt]
a translation unit 〈D(j)

s , D(j)
t 〉

where ρs(i) = 1 if i ∈ D(j)
s , otherwise ρs(i) = 0, and ρt(i) = 1 if

i ∈ D(j)
t , otherwise ρt(i) = 0.

unary:

[M,ρs,ρt]

[A,ρs,ρt]
b(ρs) ≤ vs, b(ρt) ≤ vt

binary:

[A,ρ1
s ,ρ1

t ], [A,ρ2
s ,ρ2

t ]

[A,ρ3
s ,ρ3

t ]

ρ1
s ∩ ρ2

s = 0n,ρ1
t ∩ ρ2

t = 0n′
,

ρ3
s = ρ1

s ∪ ρ2
s ,ρ3

t = ρ1
t ∪ ρ2

t ,
b(ρ3

s ) ≤ vs, b(ρ3
t ) ≤ vt
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unarymixed:

[M,ρM
s ,ρM

t ], [A,ρA
s ,ρA

t ]

[A,ρs,ρt]

ρM
s ∩ ρA

s = 0n,ρM
t ∩ ρA

t = 0n′
,

ρs = ρM
s ∪ ρA

s ,ρt = ρM
t ∪ ρA

t ,
b(ρs) ≤ vs, b(ρt) ≤ vt

binarymixed:

[M,ρM
s ,ρM

t ], [A,ρ1
s ,ρ1

t ], [A,ρ2
s ,ρ2

t ]

[A,ρ3
s ,ρ3

t ]

ρM
s ∩ ρ1

s = 0n,ρ1
s ∩ ρ2

s = 0n,
ρ2

s ∩ ρM
s = 0n,ρM

t ∩ ρ1
t = 0n′

,
ρ1

t ∩ ρ2
t = 0n′

,ρ2
t ∩ ρM

t = 0n′
,

ρ3
s = ρM

s ∪ ρ1
s ∪ ρ2

s ,
ρ3

t = ρM
t ∪ ρ1

t ∪ ρ2
t ,

b(ρ3
s ) ≤ vs, b(ρ3

t ) ≤ vt

goal:

[A,ρs,ρt]

with ρs(i) = 1 for all 0 ≤ i < |s| and ρt(i) = 1 for all 0 ≤ i < |t|.
The scan rule creates pre-terminal items from the translation units

of the input sentence pair. The unary operation builds A items from
pre-terminal M items. Two A items are combined to a larger A item
with the binary rule. In contrast, the unarymixed rule combines
an M item with an A item, simulating a mixed SLCFRS rule of rank
1, and the binarymixed rule simulates a mixed SLCFRS rule of rank
2. All operations, except scan, are subject to the constraint that the
number of blocks in the source respective target bit vector may not
exceed vs respective vt.

The alignment structure A can be deduced with a (2, vvs|vt)-SLCFRS
if a goal item is found by using any sequence of the five rules. In
addition, A can be deduced with a vvs|vt-NF-SLCFRS if a goal item
is found by using only the scan, unary and binary rules.

As in the previous experiments, a chart and an agenda are popu-
lated in order to compute the items.

4.3.2 Experiments

Experiments are conducted in the same manner as in section 3.2.1,
including the same data sets which are described there. Now we ad-
ditionally vary the fan-out vvs|vt of the all-accepting grammar that is
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fan-out v
21|1 42|2

Martin et al.
en-ro (30) 45.07 97.85
en-hi (40) 82.73 100.00
en-iu (40) 40.66 95.60

Padó & Lapata en-de (15) 73.74 100.00

Mihalcea & Pedersen en-fr 67.56 98.88

Graça et al.

en-fr 73.00 100.00
en-pt 76.00 100.00
en-es 82.00 100.00
pt-fr 73.00 97.00
pt-es 90.00 99.00
es-fr 74.00 100.00

CDT

da-en (25) 72.90 98.93
da-de (25) 64.87 98.42
da-es (25) 66.61 97.68
da-it (25) 69.01 97.65

Holmqvist & Ahrenb. en-sv (30) 82.83 99.78

Schoenemann en-de (40) 29.15 94.74

Lambert et al. en-es (40) 47.15 97.83

Macken en-nl (30) 57.14 98.86

Table 7: Alignment reachability scores for (2, v)-NF-SLCFRS. The scores for
2-NF-SCFG from table 4 are repeated here under the column with
the title v = 21|1.
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fan-out v
21|1 42|2 31|2 32|1

Martin et al.
en-ro (30) 95.07 100.00 99.38 97.84
en-hi (40) 96.36 100.00 100.00 100.00
en-iu (40) 100.00 100.00 100.00 100.00

Padó & Lapata en-de (15) 94.41 100.00 100.00 98.88

Mihalcea & Pedersen en-fr 95.30 100.00 99.78 99.33

Graça et al.

en-fr 95.00 100.00 100.00 99.00
en-pt 98.00 100.00 100.00 100.00
en-es 96.00 100.00 100.00 100.00
pt-fr 92.00 100.00 100.00 95.00
pt-es 99.00 100.00 100.00 100.00
es-fr 91.00 100.00 100.00 94.00

CDT

da-en (25) 97.80 100.00 99.90 99.84
da-de (25) 94.94 100.00 100.00 100.00
da-es (25) 97.50 100.00 98.93 99.64
da-it (25) 97.95 100.00 99.90 99.71

Holmqvist & Ahrenb. en-sv (30) 95.60 100.00 99.79 99.68

Schoenemann en-de (40) 76.11 100.00 96.76 90.69

Lambert et al. en-es (40) 94.85 100.00 98.65 98.37

Macken en-nl (30) 94.86 100.00 99.62 98.48

Table 8: Alignment reachability scores for (2, v)-SLCFRS. The scores for 2-
SCFG from table 4 are repeated here under the column with the title
v = 21|1.
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I will get my finance person to answer that question .

kiinaujalirijiga taatsumanngat kiutinniarakku .

Figure 50: English-Inuktitut alignment example. The translation unit 〈I will
get , to answer , question ; kiutinniarakku〉 has two gaps on
the source side and no gap on the target side. Accordingly, an
NF-SLCFRS rule of fan-out 43|1 is required to derive it.

being simulated. If the bottom-up hierarchical aligner reaches a goal
item for a given alignment structure, the alignment can be generated
with the formalism in question. Alignment reachability scores are re-
ported for the individual data sets.

Table 7 shows the results for NF-SLCFRS and table 8 for SLCFRS
of different fan-outs. The alignment reachability scores for NF-SCFG
and SCFG from section 3.2.1 are repeated for convenience.

The numbers in the tables demonstrate that alignment reachability
increases considerably when allowing for discontinuous constituents.
With a fan-out of 42|2, even NF-SLCFRS induces all alignments present
in six of the data sets, and reaches scores >97 for the other data sets,
except two of them for which scores are still >94.7. The sentence
pairs that cannot be induced with a (2, 42|2)-NF-SLCFRS all display
translation units that require three (or very rarely four) blocks on at
least the source or the target side. An interesting observation is that
only the English-Inuktitut data can nevertheless be generated with
fan-out 4, by distributing the allowed discontinuity unequally: with
a NF-SLCFRS of fan-out 43|1, the alignment reachability is 100. This
is not surprising given the fact that Inuktitut is a polysynthetic lan-
guage, thus several English words may correspond to one Inuktitut
token. See figure 50 for an example from the data set.

For grammars without the normal-form constraint, alignment reach-
ability is generally higher than with the normal-form constraint (cf.
columns with equal fan-out in table 7 and 8). This is in line with our
expectations, as NF-SLCFRS and SLCFRS do not have the same align-
ment capacity (section 4.2.2). The grammars which are used in practice
for the translation modeling in hierarchical phrase-based translation
typically are not required to be in normal form. Quite the contrary,
they are usually highly lexicalized (cf. section 2.2.5).
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Our experiments reveal that with a (2, 42|2)-SLCFRS, all occurring
alignment configurations are induced. The last two columns of table 8
show that for some data sets, a fan-out of 3 is enough to induce all
alignments. This is encouraging since such grammars are a minimal
extension to SCFG towards mild context-sensitivity.

The presented experiments show that by moving from synchronous
grammars with only continuous constituents to grammars which al-
low two blocks per constituent, all manual alignments in a variety of
data sets can be generated. Given the parsing complexity that comes
with allowing discontinuities, this is a promising finding. It has al-
ready been shown for monolingual LCFRS parsing that restricting the
fan-out to 2 drastically reduces parsing times (Maier et al., 2012).

4.4 related work

4.4.1 Empirical Investigations of Alignments

The work carried out in Wellington et al. (2006) by the group around
I. D. Melamed is most similar to our investigation concerning the em-
pirical alignment capacity of synchronous grammars of different fan-
outs. They investigate how many aligned sentence pairs require gaps
in the constituents in order to generate a hierarchical alignment. They
find that 5% of their Chinese-English sentence pairs cannot be covered
without gaps. The parse failure rates for the other language pairs lie
between 0% and 2%. With allowing only one gap on either the source
or the target side, all alignments can be derived. Their reported fail-
ure rates are rather low compared to ours which can be attributed
to their experimental methodology, which differs considerably from
ours. This is spelled out in section 3.2.3.

Other similar investigations, some of them also using a hierarchi-
cal aligner, are concerned with the alignment capacity of variants of
synchronous context-free formalisms, but not beyond (Zens and Ney,
2003; Søgaard and Wu, 2009; Søgaard and Kuhn, 2009; Søgaard, 2010).
They are described in more detail in section 3.2.3.
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4.4.2 Translation Modeling

This section presents related work which is also concerned with trans-
lation modeling beyond SCFG. The proposal to employ SLCFRS for
that purpose was certainly not the first step towards mild context-
sensitivity for translation modeling. We can determine three main
strands of motivation for proposing more powerful translation models
in the literature:

inducing complex alignment configurations Translation
models based on SCFG or phrases are not expressive enough to in-
duce all alignment configuration which occur in aligned data. For an
adequate modeling of translational equivalence thus more powerful
models are required. More details can be found in chapter 3 since
this is our motivation for proposing SLCFRS. The same motivation
has lead to two other proposals: using Range Concatenation Gram-
mar (RCG) and its ability to copy substrings (Søgaard, 2008b) and a
phrase-based approach which allows for discontinuous phrases (Gal-
ley and Manning, 2010).

adequate modeling of monolingual syntax Following up
on the finding that certain phenomena in natural language syntax can-
not be modeled with CFG (see section 2.1.3), the early work of transla-
tion modeling beyond SCFG is motivated by an adequate representa-
tion of the source and the target languages from a linguistic point of
view. This inevitably leads to the use of mildly context-sensitive gram-
mar formalisms in their synchronous version, e. g. Synchronous Tree-
Adjoining Grammar (STAG). Some formalisms have been even de-
signed solely in the context of translation modeling, e. g. Generalized
Multitext Grammar (GMTG). Many of these proposals have appeared
before the breakthrough of SMT, so no large-scale systems and exper-
imental results are available.

non-constituent phrases in syntax-based models Even
though syntax-based SMT models which make use of parse trees,
e. g. string-to-tree or tree-to-tree models, have been argued to have
advantages over phrase-based models, e. g. more advanced modeling
of reordering and more well-formed translations, this advance was
often not reflected in experimental results and bleu scores. One often
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cited reason is that in syntax-based models using SCFG, or related
formalisms like Synchronous Tree-Substitution Grammar (STSG),
only constituent phrases, i. e. words in the yield of a node in the
parse tree, can be modeled. One possible solutions is the usage of
a more powerful grammar formalism like Multi Bottom-up Tree
Transducer (MBOT) or Synchronous Tree Sequence Substitution
Grammar (STSSG).

In the remainder of this section, an overview over the approaches
and formalisms which fall into these three categories will be provided.
We will also look into their relation to (S)LCFRS and whether they
induce the complex alignment configurations.

Range Concatenation Grammar

A. Søgaard (Søgaard, 2008b, 2011) proposes to apply a grammar for-
malism for translation modeling which is even more expressive than
LCFRS, namely Range Concatenation Grammar (RCG), and to exploit
its ability to copy substrings during the derivation (see p. 57) in order
to induce complex alignment configurations. This approach allows
for the induction of all possible alignment configurations. However,
it has certain downsides, which are already mentioned in Søgaard
and Kuhn (2009); for example the use of intersection to induce com-
plex alignment configurations possibly misses generalizations, and no
tight probability estimation is possible for such grammars.

Throughout this work, RCG syntax has been used for the notation
of LCFRS, so the reader should be familiar with it. The difference
in the definition of RCG and LCFRS or equivalently Simple Range
Concatenation Grammar (SRCG) is that the arguments αi, 1 ≤ i ≤
dim(A), of RHS non-terminals A(α1, . . . , αdim(A)) can be sequences of
terminals and variables (as opposed to just one variable), i. e. αi ∈
(T ∪ V)∗, and that the occurrence of variables in the rewriting rules
is less constrained for RCG than for LCFRS (cf. def. 2.29, p. 26 for
LCFRS). In a bottom-up non-erasing RCG G = (N, T, V, P, S), which is
the one proposed for machine translation, all variables which occur in
the RHS of a rule r must also occur in the LHS of r, for all r ∈ P. In the
translation grammar proposed by Søgaard, a start predicate of fan-out
2 is used, the two arguments representing the source and the target
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S(〈0, 4〉, 〈0, 4〉)

NP(〈0, 1〉, 〈0, 1〉) VP0(〈1, 4〉, 〈1, 4〉) VP1(〈1, 4〉, 〈1, 4〉)

ε Ts(〈2, 3〉) Tt(〈1, 2〉) Tt(〈3, 4〉) Ts(〈1, 2〉) Ts(〈3, 4〉) Tt(〈2, 3〉)

Ts(ε) Tt(ε) Tt(ε) Ts(ε) Ts(ε) Tt(ε)

ε ε ε ε ε ε

Figure 51: RCG derivation for ex. 4.24

sequence. Furthermore, the maximal fan-out of the grammar is 2 and
an argument in the LHS of a rule contains at most two variables.
Example 4.24 (RCG for translation). This RCG fragment, inspired by
an example in Søgaard (2011), shows rules which can be used to
derive the bonbon configuration in figure 34. Rule (1) is non-linear,
i. e. beyond LCFRS. Using the copying mechanism, each translation
unit which is part of a complex alignment configuration is derived in-
dependently of and in parallel to the other translation units (VP0 and
VP1).

S(Y1Y2, Z1Z2) → NP(Y1, Z1)VP0(Y2, Z2)VP1(Y2, Z2) (1)

VP0(ne Y1 pas, Z1 not Z2) → Ts(Y1)Tt(Z1)Tt(Z2) (2)

VP1(Y1 mange Y2, does Z1 eat)→ Ts(Y1)Ts(X2)Tt(Z1) (3)

NP(Pierre , Pierre) → ε (4)

Ts(aY1) → Ts(Y1) for all a ∈ Ts (5)

Tt(aZ1) → Tt(Z1) for all a ∈ Tt (6)

Ts(ε) → ε (7)

Tt(ε) → ε (8)

Figure 51 shows the derivation of

〈Pierre ne mange pas , Pierre does not eat〉
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Discontinuous Phrase-based Translation

In Galley and Manning (2010), a phrase-based translation model and
decoder are proposed with the objective to be able to generate the
complex alignment configurations. They extend the phrase-based ap-
proach (cf. section 2.2.4) in that discontinuous phrase pairs are also al-
lowed. This approach is not syntax-based and therefore does not rely
on a specific grammar formalism. It outperforms a phrase-based sys-
tem and a hierarchical phrase-based system. More details are provided
in chapter 5.4.1.

In a way our proposal to use SLCFRS as the formalism for transla-
tion modeling is the tree-based counterpart to their approach. Meth-
ods to integrate linguistic constituency information into the so far only
formal tree-based approach can be directly transferred from the SCFG-
based approaches to SLCFRS. In contrast, it is not obvious how to
include such information into the phrase-based systems.

Generalized Multitext Grammar

The group around I. D. Melamed has been an early advocate of trans-
lation modeling beyond Context-Free Grammar. In Wellington et al.
(2006), they note the necessity for discontinuous constituents for de-
riving IO alignments with synchronous grammars of rank 2. Melamed
proposes to use GMTGs (Melamed et al., 2004; Melamed, 2004) as the
formalism for translation modeling. GMTG is a synchronous formal-
ism that features discontinuous constituents. It is weakly equivalent
to LCFRS. Just like SCFG and SLCFRS, it implements synchronous
rewriting by an indexation of the RHS non-terminals. A GMTG has a
specific dimension D which corresponds to the number of languages
which are synchronously described. While SCFG and SLCFRS define
correspondences between pairs of languages, D can be larger than 2.
Discontinuous constituents in a dimension are expressed by tuples of
non-terminals with more than one element on the LHS and by using
the same index several times in the RHS. Ex. 4.25 shows GMTG rules
and their SLCFRS counterparts.
Example 4.25 (Generalized Multitext Grammar). The following
GMTG grammar fragment of two dimensions, taken from Melamed
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et al. (2004), generates 〈The doctor treats his teeth, El médico le examino
los dientes〉.

[(S), (S)] → [(NP1VP2), (NP1VP2)]

[(VP), (VP)] → [(V1NP2), (NP2V1NP2)]

[(NP), (NP)] → [(The doctor), (El médico)]
[(NP), (NP, NP)]→ [(his teeth), (le, los dientes)]
[(V), (V)] → [(treats), (examino)]

The equivalent SLCFRS rules are:

〈S(XY) → NP 1 (X)VP 2 (Y) , S(XY) → NP 1 (X)VP 2 (Y)〉
〈VP(XY) → V 1 (X)NP 2 (Y) , VP(XYZ) → V 1 (Y)NP 2 (X, Z)〉
〈NP(The doctor) → ε , NP(El médico) → ε〉
〈NP(his teeth) → ε , NP(le, los dientes) → ε〉
〈VP(treats) → ε , VP(examino) → ε〉

GMTG allows for independent rewriting, i. e. rewriting in one dimen-
sion continues, while in another dimension no syntactic structure is
generated. This mechanism is demonstrated in ex. 4.26. Neither SCFG
(def. 2.60, p. 76) nor SLCFRS (def. 4.2, p. 131) allow for independent
rewriting because of the strict synchronization of the indexed RHS
non-terminals.1 While independent rewriting surely is necessary to
capture certain linguistic generalization in manually designed, linguis-
tically adequate translation grammars, it might be problematic in a
data-driven, statistical setting as it has the capacity to generate target
words from nothing and to delete source words without much evi-
dence because of the limited application context of such a rule. This
is also one of the reasons why synchronous grammars used in SMT
are typically ε-free and unaligned words are usually “attached” to
their neighboring words. Furthermore note that automatically learn-
ing grammars which allow for independent rewriting is a challenge, in
particular for hierarchical phrase-based systems, because of the larger
rule space.

1 This is true for the definitions given in this work. The one for SCFG is widely ac-
cepted. One could however think about a relaxation of the synchronization in order
to allow for independent rewriting.
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Example 4.26 (Independent rewriting). GMTG rules which demon-
strate independent rewriting. In the first rule, D has no co-indexed
counterpart in the target dimension, which is why the second rule,
with an empty target dimension, can be applied subsequently. The
two rules could be used for describing the relation between English
and a language which systematically does not use determiners.

[(NP), (NP)] → [(D1N2), (N2)]

[(D), ()] → [(the), ()]

While our motivation for going beyond CFG is the ability to derive
certain alignment configurations beyond CFG, Melamed’s incentive
for defining GMTG lies in linguistically motivated syntactic transla-
tion grammars and the general observation that discontinuous con-
stituents are necessary for monolingual modeling of syntax.

Synchronous Tree-Adjoining Grammar

Synchronous Tree-Adjoining Grammar (STAG) (Shieber and Schabes,
1990; Shieber, 1994) generalizes Tree-Adjoining Grammar (TAG) (see
p. 55) in the same way as SCFG and SLCFRS generalize CFG and
LCFRS respectively. It defines the derivation of tree pairs using the
TAG operations substitution and adjunction on pairs of trees. Since TAG
it mildly context-sensitive and it has been found suitable for the mod-
eling of many natural language phenomena, the idea of using STAG
for translation modeling naturally has been pursued by several re-
searchers (e. g. Abeillé et al., 1990; Harbusch and Poller, 2013; Dras,
1999). Later, this body of work has been extended to probabilistic
versions of STAG and the more restricted Synchronous Tree-Insertion
Grammar (STIG)2 for statistical machine translation (e. g. Nesson et al.,
2006; DeNeefe and Knight, 2009; Liu et al., 2011). Shieber (2007) also
argues for using probabilistic STAG and its formal relatives as the
formalism in statistical machine translation systems because of their
appealing properties with respect to expressivity, trainability and com-
putational tractability.

2 Tree-Insertion Grammar (TIG) does not allow wrapping adjunction, i. e. auxiliary trees
where the foot node is not the left-most or right-most frontier node, and is attractive
because of the resulting parsing complexity of O(n3).
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Approaches to translation modeling and SMT which rely on tree
transducers (see p. 81) and whose grammar formalism equivalent is
beyond SCFG have also appeared in the literature. In particular, tree
transducer models for STAG have been proposed (e. g. Shieber, 2006;
Maletti, 2010a).

To the best of our knowledge, none of the above-mentioned ap-
proaches have chosen STAG for translation modeling explicitly be-
cause of its alignment capacity. Usually an appropriate modeling of
the monolingual syntax is the main motivation for choosing STAG.
However, Søgaard and Kuhn (2009) point out that 2-STAGs are expres-
sive enough to induce CDTUs and IO alignments, but not multi-gap
discontinuous translation units (DTUs) with more than two gaps on
one side. 2-STAGs also have the alignment capacity to induce the bon-
bon configuration, as we will show. A 2-STAG is an STAG in which
each elementary tree pair has at most two linked non-terminal nodes.
This is the kind of STAG often used in SMT for efficiency reasons.
Ex. 4.27 and ex. 4.28 demonstrates how STAG induces complex align-
ment configurations.
Example 4.27 (STAG for IO alignment). Consider the following STAG
elementary tree pairs.3 This grammar fragment can be used to derive
the IO alignment in figure 30(i).

c :

〈 X X

X 1 X 2 ↓ , X 1 c

c X 2 ↓

〉
a :

〈 X 1 , X 1

a X∗ X∗ a

〉

b :

〈 X 1 , X 1

b X∗ b X∗

〉
d :

〈 X 1 , X 1

d d

〉

A derivation would start with the tree pair labeled c. Tree pair d
substitutes into the linked non-terminal X 2 of c. Tree pair b adjoins
into the linked non-terminal X 1 of c. The latter leads to a new linked
node into which tree pair a is adjoined. Figure 52 shows the resulting
derived tree pair. To visualize the IO alignment, the target tree has
been copied and mirrored below the source tree. The non-terminals’
subscripts and superscripts in the derived tree denote the origin of the

3 This example has been taken from Søgaard and Kuhn (2009) and adapted since their
example does not actually work.
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Xc Xc

Xc
a Xc

a

Xa
b Xa

b

Xb
c Xb

c

Xc
d Xc

d

〈 a b c d , b d a c 〉

b d a c

Xc
d

Xb
c

Xa
b

Xc
a

Xc

Figure 52: STAG derived tree inducing an IO alignment

non-terminal with respect to an elementary tree pair.4 Note especially
how the material of the elementary tree pair c is separated by the two
adjunctions.

Example 4.28 (STAG for bonbon alignment). As a second illustration
for how STAG induces complex alignment configurations, consider
the following STAG elementary tree pairs.

a :

〈 X 1 X 1

a1 X∗ a2 , a X∗

〉
b :

〈 X X

X 1 , b1 X 1

b b2

〉

4 TAG non-terminal nodes are sometimes viewed as consisting of two halves, where
a root node is only a lower half, while foot nodes and substitution nodes are upper
halves. During adjunction, an inner node is split into two halves, which are then
completed again by the half of the root node and the half of the foot node of the
auxiliary tree.
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Xb Xb

Xb
a Xb

a

Xa
b Xa

b

〈 a1 b a2 , b1 a b2 〉

b1 a b2

Xa
b

Xb
a

Xb

Figure 53: STAG derived tree inducing a bonbon alignment

The derivation starts with the elementary tree pair b. The auxiliary
tree pair a adjoins to the linked non-terminal X 1 creating the derived
tree in figure 53. Note how all and only the terminals which form one
translation unit (given the alignment) are generated with the applica-
tion of one synchronous operation.

The languages that can be generated with TAG are a subset of the
languages that can be generated with 2-LCFRS.5 The same relation
holds for the translations of STAG and SLCFRS. As STAG is also ca-
pable of modeling the complex alignment configurations under the
assumptions given in section 3.1.1, it is also a potential candidate for
translation modeling beyond CFG, which is the topic of this chapter.
However, going from SCFG to SLCFRS is somewhat more natural and
direct than going to STAG. This is because the basic units (the rules)
and the applied operations are similar for SCFG and SLCFRS. Cor-
responding notions and concepts, methods and algorithms, e. g. for
parsing, therefore carry over in a rather straightforward manner. This
is different for STAG where the basic units are trees, the operations be-
tween the trees are particular, and derivation tree and derived tree do
not coincide. Note also the additional structure which has to be stip-
ulated in the two examples in order to induce the two complex align-

5 More concretely, TAG is weakly equivalent to well-nested 2-LCFRS.
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ment configurations. This makes automatic grammar learning more
complex.

Range Concatenation Transducer

Besides Søgaard (2008b), RCG as a formalism for machine translation
had also been proposed earlier by Bertsch and Nederhof (2001) in the
form of a Range Concatenation Transducer (RCT), a combination of two
RCGs. Non-terminals take two sequences of arguments, input argu-
ments and output arguments, and they have the following form:

A(α1, . . . , αp)(β1, . . . , βp′)

where A ∈ N with the input fan-out p ≥ 1 and the output fan-out
p′ ≥ 1, and αi ∈ (V ∪ T)∗ for 1 ≤ i ≤ p and βi ∈ (V ∪ T)∗ for
1 ≤ i ≤ p′.

Bertsch and Nederhof (2001) show that, in the general case, the
recognition problem for a pair of strings and a RCT is undecidable,
but that it is tractable for a restricted subclass, namely Simple Range
Concatenation Transducer (SRCT). An SRCT is the combination of two
SRCGs to a transducer as seen in the previous paragraph. Since SRCG
and LCFRS are equivalent, and both SRCT and SLCFRS define a syn-
chronization between non-terminals, it is immediate that SRCT and
SLCFRS are equivalent in terms of their strong generative capacity.
Any SRCT can be converted to an equivalent SLCFRS and vice versa
in a straight forward way. Roughly, when going from SRCT to SLCFRS,
each transduction rule needs to be split into a source LCFRS rule, us-
ing the source arguments, and a target LCFRS rule, using the output
arguments. Non-terminal labels are identical in the source and the
target projection, and non-terminals which originate from one SRCT
non-terminal are co-indexed. Consider ex. 4.29 as an example. For
the other direction, the two LCFRS rules in each SLCFRS rule need
to be merged to one transduction rule. If non-terminal labels of syn-
chronized non-terminals are not identical, we create a compound non-
terminal alphabet. Ex. 4.30 shows an example.
Example 4.29 (Simple Range Concatenation Transducer I). The follow-
ing SRCT grammar fragment generates 〈The doctor treats his teeth, El
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médico le examino los dientes〉. The equivalent SLCFRS rules are shown
in ex. 4.25, p. 155.

S(XY)(XY) → NP(X)(X)VP(Y)(Y)
VP(XY)(XYZ) → V(X)(Y)NP(Y)(X, Z)
NP(The doctor)(El médico) → ε

NP(his teeth)(le, los dientes) → ε

VP(treats)(examino) → ε

Example 4.30 (Simple Range Concatenation Transducer II). The fol-
lowing SRCT rules generate {〈anbmcndm, anbmdmcn〉 | n, m > 0}. The
non-terminal label alphabet of this grammar fragment is {S/S, A/C,
B/D}. The equivalent SLCFRS rules are shown in ex. 4.7, p. 133.

S/S(Y1Y2Y3Y4)(Z1Z2Z3) → A/C(Y1, Y3)(Z1, Z3) B/D(Y2, Y4)(Z2)

A/C(aY1, cY2)(aZ1, Z2c) → A/C(Y1, Y2)(Z1, Z2)

B/D(bY1, dY2)(bZ1d) → B/D(Y1, Y2)(Z1)

A/C(a, c)(a, c) → ε

B/D(b, d)(bd) → ε

The work by Bertsch and Nederhof (2001) remained theoretical. To
the best of our knowledge, RCTs for translation modeling have not
been picked up in the machine translation community. Note that the
modeling of specific alignment configurations is not a topic in Bertsch
and Nederhof (2001). They propose RCT as an interesting extension
to RCG and RCG parsing, and focus rather on the appropriate mono-
lingual syntactic modeling of language and language pairs.

Synchronous Tree Sequence Substitution Grammar

Another series of work of translation modeling beyond SCFG has
been contributed by M. Zhang and colleagues, in particular for tree-
to-tree machine translation. They use a grammar formalism called
Synchronous Tree Sequence Substitution Grammar (STSSG) for translation
modeling, including implementations for grammar learning and de-
coding. STSSG is similar to STSG, with the difference that the source
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X

ra: X → X X

a X 1 a1 X 1 a2 X 1

rb: X → X , X

b b1 b2

Figure 54: Non-contiguous STSSG/MBOT rules for ex. 4.31

and the target side potentially consist of several tree fragments instead
of just one each. Roughly speaking, an STSSG is a finite set of rules of
the form

(t1, . . . , tn) → (t′1, . . . , t′m)

where (t1, . . . , tn) is an ordered sequence of tree fragments for the
source side and (t′1, . . . , t′m) is an ordered sequence of tree fragments
for the target side. Non-terminal leaves in (t1, . . . , tn) are linked with
the non-terminal leaves in (t′1, . . . , t′m) in a many-to-many relation. Us-
ing a substitution operation just as in STSG, a source tree for an input
sentence is derived, while the tree fragments on the target side at the
same time derive a translation. Thereby linked non-terminals have to
be replaced simultaneously with the tree fragments of a rule, and the
order of the tree fragments has to be preserved in the derived tree.

Two different flavors of STSSG have been proposed. In the original
formulation (Zhang et al., 2008b,c), the tree fragments of one tree se-
quence need to be adjacent in the final derived tree, i. e. they have
to substitute into non-terminal leaf nodes which are consecutive in
the frontier of the tree fragment into which they substitute. Sun et al.
(2009) give up on this contiguity constraint and use a flavor of STSSG
which allows for non-contiguous tree sequences in the rules. We will refer
to it as non-contiguous STSSG. Consider ex. 4.31 for illustration.
Example 4.31 (STSSG for CDTU). Figure 54 shows two STSSG rules
translating ab to a1b1a2b2. They derive the CDTU in figure 32(i). Rule
ra induces the translation unit 〈a; a1, a2〉 and rule rb generates the trans-
lation unit 〈b; b1, b2〉. This example shows a non-contiguous STSSG.
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rd: X → X

X 1 d X 1 d X 1

rc: X → X 1 , X

X 1 c X 1 c

rb: X → X , X 1

X 1 b b

ra: X → X

a a

Figure 55: Non-contiguous STSSG/MBOT rules which derive an IO align-
ment

Under the contiguity constraint, rule ra is not a valid STSSG rule since
the two co-indexed non-terminal leaves on the target side are sepa-
rated by the terminal a2.

While the original publications (Zhang et al., 2008b,c; Sun et al.,
2009) provide some more details than what we have presented here,
the formal properties of STSSG itself have not been studied. However,
MBOT, which will be presented in the next section, is a special case
of non-contiguous STSSG, in which only tree sequences of length 1
are allowed on the source side (Maletti, 2011). It thus follows from the
results of the generative capacity of MBOTs (Gildea, 2012) that non-
contiguous STSSG has the same weak generative capacity as LCFRS on
the source and the target side. It is able to induce complex alignment
configurations. The resulting synchronous parse tree structures are
different from those produced by SLCFRS. Ex. 4.32 shows how an
IO alignment is derived. In contrast to MBOT, non-contiguous STSSG
can derive CDTUs which are discontinuous on the source side, i. e. the
bottom-up version of the CDTU in figure 32(i). The rules for that are
the same as in figure 54, only that source and target sides are swapped.
Example 4.32 (STSSG for IO alignment). Figure 55 shows a STSSG
derivation for the IO alignment in figure 30(i). This STSSG is non-
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contiguous. In comparison to the SLCFRS derivation in figure 47(i),
note how rule rd introduces the discontinuity by means of linking the
source non-terminal leaf X to two target non-terminal leaves and how
rules rc and rb pass it further down.

The motivation for defining STSSG has not been an adequate mod-
eling of alignment, but rather to improve the translation accuracy of
tree-to-tree translation. In syntax-based models, the translation rules
are constrained not only by the word alignment but also by a syn-
tactic parse tree on the source and/or the target side. SCFG or STSG
rules can only describe syntactic phrases, i. e. words which are in the
yield of a node in the parse tree together with the corresponding tree
fragment. This severely restricts the space of possible translation rules.
By allowing for sequences of tree fragments, which do not necessar-
ily correspond to a syntactic constituent in the tree, i. e. non-syntactic
phrases, STSSG is an attempt to bridge the gap between syntax-based
and (hierarchical) phrase-based translation models. While the contigu-
ous definition of STSSG is well-suited for translating between non-
isomorphic trees in which contiguous sequences of words are aligned
to each other, the non-contiguous version also allows to capture cases
where the sequences which translate to each other are non-contiguous.

Multi Bottom-up Tree Transducer

Arguing that STSSG is too powerful for SMT and therefore leads to
noisy translation rules, a group around A. Maletti has worked on us-
ing (local, linear, non-deleting extended) Multi Bottom-up Tree Transduc-
ers (MBOTs) (Arnold and Dauchet, 1982; Lilin, 1981) for SMT, primar-
ily for string-to-tree translation (Maletti, 2010b). One can view MBOTs
as STSSGs in which the length of the sequence of tree fragments on
the source side is constrained to 1 (Maletti, 2011). We will use this
perspective here instead of introducing the tree transducer notation.
Accordingly the rules have the following form

t → (t′1, . . . , t′m)

where t is a tree fragment for the source side, and (t′1, . . . , t′m) is an
ordered sequence of tree fragments for the target side. Each non-
terminal leaf in t is linked with one or several non-terminal leaves in
(t′1, . . . , t′m), while each non-terminal leaf in (t′1, . . . , t′m) is linked with
exactly one non-terminal leaf in t. See the referenced literature and
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Engelfriet et al. (2009) for details and a formal definition. Figures 54
and 55 are also examples for MBOTs since, in each rule, the source
tree sequence has length 1, and also the linking relation is as required
(1-to-n with n ≥ 1).

Gildea (2012) shows that the class of translations that are generated
by MBOTs is a subclass of the translations generated by LCFRS. In par-
ticular, on the source side, the language of an MBOT is context-free,
while it has the same weak generative capacity as LCFRS on the target
side. Complex alignment configurations which require discontinuous
constituents on the source side consequently lie beyond the alignment
capacity of MBOTs. This is the case for CDTUs which are discontinu-
ous on the source side. In figure 54, the MBOT rules for the derivation
of a CDTU which is discontinuous on the target side are shown. Note
that because of the asymmetry of the MBOT, the source and the tar-
get side of an MBOT rule cannot just be swapped to translate into the
inverse direction.

While the first publications of MBOT for SMT were of a rather theo-
retical nature, an SMT system using weighted MBOT has been imple-
mented (Braune et al., 2013). Details and experimental results will be
provided in section 5.4.2. Besides the favorable algorithmic properties
of MBOT, the motivation for using it in an SMT system is similar as the
one for STSSG: extending translation models based on STSG in order
to build better syntax-based translation systems. A. Maletti and col-
leagues thereby focus on string-to-tree translation, acknowledging the
need for discontinuities when constraining the target sentence with a
parse tree, as noted by Wellington et al. (2006) (Seemann et al., 2015a).

Miscellaneous

Given the evidence that natural language exceeds the power of
context-free formalisms and also TAG, Nederhof and Vogler (2012)
introduce Synchronous (Simple) Context-Free Tree Grammar (SCFTG) as
a formalism for machine translation. Simple Context-Free Tree Gram-
mars of rank k are weakly equivalent to well-nested (k + 1)-LCFRS
(Kanazawa, 2009). SCFTG is thus at least as powerful as STAG, but in
addition some of the generative capacity of LCFRS is added. To the
best of the author’s knowledge, SCFTG has merely been of theoretical
interest at the intersection of machine translation and formal grammar
theory.
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Machine translation has also been pursued within the Grammati-
cal Framework6 (Ranta, 2004), whose formal back-end is equivalent to
Parallel Multiple Context-Free Grammar (PMCFG) (Ljunglöf, 2004), a
more expressive variant of Multiple Context-Free Grammar (MCFG).
The machine translation approach chosen is rather rule-based than sta-
tistical, and thus follows an approach which is different from the work
presented in this and the following chapter. Instead of low-level syn-
chronous rules, rich monolingual PMCFGs are used for parsing the
surface string into an abstract representation and generating a target
surface string from there.

It was also noted in various contexts that discontinuous constituents
emerge when binarizing synchronous grammars of continuous yields,
e. g. SCFG, with rank ≥ 4 (Melamed, 2003; Rambow and Satta, 1999).
See also ex. 2.69, p. 80. Grammars of maximally rank 2 are desirable for
parsing and translation for efficiency reasons. As a remedy, in order
to efficiently parse SCFGs and its relatives, grammars are, for exam-
ple, stipulated to be of rank 2 by means of the extraction algorithm
itself (e. g. Chiang, 2007), or synchronously binarized as far as possi-
ble, ignoring the non-binarizable rules during decoding (e. g. Zhang
et al., 2006). It was also worked out that, since translation grammars
are highly lexicalized and the terminals serve as anchors of the rule
over the input sentence, not all grammar rules of rank ≥ 2 are equally
problematic in terms of parsing complexity (Hopkins and Langmead,
2010). In contrast, Melamed (2003) argues for a more powerful formal-
ism which is able to model discontinuous constituents (GMTG, see
p. 155).

4.5 conclusion

This chapter has introduced and defined the concept of Synchronous
Linear Context-Free Rewriting Systems. It is a generalization of SCFG
to constituents which span tuples of strings, i. e. which may be dis-
continuous on the source and/or the target side. This is the crucial
characteristic which allows the derivation of the complex alignment
configurations as they have been described in the previous chapter.
Sample grammar fragments for those configurations were provided
in section 4.2.2.

6 http://www.molto-project.eu/, accessed on February 13, 2018.
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SLCFRS is furthermore the extension of LCFRS or SRCG to the syn-
chronous case. Notions have been taken from the parsing literature,
and definitions have been extended and adapted accordingly.

The investigation of the empirical alignment capacity of different
variants of SCFG from section 3.2 was continued in this chapter for
SLCFRS. Our main focus of attention was the fan-out v of a grammar
which is required to hierarchically align the same variety of manually
word-aligned data sets. The reason for that is that the bitext parsing
complexity and also the translation complexity are directly dependent
on v. We found that with an SLCFRS of rank 2 and fan-out 42|2 all
alignments occurring in the data can be generated. This means that
in order to cover the full range of alignments and translations in the
data sets with a Hiero-like grammar, the smallest possible extension
from SCFG towards mild context-sensitivity is sufficient: each pair of
non-terminals spans a pair of tuples of strings where the tuple length
is at most 2, while for SCFG the tuples’ length is 1.

We reviewed previous approaches to translation modeling beyond
phrase-based and SCFG-based models, including their motivation for
doing so as well as their alignment capacity with respect to complex
alignment configurations. Besides the alignment capacity of a formal-
ism, its expressiveness for adequately modeling the syntax of the indi-
vidual languages and the possibility to model non-syntactic phrases
in syntax-based translation systems are motives for using grammar
formalisms beyond SCFG.

While GMTG and RCT are the most similar formalisms to SLCFRS
from a formal point of view, the motivations for proposing and design-
ing them are very different from our approach. The results by Galley
and Manning (2010) are motivating for our direction of research. By
realizing a discontinuous phrase-based system, they are likewise able
to induce the complex alignment configurations, without following a
hierarchical, tree-based approach. In their Chinese-to-English experi-
ments, their system outperforms a standard phrase-based and a hier-
archical system in terms of bleu score, thus showing that being able
to induce the complex alignment configurations improves translation
quality.



5
H I E R A R C H I C A L M A C H I N E T R A N S L AT I O N W I T H
D I S C O N T I N U O U S P H R A S E S

The innovation we put forward in this chapter is to use weighted Syn-
chronous Linear Context-Free Rewriting System (SLCFRS) as the transla-
tion model formalism for statistical machine translation (SMT). Con-
ceptually, this grammar formalism is very close to Synchronous Con-
text-Free Grammar (SCFG), with the addition that non-terminals span
tuples of strings instead of just strings on either side of the bitext. Just
as an SCFG, an SLCFRS can be used for synchronous parsing of paral-
lel sentences as well as for translating monolingual sentences. For the
latter, the source projection of the synchronous grammar is used to
parse the input text, thereby generating target side derivations whose
yields are translations.

The foundations for this chapter have been laid in previously pre-
sented material. On the one hand, in chapter 4, the grammar formal-
ism SLCFRS has been introduced and shown to derive the alignment
configurations which occur in aligned data, including the complex
alignment configurations. On the other hand, a description of the most
commonly used definitions and techniques in the context of tree-based
SMT using SCFG was provided in section 2.2.5.

We will continue by defining and implementing a statistical ma-
chine translation system which uses a translation model based on
SLCFRS. As this is a tree-based (or syntax-based) approach, naturally,
the interaction between individual translational correspondences is hi-
erarchical. The focus in this chapter will be on string-to-string models,
i. e. on formal, not on linguistically motivated, translation grammars.
In particular, we will follow the approach of hierarchical phrase-based
(Hiero) systems (cf. p. 83). They use the same kind of phrases as a
phrase-based system, but allow for a hierarchical combination of the
phrases.

Since SLCFRS is a grammar formalism which is able to model
discontinuous constituents, with our approach, the notion of a
phrase is broadened by also allowing discontinuous phrases. They are
necessary for the modeling of certain alignment structures as shown

169
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in chapter 3. In summary, we present an approach for hierarchical
machine translation with discontinuous phrases.

The translation system which is described in this chapter has al-
ready been presented in less detail in the following conference publi-
cation:

Kaeshammer, M. (2015). Hierarchical machine translation
with discontinuous phrases. In Proceedings of the Tenth Work-
shop on Statistical Machine Translation, pages 228–238, Lis-
bon, Portugal. Association for Computational Linguistics.

5.1 model

Recall the general SMT framework which has been presented in sec-
tion 2.2.1. The hierarchical machine translation model with discontin-
uous phrases is situated in the same context.

Given a source sentence f and an SLCFRS G = (Ns, Nt, Ts, Tt, Vs, Vt,
P, Ss, St), the best translation ê is the target yield of the highest scoring
SLCFRS derivation d whose source yield is f . More precisely, repeated
from equation (2.6):

ê ≈ e

(
arg max

d s.t. f(d)= f
P(e, d| f )

)
(5.1)

where e is the target yield e(d) of the derivation d in scope. For the
notion of derivation as defined for SLCFRS, see def. 4.10, p. 135.

5.1.1 Model Definition

Generally, given f and an SLCFRS G, many derivations will have f
as the source side yield, leading to many (potentially different) target
side yields, meaning possible translations e; i. e. T (G, f ) will be large.
As it is standard in SMT, we adopt a log-linear model over derivations
d to weight those translation options:

P(e, d| f ) ∝ ∏
i

φi(d)λi (5.2)

φi are features defined on the derivations of the SLCFRS G, λi are
feature weights to be set during tuning. The model definition then
follows the one that is usually used for SCFG (see p. 82ff.).
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Most of the features that we define are local to the synchronous
rules which are used during the derivation d. We define them as prod-
ucts of feature values on those rules:

φi(d) = ∏
r∈d

φi(r) (5.3)

The most notable exception is, as for SCFG-based models, an n-gram
language model providing a feature φLM(d) = PLM(e) for the prob-
ability of seeing the target sentence e as derived by d. P(e, d| f ) then
becomes:

P(e, d| f ) ∝ PLM(e)λLM ∏
i �=LM

∏
r∈d

φi(r)λi (5.4)

The features i �= LM can conveniently be formalized as features in
a weighted SLCFRS. The weight of an SLCFRS derivation d is defined
as the product of the weights of the rules which are used in d.
Definition 5.1 (Weighted Synchronous Linear Context-Free Rewrit-
ing System). A weighted Synchronous Linear Context-Free Rewriting Sys-
tem is a tuple

G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St, ω)

where (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) is an SLCFRS and ω : P → R≥0 is
a weight function which maps from rules to real numbers.

Definition 5.2 (Weight of a derivation (Weighted SLCFRS)). Let G =
(Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St, ω) be a weighted SLCFRS and 〈ws, wt〉 ∈
T∗

s × T∗
t a pair of strings. Let Γs, Γt, Δs, Δt ∈ I∗ and let Γs and Γt be

synchronous.

1. Let r ∈ P. The weight of one derivation step 〈Γs, Γt〉 ⇒r
G,〈ws,wt〉

〈Δs, Δt〉 is defined as

ω(〈Γs, Γt〉 ⇒r
G,〈ws,wt〉 〈Δs, Δt〉) = ω(r)

2. Let r1, . . . , rm ∈ P, m ∈ N. Let 〈Γs, Γt〉 ⇒r1
G,〈ws,wt〉 . . . ⇒rm

G,〈ws,wt〉
〈Δs, Δt〉 be a derivation d. The weight of d is defined as

ω(〈Γs, Γt〉 ⇒r1
G,〈ws,wt〉 . . . ⇒rm

G,〈ws,wt〉 〈Δs, Δt〉) =
m

∏
j=1

ω(rj)
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Using the less formal notation (see p. 135), we write for the latter

ω(d) = ∏
r∈d

ω(r) (5.5)

In the context of the log-linear modeling, we define as it has been
done for SCFG:

ω(r) = ∏
i �=LM

φi(r)λi (5.6)

This results in the following model definition

P(e, d| f ) ∝ PLM(e)λLM ω(d) (5.7)

and overall search objective

ê ≈ e

(
arg max

d s.t. f(d)= f
PLM(e(d))λLM

m

∏
j=1

∏
i �=LM

φi(rj)
λi

)
(5.8)

with d being a derivation consisting of the rules r1 . . . rm. Note that
this objective is the same as for SCFG-based translation (cf. equation
(2.15)). They however differ in the notion of the derivation d and the
rules r, and potentially in the features φi.

As for SCFG, this definition based on weighted SLCFRS has the
advantageous characteristic that finding the translation, i. e. deriva-
tion, with the best weight ω(d) or even the k-best translations can be
solved with dynamic programming algorithms. In section 5.3 we will
also describe how the language model feature can be integrated into
the search for the best translation.

5.1.2 Features

Let r = 〈rs, rt〉 be an SLCFRS rule. Besides the language model feature
PLM(e), we use the following standard features φi(r), which have been
proven successful in phrase-based and SCFG-based models:

• conditional translation probabilities in both directions P(rs|rt)
and P(rt|rs),

• lexical weighting scores lex(rs|rt) and lex(rt|rs) (Koehn et al.,
2003) that assess how well the terminals in the rule r translate
to each other,
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• a rule count penalty exp(1) with the help of which a preference
for derivations using more or fewer rules can be learned, and

• a target sentence length penalty exp(− |wt|), where |wt| is the
number of terminals that occur in rt, which allows the model to
learn a preference for longer or shorter translations.

In addition, we would like to characterize the amount of expres-
sivity beyond context-freeness of the applied rules. To that end, we
devise the following new features:

• gs, the source gap degree exp(fan-out(rs)− 1), and

• gt, the target gap degree exp(fan-out(rt)− 1),

where fan-out(r′), the fan-out of an LCFRS rule r′, is defined as the
fan-out of the left-hand side (LHS) non-terminal of r′. The gap de-
gree features allow to learn a preference for or against using the more
powerful SLCFRS rules for the source and the target side, as opposed
to using SLCFRS rules of fan-out 21|1 which do not generate gaps
and which correspond to SCFG rules. The term gap degree (def. 2.12,
p. 20) has been coined by Maier and Lichte (2011) as a measure for the
amount of discontinuity in syntactic structures. Note that in contrast
to their definition, in which the gap degree of a syntactic structure
is the maximum of any of its nodes, the value of the source and tar-
get gap degree feature of a derivation d will be the sum of all source,
respective target, gaps which are present in the derivation.

We also use glue rules, as proposed by Chiang (2007), see p. 85. They
allow for a monotone combination of synchronous continuous con-
stituents as in a phrase-based model, and model the beginning and
end of sentences. Here they are shown in the SLCFRS syntax:

〈S(Y1Y2) → S 1 (Y1)X 2 (Y2) , S(Z1Z2) → S 1 (Z1)X 2 (Z2)〉
〈S(〈s〉) → ε , S(〈s〉) → ε〉
〈S(Y1〈/s〉) → S 1 (Y1) , S(Z1〈/s〉)) → S 1 (Z1)〉

〈s〉 and 〈/s〉 are special terminal symbols for the purpose of modeling
beginning and end of sentences. S is the source start symbol Ss as well
as the target start symbol Stof the grammar G. A glue rule feature
φglue is set to exp(1) for the first of the glue rules and to exp(0) for all
other rules. Its weight λglue is also calibrated during tuning. The other
two rules do not have any dedicated feature.
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5.2 grammar learning

The synchronous grammar rules are learned automatically in a similar
fashion as those for SCFG-based Hiero machine translation, described
in Chiang (2005) and Chiang (2007). See p. 83ff.

5.2.1 Rule Extraction and Scoring

The SLCFRS rules for the translation model are extracted from a cor-
pus of parallel sentences that have already been word-aligned (cf. sec-
tion 2.2.3). Following Och and Ney (2004) and Chiang (2005), we ex-
tract all rules that are consistent with the given word alignment A of
a sentence pair 〈 f J

1 , eI
1〉 in a two-step procedure. First, inital phrase pairs

are extracted. They correspond to terminal rules. Second, hierarchical
rules are created by replacing phrase pairs that are contained within
other phrase pairs with non-terminals and variables as will be detailed
in the following.

The crucial difference to previous work on translation with SCFG is
that initial phrases do not have to be continuous. Instead, a phrase is
a set of word indices, as in Galley and Manning (2010), i. e. a phrase s̄
of a sentence sL

1 is s̄ ⊂ {1, 2, . . . , L}. Given 〈 f J
1 , eI

1〉 and a corresponding
word alignment A, a phrase pair 〈 f̄ , ē〉 with f̄ ⊂ {1, . . . , J} and ē ⊂
{1, . . . , I} is called consistent with A if the following holds:

∀(j, i) ∈ A : j ∈ f̄ ↔ i ∈ ē and ∃j ∈ f̄ , i ∈ ē : (j, i) ∈ A

I. e. words that are part of this phrase pair 〈 f̄ , ē〉 may not be aligned
to words outside this phrase pair, and 〈 f̄ , ē〉 must contain at least one
alignment link. A hierarchical phrase pair is one initial phrase pair 〈 f̄ , ē〉
(called the base phrase pair) together with a set of initial phrase pairs
{〈 f̄1, ē1〉, 〈 f̄2, ē2〉, . . . , 〈 f̄m, ēm〉}, m ∈ N, (called holes) for which the fol-
lowing must hold:

f̄i ⊂ f̄ and ēi ⊂ ē, 1 ≤ i ≤ m, and

f̄i ∩ f̄ j = ∅ and ēi ∩ ēj = ∅, 1 ≤ i, j ≤ m.

I. e. each hole is a subset of the base phrase pair and the holes are
mutually non-overlapping. Additional constraints may be defined on
initial and hierarchical phrase pairs and the corresponding rules, see
section 5.2.2.
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For each initial phrase pair 〈 f̄ , ē〉, a terminal SLCFRS rule of the
following form is created and added to the set of extracted rules P:

〈X(ρ f̄ ( f )) → ε, X(ρē(e)) → ε〉

ρ f̄ and ρē are range vectors (def. 2.32, p. 27). They are applied to the
source sentence f and the target sentence e respectively, to obtain the
corresponding yields. ρ f̄ and ρē are constructed via the block sets
Ω f̄ and Ωē respectively (def. 2.7, p. 19) in the following manner: For
1 ≤ i ≤ |Ωx|, the ith block oi of Ωx defines the ith range of ρx with
ρx(i).l = min(oi)− 1 and ρx(i).r = max(oi) for x ∈ { f̄ , ē}.

From each hierarchical phrase pair

(〈 f̄ , ē〉, {〈 f̄1, ē1〉, 〈 f̄2, ē2〉, . . . , 〈 f̄m, ēm〉}),

an SLCFRS rule of the form

〈X(α1, . . . , α|Ω f̄ |) → X 1 (Y
(1)
1 , . . . , Y(1)

|Ω f̄1
|) · · ·X m (Y(m)

1 , . . . , Y(m)
|Ω f̄m |),

X(β1, . . . , β|Ωē|) → X 1 (Z(1)
1 , . . . , Z(1)

|Ωē1 |
) · · ·X m (Z(m)

1 , . . . , Z(m)
|Ωēm |)〉

is created as explained in the following. We assume any order for
the set of holes. For 1 ≤ k ≤ m, the kth hole corresponds to one
synchronous right-hand side (RHS) non-terminal labeled X, synchro-
nized via the index annotation k. Furthermore, for 1 ≤ j ≤ |Ω f̄k

|, the

jth block in the block set Ω f̄k
is associated with a variable Y(k)

j , and
for 1 ≤ i ≤ |Ωēk |, the ith block in the block set Ωēk is associated with a
variable Z(k)

i .
Finally, we need to explain the LHS arguments α and β. The source

LHS arguments αj′ , 1 ≤ j′ ≤ |Ω f̄ |, are assembled in the following way.
We start with an empty αj′ and assume the j′th block oj′ of Ω f̄ to be
ordered according to the natural increasing order of the integers in
oj′ . For each element j′′ ∈ oj′ , we check whether j′′ is contained in the

source side f̄k of the kth hole, for 1 ≤ k ≤ m. If yes, the variable Y(k)
j

which is associated with the block oj of Ω f̄k
in which j′′ is contained

is appended to αj′ , unless αj′ currently ends in Y(k)
j . If j′′ is not part of

any hole, then the yield 〈j′′ − 1, j′′〉( f ) is appended to αj′ . We proceed
accordingly with the target LHS arguments βi′ , 1 ≤ i′ ≤ |Ωē|. We start
with an empty βi′ and assume the i′th block oi′ of Ωē to be ordered ac-
cording to the natural increasing order of the integers in oi′ . For each
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je1 ne2 veux3 plus4 jouer5

I1 do2 not3 want4 to5 play6 anymore7

Figure 56: Word alignment for ex. 5.3

element i′′ ∈ oi′ , we check whether i′′ is contained in the target side ēk

of the kth hole, for 1 ≤ k ≤ m. If yes, the variable Z(k)
i which is associ-

ated with the block oi of Ωēk in which i′′ is contained is appended to
βi′ , unless βi′ currently ends in Z(k)

i . If i′′ is not part of any hole, then
the yield 〈i′′ − 1, i′′〉(e) is appended to βi′ .

Note that instead of having a separate rule creation procedure for
initial phrase pairs, we could equally treat them as hierarchical phrase
pairs with an empty set of holes.
Example 5.3 (SLCFRS rule extraction). Consider the word-aligned
sentence pair in figure 56. In the following we list some initial phrase
pairs and SLCFRS rules yielded by the extraction procedure.

Initial phrase pairs:

1. jouer {5} | to play {5, 6}

2. veux {3} | do . . . want {2, 4}

3. ne veux plus {2, 3, 4} | do not want . . . anymore {2, 3, 4, 7}

4. ne veux plus jouer {2, 3, 4, 5} |

do not want to play anymore {2, 3, 4, 5, 6, 7}

5. . . .

Rules:

1. 〈X(jouer) → ε, X(to play) → ε〉

2. 〈X(veux) → ε, X(do , want) → ε〉

3. 〈X(ne veux plus) → ε, X(do not want , anymore) → ε〉

4. 〈X(ne veux plus jouer) → ε, X(do not want to play anymore) → ε〉

5. 〈X(ne Y1 plus) → X 1 (Y1), X(Z1 not Z2 , anymore) → X 1 (Z1, Z2)〉
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6. 〈X(ne veux plus Y1) → X 1 (Y1),

X(do not want Z1 anymore) → X 1 (Z1)〉

7. 〈X(ne Y1 plus Y2) → X 1 (Y1)X 2 (Y2),

X(Z1 not Z2Z3 anymore) → X 1 (Z1, Z2)X 2 (Z3)〉

8. . . .

Rule #1 for example is obtained from phrase pair #1. Phrase pair #2
is discontinuous on the target side. The range vectors created from
it are ρ f̄ = 〈〈2, 3〉〉 and ρē = 〈〈1, 2〉, 〈3, 4〉〉 yielding rule #2. It is an
SLCFRS rule where the LHS non-terminal has a source fan-out of vs =
1 and a target fan-out of vt = 2 in accordance with the lengths of ρ f̄
and ρē. Rule #5 is a hierarchical rule. It was created from the initial
phrase pair #3 by substituting phrase pair #2. For this rule, m = 1,

Ω f̄ = {{2, 3, 4}},

Ωē = {{2, 3, 4}, {7}},
Ω f̄1

= {{3}},

Ωē1 = {{2}, {4}}.

The one block of Ω f̄1
is mapped to the variable Y1; the first

block of Ωē1 is mapped to the variable Z1 and the second
block to Z2. α originates from 〈(〈1, 2〉( f ))Y1(〈3, 4〉( f ))〉, β from
〈Z1(〈2, 3〉(e))Z2, (〈5, 6〉(e))〉.

Phrase pairs #1 and #4 in ex. 5.3 are equally extracted by the stan-
dard phrase extraction algorithm used for phrase-based systems. Fur-
thermore, rules #1, #4 and #6 are also generated by the rule extrac-
tion procedure of a hierarchical phrase-based, i. e. SCFG-based, sys-
tem. Rule #6, for example, would usually be written down as

X → 〈ne veux plus X 1 , do not want X 1 anymore〉

However, just as Galley and Manning (2010), we extract many more
phrase pairs, namely those which capture discontinuous translation
units, e. g. phrase pairs #2 and #3.1 On top of that, we furthermore
extract rules which are discontinuous and hierarchical at the same time.

1 See the related work in section 5.4.1 for a more detailed comparison of our hierar-
chical translation system to the phrase-based one by Galley and Manning (2010).
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They capture relationships between possibly discontinuous translation
units. Rule #5 is such an example. It represents the translation unit
〈ne, plus; not, anymore〉, which is discontinuous on the source and the
target side, and its interaction with a second translation unit that is
discontinuous on the target side, namely constituent X 1 with a source
fan-out of 1 and a target fan-out of 2. The LHS non-terminal also has
a target fan-out of 2, where the gap originates from the position of
the infinitival verb in the example training sentence. Rule #7 is sim-
ilar, however it additionally explicitly models the relationship to the
constituent which might represent the infinitival verb (X 2 ).

The proposed extraction procedure yields a monotone (def. 4.5,
p. 133) and ε-free SLCFRS (def. 4.6, p. 133), both characteristics which
simplify parsing. Source and target side rules are extracted in a way
which guarantees that the variables which present the arguments of
one RHS non-terminal occur in the same relative order in the argu-
ments of the LHS non-terminal. Furthermore, no ε-rules are created
during the extraction procedure: Each LHS argument is created from
a block of a block set, which is a partition, and therefore by definition
non-empty.

For rule scoring, i. e. to estimate the parameters of the translation
probabilities P(rs|rt) and P(rt|rs) and also of the lexical weighting
lex(rs|rt) and lex(rt|rs), we use the same heuristic methodology which
is generally applied for phrase-based and hierarchial phrase-based
translation grammar learning (Koehn et al., 2003; Och and Ney, 2004;
Chiang, 2007). Since no SLCFRS derivations are observable in the train-
ing data, we cannot obtain real counts for how often a rule was used
in the training data. Instead a distribution is hypothesized based on
the extracted rules and their counts, and taken as the real, observed
data. Then P(rs|rt) and P(rt|rs) are estimated as relative frequencies:

P(rs|rt) =
count(〈rs, rt〉)

count(rt)
P(rt|rs) =

count(〈rs, rt〉)
count(rs)

For the calculation of the lexical weighting scores, a word alignment
A between the source terminal symbols f ∈ Ts which occur in rs
and the target terminal symbols e ∈ Tt which occur in rt, and lexical
translation probabilities t( f |e) and t(e| f ), which are a byproduct of
word-aligning the training corpus, are required. Then:

lex(rs|rt) = ∏
j s.t. (j,i)∈A

∑i s.t. (j,i)∈A t( f j|ei)

|{i s.t. (j, i) ∈ A}|
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lex(rt|rs) is calculated accordingly. If an extracted rule 〈rs, rt〉 occurs
with different alignments A in the training data, we use the most fre-
quent alignment. This is in accordance with the Moses implementation,
but different than described in Koehn et al. (2003).

5.2.2 Practical Considerations

Extraction Constraints

Enumerating all discontinuous initial phase pairs is exponential in
the maximal phrase length. Therefore, in addition to the constraints
which are usually applied for SCFG extraction (e. g. maximal phrase
length, number of non-terminals and others, see p. 84), we also filter
the extracted grammar rules according to the following criteria. They
alleviate the problem of spurious ambiguity, help to keep the grammar
at a manageable size and allow to implement parsing efficiently.

• The size of a gap, i. e. the number of words which are in a gap,
is limited, e. g. to 10.

• Unaligned blocks are not allowed, i. e. each block in an initial
phrase pair needs to contain at least one alignment link.

• Phrase pairs with more than one block on either side are only
allowed in synchronous spans of 〈 f J

1 , eI
1〉 which contain at least

one complex alignment configuration (section 3.1).

• The source non-terminals as well as the target non-terminals of
the SLCFRS rules are restricted to a maximal fan-out. Or, putting
it differently, the number of blocks in the initial phrase pairs is
limited. We set this maximum to 2 on each side. This is moti-
vated by the experimental results presented in section 4.3. They
show that all manual alignments in various data sets can be cov-
ered with a (2, 42|2)-SLCFRS.

Rule Text Format

The SLCFRS rules are written to a text file during the extraction pro-
cedure, and also the complete translation grammar itself is stored in
a text file. We accordingly devise a new SLCFRS rule text format. It is
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inspired by the format used in Moses2, and extended to also support
non-terminals with arguments. In this format, each line contains one
rule 〈rs, rt〉 ∈ P of the grammar G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St) in
the following notation:

rs ||| rt

where rs and rt are both LCFRS rules. They are formatted as a b c
each, with x ∈ {s, t}, and:

a. the arguments of the LHS non-terminal of rx, delimited by the
gap symbol {,}, i. e. (Tx ∪ Vx ∪ {{,}})+. For ease of notation, a
mapping function fx from variables Vx to natural numbers N0
is used, such that a variable v ∈ Vx is then formatted as { fx(v)}.
E. g. the {0} cat {,} {1}.

b. the RHS of rx, i. e. a sequence of non-terminals with their ar-
gument variables, also applying the mapping function fx. To
be able to easily distinguish non-terminals from terminals, non-
terminals are framed by square brackets. E. g. [X(0,2)] [X(1)].

c. the LHS non-terminal symbol of rx, also framed by square brack-
ets. E. g. [S].

The RHS non-terminals in b of rs and rt are synchronized by their
order in this format, not by indices. See ex. 5.4 for illustration.
Example 5.4 (Rule text format). This example shows two SLCFRS
rules and the same rules in the SLCFRS rule text format. The second
rule would be printed to one line and only contains a line break here
because of the narrow line width.

〈X(veux) → ε, X(do , want) → ε〉
〈X(ne Y1 plus Y2) → X 1 (Y1)X 2 (Y2),

X(Z1 not Z2Z3 anymore) → X 2 (Z3)X 1 (Z1, Z2)〉
veux [X] ||| do {,} want [X]

ne {0} plus {1} [X(0)] [X(1)] [X] |||

{0} not {1} {2} [X(0,1)] [X(2)] [X]

The mapping functions of the second rule are fs : Y1 → 0, Y2 → 1 and
ft : Z1 → 0, Z2 → 1, Z3 → 2. Note how the order of the RHS of the

2 See http://www.statmt.org/moses/?n=Moses.SyntaxTutorial, accessed on May 15,
2016.
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target projection of the second rule is reversed in the rule text format
in order to represent the synchronization of the SLCFRS rule.

Training Implementation

The implementation of the SLCFRS training is similar to the training
script of the Moses toolkit.3 It implements a similar sequence of steps
and reuses some well-established ideas. However, our training script
slcfrs-extract supports less options and is focused on one specific task,
namely, learning a Hiero translation grammar which supports discon-
tinuous phrases.

Word alignment, symmetrization and the calculation of the lexical
translation probabilities are performed using an external tool (see sec-
tion 2.2.3). Our training script slcfrs-extract takes the parallel tokenized
corpus, the word alignments of this corpus and the lexical translation
tables in both directions, t(e| f ) and t( f |e), as input. The rule extrac-
tion itself, as described in section 5.2.1, is implemented, in Python. It
outputs two files, one for each translation direction. Those files are
then sorted with Unix sort such that identical rules are found in sub-
sequent lines and that rules with identical source sides but different
target sides are also found next to each other. Given such input, the
rule scoring can be implemented efficiently (again in Python). In the
end, the two translation tables - one containing P(rs|rt) and the lexical
weighting feature scores, the other containing P(rt|rs) - are merged.

The training in slcfrs-extract can make use of several CPU cores to
speed up training. The time-consuming steps of rule extraction and
rule scoring are parallelized by splitting the corresponding input files
into smaller chunks which are processed in parallel and then merged
together again afterwards.

5.3 decoding

The decoder presented in this section closely follows the methodology
of current string-to-string SCFG decoders (see section 2.2.5): exhaus-
tive monolingual parsing using the source projection of the grammar
and then beam search to find the overall best derivation. The differ-
ence is that it is able to produce source and target discontinuities as

3 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/

train-model.perl, accessed on May 16, 2016.
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they are represented in SLCFRS rules. The objective is the general
SMT objective as defined in equation (2.6): finding the target sequence
e generated by the highest scoring derivation d according to the model
definition in section 5.1 for a given input sentence f .

5.3.1 LCFRS Parsing

We parse the input sentence with a bottom-up CYK parser using
the source projection grammar Gs = projs(G) of the SLCFRS trans-
lation grammar G = (Ns, Nt, Ts, Tt, Vs, Vt, P, Ss, St). This corresponds
to monolingual Linear Context-Free Rewriting System (LCFRS) pars-
ing (see section 2.1.4), with some additions to ensure valid derivations
on the target side.

Using the rules in P, parse items are built. They are of the form
[A, B,ρ, k] where A ∈ Ns is a source side non-terminal symbol and
B ∈ Nt is a target side non-terminal symbol. ρ is a range vector in
f of dimension dim(A) identifying which part of the input has been
derived by this item. Besides the target side label B itself, the item is
also aware of its dimension k = dim(B) in order to ensure valid target
side derivations. The details of the parser are presented by means of
a weighted deduction system (cf. p. 37).

The scan rule creates items for terminal rules, i. e. rules where the
source and the target RHS are ε.

scan:
ω(〈rs, rt〉) : [A, B,ρ, dim(B)]

with the following side conditions:

1. 〈rs, rt〉 ∈ P with rs = A(α) → ε and rt = B(β) → ε,

2. there exists a φ s.t. φ(A(α)) = A(ρ) where φ is an instantiation
of rs with respect to f .

By definition of the instantiation, it holds that ρ( f ) = α.
The complete operation combines m antecendent items to a new

item.

complete:
w1 : [A1, B2,ρ1, k1] . . . wm : [Am, Bm,ρm, km]

w1 · . . . · wm · ω(〈rs, rt〉) : [A, B,ρ, dim(B)]
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with the following side conditions:

1. 〈rs, rt〉 ∈ P with rs = A(α) → A
1 l1

(α1) . . . A
m lm (αm) and rt =

B(β) → B
1 l1

(β1) . . . B
m lm (βm) and m > 0, and

2. for 0 < i ≤ m, ki = dim(Bj) where Bj is the target non-terminal
with index li, and

3. there exists a φ s.t. A(ρ) → A
1 l1

(ρ1) . . . A
m lm (ρm) is an instan-

tiation of rs with respect to f .

The goal item is an item which covers the complete input f :

goal: w : [Ss, St, 〈〈0, | f |〉〉, 1]

Intuitively, the condition about the instantiation means that when
creating a new item using a specific rule r, the variables and argu-
ments in r need to be consistently replaced with ranges of the input
sentence f . Roughly, this means that terminals and variables are in-
stantiated with ranges such that for ranges that are adjacent in an ar-
gument of the LHS non-terminal, the concatentation of the two ranges
has to be defined, i. e. r1 = l2 for 〈l1, r1〉 and 〈l2, r2〉. See def. 2.34, p. 28
for the formal definition of rule instantiation for LCFRS.

In the presented weighted deduction system, ω(〈rs, rt〉) is the
weight of the rule r = 〈rs, rt〉 as defined by the model, see equation
(5.6). For a weighted item w : I, w is the weight of the parse item
I, i. e. the weight of the SLCFRS derivation which lead to I (def. 5.2,
p. 171 and equation (5.5)). Note that while in the presented deduction
system the weight function is

f (w1, . . . , wm) = ω(r) ·
m

∏
j=1

wj ,

with wj being the weight of the jth antecedent, 1 ≤ j ≤ m, one could
equally well use the logarithm of the rule weights together with the
weight function

f (w1, . . . , wm) = log ω(r) +
m

∑
j=1

wj .

See also equation (2.7). In fact, an implementation would always use
log probabilities or weights for efficiency reasons and to avoid under-
flow problems when computing with very small probabilities. As the
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1: G: an SLCFRS grammar
2: f : the input string of length J
3: C = ∅
4: for all l s.t. 0 < l ≤ J do
5: for all range vectors ρ for f of yield length |ρ| = l do
6: for all items I = [A, B,ρ, dim(B)] which can be deduced with

scan or complete using items I1 . . . Im from C and a rule r of
rank m from P do

7: if I /∈ C then
8: add I to C
9: end if

10: add a hyperedge e with H(e) = I and T (e) = (I1, . . . , Im) and
label it r

11: end for
12: end for
13: end for

Algorithm 7: SLCFRS parsing procedure for translation

weights in the deduction system do not include the score for the lan-
guage model feature PLM(e), this deduction system cannot be used to
find the best translation according to the model in section 5.1. We will
turn to the search for the derivation with the best weight including
the language model score in the next section.

As for SCFG-based translation (section 2.2.5), the presented deduc-
tion system is used to compute the parse hypergraph of the input f
using the translation grammar G. This is done by deducing the items
in an ordered manner. Smaller items, i. e. items which cover less in-
put words from f , come before larger items to make sure that every
item is created after all its possible antecedents. Items are stored in a
chart C. Equal items are combined, thereby retaining their origin via
hyperedges. The pseudocode is provided in algorithm 7.

In contrast to context-free rules, formally the order of the RHS non-
terminals of r of an LCFRS or SLCFRS does not matter. Nevertheless,
we assume for the ease of formulation and implementation that each
RHS is an ordered list, e. g. ordered by the natural order of the indices
with which the non-terminals are annotated to indicate the synchro-
nization. The order of the items in the tail I1, . . . , Im then corresponds
to this order.
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Rules which behave identically in the described parsing procedure
are bundled together. Such a rule bundle comprises SLCFRS rules
〈rs, rt〉 with identical rs and identical LHS non-terminal B of identi-
cal dim(B) of rt.

The parsing procedure in algorithm 7 does not make use of the
weights specified in the weighted deduction system because the com-
plete parse hypergraph of f needs to be computed anyway to then
extend it to the actual search hypergraph in the next step. Neverthe-
less, the weights of the weighted SLCFRS can be used as estimates
for the final weights in order to perform, for example, early pruning
of unlikely translation hypothesis along hyperedges with very low
weights.
Example 5.5 (SLCFRS deduction and parse hypergraph for transla-
tion). Let us consider an SLCFRS translation grammar fragment G as
specified by the following rules

r1 : 〈X(ne, plus) → ε , X(not, anymore) → ε〉
r2 : 〈X(ne, plus) → ε , X(not, any longer) → ε〉
r3 : 〈X(manger) → ε , X(to eat) → ε〉
r4 : 〈X(manger) → ε , X(to consume food) → ε〉
r5 : 〈X(Y1 veux Y2Y3) → X 1 (Y1, Y2)X 2 (Y3) ,

X(does Z1 want Z2Z3) → X 1 (Z1, Z3)X 2 (Z2)〉
r6 : 〈X(ne veux plus Y1) → X 1 (Y1) ,

X(does not want Z1 anymore) → X 1 (Z1)〉

and the input

f = il ne veux plus manger .

Rules r1 and r2, and r3 and r4 form rule bundles respectively. Fig-
ure 57 depicts the parse hypergraph which represents the parse forest
which is generated when parsing f2 . . . f5 with G using the specified
deduction system. The order of the tail nodes is not represented in
this picture.4

Using r3 (or r4), the item [X, X, 〈〈4, 5〉〉, 1] is deduced with the scan
operation. With the argument numbering ξr3s(1) = manger and φ =
〈〈4, 5〉〉, X(〈4, 5〉) → ε is an instantiation of r3s with respect to f . Rule
r1 and r2 lead to the item [X, X, 〈〈1, 2〉, 〈3, 4〉〉, 2].

4 Weights are neglected in this example.
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1ne2 2veux3 3plus4 4manger5

[X, X, 〈〈4, 5〉〉, 1]

[X, X, 〈〈1, 2〉, 〈3, 4〉〉, 2]

[X, X, 〈〈1, 5〉〉, 1]

{r3, r4}

{r1, r2}

r5 r6

Figure 57: SLCFRS parse hypergraph for translation

The item [X, X, 〈〈1, 5〉〉, 1] can be created from the antecedents [X, X,
〈〈1, 2〉, 〈3, 4〉〉, 2] and [X, X, 〈〈4, 5〉〉, 1] and the rule r5 using the com-
plete deduction rule. With ξr5s(1) = Y1, ξr5s(2) = veux, ξr5s(3) = Y2,
ξr5s(4) = Y3 and

φ = 〈〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 5〉〉 ,

X(〈1, 5〉) → X 1 (〈1, 2〉, 〈3, 4〉)X 2 (〈4, 5〉) is an instantiation of r5s with
respect to f . Note also that the fan-out of the first RHS target non-
terminal X 1 in r5 is 2, just as the target dimension k of the first an-
tecedent, whereas the fan-out of the second RHS target non-terminal
X 2 is 1 which fits the target dimension of the second antecedent.

The application of the rule r6 (dashed hyperedge) leads to the same
item [X, X, 〈〈1, 5〉〉, 1]. Overall the hypergraph represents six deriva-
tions of this item.

5.3.2 Integration of the Language Model

As explained in section 5.1, the n-gram language model feature is not
local to the SLCFRS rules and can therefore not be integrated into the
deduction system in the same manner as the other features. When
using SCFG as the base formalism for SMT, the same issue arises (see
section 2.2.5). For SCFG, we have described how this increases the
search space and detailed one of the most popular approaches to deal
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with it, which is cube pruning. We will now describe how we extend
this approach to SLCFRS decoding.

While the deduction rules and parse items which have been pre-
sented for parsing with a grammar G depend on whether G itself is a
(S)CFG or (S)LCFRS, the parse hypergraph 〈V, E〉 (or parse forest) cre-
ated during parsing an input f with G is a general concept applying
to both CFG and LCFRS. This is because in both cases the derivations
correspond to context-free trees (cf. section 2.1.1 for LCFRS). In such a
hypergraph, a hyperedge e ∈ E represents the successful application
of a rule r (or of several rules if e is associated with a rule bundle)
deriving the parse item H(e) from the antecedents in T (e), no matter
whether G is a (S)CFG or a (S)LCFRS.

Recall the objective

ê ≈ e

(
arg max

d s.t. f(d)= f
PLM(e(d))λLM ω(d)

)
, (5.9)

cf. equations (5.7) and (5.8). In order to make its computation tractable,
we need to take advantage of the structure of the search space. During
deductive parsing, we have already taken advantage of the indepen-
dence assumptions in G resulting in the parse hypergraph. Roughly
speaking, it covers ω(d) in the equation, including all features ex-
cept the language model. We now extend it to the final weighted
search hypergraph where the weights include the language model
score, thereby taking into account the independence assumptions of
language modeling using n-grams, see equation (2.3). This leads to the
definition of search items, i. e. nodes in the search hypergraph, which
extend the parse items by the information which is necessary to com-
pute language model scores when combining subderivations.

Consider calculating a (partial) language model score for a trans-
lation hypothesis. Whether this hypothesis is generated by an SCFG
or an SLCFRS, results in the following major difference: in the case
of SLCFRS, the translation hypothesis, i. e. the target sequence, is not
necessarily continuous. It rather is a tuple of continuous blocks of tar-
get words. Let us consider, e. g., does not want . . . anymore as the target
yield of an SLCFRS derivation, and assume the usage of a bigram
language model for now (n = 2). Only once the gap between want
and anymore is filled, the language model probability which is con-
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tributed by anymore can be determined.5 Even though the language
model probability for want can be fully determined in this case, as
its previous word is known, the identity of want is crucial for com-
puting the language model score of the word which will fill the gap
towards the left, i. e. directly right of want. This means that in terms of
language model scoring, each continuous block in the target yield of
an SLCFRS non-terminal can be considered analogously to an SCFG
non-terminal and the target side words which are generated by it. For
the given example, these are does not want and anymore.

For SCFG decoding, one language model state s, roughly consisting
of the n − 1 left and right target boundary words, is recorded in each
item in the search hypergraph. Accordingly, for SLCFRS decoding, we
store a list of such language model states (s1, . . . , sk) in the search
items, one for each block in the target yield of the corresponding node.
The length of this list corresponds to the k in the parse item [A, B,ρ, k]
which is the fan-out of the target non-terminal B. The list of language
model states is then used when computing the language model score
along a hyperedge e from the arguments of the LHS non-terminal of
rt of the synchronous rule 〈rs, rt〉 which is associated with e. When
encountering a variable Z(i)

j ∈ Vt which constitutes the jth argument
of the ith RHS non-terminal of rt, we use the jth language model state
sj of the ith antecedent Ti(e).
Example 5.6 (SLCFRS search hypergraph for translation). We continue
with ex. 5.5, p. 185. Figure 58 shows the corresponding search hyper-
graph which expands the parse hypergraph. It assumes the use of a
bigram language model (n = 2). The search items therefore record
the one rightmost and leftmost word of each block of each translation
hypothesis.

Exploring the corresponding search hypergraph to find the best
derivation amounts to a theoretical time complexity of

O(|P|Jvs·(u+1)|T|vtu·2(n−1))

with |P| the number of rules in the SLCFRS G, J the length of the
input sequence f , |T| the number of possible target side words, u the
rank of G, typically u = 2, and n the order of the language model. The

5 Actually, the gap does not need to be completely filled. It just needs to be filled in a
way such that the n − 1 words left of anymore are fixed.



5.3 decoding 189

1
n

e 2
2
v

eu
x

3
3
p

lu
s 4

4
m

an
g

er
5

[X
,X

,〈
〈4

,5
〉〉

,1
,

((
to

,e
at
))
]

[ X
,X

,〈
〈4

,5
〉〉

,1
,

((
to

,f
o

o
d
))
]

[X
,X

,〈
〈1

,2
〉,
〈3

,4
〉〉

,2
,

((
n

o
t,

n
o

t)
,(

an
y

m
o

re
,a

n
y

m
o

re
))
]

[ X
,X

,〈
〈1

,2
〉,
〈3

,4
〉〉

,2
,

((
n

o
t,

n
o

t)
,(

an
y

,l
o

n
g

er
))
]

[X
,X

,〈
〈1

,5
〉〉

,1
,

((
d

o
es

,a
n

y
m

o
re
))
]

[ X
,X

,〈
〈1

,5
〉〉

,1
,

((
d

o
es

,l
o

n
g

er
))
]

r 3
r 4

r 1
r 2

r 5
r 5

r 5

r 5
r 6

r 6

Fi
gu

re
58

:S
LC

FR
S

se
ar

ch
hy

pe
rg

ra
ph

fo
r

tr
an

sl
at

io
n.

So
m

e
hy

pe
re

dg
es

ar
e

da
sh

ed
fo

r
be

tt
er

re
ad

ab
ili

ty
.



190 hierarchical mt with discontinuous phrases

new factors in the exponents compared to the complexity of SCFG
decoding are vs, the source fan-out of G, and vt, the target fan-out of
G. In fact, SCFG decoding is the special case in which vs = vt = 1. To
make the search feasible, we implement cube pruning as specified in
algorithm 6.

Finally, to obtain the translation associated with a derivation d of
a search item, e. g. D1(goal), the hyperedges along the derivation d
are followed and the translation is assembled according to the target
projections of the rules r ∈ d.

5.3.3 Implementation Details

The decoder, called discodec, is implemented in C++.

Language Model Toolkit

discodec includes the code from the KenLM Language Model Toolkit.6

KenLM is one of the most popular toolkits for n-gram language mod-
eling, amongst others because of fast and low-memory queries, and
fast and scalable model estimation. Other SMT toolkits such as Moses,
cdec and Phrasal also distribute KenLM and build it with the decoder.

We use KenLM’s type ChartState for the language model states
which we store with the search items and code against the interface
provided in lm/left.hh.

Terminal Instantiation

In the implementation, in order to build the parse hypergraph accord-
ing to algorithm 7, we first perform a terminal instantiation step. This
step replaces all terminals in all rules with all possibles ranges with
respect to the input sentence f .

A terminal instantiation of a rule r is a partial instantiation of r
(def. 2.34, p. 28) in which only occurrences of terminals and ε are
instantiated, but no variables. Recall the definition of the argument
numbering ξr of r (def. 2.33, p. 28).

6 The author of KenLM, K. Heafield, recommends to distribute the language mod-
eling code with the decoder. The documentation of how to integrate KenLM and
use its interface is provided here: http://kheafield.com/code/kenlm/developers/.
kenlm.tar.gz was downloaded in April 2014.
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Definition 5.7 (Terminal instantiation). Let G = (N, T, V, P, S) be an
LCFRS. Let w ∈ T∗ be a string. For a rule r ∈ P with its argument
numbering ξr, the following is defined:

1. A terminal instantiation of r with respect to w is given by a ξmax
r -

dimensional range vector φ′ where φ′(i), 1 ≤ i ≤ ξmax
r , contains

the range to which ξr(i) is bound. If a φ′(i) is still unbound, it
contains the symbol ? for unknown. Thereby, for 0 ≤ j < |w|,

a) if ξr(i) is an occurrence of a terminal t, it must be mapped
on a range φ′(i) = 〈j, j + 1〉 with wj+1 = t, and

b) if ξr(i) is an occurrence of ε, it must be mapped on a range
φ′(i) = 〈j, j〉.

2. Applying φ′ to a non-terminal A(α), notated as φ′(A(α)), is
defined as a mapping of all occurrences of terminals and ε in
α to elements of φ′ such that each ξr(i) which is an occurrence
of a terminal or ε is mapped to φ′(i), for 1 ≤ i ≤ ξmax

r . If the
result is defined, i. e. if the range images of adjacent terminals
and ε can be concatenated, then it is called a terminal instantiated
non-terminal, and if A(α) is the LHS of a rule r, then the result
of the mapping is called a terminal instantiated rule.

The given definition of terminal instantiation also covers ε-rules.
Note however that the grammars we deal with for machine transla-
tion are ε-free.
Example 5.8 (Terminal Instantiation). Let w = 0a1b2c3a4b5c6 be our
input and r = A(abX1, abX2) → A(X1, X2) an LCFRS rule. The follow-
ing range vectors φ′

1 and φ′
2 are valid terminal instantiations of r with

respect to w:

φ′
1 = 〈〈0, 1〉, 〈1, 2〉, ?, 〈3, 4〉, 〈4, 5〉, ?〉

φ′
2 = 〈〈3, 4〉, 〈4, 5〉, ?, 〈0, 1〉, 〈1, 2〉, ?〉

φ′
1 applied to r yields A(〈0, 2〉X1, 〈3, 5〉X2) → A(X1, X2), and φ′

2 ap-
plied to r yields A(〈3, 5〉X1, 〈0, 2〉X2) → A(X1, X2).

The following range vector φ′
3 does not lead to a terminal instanti-

ated rule since the concatenations of φ′
3(1) and φ′

3(2), and φ′
3(4) and

φ′
3(5) fail.

φ′
3 = 〈〈0, 1〉, 〈4, 5〉, ?, 〈3, 4〉, 〈1, 2〉, ?〉
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1: G: an SLCFRS grammar
2: f : the input string of length J
3: CP = ∅
4: for all rs = A(α) → A

1 l1
(α1) . . . A

m lm (αm) s.t. 〈rs, rt〉 ∈ P do
5: Let ξrs be the argument numbering of rs

6: for all terminal instantiations φ′ of dimension ξmax
rs

with respect to f
s.t. φ′(A(α)) is defined do

7: if (〈rs, rt〉,φ′) passes filter then
8: add (〈rs, rt〉,φ′) to CP

9: end if
10: end for
11: end for

Algorithm 8: Parsing initialization

Algorithm 8 shows how the terminal instantiation is applied during
parsing initialization. The result of this step are terminal instantiated
rules (r,φ′) for f . They are stored in the rule chart CP.

For terminal rules, this step covers the scan operation (algorithm 7,
line 6). This means that parse items can be directly created from those
terminal instantiated terminal rules, by applying φ′ to r, and they are
added to C. During the actual parsing, we are then only concerned
with how variables are instantiated when combining items from C and
(terminal instantiated) rules from CP with the complete operation.
Obviously, we perform the terminal instantiation only once per rule
bundle.

Rule Filtering

As our rules are all monotone and ε-free, we can make certain as-
sumptions about rule instantiations. For efficient processing, we filter
out terminal instantiated rules which will never lead to a successful
parse during the initialization, see algorithm 8, line 7. The details of
the rule filtering are presented in algorithm 9.

Due to monotonicity, only rule instantiations φ of rs for which the
following holds need to be considered, for 0 < i1 < i2 ≤ ξmax

rs :

φ(i1).r ≤ φ(i2).l

This in turn also holds for the terminal instantiations φ′. In the imple-
mentation, we actually only generate terminal instantiations meeting
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1: f : the input string of length J
2: (〈rs, rt〉,φ′): a rule which is terminal instantiated with respect to f
3: cnt = 0
4: last = 0
5: for all i s.t. 0 < i ≤ ξmax

rs
do

6: if ξrs(i) is a variable then
7: cnt = cnt + 1
8: end if
9: if i > 1 and ξrs(i) and ξrs(i − 1) do not belong to the same argument

of rs then
10: cnt = cnt + 1
11: end if
12: if ξrs(i) is an occurrence of a terminal then
13: if last + cnt > φ′(i).l then
14: return false
15: end if
16: cnt = 0
17: last = φ′(i).r
18: end if
19: end for
20: if last + cnt > J then
21: return false
22: end if
23: return true

Algorithm 9: Filter for terminal instantiated rules

this condition in the first place, but they would also be filtered by
algorithm 9 (see lines 13 and 17).

Due to ε-freeness, we assume that each variable in a rule must be
mapped to a range whose yield’s length is at least one. In addition,
during parsing, we do not allow for empty gaps to avoid spurious
ambiguity. We therefore assume that each gap must later be filled by
a range whose yield’s length is at least one. These constraints are re-
alized by counting the number of variables (line 7) and gaps (line 10)
between two occurrences of terminals, holding the current value in
the variable named cnt, and making sure that the range between the
ranges to which the terminals are mapped is large enough to accom-
modate cnt variables and filled gaps.
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Example 5.9 (Rule Filtering). Let us consider

rs = A(abX1, abX2) → A(X1, X2)

The terminal instantiation A(〈0, 2〉X1, 〈3, 5〉X2) with respect to f =

0a1b2c3a4b5c6 does not pass the filter since, to account for X1 and
the gap later in the derivation, at least an input range of length 2
would be necessary between the first b and the second a, but only
the c is available. The terminal instantiation A(〈0, 2〉X1, 〈4, 6〉X2) with
respect to f = 0a1b2c3c4a5b6 does not pass the filter either. While it
has two cs available to potentially fill X1 as well as the gap, no input
material is left at the end to fill X2, i. e. the condition in line 20 ap-
plies. The terminal instantiation A(〈0, 2〉X1, 〈4, 6〉X2) with respect to
f = 0a1b2c3c4a5b6c7 passes the filter.

Pruning Techniques

We furthermore implement different standard pruning methods, such
as limiting the number of rules in a rule bundle, and limiting the
number of incoming hyperedges for one parse item by pruning those
with low SLCFRS weights.

Non-terminal S

In the hierarchical phrase-based models, the non-terminal S has a spe-
cial meaning. It is used only in the glue rule and the rules which model
the start and the end of the sentence, see section 5.1.2. We adopt this
interpretation and make sure that items for the non-terminal S are
only created for range vectors 〈〈0, j〉〉 with 0 < j ≤ J.

(2, 2)-LCFRS Parser

The grammar that we extracted has a specific form, namely rank 2 and
fan-out 42|2, see section 5.2.2. We thus implement a specific parser for
(2, 2)-LCFRS instead of a generic LCFRS parser as presented in the
deduction system. Accordingly, the range vector ρ of an item I has
the form 〈〈i1, j1〉, 〈i2, j2〉〉, where i2 and j2 are undefined if the yield of
ρ is continuous. Such range vectors can be stored and retrieved more
efficiently than general range vectors, i. e. for full LCFRS. In the latter
case they are typically implemented as bit strings of the size of the
input sentence, e. g. in Maier (2013, section 6.3.1). Also parsing time
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complexity is directly dependent on the fan-out vs of the monolingual
grammar Gs: O(|Gs| Jvs·(u+1)) with rank u = 2 and fan-out vs = 2 in
our specific case.

Furthermore, our extracted grammar also has a target fan-out of
vt = 2. This means that the list of language model states has a max-
imal length of 2. However, this limit is not hard-coded in the imple-
mentation.

k-best Translations

Obtaining the k-best translations for a given input sentence is essential
for parameter tuning, i. e. for optimizing the weights of the log-linear
model. We implement k-best extraction on the search hypergraph that
results from cube pruning (section 5.3.2), using the lazy strategy from
Huang and Chiang (2005). The pseudocode is shown in algorithm 5.

5.4 related work

In this section, we review previous work on statistical machine trans-
lation systems which are as well expressive enough to model complex
alignment configurations and allow for discontinuities.

5.4.1 Non-hierarchical Machine Translation with Discontinuous Phrases

The most notable work in this area is Galley and Manning (2010).
Building upon the idea of a translation model proposed by Simard
et al. (2005), a phrase-based translation system is proposed which
allows for discontinuous phrase pairs, thereby enabling the system to
generate the complex alignment configurations. See section 5.2.1 for a
definition of discontinuous phrase pairs. Galley and Manning (2010)
use the suffix array technique of Lopez (2007), originally devised for
hierarchical phrase-based translation, to compactly store the training
data and retrieve all applicable phrase pairs for each input sentence.
For decoding, a conventional string-based beam search algorithm is
extended which employs different stacks to store the translation hy-
potheses according to the number of input words which are covered.
Translation hypotheses are still generated from left to right, but the
continuous target-side blocks of discontinuous phrase pairs are ap-
pended independently. Each translation hypothesis features a list of
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waiting blocks of discontinuous phrases which still need to be ap-
pended since the first block is already part of the hypothesis. Before
expanding a hypothesis in the conventional way, the beam search algo-
rithm may select one or several of the waiting blocks to append them
first.
Example 5.10 (Discontinous phrase-based translation). This example
demonstrates the approach of Galley and Manning (2010). We show
one particular decoder search path for the French input sequence

f = il ne veux plus manger

he

10000

does not want
anymore
11110

to eat
anymore
11111

anymore

11111

It makes use of the following phrase pairs, where #3 is discontinuous
on the target side:

1. il | he

2. manger | to eat

3. ne veux plus | does not want . . . anymore

Each (partial) translation hypothesis is depicted here as the generated
target string, the waiting phrasal blocks (anymore) and a bit string indi-
cating which source words are already covered. Scores and the other
competing hypotheses are omitted.

Besides the standard features of phrase-based translation (see sec-
tion 2.2.4), Galley and Manning (2010) add two features to softly con-
strain the usage of the discontinuous phrase pairs: (a) a feature which
is the sum of the lengths of all target gaps, and (b) a feature which is
the number of discontinuous phrase pairs which are in cross-serial dis-
continuous translation unit (CDTU) or bonbon configurations. They
also need to adapt the computation of the distortion feature due to
the discontinuous phrase pairs.

The proposed discontinuous phrase-based approach has been im-
plemented as part of the open-source SMT toolkit Phrasal.7 It is com-
pared against a conventional phrase-based system (Moses) and a hi-
erarchical phrase-based system (Joshua), i. e. one that uses a 2-SCFG

7 Phrasal (Green et al., 2014) is documented at http://nlp.stanford.edu/phrasal/.
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for translation modeling and a CYK-based decoder, for Chinese-to-
English translation. In the conducted experiments, the discontinuous
phrase-based system outperforms Moses by 0.77 and Joshua by 1.03
bleu points. This advantage is attributed by the authors to the sup-
port of discontinuous phrases, more specifically the enlarged space
of alignment configurations that can be induced compared to phrase-
based and hierarchical phrase-based systems, and benefits of the ex-
tended phrase pair inventory since the decoder chooses larger phrase
pairs than the Moses decoder.

In some sense, our work of a hierarchical machine translation sys-
tem with discontinuous phrases is the hierarchical, tree-based coun-
terpart to the phrase-based approach of Galley and Manning (2010).
Our building blocks, the possibly discontinuous initial phrase pairs,
e. g. in ex. 5.3, p. 176, are also the building blocks of the discontinu-
ous phrase-based system proposed in Galley and Manning (2010). In
addition, we however also make use of hierarchical discontinuous rules,
e. g. rules #5, repeated here for your convenience, and #7 in ex. 5.3.

〈X(ne Y1 plus) → X 1 (Y1), X(Z1 not Z2 , anymore) → X 1 (Z1, Z2)〉

Hierarchical discontinuous rules are not used in the other two preva-
lent state-of-the-art SMT approaches, namely neither in (discontinu-
ous) phrase-based systems nor in tree-based (2-SCFG) systems. Our
proposed translation grammar rules unify two types of gaps of previ-
ous approaches:

a) gaps in the sense of non-terminals which are inserted into longer
phrases when hierarchical rules are created, as in Chiang (2007);
their purpose is a better generalization of the translation rules,
and

b) gaps in the sense of discontinuities in the yield of a translation rule,
on the source side, on the target side or both, driven by the idea
of allowing for more flexible phrases such that the generated
alignment structures are not restricted.

The idea to use discontinuous phrase pairs in a phrase-based system
has already been suggested in Simard et al. (2005). However, in their
model, each gap symbol represents exactly one word, making this
approach less general and more prone to data sparsity than the one
by Galley and Manning (2010).
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The model and system by Crego and Yvon (2009) is also inspired by
Simard et al. (2005) in that it allows phrases to have gaps. Their work
is however part of the n-gram-based SMT framework (Mariño et al.,
2006; Crego et al., 2005), which is a very different approach to SMT
compared to the predominantly used framework which is in focus in
this thesis as presented in section 2.2.

5.4.2 Tree-based Machine Translation Beyond CFG

Other grammar formalisms beyond SCFG which have been proposed
for translation modeling in the literature have been presented in sec-
tion 4.4.2. In this section, we will pick up again those formalisms
which indeed serve as the basis for SMT systems.

GenPar

The idea of SMT by parsing (Melamed, 2004) has been implemented
in the John Hopkins University Summer Workshop 2005. The result-
ing toolkit GenPar uses Generalized Multitext Grammar (GMTG) (see
p. 155) as its translation model formalism and is available for prototyp-
ing.8 Even though it was supposed to be a reference implementation
for further research in the area of tree-based SMT, GenPar seems to
not have gained momentum. The latest available version is from the
year 2006.9 To the best of our knowledge, no GenPar system has been
trained on a reasonably large data set for comparison with other SMT
toolkits and approaches. The baselines published in the project report
(Burbank et al., 2005) and the few experimental results based on Gen-
Par, e. g. Vičič and Brodnik (2008) for Slovenian-English, only use a few
thousand sentence pairs for training and appear to be rather weak.

Beyond GenPar, we do not know of any efforts of building a state-
of-the-art SMT toolkit and system which models discontinuities with
GMTG. In our view, a state-of-the-art SMT system makes use of at least
the standard features of the log-linear model for SMT, integrates the
language model scoring during decoding, e. g. using cube pruning, is
trained on large-scale data sets, or provides competitive translation
results.

8 http://nlp.cs.nyu.edu/GenPar/GenPar.html, accessed on January 7, 2016.
9 http://nlp.cs.nyu.edu/GenPar/ReleaseLog, accessed on January 23, 2017.
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MBOT/STSSG

Both the non-contiguous version of Synchronous Tree Sequence Sub-
stitution Grammar (STSSG), which is able to induce the complex align-
ment configurations as it generates LCFRS translations (see p. 162),
and the somewhat less expressive Multi Bottom-up Tree Transducer
(MBOT) (see p. 165) serve as base formalisms in SMT systems. They
have been proposed to improve syntax-based approaches to machine
translation which make use of syntactic annotation, and are primarily
used for tree-to-tree and string-to-tree translation respectively.

Non-contiguous STSSG and the corresponding SMT system are de-
scribed in Sun et al. (2009). Extending previous work for Synchronous
Tree-Substitution Grammar (STSG) learning, they provide an STSSG
rule extraction algorithm which operates on aligned sentence pairs in-
cluding a parse tree for each of the source and the target sentences. In
order to not extract spurious rules, they require either the source or
the target side of a rule to be contiguous. The decoder is not strictly
speaking an STSSG decoder in the same sense as we have described de-
coding as parsing with other synchronous formalisms. It is a bottom-
up, three step heuristic, filling up increasingly large spans, similar to
what a chart decoder would do. The target sides of the STSSG rules,
however, do not provide hard constraints for the reordering of the tar-
get constituents. The gaps in the rules, i. e. the non-contiguities, are
ignored during language model scoring. No theoretical complexity re-
sults or practical runtime numbers are provided.

The authors report results for Chinese-to-English experiments on
a rather small training data set.10 In particular, they evaluate the im-
pact of different rule types on translation quality. They find that sys-
tems which use the non-contiguous rules outperform systems which
employ contiguous STSSG. Allowing for non-contiguity only on the
source side is more effective than allowing for non-contiguity only
on the target side. This is in-line with the observations of Galley and
Manning (2010), even though their rules are non-hierarchical and not
constrained by parse trees (see section 5.4.1). While the latter authors
speculate that making effective use of gaps on the target side is more
difficult than on the source side, because the first is a generation task,
the effect might also be due to the specific language pair which was
used in both sets of experiments.

10 The FBIS corpus consists of roughly 250k Chinese-English parallel sentences.
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Sun et al. (2009) also find that when allowing maximally one gap
on each side in the rules, as compared to no gaps, the bleu score
increases significantly. However, allowing more gaps does not further
increase the translation quality. This finding further corroborates our
earlier experiments where we concluded that allowing for one gap or
discontinuity on each side in a synchronous formalism is a good fit
for a translation modeling formalism. Sun et al. (2009)’s experiments
however differ considerably from ours in section 4.3 in that they per-
form actual model training and decoding using automatic alignments,
they only investigate one language pair and translation direction, and
they use a tree-to-tree approach, i. e. constrain the extracted rules by
parse trees on both sides.

Using MBOT as the base formalism for SMT is described in Braune
et al. (2013) and Seemann et al. (2015a). Recall that MBOT does not
allow discontinuities on the source side and therefore does not induce
all complex alignment configurations. The decoding is implemented
as a branch of Moses’ syntax-based system. As the source-side deriva-
tions are still context-free, no adaptions are necessary for the parsing
part of the decoder. The representation of the rules and the hypothesis
expansion are adjusted as well as the language model scoring, similar
to our approach in section 5.3.2. Cube pruning is used as well to make
language model scoring of partial hypothesis feasible.

In contrast to Sun et al. (2009), larger-scale experiments are con-
ducted using the Europarl corpus (Koehn, 2005) for English to Ger-
man and the MultiUN corpus (Eisele and Chen, 2010) for English
to Arabic and Chinese. In string-to-tree decoding setups, the MBOT-
based system outperforms the SCFG-based baseline system for all
three language pairs, but not necessarily a phrase-based Moses sys-
tem (Seemann et al., 2015a). In Seemann et al. (2015b), additionally,
string-to-string, i. e. hierarchical phrase-based, systems are trained for
English to German and Chinese. For both language pairs, the MBOT-
based system outperforms its string-to-tree and tree-to-tree counter-
part as measured by bleu. However, it does not improve over the
SCFG-based baseline, although the difference in bleu score is small.
An analysis shows that very few discontinuous rules have been used
when decoding the test set. These results stand in contrast to the re-
sults of Galley and Manning (2010) who achieve significant improve-
ments over a phrase-based and an SCFG-based system by allowing
for discontinuous phrases for Chinese-to-English translation (see sec-
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tion 5.4.1). One obvious difference between the two approaches is that
the phrase-based approach offers discontinuous phrases on both sides,
whereas MBOT only offers gaps on the target side and thus is not able
to induce all complex alignment configurations. The experiments of
Galley and Manning (2010) furthermore indicate that allowing source
discontinuities is more crucial than allowing target discontinuities. We
can however only speculate about the reasons for the contrary findings
of Galley and Manning (2010) and Seemann et al. (2015b). Besides the
necessity for gaps being a characteristic of the language (pair), it might
also be generally more beneficial to allow for gaps on the source side
than on the target side since this allows to match rather distant words
in one (discontinuous) phrase.

In Seemann and Maletti (2015), string-to-tree experiments for En-
glish to Polish and English to Russian, both morphologically rich lan-
guages with a rather free word order, are performed. For the trees
on the target side, potentially non-projective dependency parses are
transformed to projective dependency trees and then to constituency
structures. While the corresponding MBOT systems yield a consid-
erable improvement over SCFG-based baseline systems respectively,
again, corresponding phrase-based and hierarchical phrase-based sys-
tems yield better results in terms of bleu. No results for string-to-
string systems using MBOT as the translation grammar formalism are
reported.

Others

Using a restricted, but non-linear form of Range Concatenation Gram-
mar (RCG) to model translational equivalence beyond the alignment
capacity of 2-SCFG has been advocated by Søgaard (2008b). See sec-
tion 4.4.2, p. 153f., for the details. Even though there has been a sugges-
tion for learning corresponding grammar rules from parallel corpora
(Søgaard, 2008a), to the best of our knowledge, no corresponding SMT
system has been built.

Synchronous Tree-Adjoining Grammar (STAG), in particular Syn-
chronous Tree-Insertion Grammar (STIG), serves as the base formal-
ism in some SMT systems (e. g. Nesson et al., 2006; DeNeefe and
Knight, 2009; Carreras and Collins, 2009; Liu et al., 2011). They mostly
use syntactic annotation (i. e. parse trees) on the source and/or the
target side and usually outperform an SCFG/STSG-based baseline.
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Nesson et al. (2006) is an exception to that pattern: A probabilistic
STIG featuring only one non-terminal X is induced using EM to es-
timate the parameters. The search space is a priori pruned based on
given automatically learned word alignments. Experiments are con-
ducted for German-to-English translation, but using a very small data
set (∼15k training sentences and 100 test sentences).

5.5 conclusion and future work

In this chapter, we presented the first hierarchical phrase-based ma-
chine translation system which features discontinuous phrases both
on the source and on the target side. It is at the same time the first
SMT system which uses SLCFRS as the translation grammar formal-
ism. Since SLCFRS is a direct extension to SCFG, previous work on
hierarchical phrase-based translation, in particular the model defini-
tion, training and decoding, could be extended to SLCFRS in a more
or less direct manner.

The described training and decoding procedures have been imple-
mented. In chapter 6, a corresponding machine translation system will
be trained and evaluated using the described implementation.

The SMT system as presented in this chapter has certain shortcom-
ings which we point our here. Addressing them remains future work.

The learning of phrase-based and hierarchical phrase-based models
in their original formulation generally involves a set of heuristically
fixed constraints (see section 2.2.5). With our more powerful model,
the size of the model space as well as the number of parameters
grows, meaning that we have added more heuristics in order to ren-
der learning of the translation model feasible. For SCFG-based transla-
tion models, non-parametric Bayesian methods have been proposed to
learn synchronous rules without imposing heuristic constraints or re-
lying on a previously generated word alignment (e. g. Levenberg et al.,
2012). It would be interesting to work on learning SLCFRS rules in a
similar fashion.

Galley and Manning (2010) address the problem of the exponential
number of discontinuous phrase pair by using a suffix array technique
which had been developed for tree-based models (Lopez, 2007). The
training corpus is represented in a specific data structure, and only
translation rules which apply to a test sentence at hand are extracted
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on the fly. A related strategy could possibly be used to represent the
training data for SLCFRS translation rules.

The implementation of the LCFRS parser of our decoder is specific
to grammars of source fan-out 2. This makes sense given that our ex-
tracted grammars are heuristically constrained to fan-out 42|2, which
we empirically motivated. However, when using more general meth-
ods for grammar extraction which do not constrain the fan-out, gram-
mars of higher source fan-out might be learned. This would require a
more general parser implementation.

Finally, our approach to language model scoring of discontinuous
target sequences might put discontinuous sequences at a disadvan-
tage in comparison to continuous sequences.11 Let us consider not
. . . anymore and no longer as competing translation options for, e. g.,
nicht mehr. The continuous sequence no longer will obtain the more
precise language model score as longer can be attributed a bigram
probability, while both not and anymore still lack their left context and
therefore can only be scored with their unreliable unigram probabil-
ity. Only when not . . . anymore is part a larger segment, its language
model score will be more precise. The risk is that it might have been
already pruned by then. A remedy would be to develop a language
model which scores dependent words even though they do not form
a continuous block, for example along the lines of Sennrich (2015).

11 The same issue has been noted for the MBOT-based translation approaches (Braune,
2015, sections 5.3.3 and 5.6).





6
E VA L U AT I O N

In this chapter, the machine translation system presented in chapter 5,
which implements the translation modeling approach proposed in
chapter 4, is evaluated. To that end, experiments for German-to-
English translation are conducted. The results are discussed and put
into context.

The experimental setup and the main results of section 6.2 have
been previously published in

Kaeshammer, M. (2015). Hierarchical machine translation
with discontinuous phrases. In Proceedings of the Tenth Work-
shop on Statistical Machine Translation, pages 228–238, Lis-
bon, Portugal. Association for Computational Linguistics.

6.1 setup

We run experiments for German-to-English, based on data that has
been used in the WMT 2014 translation task.1 For training of the trans-
lation models, we use the parallel sentences from Europarl and the
News Commentary Corpus up to a length of 30 words (1.3M sentence
pairs). For the estimation of the language model, we use the KenLM
Language Model Toolkit.2 We train a 3-gram language model on all avail-
able monolingual English data (Europarl, News Commentary, News
Crawl, 92.7M sentences). From the available development data, we use
newstest2013 as the development test set (max. 25 words). From the
rest, we randomly select 3000 sentence pairs of a maximal length of 25
words as development set. We further refine this set to sentences with-
out out-of-vocabulary source words by decoding the development set
once and selecting the corresponding sentences. We thus end up with

1 Web page of the shared task: http://www.statmt.org/wmt14/translation-task.

html. Data downloaded on September 08, 2014.
2 KenLM is documented at http://kheafield.com/code/kenlm/. kenlm.tar.gz was

downloaded in April 2014.
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1694 sentence pairs for tuning. As our test set, we use the cleaned test
set that has been made available (2280 sentence pairs with a maximal
length of 30 words).

We normalize the punctuation, tokenize and truecase all our data
using the scripts that are available in Moses.3 Furthermore, we per-
form compound splitting for German, also with the script provided in
Moses.

The parallel training data is word-aligned by running multi-
threaded GIZA++ in both directions and then symmetrizing the align-
ments using the grow-diag-final-and heuristics as implemented in
the Moses training script train-model.perl (step 1–4). Lexical transla-
tion probabilities are also emitted as part of this pipeline.

For the extraction of the Synchronous Linear Context-Free Rewrit-
ing System (SLCFRS) and the estimation of the rule translation prob-
abilities, we use our training procedure slcfrs-extract. See section 5.2.2.
For training a Moses hierarchical phrase-based system, we use the
-hierarchical option in the training script. Generally, for grammar
extraction, we limit the length of initial phrases (cf. section 5.2.1) and
the number of words in a gap to 10. We neither allow unaligned words
at edges of initial phrases nor unaligned blocks.

Before decoding a data set with our decoder discodec, we filter the
large translation grammar with respect to the input data by extract-
ing per-sentence grammars. These only contain rules whose terminals
match the words in the sentence to translate.

Tuning the feature weights is done with minimum error rate train-
ing (Och, 2003), maximizing bleu (Papineni et al., 2002) and using the
200 best translations. For our own decoder discodec, we use the very
flexible implementation Z-MERT4 (Zaidan, 2009). For Moses, we use its
MERT implementation via the provided tuning script mert-moses.pl.

For the reported results, we set the buffer size for cube pruning to
400. We do not limit the number of words a non-terminal can span. We
neither restrict the number of incoming hyperedges for the parse items
nor the number of different target projections for the same source
projection.

3 Moses is documented at http://www.statmt.org/moses/. The scripts are avail-
able under https://github.com/moses-smt/mosesdecoder/tree/master/scripts.
Git commit 6085a60.

4 Z-MERT v1.50 obtained from http://www.cs.jhu.edu/~ozaidan/zmert/.
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6.2 translation quality results

We compare different versions of our SLCFRS system discodec against
each other. The baseline is a system which uses only Synchronous
Context-Free Grammar (SCFG) rules, i. e. a hierarchical phrase-based
system comparable to the one in Chiang (2007). We refer to it as dis-
codec(1,1), as it uses an SLCFRS of fan-out 21|1.

discodec(1,2) is a system which uses a grammar of fan-out 31|2,
i. e. it builds only continuous constituents on the source side, but al-
lows for discontinuous constituents with two blocks on the target side.
discodec(2,1) is the analogous system which restricts the target side
to continuous constituents. Finally, discodec(2,2) uses an SLCFRS of
fan-out 42|2. In addition, we also provide results for systems which
make use of our newly devised gap degree features gs and gt (cf. sec-
tion 5.1.2).

6.2.1 Automatic Evaluation

Table 9 displays the main results. To account for the variance that is in-
troduced by tuning, we repeat each experiment four times and report
the mean of bleu (Papineni et al., 2002) and meteor (Denkowski
and Lavie, 2011).5 The calculation of the scores as well as significance
testing is performed with MultEval (Clark et al., 2011).6

Allowing gaps on both the source and the target side leads to a
decline in bleu and meteor compared to the baseline on both data
sets; see discodec(1,1) vs. discodec(2,2). We hypothesize that this is
due to weak probability estimates of the discontinuous rules because
of data sparseness, and the additional ambiguity that is incurred by
the new rules with discontinuities.

By adding the gap degree features gs and gt, the model has an addi-
tional way of influencing which kind of rules are used. The scores of
discodec(2,2) then approach and even surpass the scores of the base-
line on both data sets. Especially controlling for the target gap degree
turns out to be important. See the results for discodec(2,2)-gt and
discodec(2,2)-gs-gt, which show small, but consistent improvements,
some of them even significant. It is worth noting that rules with target

5 See p. 68 for more information about the metrics.
6 https://github.com/jhclark/multeval, Git commit bd93ed1.
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devtest test
system feat. bleu meteor bleu meteor

discodec(1,1) 24.13 30.81 23.23 30.01
discodec(2,2) 23.90 30.75 22.90 29.91

discodec(2,2) gs 24.06 30.81 23.17 30.02
discodec(2,2) gt 24.20 30.85 * 23.35 ** 30.07
discodec(2,2) gs, gt 24.18 * 30.88 23.32 ** 30.10

discodec(1,2) 23.40 30.57 23.19 30.00
discodec(2,1) 24.17 * 30.86 ** 23.41 ** 30.08

moses 24.33 30.87 23.34 30.13

Table 9: Results for German-to-English translation: averaged bleu and me-
teor scores over four tuning runs. The feat column indicates
whether additional source/target gap degree features have been
used. The best-performing discodec system in each column is
marked in bold. Starred results indicate statistically significant im-
provements over the discodec(1,1) baseline, at confidence p < 0.08
(*) and p < 0.01 (**).

gaps are not completely dismissed when the target gap degree fea-
ture is switched on. Usage of discontinuous rules with a target gap
goes down from on average 735 rules in discodec(2,2) to on average
77 rules in discodec(2,2)-gt in the test set. They are used less often,
but, it seems, in a more controlled and sensible way. Section 6.3.2 will
provide more details.

The importance of limiting the generation of gaps on the target side
is further confirmed with the experiments in which the discontinuous
rules are only used on one side. Restricting the target side derivations
to continuous yields leads to small improvements in bleu and me-
teor scores. As measured by meteor the improvement is significant
on both data sets; in terms of bleu, discodec(2,1) is the best system
for the test set. This is in particular interesting with respect to transla-
tion times since restricting the target side to continuous yields means
removing the additional complexity that target gaps elicit for the lan-
guage model integration (see section 5.3.2).
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Restricting the source side derivations to continuous yields does not
improve the bleu and meteor scores; it rather severely degrades
them, see discodec(1,2).

To put our results into context, we also report results for the hier-
archical phrase-based system in Moses trained on the same data as
the discodec systems. We tried to use as much as possible the same
settings as for our comparable system discodec(1,1). However, given
the number of parameters during training and decoding, the various
interpretations thereof and numerous implementation details to con-
sider, it is not too surprising that the Moses system actually produces
different translations than ours. The reported numbers merely serve
as a point of reference, indicating that the translations produced by
our system are not totally far off.

6.2.2 Human Evaluation

In addition to the automatic evaluation, we conducted a manual eval-
uation in form of a system comparison using our own installation
of the Appraise tool (Federmann, 2012). We compare the baseline dis-
codec(1,1) against discodec(2,1), one of the best-performing setups
on the test set. For each of the two system types, we randomly selected
one of the four optimized systems. We first discarded all test sentences
for which the two systems provide the same translation (1323 out of
2280). From the remaining test sentences, we then selected those as
our test set for manual evaluation where discodec(2,1) uses at least
one SLCFRS rule with a discontinuity (95 sentences). We recased and
detokenized the translations before showing them to the evaluators,
using the scripts available in Moses.

We asked two native speakers of English (e1, e2) with basic knowl-
edge of German to evaluate our test sentences. They were shown
the source sentence, a reference translation, the discodec(1,1) transla-
tion and the discodec(2,1) translation. The latter two were presented
anonymized and in random order. The options for the evaluators were

a) translation A is better than B,

b) translation B is better than A, and

c) translations A and B are of equal quality.



210 evaluation

discodec(1,1) discodec(2,1) =

e1 43 49 3
e2 46 47 2

Table 10: Result of the manual system comparison

e2
discodec(1,1) discodec(2,1) =

e1
discodec(1,1) 29 13 1
discodec(2,1) 15 33 1

= 2 1 0

Table 11: Confusion matrix of the decisions of the manual evaluation

We specifically asked them to use option c) as rarely as possible.
Table 10 shows the results. Evaluator e1 preferred translations gen-

erated by discodec(2,1) 49 times, and evaluator e2 47 times out of 95
test sentences. While they do not demonstrate a clear preference for
one of the systems, there is, however, a slight preference for the sys-
tem that uses discontinuous rules, i. e. discodec(2,1). In spite of the
inter-annotator agreement being not very high (Cohen’s κ = 0.338),
the tendency for discodec(2,1) is also perceivable for the translations
for which the evaluators agree in their decisions, see table 11.

6.3 further analysis

6.3.1 Translation Examples

This section provides some actual translation examples from our test
set. They have been selected because they make crucial use of the dis-
continuous SLCFRS rules and demonstrate how complex alignment
configurations are generated. The presented translations and deriva-
tions have been produced by the systems used in the human evalua-
tion in section 6.2.2 if not otherwise indicated. For the sake of clarity
and presentation ease, “uninteresting” parts of the sentences are left
out.
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Source:

er
he

wäre
would have

damit
thereby

auch
also

geeignet
suitable

gewesen
been

,
,

um
particle

die
the

illegale
illegal

Einwanderung
immigration

Richtung
direction/to

USA
USA

zu
to

fördern
promote

.

.

Reference: it would thus be suitable to assist illegal immigration into
the USA .

discodec(1,1):
it would also have to be , in order to promote the direction
US illegal immigration .

discodec(2,1):
he also would have been appropriate to promote the direction
US illegal immigration .

discodec(2,2): he would also be appropriate to encourage illegal immigra-
tion in the US .

Figure 59: Test sentence with translations provided by the SCFG and SLCFRS
systems

Let us start with the example in figure 59. If we ignore the noun
phrase (in italics), which is problematic for all three translation sys-
tems, the translation generated by discodec(2,1) is meaningful, in
particular it has an overall grammatical sentence structure. This is in
clear contrast to the discodec(1,1) translation which is not grammat-
ical and it misses important concepts, such as geeignet (suitable). The
discodec(2,2) translation is also acceptable, although, in contrast to
the discodec(2,1) translation in perfect conditional tense, it does not
convey the exact verbal tense of the source sentence, though neither
does the reference translation. The missing context precludes an as-
sessment of the correct gender of the subject pronoun (it or he).

The derivation generated by discodec(2,1) is depicted in figure 60.
It has a source gap degree of 1. The two SLCFRS rules which feature
discontinuous constituents are the following:

1. 〈X(wäre , Y1 gewesen Y2) → X 1 (Y1)X 2 (Y2),

X(would have been Y1Y2) → X 1 (Y1)X 2 (Y2)〉

2. 〈X(Y1 damit auch Y2 .) → X 1 (Y1, Y2), X(also Y1 .) → X 1 (Y1)〉

Rule #1 has a fan-out of 2 on the source side. It derives the syn-
chronous constituent labeled X 6 with source gap degree 1. Besides
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X 8

X 7

X 6

X 4

X 3

X 2

X 5 X 1

er wäre damit auch geeignet gewesen , um die ill. Einw. Richt. USA zu fördern .

he also would have been appropriate to promote the direction US ill. immigr. .

X 5 X 1

X 2

X 3

X 4

X 6

X 7

X 8

Figure 60: Derivation of the translation in figure 59 of the discodec(2,1) sys-
tem
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X 8

X 7

X 5

X 6 X 4 X 2

X 3 X 1

er wäre damit auch geeignet gewesen , um die ill. Einw. Richt. USA zu fördern .

he would also be appropriate to encourage illegal immigration in the US .

X 3 X 1

X 4 X 2

X 6 X 5

X 7

X 8

Figure 61: Derivation of the translation in figure 59 of the discodec(2,2) sys-
tem
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damit . . . geeignet gewesen , . . . ill. Einw.

appropriate . . . ill. immigr. in the

wäre damit auch

he would also be . . . in

damit . . . um . . . ill. Einw. . . . USA zu fördern

to encourage ill. immigr. in . . . US

er wäre damit auch

he would also be

Figure 62: Four complex alignment configurations from the alignment in fig-
ure 61: an IO alignment, a bonbon configuration, an IO-DTU and
a CDTU.

providing a correct verbal translation in a specific tense, it also estab-
lishes a relationship to the adjective (X 5 ) and the infinitive subordi-
nate clause (X 4 ), thereby still leaving room for the adverb in terms of
the gap on the source side. The adverb is then introduced with rule
#2, leading to the constituent labeled X 7 . This rule can be seen as cap-
turing the different placement of the adverb auch/also in German and
English.

Note that the alignment that is induced by the discodec(2,1) deriva-
tion is also derivable with a 21|1-SLCFRS, by putting the individual
translation units together in a different order and hierarchy. For ex-
ample, in an SCFG rule, the discontinuous verb phrase (bold align-
ment links) could be combined with the adjective and the adverb first,
which leads to a continuous constituent. Then the subordinate clause
would be added in a later derivation step. However, in the derivation
for the best translation of discodec(1,1), this does not happen because
a corresponding specific rule has not been learned.

Figure 61 shows the derivation of the translation by discodec(2,2).
Both its source and its target gap degree is one. The source side tree
features five discontinuous constituents (X 2 , X 4 , X 5 , X 6 , X 7 ), while
the target side tree features four discontinuous constituents (X 2 , X 4 ,
X 5 , X 6 ). The alignment generated by this derivation contains many
complex alignment configurations. As they are difficult to spot, some
of them are depicted individually in figure 62.

Even though the translation quality that this particular derivation
provides is still somewhat acceptable, it demonstrates that the addi-
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tional power of the discontinuous translation rules can lead to unex-
pected and unreasonable alignments which in turn can lead to a de-
crease in translation quality (cf. the results for discodec(2,2) in table 9).
In the example at hand this is particularly the case when there is no
one-to-one correspondence between an expression in the source and in
the target: the German determiner die of the noun Einwanderung is not
being transferred to the target, which is correct, i. e. immigration does
not have a determiner, however, X 5 instead generates the determiner
of US. Similarly, rules #3 and #4 (below) lead to unexpected dependen-
cies in the scope of X 6 and X 8 respectively and to alignments which
one might indeed call “wrong” in the given context.

3. 〈X(er , damit) → ε, X(he , in) → ε〉

4. 〈X(Y1 Richtung Y2 .) → X 1 (Y1, Y2), X(Y1 .) → X 1 (Y1)〉

Such rules probably originate from faulty word alignments in the first
place, but this is an issue common to all evaluated systems. Even if a
sensible use of those rules is difficult to imagine, one should not gen-
erally judge them as wrong or harmful. This decision should rather
be delegated to a (good) model and its features and weights. Finally,
alignments and derivations are latent in the translation process any-
way. There is thus no right or wrong, as long as the surfacing transla-
tions and their quality is being optimized.

Next, let us consider the translation in figure 63. The discodec(2,1)
translation features a bonbon configuration using the following two
rules:

5. 〈X(Ihnen , zustimmen ) → ε, X(agree with you) → ε〉

6. 〈X(Y1 nicht stärker Y2) → X 1 (Y1, Y2), X(not Y1 more) → X 1 (Y1)〉

The object of zustimmen/agree is realized as a dative object in German
and as a prepositional phrase in English, as captured in rule #5, lead-
ing to the synchronous constituent labeled X 4 of fan-out v = 32|1.
The verbal translation unit that it generates is intertwined with the
adverbial translation unit as described by rule #6, inducing a bonbon
configuration.

This translation by discodec(2,1) is a perfect translation, and dif-
fers from the reference translation only by using the full form of not
instead of the contraction. In contrast to the previous example in fig-
ure 60, the alignment as shown in figure 63 cannot be derived by a
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Source:
. . .
. . .

und
and

ich
I

könnte
could

Ihnen
you

nicht
not

stärker
stronger

zustimmen
agree

.

.

Reference: . . . and I couldn’t agree with you more .

discodec(1,1): . . . and I could you not agree more .

discodec(2,1): . . . and I could not agree with you more .

S 11

S 10

S 9

S 8

S 7 X 5

X 1 X 2 X 3 X 4 X 6

. . . und ich könnte Ihnen nicht stärker zustimmen .

. . . and I could not agree with you more .

X 1 X 2 X 3 X 4 X 6

S 7 X 5

S 8

S 9

S 10

S 11

Figure 63: Test sentence with translations provided by the SCFG and the
SLCFRS systems, including the derivation of the SLCFRS system
discodec(2,1). The bonbon configuration is highlighted.
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21|1-SLCFRS. The bonbon configuration is beyond the alignment ca-
pacity of SCFG as it requires discontinuous constituents.

The discodec(1,1) system, thus, fails to realize the object adequately
and comes up with a translation which is too close to the German
source. We would like to point out however that, in theory, an SCFG-
based system could produce the same translation as discodec(2,1) on
the surface, though with a different derivation and alignment, by split-
ting either the verbal or the adverbial translation unit into two. Sample
rules in which the object is derived independently from the verb are
shown in the following:

7. 〈X(Ihnen) → ε, X(with you) → ε〉

8. 〈X(zustimmen) → ε, X(agree) → ε〉

9. 〈X(Y1 nicht stärker Y2) → X 1 (Y1)X 2 (Y2),

X(not Y1Y2 more) → X 1 (Y2)X 2 (Y1)〉

We can only speculate why neither discodec(1,1) nor discodec(2,1)
produced the best translation choosing those rules, as the log-linear
model incorporates a plenitude of factors. Potential reasons include
the larger number of rules, comparably low translation probabilities
for Ihnen/with you, little evidence for applying rule #9 as the reorder-
ing is not lexically motivated, or simply a search error.

In any case, discodec(2,1) has the advantage of being able to rep-
resent the source-discontinuous translation unit 〈 Ihnen, zustimmen ;
agree with you 〉 as a lexical rule (#5) and the target-discontinuous trans-
lation unit 〈 nicht stärker ; not, more 〉 as a mixed rule (#6), thus directly
encoding the necessary lexical dependency and word order informa-
tion to produce a fluent and adequate translation.

Next, we consider the test sentence and its translations in figure 64.
In this case, the discodec(1,1) translation is acceptable, but the dis-
codec(2,1) translation, which features a CDTU, represents a nice vari-
ation. Both use the to be to do something construction to express that
something shall be done. However, while the discodec(1,1) translation
rather literally translates the passive construction used in the German
source, discodec(2,1) uses active voice. Both evaluators of the human
evaluation presented in section 6.2.2 preferred the discodec(2,1) trans-
lation over the discodec(1,1) translation. The derivation of the first is
shown in figure 65.
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Source:

. . .

. . .
Ausarbeitung
development

von
of

Strategien
strategies

,
,

mit
with

denen
which

die
the

ambitionierten
ambitious

,
,

gesetzlich
legally

verankerten
anchored

Ziele
goals

des
of the

Bundesstaats
federal state

zum
on

Klimawandel
climate change

erreicht
reached

werden
passive

sollen
shall

.

.

Reference:
. . . they devise strategies to meet the goals laid out in the
state ’s ambitious global warming laws .

discodec(1,1):
. . . drafting of policies with which the ambitious , legally
enshrined targets of the federal state on climate change are
to be achieved .

discodec(2,1):
. . . development of strategies , which are to achieve the
ambitious objectives, enshrined by law of the federal state
on climate change .

Figure 64: Test sentence with translations provided by the SCFG and the
SLCFRS systems

The CDTU consists of two translation units which are both discon-
tinuous on the source side. One, let us call it the relative one for the
purpose of easier reference since it captures the relative pronoun, is
induced by rule 10, which creates the synchronous constituent labeled
X 7 in figure 65. The synchronous constituent labeled X 8 is generated
by rule #11. It corresponds to the second translation unit, the verbal
one.

10. 〈X(mit denen , werden) → ε, X(which are) → ε〉

11. 〈X(Y1 die Y2 erreicht Y3 sollen) → X 1 (Y1, Y3)X 2 (Y2),

X(Y1 to achieve the Y2) → X 1 (Y1)X 2 (Y2)〉

While in the previous examples of discodec(2,1) derivations, the
gaps of discontinuous constituents were rather short and filled with
material from just one translation unit, figure 64/65 shows that long
gaps can also be useful to generate acceptable translations. The gap
between mit denen and werden is filled with 11 words which are part
of 7 translation units.
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This alignment is again beyond SCFG alignments, and no reorder-
ing on the target side would be possible to simplify the alignment.

Finally, let us consider the example in figure 66. The SLCFRS trans-
lation is by a discodec(2,2)-gs-gt system. Except the missing apostro-
phe (Gutachs is an unknown word to the system), the translation is
very well acceptable. The discodec(1,1) translation is understandable,
despite the subject being plural (mayors) and the adverbial placement
being somewhat clumsy.

The discodec(2,2)-gs-gt derivation does not only feature a CDTU
and a gap degree of 1 on the source side, the gap also has a depth of
2 (cf. def. 2.15), i. e. it is not filled by the mother of the discontinuous
node, but by its grandmother. The following three rules derive this
structure:

12. 〈X(diese Frage , klar beantwortet) → ε,

X(answered that question very clearly) → ε〉

13. 〈X(Y1 hat Y2, Y3) → X 1 (Y1, Y3)X 2 (Y2),

X(Y1 has Y2) → X 1 (Y2)X 2 (Y1)〉

14. 〈X(Y1 gestern Y2 .) → X 1 (Y1, Y2), X(Y1 yesterday . ) → X 1 (Y1)〉

Rule #12 derives the synchronous constituent X 1 which has a source
fan-out of 2. This lexical rule links the verb beantwortet/answered with
its direct object, which in the German sentence occupies the initial field
position (cf. p. 118). The gap in-between is partially filled with the
auxiliary verb and the subject using rule #13. Note how the same rule
is also responsible for the reordering of the subject and the object on
the English side.

The source left-hand side (LHS) non-terminal of rule #13 also has a
fan-out of 2, leading to X 4 which is still discontinuous on the source
side, in order to accomodate for the adverb gestern. X 5 , created from
rule #14, closes the gap.

This example is also a showcase of discontinuities allowing to cap-
ture larger phrases, which in turn lead to more fluent and well-formed
translations: The translation unit represented by rule #12 needs to be
divided into three separate translation units if discontinuities are not
allowed, e. g. in an SCFG-based system: 〈 diese Frage ; that question
〉, 〈 klar ; (very) clearly 〉 and 〈 beantwortet ; answered 〉. While this is



6.3 further analysis 221

Source:

diese
this

Frage
question

hat
has

Gutachs
Gutachs’

Bürgermeister
mayor

gestern
yesterday

klar
clearly

beantwortet
answered

.

.

Reference:
yesterday, Gutacht[sic] ’s Mayor gave a clear answer to
this question .

discodec(1,1):
Gutachs mayors yesterday clearly has answered that
question .

discodec(2,2)-gs-gt:
Gutachs mayor has answered that question very clearly
yesterday .

X 5

X 4

X 3

X 1 X 2

diese Frage hat Gutachs Bürgermeister gestern klar beantwortet .

Gutachs mayor has answered that question very clearly yesterday .

X 2 X 1

X 3

X 4

X 5

Figure 66: Test sentence with translations provided by the SCFG and the
SLCFRS systems, including the derivation of the SLCFRS system
discodec(2,2)-gs-gt. The CDTU is highlighted.
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not problematic in itself, more things can go wrong when reassem-
bling several small translation units than during the reordering of a
few large translation units. For instance, the discodec(1,1) translation
does not correctly realize the subject-verb agreement and fails at the
placement of the sentential and verbal adverbs.

6.3.2 Discontinuous Constituents and Complex Alignment Configurations

This section will provide insights into how the discontinuous rules
of the SLCFRS translation grammars are used across the conducted
experiments. Table 12 shows aggregated numbers for discontinuous
constituents and complex alignment configurations occurring in the
test set.

Let us first concentrate on the number of discontinuous constituents
present in the derivation of the best translation of the test sentences.
While, without the gap degree features, discodec(2,2) produces trans-
lations with discontinuous constituents in 18.68% of the test sentences,
the number of discontinuities drastically reduces when adding one or
both gap degree features or when constraining the source or the tar-
get side of the derivation to continuous constituents. Remarkably, for
all systems which outperform the baseline, the average numbers of
sentences which feature discontinuities are very close to each other
(5.99%, 6.35% and 6.47%). This might be a characteristic of the tested
language pair, or more specifically of the test data set.

The absolute value of the weights of the gap degree features tend
to be rather high, see table 13. Intuitively, this means that hypothe-
ses are usually penalized quite heavily for using discontinuous rules.
Table 12 clearly shows that they are nevertheless used in top-scoring
hypotheses and contribute to improving translation quality over the
baseline.

The correlation coefficients r in table 13 furthermore show that the
features gs and gt and their weights rather directly impact the number
of generated discontinuous constituents.7 This was the intention when
designing the gap degree features. Thus, they work as expected.

Section 6.2.1 already provided evidence that constraining the gaps
on the target side, either by excluding them formally or by penalizing

7 They should however be treated with caution, as the correlation could also be by
chance, given the small number of data points.
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experiments

system feat. 1 2 3 4 r

discodec(2,2) gs -0.5377 -0.3237 -0.4112 -0.4790 0.88
discodec(2,2) gt -0.4227 -0.2296 -0.6978 -0.4148 0.80

discodec(2,2)
gs -0.0041 -0.1589 0.1490 -0.3068 0.83
gt -0.4327 -0.2181 -0.3797 0.03673 0.79

Table 13: Weights of the indicated features which have been obtained with
MERT, and their correlation with the number of discontinuous
source respectively target constituents, whose means are given in
table 12.

them via a feature, is crucial for building an SLCFRS-based transla-
tion system which outperforms the SCFG-based baseline. In addition,
table 12 teaches us about the role of the source discontinuities. Dis-
allowing source discontinuities (discodec(1,2)) leads to a system of
similar or worse performance as the baseline. To outperform the base-
line, a certain amount of source discontinuities seem to be necessary,
as seen with discodec(2,1), discodec(2,2)-gt and discodec(2,2)-gs-gt.

Many SLCFRS translation rules extracted by slcfrs-extract feature
both, source and target fan-out larger than 1. For instance, in the trans-
lations of the test set by discodec(2,2), only about 6% of the discon-
tinuous rules have a LHS non-terminal fan-out of v = 32|1 and 3% of
v = 31|2. The remaining discontinuous rules generate a gap on the
source and the target side simultaneously. This means that there is a
dependency between source and target discontinuities in the transla-
tion rules. Therefore, controlling the target gaps (via vt = 1 or via gt)
simultaneously influences the number of source discontinuities.

It remains unclear, however, why gs alone is ineffective in generating
a suitable amount of source discontinuities. This might as well be an
effect of the dependency between source and target discontinuities:
possibly, gs is in the first place optimized to generate only a few target
gaps, which then leads to an undergeneration of source gaps during
decoding.

In addition, we also analysed the derivations with respect to gen-
erated ill-nested structures (cf. def. 2.14, p. 21). SLCFRS rules which
derive ill-nested structures are not necessary for deriving any of the
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complex alignment configurations, but of course they could be used
nevertheless. The grammar extraction algorithm of slcfrs-extract does
not make reference to ill-nestedness. It certainly does not prohibit
the extraction of rules which generate ill-nested structures. However,
the derivations of discodec(1,2), discodec(2,1) and discodec(2,2)-gt
are all well-nested on the source and the target side. discodec(2,2)-
gs-gt and discodec(2,2)-gs generate one ill-nested structure, on the
source and the target side respectively, across all experiments. Only
derivations of discodec(2,2) feature a non-negligible amount of ill-
nestedness, showing that the decoder is in principle able to generate
them: 4.75 ill-nested constructions on the source side in the test set
(on average across the experiments), and 5.75 on the target side. The
derivation in figure 61 contains several ill-nested configurations: on
the source side, X 2 and X 4 , on the target side, X 2 and X 4 as well as
X 5 and X 6 are ill-nested.

Note that discodec(2,2) is also the system generating the most dis-
continuous constituents. Since an ill-nested structure requires (at least)
two discontinuous constituents, it is natural that this system also gen-
erates the most ill-nested structures. However, since discodec(2,2)
fares poorly in the evaluation of the translation quality, no conclu-
sion can be drawn about the status of ill-nested structures and their
importance for translation quality.

Table 12 also shows the number of complex alignment configurations
in the test set as generated by discodec. The numbers are obtained
by generating a word alignment for each sentence pair from the syn-
chronous SLCFRS derivation, and then analysing the alignments to
identify complex configurations. As described in section 3.1.1, the
terminals in each synchronous rule form a translation unit, and the
words of one translation unit are all linked to each other. For the pur-
pose of counting, we generate only one link for adjacent terminals in
the rules, or, when thinking in terms of translation units, we align
continuous blocks of translation units rather than words.

For illustration, consider the example in figure 67. The three rules
used in the derivation are the following:

1. 〈X(Forschung) → ε, X(research) → ε〉

2. 〈X(es , noch weitere Y1 notwendig) → X 1 (Y1),

X(more Z1, needed) → X 1 (Z1)〉
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X 3

X 2

X 1

. . . , es sei noch weitere Forschung notwendig .

. . . that more research is needed .

X 1

X 2

X 3

Figure 67: Partial derivation of a test sentence with complex alignment con-
figurations by the SLCFRS system discodec(2,2)-gs-gt

3. 〈X("," Y1 sei Y2 .) → X 1 (Y1, Y2), X(that Z1 is Z2 .) → X 1 (Z1, Z2)〉8

Rule #2 creates a synchronous constituent X 2 which is discontinuous
on the source and the target side. Each rule gives raise to a translation
unit:

1. 〈 Forschung ; research 〉

2. 〈 es , noch weitere , notwendig ; more , needed 〉

3. 〈 "," , sei , . ; that , is , . 〉

The holes or gaps in the translation units correspond to non-terminals
and argument boundaries in the SLCFRS rules.

The three translation units are intertwined as shown in the align-
ment in figure 67. Note how noch weitere is treated as one unit for align-
ment here, even though classically the two words would be aligned

8 To distinguish the terminal comma from the comma as the argument separator in
this rule and in translation unit notation, we put the first between quotes.
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, es

that more . . . is needed

, . . . noch weitere

that more . . . is needed

sei noch weitere

that more . . . is needed

es sei noch weitere . . . .

is needed

es sei noch weitere

that more . . . is

es sei . . . notwendig

that more . . . is

Figure 68: Four CDTUs and two bonbon configurations from the alignment
in figure 67

separately. This would however artificially inflate the number of com-
plex alignment configurations. The displayed alignment features 14
bonbon configurations and 42 CDTUs, all of them induced by just
rules #2 and #3. Some of those complex configurations are depicted
individually in figure 68.

Across the experiments, IO alignments and IO-DTUs are the most
frequent complex alignment configurations, followed by CDTUs and
bonbon configurations, see table 12. The average ratio of translation
units which are part of some complex alignment configuration ranges
between 0.22% for discodec(1,2) and 3.99% for discodec(2,2). Again,
the systems which outperform the SCFG-based baseline are close to
each other concerning this characteristics: 1.19% with discodec(2,1),
1.27% with discodec(2,2)-gt and 1.45% with discodec(2,2)-gs-gt.

As we can also see from table 12, across all experiments, the number
of sentences whose alignments feature complex configurations is very
roughly half the number of sentences with discontinuous constituents.
For instance, with discodec(2,2)-gt, on average 6.47% of the transla-
tions in the test set feature at least one discontinuous constituent, and
on average 3.13% of the translations incorporate at least one complex
alignment configuration. While discontinuous constituents are neces-
sary to generate complex alignment configurations, those numbers
show that they are also used in the derivations of the test set with-
out inducing any complex configuration.

Finally, we also look into the distribution of the generated gaps.
Figure 69 shows how many gaps of a certain size (cf. def. 2.9, p. 20) are
generated on the source side and on the target side for each system. In
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discodec(2,2) discodec(2,2)-gs discodec(2,2)-gt

discodec(2,2)-gs-gt discodec(1,2) discodec(2,1)

Figure 69: Analysis of the translations in the test set: distribution of sizes and
depths of source and target gaps. The numbers are averaged over
the systems obtained by multiple tunings.
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addition, it is also depicted how deep the gaps are for the individual
systems (cf. def. 2.15, p. 21), i. e. whether a gap is directly filled with
material in the yield of the parent of the node that generated the gap
(depth of 1) or whether the gap is maintained further towards the root
of the tree. A general observation is that all distributions are roughly
Zipfian. Note the log scale of the y-axes of the plots. I. e. most gaps
are small and/or filled immediately, while large, deep gaps are rare.

As before, the successful systems discodec(2,2)-gt, discodec(2,2)-
gs-gt and discodec(2,1) show a similar source gap size distribution,
emphasizing again the importance of gaps on the source side. On the
target side, discodec(2,2)-gt and discodec(2,2)-gs-gt show a similar
behaviour, while discodec(2,1) obviously does not generate any target
gaps. The absolute numbers of target discontinuities of discodec(2,2)-
gt and discodec(2,2)-gs-gt are however small anyway (table 12).

As for the gap depth, all systems show the tendency to close the
gaps rather immediately. This is expected given that propagating the
gap up requires the usage of additional (mixed) discontinuous rules
which (a) might not have been learned in the first place, and (b) whose
usage is penalized given the weights of the log-linear model. Further-
more, the complex alignment configurations can be derived with only
gaps of depth 1. Nevertheless, the successful systems discodec(2,2)-gt,
discodec(2,2)-gs-gt and discodec(2,1) also generate a few derivations
with gaps of depth >1. Consider the derivation in figure 66 as an ex-
ample.

6.4 discussion

Context to Related Work

In the previous chapter, which described the novel approach to ma-
chine translation using SLCFRS as the translation grammar formalism,
we have worked out that two strands of work are similar to ours in
that

a) they as well support discontinuities (to a certain degree) and
thus allow to model (some of the) complex alignment configura-
tions beyond SCFG,

b) they consider string-to-string translation, i. e. tree-based transla-
tion without syntactic information and
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c) they implement a statistical machine translation (SMT) system
including model training on large-scale data sets (e. g. Europarl).

Those approaches are discontinuous phrase-based translation (Galley and
Manning, 2010) (pp. 155, 195ff.), the non-hierarchical counterpart to
our approach, and tree-based translation using Multi Bottom-up Tree
Transducers (MBOTs) (Braune et al., 2013; Seemann et al., 2015a,b)
(pp. 165ff., 199ff.), which only allows for discontinuities on the target
side. We already compared the approaches in terms of motivation and
alignment capacity in section 4.4.2 and described the methodologies
and experiments in section 5.4.

In Galley and Manning (2010), the discontinuous phrase-based ap-
proach is evaluated on a Chinese-to-English translation task. An im-
provement in bleu of 0.77 over a phrase-based and of 1.03 over a hi-
erarchical phrase-based baseline are reported. It would be desirable to
see how our hierarchical and discontinuous phrase-based system per-
forms in comparison. Unfortunately, we could not evaluate directly
against their approach. The current documentation of Phrasal, where
discontinuous phrase-based translation had been implemented, does
not mention the discontinuous phrases anymore, which precludes
training such a system on our data.9 Neither could we obtain the data
sets that have been used in Galley and Manning (2010): some of them
had only been released for competitions and are not generally avail-
able.10

Tree-based translation using non-contiguous Synchronous Tree Sequence
Substitution Grammar (STSSG) is not in the scope for further compar-
ison since it only satisfies a) and half of c). As their motivation is to
loosen the constraints imposed by SCFG-based tree-to-tree translation,
Sun et al. (2009) exclusively consider tree-to-tree translation . They fur-
thermore train on a rather small data set, which leads us to thinking
that their approach or implementation does not scale.

The work on MBOT-based translation follows the same motivation
as the approach using STSSG, namely to improve tree-to-tree and

9 https://nlp.stanford.edu/wiki/Software/Phrasal, accessed on June 27, 2015 and
on November 1, 2017. Furthermore, C. Manning stated in February 2016 on the java-
nlp-user mailing list that discontinuous phrases in Phrasal are not maintained any-
more: https://mailman.stanford.edu/pipermail/java-nlp-user/2016-February/
007481.html, accessed on November 1, 2017.

10 Galley and Manning (2010) use the same data as in Wang et al. (2007), including
LDC databases which are evaluation releases, such as LDC2006E26 and LDC2005E83.
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string-to-tree translation. In the corresponding experiments, language
pairs which are expected to benefit from the modeling of target discon-
tinuities are chosen, as MBOTs are asymmetrical and do not allow dis-
continuities on the source side. Besides the work on tree-based trans-
lation using syntactic information, Seemann et al. (2015b) also report
on experiments for string-to-string translation for English-to-German
and English-to-Chinese. While their string-to-string systems overall
achieve the best results (better than the systems using syntactic infor-
mation), the MBOT-based hierarchical system does not quite reach the
translation performance of the SCFG-based hierarchical baseline sys-
tem. This is unexpected in the light of the results of Galley and Man-
ning (2010) who find that, for Chinese-to-English translation, source
discontinuities are the major factor for a successful system, thus rais-
ing hope that English-to-Chinese translation would benefit from target
discontinuities. Possible reasons for the unexpected result have been
pointed out in section 5.4.2.

Our results for SLCFRS-based translation for German-to-English ex-
periments in section 6.2.1 provide further evidence. Recall that for-
mally MBOT and (1 + vt)1|vt-SLCFRS, i. e. SLCFRS of source fan-out
vs = 1, are weakly equivalent. This means that our system setup for
discodec(1,2) corresponds roughly to the MBOT string-to-string setup
in terms of discontinuities.11 While there are many obvious differences
between the two systems, e. g. the type of extracted rules, the value of
the gap degree feature, the parameters for the rule extraction and the
decoder, we still use our results to shed some more light onto the
importance of source and target discontinuities in general.

From the systems in our experiments, discodec(1,2) shows the
worst translation performance for German-to-English translation ac-
cording to automatic metrics. It is not able to improve over the SCFG-
based baseline, while discodec(2,1) and discodec(2,2) with gap de-
gree features modestly do so. Relating this finding with Seemann
et al.’s MBOT results for English-to-German, as well as relating their
result for English-to-Chinese with the results of Galley and Manning’s
Chinese-to-English experiments, one might say that it becomes appar-
ent that, in (hierarchical) phrase-based translation, the characteristics

11 Obviously, while MBOT does not constrain the number of target tree fragments, the
target fan-out of discodec(1,2) is vt = 2. However, Seemann et al. (2015b) present
numbers which show that the number of MBOT rules with more than two target
tree fragments is negligible in string-to-string systems.



232 evaluation

of the languages themselves play only a minor role, if at all, when
it comes to the usefulness of discontinuous phrases. Across all refer-
enced experiments, source discontinuities consistently boost the trans-
lation performance (as measured by bleu). In contrast to that, target
discontinuities contribute little to the overall translation performance
or they turn out to be rather detrimental.

To gain more insights about the role of gaps on the target side, Gal-
ley and Manning (2010) experiment with removing rules from their
hierarchical baseline system which feature a non-terminal that repre-
sents a gap between two terminals. As they find that the bleu score
drops only slightly, they speculate that making effective use of gaps on
the target side, in the form of discontinuities as well as non-terminals,
is generally an issue. After all, generation is a more difficult problem
than the mere matching of rules on the source side. As the genera-
tion of the translation is majorly influenced by the language model,
this speculation goes hand in hand with a note we took earlier, see
section 5.5. The wide-spread n-gram language model scoring is not
optimal for hypotheses which do not expand from left to right, in par-
ticular discontinuous phrases are penalized with unreliable language
model estimates in comparison to their continuous competitors. This
might mean that target discontinuities will only be able to show their
full potential with better generation mechanisms and/or improved
language model scoring.

Translation Times

For the experiments reported on in this chapter, the processes were
heavily parallelized. As they were furthermore performed on differ-
ent compute architectures and on compute clusters shared with other
users and their processes, an in-depth analysis of training and decod-
ing times and a fair comparison is virtually impossible. Very roughly,
for decoding the complete test set including grammar loading, dis-
codec(1,2) takes about twice as much time as discodec(1,1), while
discodec(2,1) and discodec(2,2) are by factor 3.5 and 55 slower than
discodec(1,1) respectively.

Given the theoretical time complexity results of section 5.3.2, it has
been clear that allowing fan-outs v > 21|1 would lead to increased
translation times. Whether an improvement in translation quality jus-
tifies increased decoding times, needs to be carefully evaluated in a



6.5 conclusion 233

specific context. From the limited experimental results in this work, it
seems that, from the trained discodec systems, discodec(2,1) provides
the best trade-off between speed and quality.

It is also worth noting that the primary aim of the implementation of
discodec is functional correctness in order to provide a proof-of-concept
of SLCFRS as the core of an SMT system. Efficiency and speed could
surely be improved.

Further Experiments

Besides the fan-out vs and vt, also the number of (applicable) rules
influences the decoding time. This number obviously grows with the
more powerful translation models. One technique to limit this factor,
which was not applied in the experiments, is to early prune the trans-
lation model itself by loading only a certain number of translations
rules.

In addition, slcfrs-extract as well as discodec offer a set of hyperpa-
rameters which could be tuned further and experimented with. For
our experiments, they were set according to the best of the commu-
nity’s knowledge as described in section 6.1.

Apart from that, experiments on other language pairs should be
performed to evaluate our approach. As the results from related work
suggest, Chinese-to-English would be a promising candidate.

6.5 conclusion

Evaluating our hierarchical approach to machine translation which al-
lows for discontinuous phrases on a German-to-English translation
task revealed a modest improvement in bleu and meteor score over
the SCFG-based baseline. Human evaluators showed a slight prefer-
ence for translations produced by the SLCFRS system.

Our analysis of the translation results showed that it seems to be
important to allow discontinuities on the source side while limiting
the number of discontinuous constituents which are generated on the
target side. This might be a preliminary result and worth revisiting
in case of advancements in language-model scoring and generation
for translation in general. Overall, the number of discontinuous con-
stituents and generated complex alignment configurations as well as
the ratio of concerned sentences is rather small. This corresponds to
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the expectations, given the motivational analysis in section 3.2, and to
some extend explains the small differences in the evaluation results.



7
C O N C L U S I O N

7.1 contributions

In this thesis, a novel approach to tree-based statistical machine trans-
lation (SMT) has been explored. It makes use of a grammar formalism
beyond Context-Free Grammar (CFG) for translation modeling. In this
context, we have built the first SMT system based on Linear Context-
Free Rewriting System (LCFRS). To the best of our knowledge, it is
also the first hierarchical phrase-based system which allows for dis-
continuities on the source and on the target side.

To formalize translation modeling beyond CFG, we have defined
Synchronous Linear Context-Free Rewriting System (SLCFRS), an ex-
tension to Synchronous Context-Free Grammar (SCFG) in which non-
terminals span pairs of tuples of strings instead of just pairs of sin-
gle strings and can thus model discontinuities. This has required the
extension of well-established procedures for model training and de-
coding devised for SCFG to SLCFRS translation models. We have pro-
vided a practical implementation and an evaluation comparing several
SLCFRS systems to each other and their SCFG-based counterpart. The
analysis of the results has revealed a small, but significant improve-
ment over the baseline when allowing for source discontinuities and
constraining the number of target gaps.

We have motivated the move from SCFG to SLCFRS with the limita-
tion of the space of alignment configurations which can be generated
with SCFG. To that end, we have contributed a hierarchical aligner
and an empirical investigation concerning the adequacy of SCFG and
SLCFRS with respect to the alignment configurations which occur in a
wide range of manually aligned data. A follow-up manual qualitative
investigation revealed that only very few alignment configurations be-
yond SCFG can be attributed to alignment errors. In our investigations,
we have furthermore discovered a class of alignment configurations
which had not been described in the literature before.

LCFRS and its formal equivalents are well-studied formalisms for
modeling the syntax of natural languages. They have also demon-

235
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strated their potential for parsing discontinuous constituents in a prob-
abilistic, data-driven setup. However, literature on using LCFRS for
translation modeling has been sparse and remained theoretical. The
presented work thus represents an actual application of LCFRS and
LCFRS parsing to SMT. In addition, an extensive overview of related
approaches has been provided in order to put our approach into con-
text.

7.2 future work

A lot of work could still be done. Shortcomings of the implemented
string-to-string SLCFRS translation system have been pointed out in
section 5.5. Suggestions for additional experiments are given in sec-
tion 6.4. Further directions of future work will be described in the
following.

use of syntactic structures which support discontinu-
ities Translation modeling within this work has not made use of
monolingual syntactic information so far: the presented hierarchical
phrase-based translation model is syntactic only in a formal sense.
For SCFG-based translation models, various approaches for string-to-
tree, tree-to-string and tree-to-tree models have been worked out in
the literature, building syntactic trees on the target side, the source
side or both respectively during decoding (see p. 86ff. for some refer-
ences). Generally, these approaches make use of a probabilistic parser
which produces context-free constituency structures for the sentences
in the training corpus. It is however known that certain phenomena
in the syntax of natural languages cannot be modeled adequately
with CFG and that more expressive modeling mechanisms, e. g. mildly
context-sensitive grammar formalisms like LCFRS, are necessary (see
section 2.1.3). We suppose that more adequate monolingual modeling
would lead to better translational correspondences and thus to trans-
lations of better quality.

SLCFRS is a natural candidate for translation modeling in string-to-
tree, tree-to-string and tree-to-tree approaches where the trees repre-
sent LCFRS derivations. It should be possible to extend the approaches
which have been established for SCFG-based systems rather directly
to SLCFRS, i. e. such that they make use of constituency trees support-
ing discontinuous constituents. Note that with Multi Bottom-up Tree
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Transducer (MBOT) (p. 165) and Synchronous Tree Sequence Substi-
tution Grammar (STSSG) (p. 162), this is not directly possible. Even
though they are expressive enough to generate (some of the) com-
plex alignment configurations and to model discontinuities, their syn-
chronous parse trees exclusively feature continuous constituents, thus
making grammar extraction from trees with discontinuities non-trivial.
The tree-based approaches which have been developed using those
formalisms for translation modeling (p. 199ff.) all rely on CFG parse
trees.1

Tree-based approaches which rely on tree fragments instead of flat
rules, e. g. by using Synchronous Tree-Substitution Grammar (STSG),
can also be extended to support the modeling of discontinuous con-
stituents. In the context of Data-Oriented Parsing (DOP), Discontinuous
Tree-Substitution Grammar (DTSG) has been defined and used (van Cra-
nenburgh et al., 2016), which would be suitable for translation model-
ing by extending it to its synchronous version. A Synchronous DTSG
would also be an instance of a tree-rewriting SLCFRS.

For the monolingual parsing, one would make use of recent ad-
vances in monolingual parsing of discontinuous constituents. It is
now possible to parse large amounts of text, e. g. an SMT training
corpus, producing constituency trees which allow for discontinuous
constituents with good accuracy and speed (see p. 65 for the refer-
ences).

neural machine translation beyond cfg On a final note,
let us glance at the new big player in the field, neural machine trans-
lation (NMT). Extensions to the plain sequence-to-sequence learning
have been proposed just recently which make use of syntactic struc-
ture in the form of context-free constituency trees on the source or
the target side in some way (Eriguchi et al., 2016, 2017; Aharoni and
Goldberg, 2017). In this context, one can reason in the same way as
for SMT models: in order to adequately describe the syntax of the
individual languages, constituency structures which support discon-
tinuous constituents should be used, thus also pushing NMT beyond
context-freeness.

1 Seemann and Maletti (2015) even remove the non-projective dependencies, which
would lead to discontinuous constituents, in their data preparation procedure for
MBOT.
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a.1 formalisms

Many grammar formalisms and frameworks have been mentioned
in this thesis. They are listed in the following, together with the
acronyms that have been used.

CFG Context-Free Grammar

DTSG Discontinuous Tree-Substitution Grammar

GMTG Generalized Multitext Grammar

ITG Inversion Transduction Grammar

LCFRS Linear Context-Free Rewriting System

MBOT Multi Bottom-up Tree Transducer

MCFG Multiple Context-Free Grammar

MCTAG Multi-Component Tree-Adjoining Grammar

NF-ITG Normal-form Inversion Transduction Grammar

NF-SCFG Normal-form Synchronous Context-Free Grammar

NF-SLCFRS Normal-form Synchronous Linear Context-Free
Rewriting System

PMCFG Parallel Multiple Context-Free Grammar

RCG Range Concatenation Grammar

RCT Range Concatenation Transducer

SCFG Synchronous Context-Free Grammar

SCFTG Synchronous (Simple) Context-Free Tree Grammar

239
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SDTG Syntax-Directed Transduction Grammar

SLCFRS Synchronous Linear Context-Free Rewriting System

SRCG Simple Range Concatenation Grammar

SRCT Simple Range Concatenation Transducer

STAG Synchronous Tree-Adjoining Grammar

STIG Synchronous Tree-Insertion Grammar

STSG Synchronous Tree-Substitution Grammar

STSSG Synchronous Tree Sequence Substitution Grammar

TAG Tree-Adjoining Grammar

TIG Tree-Insertion Grammar

TSG Tree-Substitution Grammar

a.2 miscellaneous

The following list contains other acronyms which have been used.

CDT Copenhagen Dependency Treebank

CDTU cross-serial discontinuous translation unit

CNF Chomsky Normal Form

DOP Data-Oriented Parsing

DTU discontinuous translation unit

IO inside-out

IO-DTU inside-out discontinuous translation unit

LHS left-hand side

NLP natural language processing

NMT neural machine translation
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RHS right-hand side

SMT statistical machine translation

SVO subject-verb-object

TUER translation unit error rate
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