Mechanisms of Therapy Resistance in Adrenocortical Carcinoma

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Eric Seidel aus Dernbach

Düsseldorf, Juni 2018

aus der Klinik für Nephrologie des Universitätsklinikums Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

- 1. Univ.-Prof. Dr. med. Ute Ingrid Scholl
- 2. Univ.-Prof. Dr. med. Christoph Matthias Fahlke

Tag der mündlichen Prüfung: 26. September 2018

Table of Contents

1	Abst	ract	5
1	Zusa	nmenfassung	7
2	List	of Figures	9
_	1:		10
3	LIST	of Tables	10
4	List	of Equations	11
5	List	of Abbreviations	12
6	Intro	duction	13
	6.1	The Adrenal Gland	13
	6.1.1	Anatomy	13
	6.1.2	Histology and Functional Aspects of the Adrenal Cortex and Medulla	
	6.2	Tumors of the Adrenal Gland	16
	6.3	Adrenocortical Carcinoma	17
	6.3.1	Prevalence	17
	6.3.2	Genetic Causes	17 19
	6.3.4	Treatment	
	6.3.5	Pharmacodynamics and Pharmacokinetics of Mitotane	
	6.3.7	<i>In vitro</i> Models of Adrenocortical Carcinoma	
	6.4	Aims of Project and Research Questions	27
7	Meth	ods	29
	7.1	Cell Culture of the HAC-15 Adrenocortical Carcinoma Cell Line	29
	7.2	Active Compounds	29
	7.3	Long-Term Mitotane Treatment of HAC-15 Cells	30
	7.4	Clonal Selection of Long-Term Treated HAC-15 Cells	30
	7.5	Growth Curves of Mitotane-Treated HAC-15 Cells	31
	7.6	3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide (MTT) Assay	31
	7.7	Measurement of the IC_{50} of Mitotane in Various Media and Correlation Analysis	32
	7.8	Measurement of Intracellular Lipids by ESI-MS/MS	32
	7.9	Measurement of Mitotane by GCMS	33
	7.10	RNA Isolation	33
	7.11	Complementary-DNA Synthesis and Real-Time PCR	34
	7.12	Gene Expression Microarray Analysis	35
	7.13	Isolation of Genomic DNA from Cultured Cells	36
	7.14	Exome Sequencing	36
	7.15	Analysis of Gene Expression Microarray and Exome Sequencing Data	37
	7.16	BCA Assay	37
8	Resi	ults	39

	8.1 8.1.1 8.1.2 8.1.3	Development of an <i>In Vitro</i> Model of Mitotane Resistance Generation of a Mitotane-Resistant Adrenocortical Carcinoma Cell Line Multidrug Resistance in Mitotane Resistant HAC-15 Clonal Cell Lines The Influence of Lipoprotein Species on Mitotane Resistance	39 39 41 43
	8.2 Nonresis 8.2.1 8.2.2	Investigation of Gene Expression and DNA Integrity in Mitotane Resistant and stant Control Cells Gene Expression Microarray Analysis Whole Exome Sequencing Analysis	46 46 52
	8.3 8.3.1 8.3.2 8.3.3	Functional Analyses Cell Culture Validation of Possible Pathways of Mitotane Resistance Intracellular Measurement of Various Lipid Species Mitotane Measurement by GCMS	53 53 57 61
9	Discu	ussion	63
	9.1 9.1.1 9.1.2 15 Ce	Generation of a Mitotane Resistant Adrenocortical Carcinoma Cell Line Mitotane Long-Term Treatment Induces Resistance in HAC-15 Cells Mitotane Resistance is Different from Multidrug Resistance in Long-Term Treated HAC ells	63 63)- 64
	9.1.3 Resis	Lipoproteins and Cholesterol Are Correlated with Mitotane Cytotoxicity, and Mitotane stance is Influenced by Medium HDL and LDL	64
	9.2 9.2.1 Gene 9.2.2 Chan	Gene Expression Microarray Analysis Unbiased and Biased Analysis of Gene Expression Microarray Data Reveal Profound Expression Changes in Mitotane Resistant Cells Pathways involved in Wnt Signaling, Lipid Transport and Lipoprotein Clearance Are ged in Mitotane Resistant Cells.	65 65 68
	9.3 9.3.1	Whole Exome Sequencing Mitotane Resistant Clonal Cell Lines Show High Genetic Similarity	70 70
	9.4 9.4.1 9.4.2 9.4.3	Functional Analyses Mitotane Resistance is Likely not Caused by a Single Driver Pathway Mitotane Resistance is Accompanied by Profound Changes in Intracellular Lipids Intracellular Mitotane Concentration is not Changed in Mitotane Resistant Cells	71 71 73 76
1() Limi	tations of the Study	78
11	I Clini	ical Relevance	79
12	2 Si	ummary, Conclusions and Outlook	80
	12.1	Does mitotane treatment induce resistance in vitro?	80
	12.2 level or	Is mitotane resistance accompanied by genetic changes either concerning the transcription integrity of the DNA sequence?	on 80
	12.3 changes	Can molecular mechanisms of mitotane resistance be inferred from these genetic ?	82
	12.4 ACC pa	Are the molecular mechanisms of mitotane resistance consistent with observations in bot tients and <i>in vitro</i> models?	h, 83
13	B Refe	rences	86
14	1 Danl	ksagung1	04
15	5 App	endix1	06
16	6 Eide	sstattliche Versicherung1	26

1 Abstract

Adrenocortical Carcinoma (ACC) is a rare and aggressive malignancy of the adrenal cortex characterized by fast progression and dismal prognosis. It commonly features excessive production of steroid hormones leading to Cushing's syndrome, virilization, feminization and, in rare cases, Conn's syndrome. Adrenocortical carcinoma mostly develops sporadically between the fourth and fifth decade of life. The only curative treatment known to date is the complete surgical resection of the tumor. However, recurrence after resection is reported in 40-60% of the patients. Mitotane is the only drug approved for ACC treatment. Its major mode of action is the inhibition of sterol-oacyl transferase (a major regulator of intracellular free cholesterol) leading to accumulation of free cholesterol, endoplasmic reticulum stress and apoptosis. It is commonly used in combination with etoposide, doxorubicin and cisplatin in advanced or metastatic ACC and as adjuvant treatment after resection. The use of mitotane may prolong recurrence free survival but does not affect overall survival. Moreover, patients commonly do not respond or face recurrence during mitotane therapy, even when therapeutic blood levels are maintained. These observations suggest a mechanism of acquired resistance towards mitotane in ACC. The underlying mechanisms, however, have not been investigated. The present thesis therefore investigates the mechanisms underlying mitotane resistance in an *in vitro* model of mitotane resistant ACC.

Mitotane resistant clonal cell lines were established from long-term treated HAC-15 cells, and were subsequently characterized by *in vitro* studies, a gene expression microarray study with subsequent Gene Ontology enrichment analysis and a whole exome sequencing study. Finally, selected driver pathway candidates were investigated *in vitro* and intracellular content of several lipid species and mitotane was assessed by ESI-MS/MS and GCMS, respectively.

Mitotane resistance in the present *in vitro* model was not accompanied by doxorubicin resistance, and upregulation of the gene expression of common multidrug resistance transporters MDR1, MRP1 and BCRP was excluded in the microarray study. Further, the IC₅₀ of mitotane was found to be positively correlated with medium content of HDL, LDL and cholesterol. Moreover, mitotane resistance was mitigated at low medium levels of HDL and LDL. Gene Ontology enrichment analysis demonstrated upregulation of pathways involved in Wnt signaling and cell growth and downregulation of pathways involved in biosynthesis and metabolism of steroid hormones, lipid transport as well as

1 Abstract

lipoprotein binding and clearance in resistant cells. Exome sequencing revealed high genetic similarity among mitotane resistant clonal cell lines. Investigation of candidates (SCARB1, AGTR1, Wnt and DDIT4L/mTor) did not lead to identification of singular driver genes or pathways. Investigation of intracellular lipid content revealed resistant cells to be depleted of cholesteryl esters. Treatment with 50 μ M mitotane caused a significant increase in intracellular free cholesterol, the major mediator of mitotane associated cytotoxic effects, as well as proapoptotic ceramides and lysophosphatidylcholines in nonresistant, but not in resistant cells. Also, sphingomyelins were significantly increased in nonresistant cells in comparison to resistant cells at all conditions, and treatment with 50 μ M mitotane caused a significant increase in sphingomyelins in nonresistant, but not in resistant cells. Mitotane resistant cells showed a tendency towards reduced intracellular mitotane content, however no significant effect was found.

The data provided in the present thesis suggest that mitotane resistance in the present *in vitro* model is different from common multidrug resistance. According to the whole exome sequencing study, mitotane resistant clonal cell lines may derive from a single, mitotane resistant cell. *In vitro* experiments and the gene expression microarray study suggest a role of medium lipoprotein content and lipoprotein uptake in mitotane resistance in the present *in vitro* model. Discovery of the downregulation of genes implicated in pathways connected to metabolism and biosynthesis of steroid hormones may help explain the reduction of steroid hormone excess commonly observed in mitotane treated patients. Absence of mitotane dependent increase in intracellular free cholesterol suggests impaired sterol-o-acyltransferase inhibition in resistant cells.

1 Zusammenfassung

Das Nebennierenrindenkarzinom (engl.: adrenocortical carcinoma; ACC) ist eine seltene Tumorerkrankung der Nebennieren, die durch eine rasche Progression und eine schlechte Prognose gekennzeichnet ist. Dabei kommt es aufgrund einer Überproduktion an Steroidhormonen häufig zur Entstehung eines Cushing Syndroms, einer Überproduktion an Geschlechtshormonen und seltener eines Conn Syndromes. Das ACC entwickelt sich häufig sporadisch im Alter von 40-50 Jahren und kann momentan nur durch eine vollständige, chirurgische Entfernung des Tumors geheilt werden. Allerdings kommt es in 40-60% der Patienten zu Rezidiven. Mitotan ist momentan das einzige Medikament, das zur Behandlung des ACC zugelassen ist. Mitotan wirkt hauptsächlich, indem es das Enzym Sterol-o-acyltransferase, den wichtigsten Regulator von intrazellulären Cholesterinspiegeln, hemmt. Dies führt zu intrazellulären Cholesterinablagerungen, endoplasmatischem Retikulum Stress und Apoptose. Mitotan wird in der adjuvanten Therapie nach Operation und zur Behandlung von fortgeschrittenem und metastasiertem ACC eingesetzt, meist als Kombinationspräparat mit Doxorubicin, Etoposid und Cisplatin. Mitotan kann das rezidivfreie Überleben verbessern, scheint das Gesamtüberleben aber nicht zu beeinflussen. Darüber hinaus kommt es auch häufig unter therapeutisch wirksamen Blutspiegeln von Mitotan zu Rezidiven und Nonrespondern. Diese Beobachtungen legen nah, dass es unter Mitotantherapie zu einer erworbenen Resistenz kommt, die bislang noch nicht näher untersucht wurde. Ziel der vorliegenden Doktorarbeit war es daher, die der Mitotanresistenz zugrunde liegenden Mechanismen anhand eines geeigneten in vitro Modells näher zu untersuchen. Dazu wurden mitotanresistente, klonale Zelllinien aus langzeitbehandelten HAC-15 Zellen isoliert. Die resistenten Zelllinien wurden daraufhin anhand von in vitro Studien, einem Genexpressionsmicroarray und mittels Exomsequenzierung charakterisiert. Daraufhin wurden ausgewählte Kandidaten und Signalwege auf ihre Rolle als Driver hin untersucht. Des Weiteren wurde der intrazelluläre Gehalt von Mitotan und diversen Lipiden mittels Massenspektrometrie bestimmt.

Im vorliegenden *in vitro* Modell der Mitotanresistenz wurde keine Resistenz gegen Doxorubicin festgestellt. Auch wurde im Genexpressionsarray keine Veränderung der Genexpression der wichtigsten Multiresistenzgene MDR1, MRP1 und BCRP festgestellt. Es wurde eine positive Korrelation zwischen der Konzentration an HDL, LDL und Cholesterin im Medium und der IC₅₀ von Mitotan gefunden. Darüber hinaus war die Mitotanresistenz in Anwesenheit von geringen Lipoproteinkonzentration im Medium abgeschwächt. Eine Gene Ontology Enrichment Analyse identifizierte hochregulierte Signalwege mit einer Rolle in der Wnt Signalkaskade und dem Zellwachstum und runterregulierte Signalwege mit einer Rolle in der Biosynthese und dem Abbau von Steroidhormonen und Lipiden und in der Bindung und Clearance von Lipoproteinen in resistenten Zellen. In Untersuchungen von SCARB1, AGTR1, Wnt and DDIT4L/mTor als Kandidaten konnten keine singulären Driver der Resistenz identifiziert werden. Resistente Zellen wiesen einen signifikant stark verringerten Gehalt an Cholesterinestern auf. Der intrazelluläre Gehalt an freiem Cholesterin, dem hauptsächlichen Verursacher der Mitotan vermittelten Cytotoxizität, und an proapoptotischen Lysophosphatidylcholinen und Ceramiden war in nichtresistenten, mit 50 µM Mitotan behandelten Zellen signifikant erhöht, nicht aber in resistenten Zellen. Sphingomyeline waren in resistenten Zellen unter allen getesteten Bedingungen signifikant erniedrigt. Darüber hinaus führte eine Behandlung mit 50 µM Mitotan zu einer signifikanten Erhöhung von Sphingomyelinen in nichtresistenten, nicht aber in resistenten Zellen. Der intrazelluläre Mitotangehalt in resistenten Zellen war tendenziell niedriger als in nichtresistenten Zellen, allerdings wurde kein signifikanter Effekt festgestellt.

Die im Rahmen der vorliegenden Doktorarbeit erhobenen Daten legen die Schlussfolgerung nahe, dass sich die Mitotanresistenz in vorliegendem *in vitro* Model von der häufig beobachteten Multidrug-Resistenz unterscheidet. Die verringerte Expression von Genen, die eine Rolle in Biosynthese und Abbau von Steroidhormonen spielen, könnte einen Erklärungsansatz für die oft beobachtete Linderung der durch Steroidhormone verursachten Symptome in Mitotan behandelten ACC Patienten liefern. Die Resultate der Exomsequenzierungsstudie deuten darauf hin, dass alle resistenten Zelllinie von einer gemeinsamen Vorläuferzelle abstammen. Die durchgeführten *in vitro* Studien weisen, zusammen mit der Genexpressionsstudie, auf eine bedeutende Rolle des Lipoproteingehaltes des Medium und der Lipoproteinaufnahme im vorliegenden *in vitro* Modell hin. Das Ausbleiben einer Erhöhung des intrazellulären freien Cholesterins unter Mitotanbehandlung in resistenten Zellen deutet auf eine Störung der Inhibition der Sterol-o-acyltransferase durch Mitotan hin.

2 List of Figures

Figure 1: Anatomy of the adrenal glands	13
Figure 2: Steroidogenic pathways of the adrenal gland. Steroid hormones of the adrenal gland are	
synthesized from their common precursor cholesterol	14
Figure 3: Staging system for adrenocortical carcinoma	19
Figure 4: Dose-response curve of mitotane in HAC-15 cells	39
Figure 5: Growth curves of long-term mitotane treated HAC-15 cells	39
Figure 6: Dose-response curves of mitotane in long-term treated HAC-15 cells. Long-term mitotane	е
(70 µM Pulsed) versus vehicle control treated (Control) HAC-15 cells	40
Figure 7: The IC ₅₀ of mitotane in clonally selected long-term treated HAC-15 cells. Long-term	
mitotane (70 µM Pulsed) versus vehicle control treated (Control) HAC-15 cells	41
Figure 8 A-C: Dose-response curves of doxorubicin in mitotane resistant versus nonresistant contr	rol
HAC-15 clones	42
Figure 9 A and B: The IC ₅₀ of mitotane in different media and correlation analysis	43
Figure 10 A and B: The influence of HDL and LDL on mitotane cytotoxicity and resistance	44
Figure 11: Principle component analysis of gene expression array data sets	46
Figure 12: Heat map of significantly regulated genes annotated for GO pathways related to	
"cholesterol" and "steroids" in mitotane resistant compared to nonresistant HAC-15 clones	47
Figure 13: Heat map of the 150 most significantly regulated genes in mitotane resistant cells	49
Figure 14: Copy number variation (CNV) profiles of mitotane resistant clonal cell lines	52
Figure 15: The cell viability of HAC-15 cells in presence of different concentrations of mitotane and	ł
SR-BI inhibitor BLT-1	53
Figure 16: The cell viability of HAC-15 cells in presence of different concentrations of mitotane and	ł
AGTR1 inhibitor losartan	55
Figure 17: The IC ₅₀ of mitotane in mitotane resistant and nonresistant control clonal cell lines in	
presence of vehicle 10 µM mTOR-pathway inhibitor rapamycin	56
Figure 18: The relative expression of AXIN2 in mitotane resistant versus nonresistant control cells.	57
Figure 19: The IC ₅₀ of mitotane in mitotane resistant clonal cell lines in presence 10 μ M Wnt pathw	/ay
inhibitor XAV939	57
Figure 20: Intracellular content of various lipid species	58
Figure 21 A-D: All species of cholesterol, lysophosphatidylcholine, ceramide and sphingomyelin	
analyzed by ESI-MS/MS	59
Figure 22: The concentration of mitotane in supernatant and lysates of nonresistant control and	
mitotane resistant clonal cell lines	61
Figure 23 A-C: Summary of findings from the present thesis and literature concerning mitotane mo	ode
of action and mitotane resistance	84

3 List of Tables

Table 1: Sample preparation of real-time PCR. 35
Table 2: Real-time PCR protocol. 35
Table 3: The IC ₅₀ of doxorubicin in nonresistant control and mitotane resistant cells in absence and
presence of two concentrations of mitotane. IC ₅₀ s were calculated from dose-response curves in figure
8 A-C (mean±SD) and p-values (Mann-Whitney test)
Table 4: Pearson correlation coefficients and p values for correlations between the IC ₅₀ of mitotane
and the concentration of cholesterol, HDL, LDL and triglycerides in the medium
Table 5: The IC ₅₀ of mitotane in nonresistant control and mitotane resistant cells in presence of
different amounts of HDL and LDL in the medium (mean±SD) and p-values (Mann-Whitney test) 45
Table 6: P-values (Mann-Whitney test) for comparisons of IC50s of mitotane resistant and nonresistant
control cells in presence of different HDL to LDL ratios (figure 10)
Table 7: Selected biological processes (BP) and molecular functions (MF) of a Gene Ontology
enrichment analysis of differentially expressed genes comparing DMSO treated mitotane resistant to
nonresistant control clonal cell lines. For complete results, please refer to appendix 1
Table 8: Selected biological processes (BP) and molecular functions (MF) of a Gene Ontology
enrichment analysis of differentially expressed genes comparing mitotane treated to DMSO treated
nonresistant control clonal cell lines. For complete results, please refer to appendix 1
Table 9: P-values (Kruskal-Wallis test and Dunn's uncorrected post hoc test) for comparisons of cell
viability in absence and presence of different concentrations of mitotane and SR-BI inhibitor BLT-1
(figure 15)
Table 10: P-values (Kruskal-Wallis test and Dunn's uncorrected post hoc test) for comparisons of cell
viability in absence and presence of different concentrations of mitotane and angiotensin II receptor 1
inhibitor losartan (figure 16)
Table 11: P-values (Kruskal-Wallis test and Dunn's uncorrected post hoc test or one-way ANOVA and
Fisher's LSD test) for comparisons of intracellular lipids in absence and presence of different
concentrations of mitotane and CCS (figure 20 and 21). For a complete list of p-values, please refer to
appendix 2

4 List of Equations

Equation 1: Calculation of cumulative population doublings (cPD).	31
Equation 2: Four parameter dose-response curve fit	31
Equation 3: Calculation of relative gene expression in any sample X compared to a reference sar	nple
К	35
Equation 4: Calculation of protein concentration from BCA assays.	38

5 List of Abbreviations

ABCA1	ATP-binding cassette subfamily A member 1	GO	Gene Ontology
ABCG1	ATP-binding cassette subfamily G member 1	HDL	high density lipoprotein
ACC	adrenocortical carcinoma	HSD3B	3β -hydroxysteroid dehydrogenase/ Δ 5-4 isomerase
ACTH	corticotropin	HSL	hormone sensitive lipase
AGTR1	angiotensin II receptor 1	IC ₅₀	half-maximal inhibitory concentration
Aldo	aldosterone	IGF2	insulin-like growth factor 2
Andr	androgens	IST	insulin-transferrin-selenium
ATP	adenosine triphosphate	LDL	low density lipoprotein
BCRP	breast cancer resistance protein	LDLR	low density lipoprotein receptor
BP	biological process	LFS	Li-Fraumeni syndrome
BWS	Beckwith-Wiedemann syndrome	LPC	lysophosphatidylcholines
CCS	cosmic calf serum	MAM	mitochondria associated membranes
CER	ceramides	MC2R	melanocortin 2 receptor
CER	cholestervl esters	MDR1	multidrug resistance protein 1
CGH	comparative genomic hybridization	MF	molecular function
CM	cell membrane	mitotane-FDP	mitotane, etoposide, doxorubicin and
			cisplatin
CNV	copy number variant	MM	mitochondrial membrane
Cort	cortisol	MBI	magnetic resonance imaging
COX x	cvtochrome c oxidase subunit x	MRP1	multidrug resistance-associated
			protein 1
cPD	cumulative population doublings	МТТ	3-(4.5-dimethylthiazol-2-yl)-2.5-
0. 2			diphenyl tetrazolium bromide
CBH	corticotroph releasing hormone	NR5A1	cf SF-1
CSC	cancer stem cell	NuS	Nu-Serum
CT	computerized tomography	o n'-DDD	1 1-(dichlorodinhenvl)-2 2-
01	compatenzea temography	0,p 888	dichloroethane
CYP11A1	cholesterol side-chain cleaving enzyme	o n'-DDE	1 1 - (0 n' - dichlorodinhenvl) - 2 2
01111/1	choiceterer blace chain blockning chizynio	o,p bbe	dichloroethene
CYP11B1	steroid-118-hvdroxvlase	o n'DDA	1 1-(o p'-dichlorodiphenyl) acetic acid
CYP11B2	aldosterone synthase	PBS	Dulbecco's Phosphate Buffered Saline
CYP17A1	steroid 17a-hydroxylase	PCx	principle component x
CYP21A2	steroid 21-hydroxylase		phospholipase 2 subfamiliy 12 group A
	DNA-damage-inducible transcript 3	SCARB1	Cf_SB-BI
DDITO	(CHOP)	00/1121	
тлл	dichlorodiphenyltrichloroethane	SCD	stearoyl-CoA desaturase
	dehydroeniandrosterone	SDS	sodium dodecyl sulfate
DHEA-S	dehydroepiandrosterone sulfate	SE-1	steroidogenic factor-1
DMSO	dimethyl sulfoxide	SOAT1	sterol-O-acyl transferase
ENaC	enithelial sodium channel	SPM	sphingomyelins
ENSAT	European Network for the Study of	SB-BI	scavenger recentor 1B
LNOAT	Adrenal Tumor		scavenger receptor TD
ERM	endoplasmic reticulum membrane	SREBF1	sterol regulatory element binding
			transcription factor 1
ESI-MS/MS	electrospray ionization tandem mass	StAR	steroidogenic acute regulatory protein
	spectrometry		
FCS	fetal calf serum	SULT2A1	sulfotransferase family 2A member 1
FDG PFT	18F-fluorodeoxyalucose positron	TF	transcription factor
	emission tomography		
GCMS	gas chromatography mass spectrometry	VLDL	very low density lipoprotein
GDF15	differentiation factor 15		, , , , , , , , , , , , , , , , , , ,
-	-		

6 Introduction

6.1 The Adrenal Gland

6.1.1 Anatomy

The adrenal glands are a pair of endocrine organs that are essential for metabolism, blood pressure regulation as well as glucose and sodium homeostasis (1, 2). In fact, their importance in both, human health and disease has been recognized as early as 1855 (3). They consist of the adrenal cortex, which represents up to 90% of the adrenal weight and comprises the zonae glomerulosa, fasciculata and reticularis, as well as the adrenal medulla (1, 2). The adrenal cortex is a major production site of steroid hormones, while the adrenal medulla is a major site of catecholamine production (1, 4). The anatomy of the adrenal gland is shown in figure 1.

Figure 1: Anatomy of the adrenal glands. The adrenal glands are a pair of endocrine organs situated above the kidney. They are surrounded by a capsule and consist of the cortex and the medulla. The adrenal cortex comprises the zona glomerulosa, which secretes aldosterone, the zona fasciculata, which secretes cortisol and the zona reticularis, which secretes adrenal androgens (DHEA and androstenedione). The medulla, which secretes epinephrine and norepinephrine, contains chromaffin cells innervated by sympathetic nerve fibers. Adrenal blood supply enters the cortex from capsular arteries and flows through anastomotic capillary beds towards the medullary vein. Abbreviation: DHEA, dehydroepiandrosterone (2). Reprinted with permission of Elsevier Saunders¹.

¹ Reprinted from Medical Physiology, 3rd edition, Barrett EJ, Chapter 50: The Adrenal Gland, 1018-35. Copyright (2016), with permission from Elsevier Saunders.

6.1.2 Steroidogenesis

During steroidogenesis, all steroid hormones of the human adrenal cortex are synthesized from their common precursor cholesterol by mitochondrial and smooth endoplasmic reticulum enzymes (5). The major steroidogenic pathways of the three zones of the adrenal cortex are shown in figure 2.

Figure 2: Steroidogenic pathways of the adrenal gland. Steroid hormones of the adrenal gland are synthesized from their common precursor cholesterol. The first step is the rate-limiting step of steroidogenesis and involves cholesterol transport into mitochondria by StAR and synthesis of pregnenolone by CYP11A1. Pregnenolone is then converted either to aldosterone in the zona glomerulosa, to cortisol in the zona fasciculata or to androstenedione and DHEA-S in the zona reticularis in multistep-reactions involving enzymes of the mitochondria (brown) and smooth endoplasmic reticulum (blue). Abbreviations: CYP11A1, cholesterol side-chain cleaving enzyme; StAR, steroidogenic acute regulatory protein; HSD3B, 3 β -Hydroxysteroid dehydrogenase/ Δ 5-4 isomerase; CYP21A2, steroid 21-hydroxylase; CYP17A1, steroid 17 α -hydroxylase; CYP11B2, aldosterone synthase; CYP11B1, steroid-11 β -hydroxylase; SULT2A1, sulfotransferase family 2A member 1; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone sulfate. Adapted from (5) and (6).

For steroidogenesis, cholesterol may be provided either by uptake of plasma low density lipoprotein (LDL), mobilization of intracellular cholesterol storage or *de novo* synthesis from acetate (7). The human adrenal covers 80% of its cholesterol needs by uptake of plasma cholesterol (8), either mediated by the LDL receptor (LDLR), involving endocytosis and lysosomal degradation of LDL particles (9), or by selective uptake of cholesterol from lipoproteins (LDL and high density lipoprotein, HDL) mediated by the scavenger receptor 1B (SR-BI) (10). In the adrenal cortex, excess free cholesterol is esterified by the sterol-O-acyltransferase (SOAT) and stored as cholesteryl esters in lipid droplets (11), while mobilization of cholesterol from storage is catalyzed by hormone sensitive lipase (12) under stimulation of adrenaline, glucagon and ACTH (13).

6.1.3 Histology and Functional Aspects of the Adrenal Cortex and Medulla

Histologically, the human adrenal cortex mostly consists of lipid-rich, epithelial cells (14). According to their arrangement and function, epithelial cells of the adrenal cortex are compartmentalized into three distinct zones (14, 15). In the outermost zone beneath the tissue capsule (zona glomerulosa) aldosterone is produced as part of the renin-angiotensin-aldosterone system, exerting an important role on regulation of blood pressure and electrolyte balance (16). Epithelial cells of the zona glomerulosa are clustered in irregular nests (17, 18). Expression of *CYP11B2*, and thereby aldosterone secretion, is mainly stimulated by angiotensin II as well as increased serum potassium, and, to less extent, by corticotropin (ACTH) and inhibited by atrial natriuretic peptide (16). Aldosterone binds to the mineralocorticoid receptor in the distal tubules and the collecting duct of the kidney and thereby increases the activity of several downstream effectors including epithelial sodium channel (ENaC) and sodium/potassium-ATPase, leading to retention of sodium and water as well as the excretion of potassium (19, 20).

In comparison to the zona glomerulosa, epithelial cells of the zona fasciculata are large, high in lipid content, contain pronounced smooth endoplasmic reticula and are rather organized in columns than in clusters (21, 22). The zona fasciculata comprises most of the adrenal cortex (22), and, as part of the hypothalamo-pituitary axis, is responsible for cortisol production (23). In response to stress, corticotroph releasing hormone (CRH) is released by the hypothalamic paraventricular nucleus, which then causes release of ACTH by the adenohypophysis (24). Corticotropin, in turn, binds to the melanocortin 2 receptor (MC2R) of fasciculata cells and causes cortisol production by translocation of cholesterol from lipid droplets to the mitochondria and increase of *CYP11B1* expression (25, 26). Cortisol, by binding to glucocorticoid receptors (27), influences numerous biological processes, including skeletal growth, immune response, glucose and lipid metabolism, cognition, and reproduction (28-30).

Epithelial cells of the zona reticularis are also organized in columns, but, in comparison to epithelial cells of the zona fasciculata, relatively small, low in lipid content and therefore appear to be more compact (17). Cells of the androgen producing zona reticularis are characterized by high expression of *CPY17A1* and *SULT2A1* and low expression of *HSD3B* (31), causing production of DHEA, DHEA-S and androstenedione (32, 33). Adrenal androgens serve as precursors for testosterone and dihydrotestosterone in peripheral tissues (34) and play an important role in human reproduction and pubertal development (35).

The adrenal medulla mainly consists of two distinct, chromaffin populations of cells (36), in which phenylalanine is either converted to adrenaline or noradrenaline (36, 37). During sympathetic fight-and-flight response, secretion of adrenaline and noradrenaline is stimulated by acetylcholine release at preganglionic neurons (2), which then binds to nicotinic acetylcholine receptors thereby triggering exocytosis of catecholamines into the bloodstream (38, 39). By binding to α_{1-2} and β_{1-3} adrenergic receptors (40-43) catecholamines affect a broad range of tissues and thereby cause a variety of physiological effects, such as changes in blood flow, blood pressure, blood glucose and fat, coagulation, and gastrointestinal activity (44).

6.2 Tumors of the Adrenal Gland

Tumors of the adrenal glands are among the most common tumors in humans as they are found in at least 3% of persons older than 50 years of age (45). They are commonly discovered during radiological investigation of unrelated disorders, in which case they are also called adrenal incidentalomas (46), and represent a heterogeneous group of entities with respect to origin, malignancy and endocrine function. Approximately half of adrenal incidentalomas (40-60%) are reported to be nonfunctional adrenal adenomas (47-49), while between 15 and 29% show hypersecretion of adrenal hormones with a higher incidence in patients with bilateral tumors (50, 51). Further common causes of adrenal incidentalomas are catecholamine producing tumors arising from the adrenal medulla (pheochromocytoma, 7-23 % of the cases), carcinoma of the adrenal cortex (ACC) (4-12%) or distant metastases of primary tumors located elsewhere (2-7%) (51-54). Interestingly, adrenal metastases are present in approximately 30% of malignancies of epithelial origin and may arise from a broad range of primary epithelial tumors, while adrenocortical carcinoma is a rare disease in the general population (55).

In order to exclude functionality and malignancy of adrenal tumors that require further treatment, all patients with adrenal incidentalomas should undergo endocrine workup and computerized tomography (CT) scan (45) (for endocrine workup and CT scan, please refer to chapter 6.3.2).

Apart from adrenal tumors, adrenal hyperplasia may also have a significant prevalence in the general population as a study from one radiology apartment comprising 564 CT scans of the adrenal glands found incidentally discovered adrenal enlargement due to hyperplasia to be present in 11.3% of the cases (56).

6.3 Adrenocortical Carcinoma

6.3.1 Prevalence

Adrenocortical carcinoma is a very rare disease with an incidence of up to 2 cases per million people per year (57-60). The majority of patients are female (55-70%), and approximately half of the patients are diagnosed with advanced or metastatic disease (60-64). At diagnosis, most patients are between 40 and 50 years of age. In a study comprising 47 patients from Sao Paolo, Brazil, a bimodal age distribution with peak incidences in the first and fourth to fifth decade of life has been suggested, which has not been confirmed by studies of larger cohorts or comprehensive literature reviews (58, 64-68). Interestingly, the incidence of childhood ACC in the state of Parana (close to Sao Paolo) has been demonstrated to be 10-15 times higher than in the US, probably due to accumulation of an inherited, low penetrance germ-line variant of p53 causing Li-Fraumeni-Syndrome (LFS), suggesting that the overall incidence of childhood cases of ACC inferred on basis of such a cohort might be overestimated (for LFS, please refer to chapter 6.3.3) (69-71).

6.3.2 Symptoms and Diagnosis

In 30-55% of ACC patients, symptoms related to tumor size such as abdominal mass and pain are present (72-77). General symptoms such as weakness and weight loss are present in 6-38% of the patients, and fever is present in 2-20% (72, 73, 75, 76). Twenty-four to seventy percent of the patients present with symptoms related to overproduction of adrenal steroid hormones, most prominently hypercortisolism or Cushing's syndrome (16-40% of all patients), virilization (2-44%) and feminization (2-13%) (73-76, 78). Cushing's syndrome features a multitude of symptoms, including weight

6 Introduction

gain, hypertension, diabetes mellitus, lethargy, acne, depression and hirsutism (79). In very rare cases, patients may also present with hyperaldosteronism or Conn's syndrome (80, 81). Conn's syndrome features hypertension and may also include hypokalemia, alkalosis and, in rare cases, hypernatremia (82).

Due to the high number of patients presenting with symptoms of hormone excess, endocrine work up is crucial to establishing the adrenal origin of the tumor and hence is recommended in evaluation of adrenal incidentaloma (83). Endocrine evaluation includes testing for glucocorticoid excess by dexamethasone suppression test, 24 h free urinary cortisol as well as basal cortisol and ACTH in serum and plasma, respectively (84). Assessment of sexual steroid hormones and steroid precursors should include measurement of serum DHEA-S, 17-hydroxy-progesterone, androstenedione and testosterone (85). In hypertensive patients, mineralocorticoid excess can be assessed by serum potassium and aldosterone to renin ratio (86). Additionally, pheochromocytoma should be excluded by 24 h urine catecholamines and plasma meta- and normetanephrines (84).

Malignancy can be ascertained using CT and magnetic resonance imaging (MRI) (85). Due to facilitated standardization and, in combination with a chest scan, convenient pre-operative evaluation of possible metastasis, CT scan is recommended (87). In these scans, malignancy may be predicted by tumor size, since the likelihood of malignant disease increases with tumor size (88), the median size of ACC is more than 11 cm (87). Further characteristics are a well-defined margin, low central attenuation and extension into the vena cava including thrombus (89). During the last years, 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has become an increasingly popular alternative to MRI and CT scanning for staging and evaluation of treatment response (90-92).

For histological confirmation of the adrenocortical origin of a tumor and estimation of the prognosis of ACC patients, expression of steroidogenic factor-1 (SF-1), a transcription factor of key importance for the adrenal glands' endocrine function (93), is the most suitable immunohistochemical marker known to date (94).

For further confirmation of malignancy, the Weiss' scoring system for histopathological diagnosis of ACC can be applied. According to the Weiss' criteria, an adrenal tumor must meet three or more of the following criteria in order to be regarded as ACC (95): 1) high nuclear grade; 2) mitotic rate six or more per 50 high power field; 3) atypical mitosis; 4) less than 25% of the cells clear; 5) diffuse architecture pattern in more than

one third of the tumor; 6) confluent necrosis; 7) invasion of vein; 8) invasion of sinus; and 9) capsular invasion.

Further, risk of recurrence after resection of localized ACC (for resection, please refer to chapter 6.3.4) can be predicted using expression of Ki67 as an immunohistochemical marker for proliferation (96). Ki67 is a protein involved in ribosomal RNA transcription of cells that is highly expressed during proliferation (97) and is therefore used as a well-established, pathological marker for proliferation (98). Precise staging of ACC is key to predicting disease-specific survival and disease-free survival during treatment (99) (for stage dependent survival of ACC, please refer to chapter 6.3.6). Therefore, the European Network for the Study of Adrenal Tumors (ENSAT) in 2008 proposed a comprehensive staging system based on tumor size, invasiveness, metastasis and involvement of lymph nodes (99). The ENSAT staging system is shown in figure 3.

Stage	ENSAT 2008		
I.	T1, N0, M0		
П	T2, N0, M0		
111	T1-T2, N1, M0		
	T3-T4, N0-N1, M0		
IV	T1-T4, N0-N1, M1		

ENSAT indicates European Network for the Study of Adrenal Tumors; T1, tumor \leq 5 cm; T2, tumor >5 cm; T3, tumor infiltration into surrounding tissue; T4, tumor invasion into adjacent organs or venous tumor thrombus in vena cava or renal veir; N0, no positive lymph nodes; N1, positive lymph node(s); M0, no distant metastases; M1, presence of distant metastasis.

Figure 3: Staging system for adrenocortical carcinoma. Current staging system as proposed by the European Network for the Study of Adrenal Tumors (ENSAT) (99). Tumors are staged according to size and invasiveness (T1-4), involvement of lymph nodes (N0-N1) and presence of distant metastasis (M0-M1). Reprinted with permission of John Wiley and Sons².

6.3.3 Genetic Causes

Adrenocortical carcinoma develops sporadically in most of the cases, but can also arise from hereditary syndromes, most importantly LFS and the Beckwith-Wiedemann syndrome (BWS) (100). First being described in 1969, LFS is a cancer predisposition disorder of autosomal inheritance, which leads to cancer development within the first

² Reprinted from Cancer 115(2), Fassnacht M, Johanssen S, Quinkler M, Bucsky P, Willenberg HS, Beuschlein F, Terzolo M, Mueller H, Hahner S and Allolio B, for the German Adrenocortical Carcinoma Registry Group and the European Network for the Study of Adrenal Tumors, Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: Proposal for a Revised TNM Classification, 243-250. Copyright (2009), with permission from John Wiley and Sons.

four decades of live, most commonly breast cancers, soft tissue sarcomas, osteosarcomas, brain tumors, leukemias, and adrenocortical carcinomas (101-104). Despite being very rare in the general population, ACC is strongly associated with LFS and may occur in 2.5-4.7 % of all patients with LFS (101, 105). Two groups demonstrate germ-line loss of function mutations in the tumor suppressor gene TP53 to cause LFS (106, 107). TP53 exerts an important role on genome integrity by inducing cell cycle arrest and regulating apoptosis and is therefore also called "guardian of the genome" (108). The Beckwith-Wiedemann syndrome is inherited in a complex, heterogenous inheritance pattern (109), features infant overgrowth and malformations and is accompanied by and increased risk of fetal tumor development (110, 111). The Beckwith-Wiedemann syndrome is caused by abnormalities in an imprinted gene cluster on chromosome 11p15 containing CDKN1C, IGF2 and H19, that may be caused by epigenetic errors leading to impaired methylation, a mutation in the CDKN1C gene or chromosomal alterations (112). IGF2 encodes for a hormone that regulates fetal growth by influencing cell proliferation, growth, migration, differentiation and survival (113), H19 encodes for a RNA that serves as enhancer for IGF2 (114) and CDKN1C encodes for a cyclin dependent kinase inhibitor that exerts an important role in cell cycle control by inducing G1 arrest (115).

Unlike in hereditary cancer predisposition syndromes, the genetics underlying sporadic ACC are still not clearly understood. Adrenocortical carcinoma and adenoma show a monoclonal cell pattern, suggesting that they develop from single cells bearing somatic driver mutations (116). Transformation of adrenocortical neoplasms is accompanied by mitosis abnormalities, and malignant lesions are characterized by an accumulation of an euploidy and polyploidy (117-119). Genomic instability is a hallmark of cancer as it allows for genomic variability to occur, which may lead to selective advantages of tumors cells and facilitates transformation of neoplasms towards malignancy (120). Studies using comparative genomic hybridization (CGH), a method used to detect changes in copy number of tumor DNA (121), reveal a high number of chromosomal aberrations connected to adrenocortical carcinoma, while chromosomal aberrations in adenoma are rather rare (122, 123). These studies report copy number gains on chromosomes 4, 5, 7, 8, 12, 15, 16, 19 and 20 and losses on chromosomes 1, 2, 3, 6, 7, 8, 9, 11, 13, 14, 15, 16 and 17. Interestingly, one study demonstrates that amplifications of 6q, 7q, 12q, and 19p and deletions within 3, 8, 10p, 16q, 17q, and 19q are connected to decreased survival (123). During the last two decades, the fulminant rise

of genetics (the study of a limited number of genes and their functions) and genomics (the study of entire genomes) has helped to shed further light on the complex genetics underlying sporadic ACC leading to the identification of driver genes and pathways involved in ACC development and progression (124-128).

In an early gene expression microarray study, Giordano et al. report 91 differentially expressed genes with significant, at least threefold differential expression in ACC compared to normal adrenals and adrenal adenoma samples (126). Most noteworthy, they report the expression of *IGF2*, a gene also involved in the pathogenesis of BWS, to be upregulated in 90.9% of the ACC samples. Another RNA-based microarray study from the same group reveals 2,875 differentially expressed genes in ACC (125). Again, they provide evidence for perturbation of the 11p15 locus, also involved in BWS. Furthermore, they report expression changes in genes involved in regulation of cell cycle and proliferation, such as *CCNB2*, *ASPM*, *RRM2*, *TOP2A*, and *CDKN3*.

The advent of exome sequencing techniques during the last decade has paved the way for major achievements in understanding the genetics underlying formation of benign adrenocortical tumors and led to identification of several somatic and germ-line mutations (129-133). The human exome represents ~1% of the human genome, yet it is estimated to harbor 85% of disease-causing mutations (134), suggesting that exome sequencing may also be a promising approach to identify new driver mutations in ACC. Assie et al. report a comprehensive genetic analysis of an initial cohort of 45 ACC cases and a follow up of 77 cases, including exome sequencing, SNP arrays, DNA methylation analysis, mRNA expression arrays and miRNA sequencing (124). They report the discovery of somatic alterations including mutations and homozygous deletions in genes belonging to the β -catenin pathway (*ZNRF3*, 21% of all tumors; CTNNB1, 16%; APC, 2%), p53/Rb signaling (TP53, 16% of all tumors; CDKN2A, 11%; RB1, 7%; CDK4, 2%; MDM2, 2%) and chromatin remodeling (MEN1, 7% of all tumors; DAXX, 6%; ATRX, 4%) by exome sequencing. Further, they present somatic mutations in MED12 (5% of all tumors) and recurring focal amplifications of TERT (6%; encoding for telomerase). They also assign tumors to two different molecular groups according to their mRNA expression, DNA methylation and miRNA expression: C1A comprising 3 subtypes all connected to low overall survival and C1B comprising 2 subtypes connected to high overall survival.

In another exome sequencing study, Juhlin et al. screen 41 matched pairs of ACC and nontumor samples for somatic mutations and copy number alterations discovering a

21

total of 966 nonsynonymous single nucleotide variants (variants that cause changes in amino acid sequence) with 23.6 protein altering mutations per tumor (127). They confirm somatic alterations in genes also reported by Assie et al. (124), including single nucleotide variants in *TP53* (19.5% of all tumors), *CTNNB1* (9.8%), a somatic mutation and homozygous deletion *ZNRF3* (9.8%) as well as recurring amplifications at 5p15.33 including *TERT* (14.6%). Previously unreported findings include nonsynonymous somatic mutations in *CDC27, SCN7A, SDK1* (each in 7.3% of all tumors) and *NF2* (4.9%) as well as homozygous deletion in *KREMEN1* (7.3%). By further screening for mutations either previously reported in cancer or at positions with previously reported recurrent mutations using the COSMIC database (135), Juhlin et al. reveal potentially disease-causing mutations in *RB1* and *GNAS*. By gene ontology analysis (136), they identify alterations in genes associated with the Wnt pathway in 66% of all tumors suggesting a fundamental role for Wnt-signaling in the pathogenesis of ACC.

Zheng et al. present a comprehensive pan-genomic characterization of ACC in 91 patients, including whole exome sequencing, mRNA sequencing, miRNA sequencing, DNA copy number analysis, DNA methylation arrays and targeted proteome analysis (128). By exome and RNA sequencing, they identify 6664 nonsynonymous mutations including mutations in previously reported ACC driver genes *TP53*, *CTNNB1* and *MEN1* as well as in *PRKAR1A* and *RPL22*, genes unreported in ACC. Interestingly, they find decreased protein expression in mutant cases of *PRKAR1A* and increased expression of MEK and BRAF, suggesting a role of the RAF-MEK-ERK cascade in ACC. Additionally, by comparison of the mutated genes with Cancer Gene Census (137), they reveal *NF1* and *MLL4* as possible driver genes of ACC. They further confirm previously reported focal amplifications in *TERT* and homozygous deletions in *ZRNF3* and provide evidence for whole genome doublings as a marker for tumor progression in ACC.

Taken together, these studies suggest that genomic instability leading to chromosomal abnormalities and DNA copy number alterations is a crucial event in transformation of adrenocortical neoplasms towards malignancy. Focal amplification of the *TERT* gene is repeatedly reported and is consistent with significant telomerase activity reported in ACC (138). Comprehensive genome analyses of ACC suggest a fundamental role of the Wnt pathway in ACC pathogenesis, a major pathway in development that is also tightly linked to various cancers (139). Insights from hereditary LFS and comprehensive genome analyses of the tumor suppressor gene

TP53 and p53/Rb signaling. Further, the RAF-MEK-ERK cascade, *IGF2* and pathways of chromatin remodeling have been implicated to play a role in ACC pathogenesis. However, the exact genetic mechanisms underlying ACC pathogenesis are still unknown. Additional studies of large cohorts are needed in order to identify the hierarchy of genomic abnormalities leading to adrenocortical neoplasm transformation and decipher pathways underlying malignancy that might be exploited for novel treatment options in the future.

6.3.4 Treatment

The only curative treatment of ACC known to date, if feasible, is the complete surgical resection of the tumor (140). While open surgery is considered as standard procedure for resectable ACC in stages I-III, laparoscopic surgery may provide a safe alternative for small tumors without preoperative signs of invasiveness (84, 141). Further, reoperation of recurring ACC, if feasible, may prolong survival in patients, if the time to first recurrence is 1 year or longer (142, 143). Mitotane (1,1-(dichlorodiphenyl)-2,2-dichloroethane, also o,p'-DDD), a congener of the insecticide DDT, due to its adrenolytic effects is used for treatment of Cushing's syndrome in dogs and humans as well as human ACC (144-146). In patients with ACC, treatment with mitotane may lead to transient tumor regression and reduction of steroid hormone excess (146). Mitotane is commonly used as adjuvant therapy after tumor resection (65, 68, 147). Adjuvant mitotane treatment prolongs recurrence free survival but does not affect overall survival (74, 148, 149). It is recommended in patients with high risk of recurrence (increased proliferative index; signs of residual disease after surgery) (150) while its efficacy in patients with low risk of recurrence is currently investigated within the ADIUVO trial (151, 152). In advanced or metastatic ACC, mitotane may be either used as highdose monotherapy or in low-dose combination therapy alongside etoposide, doxorubicin and cisplatin (mitotane-EDP) or streptocozin (153). In combination therapy, mitotane-EDP seems to be superior to mitotane and streptozocin regarding recurrence free survival but not overall survival (154) and is therefore recommended as first-line cytotoxic treatment (155). Data on mitotane monotherapy in larger cohorts of patients with locally advanced or metastatic ACC is rare. Smaller studies show limited effects with response rates of 13-29% and rare cases of complete response (74, 146, 156). The largest study on mitotane monotherapy in advanced ACC known to date confirms these observations (response rate 20.5%; complete response in 2.4% of the patients)

6 Introduction

(157). However, the authors conclude, that mitotane monotherapy might be better suited for patients with late diagnosis and low tumor burden than combination therapy. In recent years, insights from genomic analyses of ACC have led to the studies on novel therapeutic approaches. Insulin-like growth factor 2 (*IGF2*), a gene well established in pathogenesis of BWS (112), drives proliferation, migration, and metastasis in numerous cancers via the receptor tyrosine kinase IGF-1R (158), whose expression also is increased in pediatric ACC (159). However, selective inhibition of IGF-1R by linsitinib (160) within a phase III clinical trial shows no beneficial effect on overall survival in advanced or metastasized ACC (161). Combination therapy using mitotane and IFG-1R antibody cixutumumab is precluded from further trials as a phase II trial reveals low therapeutic efficacy and potentially fatal toxic effects in recurring and metastasizing ACC (162).

6.3.5 Pharmacodynamics and Pharmacokinetics of Mitotane

There are two isomers of mitotane, p,p'-DDD and m,p'-DDD, both of which show no significant adrenolytic effect (163). In the liver (164), mitotane is metabolized to 1,1- (o,p'-dichlorodiphenyl)-2,2 dichloroethene (o,p'-DDE) and 1,1-(o,p'-dichlorodiphenyl) acetic acid (o,p'DDA) by α - and β -oxidation, respectively (163). However, o,p'DDA lacks antitumor activity according to one *in vitro* study (165) and plasma levels of o,p'-DDE do not correlate with patients' response, suggesting o,p'-DDD as active form of mitotane (166). Mitotane is a lipophilic compound and hence tends to accumulate in circulating lipoprotein fractions including very low density lipoprotein (VLDL), LDL and HDL (167). The cytotoxic effects of mitotane, however, are mostly mediated by lipoprotein-free mitotane (167, 168).

The molecular mechanisms underlying the adrenolytic effects of mitotane have been extensively studied in human adrenocortical cancer cell lines H295R (169) and SW13 (170). Mitotane induces apoptosis in SW13 and H295R cells accompanied by dose-dependent mitochondrial impairment, including loss of integrity of the mitochondrial membrane, swelling and complete disruption (171). In H295R cells, mitotane treatment leads to downregulation of the expression of genes involved in steroidogenesis includ-ing *STAR*, *CYP11B1* and *CYP11B2*, accompanied by reduction of cortisol and 17-hydroxyprogesterone secretion by 70% (172). The same study demonstrates mitotane to induce a defect of the mitochondrial respiratory chain of H295R and SW13 cells by inhibiting cytochrome c oxidase activity and reducing gene expression of mitochondrial

genes encoding for subunits of cytochrome c oxidase (*COX2* and *COX4*). A recent study by Sbiera et al. demonstrates that mitotane inhibits the sterol-O-acyl-transferase 1 (SOAT1) in NCI-H295 cells (173). They also provide evidence that the inhibition of SOAT1 leads to accumulation of toxic lipids including free cholesterol and cholesterol precursors which, in turn, causes endoplasmic reticulum stress and apoptosis. Furthermore, this study shows that SOAT1 inhibitor Sandoz 58-035 mimics effects of mitotane on NCI-H295 cells. Sbiera et al further demonstrate that in patients receiving mitotane as palliative drug, tumors with high *SOAT1* expression showed significantly prolonged time to progression. They conclude that *SOAT1* expression is a prerequisite for mitotane efficacy.

Pharmacokinetics of mitotane is characterized by a large volume of distribution and slow elimination (174). After oral administration, mitotane shows moderate bioavailability and is excreted through urine and bile with a plasma half-life of up to 160 hours (164). Due to its lipophilic nature, mitotane accumulates in various tissues, including lung, liver, brain and adipose tissue (175-177). Hence, mitotane also affects extra adrenal steroid hormone metabolism (178, 179). Most noteworthy, the liver shows high uptake of the steroid hormone precursor cholesterol (180) and is known to play a pivotal role in cholesterol metabolism (181) and catabolism of adrenal steroid hormones (182). Mitotane treatment may lead to induction of hepatic CYP3A4 (183, 184) via activation of the nuclear steroid and xenobiotic receptor (185), members of the CPY3A family are involved in steroid hormone biotransformation (186). Reduction of steroid hormone excess (146, 187) and increase of serum cholesterol, HDL and LDL (188-191) is commonly observed during mitotane therapy in human ACC patients. These observations suggest a role of hepatic mitotane effects in the reduction of steroid hormone excess and increase of serum lipoprotein changes observed in human patients. However, studies on the hepatic effects of mitotane are rare. Induction of CYP3A4 also may lead to drug interactions with numerous drugs including macrolide antibiotics, dihydropyridine type calcium channel antagonists and HMG-CoA-reductase inhibitors (192).

Maintenance of mitotane blood levels >14 mg/L has been shown to be mandatory to achieve tumor response and significantly prolonged recurrence free survival in both, adjuvant therapy of resected and cytotoxic treatment of metastasizing ACC (166, 193), while mitotane blood levels may be subject to significant variation (194). Serious side effects are observed at blood levels >20 mg/L and include neurologic complications

and psychiatric abnormalities (195, 196). Hence precise monitoring of mitotane blood levels during treatment is considered as mandatory (87).

6.3.6 Prognosis and Therapy Resistance

Adrenocortical carcinoma is an aggressive malignancy with an overall five-year survival of 30-40%, prognosis drastically worsens with the stage of disease at diagnosis (60-63, 72, 197). Five-year survival decreases from approximately 60% at stages I and II, to 25-35% at stage III, while 5-year survival at stage IV is 0% (60, 198). Besides the stage of disease at diagnosis, two other major factors determining prognosis are resection status in localized ACC (199) and proliferative activity of the tumor (200). Additionally, patients diagnosed before 40 years of age occur to have a better overall prognosis, while sex and endocrine activity of the tumor seem to have no effect (76, 146).

Despite all efforts during the last decades in both, clinical management and basic research of ACC, prognosis has remained dismal, mostly due to failure of current treatment strategies. Recurrence of ACC after resection is reported in 40-60% of the patients (63, 201) and the outcome may, to some extent, be influenced by the center's expertise (202). Treatment strategies using mitotane, the only drug approved for treatment of ACC, fail to improve overall survival (74, 148, 149, 154). Patients commonly do not respond or face recurrence during mitotane therapy, even when therapeutic blood levels are maintained (193, 195). These observations suggest a mechanism of acquired resistance towards mitotane in ACC. Interestingly, normal adrenal tissue and adrenal tumors show high expression levels of the multidrug resistance gene MDR1 (203, 204). *MDR1* encodes for P-glycoprotein, an ATP dependent drug transporter, that mediates export of xenobiotic compounds from the cytosol and thereby causes resistance to a multitude of drugs in a variety of cancers (205-207). In ACC patients however, mitotane therapy does not seem to be impeded by MDR1 expression levels (208). Further, in vitro studies suggest, that mitotane may have positive effects on multidrug resistance as it counteracts P-glycoprotein activity and causes intracellular accumulation of doxorubicin (209, 210). These observations suggest a mechanism of mitotane resistance different from common multidrug resistance.

6.3.7 In vitro Models of Adrenocortical Carcinoma

Attempts to overcome difficulties such as tissue availability and quality in the use of primary adrenocortical cell cultures for research on adrenal steroid production have led to the establishment of several cell lines derived from human ACC, most of which lack steroidogenic potential (211).

The NCI-H295 cell line is derived from an invasive ACC of a 48 years old Bahamian woman with increased serum cortisol as well as increased urinary excretion of aldosterone and ketosteroids (212). NCI-H295 cells are a hypertriploid cell line, grow as floating clusters and show a relatively long population doubling time (212). They are responsive to potassium, angiotensin II and, to much less extent, ACTH and secrete a steroid profile characteristic of the adrenal cortex (212, 213). By selection for adherence, three substrains have been derived from NCI-H295 cells (H295R-S1-3) (214), that grow as adherent monolayers but show significant, medium dependent variation in growth characteristics and response to stimuli (211, 214). In a method similar to isolation of H295R strains, another substrain of NCI-H295, NCI-H295A, has been isolated (215), which also grows as adherent monolayer, but, unlike H295R, shows limited response to angiotensin II (211).

In an attempt to isolate a new, ACTH responsive human ACC cell line, the HAC-15 cell line was established (216). HAC-15 was originally reported to be derived from ACC of an 11 month old female presenting with hypertension and hirsutism but subsequent single nucleotide polymorphism arrays revealed, that this cell line is derived from H295R cells by cross-contamination (211). HAC-15 cells are responsive to angiotensin II, potassium and ACTH and show a similar steroidogenic profile in comparison to H295R cells (216).

Recently, the MUC-1 cell line was established from a mouse xenograft derived from a subcutaneous metastasis of a 24-year-old male presenting with a large adrenal tumor and abnormal profile of urinary steroids (217). The patient underwent adrenalectomy, nephrectomy and lymphadenectomy, but soon after developed metastases. Interest-ingly, MUC-1 cells seem to be resistant against treatment with mitotane-EDP.

6.4 Aims of Project and Research Questions

The overall aim of the project was to investigate the mechanisms contributing to mitotane resistance in an *in vitro* model of ACC. Although the molecular mechanisms of mitotane have been extensively studied over the last decade and xenograft experiments using human tumor samples in mice have recently led to establishment of a mitotane-EDP resistant cell line, this issue has not been tackled so far.

The first target was to establish a mitotane resistant ACC cell line using the HAC-15 cell line as an *in vitro* model of ACC. Using mitotane resistant cells, the second target was to explore changes in gene expression and DNA integrity via gene expression microarray and exome sequencing techniques. Finally, the third target was to further investigate genes and pathways with a possible role in mitotane resistance in cell culture experiments.

Thereby, the present thesis aims at answering the following research questions:

- 1. Does mitotane treatment induce resistance in vitro?
- 2. Is mitotane resistance accompanied by genetic changes either concerning the transcription level or integrity of the DNA sequence?
- 3. Can molecular mechanisms of mitotane resistance be inferred from these genetic changes?
- 4. Are the molecular mechanisms of mitotane resistance consistent with observations in both, ACC patients and *in vitro* models?

7 Methods

7.1 Cell Culture of the HAC-15 Adrenocortical Carcinoma Cell Line

HAC-15 cells (a gift of William Rainey, University of Michigan, Ann Arbor, USA) were cultured in T75 Cell Culture Treated Flasks (Nunc by Thermo Fisher Scientific, Wal-tham, MA, USA) at 37°C and 5% CO₂ in DMEM/Ham's F12 Medium+GlutaMAX (Gibco by Thermo Fisher Scientific) supplemented with 5% Cosmic-Calf Serum (CCS, Hy-clone, South Logan, UT, USA), 1% Insulin-Transferrin-Selenium (ITS), 1% non-essential amino acids, 0.1% lipid mixture and 1% Penicillin/Streptomycin (all Gibco).

For passaging, cells were washed once with Dulbecco's Phosphate Buffered Saline (PBS; Merck-Biochrom, Berlin, Germany) and incubated with TRYPSIN/EDTA Solution (0,05%/0,02%; Merck-Biochrom) at 37 °C for approximately 3 min. Then, cells were detached by multiple pipetting using pre-warmed cell culture medium and pelleted by centrifugation for 10 min at 200 g. Afterwards, cells were resuspended in cell culture medium, counted using JuLI Br Live Cell Analyser (NanoEnTek, Seoul, Korea) and seeded as indicated.

For freezing, cells were resuspended in freezing medium (87.5% cell culture medium, 7.5% CCS, 5% dimethyl sulfoxide (DMSO; Sigma Aldrich, St. Louis, MO, USA) at a density of 10⁶ cells per mL. Aliquots of 1 mL were frozen in Nunc Cryotube Vials (Thermo Fisher Scientific) at -80 °C overnight using a MrFrosty freezing container (Nalgene by Thermo Fisher Scientific) and then transferred into a liquid nitrogen tank (-170 °C) for long term storage.

For thawing, frozen cell aliquots were thawed quickly at 37 °C and then added to 10 ml prewarmed cell culture medium. Cells were subsequently centrifuged for 10 min at 200 g, pellets were resuspended in 10 mL cell culture medium and seeded in T75 flasks. Approximately 24 h after thawing, medium was replaced.

7.2 Active Compounds

When cells were treated with active compounds dissolved in DMSO, it was ensured that the final concentration of DMSO did not exceed 1 ‰. If not indicated otherwise, stock solutions were stored at -20°C.

Mitotane (Sigma Aldrich) was dissolved in DMSO at a concentration of 100 mM.

Doxorubicin (Cayman Chemical, Ann Arbor, MI, USA) was dissolved in DMEM/Ham's F12 Medium+GlutaMAX + 5% CCS + 1% ITS + 0.1% lipid mixture + 1% non-essential amino acids + 1% Penicillin/Streptomycin at a concentration of 1 μ M.

Human HDL and LDL were purchased from Cedarlane (Burlington, Canada) and diluted to 10 mg/mL using a 15% solution of sucrose (Carl Roth) in DMEMF12+HEPES Medium (Gibco) in order to obtain stock solutions.

SCARB1 inhibitor BLT-1 (Sigma Aldrich) was dissolved in DMSO at a concentration of 200 mM.

AGTR1 inhibitor Losartan (Sigma Aldrich) was stored at 4°C. Prior to use, 30 mM solutions in PBS were freshly prepared.

MTOR inhibitor Rapamycin (Sigma Aldrich) was dissolved in DMSO at a concentration of 10 mM.

Wnt pathway inhibitor XAV939 (Sigma Aldrich) was dissolved in DMSO at a concentration of 10 mM.

7.3 Long-Term Mitotane Treatment of HAC-15 Cells

In order to induce mitotane resistance, HAC-15 cells were treated with 70 μ M mitotane following a pulsed protocol (218). Medium was replaced every 3-4 days. At medium changes, cells alternatingly received either mitotane free medium or medium containing 70 μ M mitotane or the corresponding amount of vehicle control (DMSO). At each passage, 10⁷ cells were seeded and allowed to attach for 24 h before treatment was continued.

7.4 Clonal Selection of Long-Term Treated HAC-15 Cells

For selection of single clones, cells were plated on a 15 cm cell culture dish (VWR International) at a density of 56 cells/cm². No mitotane was added to the media. Clones were picked with cloning discs (Sigma Aldrich) when they had formed visible colonies. For picking, medium was removed and dishes were rinsed carefully with 5 mL PBS. Cloning discs were soaked in TRYPSIN/EDTA solution for at least 3 min and then placed on visible colonies. After approximately 1 min, cloning discs were transferred to 2 mL pre-warmed cell culture medium in a 24-well plate (Gibco) and subsequently expanded on 12-well plates (Gibco).

7.5 Growth Curves of Mitotane-Treated HAC-15 Cells

At each passage, cells were counted using JuLI Br Live Cell Imager (NanoEnTek) and cumulative population doublings (cPD) (219) were calculated from total cell numbers using equation 1. For growth curves, cPD was plotted against the time in culture (days).

 $cPD = cPD_L + \log_2\left[\frac{N_C}{N_S}\right]$

Equation 1: Calculation of cumulative population doublings (cPD).
cPD is the cumulative populations doublings.
cPD_L is the cumulative population doublings after the last passage.
N_c is the number of cells counted at the current passage.
N_s is the number of cells seeded after the last passage.

7.6 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide (MTT) Assay MTT-Assay was used to assess the cytotoxicity of various compounds (220). At approximately 80 % confluence, cells were harvested with TRYPSIN/EDTA solution, seeded in triplicates on a 96-well plate (Gibco) at a density of 4*10⁴ cells per well and allowed to attach at 37°C for 24 h. Then, cells were treated with increasing concentrations of cytotoxic compounds at 37°C for 72 h. Afterwards, a 5 mg/mL solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma Aldrich) in PBS was added to each well yielding a final concentration of 0.45 mg/mL and plates were incubated at 37 °C for 2 h. Medium was then removed and violet MTT crystals were dissolved in 150 µL of a 10% solution of Triton X-100 (Sigma Aldrich) in 2-propanol (VWR International, Langenfeld, Germany) at pH 4.7 by shaking for 20 min and multiple pipetting. Absorption at 595 nm was recorded utilizing an EnSpire 2300 Multilabel Reader (PerkinElmer, Waltham, MA, USA). Concentrations of the compounds were log₁₀-transformed and plotted against the averaged absorption at 595 nM. For calculation of IC₅₀, data were fitted to a four parameter dose-response curve with PRISM 7 software (GraphPad, La Jolla, CA, USA) according to equation 2.

$$Y = A + \left(\frac{(A - B)}{(1 + 10^{((logIC_{50} - X) * HS)})}\right)$$

Equation 2: Four parameter dose-response curve fit. Y is the mitotane response (absorption at 595 nm). A is the minimum asymptote or the maximally inhibited response. B is the maximum asymptote or maximal response. IC_{50} is the half-maximal inhibitory concentration. X is the log_{10} transformed mitotane concentration. HS is the Hill slope.

7.7 Measurement of the IC₅₀ of Mitotane in Various Media and Correlation Analysis Cells were detached using TRYPSIN/EDTA solution, counted and centrifuged as described above. Pellets were resuspended in DMEM/Ham's F12 Medium+GlutaMAX (Gibco) supplemented with 1% Penicillin/Streptomycin and 5% CCS (Hyclone), 2.5% CCS, 5% Nu-Serum (NuS, Corning), 2.5% NuS or 5% fetal calf serum (FCS, Merck-Biochrom) and cells were seeded on a 96 well plate at a density of 4*10⁴ cells per well. After 24 h, cells were treated with increasing concentrations of mitotane for 72 h and MTT assay was performed as described above. The serum concentrations of cholesterol, HDL, LDL and triglycerides in mg/L were determined by photometry by the Central Laboratory of the University Hospital Düsseldorf, Germany, and the final concentration of each of the compounds in the media was calculated. All groups were tested for normality using Shapiro-Wilk test. The concentration of the lipid species was plotted against their respective IC₅₀s, and correlation analysis according to Pearson was performed using PRISM 7 software.

7.8 Measurement of Intracellular Lipids by ESI-MS/MS

Intracellular amounts of Phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, PE based plasmalogens, phosphatidylserine, phosphatidylinositol, lysophosphatidylcholine, ceramide, cholesteryl ester and free cholesterol were determined in three nonresistant control clones and three mitotane resistant clones by Gerhard Liebisch from the Institute of Clinical Chemistry and Laboratory Medicine of the University Hospital Regensburg, Germany. Cells were seeded on a 6-well plate and allowed to attach for 24 h. Then, cells were treated with 10 µM mitotane and DMSO in cell culture medium containing 0% CCS and DMSO, 20 and 50 µM mitotane in cell culture medium containing 5% CCS for 72 h. Cells were then washed thrice with cold PBS and lysed in 1 mL water containing 0.1% sodium dodecyl sulfate (SDS, Biomol, Hamburg, Germany). Protein content was measured by BCA assay and lysates were frozen at -80 °C. The amount of lipids in nmol was measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and normalized to total protein quantity in mg (BCA assay), as previously described (221). For statistics, groups were tested for normality using Shapiro-Wilk test. Groups passing the normality test were compared using a one-way ANOVA. As *post hoc* test for multiple comparisons Bonferroni's multiple comparisons test was used, when different conditions were compared within "nonresistant" or "resistant", and Fisher's LSD test was used when "nonresistant" was compared to "resistant" within one condition. Groups failing the normality test were compared using a Kruskal-Wallis test. As *post hoc* test for multiple comparisons Dunn's test was used, when different conditions were compared within "nonresistant" within one conditions were compared within "nonresistant" or "resistant" within one condition. Groups failing the normality test were compared using a Kruskal-Wallis test. As *post hoc* test for multiple comparisons Dunn's test was used, when different conditions were compared within "nonresistant" or "resistant", and Dunn's uncorrected test was used when "nonresistant" was compared to "resistant" within one condition.

7.9 Measurement of Mitotane by GCMS

Intracellular and medium mitotane concentration in three nonresistant control and three mitotane resistant clones was determined by Hans-Wolfgang Hoppe at the Medical Laboratory Bremen, Germany, using GCMS according to in-house protocols in accordance with European norms DIN EN ISO 17025 and 15189. Mitotane resistant and nonresistant control cells were seeded on 10 cm² (5*10⁵ cells per plate). After 72 h, medium was replaced with medium containing 50 μ M mitotane. After 48 h, medium was removed and stored at -80 °C. Cells were harvested using 4 mL PBS, centrifuged for 10 min at 200 g, resuspended in 400 μ L ultrapure water, lysed at 30 Hz for 10 min using a Retsch Mixer Mill 400 (Verder Scientific, Haan, Germany), and samples were frozen at -80 °C.

One-hundred microliters lysate were treated with ultrasound for 5 min, diluted with 100 μ L formic acid and mitotane was extracted using 1 mL isooctane. Finally, extracts were subjected to GCMS analysis. Mitotane concentration was normalized to protein concentration (BCA assay). For statistics, Mann-Whitney test used.

7.10 RNA Isolation

For RNA isolation, cells were washed twice with cold PBS (1 mL per well of a 6-well plate) and 700 μ L QIAzol Lysis Reagent (Qiagen, Hilden, Germany) were added each well. Cells were incubated for approximately 5 min, harvested by scraping, and RNA was extracted from homogenates using the miRNeasy MiniKit and RNase-Free DNase

set (both from Qiagen) according to the manufacturer's instructions. Homogenates were incubated at rt for 5 min, and afterwards 140 μ L chloroform were added followed by vigorous shaking for 15 s. Samples were incubated at rt for 3 min and then centrifuged at 12,000 g and 4 °C for 15 min. Afterwards, the aqueous phase was mixed with 530 μ L 100% ethanol (VWR International) and pipetted on an RNeasy mini column followed by centrifugation at 8,000 g for 30 s. Then, 350 μ L buffer RW1 was added to the column followed by centrifugation at 8,000 g for 30 s. For DNase digest, 70 μ L buffer RDD were pre-mixed with 10 μ L DNase and added to the column. After 15 min incubation at rt, 700 μ L buffer RW1 were added and columns were centrifuged at 8,000 g for 30 s. Afterwards, columns were washed with two changes of buffer RPE (500 μ L each) and centrifugation at 8,000 g for 30 s and 2 min, respectively. Then, columns were dried by centrifugation at full speed for 1 min. For elution of RNA, 30 μ L water was added to the columns. After 1 min of incubation, elution was completed by centrifugation at 8,000 g for 1 min.

RNA concentration was measured using NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific). RNA samples were kept at -80 °C until further use.

7.11 Complementary-DNA Synthesis and Real-Time PCR

For cDNA synthesis, 400 ng RNA were transcribed using the QuantiTect Reverse Transcription Kit (Qiagen) according to the manufacturer's instructions. For digest of genomic DNA, 2 μ L gDNA Wipeout Buffer were added to 12 μ L RNase-free water containing 400 ng RNA. Samples were incubated at 42°C for 3 min in a Mastercycler nexus SX1 (Eppendorf, Hamburg, Germany) and immediately placed on ice afterwards. Then, 1 μ l Quantiscript Reverse Transcriptase, 4 μ l 5x Quantiscript RT Buffer and 1 μ L RT Primer Mix were added and samples were subsequently incubated at 42°C for 15 min and at 95°C for 3 min. CDNA was stored at -20 °C until further use. Real-Time PCR was done using 2X Power SYBR Green PCR Master Mix (Applied Biosystems by Thermo Fisher Scientific). Real-time (rt) PCR was done using published primers (Eurofinns Genomics, Ebersberg, Germany) for *TBP* (222) and *AXIN2* (223), reconstituted with RNase free water (Qiagen) to 100 μ M and diluted to 10 μ M before use. Samples were prepared according to table 1.

7 Methods

Component	Volume [µL]	Final Concentration
Power SYBR Green (2x)	10	1X
Primer forward (10µM)	0.2	100 nM
Primer reverse (10µM)	0.2	100 nM
cDNA	1 μL	-
RNase free water	8.6	-

Table 1: Sample preparation of real-time PCR.

Reactions were run in 7300 Real Time PCR System (Applied Biosystems, Foster City, CA, USA) according to the protocol shown in table 2.

Step	Temperature [°C]	Time [mm:ss]	Comment
1	95	10:00	
2	95	00:15	
3	60	01:00	Go to step 2 (40x)
			data acquisition
4	95	00:15	
5	60	01:00	
6	95	00:15	
7	60	00:15	

Table 2: Real-time PCR protocol.

Samples were run in triplicates. Relative gene expression was calculated from the averaged CT values according to the $2^{-\Delta\Delta CT}$ method as shown in equation 3 (224).

relative Expression = $2^{-\Delta\Delta CT} = 2^{-(CT_{XQ}-CT_{XR})-(CT_{KQ}-CT_{KR})}$

Equation 3: Calculation of relative gene expression in any sample X compared to a reference sample K. CT is threshold cycle.

Q is gene of interest.

R is reference gene.

7.12 Gene Expression Microarray Analysis

Six nonresistant control and six mitotane resistant HAC-15 clonal cell lines were seeded on a 6-well plate at a density of $1*10^6$ cells per well and allowed to attach for 24 h. Then, cells were treated with either vehicle control (DMSO) or 50 μ M mitotane

7 Methods

for 18 h. Afterwards, RNA was isolated as described above and RNA integrity was confirmed using Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Microarray procedure was performed at the Center for Applied Genomics at the Hospital for Sick Children (Toronto) using Affymetrix GeneChip PrimeView Human Gene Expression Array. For overall quality control, log₂ transformed raw intensities were plotted as boxplots and only perfect match probes were included into the analysis. Further quality control was done by examination of density plots of log₂ transformed raw intensities. Data was processed using the robust multi-array adjustment procedure (225) on raw intensities and included background correction, normalization and summarization of the raw intensity data.

7.13 Isolation of Genomic DNA from Cultured Cells

Genomic DNA from cells was isolated using DNeasy Blood & Tissue kit (Qiagen) according to the manufacturer's protocol.

For DNA isolation, cells were grown on a six-well plate until approximately 80% confluency. Cells were rinsed with PBS once and harvested in PBS by scraping and centrifugation at 300 g for 5 min. Pellets were resuspended in 200 μ L PBS. Then, 20 μ L proteinase K and 200 μ L buffer AL were added subsequently. Samples were vortexed for at least 20 s and incubated at 56°C for 10 min. Afterwards, 200 μ L 100% ethanol were added followed by vortexing. The mixture was pipetted onto a DNeasy Mini spin column followed by centrifugation at 6000 g for 1 min. Columns were subsequently washed with 500 μ L buffer AW1 and AW2 followed by centrifugation for 1 min at 6000 g and 3 min at 20000 g, respectively. For elution of DNA, 200 μ L buffer AE were added to the column followed by incubation at rt for 1 min and centrifugation for 1 min at 6000 g. Concentration and purity of DNA were measured using NanoDrop 2000c Spectrophotometer.

7.14 Exome Sequencing

Exome sequencing was done at the Yale Center of Genome Analysis using the SeqCap EZ MedExome Kit (Roche NimbleGen) and 100-bp paired-end sequencing on the Illumina HiSeq platform, following the manufacturer's instructions. Discovery of somatic mutations was done in the working group of Murim Choi at the Seoul National
7 Methods

University, Seoul, Korea, as previously described (130). Sequences were mapped to the human genome (hg18) using Maq software (226). Aligned reads were further analyzed using Perl scripts. PCR duplicates were discarded using Samtools software (227) and novelty of variations was tested using dbSNP (228) and 1000 Genomes Database (229). Two-tailed Fisher's exact test was used to test for significance of differences in read distributions between founder cell line (HAC-15 cells at passage 3) and nonresistant control or mitotane resistant clonal cell lines.

7.15 Analysis of Gene Expression Microarray and Exome Sequencing Data Comprehensive data analysis including discovery of differentially expressed genes, Gene Ontology enrichment analysis (136, 230, 231) and copy number variation (CNV) profiling was done by Clemens Messerschmidt and Benedikt Obermayer from the Core Unit Bioinformatics (CUBI) at the Berlin Institute of Health (BIH), Berlin, Germany. For CNV Profiling, each whole-exome data set was matched against genome reference GRCh37 using BWA-mem (232). Copy number alterations where analyzed in a tumor/normal paired fashion with the R package CopywriteR (233) with 50 kb bins and annotated with the CIViC database (234), where the nonresistant clone was treated as normal and mitotane resistant clones as tumor sample.

7.16 BCA Assay

BCA assay was done using Pierce BCA Protein Assay Kit (Pierce by Thermo Fisher Scientific) according to the manufacturer's protocol. As standards, bovine serum albumin (BSA) was used at 2000, 1500, 1000, 750, 500, 250, 125 and 25 μ g/mL. Two-hundred microliters working solution (50:1, bicinchoninic acid solution "A" and Cu²⁺ solution "B") were added to 25 μ L of each standard and sample, and samples were incubated for 30 min at 37°C. Afterwards, samples were kept at rt for approximately 10 min and absorption was then measured at 562 nm using EnSpire 2300 Multilabel Reader (PerkinElmer, Waltham, MA, USA). Samples were run in duplicates. For calculation of protein concentration, the mean was calculated, blank was subtracted, standard protein concentration was plotted against the absorbance using an Excel worksheet (Microsoft, Redmond, WA, USA) and data were fitted using a linear regression. Protein concentration was calculated according to equation 4.

$$C_P = \frac{A_{562\,nm} - b}{m}$$

Equation 4: Calculation of protein concentration from BCA assays.
Cp is the protein concentration in μg/mL
A_{562 nm} is the sample's absorption at 562 nm.
b is the y-intercept of the calibration curve.
m is the slope of the calibration curve.

8.1 Development of an *In Vitro* Model of Mitotane Resistance

8.1.1 Generation of a Mitotane-Resistant Adrenocortical Carcinoma Cell Line To assess the dose-dependency of the cytotoxic effects of mitotane on HAC-15 cells, dose-response curves using MTT assay as readout for cell viability were recorded, and the half-maximal inhibitory concentration (IC_{50}) was determined using a sigmoidal dose-response curve fit (figure 4).

Figure 4: Dose-response curve of mitotane in HAC-15 cells. Cells were incubated with increasing doses of mitotane for 72 h and cell viability (OD₅₉₀) was measured by MTT-assay. Cell viability was normalized to vehicle control, and results are shown as mean percentage and SD of five independent experiments. Mitotane dose-dependently inhibits cell viability and proliferation in HAC-15 cells.

The IC₅₀ of mitotane in HAC-15 cells was $(47.4 \pm 15.0) \mu$ M. In order to induce mitotane resistance, HAC-15 cells were treated with 70 μ M mitotane (1.47 times the IC₅₀) or the corresponding amount of vehicle control (DMSO) following a pulsed protocol (218). Growth curves of control and mitotane treated cells are shown in figure 5.

Figure 5: Growth curves of long-term mitotane treated HAC-15 cells. Every 3-4 days, cells were treated with 70 μM mitotane (70 μM Pulsed) or the corresponding amount of vehicle control (DMSO; Control) in on-off cycles. Cells were counted at each passage, and the total number of population doublings (cumulative population doublings;

cPD) was calculated. During long-term treatment the growth curve flattened drastically, but the population recovered after approximately 30 days.

At the beginning of the treatment, the growth curve of mitotane treated cells flattened drastically, but after approximately 30 days of treatment, the population of mitotane treated cells started to recover, and after approximately 70 days of treatment, the pace of the population growth in mitotane treated cells was comparable to vehicle control treated cells. The IC₅₀ of mitotane was then measured in bulk cultures of vehicle control treated and mitotane treated cells (figure 6).

Figure 6: Dose-response curves of mitotane in long-term mitotane (70 μ M Pulsed) versus vehicle control treated (Control) HAC-15 cells. The IC₅₀ was measured by MTT-assay after 72h of incubation. Results are shown as mean±SD of three independent measurements. The dose-response curve of mitotane treated cells shows a shift to higher concentrations but differences in IC₅₀ are not significant. For statistics, the Mann-Whitney-test was used. ns, p>0.05.

The IC₅₀ of mitotane in vehicle control treated and mitotane treated cells was (45.9 \pm 25.5) μ M and (76.7 \pm 24.5) μ M, respectively. The dose-response curve of bulk cultures of mitotane treated cells showed a shift towards higher mitotane concentrations in comparison to the dose-response curve of vehicle control treated cells. While there was no significant difference in the IC₅₀s (p=0.40), this observation, together with the recovery of population growth observed in the growth curves, indicated that the sensitivity of long-term treated HAC-15 cells towards mitotane had decreased. In order to isolate clonal cell lines, mitotane treated and vehicle control treated cells were seeded out at low density after 72 days of treatment, and colonies were subsequently picked and expanded. To assess mitotane sensitivity of mitotane treated and vehicle control treated that OV Picked and Picket HAC-15 clonal cell lines, the IC₅₀ of mitotane treated cell lines are shown in figure 7.

Figure 7: The IC₅₀ of mitotane in clonally selected long-term mitotane (70 μ M Pulsed, N=12) versus vehicle control treated (Control, N=6) HAC-15 cells. The IC₅₀ was measured by MTT-assay after 72 h of incubation. Data of one representative experiment is shown. Results are shown in scatter dot plots with mean±SD. The IC₅₀ of mitotane in clonal cell lines of long-term treated HAC-15 cells is significantly increased. For statistics, the Mann-Whitney-test was used. *** p<0.001.

The IC₅₀ of long-term treated clonal cell lines was significantly increased $((102.2\pm7.3) \mu M \text{ versus } (39.4\pm6.2) \mu M; p=0.0001)$, confirming 2.6 fold mitotane resistance (218) in long-term treated HAC15 cells.

8.1.2 Multidrug Resistance in Mitotane Resistant HAC-15 Clonal Cell Lines

Increased activity of P-glycoprotein is a common feature of multidrug resistant cancer cells (235). Doxorubicin is a substrate of P-glycoprotein (236) and therefore doxorubicin sensitivity has been used to assess P-glycoprotein activity in the NCI-H295 ACC cell line (210). In order to clarify whether long-term treatment with mitotane had induced P-glycoprotein activity and thereby common multidrug resistance, the IC₅₀ of doxorubicin was measured by MTT assay in presence of various mitotane concentrations in nonresistant control and mitotane resistant clonal cell lines (figure 8 and table 3).

Figure 8 A-C: Dose-response curves of doxorubicin in mitotane resistant versus nonresistant control HAC-15 clones. Cells were incubated with increasing doses of doxorubicin for 72 h in presence of A) no mitotane, B) 10 μ M mitotane or C) 50 μ M mitotane, and cell viability (OD₅₉₀) was measured by MTT-assay. Blank was substracted, and results are shown as mean±SD of six mitotane resistant and nonresistant control clones. **D:** The IC₅₀ of doxorubicin calculated from dose-response curves A-C using a four parameter dose-response curve fit. Results are shown in box-and-whiskers (min to max) plots. Boxes extend from 25th to 75th percentiles, the line is the median and whiskers go to the smallest (min) and to the largest value (max). Mitotane resistance does not lead to additional resistance to doxorubicin, while addition of mitotane leads to a significantly higher sensitivity towards doxorubicin in mitotane resistant cells compared to nonresistant control cells. For statistics, the Mann-Whitney test was used. *p<0.05; **p<0.01; ***p<0.001.

Table 3: The IC_{50} of doxorubicin in nonresistant control and mitotane resistant cells in absence and presence of two concentrations of mitotane. IC_{50} s were calculated from dose-response curves in figure 8 A-C (mean±SD), and p-values were determined by Mann-Whitney test.

	IC50 Nonresistant Control [nM]	IC50 Mitotane Resistant [nM]	p-Value
0 µM Mitotane	4.6±1.4	3.7±0.5	0.4848
10 µM Mitotane	3.9±1.0	2.2±0.4	0.0022
50 µM Mitotane	1.9±1.1	0.7±0.2	0.0649

In absence of mitotane and presence of 50 μ M mitotane, no significant difference between the IC₅₀ of doxorubicin in nonresistant control and mitotane resistant clonal cell lines was found. In presence of 10 μ M mitotane, the IC₅₀ of doxorubicin was significantly lower in mitotane resistant compared to nonresistant control clonal cell lines. The lack of doxorubicin resistance in mitotane resistant cells suggests, that the

underlying mechanism of mitotane resistance in this *in vitro* model of mitotane resistant ACC is different from common multidrug resistance. In mitotane resistant and nonresistant control cells, simultaneous treatment with 50 μ M mitotane significantly decreased the IC₅₀ of doxorubicin (p(resistant)=0.0022; p(nonresistant)=0.015), while 10 μ M mitotane only had a significant effect on the IC₅₀ of doxorubicin in mitotane resistant cells (p(resistant)=0.0022; p(nonresistant)=0.48).

8.1.3 The Influence of Lipoprotein Species on Mitotane Resistance

It was noticed during long-term cell culture of HAC-15 cells, that the IC₅₀s of mitotane in HAC-15 cells cultured in media containing different amounts of Nu-Serum (NuS), cosmic calf serum (CCS) and fetal calf serum (FCS) differed remarkably. Circulating lipoprotein species have been shown to influence the cytotoxicity of mitotane *in vitro* (167, 168). In order to investigate a possible correlation between the IC₅₀ of mitotane and the concentrations of HDL, LDL, cholesterol and triglycerides in media containing different amounts of NuS, CCS and FCS, the concentration of the lipoprotein species was determined in each of the sera, and final concentrations in the media were calculated. Then, the concentration of HDL, LDL, cholesterol and triglycerides was plotted against the respective IC₅₀, and Pearson correlation coefficients were computed. Dose-response curves in various media and a plot of the IC₅₀s versus the concentrations of HDL, LDL, cholesterol and triglycerides are shown in figure 9, correlation coefficients and p-values are shown in table 4.

Figure 9 A and B: The IC₅₀ of mitotane in different media and correlation analysis. **A:** Dose-response curves of mitotane in HAC-15 cells cultivated in media containing different amounts of Nu-Serum (NuS), cosmic calf serum (CCS) and fetal calf serum (FCS). Cells were incubated with increasing doses of mitotane for 72 h, and cell viability (OD₅₉₀) was measured by MTT-assay. **B:** The IC₅₀ of mitotane in HAC-15 cells plotted against the concentration of cholesterol, triglycerides, HDL and LDL in the cell culture medium with linear regression. The concentration of cholesterol, triglycerides, HDL and LDL in these sera were measured by photometry, and the amount of each of

the compounds in the media was calculated. All data passed the Shapiro-Wilk test for normality and correlation analysis revealed a significant positive correlation between IC_{50} and the concentration of cholesterol, HDL, LDL, but not triglycerides.

Table 4: Pearson correlation coefficients and p values for correlations between the IC₅₀ of mitotane and the concentration of cholesterol, HDL, LDL and triglycerides in the medium.

	IC50 vs. Cholesterol	IC ₅₀ vs. Triglycerides	IC50 vs. HDL	IC ₅₀ vs. LDL
r (Pearson)	0.9969	-0.02693	0.9888	0.9949
p-Value	0.0002	0.9657	0.0004	0.0014

A strongly significant, positive correlation was found between the IC₅₀ of mitotane and the concentration of HDL, LDL and free cholesterol but not triglycerides in the medium. In order to clarify whether these compounds also play a role in mitotane resistance, the IC₅₀ of mitotane in nonresistant control and mitotane resistant cells in presence of different concentrations of HDL and LDL was measured (figure 10 and table 5).

Figure 10 A and B: The influence of HDL and LDL on mitotane cytotoxicity and resistance. **A:** The IC₅₀ of mitotane in four mitotane resistant versus four nonresistant control HAC-15 clones in presence of different amounts of HDL and LDL, determined by MTT-assay after 72h of incubation. Results are shown in box-and-whiskers (min to max) plots. Boxes extend from 25th to 75th percentiles, the line is the median and whiskers go to the smallest (min) and to the largest value (max). Mitotane resistance is dependent on HDL and LDL concentration in cell culture media. **B:** The IC₅₀ of mitotane of mitotane in four mitotane resistant versus four nonresistant control HAC-15 clones in presence of different HDL to LDL ratios, determined by MTT-assay after 72h of incubation. Results are shown in box-and-whiskers (min to max) plots. Mitotane resistance depends on total cholesterol concentration in cell culture medium, but not the HDL to LDL ratio. For statistics, the Mann-Whitney-test was used. ns, p>0.05; *p<0.05.

Concentration [mg/mL]	IC50 Nonresistant Control [µM]	IC50 Mitotane Resistant [µM]	p-Value
0.05 (HDL); 0.05 (LDL)	38.1±14.4	137.5±21.7	0.029
0.005 (HDL); 0.005 (LDL)	13.3±1.8	22.2±3.8	0.029
0.033 (HDL); 0.067 (LDL)	34.8±17.2	113.5±33.2	0.029
0.067 (HDL); 0.033 (LDL)	45.6±18.4	114.1±22.6	0.029
0.0033 (HDL); 0.0067 (LDL)	13.8±1.3	22.9±9.8	0.343
0.0067 (HDL); 0.0033 (LDL)	13.6±1.3	16.5±5.5	0.343

Table 5: The IC₅₀ of mitotane in nonresistant control and mitotane resistant cells in presence of different amounts of HDL and LDL in the medium (mean±SD) and p-values (Mann-Whitney test).

At all conditions except for 0.0033 mg/mL HDL; 0.0067 mg/mL LDL and 0.0067 mg/mL HDL; 0.0033 mg/mL LDL, the IC₅₀ of mitotane in mitotane resistant cells was significantly increased in comparison to nonresistant control cells. At 0.005 mg/mL HDL and LDL, the IC₅₀ of both, nonresistant control and mitotane resistant cells was significantly lower than at 0.05 mg/mL HDL and LDL. Interestingly, the fold resistance was decreased in media with reduced lipoprotein content (3.6 at 0.05 mg/mL HDL and LDL versus 1.7 at 0.005 mg/mL HDL and LDL), while varying the ratio of HDL and LDL did not have a prominent influence on fold resistance (for p-values, please refer to table 6).

Table 6: P-values (Mann-Whitney test) for comparisons of IC₅₀s of mitotane resistant and nonresistant control cells in presence of different HDL to LDL ratios (figure 10).

Comparison (Concentrations in mg/mL)	Condition	p-Value
0.05 (HDL); 0.05 (LDL) vs. 0.005 (HDL); 0.005 (LDL)	Resistant	0.029
0.05 (HDL); 0.05 (LDL) vs. 0.033 (HDL); 0.067 (LDL)	Resistant	0.890
0.05 (HDL); 0.05 (LDL) vs. 0.067 (HDL); 0.033 (LDL)	Resistant	0.086
0.005 (HDL); 0.005 (LDL) vs. 0.0033 (HDL); 0.0067 (LDL)	Resistant	0.686
0.005 (HDL); 0.005 (LDL) vs. 0.0067 (HDL); 0.0033 (LDL)	Resistant	0.200
0.05 (HDL); 0.05 (LDL) vs. 0.005 (HDL); 0.005 (LDL)	Nonresistant	0.029
0.05 (HDL); 0.05 (LDL) vs. 0.033 (HDL); 0.067 (LDL)	Nonresistant	0.686
0.05 (HDL); 0.05 (LDL) vs. 0.067 (HDL); 0.033 (LDL)	Nonresistant	0.686
0.005 (HDL); 0.005 (LDL) vs. 0.0033 (HDL); 0.0067 (LDL)	Nonresistant	0.343
0.005 (HDL); 0.005 (LDL) vs. 0.0067 (HDL); 0.0033 (LDL)	Nonresistant	0.686

These observations suggest that mitotane resistance in this *in vitro* model of mitotane resistant ACC is influenced by the overall amount of HDL and LDL in the cell culture medium.

- 8.2 Investigation of Gene Expression and DNA Integrity in Mitotane Resistant and Nonresistant Control Cells
- 8.2.1 Gene Expression Microarray Analysis

In order to investigate the underlying mechanisms of mitotane resistance in the present *in vitro* model, gene expression microarray analysis was performed in six mitotane resistant versus six nonresistant control clones treated with either vehicle control (DMSO) or 50 μ M mitotane.

Principle component analysis of gene expression data sets (figure 11) revealed two distinct clusters of mitotane resistant and nonresistant control clonal cell lines.

Figure 11: Principle component analysis of gene expression array data sets. Mitotane resistant (R) and nonresistant control clonal cell lines (NR) cluster in two distinct clusters. Abbreviations: D, DMSO; M, Mitotane; NR, nonresistant control; R, mitotane resistant; PC1, principle component 1; PC2, principle component 2.

Preceding data suggested a role of lipoproteins in mitotane resistance in the present *in vitro* model. Therefore, as a first approach to gene expression data analysis, only genes annotated for pathways related to "cholesterol" and "steroids" according to the Gene Ontology (GO) Consortium (136, 230) were included in the data analysis. Multiple t-test discovery analysis at a threshold of q-Value<0.01 yielded 72 differentially

expressed genes between mitotane resistant and nonresistant control cells. A heatmap is shown in figure 12. Differentially expressed genes that were downregulated included *STAR* (encoding for steroidogenic acute regulatory protein), *CYP11A1* (encoding for cholesterol side-chain cleaving enzyme) and *CYP11B2* (encoding for aldosterone synthase) in mitotane resistant cells. Both, *STAR* and *CYP11A1* catalyze the first, ratelimiting step of steroidogenesis (237), while *CYP11B2* is only expressed in the zona glomerulosa and the most important regulator of aldosterone secretion (238). Further, *SOAT1* (encoding for steroi-O-acyl-transferase 1), a major intracellular target of mitotane (173), was found to be downregulated in mitotane resistant cells, alongside with several genes implicated in transmembrane traffic of cholesterol including very lowdensity lipoprotein receptor (*VLDLR*) (239), ATP-binding cassette, sub-family A member 1 (*ABCA1*) (240), *LDLR* and *SCARB1* (7).

Figure 12: Heat map of significantly regulated genes annotated for GO pathways related to "cholesterol" and "steroids" in mitotane resistant compared to nonresistant HAC-15 clones. Genes are sorted according to their log₂ fold change. GO pathways were found with AmiGO2. Genes were selected from an Affymetrix PrimeView RNA

array comprising 49495 probes and tested for significance by multiple t-test discoveries (threshold for discovery: q-Value<0.01).

As a second, more unbiased approach comparing gene expression microarray data of nonresistant control and mitotane resistant clonal cell lines, all probes with the highest average expression within a probe set were included into the analysis. Introducing cutoffs (5% false discovery rate, $|\log_2 \text{ fold change}| > 0.5$ and average expression > 5) yielded a total of 1581 differentially regulated genes comparing vehicle control (DMSO) treated nonresistant and mitotane resistant clonal cell lines, 60 differentially expressed genes comparing DMSO treated nonresistant to mitotane treated nonresistant clonal cell lines and 1636 differentially expressed genes comparing mitotane treated mitotane resistant to mitotane treated nonresistant clonal cell lines. Interestingly, applying the same analytical procedure on microarray comparison of mitotane treated versus DMSO treated mitotane resistant clones yielded no differentially expressed genes. A heatmap of the 150 most significantly regulated genes between DMSO treated nonresistant and mitotane resistant clonal cell lines is shown in figure 13. Unbiased analysis confirmed significant downregulation of LDLR, SCARB1, STAR and CYP11A1 previously discovered during biased analysis, and further discovered significant downregulation of NR4A1 (encoding for NGFIB), NR5A1 (encoding for SF-1), HSD3B2, CPY17A1, CYP19A1 and CYP21A2. Further, unbiased analysis revealed no significant changes in gene expression of MDR1, ABCC1 and ABCG2, encoding for P-glycoprotein, MRP1 and BCRP, the three most common ABC transporters involved in multidrug resistance (235).

Figure 13: Heat map of the 150 most significantly regulated genes in mitotane resistant cells. Genes were discovered by Affymetrix PrimeView RNA array of six vehicle control (DMSO) treated mitotane resistant versus six DMSO treated nonresistant control HAC-15 clones, sorted according to log2 fold change. Only probe sets with the highest expression were included into the analysis, and cutoffs at 5% false discovery rate, |log2 fold change |> 0.5 and average expression > 5 were introduced leading to discovery of a total of 1581 differentially regulated genes.

Gene Ontology enrichment analysis (136, 230, 231) of upregulated genes comparing DMSO treated mitotane resistant to nonresistant control clonal cell lines revealed significantly enriched terms for multiple biological processes and molecular functions implicated in the Wnt signaling pathway and cell growth. Applying GO enrichment analysis on downregulated genes between DMSO treated mitotane resistant and nonresistant control clonal cell lines revealed significantly enriched terms for multiple biological processes implicated in cellular response to toxic and xenobiotic substance, biosynthesis and metabolism of adrenal steroid hormones, lipid transport (including

cholesterol) as well as lipoprotein clearance and metabolism. Also, significantly enriched terms implicated in biological processes and molecular functions connected to transcription factor binding were discovered for upregulated genes.

Selected results of the GO enrichment analysis are listed in table 7 and complete results are shown in appendix 1.

Table 7: Selected biological processes (BP) and molecular functions (MF) of a Gene Ontology enrichment analysis

 of differentially expressed genes comparing DMSO treated mitotane resistant to nonresistant control clonal cell

 lines. For complete results, please refer to appendix 1.

Term	Note	GO.ID	P Value	Regulation	Genes
Positive regulation of programmed cell death	BP	GO:0043068	0.00010	Up	50
Cell growth	BP	GO:0016049	0.00017	Up	41
Transcription, DNA-templated	BP	GO:0006351	0.00021	Up	216
Canonical Wnt signaling pathway	BP	GO:0060070	0.00023	Up	30
Regulation of Wnt signaling pathway	BP	GO:0030111	0.00028	Up	31
Nucleic acid-templated transcription	BP	GO:0097659	0.00030	Up	216
Positive regulation of transcription by RNA polymer-	BP	GO:0006366	0.00049	Up	137
Positive regulation of transcription from RNA poly- merase II	BP	GO:0045944	0.00151	Up	70
Coreceptor activity involved in Wnt signaling pathway	MF	GO:1904929	0.00019	Up	4
Transcription factor binding	MF	GO:0008134	0.00087	Up	49
Wnt-activated receptor activity	MF	GO:0042813	0.00586	Up	4
Growth factor activity	MF	GO:0008083	0.00795	Up	8
Steroid metabolic process	BP	GO:0008202	0.00011	Down	28
Glucocorticoid biosynthetic process	BP	GO:0006704	0.00015	Down	5
Glucocorticoid metabolic process	BP	GO:0008211	0.00016	Down	6
Cellular lipid metabolic process	BP	GO:0044255	0.00049	Down	69
Mineralocorticoid biosynthetic process	BP	GO:0006705	0.00055	Down	4
Mineralocorticoid metabolic process	BP	GO:0008212	0.00055	Down	4
C21-steroid hormone metabolic process	BP	GO:0008207	0.00091	Down	7
C21-steroid hormone biosynthetic process	BP	GO:0006700	0.00106	Down	6
Androgen metabolic process	BP	GO:0008209	0.00106	Down	6
Positive regulation of lipid biosynthetic process	BP	GO:0046889	0.00114	Down	9
Regulation of plasma lipoprotein particle levels	BP	GO:0097006	0.00148	Down	10
Cellular response to xenobiotic stimulus	BP	GO:0071466	0.00180	Down	10
Cellular response to toxic substance	BP	GO:0097237	0.00260	Down	12
Plasma lipoprotein particle clearance	BP	GO:0034381	0.00455	Down	7
Cholesterol transport	BP	GO:0030301	0.00471	Down	8
Steroid biosynthetic process	BP	GO:0006694	0.00559	Down	18
Lipid transport	BP	GO:0006869	0.00596	Down	21
Chylomicron remnant clearance	BP	GO:0034382	0.00648	Down	2
Triglyceride-rich lipoprotein particle clearance	BP	GO:0071830	0.00648	Down	2
Positive regulation of estradiol secretion	BP	GO:2000866	0.00648	Down	2
Positive regulation of lipid metabolic processes	BP	GO:0045834	0.00768	Down	11
Sterol import	BP	GO:0035376	0.00866	Down	3
High-density lipoprotein particle binding	MF	GO:0008035	0.00049	Down	3
Apolipoprotein binding	MF	GO:0034185	0.00051	Down	4
Lipoprotein particle receptor activity	MF	GO:0030228	0.00350	Down	4
Low-density lipoprotein particle binding	MF	GO:0030169	0.00433	Down	3

Gene Ontology enrichment analysis of upregulated genes between mitotane treated and DMSO treated nonresistant control clonal cell lines revealed significantly enriched terms for multiple biological processes connected to apoptosis as well as endoplasmic reticulum stress response and regulation, while GO enrichment analysis of downregulated genes revealed significantly enriched terms for biological processes connected to lipid transport, biosynthesis and homeostasis. Also, molecular functions implicated in regulatory DNA binding were discovered for upregulated genes. Selected results of the GO enrichment analysis are listed in table 8 and complete results are shown in appendix 1.

Table 8: Selected biological processes (BP) and molecular functions (MF) of a Gene Ontology enrichment analysis

 of differentially expressed genes comparing mitotane treated to DMSO treated nonresistant control clonal cell lines.

 For complete results, please refer to appendix 1.

Term	Note	GO.ID	P Value	Regulation	Genes
Cell death	BP	GO:0008219	0.00168	Up	14
Apoptotic signaling pathway	BP	GO:0097190	0.00300	Up	7
Response to endoplasmic reticulum stress	BP	GO:0034976	0.00455	Up	5
Regulation of cell death	BP	GO:0010941	0.00539	Up	11
Regulation of cellular response to stress	BP	GO:0080135	0.00666	Up	7
Apoptotic process	BP	GO:0006915	0.00671	Up	12
Regulation of endoplasmic reticulum stress	BP	GO:1902235	0.00710	Up	2
Programmed cell death	BP	GO:0012501	0.00827	Up	12
Regulation of apoptotic process	BP	GO:0042981	0.00877	Up	10
Regulation of programmed cell death	BP	GO:0043067	0.00943	Up	10
Positive regulation of response to ER stress	BP	GO:1905898	0.00949	Up	2
transcription regulatory region DNA binding	MF	GO:0044212	0.00960	Up	7
regulatory region DNA binding	MF	GO:0000975	0.00971	Up	7
regulatory region nucleic acid binding	MF	GO:0001067	0.00982	Up	7
Unsaturated fatty acid biosynthetic process	BP	GO:0006636	0.00011	Down	2
Intracellular lipid transport	BP	GO:0032365	0.00017	Down	2
Cellular response to fatty acid	BP	GO:0071398	0.00028	Down	2
Cholesterol homeostasis	BP	GO:0042632	0.00030	Down	2
Sterol homeostasis	BP	GO:0055092	0.00030	Down	2
Glycerolipid biosynthetic process	BP	GO:0045017	0.00037	Down	3
Cholesterol transport	BP	GO:0030301	0.00042	Down	2
Sterol transport	BP	GO:0015918	0.00058	Down	2
Response to fatty acid	BP	GO:0070542	0.00064	Down	2
Regulation of plasma lipoprotein particle levels	BP	GO:0097006	0.00064	Down	2
Unsaturated fatty acid metabolic process	BP	GO:0033559	0.00073	Down	2
Lipid homeostasis	BP	GO:0055088	0.00098	Down	2
Regulation of fatty acid metabolic process	BP	GO:0019217	0.00109	Down	2
Response to lipid	BP	GO:0033993	0.00623	Down	3
Lipid transport	BP	GO:0006869	0.00737	Down	2
Lipid modification	BP	GO:0030258	0.00818	Down	2
Lipid localization	BP	GO:0010876	0.00892	Down	2

8.2.2 Whole Exome Sequencing Analysis

In order to investigate possible DNA level changes involved in mitotane resistance, exome sequencing was performed in HAC-15 cells at passage 3 (founder), one non-resistant control clone and six mitotane resistant clones. Discovery of somatic mutations in nonresistant control and mitotane resistant clones versus the founder cell lines was done as previously described (130) and revealed a much higher number of somatic mutations in mitotane resistant clonal cell lines. Copy number variations were analyzed in mitotane resistant versus nonresistant control clonal cell lines using CopywriteR (233). A profile of copy number changes for each of the mitotane resistant clonal cell lines discovered during exome sequencing is shown in figure 14.

Figure 14: Copy number variation (CNV) profiles of mitotane resistant clonal cell lines. Copy number profiles comparing mitotane resistant to nonresistant control clonal cell lines were obtained using CopywriteR. Copy number profiles of mitotane resistant cell lines show high similarity.

Copy number profiles showed high similarity among all mitotane resistant clonal cell lines and included a loss on chromosome 9, profound losses on chromosomes 13 and 15 as well as large gains on chromosomes 3 and 4. Cell line specific copy number variations (CNVs) included one gain on chromosome 5 and a loss on chromosome 18 specific for mitotane resistant clonal cell line 1 as well as a loss on chromosome 20 specific for mitotane resistant clonal cell line 3. High genetic similarity among mitotane resistant clonal cell lines suggests, that all clonal cell lines derive from a single, mitotane resistant cell or a subset of genetically similar cells during long-term treatment.

8.3 Functional Analyses

Building on the results of *in vitro* experiments, the gene expression microarray study and whole exome sequencing, functional analyses were performed in order to further unravel the mechanisms underlying mitotane resistance in the present *in vitro* model. Functional analyses included cell culture validation of driver pathway candidates as well as measurement of intracellular lipids and intracellular mitotane concentration.

8.3.1 Cell Culture Validation of Possible Pathways of Mitotane Resistance

In order to identify possible drivers of mitotane resistance among the multitude of genes and pathways discovered during the gene expression microarray study, several candidate pathways were investigated in *in vitro* experiments. Genes and pathways were selected according to a previously established role in cancer and adrenal cortex homeostasis as well as results from previous *in vitro* studies presented in this thesis. During both, biased and unbiased analysis of gene expression microarray data, *SCARB1*, encoding for scavenger receptor 1B (SR-BI), was discovered to be significantly and strongly downregulated in mitotane resistant clonal cell lines. According to GO enrichment analysis comparing DMSO treated mitotane resistant to nonresistant control clonal cell lines, *SCARB1* was annotated for numerous biological processes connected to lipid metabolism and transport. Due to the well-established role of SR-BI in selective uptake of cholesterol from lipoproteins (LDL and HDL) (241) and previous data suggesting a role of HDL and LDL in mitotane resistance in the present *in vitro* model, the effect of SR-BI inhibition on the cytotoxic effects of mitotane in HAC-15 cells was investigated. Results are shown in figure 15 and p-values are shown in table 9.

Figure 15: The cell viability of HAC-15 cells in presence of different concentrations of mitotane and SR-BI inhibitor BLT-1. Cell viability was measured by MTT assay after 72 h of incubation. Data is shown in mean+SD of two measurements. Inhibition of SR-BI does not mitigate the cytotoxic effects of mitotane in HAC-15 cells. Groups were compared using a Kruskal-Wallis test. As post hoc test Dunn's uncorrected test was used. *p<0.05.

Comparison	P-Value
0 μM mitotane vs. 35μM mitotane	0.89
0 μM mitotane vs. 70μM mitotane	0.40
0 μM mitotane vs. 140μM Mitotane	0.024
0 μM mitotane I vs. 0μM mitotane 5μM BLT-1	0.36
0 μM mitotane vs. 0μM mitotane 15μM BLT-1	0.20
0μM mitotane 5μM BLT-1 vs. 35μM mitotane 15μM BLT-1	0.48
0μM mitotane 5μM BLT-1 vs. 70μM mitotane 15μM BLT-1	0.18
0μM mitotane 5μM BLT-1 vs. 140μM mitotane 15μM BLT-1	0.056
0μM mitotane 15μM BLT-1 vs. 35μM mitotane 15μM BLT-1	0.72
0μM mitotane 15μM BLT-1 vs. 70μM mitotane 15μM BLT-1	0.32
0μM mitotane 15μM BLT-1 vs. 140μM mitotane 15μM BLT-1	0.12

Table 9: P-values (Kruskal-Wallis test and Dunn's uncorrected *post hoc* test) for comparisons of cell viability in absence and presence of different concentrations of mitotane and SR-BI inhibitor BLT-1 (figure 15)

As expected, mitotane decreased cell viability in HAC-15 cells. However, mitotane effects on cell viability were only significant using 140 μ M mitotane, probably due to the low number of repeated measurements (N=2). Incubation with SR-BI inhibitor BLT-1 using 5 μ M, a concentration that has been used in H295R cells (168), and 15 μ M showed a tendency towards the reduction of cell viability in HAC-15 cells in absence or presence of different concentrations of mitotane. This tendency was contrary to the expectation that inhibition of SR-BI may counteract mitotane cytotoxicity, and experiments were discontinued after two measurements.

Another gene discovered to be consistently downregulated in mitotane resistant clonal cell lines was *AGTR1*, encoding for angiotensin II receptor 1. According to GO enrichment analysis comparing DMSO treated mitotane resistant to nonresistant control clonal cell lines, *AGTR1* was annotated for numerous biological processes connected to steroid metabolism and for molecular functions connected to transmembrane signaling, consistent with its well-established role in aldosterone production in the adrenal zona glomerulosa (242). In order to investigate a possible role in mitotane resistance, the effect of angiotensin receptor 1 inhibition on cytotoxic effects of mitotane in HAC-15 cells was investigated. Results are shown in figure 16 and p-values are listed in table 10.

Figure 16: The cell viability of HAC-15 cells in presence of different concentrations of mitotane and AGTR1 inhibitor losartan. Cell viability was measured by MTT assay after 72 h of incubation. Data is shown in mean+SD of two measurements. Vehicle control treated samples were identical to figure 15. Inhibition of angiotensin II receptor 1 does not mitigate the cytotoxic effects of mitotane in HAC-15 cells. Groups were compared using a Kruskal-Wallis test. As *post hoc* test Dunn's uncorrected test was used. *p<0.05.

Table 10: P-values (Kruskal-Wallis test and Dunn's uncorrected *post hoc* test) for comparisons of cell viability inabsence and presence of different concentrations of mitotane and angiotensin II receptor 1 inhibitor losartan (figure16).

Comparison	p-Value
0 μM mitotane vs. 35μM mitotane	0.89
0 μM mitotane vs. 70μM mitotane	0.40
0 μM mitotane vs. 140μM mitotane	0.024
0 μ M mitotane vs. 0 μ M mitotane 10 μ M losartan	0.36
0 μM mitotane vs. 0μM mitotane 30 μM losartan	0.20
0μM mitotane 10 μM losartan vs. 35μM mitotane 30 μM losartan	0.78
0μM mitotane 10 μM losartan vs. 70μM mitotane 30 μM losartan	0.32
0μM mitotane 10 μM losartan vs. 140μM mitotane 30 μM losartan	0.10
0μM mitotane 30 μM losartan vs. 35μM mitotane 30 μM losartan	0.72
0μM mitotane 30 μM losartan vs. 70μM mitotane 30 μM losartan	0.32
0μM mitotane 30 μM losartan vs. 140μM mitotane 30 μM losartan	0.12

Vehicle control treated samples were identical to figure 16. Inhibition of angiotensin receptor 1 showed no tendency to reduce or increase cell viability in absence or presence of various concentrations of mitotane. Hence, experiments were discontinued after two measurements.

Another significantly and strongly downregulated gene in mitotane resistant clonal cell lines was *DDIT4L*, encoding for REDD2, an inhibitor of mTOR signaling (243), a pathway connected to proliferation and survival that is also linked to cancer (244). In order to clarify, whether inhibition of mTOR mitigates mitotane resistance in the present *in vitro* model, the IC₅₀ of mitotane in nonresistant control and mitotane resistant clonal cell lines in presence of mTOR inhibitor rapamycin was determined. Results are shown in figure 17.

Figure 17: The IC₅₀ of mitotane in mitotane resistant and nonresistant control clonal cell lines in presence of vehicle control and mTOR-pathway inhibitor rapamycin. The IC₅₀ was measured by MTT assay after 72 h of incubation. Results are shown as mean+SD of three different clones. Simultaneous treatment with rapamycin does not influence the IC₅₀ of mitotane in nonresistant control and mitotane resistant clonal cell lines. Groups were compared using a Kruskal-Wallis test. As *post hoc* test Dunn's uncorrected test was used. *p<0.05.

Treatment with rapamycin did not cause changes in mitotane tolerance in mitotane resistant or nonresistant control clonal cell lines (p=0.013), although a rapamycin concentration was used (10 μ M versus 25-100 nM) in comparison to a previous study in H295R cells (245).

GO enrichment analysis also suggested an upregulation of pathways implicated Wnt signaling in mitotane resistant cells. *AXIN2* exerts an important role on Wnt signaling by regulating β -catenin stability (246). Elevated *AXIN2* expression is considered a marker for increased Wnt activity (247) and has been used to assess Wnt signaling activity in murine adrenal glands (248). Increased *AXIN2* expression was confirmed by rt-PCR (p=0.0022; figure 18).

In order to investigate a possible role of Wnt signaling in mitotane resistance, the IC₅₀ of mitotane was measured in mitotane resistant clonal cell lines in presence of Wnt pathway inhibitor XAV939. Results are shown in figure 19. Simultaneous treatment with 10 μ M XAV939, a concentration that has also been used to inhibit the Wnt pathway in H295R and SW13 cells (249), did not cause changes in the IC₅₀ of mitotane resistant clonal cell lines (p=0.70).

Figure 18: The relative expression of AXIN2 in mitotane resistant versus nonresistant control cells. Gene expression was measured by rt-PCR, normalized to expression of *TBP* and results are shown as mean+SD of six clones. Expression of *AXIN2* is significantly increased in mitotane resistant clonal cell lines. For statistics, Mann-Whitney test was used. **p<0.01.

Figure 19: The IC₅₀ of mitotane in mitotane resistant clonal cell lines in presence 10 μ M Wnt pathway inhibitor XAV939. The IC₅₀ was measured by MTT assay after 72 h of incubation. Results are shown as mean+SD of three different clones. Inhibition of Wnt signaling does not influence the IC₅₀ of mitotane in mitotane resistant clonal cell lines. For statistics, the Mann-Whitney test was used. ns, p>0.05.

8.3.2 Intracellular Measurement of Various Lipid Species

In order to further explore the possible role of cholesterol in mitotane resistance suggested by cell culture experiments and subsequent microarray gene expression analysis, the concentration of various lipid species was determined using ESI-MS/MS in lysates of three nonresistant control and three mitotane resistant clones cultured in presence of different concentrations of mitotane and different amounts of CCS. A heatmap of summarized results is shown in figure 20.

Figure 20: Intracellular content of various lipid species. The amount of phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, PE based plasmalogens, phosphatidylserine, phosphatidylinositol, lysophosphatidylcholine, ceramide, cholesteryl ester and free cholesterol in three nonresistant control clones versus three mitotane resistant clones. Cells were treated with increasing concentrations of mitotane in presence of different concentrations of serum for 72 h. The amount of the indicated compounds in nmol was measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and normalized to total protein quantity in mg (BCA assay).

Of all lipid species investigated, the intracellular concentrations of lysophosphatidylcholines (LPC), ceramides (CER), sphingomyelins (SPM), cholesteryl esters (CE) and free cholesterol differed consistently and systematically between either nonresistant and mitotane resistant cells or different treatment conditions (for p-values, please refer to table 11 and appendix 2). Heatmaps comprising all species of these lipids analyzed are shown in figure 21.

Figure 21 A-D: All species of cholesterol, lysophosphatidylcholine, ceramide and sphingomyelin analyzed by ESI-MS/MS. Cells were treated with increasing concentrations of mitotane in presence of different concentrations of serum for 72 h. The amount of the lipid species in nmol was measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and normalized to total protein quantity in mg (BCA assay). A) The amount of saturated, monounsaturated, polyunsaturated, total unsaturated and total cholesteryl ester (CE) as well as free cholesterol in three nonresistant control clones versus three mitotane resistant clones. B) The amount of saturated, monounsaturated, polyunsaturated, total unsaturated and total lysophosphatidylcholine (LPC) in three nonresistant control clones versus three mitotane resistant clones. C) The amount of saturated, unsaturated, total ceramides (CER) and hexylceramides (HexCer) in three nonresistant control clones versus three mitotane resistant clones. D) The amount of saturated, monounsaturated, polyunsaturated, total unsaturated, total and dihydro sphingomyelin (SPM) in three nonresistant control clones versus three mitotane resistant clones. For statistical analysis, all groups were tested for normality using Shapiro-Wilk test. Groups passing the normality test were compared using a oneway ANOVA. As post hoc test for multiple comparisons Bonferroni's multiple comparisons test was used, when different conditions were compared within "nonresistant" or "resistant", and Fisher's LSD test was used when "nonresistant" was compared to "resistant" within one condition. Groups failing the normality test were compared using a Kruskal-Wallis test. As post hoc test for multiple comparisons Dunn's test was used, when different conditions were compared within "nonresistant" or "resistant", and Dunn's uncorrected test was used when "nonresistant" was compared to "resistant" within one condition. For p-values, please refer to table 11 and appendix 2. *p<0.05; **p<0.01; ***p<0.001; **** p<0.0001.

Table 11: P-values (Kruskal-Wallis test and Dunn's uncorrected *post hoc* test or one-way ANOVA and Fisher's LSD test) for comparisons of intracellular lipids in absence and presence of different concentrations of mitotane and CCS (figure 20 and 21). For a complete list of p-values, please refer to appendix 2.

Lipid Species	CCS	Comparison	p-Value
free cholesterol	5%	0 μM vs. 50 μM mitotane (nonresistant)	0.00060
	5%	0 μ M vs. 50 μ M mitotane (resistant)	>0.99
	0%	0 μ M vs. 10 μ M mitotane (nonresistant)	>0.99
	0%	0 μ M vs. 10 μ M mitotane (resistant)	>0.99
cholesteryl ester	0%	resistant vs. nonresistant (0 µM mitotane)	0.11
	0%	resistant vs. nonresistant (10 μ M mitotane)	0.046
	5%	resistant vs. nonresistant (0 µM mitotane)	0.023
	5%	resistant vs. nonresistant (20 μ M mitotane)	0.012
	5%	resistant vs. nonresistant (50 μ M mitotane)	0.047
lysophosphatidylcholine	0%	resistant vs. nonresistant (0 µM mitotane)	0.81
	0%	resistant vs. nonresistant (10 µM mitotane)	0.62
	0%	0 μM vs. 10 μM mitotane (nonresistant)	>0.99
	0%	0 μM vs. 10 μM mitotane (resistant)	>0.99
	5%	resistant vs. nonresistant (0 µM mitotane)	0.013
	5%	resistant vs. nonresistant (20 µM mitotane)	0.018
	5%	resistant vs. nonresistant (50 µM mitotane)	<0.0001
	5%	0 μM vs. 50 μM mitotane (nonresistant)	0.0002
	5%	0 μM vs. 50 μM mitotane (resistant)	0.33
ceramide	0%	resistant vs. nonresistant (0 µM mitotane)	0.40
	0%	resistant vs. nonresistant (10 µM mitotane)	0.52
	0%	0 μM vs. 10 μM mitotane (nonresistant)	0.36
	0%	0 μM vs. 10 μM mitotane (resistant)	0.21
	5%	resistant vs. nonresistant (0 µM mitotane)	0.0077
	5%	resistant vs. nonresistant (20 µM mitotane)	0.0001
	5%	resistant vs. nonresistant (50 µM mitotane)	<0.0001
	5%	0 μM vs. 50 μM mitotane (nonresistant)	0.0001
	5%	0 μ M vs. 50 μ M mitotane (resistant)	>0.99
sphingomyelin	0%	resistant vs. nonresistant (0 µM mitotane)	0.0009
	0%	resistant vs. nonresistant (10 μ M mitotane)	<0.0001
	0%	0 μM vs. 10 μM mitotane (nonresistant)	0.34
	0%	0 μM vs. 10 μM mitotane (resistant)	>0.99
	5%	resistant vs. nonresistant (0 µM mitotane)	0.0006
	5%	resistant vs. nonresistant (20 µM mitotane)	<0.0001
	5%	resistant vs. nonresistant (50 µM mitotane)	<0.0001
	5%	0 μ M vs. 20 μ M mitotane (nonresistant)	>0.99
	5%	0 μM vs. 20 μM mitotane (resistant)	>0.99
	5%	0 μM vs. 50 μM mitotane (nonresistant)	0.033
	5%	0 μ M vs. 50 μ M mitotane (resistant)	>0.99

Treatment with 50 μ M mitotane in presence of 5% CCS caused a significant increase of free cholesterol in nonresistant cells but not mitotane resistant cells, while treatment

with 10 µM mitotane in presence of 0% CCS had no significant effect. Further, at all conditions except for 0% CCS and 0 µM mitotane, total CE were significantly increased in nonresistant cells compared to mitotane resistant cells. In presence of 5% CCS and 0, 20 and 50 µM mitotane, total LPCs were significantly increased in nonresistant control in comparison to mitotane resistant cells. Also, treatment with 50 µM mitotane in presence of 5% CCS caused a significant increase in total LPCs in nonresistant control cells, but not in mitotane resistant cells. In presence of 0% CCS, no significant changes in LPC levels were found. Total CER were significantly increased in nonresistant control in comparison to mitotane resistant clonal cell lines in presence of 5% CCS and 0, 20 and 50 μ M mitotane. Also, treatment with 50 μ M mitotane in presence of 5% CCS caused a significant increase in total CER in nonresistant control cells, but not in mitotane resistant cells. In presence of 0% CCS, no significant changes in total CER levels were found. Total SPMs were significantly increased in nonresistant control compared to mitotane resistant cells at all conditions. Further, treatment with 50 µM mitotane significantly increased sphingomyelins in nonresistant control, but not in mitotane resistant cells, while no significant effect was observed during treatment with 10 µM and 20 μ M in presence of 0% and 5% CCS, respectively.

8.3.3 Mitotane Measurement by GCMS

In order to clarify whether intracellular mitotane levels differed between mitotane resistant and nonresistant control cells, intracellular and medium mitotane concentration was determined in lysates and medium of three nonresistant control and three mitotane resistant clones (figure 22).

Figure 22: The concentration of mitotane in supernatant and lysates of nonresistant control and mitotane resistant clonal cell lines. Mitotane concentrations in mg/mL were determined by GCMS and normalized to protein concentration in mg/mL (BCA). Results are shown as mean+SD of three different clones. Intracellular and medium mitotane concentration was unchanged in mitotane resistant clonal cell lines. For statistics, the Mann-Whitney test was used. ns, p>0.05.

No significant change in intracellular (p=0.10) and medium mitotane (p=0.70) between nonresistant control and mitotane resistant cells was found. However, mitotane resistant cells showed a tendency towards reduction in intracellular mitotane content, suggesting that the number of repeated measurements (N=3) was too low in order to reach significance.

9 Discussion

9.1 Generation of a Mitotane Resistant Adrenocortical Carcinoma Cell Line

Mitotane Long-Term Treatment Induces Resistance in HAC-15 Cells 9.1.1 Resistance of neoplasms towards cytotoxic treatment has already been recognized in early trials using mustard gas (250). It may occur due to a plethora of mechanisms including decreased uptake, increased efflux, increased DNA repair, alterations in drug metabolism or cellular targets and inhibition of apoptosis (251). Relapse during cytotoxic treatment of ACC using mitotane poses a significant challenge in contemporary clinical management. Therefore, the present thesis aims at investigating mechanisms contributing to mitotane resistance in an *in vitro* model of mitotane resistant ACC. In order to obtain chemotherapy resistant cell lines, cells may be exposed to long-term treatment following either a pulsed or a continuous treatment protocol (218). During continuous treatment cells are continuously exposed to a small, slowly increasing drug dose. During pulsed treatment, cells are exposed to high drug concentrations (IC₅₀ or higher) thereby selecting for a small percentage of cells with comparably high tolerance towards the drug. Selected cells are subsequently allowed to recover in drug free medium and subjected to further selection cycles (218). A series of mouse xenograft experiments using two different clones of NCIH295, the progenitor cell line of H295R and HAC-15, reports tumors with remarkable differences in histology and response to mitotane-EDP (217), suggesting the selection-driven, pulsed treatment (218) as suitable approach in order to induce mitotane resistance in HAC-15 cells. The initial IC₅₀ of mitotane in HAC-15 cells was (47.4±15.0) µM, or (15.3±4.8) mg/L, corresponding to the recommended blood levels in human ACC patients (>14 mg/L) (166, 193). HAC-15 cells were subjected to long-term treatment with mitotane following a pulsed protocol using approximately 1.5 times the IC₅₀ (70 μ M or 22.4 mg/L). Hence, the drug dose used for long-term treatment of HAC-15 cells exceeded the therapeutic window of mitotane in human patients as mitotane blood levels >20 mg/L are associated with serious side effects (195).

During long-term treatment, the population of mitotane treated cells was initially diminished, likely due to the well-established cytotoxic effects of mitotane on ACC cells (171-173). Full recovery of the population after approximately 70 days and a slight yet not significant right-shift of the dose-response curve of mitotane in bulk cultures of longterm mitotane treated cells suggested that mitotane resistance had developed. After isolation of clonal cell lines, 2.6fold resistance in mitotane treated clonal cell lines was confirmed by MTT assay. Chemotherapy resistant cancer cell lines derived from patients of other tumor entities commonly show a 2-5fold resistance (218), indicating that mitotane resistance in this *in vitro* was within a clinically relevant range.

9.1.2 Mitotane Resistance is Different from Multidrug Resistance in Long-Term Treated HAC-15 Cells

Multidrug resistance in cancer is most prominently caused by ABC transporters P-glycoprotein, MRP1 and BCRP (encoded by MDR1, ABCC1 and ABCG2) (235). MDR1 is highly expressed in normal adrenal tissue and adrenal tumors (203, 204). By measuring doxorubicin sensitivity, increased activity of P-glycoprotein was excluded in the present *in vitro* model of mitotane resistant ACC. Interestingly, simultaneous treatment with mitotane increased doxorubicin sensitivity in mitotane resistant and nonresistant control cells, while doxorubicin sensitivity in mitotane resistant cells was significantly lower in comparison to nonresistant control cells. These observations are consistent with previous studies showing that mitotane increases intracellular accumulation of various cytotoxic compounds including doxorubicin in in vitro models of colon carcinoma (209) and the NCI-H295 ACC cell line (210), likely due to impairment of P-glycoprotein function (210). Of note, doxorubicin is also a substrate of MRP1 (252) and transfection of BCRP into the MCF-7 breast cancer cell line confers resistance to doxorubicin (253). Further, increased expression of MDR1, ABCC1 and ABCG2 in mitotane resistant clonal cell lines was excluded by subsequent gene expression microarray analysis. These observations suggested a mechanism of mitotane resistance different from common multidrug resistance in the present *in vitro* model.

9.1.3 Lipoproteins and Cholesterol Are Correlated with Mitotane Cytotoxicity, and Mitotane Resistance is Influenced by Medium HDL and LDL

Insights from a patient with ACC suggest that approximately 90% of serum mitotane is associated with lipoproteins including VLDL, LDL and HDL (167), while cytotoxic effects of mitotane appear to be mediated by lipoprotein free mitotane (167, 168). In accordance with these findings, IC₅₀ of mitotane was found to be positively correlated with the amount of HDL, LDL and cholesterol in the medium. Also, the overall amount of HDL and LDL (but not the HDL to LDL ratio) mitigated mitotane resistance from 3.6fold at 0.05 mg/mL HDL and LDL to 1.7fold resistance at 0.005 mg/mL HDL and

LDL. Interestingly, multiple studies report an increase of serum cholesterol, HDL and LDL in ACC patients during mitotane therapy (188-191). This implies a possible, direct link between *in vivo* side effects of mitotane treatment and *in vitro* mitotane resistance. Mitotane induced hyperlipidemia could cause increased association of active, lipoprotein free mitotane with lipoproteins, thereby decreasing antitumoral effects. Accordingly, administration of statins during mitotane therapy of metastatic ACC leads to a significantly higher number of patients with stable disease or partial response after 6 months (168).

9.2 Gene Expression Microarray Analysis

9.2.1 Unbiased and Biased Analysis of Gene Expression Microarray Data Reveal Profound Gene Expression Changes in Mitotane Resistant Cells

Apart from upregulation of ABC transporter gene expression (235), chemotherapy resistance may also be connected to alterations in pathways implicated in tumor suppression, cell growth and DNA repair (254). In order to investigate gene expression changes in the present *in vitro* model of mitotane resistant ACC, Affymetrix GeneChip PrimeView Human Gene Expression Array was performed in six mitotane resistant and six nonresistant control clonal cell lines treated with either mitotane or vehicle control (DMSO) for 18 h. In a first, biased approach only genes annotated for pathways related to "cholesterol" and "steroids" according to the Gene Ontology (GO) Consortium were included into microarray data analysis. As a second, unbiased approach all probes with the highest average expression within a probe set were included into the analysis and multiple cutoffs were introduced (5% false discovery rate, |log₂ fold change|> 0.5 and average expression> 5). Unbiased data analysis comparing mitotane and DMSO treated nonresistant control clonal cell lines revealed 60 differentially expressed genes, suggesting that cellular effects of mitotane treatment are, to some extent, conferred by changes in gene expression. Two studies using NCI-H295 cells report gene expression changes during mitotane treatment (173, 255). Sbiera et al. report a microarray study in NCI-H295 cells treated with 50 and 100 µM mitotane for 6 hours (173). While no list of significantly regulated genes is provided in their publication, they present Gene Ontology pathway analysis of the 30 most up- and downregulated genes. They report downregulation of pathways implicated in lipid metabolism and steroidogenesis. These

include enriched genes LDLR, stearoyl-CoA desaturase (SCD), sterol regulatory element binding transcription factor 1 (SREBF1), and ATP-binding cassette subfamily G member 1 (ABCG1). Further, they report upregulation of pathways implicated in apoptosis. These include enriched genes growth differentiation factor 15 (GDF15) and DNAdamage-inducible transcript 3 (DDIT3(CHOP)). In accordance with their findings, unbiased gene expression microarray data analysis presented in this thesis discovered downregulation of LDLR, SCD and SREBF1 and upregulation of DDIT3 and GDF15. Zsippai et al report a microarray study in NCI-H295 cells treated with mitotane for 48 and 72 hours (255). Combining gene expression data of 72 and 48 hours, they identify upregulated expression of GDF15, also discovered by Sbiera et al (173) and the unbiased microarray data analysis presented in this thesis. Interestingly, they also report downregulation of the expression of steroidogenic enzymes HSD3B2, CYP21A2 and CYP19A1 after 72 hours of mitotane exposure. Downregulation of the expression of steroidogenic enzymes is reported by an in vitro study using H295R and SW13 cells exposed to mitotane for 48 hours (172) but was not discovered during the gene expression microarray analysis of mitotane treated nonresistant cells presented in this thesis. Mitotane exposure in the present thesis was shorter than in both studies reporting (18 h vs. 48 and 72 h). Hence, gene expression of steroidogenic enzymes may change in response to cytotoxic effects of mitotane occurring as early as 6 hours after exposure (173). Unlike in nonresistant cells, mitotane exposure of resistant cells, according to the unbiased analysis, did not lead to changes in gene expression. This observation confirms mitotane resistance on gene expression level in the present in vitro model of mitotane resistant ACC.

Biased gene expression microarray data analysis comparing DMSO treated mitotane resistant and nonresistant control clonal cell lines led to the discovery of multiple, significantly regulated genes. Genes that were downregulated in resistant cells included *STAR, CYP11A1* and *CYP11B2*. Unbiased analysis confirmed significant downregulation of STAR and *CYP11A1*, and further discovered significant downregulation of *HSD3B2, CPY17A1, CYP19A1* and *CYP21A2* in mitotane resistant cells. Downregulation of key steroidogenic enzymes by long-term mitotane treatment is consistent with a previous *in vitro* study using H295R and SW13 cells (172), and may also explain the reduction of steroid hormone excess that is observed in mitotane treated ACC patients (146, 187). However, the present thesis solely focuses on HAC-15 cells. Hence, a possible influence of other organs on steroid hormone levels are neglected. The liver plays an important role in catabolism of adrenal steroid hormones (182) and changes in urinary steroid profiles may also be caused by hepatic action of mitotane. Mitotane treatment may lead to changes in hepatic parameters including increases in serum levels of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and gamma glutamyl transferase activity (146) and may induce hepatic CYP3A4 (183, 184), but data on hepatic action of mitotane is rare. Expression of CYP11B2 in H295R cells is regulated by binding of angiotensin II the angiotensin II receptor 1 (AGTR1) via induction of transcription factors NGFIB and NURR1 (256). Significant downregulation of AGTR1 was discovered during biased and unbiased analysis of gene expression microarray data. Unbiased analysis also discovered significant downregulation of NR4A1, encoding for NGFIB. Downregulation of AGTR1 was profound, while downregulation of NR4A1 was less pronounced (log2fold change of -4.2 and -1.5, respectively). Loss of steroidogenic potential may further be explained by downregulation of NR5A1, encoding for steroidogenic factor-1 (SF-1), discovered during the unbiased gene expression array data analysis. Steroidogenic factor-1 is a transcription factor of key importance for the adrenal glands' endocrine function (93), and silencing endogenous NR5A1 expression in H295R cells leads to repression of major steroidogenic enzymes including CYP11B1, CYP11B2, CYP11A1, HSD3B2, CYP21, CYP17, and StAR (257). During biased analysis, expression of VLDLR was discovered to be significantly downregulated in mitotane resistant clonal cell lines. Expression of VLDLR on RNA level is predominantly found in human heart, skeletal muscle, ovaries and kidney (258), but on protein level, abundant amounts of VLDLR are present in the adrenal glands (259, 260). Interestingly, there is evidence, that VLDL increases aldosterone production in the bovine zona glomerulosa and H295R cells by a short-term increase in STAR and CYP11B2 expression (261), while the role of VLDLR in adrenal cholesterol homeostasis remains largely unknown. Thus, downregulation of VLDLR may, to a small extend, explain loss of steroidogenic potential in long-term mitotane treated HAC-15 cells.

Biased analysis furthermore revealed expression of *LDLR*, *SCARB1* and *ABCA1* to be significantly downregulated in mitotane resistant clonal cell lines. Unbiased analysis confirmed significant downregulation of *LDLR* and *SCARB1*. The role of both, *LDLR* and *SCARB1* in adrenal cholesterol uptake is well established (7). Originally, *ABCA1* is believed to exert a key role on cholesterol efflux and HDL biogenesis under the control of Liver X Receptor (262). However, one study reports the adrenal glands of

ABCA1-KO mice to be depleted of lipids and free cholesterol, suggesting that the role of ABCA1 in adrenal cholesterol balance is far more complex (263). There is evidence that cytotoxic effects of mitotane are mediated by intracellular accumulation of toxic lipids leading to endoplasmic reticulum stress and apoptosis (173). Taken together with previous data concerning the influence of medium lipoprotein content on mitotane resistance in this in vitro model of mitotane resistant ACC, downregulation of the expression of genes implicated in lipoprotein uptake poses a possible mechanism of mitotane resistance. Impaired cholesterol uptake may have led to increased lipoprotein concentration in the medium which, in turn, was positively correlated with the IC₅₀ of mitotane. Also, decreased lipoprotein uptake may have led to cholesterol depletion in mitotane resistant cells which may have counteracted cytotoxic effects of mitotane. Consistently, a study in SR-BI KO mice reports adrenal cholesterol depletion and increased plasma HDL (264). There is evidence that the commonly observed increase of serum cholesterol, HDL and LDL in ACC patients during mitotane therapy (188-191) occurs due to increased hepatic cholesterol synthesis (265). However, impaired adrenal cholesterol uptake may, to very a small extent, contribute to these serum cholesterol changes. Additionally, gene expression of SOAT1, encoding for sterol O-acyltransferase, was found to be significantly downregulated in mitotane resistant clonal cell lines during both, biased and unbiased gene expression array analysis. Sterol Oacyltransferase regulates levels of free intracellular cholesterol by esterification (11). Inhibition of SOAT1 by mitotane leads to accumulation of toxic lipids including cholesterol, endoplasmic reticulum stress as well as apoptosis, and SOAT1 expression is a prerequisite for mitotane efficacy (173). However, SOAT1 expression was not completely silenced (fold change= -2.0), challenging a possible role of SOAT1 expression in mitotane resistance in the present in vitro model.

9.2.2 Pathways involved in Wnt Signaling, Lipid Transport and Lipoprotein Clearance Are Changed in Mitotane Resistant Cells

Gene Ontology enrichment analysis of differentially expressed genes between mitotane and DMSO treated nonresistant control clonal cell lines discovered upregulation of pathways connected to apoptosis and endoplasmic reticulum stress response and regulation as well as downregulation of pathways connected to metabolism and transport of lipids, confirming the previous results of Sbiera et al. in NCI-H295 cells (173). Gene Ontology enrichment analysis of differentially expressed genes between

DMSO treated mitotane resistant and nonresistant control clonal cell lines revealed upregulation of pathways connected to Wnt signaling, cell growth, developmental growth and development of multiple organs and downregulation of pathways connected to metabolism and transport of steroid hormones and lipids (including cholesterol). Also, downregulated genes were significantly enriched in molecular functions connected to extracellular lipoprotein binding and clearance. Findings of the GO enrichment analysis regarding downregulation of steroid hormone transport and metabolism were consistent with the antisteroidogenic effects of mitotane observed in vitro (172) and in vivo (146, 187). Discovery of biological processes and molecular functions implicated in cholesterol transport as well as binding and clearance of lipoproteins further supported a possible role of medium lipoproteins in the present in *vitro* model of mitotane resistance. The Wnt signaling pathway exerts a fundamental role on human organ homeostasis and aberrant Wnt signaling is also linked to cancer (266). In the adrenal gland, Wnt signaling exerts an important role on stem and progenitor cells by maintaining an undifferentiated state through induction of DAX1 and INHA (267). Multiple genetic analyses of ACC report mutations in CTNNB1, encoding for β -catenin, (124, 127, 128), a major constituent of the Wnt signaling pathway also mutated in a variety of other cancers (268). Of note, H295R, the progenitor cell line of HAC-15, harbors an activating S45P mutation in CTNNB1 (269, 270). In a review article published in Nature in 2001, Reya et al. propose the existence of a side population of cells in solid tumors, also called cancer stem cells (CSCs), that possess stem cell like properties of extensive proliferation and tumor formation upon transplantation (271). Corresponding to its role in healthy organs, Wnt signaling also may play a role in survival of CSCs (272). Moreover, in vitro studies link increased Wnt signaling activity to a multidrug resistant phenotype in neuroblastoma (273) as well as in side populations of colon cancer (274), and head and neck squamous cell carcinoma (275). Cancer stem cells are characterized by rapid growth (276-278). However, growth curves of long-term treated HAC-15 cells drastically flattened at the beginning of the treatment and the population did not start to recover for approximately 30 days. Further, the pace of the growth curves of mitotane treated cells was comparable to vehicle control treated cells after approximately 70 days of treatment. Starting with the assumption, that HAC-15 cells contained a significant, treatment resistant side population with rapid growth properties at the beginning of long-term treatment, one would expect this population to expand early during mitotane treatment. Given the

rapid growth of CSCs, the pace of population growth of long-term mitotane treated cells should have been comparable to vehicle control treated cells earlier than at day 70. Hence, the mitotane resistant clonal cell lines established in this thesis were unlikely derived from HAC-15 cells via expansion of a treatment resistant subpopulation.

9.3 Whole Exome Sequencing

9.3.1 Mitotane Resistant Clonal Cell Lines Show High Genetic Similarity

In 2011, Hanahan and Weinberg published an updated version of their previous review on the hallmarks of cancer (279), providing evidence-based fundamentals of human neoplasm development (120). According to this work, cancer progression can be seen as a series of clonal expansions driven by a selective advantage for a subset of cells. Genomic instability leading to changes in DNA integrity including copy number variations (CNVs) contributes to genomic variability. Genomic variability may lead to an advantageous phenotype and hence is considered a hallmark of cancer development. In order to investigate DNA level changes connected to mitotane resistance, whole exome sequencing was performed in six mitotane resistant clones, one nonresistant control clone and HAC-15 cells at passage 3 using the Illumina platform. Copy number variation profiling is a versatile tool that may be used to investigate stepwise progression (280), evolutionary dynamics (281) and clonal origin (282) of a tumor. Mitotane resistant clones showed a high similarity in their copy number profiles, while stem-cell like populations in glioblastoma are genetically diverse (283). Hence, high genetic similarity among mitotane resistant clonal cell lines further refuted the hypothesis, that mitotane resistant cell lines were derived via expansion of a treatment resistant side population. Moreover, genetic similarity between mitotane resistant clones suggested that selection driven, pulsed treatment (218) had led to expansion of a single, mitotane resistant cell or a subset of resistant cells of high genetic similarity. This cell, prior to expansion, may have acquired an advantageous, mitotane resistant phenotype through a genetic event. This genetic event may have been one (or multiple) nonsynonymous somatic mutation(s). Interestingly, mitotane resistant clonal cell lines showed very high number of somatic mutations in comparison to the nonresistant control clonal cell line and a higher mutational burden has also been reported in relapsed ovarian cancer (284).

9.4 Functional Analyses

Profound gene expression changes between nonresistant and mitotane resistant clonal cell lines were discovered during gene expression microarrays presented in this thesis. Further, subsequent GO enrichment analysis revealed a multitude of pathways with a possible role in mitotane resistance in the present in vitro model of mitotane resistant ACC. In accordance with these findings, chemotherapy resistance is connected to profound gene expression changes in both, other tumor entities (241, 242) and multiple cancer cell lines (243). These insights suggest, that chemotherapy resistance may be caused by a plethora of changes in gene expression and resultant cellular functions. In order to further unravel the cellular mechanisms contributing to mitotane resistance, functional analyses were performed including cell culture validation of driver pathway candidates, measurement of intracellular lipids and intracellular mitotane concentration.

9.4.1 Mitotane Resistance is Likely not Caused by a Single Driver Pathway *SCARB1* (Scavenger Receptor B1)

Based on the insights from both, cell culture experiments and subsequent genetic analysis, a role of possible driver genes and pathways was further validated cell culture studies.

Gene expression of *SCARB1* encoding SR-BI, which plays a key role in adrenal cholesterol uptake (7), was found to be strongly and significantly downregulated in mitotane resistant cells. Further, the IC₅₀ of mitotane was shown to be positively correlated with the concentration of HDL, LDL and cholesterol in the medium. In order to investigate a possible role of SR-BI impairment in this context, cell viability of HAC-15 cells was measured in presence of mitotane and SR-BI inhibitor BLT-1 (285). Simultaneous treatment with mitotane and BLT-1 did improve cell viability of HAC-15 cells. In absence and presence of mitotane, BLT-1 showed a tendency to reduce HAC-15 cell viability and experiments were discontinued after two measurements. These observations are consistent with a similar experiment in H295R cells (168). Gene expression microarray data analyses presented in this thesis also discovered downregulation of two other major cholesterol transporters, *LDLR* and *ABCA1*. Among all three transporters, downregulation of *SCARB1* gene expression was most pronounced. However, BLT-1 does not affect *ABCA1* mediated cholesterol traffic (286) and effects on *LDLR* dependent cholesterol transport a not known. Hence, a role of cholesterol transport in the present *in vitro* model of mitotane resistant ACC cannot be excluded on basis of experiments using BLT-1. A possible, mitotane independent cytotoxic effect of SR-BI inhibition might have occurred due to the fact that the human adrenal covers 80% of its cholesterol needs by uptake of plasma cholesterol (8) and thus inhibition of a major cholesterol transporter may have induced senescence. However, a study reports the adrenal glands of *SCARB1* KO mice in comparison to wild type mice to be smaller and cholesterol depleted yet otherwise normal (264).

AGTR1 (Angiotensin II Receptor Type 1)

Another gene discovered to be significantly and strongly downregulated during unbiased and biased gene expression array analysis was *AGTR1*, encoding for angiotensin II receptor type 1. In the adrenal gland, *AGTR1* is predominantly expressed in the zona glomerulosa and plays an important role in aldosterone production (242) but may also be linked to cancer. In invasive ovarian adenocarcinoma, *AGTR1* expression is connected to tumor invasion, angiogenesis, and peritoneal dissemination (287). In order to investigate a possible role of *AGTR1* in mitotane resistance in HAC-15 cells, cell viability of HAC-15 cells was measured in presence of mitotane and *AGTR1* inhibitor losartan. Simultaneous treatment with losartan did not affect mitotane cytotoxicity.

DDIT4L (REDD2) and mTOR Pathway

Another pathway investigated that is also linked to cancer (244) was mTOR signaling. While not discovered during GO enrichment analysis, mTOR inhibitor *DDIT4L* (243), encoding for REDD2, was found to be strongly and significantly downregulated during unbiased gene expression microarray analysis. There is evidence that mTOR signaling may be activated in aldosterone producing adenoma and that inhibition of mTOR signaling using rapamycin in H295R cells decreases aldosterone production and proliferation (245). Simultaneous treatment with mTOR inhibitor rapamycin did not cause significant changes in the IC₅₀ of mitotane resistant and nonresistant control clonal cell lines. However, this does not completely exclude a role of mTOR signaling in mitotane resistance in the present *in vitro* model. MTOR signaling is conveyed by two functionally distinct complexes, mTORC1, which drives anabolic cell growth through increases in nucleotide, lipid and protein synthesis as well as glycolysis and mTORC2, which is connected to cytoskeleton organization and cell survival (288). In cardiomycytes,
DDTI4L inhibits mTORC1 and activates mTORC2 (289) while the exact role of *DDIT4L* on mTOR signaling in the adrenal gland remains unknown. Acute exposure with rapamycin inhibits mTORC1, while chronic exposure may also inhibit mTORC2 (288). Thus, only effects of mTORC1 on mitotane cytotoxicity were investigated in the present thesis, while there is evidence for oncogenic activity of mTORC2 in hepatocellular carcinoma (290).

Wnt Signaling Pathway

Finally, a possible role for Wnt signaling as driver pathway of mitotane resistance in the present *in vitro* model was assessed. Pathways implicated in Wnt signaling were discovered during GO enrichment analysis of upregulated genes among mitotane resistant and nonresistant control clonal cell lines. Increased Wnt activity was confirmed by *AXIN2* rt-PCR as previously described (223). Due to its fundamental role in adrenal development (267) and well-established role in cancer (139), the effect of Wnt inhibition using XAV939 (291) on the IC₅₀ of mitotane in mitotane resistant clonal cell lines was assessed. Simultaneous treatment with XAV939 did not change the IC₅₀ of mitotane in mitotane resistant cells. Using XAV939 in H295R cells at the same concentration used in the present thesis reportedly decreases cell viability by 30% (249).

9.4.2 Mitotane Resistance is Accompanied by Profound Changes in Intracellular Lipids

Studies suggest a pivotal role of lipids including cholesterol in the mitotane mode of action. It is assumed that sterol-o-acyltransferase 1 inhibition leading to accumulation of intracellular free cholesterol is a major mechanism of mitotane mediated cell death (173). Further, one study provides evidence that mitotane may also directly interact with phosphatidyl ethanolamine rich lipid bilayer membranes due to its lipophilic nature, thereby disturbing membrane bilayer structure (292). The authors argue, that mitochondria associated endoplasmic reticulum membranes are phosphatidyl ethanolamine rich (293) and that mitotane, by associating with these membranes, may cause impairment of sterol-o-acyltransferase 1 activity as well as mitochondrial cholesterol uptake. Also, evidence for mitotane induced dysfunction of mitochondria associated endoplasmic reticulum membranes in H295R cells is provided by another study (294). If provable, these assumptions may pose an explanation for mitotane mediated cyto-

9 Discussion

toxicity as well as impairment of adrenal steroid hormone production. Moreover, evidence for a possible role of medium lipoprotein content and lipid transport and metabolism in mitotane resistance was provided by gene expression microarray studies and in vitro experiments presented in this thesis. In order to further clarify a possible role of cholesterol and other lipids in mitotane resistance in the present in vitro model, the amount of various lipid species was determined using ESI-MS/MS in lysates of three nonresistant control and three mitotane resistant clones cultured in presence of different concentrations of mitotane and different amounts of CCS in the medium. In line with Sbiera et al. (173), treatment with 50 µM mitotane in presence of 5% CCS significantly increased intracellular free cholesterol in nonresistant control cells. Interestingly, mitotane treatment did not affect free cholesterol levels in mitotane resistant cells. Intracellular accumulation of free cholesterol in response to sterol-o-acyltransferase 1 inhibition is a major mediator of the cytotoxic effects of mitotane in NCI-H295 cells (173). The absence of intracellular cholesterol accumulation in response to mitotane treatment in resistant cells therefore poses a possible explanation for reduced cytotoxicity of mitotane observed during MTT assays and the absence of differentially expressed genes in mitotane treated mitotane resistant clonal cell lines. Further, it suggests that mitotane mediated SOAT1 inhibition may be impaired in mitotane resistant cells. In presence of 5% CCS, intracellular CE were significantly reduced in mitotane resistant cells by approximately 30fold. Depletion of intracellular cholesterol storage is consistent with the downregulation of the expression of SOAT1, a major regulator of intracellular cholesterol storage (11), and cholesterol transporters LDLR, ABCA1 and SCARB1 discovered during gene expression microarray study. Interestingly, mitotane treatment did not cause significant changes in CE content of mitotane resistant and nonresistant cells. This finding suggests not intracellular CE stores but rather cholesterol uptake from lipoproteins and *de novo* synthesis to be the primary source of free cholesterol in the context of mitotane mediated cytotoxicity.

Treatment with 10 μ M mitotane in presence of 0% CCS did not lead to significant changes of free cholesterol in nonresistant and mitotane resistant cells, while *in vitro* experiments presented in this thesis have demonstrated cytotoxic effects of mitotane in presence of low concentrations of lipoproteins. Starting with the assumption that in patient's serum approximately 10% of mitotane is lipoprotein free (active) (167), treatment with 50 μ M mitotane, corresponding to 16.0 mg/mL and thereby within therapeutic blood levels in human ACC patients (>14 mg/L) (166, 193), used in this series may

have led to exposure with 5 μ M active mitotane. Exposure to 10 μ M lipoprotein free mitotane may consequently have led to massive apoptosis. Since upregulation of apoptotic pathways is already present 6 hours after mitotane exposure (173), incubation for 72 hours as used in the present thesis may have been too long in order to observe changes in free cholesterol related to mitotane mode of action. Also, absence of changes in free cholesterol in nonresistant control cells may be explained by a another, cholesterol independent mechanism of intracellular mitotane cytotoxicity. This may include loss of lipid bilayer membrane integrity due to hydrophobic interaction (292). A cholesterol independent mode of mitotane action may also explain the mitigation of mitotane resistance in media with reduced lipoprotein content observed in *in vitro* experiments present in this thesis.

Further, intracellular LPCs were significantly increased in nonresistant control cells in presence of 5% CCS and 0, 20 and 50 μ M mitotane, and treatment with 50 μ M mitotane caused a significant increase in LPCs in nonresistant, but not mitotane resistant cells. In presence of 0% CCS, no significant differences in intracellular LPCs were observed.

Lysophosphatidylcholines are produced during oxidation of LDL by phospholipase A2 (295) and exert cytotoxic effects on human endothelial cells (296). In a mouse model of cholesterol driven nonalcoholic fatty liver disease, hepatic LPC production is increased (297), and LPC is connected to lipoapoptosis in human hepatocytes (298). Interestingly, expression of *PLA2G12A*, encoding for phospholipase 2 group 12 subfamily A, was found to be downregulated in mitotane resistant cells. Gene Ontology enrichment analysis discovered *PLA2G12A* to be significantly enriched in pathways connected to lipid metabolism and transport. However, its function in the adrenal gland remains largely obscure.

Also, intracellular CERs were significantly increased in nonresistant control cells in presence of 5% CCS and 0, 20 and 50 μ M mitotane, and treatment with 50 μ M mitotane caused a significant increase in CERs in nonresistant, but not mitotane resistant cells. In presence of 0% CCS, no significant differences in intracellular CERs were observed.

The role of CER production in apoptosis is well established and includes stimulation by TNF α receptor and BAX dependent activation of the caspase cascade (299-301).

75

Intracellular SPMs were significantly higher in nonresistant cells at all conditions tested, and treatment with 50 µM mitotane in presence of 5% CCS significantly increased intracellular SPMs by approximately 1.5fold in nonresistant cells, but not in mitotane resistant cells. Interestingly, treatment with 10 µM mitotane (0% CCS) and 20 µM mitotane (5% CCS) also showed a tendency to increase SPM, while in mitotane resistant cells SPM remained at baseline value. However, no significant effects were found, probably due to low sample size (N=3). In absence of CCS and mitotane no significant differences in intracellular SPMs were observed. In macrophages, SOAT1 activity is regulated by uptake of LDL (302). Interestingly, the threshold at which SOAT1 is activated seems to increase with intracellular SPM content (303). Hence, increases in SPMs during mitotane treatment in nonresistant cells may increase SOAT1 threshold, thereby inhibiting SOAT1 activity. On the other hand, sustaining low levels of SPM during mitotane treatment in mitotane resistant cells may lead to persistent SOAT1 activity and prevent excessive accumulation of free cholesterol. However, the role of SPMs in regulation of the SOAT1 activation threshold in HAC-15 cells and the adrenal gland is still not known.

9.4.3 Intracellular Mitotane Concentration is not Changed in Mitotane Resistant Cells To investigate whether mitotane resistant cells showed decreased intracellular drug levels, mitotane concentration in supernatant and lysates of three nonresistant control and mitotane resistant clones was determined. No significant difference in intracellular and medium mitotane was found. However, resistant cells showed a tendency towards reduced intracellular mitotane levels. Intestinal absorption of mitotane might involve chylomicron binding (167). The exact molecular mechanism of cellular mitotane uptake is still unknown. It can be speculated that cellular uptake, due to the lipophilic character of mitotane, may be mediated by uptake of mitotane-rich LDL and HDL particles. However, mitotane uptake in H295R cells is increased in lipoprotein free medium (168), and lipoprotein free mitotane seems to mediate the cytotoxic effects of mitotane (167, 168). In one study, Hescot et al. quantify mitotane and its inactive metabolites o,p'DDA and o,p'DDE in samples of human ACC and a normal human adrenal gland collected after surgery of a mitotane-treated ectopic Cushing patient (165). They show that mitotane content in the normal adrenal gland is approximately tenfold higher than average mitotane content of ACC samples. The authors conclude from these insights that mitotane uptake may involve active transport, which may be impaired in ACC. Further studies on the mechanism of mitotane uptake are needed in order to prove this assumption.

10 Limitations of the Study

The current thesis describes a genetic and *in vitro* study on mitotane resistance in ACC using mitotane resistant HAC-15 cells as an *in vitro* model. This study has certain limitations and hence any conclusions should be drawn with caution.

In order to investigate the underlying mechanisms of mitotane resistance, mitotane resistant clonal cell lines were generated using the HAC-15 cell line. While the IC₅₀ of mitotane in HAC-15 cells and the extent of resistance in generated cell lines were within clinically relevant range, it is known that multidrug resistant cell lines of several other tumor entities do not sufficiently reflect gene expression profiles observed in human patients (304). Also, conventional two-dimensional cell culture used in the present thesis does not reflect the three-dimensional architecture of a tumor and thus may influence cell shape, growth, motility, differentiation and even gene expression in comparison to three-dimensional in vitro models (305). Further, two-dimensional cell culture does not mimic the tumor microenvironment, which has also been implicated in chemotherapy resistance (306). A possible role of the tumor microenvironment in mitotane resistance may be assessed using a mouse xenograft model (307). Finally, no studies in human ACC patients were conducted in the present thesis. Studies on gene expression profile, lipoprotein homeostasis and intracellular lipid composition in human patients with recurring ACC may further substantiate findings concerning mitotane resistance in ACC. Also, the cell culture model used in the present thesis does not adequately reproduce the complexity of the human organism. During long-term treatment, HAC-15 cells were treated with mitotane for 72-96 hours, while mitotane has a half-life of up to 160 hours in human plasma (164). Also, mitotane is metabolized to its inactive metabolites o,p'DDA and o,p'DDE in the liver and excreted through urine and bile (164). Increased excretion and metabolic inactivation may be involved in failure of mitotane treatment in human ACC but were completely neglected by the cell culture studies conducted in the present thesis.

11 Clinical Relevance

Adrenocortical carcinoma is an aggressive malignancy with a dismal prognosis (60-63, 72, 197). Treatment with mitotane, the only drug approved for ACC treatment, fails to increase overall patient survival (74, 148, 149, 154). Furthermore, the low incidence of ACC (57-60) and poor prognosis drastically limit cohort size and complicate clinical studies on this disease. Despite the limitations discussed above, HAC-15 cells secrete the full spectrum of adrenocortical hormones (216) and thus pose an easily accessible model to investigate therapy resistance in adrenocortical carcinoma on a cellular and molecular level. Mitotane resistance generated in the current thesis was found to be within clinically relevant range for other tumor entities (218). Insights on changes in gene expression and intracellular lipid content during mitotane treatment of nonresistant cells confirmed and expanded the findings of Sbiera et al. (173). Findings regarding a possible role of lipoproteins in mediating mitotane resistance may help to explain the positive influence on simultaneous statin treatment on outcome of mitotane treated patients previously reported (168). Building on these findings, a clinical study comparing mitotane monotherapy and combination therapy using statins and mitotane may further clarify a role of serum lipoproteins in mitotane therapy outcome and hence could pave the way for improved disease management.

12 Summary, Conclusions and Outlook

The current thesis presents a genetic analysis as well as functional studies in an *in vitro* model of mitotane resistant ACC. Mitotane resistant clonal cell lines were generated using the HAC-15 ACC cell line. In order to investigate changes in gene expression and DNA integrity in mitotane resistant and nonresistant control cells, whole exome sequencing and a gene expression microarray study were performed. In subsequent functional studies, possible driver genes and pathways as well as changes in cellular lipid and mitotane content were assessed in mitotane resistant and nonresistant clonal cell lines.

12.1 Does mitotane treatment induce resistance in vitro?

In the current thesis, mitotane resistance in HAC-15 cells was induced using a selection driven, pulsed treatment approach followed by clonal selection. Mitotane resistance was found to be in clinically relevant range and different from common multidrug resistance. Further, evidence was provided that the IC₅₀ of mitotane is positively correlated with the concentration of HDL, LDL and cholesterol in the cell culture medium. Furthermore, mitotane resistance was mitigated in presence of low concentrations of HDL and LDL, while the HDL to LDL ratio did not influence mitotane resistance. These findings suggest that mitotane resistance in the present *in vitro* model of mitotane resistant ACC is dependent on cholesterol and lipoprotein medium content. In order to investigate a possible involvement of serum lipoproteins in mitotane therapy relapse in human patients, further studies on human patients are needed. Interestingly, a mitotane-EDP resistant cell line has recently been established (217), suggesting that, unlike in the present *in vitro* model, mitotane resistant may also be accompanied by common multidrug resistance. Comparison of these two in vitro models may corroborate the findings provided in the present thesis and could shed further light on the genetic and molecular mechanisms contributing to mitotane resistance.

12.2 Is mitotane resistance accompanied by genetic changes either concerning the transcription level or integrity of the DNA sequence?

The gene expression microarray study confirmed mitotane resistance on gene expression level. Gene expression data analysis revealed no differentially expressed genes in mitotane treated versus vehicle control treated mitotane resistant clonal cell lines. Gene ontology enrichment analysis of differentially expressed genes between mitotane and vehicle control treated nonresistant cells revealed upregulation of endoplasmic reticulum stress response, proapoptotic pathways as well as downregulation of pathways implicated in cholesterol and sterol homeostasis, localization, transport and metabolism.

Further, the gene expression microarray study revealed profound changes in gene expression in mitotane resistant clonal cell lines. During principle component analysis, mitotane resistant and nonresistant control clonal cell lines clustered in two distinct clusters. Gene ontology enrichment analysis of differentially expressed genes between mitotane resistant and nonresistant clonal cell lines revealed upregulation of pathways implicated in Wnt signaling, cell growth and development and downregulation of pathways implicated in biosynthesis and metabolism of adrenal steroid hormones as well as lipoprotein binding and clearance. Biased data analysis, focusing on genes annotated for "cholesterol" and "steroid", also discovered downregulation of the expression of intracellular mitotane target *SOAT1* as well as cholesterol transporters *SCARB1, LDLR* and *ABCA1*. Whole exome sequencing revealed highly similar CNV profiles between all mitotane resistant clonal cell lines.

Taken together, the genetic analyses provide evidence that mitotane resistance in the present *in vitro* model may occur due to a clonal expansion of a single, or several genetically very similar, progenitor cell(s), driven by selective pressure of mitotane treatment. Clonal expansion may occur due to a genetic event during long-term treatment of HAC-15 cells leading to an advantageous, mitotane resistant phenotype. The mitotane resistant phenotype of resistant clonal cell lines could be substantiated further by a series of mouse xenograft experiments. The gene expression in the current *in vitro* model is unaffected by mitotane treatment. Furthermore, gene expression analysis, consistent with *in vitro* experiments, suggests an involvement of lipoprotein transport in mitotane resistant cell line established by Hantel et al. (217) as well as human patients may further clarify a role of lipoproteins in mitotane resistance.

12.3 Can molecular mechanisms of mitotane resistance be inferred from these genetic changes?

In order to identify possible driver genes and pathways implicated in mitotane resistance, functional studies on several selected genes or pathways were performed in HAC-15 cells. Inhibition of SR-BI, angiotensin II receptor type I, mTOR signaling and Wnt signaling did not affect mitotane cytotoxicity. These findings suggest that a mitotane resistant phenotype is driven by a plethora of genetic changes rather than a single driver pathway in the current *in vitro* model of mitotane resistant ACC. However, a revised study of possible driver genes comprising adjusted concentrations and incubation times, different inhibitors and combinations of several inhibitors may still lead to discovery of driver pathways in the present *in vitro* model.

Building on the possible role of cholesterol transport in mitotane resistance and genetic changes in lipid metabolism and transport observed in gene expression microarrays of mitotane resistant clonal cell lines, intracellular lipid content was investigated. Nonresistant cells upon treatment with 50 μ M mitotane in presence of 5% CCS showed increases in free cholesterol, SPM as well as apoptotic lipids LPC and CER, while all four lipid species remained unchanged in mitotane resistant cells. Furthermore, CE were strongly and significantly reduced in mitotane resistant cells.

Taken together, absence of increase in free cholesterol, LPC and CER further supports a role of lipid and cholesterol metabolism and transport in mitotane resistance in the current in vitro model. Absence of increases in intracellular free cholesterol upon mitotane treatment suggests impaired SOAT1 inhibition by mitotane. As discussed above, increased SPM content could help to explain mitotane resistance. In analogy to macrophages, increased cellular SPM content at both, basal conditions and during mitotane treatment could increase sterol-o-acyltransferase activation threshold in nonresistant cells. At baseline, free cholesterol content did not differ among resistant and nonresistant cells. However, mitotane resistant cells were depleted in CE, probably due to downregulation of SOAT1, ABCA1, SCARB1 and LDLR gene expression. Mitotane dependent increase in SPM might then elevate sterol-O-acyltransferase threshold in nonresistant cells, while the threshold remains unchanged in resistant cells. Consequently, mitotane resistant cells maintain normal yet decreased intracellular lipid metabolism while impaired cholesterol esterification in nonresistant cells may lead to accumulation of intracellular free cholesterol, endoplasmic reticulum stress and apoptosis. However, SPM dependent regulation of sterol-o-acyltransferase activity has only been shown in macrophages, and the exact lipid composition in ACC cells as well as normal adrenal glands has not yet been investigated. Further studies on these subjects are needed in order to prove or falsify this hypothesis. Alternatively, downregulation of ABCA1, SCARB1 and LDLR gene expression may have led to increased medium concentrations of HDL and LDL. Medium content of HDL, LDL and cholesterol was found to be positively correlated with the IC₅₀ of mitotane. In order to further prove this hypothesis, levels of HDL and LDL should be quantified in supernatants of mitotane resistant cells. Also studies with radioactively labeled cholesterol may further prove impaired lipoprotein uptake in mitotane resistant cells. Interestingly, increased levels of serum cholesterol, HDL and LDL during mitotane therapy are commonly observed in human ACC patients (188-191) and may occur due to increased hepatic cholesterol synthesis (265). In presence of 0% CCS, intracellular LPC, CER and free cholesterol remained unchanged. As discussed above, this could be due to stronger mitotane effects in lipoprotein depleted medium. Alternatively, this may also suggest a second, cholesterol independent mode of mitotane action. An alternative mode of action may also help to explain mitigation of mitotane resistance observed in media with reduced HDL and LDL content.

Finally, intracellular content of mitotane in nonresistant and mitotane resistant cells was assessed. No difference in intracellular mitotane concentration was found, probably due to low sample size. Sample size should be increased in order increase statistical power. The exact mechanism of cellular mitotane uptake and release is not known. In order to further clarify a possible role of impaired mitotane uptake and release in the present *in vitro* model, further studies investigating the kinetics of mitotane uptake in resistant cells are needed.

12.4 Are the molecular mechanisms of mitotane resistance consistent with observations in both, ACC patients and *in vitro* models?

The current thesis has helped to confirm previous studies on mitotane action and expand the knowledge on the mechanisms underlying mitotane resistance. Results are summarized in figure 23.

During long-term treatment, mitotane treated cells fully recovered after approximately 70 days (2.3 months) while median progression free survival during mitotane monotherapy is 4.1 months (157). Unlike MUC-1 cells, the other mitotane resistant cell line available (217), the present *in vitro* model lacked signs of common multidrug resistance. Doxorubicin sensitizing effects of both, short- and long-term mitotane treatment observed is consistent with a previous report using NCI-H295 cells (210). The influence of medium lipoproteins on mitotane cytotoxicity confirmed previous studies (167, 168). However, cholesterol dependency of mitotane resistance has not been reported so far and may help to explain improved disease management in patients treated with statins and mitotane (168). Finally, gene expression microarray analysis and measurement of intracellular lipids of mitotane treated nonresistant cells confirmed and expanded insights from a previous study (173).

Figure 23 A-C: Summary of findings from the present thesis and the literature concerning mitotane mode of action and mitotane resistance. A) Generation of mitotane resistant clonal cell lines. Mitotane long-term treatment drastically reduces cell growth in mitotane sensitive HAC-15 cells (blue). By a certain event, e.g., a genetic mutation, a single cell may acquire an advantageous, mitotane resistant phenotype and may expand during long-term mitotane treatment. Clonal cell lines can subsequently be isolated through clonal selection. B) Mitotane mode of action in nonresistant HAC-15 cells. In nonresistant cells, multiple transcription factors (TF) including SF-1, NURR1 and NGFIB control expression of numerous genes including steroidogenic enzymes, cholesterol transporters including SCARB1, ABCA1, LDLR and SOAT1 (256, 257). Cholesterol and cholesteryl esters (CE) are taken up by transporters including SCARB1, ABCA1 and LDLR. Free cholesterol is esterified by SOAT1, stored in lipid bodies and may be released from CE storage by hormone-sensitive lipase (HSL). Steroidogenic enzymes produce cortisol (Cort), aldosterone (Aldo) and adrenal androgens (Andr). The intracellular concentration of ceramides (CER), lysophosphatidylcholine (LPC) and sphingomyelin (SPM) in nonresistant HAC-15 cells is at baseline levels. However, distribution of these lipids between the cell membrane (CM), endoplasmic reticulum membrane (ERM), mitochondrial membrane (MM) and mitochondria associated membranes (MAM) has not been investigated so far. A large fraction of mitotane is associated with lipoproteins in the cell culture medium, while lipoprotein free mitotane (LPF) mediates the cytotoxic effects (167, 168). The mechanism of cellular mitotane uptake is not known. Intracellular mitotane causes impairment of mitochondrial electron transport chain leading to apoptosis (172). Also, mitotane inhibits SOAT1, which may involve direct inhibition (173), association with MAMs (292) or increase of SOAT1 activation threshold by increases in intracellular SPMs (303). Impairment of SOAT1 activity leads to intracellular accumulation of free cholesterol causing endoplasmic reticulum (ER) stress (173). In response to either free cholesterol accumulation or ER pathways, ER stress response genes and proapoptotic genes are increasingly expressed. Also, mitotane treatment increases intracellular content of proapoptotic lipids CER and LPC. Treatment with mitotane for 48 h decreases expression of steroidogenic enzymes STAR, CYP11A1, HSD3B2, CYP11B1 and CYP11B2 (172). C) Intracellular mechanisms of mitotane resistance. Mitotane resistant cells show profound changes in gene expression including up- and downregulation of transcription factor activity. They are characterized by increased expression of pathways connected to cell growth, Wnt signaling and development as well as decreased expression of numerous steroidogenic enzymes, SCARB1, ABCA1, LDLR and SOAT1. Downregulation of cholesterol transporters may lead to increase in medium HDL and LDL and thus decrease of lipoprotein free (active) mitotane. Further, mitotane uptake may be impaired in mitotane resistant cells. Also, mitotane resistant cells are depleted of CE, while free cholesterol is not changed. During mitotane treatment, intracellular levels of CER and LPC remain unchanged in mitotane resistant cells. Baseline free cholesterol in resistant cells is comparable to nonresistant cells, however no increase of free cholesterol is observed during mitotane treatment. This may be explained by baseline SPM levels during mitotane treatment, since SPM levels regulate SOAT1 activation threshold in macrophages (303).

13 References

1. Val P, Martinez A. Editorial: Adrenal Cortex: From Physiology to Disease. Front Endocrinol (Lausanne). 2016;7:51.

2. Barrett EJ. The Adrenal Gland. In: O'Grady E, Hall A, editors. Medical Physiology 3rd ed. Philadelphia: Eslevier Saunders; 2016. p. 1018-35.

3. Addison T, Addison T, Hurst AF, Guy's Hospital. Physical Society, Guy's Hospital Medical School, Radcliffe Library (University of Oxford), et al. On the constitutional and local effects of disease of the supra-renal capsules. London: Samuel Highley; 1855.

4. Perlman RL, Chalfie M. Catecholamine release from the adrenal medulla. Clin Endocrinol Metab. 1977;6(3):551-76.

5. Grossman AB, Jameson JL, De Groot LJ. Endocrinology Adult and Pediatric: The Adrenal Gland. 6th ed. Philadelphia: Elsevier Saunders; 2013.

6. Han TS, Walker BR, Arlt W, Ross RJ. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol. 2014;10(2):115-24.

7. Kraemer FB. Adrenal cholesterol utilization. Mol Cell Endocrinol. 2007;265-266:42-5.

8. Borkowski AJ, Levin S, Delcroix C, Mahler A, Verhas V. Blood cholesterol and hydrocortisone production in man: quantitative aspects of the utilization of circulating cholesterol by the adrenals at rest and under adrenocorticotropin stimulation. J Clin Invest. 1967;46(5):797-811.

9. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34-47.

10. Connelly MA, Williams DL. SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol Metab. 2003;14(10):467-72.

11. Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297(1):E1-9.

12. Kraemer FB, Shen WJ, Natu V, Patel S, Osuga J, Ishibashi S, et al. Adrenal neutral cholesteryl ester hydrolase: identification, subcellular distribution, and sex differences. Endocrinology. 2002;143(3):801-6.

13. Vaughan M, Berger JE, Steinberg D. Hormone-Sensitive Lipase and Monoglyceride Lipase Activities in Adipose Tissue. J Biol Chem. 1964;239:401-9.

14. Greep RO, Deane HW. The cytology and cytochemistry of the adrenal cortex. Ann N Y Acad Sci. 1949;50(Art. 6):596-615.

15. Sayers G. The adrenal cortex and homoestasis. Physiol Rev. 1950;30(3):241-320.

16. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84(2):489-539.

17. Neville AM, O'Hare MJ. Histopathology of the human adrenal cortex. Clin Endocrinol Metab. 1985;14(4):791-820.

18. Zelander T. The ultrastructure of the adrenal cortex of the mouse. Z Zellforsch Mikrosk Anat. 1957;46(6):710-6.

19. Ikeda U, Hyman R, Smith TW, Medford RM. Aldosterone-mediated regulation of Na+, K(+)-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem. 1991;266(18):12058-66. 20. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104(7):R19-23.

21. Long JA, Jones AL. The fine structure of the zona glomerulosa and the zona fasciculata of the adrenal cortex of the opossum. Am J Anat. 1967;120(3):463-87.

22. Neville AM, Mackay AM. The structure of the human adrenal cortex in health and disease. Clinics in Endocrinology and Metabolism. 1972;1(2):361-95.

23. Hyatt PJ, Bhatt K, Tait JF. Steroid biosynthesis by zona fasciculata and zona reticularis cells purified from the mammalian adrenal cortex. J Steroid Biochem. 1983;19(1C):953-9.

24. Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of proopiomelanocortin-derived peptides. J Mol Endocrinol. 2016;56(4):T77-97.

25. Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol. 2016;56(4):T135-56.

26. Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol. 1988;50:427-40.

27. Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 2011;286(5):3177-84.

28. Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest. 1993;92(5):2283-90.

29. Djurhuus CB, Gravholt CH, Nielsen S, Mengel A, Christiansen JS, Schmitz OE, et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283(1):E172-7.

30. Sapolsky RM, Romero LM, Munck AU. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions*. Endocrine Reviews. 2000;21(1):55-89.

31. Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol (Oxf). 2000;53(6):739-47.

32. Ducharme JR, Forest MG, De Peretti E, Sempe M, Collu R, Bertrand J. Plasma adrenal and gonadal sex steroids in human pubertal development. J Clin Endocrinol Metab. 1976;42(3):468-76.

33. Parker LN, Sack J, Fisher DA, Odell WD. The adrenarche: prolactin, gonadotropins, adrenal androgens, and cortisol. J Clin Endocrinol Metab. 1978;46(3):396-401.

34. Auchus RJ, Rainey WE. Adrenarche - physiology, biochemistry and human disease. Clin Endocrinol (Oxf). 2004;60(3):288-96.

35. Udhane SS, Fluck CE. Regulation of human (adrenal) androgen biosynthesis-New insights from novel throughput technology studies. Biochem Pharmacol. 2016;102:20-33.

36. Hillarp NA, Hokfelt B. Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta Physiol Scand. 1953;30(1):55-68.

37. Goodall M, Kirshner N. Biosynthesis of adrenaline and noradrenaline in vitro. J Biol Chem. 1957;226(1):213-21.

38. Douglas WW, Rubin RP. Mechanism of nicotinic action at the adrenal medulla: calcium as a link in stimulus-secretion coupling. Nature. 1961;192:1087-9.

39. Douglas WW, Rubin RP. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963;167(2):288-310.

40. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol. 1948;153(3):586-600.

41. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, et al. Molecular characterization of the human beta 3-adrenergic receptor. Science. 1989;245(4922):1118-21.

42. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG, Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967;214(5088):597-8.

43. Langer SZ. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974;23(13):1793-800.

44. Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006.

45. Grumbach MM, Biller BM, Braunstein GD, Campbell KK, Carney JA, Godley PA, et al. Management of the clinically inapparent adrenal mass ("incidentaloma"). Ann Intern Med. 2003;138(5):424-9.

46. Terzolo M, Bovio S, Pia A, Reimondo G, Angeli A. Management of adrenal incidentaloma. Best Pract Res Clin Endocrinol Metab. 2009;23(2):233-43.

47. Brunt LM, Moley JF. Adrenal incidentaloma. World J Surg. 2001;25(7):905-13.

48. Bitter DA, Ross DS. Incidentally discovered adrenal masses. Am J Surg. 1989;158(2):159-61.

49. Guerrero LA. Diagnostic and therapeutic approach to incidental adrenal mass. Urology. 1985;26(5):435-40.

50. Mansmann G, Lau J, Balk E, Rothberg M, Miyachi Y, Bornstein SR. The clinically inapparent adrenal mass: update in diagnosis and management. Endocr Rev. 2004;25(2):309-40.

51. Mantero F, Terzolo M, Arnaldi G, Osella G, Masini AM, Ali A, et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab. 2000;85(2):637-44.

52. Aso Y, Homma Y. A survey on incidental adrenal tumors in Japan. J Urol. 1992;147(6):1478-81.

53. Bastounis EA, Karayiannakis AJ, Anapliotou ML, Nakopoulou L, Makri GG, Papalambros EL. Incidentalomas of the adrenal gland: diagnostic and therapeutic implications. Am Surg. 1997;63(4):356-60.

54. Tutuncu NB, Gedik O. Adrenal incidentaloma: report of 33 cases. J Surg Oncol. 1999;70(4):247-50.

55. Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer. 1950;3(1):74-85.

56. Tang YZ, Bharwani N, Micco M, Akker S, Rockall AG, Sahdev A. The prevalence of incidentally detected adrenal enlargement on CT. Clin Radiol. 2014;69(1):e37-42.

57. Brennan MF. Adrenocortical carcinoma. CA Cancer J Clin. 1987;37(6):348-65.

58. Ng L, Libertino JM. Adrenocortical carcinoma: diagnosis, evaluation and treatment. J Urol. 2003;169(1):5-11.

59. Soreide JA, Brabrand K, Thoresen SO. Adrenal cortical carcinoma in Norway, 1970-1984. World J Surg. 1992;16(4):663-7; discussion 8.

60. Kerkhofs TM, Verhoeven RH, Van der Zwan JM, Dieleman J, Kerstens MN, Links TP, et al. Adrenocortical carcinoma: a population-based study on incidence and survival in the Netherlands since 1993. Eur J Cancer. 2013;49(11):2579-86.

61. Ayala-Ramirez M, Jasim S, Feng L, Ejaz S, Deniz F, Busaidy N, et al. Adrenocortical carcinoma: clinical outcomes and prognosis of 330 patients at a tertiary care center. Eur J Endocrinol. 2013;169(6):891-9.

62. Crucitti F, Bellantone R, Ferrante A, Boscherini M, Crucitti P. The Italian Registry for Adrenal Cortical Carcinoma: analysis of a multiinstitutional series of 129 patients. The ACC Italian Registry Study Group. Surgery. 1996;119(2):161-70.

63. Schulick RD, Brennan MF. Long-term survival after complete resection and repeat resection in patients with adrenocortical carcinoma. Ann Surg Oncol. 1999;6(8):719-26.

64. Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A. Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg. 2006;30(5):872-8.

65. Fassnacht M, Allolio B. Clinical management of adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab. 2009;23(2):273-89.

66. Hutter AM, Jr., Kayhoe DE. Adrenal cortical carcinoma. Clinical features of 138 patients. Am J Med. 1966;41(4):572-80.

67. Icard P, Chapuis Y, Andreassian B, Bernard A, Proye C. Adrenocortical carcinoma in surgically treated patients: a retrospective study on 156 cases by the French Association of Endocrine Surgery. Surgery. 1992;112(6):972-9; discussion 9-80.

68. Wajchenberg BL, Albergaria Pereira MA, Medonca BB, Latronico AC, Campos Carneiro P, Alves VA, et al. Adrenocortical carcinoma: clinical and laboratory observations. Cancer. 2000;88(4):711-36.

69. Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci U S A. 2001;98(16):9330-5.

70. Ribeiro RC, Sandrini Neto RS, Schell MJ, Lacerda L, Sambaio GA, Cat I. Adrenocortical carcinoma in children: a study of 40 cases. J Clin Oncol. 1990;8(1):67-74.

71. Sandrini R, Ribeiro RC, DeLacerda L. Childhood adrenocortical tumors. J Clin Endocrinol Metab. 1997;82(7):2027-31.

72. Abiven G, Coste J, Groussin L, Anract P, Tissier F, Legmann P, et al. Clinical and biological features in the prognosis of adrenocortical cancer: poor outcome of cortisol-secreting tumors in a series of 202 consecutive patients. J Clin Endocrinol Metab. 2006;91(7):2650-5.

73. Didolkar MS, Bescher RA, Elias EG, Moore RH. Natural history of adrenal cortical carcinoma: a clinicopathologic study of 42 patients. Cancer. 1981;47(9):2153-61.

74. Haak HR, Hermans J, van de Velde CJ, Lentjes EG, Goslings BM, Fleuren GJ, et al. Optimal treatment of adrenocortical carcinoma with mitotane: results in a consecutive series of 96 patients. Br J Cancer. 1994;69(5):947-51.

75. Hajjar RA, Hickey RC, Samaan NA. Adrenal cortical carcinoma. A study of 32 patients. Cancer. 1975;35(2):549-54.

76. King DR, Lack EE. Adrenal cortical carcinoma: a clinical and pathologic study of 49 cases. Cancer. 1979;44(1):239-44.

77. Nader S, Hickey RC, Sellin RV, Samaan NA. Adrenal cortical carcinoma. A study of 77 cases. Cancer. 1983;52(4):707-11.

78. Huvos AG, Hajdu SI, Brasfield RD, Foote FW, Jr. Adrenal cortical carcinoma. Clinicopathologic study of 34 cases. Cancer. 1970;25(2):354-61.

79. Newell-Price J, Trainer P, Besser M, Grossman A. The diagnosis and differential diagnosis of Cushing's syndrome and pseudo-Cushing's states. Endocr Rev. 1998;19(5):647-72.

80. Farge D, Chatellier G, Pagny JY, Jeunemaitre X, Plouin PF, Corvol P. Isolated clinical syndrome of primary aldosteronism in four patients with adrenocortical carcinoma. Am J Med. 1987;83(4):635-40.

81. Michalkiewicz E, Sandrini R, Figueiredo B, Miranda EC, Caran E, Oliveira-Filho AG, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the International Pediatric Adrenocortical Tumor Registry. J Clin Oncol. 2004;22(5):838-45.

82. Conn JW. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45(1):3-17.

83. Else T, Kim AC, Sabolch A, Raymond VM, Kandathil A, Caoili EM, et al. Adrenocortical carcinoma. Endocr Rev. 2014;35(2):282-326.

84. Berruti A, Baudin E, Gelderblom H, Haak HR, Porpiglia F, Fassnacht M, et al. Adrenal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii131-8.

85. Allolio B, Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91(6):2027-37.

86. Fassnacht M, Kenn W, Allolio B. Adrenal tumors: how to establish malignancy ? J Endocrinol Invest. 2004;27(4):387-99.

87. Fassnacht M, Kroiss M, Allolio B. Update in adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4551-64.

88. Sturgeon C, Shen WT, Clark OH, Duh QY, Kebebew E. Risk assessment in 457 adrenal cortical carcinomas: how much does tumor size predict the likelihood of malignancy? J Am Coll Surg. 2006;202(3):423-30.

89. Zhang HM, Perrier ND, Grubbs EG, Sircar K, Ye ZX, Lee JE, et al. CT features and quantification of the characteristics of adrenocortical carcinomas on unenhanced and contrast-enhanced studies. Clin Radiol. 2012;67(1):38-46.

90. Deandreis D, Leboulleux S, Caramella C, Schlumberger M, Baudin E. FDG PET in the Management of Patients with Adrenal Masses and Adrenocortical Carcinoma. Hormones and Cancer. 2011;2(6):354-62.

91. Mittal B, Kumar R, JOIS A, Singh H, Sood A, Bhattacharya A, et al. F-18 FDG PET/CT in patients with adrenocortical carcinoma- A tertiary care centre experience. Journal of Nuclear Medicine. 2017;58(supplement 1):122.

92. Nunes ML, Rault A, Teynie J, Valli N, Guyot M, Gaye D, et al. 18F-FDG PET for the Identification of Adrenocortical Carcinomas among Indeterminate Adrenal Tumors at Computed Tomography Scanning. World Journal of Surgery. 2010;34(7):1506-10.

93. Parker KL, Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev. 1997;18(3):361-77.

94. Sbiera S, Schmull S, Assie G, Voelker HU, Kraus L, Beyer M, et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J Clin Endocrinol Metab. 2010;95(10):E161-71.

95. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol. 1984;8(3):163-9.

96. Beuschlein F, Weigel J, Saeger W, Kroiss M, Wild V, Daffara F, et al. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. J Clin Endocrinol Metab. 2015;100(3):841-9.

97. Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. Journal of Cellular Physiology. 2006;206(3):624-35.

98. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-22.

99. Fassnacht M, Johanssen S, Quinkler M, Bucsky P, Willenberg HS, Beuschlein F, et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification. Cancer. 2009;115(2):243-50.

100.Lerario AM, Moraitis A, Hammer GD. Genetics and epigenetics of adrenocortical tumors. Mol Cell Endocrinol. 2014;386(1-2):67-84.

101. Hisada M, Garber JE, Fung CY, Fraumeni JF, Jr., Li FP. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606-11.

102.Li FP, Fraumeni JF, Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365-73.

103.Li FP, Fraumeni JF, Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med. 1969;71(4):747-52.

104.Lynch HT, Mulcahy GM, Harris RE, Guirgis HA, Lynch JF. Genetic and pathologic findings in a kindred with hereditary sarcoma, breast cancer, brain tumors, leukemia, lung, laryngeal, and adrenal cortical carcinoma. Cancer. 1978;41(5):2055-64.

105.Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M, et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 2001;20(34):4621-8.

106.Malkin D, Li FP, Strong LC, Fraumeni JF, Jr., Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233-8.

107.Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747-9.

108.Yoshida K, Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 2010;101(4):831-5.

109. Wangler MF, An P, Feinberg AP, Province M, Debaun MR. Inheritance pattern of Beckwith-Wiedemann syndrome is heterogeneous in 291 families with an affected proband. Am J Med Genet A. 2005;137(1):16-21.

110.Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2010;18(1):8-14.

111.Rump P, Zeegers MP, van Essen AJ. Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet A. 2005;136(1):95-104.

112.Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. 2005;137C(1):12-23.

113.Bergman D, Halje M, Nordin M, Engstrom W. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology. 2013;59(3):240-9.

114.Forne T, Oswald J, Dean W, Saam JR, Bailleul B, Dandolo L, et al. Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans. Proc Natl Acad Sci U S A. 1997;94(19):10243-8.

115.Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9(6):639-49.

116.Beuschlein F, Reincke M, Karl M, Travis WD, Jaursch-Hancke C, Abdelhamid S, et al. Clonal composition of human adrenocortical neoplasms. Cancer Res. 1994;54(18):4927-32.

117.Blanes A, Diaz-Cano SJ. DNA and kinetic heterogeneity during the clonal evolution of adrenocortical proliferative lesions. Hum Pathol. 2006;37(10):1295-303.

118.Limon J, Dal Cin P, Kakati S, Huben RP, Sandberg AA. Cytogenetic findings in a primary adrenocortical carcinoma. Cancer Genet Cytogenet. 1987;26(2):271-7.

119.Marks JL, Wyandt HE, Beazley RM, Milunsky JM, Sheahan K, Milunsky A. Cytogenetic studies of an adrenal cortical carcinoma. Cancer Genet Cytogenet. 1992;61(1):96-8.

120. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.

121.Weiss MM, Hermsen MA, Meijer GA, van Grieken NC, Baak JP, Kuipers EJ, et al. Comparative genomic hybridisation. Mol Pathol. 1999;52(5):243-51.

122.Kjellman M, Kallioniemi OP, Karhu R, Hoog A, Farnebo LO, Auer G, et al. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res. 1996;56(18):4219-23.

123.Stephan EA, Chung TH, Grant CS, Kim S, Von Hoff DD, Trent JM, et al. Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther. 2008;7(2):425-31.

124. Assie G, Letouze E, Fassnacht M, Jouinot A, Luscap W, Barreau O, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet. 2014;46(6):607-12.

125.Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J, et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res. 2009;15(2):668-76.

126.Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL, et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol. 2003;162(2):521-31.

127.Juhlin CC, Goh G, Healy JM, Fonseca AL, Scholl UI, Stenman A, et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab. 2015;100(3):E493-502.

128.Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, et al. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell. 2016;29(5):723-36.

129.Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440-4.

130.Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768-72.

131.Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45(9):1050-4.

132.Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315.

133.Scholl UI, Stolting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet. 2018;50(3):349-54.

134.Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096-101.

135. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777-D83.

136.Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9.

137.Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177-83.

138.Else T, Giordano TJ, Hammer GD. Evaluation of telomere length maintenance mechanisms in adrenocortical carcinoma. J Clin Endocrinol Metab. 2008;93(4):1442-9.

139.Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461-73.

140.Lacroix A. Approach to the patient with adrenocortical carcinoma. J Clin Endocrinol Metab. 2010;95(11):4812-22.

141.Porpiglia F, Fiori C, Daffara F, Zaggia B, Bollito E, Volante M, et al. Retrospective evaluation of the outcome of open versus laparoscopic adrenalectomy for stage I and II adrenocortical cancer. Eur Urol. 2010;57(5):873-8.

142.Datrice NM, Langan RC, Ripley RT, Kemp CD, Steinberg SM, Wood BJ, et al. Operative management for recurrent and metastatic adrenocortical carcinoma. J Surg Oncol. 2012;105(7):709-13.

143.Erdogan I, Deutschbein T, Jurowich C, Kroiss M, Ronchi C, Quinkler M, et al. The role of surgery in the management of recurrent adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(1):181-91.

144.Baudry C, Coste J, Bou Khalil R, Silvera S, Guignat L, Guibourdenche J, et al. Efficiency and tolerance of mitotane in Cushing's disease in 76 patients from a single center. Eur J Endocrinol. 2012;167(4):473-81.

145.Kintzer PP, Peterson ME. Mitotane (o,p'-DDD) treatment of 200 dogs with pituitary-dependent hyperadrenocorticism. J Vet Intern Med. 1991;5(3):182-90.

146.Luton JP, Cerdas S, Billaud L, Thomas G, Guilhaume B, Bertagna X, et al. Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med. 1990;322(17):1195-201.

147.Dackiw AP, Lee JE, Gagel RF, Evans DB. Adrenal cortical carcinoma. World J Surg. 2001;25(7):914-26.

148.Berruti A, Grisanti S, Pulzer A, Claps M, Daffara F, Loli P, et al. Long-Term Outcomes of Adjuvant Mitotane Therapy in Patients With Radically Resected Adrenocortical Carcinoma. J Clin Endocrinol Metab. 2017;102(4):1358-65.

149. Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med. 2007;356(23):2372-80.

150.Berruti A, Fassnacht M, Baudin E, Hammer G, Haak H, Leboulleux S, et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J Clin Oncol. 2010;28(23):e401-2; author reply e3.

151.Fassnacht M, Allolio B. What is the best approach to an apparently nonmetastatic adrenocortical carcinoma? Clin Endocrinol (Oxf). 2010;73(5):561-5.

152.Terzolo M, Fassnacht M, Berruti A, Baudin E, Haak H. Efficacy of Adjuvant Mitotane Treatment (ADIUVO). <u>https://ClinicalTrials.gov</u> Identifier: NCT00777244. 2008.

153.Kerkhofs TM, Baudin E, Terzolo M, Allolio B, Chadarevian R, Mueller HH, et al. Comparison of two mitotane starting dose regimens in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4759-67.

154. Fassnacht M, Terzolo M, Allolio B, Baudin E, Haak H, Berruti A, et al. Combination chemotherapy in advanced adrenocortical carcinoma. N Engl J Med. 2012;366(23):2189-97.

155.Zini L, Porpiglia F, Fassnacht M. Contemporary management of adrenocortical carcinoma. Eur Urol. 2011;60(5):1055-65.

156. Venkatesh S, Hickey RC, Sellin RV, Fernandez JF, Samaan NA. Adrenal cortical carcinoma. Cancer. 1989;64(3):765-9.

157.Megerle F, Herrmann W, Schloetelburg W, Ronchi CL, Pulzer A, Quinkler M, et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2018.

158.Rosenzweig SA, Atreya HS. Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol. 2010;80(8):1115-24.

159. Peixoto Lira RC, Fedatto PF, Marco Antonio DS, Leal LF, Martinelli CE, de Castro M, et al. IGF2 and IGF1R in pediatric adrenocortical tumors: roles in metastasis and steroidogenesis. Endocrine-related cancer. 2016;23(6):481-93.

160.Ji QS, Mulvihill MJ, Rosenfeld-Franklin M, Cooke A, Feng L, Mak G, et al. A novel, potent, and selective insulin-like growth factor-I receptor kinase inhibitor blocks insulin-like growth factor-I receptor signaling in vitro and inhibits insulin-like growth factor-I receptor dependent tumor growth in vivo. Mol Cancer Ther. 2007;6(8):2158-67.

161.Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H, et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a doubleblind, randomised, phase 3 study. Lancet Oncol. 2015;16(4):426-35.

162.Lerario AM, Worden FP, Ramm CA, Hesseltine EA, Stadler WM, Else T, et al. The combination of insulin-like growth factor receptor 1 (IGF1R) antibody cixutumumab and mitotane as a first-line therapy for patients with recurrent/metastatic adrenocortical carcinoma: a multi-institutional NCI-sponsored trial. Horm Cancer. 2014;5(4):232-9.

163.Cai W, Benitez R, Counsell RE, Djanegara T, Schteingart DE, Sinsheimer JE, et al. Bovine adrenal cortex transformations of mitotane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane; o,p'-DDD] and its p,p'- and m,p'-isomers. Biochem Pharmacol. 1995;49(10):1483-9.

164.Collins JM. Cancer Pharmacology. In: Niederhuber J, Armitage J, Doroshow J, Kastan M, Tepper J, editors. Abeloff's Clinical Oncology. 5th ed. Philadelpia: Elsevier Saunders; 2014. p. 434-84.

165.Hescot S, Paci A, Seck A, Slama A, Viengchareun S, Trabado S, et al. The lack of antitumor effects of o,p'DDA excludes its role as an active metabolite of mitotane for adrenocortical carcinoma treatment. Horm Cancer. 2014;5(5):312-23.

166.Hermsen IG, Fassnacht M, Terzolo M, Houterman S, den Hartigh J, Leboulleux S, et al. Plasma concentrations of o,p'DDD, o,p'DDA, and o,p'DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: results of a retrospective ENS@T multicenter study. J Clin Endocrinol Metab. 2011;96(6):1844-51.

167.Kroiss M, Plonne D, Kendl S, Schirmer D, Ronchi CL, Schirbel A, et al. Association of mitotane with chylomicrons and serum lipoproteins: practical implications for treatment of adrenocortical carcinoma. Eur J Endocrinol. 2016;174(3):343-53.

168.Hescot S, Seck A, Guerin M, Cockenpot F, Huby T, Broutin S, et al. Lipoprotein-Free Mitotane Exerts High Cytotoxic Activity in Adrenocortical Carcinoma. J Clin Endocrinol Metab. 2015;100(8):2890-8.

169. Rainey WE, Bird IM, Mason JI. The NCI-H295 cell line: a pluripotent model for human adrenocortical studies. Mol Cell Endocrinol. 1994;100(1-2):45-50.

170.Leibovitz A, McCombs WM, 3rd, Johnston D, McCoy CE, Stinson JC. New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst. 1973;51(2):691-7.

171.Poli G, Guasti D, Rapizzi E, Fucci R, Canu L, Bandini A, et al. Morphofunctional effects of mitotane on mitochondria in human adrenocortical cancer cells. Endocrine-related cancer. 2013;20(4):537-50.

172.Hescot S, Slama A, Lombes A, Paci A, Remy H, Leboulleux S, et al. Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells. Endocrine-related cancer. 2013;20(3):371-81.

173.Sbiera S, Leich E, Liebisch G, Sbiera I, Schirbel A, Wiemer L, et al. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells. Endocrinology. 2015;156(11):3895-908.

174.Kerkhofs TM, Derijks LJ, Ettaieb H, den Hartigh J, Neef K, Gelderblom H, et al. Development of a pharmacokinetic model of mitotane: toward personalized dosing in adrenocortical carcinoma. Ther Drug Monit. 2015;37(1):58-65.

175.Cueto C, Brown JH, Richardson AP, Jr. Biological studies on an adrenocorticolytic agent and the isolation of the active components. Endocrinology. 1958;62(3):334-9.

176.von Slooten H, van Seters AP, Smeenk D, Moolenaar AJ. O,p'-DDD (mitotane) levels in plasma and tissues during chemotherapy and at autopsy. Cancer Chemother Pharmacol. 1982;9(2):85-8.

177.De Francia S, Pirro E, Zappia F, De Martino F, Sprio AE, Daffara F, et al. A new simple HPLC method for measuring mitotane and its two principal metabolites Tests in animals and mitotane-treated patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;837(1-2):69-75.

178.Bledsoe T, Island DP, Ney RL, Liddle GW. An Effect of o,p'-DDD on the Extra-Adrenal Metabolism of Cortisol in Man. J Clin Endocrinol Metab. 1964;24:1303-11.

179.Southren AL, Tochimoto S, Isurugi K, Gordon GG, Krikun E, Stypulkowski W. The effect of 2,2-bis (2-chlorophenyl-4-chlorophenyl)-1,1-dichloroethane (o,p'-DDD) on the metabolism of infused cortisol-7-3H. Steroids. 1966;7(1):11-29.

180. Chobanian AV, Hollander W. Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J Clin Invest. 1962;41:1732-7.

181.Charlton-Menys V, Durrington PN. Human cholesterol metabolism and therapeutic molecules. Exp Physiol. 2008;93(1):27-42.

182.Bentley PJ. Endocrine pharmacology : physiological basis and therapeutic applications. Cambridge Eng. ; New York: Cambridge University Press; 1980. xvi, 496 p. p.

183.van Erp NP, Guchelaar HJ, Ploeger BA, Romijn JA, Hartigh J, Gelderblom H. Mitotane has a strong and a durable inducing effect on CYP3A4 activity. Eur J Endocrinol. 2011;164(4):621-6.

184.Chortis V, Taylor AE, Schneider P, Tomlinson JW, Hughes BA, O'Neil DM, et al. Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5alpha-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J Clin Endocrinol Metab. 2013;98(1):161-71.

185. Takeshita A, Igarashi-Migitaka J, Koibuchi N, Takeuchi Y. Mitotane induces CYP3A4 expression via activation of the steroid and xenobiotic receptor. J Endocrinol. 2013;216(3):297-305.

186.Nakamura H, Nakasa H, Ishii I, Ariyoshi N, Igarashi T, Ohmori S, et al. Effects of endogenous steroids on CYP3A4-mediated drug metabolism by human liver microsomes. Drug Metab Dispos. 2002;30(5):534-40.

187.Hogan TF, Citrin DL, Johnson BM, Nakamura S, Davis TE, Borden EC. o,p'-DDD (mitotane) therapy of adrenal cortical carcinoma: observations on drug dosage, toxicity, and steroid replacement. Cancer. 1978;42(5):2177-81.

188.Terzolo M, Pia A, Berruti A, Osella G, Ali A, Carbone V, et al. Low-dose monitored mitotane treatment achieves the therapeutic range with manageable side effects in patients with adrenocortical cancer. J Clin Endocrinol Metab. 2000;85(6):2234-8.

189.Gebhardt DO, Moolenaar AJ, van Seters AP. Mitotane (o,p'-DDD) administration raises the serum level of high density lipoprotein (HDL) in normotriglyceridemia. Horm Metab Res. 1993;25(4):240-1.

190.Daffara F, De Francia S, Reimondo G, Zaggia B, Aroasio E, Porpiglia F, et al. Prospective evaluation of mitotane toxicity in adrenocortical cancer patients treated adjuvantly. Endocrine-related cancer. 2008;15(4):1043-53.

191.Shawa H, Deniz F, Bazerbashi H, Hernandez M, Vassilopoulou-Sellin R, Jimenez C, et al. Mitotane-induced hyperlipidemia: a retrospective cohort study. Int J Endocrinol. 2013;2013:624962.

192.Kroiss M, Quinkler M, Lutz WK, Allolio B, Fassnacht M. Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma. Clin Endocrinol (Oxf). 2011;75(5):585-91.

193.Terzolo M, Baudin AE, Ardito A, Kroiss M, Leboulleux S, Daffara F, et al. Mitotane levels predict the outcome of patients with adrenocortical carcinoma treated adjuvantly following radical resection. Eur J Endocrinol. 2013;169(3):263-70.

194.Kerkhofs TM, Derijks LJ, Ettaieb MH, Eekhoff EM, Neef C, Gelderblom H, et al. Short-term variation in plasma mitotane levels confirms the importance of trough level monitoring. Eur J Endocrinol. 2014;171(6):677-83.

195.Baudin E, Pellegriti G, Bonnay M, Penfornis A, Laplanche A, Vassal G, et al. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p'DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer. 2001;92(6):1385-92.

196.van Slooten H, Moolenaar AJ, van Seters AP, Smeenk D. The treatment of adrenocortical carcinoma with o,p'-DDD: prognostic implications of serum level monitoring. Eur J Cancer Clin Oncol. 1984;20(1):47-53.

197. Icard P, Louvel A, Chapuis Y. Survival rates and prognostic factors in adrenocortical carcinoma. World J Surg. 1992;16(4):753-8.

198.Icard P, Goudet P, Charpenay C, Andreassian B, Carnaille B, Chapuis Y, et al. Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group. World J Surg. 2001;25(7):891-7.

199.Scollo C, Russo M, Trovato MA, Sambataro D, Giuffrida D, Manusia M, et al. Prognostic Factors for Adrenocortical Carcinoma Outcomes. Front Endocrinol (Lausanne). 2016;7:99.

200.Stojadinovic A, Ghossein RA, Hoos A, Nissan A, Marshall D, Dudas M, et al. Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. J Clin Oncol. 2002;20(4):941-50.

201.Brix D, Allolio B, Fenske W, Agha A, Dralle H, Jurowich C, et al. Laparoscopic versus open adrenalectomy for adrenocortical carcinoma: surgical and oncologic outcome in 152 patients. Eur Urol. 2010;58(4):609-15.

202.Lombardi CP, Raffaelli M, Boniardi M, De Toma G, Marzano LA, Miccoli P, et al. Adrenocortical carcinoma: effect of hospital volume on patient outcome. Langenbecks Arch Surg. 2012;397(2):201-7.

203.Cordon-Cardo C, O'Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38(9):1277-87.

204.Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrugresistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987;84(1):265-9.

205. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152-62.

206.Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 1987;84(9):3004-8.

207.Gottesman MM, Pastan IH. The Role of Multidrug Resistance Efflux Pumps in Cancer: Revisiting a JNCI Publication Exploring Expression of the MDR1 (P-glycoprotein) Gene. J Natl Cancer Inst. 2015;107(9).

208.Haak HR, van Seters AP, Moolenaar AJ, Fleuren GJ. Expression of P-glycoprotein in relation to clinical manifestation, treatment and prognosis of adrenocortical cancer. Eur J Cancer. 1993;29A(7):1036-8.

209.Bates SE, Shieh CY, Mickley LA, Dichek HL, Gazdar A, Loriaux DL, et al. Mitotane enhances cytotoxicity of chemotherapy in cell lines expressing a multidrug resistance gene (mdr-1/P-glycoprotein) which is also expressed by adrenocortical carcinomas. J Clin Endocrinol Metab. 1991;73(1):18-29.

210.Gagliano T, Gentilin E, Benfini K, Di Pasquale C, Tassinari M, Falletta S, et al. Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells. Endocrine. 2014;47(3):943-51.

211.Wang T, Rainey WE. Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol. 2012;351(1):58-65.

212.Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 1990;50(17):5488-96.

213. Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, et al. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab. 1993;77(3):731-7.

214. Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol Cell Endocrinol. 2004;228(1-2):23-38.

215.Rodriguez H, Hum DW, Staels B, Miller WL. Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. J Clin Endocrinol Metab. 1997;82(2):365-71.

216.Parmar J, Key RE, Rainey WE. Development of an adrenocorticotropin-responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab. 2008;93(11):4542-6.

217. Hantel C, Shapiro I, Poli G, Chiapponi C, Bidlingmaier M, Reincke M, et al. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation. Oncotarget. 2016;7(48):79292-304.

218.McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, et al. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Front Oncol. 2014;4:40.

219.Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95(18):10614-9.

220.Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.

221.Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta. 2006;1761(1):121-8.

222.Jacob F, Guertler R, Naim S, Nixdorf S, Fedier A, Hacker NF, et al. Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PloS one. 2013;8(3):e59180.

223.Skowron MA, Niegisch G, Fritz G, Arent T, van Roermund JG, Romano A, et al. Phenotype plasticity rather than repopulation from CD90/CK14+ cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines. J Exp Clin Cancer Res. 2015;34:144.

224.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8.

225. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-64.

226.Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18(11):1851-8.

227.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.

228.Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11.

229.Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.

230. The Gene Ontology C. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331-D8.

231.Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183-D9.

232.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997v1 [q-bioGN]2013.

233.Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M, et al. CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 2015;16:49.

234.Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017;49(2):170-4.

235.Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48-58.

236.Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer. Biochim Biophys Acta. 1996;1288(2):F37-54.

237.Stocco DM, Clark BJ. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol. 1996;51(3):197-205.

238.Bassett MH, White PC, Rainey WE. The regulation of aldosterone synthase expression. Mol Cell Endocrinol. 2004;217(1-2):67-74.

239.Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, et al. The Very Low-density Lipoprotein (VLDL) Receptor: Characterization and Functions as a Peripheral Lipoprotein Receptor. Journal of Atherosclerosis and Thrombosis. 2004;11(4):200-8.

240.Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001;42(8):1173-9.

241.Glass C, Pittman RC, Weinstein DB, Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad Sci U S A. 1983;80(17):5435-9.

242.Mulrow PJ. Angiotensin II and aldosterone regulation. Regul Pept. 1999;80(1-2):27-32.

243. Miyazaki M, Esser KA. REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. Am J Physiol Cell Physiol. 2009;296(3):C583-92.

244.Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168(6):960-76.

245.Su H, Gu Y, Li F, Wang Q, Huang B, Jin X, et al. The PI3K/AKT/mTOR signaling pathway is overactivated in primary aldosteronism. PloS one. 2013;8(4):e62399.

246.Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci. 2006;119(Pt 3):395-402.

247.Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci U S A. 2001;98(26):14973-8.

248. Walczak EM, Kuick R, Finco I, Bohin N, Hrycaj SM, Wellik DM, et al. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol Endocrinol. 2014;28(9):1471-86.

249.Rubin B, Pezzani R, Cicala MV, Iacobone M, Mantero F. New drugs switching off Wnt/[beta]catenin signaling in adrenocortical tumor cells. Presented at the 16th European Congress of Endocrinology, 2014, Wrocław, Poland. Endocrine Abstracts 2014;35:P12.

250.Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574-8.

251.Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-27.

252.Deeley RG, Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett. 2006;580(4):1103-11.

253.Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665-70.

254.Lonning PE, Knappskog S. Mapping genetic alterations causing chemoresistance in cancer: identifying the roads by tracking the drivers. Oncogene. 2013;32(46):5315-30.

255.Zsippai A, Szabo DR, Tombol Z, Szabo PM, Eder K, Pallinger E, et al. Effects of mitotane on gene expression in the adrenocortical cell line NCI-H295R: a microarray study. Pharmacogenomics. 2012;13(12):1351-61.

256.Szekeres M, Turu G, Orient A, Szalai B, Supeki K, Cserzo M, et al. Mechanisms of angiotensin IImediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol. 2009;302(2):244-53.

257.Ye P, Nakamura Y, Lalli E, Rainey WE. Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology. 2009;150(3):1303-9.

258. Webb JC, Patel DD, Jones MD, Knight BL, Soutar AK. Characterization and tissue-specific expression of the human 'very low density lipoprotein (VLDL) receptor' mRNA. Hum Mol Genet. 1994;3(4):531-7.

259.Schmidt T, Samaras P, Frejno M, Gessulat S, Barnert M, Kienegger H, et al. ProteomicsDB. Nucleic Acids Res. 2018;46(D1):D1271-D81.

260.Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582-7.

261.Xing Y, Rainey WE, Apolzan JW, Francone OL, Harris RB, Bollag WB. Adrenal cell aldosterone production is stimulated by very-low-density lipoprotein (VLDL). Endocrinology. 2012;153(2):721-31.

262.Cummins CL, Volle DH, Zhang Y, McDonald JG, Sion B, Lefrancois-Martinez AM, et al. Liver X receptors regulate adrenal cholesterol balance. J Clin Invest. 2006;116(7):1902-12.

263.Christiansen-Weber TA, Voland JR, Wu Y, Ngo K, Roland BL, Nguyen S, et al. Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am J Pathol. 2000;157(3):1017-29.

264. Hoekstra M, Ye D, Hildebrand RB, Zhao Y, Lammers B, Stitzinger M, et al. Scavenger receptor class B type I-mediated uptake of serum cholesterol is essential for optimal adrenal glucocorticoid production. J Lipid Res. 2009;50(6):1039-46.

265.Maher VM, Trainer PJ, Scoppola A, Anderson JV, Thompson GR, Besser GM. Possible mechanism and treatment of o,p'DDD-induced hypercholesterolaemia. Q J Med. 1992;84(305):671-9.

266.Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192-205.

267.Simon DP, Hammer GD. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol Cell Endocrinol. 2012;351(1):2-11.

268.Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17(1):45-51.

269.Tadjine M, Lampron A, Ouadi L, Bourdeau I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf). 2008;68(2):264-70.

270.Tissier F, Cavard C, Groussin L, Perlemoine K, Fumey G, Hagnere AM, et al. Mutations of betacatenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 2005;65(17):7622-7.

271.Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11.

272.Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017;51(5):1357-69.

273.Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, et al. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene. 2009;28(23):2245-56.

274. Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, Onishi H, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 2010;30(6):2041-8.

275.Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PloS one. 2010;5(7):e11456.

276. Toloudi M, Ioannou E, Chatziioannou M, Apostolou P, Kiritsis C, Manta S, et al. Comparison of the growth curves of cancer cells and cancer stem cells. Curr Stem Cell Res Ther. 2014;9(2):112-6.

277.Xiong B, Ma L, Hu X, Zhang C, Cheng Y. Characterization of side population cells isolated from the colon cancer cell line SW480. Int J Oncol. 2014;45(3):1175-83.

278.Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946-51.

279.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.

280.Letouze E, Allory Y, Bollet MA, Radvanyi F, Guyon F. Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis. Genome Biol. 2010;11(7):R76.

281.Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009-14.

282.Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559-65.

283.Piccirillo SG, Colman S, Potter NE, van Delft FW, Lillis S, Carnicer MJ, et al. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Reports. 2015;4(1):7-15.

284.Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489-94.

285.Nieland TJ, Penman M, Dori L, Krieger M, Kirchhausen T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci U S A. 2002;99(24):15422-7.

286.Nieland TJ, Chroni A, Fitzgerald ML, Maliga Z, Zannis VI, Kirchhausen T, et al. Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J Lipid Res. 2004;45(7):1256-65.

287.Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S, et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res. 2005;11(7):2686-94.

288.Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373-9.

289.Simonson B, Subramanya V, Chan MC, Zhang A, Franchino H, Ottaviano F, et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci Signal. 2017;10(468).

290.Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell. 2017;32(6):807-23 e12.

291. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614-20.

292.Scheidt HA, Haralampiev I, Theisgen S, Schirbel A, Sbiera S, Huster D, et al. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Mol Cell Endocrinol. 2016;428:68-81.

293.van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112-24.

294.Hescot S, Amazit L, Lhomme M, Travers S, DuBow A, Battini S, et al. Identifying mitotaneinduced mitochondria-associated membranes dysfunctions: metabolomic and lipidomic approaches. Oncotarget. 2017;8(66):109924-40.

295.Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988;85(8):2805-9.

296.Chang MC, Lee JJ, Chen YJ, Lin SI, Lin LD, Jein-Wen Liou E, et al. Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms. Oncotarget. 2017;8(63):106177-89.

297.Tu LN, Showalter MR, Cajka T, Fan S, Pillai VV, Fiehn O, et al. Metabolomic characteristics of cholesterol-induced non-obese nonalcoholic fatty liver disease in mice. Sci Rep. 2017;7(1):6120.

298.Han MS, Park SY, Shinzawa K, Kim S, Chung KW, Lee JH, et al. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res. 2008;49(1):84-97.

299.Yabu T, Shiba H, Shibasaki Y, Nakanishi T, Imamura S, Touhata K, et al. Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ. 2015;22(2):258-73.

300.Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994;77(3):325-8.

301.von Haefen C, Wieder T, Gillissen B, Starck L, Graupner V, Dorken B, et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002;21(25):4009-19.

302. Tabas I, Boykow GC. Protein synthesis inhibition in mouse peritoneal macrophages results in increased acyl coenzyme A:cholesterol acyl transferase activity and cholesteryl ester accumulation in the presence of native low density lipoprotein. J Biol Chem. 1987;262(25):12175-81.

303.Okwu AK, Xu XX, Shiratori Y, Tabas I. Regulation of the threshold for lipoprotein-induced acyl-CoA:cholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content. J Lipid Res. 1994;35(4):644-55.

304.Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452-8.

305.Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601-10.

306.Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi M, et al. The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci. 2017;18(7).

307.Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016;76(21):6153-8.

14 Danksagung

Ich danke Frau Univ.-Prof. Dr. med. Ute Scholl für die Möglichkeit in ihrer Arbeitsgruppe zu promovieren und in diesem Zusammenhang auch Univ.-Prof. Dr. med. Lars Christian Rump, dem Leiter der Klinik für Nephrologie des Universitätsklinikums Düsseldorf (UKD).

Weiterhin möchte ich Frau Univ.-Prof. Dr. med. Ute Scholl ganz herzlich dafür danken, dass sie mich während meiner gesamten Promotionszeit begleitet, unterstützt und gefördert hat. Die von ihr vorgeschlagenen Projekte haben mir die Möglichkeit eröffnet, Erfahrungen in einem breiten Spektrum an Methoden zu sammeln. Interessante Diskussionen, Fortbildungen und Kongressteilnahmen haben mir nicht nur Freude bereitet, sondern auch meine wissenschaftliche Entwicklung gefördert. Darüber hinaus danke ich ihr für das sorgfältige Lesen meiner Dissertationsschrift, ihre Korrekturvorschläge und Denkanstöße.

Herrn Univ.-Prof. Dr. med. Christoph Fahlke danke ich ganz herzlich dafür, dass er meine Promotion als Zweitbetreuer begleitet hat. Ich danke ihm auch dafür, dass er sich die Zeit für Fortschrittsgespräche und Diskussionen genommen hat.

Mein besonderer Dank gilt weiterhin allen aktuellen und ehemaligen Mitgliedern der AG Scholl und der Experimentellen Nephrologie. Frau Dr. rer. nat. Gudrun Walenda danke ich für die konstruktive Zusammenarbeit an zahlreichen Projekten und dafür, dass sie mich mit viel Ruhe und Geduld im Labor eingearbeitet hat. Frau Dr. vet. med. Julia Schewe danke ich für ihre Unterstützung im Labor, die konstruktive Zusammenarbeit an zahlreichen Projekten und ihre moralische Unterstützung. Auch möchte ich ihr ganz herzlich für das sorgfältige Korrekturlesen meiner Doktorarbeit und ihre zahlreichen Impulse danken. Frau Dr. rer. nat. Anne Thiel und Frau Dr. rer. nat. Esther Reimer möchte ich für ihre unermüdliche Unterstützung bei zahlreichen Experimenten und administrativen Abläufen danken. Besonderer Dank gilt auch Frau Blanka Duvnjak, Frau Christina Schwandt und Frau Nicola Kuhr dafür, dass sie mir bei Schwierigkeiten mit administrativen Abläufen und experimentellen Methoden immer geholfen und das Labor stets vor Chaos bewahrt haben.

Darüber hinaus danke ich Herrn Atmane Seck und Herrn Larbi Amazit vom Institut de cancérologie Gustave Roussy für die Hilfe bei der Methodenentwicklung, Herrn Dr. rer. nat. Hans-Wolfgang Hoppe vom Medizinischen Labor Bremen für die Durchführung der Messungen von intrazellulärem Mitotan und Herrn PD Dr. rer. nat. Gerhard Lie-

bisch vom Institut für Klinische Chemie und Laboratoriumsmedizin des Universitätsklinikum Regensburg für das Messen von intrazellulären Lipiden. Großer Dank gilt auch Herrn Clemens Messerschmidt und Herrn Dr. rer. nat. Benedikt Obermayer von der Core Unit Bioinformatics – CUBI vom Berlin Institute of Health (BIH) für die Auswertung der Genexpressions- und Exomseqeunzierungsdaten.

Zuletzt möchte ich meinen Freunden und meiner Familie danken. Ganz besonderer Dank gilt meiner Frau Elyesa dafür, dass sie mich durch meine Höhen und Tiefen vor und während der Promotionszeit stets unterstützt und an mich geglaubt hat. Meinem Opa Arno möchte ich dafür danken, dass er mich dazu angeleitet hat die Natur zu hinterfragen und mich ermutigt hat eine wissenschaftliche Laufbahn einzuschlagen. Ruhe in Frieden. Meinem Vater Hans-Manfred und meiner Mutter Ute danke ich dafür, dass sie bereits als Kind mein Interesse an Chemie geweckt und gefördert haben und mich auf meinem Weg immer unterstützt hat, egal wie schwer es war. Außerdem danke ich meiner Oma Ingrid und meinen Schwestern Maren und Sabine für ihre Ratschläge, Hilfe und Unterstützung zu jeder Zeit. Meinem guten Freund Steven danke ich für viele spannende Diskussionen über Wissenschaft und für das Korrekturlesen meiner Arbeit.

15 Appendix

Appendix 1: Complete Results of the Gene Ontology Enrichment Analysis

			Biolo	gical Proces	ses for Upregu	lated Gene	s Nonresistant DMSO vs. Mitotane				
GO.ID	Term blood vessel	Annotated	Significant	Expected	classicFisher	GO.ID	Term mammary gland branching involved in	Annotated	Significant	Expected	classicFisher
48514	morphogenesis steroid metabolic	233	36 28	18,77	0.00010	60745 71635	preg negative regulation of transforming	5	3	0,4	0.00460
70372	process regulation of ERK1 and	102	20	8 22	0.00015	1902337	grow regulation of apoptotic process	5	3	0,4	0.00460
6704	ERK2 cascade glucocorticoid	8	5	0.64	0.00015	1904748	involved regulation of apoptotic process	5	3	0.4	0.00460
0011	glucocorticoid metabolic	10	6	0.07	0.00016	6000	Invoived	115	10	0.07	0.00465
50996	process	12	292	0,97	0.00016	42226	priagocylosis	276	35	9,27	0.00465
9605	response to external	914	103	73.65	0.00019	10466	negative regulation of peptidase	89	15	7 17	0.00466
5005	stimulus multicellular organismal	514	100	10,00	0.00010	10400	activit regulation of cytosolic calcium ion	00	10	7,17	0.00400
32501	process phosphatidylserine acyl-	3139	297	252,93	0.00019	51480	conc	89	15	7,17	0.00466
2920	chain remodeling regulation of humoral	17	4	1 37	0.00020	52547	regulation of pentidase activity	189	26	15 23	0.00471
30855	immune response epithelial cell	287	41	23.13	0.00020	7015	actin filament organization	199	27	16.03	0.00497
1525	differentiation angiogenesis	189	30	15.23	0.00024	48638	regulation of developmental growth	152	22	12.25	0.00499
43277	apoptotic cell clearance	18	7	1,45	0.00031	71363	cellular response to growth factor	358	43	28,85	0.00501
32101	regulation of response	274	39	22,08	0.00031	45055	regulated exocytosis	389	46	31,34	0.00505
9410	response to xenobiotic	48	12	3,87	0.00032	50678	regulation of epithelial cell proliferat	143	21	11,52	0.00507
9719	response to	810	92	65,27	0.00033	72659	protein localization to plasma	143	21	11,52	0.00507
71495	cellular response to	706	82	56,89	0.00035	71634	regulation of transforming growth	15	5	1,21	0.00508
6509	membrane protein	24	9	1.02	0 00030	6026	muscle contraction	194	20	10.9	0.00512
6812	ectodomain proteolysis	462	0 59	1,93	0.00039	30148	sphingolipid biosynthetic process	57	11	10,0	0.00512
48646	anatomical structure	462	58	37.23	0.00040	72006	nenhron development	57	11	4,59	0.00515
60326	formation involved	78	16	6.28	0.00040	23051	regulation of signaling	1750	168	141.01	0.00518
1902904	negative regulation of	71	15	5.72	0.00043	35556	intracellular signal transduction	1474	144	118 77	0.00540
1002004	supramolecular fi	<i>,</i> ,	15	0,72	0.00040	00000	negative regulation of inflammatory	14/4	144	110,77	0.00040
71310	organic substance	1320	138	106,36	0.00045	50728	resp	42	9	3,38	0.00540
32940	secretion by cell	680	79	54,79	0.00045	55074	calcium ion homeostasis	144	21	11,6	0.00550
2526	response cellular linid metabolic	43	11	3,46	0.00045	51240	org	678	73	54,63	0.00557
44255	process respiratory system	578	69	46,57	0.00049	6875	cellular metal ion homeostasis	220	29	17,73	0.00557
60541	development	95	18	7,65	0.00050	6694	steroid biosynthetic process	117	18	9,43	0.00559
30001	metal ion transport glycerol-3-phosphate	338	45	27,23	0.00051	33619	membrane protein proteolysis	35	8	2,82	0.00568
6072	metabolic process	3	3	0,24	0.00052	8643	carbohydrate transport	/4	13	5,96	0.005/1
48732	giano development mineralocorticoid	225	33	18,13	0.00052	55080	cation nomeostasis	290	36	23,37	0.00584
6705	biosynthetic process mineralocorticoid	6	4	0,48	0.00055	10742	regulation of macrophage derived	10	4	0,81	0.00592
71447	metabolic process cellular response to	6	4	0,48	0.00055	34105	foam ce positive regulation of tissue	10	4	0.81	0.00592
3012	hydroperoxide muscle system process	183	28	14 75	0.000000	72576	remodeling liver morphogenesis	10	4	0,81	0.00592
51716	cellular response to	3546	326	285 72	0.00000	1990000	amyloid fibril formation	10	4	0.81	0.00592
	stimulus epithelial cell	0040	020	200,72	0.00072	1000000				0,01	0.00002
50673	proliferation xenobiotic metabolic	166	26	13,38	0.00074	9617	response to bacterium	173	24	13,94	0.00594
6805	process	39	10	3,14	0.00080	6869	lipid transport	145	21	11,68	0.00596
9888	tissue development C21-steroid hormone	876	96	70,58	0.00084	70661	leukocyte proliferation negative regulation of protein kinase	100	16	8,06	0.00596
8207	metabolic process	21	7	1,69	0.00091	6469	ac	155	22	12,49	0.00630
32963	collagen metabolic process C21-storoid bormono	47	11	3,79	0.00102	22617	extracellular matrix disassembly	43	9	3,46	0.00636
6700	biosynthetic process	16	6	1,29	0.00106	2000379	s	43	9	3,46	0.00636
8209	process	16	6	1,29	0.00106	10646	regulation of cell communication	1724	165	138,91	0.00638
1901615	compound metabolic	244	34	19,66	0.00110	1867	complement activation, lectin pathway	2	2	0,16	0.00648
46889	positive regulation of lipid biosyntheti	34	9	2,74	0.00114	2577	regulation of antigen processing and pre	2	2	0,16	0.00648
1901342	regulation of vasculature	110	19	8,86	0.00115	2578	negative regulation of antigen	2	2	0,16	0.00648
2921	development negative regulation of	7	4	0.56	0.00120	2583	regulation of antigen processing and	2	2	0.16	0.00648
30837	negative regulation of	28	8	2.26	0.00124	2584	pre negative regulation of antigen	2	2	0.16	0.00648
6972	actin filament po	265	26	01.05	0.00126	2500	processin regulation of antigen processing and	-	-	0.16	0.00648
0075		205	10	21,00	0.00120	2505	pre negative regulation of antigen	2	2	0,10	0.00040
8406	gonad development	111	19	8,94	0.00128	2590	processin negative regulation of chronic	2	2	0,10	0.00648
6887	exocytosis	464	56	37,39	0.00130	2677	inflammat	2	2	0,16	0.00648
6935 42330	taxis	219 219	31	17,65	0.00138	3310 5988	lactose metabolic process	2	2	0,16	0.00648
52548	regulation of	173	26	13,94	0.00138	5989	lactose biosynthetic process	2	2	0,16	0.00648
97006	regulation of plasma	42	10	3,38	0.00148	7341	penetration of zona pellucida	2	2	0,16	0.00648
1901136	carbohydrate derivative	104	18	8,38	0.00150	7354	zygotic determination of anterior/poster	2	2	0,16	0.00648
7548	sex differentiation	139	22	11,2	0.00161	9812	flavonoid metabolic process	2	2	0,16	0.00648
22612	gland morphogenesis	57	12	4,59	0.00164	10899	regulation of phosphatidylcholine	2	2	0,16	0.00648
32613	interleukin-10 production	12	5	0,97	0.00164	21984	adenohypophysis development	2	2	0,16	0.00648
44259	multicellular organismal	50	11	4,03	0.00175	30299	intestinal cholesterol absorption	2	2	0,16	0.00648
0690	macromolecule m negative regulation of	105	07	14.01	0.00170	20455	nonio growth factor accorption	0	0	0.10	0.00040
2003	immune system pro	C01	21	14,91	0.00176	32400	nerve growin racior processing	2	۷	0,10	0.00048

15 Appendix

1568	blood vessel	280	37	22,56	0.00180	32490	detection of molecule of bacterial	2	2	0,16	0.00648
71466	cellular response to	43	10	3.46	0.00180	32808	lacrimal gland development	2	2	0.16	0.00648
30324	kenobiotic stimulus lung development	81	15	6,53	0.00181	32902	nerve growth factor production	2	2	0,16	0.00648
43269	regulation of ion transport	223	31	17,97	0.00186	34196	acylglycerol transport	2	2	0,16	0.00648
51239	regulation of multicellular organismal	1322	134	106.52	0.00193	34197	triolyceride transport	2	2	0.16	0.00648
1000.4	p cGMP-mediated		2	0.00	0.00100	0.4000		•	2	0.40	0.00040
19934	signaling negative regulation of	4	3	0,32	0.00196	34382	cnylomicron remnant clearance	2	2	0,16	0.00648
32911	transforming grow	4	3	0,32	0.00196	42078	germ-line stem cell division	2	2	0,16	0.00648
34367	complex remodeling	4	3	0,32	0.00196	43435	horm	2	2	0,16	0.00648
34368	remodeling	4	3	0,32	0.00196	46069	cGMP catabolic process	2	2	0,16	0.00648
34369	plasma lipoprotein particle remodeling	4	3	0,32	0.00196	46351	disaccharide biosynthetic process	2	2	0,16	0.00648
52646	alditol phosphate	4	3	0,32	0.00196	46618	drug export	2	2	0,16	0.00648
60606	regulation of	4	0	0.22	0.00106	40100	male germ-line stem cell asymmetric	2	0	0.16	0.00649
00030	pro	4	5	0,52	0.00130	40133	divi	2	2	0,10	0.00040
61101	differentiation	4	3	0,32	0.00196	50910	involve	2	2	0,16	0.00648
61370	testosterone biosynthetic process	4	3	0,32	0.00196	51643	endoplasmic reticulum localization	2	2	0,16	0.00648
19722	calcium-mediated	66	13	5,32	0.00202	51694	pointed-end actin filament capping	2	2	0,16	0.00648
72359	circulatory system	463	55	37,31	0.00205	60535	trachea cartilage morphogenesis	2	2	0,16	0.00648
10033	response to organic	1632	161	131,5	0.00205	61669	spontaneous neurotransmitter	2	2	0,16	0.00648
9653	anatomical structure	1234	126	99.43	0.00206	71376	cellular response to corticotropin-	2	2	0.16	0 00648
1044	morphogenesis vasculature	000	00	00.50	0.00007	71500	relea ubiquitin-dependent protein catabolic	-	-	0,10	0.00040
1944	development lung alveolus	292	30	23,53	0.00207	71596	pr	2	2	0,16	0.00648
48286	development	18	6	1,45	0.00214	/1830	triglyceride-rich lipoprotein particle c	2	2	0,16	0.00648
60042	camera-type eye	18	6	1,45	0.00214	86097	angiotensin-a	2	2	0,16	0.00648
8585	development	44	10	3,55	0.00216	90272	growth	2	2	0,16	0.00648
45137	development of primary sexual characteri	116	19	9,35	0.00218	98581	detection of external biotic stimulus	2	2	0,16	0.00648
6702	androgen biosynthetic	8	4	0,64	0.00225	98728	germline stem cell asymmetric division	2	2	0,16	0.00648
19852	L-ascorbic acid	8	4	0,64	0.00225	98856	intestinal lipid absorption	2	2	0,16	0.00648
7369	dastrulation	108	18	8.7	0.00232	98912	membrane depolarization during atrial	2	2	0.16	0.00648
10022	second-messenger-	109	10	9.7	0.00222	2000966	ca positive regulation of estradiol	-	-	0.16	0.00649
50004	mediated signaling	100	10	0,7	0.00232	2000000	secreti regulation of acute inflammatory	2	2	0,10	0.00040
50801	adrenal gland	324	41	20,11	0.00238	20/3	respons	22	0	1,77	0.00652
30325	development	13	5	1,05	0.00249	60563	neuroepithelial cell differentiation	22	6	1,77	0.00652
30449	complement activation	13	5	1,05	0.00249	72376	protein activation cascade	22	6	1,77	0.00652
86010	membrane depolarization during	13	5	1,05	0.00249	10631	epithelial cell migration	128	19	10,31	0.00665
86010	membrane depolarization during action po regulation of protein	13	5	1,05	0.00249	10631	epithelial cell migration	128	19	10,31	0.00665
86010 2000257 46718	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell	13 13 60	5 5 12	1,05 1,05 4,83	0.00249 0.00249 0.00260	10631 90132 97435	epithelial cell migration epithelium migration	128 128 323	19 19 39	10,31 10,31 26.03	0.00665
86010 2000257 46718 97237	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to twice whetpeope	13 13 60 60	5 5 12 12	1,05 1,05 4,83 4,83	0.00249 0.00249 0.00260 0.00260	10631 90132 97435 6749	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process	128 128 323 36	19 19 39 8	10,31 10,31 26,03 2,9	0.00665 0.00665 0.00672 0.00680
86010 2000257 46718 97237 30323	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube	13 13 60 60 84	5 5 12 12 12	1,05 1,05 4,83 4,83 6,77	0.00249 0.00249 0.00260 0.00260 0.00263	10631 90132 97435 6749 6956	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation	128 128 323 36 16	19 19 39 8 5	10,31 10,31 26,03 2,9 1,29	0.00665 0.00665 0.00672 0.00680 0.00691
86010 2000257 46718 97237 30323 30155	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis cubstance respiratory tube development regulation of cell	13 13 60 60 84 296	5 5 12 12 15 38	1,05 1,05 4,83 4,83 6,77 23,85	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264	10631 90132 97435 6749 6956 7157	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via	128 128 323 36 16	19 19 39 8 5	10,31 10,31 26,03 2,9 1,29	0.00665 0.00665 0.00672 0.00680 0.00691
86010 2000257 46718 97237 30323 30155	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system	13 13 60 60 84 296	5 5 12 12 15 38	1,05 1,05 4,83 4,83 6,77 23,85	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264	10631 90132 97435 6749 6956 7157	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta	128 128 323 36 16 16	19 19 39 8 5 5	10,31 10,31 26,03 2,9 1,29 1,29	0.00665 0.00665 0.00672 0.00680 0.00691 0.00691
86010 2000257 46718 97237 30323 30155 72358	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development regulation of cell adhesion cardiovascular system development iomranic ion	13 13 60 60 84 296 296	5 5 12 12 15 38 38	1,05 1,05 4,83 4,83 6,77 23,85 23,85	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264	10631 90132 97435 6749 6956 7157 71604	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti	128 128 323 36 16 16 16	19 19 39 8 5 5 5	10,31 10,31 26,03 2,9 1,29 1,29 1,29	0.00665 0.00672 0.00680 0.00691 0.00691
86010 2000257 46718 97237 30323 30155 72358 98771	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis cubstance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis penetrive regulation of	13 13 60 60 84 296 296 296	5 12 12 15 38 38 38	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264	10631 90132 97435 6749 6956 7157 71604 48869	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process	128 128 323 36 16 16 16 1986	19 19 39 8 5 5 5 5 187	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 160,02	0.00665 0.00665 0.00672 0.00680 0.00691 0.00691 0.00691 0.00705
86010 2000257 46718 97237 30323 30155 72358 98771 32272	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz	13 13 60 60 84 296 296 296 38	5 12 12 15 38 38 38 9	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264	10631 90132 97435 6749 6956 7157 71604 48869 31032	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization	128 128 323 36 16 16 1986 93	19 19 39 8 5 5 5 5 187 15	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 1,29 1,60,02 7,49	0.00665 0.00672 0.00680 0.00691 0.00691 0.00691 0.00705 0.00708
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process	13 13 60 60 84 296 296 296 38 76	5 5 12 12 15 38 38 38 9 14	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion	128 128 323 36 16 16 1986 93 138	19 39 8 5 5 5 187 15 20	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12	0.00665 0.00672 0.00680 0.00691 0.00691 0.00691 0.00705 0.00708 0.00712
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell perioherv	13 13 60 60 84 296 296 296 38 76 163	5 5 12 12 15 38 38 38 9 14 24	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration	128 323 36 16 16 1986 93 138 129	19 39 8 5 5 187 15 20 19	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39	0.00665 0.00672 0.00680 0.00691 0.00691 0.00691 0.00705 0.00708 0.00712 0.00723
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure moth	13 13 60 60 84 296 296 296 38 76 163 502	5 5 12 12 15 38 38 38 9 14 24 58	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation	128 128 323 36 16 1986 93 138 129 315	19 19 39 8 5 5 5 187 15 20 19 38	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38	0.00665 0.00672 0.00680 0.00691 0.00691 0.00791 0.00708 0.00712 0.00723 0.00751
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development cardiovascular system development inorganic ion homeostasis organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation	13 13 60 60 84 296 296 296 38 76 163 502 259	5 5 12 12 15 38 38 38 38 9 14 24 58 34	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas ransforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic	128 128 323 36 16 1986 93 138 129 315 60	19 19 39 8 5 5 5 187 15 20 19 38 11	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83	0.00665 0.00672 0.00680 0.00691 0.00691 0.00691 0.00705 0.00708 0.00712 0.00723 0.00751 0.00768
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxis substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation homeostasis negative regulation of	13 13 60 60 84 296 296 296 296 38 76 163 502 259 77	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00295 0.00302	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune	128 128 323 36 16 1986 93 138 129 315 60 52	19 19 39 8 5 5 5 187 15 20 19 38 11	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83 4,19	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00758 0.00768
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation homeostasis negative regulation of cytoskeleton orga	13 13 60 60 84 296 296 296 296 38 76 163 502 259 77 46	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00295 0.00302	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765	epithelial cell migration epithelian migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas ransforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane	128 128 323 36 16 1986 93 138 129 315 60 52	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83 4,19 12,73	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00723 0.00751 0.00768 0.00769
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis protein localization of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation homeostasis negative regulation of cytoskeleton orga endoderm development	13 13 60 60 84 296 296 296 296 38 76 163 502 259 77 46	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10	1,05 1,05 4,83 4,83 6,77 23,85 23,85 23,85 23,85 23,85 13,13 40,45 20,87 6,2 3,71 0,0 42	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas ransforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane transpor cellular divalent inorganic cation	128 128 323 36 16 1986 93 138 129 315 60 52 158	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83 4,19 12,73	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00723 0.00751 0.00768 0.00769 0.00769
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation homeostasis engative regulation of cytoskeleton orga endoderm development locamotion	13 13 60 60 84 296 296 296 296 38 76 163 502 259 77 46 750	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81	1,05 4,83 4,83 6,77 23,85 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43	0.00249 0.00249 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765	epithelial cell migration epithelian migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane transpor cellular divalent inorganic cation homeo pensitive regulation of ER1 and	128 128 323 36 16 1986 93 138 129 315 60 52 158	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83 4,19 12,73	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00768 0.00768 0.00769 0.00789
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011 48878	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular redion homeostasis endoterm development locamotion cytoskeleton orga	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 750 494	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81 57 272	1,05 4,83 4,83 6,77 23,85 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307 0.00326 0.00329	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 2	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 12,73 2,98	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00768 0.00769 0.00789 0.00789 0.00789
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011 48878 32502	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular regulation of cytoskeleton orga endoderm development locamical homeostasis developmental process female sex	13 13 60 60 84 296 296 296 296 38 76 163 502 259 77 46 750 494 2938 54	5 5 12 12 15 38 38 38 9 14 24 58 34 14 10 81 57 270 11	1,05 4,83 4,83 6,77 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,85 23,71 6,2 3,71 60,43 39,8 236,73 4,35	0.00249 0.00249 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00264 0.00275 0.00295 0.00302 0.00302 0.00304 0.00326 0.00329 0.00332	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 61028 1775	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and EFK2 cas establishment of endothelial barrier cell activation	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613	19 19 39 8 5 5 5 5 187 15 20 19 38 11 10 22 22 8 6 6 66	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,83 4,19 12,73 12,73 2,98 1,85 49,39	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00768 0.00768 0.00769 0.00789 0.00789 0.00789
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011 48878 32502 46660	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular redion homeostasis endet or regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process firmale sex differentiation negative regulation of negative regulation of comotion	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 750 494 2938 54 78	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14	1,05 4,83 4,83 4,83 23,85 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,29	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307 0.00326 0.00329 0.00332 0.00332 0.00333	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and EFK2 cas establishment of endothelial barrier cell activation	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 6 66 14	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 12,73 2,98 1,85 49,39 6,92	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00789 0.00789 0.00808 0.00823 0.00825
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011 48878 32502 46660 71901	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular redion homeostasis development locamical homeostasis development locomotion chemical homeostasis developmental process differentiation negative regulation of rytoskeleton orga endoderm development locomotion	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 750 494 2938 54 78	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307 0.00326 0.00329 0.00332 0.00333 0.00344	10631 90132 97435 6749 6956 7157 71604 48669 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613 86	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 6 66 14	10,31 10,31 26,03 2,9 1,29 1,29 1,29 160,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 12,73 2,98 1,85 49,39 6,93	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00768 0.00769 0.00789 0.00789 0.00789 0.00808 0.00823 0.00825 0.0083
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 7492 40011 48878 32502 46660 71901 48583	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular redion homeostasis negative regulation of cytoskeleton orga endoderm development locamotion chemical homeostasis developmental process differentiation negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus neentity response to stimulus	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 750 494 2938 54 78 2001	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14 191	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00264 0.00275 0.00295 0.00302 0.00302 0.00304 0.00307 0.00326 0.00329 0.00332 0.00333 0.00344 0.00345	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolice p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613 86 69	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 6 66 14 12	10,31 10,31 26,03 2,9 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00789 0.00789 0.00808 0.00823 0.00825 0.00839 0.00842
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 46660 71901 48583 1818	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development inorganic ion homeostasis negative regulation of cell periphery rotein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response to cytoskeleton orga endoderm development locamical homeostasis development approximation homeostasis developmental protein polymeriz endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of notes in serine/th regulation of response	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 293 54 293 54 293 294 295 295 295 295 295 295 295 295	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14 191 18	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00304 0.00307 0.00326 0.00329 0.00332 0.00332 0.00334 0.00344 0.00345 0.00349	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me tormation of primary germ layer endoderm formation	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613 86 69 30	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00789 0.00789 0.00808 0.00823 0.00823 0.00823 0.00842 0.00845
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 46660 71901 48583 1818 9311	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular reispineny regulation of anatomical structure morph endoderm development locamical nomeostasis development approximation homeostasis developmental process differentiation negative regulation of protein polymental chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th regulation of response	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 2938 54 2938 54 290 112 206	5 5 12 12 15 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14 191 18 7	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00302 0.00304 0.00302 0.00329 0.00329 0.00329 0.00332 0.00344 0.00345 0.00349 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via producti transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation	128 128 323 36 16 1986 93 138 129 315 60 52 158 37 23 613 86 69 30 369	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43	10,31 10,31 26,03 2,9 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00769 0.00789 0.00808 0.00823 0.00823 0.00823 0.00842 0.00845 0.0085
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 46660 71901 48583 1818 9311 9880	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell peripheny regulation of anatomical structure morph cellular reispineny regulation of anatomical structure morph endoderm development locamotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th regative regulation of section the setion setion the setion the setion the setion setion the setion the set of the s	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 2938 54 2938 54 290 112 26 26 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 10 81 57 270 11 14 191 18 7 7	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00333 0.00344 0.00345 0.00349 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of inmune response regulation of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERK2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation in transmembrane transport	128 128 323 36 16 1986 93 138 129 315 60 52 158 158 37 23 613 86 613 86 93 30 369 453	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 6 66 14 12 7 43 51	10,31 10,31 26,03 2,9 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 4,939 6,93 5,56 2,42 29,73 36,5	0.00665 0.00672 0.00691 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00769 0.00789 0.00820 0.00823 0.00825 0.00845 0.00850 0.00850
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cation homeostasis negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th regulation of response to stimulus negative regulation of cytokine process embryonic pattern specification macrophage derived form cell differentia	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 48 200 112 26 26 26 219 219 219 219 229 229 239 249 259 259 259 259 259 259 259 25	5 5 12 12 15 38 38 38 38 9 14 24 58 34 14 24 58 34 11 10 81 57 270 11 11 18 7 7 5	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 1,13	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00302 0.00302 0.00302 0.00333 0.00344 0.00345 0.00349 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p regulation of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation response to growth factor ion transmembrane transport nephron epithelium development	128 323 36 16 19 1986 93 129 315 60 52 158 37 23 613 86 69 30 369 453	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63	0.00665 0.0062 0.00691 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00789 0.00789 0.00825 0.00825 0.00845 0.00855
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742 90077	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response cellular cation homeostasis negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of cytoskiel process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th oligosaccharide matabolic process embryonic pattern specification macrophage derived foan cell differentiation	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 259 259 112 269 290 112 200 112 26 26 113 295 1112 295 1112 295 1112 295 1112 205 1112 205 1112 205 1112 205 1112 205 1112 205 1112 205 1112 205 1112 205 1112 205 114 114 115 115 115 115 115 11	5 5 12 12 15 38 38 38 9 14 24 58 34 14 20 58 34 11 10 81 57 270 11 11 18 7 7 5 5	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 1,13 1,13	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00333 0.00344 0.00345 0.00345 0.00349 0.00362 0.00362 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation response to growth factor ion transmembrane transport nephron epithelium development chandroitin sulfate catabolic process	128 128 323 36 16 19 19 138 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6	 19 19 39 8 5 5 5 7 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48	0.00665 0.00625 0.00631 0.00691 0.00691 0.00703 0.00703 0.00712 0.00751 0.00769 0.00769 0.00769 0.00789 0.00823 0.00823 0.00845 0.00845 0.0085 0.00865 0.00865 0.00865
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40660 71901 48583 1818 9311 9880 10742 90077 45321	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cellular cation homeostasis negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process enstyonic pattern segative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th oligosaccharide metabolic process embryonic pattern specification macrophage derived foam cell differentia foam cell differentia	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 494 2938 54 2001 112 26 26 1112 26 26 112 26 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 11 18 7 7 5 5 62	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 1,13 1,13 44,24	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00268 0.00275 0.00295 0.00302 0.00302 0.00302 0.00302 0.00333 0.00344 0.00345 0.00345 0.00349 0.00362 0.00362 0.00362 0.00362 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 72009 30207 32905	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation response to growth factor ion transmembrane transport nephron epithelium development chondroitin sulfate catabolic process transforming growth factor beta1 product	128 323 36 16 19 19 93 138 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6 6	 19 19 39 8 5 5 5 7 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 3 	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0,48	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00769 0.00789 0.00823 0.00823 0.00823 0.00845 0.00845 0.0085 0.00865 0.00865 0.00865
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742 90077 45321 55082	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response to cellular distructure morph endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of cytokine producti oligosaccharide metabolic process embryonic pattern specification macrophage derived foam cell differentia foam cell differentia foam cell differentia foam cell differentia	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 259 259 112 269 214 122 26 26 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 11 18 7 7 5 5 62 42	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 1,13 1,13 44,24 27,56	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00265 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00344 0.00345 0.00345 0.00349 0.00362 0.00362 0.00362 0.00362 0.00362 0.00362 0.00362 0.00362 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 72099 30207 32905 32908	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation response to growth factor ion transmembrane transport nephron epithelium development chondoritin sulfate catabolic process transforming growth factor beta1 product regulation of transforming growth factor	128 128 323 36 16 19 19 138 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6 6 6 6 6 6	 19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 3 3 3 	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0,48 0,48	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00769 0.00769 0.00789 0.00825 0.00845 0.0085 0.0085 0.00865 0.00866 0.00866 0.00866
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742 90077 45321 55082 48870	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular cellular cation homeostasis negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process ensitive regulation of protein serine/th regulation of response to stimulus negative regulation of cytokine producti oligosaccharide metabolic process embryonic pattern specification macrophage derived foam cell differentia foam cell differentia	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 259 259 112 269 214 112 26 26 113 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 14 191 18 7 7 5 5 62 42 70 27 27 27 27 27 27 27 27 27 27	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 1,13 1,13 44,24 27,56 51,17	0.00249 0.00249 0.00260 0.00260 0.00264 0.00264 0.00264 0.00264 0.00264 0.00265 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00344 0.00345 0.00345 0.00349 0.00362 0.00362 0.00362 0.00362	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 72099 30207 32905 32908 33630	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation response to growth factor ion transmembrane transport nephron epithelium development chordoritin sulfate catabolic process transforming growth factor beta1 product regulation of transforming growth factor positive regulation of cell adhesion med	128 128 323 36 16 19 19 138 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6 6 6 6 6 6 6 6 6 6 6	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 3 3 3 3 3	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0,48 0,48 0,48	0.00665 0.00625 0.00631 0.00691 0.00691 0.00703 0.00703 0.00712 0.00751 0.00769 0.00769 0.00769 0.00769 0.00789 0.00825 0.00825 0.0085 0.0085 0.00865 0.00866 0.00866 0.00866 0.00866
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742 90077 45321 55082 48870 55682	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response to cellular distructure morph endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process embryonic pattern specification metabolic process embryonic pattern specification metabolic process embryonic pattern specification cellular cellular differentiation cellular cellular differentiation cellular cellular differentiation cellular cellular differentiation cellular cellular differentiation cellular cellular differentiation cellular chemical homeostasis cell motility localization of cell defense response	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 259 259 112 269 259 141 112 26 26 112 26 26 29 112 26 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 14 191 18 7 7 5 5 62 42 70 70 70 70 70 70 70 70 70 70	1,05 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 2,09 1,13 1,13 44,24 27,56 51,17 51,17 51,17 51,17	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00265 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00344 0.00345 0.00345 0.00345 0.00362 0.00362 0.00362 0.00362 0.00362 0.00376 0.0	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 70948 34220 72099 30207 32905 32908 335328	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation response to growth factor ion transmembrane transport nephron epithelium development chondoritin sulfate catabolic process transforming growth factor beta1 product regulation of transforming growth factor positive regulation of cell adhesion med	128 128 323 36 16 19 19 138 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6 6 6 6 6 6 6 6 6 6 6	19 19 39 8 5 5 5 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 3 3 3 3 3 3	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0,48 0,48 0,48	0.00665 0.00672 0.00680 0.00691 0.00691 0.00705 0.00708 0.00712 0.00751 0.00769 0.00769 0.00769 0.00769 0.00769 0.00825 0.00825 0.00845 0.0085 0.00865 0.00866 0.00866 0.00866
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40011 48583 1818 9311 9880 10742 90077 45321 55082 48870 55672 33673	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response to cell periphery regulation of anatomical structure morph endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of protein serine/th regulation of response to stimulus negative regulation of protein serine/th oligosaccharide metabolic process embryonic pattern specification macrophage derived foam cell differentia foam cell diffe	 13 13 60 60 84 296 296 38 76 163 502 259 77 46 750 494 2938 54 78 2001 112 26 26 14 14 549 342 635 	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 14 191 18 7 7 5 5 62 42 70 70 70 70 70 70 70 70 70 70	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 2,09 2,09 1,13 1,13 44,24 27,56 51,17 51,17 51,17 51,17 51,17 51,34	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00265 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00344 0.00345 0.00345 0.00345 0.00345 0.00362 0.00362 0.00362 0.00362 0.00376 0.00376 0.00377 0.00376 0.0	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 72099 30207 32905 32908 33630 35378 48671	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via plas transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p regulator of ion transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation regulation of reactive oxygen species me formation of primary germ layer endoderm formation response to growth factor ion transmembrane transport nephron epithelium development chondroitin sulfate catabolic process transforming growth factor beta1 product regulation of cell adhesion metars, and transforming growth factor positive regulation of cell adhesion met	128 323 36 16 19 19 31 129 315 60 52 158 37 23 613 86 69 30 369 453 45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 19 19 39 8 5 5 5 7 187 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 1,29 1,29 1,29 25,38 4,19 12,73 2,58 4,19 12,73 2,98 1,85 4,939 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0,48 0,48 0,48 0,48 0,48	0.00665 0.00625 0.00631 0.00691 0.00691 0.00703 0.00703 0.00712 0.00751 0.00769 0.00769 0.00769 0.00769 0.00769 0.00825 0.00825 0.00845 0.0085 0.00865 0.00866 0.00865 0.08
86010 2000257 46718 97237 30323 30155 72358 98771 32272 46434 1990778 22603 30003 51494 40011 48878 32502 40011 48878 32502 46660 71901 48583 1818 9311 9880 10742 90077 45321 55082 48870 55672 33673 6067	membrane depolarization during action po regulation of protein activation cascade viral entry into host cell cellular response to toxic substance respiratory tube development regulation of cell adhesion cardiovascular system development inorganic ion homeostasis negative regulation of protein polymeriz organophosphate catabolic process protein localization to cell periphery regulation of anatomical structure morph cellular response to cellular distructure morph endoderm development locomotion chemical homeostasis developmental process differentiation negative regulation of cytoskeleton orga endoderm development locomotion chemical homeostasis developmental process embryonic pattern specification metabolic process embryonic pattern specification metabolic process embryonic pattern specification cellular cellular differentiation leukocyte activation cellular cellular differentiation leukocyte activation cellular cellular developmental developmental process embryonic pattern specification macrophage derived foam cell differentia foam cellular chemical foam cellular chemical fo	13 13 60 60 84 296 296 296 38 76 163 502 259 77 46 259 77 46 259 77 46 259 259 112 269 244 2938 54 2001 112 26 26 26 26 26 29 29 29 29 29 29 29 29 29 29	5 5 12 12 15 38 38 38 9 14 24 58 34 14 24 58 34 14 10 81 57 270 11 14 191 18 7 7 5 5 62 42 70 70 70 70 72 5 5 62 42 70 70 70 70 70 70 70 70 70 70	1,05 4,83 4,83 4,83 6,77 23,85 23,85 23,85 3,06 6,12 13,13 40,45 20,87 6,2 3,71 60,43 39,8 236,73 4,35 6,28 161,23 9,02 2,09 2,09 2,09 2,09 2,09 1,13 1,13 44,24 27,56 51,17 51,17 51,17 51,17 51,17 51,17 51,34 6,23 2,346 2,346 2,346 2,346 2,346 2,347 2,346 2,347 2,	0.00249 0.00249 0.00260 0.00260 0.00263 0.00264 0.00264 0.00264 0.00264 0.00265 0.00295 0.00302 0.00302 0.00302 0.00302 0.00326 0.00329 0.00323 0.00344 0.00345 0.00345 0.00345 0.00345 0.00362 0.00362 0.00362 0.00362 0.00362 0.00362 0.00376 0.00376 0.00377 0.00378 0.00379	10631 90132 97435 6749 6956 7157 71604 48869 31032 7159 90130 2274 45834 50777 34765 72503 70373 61028 1775 2000377 1704 1706 70848 34220 7009 30207 32905 32908 33630 35376 48671 51004	epithelial cell migration epithelium migration supramolecular fiber organization glutathione metabolic process complement activation heterophilic cell-cell adhesion via pias transforming growth factor beta producti cellular developmental process actomyosin structure organization leukocyte cell-cell adhesion tissue migration myeloid leukocyte activation positive regulation of lipid metabolic p negative regulation of immune response regulation of in transmembrane transpor cellular divalent inorganic cation homeo negative regulation of ERK1 and ERX2 cas establishment of endothelial barrier cell activation response to growth factor ion transmembrane transport nephron epithelium development chondoritin sulfate catabolic process transforming growth factor beta1 product regulation of transforming growth factor positive regulation of cell adhesion med sterol import hexose transmembrane transport negdiation of cell adhesion med sterol import hexose transmembrane transport negdiation of cell adhesion regulation of primary germ layer regulation of cell adhesion regulation of transforming growth factor positive regulation of cell adhesion regulation of primary germ layer regulation of reastoris per	128 128 323 36 16 19 13 138 129 315 60 52 158 37 23 613 36 37 23 613 36 69 30 369 453 45 6 6 6 6 6 6 6 6 6 6 6 6 6	 19 19 39 8 5 5 5 7 15 20 19 38 11 10 22 22 8 6 66 14 12 7 43 51 9 3 	10,31 10,31 26,03 2,9 1,29 1,29 1,29 1,29 100,02 7,49 11,12 10,39 25,38 4,19 12,73 2,58 4,83 4,19 12,73 2,98 1,85 49,39 6,93 5,56 2,42 29,73 36,5 3,63 0,48 0	0.00665 0.0065 0.00691 0.00691 0.00691 0.00709 0.00709 0.00720 0.00751 0.00769 0.00769 0.00769 0.00769 0.00769 0.00820 0.00820 0.00845 0.0085 0.00865 0.00866 0.0086 0.0086 0.00866 0.00866 0.00866 0.00866 0.0086

15 Appendix

32703	negative regulation of	9	4	0,73	0.00379	60046	regulation of acrosome reaction	6	3	0,48	0.00866
32733	positive regulation of	9	4	0,73	0.00379	60484	lung-associated mesenchyme	6	3	0,48	0.00866
26151	phosphatidylcholine	9	4	0.73	0.00270	61081	positive regulation of myeloid	6	3	0.48	0.00966
72574	acyl-chain remodelin	9	4	0,73	0.00379	70508	leukocyte cholesterol import	6	3	0,40	0.00866
72575	epithelial cell	9	4	0,73	0.00379	1904659	ducose transmembrane transport	6	3	0,48	0.00866
	proliferation involved i regulation of protein	0		0,70	0.00070	1005050	monosaccharide transmembrane		0	0,10	0.00000
15018	kinase C signaling	9	4	0,73	0.00379	1905950	transport	0	3	0,48	0.00806
15850	organic hydroxy	40 79	9 14	5,22 6 37	0.00388	7340	acrosome reaction	11	4	0,89	0.00871
10000	compound transport phosphatidic acid			0,07	0.00000	7040				0,00	0.00071
6654	biosynthetic process	20	6	1,61	0.00389	32653	regulation of interleukin-10 production	11	4	0,89	0.00871
46473	phosphatidic acid metabolic process	20	6	1,61	0.00389	45940	positive regulation of steroid metabolic	11	4	0,89	0.00871
32879	regulation of localization	1268	127	102,17	0.00396	50858	negative regulation of antigen	11	4	0,89	0.00871
10051	negative regulation of	00	15	7.00	0.00419	E1042	regulation of membrane protein		4	0.90	0.00971
10951	endopeptidase act	00	15	7,09	0.00410	51045	ectodomai		4	0,09	0.00871
46545	female sexual cha	48	10	3,87	0.00425	1902532	sig	308	37	24,82	0.00884
6874	cellular calcium ion homeostasis	141	21	11,36	0.00429	2697	regulation of immune effector process	141	20	11,36	0.00901
44236	multicellular organism	56	11	4,51	0.00447	6066	alcohol metabolic process	179	24	14,42	0.00903
5000	metabolic process monosaccharide	100	00	10.00	0.00450	01450		010	00	17.57	0.00005
10976	metabolic process	160	23	12,09	0.00452	16042	lipid astabalia process	210	20	12.90	0.00905
00/8	anterior/posterior axis	27	7	2 19	0.00452	578	ambruonic axis specification	17	5	12,09	0.00911
3340	specification plasma lipoprotein	21	1	2,10	0.00433	570	humoral immune response mediated	17	5	1,07	0.00313
34381	particle clearance	27	7	2,18	0.00455	2455	by circ	17	5	1,37	0.00915
1845	phagolysosome assembly	5	3	0,4	0.00460	1816	cytokine production	299	36	24,09	0.00940
						6575	cellular modified amino acid metabolic	105	16	8,46	0.00953
						10694	p positive regulation of epithelial cell	60		5	0.00084
						16740	m	62	11	5	0.00984
						9887	animal organ morphogenesis	478	53	38,52	0.00993
						50900	leukocyte migration	133	19	10,72	0.00998
			_								
GO.ID	Term	Annotated	Significant	Expected	classicFisher	GO.ID	Term	Annotated	Significant	Expected	classicFisher
6636	unsaturated fatty acid	18	2	0,02	0.00011	48839	inner ear development	68	2	0,06	0.00167
43436	oxoacid metabolic	671	5	0.62	0.00013	45596	negative regulation of cell	309	3	0.29	0 00224
40400	process organic acid metabolic	0/1	5	0,02	0.00010	40000	differentiat	000	0	0,20	0.00224
6082	process	674	5	0,63	0.00013	15850	organic hydroxy compound transport	79	2	0,07	0.00224
32365	Intracellular lipid transport	22	2	0,02	0.00017	30324	lung development	81	2	0,08	0.00236
71398	cellular response to	28	2	0,03	0.00028	30323	respiratory tube development	84	2	0,08	0.00253
42632	cholesterol homeostasis	29	2	0,03	0.00030	43583	ear development	85	2	0,08	0.00259
55092	sterol homeostasis	29	2	0,03	0.00030	60541	respiratory system development	95	2	0,09	0.00323
10914	inner ear	31	2	0,03	0.00035	46907	antracenular transport	105	2	1,24	0.00334
42472	morphogenesis	31	2	0,03	0.00035	/1229	central response to acid chemical	105	2	0,1	0.00393
45017	process	166	3	0,15	0.00037	9719	response to endogenous stimulus	810	4	0,75	0.00399
16053	organic acid biosynthetic process	169	3	0,16	0.00039	45444	fat cell differentiation	106	2	0,1	0.00400
46394	carboxylic acid	169	3	0.16	0.00039	90596	sensory organ morphogenesis	106	2	0.1	0.00400
	biosynthetic process			0,10			regulation of cellular ketone metabolic		-		0.00100
30301	cholesterol transport	34	2	0,03	0.00042	10565		115	2	0,11	0.00470
						51002	negative regulation of developmental				0.00481
15918	sterol transport	40	2	0,04	0.00058	31033	pro	404	3	0,38	
15918 70542	sterol transport response to fatty acid	40 42	2 2	0,04 0,04	0.00058 0.00064	45595	pro regulation of cell differentiation	404 860	3 4	0,38 0,8	0.00497
15918 70542 97006	sterol transport response to fatty acid regulation of plasma lipoprotein particl	40 42 42	2 2 2	0,04 0,04 0,04	0.00058 0.00064 0.00064	45595 51649	pro regulation of cell differentiation establishment of localization in cell	404 860 1471	3 4 5	0,38 0,8 1,37	0.00497 0.00512
15918 70542 97006 42471	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis	40 42 42 44	2 2 2 2	0,04 0,04 0,04 0,04	0.00058 0.00064 0.00064 0.00070	45595 51649 51049	pro regulation of cell differentiation establishment of localization in cell regulation of transport	404 860 1471 881	3 4 5 4	0,38 0,8 1,37 0,82	0.00497 0.00512 0.00543
15918 70542 97006 42471 33559	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process	40 42 42 44 45	2 2 2 2 2	0,04 0,04 0,04 0,04 0,04	0.00058 0.00064 0.00064 0.00070 0.00073	45595 51649 51049 48562	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis	404 860 1471 881 126	3 4 5 4 2	0,38 0,8 1,37 0,82 0,12	0.00497 0.00512 0.00543 0.00561
15918 70542 97006 42471 33559 15748	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester	40 42 42 44 45 47	2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080	45595 51649 51049 48562 33993	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid	404 860 1471 881 126 443	3 4 5 4 2	0,38 0,8 1,37 0,82 0,12 0,41	0.00497 0.00512 0.00543 0.00561 0.00623
15918 70542 97006 42471 33559 15748 55088	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport linich homeostasis	40 42 42 44 45 47 52	2 2 2 2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04 0,04	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098	45595 51649 51049 48562 33993 6869	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid linid transport	404 860 1471 881 126 443 145	3 4 5 4 2 3 2	0,38 0,8 1,37 0,82 0,12 0,41 0,13	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737
15918 70542 97006 42471 33559 15748 55088 19217	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid	40 42 42 44 45 47 52 55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109	45595 51649 51049 48562 33993 6869 42180	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process	404 860 1471 881 126 443 145 152	3 4 5 4 2 3 2 2	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808
15918 70542 97006 42471 33559 15748 55088 19217	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance	40 42 42 44 45 47 52 55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109	45595 51649 51049 48562 33993 6869 42180	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process	404 860 1471 881 126 443 145 152	3 4 5 4 2 3 2 2	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808
15918 70542 97006 42471 33559 15748 55088 19217 1901576	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process	40 42 42 44 45 47 52 55 3735 3735	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109 0.00125 0.000125	45595 51649 51049 48562 33993 6869 42180 30258	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification	404 860 1471 881 126 443 145 152 153	3 4 5 4 2 3 2 2 2 2	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,14	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00818
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process	40 42 42 44 45 47 52 55 3735 3770	2 2 2 2 2 2 2 2 2 2 2 8 8 8	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109 0.00125 0.00134	45595 51649 51049 48562 33993 6869 42180 30258 10876 0001	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive requiation of biosynthetic	404 860 1471 881 126 443 145 152 153 160	3 4 5 4 2 3 2 2 2 2 2	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,14 0,15 0,00	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.000892
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process	40 42 42 44 45 47 52 55 3735 3770	2 2 2 2 2 2 2 2 2 2 2 8 8 8	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109 0.00125 0.00134	45595 51649 51049 48562 33993 6869 42180 30258 10876 9891	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc	404 860 1471 881 126 443 145 152 153 160 1037	3 4 5 4 2 3 2 2 2 2 2 4 4	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,14 0,15 0,96 0,94	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00890
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process	40 42 42 44 45 47 52 55 3735 3770	2 2 2 2 2 2 2 2 2 2 2 2 8 8 8	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109 0.00125 0.00134	 31039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen	404 860 1471 881 126 443 145 152 153 160 1037 2523 524	3 4 5 4 2 3 2 2 2 2 4 6 3	0.38 0.8 1.37 0.82 0.12 0.41 0.13 0.14 0.14 0.15 0.96 2.34 0.49	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00890 0.00991 0.00996
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process	40 42 42 44 45 55 3735 3770	2 2 2 2 2 2 2 2 2 2 2 8 8 8	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00070 0.00073 0.00080 0.00098 0.00199 0.00125 0.00134	 31036 31049 31049 31049 48562 33993 6869 42180 30258 10876 9891 10243 	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound	404 860 1471 881 126 443 145 152 153 160 1037 2523 524	3 4 5 4 2 3 2 2 2 2 2 4 6 3	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,14 0,14 0,15 0,96 2,34 0,49	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homestasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process	40 42 42 44 45 52 55 3735 3770	2 2 2 2 2 2 2 2 2 2 8 8 8 8 8 0 Terms ((0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00199 0.00125 0.00134	45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 pregulated 0	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane	404 860 1471 126 443 145 152 153 160 1037 2523 524	3 4 5 4 2 3 2 2 2 2 4 6 3	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,14 0,14 0,14 0,15 0,96 2,34 0,49	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process	40 42 42 44 45 52 55 3735 3770	2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 Go Terms (I Significant	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00109 0.00125 0.00134 unctions) for U classicFisher	45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 pregulated (GC.ID	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated	3 4 5 4 2 2 2 2 2 2 4 6 3 3 Significant	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00990 0.00991 0.00996
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process	40 42 42 44 45 55 3735 3770 Annotated 52	2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 8 Go Terms (f Significant 4	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00098 0.00199 0.00125 0.00134 anctions) for U classicFisher 0.00014	45595 51649 51049 48562 33993 6869 42180 30258 10876 9881 9889 10243 regulated of GO.ID	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113	3 4 5 4 2 2 2 2 2 2 2 2 4 6 3 3 Significant 4	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996 classicFisher 0.00270
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process	40 42 42 44 45 52 55 3735 3770 Annotated 52	2 2 2 2 2 2 2 2 2 2 8 8 8 8 9 Go Terms (1 5 1 9 1 9 1 9 1 9 2 2 2 2 2 2 2 2 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 3,47 3,5 Molecular Fl Expected 0,27	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.00098 0.00199 0.00125 0.00134 Inctions) for U classicFisher 0.00014	45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 pregulated (GC.ID 8509	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113	3 4 5 4 2 2 2 2 2 2 2 4 6 3 Significant 4	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996 classicFisher
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter	40 42 42 43 55 55 3735 3770 Annotated 52 52	2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 Go Terms (I Significant 4 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.00098 0.0019 0.00125 0.00134 Inctions) for U classicFisher 0.00014	51035 51649 51049 48562 33993 6869 42180 30258 10876 9881 9889 10243 regulated 6 GO.ID 8509	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid nodification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114	3 4 5 4 2 2 2 2 2 2 2 4 6 3 Significant 4	0,38 0,8 1,37 0,82 0,12 0,11 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996 classicFisher 0.00270
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter L-amino acid	40 42 42 43 45 55 3735 3770 Annotated 52 52	2 2 2 2 2 2 2 2 2 2 2 8 8 8 6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 Molecular Ft Expected 0,27 0,27	0.00058 0.00064 0.00070 0.00073 0.00080 0.00098 0.0019 0.00125 0.00134 inctions) for U classicFisher 0.00014 0.00014	51039 51649 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 pregulated 6 GO.ID 8509 16829 16829	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lipace activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114	3 4 5 4 2 2 2 2 2 2 2 4 6 3 Significant 4	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996 classicFisher 0.00270 0.00278
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter L-amino acid transmembrane transporter a	40 42 42 43 55 53 3735 3770 Annotated 52 52 52 52	2 2 2 2 2 2 2 2 2 2 8 8 8 Significant 4 4 3	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5	0.00058 0.00064 0.00070 0.00073 0.00080 0.00098 0.0019 0.00125 0.00134 motions) for U classicFisher 0.00014 0.00014	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 10243 pegulated (6C.ID 8509 16829 16874	pro regulation of cell differentiation establishment of localization in cell embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114	3 4 5 4 2 2 2 2 2 2 2 4 6 3 3 Significant 4 4	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00996 classicFisher 0.00270 0.00278 0.000446
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842	sterol transport response to fatty acid regulation of plasma lipoportein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a transporter a vitamin binding organic mode	40 42 42 43 55 3735 3735 3770 Annotated 52 52 25 71	2 2 2 2 2 2 2 2 2 2 2 3 8 8 Significant 4 4 3 3 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5	0.00058 0.00064 0.00070 0.00073 0.00080 0.00098 0.0019 0.00125 0.00134 Inctions) for U classicFisher 0.00014 0.00014 0.00028 0.00048	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9889 10243 pregulated GC.ID 8509 16829 16874 42803	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity protein homodimerization activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114 130 437	3 4 5 4 2 2 2 2 2 2 2 4 6 5 3 8 50gnificant 4 4 7	0,38 0,8 1,37 0,82 0,12 0,41 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,67 2,27	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00996 classicFisher 0.00270 0.00278 0.00278 0.00446 0.00676
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a transporter a vitamin binding organic anion	40 42 42 44 45 55 55 3735 3770 Annotated 52 52 52 25 71	2 2 2 2 2 2 2 2 2 2 2 3 8 8 Significant 4 4 3 4 4 4 4 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 3,47 3,5 Molecular Ft Expected 0,27 0,27 0,27 0,13 0,37 0,38	0.00058 0.00064 0.00070 0.00073 0.00080 0.00199 0.00125 0.00134 inctions) for U classicFisher 0.00014 0.00014 0.00028 0.00048 0.00056	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9889 10243 oregulated GO.ID 8509 16829 16829 16874 42803 46983	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity protein homodimerization activity protein dimerization activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 113 114 130 437 675	3 4 5 4 2 2 2 2 2 2 2 4 6 3 3 Significant 4 4 7 9	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00990 0.00996 classicFisher 0.00270 0.00278 0.00278 0.00278 0.00446 0.00676 0.00692
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process dispatchet acid transmembrane transporter a carboxylic acid transmembrane transporter a transmotrane transporter a vitamin binding organic anion transmembrane transporter a	40 42 42 43 55 55 3735 3770 Annotated 52 52 52 52 71 74	2 2 2 2 2 2 2 2 2 2 3 8 8 Significant 4 3 4 4 4 4 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 Molecular Ft Expected 0,27 0,27 0,27 0,37 0,38	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.00199 0.00125 0.00134 Inctions) for U classicFisher 0.00014 0.00014 0.00014 0.00028 0.00048 0.00056	31039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9889 10243 pregulated of GO.ID 8509 16829 16874 42803 46983	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity protein homodimerization activity protein dimerization activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 8 Annotated 113 114 130 437 675	3 4 5 4 2 2 2 2 2 2 4 6 3 3 Significant 4 4 7 9	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00892 0.00990 0.00991 0.00996 classicFisher 0.00270 0.00278 0.00246 0.00692
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transpont lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process disporter a transporter a transporter a transporter a transporter a transporter a transporter a transporter a transporter a transporter a secondary active transporter a	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74	2 2 2 2 2 2 2 2 2 2 3 8 8 Significant 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,05 0,37 0,27 0,13 0,37 0,38 0,41	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.00199 0.00125 0.00134 Inctions) for U classicFisher 0.00014 0.00014 0.00014 0.00028 0.00028 0.00056 0.00072	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9881 9889 10243 regulated (GO.ID 8509 16829 16874 42803 46983 99516	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity protein homodimerization activity protein dimerization activity ion antiporter activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 103 7 2523 111 114 130 437 675 25	3 4 5 4 2 3 2 2 2 2 4 6 3 Significant 4 4 4 7 9 2	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,67 2,27 3,5	0.00497 0.00542 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00990 0.00991 0.00996 classicFisher 0.00270 0.00278 0.00446 0.00676 0.00692 0.00732
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a L-amino acid transmembrane transporter a vitamin binding organic acion transmembrane transporter a vitamin binding organic acion transmembrane transporter a secondary active transmembrane transporter	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 79	2 2 2 2 2 2 2 2 2 2 8 8 8 Significant 4 4 3 4 4 4 4 4 4	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 Molecular F(Expected 0,27 0,27 0,13 0,37 0,38 0,41	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.00199 0.00125 0.00134 Inctions) for U classicFisher 0.00014 0.00014 0.00028 0.00048 0.00056 0.00072	51039 51649 51649 51649 51049 48562 33993 6869 42180 30258 10876 9891 10876 9891 10876 9891 10876 9891 10876 989 10876 9951 10876 9951 10876 9951 10876 10876 10876 10876 10876 10876 10876 10876 10876 10876 10876 10876 10876 10976 10876	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114 130 437 675 25	3 4 5 4 2 2 2 2 2 2 2 4 6 3 Significant 4 4 7 9 2	0,38 0,8 1,37 0,82 0,12 0,11 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,67 2,27 3,5 0,13	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00980 0.00991 0.00996 classicFisher 0.00270 0.00278 0.00446 0.00676 0.00692 0.00732
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis urnsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic proce organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a vitamin binding organic acion transmembrane transporter a vitamin binding organic anion transmembrane transporter a vitamin binding organic anion transporter secondary active transmembrane transporter transmembrane transporter	40 42 42 43 55 53 3735 3770 4 Annotated 52 52 25 71 74 79 10	2 2 2 2 2 2 2 2 2 2 8 8 8 Go Terms (I Significant 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0,04 0,04 0,04 0,04 0,04 0,05 3,47 3,5 Molecular Ft Expected 0,27 0,27 0,13 0,37 0,38 0,41 0,05	0.00058 0.00064 0.00070 0.00070 0.00073 0.00080 0.0019 0.00125 0.00134 inctions) for U classicFisher 0.00014 0.00014 0.00028 0.00048 0.00056 0.00072 0.00115	51039 51649 51649 51049 48562 33993 6869 42180 30258 10876 9891 9889 10243 pregulated (60.ID 8509 16874 42803 46983 99516 22804	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activity	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 Annotated 113 114 130 437 675 25 150	3 4 5 4 2 2 2 2 2 2 2 2 4 6 3 5ignificant 4 4 7 9 2 2 4	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,67 2,27 3,5 0,13 0,78	0.00497 0.00542 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00990 0.00990 0.00991 0.00996 classicFisher 0.00270 0.00278 0.00446 0.00672 0.00692 0.00732 0.00739
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483 16769	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport regulation of fatty acid metabolic proces organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a vitamin binding organic acid transmembrane transporter a secondary active transmembrane transporter a secondary active transmembrane transporter secondary active transmembrane transporter transaminase activity transferino nitro	40 42 42 43 55 53 3735 3770 4 Annotated 52 52 52 25 71 74 79 10	2 2 2 2 2 2 2 2 2 8 8 8 8 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7	0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,27 0,27 0,13 0,37 0,38 0,41 0,05 0,06	0.00058 0.00064 0.00070 0.00073 0.00073 0.00098 0.0019 0.00125 0.00134 mctions) for U classicFisher 0.00014 0.00028 0.00048 0.00056 0.00072 0.00115 0.00141	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 10876 8509 16829 16874 42803 46983 99516 22804 42802	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 4 Annotated 113 114 130 437 675 25 25 25 150 946	3 4 5 4 2 3 2 2 2 2 2 4 6 3 Significant 4 4 7 9 2 4 11	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,67 2,27 3,5 0,13 0,78 4,91	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00980 0.00991 0.00990 0.00991 0.00996 0.00278 0.00278 0.00278 0.00278 0.00676 0.00692 0.00732 0.00739 0.00761
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483 16769 16646	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a vitamin binding organic acid transmembrane transporter a vitamin binding organic acid transmembrane transporter a vitamin binding organic acid transmembrane transporter a vitamin binding organic acid transmembrane transporter secondary active transmembrane transporter transmembrane transporter transmembrane transporter transmembrane transporter transmembrane transporter	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 79 10 11	2 2 2 2 2 2 2 2 2 2 3 8 8 8 Significant 4 4 4 4 4 4 4 2 2 2 2	0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,05 0,27 0,27 0,27 0,27 0,27 0,27 0,38 0,41 0,05 0,06 0,07	0.00058 0.00064 0.00070 0.00073 0.00073 0.00080 0.00199 0.00125 0.00134 nections) for U classicFisher 0.00014 0.00014 0.00028 0.00048 0.00056 0.00072 0.00015 0.00115 0.00141 0.00198	51039 45595 51649 51049 48562 33993 6869 42180 30258 10876 9891 10243 0258 10249 10243 0258 10249 10243 0258 10258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 0258 10243 10258 10243 10258 10243 10258 10243 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10258 10257 10258 10058 100	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity lyase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding amino acid bindino	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 113 114 130 437 675 25 150 946 27	3 4 5 4 2 2 2 2 2 2 4 6 3 3 Significant 4 4 7 9 2 4 11 2	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,59 0,59 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00990 0.00991 0.00996 0.00270 0.00278 0.00278 0.00278 0.00676 0.00672 0.00732 0.00739 0.00761 0.00851
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483 16769 16646	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process organic substance biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a transmerbrane transporter a secondary active transmerbrane transporter transmembrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transporter transmerbrane transport transmerbrane transpor	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 74 79 10 11 13	2 2 2 2 2 2 2 2 2 2 2 3 8 8 8 8 8 8 8 9 000 00 00 00 0 0 0 0 0	0,04 0,04 0,04 0,04 0,04 0,05 0,05 0,27 0,27 0,27 0,27 0,13 0,37 0,38 0,41 0,05 0,06 0,07 0,07	0.00058 0.00064 0.00070 0.00073 0.00073 0.00080 0.00199 0.00125 0.00134 notions) for U classicFisher 0.00014 0.00014 0.00028 0.00056 0.00072 0.00115 0.00115 0.00141 0.00198	51595 51649 51649 51649 51649 51649 48562 33993 6869 42180 30258 10876 9891 10243 00258 10243 00257 10057 10057 10057 10057 10057 10057 10057 10057 10057 10	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding amino acid binding transcription regulator region DNA	404 860 1471 281 126 443 145 152 153 160 1037 2523 524 1037 2523 524 113 114 130 437 675 25 150 946 27	3 4 5 4 2 2 2 2 2 2 4 6 3 Significant 4 4 7 9 2 4 11 2	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,59 0,59 0,67 2,27 3,5 0,13 0,78 4,91 0,14	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00818 0.00892 0.00996 classicFisher 0.00270 0.00277 0.00278 0.00278 0.00676 0.00692 0.00732 0.00739 0.00761 0.00851
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483 16769 16646 140101	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a transmotrane transporter a secondary active transmerane transporter transporter transporter transporter transporter transporter transporter transporter transminase activity transferring nitro oxidoreductase activity, acting on the C catalytic activity, acting on a tRNA	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 74 79 10 11 13 104	2 2 2 2 2 2 2 2 2 2 3 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 Molecular Ft Expected 0,27 0,27 0,27 0,27 0,33 0,37 0,38 0,41 0,05 0,06 0,07 0,54	0.00058 0.00064 0.00064 0.00070 0.00073 0.00080 0.00199 0.00125 0.00134 notions) for U classicFisher 0.00014 0.00014 0.00028 0.00056 0.00072 0.00115 0.00141 0.00198 0.00199	51595 51649 51649 51649 51649 48562 33993 6869 42180 30258 10876 9889 10243 oregulated (GO.ID 8509 16829 16829 16829 16829 16874 42803 46983 99516 22804 42802 16597 44212	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding amino acid binding transcription regulatory region DNA bind	404 860 1471 281 126 443 145 152 153 160 1037 2523 524 1037 2523 524 113 114 130 437 675 25 25 150 946 27 467	3 4 5 4 2 2 2 2 2 2 4 6 3 Significant 4 4 4 7 9 2 4 11 2 7	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,59 0,59 0,59 0,59	0.00497 0.00512 0.00543 0.00561 0.00623 0.00737 0.00808 0.00892 0.00990 0.00991 0.00996 classicFisher 0.00270 0.00278 0.00278 0.00446 0.00676 0.00692 0.00732 0.00732 0.00739 0.00761 0.00851 0.00960
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 8483 16769 16646 140101 16645	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis unsaturated fatty acid metabolic process organophosphate ester transpont lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process disporter acid transmembrane transporter a carboxylic acid transmembrane transporter a transmembrane transporter a secondary active transmembrane transporter secondary active transmembrane transporter secondary active transmembrane transporter secondary active transmembrane transporter secondary active transmembrane transporter secondary active transmerter activity transferring nitro oxidoreductase activity, acting on the C	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 79 10 11 13 104 14	2 2 2 2 2 2 2 2 2 2 2 3 8 8 8 8 8 8 8 8	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 Molecular Fr Expected 0,27 0,27 0,27 0,37 0,38 0,41 0,05 0,06 0,07 0,54 0,07	0.00058 0.00064 0.00064 0.00070 0.00073 0.00073 0.00080 0.00199 0.00125 0.00134 mctions) for U classicFisher 0.00014 0.00014 0.00014 0.00028 0.00056 0.00072 0.00115 0.00115 0.00141 0.00198 0.00199 0.00230	51039 51049 51049 51049 48562 33993 6869 42180 30258 10876 9881 9889 10243 pegulated of GO.ID 8509 16829 16874 42803 46983 99516 22804 42802 16597 44212 975	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity protein homodimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding transcription regulatory region DNA bind regulatory region DNA binding	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 1037 2523 524 113 114 130 437 675 25 25 150 946 27 467 468	3 4 5 4 2 2 2 2 2 2 4 6 3 Significant 4 4 4 7 9 2 4 11 2 7 7 7	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,59 0,59 0,59 0,59	0.00497 0.00542 0.00543 0.00561 0.00623 0.00737 0.00808 0.00892 0.00980 0.00990 0.00990 0.00991 0.00996 0.00991 0.00270 0.00277 0.00277 0.00278 0.00446 0.00676 0.00692 0.00732 0.00732 0.00739 0.00761 0.00851 0.00960 0.00971
15918 70542 97006 42471 33559 15748 55088 19217 1901576 9058 GO.ID 5342 46943 15179 19842 8514 15291 88514 15291 16466 140101 16645 1047	sterol transport response to fatty acid regulation of plasma lipoprotein particl ear morphogenesis umsaturated fatty acid metabolic process organophosphate ester transport lipid homeostasis regulation of fatty acid metabolic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic process biosynthetic acid transmembrane transporter a carboxylic acid transmembrane transporter a vitamin binding organic anion transmembrane transporter a vitamin binding organic anion transmembrane transporter secondary active transmembrane transporter secondary active transmerate transport transminase activity transferase activity transferase activity, transferase activity, acting on the C catalytic acid tring, acting on a tRNA	40 42 42 43 55 55 3735 3770 Annotated 52 52 25 71 74 79 10 11 13 104 11 13 104 11	2 2 2 2 2 2 2 2 2 2 2 3 8 8 8 8 8 8 8 8	0,04 0,04 0,04 0,04 0,04 0,05 0,05 3,47 3,5 MOLECULAR F(Expected 0,27 0,27 0,13 0,37 0,38 0,41 0,05 0,06 0,07 0,54 0,07 0,58	0.00058 0.00064 0.00064 0.00070 0.00073 0.00073 0.00080 0.00199 0.00125 0.00134 Inctions) for U classicFisher 0.00014 0.00014 0.00014 0.00028 0.00056 0.00072 0.00115 0.00141 0.00198 0.00199 0.00230 0.00230 0.00231	51039 51649 51649 51649 51649 51649 48562 33993 6869 42180 30258 10876 9881 9889 10243 pregulated 6 6874 42803 46983 99516 22804 42802 16597 44212 975 1067	pro regulation of cell differentiation establishment of localization in cell regulation of transport embryonic organ morphogenesis response to lipid lipid transport cellular ketone metabolic process lipid modification lipid localization positive regulation of biosynthetic proc regulation of biosynthetic process response to organonitrogen compound Genes Nonresistant DMSO vs. Mitotane Term anion transmembrane transporter activity ligase activity ligase activity protein dimerization activity protein dimerization activity ion antiporter activity active transmembrane transporter activit identical protein binding amino acid binding transcription regulatory region DNA bind	404 860 1471 881 126 443 145 152 153 160 1037 2523 524 1037 2523 524 113 114 130 437 675 25 150 946 27 467 468 469	3 4 5 4 2 2 2 2 2 2 2 4 6 3 8 5 (gnificant 4 4 7 9 2 4 11 2 7 7 7 7	0,38 0,8 1,37 0,82 0,12 0,12 0,14 0,13 0,14 0,15 0,96 2,34 0,49 Expected 0,59 0,59 0,59 0,59 0,59 0,59 0,59 0,67 2,27 3,5 0,13 0,78 4,91 0,14 2,42 2,43 2,43	0.00497 0.00542 0.00543 0.00561 0.00623 0.00737 0.00808 0.00892 0.00980 0.00990 0.00996 classicFisher 0.00270 0.00278 0.00278 0.00446 0.00676 0.00692 0.00732 0.00732 0.00739 0.00761 0.00851 0.00960 0.00971 0.00982
GO.ID 5506 16491	Term iron ion binding oxidoreductase activity	Annotated 67 425	Significant 2 3	Expected 0,06 0.39	classicFisher 0.00160 0.00544						
------------------------	---	------------------------	----------------------------	---------------------------	-------------------------------------	---------	--	----------------	-------------	----------	---------------
10101	on doroddolado dollwy	120	о Са Талина (Г	Dialogical D	0.000 · · ·		Comes Nonresistent vs Resistent DMC	•			1
GO.ID	Term	Annotated	Go Terms (E Significant	Biological Pi Expected	rocesses) for U classicFisher	GO.ID	Genes Nonresistant vs Resistant DMS Term	O Annotated	Significant	Expected	classicFisher
43068	positive regulation of	361	50	29,21	0.00010	7045	cell-substrate adherens junction	47	10	3,8	0.00374
45779	positive regulation of	49	12	3.49	0.00011	46425	assembl	47	10	2.9	0.00274
00040	ossification actin filament-based	50		4.50	0.00011	40041		47	10	0,0	0.00074
30048	movement reproductive structure	90	14	4,53	0.00011	48041	regulation of smooth muscle cell	47	10	3,8	0.00374
48608	development	215	34	17,4	0.00011	48660	prolife	47	10	3,8	0.00374
2000027	regulation of organ morphogenesis	147	26	11,9	0.00011	1904892	regulation of STAT cascade	47	10	3,8	0.00374
	cardiac ventricle	63	15	5,1	0.00011	9893	positive regulation of metabolic	1891	182	153,03	0.00375
10976	positive regulation of	139	25	11.25	0.00011	60828	regulation of canonical Wnt signaling	157	23	12 71	0 00375
2521	neuron projection leukocyte differentiation	198	32	16,02	0.00011	65009	pa regulation of molecular function	1718	167	139,03	0.00381
51271	negative regulation of	131	24	10,6	0.00011	32970	regulation of actin filament-based	185	26	14,97	0.00382
7405	neuroblast proliferation	26	9	2,1	0.00013	43269	regulation of ion transport	223	30	18,05	0.00384
55117	regulation of cardiac muscle contraction	26	9	2,1	0.00013	1710	mesodermal cell fate commitment	9	4	0,73	0.00385
60412	ventricular septum	26	9	2,1	0.00013	33151	V(D)J recombination	9	4	0,73	0.00385
7369	gastrulation	108	21	8,74	0.00013	60253	negative regulation of glial cell prolif	9	4	0,73	0.00385
61138	morphogenesis of a branching epithelium	78	17	6,31	0.00013	60441	epithelial tube branching involved in	9	4	0,73	0.00385
8038	neuron recognition	16	7	1,29	0.00013	1900103	positive regulation of endoplasmic	9	4	0,73	0.00385
86004	regulation of cardiac	16	7	1 29	0.00013	1905331	negative regulation of morphogenesis	9	4	0.73	0.00385
00004	muscle cell contra regulation of actin	10	,	1,20	0.00010	1000001	of	5	-	0,70	0.00000
1903115	filament-based	16	7	1,29	0.00013	19438	aromatic compound biosynthetic process	2515	235	203,52	0.00387
51172	negative regulation of	1422	151	115 16	0.00013	20066	regulation of anatomical structure size	222	91	19.96	0 00202
51172	nitrogen compound cerebral cortex	1420	101		0.00010	50000		200		10,00	0.00000
21987	development	71	16	5,75	0.00013	2011	morphogenesis of an epithelial sheet	33	8	2,67	0.00397
14066	phosphatidylinositol 3-	44	12	3,56	0.00013	43266	regulation of potassium ion transport	33	8	2,67	0.00397
42471	kin ear morphogenesis	44	12	3.56	0.00013	43627	response to estrogen	33	8	2.67	0.00397
51049	regulation of transport	881	101	71.29	0.00013	768	syncytium formation by plasma	20	6	1.62	0.00397
31103	axon regeneration	21	8	1,7	0.00014	46676	nemorane t negative regulation of insulin secretion	20	6	1,62	0.00397
31670	cellular response to	21	8	1,7	0.00014	90278	negative regulation of peptide	20	6	1,62	0.00397
21543	pallium development	101	20	8.17	0.00014	1903053	regulation of extracellular matrix	20	6	1.62	0.00397
40012	negative regulation of	141	25	11.41	0.00014	26202	organ	014	20	17.90	0.00300
40013	locomotion reproductive system	141	25	11,41	0.00014	30293	response to decreased oxygen levels	214	29	17,52	0.00399
61458	development	218	34	17,64	0.00014	7044	cell-substrate junction assembly	55	11	4,45	0.00400
8217	regulation of blood pressure	51	13	4,13	0.00015	30203	glycosaminoglycan metabolic process	79	14	6,39	0.00403
15850	organic hydroxy	79	17	6,39	0.00015	30260	entry into host cell	71	13	5,75	0.00411
10810	regulation of cell-	94	19	7.61	0.00015	44409	entry into host	71	13	5.75	0.00411
2177	substrate adhesion pulmonary valve	0	5	0.65	0.00016	E1906	entry into cell of other organism	71	10	E 7E	0.00411
31//	development	0	5	0,65	0.00016	51806	involv	71	13	5,75	0.00411
3184	morphogenesis	8	5	0,65	0.00016	51828	sy	71	13	5,75	0.00411
51953	amine transport	8	5	0,65	0.00016	43549	regulation of kinase activity	487	56	39,41	0.00421
14065	phosphatidylinositol 3-	58	14	4,69	0.00016	2573	myeloid leukocyte differentiation	88	15	7,12	0.00435
6936	muscle contraction	134	24	10.84	0.00016	10629	negative regulation of gene	1142	116	92 42	0.00436
1000105	regulation of leukocyte	110	-		0.00017	54450	expression regulation of striated muscle cell	10		0.00	0.00400
1902105	differentiation	110	21	8,9	0.00017	51153	diffe	48	10	3,88	0.00439
16049	cell growth	283	41	22,9	0.00017	34654	biosynthe	2474	231	200,21	0.00444
60512	prostate gland morphogenesis	12	6	0,97	0.00017	45637	regulation of myeloid cell differentiati	123	19	9,95	0.00450
60740	prostate gland	12	6	0.97	0.00017	44093	positive regulation of molecular	1010	104	81 73	0 00464
00740	morphogenesis	12	0	0,57	0.00017	44033	functio	1010	104	01,75	0.00404
85029	extracellular matrix assembly	12	6	0,97	0.00017	3337	mesenchymal to epithelial transition inv	5	3	0,4	0.00466
2001224	positive regulation of	12	6	0,97	0.00017	7442	hindgut morphogenesis	5	3	0,4	0.00466
30098	lymphocyte	126	23	10.2	0.00017	16198	axon choice point recognition	5	3	04	0 00466
	differentiation response to mechanical		20					-			0.00100
3012	stimulus cardiac chamber	90	19	7,09	0.00018	30038	purykelilue metabolic process	э	3	0,4	0.00466
3205	development	80	17	6,47	0.00018	30647	proc	5	3	0,4	0.00466
42060	wound healing	248	37	20,07	0.00019	33689	negative regulation of osteoblast prolif	5	3	0,4	0.00466
72073	kidney epithelium	59	14	4,77	0.00019	35413	positive regulation of catenin import	5	3	0,4	0.00466
3150	muscular septum	5	4	0.4	0 00020	38092	III	5	3	0.4	0.00466
0100	morphogenesis spinal cord motor	-		0,4	0.00020	00002		-		0,4	0.00400
21520	neuron cell fate speci	5	4	0,4	0.00020	44597	daunorubicin metabolic process	5	3	0,4	0.00466
45741	epidermal growth	5	4	0,4	0.00020	44598	doxorubicin metabolic process	5	3	0,4	0.00466
71880	adenylate cyclase-	5	4	0,4	0.00020	45907	positive regulation of vasoconstriction	5	3	0,4	0.00466
45661	regulation of myoblast	22	8	1,78	0.00020	48243	norepinephrine secretion	5	3	0,4	0.00466
6251	unterentiation transcription, DNA-	2174	216	175.02	0.00031	49617	ombryonia faragut mambaaaaaia	5	2		0.00/66
0301	templated	21/4	210	170,93	0.00021	40017	emoryonic roregut morphogenesis	J	J	0,4	0.00400
45620	lymphocyte differ	17	7	1,38	0.00021	60601	lateral sprouting from an epithelium	5	3	0,4	0.00466
1903524	positive regulation of blood circulation	17	7	1,38	0.00021	61525	hindgut development	5	3	0,4	0.00466
61448	connective tissue	112	21	9,06	0.00022	72283	metanephric renal vesicle morphogenesis	5	3	0,4	0.00466
22407	regulation of cell-cell	162	27	13,11	0.00023	9948	anterior/posterior axis specification	27	7	2,18	0.00466
60070	aunesion canonical Wnt signaling	199	30	15.01	0.00000	10990	regulation of mystube differentiation	27	7	2.10	0.00/66
00070	pathway regulation of epidormic	100	30	10,21	0.00023	10830	regulation of myolube differentiation	21	'	2,10	0.00400
45682	development	40	11	3,24	0.00024	97530	granulocyte migration	27	7	2,18	0.00466
45765	regulation of angiogenesis	97	19	7,85	0.00024	2000273	positive regulation of receptor activity	27	7	2,18	0.00466
71496	cellular response to external stimulus	171	28	13,84	0.00024	51384	response to glucocorticoid	64	12	5,18	0.00470

90287	regulation of cellular	129	23	10,44	0.00024	30099	myeloid cell differentiation	207	28	16,75	0.00474
60537	muscle tissue	181	29	14,65	0.00027	33674	positive regulation of kinase activity	305	38	24,68	0.00475
	branching										
48754	morphogenesis of an epithelial	68	15	5,5	0.00028	10171	body morphogenesis	34	8	2,75	0.00483
30111	regulation of Wnt	199	31	16,1	0.00028	14855	striated muscle cell proliferation	34	8	2,75	0.00483
35909	aorta morphogenesis	13	6	1,05	0.00029	51148	negative regulation of muscle cell	34	8	2,75	0.00483
42249	establishment of planar	13	6	1.05	0.00029	60415	ane	34	8	2 75	0 00483
50400	polarity of embr catecholamine	10	0	1.05	0.00020	10550	regulation of macromolecule	0407	005	104 70	0.00400
50432	secretion regulation of protein	13	0	1,05	0.00029	10000	biosynthetic	2407	225	194,78	0.00484
1932	phosphorylation	709	83	57,38	0.00029	32386	regulation of intracellular transport	366	44	29,62	0.00484
14706	development	173	28	14	0.00029	10959	regulation of metal ion transport	142	21	11,49	0.00490
97659	nucleic acid-templated transcription	2187	216	176,98	0.00030	45860	positive regulation of protein kinase ac	286	36	23,14	0.00500
7188	adenylate cyclase- modulating G-protein	41	11	3.32	0.00030	6022	aminoglycan metabolic process	81	14	6 55	0 00508
	C			0,02	0.00000	OULL		0.		0,00	0.00000
42733	morphogenesis	41	11	3,32	0.00030	30324	lung development	81	14	6,55	0.00508
10001	glial cell differentiation	91	18	7,36	0.00030	50796	regulation of insulin secretion regulation of myeloid leukocyte	81	14	6,55	0.00508
7160	cell-matrix adhesion	99	19	9,95 8.01	0.00031	6638	differen neutral lipid metabolic process	49	10	3,97	0.00512
51966	regulation of synaptic	18	7	1,46	0.00032	48659	smooth muscle cell proliferation	49	10	3,97	0.00512
31326	regulation of cellular	2481	241	200 77	0.00032	1901888	regulation of cell junction assembly	49	10	3 97	0.00512
2151	biosynthetic proc outflow tract	25	10	0.00	0.00022	71945		120	50	24.72	0.00514
3151	morphogenesis	35	10	2,83	0.00032	71345	central response to cytokine stimulus	429	50	34,72	0.00514
60976	development	29	9	2,35	0.00032	7520	myoblast fusion	15	5	1,21	0.00518
36445	division	9	5	0,73	0.00033	21801	migra	15	5	1,21	0.00518
51968	positive regulation of synaptic transmis	9	5	0,73	0.00033	22030	telencephalon glial cell migration	15	5	1,21	0.00518
55057 90103	neuroblast division	9	5	0,73	0.00033	33687	osteoblast proliferation	15 15	5	1,21	0.00518
1001001	regulation of	0	5	0,70	0.00000	40000	positive regulation of potassium ion	15	5	1,21	0.00510
1901201	assem	9	5	0,73	0.00033	43268	tra	15	5	1,21	0.00518
1704	formation of primary germ laver	69	15	5,58	0.00033	45601	regulation of endothelial cell different	15	5	1,21	0.00518
42307	positive regulation of	48	12	3,88	0.00033	45920	negative regulation of exocytosis	15	5	1,21	0.00518
44087	regulation of cellular	527	65	42.65	0.00033	46189	phenol-containing compound	15	5	1.21	0.00518
1762	morphogenesis of a	84	17	6.9	0.00033	50972	biosynthetic	15	5	1.21	0.00518
1705	branching structure negative regulation of	04		5,00	0.00033	50075	regulation of smooth muscle cell	15	5	1,21	0.00510
90101	transmembrane rec	62	14	5,02	0.00034	51150	differe	15	5	1,21	0.00518
60048	contraction	55	13	4,45	0.00034	86009	membrane repolarization	15	5	1,21	0.00518
32774	process	2194	216	177,55	0.00036	2762	leukocyte	21	6	1,7	0.00519
31346	positive regulation of cell projection o	193	30	15,62	0.00037	6949	syncytium formation	21	6	1,7	0.00519
10562	positive regulation of	519	64	42	0.00037	19748	secondary metabolic process	21	6	1,7	0.00519
45937	positive regulation of	519	64	42	0.00037	60425	luna morphogenesis	21	6	1.7	0.00519
	phosphate metabol hematopoietic or		•				·····g ·····p····g·····		-	.,.	
48534	lymphoid organ developm	439	56	35,53	0.00037	98900	regulation of action potential	21	6	1,7	0.00519
1902533	positive regulation of	469	59	37,95	0.00038	32409	regulation of transporter activity	107	17	8,66	0.00525
48640	negative regulation of	42	11	3.4	0.00038	34644	cellular response to UV	57	11	4.61	0.00532
45026	developmental gro negative regulation of	222	45	06.97	0.00028	46904	positive regulation of	CE.	10	E 06	0.00525
40930	phosphate metabol	332	40	20,07	0.00038	40024	nucleocytoplasmic positive regulation of cell-cell	65	12	5,20	0.00535
50900	leukocyte migration	133	23	10,76	0.00038	22409	adhesio	90	15	7,28	0.00540
6793	process	1885	189	152,54	0.00038	30217	T cell differentiation	90	15	7,28	0.00540
42326	negative regulation of phosphorylation	276	39	22,34	0.00040	43542	endothelial cell migration	90	15	7,28	0.00540
60395	SMAD protein signal transduction	24	8	1,94	0.00040	30001	metal ion transport	338	41	27,35	0.00550
10563	negative regulation of	333	45	26,95	0.00040	30512	negative regulation of transforming	42	9	3,4	0.00556
1904591	positive regulation of	49	12	3.97	0.00040	10770	positive regulation of cell	82	14	6.64	0.00569
01761	limbic system	EC	10	4 59	0.00041	40500	morphogenesi	109	17	9.74	0.00577
21701	development multicellular organism	50	13	4,55	0.00041	40300	developmental cell growth	100	-	0,74	0.00577
44236	metabolic process	56	13	4,53	0.00041	6027	glycosaminoglycan catabolic process	28	/	2,27	0.00579
98742	plasma-membrane a	56	13	4,53	0.00041	22029	telencephalon cell migration	28	7	2,27	0.00579
51171	regulation of nitrogen compound metaboli	3265	306	264,22	0.00042	71695	anatomical structure maturation	74	13	5,99	0.00592
6942	regulation of striated muscle contractio	30	9	2,43	0.00043	61041	regulation of wound healing	50	10	4,05	0.00595
10812	negative regulation of	30	9	2,43	0.00043	7413	axonal fasciculation	10	4	0,81	0.00601
1901699	cellular response to	363	48	29.38	0 00043	19229	regulation of vasoconstriction	10	4	0.81	0.00601
21245	nitrogen compound negative regulation of	96	17	£ 06	0.00044	20702	positive regulation of CREB	10		0.91	0.00601
31343	cell projection o striated muscle	00		0,90	0.00044	32793	transcriptio	10	4	0,01	0.00001
6941	contraction	71	15	5,75	0.00045	48670	regulation of collateral sprouting	10	4	0,81	0.00601
90288	cellular response	71	15	5,75	0.00045	48730	epidermis morphogenesis	10	4	0,81	0.00601
60317	cardiac epithelial to mesenchymal transi	19	7	1,54	0.00047	50433	regulation of catecholamine secretion	10	4	0,81	0.00601
3382	epithelial cell	14	6	1,13	0.00047	60231	mesenchymal to epithelial transition	10	4	0,81	0.00601
60501	apoptotic process	14	c	1.10	0.00047	70004	regulation of calcineurin-NFAT	10	4	0.91	0.00001
1 0000	morphogene	14	υ	1,13	0.00047	70864	signaling	IU	4	0,81	0.00601
61036	positive regulation of cartilage develop	14	6	1,13	0.00047	86005	ventricular cardiac muscle cell action p	10	4	0,81	0.00601
48638	regulation of developmental growth	152	25	12,3	0.00047	106030	neuron projection fasciculation	10	4	0,81	0.00601
23056	positive regulation of	837	94	67,73	0.00049	106056	regulation of calcineurin-mediated	10	4	0,81	0.00601
6366	signaling transcription from RNA	1306	137	105.69	0 00049	2000479	regulation of cAMP-dependent protein	10	4	0.81	0.00601
2000	polymerase II pro			,	2.00040	20004/0	kin		*	5,01	5.50001

44259	multicellular organismal	50	12	4.05	0.00049	1901362	organic cyclic compound biosynthetic	2608	241	211.05	0.00605
72006	macromolecule m	57	13	4.61	0.00050	34097	pro	485	55	39.25	0.00000
72000	phosphate-containing	1000	100	4,01	0.00050	04037		400	05	14.70	0.00000
6796	compound metabolic	1820	183	147,77	0.00051	0000	protein import into nucleus	182	25	14,73	0.00606
60541	respiratory system development	95	18	7,69	0.00052	50731	positive regulation of peptidyl- tyrosine	58	11	4,69	0.00610
1934	positive regulation of	455	57	36,82	0.00052	31667	response to nutrient levels	240	31	19,42	0.00610
19611	muscle organ	37	10	2.00	0.00053	1657	uratoric hud dovolopmont	13	9	3.49	0.00654
40044	morphogenesis	57	10	2,55	0.00033	1057	dietene bud development	40	5	3,40	0.00034
2064	development	103	19	8,34	0.00053	3014	renal system process	43	9	3,48	0.00654
8544	epidermis development	136	23	11,01	0.00053	30799	regulation of cyclic nucleotide	43	9	3,48	0.00654
1 4007	regulation of	0	0	0.04	0.00050	0050	cardiac neural crest cell migration	•	0	0.10	0.00054
14807	somitogenesis	3	3	0,24	0.00053	3253	invo	2	2	0,16	0.00654
71798	prostaglandin D	3	3	0,24	0.00053	3383	apical constriction	2	2	0,16	0.00654
71799	cellular response to	3	3	0.24	0.00053	6642	trialyceride mobilization	2	2	0.16	0 00654
1990834	prostaglandin D sti	3	3	0.24	0.00053	7418	ventral midline development	2	2	0.16	0.00654
1000192	positive regulation of	70	15	5 00	0.00053	0752		2	2	0.16	0.00054
1900102	protein localizat	12	15	5,65	0.00055	9755		2	2	0,10	0.00034
48844	artery morphogenesis	25	8	2,02	0.00055	10643	coupling	2	2	0,16	0.00654
71396	cellular response to lipid	309	42	25.01	0.00055	10868	negative regulation of triglyceride	2	2	0.16	0.00654
	cell junction						bios	-	-	•,.•	
34330	organization	145	24	11,73	0.00056	14060	regulation of epinephrine secretion	2	2	0,16	0.00654
3188	heart valve formation	6	4	0,49	0.00056	14900	muscle hyperplasia	2	2	0,16	0.00654
7440	foregut morphogenesis	6	4	0,49	0.00056	21936	pr	2	2	0,16	0.00654
15874	norepinephrine	6	4	0.49	0.00056	21937	cerebellar Purkinje cell-granule cell	2	2	0.16	0.00654
	transport dermatan sulfate						pr smoothened signaling pathway				
30205	metabolic process	6	4	0,49	0.00056	21938	involved in	2	2	0,16	0.00654
30208	dermatan sulfate	6	4	0,49	0.00056	21940	positive regulation of cerebellar	2	2	0,16	0.00654
10005	neuron fate	•		0.40	0.00050		slow-twitch skeletal muscle fiber	•	•		0 0005 4
48665	specification	ь	4	0,49	0.00056	31444	contra	2	2	0,16	0.00654
60363	cranial suture	6	4	0,49	0.00056	31652	positive regulation of heat generation	2	2	0,16	0.00654
40470	inner ear	91	0	0.51	0.00056	20764	negative regulation of mast cell	2	2	0.16	0.00654
42472	morphogenesis	31	9	2,51	0.00056	32/64	cytokin	2	2	0,16	0.00654
50773	development	80	16	6,47	0.00057	32811	secre	2	2	0,16	0.00654
51216	cartilage development	80	16	6.47	0.00057	33634	positive regulation of cell-cell	2	2	0.16	0 00654
30007	bomonoiosis	417	53	33.75	0.00058	35425	adhesio	2	2	0.16	0.00654
10047	positive regulation of	417	00	33,75	0.00058	30420	autocrine signaling	2	2	0,10	0.00054
10047	cell communicatio	031	93	67,25	0.00039	30020	reem-mediated signaling pathway	2	2	0,10	0.00034
48593	morphogenesis	51	12	4,13	0.00060	45162	chann	2	2	0,16	0.00654
21819	layer formation in	10	5	0.81	0.00061	45578	negative regulation of B cell	2	2	0.16	0.00654
	cerebral cortex		-	-,			differenti	-	-	•,.•	
60413	morphogenesis	10	5	0,81	0.00061	48241	epinephrine transport	2	2	0,16	0.00654
71875	adrenergic receptor	10	5	0.81	0.00061	48242	epinephrine secretion	2	2	0.16	0.00654
	planar cell polarity						regulation of transcription from BNA				
901/9	pathway involved in	10	5	0,81	0.00061	60994	pol	2	2	0,16	0.00654
97094	craniofacial suture	10	5	0,81	0.00061	71386	cellular response to corticosterone	2	2	0,16	0.00654
00100	tion minution	100	00	10.44	0.00001	71005	cellular response to jasmonic acid	•	0	0.10	0.00054
90130	tissue migration	129	22	10,44	0.00061	71395	stimu	2	2	0,16	0.00654
12501	programmed cell death	1114	119	90,15	0.00062	/1492	cellular response to UV-A	2	2	0,16	0.00654
48015	mediated signaling	73	15	5,91	0.00062	72007	mesangial cell differentiation	2	2	0,16	0.00654
1933	negative regulation of	254	36	20,55	0.00062	72008	glomerular mesangial cell	2	2	0,16	0.00654
40000	muscle cell	100	00	15.00	0.00000	70140		•	0	0.10	0.00054
42692	differentiation	190	29	15,38	0.00062	72143	mesangiai celi development	2	2	0,16	0.00654
31669	cellular response to nutrient levels	121	21	9,79	0.00064	72144	glomerular mesangial cell development	2	2	0,16	0.00654
48584	positive regulation of	1039	112	84.08	0.00066	90209	negative regulation of triglyceride	2	2	0.16	0 00654
60002	response to stimu	20	10	2.00	0.00066	07114	meta	2	2	0.16	0.00054
00995	negative regulation of	30	10	5,00	0.00007	97114	anterograde axonal transport of	2	2	0,10	0.00054
1903531	secretion by cell	66	14	5,34	0.00067	98957	mitochon	2	2	0,16	0.00654
32924	activin receptor	20	7	1,62	0.00067	1900747	negative regulation of vascular	2	2	0,16	0.00654
1000266	noutrophil migration	20	7	1.60	0.00067	1001079	negative regulation of relaxation of	2	2	0.16	0.00654
1330200		20	'	1,02	0.00007	1301070	mus	2	2	0,10	0.00034
42306	import into nucleu	105	19	8,5	0.00067	1901898	car	2	2	0,16	0.00654
9889	regulation of	2523	242	204,17	0.00069	1902548	negative regulation of cellular	2	2	0,16	0.00654
10000	regulation of phosphate	000	00	71.04	0.00070	100007	negative regulation of dendritic spine	0	0	0.10	0.0007.
19220	metabolic proces	003	30	71,94	0.00070	1902951	m	2	2	0,10	0.00654
6915	apoptotic process	1085	116	87,8	0.00071	1902957	negative regulation of mitochondrial	2	2	0,16	0.00654
55017	cardiac muscle tissue	45	11	3.64	0.00071	1903225	negative regulation of endodermal cell	2	2	0.16	0 00654
00017	growth	40		0,04	0.00071	TOOLLO	d	-	2	0,10	0.00004
48017	signaling	74	15	5,99	0.00072	1904238	pericyte cell differentiation	2	2	0,16	0.00654
2376	immune system	1329	138	107.55	0.00072	1904761	negative regulation of myofibroblast	2	2	0.16	0.00654
	process			,			dif			-,	
3401	axis elongation	15	6	1,21	0.00073	1905064	smooth m	2	2	0,16	0.00654
30857	negative regulation of	15	6	1,21	0.00073	1905447	negative regulation of mitochondrial	2	2	0,16	0.00654
40000	paraxial mesoderm	15	c	1.01	0.00070	1005004	regulation of calcium ion import	•	0	0.10	0.00054
48339	development	15	ь	1,21	0.00073	1905664	across	2	2	0,16	0.00654
61098	positive regulation of protein tyrosine	15	6	1,21	0.00073	1990164	histone H2A phosphorylation	2	2	0,16	0.00654
1902805	positive regulation of	15	6	1 21	0.00073	20000000	positive regulation of AMPA receptor	2	2	0.16	0.00654
10110	pri-miRNA transcr	100	20	14.01	0.00073	10100	act	-	-	202.60	0.00054
42110	forebrain generation of	103	20	14,01	0.00074	0010	neterocycle biosynthetic process	2017	233	203,69	0.00659
218/2	neurons	20	đ	2,1	0.000/4	6816	calcium ion transport	155	22	12,54	0.00662
46888	negative regulation of hormone secretion	26	8	2,1	0.00074	31111	negative regulation of microtubule	22	6	1,78	0.00666
45444	fat cell differentiation	106	19	8,58	0.00076	48747	muscle fiber development	22	6	1,78	0.00666
51174	regulation of	902	99	72 00	0.00076	61045	negative regulation of wound bealing	22	6	1 78	0.00666
511/4	proce	502	33	12,00	0.00070	01040	negative regulation of wound nealing			1,70	0.00000
2682	regulation of immune	647	75	52,36	0.00077	51149	positive regulation of muscle cell	51	10	4,13	0.00688
1901654	response to ketone	98	18	7,93	0.00077	1901698	response to nitrogen compound	595	65	48,15	0.00698
45785	positive regulation of	157	25	12,71	0.00078	1903426	regulation of reactive oxygen species	36	8	2,91	0.00698
8219	cell agnesion	1187	125	96.06	0.00078	1904888	u cranial skeletal system development	36	8	2.91	0.00698
										-,- ·	

1900180	regulation of protein localization to nu	140	23	11,33	0.00080	21700	developmental maturation	119	18	9,63	0.00699
8589	regulation of smoothened signaling	39	10	3,16	0.00083	45879	negative regulation of smoothened	16	5	1,29	0.00703
45445	pathw myoblast differentiation	39	10	3.16	0.00083	2262	myeloid cell homeostasis	84	14	68	0 00707
46718	viral entry into host cell	60	13	4,86	0.00083	30323	respiratory tube development	84	14	6,8	0.00707
30178	Negative regulation of Wnt signaling pat	132	22	10,68	0.00085	7156	homophilic cell adhesion via plasma memb	29	7	2,35	0.00711
1902531	regulation of intracellular signal	981	106	79,39	0.00086	21885	forebrain cell migration	29	7	2,35	0.00711
1904589	trans regulation of protein	107	19	8,66	0.00086	35329	hippo signaling	29	7	2,35	0.00711
1025	endothelial cell	50	10	4.20	0.00097	0001		252	22	20.47	0.00724
48144	proliferation fibroblast proliferation	53	12	4,29	0.00087	7159	leukocyte cell-cell adhesion	138	20	20,47	0.00734
48145	regulation of fibroblast	53	12	4,29	0.00087	2683	negative regulation of immune system	185	25	14.97	0.00746
	proliferation regulation of synapse			.,20		2000	pro		20		
50807	organization	53	12	4,29	0.00087	43588	skin development	120	18	9,71	0.00762
35296	diameter	33	9	2,67	0.00093	33273	response to vitamin	44	9	3,56	0.00764
45669	osteoblast differ	33	9	2,67	0.00093	72163	mesonephric epithelium development	44	9	3,56	0.00764
97746	regulation of blood	33	9	2,67	0.00093	72164	mesonephric tubule development	44	9	3,56	0.00764
90102	cochlea development	21	7	1,7	0.00094	45185	maintenance of protein location	68	12	5,5	0.00774
1902893	regulation of pri-miRNA transcription fr	21	7	1,7	0.00094	45859	regulation of protein kinase activity	449	51	36,33	0.00782
9725	response to hormone	476	58	38,52	0.00094	34762	regulation of transmembrane transport	167	23	13,51	0.00802
31668	extracellular stimu	133	22	10,76	0.00094	10468	regulation of gene expression	2599	239	210,32	0.00811
2520	immune system development	466	57	37,71	0.00094	30814	regulation of cAMP metabolic process	37	8	2,99	0.00829
34332	adherens junction	76	15	6,15	0.00096	1818	negative regulation of cytokine	112	17	9,06	0.00832
6020	smooth muscle	07	0	0.10	0.00008	40100	producti positive regulation of I-kappaB	110	17	0.06	0 00000
21522	contraction	27	0	2,10	0.00098	32060	kinase/N	22	6	9,00	0.00840
51051	negative regulation of	223	32	18.05	0.00099	71621	granulocyte chemotaxis	23	6	1,86	0.00840
71 41 7	transport cellular response to	000	40	04.0	0.00100	00005	cell communication involved in cardiac		с С	1.00	0.00040
71417	organonitrogen comp	299	40	24,2	0.00102	1005207	C	23	6	1,86	0.00840
42493	response to drug	196	29	15,86	0.00104	48545	response to steroid hormone	216	28	17,48	0.00847
3283	atrial septum development	11	5	0,89	0.00105	10604	positive regulation of macromolecule met	1776	169	143,72	0.00856
45662	negative regulation of	11	5	0,89	0.00105	1901214	regulation of neuron death	168	23	13,6	0.00861
00177	establishment of planar	11	5	0.80	0.00105	1706	andodorm formation	30	7	2.42	0.00864
50177	polarity involve regulation of		0	0,00	0.00100	1700		00	,	2,40	0.00004
90178	establishment of planar	11	5	0,89	0.00105	6026	aminoglycan catabolic process	30	7	2,43	0.00864
21766	hippocampus	47	11	3,8	0.00105	72091	regulation of stem cell proliferation	30	7	2,43	0.00864
32963	collagen metabolic	47	11	3,8	0.00105	2000377	regulation of reactive oxygen species	86	14	6,96	0.00870
21060	process response to	60	14	E E0	0.00106	1940	me	6	2	0.40	0.00976
31960	corticosteroid	69	14	5,58	0.00106	1840	chondrocyte differentiation involved in	6	3	0,49	0.00876
3209	morphogenesis	16	6	1,29	0.00109	3413		6	3	0,49	0.00876
30593	neutrophil chemotaxis	16	6	1,29	0.00109	7016	cytoskeletal anchoring at plasma membran	6	3	0,49	0.00876
35137	hindlimb	16	6	1,29	0.00109	21513	spinal cord dorsal/ventral patterning	6	3	0,49	0.00876
35412	regulation of catenin	16	6	1 29	0.00109	21910	smoothened signaling pathway	6	3	0.49	0.00876
51007	import into nucleu	10	0	1,20	0.00100	21010	involved in negative regulation of activin receptor	0	0	0,40	0.00070
51937	catecnolamine transport	16	ь	1,29	0.00109	32926		6	3	0,49	0.00876
1902742	involved in	16	6	1,29	0.00109	33630	positive regulation of cell adhesion med	6	3	0,49	0.00876
2000826	regulation of heart	16	6	1 29	0.00109	35358	regulation of peroxisome proliferator	6	3	0.49	0.00876
	morphogenesis cellular response to			.,20			ac			0,10	
/140/	organic cyclic comp	339	44	27,43	0.00109	42416	dopamine biosynthetic process	6	3	0,49	0.00876
45665	neuron differenti	101	18	8,17	0.00111	43497	heterodimerization	6	3	0,49	0.00876
1903844	regulation of cellular response to trans	62	13	5,02	0.00115	48368	lateral mesoderm development	6	3	0,49	0.00876
32102	negative regulation of	110	19	8.9	0.00121	48671	negative regulation of collateral	6	3	0.49	0.00876
40007	positive regulation of	401	50	20.02	0.00101	60028	sprout convergent extension involved in axis	6	2	0.40	0.00976
42327	phosphorylation regulation of cellular	401	50	30,32	0.00121	00020	el branching involved in prostate gland	0	5	0,43	0.00070
31323	metabolic process	3456	318	2/9,67	0.00121	60442	mor	6	3	0,49	0.00876
16339	cell adhesion via	7	4	0,57	0.00122	60525	development	6	3	0,49	0.00876
45932	negative regulation of muscle contractio	7	4	0,57	0.00122	60713	labyrinthine layer morphogenesis	6	3	0,49	0.00876
70986	left/right axis	7	4	0.57	0.00122	71679	commissural neuron axon quidance	6	3	0.49	0.00876
0.4000	specification adherens junction				0.00100	70015	glomerular visceral epithelial cell			0,10	0.00070
34333	assembly hindhrain doublepment	55	12	4,45	0.00123	72015	deve	6	3	0,49	0.00876
51048	negative regulation of	70	14	5,66	0.00123	72109	giomerular mesangium development	6	3	0,49	0.00876
51040	secretion response to acid			5,00	0.00125	72310	neurotransmitter-gated ion channel	0	5	0,43	0.00070
1101	chemical	171	26	13,84	0.00124	72578	clust	6	3	0,49	0.00876
45833	lipid metabolic p	41	10	3,32	0.00126	98722	asymmetric stem cell division	6	3	0,49	0.00876
60419	heart growth	48	11	3,88	0.00127	1900746	regulation of vascular endothelial	6	3	0,49	0.00876
42325	regulation of	797	88	64,5	0.00127	1902547	regulation of cellular response to	6	3	0.49	0.00876
30574	pnosphorylation collagen catabolic	28	8	2 27	0.00129	1902806	vascu positive regulation of IRE1-mediated	6	3	0.49	0.00970
30374	process synaptic transmission	20	0	۲,۲	0.00128	1903090	unf positive regulation of fibroblast	J	ა	0,49	0.000/6
35249	glutamatergic	28	8	2,27	0.00128	2000271	apopto	6	3	0,49	0.00876
48645	animal organ formation endochondral bone	28	8	2,27	0.00128	10837	regulation of keratinocyte proliferation	11	4	0,89	0.00885
00350	morphogenesis	20	o	2,21	0.00128	21040	cen promeration in forebrain	11	4	0,89	0.00885
86001	action potential	28	8	2,27	0.00128	35357	recept	11	4	0,89	0.00885
31099	regeneration	94	17	7,61	0.00128	45671	negative regulation of osteoclast differ	11	4	0,89	0.00885
7193	adenylate cyclase-	22	7	1,78	0.00128	48333	mesodermal cell differentiation	11	4	0,89	0.00885
10464	regulation of mesenchymal cell	22	7	1.78	0.00128	50819	negative regulation of coagulation	11	4	0.89	0.00885
	prolifera										

35924	cellular response to vascular endothelia	22	7	1,78	0.00128	60074	synapse maturation	11	4	0,89	0.00885
60563	neuroepithelial cell differentiation	22	7	1,78	0.00128	71379	cellular response to prostaglandin stimu	11	4	0,89	0.00885
61614	pri-miRNA transcription	22	7	1,78	0.00128	90075	relaxation of muscle	11	4	0,89	0.00885
80090	regulation of primary	3362	310	272,07	0.00129	97529	myeloid leukocyte migration	45	9	3,64	0.00889
30036	actin cytoskeleton	332	43	26.87	0.00130	7259	JAK-STAT cascade	61	11	4.94	0.00898
9892	negative regulation of	1711	170	138.46	0.00130	97696	STAT cascade	61	11	4.94	0.00898
51050	metabolic process positive regulation of	473	57	39.39	0.00125	21225	positive regulation of cellular	1755	167	1/2 02	0.00900
10001	transport	475	01	10.00	0.00105	1004000	metaboli regulation of cation transmembrane	100	10/	0.07	0.00300
10631	epitriellal cell migration	128	21	10,36	0.00135	1904062	trans negative regulation of canonical Writ	122	18	9,87	0.00902
90132	epithelium migration	128	21	10,36	0.00135	90090	sig	113	17	9,14	0.00908
9967	signal transducti	767	85	62,07	0.00138	8584	male gonad development	78	13	6,31	0.00926
10469	activity	146	23	11,81	0.00144	7189	C	17	5	1,38	0.00931
1952	adhesion	56	12	4,53	0.00145	30225	macrophage differentiation	17	5	1,38	0.00931
30856	regulation of epithelial cell differenti	56	12	4,53	0.00145	1901890	positive regulation of cell junction ass	17	5	1,38	0.00931
31214	biomineral tissue development	56	12	4,53	0.00145	46822	regulation of nucleocytoplasmic transpor	141	20	11,41	0.00943
50803	regulation of synapse structure or activ	56	12	4,53	0.00145	43069	negative regulation of programmed cell d	475	53	38,44	0.00956
35265	organ growth	79	15	6,39	0.00146	90276	regulation of peptide hormone	87	14	7,04	0.00963
45944	positive regulation of	610	70	49,36	0.00151	70482	response to oxygen levels	228	29	18,45	0.00964
46058	cAMP metabolic	42	10	3,4	0.00153	6641	triglyceride metabolic process	38	8	3.08	0.00977
3230	cardiac atrium	17	6	1.38	0.00156	8593	regulation of Notch signaling pathway	38	8	3.08	0 00977
22172	development calcineurin-NFAT	17	6	1.29	0.00156	60079	oxcitatory postcypaptic potential	29	9	2.09	0.00077
07750	signaling cascade negative regulation of	17	0	1,30	0.00150	00079	slow-twitch skeletal muscle fiber	30	0	3,00	0.00977
97756	blood vessel diam multicellular organismal	17	6	1,38	0.00156	31444	contra	2	2	0,16	0.00654
35637	signaling	64	13	5,18	0.00157	31652	positive regulation of heat generation	2	2	0,16	0.00654
60038	proliferation	29	8	2,35	0.00164	32764	cytokin	2	2	0,16	0.00654
43408	cascade	336	43	27,19	0.00164	32811	secre	2	2	0,16	0.00654
43433	negative regulation of DNA binding trans	80	15	6,47	0.00166	33634	positive regulation of cell-cell adhesio	2	2	0,16	0.00654
60972	left/right pattern formation	12	5	0,97	0.00167	35425	autocrine signaling	2	2	0,16	0.00654
1905276	regulation of epithelial tube formation	12	5	0,97	0.00167	38026	reelin-mediated signaling pathway	2	2	0,16	0.00654
23014	signal transduction by	457	55	36,98	0.00168	45162	clustering of voltage-gated sodium	2	2	0,16	0.00654
14068	positive regulation of	23	7	1,86	0.00171	45578	negative regulation of B cell	2	2	0,16	0.00654
42490	mechanoreceptor	23	7	1.86	0.00171	48241	epinephrine transport	2	2	0.16	0.00654
48147	negative regulation of	23	7	1.86	0.00171	48242	epinephrine secretion	2	2	0.16	0 00654
	fibroblast prolif		-	.,				-	-	.,	
60112	inner ear receptor cei	22	7	1 00	0.00171	60004	regulation of transcription from RNA	0	2	0.16	0.00654
60113	differentiation mesenchyme	23	7	1,86	0.00171	60994	regulation of transcription from RNA pol cellular response to corticosterone	2	2	0,16	0.00654
60113 72132	differentiation mesenchyme morphogenesis cellular response to	23 23	7 7	1,86 1,86	0.00171	60994 71386	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to iasmonic acid	2	2 2	0,16 0,16	0.00654
60113 72132 71229 61337	differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction	23 23 105 50	7 7 18 11	1,86 1,86 8,5 4 05	0.00171 0.00171 0.00176 0.00181	60994 71386 71395 71492	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to LIV-A	2 2 2 2	2 2 2 2	0,16 0,16 0,16 0.16	0.00654 0.00654 0.00654
60113 72132 71229 61337 2040	differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis cardiation	23 23 105 50 36	7 7 18 11 9	1,86 1,86 8,5 4,05 2,91	0.00171 0.00171 0.00176 0.00181 0.00182	60994 71386 71395 71492 72007	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation	2 2 2 2 2 2	2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619	differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte	23 23 105 50 36 65	7 7 18 11 9 13	1,86 1,86 8,5 4,05 2,91 5,26	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182	60994 71386 71395 71492 72007 72008	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio	2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron	23 23 105 50 36 65 114	7 7 18 11 9 13	1,86 1,86 8,5 4,05 2,91 5,26 9,23	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182	60994 71386 71395 71492 72007 72008 72143	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron regulation of neuron	23 23 105 50 36 65 114 712	7 7 18 11 9 13 19 70	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187	60994 71386 71395 71492 72007 72008 72143 72144	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010	Infler earl receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve	23 23 105 50 36 65 114 712	7 7 18 11 9 13 19 79	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198	60994 71386 71395 71492 72007 72008 72143 72144	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of trialyceride	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve	23 23 105 50 36 65 114 712 4	7 7 18 11 9 13 19 79 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve morphogenesis morphogenesis	23 23 105 50 36 65 114 712 4 4	7 7 18 11 9 13 19 79 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering getarescredo eucord tamoent of	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve formation	23 23 105 50 36 65 114 712 4 4 4	7 7 18 11 9 13 19 79 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 43523 7010 3176 3180 3190 14012	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve development autioventricular valve formation peripheral nervous system axon	23 23 105 50 36 65 114 712 4 4 4 4 4	7 7 18 11 9 13 19 79 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting anglogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve development aortic valve formation peripheral nervous system axon regenerat	23 23 105 50 36 65 114 712 4 4 4 4 4 4	7 7 18 11 9 13 19 79 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of	23 23 105 50 65 114 712 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of mus negative regulation of relaxation of	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604	Initia tea receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regative regulation of catecholamine sec	23 23 105 50 65 114 712 4 4 4 4 4 4 4	7 7 18 11 9 13 19 79 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 190188	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of mus negative regulation of relaxation of car	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32 0,32 0,32	0.00171 0.00171 0.00176 0.00181 0.00182 0.00182 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901898 1902548	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta morphogenesis	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,3	0.00171 0.00171 0.00176 0.00181 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901898 1902548 1902951	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta morphogenesis negative regulation of smooth muscle com	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,3	0.00171 0.00171 0.00176 0.00181 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901078 1901898 1902548 1902951 1902957	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response negative regulation of dendritic spine m negative regulation of mitochondrial ele	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 55059	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord intermeuron differen negative regulation of catecholamine sec ascending aorta morphogenesis negative regulation of smooth muscle con asymmetric neuroblast division	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,3	0.00171 0.00171 0.00176 0.00181 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901078 19012548 1902548 1902951 1902957 1903225	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response negative regulation of mitochondrial ele negative regulation of mitochondrial ele	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 55059 60710	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta development ascending aorta development ascending aorta development ascending aorta division chorio-allantoic fusion cell migration involved	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72008 72143 72144 90209 97114 98957 1900747 1901078 1901788 1902548 1902548 1902551 1902255 1904228	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response negative regulation of mitochondrial ele negative regulation of mitochondrial ele negative regulation of mitochondrial ele	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 55059 60710 60973	Initial receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of lymphocyte differentiation regulation of negulation of regulation of organization aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta morphogenesis negative regulation of smooth muscle con asymmetric neuroblast division chorio-allantoic fusion cell morgitarion involved in heart develop	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901078 1901254 1902548 1902548 1902551 1902255 1904238 1904238	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of cellular response negative regulation of cellular response negative regulation of mitochondrial ele negative regulation of mitochondrial ele negative regulation of endotermal cell d pericyte cell differentiation megative regulation of myofibroblast dif	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 55059 60710 60973 72203	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of negulation of regulation of negulation of regulation of regulation of regulation of regulation of organization aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen regative regulation of catecholamine sec ascending aorta morphogenesis negative regulation of smooth muscle con asymmetric neuroblast division chorio-allantoic fusion cell migration involved in heat develop cell poliferation	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.0	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1901078 1901078 1902548 1902548 1902551 1902255 1904238 1904761 1905064	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of relaxation of car negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of dendritic spine m negative regulation of dendritic spine m negative regulation of endodermal cell d pericyte cell differentiation negative regulation of nyofibroblast dif pericyte cell differentiation negative regulation of nyofibroblast dif	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta morphogenesis ascending aorta morphogenesis ascending aorta development ascending aorta morphogenesis negative regulation of catecholamine sec asgending aorta division chorio-allantoic fusion cell migration involved in heart develop cell proliferation involved in metanephr MAPK cascade	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198	60994 71386 71395 71492 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902957 1902957 1902255 1904288 1902761 1903225	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to jasmonic acid stimu cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of tralyceride meta negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of dendritic spine m negative regulation of dendritic spine m negative regulation of dendritic spine m negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of nyofibroblast dif pericyte cell differentiation negative regulation of vascular smooth m negative regulation of vascular smooth m negative regulation of myofibroblast dif negative regulation of myofibroblast dif	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta morphogenesis negative regulation of catecholamine sec asguert regulation of catecholamine sec asguert regulation of catecholamine sec ell proliferation involved in metanephr MAPK cascade	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902957 1902957 1902957 1904251 1902956 1904261 1905064	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation of car negative regulation of nelaxation of car negative regulation of nelaxation of car negative regulation of nelochondrial ele negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of vascular smooth m negative regulation of vascular smooth m pericyte cell differentiation negative regulation of vascular smooth m regutation of vascular smooth m regutation of vascular smooth m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206 6023	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta development ascending aorta development ascending aorta development ascending aorta division chorio-allantoic fusion chorio-allantoic fusion cell migration involved in heat develop cell migration involved cell migration involved metant develop cell proliferation involved in metanephr	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58	7 7 18 19 13 19 79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,45 0,45 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 71386 71395 71492 72007 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902957 1902957 1902957 190225 1904281 1902487 1905064 1905664 1905664	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of dendritic spine m negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of myofibroblast dif negative regulation of vascular smooth m negative regulation of vascular smooth m negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of myofibroblast dif pericyte cell differentiation negative regulation of mitochondrial regulation of calcium ion import across histone H2A phosphorylation	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206 6024	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta morphogenesis ascending aorta division chorio-allantoic fusion chorio-allantoic fusion coll migration involved in heat develop cell molitarian involved in metanephr MAPK cascade cardiac chamber morphogenesis aminoglycan biosynthetic process glycosaminoglycan biosynthetic process	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58	 7 7 18 19 13 19 79 3 12 12 12 	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,45 0,45 0,45 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 60994 71386 71395 72007 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902957 1902957 1902957 1903225 1904288 1902548 1902544 1905064 1905664 1905664 1905664 1905664	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of tralyceride meta negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of cellular response negative regulation of dendritic spine m negative regulation of dendritic spine m negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of modermal cell d pericyte cell differentiation negative regulation of modormal cell pericyte cell differentiation negative regulation of vascular smooth m negative regulation of mitochondrial cell pericyte cell differentiation negative regulation of modormal cell d pericyte cell differentiation negative regulation of modormal cell d pericyte cell differentiation negative regulation of modormal celluton for accular smooth m negative regulation of AmPA receptor acc	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206 6024 44243	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending acta development ascending acta development ascending acta asponter ascending as ascending as assection as assemention as assemention as ascending as ascendi	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58 58 30	 7 7 18 19 13 19 79 3 4 5 5 4 4<!--</td--><td>1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42</td><td>0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0</td><td>60994 60994 71386 71395 72007 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902957 1902957 190225 1904281 1905064 1905664 1905664 1905664 1905664 1905664</td><td>regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation of car negative regulation of dendritic spine m pericyte cell differentiation negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of vascular smooth m negative regulation of vascular smooth m periotyte cell differentiation negative regulation of mitochondrial car histone H2A phosphorylation positive regulation of AMPA receptor acr heterocycle biosynthetic process</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16</td><td>0.00654 0.00654</td>	1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 60994 71386 71395 72007 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902957 1902957 190225 1904281 1905064 1905664 1905664 1905664 1905664 1905664	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of mus negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation of car negative regulation of dendritic spine m pericyte cell differentiation negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of vascular smooth m negative regulation of vascular smooth m periotyte cell differentiation negative regulation of mitochondrial car histone H2A phosphorylation positive regulation of AMPA receptor acr heterocycle biosynthetic process	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206 6023 6024 44243 48661	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development accel migration involved in metanephr MAPK cascade cardiac chamber morphogenesis aminoglycan biosynthetic process multicellular organismal catabolic proces positive regulation of somoth muscle con	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58 58 30 30	 7 7 18 19 79 3 12 12 12 8 8 	1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 60994 71386 71395 72008 72143 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902951 1902957 1902255 1904281 1905664 1905666 1905666 1905666 1905666 1905666 1905666 1905666 1905666 1905666 1905666 190566 190566 190566 190566 190566 190	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endottiel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation negative regulation of nelaxation megative regulation of nelaxation megative regulation of nelodormal cell d pericyte cell differentiation negative regulation of vascular smooth m negative regulation of mitochondrial ATP regulation of calcium ion import across histone H2A phosphorylation positive regulation of AMPA receptor act	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 60710 60973 72203 165 3206 60973 72203 165 3206 6022 44243 48661 61035	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve evelopment aortic valve development aortic valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development accel migration interneuron differen negative regulation of catecholamine sec asymetric neuroblast division chorio-allantoic fusion cell migration involved in heat develop cell migration involved in heat develop cell migration involved in metanephr MAPK cascade cardiac chamber morphogenesis aminoglycan biosynthetic process multicellular organismal catabolic proces positive regulation of catabolic proces	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58 58 30 30 30	 7 18 19 13 19 79 3 4 5 4 4 5 4 4<!--</td--><td>1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43</td><td>0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0</td><td>60994 60994 71386 71395 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902951 1902951 19029551 19029548 19029548 19029548 19029548 1905064 1905066 1905064 1905066 190506 190</td><td>regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation negative regulation of nelaxation megative regulation of nelachormal cell d pericyte cell differentiation negative regulation of nitochondrial ele negative regulation of mitochondrial ATP regulation of calcium ion import across histone H2A phosphorylation positive regulation of microtubule polym</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16</td><td>0.00654 0.00654</td>	1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00188 0.0	60994 60994 71386 71395 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902951 1902951 19029551 19029548 19029548 19029548 19029548 1905064 1905066 1905064 1905066 190506 190	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation megative regulation of nelaxation negative regulation of nelaxation megative regulation of nelachormal cell d pericyte cell differentiation negative regulation of nitochondrial ele negative regulation of mitochondrial ATP regulation of calcium ion import across histone H2A phosphorylation positive regulation of microtubule polym	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 65059 60710 60973 72203 165 3206 60973 72203 165 3206 6022 44243 48661 61035 6954	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve morphogenesis atrioventricular valve tormation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta development ascending aorta development ascending aorta development ascending aorta division cell migration involved in heat develop cell proliferation involved in metanephr MAPK cascade cardiac chamber morphogenesis aminoglycan biosynthetic process glycosamingalycan biosynthetic process multicellular organismal catabolic proce positive regulation of catabolic proce positive regulation of catabolic process multicellular organismal catabolic proce positive regulation of catabolic proce	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58 30 30 30 30 224	 7 18 19 13 19 79 3 4 4 8 8 3 31 	1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 1,469 1,469 2,43 2,43 2,43 1,8,13 1,8,13	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00208 0.00208 0.00213 0.00218 0.0	60994 60994 71386 71395 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902548 1902557 1904238 1902548 1902564 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 190565 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905665 1905655 1905655 1905655 1905655 1905655 19056555 190565555 1905655555555555555555555555555555555555	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of of endotric spine m negative regulation of of endotrial ele pericyte cell differentiation negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of vascular smooth m negative regulation of vascular smooth m pericyte cell differentiation negative regulation of vascular smooth m pericyte cell differentiation negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of mitochondrial ATP regulation of calcium ion import across histone H2A phosphorylation positive regulation of microtubule polym muscle fiber development	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00654
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 65059 60710 60973 72203 165 3206 60973 72203 165 3206 6022 44243 48661 61035 6954 9187	Inter ear receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of lymphocyte differentiation regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen negative regulation of catecholamine sec ascending aorta development ascending aorta development ascending aorta development ascending aorta division chorio-allantoic fusion cell moliferation in heart develop cell proliferation involved in metanephr MAPK cascade cardiac chamber morphogenesis agiycosaminoglycan biosynthetic process glycosaminoglycan biosynthetic process multicellular organismal catabolic proces. positive regulation of catabolic process multicellular organismal catabolic process	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 58 58 58 58 30 30 30 30 224 51	 7 7 18 19 79 3 4 4 8 8 31 11 	1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 1,469 1,469 2,43 2,43 1,813 4,13	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00193 0.00214 0.0	60994 60994 71386 71395 72008 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902557 1904238 1902557 1904238 1902544 1905665 1905665 1905655 1905655 1905655 1905655 19056555 190565555 19056555555 1905655555555555555555555555	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelochondrial ele negative regulation of dendritic spine m negative regulation of mitochondrial ele pericyte cell differentiation negative regulation of modermal cell d pericyte cell differentiation negative regulation of modermal cell differentiation negative regulation of AmPA receptor arcoss histone H2A phosphorylation positive regulation of microtubule polym muscle fiber development negative regulation of microtubule polym muscle fiber development negative regulation of microtubule polym	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.006540.00654 0.0066
60113 72132 71229 61337 2040 45619 43523 7010 3176 3180 3190 14012 21514 33604 35905 35910 45986 65059 60710 60973 72203 165 3206 60973 72203 165 40974 44243 48661 61035 6954 9187 45216	Inter each receptor cell differentiation mesenchyme morphogenesis cellular response to acid chemical cardiac conduction sprouting angiogenesis regulation of neuron apoptotic process cytoskeleton organization aortic valve development aortic valve morphogenesis atrioventricular valve formation peripheral nervous system axon regenerat ventral spinal cord interneuron differen ascending aorta development accel offerentian accel offerentian accel and accel accel offerentian accel and accel accel offerentian accel and accel accel accel accel and accel	23 23 105 50 65 114 712 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	 7 7 18 19 79 3 4 4<td>1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 1,469 1,469 1,413 1,813 1,4,13 1,003</td><td>0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00208 0.00208 0.00208 0.00213 0.00215</td><td>60994 60994 71386 71395 72007 72008 72143 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902557 1904238 1902557 1904238 1902557 1904238 1902564 1905666 1905666</td><td>regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelochondrial ele negative regulation of nelochondrial ele pericyte cell differentiation megative regulation of mitochondrial ele pericyte cell differentiation megative regulation of modermal cell d pericyte cell differentiation megative regulation of AMPA receptor arcoss histone H2A phosphorylation positive regulation of mirortubule polym nuscle fiber development negative regulation of mirortubule polym nuscle fiber development negative regulation of mirortubule polym</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16</td><td>0.00654 0.00656 0.00666 0.00666 0.00666 0.00666 0.006660.00066 0.00666 0.00666 0.00666 0.006660.00066 0.0066</td>	1,86 1,86 1,86 8,5 4,05 2,91 5,26 9,23 57,62 0,32 1,469 1,469 1,413 1,813 1,4,13 1,003	0.00171 0.00171 0.00176 0.00182 0.00182 0.00187 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00198 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00199 0.00208 0.00208 0.00208 0.00213 0.00215	60994 60994 71386 71395 72007 72008 72143 72143 72144 90209 97114 98957 1900747 1900747 1901078 1902548 1902557 1904238 1902557 1904238 1902557 1904238 1902564 1905666 1905666	regulation of transcription from RNA pol cellular response to corticosterone stim cellular response to UV-A mesangial cell differentiation glomerular mesangial cell differentiatio mesangial cell development glomerular mesangial cell development negative regulation of triglyceride meta NMDA glutamate receptor clustering anterograde axonal transport of mitochon negative regulation of vascular endothel negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of relaxation of car negative regulation of nelaxation of car negative regulation of nelochondrial ele negative regulation of nelochondrial ele pericyte cell differentiation megative regulation of mitochondrial ele pericyte cell differentiation megative regulation of modermal cell d pericyte cell differentiation megative regulation of AMPA receptor arcoss histone H2A phosphorylation positive regulation of mirortubule polym nuscle fiber development negative regulation of mirortubule polym nuscle fiber development negative regulation of mirortubule polym	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00654 0.00656 0.00666 0.00666 0.00666 0.00666 0.006660.00066 0.00666 0.00666 0.00666 0.006660.00066 0.0066

1953	negative regulation of	18	6	1,46	0.00219	1903426	regulation of reactive oxygen species	36	8	2,91	0.00698
10470	regulation of	18	6	1.46	0.00219	1904888	pi	36	8	2 91	0 00698
14014	gastrulation negative regulation of	10	0	1,40	0.00210	01700		110	10	2,51	0.000000
14014	gliogenesis	18	0	1,40	0.00219	21700	negative regulation of smoothoned	119	18	9,63	0.00699
15844	monoamine transport	18	6	1,46	0.00219	45879	signal	16	5	1,29	0.00703
21904	dorsal/ventral neural tube patterning	18	6	1,46	0.00219	2262	myeloid cell homeostasis	84	14	6,8	0.00707
30199	collagen fibril	18	6	1,46	0.00219	30323	respiratory tube development	84	14	6,8	0.00707
35411	catenin import into	18	6	1.46	0.00219	7156	homophilic cell adhesion via plasma	29	7	2.35	0.00711
1002706	nucleus regulation of	024	20	10.04	0.00001	01005	memb	20	7	0.95	0.00711
1903706	hemopoiesis cellular response to	234	32	18,94	0.00221	21000	Torebrain cell migration	29	/	2,35	0.00711
71214	abiotic stimulus	178	26	14,4	0.00223	35329	hippo signaling	29	7	2,35	0.00711
104004	cellular response to environmental stimu	178	26	14,4	0.00223	9991	response to extracellular stimulus	253	32	20,47	0.00734
35150	regulation of tube size	37	9	2,99	0.00223	7159	leukocyte cell-cell adhesion	138	20	11,17	0.00746
50880	vessel size	37	9	2,99	0.00223	2683	pro	185	25	14,97	0.00746
2062	chondrocyte differentiation	44	10	3,56	0.00223	43588	skin development	120	18	9,71	0.00762
10771	negative regulation of	44	10	3,56	0.00223	33273	response to vitamin	44	9	3,56	0.00764
30510	regulation of BMP	44	10	3.56	0.00223	72163	mesonenhric enithelium development	44	a	3 56	0 00764
30310	signaling pathway	44	10	3,30	0.00223	72105	mesoneprine epithelium development	44	5	3,30	0.00704
50772	axonogenesis	44	10	3,56	0.00223	72164	mesonephric tubule development	44	9	3,56	0.00764
1903845	negative regulation of cellular response	44	10	3,56	0.00223	45185	maintenance of protein location	68	12	5,5	0.00774
10463	mesenchymal cell	24	7	1,94	0.00225	45859	regulation of protein kinase activity	449	51	36,33	0.00782
30514	negative regulation of	24	7	1 94	0.00225	34762	regulation of transmembrane transport	167	23	13 51	0 00802
	BMP signaling pat glomerulus		-	.,	0.00220				20		0.00002
32835	development	24	/	1,94	0.00225	10468	regulation of gene expression	2599	239	210,32	0.00811
3174	mitral valve	203	30	21,28	0.00225	1919	negative regulation of cytokine	37	0 17	2,99	0.00829
3174	development mitral valve	0	4	0,05	0.00220	1010	producti	112	17	9,00	0.00032
3183	morphogenesis	8	4	0,65	0.00228	43123	kinase/N	112	17	9,06	0.00832
3215	cardiac right ventricle morphogenesis	8	4	0,65	0.00228	32069	regulation of nuclease activity	23	6	1,86	0.00840
21511	spinal cord patterning	8	4	0,65	0.00228	71621	granulocyte chemotaxis	23	6	1,86	0.00840
50651	proteoglycan	8	4	0,65	0.00228	86065	cell communication involved in cardiac	23	6	1,86	0.00840
	biosynthet dermatan sulfate						·				
50655	proteoglycan metabolic	8	4	0,65	0.00228	1905207	regulation of cardiocyte differentiation	23	6	1,86	0.00840
01170	 negative regulation of	0		0.05	0.00000	405 45	ware an eterrid because	010	00	17.40	0 000 47
61179	insulin secretion	8	4	0,65	0.00228	48545	response to steroid normone	216	28	17,48	0.00847
72111	involved in kidney de	8	4	0,65	0.00228	10604	met	1776	169	143,72	0.00856
72202	cell differentiation involved in metanep	8	4	0,65	0.00228	1901214	regulation of neuron death	168	23	13,6	0.00861
00011	membrane	0		0.05	0.00000	1700	andadarra farra atian	00	7	0.40	0.000004
86011	action po	8	4	0,65	0.00228	1706	endoderm formation	30	/	2,43	0.00864
2000112	regulation of cellular	2362	224	191.14	0.00233	6026	aminoglycan catabolic process	30	7	2.43	0.00864
									•		
97191	extrinsic apoptotic	134	21	10.84	0.00243	72091	regulation of stem cell proliferation	30	7	2 43	0 00864
97191	extrinsic apoptotic signaling pathway regulation of response	134	21	10,84	0.00243	72091	regulation of stem cell proliferation regulation of reactive oxygen species	30	7	2,43	0.00864
97191 32101	extrinsic apoptotic signaling pathway regulation of response to external stimu	134 274	21 36	10,84 22,17	0.00243 0.00245	72091 2000377	regulation of stem cell proliferation regulation of reactive oxygen species me	30 86	7 14	2,43 6,96	0.00864 0.00870
97191 32101 3156	extrinsic apoptotic signaling pathway regulation of response to external stimu regulation of animal organ formation	134 274 13	21 36 5	10,84 22,17 1,05	0.00243 0.00245 0.00254	72091 2000377 1840	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development	30 86 6	7 14 3	2,43 6,96 0,49	0.00864 0.00870 0.00876
97191 32101 3156 38084	extrinsic apoptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa	134 274 13 13	21 36 5 5	10,84 22,17 1,05 1,05	0.00243 0.00245 0.00254 0.00254	72091 2000377 1840 3413	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in	30 86 6 6	7 14 3 3	2,43 6,96 0,49 0,49	0.00864 0.00870 0.00876 0.00876
97191 32101 3156 38084 43616	macionalecular apoptolic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte	134 274 13 13 13	21 36 5 5	10,84 22,17 1,05 1,05 1,05	0.00243 0.00245 0.00254 0.00254 0.00254	72091 2000377 1840 3413 7016	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in otycskeletal anchoring at plasma	30 86 6 6	7 14 3 3 3	2,43 6,96 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616	matumotecue bit extrinsic apoptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac	134 274 13 13 13	21 36 5 5 5	10,84 22,17 1,05 1,05 1,05	0.00243 0.00245 0.00254 0.00254 0.00254	72091 2000377 1840 3413 7016	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in ocytoskeletal anchoring at plasma membran	30 86 6 6 6	7 14 3 3 3	2,43 6,96 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901	regulation of cardiac regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac regulation of cardiac	134 274 13 13 13 13	21 36 5 5 5 5 5	10,84 22,17 1,05 1,05 1,05 1,05	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254	72091 2000377 1840 3413 7016 21513	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothaned signaling pathway	30 86 6 6 6 6	7 14 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779	regulation of response regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac regulation of cardiac conduction	134 274 13 13 13 13 13 31	21 36 5 5 5 5 8	10,84 22,17 1,05 1,05 1,05 1,05 2,51	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254	72091 2000377 1840 3413 7016 21513 21910	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in	30 86 6 6 6 6 6	7 14 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177	Inautonitecta biol extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction regulation of neural precursor cell prol	134 274 13 13 13 13 31 31	21 36 5 5 5 5 8 8	10,84 22,17 1,05 1,05 1,05 1,05 2,51 2,51	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00254 0.00261	72091 2000377 1840 3413 7016 21513 21910 32926	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor 	30 86 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666	Inautoniecus bio extrinsic apopticic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction regulation of neural precursor cell prol	134 274 13 13 13 13 31 31 208	21 36 5 5 5 5 8 8 8 29	10,84 22,17 1,05 1,05 1,05 1,05 2,51 2,51 16,83	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261	72091 2000377 1840 3413 7016 21513 21910 32926 33630	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor 	30 86 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667	matumotecula bio extrinsic apopticic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell	134 274 13 13 13 13 31 31 208 171	21 36 5 5 5 8 8 8 29 25	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00254 0.00261 0.00262 0.00262	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35558	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of cell adhesion med regulation of peroxisome proliferator	30 86 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667	matumotecula bio extrinsic apopticic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesoneohros	134 274 13 13 13 13 31 31 208 171	21 36 5 5 5 8 8 29 25	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of cell adhesion med regulation of peroxisome proliferator ac	30 86 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823	matumotecula blo extrinsic apopticic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesoneptros development conduction	134 274 13 13 13 13 13 31 208 171 45	21 36 5 5 5 5 8 8 29 25 10	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00265	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process reaction of peroxisome proliferator ac	30 86 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936	matumbeeub blu extrinsic apopticic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac conduction regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera	134 274 13 13 13 13 13 31 31 208 171 45 45	21 36 5 5 5 5 8 8 29 25 10 10	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00265 0.00267	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process regulation of protein heterodimerization	30 86 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009	matumbeeule blu extrinsic apopticic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac method provide migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development	134 274 13 13 13 13 31 31 31 208 171 45 45	21 36 5 5 5 5 8 8 29 25 10 10 10	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 3,64	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00265 0.00267 0.00267 0.00267	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development	30 86 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009	maturbatecia bloc extrinsic apopticic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac ambebidal-type cell profilera nephron epithelial development regulation of endothelial cell prolifera nephron epithelium development regulation of	134 274 13 13 13 13 31 31 208 171 45 45	21 36 5 5 5 5 8 8 29 25 10 10 10	10,84 22,17 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00265 0.00265 0.00267 0.00267	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development neaative regulation of collateral	30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015	maturbatecia botto extrinsic apoptito: signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of osigna keratinocyte proliferation regulation of cardiac conduction regulation of endothelial development regulation of endiprolifera nephron epithelium development regulation of transforming growth factor	134 274 13 13 13 13 31 208 171 45 45 45	21 36 5 5 5 8 8 29 25 10 10 10 10	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 4,86	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of cell adhesion med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout	30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 20001777 1666 1667 1823 1936 72009 17015	Inautoniecus botto extrinsic apoptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratincoyte muscle cell action regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of entificat nephron epithelium development transforming growth factor	134 274 13 13 13 13 31 31 31 208 171 45 45 45 60 60	21 36 5 5 5 8 8 29 25 10 10 10 10 12	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 4,86 4,86	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout	30 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 20001777 1666 1667 1823 1936 72009 17015 1903034	Inautoniecule biol extrinsic apopticic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of entothelial cell prolifera nephron epithelium development regulation of factor regulation of response to wounding dorsal/ventral pattern	134 274 13 13 13 13 31 31 31 208 171 45 45 45 60 60 28	21 36 5 5 5 5 8 8 29 25 10 10 10 10 12 12	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 4,86 4,86 4,86	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028	regulation of state provident protection regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor gositive regulation of activin receptor dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland	30 86 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 20001777 1666 1667 1823 1936 72009 17015 1903034 9953	Inautonitecula biol extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of entothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation peneative regulation of peneative regulation of	134 274 13 13 13 13 31 31 31 208 171 45 45 45 60 60 38	21 36 5 5 5 8 8 29 25 10 10 10 10 12 12 9	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 3,64 3,64 3,64 4,86 4,86 3,08	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60042	regulation of status protect regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate elandular acinus	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343	Inautonitecula bio extrinsic apopticic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral patern formation negation of negation of regulation of regulati	134 274 13 13 13 13 31 31 208 171 45 45 45 60 60 60 38 38	21 36 5 5 5 8 8 29 25 10 10 10 10 12 12 9 9 9	10,84 10,84 22,17 1,05 1,05 1,05 2,51 10,83 13,84 3,64 3,64 3,64 4,86 4,86 3,08 3,08 3,08 3,08	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor gositive regulation of activin receptor med regulation of proxisme proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 20001777 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329	Inautonitectal blot extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negation of vasculature devel cell junction assembly denecephalon	134 274 13 13 13 13 31 31 208 171 45 45 45 60 60 38 38 38 118	21 36 5 5 5 8 8 29 25 10 10 10 10 12 12 9 9 9 19 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 10,83 13,84 3,64 3,64 3,64 4,86 4,86 3,08 3,08 3,08 9,55	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00272 0.00272 0.00272 0.00272	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525 60713 71020	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrithine layer morphogenesis	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536	matumblecula blot extrinsic apopticic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of retothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of vasculature devel cell junction assembly diencephalon	134 274 13 13 13 31 31 31 208 171 45 45 45 45 60 60 38 38 38 118 25	21 36 5 5 5 8 8 29 25 10 10 10 10 12 12 9 9 9 19 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 10,83 3,84 3,64 3,64 3,64 4,86 4,86 3,08 3,08 9,55 2,02	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00272 0.00272 0.00280 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 6028 60242 60525 60713 71679	regulation of stam cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795	matumblecule bottom signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell proli response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of vasculature devel cell junction assembly diencephalon development cerebral cortex cell migration	134 274 13 13 13 31 31 31 31 208 171 45 45 45 45 60 38 38 118 25 25	21 36 5 5 5 8 8 22 25 10 10 10 10 12 12 9 9 9 19 7 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00272 0.00272 0.00272 0.00280 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525 60713 71679 72015	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980	matumblecule bottom signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of neutothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of vasculature devel cell junction assembly diencephalon development cerebral cortex cell migration negative regulation of negative regulation of nucleotide metabo	134 274 13 13 13 31 31 31 31 208 171 45 45 45 45 60 38 38 118 25 25 25	21 36 5 5 5 8 8 22 10 10 10 10 10 12 12 9 9 9 19 7 7 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64 4,86 4,86 3,08 9,55 2,02 2,02 2,02 2,02	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00272 0.00272 0.00272 0.00272 0.00272 0.00291 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525 60713 71679 72015	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commisural neuron axon guidance glomerular visceral epithelial cell deve glomerular usta	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543	matumblecule bottom signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac conduction muscle cell action regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac conduction regulation of cardiac muscle cell action response to hypoxia ameboidal-type cell migration mesonephros development regulation of the dovelopment regulation of transforming dorsal/ventral pattern formation negative regulation of vasculative devel cell junction assembly diencephalon development cerebral cortex cell migration negative regulation of ruscolative regulation of nucleotide metabo negative regulation of nucleotide metabo	134 274 13 13 13 31 31 31 31 208 171 45 45 45 60 60 38 38 118 25 25 25	21 36 5 5 5 8 8 29 25 10 10 10 10 12 9 9 9 19 7 7 7 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02 2,02 2,02 2,02	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00272 0.00272 0.00272 0.00272 0.00272 0.00291 0.00291 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525 60713 71679 72015 72109	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543	Inautonecula poptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of cardiac conduction precursor cell prol response to hypoxia ameboidal-type cell migration precursor cell prol regulation of eneral precursor cell prol regulation of response development regulation of transforming growth factor regulation of transforming growth factor regulation of vasculature devel cell junction assembly diencephalon development cerebral cortex cell migration negative regulation of nucleotide metabo negative regulation of purine nucleotide	134 274 13 13 13 13 31 31 31 208 171 45 45 45 45 60 60 38 38 118 25 25 25 25 25	21 36 5 5 5 8 8 29 25 10 10 10 10 12 9 9 9 19 7 7 7 7	10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00272 0.00272 0.00272 0.00280 0.00291 0.00291 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 48368 60028 60028 60525 60713 71679 72015 72109	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran cytoskeletal anchoring at plasma membran smoothened signaling pathway involved in regulation of cell adhesion med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development glomerular epithelial cell development	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 20001777 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129	Inautoniecus botto extrinsic apoptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction mesorebrol development regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of enteral development regulation of transforming growth factor regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of nucleotide negative regulation of nucleotide negative regulation of celluanci no enrope	134 274 13 13 13 13 31 31 31 31 31 208 171 45 45 45 45 60 60 38 38 118 25 25 25 25 397	21 36 5 5 5 8 8 29 25 10 10 10 10 12 9 9 9 19 7 7 7 7 48	10,84 10,84 22,17 1,05 1,05 1,05 2,51 1,05 2,51 16,83 13,84 3,64 3,64 4,86 4,86 4,86 4,86 4,86 3,08 9,55 2,02 2,02 2,02 2,02 2,02 32,13	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00280 0.00291 0.00291 0.00291 0.00291	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60525 60713 71679 72015 72109 72310	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor opositive regulation of activin receptor med dopamine biosynthetic process regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular mesangium development neurotransmitter-gated ion channel clust	30 30 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 21536 21795 351129 21879	Inautoniecula poptotic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide metabo negative regulation of purine nucleotide negative regulation of purine nucleotide regulation of development regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide metabo negative regulation of celluar componen forebrain neuron differentiation	134 274 13 13 13 13 31 31 208 171 45 45 45 45 60 60 38 38 118 25 25 25 25 25 397 19	21 36 5 5 5 8 8 29 25 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6	10,84 10,84 22,17 1,05 1,05 1,05 2,51 16,83 13,84 3,64 3,64 3,64 4,86 4,86 4,86 4,86 4,86 4,86 2,02 2,02 2,02 2,02 2,02 32,13 1,54	0.00243 0.00245 0.00254 0.00254 0.00254 0.00254 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00272 0.00280 0.00291 0.00291 0.00291 0.00297 0.00293	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 60028 60442 60525 60713 71679 72015 72109 72310 72578 98722	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor dopamine biosynthetic process regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development neurotransmitter-gated ion channel cust	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 21536 1900543 51129 21879	Inautoniecula poptotic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of entothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of purine nucleotide negative regulation of purine nucleotide negative regulation of purine nucleotide negative regulation of purine nucleotide forebrain neuron differentiation negative regulation of purine nucleotide forebrain neuron differentiation negative regulation of purine nucleotide	134 274 13 13 13 13 31 208 171 45 45 45 45 60 60 60 38 38 38 118 25 25 25 25 25 25 25 397 19 19	21 36 5 5 5 8 8 29 25 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6 6	10,84 10,84 22,17 1,05 1,05 1,05 2,51 16,83 13,84 3,64 3,64 3,64 3,64 4,86 4,86 4,86 4,86 4,86 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02 32,13 1,54 1,54	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00271 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 42416 43497 48368 48671 48368 60442 60525 60713 71679 72015 72109 72310 72578 98722 1900746	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout rowergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular peithelial cell development neurotransmitter-gated ion channel cust asymmetric stem cell division regulation of vascular endothelial	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129 21879 45746 48016	Inautonitectal blot extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of acrdiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endthelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of nucleotide negative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of negative regulation of nucleotide metabo negative regulation of negative regulation of negative regulation of negative regulation of notch signaling p inositol phosphate- mediatod response	134 274 13 13 13 13 31 208 171 45 45 45 45 60 60 60 38 38 38 38 25 25 25 25 25 25 397 19 19	21 36 5 5 5 8 8 29 25 10 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6 6	10,84 10,84 22,17 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 32,13 1,54 1,54 1,54 1,54 1,54	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00265 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00271 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 48368 60028 60028 60028 60028 60028 60028 60028 72015 72109 72015 72109 72310 72578 98722 1900746 1902547	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor positive regulation of activin receptor ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development neurotransmitter-gated ion channel clust asymmetric stem cell division regulation of vascular endothelial growt aregunation of vascular endothelial	30 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129 21879 45746 48016 51057	Inautonitecula biol extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide negative regulation of Notch signaling p inositol phosphate- mediated signaling positive regulation of	134 274 13 13 13 13 31 208 171 45 45 45 60 60 60 38 38 118 25 25 25 25 25 25 397 19 19	21 36 5 5 5 8 8 29 25 10 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6 6 6 6	10,84 10,84 22,17 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64 3,64 3,64 4,86 4,86 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 32,13 1,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00272 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 48671 60028 60422 60525 60713 71679 72015 72109 72015 72109 72310 72578 98722 1900746 1902547	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in spinal cord dorsal/ventral patterning smoothened signaling pathway involved in orgative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development neurotransmitter-gated ion channel clust asymmetric stem cell division regulation of vascular endothelial growt regulation of vascular endothelial growt regulation of vascular endothelial growt	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129 21879 45746 48016 51057	Inautonitecula biol extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac conduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of vasculature devel cell junction assembly diencephalon development regative regulation of nucleotide metabo negative regulation of nucleotide metabo negative regulation of Notch signaling p inositol phosphate- mediated signaling positive regulation of small GTPase medi	134 274 13 13 13 13 31 208 171 45 45 45 60 60 38 38 118 25 25 25 25 25 25 25 25 25 25 25 25 25	21 36 5 5 5 8 8 29 25 10 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6 6 6 6	10,84 22,17 1,05 1,05 1,05 2,51 2,51 2,51 16,83 13,84 3,64 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 3,2,13 1,54 1	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00272 0.00291 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 48671 60028 60442 60525 60713 71679 72015 72109 72015 72109 72015 72109 72310 72578 98722 1900746 1902547 1902547	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development neurotransmitter-gated ion channel clust asymmetric stem cell division regulation of vascular endothelial growt regulation of vascular endothelial growt regulation of vascular endothelial growt regulation of ellular response to vascu positive regulation of IRE1-mediated unf	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00864 0.00870 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129 21879 45746 48016 51057 88002	Inautonitecula blot extrinsic apoptitic signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac onduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern formation negative regulation of vasculature devel cell junction assembly diencephalon development cerebral cortex cell migration negative regulation of Notch signaling p inositol phosphate- mediated signaling positive regulation of small GTPase medi cardiac muscle cell action potential irv	134 274 13 13 13 31 31 208 171 45 45 45 45 60 38 38 38 118 25 25 25 25 25 25 25 25 25 25 25 25 25	21 36 5 5 5 8 8 22 10 10 10 10 10 10 10 12 9 9 9 19 7 7 7 7 7 48 6 6 6 6 6 6 6	10,84 22,17 1,05 1,05 1,05 1,05 2,51 2,51 13,84 3,64 3,64 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 2,02 32,13 1,54 1,54 1,54 1,54	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00272 0.00280 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43497 48368 48671 48671 48671 60028 60225 60713 71679 72015 72109 72015 72109 72310 72578 98722 1900746 1902547 1903896 2000271	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el branching involved in prostate gland mor prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular epithelial cell development neurotransmitter-gated ion channel clust asymmetric stem cell division regulation of vascular endothelial growt regulation of vascular endothelial growt regulation of vascular endothelial growt positive regulation of IRE1-mediated unf positive regulation of biroblast apopt0	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00844 0.00870 0.00870 0.00870 0.00870 0.00870 0.00870 0.00870 0.00870 0.00870 0.00870 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876 0.00876
97191 32101 3156 38084 43616 98901 1903779 2000177 1666 1667 1823 1936 72009 17015 1903034 9953 1901343 34329 21536 21795 45980 1900543 51129 21879 45746 48016 51057 86002 97720	Inautonitecula popticit: signaling pathway regulation of response to external stimu regulation of response to external stimu regulation of animal organ formation vascular endothelial growth factor signa keratinocyte proliferation regulation of cardiac muscle cell action regulation of cardiac onduction muscle cell action regulation of neural precursor cell prol response to hypoxia ameboidal-type cell migration mesonephros development regulation of endothelial cell prolifera nephron epithelium development regulation of response to wounding dorsal/ventral pattern factor regulation of response to wounding dorsal/ventral pattern formation negative regulation of nucleotide metabo negative regulation of Notch signaling p forebrain neuron differentiation negative regulation of small GTPase medi cardiac muscle cell action potential inv calcineurin-mediated signaling	134 274 13 13 13 31 31 31 208 171 45 45 45 45 45 60 38 38 118 25 25 25 25 25 25 25 25 25 25 25 25 19 19 19 19 19 19	21 36 5 5 5 8 8 22 5 10 10 10 10 10 10 12 9 9 19 7 7 7 7 7 7 7 48 6 6 6 6 6 6 6 6 6	10,84 22,17 1,05 1,05 1,05 1,05 2,51 2,51 16,83 13,84 3,64 3,64 3,64 3,64 4,86 3,08 3,08 9,55 2,02 2,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54	0.00243 0.00243 0.00254 0.00254 0.00254 0.00254 0.00261 0.00261 0.00262 0.00267 0.00267 0.00267 0.00267 0.00270 0.00270 0.00270 0.00270 0.00272 0.00291 0.00291 0.00291 0.00291 0.00291 0.00293 0.00298 0.00298 0.00298 0.00298	72091 2000377 1840 3413 7016 21513 21910 32926 33630 35358 42416 43671 60028 60422 60525 60713 71679 72015 72109 72578 98722 1900746 1903866 2000271 1903867 2000271 10837	regulation of stem cell proliferation regulation of reactive oxygen species me neural plate development chondrocyte differentiation involved in cytoskeletal anchoring at plasma membran spinal cord dorsal/ventral patterning smoothened signaling pathway involved in negative regulation of activin receptor med regulation of peroxisome proliferator ac dopamine biosynthetic process regulation of protein heterodimerization lateral mesoderm development negative regulation of collateral sprout convergent extension involved in axis el prostate glandular acinus development labyrinthine layer morphogenesis commissural neuron axon guidance glomerular visceral epithelial cell deve glomerular mesangium development negulation of vascular endothelial growt glomerular neuron axon guidance glomerular neuron axon guidance glomerular mesangium development neurotransmitter-gated ion channel clust asymmetric stem cell division regulation of vascular endothelial growt positive regulation of lRE1-mediated unf positive regulation of hibroblast apopto regulation of keratinocyte proliferation	30 36 6 6 6 6 6 6 6 6 6 6 6 6 6	7 14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,43 6,96 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	0.00844 0.00870 0.00876 0.00876 0.00876 0.00876

30183	B cell differentiation	46	10	3,72	0.00317	35357	peroxisome proliferator activated	11	4	0,89	0.00885
30282	bone mineralization	46	10	3,72	0.00317	45671	negative regulation of osteoclast	11	4	0,89	0.00885
45638	negative regulation of	46	10	3.72	0.00317	48333	mesodermal cell differentiation	11	4	0.89	0.00885
50977	myeloid cell diff nervous system	308	20	24.02	0.00321	50910	nonative regulation of coogulation	11	4	0.80	0.00885
50077	process positive regulation of	300	33	24,32	0.00321	00074			-	0,03	0.00005
51130	cellular componen regulation of	/14	78	57,78	0.00322	60074	synapse maturation	11	4	0,89	0.00885
1903725	phospholipid metabolic pro	32	8	2,59	0.00323	71379	stimu	11	4	0,89	0.00885
60548	negative regulation of cell death	523	60	42,32	0.00326	90075	relaxation of muscle	11	4	0,89	0.00885
16310	phosphorylation	1313	132	106,25	0.00336	97529	myeloid leukocyte migration	45	9	3,64	0.00889
61387	cell growth	54	11	4,37	0.00344	7259	JAK-STAT cascade	61	11	4,94	0.00898
51402	neuron apoptotic process	129	20	10,44	0.00346	97696	STAT cascade	61	11	4,94	0.00898
60326	cell chemotaxis	78	14	6,31	0.00357	31325	positive regulation of cellular metaboli	1755	167	142,02	0.00900
30879	mammary gland	70	13	5,66	0.00362	1904062	regulation of cation transmembrane	122	18	9,87	0.00902
6940	regulation of smooth	14	5	1,13	0.00369	90090	negative regulation of canonical Wnt sig	113	17	9,14	0.00908
14904	myotube cell development	14	5	1,13	0.00369	8584	male gonad development	78	13	6,31	0.00926
35116	embryonic hindlimb	14	5	1,13	0.00369	7189	adenylate cyclase-activating G-protein	17	5	1,38	0.00931
45581	negative regulation of T	14	5	1.13	0.00369	30225	c	17	5	1.38	0.00931
45000	cell differenti negative regulation of		5	1.10	0.00000	1001000	positive regulation of cell junction	17	5	1.00	0.00001
45992	embryonic develop embryonic pattern	14	5	1,13	0.00369	1901890	ass regulation of nucleocytoplasmic	17	5	1,38	0.00931
9880	specification	26	7	2,1	0.00371	46822	transpor	141	20	11,41	0.00943
35987	endodermal cell differentiation	26	7	2,1	0.00371	43069	cell d	475	53	38,44	0.00956
60443	mammary gland morphogenesis	26	7	2,1	0.00371	90276	regulation of peptide hormone secretion	87	14	7,04	0.00963
61383	trabecula	26	7	2,1	0.00371	70482	response to oxygen levels	228	29	18,45	0.00964
1903035	negative regulation of	26	7	21	0.00371	6641		38	8	3.08	0 00977
1508	response to wound action potential	47	, 10	3.8	0.00374	8593	regulation of Notch signaling pathway	38	8	3.08	0.00977
				- , -		60079	excitatory postsynaptic potential	38	8	3,08	0.00977
	_		Go Terms (Bi	ological Pro	cesses) for Do	wnregulate	d Genes Resistant vs Nonresistant DM	so			I
GO.ID	l erm blood vessel	Annotated	Significant	Expected	classicFisher	GO.ID	Lerm	Annotated	Significant	Expected	classicFisher
40314	morphogenesis steroid metabolic	200	30	10,77	0.00010	00/4	multicellular organism metabolic	141	21	11,30	0.00429
8202	process	164	28	13,21	0.00011	44236	process	56	11	4,51	0.00447
70372	ERK2 cascade	102	20	8,22	0.00015	5996	monosaccharide metabolic process	160	23	12,89	0.00452
6704	glucocorticoid biosynthetic process	8	5	0,64	0.00015	10876	lipid localization	160	23	12,89	0.00452
8211	glucocorticoid metabolic	12	6	0,97	0.00016	9948	anterior/posterior axis specification	27	7	2,18	0.00455
50896	response to stimulus	4190	383	337,61	0.00019	34381	plasma lipoprotein particle clearance	27	7	2,18	0.00455
9605	response to external stimulus	914	103	73,65	0.00019	1845	phagolysosome assembly	5	3	0,4	0.00460
32501	multicellular organismal process	3139	297	252,93	0.00019	60745	mammary gland branching involved in preg	5	3	0,4	0.00460
36150	phosphatidylserine acyl-	5	4	0,4	0.00020	71635	negative regulation of transforming	5	3	0,4	0.00460
2920	regulation of humoral	17	7	1.37	0.00020	1902337	regulation of apoptotic process	5	3	0.4	0.00460
20955	epithelial cell					1004749	regulation of apoptotic process	5		- /	0.00460
30033		287	41	22 12	0.00021	1 21 14 / 40	involvod	D		0.4	
1525	differentiation	287 189	41 30	23,13 15.23	0.00021	6909	nhagocytosis	5 115	3 18	0,4 9.27	0.00465
1525 43277	differentiation angiogenesis apoptotic cell clearance	287 189 18	41 30 7	23,13 15,23 1,45	0.00021 0.00024 0.00031	6909 42326	phagocytosis negative regulation of phosphorylation	5 115 276	3 18 35	0,4 9,27 22,24	0.00465 0.00466
1525 43277 32101	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu	287 189 18 274	41 30 7 39	23,13 15,23 1,45 22,08	0.00021 0.00024 0.00031 0.00031	6909 42326 10466	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit	5 115 276 89	3 18 35 15	0,4 9,27 22,24 7,17	0.00465 0.00466 0.00466
1525 43277 32101 9410	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus	287 189 18 274 48	41 30 7 39 12	23,13 15,23 1,45 22,08 3,87	0.00021 0.00024 0.00031 0.00031 0.00032	6909 42326 10466 51480	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc	5 115 276 89 89	3 18 35 15 15	0,4 9,27 22,24 7,17 7,17	0.00466 0.00466 0.00466 0.00466
1525 43277 32101 9410 9719	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to	287 189 18 274 48 810	41 30 7 39 12 92	23,13 15,23 1,45 22,08 3,87 65,27	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033	6909 42326 10466 51480 30301	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport	5 115 276 89 89 34	3 18 35 15 15 8	0,4 9,27 22,24 7,17 7,17 2,74	0.00465 0.00466 0.00466 0.00466 0.00471
1525 43277 32101 9410 9719 71495	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to	287 189 18 274 48 810 706	41 30 7 39 12 92 82	23,13 15,23 1,45 22,08 3,87 65,27 56,89	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035	6909 42326 10466 51480 30301 52547	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity.	5 115 276 89 89 34 189	3 18 35 15 15 8 26	0,4 9,27 22,24 7,17 7,17 2,74	0.00465 0.00465 0.00466 0.00466 0.00466 0.00471 0.00481
1525 43277 32101 9410 9719 71495	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein	287 189 18 274 48 810 706	41 30 7 39 12 92 82	23,13 15,23 1,45 22,08 3,87 65,27 56,89	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035	6909 42326 10466 51480 30301 52547	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity	5 115 276 89 89 34 189	3 18 35 15 15 8 26	0,4 9,27 22,24 7,17 7,17 2,74 15,23	0.00465 0.00465 0.00466 0.00466 0.00466 0.00471 0.00481
1525 43277 32101 9410 9719 71495 6509 6812	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport	287 189 18 274 48 810 706 24 462	41 30 7 39 12 92 82 8 58	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040	6909 42326 10466 51480 30301 52547 7015 48638	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth	5 115 276 89 34 189 199 152	3 18 35 15 15 8 26 27 22	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25	0.00465 0.00466 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00499
1525 43277 32101 9410 9719 71495 6509 6812 48646	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure	287 189 18 274 48 810 706 24 462 462	41 30 7 39 12 92 82 8 58 58	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23	0.00021 0.00024 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040	6909 42326 10466 51480 30301 52547 7015 48638 71363	phagocytosis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor	5 115 276 89 34 189 199 152 358	3 18 35 15 15 8 26 27 22 43	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00499 0.00501
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis	287 189 18 274 48 810 706 24 462 462 78	41 30 7 39 12 92 82 8 58 58 58 16	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28	0.00021 0.00024 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055	hadrocyclasis negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis	3 115 276 89 34 189 199 152 358 389	3 18 35 15 15 8 26 27 22 43 46	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34	0.00465 0.00466 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00499 0.00501
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramlecular fi	287 189 18 274 48 810 706 24 462 462 78 71	41 30 7 39 12 92 82 8 58 58 58 16 15	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678	hardvecu phagocytosis negative regulation of peptidase activit regulation of opeptidase activit cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulated exocytosis	5 115 276 89 34 189 199 152 358 389 143	3 18 35 15 15 8 26 27 22 43 46 21	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52	0.00465 0.00466 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00499 0.00501 0.00505 0.00505
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to	287 189 274 48 810 706 24 462 78 71 1320	41 30 7 39 12 92 82 8 58 58 58 16 15 138	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00043 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659	hidovecu phagocytosis negative regulation of peptidase activit regulation of opeptidase activit cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulated exocytosis protein localization to plasma	5 115 276 89 34 189 199 152 358 389 143 143	3 18 35 15 15 8 26 27 22 43 46 21 21	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52	0.00465 0.00466 0.00466 0.00466 0.00471 0.00471 0.00481 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secration by coll	287 189 18 274 48 810 706 24 462 78 71 1320 680	41 30 7 39 12 92 82 8 8 58 58 16 15 138 79	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54 79	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035 0.00035 0.00039 0.00040 0.00040 0.00040 0.00045 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634	phagocytosis negative regulation of peptidase activit regulation of opeptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth actin filament organization regulation of developmental growth factor stimu regulated exocytosis regulated exocytosis protein localization to plasma membrane regulation of transforming growth	5 115 276 89 34 189 199 152 358 389 143 143 15	3 118 335 115 8 226 27 222 43 46 21 21 5	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 1,21	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507
1525 43277 32101 9410 9719 71495 6509 6509 6812 48646 60326 1902904 71310 32940	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory	287 189 18 274 48 810 706 24 462 78 71 1320 680	41 30 7 39 12 92 82 8 8 58 58 16 15 138 79	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79	0.00021 0.00024 0.00031 0.00031 0.00032 0.00033 0.00035 0.00035 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634	phagocytosis negative regulation of peptidase activit regulation of opeptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor	5 115 276 89 89 34 189 199 152 358 389 143 143 15	3 118 335 115 8 226 27 222 43 46 21 21 5 5	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 1,21	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508
1525 43277 32101 9410 9719 71495 6509 66812 48646 60326 1902904 71310 32940 2526	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response	287 189 18 274 48 810 706 24 462 78 71 1320 680 43	41 30 7 39 12 92 82 8 8 58 58 16 15 138 79 11	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46	0.00021 0.00024 0.00031 0.00031 0.00032 0.00035 0.00035 0.00039 0.00040 0.00040 0.00040 0.00045 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936	hardvecu phagocytosis negative regulation of peptidase activit regulation of opeptidase activit cholesterol transport regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction	5 115 276 89 34 189 199 152 358 389 143 143 15 134	3 118 335 15 8 26 27 22 43 46 21 21 5 20	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 11,52 1,21 10,8	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00508 0.00508
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process	287 189 274 48 810 706 24 462 78 71 1320 680 43 578	41 30 7 39 12 92 82 8 8 58 58 16 15 138 79 11	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57	0.00021 0.00024 0.00031 0.00032 0.00033 0.00035 0.00035 0.00039 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148	Induced phagocytosis negative regulation of peptidase activit regulation of opeptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor regulated exocytosis regulated exocytosis regulated in of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process	5 115 276 89 89 34 189 152 358 389 143 143 15 134 57	3 118 335 115 8 226 227 222 43 46 21 21 5 20 11	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 11,52 11,52 1,21 10,8 4,59	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00508 0.00512 0.00515
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process respiratory system development	287 189 18 274 48 810 706 24 462 78 71 1320 680 43 578 95	41 30 7 39 12 92 82 8 8 58 58 58 16 15 138 79 11 69 18	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65	0.00021 0.00024 0.00031 0.00032 0.00033 0.00035 0.00035 0.00039 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00045	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006	Induced phagocytosis negative regulation of peptidase activit regulation of opeptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor regulated exocytosis regulated exocytosis regulation of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development	5 115 276 89 89 34 189 152 358 389 143 143 15 134 57 57	3 35 15 15 26 27 22 43 46 21 5 20 11 11 11	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 1,21 10,8 4,59 4,59	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00507 0.00507 0.00507 0.00508 0.00512 0.00515
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process respiratory system development metal ion transport	287 189 18 274 48 810 706 24 462 78 71 1320 680 43 578 95 338	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00045 0.00050 0.00051	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051	Induced phagocytosis negative regulation of peptidase activit regulation of peptidase calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling	5 115 276 89 89 34 189 152 358 389 143 143 15 134 57 57 1750	3 35 15 15 26 27 22 43 46 21 5 20 11 11 168	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 1,52 1,52 1,52 4,59 4,59 4,59 141,01	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00508 0.00512 0.00515 0.00518
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process respiratory system development metabolic process	287 189 18 274 48 810 706 24 462 78 71 1320 680 43 578 95 338 3	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 11 69 18 45 3	23,13 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00050 0.00051 0.00052	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556	Induced Induced Inequive regulation of peptidase activit regulation of peptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction	5 115 276 89 89 34 189 152 358 389 143 143 15 134 57 57 1750 1474	3 318 325 15 15 26 27 22 43 46 21 21 5 20 11 11 168 144	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 11,52 1,21 10,8 4,59 4,59 4,59 141,01 118,77	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00508 0.00512 0.00515 0.00515 0.00518 0.00518 0.00540
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular ipid metabolic process respiratory system development metabolic process gland development	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33	23,13 15,23 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00050 0.00051 0.00052	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728	Indiversity regulation of peptidase negative regulation of peptidase activit regulation of peptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp	5 115 276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42	3 318 325 15 15 26 27 22 43 46 21 21 5 20 11 11 168 144 9	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 11,52 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00507 0.00507 0.00507 0.00508 0.00512 0.00515 0.00515 0.00518 0.00540
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process cerspiratory system development metabolic process gland development mineralocorticoid biosynthetic process	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225 6	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 11 69 18 45 3 33 4	23,13 15,23 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00050 0.00051 0.00052 0.00052 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074	Indiversity regulation of peptidase negative regulation of peptidase activit regulation of peptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell poliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144	3 318 325 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38 11,6	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00518 0.00540 0.00540 0.00550
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus endogenous stimulus cellular response to endogenous stimulus endogenous stimulus endogenous stimulus endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development minaralocorticoid biosynthetic process	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4	23,13 15,23 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00039 0.00040 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00051 0.00052 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240	Indiversity regulation of peptidase negative regulation of peptidase activit regulation of peptidase activity regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell poliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis positive regulation of multicellular org	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678	3 318 315 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21 73	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38 11,6 54,63	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00518 0.00540 0.00550 0.00550 0.00557
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212 71447	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus endogenous stimulus endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid biosynthetic process	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 6 6 6 6	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4	23,13 15,23 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48	0.00021 0.00031 0.00031 0.00031 0.00032 0.00035 0.00035 0.00039 0.00040 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00052 0.00055 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875	Indiversity ergulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation conc cholesterol transport regulation of opeptidase activity actin filament organization regulation of opeptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of epithelial cell poliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21 73 29	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38 11,6 54,63 17,73	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00518 0.00550 0.00557 0.00557
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212 71447 3012	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus endogenous stimulus endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process respiratory system development mineralocorticoid biosynthetic process gland development mineralocorticoid biosynthetic process cellular response to hydroperoxide cellular response to hydroperoxide	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 6 183	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 28	23,13 15,23 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 14,75	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00035 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00052 0.00055 0.00055 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694	Indiversity ergulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation conc cholesterol transport regulation of opeptidase activity actin filament organization regulation of opeptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of developmental cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis positive regulation of multicellular org cellular metal ion homeostasis	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21 73 29 18	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38 11,6 54,63 17,73 9,43	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00515 0.00550 0.00557 0.00557 0.00557 0.00557 0.00559
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212 71447 3012 51716	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid biosynthetic process cellular response to biosynthetic process cellular response to hydroperoxide metabolic process cellular response to hydroperoxide metabolic process cellular response to hydroperoxide muscle system process cellular response to stimulus	287 189 18 274 48 810 706 24 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 183 3546	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 5 3 33 4 4 4 28 326	23,13 15,23 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48 14,75 285,72	0.00021 0.00031 0.00031 0.00032 0.00033 0.00035 0.00035 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00051 0.00052 0.00055 0.00055 0.00055 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619	Indiversity regulation of phosphorylation negative regulation of phosphorylation negative regulation of peptidase activit regulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of developmental cell poliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis positive regulation of multicellular org cellular metal ion homeostasis membrane protein proteolysis	5 115 1276 89 89 34 189 199 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21 73 29 18 8	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 141,01 118,77 3,38 11,6 54,63 17,73 9,43 2,82	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00507 0.00515 0.00515 0.00515 0.00515 0.00518 0.00550 0.00557 0.00557 0.00557 0.00559 0.00559 0.00559
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212 71447 3012 51716 50673	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid biosynthetic process cellular response to bydroperoxide metabolic process cellular response to hydroperoxide muscle system process cellular response to scellular scellular scellu	287 189 18 274 48 810 706 24 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 6 183 3546 166	41 30 7 39 12 92 82 8 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 4 28 326 26	23,13 15,23 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48 0,48 14,75 285,72 13,38	0.00021 0.00031 0.00031 0.00033 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619 8643	Indiversity ergulation of phosphorylation negative regulation of phosphorylation negative regulation of peptidase activit ergulation of cytosolic calcium ion conc cholesterol transport regulation of peptidase activity actin filament organization regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of developmental cell poliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of multicellular org calcium ion homeostasis positive regulation of multicellular org cellular metal ion homeostasis steroid biosynthetic process membrane protein proteolysis carbohydrate transport	5 115 1276 89 89 34 189 199 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74	3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 168 144 9 21 73 29 18 8 13	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 141,01 118,77 3,38 11,6 54,63 17,73 9,43 2,82 5,96	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00550 0.00550 0.00557 0.00557 0.00557 0.00559 0.00559 0.00559 0.00559
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 30001 6072 48732 6705 8212 71447 3012 51716 50673 6805	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid metabolic process cellular response to hydroperoxide metabolic process cellular response to hydroperoxide metabolic process cellular response to hydroperoxide epithelial cell profileration xenobiotic metabolic	287 189 18 274 48 810 706 24 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 6 183 3546 166 39	41 30 7 39 12 92 82 8 8 58 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 28 336 26 10	23,13 15,23 15,23 22,08 3,87 65,27 56,89 1,93 37,23 37,23 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48 14,75 285,72 13,38 3,14	0.00021 0.00031 0.00031 0.00033 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619 8643 55080	Industry and a second s	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74 290	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 11 168 144 9 21 73 29 18 8 13 36	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 4,59 4,59 141,01 118,77 3,38 11,6 54,63 17,73 9,43 2,82 5,96 23,37	0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00515 0.00550 0.00557 0.00557 0.00557 0.00559 0.00559 0.00559 0.00559 0.00559
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 60541 30001 6072 48732 6705 8212 71447 3012 71447 3012 51716 50673 6805 9888	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process resportation ysstem development mineralocorticoid biosynthetic process gland development mineralocorticoid biosynthetic process cellular response to hydroperoxide muscle system process cellular response to hydroperoxide profileration xenobiotic metabolic process	287 189 18 274 48 810 706 24 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 183 3546 166 39 876	41 30 7 39 12 92 82 8 8 58 58 58 58 58 16 15 138 79 11 69 11 69 18 45 3 33 4 4 4 5 3 33 4 4 4 28 326 26 10 96	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 14,75 285,72 13,38 3,14 70,58	0.00021 0.00021 0.00031 0.00031 0.00032 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00072 0.00074 0.00084	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619 8643 55080 6688 6688	Industrial Indust	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74 290 10	3 3 118 35 15 15 26 27 22 43 46 21 21 5 20 11 1168 144 9 21 73 29 18 8 13 36 4	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 141,01 118,77 3,38 11,6 54,63 17,73 9,43 2,82 5,96 23,37 0,81	0.00465 0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00505 0.00507 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00518 0.00550 0.00557 0.00557 0.00557 0.00557 0.00559 0.00559 0.00568 0.00571 0.00584 0.00592
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 60541 32940 2526 60541 30001 6072 48732 6705 8212 71447 3012 71447 3012 51716 50673 6805 8888 8207	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid metabolic process cellular response to hydroperoxide metabolic process cellular response to hydroperoxide muscle system process cellular response to hydroperoxide process cellular response to hydroperoxide muscle system process cellular response to hydroperoxide process cellular response to hydroperoxide process cellular cell profiferation xenobiotic metabolic process tissue development c21-steroid hormone metabolic process	287 189 18 274 48 810 706 24 462 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 183 3546 166 39 876 21	41 30 7 39 12 92 82 8 8 58 58 58 58 58 16 15 138 79 11 69 11 69 18 45 3 33 4 4 4 5 3 33 4 4 5 7 9 7	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 14,75 285,72 13,38 3,14 70,58 1,69	0.00021 0.00021 0.00031 0.00031 0.00032 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00072 0.00074 0.00074 0.00084 0.00091	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619 8643 55080 6688 10743	Industrial and a second	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74 290 10 10	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 118 168 144 9 21 73 29 18 8 13 36 4 4 4	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 141,01 118,77 3,38 11,6 54,63 11,6 54,63 2,82 5,96 23,37 0,81 0,81	0.00465 0.00466 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00518 0.00550 0.00557 0.00557 0.00557 0.00559
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 32940 2526 60541 30001 6072 48732 6705 8212 71447 3012 51716 50673 6805 8888 8207 32963	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid metabolic process cellular response to hydroperoxide muscle system process cellular response to cost stimulus epithelial cell proliferation metabolic process collagen metabolic	287 189 18 274 48 810 706 24 462 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 183 3546 166 39 876 21 47	41 30 7 39 12 92 82 8 58 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 28 326 26 10 96 7 11 138 138 133 14 15 138 16 15 138 16 15 138 16 15 138 16 15 138 16 15 138 16 15 138 16 15 138 16 15 138 16 15 138 18 18 18 19 18 18 18 18 18 18 18 18 18 18	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48 14,75 285,72 13,38 3,14 70,58 1,69 3,79	0.00021 0.00021 0.00031 0.00031 0.00032 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00072 0.00074 0.00074 0.00084 0.00091 0.00091 0.000102	6909 42326 10466 51480 30301 52547 7015 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 35556 50728 55074 51240 6875 6694 33619 8643 55080 6688 10743 34105	Induced Induced Inequive regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation regulation of opeptidase activity actin filament organization regulation of peptidase activity actin filament organization regulation of developmental growth factor protein localization to plasma membrane regulation of thelial cell proliferat protein localization to plasma membrane regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis steroid biosynthetic process membrane protein proteolysis carbohydrate transport cation homeostasis glycosphingolipid biosynthetic process regulation of macrophage derived foam ce positive regulation of tissue	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74 290 10 10 10	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 118 168 144 9 21 73 29 18 8 13 36 4 4 4 4 4 4 4 4 4 4 4 4 4	0.4 9.27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 141,01 118,77 3,38 11,6 54,63 11,7,73 9,43 2,82 5,96 23,37 0,81 0,81 0,81	0.00465 0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00501 0.00505 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00515 0.00557 0.00557 0.00557 0.00557 0.00559 0.00557 0.00559 0.00559 0.00559 0.00559 0.00568 0.00571 0.00584 0.00592 0.00592
1525 43277 32101 9410 9719 71495 6509 6812 48646 60326 1902904 71310 32940 2526 44255 60541 32940 2526 60541 30001 44732 6705 8212 71447 3012 71447 3012 51716 50673 6805 8888 8207 32963 6709	differentiation angiogenesis apoptotic cell clearance regulation of response to external stimu response to xenobiotic stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus cellular response to endogenous stimulus membrane protein ectodomain proteolysis cation transport anatomical structure formation involved cell chemotaxis negative regulation of supramolecular fi cellular response to organic substance secretion by cell acute inflammatory response cellular lipid metabolic process gland development mineralocorticoid biosynthetic process gland development mineralocorticoid metabolic process cellular response to hydroperoxide muscle system process cellular response to cellular response to hydroperoxide muscle system process cellular response to hydroperoxide muscle system process cellular response to hydroperoxide muscle system process cellular response to collagen metabolic process collagen metabolic process collagen metabolic	287 189 18 274 48 810 706 24 462 462 462 78 71 1320 680 43 578 95 338 3 225 6 6 6 6 183 3546 166 39 876 21 47 16	41 30 7 39 12 92 82 8 58 58 58 58 58 16 15 138 79 11 69 18 45 3 33 4 4 4 28 326 26 10 96 7 11 18 18 19 19 19 19 19 19 19 19 19 19	23,13 15,23 1,45 22,08 3,87 65,27 56,89 1,93 37,23 37,23 6,28 5,72 106,36 54,79 3,46 46,57 7,65 27,23 0,24 18,13 0,48 0,48 0,48 14,75 285,72 13,38 3,14 70,58 1,69 3,79 1,20	0.00021 0.00021 0.00031 0.00031 0.00032 0.00035 0.00035 0.00040 0.00040 0.00040 0.00040 0.00043 0.00045 0.00045 0.00045 0.00045 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00072 0.00074 0.00074 0.00080 0.00074 0.00080 0.00091 0.00091 0.000102	6909 42326 10466 51480 30301 52547 7015 48638 48638 71363 45055 50678 72659 71634 6936 30148 72006 23051 55074 51240 6875 6694 33643 55080 6684 10743 34105 72576	Industrial industrial negative regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation negative regulation of phosphorylation regulation of opeptidase activity actin filament organization regulation of peptidase activity actin filament organization regulation of developmental growth cellular response to growth factor stimu regulated exocytosis regulation of development regulation of transforming growth factor muscle contraction sphingolipid biosynthetic process nephron development regulation of signaling intracellular signal transduction negative regulation of inflammatory resp calcium ion homeostasis steroid biosynthetic process membrane protein proteolysis carbohydrate transport cation homeostasis glycosphingolipid biosynthetic process regulation of matrophage derived foam ce positive regulation of tissue remodeling there mothomeostasis	5 115 1276 89 89 34 189 152 358 389 143 15 134 57 57 1750 1474 42 144 678 220 117 35 74 290 10 10 10 10	3 3 18 35 15 15 26 27 22 43 46 21 21 5 20 11 1168 144 9 21 73 29 18 8 13 36 4 4 4 4 4 4 4 4 4 4 4 4 4	0,4 9,27 22,24 7,17 7,17 2,74 15,23 16,03 12,25 28,85 31,34 11,52 1,21 10,8 4,59 141,01 118,77 3,38 11,6 54,63 11,6 54,63 17,73 9,43 2,82 5,96 23,37 0,81 0,81 0,81 0,81	0.00465 0.00465 0.00466 0.00466 0.00471 0.00481 0.00497 0.00497 0.00499 0.00505 0.00507 0.00507 0.00508 0.00515 0.00515 0.00515 0.00515 0.00515 0.00557 0.00557 0.00557 0.00557 0.00559 0.00557 0.00559 0.00559 0.00559 0.00558 0.00557 0.00559 0.00559 0.00559 0.00558 0.00557 0.00559 0.00592 0.00559 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.00590 0.0059

8209	androgen metabolic	16	6	1.29	0.00106	1990000	amyloid fibril formation	10	4	0.81	0.00592
	process organic hydroxy		-	.,						-,	
1901615	compound metabolic	244	34	19,66	0.00110	9617	response to bacterium	173	24	13,94	0.00594
46889	positive regulation of lipid biosyntheti	34	9	2,74	0.00114	6869	lipid transport	145	21	11,68	0.00596
1901342	regulation of vasculature	110	19	8,86	0.00115	70661	leukocyte proliferation	100	16	8,06	0.00596
2921	negative regulation of	7	4	0,56	0.00120	6469	negative regulation of protein kinase	155	22	12,49	0.00630
30837	negative regulation of	28	8	2,26	0.00124	22617	extracellular matrix disassembly	43	9	3,46	0.00636
6973	actin filament po	265	26	21.25	0.00126	2000270	positive regulation of reactive oxygen	12	9	3.46	0.00636
8406	central for homeostasis	111	19	21,33	0.00120	10646	s	43	9 165	138.91	0.00638
6887	exocytosis	464	56	37,39	0.00120	1867	complement activation, lectin pathway	2	2	0,16	0.00648
6935	chemotaxis	219	31	17,65	0.00138	2577	regulation of antigen processing and pre	2	2	0,16	0.00648
42330	taxis	219	31	17,65	0.00138	2578	negative regulation of antigen	2	2	0,16	0.00648
50549	regulation of	179	26	12.04	0.00139	0500	regulation of antigen processing and	2	2	0.16	0.00649
32340	endopeptidase activity	175	20	13,34	0.00130	2000	pre	2	2	0,10	0.00040
97006	lipoprotein particl	42	10	3,38	0.00148	2584	processin	2	2	0,16	0.00648
1901136	carbohydrate derivative catabolic proces	104	18	8,38	0.00150	2589	regulation of antigen processing and pre	2	2	0,16	0.00648
7548	sex differentiation	139	22	11,2	0.00161	2590	negative regulation of antigen	2	2	0,16	0.00648
22612	aland morphogenesis	57	12	4 59	0.00164	2677	negative regulation of chronic	2	2	0.16	0 00648
22012	interleukin-10	57	12	4,55	0.00104	2011	inflammat	2	2	0,10	0.00040
32613	production	12	5	0,97	0.00164	3310	pancreatic A cell differentiation	2	2	0,16	0.00648
44259	multicellular organismal macromolecule m	50	11	4,03	0.00175	5988	lactose metabolic process	2	2	0,16	0.00648
2683	negative regulation of	185	27	14,91	0.00176	5989	lactose biosynthetic process	2	2	0,16	0.00648
1500	blood vessel	000	07	00.50	0.00100	70.41		0	0	0.10	0.00040
1008	development	280	37	22,00	0.00180	7341	penetration of zona pellucida	2	2	0,16	0.00648
71466	xenobiotic stimulus	43	10	3,46	0.00180	7354	anterior/poster	2	2	0,16	0.00648
30324	lung development	81	15	6,53	0.00181	9812	flavonoid metabolic process	2	2	0,16	0.00648
43269	transport	223	31	17,97	0.00186	10899	catabo	2	2	0,16	0.00648
51239	regulation of multicellular organismal	1322	134	106,52	0.00193	21984	adenohypophysis development	2	2	0,16	0.00648
1003/	p cGMP-mediated	4	2	0.32	0.00196	30200	intestinal cholostorol absorption	2	2	0.16	0.00648
19934	signaling	4	3	0,32	0.00196	30299	intestinal cholesterol absorption	2	2	0,10	0.00040
32911	transforming grow	4	3	0,32	0.00196	32455	nerve growth factor processing	2	2	0,16	0.00648
34367	macromolecular complex remodeling	4	3	0,32	0.00196	32490	detection of molecule of bacterial origi	2	2	0,16	0.00648
34368	protein-lipid complex	4	3	0,32	0.00196	32808	lacrimal gland development	2	2	0,16	0.00648
24260	plasma lipoprotein	4	•	0.22	0.00106	32002	non co growth factor production	0	2	0.16	0.00649
34303	particle remodeling	4	5	0,52	0.00130	52502	nerve growin racior production	2	2	0,10	0.00040
52646	metabolic process	4	3	0,32	0.00196	34196	acylglycerol transport	2	2	0,16	0.00648
60696	regulation of phospholipid catabolic	4	3	0,32	0.00196	34197	triglyceride transport	2	2	0,16	0.00648
	pro										
61101	differentiation	4	3	0,32	0.00196	34382	chylomicron remnant clearance	2	2	0,16	0.00648
61370	testosterone	4	3	0,32	0.00196	42078	germ-line stem cell division	2	2	0,16	0.00648
19722	calcium-mediated	66	13	5.32	0 00202	43435	response to corticotropin-releasing	2	2	0.16	0 00648
70050	signaling circulatory system	400		07.01	0.000202	10100	horm	-	-	0,10	0.00010
72359	development	463	55	37,31	0.00205	46069	cGMP catabolic process	2	2	0,16	0.00648
10033	substance	1632	161	131,5	0.00205	46351	disaccharide biosynthetic process	2	2	0,16	0.00648
9653	anatomical structure	1234	126	99,43	0.00206	46618	drug export	2	2	0,16	0.00648
1044	vasculature	202	20	00 50	0.00207	40100	male germ-line stem cell asymmetric	2	2	0.16	0.00649
1944	development	292	38	23,53	0.00207	46133	divi	2	2	0,16	0.00648
48286	development	18	6	1,45	0.00214	50910	involve	2	2	0,16	0.00648
60042	retina morphogenesis in camera-type eve	18	6	1,45	0.00214	51643	endoplasmic reticulum localization	2	2	0,16	0.00648
8585	female gonad	44	10	3,55	0.00216	51694	pointed-end actin filament capping	2	2	0,16	0.00648
45107	development development of primary	110	10	0.05	0.00010	COEDE		0	0	0.10	0.00040
45137	sexual characteri	116	19	9,35	0.00218	60535	trachea cartilage morphogenesis	2	2	0,16	0.00648
6702	process	8	4	0,64	0.00225	61669	secretion	2	2	0,16	0.00648
19852	L-ascorbic acid	8	4	0,64	0.00225	71376	cellular response to corticotropin-	2	2	0,16	0.00648
7369	netabolic process	108	18	87	0 00232	71596	ubiquitin-dependent protein catabolic	2	2	0.16	0 00649
1000	second-messenger-	100	10	0,7	0.00202	11000	pr	2	2	0,10	0.00040
19932	mediated signaling	108	18	8,7	0.00232	71830	triglyceride-rich lipoprotein particle c	2	2	0,16	0.00648
50801	ion homeostasis	324	41	26,11	0.00238	86097	phospholipase C-activating angiotensin-a	2	2	0,16	0.00648
30325	adrenal gland	13	5	1,05	0.00249	90272	negative regulation of fibroblast	2	2	0,16	0.00648
20440	regulation of	10	-	1.05	0.00240	00501	growtn	2	2	0.16	0.00649
30449	complement activation	15	5	1,05	0.00249	90001	detection of external blotic stimulus	2	2	0,10	0.00040
86010	depolarization during	13	5	1,05	0.00249	98728	germline stem cell asymmetric	2	2	0,16	0.00648
	action po regulation of protein		-								
2000257	activation cascade	13	5	1,05	0.00249	98856	Intestinal lipid absorption	2	2	0,16	U.U0648
46718	viral entry into host cell	60	12	4,83	0.00260	98912	memorane depolarization during atrial ca	2	2	0,16	0.00648
97237	cellular response to	60	12	4,83	0.00260	2000866	positive regulation of estradiol	2	2	0,16	0.00648
20222	respiratory tube	04	15	6 77	0.00060	0672	regulation of acute inflammatory	22	6	1 77	0.00050
30323	development	64	15	0,77	0.00263	26/3	respons	22	o	1,77	0.00652
30155	adhesion	296	38	23,85	0.00264	60563	neuroepithelial cell differentiation	22	6	1,77	0.00652
72358	cardiovascular system	296	38	23,85	0.00264	72376	protein activation cascade	22	6	1,77	0.00652
98771	inorganic ion	296	38	23.85	0.00264	10631	epithelial cell migration	128	19	10.31	0.00665
00070	homeostasis negative regulation of			_0,00	0.00207						0.00000
322/2	protein polymeriz	38	а	3,06	0.00264	90132	epitnelium migration	128	19	10,31	0.00665
46434	catabolic process	76	14	6,12	0.00268	97435	supramolecular fiber organization	323	39	26,03	0.00672
1990778	protein localization to cell periphery	163	24	13,13	0.00275	6749	glutathione metabolic process	36	8	2,9	0.00680
22603	regulation of anatomical	502	58	40,45	0.00295	6956	complement activation	16	5	1,29	0.00691
	suuclure morph										

30003	cellular cation	259	34	20,87	0.00302	7157	heterophilic cell-cell adhesion via	16	5	1,29	0.00691
51494	negative regulation of	77	14	6.2	0.00304	71604	transforming growth factor beta	16	5	1.29	0.00691
7492	cytoskeleton orga endoderm development	46	10	3.71	0.00307	48869	cellular developmental process	1986	187	160.02	0.00705
40011	locomotion	750	81	60,43	0.00326	31032	actomyosin structure organization	93	15	7,49	0.00708
48878 32502	developmental process	494 2938	270	39,8 236,73	0.00329	90130	tissue migration	138	20 19	11,12	0.00712
46660	female sex	54	11	4,35	0.00333	2274	myeloid leukocyte activation	315	38	25,38	0.00751
71001	negative regulation of	79	14	6.28	0.00344	45934	positive regulation of lipid metabolic	60	11	4.93	0.00768
/1901	protein serine/th	70	14	0,20	0.00344	40004	p	00		4,03	0.00768
48583	to stimulus	2001	191	161,23	0.00345	50777	response	52	10	4,19	0.00769
1818	negative regulation of	112	18	9,02	0.00349	34765	regulation of ion transmembrane	158	22	12,73	0.00789
0211	oligosaccharide	26	7	2.09	0.00362	72502	cellular divalent inorganic cation	159	22	10 79	0.00789
9311	metabolic process	20	1	2,09	0.00362	72303	homeo	100	22	12,73	0.00789
9880	specification	26	7	2,09	0.00362	70373	ERK2 cas	37	8	2,98	0.00808
10742	macrophage derived	14	5	1,13	0.00362	61028	establishment of endothelial barrier	23	6	1,85	0.00823
90077	foam cell differentiation	14	5	1,13	0.00362	1775	cell activation	613	66	49,39	0.00825
45321	leukocyte activation	549	62	44,24	0.00365	2000377	regulation of reactive oxygen species	86	14	6,93	0.00839
55082	cellular chemical	342	42	27 56	0.00370	1704	formation of primary germ layer	69	12	5 56	0 00842
48870	homeostasis cell motility	635	70	51 17	0.00376	1706	endoderm formation	30	7	2 42	0.00845
51674	localization of cell	635	70	51,17	0.00376	70848	response to growth factor	369	43	29,73	0.00850
6952	defense response	603	67	48,59	0.00377	34220	ion transmembrane transport	453	51	36,5	0.00853
33673	kinase activity	167	24	13,46	0.00378	72009	nephron epithelium development	45	9	3,63	0.00865
6067	ethanol metabolic	9	4	0,73	0.00379	30207	chondroitin sulfate catabolic process	6	3	0,48	0.00866
32703	negative regulation of	q	4	0.73	0.00379	32905	transforming growth factor beta1	6	3	0.48	0.00866
02700	interleukin-2 pro	5	-	0,70	0.00075	02000	product	0	0	0,40	0.00000
32733	interleukin-10 pr	9	4	0,73	0.00379	32908	factor	6	3	0,48	0.00866
36151	phosphatidylcholine	9	4	0,73	0.00379	33630	positive regulation of cell adhesion	6	3	0,48	0.00866
72574	hepatocyte proliferation	9	4	0,73	0.00379	35376	sterol import	6	3	0,48	0.00866
72575	epithelial cell proliferation involved i	9	4	0,73	0.00379	35428	hexose transmembrane transport	6	3	0,48	0.00866
00036	regulation of protein	٥	4	0.73	0.00379	49671	negative regulation of collateral	6	2	0.49	0.00966
15918	kinase C signaling sterol transport	40	9	3.22	0.00373	51004	sprout regulation of lipoprotein lipase activit	6	3	0,40	0.00866
15850	organic hydroxy	79	14	6.37	0.00388	60046	regulation of acrosome reaction	6	3	0.48	0.00866
10000	compound transport	15	14	0,07	0.00000	00040		0	0	0,40	0.00000
6654	biosynthetic process	20	6	1,61	0.00389	60484	development	6	3	0,48	0.00866
46473	phosphatidic acid	20	6	1,61	0.00389	61081	positive regulation of myeloid	6	3	0,48	0.00866
32879	regulation of localization	1268	127	102,17	0.00396	70508	cholesterol import	6	3	0,48	0.00866
10951	negative regulation of	88	15	7,09	0.00418	1904659	glucose transmembrane transport	6	3	0,48	0.00866
46545	development of primary	48	10	3.87	0 00425	1905950	monosaccharide transmembrane	6	3	0.48	0.00866
40040	female sexual cha	40	10	0,07	0.00420	6012	transport	11	4	0,40	0.00871
						7340	acrosome reaction	11	4	0,89	0.00871
						32653	regulation of interleukin-10 production	11	4	0,89	0.00871
						45940	metabolic	11	4	0,89	0.00871
							pogative regulation of antigen				0.00074
						50858	receptor-	11	4	0,89	0.00871
						50858	receptor regulation of membrane protein	11	4	0,89	0.00871
						50858 51043	receptor regulation of membrane protein ectodomai	11 11	4	0,89 0,89	0.00871
						50858 51043 1902532	receptor receptor recotor ectodomai negative regulation of intracellular sig	11 11 308	4 4 37	0,89 0,89 24,82	0.00871 0.00884
						50858 51043 1902532 2697 6066	regulation of anityen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic norcess	11 11 308 141 179	4 4 37 20 24	0,89 0,89 24,82 11,36 14,42	0.00871 0.00871 0.00884 0.00901 0.00903
						50858 51043 1902532 2697 6066 61458	regulation of amyen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development	11 11 308 141 179 218	4 4 37 20 24 28	0,89 0,89 24,82 11,36 14,42 17,57	0.00871 0.00884 0.00901 0.00903 0.00905
						50858 51043 1902532 2697 6066 61458 16042 578	regulation of anugeri receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process ambronic avia spacefication	11 11 308 141 179 218 160 17	4 4 37 20 24 28 22 5	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1 37	0.00871 0.00884 0.00901 0.00903 0.00905 0.00915
						50858 51043 1902532 2697 6066 61458 16042 578 2455	regulation of anugeri receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated	11 11 308 141 179 218 160 17 17	4 37 20 24 28 22 5 5	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37	0.00871 0.00884 0.00901 0.00903 0.00905 0.00915 0.00915
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ etchelar production	11 11 308 141 179 218 160 17 17 17	4 37 20 24 28 22 5 5 5 36	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09	0.00871 0.00884 0.00901 0.00903 0.00905 0.00911 0.00915 0.00915
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic	11 11 308 141 179 218 160 17 17 299 105	4 37 20 24 28 22 5 5 5 36 16	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46	0.00871 0.00884 0.00901 0.00903 0.00905 0.00915 0.00915 0.00940 0.00953
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryoric axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p	11 11 308 141 179 218 160 17 17 299 105	4 37 20 24 28 22 5 5 5 36 16	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46	0.00871 0.00871 0.00884 0.00901 0.00903 0.00905 0.00915 0.00915 0.00915 0.00940 0.00953
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p p	11 11 308 141 179 218 160 17 17 299 105 62	4 4 37 20 24 28 22 5 5 36 16 11	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5	0.00871 0.00884 0.00901 0.00903 0.00905 0.00915 0.00915 0.00915 0.00915 0.00953 0.00953 0.00953
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 2887	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal orrana morphocenesis	11 11 308 141 179 218 160 17 17 299 105 62 62 62 62 478	4 4 37 20 24 28 22 5 5 36 16 11 11 11 53	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52	0.00871 0.00871 0.00884 0.00901 0.00903 0.00915 0.00915 0.00915 0.00915 0.00953 0.00953 0.00984 0.00984 0.00984
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration	11 308 141 179 218 160 17 17 299 105 62 62 62 478 133	4 4 37 20 24 28 22 5 5 36 16 11 11 53 19	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52 10,72	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00953 0.00953 0.00984 0.00984 0.00984 0.00988
						50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration	11 308 141 179 218 160 17 17 299 105 62 62 478 133	4 4 37 20 24 28 25 5 5 36 16 11 11 53 19	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52 10,72	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00953 0.00953 0.00984 0.00984 0.00984 0.00998
			Go Terms (I	Molecular Fi	inction <u>s)</u> for U	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900	regulation of amigen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration	11 11 308 141 179 218 160 17 17 299 105 62 62 478 133	4 4 37 20 24 28 5 5 5 36 11 11 53 19	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52 10,72	0.00871 0.00871 0.00884 0.00901 0.00903 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984
GO.ID	Term sequence-specific	Annotated	Go Terms (I Significant	Molecular Fi Expected	unctions) for U	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term	11 11 308 141 179 218 160 177 17 299 105 62 62 62 478 133 Annotated	4 4 37 20 24 28 5 5 5 36 16 11 11 53 19 Significant	0,89 0,89 24,82 11,36 14,42 17,57 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00993 0.00998
GO.ID 1990837	Term sequence-specific double-stranded DNA	Annotated 402	Go Terms (Significant 54	Molecular Fr Expected 32,3	unctions) for U classicFisher 0.00011	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900	Inguitor regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ oytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 Annotated 76	4 4 37 20 24 28 5 5 5 36 16 11 11 53 19 Significant 14	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 5 38,52 10,72 Expected 6,11	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00993 0.00998 classicFisher
GO.ID 1990837	Term sequence-specific double-stranded DNA bi core promoter proximal	Annotated 402	Go Terms (f Significant 54	Molecular Fi Expected 32,3	inctions) for U classicFisher 0.00011	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43177	Inguitor regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ian bindice	11 11 308 141 179 218 160 177 177 299 105 62 478 133 Annotated 76 2020	4 4 37 20 24 28 22 5 5 36 16 11 11 53 19 Significant 14	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00984 0.00998 classicFisher
GC.ID 1990837 987	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s	Annotated 402 199	Go Terms (I Significant 54 32	Molecular Fr Expected 32,3 15,99	unctions) for U classicFisher 0.00011 0.00011	50858 51043 1902532 2697 6066 61458 16042 575 1816 6575 10634 15749 957900 regulated GO.ID 48018 43167	regulation of amigen regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding	11 11 308 141 179 218 160 17 17 299 105 62 62 62 478 133 Annotated 76 3230	4 4 37 20 24 22 5 5 36 16 11 11 53 19 Significant 14 294	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00993 0.00998
GO.ID 1990837 987 43395	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoptivea binding	Annotated 402 199 8	Go Terms (Significant 54 32 5	Molecular Fi Expected 32,3 15,99 0,64	Inctions) for U classicFisher 0.00011 0.00015	50858 51043 1902532 2697 6066 61458 16042 575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677	regulation of amigen regelption regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding	11 308 141 179 218 160 17 17 17 299 105 62 62 62 478 133 76 3230 1330	4 4 37 20 24 28 25 5 5 36 16 11 11 53 19 Significant 14 294 132	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 8,52 10,72 Expected 6,11 259,55 106,87	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00988 classicFisher 0.00261 0.00292 0.00415
GO.ID 1990837 987 43395 43169	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding	Annotated 402 199 8 2133	Go Terms (I Significant 54 32 5 212	Molecular F Expected 32,3 15,99 0,64 171,4	unctions) for U classicFisher 0.00011 0.00015 0.00016	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 regulated GO.ID 48018 43167 3677 8201	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic politive regulation of epithelial cell monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 Annotated 76 3230 1330 49	4 4 37 20 24 28 5 5 5 36 11 11 53 19 Significant 14 294 132 10	0.89 0.89 24,82 11,36 14,42 17,57 1,37 1,37 24,09 8,46 5 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00988 classicFisher 0.00261 0.002261 0.00292 0.00415 0.00487
GO.ID 1990837 987 43395 43169 978	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal	Annotated 402 199 8 2133 194	Go Terms (I Significant 54 32 5 212 31	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59	unctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026	Inguitor regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity	11 11 308 141 179 218 160 17 17 299 105 62 62 478 133 Annotated 76 3230 1330 49 15	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00998 classicFisher 0.00261 0.00292 0.00415 0.00415 0.00487 0.00502
GO.ID 1990837 987 43395 43169 978 31406	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding	Annotated 402 199 8 2133 194 80	Go Terms (Significant 54 32 5 212 31 17	Molecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 1987 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332	Inguitor regulation of a langen regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryoric axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding heparin binding coreceptor activity SMAD binding	11 11 308 141 179 218 160 177 17 299 105 62 478 133 Annotated 76 3230 1330 49 15 50 0	4 4 37 20 24 28 25 5 36 16 11 15 31 19 Significant 14 294 132 10 5 10	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00993 0.00998 classicFisher 0.00261 0.00292 0.00415 0.00502 0.00567
GO.ID 1990837 987 43395 43169 978 31406 43177	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding cation binding more proximal carboxylic acid binding organic acid binding coreceptor activity	Annotated 402 199 8 2133 194 80 81	Go Terms (/ Significant 54 32 5 212 31 17 17	Molecular Fi Expected 32,3 15,99 0,64 171,4 15,59 6,51	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332 42813	Ingative regulation of a langen regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding Wnt-activated receptor activity SMAD binding Wnt-activated receptor activity	11 11 308 141 179 218 160 177 177 299 105 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 10 10 10 10 10 10 10 1	4 4 37 20 24 28 25 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 4	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 5,38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00993 0.00984 0.00993 0.00998 0.00993 0.00992 0.00261 0.00261 0.00262 0.00567 0.00566 0.00566 0.00566
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wnt sign	Annotated 402 199 8 2133 194 80 81 5	Go Terms (I Significant 54 32 5 212 31 17 17 4	Molecular Fit Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 regulated 43018 43167 3677 8201 15026 46332 42813 43236	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding Wnt-activated receptor activity laminin long	11 11 308 141 179 218 160 17 17 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 10 10 10 10 10 10 10 1	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 4 4	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,8	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00986 0.00586 0.00586
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding Cation binding RNA polymerase II core promoter proximal carboxylic acid binding oraceptor activity involved in Wnt sign protein dimerization activity	Annotated 402 199 8 2133 194 80 81 5 675	Go Terms (I Significant 54 32 5 212 31 17 17 4 80	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9900 regulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351	Inegative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ oytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding oreceptor activity SMAD binding glutamate decarboxylase activity	11 11 308 141 179 218 160 17 17 299 105 62 62 62 62 478 133 76 3230 1330 49 15 50 10 10 2	4 4 37 20 24 25 5 36 16 11 11 15 319 Significant 14 294 132 10 5 10 4 4 2	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,8 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00262 0.00415 0.00586 0.00586 0.00586 0.00586
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding	Annotated 402 199 8 2133 194 80 81 5 675 461	Go Terms (Significant 54 32 5 212 31 17 4 80 58	Wolecular Ft Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00019 0.00019 0.00019 0.00020 0.00035	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 regulated (GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351 4935	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic cellular modified amino acid metabolic positive regulation of epithelial cell monosaccharide transport animal organ morphogenesis leukocyte migration Cenes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Whit-activated receptor activity laminin binding glutamate decarboxylase activity adrenergic receptor activity	11 11 308 141 179 218 160 17 17 299 105 62 62 62 62 62 478 133 76 3230 1330 49 15 50 10 10 22 2	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 4 4 2 2	0.89 0.89 24,82 11,36 14,42 17,57 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,8 0,8 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00984 0.00986 0.00415 0.00567 0.00567 0.00566 0.00586 0.00586 0.00586 0.00586 0.00586
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wnt sign protein dimenization activity double-stranded DNA binding G-protein coupled	Annotated 402 199 8 2133 194 80 81 5 5 675 461 70	Go Terms (i Significant 54 32 5 212 31 17 4 80 58 15	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5 6 2	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Fregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Wnt-activated receptor activity adrenergic receptor activity adrenergic receptor activity	11 11 308 141 179 218 160 17 17 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 21 22 2 2	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00988 0.00988 0.00988 0.00984 0.00261 0.00261 0.00261 0.00567 0.00567 0.00568 0.00565 0.00556 0.00556 0.00556 0.00556 0.00556 0.00556 0.00556 0.00557 0.00556 0.00556 0.00557 0.00556 0.005555 0.005555 0.005555 0.005555 0.005555 0.005555 0.0055
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 4930 46872	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding organic acid binding orgeneptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity matel ion birding	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101	Go Terms (i Significant 54 32 55 212 31 17 4 80 58 15 206	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168 92	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00036 0.00036	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 43236 4351 4935	Ingative regulation of a langen regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding glutamate decarboxylase activity adrenergic receptor activity alpha-adrenergic receptor activity	11 11 308 141 179 218 160 177 17 299 105 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 24 294 294 294 294 294 294 294	0.89 0.89 24,82 11,36 14,42 17,57 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00988 classicFisher 0.00261 0.00292 0.00415 0.00415 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.00645 0.00645
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 4930 46872	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding organic acid binding coreceptor activity involved in Wnt sign protein dimeization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 70	Go Terms (Significant 54 32 5 212 31 17 17 4 80 58 15 206 16	Molecular Fi Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168,83 6,25	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00036 0.00045	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351 4935 4936 4936	Inguitor regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryoric axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding glutamate decarboxylase activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 12 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 15 319 Significant 14 294 132 10 5 10 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 5,38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00993 0.00984 0.00993 0.00984 0.00993 0.00984 0.00993 0.00984 0.00925 0.00261 0.00261 0.00261 0.00567 0.00586 0.00586 0.00586 0.00586 0.00586 0.00585 0.00585 0.00645 0.0
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 4930 46872 5126	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding cation binding sequence-s heparan sulfate promoter proximal carboxylic acid binding organic acid binding coreceptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 79	Go Terms (f Significant 54 32 5 212 31 17 17 4 80 58 15 206 16	Molecular Fi Expected 32,3 15,99 0,64 171,4 15,59 6,51 0,4 54,24 37,04 5,62 168,83 6,35	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00036 0.00045 0.00045	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351 4935 4936 4938 8158	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding Mnt-activated receptor activity adrenergic receptor activity alpha-adrenergic receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity	11 11 308 141 179 228 160 177 177 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 11 53 19 Significant 14 294 132 20 5 10 4 294 294 20 20 20 20 20 20 20 20 20 20	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 5,38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,8 0,8 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.00645 0.00645 0.00645
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding organic acid binding organic acid binding coreceptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor binding phosphoserine phosphoserine	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 79 3	Go Terms (I Significant 54 32 5 212 31 17 17 4 80 58 15 206 16 3	Molecular Fit Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168,83 6,35 0,24	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00020 0.00020 0.00035 0.00035 0.00035 0.00045 0.00045 0.00052	50858 51043 1902532 2697 6066 6076 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 regulated 43167 3677 8201 15026 46332 42813 43236 43351 4935 4936 4938 8158 8597	Inguitor regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Wnt-activated receptor activity laminin binding glutamate decarboxylase activity adrenergic receptor activity alpha-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serine/throeni	11 11 308 141 179 218 160 17 17 299 105 62 62 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 11 5 31 19 Significant 14 294 132 10 5 10 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00566 0.00585 0.00586 0.00585 0.0
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647 30552	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RINA polymerase II core promoter proximal carboxylic acid binding organic acid binding phosphoserine phosphatase activity cAMP binding	Annotated 402 199 8 2133 194 80 194 80 5 675 461 70 2101 79 3 10	Go Terms (Significant 54 32 5 212 31 17 4 80 58 15 206 16 3 5	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 5,62 168,83 6,35 0,24 0,8	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00035 0.00045 0.00045 0.00052 0.00059	50858 51043 1902532 2697 6066 61458 16042 578 2455 10634 15749 9887 50900 regulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 43236 43251 4935 8158 8597 18636	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p optikine production cellular modified amino acid metabolic positive regulation of epithelial cell monosaccharide transport animal organ morphogenesis leukocyte migration Cenes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Whi-activated receptor activity alpha-adrenergic receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serient/tracetion phenanthrene 9,10-monooxygenase	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 5 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00567 0.00567 0.00567 0.00568 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.00645 0.00645 0.00645 0.00645
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46983 3690 4930 46872 5126 4647 30552	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor binding phosphoserine phosphatase activity cAMP binding	Annotated 402 199 8 2133 194 80 81 5 5 675 461 70 2101 79 3 10 287	Go Terms (i Significant 54 32 5 212 31 17 4 80 58 15 206 16 3 5 49	Molecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 5,62 168,83 6,35 0,24 0,8 31,1	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00035 0.00045 0.00052 0.00059 0.00059	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Fregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 43351 4935 4938 8158 8597 18636 2010	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Wnt-activated receptor activity adrenergic receptor activity alpha-adrenergic receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serine/threoni phenanthrene §10-monocxygenase activity	11 11 308 141 179 218 160 177 17 299 105 62 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00261 0.00567 0.00567 0.00568 0.00567 0.00568 0.00565 0.00565 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647 30552 8134 1619	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding organic acid binding orgeoptor activity motel of the second activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding oytokine receptor binding phosphoserine phosphoserine phosphoserine phosphoserine phosphoserine phosphoserine phosphoserine phosphoserine phosphoserine	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 79 3 10 387 22	Go Terms (Significant 54 32 55 212 31 17 17 4 80 58 15 206 16 3 5 5 49 9	Molecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168,83 6,35 0,24 0,8 31,1 2,65	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00035 0.00045 0.00045 0.00059 0.00059 0.00087 0.00087	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Fregulated (GO.ID 48018 43167 3677 48201 15026 46332 42813 43236 43251 4935 4935 4938 8158 8597 18636 30160 30160	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ ottokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding glutamate decarboxylase activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity hedgehog receptor activity alpha-adrenergic receptor activity ladium-dependent protein serinet/threoni phenanthrene §10-monooxygenase activity GKAP/Homer scaffold activity	11 11 308 141 179 218 160 177 17 299 105 62 478 133 Annotated 76 3230 1330 1330 1330 1330 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 294 294 294 20 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00998 classicFisher 0.00261 0.00261 0.00261 0.00286 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 4930 46872 5126 4647 30552 8134 1618	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding organic acid binding organic acid binding coreceptor activity involved in Wnt sign protein dimeization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor binding phosphoserine phosphoserine phosphoserine phosphotase activity cAMP binding transcription factor binding virus receptor activity hinding	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 79 3 10 387 33 22	Go Terms (Significant 54 32 5 212 31 17 17 4 80 58 15 206 16 3 5 5 49 9 9	Molecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168,83 6,35 0,24 0,8 31,1 2,65 2,65	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00035 0.00045 0.00045 0.00045 0.00052 0.00059 0.00087 0.00088 0.00088	50858 51043 1902532 2697 6066 61458 16042 2455 1816 6575 10634 15749 9887 50900 Pregulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 43351 4935 4935 4936 4938 8158 8597 18636 30164 31014	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process reproductive system development lipid catabolic process embryoric axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Wht-activated receptor activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity hedgehog receptor activity alpha-adrenergic receptor activity hedgehog receptor activity activity GKAP/Homer scaffold activity troponin T binding	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 15 319 Significant 14 294 132 10 5 10 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 12,89 1,37 1,37 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00983 0.00984 0.00984 0.00984 0.00984 0.00986 0.00261 0.00261 0.00487 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00645 0.0
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647 30552 8134 1618 104005	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wht sign protein dimeization activity motale dimeization activity metal ion binding G-protein coupled receptor activity metal ion binding phosphoserine phosphatese activity binding transcription factor binding virus receptor activity hijacked molecular function	Annotated 402 199 8 2133 194 80 81 5 675 461 70 2101 79 3 10 387 33 33	Go Terms (Significant 54 32 5 212 31 17 17 4 80 58 15 206 16 3 5 49 9 9 9	Molecular Ft Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 54,24 37,04 5,62 168,83 6,35 0,24 0,8 31,1 2,65 2,65	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00020 0.00035 0.00035 0.00035 0.00045 0.00045 0.00045 0.00052 0.00059 0.00087 0.00088 0.00088	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 regulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351 4935 4935 4936 8597 18636 30160 31014 31696	Ingative regulation of a langen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process alcohol metabolic process embryoric axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding Mut-activated receptor activity adrenergic receptor activity adrenergic receptor activity alpha-adrenergic receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serime/threoni phenanthrene 9,10-monocxygenase activity GKAP/Homer scatfold activity troponin T binding alpha-2C adrenergic receptor binding	11 11 308 141 179 218 160 177 177 299 105 62 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 15 37 19 Significant 14 294 132 10 5 10 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0,89 0,89 24,82 11,36 14,42 17,57 12,89 1,37 24,09 8,46 5 5 5,38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00645 0.0
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647 30552 8134 1618 104005 1228	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding RNA polymerase II core promoter proximal carboxylic acid binding oraceptor activity involved in Wrt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor binding phosphatase activity cAMP binding transcription factor binding transcription factor binding transcription al activator activity Ros	Annotated 402 199 8 2133 194 80 194 80 194 80 104 2101 70 2101 79 3 100 387 33 33 196	Go Terms (i Significant 54 32 5 212 31 17 17 4 80 58 15 206 16 3 5 49 9 9 9 29	Molecular Fit Expected 32,3 15,99 0,64 171,4 15,59 6,51 0,4 54,24 37,04 5,62 168,83 6,35 0,24 0,8 31,1 2,65 2,65 15,75	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00016 0.00019 0.00020 0.00035 0.00035 0.00045 0.00045 0.00045 0.00052 0.00052 0.00059 0.00087 0.00088 0.00088 0.00083	50858 51043 1902532 2697 6066 61458 16042 578 2455 1816 6575 10634 15749 9887 50900 CO.ID 48018 43167 3677 8201 15026 46332 42813 43236 4351 4935 4936 4938 8159 18636 30160 31014 31696 33691	Inguitor regulation of amgen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process alcohol metabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p positive regulation of epithelial cell m monosaccharide transport animal organ morphogenesis leukocyte migration Genes Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding glutamate decarboxylase activity adrenergic receptor activity adrenergic receptor activity alpha-adrenergic receptor activity alpha-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serine/threoni phenanthrene 9,10-monoxygenase activity GKAP/Homer scaffold activity troponin T binding alpha-2C adrenergic receptor binding	11 11 308 141 179 218 160 62 478 133 Annotated 76 3230 1330 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 25 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00953 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00567 0.00562 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.0
GO.ID 1990837 987 43395 43169 978 31406 43177 1904929 46983 3690 46872 5126 4647 30552 8134 1618 104005 1228 30551	Term sequence-specific double-stranded DNA bi core promoter proximal region sequence-s heparan sulfate proteoglycan binding cation binding RNA polymerase II core promoter proximal carboxylic acid binding coreceptor activity involved in Wnt sign protein dimerization activity double-stranded DNA binding G-protein coupled receptor activity metal ion binding cytokine receptor binding phosphatase activity coMAP binding transcription factor binding transcription factor binding transcription factor activity, Na cyclic nucleotide binding	Annotated 402 199 8 2133 194 80 194 80 5 675 461 70 2101 79 3 10 387 33 33 196 11	Go Terms (Significant 54 32 5 212 31 17 4 80 58 15 206 16 3 5 49 9 9 9 9 29 5	Wolecular Fr Expected 32,3 15,99 0,64 171,4 15,59 6,43 6,51 0,4 5,62 168,83 6,35 0,24 0,8 31,1 2,65 2,65 15,75 0,88	Inctions) for U classicFisher 0.00011 0.00015 0.00016 0.00016 0.00016 0.00019 0.00019 0.00020 0.00035 0.00035 0.00045 0.00045 0.00045 0.00052 0.00059 0.00087 0.00088 0.00088 0.00093 0.00093 0.00011	50858 51043 1902532 2697 6066 61458 16042 578 2455 10634 15749 9887 50900 regulated GO.ID 48018 43167 3677 8201 15026 46332 42813 43236 43351 4935 4935 8597 18636 30160 31014 31696 33691 47086	Ingative regulation of amgen receptor regulation of membrane protein ectodomai negative regulation of intracellular sig regulation of immune effector process actoriol metabolic process reproductive system development lipid catabolic process embryonic axis specification humoral immune response mediated by circ cytokine production cellular modified amino acid metabolic p optikine production cellular modified amino acid metabolic positive regulation of epithelial cell monosaccharide transport animal organ morphogenesis leukocyte migration Conser Resistant vs Nonresistant DMSC Term receptor ligand activity ion binding DNA binding heparin binding coreceptor activity SMAD binding Wht-activated receptor activity alpha-adrenergic receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity alpha2-adrenergic receptor activity hedgehog receptor activity calcium-dependent protein serine/throne phenanthrene 9,10-monooxygenase activity troponin T binding sialic acid binding ketosteroid monooxygenase activity	11 11 308 141 179 218 160 177 17 299 105 62 62 478 133 49 15 50 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 37 20 24 28 5 5 36 16 11 11 53 19 Significant 14 294 132 10 5 10 5 10 5 2 2 2 2 2 2 2 2 2 2 2 2 2	0.89 0.89 24,82 11,36 14,42 17,57 24,09 8,46 5 5 38,52 10,72 Expected 6,11 259,55 106,87 3,94 1,21 4,02 0,8 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	0.00871 0.00871 0.00884 0.00901 0.00905 0.00915 0.00915 0.00915 0.00915 0.00940 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00984 0.00985 0.00261 0.00261 0.00562 0.00567 0.00566 0.00567 0.00568 0.00586 0.00586 0.00586 0.00586 0.00586 0.00586 0.00585 0.00645 0.0

98632	cell-cell adhesion mediator activity	16	6	1,29	0.00105	47115	trans-1,2-dihydrobenzene-1,2-diol dehydr	2	2	0,16	0.00645
977	RNA polymerase II regulatory region	321	42	25,79	0.00105	51379	epinephrine binding	2	2	0,16	0.00645
1012	sequ RNA polymerase II	200	40	05.97	0.00112	80022	3R-hydroxyacyl-CoA dehydratase	0	0	0.16	0.00645
70410		7	42	23,67	0.00112	00023	activity voltage-gated potassium channel	2	2	0,10	0.00045
70410	coreceptor activity	-	4	0,56	0.00119	80008	activity voltage-gated potassium channel	2	2	0,16	0.00645
71936	involved in Wnt sign	7	4	0,56	0.00119	1902282	activity	2	2	0,16	0.00645
31690	binding	12	5	0,96	0.00162	1078		67	12	5,38	0.00650
5113 8430	patched binding selenium binding	4 4	3 3	0,32 0.32	0.00194 0.00194	8013 30545	beta-catenin binding receptor regulator activity	51 85	10 14	4,1 6.83	0.00655 0.00739
32052	bile acid binding	4	3	0,32	0.00194	8083	growth factor activity	37	8	2,97	0.00795
35374	binding	4	3	0,32	0.00194	5072	receptor	6	3	0,48	0.00859
48407	platelet-derived growth factor binding	4	3	0,32	0.00194	16775	phosphotransferase activity,	6	3	0,48	0.00859
50786	RAGE receptor binding	4	3	0.32	0.00194	35014	phosphatidylinositol 3-kinase regulator	6	3	0.48	0.00859
96090	protein binding involved		0	0.99	0.00104	20165	 BDZ domoin binding	50	10	4.06	0.00965
5178	in heterotypic	4 51	3 11	4.1	0.00194	5109	frizzled binding	17	5	4,20	0.00865
5160	transforming growth	18	6	1.45	0.00202	43425	bHLH transcription factor binding	17	5	1,37	0.00904
0140	factor beta receptor	10	с С	1.45	0.00011	10770	phosphotransferase activity, alcohol	4.47	50	05.00	0.00000
8146 70999	Suitotransferase activity	18	6	1,45	0.00211	16/73	gro	447	50	35,92	0.00982
98631	cell adhesion mediator	10	6	1,45	0.00211						
00001	activity cytoskeletal protein	540	0	1,40	0.00211						
8092	binding	518	60	41,62	0.00223						
GO.ID	Term	Annotated	Go Terms (M Significant	olecular Fur Expected	ctions) for Do classicFisher	wnregulated GO.ID	d Genes Resistant vs Nonresistant DMS Term	Annotated	Significant	Expected	classicFisher
4714	transmembrane	00	0	1 70	0.00017	00007	voltage-gated calcium channel activity	4	0	0.00	0.00104
4/14	tyrosine	22	0	1,73	0.00017	86007	i	4	3	0,32	0.00184
8239	dipeptidyl-peptidase activity	5	4	0,39	0.00018	4867	serine-type endopeptidase inhibitor	18	6	1,42	0.00192
8201	heparin binding	49	12	3,86	0.00032	8307	structural constituent of muscle	18	6	1,42	0.00192
4888	signaling receptor	179	28	14,12	0.00034	22891	substrate-specific transmembrane	369	45	29,1	0.00205
	activit						uanspo				
61135	regulator activity	50	12	3,94	0.00039	22857	transmembrane transporter activity	400	48	31,54	0.00206
5007	activated recep	3	3	0,24	0.00049	15145	transporter	8	4	0,63	0.00207
8035	high-density lipoprotein	3	3	0,24	0.00049	5539	glycosaminoglycan binding	60	12	4,73	0.00217
8331	high voltage-gated	3	3	0.24	0 00049	8092	cytoskeletal protein binding	518	59	40.85	0.00231
04405	calcium channel activ	0		0,21	0.00010	40070	metal ion transmembrane transporter	107		10,00	0.00201
34185	apolipoprotein binding	ь	4	0,47	0.00051	46873	acti	137	21	10,8	0.00234
8236	activity	66	14	5,2	0.00051	22892	substrate-specific transporter activity	487	56	38,4	0.00241
5262	calcium channel activity insulin-like growth factor	38	10	3	0.00054	30545	receptor regulator activity	85	15	6,7	0.00241
5520	binding	10	5	0,79	0.00054	4/13	protein tyrosine kinase activity	78	14	6,15	0.00282
8395	activity	10	5	0,79	0.00054	61134	peptidase regulator activity	70	13	5,52	0.00289
1901681	sulfur compound binding	98	18	7,73	0.00057	4114	3',5'-cyclic-nucleotide	9	4	0,71	0.00350
5244	voltage-gated ion	39	10	3,08	0.00068	17017	MAP kinase tyrosine/serine/threonine	9	4	0,71	0.00350
22832	voltage-gated channel	30	10	3.08	0.00068	30228	prio	٩	4	0.71	0.00350
22002	activity endopeptidase inhibitor	00	10	0,00	0.00000	00220		-		0,71	0.00000
4866	activity	46	11	3,63	0.00070	30169	low-density lipoprotein particle binding	5	3	0,39	0.00433
30414	activity	46	11	3,63	0.00070	31994	insulin-like growth factor I binding	5	3	0,39	0.00433
1618	virus receptor activity	33	9	2,6	0.00077	47184	1-acylglycerophosphocholine O- acyltransf	5	3	0,39	0.00433
3707	steroid hormone	33	9	2,6	0.00077	8233	peptidase activity	291	36	22,95	0.00438
104005	hijacked molecular	33	a	2.6	0.00077	5267	notassium channel activity	15	5	1 18	0.00463
104000	function extracellular matrix	00	-	2,0	0.00077	0207	transferase activity, transferring			1,10	0.00400
50840	binding	21	/	1,66	0.00080	16/5/	glyco	145	21	11,43	0.00466
99600	receptor activity	189	28	14,9	0.00083	4112	acti	10	4	0,79	0.00548
5215	transporter activity voltage-gated calcium	591	68	46,6	0.00083	33549	MAP kinase phosphatase activity calcium ion transmembrane	10	4	0,79	0.00548
5245	channel activity	11	5	0,87	0.00093	15085	transporter ac	51	10	4,02	0.005/5
19199	receptor protein kinase	34	9	2,68	0.00097	8081	phosphoric diester hydrolase activity	36	8	2,84	0.00598
3779	ac actin binding	219	31	17,27	0.00098	48018	receptor ligand activity	76	13	5,99	0.00602
4871	signal transducer	428	52	33,75	0.00103	1730	2'-5'-oligoadenylate synthetase	2	2	0,16	0.00621
38024	cargo receptor activity	22	7	1,73	0.00110	4062	aryl sulfotransferase activity	2	2	0,16	0.00621
8194	UDP- glycosyltransferase activity	64	13	5,05	0.00124	4064	arylesterase activity	2	2	0,16	0.00621
4879	nuclear receptor activity	29	8	2,29	0.00139	4577	N- acetylglucosaminyldiphosphodolichol	2	2	0,16	0.00621
98531	transcription factor	29	8	2,29	0.00139	4771	N sterol esterase activity	2	2	0,16	0.00621
15075	ion transmembrane	334	42	26.34	0.00159	8131	primary amine ovidase activity	2	2	0.16	0.00621
15060	transporter activity calcium-activated	4	2	0.22	0.00184	24196		-	-	0.16	0.00621
10203	acti	+	J	0,02	0.00104	47555	3',5'-cyclic-GMP phosphodiesterase	-	-	0,10	0.00021
						4/555	activ	2	2 91	U,16	0.00621
						5496	steroid binding	45	9	3,55	0.00657
						16765	transferase activity, transferring alkyl	45	9	3,55	0.00754
						5355	glucose transmembrane transporter	6	3	0,47	0.00815
						97493	activit structural molecule activity conferring	6	3	0.47	0.00815
						5.001	 extracellular matrix structural	-	-	1.04	0.00000
						5201	constitu	17	5	1,34	0.00836
						72509	transmembrane	80	13	6,31	0.00929

Appendix 2: Complete Statistical Analysis of Intracellular Lipid Content

Free Cholesterol

Bonferroni's multiple comparisons test				
Comparison	95,00% CI of	Significant?	Summary	Adjusted P
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Nonresistant	am, -33.05 to 10.09	No	ns	value >0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Resistant	-22.28 to 20.86	No	ns	>0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Nonresistant	-38.46 to 4.683	No	ns	0.3342
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Besistant	-28.46 to 14.68	No	ns	>0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 20 uM Mitotane Nonresistant	-43.07 to	No	ns	0.0516
· · · · · · · · · · · · · · · · · · ·	0,0771			-,
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-33,85 to 9,293	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-70,72 to -27,57	Yes	****	<0,0001
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-30,87 to 12,28	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-31,93 to 11,22	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Resistant	-21,16 to 21,99	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-37,34 to 5,809	No	ns	0,5201
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-27,34 to 15,81	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-41,94 to 1,203	No	ns	0,0819
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-32,73 to 10,42	No	ns	>0,9999
0 CCS; 0 μ M Mitotane Resistant vs. 5 CCS; 50 μ M Mitotane Nonresistant	-69,59 to -26,45	Yes	****	<0,0001
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-29,74 to 13,4	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-26,98 to 16,16	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	-16,98 to 26,16	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-31,59 to 11,56	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-22,37 to 20,77	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-59,24 to -16,09	Yes	****	<0,0001
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-19,39 to 23,76	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-37,75 to 5,395	No	ns	0,4424
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-27,75 to 15,39	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-42,36 to	No	ns	0,0692
0 CCS- 10 UM Mitotono Bogistant vo. 5 CCS: 20 UM Mitotono Bogistant	0,7891	No	20	> 0.9999
0.000; 10 µM Mitotane Resistant vs. 5.000; 20 µM Mitotane Resistant	-33,14 to 10	No	****	>0,9999
0 CCS, 10 µM Mitotane Resistant VS. 5 CCS, 50 µM Mitotane Nonresistant	-70,01 to -20,00	No	20	< 0,0001
5 CCS, 10 µM Mitotane Resistant vs. 5 CCS, 30 µM Mitotane Resistant	-30,10 to 12,99	No	ns .	>0,9999
5 CCC, 0 vM Mitotare Norresistant vs. 5 CCC3, 20 µM Mitotare Norresistant	-20,10 10 10,97	No	115	>0,9999
5 CCS; 0 µM Mitotane Norresistant VS. 5 CCS; 20 µM Mitotane Resistant	-16,96 10 26,18	INO X	ns	>0,9999
5 CCS; U JIM Mitotane Nonresistant Vs. 5 CCS; 50 JIM Mitotane Nonresistant	-53,83 t0 -10,68	Yes		0,0006
5 CCS; U µM Mitotane Nonresistant Vs. 5 CCS; 50 µM Mitotane Resistant	-13,98 to 29,17	NO	ns	>0,9999
5 CCS; U µM Mitotane Resistant Vs. 5 CCS; 20 µM Mitotane Nonresistant	-36,18 to 6,968	NO	ns	0,8125
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Resistant	-26,96 to 16,18	No	ns	>0,9999
5 CCS; U µM Mitotane Resistant Vs. 5 CCS; 50 µM Mitotane Nonresistant	-63,83 to -20,68	Yes		<0,0001
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-23,98 to 19,17	No	ns	>0,9999
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-49,22 to -6,077	Yes	**	0,0041
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-9,372 to 33,77	No	ns	>0,9999
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-58,44 to -15,29	Yes	***	0,0001
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-18,59 to 24,56	No	ns	>0,9999
Uncorrected Fisher's LSD				
Comparison	95,00% CI of	Significant?	Summary	Individual P
0 CCS+ 0 uM Mitotopo Noorosistantive, 0 CCS+ 0 uM Mitotopo Resistant	diff,	No	20	Value
0.000, 0 µm milotane momesistant vs. 0.000; 0 µm milotane Resistant	-12,90 10 10,7		115	0,844605
5 CCC, Out M Mitchane Nonresistant VS. 0 CCS; TO JUM Mitchane Resistant	-1,00 LU 22,0		115	0,072086
5 CC5; U µm mitotarie inoriresistant Vs. 5 CC5; U µm mitotarie Hesistant	-1,83 to 21,83	INU	ns	0,093123
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Hesistant	-2,613 to 21,04	INO	ns	0,119769
5 CCS; 50 µм міtotane Nonresistant vs. 5 CCS; 50 µM Mitotane Hesistant	28,02 to 51,68	Yes	*	<0,000001

Total Cholesteryl Ester

Dunn's multiple comparisons test				
Comparison	Mean rank diff,	Significant?	Summary	Adjusted P
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Nonresistant	-1	No	ns	Value >0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	13,33	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-7	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	9,333	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-9,333	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	8,667	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-7,667	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	7,333	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-12,33	No	ns	>0,9999
0 CCS; 0 µM Mitotane Resistant vs. 0 CCS; 10 µM Mitotane Resistant	2	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-18,33	No	ns	0,484
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-2	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-20,67	No	ns	0,1817
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Resistant	-2,667	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-19	No	ns	0,3694
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-4	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-6	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	10,33	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-8,333	No	ns	>0,9999

0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	9,667	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-6,667	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	8,333	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-20,33	No	ns	0,2102
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Resistant	-4	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-22,67	No	ns	0,0726
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Resistant	-4,667	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-21	No	ns	0,1567
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-6	No	ns	>0,9999
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-2,333	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	15,67	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-0,6667	No	ns	>0,9999
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	14,33	No	ns	>0,9999
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-18,67	No	ns	0,4233
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Resistant	-0,6667	No	ns	>0,9999
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-17	No	ns	0,8112
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-2	No	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	1,667	No	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	16,67	No	ns	0,9185
5 CCS; 20 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-16,33	No	ns	>0,9999
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-1,333	No	ns	>0,9999
Uncorrected Dunn's test				
Comparison	Mean rank diff,	Significant?	Summary	Individual P Value
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 0 µM Mitotane Resistant	11,33	No	ns	0,1149
0 CCS; 10 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	14,33	Yes	*	0,0461
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	16,33	Yes	*	0,0231
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	18	Yes	*	0,0123
5 CCS; 50 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	15	Yes	*	0,0369

Total Lysophosphatidylcholine

Bonferroni's multiple comparisons test Comparison
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Resistant
0 CCS; 0 μ M Mitotane Resistant vs. 5 CCS; 0 μ M Mitotane Nonresistant
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Nonresistant
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Nonresistant
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant 0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant

95,00% CI of diff,	Significant?	Summary	Adjusted P Value
-0,8256 to 0,2063	No	ns	>0,9999
-0,7563 to	No	ns	>0,9999
-0,9692 to	No	ns	0,1461
-0,6014 to	No	ns	>0,9999
-1,11 to -	Yes	*	0,0131
-0,7605 to	No	ns	>0,9999
-1,801 to -	Yes	****	<0,0001
-1,006 to	No	ns	0,0778
-0,7919 to	No	ns	>0,9999
0,2401 -0,7226 to	No	ns	>0,9999
-0,9355 to	No	ns	0,2579
-0,5677 to	No	ns	>0,9999
0,4643 -1,076 to -	Yes	*	0,0235
-0,7268 to	No	ns	>0,9999
-1,767 to -	Yes	****	<0,0001
0,7351 -0,9725 to	No	ns	0,1383
-0,6596 to	No	ns	>0,9999
-0,2918 to	No	ns	>0,9999
-0,8 to 0,232	No	ns	>0,9999
-0,4509 to 0.581	No	ns	>0,9999
-1,491 to - 0.4592	Yes	****	<0,0001
-0,6966 to 0.3354	No	ns	>0,9999
-0,7289 to	No	ns	>0,9999
-0,3611 to	No	ns	>0,9999
-0,8692 to 0.1627	No	ns	0,7629
-0,5202 to	No	ns	>0,9999
-1,56 to -0,5284	Yes	****	<0,0001
-0,7659 to 0,2661	No	ns	>0,9999
-0,6563 to 0.3756	No	ns	>0,9999
-0,3073 to 0.7247	No	ns	>0,9999
-1,347 to - 0.3155	Yes	***	0,0002
-0,5529 to 0,479	No	ns	>0,9999
-1,024 to 0,007793	No	ns	0,0572
-0,6751 to 0.3568	No	ns	>0,9999
-1,715 to -	Yes	****	<0,0001
-0,9208 to 0,1112	No	ns	0,3296

5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-1,207 to -	Yes	**	0,0025
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	0,1752 -0,4126 to	No	ns	>0,9999
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-1,556 to -	Yes	****	<0,0001
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	0,5242 -0,7616 to	No	ns	>0,9999
	0,2703			
Uncorrected Fisher's LSD	05 000/ 01 -1	0	0	
Comparison	95,00% CI of diff,	Significant?	Summary	Individual P Value
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 0 μM Mitotane Resistant	-0,3167 to 0,2492	No	ns	0,806
0 CCS; 10 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	-0,2136 to 0,3522	No	ns	0,6151
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	0,08492 to 0,6507	Yes	*	0,0134
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	0,06615 to 0,632	Yes	*	0,0181
5 CCS; 50 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	0,5116 to 1,077	Yes	****	<0,0001
Total Ceramide				
Bonferroni's multiple comparisons test				
Comparison	95,00% CI of	Significant?	Summary	Adjusted P
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant	diff, -1,947 to	No	ns	Value 0,3621
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	0,2487 -1,761 to	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Nonresistant	0,4346 -1,61 to 0,5859	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	-0,7548 to	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	1,441 -2,169 to	No	ns	0,0621
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	0,02678 -0,7778 to	No	ns	>0,9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Nonresistant	1,418 -3.478 to -1.282	Yes	****	<0.0001
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-0,768 to 1,428	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-2,2 to -	Yes	*	0,0485
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Resistant	-2,014 to	No	ns	0,2149
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-1,863 to	No	ns	0,6924
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-1,007 to 1,189	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-2,422 to -	Yes	**	0,008
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-1,03 to 1,166	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-3,73 to -1,534	Yes	****	<0,0001
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant 0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-1,021 to 1,175 -0,7607 to	No	ns	>0,9999
0 CCS: 10 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Resistant	1,435 0.09444 to 2.29	Ves	*	0.0233
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-1,32 to 0,8761	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	0,07149 to	Yes	*	0,028
0 CCS; 10 μ M Mitotane Nonresistant vs. 5 CCS; 50 μ M Mitotane Nonresistant	-2,628 to -	Yes	**	0,0015
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	0,4325 0,08126 to	Yes	*	0,0259
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	2,277 -0,9467 to	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	1,249 -0,09149 to	No	ns	0,1045
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	2,104 -1,506 to	No	ns	>0,9999
0 CCS: 10 uM Mitotane Resistant vs. 5 CCS: 20 uM Mitotane Resistant	0,6901 -0,1144 to	No	ns	0.1256
0 CCS: 10 uM Mitotane Besistant vs. 5 CCS: 50 uM Mitotane Nonresistant	2,081 -2 814 to -	Yes	***	0.0004
0 CCS: 10 JM Mitotano Resistant vs. 5 CCS: 50 JM Mitotano Resistant	0,6184	No	200	0,1161
5 CCS: 0 uM Mitotane Negrosistant vs. 5 CCS: 20 uM Mitotane Negrosistant	2,091	No	110	- 0.0000
5 000, σ μω ποιοιατα του περιοιατα να. 5 000, 20 μοι ποιοιατα που περιοιατα	0,5388	No	110	~0,3333
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant 5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-0,2657 to 1,93 -2,966 to -	NO Yes	ns ***	0,4133
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Resistant	0,7697 -0.256 to 1.94	No	ns	0,3832
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-2,512 to -	Yes	**	0,0039
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	0,3163 -1,121 to 1,075	No	ns	>0,9999
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-3,821 to -1,625	Yes	****	<0,0001
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-1,111 to 1,085	No	ns	>0,9999
5 GGS; 20 μινι Mitotane Nonresistant vs. 5 GGS; 50 μM Mitotane Nonresistant	-2,406 to - 0,2106	Yes		0,0091
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	0,3031 to 2,499	Yes	**	0,0043
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-1,088 to 1,108	No	ns	>0,9999
Uncorrected Fisher's LSD	05 000/ 01 /	Cinnific - 10	Cumrent	lasticitation D
	95,00% CI of diff,	Significant?	Summary	Value
υ CCS; υ μιν Mitotane Nonresistant vs. υ CCS; 0 μM Mitotane Resistant	-0,3495 to 0,8546	NO	ns	0,3919
0 CCS; 10 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	-0,4161 to 0,788	No	ns	0,5267
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	0,2532 to 1,457	Yes	**	0,0077
5 CCS; 50 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	2,108 to 3,312	Yes	****	<0,0001

Total Sphingomyelin

Bonferroni's multiple comparisons test

Comparison

Comparison	95,00% CI of	Significant?	Summary	Adjusted P
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-4,621 to 0.5708	No	ns	0,342
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	0,391 to 5,583	Yes	*	0,013
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-3,167 to 2,024	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	-0,3677 to 4.824	No	ns	0,174
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-4,642 to 0,5498	No	ns	0,319
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-1,044 to 4,148	No	ns	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-5,904 to -	Yes	**	0,004
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-0,4463 to 4 745	No	ns	0,226
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-7,29 to -2,098	Yes	****	<0,0001
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Resistant	-2,278 to 2,914	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-5,836 to -	Yes	**	0,005
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	0,6446 -3,037 to 2,155	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-7,311 to -2,119	Yes	****	<0,0001
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-3,713 to 1,479	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-8,573 to -3,381	Yes	****	<0,0001
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-3,115 to 2,076	No	ns	>0,9999
0 CCS: 10 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Nonresistant	-1.142 to 4.049	No	ns	>0.9999
0 CCS: 10 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Resistant	1.657 to 6.849	Yes	***	0.000
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 20 µM Mitotane Nonresistant	-2.617 to 2.575	No	ns	>0.9999
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 20 µM Mitotane Besistant	0.981 to 6.173	Yes	**	0.001
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 50 µM Mitotane Nonresistant	-3.879 to 1.313	No	ns	>0.9999
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 50 µM Mitotane Besistant	1.579 to 6.77	Yes	***	0.000
0 CCS: 10 µM Mitotane Besistant vs. 5 CCS: 0 µM Mitotane Nonresistant	-6.154 to -	Yes	**	0.001
· · · · · · · · · · · · · · · · · · ·	0,9626			
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-3,355 to 1,837	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-7,629 to -2,437	Yes		<0,0001
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-4,031 to 1,161	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-8,891 to -3,699	Yes	****	<0,0001
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-3,433 to 1,758	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-4,07 to 1,121	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-0,4724 to 4,719	No	ns	0,247
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-5,333 to -	Yes	•	0,030
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	0,1252 to 5,317	Yes	*	0,032
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-6,87 to -1,678	Yes	***	0,000
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Resistant	-3,272 to 1,92	No	ns	>0,9999
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-8,132 to -2,941	Yes	****	<0,0001
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-2,674 to 2,517	No	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-3,858 to 1,334	No	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	1,6 to 6,791	Yes	***	0,000
5 CCS; 20 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-7,456 to -2,264	Yes	****	<0,0001
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-1,998 to 3,193	No	ns	>0,9999
Uncorrected Fisher's LSD				
Comparison	95,00% CI of	Significant?	Summary	Individual P
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 0 μM Mitotane Resistant	diff, 1,246 to 4,092	Yes	***	Value 0,000
0 CCS; 10 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	3,589 to 6,435	Yes	****	<0,0001
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	1,376 to 4,223	Yes	***	0,000
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	2,175 to 5,021	Yes	****	<0,0001
5 CCS; 50 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	4,034 to 6,881	Yes	****	<0,0001

Total Phosphatidylcholine

Bonferroni's multiple comparisons test

Comparison

Domentalia malaple comparisons lest				
Comparison	95,00% CI of diff	Significant?	Summary	Individual P Value
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-35,77 to - 0.8703	-50,15 to 13,51	No	ns
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	-8,529 to 26,37	-22,91 to 40,75	No	ns
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-26,89 to 8,018	-41,26 to 22,39	No	ns
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	-18,31 to 16,59	-32,69 to 30,97	No	ns
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-34,76 to 0,1427	-49,14 to 14,52	No	ns
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-30,71 to 4,195	-45,08 to 18,57	No	ns
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-53,79 to -18,89	-68,17 to -4,51	Yes	*
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-33,28 to 1,625	-47,65 to 16	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-37,52 to -2,613	-51,89 to 11,76	No	ns
0 CCS; 0 µM Mitotane Resistant vs. 0 CCS; 10 µM Mitotane Resistant	-10,27 to 24,63	-24,65 to 39,01	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-28,63 to 6,276	-43 to 20,65	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-20,05 to 14,85	-34,43 to 29,23	No	ns
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-36,5 to -1,6	-50,88 to 12,78	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-32,45 to 2,453	-46,83 to 16,83	No	ns
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-55,53 to -20,63	-69,91 to -6,252	Yes	**
0 CCS; 0 μ M Mitotane Resistant vs. 5 CCS; 50 μ M Mitotane Resistant	-35,02 to - 0,1174	-49,4 to 14,26	No	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-8,563 to 26,34	-22,94 to 40,72	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	0,01238 to 34,92	-14,36 to 49,29	No	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-16,44 to 18,46	-30,81 to 32,84	No	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-12,39 to 22,52	-26,76 to 36,89	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-35,47 to - 0,5646	-49,84 to 13,81	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-14,96 to 19,95	-29,33 to 34,32	No	ns

0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-35,81 to - 0.9047	-50,18 to 13,47	No	ns
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Resistant	-27,23 to 7,671	-41,61 to 22,05	No	ns
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-43,68 to -8,78	-58,06 to 5,597	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-39,63 to -4,728	-54,01 to 9,649	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-62,71 to -27,81	-77,09 to -13,43	Yes	**
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-42,2 to -7,298	-56,58 to 7,079	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-25,33 to 9,576	-39,7 to 23,95	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-21,27 to 13,63	-35,65 to 28	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-44,36 to -9,453	-58,73 to 4,924	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-23,84 to 11,06	-38,22 to 25,43	No	ns
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-33,9 to 1,001	-48,28 to 15,38	No	ns
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-29,85 to 5,053	-44,23 to 19,43	No	ns
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-52,93 to -18,03	-67,31 to -3,652	Yes	*
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-32,42 to 2,483	-46,8 to 16,86	No	ns
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-36,48 to -1,578	-50,86 to 12,8	No	ns
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-15,97 to 18,93	-30,35 to 33,31	No	ns
5 CCS; 20 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-40,53 to -5,63	-54,91 to 8,747	No	ns
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-20,02 to 14,88	-34,4 to 29,26	No	ns
Uncorrected Fisher's LSD				
Comparison	Mean Diff,	95,00% CI of diff	Significant?	Summary
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 0 μM Mitotane Resistant	1,742	-15,71 to 19,19	No	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	27,24	9,793 to 44,7	Yes	**
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	8,576	-8,876 to 26,03	No	ns
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	4,052	-13,4 to 21,5	No	ns
5 CCS; 50 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	20,51	3,06 to 37,96	Yes	*

Total Phosphatidylethanolamine

5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant

5 CCS; 50 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant

Bonferroni's multiple comparisons test			
Comparison	95,00% CI of	Significant?	Summary
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Nonresistant	diff, -12.25 to 12.93	No	ns
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Resistant	-3.549 to 21.63	No	ns
0 CCS: 0 µM Mitotane Nonresistant vs. 5 CCS: 0 µM Mitotane Nonresistant	-19.32 to 5.854	No	ns
0 CCS: 0 µM Mitotane Nonresistant vs. 5 CCS: 0 µM Mitotane Besistant	-8.016 to 17.16	No	ns
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 20 uM Mitotane Nonresistant	-19.72 to 5.454	No	ns
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 20 uM Mitotane Resistant	-10.13 to 15.05	No	ns
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Nonresistant	-16.05 to 9.124	No	ns
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Resistant	-9 595 to 15 58	No	ns
0 CCS: 0 uM Mitotane Besistant vs. 0 CCS: 10 uM Mitotane Nonresistant	-18.78 to 6.4	No	ns
0 CCS: 0 µM Mitotane Besistant vs. 0 CCS: 10 µM Mitotane Besistant	-10.08 to 15.1	No	ns
0 CCS: 0 µM Mitotane Besistant vs. 5 CCS: 0 µM Mitotane Nonresistant	-25.85 to -	Yes	*
	0,6747		
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Resistant	-14,54 to 10,63	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-26,25 to -1,075	Yes	
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-16,66 to 8,519	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-22,58 to 2,595	No	ns
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-3,89 to 21,29	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-19,66 to 5,513	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	-8,357 to 16,82	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-20,06 to 5,113	No	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-10,47 to 14,71	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-16,39 to 8,783	No	ns
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-9,936 to 15,24	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-28,36 to -3,185	Yes	**
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-17,05 to 8,12	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-28,76 to -3,585	Yes	**
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-19,17 to 6,01	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-25,09 to 0,08536	No	ns
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-18,63 to 6,542	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-12,99 to 12,19	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-3,393 to 21,78	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-9,318 to 15,86	No	ns
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-2,861 to 22,31	No	ns
5 CCS; 0 μ M Mitotane Resistant vs. 5 CCS; 20 μ M Mitotane Nonresistant	-24,29 to	No	ns
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-14,7 to 10,48	No	ns
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-20,62 to 4,552	No	ns
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-14,17 to 11,01	No	ns
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-8,917 to 16,26	No	ns
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-2,461 to 22,71	No	ns
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-18,51 to 6,663	No	ns
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-12,06 to 13,12	No	ns
Uncorrected Fisher's LSD			
Comparison	95,00% CI of	Significant?	Summary
	diff,		
U UUS; U μΜ Μιτσταπε ivonresistant vs. U CUS; U μΜ Mitotane Resistant	-0,3733 to 13,43	INO	ns
0 CCS; 10 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	1,796 to 15,6	Yes	*
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	4,403 to 18,21	Yes	**

0,0089

0,0652

Individual P Valueg >0,9999 >0,9999 >0,9999 >0,9999 >0,9999 >0,9999 >0,9999 >0,9999

0,031

>0,9999 0,0234 >0,9999 0,3044 0,7242 >0,9999 >0,9999 >0,9999 >0,9999 >0,9999 >0,9999 0,0053 >0,9999 0,004 >0,9999 0,0531 >0,9999 >0,9999 0,5214 >0,9999 0,3646 0,093

>0,9999 >0,9999 >0,9999 >0,9999 0,2777 >0,9999 >0,9999

Individual P Value 0,0625 0,0161 0,0027

**

ns

2,692 to 16,5

-0,4454 to 13,36 Yes

No

Total PE Based Plasmalogens

Dunn's multiple comparisons test				
Comparisosns	Mean rank diff,	Significant?	Summary	Adjusted P
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant	0	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	-13	No	ns	>0,9999
0 CCS; 0 uM Mitotane Nonresistant vs. 5 CCS; 0 uM Mitotane Nonresistant	-13.33	No	ns	>0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Besistant	-19.33	No	ns	0.3218
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 20 uM Mitotane Nonresistant	-10.67	No	ns	>0.9999
0 CCS: 0 µM Mitotane Nonresistant vs. 5 CCS: 20 µM Mitotane Besistant	-20.33	No	ns	0.2102
0 CCS; 0 uM Mitotane Nonresistant vs. 5 CCS; 50 uM Mitotane Nonresistant	-6	No	ns	>0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Besistant	-11.33	No	ns	>0.9999
0 CCS: 0 uM Mitotane Besistant vs. 0 CCS: 10 uM Mitotane Nonresistant	17.67	No	ns	0.629
0 CCS: 0 uM Mitotane Besistant vs. 0 CCS: 10 uM Mitotane Besistant	4.667	No	ns	>0.9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 0 uM Mitotane Nonresistant	4,333	No	ns	>0.9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 0 uM Mitotane Resistant	-1 667	No	ns	>0 9999
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	7	No	ns	>0.9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 20 uM Mitotane Resistant	-2 667	No	ns	>0 9999
0 CCS: 0 µM Mitotane Resistant vs. 5 CCS: 50 µM Mitotane Nonresistant	11.67	No	ns	>0.9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 50 uM Mitotane Resistant	6 333	No	ne	>0.9999
0 CCS: 10 UM Mitotane Nonresistant vs. 5 CCS: 0 UM Mitotane Nonresistant	-13 33	No	ns	>0,9999
0 CCS: 10 JM Mitotane Nonresistant vs. 5 CCS: 0 JM Mitotane Resistant	-19 33	No	ns	0 3218
0 CCS: 10 µM Mitotane Noncoistant vs. 5 CCS: 20 µM Mitotane Noncoistant	-10.67	No	10	> 0 9999
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 20 µM Mitotane Nonresistant	-10,07	No	ns	0 2102
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 50 µM Mitotane Neoresistant	-6	No	ns	>0 9999
0 CCS: 10 µM Mitotane Nonresistant vs. 5 CCS: 50 µM Mitotane Nonresistant	-0	No	115	>0,9999
0 CCS: 10 µM Mitotane Noniesistant vs. 5 CCS: 0 µM Mitotane Nearosistant	-11,33	No	113	>0,9999
0 CCS: 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Resistant	-0,000	No	115	>0,9999
0 CCS: 10 µM Mitotane Resistant vs. 5 CCS: 20 µM Mitotane Nesrosistant	-0,000	No	113	>0,9999
0 CCS: 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Rosistant	-7 333	No	115	>0,9999
0 CCS: 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nesistant	-7,555	No	115	>0,9999
0 CCS: 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	1 667	No	115	>0,9999
5 CCS: 0 UM Mitotane Negrosistant vs. 5 CCS: 20 UM Mitotane Negrosistant	2,667	No	113	>0,9999
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS; 20 uM Mitotane Nonresistant	2,007	No	113	>0,9999
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS; 20 uM Mitotane Nesrosistant	7 222	No	113	>0,9999
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS; 50 uM Mitotane Nonresistant	7,000	No	113	>0,9999
5 CCS: 0 uM Mitotane Provident vs. 5 CCS; 30 uM Mitotane Nersesistant	9 667	No	113	>0,9999
5 CCS, 0 µM Mitotane Resistant vs. 5 CCS, 20 µM Mitotane Nonesistant	0,007	No	115	>0,9999
5 CCS: 0 µM Mitotane Resistant vs. 5 CCS: 50 µM Mitotane Resistant	19.99	No	115	>0,9999
5 CCS, 0 µM Mitotane Resistant vs. 5 CCS, 50 µM Mitotane Nonesistant	13,33	No	115	>0,9999
5 CCC, 0 µM Mitotane Nerveristant vs. 5 CCC, 50 µM Mitotane Nerveristant	0	No	115	>0,9999
5 CCS, 20 µM Mitotane Nonresistant vs. 5 CCS, 50 µM Mitotane Nonresistant	4,007	No	115	>0,9999
5 CCS: 20 µM Mitotane Noniesistant vs. 5 CCS: 50 µM Mitotane Newsaistant	-0,0007	No	113	>0,9999
5 CCS, 20 µM Mitotane Resistant vs. 5 CCS, 50 µM Mitotane Roniesistant	14,33	No	115	>0,9999
5 CCS, 20 µm mitotane Resistant VS: 5 CCS, 30 µm mitotane Resistant	9	INO	ns	>0,9999
Uncorrected Fisher's LSD				
Comparison	95,00% CI of	Significant?	Summary	Individual P
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 0 uM Mitotane Besistant	ditt, -9.028 to -1.048	Yes	*	Value 0.0159
0 CCS: 10 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Resistant	-7.805 to	No	ns	0.0599
	0,1742			0,0000
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	-6,975 to 1,004	No	ns	0,1342
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-7,458 to 0,5217	No	ns	0,0848
5 CCS; 50 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-5,166 to 2,813	No	ns	0,5453

Total Phosphatidylserine

Bonferroni's multiple comparisons test Comparison

Comparison	95,00% CI of diff,	Significant?	Summary	Individual P Value
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Nonresistant	-8,824 to 5,286	No	ns	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 0 CCS; 10 µM Mitotane Resistant	-6,02 to 8,09	No	ns	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-9,926 to 4,184	No	ns	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	-8,673 to 5,437	No	ns	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-10,68 to 3,429	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-11,2 to 2,908	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-11,83 to 2,283	No	ns	0,8162
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-11,42 to 2,692	No	ns	>0,9999
0 CCS; 0 µM Mitotane Resistant vs. 0 CCS; 10 µM Mitotane Nonresistant	-8,865 to 5,244	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Resistant	-6,062 to 8,048	No	ns	>0,9999
0 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-9,967 to 4,143	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-8,714 to 5,395	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-10,72 to 3,388	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-11,24 to 2,866	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-11,87 to 2,241	No	ns	0,7778
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-11,46 to 2,65	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-8,157 to 5,953	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 0 μM Mitotane Resistant	-6,904 to 7,206	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-8,912 to 5,198	No	ns	>0,9999
0 CCS; 10 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-9,433 to 4,677	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-10,06 to 4,052	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-9,649 to 4,461	No	ns	>0,9999

95,00% CI of Significant? Summary

0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Nonresistant	-10,96 to 3,149	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 0 µM Mitotane Resistant	-9,708 to 4,402	No	ns	>0,9999
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-11,72 to 2,394	No	ns	0,9289
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-12,24 to 1,873	No	ns	0,5039
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-12,86 to 1,248	No	ns	0,2365
0 CCS; 10 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Resistant	-12,45 to 1,657	No	ns	0,389
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-7,81 to 6,3	No	ns	>0,9999
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-8,331 to 5,779	No	ns	>0,9999
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-8,956 to 5,153	No	ns	>0,9999
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 50 uM Mitotane Resistant	-8.547 to 5.563	No	ns	>0.9999
5 CCS: 0 uM Mitotane Besistant vs. 5 CCS: 20 uM Mitotane Nonresistant	-9.063 to 5.047	No	ns	>0.9999
5 CCS: 0 µM Mitotane Resistant vs. 5 CCS: 20 µM Mitotane Resistant	-9 584 to 4 526	No	ns	>0.9999
5 CCS: 0 µM Mitotane Resistant vs. 5 CCS: 50 µM Mitotane Resistant	-10 21 to 3 901	No	113	>0,9999
5 000, 0 µM Mitotane Resistant vs. 5 000, 50 µM Mitotane Roniesistant	-10,2110 3,301	No	115	>0,3333
5 CCS; 0 µm mitolane Resistant vs. 5 CCS; 50 µm mitolane Resistant	-9,8 (0 4,3)	NO	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-8,201 to 5,908	No	ns	>0,9999
5 CCS; 20 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-7,792 to 6,318	No	ns	>0,9999
5 CCS; 20 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-7,68 to 6,43	No	ns	>0,9999
5 CCS; 20 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-7,271 to 6,839	No	ns	>0,9999
Uncorrected Fisher's LSD				
Comparison	95,00% CI of	Significant?	Summary	Individual P
0 CCS: 0 uM Mitotane Nonresistant vs. 0 CCS: 0 uM Mitotane Resistant	-3.827 to 3.91	No	ns	0.9824
0 CCS: 10 uM Mitotane Nonresistant vs. 0 CCS: 10 uM Mitotane Besistant	-1.065 to 6.672	No	ns	0 1462
5 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Resistant	-2 615 to 5 121	No	ne	0.507
E CCC: 20 JM Mitotano Nonresistant vo. E CCC: 20 JM Mitotano Bosistant	4 290 to 2 247	No	115	0,307
5 CC3, 20 μM Mitotane Nonresistant vs. 5 CC3, 20 μM Mitotane Resistant	-4,369 (0 3,347	No	115	0,7815
5 CCS; 50 µm mitotane Nonesistant VS. 5 CCS; 50 µm mitotane Resistant	-3,459 10 4,277	NO	ns	0,8276
Total Dhannhatidulianaaital				
Bonterroni's multiple comparisons test			_	
Comparison	95,00% CI of diff	Significant?	Summary	Adjusted P
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-13,41 to 10,31	No	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	-9,524 to 14,19	No	ns	>0,9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Nonresistant	-17.7 to 6.012	No	ns	>0.9999
0 CCS: 0 uM Mitotane Nonresistant vs. 5 CCS: 0 uM Mitotane Besistant	-14.31 to 9.407	No	ns	>0.9999
0 CCS: 0 uM Mitotano Nonrosistant vo. 5 CCS: 20 uM Mitotano Nonrosistant	-15.88 to 7.838	No	10	> 0,0000
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Nonresistant	14 20 to 0.42	No	113	>0,9999
0 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 20 µM Mitotane Resistant	-14,29 (0 9,43	NO	ns	>0,9999
U GGS; U µM Mitotane Nonresistant Vs. 5 GGS; 50 µM Mitotane Nonresistant	-16,54 to 7,175	NO	ns	>0,9999
0 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-12,76 to 10,96	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 0 CCS; 10 μM Mitotane Nonresistant	-11,14 to 12,58	No	ns	>0,9999
0 CCS; 0 µM Mitotane Resistant vs. 0 CCS; 10 µM Mitotane Resistant	-7,257 to 16,46	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-15,44 to 8,279	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-12,04 to 11,67	No	ns	>0,9999
0 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-13,61 to 10,1	No	ns	>0,9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 20 uM Mitotane Resistant	-12.02 to 11.7	No	ns	>0.9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 50 uM Mitotane Nonresistant	-14 28 to 9 442	No	ns	>0 9999
0 CCS: 0 uM Mitotane Resistant vs. 5 CCS: 50 uM Mitotane Resistant	-10.49 to 13.22	No	ne	>0.9999
0 CCS; 0 µM Mitotane Nepresistant vs. 5 CCS; 0 µM Mitotane Nepresistant	16 16 to 7 56	No	115	>0,3333
	-16,16 10 7,56	NU	115	>0,9999
0 CCS; 10 µM Mitotane Nonresistant Vs. 5 CCS; 0 µM Mitotane Resistant	-12,76 to 10,95	NO	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-14,33 to 9,385	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-12,74 to 10,98	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-14,99 to 8,722	No	ns	>0,9999
0 CCS; 10 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-11,21 to 12,5	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Nonresistant	-20,04 to 3,678	No	ns	0,731
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 0 μM Mitotane Resistant	-16,64 to 7,072	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Nonresistant	-18,21 to 5,503	No	ns	>0,9999
0 CCS; 10 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-16,62 to 7,096	No	ns	>0,9999
0 CCS: 10 uM Mitotane Besistant vs. 5 CCS: 50 uM Mitotane Nonresistant	-18.88 to 4.84	No	ns	>0.9999
0 CCS: 10 uM Mitotane Resistant vs. 5 CCS: 50 uM Mitotane Resistant	-15.09 to 8.622	No	ne	>0.9999
E CCS: 0 vM Mitotane Nerregistant vs. 5 CCS; 20 vM Mitotane Nerregistant	10.02 to 12.69	No	115	>0,3333
5 CCS; 0 µm mitotarie Norresistant vs. 5 CCS; 20 µm mitotarie Norresistant	-10,03 to 13,68	NO	ns	>0,9999
5 CCS; 0 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Hesistant	-8,44 to 15,28	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-10,7 to 13,02	No	ns	>0,9999
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 50 µM Mitotane Resistant	-6,914 to 16,8	No	ns	>0,9999
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 20 µM Mitotane Nonresistant	-13,43 to 10,29	No	ns	>0,9999
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 20 μM Mitotane Resistant	-11,83 to 11,88	No	ns	>0,9999
5 CCS; 0 µM Mitotane Resistant vs. 5 CCS; 50 µM Mitotane Nonresistant	-14,09 to 9,626	No	ns	>0,9999
5 CCS; 0 μM Mitotane Resistant vs. 5 CCS; 50 μM Mitotane Resistant	-10,31 to 13,41	No	ns	>0,9999
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Nonresistant	-12,52 to 11,2	No	ns	>0,9999
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-8,74 to 14.98	No	ns	>0,9999
5 CCS; 20 µM Mitotane Resistant vs. 5 CCS: 50 µM Mitotane Nonresistant	-14.11 to 9.603	No	ns	>0,9999
5 CCS: 20 uM Mitotane Resistant vs. 5 CCS: 50 uM Mitotane Resistant	-10.33 to 13.38	No	ns	>0.9999
	10,00 10 10,00			- 0,0000
Uncorrected Fisher's LSD	95.00% CL of	Significant?	Summarv	Individual P
	diff,			Value
0 CCS; 0 μM Mitotane Nonresistant vs. 0 CCS; 0 μM Mitotane Resistant	-8,769 to 4,235	No	ns	0,4755
0 CCS; 10 μM Mitotane Nonresistant vs. 0 CCS; 10 μM Mitotane Resistant	-2,62 to 10,38	No	ns	0,2274
5 CCS; 0 µM Mitotane Nonresistant vs. 5 CCS; 0 µM Mitotane Resistant	-3,107 to 9,897	No	ns	0,2891
5 CCS; 20 μM Mitotane Nonresistant vs. 5 CCS; 20 μM Mitotane Resistant	-4,91 to 8,094	No	ns	0,615
5 CCS; 50 μM Mitotane Nonresistant vs. 5 CCS; 50 μM Mitotane Resistant	-2,72 to 10,28	No	ns	0,2392

16 Eidesstattliche Versicherung

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist.

Außerdem versichere ich, dass ich diese Dissertation an keiner anderen Fakultät eingereicht habe. Ich habe bisher keinen anderen erfolgreichen oder erfolglosen Promotionsversuch unternommen.

Berlin,

Eric Seidel