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Summary 

Learning from feedback enables behavioural adaptation. Actions with beneficial 

outcomes are performed more frequently in the future, whereas actions leading to non-

beneficial or aversive outcomes are avoided. Animal research on feedback learning 

showed that midbrain dopamine (DA) neuron firing rates burst in response to reward-

predicting stimuli, while their firing rate dips when the expected reward is omitted, 

thereby coding a prediction error signal. In humans, DA neurons project from the 

midbrain to the striatum and anterior cingulate cortex (ACC), which have both been 

shown to play a role in feedback processing. However, a previous imaging study 

reported that the hippocampus (HC) becomes active when feedback is processed that 

follows a related action after a temporal delay (7 s). This finding associates the HC 

with delayed feedback processing, while it is usually ascribed to declarative memory. 

In line with this, patients suffering from Parkinson’s disease (PD), which is 

characterised by a substantial depletion of striatal DA levels, were impaired in learning 

from immediate (1 s), but not delayed (7 s) feedback, possibly making use of their 

intact HC. Furthermore, an event-related potential (ERP) study found that the activity 

in the striatum/ACC decreases with increasing temporal delay between an action and 

the relative feedback. 

It is not yet clear whether the striatum/ACC and the HC are parts of two competing 

neuronal systems and feedback is processed in either one or the other depending on its 

timing, or whether these structures interact in a cooperative manner. In a series of three 

studies, the present dissertation examined the modulatory effects of temporal delay on 

the neuro-cognitive underpinning of feedback processing by comparing effects that are 

well-established in learning from immediate feedback between immediate (1 s) and 

delayed (7 s) feedback learning. 

 Unlike healthy control participants, PD patients have previously been found to 

learn better from negative than positive immediate feedback, which was attributed to 

their lack of striatal DA. Study 1 compared this learning bias between two groups of 

patients (and their controls) that learned from immediate and delayed feedback, 

respectively. The feedback timing did, however, not affect the patients’ tendency to 
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learn better from negative feedback, which indicates that striatal DA depletion affected 

both learning from immediate and delayed feedback. This in turn suggests a striatal 

contribution to delayed feedback processing. 

The feedback-related negativity (FRN) is an ERP component that supposedly 

reflects DA-related activity in the striatum/ACC. Previous research showed that the 

FRN amplitude is increased for unexpected compared to expected immediate feedback 

mirroring a prediction error. Study 2 compared this FRN expectancy effect between 

immediate and delayed feedback finding larger FRN amplitudes for unexpected 

compared to expected feedback during both immediate and delayed feedback learning. 

In line with Study 1, this finding suggests striatal/ACC involvement in delayed 

feedback processing. 

Feedback agency has previously been shown to modulate activity in the 

striatum/ACC as well, with decreased activity for learning from feedback for observed 

versus self-performed actions. Study 3 investigated the combined influence of 

feedback agency and delay on the FRN as well as beta and theta band oscillations. The 

FRN was affected by feedback agency and delay, with a combined influence only for 

feedback for self-generated actions. Beta and theta power were affected by feedback 

timing, while agency only modulated the power in the theta band. These results 

indicate that the mechanisms underlying the FRN may differ from those underlying 

beta and theta oscillations. Beta and theta oscillations have been suggested to reflect 

valence-specific communication signals in the need for memory consolidation or 

cognitive control, respectively.  

Taken together, the results of all three studies indicate a contribution of the 

striatum/ACC to delayed feedback processing, which may suggest a cooperation of 

declarative and non-declarative systems during delayed feedback learning.  
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Zusammenfassung 

Lernen aus Feedback ermöglicht Verhaltensanpassung. Handlungen mit 

vorteilhaften Folgen werden in der Zukunft öfter ausgeübt, während Handlungen, die 

zu unvorteilhaften oder aversiven Folgen führen, vermieden werden. Tierforschung zu 

Feedbacklernen hat gezeigt, dass die Feuerrate von Dopamin (DA)-Neuronen im 

Mittelhirn mit starken Ausschlägen auf belohnungsvorhersagende Stimuli reagieren, 

während die Feuerrate abfällt, wenn eine erwartete Belohnung ausgelassen wird. 

Somit kodiert die DA-Aktivität einen Vorhersagefehler. Bei Menschen projizieren 

DA-Neurone vom Mittelhirn in das Striatum und den anterior-zingulären Cortex (engl. 

anterior-cingulate cortex, ACC), welche beide eine Rolle bei Feedbackverarbeitung 

spielen. Allerdings hat eine vorhergehende bildgebende Studie gezeigt, dass der 

Hippokampus (engl. hippocampus, HC) aktiv wird, wenn ein Feedback verarbeitet 

wird, das zeitlich verzögert (nach 7 s) auf eine Handlung folgt. Dieser Fund assoziiert 

den HC mit der Verarbeitung von verzögertem Feedback, obwohl er normalerweise 

deklarativem Gedächtnis zugeschrieben wird. Gleichermaßen waren Patienten, die 

unter der Parkinson Krankheit (engl. Parkinson’s disease, PD) leiden, die durch eine 

starke Verarmung striatalen DAs charakterisiert ist, beim Lernen aus unverzögertem 

Feedback beeinträchtigt, aber nicht beim Lernen aus verzögertem Feedback, 

möglicherweise, weil sie ihren intakten HC benutzten. Des Weiteren hat eine Studie 

zu Ereignis-korrelierten Potentialen (engl. event-related potential, ERP) 

herausgefunden, dass sich die Aktivität im Striatum/ACC mit zunehmendem 

zeitlichen Abstand zwischen einer Handlung und dem entsprechenden Feedback 

verringert.  

 Es ist noch nicht klar, ob das Striatum bzw. der ACC und der HC Teile zweier 

konkurrierender Systeme sind und Feedback abhängig vom Erscheinungszeitpunkt 

entweder in dem einem oder dem anderen verarbeitet wird oder, ob diese Strukturen 

in einer kooperativen Weise miteinander interagieren. In einer Reihe aus drei Studien 

untersuchte die vorliegende Dissertation Einflüsse von Feedbackverzögerung auf die 

neuro-kognitiven Grundlagen der Feedbackverarbeitung, indem Effekte, die für 
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unverzögertes Feedbacklernen etabliert sind, zwischen verzögertem (1 s) und 

unverzögertem (7 s) Feedbacklernen verglichen wurden. 

 Zuvor wurde gezeigt, dass PD-Patienten anders als gesunde Kontrollprobanden 

besser aus negativem als aus positivem Feedback lernen, was auf ihren striatalen DA-

Mangel zurückgeführt wurde. Die Studie 1 verglich diesen Lern-Bias zwischen zwei 

Gruppen von Patienten (und deren Kontrollen), die aus unverzögertem 

beziehungsweise verzögertem Feedback lernten. Der Erscheinungszeitpunkt des 

Feedbacks hatte allerdings keinen Einfluss auf die Tendenz der Patienten, besser aus 

negativem Feedback zu lernen, was darauf hindeutet, dass striatale DA-Verarmung 

sowohl einen Einfluss auf das Lernen aus unverzögertem, als auch aus verzögertem 

Feedback hatte. Dies wiederum suggeriert einen striatalen Beitrag zur Verarbeitung 

von verzögertem Feedback.  

 Die Feedback-bezogene Negativität (engl. feedback-related negativity, FRN) ist 

eine ERP-Komponente, die vermutlich DA-bezogene Aktivität im Striatum/ACC 

widerspiegelt. Vorhergehende Forschung zeigte, dass die FRN Amplitude für 

unerwartetes Feedback verglichen mit erwartetem Feedback erhöht ist, was einen 

Erwartungsfehler widerspiegelt. Die Studie 2 verglich diesen FRN-Erwartungseffekt 

zwischen unverzögertem und verzögertem Feedback, wobei größere FRN Amplituden 

für unerwartetes als für erwartetes Feedback sowohl beim Lernen aus unverzögertem 

als auch beim Lernen aus verzögertem Feedback gefunden wurde. Wie auch Studie 1 

suggeriert dieser Fund einen Beitrag des Striatums/ACCs zu die Verarbeitung 

verzögerten Feedbacks. 

  Es wurde zuvor gezeigt, dass der Selbstbezug eines Feedbacks ebenfalls die 

Aktivität im striatum/ACC moduliert, wobei die Aktivität beim Lernen aus Feedback 

für beobachtete gegenüber selbst-generierten Handlungen verringert war. Die Studie 

3 untersuchte den kombinierten Einfluss des Feedbackselbstbezugs und der 

Feedbackverzögerung auf die FRN, sowie auf Beta- und Thetaoszillationen. Die FRN 

wurde durch den Selbstbezug des Feedbacks und dessen Verzögerung beeinflusst, 

wobei ein kombinierter Einfluss nur für Feedback für selbst-generierte Handlungen 

gefunden wurde. Die Beta- und Thetapower wurden durch den Feedback-

Erscheinungszeitpunkt beeinflusst, während nur der Feedbackselbstbezug die Power 
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im Thetaband modulierte. Diese Ergebnisse deuten darauf hin, dass sich die 

Mechanismen, die der FRN zugrunde liegen, von denen unterscheiden, die Beta- und 

Thetaoszillationen unterliegen. Zu Beta- und Thetaoszillationen wurde vorgeschlagen, 

dass sie valenzspezifische Kommunikationssigle widerspiegeln, wenn 

Gedächtniskonsolidierung beziehungsweise kognitive Kontrolle notwendig ist.  

Zusammengefasst deuten alle drei Studien auf einen Beitrag des Striatums/ACCs 

zur Verarbeitung verzögerten Feedbacks hin, was eine Kooperation des deklarativen 

und des non-deklarativen Systems beim Lernen aus verzögertem Feedbacks 

suggeriert.  
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1 Introduction 

As resources are limited, living organisms need to act in a way that maximises 

desired outcomes with the least possible effort. Thus, organisms have to learn how to 

optimise their behaviour, which can be achieved by interactions with the environment 

and adapting behaviour accordingly. This implies that living organisms have to learn 

from their actions’ outcomes. Regardless of whether an outcome is favourable or 

unfavourable, living organisms are able to use it as feedback and learn from it. 

Although many interactions with the environment cause immediate consequences, in 

the modern complex environment of human beings some actions may also result in 

temporally delayed consequences. Still, humans are able to learn from outcomes that 

follow their actions after several seconds and adapt their behaviour accordingly. 

However, recent research detected differences in the neuronal activation patterns when 

learning had to be achieved from feedback provided after a temporal delay (after 7 s) 

compared to feedback provided immediately (after 1 s; Foerde, Race, Verfaellie, & 

Shohamy, 2013; Foerde & Shohamy, 2011a). 
The present dissertation further explores effects of a temporal delay between an 

action and the consequential outcome on neuronal mechanisms underlying feedback 

learning in humans. Behavioural performance and psychophysiological correlates 

were assessed during feedback learning tasks that included conditions with immediate 

and delayed feedback. The first section of the introduction section explains the general 

concept of feedback learning and summarises the current state of research on how a 

temporal gap between an action and the resulting outcome may influence learning. The 

next section provides information on how previous research investigated the neuronal 

underpinnings of feedback learning. Special attention is given to behavioural 

investigations of patients suffering from Parkinson’s Disease (PD) and to the 

acquisition and interpretation of electrophysiological data during feedback learning.  
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1.1 Theoretical definition of feedback learning and underlying mechanisms 

The ability to learn from feedback comprises the ability to associate a consequence 

with a previous action or event. Early experimental investigations of learning revealed 

that a behaviour can be linked to a stimulus through associative learning (Pavlov, 1927; 

Pavlov & Gantt, 1928). It was found that dogs learned to associate stimuli with each 

other that had been repeatedly presented together and to react to both in a comparable 

manner. In detail, an unconditioned stimulus (US) such as food resulted in an 

unconditioned response (UR), in this case, salivation. If the US was repeatedly 

presented together with a neutral stimulus such as acoustic signal, the neutral stimulus 

became a conditioned stimulus (CS). The CS that did previously not cause a reaction, 

resulted in a conditioned response (CR) after the dogs learned to associate the CS (the 

acoustic signal) to the US (the food; Pavlov, 1927; Pavlov & Gantt, 1928). In this first 

classical conditioning paradigm, repeated presentation of two paired unrelated stimuli 

led to the association of these stimuli.  

Another important associative learning mechanism involves the consequences of a 

behaviour. In operant conditioning actions leading to beneficial outcomes are more 

frequently repeated in the future, while actions leading to unsatisfying results will be 

performed less frequently (Skinner, 1938; Thorndike, 1927). In detail, living 

organisms experience their actions’ consequences when interacting with the 

environment. The consequential information can be used by the organism to learn 

about the environment, to apply the gained knowledge in future interactions with it, 

and eventually to adapt its behaviour with respect to a desired goal. In his experimental 

investigations, Thorndike (1898) provided empirical evidence for this effect. He 

observed cats that tried to escape from a puzzle box to receive a reward. To escape this 

box the cats needed to show a specific behaviour or sequence of actions. Thorndike 

found that the entrapped cats first tried out several behaviours. If a behaviour resulted 

in a satisfactory reward, it was remembered and shown sooner in following trials, 

while other behaviours were discarded. Thorndike (1927) termed this process of 

behavioural adaption based on learning from past consequences law of effect.  

Skinner (1938) extended Thorndike’s findings inventing the operant conditioning 

chamber in which animals, e.g., rats or pigeons were thought to show a certain simple 
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behaviour that led to a reward or, in some experimental designs, to a punishment. In 

contrast to Thorndike (1927), Skinner (1938) primarily measured the behaviour’s 

frequency and investigated changes in behavioural response rates depending on its 

outcome. Skinner (1938) found that behaviours that lead to rewarding outcomes were 

conducted more frequently, while unrewarded behaviours decreased in frequency. 

Necessary prerequisites of this reinforcement based learning are a desired outcome or 

a goal, exploration, and a well-defined rule that reliably relates the reward to the 

previous action.  

Trying out different actions and receiving feedback enables an organism to map 

outcomes to previous actions and eventually to generate an internal model about the 

environment. This internal model is then used to predict the outcomes of future actions, 

i.e., to generate an internal forward model (Sutton & Barto, 1998). Any consequence 

of an action is evaluated based on this internal forward model by comparing the 

actually received to the predicted outcome. New behaviours are adopted depending on 

this evaluation so that actions leading to a predicted outcome will strengthen the 

prediction and be executed more frequently. Conversely, actions that do not lead to a 

predicted outcome will weaken the prediction and be executed less likely. Given that 

organisms always strive for beneficial outcomes, both types of behavioural adaptations 

will maximise the desired outcome in future interactions with the environment (Sutton 

& Barto, 1998).  

If feedback learning is defined by behavioural adaptation based on the evaluation 

of an action’s outcome, the internal model of the environment is of particular 

importance, as it generates a specific prediction about the outcome. The more accurate 

this prediction is, the more optimised is the behaviour (Sutton & Barto, 1998). 

Consequently, feedback learning only takes place when a behaviour is not yet 

optimised and behaviour and predictions still have to be adapted. In this case, the 

critical point that facilitates learning is when a prediction about an action’s outcome is 

violated, i.e., when a prediction error occurs. When a prediction error is detected, the 

previous prediction has to be updated and behaviour is adapted (Rescorla & Wagner, 

1972).  
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In summary, feedback learning can be understood as updating of an internal 

forward model about action-outcome contingencies based on the deviation of the 

expected from the actual outcome. To update existing predictions, an actions’ actual 

outcome needs to be monitored in order to detect deviations from the prediction 

(Ullsperger, Danielmeier, & Jocham, 2014).  

  

1.2 Neural mechanisms of feedback processing and learning 

Thorndike (1898) measured the time a cat needed to escape the puzzle box in each 

trial. The resulting learning curves provided insight into the cats’ learning progress as 

they adapted their behaviour and consequentially needed less time for their escape with 

each trial of the experiment. Aside from learning curves, other behavioural measures 

such as post-error slowing or post-error accuracy improvement indicate error-detection 

and imply that feedback learning is underlying the observed behavioural adjustments 

(e.g., Danielmeier & Ullsperger, 2011; Forster & Cho, 2014; King, Korb, von Cramon, 

& Ullsperger, 2010; Steinhauser, Maier, & Steinhauser, 2017). However, such 

behavioural measures cannot directly inform about the neuronal underpinnings of 

post-error adjustments (Ullsperger et al., 2014). In search of the neuronal mechanisms 

underlying feedback learning, invasive and neurochemistry research suggested that 

dopamine (DA) plays a crucial role in processing and learning from reward (Wise, 

2008). 

Already in the late 1970s, Wise, Spindler, deWit, and Gerberg (1978) introduced 

the idea that DA release in the brain would have a hedonistic effect on animals. 

Although they rejected this hypothesis (Wise et al., 1978), reward processing and 

learning have been associated with DA in subsequent research. A more detailed view 

on the DA system during learning was provided by Schultz (1997) and Schultz, Dayan, 

and Montague (1997), who investigated DA neuron spiking rates in the monkey 

substantia nigra (SN) and ventral tegmental area (VTA). In these studies, monkeys 

received a reward after a reward-predicting cue. When the monkeys observed the 

unconditioned cue and the following reward during the first few trials, DA neuron 

firing remained at a baseline level when the cue was shown, but increased when the 

reward was provided. This is in line with the notion of a hedonistic effect of DA during 
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reward consumption (Wise et al., 1978). However, after some experience with the task, 

the monkeys learned the association between the cue and the following reward so that 

the cue became a CS predicting the reward. In later trials, firing rates of DA neurons 

already increased after cue presentation and dropped to a baseline level when the 

reward itself was presented. Accordingly, the DA neuron firing burst propagated back 

in time from the reward to the predictive cue (Schultz, 1997, 1998; Schultz et al., 

1997). This finding contradicted the hedonism theory, which only related DA to the 

satisfactory effect of reward consumption (Wise et al., 1978), instead associating DA 

with the expectation of reward (for review, see Schultz, 2002).  

Importantly, when a reward was omitted although the predictive cue had been 

presented, DA neuron firing rates dropped below baseline at the time when the reward 

would have been presented. As the outcome in these trials was worse than expected, 

this dip in DA neuron firing rates coded a negative reward prediction error. Likewise, 

the DA neuron firing burst after reward presentation during the first trials reflected a 

positive prediction error, as no reward was expected before learning the predictive 

quality of the CS (Schultz, 1997, 1998; Schultz et al., 1997; for review, see Schultz, 

2002).  

In summary, midbrain DA neurons in the monkey brain seem to code a prediction 

error signal if an outcome deviates from expectation. More recent work showed that 

this also holds true in the human brain. Single nigro-striatal DA neuron firing patterns 

recorded during deep-brain stimulator implantation in PD patients coded prediction 

error signals for unexpected rewards (Zaghloul et al., 2009). Additional animal studies 

directly linked DA prediction error signals to reward learning, showing that DA neuron 

activity after reward presentation decreased as soon as learning was established 

because learning necessarily improves the correctness of predictions (Schultz, 

Apicella, & Ljungberg, 1993).  

Another line of research suggested a critical influence of the habenula on the DA 

neurons’ predictions and thus error signals (e.g., Bromberg-Martin, Matsumoto, Hong, 

& Hikosaka, 2010; Hong, Jhou, Smith, Saleem, & Hikosaka, 2011; Matsumoto & 

Hikosaka, 2007, 2009). Matsumoto and Hikosaka (2007, 2009) found that neurons in 

the rat lateral habenula become more active when negative prediction errors occur and 
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less active during positive prediction errors. Electrical stimulation of the habenula was 

shown to inhibit DA neuron activation in the VTA and the SN (see also Christoph, 

Leonzio, & Wilcox, 1986; Ji & Shepard, 2007). In view of this complementary 

activation pattern, Matsumoto and Hikosaka (2007, 2009) proposed that the habenula 

may act as a permissive system for midbrain DA neurons. In line with this, evidence 

for lateral habenular activation during negative prediction errors in humans was 

provided in a functional magnetic resonance imaging (fMRI) study (Salas, Baldwin, 

de Biasi, & Montague, 2010). However, the habenula and the midbrain DA neurons 

may not compete but cooperate with each other. Tian and Uchida (2015) argued that 

both the habenula and the midbrain DA neurons seem to underlie prediction errors 

signals. They found that the DA neurons’ normal inhibitory response was impaired for 

negative prediction errors when the lateral habenula was lesioned in rats performing a 

classical conditioning paradigm. The effect of habenula lesions was less evident for 

positive prediction errors, as DA neuron activation was still affected by reward 

expectation. The authors concluded that the habenula plays a critical but not exclusive 

role in prediction error coding and thus rejected the idea that prediction error signals 

are only relayed from the habenula to midbrain DA neurons.  

DA neurons in the midbrain are most densely located in the VTA and the SN pars 

compacta (Moore & Bloom, 1978; Smith & Kieval, 2000). Midbrain DA neurons 

project from the SN pars compacta to the nucleus caudatus and the putamen in the 

dorsal part of the striatum, and from the VTA to the nucleus accumbens (NAcc) in the 

ventral striatum and the prefrontal cortex (PFC) including the anterior cingulate cortex 

(ACC; Bédard, Larochelle, Parent, & Poirier, 1969; Gerfen, 1992; Haber & Fudge, 

1997; Joel & Weiner, 2000; Lavoie, Smith, & Parent, 1989; Lynd-Balta & Haber, 

1994; S. M. Williams & Goldman-Rakic, 1998; for review, see Kandel et al., 2000). 

In addition, midbrain DA neurons from the VTA also project to the hippocampus (HC; 

Gasbarri, Sulli, & Packard, 1997; Kandel et al., 2000). Consistently, reward-related 

activation and also prediction error signals have been reported in the striatum 

(O'Doherty, 2004; O'Doherty et al., 2004; Pagnoni, Zink, Montague, & Berns, 2002) 

but also in the ACC (Hayden, Heilbronner, Pearson, & Platt, 2011; Jahn, Nee, 

Alexander, & Brown, 2014), as well as in the HC (Foerde & Shohamy, 2011a; Gasbarri 
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et al., 1997). Other studies generally associated the striatum with reward processing 

and motivation (Cardinal, Parkinson, Hall, & Everitt, 2002) and stimulus-reward and 

stimulus-action-reward associations (O'Doherty et al., 2004), with probably 

dissociable roles of the ventral and dorsal parts.  

As midbrain DA signals conveyed to the striatum seem to be particularly involved 

in associating outcomes to stimuli or to actions, neurological disorders such as PD are 

of particular interest for reward learning research in humans. PD is defined by depleted 

levels of DA in the SN, which affects the basal ganglia and causes motoric and 

cognitive impairments including dysfunctional executive controls and learning (see 

below). Studies comparing PD patients with healthy controls can thus yield important 

insights into the neuronal underpinnings of learning as well as the functionality of 

striatal DA in humans. Furthermore, in severe cases of PD, patients are treated with a 

deep-brain stimulator that is implanted in the brain, enabling single neuron recording 

during the surgery (e.g., Zaghloul et al., 2009).   

 

1.2.1 Parkinson’s Disease 

PD is a slowly progressing degenerative disorder of the central nervous system. It 

is a sub-category of extrapyramidal and movement disorders as it mainly affects the 

motor system (World Health Organisation, 1992). The pathognomonic symptoms of 

PD are akinesia, rigidity, tremor, and postural instability, but cognitive or affective 

symptoms may also occur, e.g., executive function impairments, dementia, anxiety, 

and depression (Hacke, 2010). In Northern-American and Middle-European countries, 

PD is the most prevalent neurological disease, with 0.1-0.2% of the population 

suffering from it. Men are affected more frequently than women and age fosters the 

disease so that the prevalence increases to 1.8% in the population older than 65 years 

(Hacke, 2010). Despite cognitive and affective impairments, PD is prominently 

classified in five stages based on the severity of the motor symptoms as assessed with 

the Hoehn and Yahr scale (Hoehn & Yahr, 1967). A multidimensional assessment of 

the disease is provided by the Unified Parkinson’s Disease Rating Scale (UPDRS), 

which quantifies the symptom severity for a wide range of cognitive and motor 

functions (UPDRS; Goetz et al., 2008). 
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On a neuronal level, PD is characterised by a degeneration of DA neurons in the 

SN pars compacta that affects the basal ganglia (Parent, Levesque, & Parent, 2001). 

More specifically, depleted nigro-striatal DA projections cause less excitation of 

striatal D1 receptors, while D2 receptors are less inhibited by DA. Most neuronal 

projections within the basal ganglia are transmitted via the inhibitory synapses using 

gamma-amino butyric acid (GABA; Parent et al., 2001) as neurotransmitter. However, 

due to the differential effect of nigro-striatal DA projections on D1 and D2 receptors, 

neural projections are conveyed further to the cortex via two pathways – a direct 

excitatory and an indirect inhibitory pathway. On the direct pathway, DA binds to D1 

receptors and thereby excites striatal GABA projections to the Globus pallidus (GP) 

internum and the SN pars reticulata. As a result, the thalamus is disinhibited as it 

receives less GABAergic input from the GP internum/SN pars reticulata and projects 

excitatory Glutamate (GLU) to the (motor) cortex. The loop closes with the thalamus 

in turn projecting an excitatory signal back to the striatum. On the indirect pathway, 

however, DA projections from the SN pars compacta inhibit the striatum via D2 

receptors, which causes the striatum to project less GABA to the GP externum. As the 

GP externum becomes more active, it projects more GABA to the subthalamic nucleus, 

resulting in less GLUergic excitation of the GP internum/SN pars reticulata (Parent et 

al., 2001). Accordingly, the thalamus is disinhibited, which again excites the motor 

cortex. In summary, DA activity excites the motor cortex via both the direct and the 

indirect pathways, while a lack of DA inhibits it (Gerfen, 1992; Hernandez-Lopez, 

Bargas, Surmeier, Reyes, & Galarraga, 1997).  

When DA levels in the SN pars compacta are generally diminished such as in PD, 

the excitatory D1 receptors in the striatum become less active, resulting in decreased 

disinhibition of the thalamus via the GP internum/SN pars reticulata and ultimately 

decreased motor cortex excitation. On the indirect pathway, the striatum becomes less 

inhibited by D2 receptors when DA projections are lacking so that the subthalamic 

nucleus is less disinhibited via the GP externum. This causes stronger GLU projections 

to the GP internum/SN pars reticulata, which projects more GABA to the thalamus, 

again resulting in reduced excitatory projection to the (motor) cortex (Parent, 2001).  
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This pathologic physiological process is widely considered as the most important 

cause of the prevalent motor symptoms in PD (Hacke, 2010). Furthermore, based on a 

large number of studies relating DA to learning in monkeys (see above) and neuronal 

plasticity (Otmakhova & Lisman, 1998; Shohamy & Adcock, 2010), depleted levels 

of DA most probably also cause the cognitive deficits observable in PD (Dubois & 

Pillon, 1996; Sawamoto et al., 2008). For this dissertation, learning impairments in PD 

are of particular interest, as the prominent DA depletion in PD may help to gain 

specific insights into mechanisms underlying learning from feedback.  

 

1.2.1.1 Learning in Parkinson’s Disease 

Studies on learning in PD reported that altered striatal function in PD negatively 

affects the patients’ performance in reinforcement and category learning tasks 

(Knowlton, Mangels, & Squire, 1996; Shohamy et al., 2004). Shohamy et al. (2004) 

linked performance impairments in PD patients explicitly to learning from feedback 

for actions as opposed to learning from associated stimuli. PD patients seemed to be 

particularly impaired in the ability to acquire new knowledge and to adapt behaviour 

accordingly, but not in the ability to transfer knowledge to a new task (Myers et al., 

2003). The decreased DA levels in the basal ganglia are thought to be the main cause 

of these cognitive impairments in PD, which suggests that DA replacement medication 

would improve PD patients’ performance in learning tasks. However, PD specific DA 

replacement medication, was shown to improve some PD specific cognitive 

symptoms, while it worsened the performance in other tasks (e.g., Cools, Altamirano, 

& D'Esposito, 2006; Cools, Barker, Sahakian, & Robbins, 2001; Graef et al., 2010; 

Mehta, Swainson, Ogilvie, Sahakian, & Robbins, 2001; Swainson et al., 2000). For 

example, Cools et al. (2001) showed that DA replacement medication improved PD 

patients’ ability to switch between naming either digits or letters in stimuli with mixed 

letters and digits. In contrast, DA medication impaired the patients’ reversal learning 

performance. Participants in the same study had to choose one out of two stimuli 

according to its colour to receive reward. After a few trials, the stimulus-outcome 

contingency was changed so that the participants were thought to choose the other 

colour to receive reward. PD patients performed significantly worse compared to 
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controls only when they were ON medication. This raised the question how exactly 

nigro-striatal DA affects learning. 

Frank, Seeberger, and O’Reilly (2004) addressed this question by comparing PD 

patients’ performance in a reinforcement learning task ON versus OFF medication. 

The authors uncovered a dissociation of the PD patients’ learning performance in 

relation to the feedback’s valence and, at the same time, in relation to their DA 

medication status. PD patients ON their usual DA replacement medication performed 

better when choosing stimuli that were previously rewarded than when avoiding 

stimuli that were previously associated with negative feedback. The opposite pattern 

was found for patients OFF medication. They avoided stimuli that were previously 

associated with negative feedback more reliably than they chose previously rewarded 

stimuli (Frank et al., 2004).  

This behavioural pattern was also confirmed by computational models simulating 

DA projections via the two separate pathways within the basal ganglia (Frank, 2005; 

O'Reilly & Frank, 2006). In line with the findings on reinforcement learning in animals 

outlined above (Schultz, 1997, 1998, 2002; Schultz et al., 1997), positive feedback 

caused phasic DA neuron activity bursts in the basal ganglia, while omitted reward or 

negative feedback caused phasic DA neuron activity dips (Frank, 2005; O'Reilly & 

Frank, 2006). According to these computational models, phasic DA activity bursts in 

the SN facilitate a Go-signal on the direct pathway via the D1 receptors that activate 

the frontal cortex, while they impede the D2 receptors on the indirect pathway. Vice 

versa, phasic DA dips send a NoGo-signal to the frontal cortex as the indirect pathway 

becomes facilitated and the direct pathway becomes less activated (Frank, 2005; 

O'Reilly & Frank, 2006). If the tonic level of DA is diminished such as in PD patients 

OFF medication, phasic DA bursts following positive feedback seem to sufficiently 

reach the necessary threshold to reach a net activation of the frontal cortex. 

Conversely, due to diminished DA levels, DA dips after negative feedback more easily 

affect the indirect pathway so that the frontal cortex is inhibited more easily (Frank, 

2005; Frank, Seeberger, & O'Reilly, 2004). This model explains differential 

performances in feedback learning tasks in unmedicated PD patients (Frank et al., 

2004; Kobza et al., 2012). DA replacement medication, however, creates a tonically 
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increased DA level that facilitates Go-pathway activation by binding to D1 receptors, 

while also inhibiting the NoGo-pathway by binding on D2 receptors (Frank et al., 

2004; Hacke, 2010). Thus, additional phasic DA bursts during positive feedback seem 

to over-activate the Go-pathway while the NoGo-pathway is strongly inhibited, which 

in the end may lead to a stronger representation of positive events (Cools et al., 2001; 

Cools, Barker, Sahakian, & Robbins, 2003; Frank, Samanta, Moustafa, & Sherman, 

2007; Frank et al., 2004; Kobza et al., 2012).   

Computational models not only provided a convincing explanation for differential 

behavioural findings in PD patients ON and OFF medication, but crucially 

strengthened the link between feedback learning and DA neuron activation. Yet, as 

outlined above, learning from feedback implies the ability to monitor and evaluate 

actions and the consequential outcomes in relation to the predicted outcomes. Thus, a 

feedback based learning system most probably implies an additional, more complex 

module that critically monitors prediction errors, evaluates them, and eventually sends 

back a teaching signal for future interactions (Barto, 1995). Extending behavioural 

studies and computational models by providing a direct measure of neuronal activity 

in the cortex (Luck, 2014), electrophysiological research has substantially helped to 

understand neuronal mechanisms that possibly underlie feedback learning.  

 

1.2.2 Electrophysiological correlates of feedback learning 

Starting in the early 1990s, electrophysiological research on learning focussed on 

the error-related negativity (ERN) or error negativity (Ne; Falkenstein, Hohnsbein, 

Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993) and the 

feedback-related negativity (FRN) or feedback-ERN (fERN; Gehring & Willoughby, 

2002; Miltner, Braun, & Coles, 1997). The ERN is a response-locked medio-frontal 

event-related potential (ERP) component in the electroencephalography (EEG) that is 

defined by a negative deflection peaking about 50 to 100 ms after erroneous responses 

(Falkenstein et al., 1991; Gehring et al., 1993). It is most pronounced at fronto-central 

electrode sites and has been associated with error monitoring and error detection 

(Gehring et al., 1993). When a similar negative deflection was later also found after 

correct responses, the correct-response negativity (CRN; Falkenstein, Hoormann, 
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Christ, & Hohnsbein, 2000; Vidal, Hasbroucq, Grapperon, & Bonnet, 2000), it was 

suggested that the ERN is more likely to reflect response conflict rather error detection 

(Carter et al., 1998). In accordance with the reinforcement learning theory (RL-theory, 

see below), the ERN is supposably generated in the ACC, where it is elicited by error-

commission (Holroyd & Coles, 2002; Holroyd, Dien, & Coles, 1998; Nieuwenhuis, 

Ridderinkhof, Blom, Band, & Kok, 2001). In line with this, Falkenstein et al. (2001) 

found diminished ERN amplitudes in PD patients compared to healthy controls during 

error-commission in different learning tasks. As PD is mostly caused by dysfunctions 

in the basal ganglia, the authors concluded that the ACC, the most probable generator 

of the ERN, interacts with the basal ganglia during error detection and action 

monitoring. The ERN may thus reflect a monitoring system that is able to detect errors 

based on a representation of the desired ideal action according to an internal forward 

model (Gehring et al., 1993). Corroborating this conclusion, the ERN was not observed 

when a correct action could not clearly be discriminated from an erroneous action and 

increased in amplitude with higher stimulus validity (Eppinger, Kray, Mock, & 

Mecklinger, 2008). Accordingly, the ERN is affected by the ability to build up 

expectations on correctness of an action being most pronounced during clearly 

identifiable erroneous actions (Eppinger et al., 2008).  

Importantly, the ERN is a response-locked ERP component, while the FRN, 

sometimes also called fERN, is an ERP component defined by a relative negativity 

that is elicited by feedback following an action (Gehring & Willoughby, 2002; Miltner 

et al., 1997). It emerges between 200 and 300 ms post-feedback (Gehring & 

Willoughby, 2002; Miltner et al., 1997) and is quite consistently reported to be 

increased for negative compared to positive feedback (e.g., Hajcak, Moser, Holroyd, 

& Simons, 2006; Hajcak, Moser, Yeung, & Simons, 2005; Holroyd & Coles, 2002; 

Holroyd, Hajcak, & Larsen, 2006; Holroyd & Krigolson, 2007; Simons, 2010; Walsh 

& Anderson, 2012; but see Ferdinand, Mecklinger, Kray, & Gehring, 2012; Oliveira, 

McDonald, & Goodman, 2007). For this reason, the FRN was frequently analysed as 

a difference wave between ERPs for positive and negative feedback (e.g., Bellebaum 

& Colosio, 2014; Hajcak, Moser, Holroyd, & Simons, 2007; Holroyd & Coles, 2002; 
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Holroyd & Krigolson, 2007; Holroyd, Krigolson, Baker, Lee, & Gibson, 2009; 

Peterburs, Kobza, & Bellebaum, 2016; Walsh & Anderson, 2012).  

Aside from feedback valence, several studies reported a modulation of the FRN by 

expectancy, usually with increased FRN amplitudes for unexpected compared to 

expected feedback (Bellebaum & Daum, 2008; Ferdinand et al., 2012; Hajcak et al., 

2007; Holroyd & Coles, 2002; Holroyd & Krigolson, 2007; Holroyd et al., 2009; 

Oliveira et al., 2007; Yasuda, Sato, Miyawaki, Kumano, & Kuboki, 2004). Along these 

lines, the FRN reflects a prediction error (Holroyd et al., 2009).  

These findings strongly corroborate the RL-theory (Holroyd & Coles, 2002). This 

theory extends the actor-critic model (Barto, 1995) by linking the FRN to DA 

projections from the midbrain to the striatum and the ACC. The RL-theory proposes 

that midbrain DA neurons project prediction error signals for feedback that is better or 

worse than expected to the basal ganglia, including the striatum, and to the PFC, 

including the ACC. The striatum evaluates the prediction error signal, revises 

expectancy accordingly, and forwards a teaching signal to improve future predictions 

(Nieuwenhuis et al., 2002). The ACC acts as control system, using the information 

provided by the DA projections to adapt behaviour and thus improve performance. 

Together, the dopaminergic error signal conveyed from the mesencephalic DA 

neurons disinhibits the ACC, where it elicits the FRN when events are worse than 

expected (Holroyd & Coles, 2002).  

Indeed, both reward-related and prediction error related activations have been 

found in the ACC (Amiez, Joseph, & Procyk, 2005, 2006; Jocham, Klein, & 

Ullsperger, 2011; Orr & Hester, 2012; Sallet et al., 2007; Ullsperger et al., 2014). In 

humans, the basal ganglia and the PFC including the ACC have generally been 

associated with executive functions such as planning and decision making (Cummings, 

1993; Damasio, 1994; Posner & DiGirolamo, 1997). FMRI studies in human 

participants reported ACC activity related to reward, reward expectation, and 

prediction errors (Jocham, Neumann, Klein, Danielmeier, & Ullsperger, 2009; 

Knutson & Cooper, 2005; Knutson, Fong, Adams, Varner, & Hommer, 2001). 

Furthermore, a study with human participants undergoing planned surgical 

cingulotomy revealed crucial involvement of the dorsal ACC in adaptive behaviour 
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(Z. M. Williams, Bush, Rauch, Cosgrove, & Eskandar, 2004). Corroborating evidence 

was found in post-error performance updating, which was impaired in patients with a 

partly lesioned ACC (di Pellegrino, Ciaramelli, & Ladavas, 2007).  

The RL-theory linked DA projections targeting the ACC to electrophysiological 

correlates of feedback processing integrating it to the so-called reward system. This 

link is further supported by studies localising the FRN in the ACC (e.g., Bellebaum & 

Daum, 2008; Gehring & Willoughby, 2002; Gruendler, Ullsperger, & Huster, 2011; 

Miltner et al., 1997; Zhou, Yu, & Zhou, 2010; for review, see Walsh & Anderson, 

2012) as well as some other studies that ascribed the FRN to striatal activation 

(Carlson, Foti, Mujica-Parodi, Harmon-Jones, & Hajcak, 2011; Foti, Weinberg, 

Bernat, & Proudfit, 2015; Foti, Weinberg, Dien, & Hajcak, 2011). Becker, Nitsch, 

Miltner, and Straube (2014) linked striatal activation to reward-related ERPs in the 

FRN time window by merging simultaneously acquired EEG and fMRI data. In this 

study, trial-to-trial variance in amplitude explained changes in the blood-oxygen-level-

dependent (BOLD) signal in the ventral striatum and the ACC. These findings link the 

FRN to dopaminergic activation of the medial-frontal reward system, qualifying it as 

a useful indicator of neuronal processing in the DA system during the course of 

learning. 

Corroborating evidence is provided by effects of learning on the FRN that resemble 

learning-related changes of the prediction error. With increasing knowledge of 

stimulus-outcome associations, the FRN decreases (Eppinger et al., 2008; Holroyd & 

Coles, 2002; Walsh & Anderson, 2012). The FRN decreases in amplitude the more 

accurate a prediction about an action-outcome association is and thus, the more 

expected a feedback is (Holroyd & Coles, 2002; Walsh & Anderson, 2012). As 

prediction errors necessarily become less pronounced and eventually vanish with 

increasing prediction accuracy and feedback expectation (Schultz et al., 1993), 

leaning-related decreases in FRN amplitude resemble prediction error signals. 

Considering the RL-theory, the FRN decreases with learning as the feedback becomes 

less and less useful for a possible update of the internal forward model and behavioural 

adaptation (Holroyd & Coles, 2002). In contrast, the response-locked ERN increases 

in amplitude with prediction accuracy (Eppinger et al., 2008). The internal forward 
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model becomes more accurate and more easily detects actions deviating from the 

intended behaviour that is predicted to cause the best outcome. Accordingly, the FRN 

and the ERN are inversely related during the course of learning (Holroyd & Coles, 

2002; Walsh & Anderson, 2012). This effect was, however, found to mostly result 

from positive, not negative events and feedback, respectively (Eppinger et al., 2008).  

The RL-theory mostly links negative prediction errors to the FRN, supposedly 

reflecting disinhibited ACC neuron activity when events are worse than expected 

(Gehring & Willoughby, 2002; Holroyd & Coles, 2002). However, more recent 

research has highlighted that the ERP signal in the FRN time-window is actually 

mostly affected by positive events causing a positive deflection (Holroyd, Pakzad-

Vaezi, & Krigolson, 2008; Proudfit, 2015). Strong midbrain DA neuron firing bursts 

for positive prediction errors motivated this idea (Schultz, 2002). Supportive evidence 

was for example provided by Kujawa, Smith, Luhmann, and Hajcak (2013), who 

compared ERPs for monetary gains or losses to a neutral outcome, respectively, in two 

separate conditions. They found that feedback-locked ERPs differed only between 

gains and the neutral feedback, but not between losses and neutral feedback. Proudfit 

(2015) argued that the negative deflection following negative feedback could thus be 

seen as a baseline, while positive feedback causes a positive deflection warranting the 

label reward positivity (RewP). According to this argumentation, the signal becomes 

more negative for negative feedback due to the missing positive deflection (Proudfit, 

2015). Carlson et al. (2011) reported positive correlations between feedback-locked 

ERPs for monetary wins and greater neuronal activation for wins compared to losses 

in the ventral striatum and the medial PFC. Likewise, Becker et al. (2014) linked 

increasing BOLD responses in the ventral striatum and the ACC to increasing positive 

amplitudes after positive feedback in the FRN time-window. Foti et al. (2015) analysed 

the temporal frequency of the FRN and showed that it may be composed of two 

independent neuronal processes relying on different frequencies, a loss-related process 

reflected in theta oscillatory activity and a gain-related process reflected in the delta-

band activity. Also, these activation patterns were source localised in distinct neuronal 

structures, suggesting that the ACC processes negative feedback, while gain-related 

activity was associated with the basal ganglia. Accordingly, two different neuronal 
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processes might underlie ERPs for positive and negative feedback that may overlap in 

the FRN time-window. To emphasise the stronger effect of positive feedback on the 

feedback-locked ERPs, Holroyd et al. (2008) and Proudfit (2015) proposed to refer to 

the positive deflection following positive feedback as RewP. 

The idea to interpret the negative deflection after negative feedback as a baseline 

ERP component that generally follows after feedback, was inspired by the close 

similarity of the FRN to the N200 (J. R. Folstein & Van Petten, 2008; Holroyd, 2004). 

The N200 is a fronto-central negativity that peaks after about 250 ms in response to 

infrequent, task-relevant events (i.e., targets; Holroyd, 2004; Towey, Rist, Hakerem, 

Ruchkin, & Sutton, 1980), with increasing amplitude for decreasing target stimulus 

frequency (Duncan-Johnson & Donchin, 1977; Holroyd, Nieuwenhuis, Yeung, & 

Cohen, 2003), and for feedback that does not carry information about a previous 

behaviour (Baker & Holroyd, 2009). Indeed, for years, the FRN was regarded as a 

special case of the N200. Holroyd et al., (2008), however, suggested that the N200 

may rather reflect a baseline response to feedback that is suppressed by feedback that 

is better than expected. According to the RL-theory, DA neurons project prediction 

error signals to the ACC, to which the RL-theory ascribes a cognitive motor control 

function (Holroyd & Coles, 2002). Along these lines, ACC activity is affected by 

response conflict (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Botvinick, 

Cohen, & Carter, 2004), which is reflected in the N200 (Yeung, Botvinick, & Cohen, 

2004). Considering this, Holroyd et al. (2008) proposed that phasic DA neuron bursts 

signalling unexpectedly positive outcomes would inhibit conflict-related ACC activity 

and thereby reduce the N200 (Holroyd, 2004). During learning, the ACC would use 

mesencephalaic DA prediction error signals as a teaching signal to adapt behaviour so 

that response conflict is minimal (Holroyd et al., 2008). Along these lines, 

uninformative feedback elicits a baseline negative deflection, the N200 (Holroyd, 

2004), while positive feedback causes a positive deflection, the RewP, that possibly 

reflects ACC activity when no conflict has to be processed (Holroyd et al., 2008; 

Proudfit, 2015).  

Irrespective of whether one refers to the FRN as a negative deflection after 

unfavourable feedback or to the RewP as a positive deflection after favourable 
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feedback, feedback-locked EPRs are usually measured as the difference between 

positive and negative feedback. Accordingly, many studies quantified the FRN based 

on a positive-negative difference wave (e.g., Hajcak et al., 2007; Holroyd et al., 2009; 

Proudfit, 2015; Walsh & Anderson, 2012). However, the appropriateness of this 

approach is still being discussed (Proudfit, 2015). Difference waves can be logically 

interpreted only if the original waveforms differ in merely one parameter (e.g., Luck, 

2014). As outlined above, opinions differ on whether the FRN/RewP is mainly caused 

by signal variations after negative or positive feedback (Proudfit, 2015). Furthermore, 

the influence of feedback expectancy is still being debated (Ferdinand et al., 2012; see 

below).  

  Although the RL-theory has dominated theoretical considerations concerning the 

link between ACC activity (and thus the FRN) on the one hand and learning on the 

other hand, another approach also demands attention. The predicted response-outcome 

(PRO) model links the FRN to an expectancy coding system rather than to a reward 

learning system (Alexander & Brown, 2010, 2011; Ferdinand, Mecklinger, Kray, & 

Gehring, 2012). This approach states that neurons in the ACC learn to predict actions 

outcomes and become active when an outcome is expected. Activity in the ACC is 

thought to increase until the predicted outcome actually occurs, which inhibits the 

prediction signal. When a predicted outcome is omitted, however, activity in the ACC 

becomes maximal. Accordingly, the PRO-model suggests ACC activation irrespective 

of the outcome’s valence or value, which distinguishes it from the RL-theory. It 

proposes that ACC activity is affected by unexpected events, a notion that has been 

supported by some studies (Ferdinand et al., 2012; Hayden et al., 2011; Matsumoto, 

Matsumoto, Abe, & Tanaka, 2007; Wessel, Danielmeier, Morton, & Ullsperger, 

2012).  

In line with this, recent studies linked the FRN to a salience prediction error (SPE) 

that is independent of valence. According to this line of research, SPEs elicit an FRN 

because rewards are more salient compared to punishments. Indeed, evidence for this 

idea was provided by studies that compared feedback-locked ERPs for expected versus 

unexpected feedback (Soder & Potts, 2017; Talmi, Atkinson, & El-Deredy, 2013). 

Importantly, both studies investigated expectancy effects on the FRN in two separate 
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trial conditions for positive and negative feedback, respectively. Both studies found 

evidence that both positive (unexpected punishment omission) as well as negative 

prediction errors (unexpected reward omission) are reflected by the FRN. This made 

them suggest that the FRN reflects an SPE rather than a reward prediction error. 

Recently, however, Mulligan and Hajcak (2017) criticised these studies for having 

used passive paradigms to induce reward expectancy. As the participants did not make 

choices themselves, the feedback was not relevant for behavioural adaptation and may 

thus not maximise the FRN (Holroyd et al., 2009; Walsh & Anderson, 2012). When 

participants were tested in a gambling task with equally distributed reward-punishment 

probabilities, evidence was again found for the FRN’s sensitivity to feedback valence 

rather than for feedback salience (Mulligan & Hajcak, 2017). 

 Taken together, electrophysiological correlates of feedback-based learning have 

been a fruitful measure for investigating the neuronal underpinnings and mechanisms 

involved in learning. However, while actor-critic based models emphasise the 

involvement of dopaminergic error signals, other models do not build on mesocortical 

and mesolimbic DA projections. Also, it is still a matter of debate, to what extent 

striatal and ACC activity, as reflected in the FRN, is affected by an outcome’s valence, 

expectancy, and value. To further elucidate the neuronal mechanisms and 

communications underlying feedback learning, EEG data has not only been 

investigated regarding ERPs but also regarding oscillatory activity. For example, two 

separate processes that are both reflected by the FRN can be distinguished by separate 

frequency bands, i.e., theta band activation for negative and delta band activation for 

positive feedback (Foti et al., 2015). Like the FRN, this oscillatory activity was source 

localised in the ACC. Oscillatory activity during feedback processing may thus 

provide additional information about the neuronal underpinnings of feedback learning.  

 

1.2.3 Oscillations in the EEG  

Over the past decades, another approach to analyse EEG data has received 

increasing attention in the field of electrophysiological research. Cohen (2011b) 

argued that ERP analyses miss out on important information that may reliably reflect 

neuronal activation. According to this line of reasoning, the temporal dynamic of 
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oscillatory electrophysiological activity, i.e., the deflections per time, indicate 

neuronal activation and thus hold important information such as neuronal 

communication that cannot be assessed by ERPs (Cohen, 2011b). Furthermore, 

electrophysiological oscillations may directly reflect neuronal activation as they are 

known to reflect rhythmic fluctuations in excitability (Luck, 2014; X. J. Wang, 2010). 

Also, oscillatory activity was suggested to underlie synaptic plasticity, which fortifies 

its relevance for research on learning (Cohen, Wilmes, & Vijver, 2011). Just like ERPs, 

electrophysiological oscillations have been associated with different underlying 

neuronal processes depending on their temporal dynamics and spatial distribution with 

widely varying frequencies (Buzsaki & Draguhn, 2004). Cognitive processes have 

been found to be mostly reflected by oscillations in the delta (1-4 Hz), theta (4-8 Hz), 

beta (20-30 Hz), and gamma (30-80 Hz) frequency bands (e.g., Buzsaki & Draguhn, 

2004; Cavanagh, Figueroa, Cohen, & Frank, 2012; Cavanagh & Frank, 2014; Cohen, 

2011a, 2014; Cohen et al., 2011; HajiHosseini & Holroyd, 2015; HajiHosseini, 

Rodriguez-Fornells, & Marco-Pallares, 2012; Marco-Pallares, Cucurell, et al., 2008; 

Mas-Herrero, Ripolles, HajiHosseini, Rodriguez-Fornells, & Marco-Pallares, 2015).  

 Furthermore, electrophysiological oscillations carry multidimensional information 

that may provide insights in neuronal involvement and inter- and intra-structural 

communication. More precisely, the above mentioned frequency is just one dimension 

reflecting the speed of variations in neuronal excitability. Oscillations also carry 

information about the energy of a frequency at a certain time (i.e., power) and its onset 

(measured by its position along the sine wave, i.e., phase; Cohen, 2011b).  

 Another important point is that distinct oscillatory dynamics can specifically 

differentiate separate processes. Cohen (2011b) pointed out that several cognitive 

processes were spatially linked to the same structure. For instance, as also partly 

described above, the PFC including the ACC has been associated with monitoring of 

actions, conflicts, feedback processing, and behavioural adaptation. These processes 

may be distinguishable by the frequency of electrophysiological oscillations (Cohen, 

2011b; Cohen et al., 2011). It seems plausible that the ACC integrates several 

functional networks that are not distinguishable by their location, but possibly by 

oscillatory dynamics (see also Cohen et al., 2011).  



INTRODUCTION 

 
25 

 

In the field of reward processing, research focussed on two frequency bands, the 

theta and the beta frequencies. While oscillations in the theta band were linked to 

processing of negative feedback (Janssen, Poljac, & Bekkering, 2016) and prediction 

error coding (Cavanagh, Figueroa, et al., 2012; Cavanagh & Frank, 2014; Cavanagh, 

Frank, Klein, & Allen, 2010; Cohen, 2011a), beta and low gamma oscillations were 

reported for reward processing (Cohen et al., 2011; Marco-Pallares, Cucurell, et al., 

2008; Mas-Herrero et al., 2015). Both frequency bands were attributed to medial 

frontal networks (Cohen et al., 2011; Foti et al., 2015) and may thus, similar to medial-

frontal ERPs such as the FRN/RewP (Foti et al., 2015), reflect striatal phasic and 

decreased prefrontal tonic DA activity (Marco-Pallares, Cucurell, et al., 2008). In line 

with this, theta oscillations are thought to underlie several ERP components such as 

the FRN, the N2, but also the ERN (Cavanagh & Frank, 2014; Cavanagh, Zambrano-

Vazquez, & Allen, 2012).  

However, despite its functional similarity to ERP components elicited by negative 

feedback (Cavanagh & Frank, 2014), it is still unclear whether theta band activation 

reflects prediction error coding or rather the allocation of attentional resources driven 

by a need for cognitive control (Cavanagh & Frank, 2014). On the one hand, theta 

power has been shown to increase in generally uncertain environments and for 

prediction errors without a differential effect of their valence (Cavanagh, Figueroa, et 

al., 2012), but on the other hand also for errors (Cohen, 2011a), negative feedback 

(Cohen et al., 2011), and conflict (Cohen, 2014). Thus, an increase in theta power has 

been proposed to reflect a rather general top-down alarm signal in the need of cognitive 

control when events are generally “bad” or unexpected (Cavanagh & Frank, 2014; 

Cavanagh et al., 2010; Cavanagh & Shackman, 2015; Cohen, 2014). In line with this, 

increased theta frequency oscillations have been suggested to reflect increased 

structural connectivity of the ACC and pre-frontal cortical structures during error 

processing (Cohen, 2011a). In contrast, feedback-related ERPs have been associated 

with positive and negative feedback (see above) and possibly DA neuron projections 

to the striatum and ACC (Holroyd & Coles, 2002). Accordingly, theta band 

osciallatory power may provide persuing information on the processing and the 

transmission of prediction error and error signals across structures involved in action 



INTRODUCTION 

 
26 

 

monitoring and feedback based learning (Cavanagh & Frank, 2014; Cohen et al., 

2011).  

Similarly, but more specifically, beta band oscillations have been hypothesised to 

reflect a DA-driven motivational signal that drives mnemonic consolidation of 

beneficial events such as rewards (Feingold, 2011; Marco-Pallares, Munte, & 

Rodriguez-Fornells, 2015; Mas-Herrero et al., 2015). In a study that combined fMRI 

and EEG, Mas-Herrero et al. (2015) found reward-related mid-frontal beta power 

increases associated with fronto-striatal-hippocampal activation. In line with findings 

in non-human primates suggesting a frontal-hippocampal synchronisation during 

reward processing reflected by beta oscillations (Feingold, 2011), Mas-Herrero et al. 

(2015) proposed that beta oscillations may signal rewards to the HC which becomes 

active when an action leading to a rewarding outcome has to be memorised. This 

reward signal probably relies on DA projections (Gasbarri et al., 1997; Mas-Herrero 

et al., 2015) in line with studies relating beta-gamma oscillations to striatal phasic and 

decreased prefrontal tonic DA activity (Marco-Pallares, Cucurell, et al., 2008).  

 

1.3 Conditions with altered feedback learning mechanisms  

Over the course of the past two decades, research on feedback-based learning has 

excessively investigated different manipulations affecting the underlying neuronal 

mechanisms. As outlined above, debates are still not completely abated on whether 

expectancy or feedback valence are the primary force affecting feedback-related ERPs 

during learning. Furthermore, feedback processing may depend on a variety of factors, 

such as the feedback’s usability for performance optimisation (Holroyd et al., 2009) 

or personal preferences (Chib, Rangel, Shimojo, & O'Doherty, 2009). Although direct 

evidence for a manipulation of the FRN by subjective reward value is as yet lacking, 

increased activation in the ventral-medial PFC was reported for preferred compared to 

non-preferred rewards in human participants (Chib et al., 2009). Reward magnitude, 

on the other hand, has been shown to affect the FRN (Bellebaum, Polezzi, & Daum, 

2010; Polezzi, Sartori, Rumiati, Vidotto, & Daum, 2010; Wu & Zhou, 2009), in line 

with a study that found monkey DA neurons in the SN and the VTA to code reward-
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magnitudes, with the strongest firing rate increases for the most preferred rewards and 

decreased firing for the least preferred rewards (Lak, Stauffer, & Schultz, 2014).  

It becomes increasingly evident that neuronal mechanisms in the medial-frontal 

reward system valuate feedback, link it to previous actions, and update plans for future 

actions accordingly. However, learning cannot only be achieved by trial-and-error, but 

also by observing feedback that refers to another person’s actions. This raises the 

question whether the same neuronal mechanisms are involved, given that feedback for 

an observed action does not necessarily link to one’s own previous behaviour that 

needs to be adapted in order to improve performance. 

 

1.3.1 Observational learning 

 One line of research addressed this question by investigating neuronal mechanisms 

of learning from feedback that refers to observed as opposed to own actions. From an 

evolutionary perspective, it makes sense for living organisms to learn from feedback 

that conspecifics receive for their actions instead of trying several (potentially risky) 

actions themselves. This way, organisms can associate a beneficial outcome with an 

action without taking the risks to receive a negative, possibly harmful outcome. 

Accordingly, feedback that is not related to one’s own action still seems to be used to 

update an internal forward model that predicts action outcomes. The ACC has been 

proposed to receive meso-cortical DA prediction error signals during learning that 

train it to select the best possible action relative to a desired goal (Holroyd & Coles, 

2002). Thus, the ACC might be less involved when the feedback is self-relevant, but 

no action has to be selected. 

 This idea was investigated by Bellebaum, Kobza, Thiele, and Daum (2010). The 

authors found diminished FRN amplitudes in participants learning from observed 

feedback as compared to participants who actively performed the same learning task. 

Participants were asked to learn from the feedback in both groups and learning 

performance was assessed in test trials in which no feedback was provided and in 

which both observational and active learners had to actively select response options. 

Thus, feedback was also relevant for the observationally learning participants as they 

needed to update their reward predictions, although they did not need to adapt 
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behaviour on a trial-by-trial basis. Interestingly, although the FRN amplitudes for 

negative feedback differed, learning performance was comparable between groups. 

This result strengthens the view that the ACC is important for behavioural adaptation, 

as particularly negative feedback induced a larger electrophysiological response when 

feedback could be used to adapt the participants’ own behaviour. For positive 

feedback, ACC activation is supposedly less involved because it does not imply the 

necessity to change behaviour. In line with these findings, a later study found that 

actively performing participants learned as well from feedback as participants that 

observed others’ performances, while the FRN was reduced for observational 

compared to active learning (Bellebaum & Colosio, 2014). This study also reported 

that the FRN elicited by feedback for the participants’ own actions decreased when the 

action-outcome contingencies were successfully learned. Interestingly, the FRN for 

feedback that referred to somebody else’s feedback was not modulated by learning, 

indicating that the neuronal mechanisms underlying feedback processing may differ 

between active and observational learning. 

 In line with these results, an imaging study reported greater prediction error related 

activity in the dorsal striatum when human participants learned stimulus-action-

outcome associations than when they learned stimulus-outcome associations. The 

ventral striatum, however, was found to become active for prediction error coding 

during both association learning types (O'Doherty et al., 2004). Bellebaum, Jokisch, 

Gizewski, Forsting, and Daum (2012) later suggested that especially the anterior 

caudate nucleus in the dorsal striatum might be involved in linking evaluative feedback 

to own actions. In their study, participants again learned from either feedback for own 

or observed actions, with comparable performance in both conditions. Prediction error 

related activation differed between groups with greater activation in the dorsal striatum 

in participants that received feedback for their own actions compared to participants 

receiving feedback for an observed action. Resembling O'Doherty et al.’s (2004) 

findings, this group-difference was not found in the ventral striatum. As the striatum 

has also been associated with the FRN (Carlson et al., 2011; Foti et al., 2015; Foti et 

al., 2011), less striatal activity may also contribute to a diminished FRN amplitude 

when feedback refers to observed actions.  
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 Additional insight was provided by a clinical study investigating active and 

observational feedback learning in PD patients (Kobza et al., 2012). As described 

above, PD patients OFF medication learn better from negative than positive feedback, 

which has been related to depleted striatal DA levels (Frank, 2005; Frank et al., 2007; 

Frank et al., 2004). Kobza et al. (2012) compared this learning bias in patients 

performing an active learning task to patients performing an observational learning 

task. They found that the negative learning bias in PD patients during active learning 

changed into a rather positive bias, which was comparable to the healthy controls’ 

performance. This result indicates diminished striatal involvement when feedback 

does not refer to own actions and thus corroborates its supposed role in linking 

outcomes to own actions.  

 

1.3.2 Learning from delayed feedback 

To this date, most studies investigating the neuronal mechanisms of feedback 

learning used tasks, in which the feedback followed the related action immediately, 

i.e., after less than a second. However, in everyday life, feedback for an action may be 

temporally delayed by several seconds. Therefore, some studies investigated the 

impact of feedback timing on the involved underlying mechanisms during learning 

finding hints for dissociable neural systems involved in the processing of immediate 

and delayed feedback (e.g., Foerde et al., 2013; Foerde & Shohamy, 2011a). Apart 

from the dorsal striatum’s role in ascribing outcomes to self-generated actions, a 

different line of research hinted at possible striatal involvement in linking outcomes 

only to recent actions (Foerde & Shohamy, 2011a). In contrast, possibly the medial-

temporal lobe (MTL) including the HC may bind elements across time. Investigating 

this hypothesis, a study using fMRI reported increased activation in the HC when 

feedback was processed that followed an action only after several seconds, while 

activity in the dorsal striatum was diminished (Foerde & Shohamy, 2011a). In a later 

study, the same researchers reported a double-dissociation in patients with brain 

damage, with PD patients being impaired in learning from immediate but not delayed 

feedback, while amnestic patients with suspected hippocampal lesions suffered from 

impaired learning from delayed, but not immediate feedback (Foerde et al., 2013). The 
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authors suggested that neuronal prediction error coding may shift from the basal 

ganglia to the HC if there is a temporal gap between an action and the related outcome. 

Interestingly, however, the authors also found comparable prediction error related 

activation in the ventral striatum during immediate and delayed feedback learning, 

while the dorsal part was exclusively active during immediate feedback (Foerde & 

Shohamy, 2011a).  

In line with the notion of a shift away from striatal prediction error coding with 

increasing feedback delay, striatal/ACC activation as reflected in the FRN was found 

to be diminished for delayed compared to immediate feedback processing (Opitz, 

Ferdinand, & Mecklinger, 2011; Peterburs et al., 2016; Weinberg, Luhmann, Bress, & 

Hajcak, 2012). In contrast, J. Wang, Chen, Lei, and Li (2014) failed to find differences 

in the FRN caused by feedback timing. As the tasks and procedures strongly differed 

between these ERP studies and the FRN is sensitive to a variety of factors such as 

subjective reward relevance (see above), it is difficult to draw firm conclusions from 

these studies. Furthermore, the FRN was not explicitly linked to prediction error 

signals in any of these studies so that a direct influence of feedback timing on the 

neuronal mechanisms underlying reward predictions cannot be inferred. 

The effect of a temporal delay has also been investigated at the level of single 

midbrain DA neuron firing patterns in non-human primates (e.g., Fiorillo, Newsome, 

& Schultz, 2008; Kobayashi & Schultz, 2008). It was found that the subjective value 

of reward predicting stimuli decreased with increasing temporal delay of the following 

reward, although the stimuli did not differ in their reward-prediction probability. More 

precisely, strong DA neuron firing bursts were observed for stimuli that were rewarded 

2 s after the stimulus. These neuron firing bursts diminished the more time passed 

between the predictive stimulus and the actual reward (Fiorillo et al., 2008; Kobayashi 

& Schultz, 2008). DA neuron activity has previously been found to code a CS’ value 

reflecting the associated reward’s magnitude (Tobler, Fiorillo, & Schultz, 2005). In 

line with diminishing DA neuron firing rates, the monkeys preferred stimuli that 

predicted small rewards after a small temporal delay over larger rewards after a longer 

delay (Kobayashi & Schultz, 2008). Similar behavioural preferences have been 

reported in pigeons and humans (Rodriguez & Logue, 1988), which was explained by 
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an economic model stating that a reward’s value is discounted the longer it is 

temporally delayed because more time may hold an increased risk of not receiving the 

reward at all (Samuelson, 1937). 

However, the opposite DA neuron firing pattern was observed following the 

reward itself, when the monkeys engaged in a subsequent task that did not require an 

active choice. When the reward was received, DA neuron firing activity increased with 

increasing temporal delay, although the reward’s value did not differ (Kobayashi & 

Schultz, 2008). The authors suggested that a temporal prediction error may cause 

increased DA neuron firing as the reward’s timing may become increasingly 

unexpected with increasing temporal delay. In line with this, the dopaminergic 

response was highest for rewards that were both temporally unpredictable and delayed 

(Fiorillo et al., 2008). As an alternative explanation Kobayashi and Schultz (2008) 

suggested diminished associative strength for rewards that follow the predictive 

stimulus after a temporal delay. Animals may struggle to associate stimuli to delayed 

rewards (Holland, 1980), which is why temporally delayed stimuli may cause a 

positive prediction error, as the predictive stimulus did not build up a reward 

expectation in the animal.  

The findings by Kobayashi and Schultz (2008) are of particular interest as they 

seem contradictive to findings in humans regarding feedback-locked ERPs (see above) 

and hemodynamic responses in fMRI (Foerde & Shohamy, 2011a). Accordingly, 

midbrain DA neuron activation patterns seem to differ between humans and non-

human primates due to the monkeys’ inability to link rewards to stimuli that lay back 

in time. Another possibility is that midbrain DA neurons also become more active for 

delayed compared to immediate rewards, but project more to the HC than the striatum. 

Evidence for this proposal is provided by hippocampal activation when delayed 

feedback is processed (Foerde & Shohamy, 2011a), and by midbrain DA projections 

to the HC (Gasbarri et al., 1997).  

As immediate and delayed feedback seem to be processed differently in any case, 

further research on the influence of feedback timing on reward processing would 

advance the understanding of feedback based learning in general. On one hand, if 

delayed feedback is not processed in the ACC/striatum but only in the HC, the FRN 
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should not be manipulated by prediction errors from delayed feedback. This could be 

assumed due to findings of increasingly diminished FRN amplitudes with an 

increasing temporal gap between action and the consequential outcome (e.g., Peterburs 

et al., 2016). Moreover, theoretical considerations are in line with the idea of an 

anatomical separation of immediate and delayed feedback, given that declarative 

(including reward-based) and non-declarative learning have been associated with the 

basal ganglia and the HC, respectively (Delgado, 2007; Sherry & Schacter, 1987). On 

the other hand, the HC might be involved in processing of delayed feedback as 

mesolimbic DA projections affect neuronal plasticity and episodic memory formation 

(Otmakhova & Lisman, 1998; Shohamy & Adcock, 2010) in the HC. The HC might 

thus enable participants to link outcomes, processed by DA neurons, to actions across 

a temporal gap. However, a direct comparison of medial-frontal prediction error 

correlates during learning from immediate versus delayed feedback remains elusive.  

 

1.4 Open questions and research objectives  

Findings from behavioural, EEG and fMRI studies show that a temporal delay of 

7 s significantly changes neuronal activity patterns during feedback learning in 

probabilistic feedback learning tasks (Foerde et al., 2013; Foerde & Shohamy, 2011a; 

Peterburs et al., 2016). These findings suggest that striatal/ACC activity is decreased 

during delayed feedback processing (Foerde et al., 2013; Foerde & Shohamy, 2011a; 

Peterburs et al., 2016; Weinberg et al., 2012), which other structures like the HC may 

compensate for (Foerde & Shohamy, 2011a). In line with this, the distinct non-

declarative and declarative memory systems have been associated to the basal ganglia 

and the HC, respectively (Ashby & O'Brien, 2005; Delgado & Dickerson, 2012; Sherry 

& Schacter, 1987; Squire, 1992; Squire & Zola, 1996). This motivates the idea of a 

dichotomous involvement of either the medial-frontal reward system or the HC during 

immediate and delayed feedback, respectively (see Foerde et al., 2013; Foerde & 

Shohamy, 2011a). 

However, this strict dichotomy between the striatum/ACC and HC does not seem 

to hold as empirical evidence suggested hippocampal involvement in learning from 

probabilistic feedback that was provided after 2 s (Dickerson, Li, & Delgado, 2011) to 
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4 s (Dickerson & Delgado, 2015). Also, midbrain DA projections from the VTA to the 

HC (Gasbarri et al., 1997; Kandel et al., 2000) where they modulate neuronal plasticity 

and adaptive memory (Otmakhova & Lisman, 1998; Shohamy & Adcock, 2010) 

support the idea of a hippocampal contribution to feedback learning. Vice versa, 

striatal involvement was reported in declarative memory tasks (Scimeca & Badre, 

2012) and when delayed feedback was processed (Foerde & Shohamy, 2011a). 

This dissertation aims to investigate neuronal processes involved in feedback 

processing when the outcome of an action is delayed by several seconds, with 

particular focus on similarities and differences between immediate and delayed 

feedback processing in the context of probabilistic feedback learning. Importantly, in 

order to reliably relate behavioural and electrophysiological effects to striatal and ACC 

activity, the studies in this dissertation explore modulations that are well established 

for immediate feedback processing in the context of delayed feedback.  

Study 1 investigates the notion of a selective impairment of PD patients in learning 

from immediate but not delayed feedback. This notion is based on striatal DA 

involvement in immediate but not delayed feedback processing (Foerde et al., 2013). 

If PD patients do not make use of their striatum during delayed feedback processing, 

the negative learning bias that is usually observed when PD patients learn from 

immediate feedback (Frank et al., 2004) should be absent when feedback follows the 

actions only after 7 s.  

Study 2 aims at finding prediction error signals during delayed feedback 

processing. Striatal activity coding prediction errors may reflect an FRN when an 

action is followed by unexpected feedback (Carlson et al., 2011; Foti et al., 2011). 

Similar to Study 1, if the striatum is not involved in delayed feedback processing, 

expectancy effects should not be observable in the FRN when feedback is delayed.  

Study 3 extends Study 2 by investigating the effect of feedback timing and 

feedback agency (defined as feedback referring to one’s own versus somebody else’s 

action) on the FRN and theta and beta band power. Frequency analyses may provide 

additional information about mechanisms underlying feedback processing that may 

differ from what the FRN analysis elucidates (Cohen, 2011b). The additional factor of 
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agency may furthermore hint at differential striatal involvement (Bellebaum et al., 

2012; Kobza & Bellebaum, 2015; Kobza, Thoma, Daum, & Bellebaum, 2011).  
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2 Study 1: Effects of feedback delay on learning from positive 

and negative feedback in patients with Parkinson’s disease 

off medication 

Study 1 investigated whether patients suffering from PD in the OFF medication 

state learned differentially from positive versus negative immediate and delayed 

feedback in a probabilistic feedback learning task. PD is characterised by DA neuron 

depletion resulting in a negative learning bias for learning from immediate feedback. 

If the striatum is less involved in learning from delayed feedback due to a potentially 

reduced role of the DA system, this negative learning bias in PD patients should not 

be evident during delayed feedback processing. This study was published in 

Neuropsychologia, 117, 46-54 (Weismüller et al., 2018). 

 

2.1 Introduction 

Altered DA levels differentially affect learning from positive and negative 

feedback (Frank et al., 2007; Frank et al., 2004). More specifically, a tonically depleted 

nigro-striatal DA level such as in PD causes a tendency to learn better from negative 

relative to positive feedback, while DA replacement medication causes the opposite 

pattern (Frank et al., 2007; Frank et al., 2004). Foerde et al. (2013) and Foerde and 

Shohamy (2011a) found that PD patients OFF medication performed comparable to 

controls in a task that did not differentiate between learning from positive and negative 

feedback. The authors suggested that delayed feedback processing seems to rely less 

on the DA system or at least the striatum, but rather appears to recruit the MTL, more 

specifically the HC. Kobza et al. (2012) reported comparable learning performance for 

positive and negative feedback in PD patients OFF medication for feedback that did 

not refer to the patient’s own actions and may thus recruit mechanisms other than the 

striatal DA system. Given that PD patients OFF medication seem to make use of their 

intact HC when feedback follows an action after a temporal delay, it could be reasoned 

that delayed feedback alleviates the negative learning bias. 
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 However, a recent ERP study by our group suggests a contribution of the 

striatum/ACC to delayed feedback processing as the FRN was still observable for 

delayed feedback (Peterburs et al., 2016). This is in line with literature proposing a 

cooperation of the striatum and the HC during reward learning (Dickerson & Delgado, 

2015; Dickerson et al., 2011). Consequently, the present study investigated whether 

feedback delay reduces the negative learning bias in PD patients. 

 

2.2 Method 

2.2.1 Study participants  

Two groups of PD patients (Hoehn and Yahr scale 1-3; Hoehn & Yahr, 1967), and 

two groups of healthy age-matched control participants were recruited for this study. 

One group of 12 PD patients and their 24 healthy controls learned from immediate 

feedback, while the other group of 12 patients and their 24 healthy controls were 

engaged in learning from delayed feedback. For the participants learning from 

immediate feedback, we reused data from 10 PD patients and 20 controls that had been 

acquired for a previous study by our group (Kobza et al., 2012). All patients attended 

testing in the OFF medication state. Patients were asked to withdraw from their 

Parkinson specific medication at least 12 hours prior to testing, which was conducted 

in the morning. Symptom severity was assessed with the UPDRS (Goetz, LeWitt, & 

Weidenman, 2003), which also helped to verify the medication status. UPDRS scores 

were higher for the OFF than the ON state for patients from both groups, those learning 

from immediate and delayed feedback. Patients were screened for the possibly 

occurring comorbidities dementia and depression using the Mini Mental Status Test 

(MMST; M. F. Folstein, Folstein, & McHugh, 1975) and the Beck Depression 

Inventory (BDI; Hautzinger, Keller, & Kühner, 2006), respectively. All patients scored 

in the normal range for both measures and thus entered the analysis. 
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2.2.2 Experimental task and procedure 

All participants completed a modified version of the probabilistic feedback 

learning task introduced by Frank et al. (2004), which consisted of three phases. First, 

in the learning phase, participants were asked to choose one of two previously 

unknown symbols in each trial to receive a binary feedback (“richtig”, the German 

word for correct, or “falsch”, the German word for incorrect). In this phase, three 

different symbol pairs (symbols A vs. B, C vs. D, and E vs. F) were randomly presented 

20 times. Unknown to the participants, a certain reward-probability was locked to each 

symbols so that the choice of symbol A resulted in positive feedback in 80% of the 

trials and symbol B in 20% of the trials. Likewise, reward probabilities for the other 

pairs were 70% versus 30% (C/D pair) and 60% versus 40% (E/F pair).  

The learning phase was followed by a test phase, which was identical to the 

learning phase with the exception that the participants did not receive feedback. The 

test phase was used to acquire each participant’s response accuracy in the absence of 

trial-to-trial feedback. If the participants chose the symbol with the higher reward 

probability in 80% of the A/B pairs and 70% of the C/D pairs, the third task phase, the 

transfer phase, was initiated. If the participants failed to reach one of these criteria, 

another learning phase was initiated, followed by another test phase. Learning and test 

phases were repeated up to four times. After the fifth learning phase, the transfer phase 

was initiated even if participants had not reached the learning criterion. 

In the transfer phase, the symbols A and B were paired with all symbols they had 

not been paired with previously (resulting in the possible combinations A/C, A/D, A/E, 

and A/F and B/C, B/D, B/E, and B/F), and participants were asked to choose one of 

the symbols without receiving feedback. Choices of symbol A indicated that 

participants previously learned from positive feedback during the learning phase, 

while avoidances of symbol B indicated learning from negative feedback. Thus, by 

comparing the number of trials, in which participants chose the A symbol and in which 

they avoided B, it could be inferred whether participants learned better from positive 

feedback or negative feedback (see Bellebaum, Rustemeier, & Daum, 2011; Frank et 

al., 2004; Kobza et al., 2012 for a similar approach).  
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Note that one group of PD patients and their healthy controls received feedback 

immediately (i.e., 500 ms after the chosen symbol had disappeared) during the learning 

phase, while the other PD group and their healthy controls received temporally delayed 

feedback (i.e., 6500 ms after the chosen symbol had disappeared). Test and transfer 

phases did not differ between these groups. 

 

2.2.3 Data analysis 

 In order to investigate general learning performance, the mean number of correct 

choices during the first learning phase was compared between PD patients and 

controls, between feedback timing groups, and between symbol pairs. Another 

measure of performance was obtained by the number of phases participants needed to 

reach a learning criterion of 70% correct choices for the A/B pair during the test phase, 

which was also compared between groups and feedback timings. The number of 

choices of symbol A and avoidances of symbol B in the transfer phase were considered 

as measures for learning from positive and negative feedback, respectively, and were 

thus the dependent variables of main interest. Accordingly, the ratio of choices of A 

versus avoidances of B mirrored the learning bias and was compared between groups 

and feedback timings.  

 

2.3 Results and discussion 

 Results showed that the number of correct responses during the learning phase 

differed neither between PD patients and controls, nor between feedback timings. 

However, participants scored generally higher for pairs with larger relative to lower 

differences in reward probabilities (e.g., A/B vs. E/F). Participants also needed 

comparable numbers of learning phases to reach the learning criterion, regardless of 

feedback timing and of whether or not they suffered from PD. Thus, all participants 

were similarly well able to learn which symbols most probably resulted in reward 

irrespective of the feedback timing and the DA level.   

Feedback timing differentially affected performance in PD patients and healthy 

controls: both groups performed comparably when they learned from delayed 
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feedback, while controls performed better than PD patients when feedback was 

provided immediately. This finding was at least partially in line with previous studies 

(Foerde et al., 2013; Foerde & Shohamy, 2011a), which suggested that a diminished 

striatal DA level, such as in PD patients OFF medication, impaired learning from 

immediate feedback. Along these lines, learning from delayed feedback may depend 

less on the dorsal striatum, and rather on the MTL, so that PD patients’ learning 

performance was not affected when feedback was delayed. 

Replicating earlier results (Frank, 2005; Frank et al., 2004; Kobza et al., 2012), the 

transfer phase results showed differential learning from positive and negative feedback 

in patients and controls: while PD patients avoided symbol B (indicating negative 

feedback learning) more frequently than they chose symbol A (indicating positive 

feedback learning), the opposite pattern emerged in healthy controls. As postulated 

before (Frank, 2005; Frank et al., 2004; Moustafa, Cohen, Sherman, & Frank, 2008; 

Samson, Frank, & Fellous, 2010), this may reflect the differential effect of striatal DA 

on learning from positive and negative feedback.  

However, in the present study, feedback timing did not affect the learning bias 

depending on whether or not a participant suffered from PD. This hampers the before 

mentioned interpretation of less striatal involvement in processing delayed feedback. 

If striatal DA levels affected learning from positive and negative immediate but not 

delayed feedback, feedback timing should have differentially influenced the learning 

bias in PD patients and controls. Accordingly, the current results suggest an effect of 

striatal DA on learning from both immediate and delayed feedback. Additional 

separate comparisons of differential learning between the PD patients and controls for 

each feedback timing corroborated this conclusion. Different learning biases were 

revealed for the two groups in both feedback timing conditions: PD patients who had 

previously received immediate feedback, learned better from negative compared to 

positive feedback during the transfer phase, while the respective controls did not show 

such a learning bias. When receiving delayed feedback, however, PD patients 

performed similarly for positive and negative feedback, while a positive learning bias 

was revealed in the controls. Interestingly, PD patients also learned descriptively better 
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from negative feedback than controls when feedback was previously provided after a 

temporal delay.  

The result pattern for immediate feedback closely resembles previous studies 

(Frank, 2005; Frank et al., 2004; Kobza et al., 2012). Also, the tendency to learn better 

from positive than negative feedback in healthy older adults has been reported before 

in learning from feedback for observed actions (Bellebaum et al., 2011), although this 

was found for delayed feedback for the participants’ own actions here. When 

considering findings by Foerde et al. (2013) and Foerde and Shohamy (2011a), delayed 

feedback processing may rely less on the basal ganglia, but on the HC, which has been 

associated with declarative information processing (Squire, 1992; Squire & Zola, 

1996). The positive bias in the healthy delayed feedback learners is in line with this 

notion due to a rather declarative nature of the positivity effect (Lind, Visentini, 

Mantyla, & Del Missier, 2017; Mather & Carstensen, 2003). Accordingly, a positive 

bias may be considered as the baseline for learning from delayed feedback, with the 

PD patients’ similar performance for learning from positive and negative feedback 

thus representing a deviation from this baseline. This, in turn, suggests that striatal DA 

also affects learning from delayed feedback.  

In line with this, activation in the ventral striatum did not differ between learning 

from immediate and delayed feedback (Foerde & Shohamy, 2011a). Also, recent EEG 

studies suggested that comparable mechanisms underlie immediate and delayed 

feedback processing (Arbel, Hong, Baker, & Holroyd, 2017; Peterburs et al., 2016). 

These studies reported a diminished, but still present FRN during delayed feedback 

processing. Taken together, it is feasible that structures like the HC may cooperate 

with the DA system/striatum during delayed feedback processing (Dickerson & 

Delgado, 2015; Dickerson et al., 2011), possibly with the HC bridging the temporal 

gap between actions and the relative outcomes linked by the DA system.  
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2.4 Conclusion 

In summary, the results suggest a contribution of the striatum/DA system to 

delayed feedback processing, possibly together with other structures. The relative 

tendency in PD patients to learn better from negative compared to positive feedback, 

which has been linked to diminished striatal DA levels, was observed for both 

immediate and delayed feedback. On one hand, normal overall learning performance 

in PD patients indicated that striatal DA seems to be involved in both immediate and 

delayed feedback processing. On the other hand, delayed feedback processing seems 

to rely less on striatal DA as transfer performance was comparable for PD patients and 

controls learning from delayed but not immediate feedback.  
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3 Study 2: Expectancy affects the feedback-related negativity 

(FRN) for delayed feedback in probabilistic learning  

Study 2 investigated electrophysiological differences between expected and 

unexpected positive and negative feedback following choice actions, provided either 

immediately or after a temporal delay. Midbrain DA signals probably code a prediction 

error signal that is projected to the striatum and ACC where it is reflected by the FRN. 

Thus, expectancy effects in the FRN during learning from delayed feedback would 

suggest a contribution of the DA system during delayed feedback learning. This study 

was published in Psychophysiology, 53(11), 1739-1750 (Weismüller & Bellebaum, 

2016). 

 

3.1 Introduction 

The RL-theory (Holroyd & Coles, 2002) associates the FRN (Gehring & 

Willoughby, 2002; Miltner et al., 1997) with dopaminergic prediction error signals 

projected from the midbrain to the striatum and ACC (Ferdinand et al., 2012; Hajcak 

et al., 2007; Holroyd & Coles, 2002; Holroyd & Krigolson, 2007; Oliveira et al., 2007; 

Walsh & Anderson, 2012). In line with the RL-theory, the effect of outcome 

expectancy on the FRN is well established, with increased FRN amplitudes for 

unexpected compared to expected events (Bellebaum & Daum, 2008; Ferdinand et al., 

2012; Hajcak et al., 2007; Holroyd & Krigolson, 2007; Holroyd et al., 2009; Oliveira 

et al., 2007; Yasuda et al., 2004). 

 Feedback timing appears to affect which structures are recruited during feedback 

processing, with the HC becoming involved when an outcome follows an action after 

several seconds delay (Foerde et al., 2013; Foerde & Shohamy, 2011a). However, the 

FRN has only been sparsely investigated when feedback was delayed, with different 

results (Opitz et al., 2011; Peterburs et al., 2016; J. Wang et al., 2014; Weinberg et al., 

2012). Peterburs et al. (2016) demonstrated that the FRN amplitude decreases but does 

not completely vanish with increasing feedback delay (up to 6,500 ms). In line with 

this, the ventral striatum is also active when delayed feedback is processed (Foerde & 
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Shohamy, 2011), and the FRN has been associated with activation in the striatum and 

ACC (Becker et al., 2014; Foti et al., 2011). Thus, for the present study, we 

hypothesised that expectancy would modulate the FRN even when feedback follows 

an action after a temporal delay.  

 

3.2 Method 

3.2.1 Study participants  

Fifty volunteers were randomly assigned to one of two groups. One group learned 

from immediate feedback, while the other group learned from feedback that was 

temporally delayed. All participants were students of the Heinrich-Heine-University 

Düsseldorf, aged between 18 and 38 years, and were rewarded by reimbursement or 

course credit additional to a monetary gain based on their performance during the 

experimental task. 

 

3.2.2 Experimental task and procedure 

In this experiment, participants were asked to choose one of two randomly paired 

symbols in order to receive feedback on a trial-to-trial basis. Six different symbols 

were used overall. Additionally, the participants had to indicate their subjective reward 

probability on a scale (ranging from 0 to 100 %) that was displayed between the 

symbols. Participants were instructed that only their choice of a symbol, not their 

subjective reward probability, would result in monetary reward (+20¢) or punishment 

(-10¢) in each trial. It was also made clear that the aim was to always choose the better 

symbol (i.e., the symbol with the higher reward probability) and thus to maximise total 

monetary gain. Each participant’s intermediate sum score of the monetary gain was 

presented after each phase. The six symbols’ objective reward probabilities (0%, 20%, 

40%, 60%, and 80%), however, were unknown to the participants and had to be learned 

from the feedback the participants received for their choices.  

In total, the task consisted of 500 trials separated into 5 blocks that were separated 

by short breaks. All 10 possible combinations of the six symbols appeared equally 
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often. While participants were engaged in the task, EEG was continuously recorded 

from 32 nose referenced electrodes.  

 

3.2.3 Data analysis 

We assessed learning performance separately for each group and each block by 

averaging correct choices (i.e., choices of symbols with higher reward probability) 

across all trails in each block. As we intended to investigate ERPs in response to 

expected and unexpected positive and negative feedback and since learning is a 

necessary prerequisite for the development of reward expectations, only the data of 

those participants who reached and maintained a 65% accuracy criterion was analysed.  

After standard pre-processing, EEG data was segmented into four conditions 

relative to the combination of the chosen symbol’s objective reward probability and 

the actually received feedback in each trial. If a participant chose a symbol with a 

comparably low objective reward probability, that is,  the 20% or 40% symbol, and 

received positive feedback, this event was considered an unexpected positive 

feedback. A choice of a symbol with a comparably high reward probability (60% and 

80%) that was not rewarded was considered an unexpected negative feedback. 

Likewise, unrewarded choices of symbols with a low probability resulted in expected 

negative feedback, while rewarded choices of symbols with a high probability resulted 

in expected positive feedback. The 0% symbol was not considered for analysis but 

only included in the task so that participants would in some trials have to choose the 

20% symbol as the better of two bad options. The FRN was defined as the maximum 

negative peak in the negative-positive difference wave between 180 and 350 ms post-

feedback at FCz. 

 

3.3 Results and discussion 

 Behavioural data analysis showed that participants from the immediate learning 

and the delayed feedback learning group learned similarly well. Irrespective of 

feedback timing, participants scored higher for later than for earlier blocks, which 

indicates learning progress in both groups. Also, the subjective reward expectancy 
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approached the symbols’ objective reward probabilities in both groups. Hajcak et al. 

(2007) postulated that the participants’ own reward expectation would not necessarily 

reflect the stimuli’s objective reward probability so that different objective reward 

probabilities would possibly not elicit different FRN amplitudes. Therefore, in the 

present study, subjective reward expectancy was assessed for symbols with high versus 

low objective reward probabilities, analogous to ERP analysis. This analysis showed 

that subjective reward expectancy was comparable between feedback timing groups, 

but differed for high and low reward probabilities. It is noteworthy that participants 

overestimated reward probabilities, particularly for symbols with low reward 

probabilities, which can be explained by a general overoptimistic bias in reward 

expectation (Miller & Ross, 1975; Oliveira et al., 2007; Radhakrishnan, Arrow, & 

Sniezek, 1996). Still, subjective reward expectancies were higher for high compared 

to low objective reward probabilities, which verifies the expectancy effect on the FRN.  

The FRN was generally higher in amplitude for unexpected compared to expected 

feedback and for immediate compared to delayed feedback. The first result is in line 

with the RL-theory (Holroyd & Coles, 2002), which associates increased difference 

wave FRN amplitudes for unexpected events with midbrain dopaminergic prediction 

error signals projected to the striatum/ACC (Gehring & Willoughby, 2002; Holroyd et 

al., 2009; Miltner et al., 1997; Oliveira et al., 2007; Walsh & Anderson, 2012).  

The latter finding corroborates results from previous studies using fMRI (Foerde 

& Shohamy, 2011) or EEG (Peterburs et al., 2016) that suggest diminished 

striatal/ACC involvement during processing of feedback that is temporally delayed 

relative to an action. Other EEG studies using different experimental parameters and 

tasks reported controversial results. While Opitz et al. (2011) reported feedback timing 

effects on the FRN when comparing 0 s to 1 s feedback delay, Wang et al. (2014) 

failed to find a difference in the FRN for immediate versus delayed feedback in a 

gambling task. Also using a gambling task, Weinberg et al. (2012) found an FRN for 

immediate, but not delayed feedback. The FRN might be more pronounced in the 

present study, because participants were able to use the feedback in order to learn 

stimulus-outcome associations and adapt their behaviour accordingly. Gambling tasks, 
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however, may not be suited to evoke prediction errors, as error information cannot be 

used for behavioural adaptation (Holroyd et al., 2009).  

Importantly, the difference FRN was increased for unexpected compared to 

expected feedback during both learning from immediate and from delayed feedback. 

In accordance with the RL-theory (Holroyd & Coles, 2002), this indicates striatal/ACC 

activity during delayed feedback processing. At first sight, this contradicts previous 

findings (Foerde et al., 2013; Foerde & Shohamy, 2011a) that propose a functional 

dissociation of the basal ganglia and HC during feedback processing (Myers et al., 

2003; Poldrack & Packard, 2003), with a more pronounced role of the HC when 

feedback is delayed (Foerde et al., 2013). However, Foerde et al. (2013) also report at 

least some striatal activity in the delayed feedback condition, which, together with the 

present findings, suggest striatal/ACC contributions to processing of delayed 

feedback. In line with this, Peterburs et al., (2016) reported a diminished, but not 

absent FRN when feedback is delayed, with decreasing FRN amplitudes for increasing 

time between action and outcome. It is thus conceivable that the striatal/ACC system 

and HC cooperate when feedback after an action is temporally delayed. This idea is in 

line with literature that proposes a cooperation of declarative and non-declarative 

memory systems, which have been associated to the HC and the basal ganglia, 

respectively (Dickerson et al., 2011; Sherry & Schacter, 1987; Squire, 1992; Squire & 

Zola, 1996). 

 As some recent studies argued that the signal in the FRN time window is mainly 

manipulated by positive, not negative feedback (Holroyd et al., 2008; Proudfit, 2015; 

Weinberg, Riesel, & Proudfit, 2014), additional analyses were conducted to 

investigate whether the modulation of the difference wave was driven by positive or 

negative feedback or both. To do so, feedback-locked ERPs following positive and 

negative feedback were analysed around each participant’s individual FRN difference 

wave peak. FRN amplitudes were increased for unexpected compared to expected 

positive feedback, but did not differ between expected and unexpected negative 

feedback, which corroborates previous results (Holroyd, 2004; Holroyd et al., 2008). 

In line with the FRN difference wave amplitudes, this expectancy effect of positive 

feedback was found in the immediate and delayed feedback learning group.  
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3.4 Conclusion 

 Although the FRN was diminished relative to immediate feedback, expectancy 

affected it during delayed feedback learning. The current study thus provides evidence 

for a contribution of the mesolimbic/mesocortical DA system to the processing of 

feedback that follows an action after a temporal delay. 

 



STUDY 3 

 
48 

 

4 Study 3: Effects of feedback delay and agency on feedback-

locked beta and theta power during reinforcement learning 

The neuronal mechanisms seem to differ between processing of feedback that 

refers to a self-generated action and feedback that refers to an observed action. 

Moreover, the impact of feedback timing on learning from observed feedback has not 

yet been clarified. Study 3 investigated the combined influence of feedback timing and 

agency on feedback processing. This study has been submitted to Psychophysiology 

for revision (Weismüller, B., Kullmann, J., Hoenen, M., & Bellebaum, C., 2018). 

 

4.1 Introduction 

 Action-outcome contingencies can not only be learned from own actions, but also 

when observed actions result in an outcome. However, the neuronal underpinnings of 

feedback processing differ between feedback that is relevant for one’s own actions and 

feedback referring to somebody else’s actions (Morelli, Sacchet, & Zaki, 2015). 

Especially the striatum seems to be differentially active during reward for a self-

generated versus an observed action with a selective role of the dorsal part in 

processing of feedback for own actions (Bellebaum et al., 2012; Kobza & Bellebaum, 

2015). Electrophysiological studies support this idea by reporting increased FRN 

amplitudes for feedback referring to own versus observed actions (Bellebaum & 

Colosio, 2014; Bellebaum, Kobza, et al., 2010). Accordingly, diminished striatal DA 

levels in PD patients have been shown to affect learning from feedback for self-

generated actions, but not from feedback for observed actions (i.e., feedback referring 

to another person’s action; Kobza et al., 2012). Together, striatal activity may 

contribute more to active than to observational feedback processing.  

Feedback timing has been shown to affect neuronal activity with a striatal 

contribution to immediate, but not delayed feedback processing, as revealed in an 

fMRI study (Foerde & Shohamy, 2011a). However, recent ERP research found at least 

some medial-frontal activation during delayed feedback processing that was linked to 

striatal/ACC activity (Peterburs et al., 2016; Weismüller & Bellebaum, 2016). In line 
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with this, fMRI data by Foerde & Shohamy (2011) suggests some activation in the 

ventral striatum for delayed feedback processing.  

Recent literature pointed at the benefits time-frequency analysis of EEG data that 

might provide information that extend ERP analyses (Cohen, 2011b). Predominantly 

oscillations in the theta and beta and low gamma frequency have been associated with 

negative and positive feedback processing, respectively (Cohen et al., 2011). Larger 

medial frontal power in the theta band has been reported for negative feedback 

(Janssen et al., 2016) as well as for negative prediction errors (Cavanagh & Frank, 

2014; Cavanagh et al., 2010; Cohen, 2011a; Li, Baker, Warren, & Li, 2016). Because 

medial frontal oscillations in the theta band seem to underlie ERP components that 

have been associated with novelty detection, conflict processing, error detection, 

conflict processing, and error processing, it was suggested to rather reflect a general 

signal communicating the need for cognitive control (Cavanagh & Frank, 2014; 

Cohen, 2014). Positive feedback processing, however, has been associated with 

oscillations in the beta and low gamma range, possibly caused by DA activity in the 

ventral striatum and PFC (Marco-Pallares, Camara, Munte, & Rodriguez-Fornells, 

2008; Marco-Pallares et al., 2015; Mas-Herrero et al., 2015). Furthermore, 

synchronisation in the beta band was suggested to reflect communication across 

distinct structures (Marco-Pallares et al., 2015). In line with studies observing beta 

band oscillations after actions that were associated with rewarding outcomes 

(Feingold, 2011), beta oscillations may reflect a motivational signal, that drives 

mnemonic consolidation of beneficial actions (Marco-Pallares et al., 2015).  

Although both feedback agency (i.e., the feedback’s relevance for one’s own 

action) and feedback timing seem to similarly affect striatal activation, a combined 

influence of feedback timing and agency has not yet been investigated. It seems as if 

the dorsal striatum links actions to self-generated outcomes (Bellebaum et al., 2012) 

and to recent events (Foerde & Shohamy, 2011a), which is why it becomes less active 

during both observational and delayed feedback. Theta power was hypothesised for 

self-relevant negative feedback, as a need for cognitive controls has to be 

communicated only for self-generated erroneous actions. No clear hypothesis was 

formulated for delayed feedback. Power increases in the beta range were associated 
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with striato-frontal activation (Marco-Pallares et al., 2015) after actions associated 

with reward (Feingold, 2011; Mas-Herrero et al., 2015) so that diminished beta power 

was predicted for delayed and observed feedback, independently but also in for 

delayed observational feedback. Since the FRN has been specifically related to 

striatal/ACC activation, a decrease in FRN was hypothesised for both, observational 

and delayed feedback, independently.  

 

4.2 Method 

4.2.1 Study participants  

Two groups of 20 healthy students participated in this study. In one group, 

participants were asked to complete an active feedback learning task, while the other 

group completed an observational version of the same task (see below). All 

participants gave informed written content and were reimbursed with 15 €.  

 

4.2.2 Experimental task and procedure 

The active group engaged in a modified version of the task used in a previous study 

(Weismüller & Bellebaum, 2016). In each trial, participants were asked to choose one 

of two symbols presented on the left and right side of the screen in order to receive 

positive or negative monetary feedback (+20 ¢ or -10 ¢). This feedback could be used 

to learn that some stimulus-locked reward probabilities were higher than others (six 

symbols with probabilities of 0%, 20%, 40%, 60%, and 80%), which helped 

participants to maximise their reward during the task.  

In the observational group, participants were also presented with two symbols in 

each trial. However, they did not choose between them, but rather watched another 

participant’s choice indicated by a picture of a hand pointing at one of the symbols. 

After the choice was made, the observing participant was asked to confirm it by 

pressing the respective left or right button. 

Importantly, all participants completed two versions of the task. In one version, 

feedback was delivered immediately (after 1000 ms) after the participant had chosen 
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a symbol or confirmed a symbol choice by an observed person, while in the other 

version, feedback was provided after a temporal delay (after 7000 ms). 

After each block of 100 trials with feedback, a test phase followed with 60 trials in 

which the same symbol pairs were presented but no feedback was given after a choice. 

During the test phases, participants of both the active and the observational group were 

asked to choose the symbols according to their learned reward probabilities. This 

procedure was used to assess and compare learning in active and observational 

learners. Also, to maintain motivation during the time course of the experiment, the 

performance reflected in the total monetary gain/loss was presented after every test 

phase.  

In total, all participants (active and observational) completed three learning phases 

with immediate and three learning phases with delayed feedback, each followed by the 

respective test phase. While doing so, 28 active electrodes were used to record the 

EEG. 

 

4.2.3 Data analysis 

Correct choices (i.e., choices of symbols with higher reward probability) were 

summed across all trials in a block for the participant of each group and for each 

feedback timing.  

For each group (the active and the observational learning group), EEG data was 

first down-sampled, pre-analysed, and segmented into four conditions according to the 

feedback timing (immediate and delayed feedback) and feedback valence (positive and 

negative feedback). Then, the data in each condition was transformed into time-

frequency data using separate continuous complex Morlet wavelets with spectral 

bandwidths that were optimised for theta and beta frequency analyses. For each 

frequency band and each condition, total power was computed by averaging single-

trial spectral power. Afterwards, evoked power (the spectral power of the feedback 

locked ERPs) was computed and subtracted from the total power to obtain the induced 

power. Mean induced spectral power in the theta frequency was extracted in the range 

between 4.12 and 7.75 Hz between 200 and 500 ms at electrode FCz, while mean 
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induced spectral power in the beta frequency was extracted between 19.62 and 35 Hz 

at FCz. 

For ERP analysis, EEG data was analysed separately. After standard pre-

processing, data was segmented and averaged relative to the type of the feedback for 

each group, feedback timing, and feedback valence. Then, the maximum negative peak 

in the negative-positive difference wave between 200 and 370 ms following the 

feedback stimulus at FCz defined the FRN and was extracted for statistical analysis. 

 

4.3 Results and discussion 

 Behavioural analysis revealed a linear increase in learning accuracy that did not 

differ between active and observational groups or between feedback timings. Over the 

course of the experiment, all participants learned to choose the symbols with a higher 

reward probability irrespective of the feedback timing or its relevance for their own 

actions.  

 As hypothesised, mean power in the theta band was generally more increased for 

negative than positive feedback, but this difference was also modulated by feedback 

agency: negative feedback for one’s own actions increased theta power more than 

positive feedback, while this was not found for feedback in observational learning. 

Similarly, negative immediate feedback increased theta power more than positive 

immediate feedback, which was not found when feedback was delayed. These findings 

are in line with previous research relating theta power to negative feedback processing 

(Janssen et al., 2016). Furthermore, the current data supports the idea that theta 

oscillations reflect a global top-down alarm signal when cognitive control is needed 

(Cavanagh & Frank, 2014; Cohen, 2014) for behavioural adaptation (Cavanagh et al., 

2010). As observed actions cannot be adapted, theta power did not differ between 

positive and negative observed feedback.  

In this context, differential theta power for positive and negative immediate and 

delayed feedback might appear counter-intuitive, because feedback timing does not 

necessarily affect the need for behavioural adjustment. In accordance with evidence 

from previous research, this finding may reflect the involvement of different neuronal 

mechanisms when delayed feedback is processed (Arbel et al., 2017; Opitz et al., 2011; 
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Peterburs et al., 2016; Weismüller & Bellebaum, 2016). Indeed, medial prefrontal 

neurons were reported to synchronise with hippocampal theta oscillations in rats 

(Siapas, Lubenov, & Wilson, 2005), while theta frequency synchronised over frontal 

and occipital electrode sites after unconscious errors in humans (Cohen, van Gaal, 

Ridderinkhof, & Lamme, 2009). In line with evidence suggesting a rather hippocampal 

than striatal contribution to delayed feedback processing (Foerde et al., 2013; Foerde 

& Shohamy, 2011a), the HC may communicate theta oscillatory signals during 

negative delayed feedback.  

Beta power was generally larger for positive relative to negative feedback, 

confirming the relation between beta oscillations and prefrontal and ventral striatal 

reward processing (HajiHosseini & Holroyd, 2015; Mas-Herrero et al., 2015). Similar 

to theta power, feedback timing affected this difference, with larger beta power for 

positive immediate compared to negative immediate feedback, but no difference 

between positive and negative delayed feedback. Beta oscillatory activity has been 

linked to DA-driven memory consolidation of rewarded behaviour (Feingold, 2011; 

HajiHosseini & Holroyd, 2015; Mas-Herrero et al., 2015). The current data appears to 

support this, adding the possible interpretation of reduced striatal/prefrontal reward-

related activation when feedback is delayed, in line with previous studies (Arbel et al., 

2017; Foerde et al., 2013; Foerde & Shohamy, 2011a; Peterburs et al., 2016; 

Weismüller & Bellebaum, 2016).  

Feedback agency, however, did not affect beta band oscillatory power, in contrast 

to theta power. This is in line with results associating beta oscillations with mnemonic 

consolidation of positive outcomes (Feingold, 2011), which also has to take place 

during observational reward processing to facilitate observational learning. Results 

also show that neuronal mechanisms differ between feedback processing in active and 

observational learning (Bellebaum et al., 2012; Kobza et al., 2012; Morelli et al., 

2015), although activation may also overlap possibly in the dorsal striatum (Cooper, 

Dunne, Furey, & O'Doherty, 2012). 

The FRN was larger for both immediate compared to delayed feedback, and for 

active compared to observational learning. Importantly, the FRN was also 

differentially affected by feedback timing and agency: it was increased for immediate 
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compared to delayed feedback referring to own actions, while this timing effect was 

not found for feedback referring to somebody else’s actions. These results replicate 

previous studies suggesting reduced striatal/ACC activity during delayed (Peterburs et 

al., 2016; Weismüller & Bellebaum, 2016) and observational (Bellebaum & Colosio, 

2014; Bellebaum, Kobza, et al., 2010) feedback processing. It furthermore adds to 

these findings the combined effect of feedback agency and timing, probably pointing 

to diminished striatal/ACC activation during observational feedback processing that is 

not further reduced by feedback delay. 

 

4.4 Conclusion 

 Taken together, the time-frequency analyses of the present study revealed 

frequency-specific systems possibly signalling either the need for behavioural 

adaptation after negative events (Cavanagh & Frank, 2014; Cavanagh et al., 2010; 

Cohen, 2014) or a motivational signal for facilitating memory consolidation for 

positive events (Mas-Herrero et al., 2015). The FRN, showing a different activation 

pattern, seems to reflect another more specific mechanism.  
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5 General Discussion and Conclusion 

 All three studies of this dissertation investigated the influence of feedback timing 

on feedback learning and/or feedback processing. Behavioural and 

electrophysiological data was acquired from human subjects participating in forced 

choice tasks in which probabilistic feedback was the only information that could be 

used to improve performance. Importantly, the delay between the participants’ actions 

and the related feedback was varied. The studies included in this dissertation focussed 

on the comparison of immediate and delayed feedback. The aim was to reveal neuronal 

mechanisms that underlie learning from temporally delayed feedback and thereby 

learning from feedback in general. 

 The results of Study 1 demonstrated that the tendency to learn better from positive 

or negative feedback differed between PD patients and healthy controls for both 

immediate and delayed feedback. The PD patients’ bias to learn better from negative 

feedback was attributed to diminished striatal DA levels as these are the defining 

feature of PD. Because this learning bias did not differ between immediate and delayed 

feedback in PD patients or controls, feedback timing does not seem to modulate how 

striatal DA affects feedback-based learning. 

 Study 2 focused on electrophysiological correlates of feedback processing, that is, 

the FRN, which is thought to reflect DA prediction error signals that are conveyed 

from the midbrain to the striatum and ACC. The FRN in Study 2 was sensitive to 

feedback expectancy during both learning from immediate and delayed feedback. This 

finding suggests at least a partial striatal/ACC contribution to delayed feedback 

processing.  

 Study 3 investigated how feedback agency together with feedback timing modulate 

feedback processing. This study used a spectral power analysis of theta and beta 

frequency ranges, which revealed feedback valence-specific systems that may be 

involved in signalling the need for cognitive control and memory consolidation, 

respectively. Both measures differentiated less between feedback valences when 

feedback was delayed, while behavioural task performance remained comparable. In 
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line with Studies 1 and 2, this may hint at the involvement of different neuronal 

mechanisms when delayed feedback is processed.  

Foerde and Shohamy (2011a) provided evidence for hippocampal rather than 

striatal activation during delayed feedback processing, which at first glance contradicts 

the present studies’ findings. Furthermore, in a later study, the authors linked impaired 

learning performance from immediate feedback to the striatal dysfunctions in PD, 

while impaired learning from delayed feedback was related to hippocampal 

dysfunctions in amnestic patients (Foerde et al., 2013). The studies included in this 

dissertation draw a more complex picture than this double-dissociation, accumulating 

evidence for a reduced, but still present nigro-striatal DA involvement when delayed 

feedback is processed compared to immediate feedback. First, depleted striatal DA 

levels caused a negative learning bias in PD patients relative to healthy controls when 

feedback was delayed in Study 1, similar to the condition when feedback was given 

immediately (Weismüller et al., 2018). Second, in Study 2, the FRN was sensitive to 

feedback expectancy for immediate and delayed feedback (Weismüller & Bellebaum, 

2016), which also suggests an involvement of the dopaminergic medial-frontal reward 

system for delayed feedback processing. Likewise, Study 3 revealed medial frontal 

valence-specific communication signals reflected by oscillatory activation during 

feedback processing mostly for immediate feedback. These signals are probably 

communicated along valence-specific systems involving structures that support the 

medial-frontal learning system during learning from delayed feedback. 

 

5.1 Cooperating memory systems in delayed feedback learning 

A candidate structure that might contribute to delayed feedback learning is the HC 

(Foerde et al., 2013; Foerde & Shohamy, 2011a). Foerde and Shohamy (2011a) 

reported activation in the HC in a feedback learning task in which the outcome was 

provided 7 s after the participants’ action. The authors proposed that the HC might 

bind outcomes to the related action across time (Staresina & Davachi, 2009). The HC 

is commonly associated with declarative (conscious) memory (Eichenbaum, 2004; 

Squire, 1992; Squire & Zola, 1996). It was also suggested to underlie classical 

conditioning when the US was temporally delayed (Cheng, Disterhoft, Power, Ellis, 
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& Desmond, 2008). In contrast, non-declarative memory has been associated with the 

basal ganglia (Packard & Knowlton, 2002; Seger, 2006; Yin, Ostlund, & Balleine, 

2008; for review, see Foerde & Shohamy, 2011b). Similarly, another model associated 

the striatal DA system to a habitual and the PFC and HC to a goal-directed system 

(Corbit & Balleine, 2000; Cosman & Vecera, 2013; Daw & Shohamy, 2008; 

Dickinson, Balleine, Watt, Gonzalez, & Boakes, 1995).  

Myers et al. (2003) provided clinical evidence for a functional dissociation of the 

striatum and HC. In their study, participants with hippocampal atrophy, PD patients, 

and healthy controls learned two pre-defined stimulus-target associations to test 

“initial” associative learning. In a later phase, one antecedent stimulus was re-

associated with a new target, and the participants had to learn this new association. 

Lastly, the participants were supposed to associate the other antecedent stimulus to a 

new target equivalent to the first newly learned stimulus-target pairing. This was 

thought to represent autonomous knowledge transfer. Interestingly, the study found a 

double-dissociation between striatum and HC: PD patients, but not patients with 

hippocampal atrophy, performed worse than controls in the initial-learning phase, 

while hippocampal atrophy, but not PD, caused impaired performance in the transfer 

phase. In line with this, previous research reported that amnestic patients were 

exclusively impaired in recalling tasks compared to controls, while they performed 

comparably to controls when learning artificial grammar (Knowlton, Ramus, & 

Squire, 1992). Likewise, Knowlton et al. (1996) emphasised the striatal involvement 

in habitual learning. The authors used a weather-prediction task in which the presence 

or non-presence of different cues out of four cues in total predicted an outcome, i.e., 

rain or sunshine. The participants’ task was to associate different cue combinations 

with the outcome in order to predict the resulting weather. This associative learning 

task was thought to reflect non-declarative habitual learning, while the authors 

additionally tested the participants’ declarative memory of the task by eight multiple-

choice questions about the previously learned cues. PD patients were significantly 

impaired compared to controls and amnestic patients when learning to predict the 

weather, with worse learning performance for more severe symptoms. However, no 

impairments were found in the PD patients’ performance in the declarative memory 
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task irrespective of the symptom severity, while amnestic patients were significantly 

impaired here. More recent behavioural findings from Foerde et al. (2013) and Foerde 

and Shohamy (2011a) functionally dissociated striatal and hippocampal involvement 

depending on the feedback timing.  

Feedback timing seemed to modulate whether the striatum or the HC was recruited 

during the same stimulus-action-outcome learning task with a clear dissociation of the 

two systems (Foerde et al., 2013). The results of Study 2 in this dissertation partially 

support this idea indicating diminished striatal/ACC involvement for delayed 

feedback. Also, the results of Study 3 suggest diminished medial-frontal activation for 

both delayed monetary reward and delayed monetary punishment. Conversely, Study 

2 also found correlates of medial-frontal prediction error coding during delayed 

feedback processing that indicate the involvement of the striatal DA reward learning 

system. This idea contradicts Foerde and Shohamy’s (2011a) interpretation of 

dichotomous striatal and hippocampal activation, as it proposes activation in both 

structures rather than exclusively in one of them. However, when investigating healthy 

controls in their fMRI study, Foerde and Shohamy (2011a) reported activation of the 

ventral striatum also during delayed feedback. This restricts the dissociation of 

striatum and HC activation during immediate and delayed feedback processing, 

respectively, to the dorsal part of the striatum. In reinforcement learning, the dorsal 

striatum was suggested to maintain information about beneficial action-outcome-

contingencies and the initiation of behavioural adaptation, while the ventral part was 

suggested to learn to predict the future (O'Doherty et al., 2004). In line with this, the 

ventral striatum was associated with prediction error coding (Pagnoni et al., 2002). In 

PD patients, the nigro-striatal pathway and thus the dorsal striatum is usually affected 

earlier and more severely compared to the ventral striatum (Fearnley & Lees, 1990; 

Jellinger, 1999; MacDonald et al., 2011; McRitchie, Cartwright, & Halliday, 1997). 

Thus it is conceivable that, depending on the severity and state of the disease, PD 

patients could make use of their intact HC when processing delayed feedback, while 

being impaired for immediate feedback (Foerde et al., 2013; Foerde & Shohamy, 

2011a; Weismüller et al., 2018). On the other hand, clinical findings suggesting 

hippocampal involvement during delayed feedback processing do not necessarily 
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demonstrate that delayed feedback is exclusively processed in the HC in the healthy 

brain.  

Considering theoretical approaches on the healthy brain, the actor-critic-model 

(Barto, 1995) states that the ventral striatum functions as an adaptive critic evaluating 

prediction error signals, while the dorsal part, the actor, learns action preferences and 

adjusts actions in order to maximise the outcome (Joel & Weiner, 2000; Montague, 

Dayan, & Sejnowski, 1996; O'Doherty et al., 2004; for reviews, see Schultz, 2002; 

Walsh & Anderson, 2012). In view of the present and previous findings, it may be 

speculative but conceivable that the HC might compensate for the dorsal striatum’s 

role as the actor when feedback is delayed, while the ventral striatum still evaluates 

prediction errors (Foerde & Shohamy, 2011a). Shohamy and Adcock (2010) proposed 

that the HC is affected by tonic rather than phasic DA signals. Possibly, delayed 

feedback triggers low tonic DA changes, which then affect the HC rather than the 

dorsal striatum. 

However, healthy participants seem to make less use of their medial-frontal reward 

system when processing delayed feedback, rather than not using it at all (see Study 2; 

Weismüller & Bellebaum, 2016). In line with these findings, Peterburs et al. (2016) 

suggested that neuronal systems underlying feedback learning become involved in a 

more-or-less rather than an all-or-nothing fashion. Also, in these studies, participants 

performed as well during delayed feedback as they did during immediate feedback. 

Although electrophysiological findings are not capable of detecting activity in sub-

cortical structures (Luck, 2014), the HC is a prominently suggested structure that might 

become involved in learning from delayed feedback in a supportive rather than 

competitive manner. Cooperation between the HC and the striatum, which are 

commonly associated with competing memory systems (Daw & Shohamy, 2008; 

Myers et al., 2003; Squire, 1992; Squire & Zola, 1996), has previously been suggested 

to occur during feedback learning (Dickerson & Delgado, 2015; Dickerson et al., 

2011). Evidence for midbrain DA projection to the HC (Gasbarri et al., 1997; 

Otmakhova & Lisman, 1998) that facilitate neuronal plasticity and memory formation 

(Shohamy & Adcock, 2010) support this notion. Prediction error signals conveyed 
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from the SN to the HC (Gasbarri et al., 1997) may enhance long-term consolidation 

mostly of reward-predicting memory (Wittmann et al., 2005).  

Considering single-neuron activation patterns recorded in monkeys, midbrain DA 

neurons seem to increase their firing activity when delayed rewards are received 

compared to the receipt of an equal immediate reward (Kobayashi & Schultz, 2008). 

At first sight, these results contradict findings from feedback-related ERPs suggesting 

diminished amplitudes for delayed compared to immediate feedback processing 

(Peterburs et al., 2016; Weismüller & Bellebaum, 2016). Despite the ERPs' inability 

to reflect sub-cortical neuron activity, the FRN has been repeatedly linked to 

mesolimbic DA projections to the striatum and ACC (see above). Kobayashi and 

Schultz (2008) suggested that the monkeys were unable to link the rewards to stimuli 

that lay back in time (Holland, 1980) so that the reward reception was unexpected and 

therefore caused larger prediction errors coded midbrain DA neurons. Interestingly, 

however, Peterburs et al. (2016) reported larger FRN amplitudes with increasing 

feedback delay in the original positive and negative waveforms (labelled FRNpeak). 

These increases were thought to reflect a declarative type of feedback processing that 

might also involve the HC (Eichenbaum, 2004). When combining these results, it is 

conceivable that also in humans delayed feedback processing induces stronger 

midbrain DA neuron firing, which is however not measurable in the difference wave 

FRN. Reward prediction errors for delayed feedback are projected from midbrain DA 

neurons to the striatum and ACC where they are reflected in the FRNpeak (Cavanagh 

& Frank, 2014; Ferdinand et al., 2012). However, the difference wave FRN probably 

mostly reflects the influence of positive feedback processing (Becker et al., 2014; 

Holroyd et al., 2008; for review, see Proudfit, 2015). Although speculative, delayed 

rewards for actions may cause midbrain DA neurons to project more (but not 

exclusively) to the HC to facilitate adaptive memory of recently rewarded actions 

(Feingold, 2011; Otmakhova & Lisman, 1998; Shohamy & Adcock, 2010). 

Concluding, as both the difference wave FRN and the FRNpeak are generated in the 

ACC (Holroyd & Coles, 2002), the difference wave FRN decreases with increasing 

feedback delay despite possibly stronger midbrain neuron activation, while the 

FRNpeak increases (Peterburs et al., 2016). 
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Evidence from frequency analyses revealed cortical networks that possibly involve 

the MTL. Medial prefrontal neurons phase locked to hippocampal theta oscillations in 

rats (Siapas et al., 2005), which possibly reflects inter-cortical communication 

(Benchenane et al., 2010; Buzsaki & Draguhn, 2004). Likewise, theta synchrony was 

enhanced between FCz and lateral frontal (Cavanagh, Cohen, & Allen, 2009) as well 

as occipital electrode sites (Cohen et al., 2009) in human participants during error 

processing. More specifically, Cohen (2011a) found indicators for inter-cortical 

communication reflected by error-related theta band synchronisation. Similar to the 

theta band, power increases in the beta frequency range were also suggested to reflect 

communicational signals (Marco-Pallares et al., 2015). Beta power was interpreted to 

reflect DA projections from the VTA to the ventral striatum (Mas-Herrero et al., 2015) 

and PFC (HajiHosseini & Holroyd, 2015) that possibly convey a motivational signal 

in order to consolidate memory for a beneficial stimulus-action-outcome association 

(Feingold, 2011; Marco-Pallares et al., 2015; Mas-Herrero et al., 2015).  

Merging results from both frequency bands, Study 3 found supportive evidence for 

medial-frontal error processing reflected by increased theta power and medial-frontal 

reward processing reflected by increased beta power. Both frequency bands were less 

distinguished in power for positive and negative outcomes when feedback was 

delayed. Accordingly, it is conceivable that other structures become involved in the 

processing of feedback after a temporal delay that are not reflected by medial-frontal 

theta/beta activity. In support of this notion, Arbel et al. (2017) recently also reported 

decreased FRN amplitudes during delayed compared to immediate feedback 

processing, and increased parietal N170 amplitude for delayed compared to immediate 

feedback. Interestingly, the N170 has been linked to MTL activation (Grippo, Pelosi, 

Mehta, & Blumhardt, 1996). However, oscillations in the theta band were also affected 

by feedback agency in Study 3. In line with this, the FRN was affected by the 

combinational influence of feedback agency and delay. Kobza et al. (2012) showed 

that neuronal mechanisms differ between active and observational feedback 

processing, with probably less striatal involvement in processing observational 

compared to active feedback. This may explain why feedback delay did not further 

diminish the FRN for observational feedback in Study 3, as the FRN has been linked 
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to striatal and ACC activity. On the other hand, considering the results by Kobza et al. 

(2012), neuronal mechanisms inducing oscillations in the beta and theta band are 

differently affected by feedback agency and may thus overlap for feedback processing 

to some extent. 

It has to be kept in mind, however, that the current studies are methodologically 

restricted, which is why inferences to specific sub-cortical activity in one or the other 

structure are speculative and need empirical verification. In summary, the results of 

Study 3 support the notion of collaborating medial-frontal and medial-temporal 

structures, previously associated with distinct memory systems in feedback 

processing. Importantly, these systems do not seem to compete with each other, but 

overlap and become more or less active depending on the feedback’s timing (and, in 

case of negative feedback, its self-relevance).  

 

5.2 Limitations and alternative interpretations 

The FRN has been associated with non-declarative feedback processing in a large 

body of literature. However, the FRN has, at least partially, also been linked to 

declarative learning. For instance, Arbel, Goforth, and Donchin (2013) demonstrated 

that the FRN predicted the successful recall of associations between stimulus pairs. 

Their results conjoin with an fMRI study by Tricomi and Fiez (2012), who found 

increased striatal activity in a declarative learning task, but only for memories linked 

to rewards, which suggests that the striatum may access and strengthen rewarded 

action-outcome associations in the declarative memory. Following this interpretation, 

the FRN may at least partially reflect declarative memory processing, because it has 

been linked to striatal and ACC activity (Foti et al., 2011). A similar idea was 

formulated by Peterburs et al. (2016), who found increasing FRNpeak amplitudes with 

increasing feedback delay. The authors argued that the FRNpeak as opposed to the FRN 

in the difference signal, may reflect the violation of outcome expectations that have 

become more explicit and thus declarative. This explanation is in line with increasing 

involvement of declarative structures such as the HC (Eichenbaum, 2004) when 

delayed feedback is processed, which is potentially processed more explicitly. 
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Interestingly, in the study by Peterburs et al. (2016), the FRN was differently 

affected by feedback timing depending on whether its amplitude was extracted from 

the negative-positive difference wave or from the original waveforms. This 

underscores the necessity of methodological consideration for measurement of the 

FRN (see above). Peterburs et al. (2016) pointed out that the two differently extracted 

FRN amplitudes seem to reflect different processes with a possible link of the FRNpeak 

to explicit information processing. 

An important methodological consideration in this dissertation refers to a 

difference in the paradigms between our EEG studies (i.e., Study 2 and Study 3) and 

the studies by Foerde et al. (2013) and Foerde and Shohamy (2011a). While Foerde et 

al. (2013) and Foerde and Shohamy (2011a) visually presented the participant’s 

choices during the whole time between the action and the consequential outcome, the 

choice was only presented for 500 ms in our paradigm and then cleared off the screen. 

This way, we could confidently avoid sensory processing in the pre-stimulus interval, 

which we could thus consider as a neutral baseline. Although just a small 

methodological change, this may significantly increase the participant’s working 

memory demands. Higher working memory demands could possibly have caused 

diminished FRN amplitudes for delayed feedback (see Opitz et al., 2011). Although 

we considered this unlikely as learning performance did not differ between feedback 

timings in either study, an effect of working memory cannot completely be excluded. 

However, higher working memory demands cannot be held responsible for FRN 

expectancy effects in delayed learning, which is the major finding of Study 1. 

Another important criticism refers to the general theoretical link of the FRN to 

phasic striatal DA neuron activity. To date, no direct evidence has been provided that 

explicitly linked the FRN to nigro-striatal DA. Rather, Holroyd and Coles (2002) 

theoretically linked phasic DA activity in monkeys (Schultz, 1997, 1998, 2002; 

Schultz et al., 1993; Schultz et al., 1997) to electrophysiological findings in humans 

(Gehring & Willoughby, 2002; Miltner et al., 1997). The FRN has yet only been shown 

to be unspecifically affected by dopaminergic genotypes (Heitland et al., 2012; 

Mueller et al., 2014). The ERN that is probably generated by the same mechanisms as 

the FRN, was shown affected by the DA precursors L-3,4-dihydroxyphenylalanin (L-
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DOPA) in PD patients (Seer et al., 2017; Volpato et al., 2016). A direct link between 

the FRN and DA remains elusive, however. Apart from these general considerations, 

some study-specific limitations have to be discussed.  

 

5.2.1 Limitations of Study 1  

 Study 1 investigated valence-specific learning in PD patients and healthy controls 

by comparing their choice performances for novel combinations of symbols whose 

reward probabilities were previously learned. Smittenaar et al. (2012) and Shiner et al. 

(2012) related DA effects in this task to action selection rather than to feedback 

learning. Although, this interpretation finds some theoretical support (see Guitart-

Masip et al., 2012; Guitart-Masip, Duzel, Dolan, & Dayan, 2014), DA has repeatedly 

been linked to learning instead of action selection in humans (Frank et al., 2007; Frank 

et al., 2004) and animals (Schultz, 2002; Schultz et al., 1993; Schultz et al., 1997). Of 

course, it is difficult to disentangle learning and action selection in a within-group 

design due to the medication’s decomposition time. Possibly, deep-brain stimulated 

PD patients could represent a promising participant sample for such an investigation. 

On the other hand, studies on the effect of deep-brain stimulation on feedback learning 

revealed a different learning pattern compared to the effect of DA medication (Frank 

et al., 2007).  

To counter the effect of DA depletion in the basal ganglia, PD is usually treated 

with DA-receptor agonists or DA precursors such as L-DOPA often together with 

catechol-O-methyltransferase (COMT) blockers (Hacke, 2010). PD patients’ 

medication is highly individual and differs strongly in its combination due to the 

severity of specific symptoms or due to the agent’s ability to cross the blood-brain-

barrier. Also, the medications’ half-lives differ, with decomposition times of up to 24 

hours for long lasting medication. As this medication is usually consumed once per 

day in the mornings, we tested all participants in the morning before they received 

their usual medication.  

Aside from DA, other neurotransmitter systems are also implicated in PD, as for 

example the nucleus basalis meynert and the nucleus coeruleus are affected (Hacke, 

2010). Thus, depression is a common co-morbidity of PD that may also cause a 
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negative learning bias due to a generally increased cognitive and attentional focus on 

negative events. To control for a possible confounding effect of depression on learning 

behaviour, we screened for and excluded patients with comorbid depression in Study 

1. 

Lastly, Study 1 built its argumentation on a null-result, namely on a non-significant 

three-way-interaction between the groups (PD patients vs. healthy controls), the 

feedback timing (immediate vs. delayed feedback), and the learning type (better 

learning from positive or negative feedback). In order to ascertain that we did not 

commit a β-error (by falsely accepting the null-hypothesis), we computed the 

statistical power of this null-result. We also examined all existing studies that used the 

same paradigm (and thus cite Frank et al. (2004)) and found a comparable, but 

significant three-way-interaction. We then used the effect size that was previously 

needed to receive a statistically significant result in a comparable three-way-

interaction together with the current sample size to compute the statistical power. As 

this was found to be considerably high, we felt save to draw conclusions from the null-

result. However, despite the large power, a significant three-way interaction with more 

participants is plausible as the result patterns descriptively differed between feedback 

timings. To rule out this possibility, following studies could compare larger patient 

samples in a comparable study.  

Furthermore, we used Bayesian modelling approach to additionally corroborate the 

conclusion that only the DA level (represented by the comparison of PD patients and 

healthy controls) but not the feedback timing influenced the bias to learn from positive 

versus negative feedback (Wagenmakers et al., 2017). In the Bayesian analysis the 

predictive adequacy of four statistical models were compared to the null-hypothesis. 

Each model assumed a different main effect or their interaction to cause the strongest 

change in the difference between choices of symbol A and avoidances of symbol B. 

The strongest evidence for a predictive influence of the current data was provided by 

the model assuming a main effect of DA levels, which further confirmed our 

interpretation. 
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5.2.2 Limitations of Study 2 

An important critical point in this study concerns the suitability of using the 

difference wave. As mentioned above, the FRN has been considered as reflecting two 

different components, with unexpected positive feedback causing a positive deflection 

in the feedback-locked ERP, while generally unexpected task-relevant feedback 

causes a negative deflection. An ERP difference signal can be interpreted only if the 

original signals differ in only one affecting parameter (Luck, 2014). In Study 2, the 

original FRN signals for positive and negative were compared within the same 

expectancy condition so that the only difference between the original waves was 

valence, rendering the difference wave approach appropriate.  

 In a similar study, Arbel et al. (2017) failed to find an effect of feedback valence 

for delayed feedback, which they explained by the declarative nature of their word-

object association learning task. Although this is a plausible explanation, also the 

subjectivity of the participants’ feedback expectation could hold for it (Hajcak et al., 

2007). In Study 2, the participants had to explicitly state their subjective reward 

expectation, which enabled us to directly verify their reward prediction and prediction 

errors. Furthermore, this method controlled for a subjective participation in the task 

that may have maximised the FRN for prediction errors (Hajcak et al., 2007). 

 

5.2.3 Limitations of Study 3 

 Although the electrophysiological oscillations in the human brain can hint at 

neuronal communication within a functional network during learning (Cohen et al., 

2011), the current frequency analysis does not fully exhaust its options. As discussed 

by Cohen (2011b), a variety of information is included in oscillatory fluctuations of 

neuronal excitability such as the time of the onset and end, the frequency, the power, 

and the phase. This variety of information is one of the aspects, rendering a frequency 

analysis a valuable tool that possibly extends the ERP analysis according to Cohen 

(2011b). The author argues that these aspects all rely on the information that is missed 

in ERPs, i.e., the fluctuating excitability of underlying neuronal populations. Phase-

locked analyses use oscillatory synchronisations across distinct neuronal structures to 
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infer functional connectivity (Buzsaki & Draguhn, 2004; Cavanagh et al., 2009; 

Cohen, 2011a). 

 Although frequency analyses have been found to provide more information that 

classical EPR analyses in terms of information gain, ERP analyses are more commonly 

used in psychophysiological research. Therefore, much more is known and theorised 

about modulators of certain ERP components resulting in a vast literature and thus 

great comparability of findings (for example see Luck, 2014). In contrast, literature on 

frequency analyses are sparse and vary methodically so that results may differ due to 

methodological aspects rather than the involvement of different underlying neural 

mechanisms. As we have shown, the mechanisms eliciting feedback-locked ERP 

components such as the FRN and oscillatory activity in the theta and beta band seem 

to differ, but are to some extent similarly affected by feedback timing and agency. 

Also, oscillatory activation may underlie several ERP components as Cavanagh and 

Frank (2014) pointed out. This emphasises the necessity of further research on the 

differentiation and attribution of oscillatory activation to functional processes.  

 

5.3 Implications for future research 

 As outlined above, investigations of phase-locking across distinct neuronal 

structures during reward processing could reveal cortical communication (Cavanagh 

et al., 2009; Cohen, 2011b; Cohen et al., 2011). This could, of course, further 

corroborate the idea that medial-frontal structures communicate with other structures 

during feedback processing (Siapas et al., 2005), possibly as prediction error signals 

are conveyed from the midbrain to the HC (Gasbarri et al., 1997). A more precise 

spatial localisation of neuronal activity can be achieved by measuring changes in the 

BOLD signal measured by fMRI during feedback processing. This can even be done 

simultaneously with EEG (Becker et al., 2014) or separately (Carlson et al., 2011). 

Also, positron-emission-tomography (PET) has been used to identify and localise 

dopaminergic activity in the human brain (Volkow et al., 1996) and could detect 

possible DA projections to the HC during feedback processing. Future investigations 

could compare participants receiving immediate and delayed feedback in a learning 

task, while they are scanned by fMRI or PET. 
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Another approach that is possibly easier to accomplish compared to fMRI and PET 

scans due to practical and economic reasons, is to test declarative memory for stimuli 

that were previously presented together with immediate and delayed feedback without 

any relation to the feedback. It is conceivable that stimuli paired with delayed feedback 

are memorised better than those compared to immediate feedback due to a higher 

activation of the HC when delayed feedback is processed. However, in a very recent 

study investigating this idea, Höltje and Mecklinger (2018) found out that subsequent 

memory performance for stimuli that had previously been linked to feedback was not 

affected by the feedback’s timing. Interestingly, however, when the authors 

investigated ERPs during subsequent recall, they found that successful remembering 

was associated with a positive going medial-frontal deflection in the FRN time window 

that was larger for stimuli locked to positive, not negative feedback. In line with the 

studies in this dissertation, the authors suggested that positive feedback processing and 

memory encoding work in parallel. This idea is supported by hippocampal activation 

during feedback learning in humans (Foerde & Shohamy, 2011a) and striatal-

hippocampal synchronisation for positive feedback in rats (Feingold, 2011). It does 

therefore seem promising to combine non-declarative feedback learning tasks with 

declarative subsequent encoding tasks in combination with EEG and other methods 

(see above) that may provide more insights into the involved mechanisms. 

 It would furthermore be interesting to investigate longer temporal gaps between an 

action and the consequential outcome. The studies presented here may only have made 

the first move towards the investigation of the neuronal mechanisms during the 

processing of delayed feedback. Feedback in everyday life may also follow the 

performance after several hours, days, or even longer. For example, pupils receive 

feedback for a test after several weeks. As shown here, neuronal mechanisms seem to 

differ already after a few seconds, although humans are still able to use these long 

delayed feedbacks for learning. In line with this, Peterburs et al. (2016) suggested a 

gradual shift of neuronal activity from the striatum/ACC to other structures, possibly 

the MTL (Arbel et al., 2017). It is thus conceivable, that longer feedback delays may 

even increase the differences in the underlying neuronal mechanisms and that the 

medial-frontal activation vanishes after enough time has passed. Future research may 
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thus investigate, how feedback is processed that refers to performances that lay back 

in time more than only a few seconds, although this might be less practicably.  

 Lastly, in the studies included in this dissertation, different learning behaviours and 

electrophysiological deflections were always linked to DA. However, more recently, 

serotonin has been found to affect learning as well as prefrontal activity (for review, 

see Ullsperger et al., 2014). Future research could therefore either try to isolate DA 

effects, or investigate the effect of serotonin on the FRN during feedback learning.  

To conclude, the studies in this dissertation provide accumulating evidence for a 

reduced but still present striatal/ACC activation when feedback is processed that is 

delayed relative to an action by 7 s. These findings hint at the collaborative 

involvement of other structures, possibly the HC, because behavioural learning 

performance was not affected by the delay. In the modern environment humans face 

every day, feedback does not always follow an action immediately, but temporally 

delayed by a few seconds. Still, humans are able to learn and adapt their behaviour in 

order to cope with their increasingly complex environment. This emphasises the need 

to investigate the neuronal underpinnings of delayed feedback processing, which to 

this date is sparse. The insights gained from the studies presented in this dissertation 

thus contribute to an intensive ongoing discussion about the neuronal underpinnings 

of reward learning in cognitive neuroscience.  
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A B S T R A C T

Phasic dopamine (DA) signals conveyed from the substantia nigra to the striatum and the prefrontal cortex
crucially affect learning from feedback, with DA bursts facilitating learning from positive feedback and DA dips
facilitating learning from negative feedback. Consequently, diminished nigro-striatal dopamine levels as in
unmedicated patients suffering from Parkinson's Disease (PD) have been shown to lead to a negative learning
bias. Recent studies suggested a diminished striatal contribution to feedback processing when the outcome of an
action is temporally delayed. This study investigated whether the bias towards negative feedback learning in-
duced by a lack of DA in PD patients OFF medication is modulated by feedback delay. To this end, PD patients
OFF medication and healthy controls completed a probabilistic selection task, in which feedback was given
immediately (after 800ms) or delayed (after 6800ms). PD patients were impaired in immediate but not delayed
feedback learning. However, differences in the preference for positive/negative learning between patients and
controls were seen for both learning from immediate and delayed feedback, with evidence of stronger negative
learning in patients than controls. A Bayesian analysis of the data supports the conclusion that feedback timing
did not affect the learning bias in the patients. These results hint at reduced, but still relevant nigro-striatal
contribution to feedback learning, when feedback is delayed.

1. Introduction

Most living beings learn from the outcomes of their actions and
adapt their behaviour accordingly, which defines reinforcement
learning. In everyday-life, outcomes can vary not only in their valence,
but also in their delay following an action. Often they occur im-
mediately, as for example when making an error in driving your car and
causing an accident. They can, however, also follow after a couple of
seconds like when pushing a button on a coffee dispenser, or after a
very long delay, for example in financial investments.

Reinforcement learning means gaining the knowledge of both which
action previously resulted in a profitable outcome and which action
previously resulted in a negative outcome. Animal studies associated
outcomes that are better or worse than predicted with phasic increases
and decreases in midbrain dopamine (DA) neuron activity, respectively
(Schultz, 1997, 2000; Schultz and Dayan, 1997). Neural network
models consider projections of this DA prediction error signal to the
basal ganglia and prefrontal cortex (PFC, including the anterior

cingulate cortex, ACC; Bédard and Larochelle, 1969; Haber and Fudge,
1997; Lavoie and Smith, 1989; Lehéricy et al., 2004; Lynd-Balta and
Haber, 1994) as the neuronal underpinnings of reinforcement learning
(Frank, 2005; Frank et al., 2004), underlying the adaptation of beha-
viour (Sheth et al., 2012). Based on DA effects on two separate so called
Go and NoGo pathways within the basal ganglia (Aubert and Ghorayeb,
2000; Frank, 2005; Frank et al., 2004; Gerfen, 1992; Hernandez-Lopez
et al., 1997, 2000), chronically increased and decreased DA levels have
been linked to better learning from positive and negative feedback,
respectively, which has indeed been shown in Parkinson's disease (PD)
patients ON and OFF DA replacement medication (Frank et al., 2004;
Frank and Samanta, 2007). Generally diminished DA baseline levels
reduce the chance of DA bursts and increase the chance of DA dips
reaching a certain threshold level, resulting in a more dominant NoGo-
pathway during learning, whereas DA replacement medication seems to
lead to a DA overdose in the ventral striatum (Cools and Barker, 2001,
2003; Frank, 2005) so that the Go pathway is selectively strengthened
(see Frank et al., 2007).
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Kobza et al. (2012) showed, however, that a lack of DA does not
always lead to a negative learning bias. They found learning to be
unaffected in PD patients OFF medication when they learned from the
choices of another person and the accompanying outcomes, suggesting
that the mechanisms in observational learning differ. Another condi-
tion, in which feedback processing seems to be altered, relates to
learning from delayed feedback. When comparing the feedback-based
acquisition of stimulus-outcome associations, PD patients were sig-
nificantly impaired in learning from immediate, but not from delayed
feedback appearing seven seconds after a choice response (Foerde and
Shohamy, 2011). While activity in the dorsal striatum appeared to
underlie immediate feedback processing, the hippocampus was more
strongly involved during learning from delayed feedback, as was shown
via functional magnetic resonance imaging (fMRI) in healthy subjects
(Foerde and Shohamy, 2011). The importance of the hippocampus for
delayed feedback processing was further corroborated by deficits in
amnestic patients with suspected hippocampal damage (Foerde et al.,
2013). Recent studies using electroencephalography (EEG) added to the
impression of different neural mechanisms for immediate and delayed
feedback processing. They reported that the feedback-related negativity
(FRN) was diminished for delayed compared to immediate feedback
(Arbel et al., 2017; Peterburs et al., 2016; Weinberg et al., 2012;
Weismüller and Bellebaum, 2016). The FRN is a feedback-locked event-
related potential (ERP) component that has been linked to DA effects on
the ACC (Holroyd, 2004; Holroyd and Coles, 2002, 2008). Reduced FRN
amplitudes thus appear to suggest reduced DA system involvement with
increasing temporal delay between action and outcome, so that overall
a pattern of findings emerges that suggests a weaker or even absent role
of DA in delayed feedback processing. As the bias for better learning
from negative than positive action outcomes found for immediate
feedback has directly been linked to the lack of DA in unmedicated PD
patients, one might hypothesize that learning from delayed feedback
should not be affected. The negative learning bias in this patient group
should thus appear exclusively for immediate feedback.

On the other hand, the mentioned ERP studies also suggest simila-
rities in the processing of immediate and delayed feedback. Irrespective
of feedback delay, negative feedback elicited a larger FRN amplitude
than positive feedback (Peterburs et al., 2016; Weismüller and
Bellebaum, 2016). Moreover, even for delayed feedback the FRN re-
flected feedback expectations and was thus influenced by the reward
prediction error (Weismüller and Bellebaum, 2016), suggesting that the
DA system did indeed contribute to delayed feedback processing, at
least to some extent. Striatum and hippocampus might work together in
associating responses to outcomes (Dickerson and Delgado, 2015;
Dickerson et al., 2011). Based on these considerations, it might thus
also be possible that a lack of DA as in unmedicated PD patients has
comparable effects on learning from delayed and learning from im-
mediate feedback, leading to similar negative learning biases.

In this study, we applied variants of the probabilistic selection task
first described by Frank et al. (2004) to explore whether the effect of
reduced DA levels on the preference for learning to avoid a non-bene-
ficial stimulus (learning from negative feedback) over learning to
choose a beneficial stimulus (learning from positive feedback) is
modulated by feedback delay. For this purpose, we compared the per-
formance of two groups of PD patients OFF medication completing an
immediate (see Kobza et al., 2012) or delayed feedback version of the
probabilistic selection task with each other and with the performance of
corresponding groups of healthy control subjects.

2. Material and methods

2.1. Participants

Four groups of subjects participated in the present study, two groups
of PD patients OFF medication and two groups of healthy control
subjects. With 12 participants in each patient group and 24 participants

in each control group the sample sizes were slightly larger than in a
previous study of our group applying variants of the same experimental
paradigm and addressing a related research question (Kobza et al.,
2012). One patient and one control group each completed an im-
mediate and delayed feedback version of the probabilistic selection
task, respectively. The patient group for the immediate feedback con-
dition had a mean age of 56.8 years (SD = 9.8; 7 men). For ten of these
patients we reused data from a sample of PD patients who had already
been tested for a previous study by our group (see Kobza et al., 2012;
the group of subjects learning actively from their own choices). To
match the delayed feedback group (see below) two additional PD pa-
tients were recruited. Similarly, data for 20 control subjects were taken
from our old data set for the immediate feedback group (Kobza et al.,
2012) and four more control subjects were tested. The control group
learning from immediate feedback had a mean age of 55.5 years (SD =
10.0; 14 men). The patient (9 men) and control groups (16 men) in the
delayed feedback condition were on average 57.9 (SD = 8.5) and 59.1
years (SD = 6.6) old. All PD patients were listed for regular attendance
at the Centre for Movement Disorders and Neuromodulation of the
University Hospital Düsseldorf and were diagnosed by medical staff
according to the UK Brain Bank criteria (Hughes and Daniel, 1992).
Symptom severity in all PD patients was between stages I and III ac-
cording to the Hoehn and Yahr classification (Hoehn and Yahr, 1967)
and all patients had normal or corrected-to-normal vision. To compare
symptom severity between ON and OFF medication states, the Unified
Parkinson's Disease Rating Scale (UPDRS; Goetz et al., 2008; Movement
Disorder Society Task Force on Rating Scales for Parkinson's, 2003) was
administered twice for each patient, once in the OFF state and a second
time 20min after the intake of the regular medication after testing in
the ON state. The average scores amounted to 21.8 (SD = 5.8) in the
OFF state and 15.5 (SD = 6.0) in the ON state for patients in the im-
mediate feedback condition. For patients in the delayed feedback con-
dition the average scores were 30.2 (SD = 9.3) and 18.0 (SD = 10.2)
for OFF and ON state, respectively. For both groups, the scores with and
without medication differed significantly (t(11)= 5.637; p < .001; d
=1.627 for immediate feedback and t(11)= 8.512; p < .001; d
=2.457 for delayed feedback). The scores were obtained with different
versions of the scale. For the 10 participants that entered analysis and
were tested for our previous study (Kobza et al., 2012) the version from
2003 was used (Movement Disorder Society Task Force on Rating Scales
for Parkinson's, 2003), whereas for the patients tested for the present
study a newer version was used (Goetz et al., 2008), which yields
higher symptom scores on average for lower stages of PD (Goetz et al.,
2008). A direct comparison of the UPDRS scores between the two pa-
tient groups may thus be confounded and was therefore not conducted.

Exclusion criteria for patients were psychiatric or neurological dis-
eases (other than PD), atypical PD, traumatic brain injury with sus-
tained unconsciousness, suspected or documented drug or alcohol
abuse, and regular psychotropic medication other than DA agonists.
Finally, all PD patients were screened for comorbid depression and
dementia after the experimental learning task was applied but still in
the OFF medication state using the Beck Depression Inventory (BDI;
Hautzinger et al., 2006) and the Mini Mental Status test (MMS; Folstein
and Folstein, 1975), respectively. BDI scores were assessed in the pa-
tients in order to exclude that a negative affective bias could influence
performance in the probabilistic selection task. None of the patients
scored above 18, which would indicate clinically relevant depressive
symptoms. More specifically, patients learning from immediate feed-
back had a mean BDI score of 7.3 (SD= 4.4), while those in the delayed
feedback group had a mean score of 7.6 (SD = 4.2). The scores did not
differ significantly between the two patient groups (p= .870). In the
MMS all the patients scored above 27 (patients immediate feedback:
mean = 28.0, SD = 1.5; patients delayed feedback: mean = 28.9, SD
= .8), indicating that none of the patients showed signs of dementia or
clinically relevant cognitive impairment. Scores for the MMS did not
differ between patient groups (p= .080). BDI and MMS scores were
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also obtained in the control subjects learning from delayed feedback.
Also in this group, none of the participants reached clinically relevant
values (mean BDI score = 5.2, SD = 3.9; mean MMS score = 28.4, SD
= 1.1). As the 24 participants of this group were comparable with
respect to age and gender distribution to both patient groups, we
compared the BDI and MMS scores between the healthy controls and
each of the two groups of patients separately. The BDI and MMS scores
of the control group did neither differ from the scores of the patients
learning from immediate (both ps > .150), nor from those learning
from delayed feedback (both ps > .099).

Healthy controls were recruited via advertisements in local news-
papers. Exclusion criteria were a history of psychiatric or neurological
disease, traumatic brain injury with sustained unconsciousness, sus-
pected or documented drug or alcohol abuse, and psychotropic medi-
cation.

All subjects voluntarily participated in the study and gave informed
written consent before testing. The study was approved by the ethics
committee of the Medical Faculty of Heinrich-Heine University
Düsseldorf (study no. 2849). PD patients as well as healthy controls
received monetary reimbursement for their participation.

2.2. Probabilistic selection task

In this study we used modified versions of the probabilistic selection
task that has first been described by Frank et al. (2004). This task
consisted of three different phases: at least one learning and test phase
and a final transfer phase. In the learning phase, on each trial, one out
of three different symbol pairs was randomly presented to the partici-
pants (symbols A/B, C/D, and E/F). Each symbol pair appeared 20
times per learning phase, resulting in 60 trials in total. The participants
were asked to choose one of the two symbols to receive a positive
(“correct”) or negative (“incorrect”) feedback (Fig. 1A, left column,
shows the sequence of events in an example trial of the learning phase).
The participants could use the feedback to learn, which symbol was
associated with what type of feedback. Unknown to the participants,
each symbol was locked to a particular probability for positive feed-
back, and the pairs differed with respect to the probabilities: For symbol
pair A/B the likelihood of receiving positive feedback was 80% when
choosing symbol A and 20% when choosing B. For the other pairs,
probabilities were 70% vs. 30% (C/D pair) and 60% vs. 40% (E/F pair).
If the participants failed to respond within 3500ms, a reminder was
presented asking them to respond faster and the trial was scored as a
miss.

After the learning phase was completed, the test phase started, in
which each symbol pair was presented 10 times resulting in a total of 30
trials. In these trials, no feedback was presented so that the participants
had to apply the stimulus-response associations they had learned based
on the outcomes during the learning phases. Test phases thus served to
examine, in how far participants continued to react according to the
knowledge they gained during the learning phase in the absence of
trial-by-trial feedback (Foerde and Knowlton, 2006; Foerde et al., 2013;
Foerde and Shohamy, 2011; Kobza et al., 2012). Fig. 1A (right column)
shows the sequence of events in an example trial of the test phase. As
soon as the participants reached a certain performance criterion in the
test phase (choosing the “correct” symbol in 80% of the A/B pair trials
and in 70% of the C/D pair trials), the transfer phase started (see
below). Choices were considered correct, when participants chose the
symbol that was associated with the higher probability for positive
feedback during the learning phase. If the participants did not manage
to reach this learning criterion, learning and test phases were repeated.
After a maximum of four repetitions, the transfer phase was initiated
regardless of the participant's choice accuracy (see Fig. 1B).

In accordance with previous studies by Frank and colleagues (2004)
and by our group (Bellebaum and Rustemeier, 2011; Kobza et al.,
2012), new symbol combinations in the transfer phase (pairs A/C, A/D,
A/E, A/F and B/C, B/D, B/E, B/F) allowed to disentangle learning from

positive and negative feedback during the learning phase. “Positive
learners” were expected to more reliably choose symbol “A” over all
other symbols compared to avoiding symbol B in pairs in which “B”
appeared. For “negative learners” the opposite pattern was expected.
The transfer phase consisted of 40 trials (each pair being presented 5
times), 20 involving stimulus “A” and 20 involving “B”, and no feed-
back was presented. The sequence of events in the trials of the transfer
phase was identical to the sequence in the test trials.

Importantly, two different versions of the described probabilistic
selection task were applied which only differed in the timing of the
feedback during the learning phase. Half of the participants received
“immediate feedback”. In this condition feedback followed 500ms after
the subject's chosen symbol had been encircled in red for 300ms to
indicate the choice, that is, 800ms after the button press. The other half
of the participants learned from “delayed feedback”, where information
about choice accuracy was shown 6500ms after the subject's choice had
been indicated for 300ms (6800ms after the button press). The feed-
back stimulus was presented for 500ms, then a fixation cross followed
randomly for 500, 1000, or 2000ms. As outlined above, no feedback
was presented during the test (see Fig. 1A) and transfer phases.

2.3. Procedure

In order to reach the OFF medication state, the patients participated
after 12 h of medication withdrawal over-night. Eight of the 24 patients
also received long-lasting DA agonists as part of their anti-parkinsonian
medication. These were usually administered once per day in the
morning. As testing usually took place in the morning on the next day,
they were OFF this medication for 24 h or more at the time of testing.
Prior to the experiment, the participants gave informed written consent

Fig. 1. A) Time course of events in a single trial during the learning phase (on
the left side) and the test phase without feedback (on the right side). The words
“richtig” and “falsch” are the German words for “correct” and “incorrect” and
served as positive and negative feedback, respectively. Note that the sequence
of events in a single transfer trial was identical to the sequence in test trials.
However, different stimulus pairs were presented (see Section 2.2). B) Test
phases followed learning phases until participants reached the learning cri-
terion and the transfer phase was initiated. If participants failed to reach the
learning criterion, the transfer phase started after the 5th test phase.
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and a structured interview was conducted to assess demographic data
and potential health or drug problems. UPDRS scores were assessed for
the first time before the experiment was conducted. After the patients
had completed the probabilistic selection task, the MMST and the BDI
were administered. Then the patients received their individual dose of
PD specific medication by the medical staff in the Department of
Neurology at the University Hospital Düsseldorf, and after a break of
about 20min, UPDRS scores were assessed again, now in the ON-state.
Similarly, healthy controls signed an informed consent form, took part
in the structured interview and completed then the probabilistic se-
lection task.

2.4. Analysis

Statistical analysis was conducted using SPSS Statistics 23 software
(IBM, Armonk, New York). As a general measure of performance in the
probabilistic selection task, the number of correct choices from the first
test phase was analysed with an analysis of variance (ANOVA) com-
prising the between-subjects factors Group (PD vs. control) and
Feedback Timing (immediate vs. delayed) and the within-subjects factor
Pair (A/B, C/D, and E/F; see also Kobza et al., 2012). As the participants
could reach the learning criterion already after the first learning phase,
the first test phase was the only one that all participants completed
irrespective of their learning performance. Furthermore, an ANOVA
with the factors Group and Feedback timing was used to analyse the
number of learning phases needed to reach the learning criterion of
70% correct choices for the A/B pair in the test phase (see below) as a
second measure of learning performance during acquisition.

Then scores for positive and negative feedback learning derived
from choice accuracy in the transfer phase (the number of choices of
symbol A and the number of avoidances of symbol B, see above) were
analysed in an ANOVA with Group (PD vs. control) and Feedback Timing
(immediate vs. delayed) as between-subjects factors and Learning Type
(positive vs. negative) as within-subjects factor. For being included into
this analysis, subjects had to reach an accuracy level of at least 70% for
the A/B symbol pair during one test phase (see Kobza et al., 2012, for
an application of the same criterion). This criterion was reached by all
study participants. However, two control subjects learning from de-
layed feedback were excluded from the analysis, because they scored
zero on learning from positive feedback and were outliers relative to the
other control participants (z-scores<− 4). None of the other control
subjects or patients had z-scores lower than − 3 or above 3 for learning
from positive or negative feedback relative to the respective group of
participants (controls or patients). An alpha level of p < .05 was used
to determine statistical significance. For the ANOVAs, the Greenhouse-
Geisser correction was performed, when the sphericity assumption was
violated. To resolve interactions, post-hoc t-tests were conducted. Also,
corrected t- and p-values were considered when non-homogenous

variances were identified by applying the Levene's test.

3. Results

Fig. 2 depicts the mean percentage of correct responses for the
different stimulus pairs during the first test phase, separately for both
patient and control groups. Statistical analysis of performance during
this phase revealed no main effects for Group and Feedback Timing (all
Fs < .673; ps > .414; ηp2< .011), but a significant main effect for
Pair (F(2, 136) = 9.561; p < .001; ηp2 = .123), reflecting differences
in difficulty depending on the feedback probabilities. All two-way and
the three-way interaction involving all factors did not reach sig-
nificance (all Fs < 1.389; ps > .253; ηp2< .021).

To further quantify general learning performance during acquisi-
tion, the number of learning phases needed to reach the learning cri-
terion was analysed. On average, PD patients needed 1.7 (SD = 1.2)
learning phases in the immediate and 1.5 (SD = 1.1) learning phases in
the delayed feedback condition. Controls needed 1.3 (SD = .6) learning
phases with immediate feedback and 1.6 (SD = .9) learning phases
when feedback was delayed. The number of learning phases was neither
different between groups (F(1, 68) = .400; p= .529; ηp2 = .006) nor
was it affected by the feedback delay conditions (F(1, 68) = .204;
p= .653; ηp2 = 003). The interaction between the factors did not reach
significance, either (F(1, 68) = 1.381; p= .244; ηp2 = .020).

Concerning the transfer phase, the mean numbers of correct choices
of symbol A (learning from positive feedback) vs. the number of avoi-
dances of symbol B (learning from negative feedback) for the control
participants and the PD patients are depicted in Fig. 3A for the im-
mediate feedback and Fig. 3B for the delayed feedback condition. Sta-
tistical analysis of choice behaviour during the transfer phase revealed
no main effects for Group, Feedback Timing and Learning Type (all Fs
< 1.463; ps > .231; ηp2< .023). However, a significant interaction
between Group and Feedback Timing was found (F(1, 66) = 4.198;
p= .044; ηp2 = .060). Fig. 4 illustrates this interaction showing transfer
phase performance averaged across negative and positive feedback
learning for patients and controls who had learned from immediate and
delayed feedback. Healthy controls who had learned from immediate
feedback during the learning phase performed generally better during
the transfer phase than the respective PD group (t(34)= 2.252;
p= .031; d = .796), whereas no difference was seen between patients
and controls who had learned from delayed feedback (t(32)= .610;
p= .703; d = .219).

A significant interaction was found between Learning Type and
Group (F(1, 66) = 16.286; p < .001; ηp2 = .198) (see Fig. 5 for transfer
phase performance averaged across subjects in the immediate and de-
layed feedback condition). The resolution of this interaction showed
that PD patients avoided symbol B (indicating learning from negative
feedback) more frequently than they chose symbol A (indicating

Fig. 2. Mean percentage of correct responses during the first test phase for controls and PD patients, both feedback timings, and the different stimulus pairs (error
bars indicate the standard error of the mean).
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learning from positive feedback, t(23)=−2.877; p= .009; d = .587),
while the healthy controls preferred symbol A over symbol B (t
(46)= 2.661; p= .011; d = .397). Both the two-way interaction be-
tween Feedback Timing and Learning Type (F(1, 66) = .874; p= .353;
ηp2 = .013) and the three-way interaction involving all factors (F(1, 66)
= 4.278; p= .662; ηp2 = .003) were not significant.

The absence of the three-way interaction and the pattern of results
for immediate and delayed feedback learning appear to suggest that the
difference between learning from positive and negative feedback is
affected by a lack of DA irrespective of feedback timing. In order to

support this conclusion, we first aimed to find out if our sample was
large enough to detect a significant three-way interaction comparable
to similar effects described in the literature. We thus conducted a sys-
tematic search of the literature considering all studies that cited the
original study on the negative learning bias in PD patients OFF medi-
cation by Frank et al. (2004). The search revealed that only very few
studies examined effects of two between subjects factors (one of them
related to a DA depletion) on this bias (Jakob and Ehrentreich, 2018;
Kobza et al., 2012; Lighthall and Gorlick, 2013). The study by Kobza
et al. (2012) was the only one finding a significant three-way interac-
tion of this kind, with an effect size of ηp2 = .0761. Entering this value
and our sample size of 70 participants into a compromise power ana-
lysis using the software G*Power (Faul and Erdfelder, 2007, 2009) re-
vealed a relatively high power of .838 for detecting a three-way in-
teraction effect of this size in our study.

We further reasoned that a similar result pattern for learning from
immediate and delayed feedback processing would be reflected in in-
teractions between Group and Learning Type for both feedback timings
separately. Thus, exploratory separate analyses for subjects in the two
feedback timing conditions were conducted. As expected, significant
interactions between the factors Group (PD vs. control) and Learning
Type (positive vs. negative) were found for both immediate (F(1, 34)
= 8.469; p= .006; ηp2 = .199) and delayed feedback (F(1, 32)
= 7.962; p= .008; ηp2 = .199).

We then further analysed to which extent the data support the
conclusion that indeed only the DA level, and thus the factor Group, but
not the factor Feedback Timing affects the relative bias to learn from
positive or negative feedback by carrying out a Bayesian analysis using
JASP (Version 0.8.3.1; JASP Team, 2017; Wagenmakers et al., 2017a,
2017b). For this purpose, we first computed the difference between the
number of correct choices for A and avoidances of B (positive minus
negative feedback learning) during the transfer phase for each partici-
pant, because this difference reflects the mentioned bias, which we
were mostly interested in (see above). We then entered the differences
in a Bayesian ANOVA with the between-subjects factors Group (PD vs.
control) and Feedback Timing (immediate vs. delayed). In the Bayesian
ANOVA, the null model was compared against four statistical models,
each containing, respectively, the main effect of Group, the main effect
of Feedback Timing, both main effects, and the interaction effect
(Wagenmakers et al., 2017a, 2017b). The resulting Bayes factors (BF)
for each model were computed as the ratio of the predictive adequacy
(i.e. the change from prior to posterior odds brought about by the data)
of each statistical model and that of the null model. Thus, the higher the
BF, the more the evidence favours the specific statistical model
(Wagenmakers et al., 2017a, 2017b). For the interpretation of the Bayes
factors we adopted the classification suggested by Lee and

Fig. 3. Mean numbers of correct choices of symbol A (learning from positive feedback) and avoidances of symbol B (learning from negative feedback) during the
transfer phase for controls and PD patients in the immediate feedback timing (A) and the delayed feedback timing condition (B) (error bars indicate the standard
error of the mean).

Fig. 4. Mean number of correct choices during the transfer phase for controls
and PD patients in the immediate and in the delayed feedback timing condition
(error bars indicate the standard error of the mean).

Fig. 5. Mean numbers of correct choices of symbol A (learning from positive
feedback) and avoidances of symbol B (learning from negative feedback) during
the transfer phase for controls and PD patients averaged across feedback timing
conditions (error bars indicate the standard error of the mean).
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Wagenmakers (2013) (adapted from Jeffreys, 1961; see also
Wagenmakers et al., 2017b), according to which a BF between 1 and 3,
3 and 10, 10 and 30, 30 and 100, and above 100 indicates, respectively,
anecdotal, moderate, strong, very strong, and extreme evidence for a
specific model against the null model. The priors were equally set to p
(m) = .200 for each model, as, to our knowledge, no comparable pre-
vious data exists that would suggest any other prior for PD patients
learning from immediate vs. delayed feedback.

The results revealed that the data provided extreme evidence (BF =
157.642) for the model including only the main effect of Group (which
corresponds to the interaction between Group and Feedback Type in the
conventional ANOVA, as the Bayes statistics was applied on the positive
- negative feedback learning difference score, see above). In turn, the
data did not provide evidence for the model including only the effect of
Feedback Timing (BF = .362). However, very strong and strong evi-
dence, was also found in favour of, respectively, the model including
both the Group and the Feedback Timing main effects (BF = 66.065),
and the model including the interaction of these factors (BF = 24.356).
To quantify how adding the Feedback Timing effect and the interaction
effect to the Group-only model weakens the evidence in favour of the
model, we computed the BF by comparing the Group-only model
against the other two models (p(m) = .333; Wagenmakers et al.,
2017b). The data provided anecdotal evidence against including the
Feedback Timing factor (BF = 2.407) and moderate evidence against
including the interaction (BF = 6.358). Finally, to also quantify how
much the data support the inclusion of each effect (main effect of Group,
main effect of Feedback Timing, interaction effect), we applied the
Bayesian model averaging, which computes the change from prior to
posterior odds (BFinclusion) for each effect, taking into account each
candidate models’ conclusions (Wagenmakers et al., 2017b). When
averaged across all candidate models, the data strongly support the
inclusion of the Group factor (BFinclusion = 120.770), while the Feedback
Timing and the interaction received very weak support (BFinclusion< 1).

After we could verify that the relative bias to learn from positive or
negative feedback is not affected by feedback timing, we were inter-
ested to explore the patterns underlying the interactions between Group
and Learning Type that we found for both, participants learning from
immediate and delayed feedback, separately in the two feedback timing
conditions. For immediate feedback PD patients revealed a significant
negative learning bias, learning better from negative than from positive
feedback (t(11)=− 2.777; p= .018; d = .802), while controls per-
formed comparably for both types of feedback (t(23)= 1.142;
p= .265; d = .233). For delayed feedback, a slightly different pattern
emerged. PD patients descriptively also showed better learning from
negative than positive feedback, but this effect was not significant (t
(11)=− 1.531; p= .154; d = .442). In contrast, healthy controls
scored higher for positive than for negative feedback learning (t
(21)= 2.588; p= .017; d = .552).

In an alternative resolution of the interaction focusing on between-
group comparisons, however, we did find evidence of enhanced nega-
tive feedback learning in PD patients. They learned better from negative
delayed feedback compared to controls (t(32)=− 2.284; p= .029; d
= .820), but did not differ from controls for learning from positive
feedback (t(32)= 1.778; p= .095; d = .734). For immediate feedback
patients scored lower than controls for positive feedback learning (t
(34)= 3.469; p= .004; d =1.512), but did not differ from controls for
negative feedback learning (t(34)= .211; p= .834; d = .074). As can
be seen in Fig. 3 (left) these comparisons are also affected by the gen-
erally lower performance of patients for immediate feedback learning.

4. Discussion

In this study, PD patients OFF DA replacement medication and
healthy controls completed a probabilistic selection task that aimed to
test the participant's preference for learning from positive or negative
feedback (Frank et al., 2004). Importantly, half of the participants

received immediate feedback (800ms after stimulus choice), while the
other half received feedback after a temporal delay (6800ms after sti-
mulus choice). The aim was to explore whether the effect of a reduced
DA level in PD patients on choice preference is modulated by feedback
delay.

While there were no differences between PD patients and controls or
between feedback timing conditions for the acquisition of stimulus-re-
sponse-outcome associations in the learning phase, participants’ choices
during the transfer phase revealed two different findings. First, PD
patients performed generally worse than controls when feedback had
previously been provided immediately, but not when it had been de-
layed. Second, concerning the relative bias for learning from negative
or positive feedback and thus the main focus of the present study, PD
patients generally scored higher for negative learning irrespective of
feedback timing, while healthy controls showed the opposite bias.
Separate analyses for the two Feedback Timing conditions revealed that
the relative preference for learning from positive or negative feedback
differed between patients and controls for both immediate and delayed
feedback. This finding was further corroborated by a Bayesian analysis
showing that the data strongly support a model in which only the Group
factor (PD patients versus controls), and thus the DA level, affects the
difference score between positive and negative feedback learning over a
model including Feedback Timing and, importantly, over a model in-
cluding the interaction between the factors.

The first finding of generally impaired performance in PD patients
OFF medication for associations learned via immediate but not for those
learned via delayed feedback is in line with and partially replicates
findings from previous studies obtained in PD patients ON and OFF
medication with similar feedback learning tasks (Foerde et al., 2013;
Foerde and Shohamy, 2011). We found this general performance deficit
in the transfer phase where no feedback was given. Interestingly, the
deficits in the samples studied by Foerde and Shohamy (2011) and
Foerde et al. (2013) were also seen in trials without feedback. However,
the stimulus pairs that were presented in these trials were the same as
during learning, whereas the transfer phase in the present study en-
tailed new stimulus pairs and thus required the transfer of the learned
associations.

The general difference between immediate and delayed feedback
has been explained with differential roles of hippocampus and dorsal
striatum in learning from delayed and immediate feedback, respec-
tively. The importance of the hippocampus for delayed feedback
learning has been shown by both imaging and patient evidence (Foerde
et al., 2013; Foerde and Shohamy, 2011). It is thus conceivable that the
PD patients of the present study rather used their intact MTL structures
for learning from delayed feedback to reach a performance level as high
as the one in control participants. The DA system with its projections to
striatum and ACC might thus not be involved in delayed feedback
processing.

On the other hand, the results of the present study raise doubts as to
whether the mechanisms for learning from immediate and delayed
feedback can be separated completely. If the postulated differential DA
influence on learning from positive and negative feedback, and thus the
influence on striatal information processing (Frank, 2005; Frank et al.,
2004; Moustafa and Sherman, 2008; Samson and Frank, 2010), was
only present for learning from immediate feedback, a different learning
bias compared to healthy controls induced by a lack of DA should not
be seen in PD patients OFF medication for delayed feedback. In our
study, however, the relative preference for learning from positive or
negative feedback differed between patients and controls for both
learning from immediate and delayed feedback. This suggests that DA is
involved also in learning from delayed feedback. The only difference
between feedback timing conditions was that PD patients showed a
significant negative bias for immediate feedback, which was absent in
controls, whereas for delayed feedback no significant bias was found for
the patients, but a positive bias was seen in controls. The latter finding
is likely related to a general positivity effect during healthy aging
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(Mather and Carstensen, 2005). Starting approximately at the age of 50
years, healthy older subjects pay more attention to and show better
memory for information with a positive valence. In the context of
feedback learning, the positivity effect may play a role especially when
the DA influence is reduced (Mammarella et al., 2016), as for example
in observational learning (Bellebaum et al., 2011; Kobza et al., 2012) or
in learning from delayed feedback, as in the present study. This appears
plausible because the positivity effect appears rather declarative in
nature (Lind and Visentini, 2017; Mather and Carstensen, 2005), and
for delayed feedback processing a stronger role of the hippocampus and
thus of declarative memory processes has been proposed than for im-
mediate feedback (Foerde and Shohamy, 2011). Thus, the positive
learning bias in healthy controls for delayed feedback might be con-
sidered as a different baseline, against which the patients’ performance
has to be compared. The striatal influence on learning from delayed
feedback then appears to be still strong enough to strengthen negative
learning, which is reflected in the higher scores for learning from ne-
gative delayed feedback for patients than controls, corroborating the
similarity to learning from immediate feedback.

Similarities between immediate and delayed feedback processing
have also been described in other studies. In their fMRI study, Foerde
and Shohamy (2011) found that feedback-locked activations in the
ventral striatum did not differ between immediate and delayed feed-
back. In EEG studies it has repeatedly been observed that the FRN is
reduced, but not absent during delayed feedback processing (Arbel
et al., 2017; Peterburs et al., 2016; Weismüller and Bellebaum, 2016,
but see Weinberg et al., 2012 for a different pattern). Moreover, in one
study a modulation of the FRN by expectancy was found for both im-
mediate and delayed feedback (Weismüller and Bellebaum, 2016), an
effect, which has previously been linked to an influence of the DA
system on feedback processing (Bellebaum and Daum, 2008; Hajcak,
Moser, Holroyd, and Simons, 2007; Holroyd and Krigolson, 2007,
2009). One potential mechanism for a cooperation between the DA
system/striatum and the hippocampus (Dickerson and Delgado, 2015;
Dickerson et al., 2011) might relate to DA innervations of the hippo-
campus (Otmakhova and Lisman, 1998). DA release has been shown to
facilitate hippocampal plasticity and episodic memory formation in-
fluencing adaptive behaviour based on past experiences (Shohamy and
Adcock, 2010). The hippocampus might thus enable participants to link
outcomes, processed by DA neurons, to actions across a temporal gap.

It has to be noted that some researchers have provided a different
interpretation of the performance in the probabilistic selection task. In
particular, it has been criticised that action selection rather than posi-
tive vs. negative feedback learning is tested, and that DA affects more
the former than the latter (Shiner et al., 2012). Although this view does
not necessarily exclude DA effects on learning, it postulates that the DA
level during the transfer phase primarily determines the performance in
the task: A lack of DA leads to stronger avoidance of actions that have
been associated with negative feedback before, and a DA overdose leads
to a stronger selection of actions that have been associated with positive
feedback. Indeed, Shiner et al. (2012) reported a bias for choosing
beneficial stimuli only in patients ON medication during the transfer
phase, with no effect of the DA level during learning. In a related study,
Smittenaar et al. (2012) assigned the valence to the outcome stimuli
only when the transfer phase began and also found evidence for a role
of DA on action selection. These findings are in line with a growing
body of evidence stating that DA is involved in representing rewarded
actions (e.g. Guitart-Masip et al., 2012; for a review see Guitart-Masip
and Duzel, 2014).

On the other hand, it seems unlikely that the findings by Frank et al.
(2004, 2007); and by our group (Kobza et al., 2012 and in the present
study) on choice biases in PD patients can be fully explained in terms of
a DA influence on action selection. First, the study by Smittenaar et al.
(2012) found a bias for choosing beneficial stimuli in patients ON
medication and not in controls, while the interaction between valence
and medication (ON versus OFF) only approached significance. Second,

convincing data on the effect of a lack of DA on action selection are still
missing. While effects of a lack of DA on learning and action selection
could not be disentangled due to the study design in the study by Shiner
et al. (2012), they, as well as Smittenaar et al. (2012), did not find a
significant effect on the choice bias in patients that were OFF medica-
tion during the transfer phase.

At the same time, the view of a critical role of DA in learning is
supported by a great amount of animal studies (e.g. Andrzejewski et al.,
2005; Clarke and Hill, 2011; Costa and Tran, 2015; Flagel et al., 2011;
for review see Averbeck and Costa, 2017) and behavioural studies
providing evidence for deficits in feedback learning in PD patients
(Cools and Altamirano, 2006; Knowlton and Mangels, 1996; Myers
et al., 2003). Finally, by applying the probabilistic selection task, our
group found differences between groups of PD patients OFF medication
concerning the positive/negative learning bias depending on how the
patients learned during acquisition (actively or by observation, Kobza
et al., 2012). This finding cannot be explained in terms of action se-
lection. It is important to point out, however, that potential roles of DA
in learning and action selection are not mutually exclusive and that
potential interactions between the two effects need to be studied fur-
ther.

Another potential problem for the interpretation of the present
findings may be that patients and controls may have differed also in
other factors as the lack of DA. It is known that PD also affects other
neurotransmitter systems, as for example serotonin (Jellinger, 1991;
Politis and Niccolini, 2015). Considering, for example, that PD patients
frequently exhibit signs of depression (Marsh, 2013), a screening for
depressive symptoms was performed. The screening revealed that the
patients did not exhibit elevated depression scores. Nevertheless, an
influence of a negative affective bias on the choice behaviour (Lemke
et al., 2004; Thoma and Norra, 2015) can be widely, but not completely
ruled out, as the patients were not systematically examined for psy-
chiatric disorders.

Likewise, PD patients often exhibit different types of cognitive
deficits. While a screening for signs of dementia did not reveal general
cognitive impairments in our sample of patients, more specific pro-
blems such as executive dysfunctions were not tested and might have
affected performance. Executive dysfunction might particularly affect
their ability to transfer knowledge to a new task and thus the PD pa-
tients’ performance during the transfer phase in this study. However,
the current patient sample was not generally impaired in transfer phase
performance, weakening this hypothesis.

Finally, it is conceivable that the sample size in the present study
was too small to detect differences in the learning bias in patients and
controls for immediate and delayed feedback. However, in previous
studies samples of comparable size were tested, and in one study by our
group we detected differential effects of DA depletion on the learning
bias in two different types of learning (active vs. observational; Kobza
et al., 2012). As was described in the Results section, the power for
detecting a three-way interaction with the effect size of the study by
Kobza et al. (2012) and the sample size of our study amounted to more
than .8 and was thus quite high. Nevertheless, it cannot be excluded
that with a larger sample the slight differences underlying the patterns
of the two-way interactions between participants learning from im-
mediate and delayed feedback would have resulted in a significant
three-way interaction. Notwithstanding, the fact that significant two-
way interactions between Learning Type (positive and negative) and
Group (PD vs. controls) emerged for both feedback timing conditions
separately shows that a bias towards stronger negative learning relative
to control subjects is induced by a lack of DA for both immediate and
delayed feedback.

In conclusion, the present study extends previous research on al-
tered feedback learning in PD patients OFF medication when feedback
is given immediately after a choice action (Frank et al., 2004, 2007;
Kobza et al., 2012) by providing new evidence for a similar change
when feedback is given after a short delay. For both feedback timings,
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PD patients showed a different bias for positive/negative learning
compared to healthy controls, with a stronger tendency towards ne-
gative learning. In those patients who learned from delayed feedback,
this change in bias was seen despite overall spared learning perfor-
mance, hinting at a nigro-striatal DA contribution to feedback learning,
which affects how subjects learn from feedback, even if there is a
temporal gap between action and outcome. Although it cannot be ex-
cluded that DA effects on action selection (Guitart-Masip et al., 2012,
2014; Shiner et al., 2012; Smittenaar et al., 2012) contributed to the
present findings, our interpretation in terms of reduced but still mea-
surable DA effects on delayed feedback learning is in line with many
recent studies.
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Expectancy affects the feedback-related negativity (FRN) for

delayed feedback in probabilistic learning
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Abstract

Learning from feedback is a prerequisite for adapting to the environment. Prediction error signals coded by midbrain

dopamine (DA) neurons are projected to the basal ganglia and anterior cingulate cortex (ACC). It has been suggested

that neuronal activity shifts away from the DA system when feedback is delayed. The feedback-related negativity

(FRN), an ERP that is generated in the ACC and has been shown to be sensitive to feedback valence and prediction

error magnitude, was found to be reduced for delayed feedback. It has, however, not yet been investigated if the FRN

for delayed feedback reflects a reward prediction error. In this study, effects of feedback delay (1 s vs. 7 s) on the

processing of expected and unexpected positive and negative feedback were investigated in a between-subjects design

in healthy human participants conducting a probabilistic feedback learning task. FRN and P300 amplitudes were

decreased for subjects learning from delayed compared to immediate feedback. Importantly, the FRN, extracted from

the negative-positive feedback difference wave, was significantly smaller for expected compared to unexpected

feedback for both the immediate and delayed feedback conditions. Expectancy effects for the P300 were also seen, but

did not interact with feedback valence. These results demonstrate an influence of feedback expectancy, and thus the

prediction error, on early feedback processing even for delayed feedback, suggesting that neuronal structures

underlying feedback processing are comparable for immediate and delayed feedback, at least to some extent.

Modulations of the P300 by feedback delay may be linked to feedback salience.

Descriptors: EEG, Performance monitoring, Learning, Feedback delay, Expectancy, FRN

Humans face decisions on how to act or behave every day. These

decisions can result in positive or negative consequences such as

reward or punishment, which can serve as feedback to guide future

action selection in order to receive maximal positive outcome.

Animal studies showed that the dopamine (DA) system is criti-

cally involved in feedback-based learning. Phasic bursts and dips

of midbrain DA neuron firing are associated with unexpected posi-

tive and negative feedback, respectively (Bayer & Glimcher, 2005;

Schultz, 1997, 1998, 2000; Schultz, Dayan, & Montague, 1997),

and enable the basal ganglia, which receive DA projections

(B�edard, Larochelle, Parent, & Poirier, 1969; Lavoie, Smith, &

Parent, 1989; Lynd-Balta & Haber, 1994) to evaluate ongoing

events (Barto, 1995; Montague, Dayan, & Sejnowski, 1996; for

review, see Schultz, 2002). Furthermore, DA neurons project to the

striatum and frontal cortex including the anterior cingulate cortex

(ACC; Leh�ericy et al., 2004; see Haber & Fudge, 1997), which is

thus also involved in reward processing (e.g., Delgado, 2007;

Delgado, Locke, Stenger, & Fiez, 2003; for review, see Knutson &

Cooper, 2005; McClure, Berns, & Montague, 2003; O’Doherty

et al., 2004).

ERP studies have associated the so-called feedback-related neg-

ativity (FRN) with processing in the ACC (Bellebaum & Daum,

2008; Gehring & Willoughby, 2002; Holroyd & Coles, 2002; for

review, see Nieuwenhuis, Holroyd, Mol, & Coles, 2004; Walsh &

Anderson, 2012). The FRN is an ERP component that peaks at

about 250 ms postfeedback and is typically larger for negative

compared to positive feedback (Gehring & Willoughby, 2002; Haj-

cak, Moser, Holroyd, & Simons, 2006; Hajcak, Moser, Yeung, &

Simons, 2005; Holroyd & Coles, 2002; Holroyd, Hajcak, & Larsen,

2006; Holroyd & Krigolson, 2007; Miltner, Braun, & Coles, 1997;

for review, see Simons, 2010; Walsh & Anderson, 2012). In accor-

dance with the reinforcement learning (RL) theory (Holroyd &

Coles, 2002) and with the mentioned DA inputs to the ACC, the

FRN appears to reflect reward expectancy and thus prediction

errors. While some researchers found evidence for generally higher

amplitudes for unexpected compared to expected negative and pos-

itive feedback (e.g., Ferdinand, Mecklinger, Kray, & Gehring,

2012; Oliveira, McDonald, & Goodman, 2007), others focused on

expectancy effects on the difference FRN, that is, the amplitude

difference between negative and positive feedback (e.g., Hajcak,

Moser, Holroyd, & Simons, 2007; Holroyd & Coles, 2002; Hol-

royd & Krigolson, 2007; Yasuda, Sato, Miyawaki, Kumano, &
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Kuboki, 2004). Some earlier studies had yielded contradictory find-

ings, without effects of reward expectation on the difference FRN

(Hajcak, Holroyd, Moser, & Simons, 2005; see also Donkers, Nieu-

wenhuis, & van Boxtel, 2005; Larson, Kelly, Stigge-Kaufman,

Schmalfuss, & Perlstein, 2007; for discussion, see Holroyd, Krigol-

son, Baker, Lee, & Gibson, 2009; for review, see Walsh & Ander-

son, 2012). In this context, Hajcak et al. (2007) pointed out that the

participants’ subjective reward expectation needs to be taken into

account and that the variation of objective reward probability does

not necessarily suffice in inducing different reward expectations.

Another important factor contributing to feedback processing is

whether feedback can actually be used to optimize behavior (Hol-

royd et al., 2009). Effects of feedback expectancy are stronger in

learning tasks than in gambling tasks in which the relative frequen-

cy of positive and negative feedback is predetermined.

Most ERP studies on feedback processing have used immediate

feedback or at least very short response feedback intervals of 1 s or

less (e.g., Bellebaum & Daum, 2008; Ferdinand et al., 2012; Haj-

cak, Holroyd, et al., 2005; Hajcak et al., 2007; Holroyd & Coles,

2002; Holroyd et al., 2009). Findings from an fMRI study (Foerde

& Shohamy, 2011) suggested distinct neuronal mechanisms for the

processing of immediate and delayed feedback. While prediction

error processing for immediate feedback (delay of 1 s) recruited the

dorsal striatum more strongly than for delayed feedback (7 s), the

opposite pattern was found in the hippocampus (HC), where the

prediction error for delayed feedback was more strongly repre-

sented. These findings were confirmed by evidence obtained in

brain-damaged patients (Foerde, Race, Verfaellie, & Shohamy,

2013; Foerde & Shohamy, 2011). Parkinson patients suffering

from striatal dysfunction were impaired in learning from immediate

but not from delayed feedback, while patients with amnesia and

suspected HC damage showed the opposite pattern. Foerde and

Shohamy (2011) and Foerde et al. (2013) proposed that the HC

may bind related elements across time and is therefore recruited

when feedback is delayed. The medial temporal lobe (MTL), in

particular the HC, has been associated with declarative learning,

while the striatum is thought to underlie nondeclarative feedback-

based learning (Knowlton, Mangels, & Squire, 1996; Sherry &

Schacter, 1987; Squire, 1992; Squire & Zola, 1996). These distinct

systems have been suggested to interact in a competitive manner

(e.g., Poldrack et al., 2001; Poldrack & Packard, 2003), but recent

studies provided evidence for parallel contributions of both systems

during learning (Dickerson & Delgado, 2015; Dickerson, Li, &

Delgado, 2011).

Only few studies examined the effect of different delays on

ERP correlates of feedback processing. The difference FRN ampli-

tude has been demonstrated to be diminished for delayed compared

to immediate feedback (Opitz, Ferdinand, & Mecklinger, 2011;

Peterburs, Kobza, & Bellebaum, 2015; Weinberg, Luhmann, Bress,

& Hajcak, 2012; but see Wang, Chen, Lei, & Li, 2014, for a nega-

tive finding), whereby it is important to note that the experimental

procedures and the delays used varied considerably between stud-

ies. This finding is compatible with the above described evidence

on stronger involvement of the striatum for immediate than delayed

feedback, as DA projections target both the striatum and the ACC.

Furthermore, this is in line with recent studies linking the FRN to

processing in the striatum (Becker, Nitsch, Miltner, & Straube,

2014; Foti, Weinberg, Dien, & Hajcak, 2011). However, as was

demonstrated by our group, the difference FRN is not absent during

delayed feedback processing (Peterburs et al., 2015). At the same

time, a close look at the fMRI findings by Foerde and Shohamy

(2011) reveals that both immediate and delayed feedback

processing recruit the ventral striatum. Thus, the striatal/ACC sys-

tem might also be involved in delayed feedback processing. At the

same time, DA innervation can also be found in the HC where it

influences hippocampal plasticity (Otmakhova & Lisman, 1998;

Shohamy & Adcock, 2010), suggesting that prediction error-

related information in the HC, as in the striatum, originates in DA

neurons. Together, these findings indicate that the processing

mechanisms may be comparable for immediate and delayed feed-

back to some extent, so that the FRN for delayed feedback may

also be modulated by the prediction error, as for immediate feed-

back. Effects of reward expectancy and thus the prediction error on

the FRN following delayed feedback have, however, not been

examined to date.

A recent study also found an influence of feedback delay on the

P300 amplitude. The P300 is associated with attentional resource

allocation, being larger for unexpected compared to expected target

stimuli (Duncan-Johnson & Donchin, 1977; for review, see Polich,

2007), including performance feedback (Bellebaum & Daum,

2008). However, the influence of feedback delay is still under

debate. Opitz et al. (2011) reported an increased P300 for delayed

compared to immediate negative feedback, while Wang et al.

(2014) reported the opposite pattern.

This study aimed to shed light onto the influence of feedback

expectancy on the processing of delayed feedback by means of

ERPs in healthy human subjects. Two groups of participants per-

formed a probabilistic learning task, one with immediate and the

other with delayed feedback. To induce different reward expecta-

tions, subjects could choose between stimuli with different objec-

tive reward probabilities. In addition, subjective reward

expectations were assessed on a trial-to-trial basis in order to con-

firm that the different objective reward probabilities resulted in dif-

ferent subjective estimations of reward probabilities. In a first step,

we wanted to confirm the previous finding that delayed feedback

elicits smaller amplitudes of the difference FRN than immediate

feedback. We then hypothesized that, despite the amplitude reduc-

tion, difference FRN amplitudes would be larger for unexpected

than expected delayed feedback. Furthermore, effects of feedback

delay and expectancy on the P300 were analyzed.

Method

Study Participants

Fifty students of the Heinrich-Heine University D€usseldorf were

recruited and randomly assigned to one of two groups, the immedi-

ate and the delayed feedback group (see below for details). Mean

age of the 25 participants in the immediate feedback group was

24.5 years (range 19–38, SD 5 4.3; 10 males, 15 females). In the

25 participants of the delayed feedback group, mean age was 24.8

years (range 18–35, SD 5 5.1; 10 males, 15 females). Exclusion

criteria were self-reported history of psychiatric or neurological

disorders, traumatic brain injury with sustained unconsciousness in

the past, and consumption of alcohol or psychodynamic drugs with-

in the last 24 h or on a regular basis. All participants had normal or

corrected-to-normal vision. The study was approved by the Ethics

Committee of the Faculty of Mathematics and Natural Sciences at

Heinrich-Heine University D€usseldorf and was in accordance with

the Declaration of Helsinki. Study participants were recruited by

advertisement. They participated voluntarily and gave informed

written consent before taking part in the experiment. Financial

reimbursement or course credit was offered for participation in

addition to monetary reward from the learning task (see below).
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Probabilistic Learning Task

Participants in the learning task were instructed (a) to try to receive

as much money as possible in the form of monetary reward for

choices between different symbols, and (b) to indicate their subjec-

tive reward probability for each choice. On each trial, participants

were asked to choose one of two visual stimuli presented on the

left and right side of the screen by pressing a button in order to

receive monetary feedback, that is, reward (120¢) or punishment

(210¢). By using a higher positive than negative feedback value,

we ensured that participants always received a net gain at the end

of the experiment. Furthermore, it has been shown that losses are

subjectively weighed about twice as high as gains (Kahneman,

Knetsch, & Thaler, 1991; Tversky & Kahneman, 1991). Five dif-

ferent Japanese symbols served as stimuli, presented in all 10 possi-

ble pair combinations, with the assignment of stimuli to the left and

right side of the screen being counterbalanced for each pair.

Unknown to the participant, symbol-locked reward probabilities

were 0%, 20%, 40%, 60%, and 80% (referred to as objective

reward probabilities in the following). These symbol-specific prob-

abilities were kept constant throughout the experiment. Choices

had to be made within 3,500 ms after symbol presentation, and a

red circle around the chosen symbol indicated the participant’s

choice (see Figure 1 for details on the sequence of events in one tri-

al and for the stimuli).

In addition, a scale ranging from 0 to 100% was presented

between the symbols in the middle of the screen. With the help of

this scale, participants were asked to indicate their subjective

reward expectation when they made their choice (referred to as

subjective probability, see above). The scale was manipulated by

holding the button the participants pressed to choose a symbol. As

the process of indicating the subjective reward probability took

some time (maximally 1,600 ms), the scale either started at 0% and

could be moved toward 100% by holding the button (scale up), or

it started at 100% and holding moved it toward 0% (scale down) to

exclude a confound of delay (between button press onset and feed-

back) and subjective probability. After releasing the button, the

scale froze for 500 ms indicating the participants’ choice and their

final subjective reward expectation (i.e., the value at which the bar

stopped when the participant stopped holding the button). Then, a

fixation cross was presented until the positive or negative feedback

stimulus came on. Importantly, this feedback was presented after

an additional 500 ms in the immediate feedback condition and after

6,500 ms in the delayed feedback condition. This sums up to 1-s

feedback delay (from button press offset) in the immediate and 7-s

delay in the delayed feedback condition. Each participant complet-

ed only one version of the experiment (with immediate or delayed

feedback).

In total, participants completed five blocks. The number of

blocks with a rising or decreasing subjective probability scale (two

or three of each type) was varied across participants. Each block

included 100 trials, 10 for each of the 10 symbol pairs. Between

the blocks, participants were allowed to have short breaks. In the

immediate condition, one block took approx. 8–9 min. In the

delayed condition, a block took approximately 18–20 min. After

the experiment, participants received the sum of money they earned

during their most successful block, which amounted to maximally

8e. To increase motivation throughout the experiment, participants

were instructed at the beginning that their performance would

result in real monetary reward and that they would be paid out the

sum of their most successful block.

Procedure

Before EEG recording, a structured interview was conducted with

each participant in which demographic data, medication, and previ-

ous illnesses were assessed. For the EEG session, participants were

comfortably seated about 60 cm away from a computer screen of

24-inch diagonal dimension (ASUS VG248QE Full HD). They

were asked to not move, to relax, and to avoid blinks as far as

Figure 1. A: Time course of events in a single learning trial. When participants chose a symbol by pressing a button, they also indicated their subjec-

tive reward probability by holding the button. After that, the fixation cross was presented for either 500 ms in the immediate feedback condition or

for 6,500 ms in the delayed feedback condition. Finally, monetary reward or punishment was presented. B: Symbols and objective reward probabilities

used in the experiment.
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possible. After the task was explained, the participants conducted

10 test trials. Testing started when the task was completely under-

stood and participants were sufficiently trained to handle the sub-

jective probability bar (both the rising and the decreasing variant).

EEG recordings lasted between about 40–45 min in the immediate

condition and 95–100 min in the delayed feedback condition.

EEG Recording

Continuous EEG data were recorded from electrode positions Fz,

F3, F7, F4, F8, FCz, FC3, FC7, FC4, FC8, Cz, C3, C4, CPz, CP3,

CP4, Pz, P3, P7, P4, P8, POz, PO3, PO7, PO4, PO8, T7, T8, and

AFz against nose reference (according to the International 10-20

system) using BrainVision Recorder software, version 2.0 (Brain

Products, Munich, Germany). Vertical eye movements and blinks

were recorded with electrodes above and below the right eye; hori-

zontal eye movements were recorded at electrode sites F9 and F10.

Impedances were below 5 kX. Data were continuously sampled at

1000 Hz.

Data Analysis

Behavioral data. Choice accuracy was derived from the mean

number of correct trials in each block in order to investigate learn-

ing performance. In accordance with the procedure in previous stud-

ies (Bellebaum et al., 2016; Foerde et al., 2013; Frank, Seeberger,

O’Reilly, 2004; Holroyd et al., 2009; Knowlton et al., 1996), a

choice was considered correct when participants chose the symbol

with the higher reward probability (irrespective of the feedback they

actually received on that trial). The number of correct responses

was pooled across all trial types and averaged for each block.

ERPs. EEG data were analyzed offline by means of BrainVision

Analyzer software, version 2.0 (Brain Products) and MATLAB

R2013a (MathWorks, Natick, MA). Data were 40 Hz low-pass and

0.5 Hz high-pass filtered. In a first step, data were segmented from

250 ms before to 2,250 ms after feedback stimulus onset and base-

line corrected using the mean amplitude in the 250 ms preceding

feedback stimulus onset. In order to prepare the data for ocular cor-

rection (see below), automatic artifact rejection excluded any

epochs with data points exceeding an absolute amplitude value of

150 lV or exceeding an amplitude difference of 200 lV between

the lowest and the highest data point, ignoring frontal and fronto-

central electrode sites. The data of all electrodes in the remaining

segments were corrected for eye movement and blink artifacts

using the algorithm described by Gratton, Coles, and Donchin

(1983). Data then were segmented from 200 ms before to 800 ms

after feedback stimulus onset for each experimental condition,

which were defined based on the combination of the chosen sym-

bols’ objective reward probability and feedback valence. Trials in

which participants chose stimuli with a relatively high objective

reward probability of 60% or 80% were pooled, as well as trials in

which participants chose low reward probability stimuli (20% or

40%). The stimuli with 0% reward probability (see above) were

important, as they made participants also choose the stimulus with

the very low reward probability of 20%, when the two stimuli were

paired. Rewarded choices of stimuli with a high reward probability

were considered as expected positive feedback, whereas unreward-

ed choices of such stimuli were considered to yield unexpected

negative feedback. Accordingly, rewarded choices of stimuli with

low reward probability yielded unexpected positive feedback,

whereas unrewarded choices led to expected negative feedback.

Note that, due to the combination of all potential reward probabili-

ties, choices of stimuli with 20% or 40% reward probability could

reflect correct responses, for example, when these stimuli were pre-

sented together with a 0% reward probability stimulus. After anoth-

er baseline correction relative to the 200-ms baseline interval,

segments containing data points exceeding an absolute amplitude

value of 100 lV or in which the amplitude difference between the

highest and lowest data point exceeded 100 lV were excluded

(Table 1 lists the mean absolute numbers of included and rejected

trials). Finally, average ERPs were computed for each of the four

conditions (expected and unexpected positive and negative

feedback).

According to the definition of the conditions, participants

expected certain types of outcomes more or less strongly. This

notion is only true for those subjects who have gained insight into

reward probabilities of the different stimuli. We therefore expected

to find effects of reward probability (and thus feedback expectancy)

only in those participants who reached a certain learning criterion.

Participants were considered as learners if they reached a choice

accuracy of at least 65% per block (pooled across all trial types) and

were able to keep up this level on average in at least two consecutive

blocks. In these subjects, only those trials were considered for the

analysis after the criterion was reached (see online supporting infor-

mation for a qualitative comparison with data of the nonlearners).

In line with the previous literature on delay effects (Peterburs

et al., 2015; Wang et al., 2014; Weinberg et al., 2012), we focused on

the punishment– reward difference waves in our FRN analysis, which

were computed separately for expected and unexpected outcomes.

For each participant, the FRN amplitude was defined as the maxi-

mum negative peak in the difference wave in the 180–350 ms time

window after feedback onset at electrode site FCz. This electrode

was chosen because topographic maps of difference wave amplitudes

showed that the difference FRN was very pronounced over frontocen-

tral cortex for both immediate and delayed feedback (see Results).

For the P300 amplitude, visual inspection suggested that the

latency of the component differed between conditions. At the same

time, individual subjects’ ERPs did not always show clear peak

amplitudes. We thus decided to use a mean amplitude approach

based on the peaks of the grand averages of the different

Table 1. Mean Number of Trials Averaged and Rejected Trials for Each Feedback Condition

Learning condition

High expectancy Low expectancy

Positive Negative Positive Negative

Immediate feedback Trials in averages 165.32 (44.17) 82.67 (21.38) 40.11 (12.35) 60.26 (19.76)
Rejected trials 17.05 (28.87) 9.58 (15.09) 4.05 (6.51) 7.32 (10.45)

Delayed feedback Trials in averages 159.00 (48.19) 78.53 (25.82) 38.06 (10.49) 63.06 (24.02)
Rejected trials 6.29 (8.14) 2.18 (3.30) 0.82 (1.42) 2.64 (4.12)

Note. Standard deviations appear in parentheses.
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conditions. For each timing and feedback valence condition, we

extracted the maximum positive peak of the grand average in the

time window between 325 and 525 ms after stimulus onset in a first

step. Then, each participant’s mean amplitude in a 100-ms time

window centered around the respective grand average peak was

extracted for every experimental condition. The P300 was analyzed

at FCz and Pz electrode sites.

Statistical analyses. Statistical analyses were performed with

SPSS Statistics 23 (IBM, Armonk, NY). Choice accuracy was ana-

lyzed with an analysis of variance (ANOVA) with block (1 to 5) as

within-subject factor and feedback timing (immediate vs. delay) as

between-subjects factor.

Delay effects on FRN peak amplitudes and latencies were ana-

lyzed by means of an ANOVA with the within-subject factor

expectancy (low vs. high) and the between-subjects factor feedback

timing (immediate vs. delayed). P300 amplitudes were analyzed by

an ANOVA with the within-subject factors expectancy (low vs.

high), valence (positive vs. negative), and electrode (FCz vs. Pz)

and the between-subjects factor feedback timing (immediate vs.

delayed). For all analyses, Greenhouse-Geisser correction was per-

formed when sphericity was violated. An alpha level of p< .05

(two-sided) was accepted as statistically significant.

Results

Behavioral Data

Figure 2 shows the choice accuracy, pooled across trial types, in

percent across blocks. Statistical analysis of choice accuracy

revealed a significant main effect of block, F(4,192) 5 12.444;

p< .001; gp
2 5 .206. The ANOVA revealed neither a significant

effect of feedback timing, F(1,48) 5 1.227; p 5 .273; gp
2 5 .025,

nor a significant interaction between block and feedback timing,

F(4,192) 5 1.763; p 5 .160; gp
2 5 .035, demonstrating that partici-

pants of both groups learned to choose the stimuli with higher

reward probability similarly well. Controlling for multiple compar-

isons, post hoc paired t tests for the block main effect revealed that

accuracy scores were significantly higher for Blocks 3, 4, and 5

than Block 1 (all t(49)<22.670; all p< .001). Furthermore, accu-

racy was higher in Block 5 than Block 2, t(49) 5 23.201; p 5 .002.

Figure 2. Choice accuracy (i.e., number of correct responses), pooled across

trial types, in percent across blocks (error bars indicate standard errors).

Figure 3. Feedback-locked grand-averaged ERPs for positive feedback, negative feedback, and the negative-positive difference wave at FCz. Dotted

vertical lines indicate the time window used to extract FRN peaks.
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ERP Data

Fourteen participants (six in the immediate and eight in the delayed

feedback timing condition) were excluded because they did not

reach the learning criterion. The final sample for EEG analysis thus

consisted of 19 participants in the immediate (mean age 24.3, range

19–38, SD 5 4.6; 8 males, 9 females) and 17 participants in the

delayed condition (mean age 25.2, range 18–35, SD 5 4.7; 8 males,

11 females).

FRN. Figure 3 shows feedback-locked ERPs and difference waves

in both experimental groups. Figure 4 shows topographic maps for

the difference FRN amplitudes in the unexpected feedback condition

for both immediate and delayed feedback. As can be seen, the region

of the largest relative negativity for negative feedback includes

(fronto)central scalp sites for both delay conditions. Table 2 lists the

mean amplitudes of the difference FRN. These were significantly

higher in the unexpected than expected feedback condition,

F(1,34) 5 28.425; p< .001; gp
2 5 .455. Furthermore, difference

FRN amplitudes were generally higher for the immediate feedback

compared to the delayed feedback condition, F(1,34) 5 6.322;

p 5 .017; gp
2 5 .157. No significant interaction of Expectancy 3

Feedback Timing was found, F(1,34) 5 0.121; p 5 .731; gp
2 5 .004.

To examine if the effect of expectancy was significant in the two

groups (and thus feedback timing conditions) separately, exploratory

paired t tests were conducted. Difference FRN amplitudes were sig-

nificantly higher for unexpected compared to expected feedback in

both the immediate feedback condition, t(18) 5 23.385; p 5 .003,

and delayed feedback condition, t(16) 5 24.280; p 5 .001.

Table 3 lists mean difference FRN latencies. Statistical analysis

revealed neither a main effect of expectancy, F(1,34) 5 2.114;

p 5 .155; gp
2 5 .059, nor of feedback timing, F(1,34) 5 0.045;

p 5 .834; gp
2 5 .001. No interaction was found between expectancy

and feedback timing, F(1,34) 5 0.063; p 5 .804; gp
2 5 .002.

To investigate whether the expectancy effect on the difference

FRN amplitude was caused by the processing of positive or nega-

tive feedback or both, we extracted mean amplitudes of the original

waveforms from 20-ms time windows centered around each indi-

vidual subject’s difference FRN peak latency in the expected and

unexpected feedback conditions. If, for example, one particular

subject had a difference FRN peak latency of 250 ms in the unex-

pected feedback condition, mean amplitudes between 240 and 260

ms were extracted for unexpected positive and negative feedback,

respectively. The resulting mean amplitudes were analyzed in a 2

3 2 3 2 repeated measures ANOVA, again with feedback timing

(immediate vs. delayed) as a between-subjects factor and feedback

expectancy (expected vs. unexpected) as within-subject factor and

the additional within-subject factor feedback valence (positive vs.

negative). In accordance with the results of the difference wave

analysis, we found a significant interaction of feedback valence

and expectancy, F(1,34) 5 20.704; p< .001; gp
2 5 .378, which was

also significant in each feedback timing condition separately (for

immediate feedback, F(1,18) 5 7.879; p 5 .012; gp
2 5 .304; for

delayed feedback, F(1,16) 5 15.387; p 5 .001; gp
2 5 .490). The

resolution of these interactions showed that the amplitudes were

higher for unexpected positive compared to expected positive feed-

back in the whole group of participants, t(35) 5 3.538; p 5 .001, as

well as in each group separately (immediate feedback,

Figure 4. Topographic maps of the scalp distribution of the difference

FRN peak for unexpected outcomes in the immediate and delayed feed-

back conditions.

Table 2. FRN Difference Wave Amplitudes in mV

Learning condition High expectancy Low expectancy

Immediate feedback 24.08 (3.23) 26.28 (3.61)
Delayed feedback 21.84 (1.27) 24.34 (2.37)

Note. Standard deviations appear in parentheses.

Table 3. FRN Peak Latencies in ms

Learning condition High expectancy Low expectancy

Immediate feedback 281 (42) 292 (35)
Delayed feedback 281 (48) 297 (42)

Note. Standard deviations appear in parentheses.
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t(18) 5 2.344; p 5 .031; delayed feedback, t(16) 5 2.596;

p 5 .019). For negative feedback, however, no significant differ-

ences were found between the amplitudes for unexpected and

expected feedback for the total group of participants,

t(35) 5 20.615; p 5 .543, or the feedback timing conditions sepa-

rately (immediate feedback, t(18) 5 20.555, p 5 .586; delayed

feedback, t(16) 5 20.275; p 5 .787).

As outlined above, the different expectancy conditions were

based on participant’s choices of stimuli with different objective

reward probabilities. As task difficulty was unequally distributed

across the symbol combinations, a potential confound between

expectancy and difficulty could not be excluded. We thus reana-

lyzed the data, excluding easy symbol pairs that combine high and

low reward probabilities (i.e., 80% vs. 0%, 80% vs. 20%, 60% vs.

0%, and 60% vs. 20%), so that all outcomes entering the analysis

of feedback-locked ERPs now stemmed from choices in difficult

trials (for details, see supporting information). The difference FRN

still showed a clearly higher amplitude for unexpected compared to

expected feedback in both feedback timing conditions. In this anal-

ysis, we could not replicate the effect of feedback delay on the dif-

ference FRN. Generally, this analysis has to be interpreted with

caution, however, as the number of trials entering the analysis

dropped below 15 for several subjects in one or two conditions.

Finally, in order to make sure that the processing differences

between the groups receiving immediate or delayed feedback were

not caused by differences in subjective reward probabilities, mean

subjective probabilities were analyzed for the low and high objec-

tive reward probability conditions, on which the definition of the

ERP conditions was based (i.e., 20–40% vs. 60–80% reward proba-

bility). Figure 5 shows the mean subjective reward probability rat-

ings for the different objective reward probability conditions and in

the two feedback timing groups. Although subjects overestimated

the lower reward probabilities, ANOVA with probability (low vs.

high) as within-subject factor and feedback timing as between-

Figure 5. Subjective reward probability in percent, separately for trials

in which subjects chose stimuli with higher or lower objective reward

probability (error bars indicate standard errors).

Figure 6. Feedback-locked grand-averaged ERPs for positive and negative feedback at Pz. Dotted vertical lines indicate the time window used to

extract P300 peaks.
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subjects factor yielded a significant main effect of probability,

F(1,32) 5 59.848; p< .001; gp
2 5 .652. Subjectively rated reward

probability was indeed higher for stimuli with high compared to

low objective reward probability. Ratings did, however, not signifi-

cantly differ between feedback timing conditions, F(1,32) 5 0.077;

p 5 .783; gp
2 5 .002. Also, no significant interaction of Probability

3 Feedback Timing was found, F(1,32) 5 0.974; p 5 .331;

gp
2 5 .030, suggesting that subjective reward expectations were not

modulated by feedback timing.

P300. Figure 6 shows feedback-locked ERPs at electrode Pz. Table

4 lists the mean values of P300 amplitudes for all experimental

Figure 7. Topographic maps of the scalp distribution of the P300 peak for unexpected outcomes in the immediate and delayed feedback conditions.

Table 4. P300 Peak Amplitudes in mV

Learning condition

High expectancy Low expectancy

Positive Negative Positive Negative

FCz Immediate feedback 10.96 (4.77) 11.99 (3.92) 12.79 (4.62) 12.47 (4.39)
Delayed feedback 7.14 (3.34) 7.60 (4.35) 8.28 (3.73) 6.77 (4.03)

Pz Immediate feedback 11.83 (5.49) 12.74 (4.14) 13.90 (4.27) 12.76 (5.39)
Delayed feedback 11.15 (4.50) 11.02 (5.62) 12.38 (5.32) 9.95 (4.77)

Note. Standard deviations appear in parentheses.
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conditions at electrode sites Pz and FCz. Statistical analysis

revealed main effects of the three factors expectancy, electrode,

and feedback timing: P300 amplitudes were generally higher for

unexpected than for expected feedback, F(1,34) 5 5.576; p 5 .024;

gp
2 5 .141, at electrode site Pz compared to FCz,

F(1,34) 5 27.826; p< .001; gp
2 5 .450, and for immediate com-

pared to delayed feedback, F(1,34) 5 5.421; p 5 .026; gp
2 5 .138.

The main effect of valence was not significant, F(1,34) 5 10.972;

p 5 .376; gp
2 5 .023. Significant interactions were found in Feed-

back Timing 3 Electrode, F(1,34) 5 12.055; p 5 .001; gp
2 5 .262;

Electrode 3 Valence, F(1,34) 5 6.155; p 5 .018; gp
2 5 .153; and

Expectancy 3 Valence, F(1,34) 5 21.309; p< .001; gp
2 5 .385.

No other significant two- or three-way interaction was found (all

ps> .066). The resolution of the first interaction revealed that P300

amplitudes were larger for the immediate than the delayed feed-

back condition at FCz, t(34) 5 23.590; p 5 .001, but not at Pz,

t(34) 5 21.097; p 5 .280. The interaction of Valence 3 Electrode

resulted from a larger amplitude difference between electrode sites

for positive, t(35) 5 24.603; p< .001, than negative feedback,

t(35) 5 23.972; p 5 .001. Finally, concerning the interaction of

Expectancy 3 Valence, we found that P300 amplitudes were sig-

nificantly larger for unexpected positive compared to unexpected

negative feedback, t(35) 5 2.682; p 5 .044, whereas no significant

difference emerged for expected positive and negative feedback,

t(35) 5 1.244; p 5 .888. Figure 7 shows the topographic distribu-

tion of the P300 following unexpected positive and negative feed-

back for both feedback timing conditions. These maps illustrate

both the feedback timing main effect and the interaction of Feed-

back Timing 3 Electrode, with larger amplitude differences

between groups at frontal than at parietal sites.

Discussion

In the present study, ERPs in healthy human participants perform-

ing a probabilistic learning task were analyzed. The aim was to

investigate the influence of feedback expectancy on the processing

of delayed compared to immediate feedback. Participants received

feedback for choices between stimuli with different objective

reward probabilities. Different groups of subjects received the feed-

back either 1 s (immediate condition) or 7 s (delayed condition)

after the offset of the button press that indicated their choice. First,

we could replicate previous findings that difference FRN ampli-

tudes for delayed feedback are smaller compared to immediate

feedback. Furthermore, and in accordance with our hypothesis,

unexpected feedback elicited larger difference FRN amplitudes

than expected feedback in both timing conditions, which was

caused by a modulation of the positive feedback ERPs. Control

analyses conducted on difficult trials only and in nonlearners sup-

port that the FRN modulation was related to expectancy (see sup-

porting information). An expectancy effect could also be seen for

P300 amplitudes. Moreover, P300 amplitudes were found to be

smaller for delayed compared to immediate feedback, especially

over the frontal cortex. Analyses of the behavioral data showed

that the participants learned similarly well from immediate and

delayed feedback. Here, it is important to note that the choice accu-

racy displayed in Figure 2 also comprises data of the nonlearners.

When only the learners are considered, the average values are

higher. Assessment of subjective reward probabilities also did not

yield differences between the delay conditions. The subjective

probabilities were higher than the objective values, especially for

stimuli associated with low reward probabilities, which has been

ascribed to an overoptimistic bias of reward expectation (see Miller

& Ross, 1975; Oliveira et al., 2007; Radhakrishnan, Arrow, &

Sniezek, 1996). Importantly, there was still a significant difference

between high and low objective reward probability conditions,

with reward expectation being higher for the former than the latter.

The present study’s result of higher difference FRN amplitudes

for immediate than delayed feedback corroborated the findings of a

recent ERP study by our group (Peterburs et al., 2015). However,

the overall pattern of results in the literature is mixed. Wang et al.

(2014), for example, reported no differences between the difference

FRN amplitudes following immediate and delayed feedback. In

other studies (Opitz et al, 2011; Weinberg et al., 2012), effects of

feedback delay did occur, but in the study by Weinberg et al.

(2012) only for immediate feedback was an amplitude difference

between negative and positive feedback found, whereas in the

study by Peterburs et al. (2015), as in the present study, amplitudes

differed between negative and positive feedback for different delay

conditions. The type of task used might account for some differ-

ences in findings. Some previous studies (Wang et al., 2014; Wein-

berg et al., 2012) used gambling tasks, and the participants could

not use the feedback to increase the likelihood of receiving positive

outcomes by learning stimulus-outcome mappings. As prediction

error representations in the FRN are particularly strong when

stimulus-outcome associations can be learned (Holroyd et al.,

2009), it is conceivable that the FRN is generally more pronounced

in studies in which learning is possible. Opitz et al. (2011) observed

an FRN decrease for negative feedback processing when compar-

ing delays of 0 and 1 s, showing that short delays already affect

feedback processing.

Applying a conceptually similar learning task as Peterburs et al.

(2015), the present study thus adds to the evidence that delayed

feedback elicits a difference FRN that is reduced in amplitude. As

the ACC has also been linked to motivational processes, one inter-

pretation could be that the reduction for delayed feedback reflects

reduced motivation in the subjects due to the increased waiting

time (Holroyd & Yeung, 2012; Kouneiher, Charron, & Koechin,

2009). Given the comparable learning performance for immediate

and delayed feedback, this appears unlikely, however.

Instead, Foerde and Shohamy (2011) and Foerde et al. (2013)

proposed a distinction of neuronal circuits being involved in imme-

diate and delayed feedback processing. They found prediction error

representations for immediate feedback in the striatum and for

delayed feedback in the HC, which may bind relevant elements

across time in learning from delayed feedback, in line with a grow-

ing body of literature (Cohen, Poldrack, & Eichenbaum, 1997;

Shohamy & Wagner, 2008; Staresina & Davachi, 2009). Together

with evidence from source-localization studies (Foti et al., 2011),

fMRI and EEG separately (Carlson, Foti, Mujica-Parodi, Harmon-

Jones, & Hajcak, 2011) or combined (Becker et al., 2014), which

all point to a striatal contribution to the FRN, the reduced differ-

ence FRN might thus indicate a less strong role of the striatum and

the DA system in delayed feedback processing (Peterburs et al.,

2015; Weinberg et al., 2012). Importantly, however, the fact that a

difference FRN can also be observed following delayed feedback

appears to indicate that the striatal/DA system also contributes to

delayed feedback processing.

This notion is supported by the main new finding of the present

study: For both timing conditions, larger difference FRN ampli-

tudes for unexpected compared to expected feedback were

revealed. As outlined above, the difference FRN is thought to

reflect prediction error signals conveyed from the midbrain to the

striatal/ACC system with larger amplitudes for unexpected feed-

back compared to expected feedback (Gehring & Willoughby,

FRN expectancy effects for delayed feedback 1747



2002; Holroyd & Coles, 2002; Holroyd et al., 2009; Miltner et al.,

1997; Oliveira et al., 2007; for review, see Walsh & Anderson,

2012). Therefore, an expectancy effect in the delayed feedback tim-

ing condition suggests a comparable involvement of nigrostriatal

and/or mesocortical DA circuits, and consequently of the striatum

and/or ACC, in the processing of immediate and delayed feedback.

According to the original version of the RL theory (Holroyd &

Coles, 2002), the expectancy effect is mainly driven by larger sig-

nals for unexpected negative feedback. Later studies found that the

expectancy effect in the difference wave was mainly driven by a

positivity for (unexpected) positive feedback (Holroyd, Pakzad-

Vaezi, & Krigolson, 2008; Weinberg, Riesel, & Proudfit, 2014).

Holroyd (2004) and Holroyd et al. (2008) proposed that unexpected

positive feedback causes phasic increases in DA activity, which in

turn inhibits conflict-related dorsal ACC activity and thus drives

the signal in the positive direction, increasing the difference FRN.

Several other studies (Becker et al., 2014; Carlson et al., 2011; Foti

et al., 2011; Weinberg et al., 2014) suggest that the difference FRN

might reflect two independent overlapping processes that are linked

to the striatum/ACC system and are influenced by positive and

negative feedback, respectively.

In the present study, expectancy effects for both immediate and

delayed feedback processing were driven by modulations of the

positive feedback amplitude, adding to the overall impression that

the mechanisms of feedback processing were comparable for the

two delay conditions. Converging evidence for DA innervations

influencing long-term potentiation in the HC (Otmakhova & Lis-

man, 1998; Shohamy & Adcock, 2010) suggests that prediction

error signals are projected to both the striatum/ACC system and the

HC via dopaminergic neurons. These results may indicate a coop-

eration of a more nondeclarative learning system associated with

the striatum and a more declarative learning system associated with

the HC (Sherry & Schacter, 1987; Squire, 1992; Squire & Zola,

1996) during feedback learning (Dickerson & Delgado, 2015;

Dickerson et al., 2011; Knowlton et al., 1996). A related dissocia-

tion refers to a habitual system and a goal-directed system recruit-

ing the basal ganglia and the prefrontal cortex and MTL,

respectively (Corbit & Balleine, 2000; Cosman & Vecera, 2013;

Daw & Shohamy, 2008; Dickinson, Balleine, Watt, Gonzalez, &

Boakes, 1995). The decreased, but not absent, difference FRN

amplitudes for delayed feedback reported above and in our previ-

ous study (Peterburs et al., 2015), as well as our finding of similar

expectancy effects for both delay conditions, thus appear to indi-

cate that feedback delay modulates the relative involvement of the

striatal (habitual) and the medial temporal/prefrontal (goal-direct-

ed) systems in a more-or-less rather than in an all-or-nothing fash-

ion (Peterburs et al., 2015).

Instead of a reduced involvement of the striatal system for the

processing of delayed feedback, the current results could also

indicate that prediction errors are computed when feedback is

delayed, but that these signals are not used for learning. Instead,

the goal-directed system based on the MTL could direct learning

and behavior alone (see Walsh & Anderson, 2012). This interpreta-

tion seems to be supported by behavioral findings from patients

suffering from Parkinson’s disease (Foerde et al., 2013; Foerde &

Shohamy, 2011), in whom learning from immediate but not

delayed feedback is affected, suggesting that the striatum is not

necessary for learning from delayed feedback. This, however, does

not mean that learning from delayed feedback exclusively relies on

the hippocampus and MTL in the healthy brain.

Finally, Opitz et al. (2011) linked reduced FRN amplitudes for

delayed feedback to reduced prediction error processing due to

stronger working memory demands. At first glance, this interpreta-

tion appears to contradict the present finding of comparable predic-

tion error processing in immediate and delayed feedback. It has to

be noted, however, that the tasks in the study by Opitz et al. (2011)

and the present study differed. Opitz et al. (2011) had their partici-

pants learn an artificial grammar so that they had to keep alterna-

tive rules in mind across the delay. Working memory demands in

the present study were likely smaller, as only two stimuli (out of

five) and the choice had to be kept in mind. The high number of

nonlearners was not specific for the delayed feedback condition

and was probably more related to the probabilistic stimulus–out-

come associations than to working memory demands. The different

working memory demands could also explain the different result

pattern concerning the P300 component. While Opitz et al. (2011)

reported increased P300 amplitudes, our results indicated reduced

P300 amplitudes for delayed feedback, strongly resembling the

findings by Wang et al. (2014), who used comparable delays as the

present study (600–1,000 ms vs. 4,000–5,000 ms). As in our study,

they reported a significant difference between feedback delay con-

ditions only at frontal electrodes. As one potential cause for the

lower P300 amplitudes, they suggested that the feeling of relevance

for oneself might decrease for longer time intervals between action

and outcome.

Conclusion

The current data show that the FRN codes prediction errors in

immediate as well as delayed feedback processing. This supports

the idea that neuronal mechanisms eliciting the FRN component

are comparable for immediate and delayed feedback. At the same

time, overall reduced FRN amplitudes for delayed feedback proc-

essing suggest that the neural structures driving the FRN, the stria-

tum, and the ACC are less strongly involved for delayed than

immediate feedback processing, possibly due to reduced feedback

relevance or salience. A reduction of the frontal P300 with increas-

ing feedback delay supports this interpretation.
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Abstract 

Feedback-based learning initiated by dopamine (DA) cell firing is crucial for adaptive 

behaviour. The nature and context of feedback can vary, however, affecting how feedback is 

processed. For example, the feedback-related negativity (FRN) in the event-related potential 

in humans, which has been linked to the DA system, is reduced for delayed feedback and for 

observational compared to active learning. Recent research suggested that oscillations in the 

theta and beta band over the medio-frontal cortex reflect distinct feedback processing 

mechanisms. In the present study we hypothesized that the power in both frequency bands is 

also affected by feedback delay and agency. We thus investigated effects of feedback delay (1 

s vs. 7 s) on induced theta and beta band power and the FRN in a probabilistic feedback 

learning task in two groups of participants, one learning actively and one by observation. For 

theta and beta a larger power difference between negative and positive feedback for 

immediate than delayed feedback was found, driven by positive feedback for beta and by 

negative feedback for theta. Only for theta band power the difference between negative and 

positive feedback was stronger for active than observational learning. These results indicate 

that feedback-locked beta and theta power indeed reflect distinct neuro-cognitive mechanisms 

during feedback processing, with theta being linked to behavioural adaptation after negative 

feedback and beta to memory consolidation after positive feedback. With respect to the FRN 

amplitude, we could replicate previous findings of both delay and agency modulations, 

without an interaction of the two factors. 

 

Keywords: feedback-learning, feedback delay, observational learning, Theta band, 
Beta band, FRN 
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1 Introduction 

Across the animal kingdom, individuals are able to adapt their behaviour according to 

the consequences of earlier actions. Behaviour that previously resulted in positive feedback 

(e.g. a reward) is shown more frequently, while behaviour that previously led to negative 

feedback (e.g. a punishment or the omission of reward) is shown less frequently.  

In primates feedback processing by the midbrain dopamine (DA) system is considered 

as the neuronal substrate for feedback learning. As shown in monkeys and humans, feedback 

that is better than expected (i.e. a positive prediction error) is associated with phasic bursts of 

activity, while feedback that is worse than expected (i.e. a negative prediction error) causes 

phasic dips in DA neuron firing rates (Schultz, 1997, 2000; Schultz, Dayan, & Montague, 

1997; Zaghoul et al., 2009). These signals are projected to the striatum and frontal cortex 

including the anterior cingulate cortex (ACC; Bédard, Larochelle, Parent, & Poirier, 1969; 

Haber & Fudge, 1997; Lavoie, Smith, & Parent, 1989; Lehéricy et al., 2004; Lynd-Balta & 

Haber, 1994), where prediction error related activity has been located by means of functional 

neuroimaging in humans (Delgado, 2007; Delgado, Locke, Stenger, & Fiez, 2003; for a 

review, see Knutson & Cooper, 2005; O'Doherty et al., 2004).  

Important insights into the temporal dynamics of reward processing have been gained 

by applying electroencephalography (EEG), in particular by analysing event-related potentials 

(ERPs). The feedback-related negativity (FRN), peaking at about 250 ms after feedback onset 

(Holroyd, 2004; Holroyd & Coles, 2002; Miltner, Braun, & Coles, 1997), is not only larger 

for negative compared to positive feedback (e.g. Ernst & Steinhauser, 2012, 2017; Gehring & 

Willoughby, 2002; Hajcak, Moser, Holroyd, & Simons, 2006; Hajcak, Moser, Yeung, & 

Simons, 2005; Holroyd, Hajcak, & Larsen, 2006; Holroyd & Krigolson, 2007; for a review, 

see Simons, 2010; Walsh & Anderson, 2012), but also for unexpected compared to expected 

feedback (e.g. Ferdinand, Mecklinger, Kray, & Gehring, 2012; Hajcak, Moser, Holroyd, & 

Simons, 2007; Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; Oliveira, McDonald, & 
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Goodman, 2007; Weismuller & Bellebaum, 2016). While some studies using dipole-

modelling or low-resolution-brain-electromagnetic-tomography (LORETA) suggested that the 

ACC is the neural generator of the FRN (e.g., Bellebaum & Daum; Zhou, Yu, Zhou, 2010; for 

review, see Walsh & Anderson, 2012), a more recent dipole-modelling study provided 

evidence for a striatal contribution (Foti, Weinberg, Bernat, & Proudfit, 2015). Becker et al. 

(2014) reported that the blood-oxygen-level-dependent (BOLD) signal in the ventral striatum, 

the midcingulate and midfrontal cortex was significantly predicted by the ERP amplitude in 

the FRN time window. However, this result was obtained for ERPs following positive 

feedback, suggesting that the mentioned regions which are all involved in reward processing 

(Becker et al., 2014; Bush et al., 2002; Rogers et al., 2004; for a review, see Ullsperger, 

Danielmeier, & Jocham, 2014), primarily cause a shift of the ERP signal in the positive 

direction when rewards are processed. This finding is in line with one current view on ERP 

correlates of feedback processing, according to which the difference between ERP responses 

for positive and negative feedback mostly results from a positive deflection in response to 

unexpected positive feedback (Holroyd, Pakzad-Vaezi, & Krigolson, 2008), which has been 

labelled reward positivity (Holroyd, Krigolson, & Lee, 2011; Mulligan & Hajcak, 2017).  

In recent years, analyses of oscillatory signals have frequently been used to study the 

neural mechanisms involved in feedback processing. Oscillations in certain frequency bands 

have been linked to processes of communication between distant brain regions and thus to the 

integration of different types of information related to attention, learning and memory (Cohen, 

Wilmes, & van de Vijver, 2011). In particular, signals in two frequency bands which are 

pronounced in the time window of the FRN have been discussed as being implicated in 

feedback processing. First, power in the medial frontal theta band (4-8 Hz) is increased for 

negative compared to positive feedback (Janssen, Poljac, & Bekkering, 2016). It has, at least 

by some researchers, been found to reflect a negative reward prediction error (Cavanagh & 

Frank, 2014; Cavanagh, Frank, Klein, & Allen, 2010; Cohen, 2011a; Li, Baker, Warren, & Li, 
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2016; but see Jannsen et al. (2016) for a negative finding on theta and outcome expectancy) 

and has been localised in the medial frontal/prefrontal lobe (van der Molen, Dekkers, 

Westenberg, van der Veen, & van der Molen, 2016; see also Cohen, 2014). Feedback-locked 

theta thus shares many features with the FRN, but has also been suggested to underlie other 

ERP components such as the N200 and the response-locked ERN. Accordingly, the signal in 

this frequency range is thought to reflect a general signal communicating the need for 

cognitive control and behavioural adaptation (Cavanagh & Frank, 2014; Cohen, 2014).  

Oscillations in higher frequency bands in the beta and low gamma range (20-35 Hz), 

on the other hand, have been associated with reward-related activity in the ventral striatum 

(Marco-Pallares et al., 2008; Mas-Herrero, Ripolles, HajiHosseini, Rodriguez-Fornells, & 

Marco-Pallares, 2015), being stronger for positive compared to negative feedback (Cohen et 

al., 2011) and for larger compared to smaller reward magnitudes (Marco-Pallares et al., 2008). 

In a recent review, Marco-Pallares, Munte, and Rodriguez-Fornells (2015) proposed a model 

in which beta-gamma oscillatory activity reflects a motivational signal involved in reward 

processing and underlying memory formation by signalling which events are better than 

expected.  

The neural underpinnings of feedback processing and learning appear to vary, 

however, depending on the context and the experimental settings. For example, the timing of 

feedback relative to the preceding response affects, which neural structures mediate feedback 

learning. When feedback is presented 7 s after stimulus choice, striatal activity is reduced and 

hippocampal activity enhanced compared to immediate feedback (1 s after stimulus choice; 

Foerde & Shohamy, 2011). Furthermore, patients with striatal dysfunction suffering from 

Parkinson’s Disease (PD) can learn from delayed, but not immediate feedback, while 

amnestic patients with suspected hippocampal damage show the opposite pattern (Foerde, 

Race, Verfaellie, & Shohamy, 2013).  
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In addition, (perceived) agency or lack of agency seems to alter feedback processing. 

For example, functional imaging studies showed that the regions involved in active and 

vicarious reward processing overlap to some extent, but that typical reward processing regions 

in the striatum are more strongly involved when rewards refer to a person him-herself 

compared to an observed person (Morelli, Sacchet, & Zaki, 2015). The dorsal striatum, which 

has previously been implicated in the coding of action-outcome associations (O'Doherty et al., 

2004), seems to play an important role in linking own actions to outcomes (Bellebaum, 

Jokisch, Gizewski, Forsting, & Daum, 2012; Kobza & Bellebaum, 2015).    

Concerning the electrophysiological correlates of feedback processing, effects on 

feedback-locked ERPs were found for both delay and agency manipulations, with higher FRN 

amplitudes for immediate compared to delayed feedback (Arbel, Hong, Baker, & Holroyd, 

2017; Opitz, Ferdinand, & Mecklinger, 2011; Peterburs, Kobza, & Bellebaum, 2016; 

Weinberg, Luhmann, Bress, & Hajcak, 2012; Weismuller & Bellebaum, 2016; but see Wang, 

Chen, Lei, & Li, 2014 for a negative finding) and for feedback given to active performers 

versus for observed persons (Bellebaum & Colosio, 2014; Bellebaum, Kobza, Thiele, & 

Daum, 2010; Koban, Pourtois, Bediou, & Vuilleumier, 2012). These findings suggest a 

reduced involvement of the striatum/ACC in feedback processing when feedback does not 

follow an own action immediately. 

As outlined above, signals in the beta-gamma and theta range have been suggested to 

reflect cognitive processes that can be segregated from the processes underlying the FRN. For 

both frequency bands, effects of agency and/or feedback delay are conceivable and would 

yield new insights into their functional role in the context of feedback processing. In the 

present study we thus recorded electroencephalographic activity while participants engaged in 

active or observational feedback learning tasks with either short or long response-feedback 

delays. For feedback-locked theta we hypothesised that observation relative to active 

responding would lead to reduced power, especially for negative feedback, due to a reduced 
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need for cognitive control, while for feedback delay no clear predictions could be made. For 

the beta-gamma band, we expected a power modulation for positive feedback, which was 

expected to yield high power values particularly when it followed recent behaviour, as beta-

gamma power has been associated with the reinforcement of preceding rewarded actions 

(Feingold, 2011; Marco-Pallares et al., 2015; Mas-Herrero et al., 2015). Moreover, the 

proposed link to striato-frontal information processing (Marco-Pallares et al., 2015) suggests 

reduced beta-gamma power for feedback given to observed persons and/or after a delay, as 

striatal involvement is reduced in both situations (see above). Finally, we also analysed the 

FRN for which a combined influence of delay and agency modulations has not been 

investigated to date. 

 

2 Method 

2.1 Study Participants  

 Forty healthy students of the Heinrich-Heine-University Düsseldorf were recruited as 

participants for the present study via advertisement, and each participant was assigned 

randomly to one of two groups. One group took part in active feedback-learning tasks while 

the other group engaged in observational versions of the task. The mean age of the 

participants of the active group (n = 20 participants) was 24.8 years (SD = 2.7, 9 male, 11 

female), while the 20 participants of the observational group were on average 24.7 years old 

(SD = 3.1, 4 male, 16 female). All Participants had normal or corrected-to-normal vision and 

reported no history of neurological or psychiatric disorders, traumatic brain injury with 

sustained unconsciousness or regular consumption of alcohol or psychodynamic drugs. The 

participants gave informed written consent before testing and were reimbursed with 15 €. The 

study conformed to the guidelines outlined in the Declaration of Helsinki and was approved 

by the Ethics Committee of the Faculty of Mathematics and Natural Sciences at Heinrich-

Heine University Düsseldorf.  
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2.2 Probabilistic Learning Task 

2.2.1 Active task. For this experiment, we used a modified version of a paradigm that 

we applied recently in another study (Weismuller & Bellebaum, 2016). In each trial two 

stimuli (Asian symbols) were presented to the participants, one on the left and one on the right 

side of a computer screen. The participants then were asked to choose one of the two stimuli. 

By means of monetary feedback (i.e. monetary gain of +20¢ or loss of -10¢”) for their choice 

participants could learn to predict the outcomes associated with each stimulus and maximize 

reward. In total, five different stimuli were used, each linked to a particular reward probability 

(0%, 20%, 40%, 60%, and 80%) that was unknown to the participants. Figure 1A shows a set 

of stimuli and their corresponding reward probabilities. All 10 possible combinations of 

stimuli were presented equally often, with the assignment of stimulus to the side of the 

computer screen being counterbalanced. As soon as the participants responded, the chosen 

stimulus was encircled in red for 500 ms to indicate the choice. Afterwards, a fixation cross 

was shown for 500 ms, followed by the presentation of the feedback stimulus for another 500 

ms. In case the participant did not reply within 3000 ms he/she was asked to respond faster. 

After feedback presentation a fixation cross appeared again until the next trial followed with 

an intertrial interval between 1200 and 1600 ms. Importantly, each participant completed two 

versions of the task, which differed in the delay between response and feedback. Immediate 

feedback followed 1000 ms after the choice, whereas delayed feedback followed 7000 ms 

after the choice in line with several previous studies using similar temporal delays (Arbel et 

al., 2017; Foerde et al., 2013; Foerde & Shohamy, 2011; Peterburs et al., 2016; Weismüller & 

Bellebaum, 2016). A different set of stimuli was used for each feedback timing. Figure 1B 

illustrates the sequence of events during the active learning task.  

 2.2.2 Observational task. Those participants who completed the observational 

learning tasks were not asked to choose one of two stimuli themselves, but rather watched 
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another participants’ performance. As in the active learning task, two stimuli were shown on 

each trial. Then a picture of a left or right hand appeared on one side of the screen indicating 

the observed choice of one stimulus. This stimulus was then encircled in red and the observer 

was asked to confirm the choice within 3000 ms by pressing the corresponding (left or right) 

button in order to ensure that the observers were attending to the observed person’s choices. If 

the participants did not respond in this time window, a reminder was presented to react faster. 

After the choice was confirmed, a fixation cross was shown (duration 500 ms), followed by 

the feedback (500 ms) before the next trial came on. Figure 1C illustrates the exact timing of 

events during one trial of the observational learning task. As the participants of the active 

learning task, the observers completed two versions, which differed in the delay between 

(observed) button press and feedback presentation (1000 ms vs. 7000 ms). Importantly, the 

performance that was observed by the participants of the observational learning task was 

taken from one participant who had completed the active learning task. Thereby, each 

participant in the observation group observed the performance of one participant from the 

active group for both feedback timings.   

2.2.3 Test phase. As in the observational task versions participants only confirmed 

others’ choices, learning could not be assessed in the learning trials. Thus, an additional test 

phase was included after each block of learning trials, which required active responding but 

did not entail feedback. This was also done in the active learning task so that performance 

could be directly compared between active and observational learning. Similar procedures for 

observational learning paradigms have been reported in previous studies of our group (e.g. 

Bellebaum & Colosio, 2014; Bellebaum et al., 2012). Instead of trial-by-trial feedback, the 

overall amount of money lost/gained was reported after the whole block in test phases. The 

symbols and symbol combinations presented in the test phase were identical to those in the 

learning phase so that participants could use the knowledge gained in the learning trials to 

complete the test phase. Figure 1D shows details of the timing of the test trials.  
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-------------- Insert Figure 1 about here -------------- 

 

2.3 Procedure 

The participants’ demographic data, medication, and medical history were assessed in 

a structured interview before EEG recording started. Then, participants were prepared for the 

EEG session and comfortably seated about 70 cm away from a computer screen of 27'' 

diagonal dimension. They were asked to relax and not to move. Breaks in which the 

participants could rest were included after every block. After the task was explained, 

participants completed six practice trials with feedback and six practice trials without 

feedback for each of the two feedback delay versions. When the experimenter was sure that 

the task was understood, the actual experiment and the EEG recording started.  

All participants completed three (active or observational) learning blocks with 

immediate feedback and three blocks with delayed feedback, each consisting of 100 trials (10 

trials per symbol combination). Whether participants started with the immediate feedback or 

the delayed feedback version of the learning task was counterbalanced across participants. A 

test phase consisting of 60 trials (6 per symbol combination) followed after every learning 

block, regardless of feedback timing or agency (i.e. active or observational). Learning blocks 

took 8-10 min for immediate feedback and 18-20 min for delayed feedback. Test phases took 

approx. 3 min. The total duration of the EEG session was approx. 90 min. After the 

experiment, participants were reimbursed with 15 €.  

 

2.4 Electroencephalographic Recording  

EEG data were continuously sampled at 1000 Hz via BrainVision Recorder software, 

version 1.20 (Brainproducts, Munich, Germany). Active silver/silver-chloride electrodes were 

attached in accordance with the international 10-10-system (Chatrian, Lettich & Nelson, 
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1988) at 29 electrode sites (F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, 

CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and PO10; FCz served as online 

reference) on a 32-channel-ActiCAP-electrode cap (ActiCAP; Brain Products GmbH, 

Germany). Horizontal eye movements were recorded with an electrode placed lateral to the 

left outer canthus. Blinks and vertical eye-movements were recorded by an electrode above 

the left eye (Fp1). Impedances were kept below 10 kΩ.  

 

2.5 Data Analysis 

2.5.1 Behavioural data. In accordance with earlier studies using probabilistic learning 

tasks (e.g. Bellebaum et al., 2016; Foerde et al., 2013; Frank, Seeberger, & O'Reilly R, 2004; 

Holroyd, Krigolson, Baker, Lee, & Gibson, 2009; Knowlton, Mangels, & Squire, 1996; 

Weismuller & Bellebaum, 2016), a participant’s choice was considered correct if the symbol 

with the higher objective reward probability was chosen (regardless of the actual feedback the 

participant received). The percentage of correct choices per block, pooled across all stimulus 

combinations, was then the dependent variable for behavioural data analysis.  

2.5.2 EEG-data. BrainVision Analyzer software, version 2.1 (Brainproducts, Munich, 

Germany) and MATLAB R2013a (MathWorks, Natrick, Massachusetts) were used to analyse 

EEG data offline. 

2.5.2.1 Time-Frequency data. For the time-frequency analysis the data were first 

down-sampled to 500 Hz and re-referenced to linked mastoids and corrected for direct current 

trends. Then, the data were 40 Hz low-pass and 0.5 Hz high-pass filtered. Blink artifacts were 

identified and corrected in single participant EEG data by independent component analysis 

(ICA). ICA decomposes the spatially summed multivariate EEG signal into independent 

virtual components in order to reconstruct possible independent sources of the signal. For 

each participant 29 components were created from the 29 active electrode channels in the 

EEG signal. Components were considered to represent blink artifacts, if they explained a large 
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part of the variance and had a symmetrical, frontally positive topography. The identified 

component was then excluded before back transformation. Then, the data were segmented 

into intervals from 700 ms before the feedback stimulus until 1500 ms post-stimulus, 

separately for the four different feedback conditions (positive and negative immediate and 

delayed feedback). For each condition, a time-frequency analysis was performed by 

continuous complex Morlet wavelet transformation using wavelets that were optimised for the 

two frequency bands that were examined. The Morlet wavelets’ spectral bandwidth was 2σf = 

1.61 Hz at the central frequency of 5.65 Hz for theta frequency and 2σf = 7.50 Hz at the 

central frequency of 26.22 Hz for beta band. For both frequency bands the Morlet parameters 

were set to 2πσt = 7f-1 and baseline corrections were performed using a reference interval 

from 500 ms to 200 ms preceding the feedback stimulus. The spectral power was extracted 

and averaged across trials. Then, a continuous complex Morlet wavelet transformation was 

also performed for the average positive and negative feedback ERPs for both feedback 

timings in active and observational learners, using the same parameters as before. The ERP 

spectral power was then subtracted from the spectral power averaged across trials for each 

condition separately, so that the induced power remained. For the statistical analysis of theta 

frequency, mean induced power values were extracted for the time window between 200 and 

500 ms after feedback onset for frequencies in the range between 4.12 and 7.75 Hz at FCz, 

separately for each individual participant and for each condition. Beta-gamma frequency 

power values were extracted between 19.63 and 35 Hz in the time window between 200 and 

500 ms after feedback onset for each participant and condition, again at the FCz electrode. 

This frequency range will be referred to as beta band in the following. The time windows 

were chosen in accordance with values described in the literature and because the power 

modulation in the respective windows was most pronounced. 

2.5.2.2 Event-related potentials. The first steps of analysis, (re-referencing, direct 

current trend correction, filtering, ICA, and artifact correction) were identical for the analysis 
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of ERPs and of the frequency bands (see above). Following those steps, the data were 

segmented, again separately for the feedback valence (positive or negative) and timing 

conditions (immediate vs. delayed), creating epochs from 200 ms preceding the feedback 

stimulus until 800 ms after the feedback stimulus. After segmentation, data were baseline 

corrected using the 200 ms interval before feedback onset, followed by artifact rejection. 

Segments were excluded if they contained data points exceeding an absolute amplitude value 

of 100 μV or if the amplitude difference between the highest and lowest data point exceeded 

100 μV. In a final step, data from each of the different feedback conditions were averaged 

across trials. 

In agreement with earlier studies on effects of feedback timing, the focus was on the 

negative – positive feedback difference wave (Peterburs et al., 2016; Wang et al., 2014; 

Weinberg et al., 2012; Weismuller & Bellebaum, 2016). The maximum negative peak in this 

difference wave was identified between 200 and 370 ms after feedback onset at electrode site 

FCz and considered as FRN amplitude.  

 

2.6 Statistical Analyses  

Data were statistically analysed using SPSS Statistics 23 software (IBM, Armonk, 

New York). Choice accuracy, extracted from test phases without feedback, was analysed by 

means of an analysis of variance (ANOVA) with Block (1st to 3rd) and Feedback Timing 

(immediate vs. delayed) as within-subjects factors and Agency (active vs. observational) as 

between-subjects factor. Time-frequency data were analysed by means of an ANOVA with 

the within-subjects factors Feedback Timing and Valence (positive vs. negative) and the 

between-subjects factor Agency, separately for theta and beta power. Finally, FRN amplitudes 

were analysed using an ANOVA with Feedback Timing as within-subjects factor and Agency 

as between-subjects factor. For all analyses, results were considered as statistically significant 

when an alpha level of p < 0.05 was reached. Post-hoc t-tests were performed to resolve 
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interactions. Whenever sphericity was violated, Greenhouse-Geisser correction was applied. 

As measures of effect size ηp
2 is reported for ANOVAS and Cohen’s d for t-tests.  

 

3 Results 

In the active group one participant had 72 misses (more than 10 % of all trials, the 

maximum value for the other participants was 21). This participant as well as the 

corresponding observer were excluded from data analysis. The resulting sample for the 

analysis of behavioural and EEG data thus consisted of 19 participants in the active group 

(age: M = 24.9 years, SD = 2.64, 9 males, 10 females) and 19 in the observer group (age: M = 

24.6 years, SD = 3.13, 4 males, 15 females).  

 

3.1 Behavioural Data 

Figure 2 shows the accuracy of the participants of both experimental groups in the 

different timings across the three blocks. The mixed ANOVA revealed a significant main 

effect of Block (F(2, 72) = 4.254; p = .018; ηp
2 = .106) with a linear increase in the percentage 

of correct choices (F(1, 36) = 7.777; p = .008; ηp
2 = .178). Learning from observed and active 

choices did not differ significantly, as no main effect of Agency was found (F(1, 36) = 0.017; 

p = .897; ηp
2 < .001). Neither did Feedback Timing influence performance (F(1, 36) = 0.416; 

p = .523; ηp
2 = .011), nor was any significant interaction found (all p > .200).  

 

-------------- Insert Figure 2 about here -------------- 

 

3.2 EEG-data 

3.2.1 Time-frequency data. The mean induced power for negative and positive 

feedback and the negative-positive difference at electrode site FCz for each Feedback Timing 

condition, in active and observational learners, is depicted in figure 3.  
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3.2.1.1 Theta band. Figure 4 shows the mean induced theta band power values for all 

conditions. Statistical analysis revealed a significant main effect of Valence (F(1, 36) = 

17.201; p < .001; ηp
2 = .323) indicating generally higher theta band power for negative 

compared to positive feedback. Significant interactions were found between the factors 

Valence and Agency (F(1, 36) = 8.669; p = .006; ηp
2 = .194), and between Valence and 

Feedback Timing (F(1, 36) = 15.997; p < .001; ηp
2 = .308). Post-hoc t-tests revealed that 

negative feedback caused higher theta frequency power than positive feedback when 

participants learned actively (t(18) = 4.560; p < .001; d = 1.075), while theta power was 

comparable between feedback valences during observational learning (t(18) = 0.957; p = .351; 

d = 0.225). A resolution of the second interaction showed that theta frequency power was 

higher for negative compared to positive immediate feedback (t(37) = 4.522; p < .001; p = 

0.743), while no difference was found for delayed feedback (t(37) = 0.952; p = .347; d = 

0.157). All remaining main effects and interactions including the three-way interaction 

involving all factors did not reach significance (all p > .05). 

3.2.1.2 Beta band. One active learner was excluded from the analysis of beta power, 

as his power values differed by more than 5 standard deviations from the group mean in two 

of the four conditions. Figure 5 depicts the mean induced beta band power values for the 

remaining participants. Statistically, a trend for a main effect was revealed for Valence (F(1, 

35) = 3.038; p = .090; ηp
2 = .080) with higher (i.e. less negative) power values for positive 

than negative feedback. Furthermore, Valence significantly interacted with Feedback Timing 

(F(1, 35) = 5.022; p = .031; ηp
2 = .125). This interaction arose from significantly higher power 

values following positive compared to negative immediate feedback (t(36) = -2.442; p =.020; 

d = 0.407), while the power values were comparable for positive and negative delayed 

feedback (t(36) = 0.461; p = .648; d = 0.077). No other main effect or interaction reached or 

approached significance (all p > .10). 
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-------------- Insert Figure 3 about here -------------- 

-------------- Insert Figure 4 about here -------------- 

-------------- Insert Figure 5 about here -------------- 

 

3.2.2 ERP data. Feedback-locked grand average ERPs are illustrated in figure 6 for 

both learning conditions and feedback timings, table 1 lists mean FRN amplitudes. Statistical 

analysis of the FRN difference wave indicated a significant main effect of Feedback Timing 

(F(1, 36) = 6.712; p = .014; ηp
2 = .157), with larger amplitudes for immediate compared to 

delayed feedback. Furthermore, amplitudes differed significantly between Agencies (F(1, 36) 

= 5.817; p = .021; ηp
2 = .139), being larger for active compared to observational learning. 

Both main effects were mainly driven by the results for immediate feedback during active 

learning which is expressed in a significant interaction between Feedback Timing and Agency 

(F(1, 36) = 5.126; p = .030; ηp
2 = .125). Further investigating this interaction with post-hoc t-

tests revealed larger FRN difference wave amplitudes for immediate compared to delayed 

feedback only for active (t(18) = -2.761; p = .013; d = 0.651), but not for observational 

learning (t(18) = -0.343; p = .736; d = 0.081). 

 

-------------- Insert Table 1 about here -------------- 

-------------- Insert Figure 6 about here -------------- 

 

4 Discussion 

The present study investigated the influence of feedback delay and agency (i.e. 

ascribing feedback to a self-generated vs. an observed action) on the neural correlates of 

feedback processing. EEG data were assessed during a probabilistic feedback learning task in 

which one group of participants received feedback for actively choosing between stimuli, 

while the other group learned by observing the choices of another person. For participants of 
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both groups feedback was provided immediately (1 s after stimulus choice) or after a temporal 

delay (7 s after stimulus choice) in different task versions.  

Behavioural data showed that neither feedback timing, nor agency (active vs. 

observational learning) affected the participants’ performance. As hypothesised, theta power 

was generally increased for negative compared to positive feedback. Moreover, interactions 

between Valence and Feedback Timing, as well as Valence and Agency revealed that both 

feedback delay and agency, modulated this valence effect on theta power independently. The 

difference between negative and positive feedback was larger for immediate than delayed 

feedback and for active than observational learning. For beta power, as for the theta band, an 

interaction was found for Valence and Feedback Timing, with higher power values for 

positive than negative feedback during immediate, but not delayed feedback learning. Effects 

of agency on beta power were not found. Finally, concerning the ERP result pattern, Feedback 

Timing and Agency showed a significant interaction: the largest difference wave amplitude 

(negative minus positive feedback processing) was found for immediate feedback during 

active learning. 

 

4.1 Theta power and behavioural adaptation 

Theta oscillations over the medial frontal cortex have been suggested to underlie 

several ERP components, including the FRN and the feedback locked N2, but also the ERN 

and CRN as response-locked signals (Cavanagh & Frank, 2014; Cavanagh, Zambrano-

Vazquez, & Allen, 2012). In accordance with the neural processing indicated by the FRN 

(Holroyd & Coles, 2002; Holroyd et al., 2004), some previous studies linked increased 

feedback-locked theta power to negative feedback processing (Janssen et al., 2016) or 

generally to “bad” events (Cavanagh & Shackman, 2015). Given that the N2 is sensitive to 

conflict and novelty (Folstein & Van Petten, 2008) and that the ERN and CRN indicate error 

and/or conflict processing (Cavanagh & Frank, 2014; Cavanagh et al., 2012), a more general 
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account thus proposed that fronto-medial theta oscillations reflect neuronal top-down 

computations in the sense of a general alarm signal, possibly also indicating the need for 

cognitive control (Cavanagh et al., 2010; Cohen, 2014), by synchronising neuronal oscillatory 

activity across various cortical areas (Cavanagh & Frank, 2014; Cohen, 2011b). Summarising 

a variety of different findings, Cavanagh and Shackman (2015) postulated that the increased 

need for cognitive control signalled by medial frontal theta facilitates behavioural adaption 

and results from a general uncertainty about action outcomes, including prediction errors and 

conflict. 

In the present study theta power was specifically enhanced for negative compared to 

positive feedback when it was given immediately for own choices. An interpretation of theta 

in terms of an increased need for cognitive control appears to be plausible for the effect of 

agency, as in observational learning the own behavioural strategy does not have to be updated 

following negative feedback. For delayed negative feedback for active choices, however, the 

response strategy needs to be changed, so that diminished theta power in this condition 

appears to be surprising at first sight. As we and others already argued, altered 

electrophysiological responses in learning from delayed feedback in the absence of behavioral 

changes probably indicate that different neural mechanisms underlie learning in this condition 

(Arbel et al., 2017; Peterburs et al., 2016; Weismuller & Bellebaum, 2016). Theta activity 

associated with conflict and reward processing has been found in the dorsal (Cohen, 

Ridderinkhof, Haupt, Elger, & Fell, 2008; Wang, Ulbert, Schomer, Marinkovic, & Halgren, 

2005) and rostral ACC in humans. But also in other regions signals in the theta band have 

been described. In rats, medial prefrontal neurons have been found to be phase locked to 

hippocampal theta oscillations in spatial working memory tasks (Siapas, Lubenov, & Wilson, 

2005). In humans, errors have been found to cause enhanced theta power synchrony between 

FCz and lateral frontal (Cavanagh, Cohen, & Allen, 2009) and occipital electrode sites 

(Cohen et al., 2009). It is thus conceivable that the processing of conflict induced by delayed 
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feedback is also reflected in theta signals, but more in the medial temporal lobe and possibly 

the hippocampus, given that these structures underlie delayed feedback processing (see 

Foerde et al., 2013; Foerde & Shohamy, 2011). In the data of the present study modulations of 

theta band power at temporal or occipital electrode sites were not seen, but it may 

nevertheless be possible that signals in the theta band which could not be measured by surface 

electrodes contributed to feedback processing for delayed feedback. 

 

4.2 Beta frequency and memory consolidation 

Beta power has been associated with reward-related activity in the ventral tegmental 

area (VTA) and its projection sites in the ventral striatum (Mas-Herrero, et al., 2015) and the 

prefrontal cortex (HajiHosseini & Holroyd, 2015). Similar to theta band oscillations, 

synchronisation in the beta band may reflect communication across different systems and 

distant cortical and subcortical structures (Marco-Pallares et al., 2015). In contrast to theta, 

however, beta band oscillations have been linked to more specific processes in the context of 

feedback processing, that is, the integration of recent behaviours and their (positive) 

consequences, with the aim of memory consolidation for the established link (Feingold, 2011; 

Marco-Pallares et al., 2015; Mas-Herrero et al., 2015). 

To our knowledge, the present study is the first to investigate beta oscillations for 

feedback that is temporally delayed and/or referring to another person’s action. The results for 

immediate feedback are in line with previous findings (Cohen et al., 2011; Marco-Pallares et 

al. 2008; Mas-Herrero, et al., 2015; HajiHosseini & Holroyd, 2015) showing that beta power 

was increased for positive compared to negative feedback. However, this was not the case 

when feedback was given with a short delay, possibly indicating less fronto-striatal 

communication in response to feedback that is delayed by a few seconds, which is again in 

line with the described findings on reduced striatal involvement in delayed feedback 

processing (Foerde & Shohamy, 2011; Foerde et al., 2013). In contrast to theta, differences in 
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beta power for positive versus negative feedback were not affected by agency. This finding 

might suggest that the described integration process takes place to a similar extent in 

observational and active learning. Indeed, the descriptive pattern for immediate feedback in 

observational learning resembles the pattern for immediate feedback in active learning. 

Previous studies by our group and others (Morelli et al., 2015; Kobza & Bellebaum, 2015; 

Bellebaum et al., 2012) have shown at least partially reduced striatal activity for feedback 

processing in observational learning. The process indicated by beta, however, might reflect an 

integration process that is similar for active and observational learning. Despite the 

differences, the neural structures involved in active and observational learning also overlap to 

a large extent and it has been suggested that the dorsal striatum, similar to its role in active 

instrumental learning, underlies the integration of actions and outcomes also during 

observation (Cooper, Dunne, Furey, & O’Doherty, 2012). 

Considering the proposal that beta reflects memory for rewarded as opposed to not-

rewarded actions, the difference in power for positive and negative feedback might either 

arise from memory enhancement for rewarded behaviours (Mas-Herrero et al., 2015; Murty & 

Adcock, 2013) or from memory suppression for not-rewarded actions (Feingold, 2011). Beta 

power values in this study appear to primarily reflect the latter mechanism, as beta power 

values were negative (relative to baseline) for both positive and negative feedback, with the 

smallest decrease for immediate positive feedback for self-performed actions. In this context 

it is important to note that performance accuracy was quite high in the present study, so that 

positive feedback, on average, elicited less strong prediction errors. Reward expectation has 

been proposed to affect beta power negatively, so that it should be relatively strengthened for 

unexpected positive feedback (Cohen, Elger, & Raganath, 2007; Marco-Pallares et al., 2015). 

Thus, the process of memory consolidation was probably more suppressed after (unexpected) 

negative feedback than strengthened after (expected) positive feedback.  
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Together, the present results corroborate the idea that theta and beta band activation 

supposably reflect valence specific top-down learning signals generated in different medial 

frontal neuronal systems (Cohen et al., 2011). Theta frequency conveys the need of 

behavioural adaption (Cavanagh et al., 2010; Cohen, 2014), which is only necessary for own 

actions, while signals in the beta range possibly convey a motivational value signal for 

memory storage of relevant information including consequences of others’ actions (Mas-

Herrero et al., 2015).  

 

4.3 Combined agency and delay effects on the FRN 

Concerning the ERPs, the present study is generally in line with previous findings of 

both feedback delay (Arbel et al., 2017; Opitz et al., 2011; Peterburs et al., 2016; Weinberg et 

al., 2012; Weismuller & Bellebaum, 2016) and agency effects (Bellebaum & Colosio, 2014; 

Bellebaum et al., 2010; Koban et al., 2012; Yeung, Botvinick, & Cohen, 2004) on FRN 

amplitude. However, it has to be noted that the FRN in the present study was mostly affected 

by the combined influence of both manipulations. As ERPs in the FRN time window have 

been shown to be driven by the ACC and striatum (Becker et al., 2014; Foti et al., 2015) and a 

theoretical link to the DA system has been proposed (Holroyd & Coles, 2002; Walsh & 

Anderson, 2012), diminished amplitudes might indicate a reduced involvement of these 

feedback processing structures. Indeed, reduced striatal involvement has been suggested for 

both delayed (Foerde et al., 2013; Foerde & Shohamy, 2011) and non-personal feedback or 

reward processing (Morelli et al., 2015; Bellebaum et al., 2012; Kobza & Bellebaum, 2015; 

Bellebaum et al., 2016; Kobza et al., 2012). The present data show that the FRN is not 

additionally affected by feedback delay during observational feedback learning. Accordingly, 

this study is the first to show that the FRN, and thus the underlying neural mechanisms are 

particularly involved in feedback processing if feedback is given a) for own actions and b) 

shortly after the action.  
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4.4 Conclusion 

In the context of feedback processing, signals in the beta and theta frequency bands 

appear to represent activity in two distinct, valence-specific neuronal systems. Comparing 

actual outcomes to the predictions, negative prediction errors may elicit a signal for 

behavioural adaptation reflected by theta oscillations (Cohen, 2014, Cavanagh et al., 2010) 

and positive prediction errors activate processes for memory consolidation reflected by beta 

oscillations (Feingold, 2011; Marco-Pallares et al., 2015; Mas-Herrero et al., 2015). The 

presented data provide corroborating evidence for this distinction and suggest that the 

processes indicated by theta are weakened when feedback is delayed or when the feedback 

does not refer to a self-generated action, while the mechanism indicated by beta is only 

affected by feedback delay and not by agency. Feedback-locked ERPs were modulated by a 

combination of feedback delay and agency showing that the FRN reflects yet another 

mechanism in feedback processing.  
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Tables 

Table 1 

Mean FRN amplitudes (extracted from negative – positive feedback difference waves, in µV), 

standard deviation in parentheses 

Learning Condition Immediate Feedback Delayed Feedback 

Active Learning -2.41 (1.87) -1.28 (1.03) 

Observational Learning -1.08 (0.60) -1.01 (1.13) 
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Figures 

 

Figure 1. A) Symbols and reward probabilities used in the experiment. B) Time course of 

events in a single active learning trial. C) Time course of events in a single observational 

learning trial. D) Time course of events in a single test trial without feedback. 
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Figure 2. Choice accuracy across all reward probabilities in percent for each block (error bars 

indicate standard errors). 
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Figure 3. Grand-average time-frequency plots for positive and negative feedback and the 

difference between negative and positive feedback for both feedback timings and agency 

conditions at electrode site FCz. Plots represent the baseline-corrected induced spectral power 

(µV2). The rectangles indicate the extracted time and frequency windows for theta (200-500 

ms, 4.12-7.75 Hz) and beta power (200-500 ms, 19.63-35 Hz). Note that the colour scaling 

differs between lower frequencies (3-10 Hz) and higher frequencies (11-35 Hz) in each plot. 
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Figure 4. Mean induced theta power (µV2) for each Feedback Timing, Agency, and Valence 

condition (error bars indicate standard errors). 

 

 

Figure 5. Mean induced beta power (µV2) for each Feedback Timing, Agency, and Valence 

condition (error bars indicate standard errors).  
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Figure 6. Feedback-locked grand average ERPs for positive feedback, negative feedback, and 

the negative-positive difference wave at FCz. Dotted vertical lines indicate the time window 

used to extract FRN peaks from the difference waves.  
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