Die Rolle von NF-κB abhängigen apoptotischen Prozessen und des proapoptotischen Proteins PB1-F2 in der Influenza Virus Vermehrung

Inaugural-Dissertation
zur
Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine Universität Düsseldorf

vorgelegt von
Igor Mazur
aus Kevelaer

Juni 2007
Aus dem Institut für Molekulare Medizin
Der Heinrich-Heine Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

1. Gutachter: Prof. Dr. Stephan Ludwig
2. Gutachter: Prof. Dr. Johannes Hegemann

Tag der mündlichen Prüfung: 05.07.2007
Inhaltsverzeichnis

INHALTSVERZEICHNIS ... 3

ABKÜRZUNGSVERZEICHNIS .. 6

1. EINLEITUNG .. 8

1.1. Das Influenza Virus ... 8

1.2. Pathologie und Wirts-Spektrum .. 8

1.3. Morphologie und Vermehrungszyklus des Influenza A Virus ... 10

1.4. Virusinduzierte Genexpression ... 14

1.4.1. Influenza Virus induzierte Signaltransduktion .. 15

1.4.2. NF-κB Signalweg und Apoptose .. 17

1.5. Virusinduzierte Apoptose .. 19

1.5.1. Das PB1-F2 Protein ... 20

1.5.2. Die Rolle von NF-κB und Interferonen in der Apoptose .. 22

1.5.3. Die Rolle der NF-κB abhängigen Apoptoseinduktion im Vermehrungszyklus des Influenza A Virus ... 23

1.6. Antivirale Therapeutika gegen Influenza Virus-Infektionen .. 25

1.7. Zielsetzung der Arbeit ... 27

2. MATERIAL UND METHODEN ... 29

2.1. Material ... 29

2.1.1. Chemikalien, Medien und Zellkulturzusätze ... 29

2.1.2. Antikörper .. 30

2.1.3. Plasmide ... 31

2.1.4. Sonstige Materialien ... 32

2.2. Stämme und Anzucht .. 32

2.2.1. Viren ... 32

2.2.1.1. Anzucht von Influenza-Viren .. 32

2.2.1.2. Virusinfektionen von Zellen ... 33

2.2.1.3. Bestimmung von Virustitern mittels Plaque-Assay .. 33

2.2.1.4. Herstellung rekombinanter Influenza Viren ... 34

2.2.2. Eukaryotische Zell-Linien ... 34

2.2.2.1. Zellkultur ... 34

2.2.2.2. Kultivierung adhärender Zell-Linien .. 35

2.2.2.3. Einfrieren und Lagerung eukaryotischer Zell-Linien .. 35

2.2.2.4. Transiente Transfektion mit Lipofectamin 2000 ... 35

2.2.2.5. Nicoletti-Assay .. 35

2.2.2.6. Propidiumiodid-Färbung .. 36
3. **ERGEBNISSE** ... 47

3.1. Der NF-κB-Signalweg ist wichtig für die Vermehrung des Influenza A Virus 47

3.2. Acetylsalicylsäure als Mittel zur Hemmung des NF-κB-Signalweges 48

3.3. Behandlung infizierter Zellen mit Acetylsalicylsäure hemmt die Replikation des Influenza Virus ... 50

3.3.1. Auswirkung der NF-κB-Hemmung mittels Acetylsalicylsäure auf Virusreplikation 51

3.3.2. Spezifität der NF-κB-Inhibition durch Acetylsalicylsäure 53

3.3.3. Acetylsalicylsäure hemmt Caspasen-Aktivität und Induktion des apoptotischen Zelltox. ... 55

3.3.4. Acetylsalicylsäure hemmt den Export von Ribonukleoprotein-Komplexen aus dem Zellkern .. 57

3.3.5. Untersuchung von antiviral-wirkenden Acetylsalicylsäure-Konzentrationen auf Zytotoxizität ... 60

3.3.6. Hemmung der Influenza A Virusreplikation mit Acetylsalicylsäure führt nicht zu Bildung resistenter Virus-Varianten ... 62

3.3.7. Acetylsalicylsäure als inhalierbarer, anti-influenza Wirkstoff 63

3.4. Das Influenza A Protein PB1-F2 .. 66

3.4.1. PB1-F2 ist lokalisiert während der Influenza Infektion im Zytoplasma und im Zellkern 66
3.4.2. PB1-F2 Knockout-Mutanten .. 67
3.4.3. PB1-F2 kolokalisiert mit der viralen Polymeraseuntereinheit PB1 in Influenza-Virus-infizierten Zellen.. 70
 3.4.3.1. Knockout-Virusmutanten von PB1-F2 zeigen verringerte Polymeraseaktivität 71
 3.4.3.2. PB1-F2 interagiert direkt mit der viralen Polymeraseuntereinheit PB1 73
 3.4.3.3. Knockout von PB1-F2 hat keinen Einfluss auf Virentiter 76
 3.4.3.4. Knockout PB1-F2 zeigt einen Einfluss auf die Plaques-Morphologie 76
 3.4.3.5. Veränderte Lokalisierung des PB1-Proteins in mit den PB1-F2 Knockout-Viren infizierten Zellen... 82
 3.4.3.6. Überexpression von PB1-F2 führt zur starken IRF-3- und IFNβ-Promotoraktivität während Influenzainfektionen ... 83

4. DISKUSSION ... 85
 4.1. Acetylsalicylsäure blockiert Influenza Virus-Vermehrung über die Inhibition des NF-κB Signalweges... 85
 4.2. Acetylsalicylsäure als antivirales Mittel in vitro und in vivo 90
 4.2.1. Antiviraler Einsatz von Acetylsalicylsäure zeigt keine Tendenz zur Bildung resisterter Virusvarianten ... 92
 4.3. Die Rolle von PB1-F2 für die Pathogenität des Influenza Virus 94
 4.3.1. Lokalisation von PB1-F2 .. 94
 4.3.2. PB1-F2 interagiert direkt mit PB1 ... 96
 4.3.3. PB1-F2-Defizienz beeinträchtigt die Aktivität der viralen Polymerase, führt aber zu keiner Virustiteränderung 98

ZUSAMMENFASSUNG .. 101
SUMMARY .. 103
LITERATUR .. 104
ANHANG .. 115
VERÖFFENTLICHUNGEN ... 118
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Aktivierungsdomäne</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ASA</td>
<td>Acetylsalicylic acid, Acetylsalicylsäure (Aspirin)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BD</td>
<td>Bindedomäne</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>°C</td>
<td>Temperatur in Grad Celsius</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Doppelt deionisiertes Wasser</td>
</tr>
<tr>
<td>D-MEM</td>
<td>“Dulbecco’s modified eagle medium”</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosid-5'-triphosphat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>ERG</td>
<td>Eppendorf-Reaktionsgefäss</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum</td>
</tr>
<tr>
<td>FACs</td>
<td>Fluoreszenz-Aktivierter-Zellsortierer</td>
</tr>
<tr>
<td>FPV</td>
<td>„fowl plague virus“, hier Influenza A/FPV/Bratislava/1979 (H7N7)</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung; Gramm</td>
</tr>
<tr>
<td>GFP</td>
<td>„Green-Fluorescent-Protein“</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HA</td>
<td>Influenza Hämagglutinin</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaar</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>Lsg.</td>
<td>Lösung</td>
</tr>
<tr>
<td>µ</td>
<td>Mikro</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>m</td>
<td>Milli</td>
</tr>
<tr>
<td>M, mM, µM</td>
<td>Molar, Milimolar, Micromolar</td>
</tr>
<tr>
<td>M1</td>
<td>Influenza Matrix Protein 1</td>
</tr>
<tr>
<td>M2</td>
<td>Influenza Matrix Protein 2</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen aktivierte Protein-Kinase</td>
</tr>
<tr>
<td>MEM</td>
<td>„minimal essential medium“</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection (Viruspartikel pro Zelle)</td>
</tr>
<tr>
<td>MTS</td>
<td>Mitochondriale Lokalisierungs-Sequenz</td>
</tr>
<tr>
<td>NA</td>
<td>Influenza Neuraminidase</td>
</tr>
<tr>
<td>NLS</td>
<td>Nukleäre Lokalisierungs-Sequenz</td>
</tr>
<tr>
<td>NP</td>
<td>Influenza Nukleoprotein</td>
</tr>
<tr>
<td>NS1</td>
<td>Influenza „non structural protein 1“</td>
</tr>
<tr>
<td>NS2 (NEP)</td>
<td>Influenza „non structural protein 2“, bzw. „nuclear export protein“</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>PA</td>
<td>Influenza „polymerase acidic protein“</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>PB1</td>
<td>Influenza „polymerase basic protein 1“</td>
</tr>
<tr>
<td>PB1-F2</td>
<td>Influenza „polymerase basic protein 1, open reading frame 2“</td>
</tr>
<tr>
<td>PB2</td>
<td>Influenza „polymerase basic protein 2“</td>
</tr>
<tr>
<td>pfu</td>
<td>Plaque forming units</td>
</tr>
<tr>
<td>pH</td>
<td>„potentia Hydrogenii“, Säurestärke</td>
</tr>
<tr>
<td>PR8</td>
<td>Influenza A/Puerto Rico/8/34 (H1N1)</td>
</tr>
<tr>
<td>PR8r</td>
<td>rekombinant hergestellter Virusstamm, Influenza A/Puerto Rico/8/34 (H1N1)</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute (revolutions per minute)</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNP</td>
<td>Influenza Ribonukleoprotein-Komplex</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>sek</td>
<td>Sekunden</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethylmethan) aminomethan</td>
</tr>
<tr>
<td>ÜN</td>
<td>über Nacht</td>
</tr>
<tr>
<td>wt</td>
<td>Wildtyp</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Das Influenza Virus

1.2. Pathologie und Wirts-Spektrum

Einleitung

Hämagglutinin aviärer Influenza-Stämme bindet spezifisch an α₂,3 gebundene Sialinsäure auf Zellmembran-Rezeptoren, so dass diese Stämme normalerweise apathogen für Menschen sind, deren Respirationstrakt-Zellen hauptsächlich α₂,6 gebundene Sialinsäure präsentieren (Connor et al. 1994; Suzuki et al. 2000). Es wurde jedoch kürzlich von aviären H5N1-Stämmen berichtet, die eine erhöhte Affinität für α₂,6 gebundene Sialinsäure zeigten, die somit ein erhöhtes humanpathogenes Potential besaßen (Gambaryan et al. 2006).

Eine weitere Eigenschaft von Influenza-Viren ist die fehlende „proof reading“ Funktion der viralen RNA-Polymerase, d.h. die virale Polymerase besitzt keine Korrekturfunktion, was das Entstehen von Mutanten begünstigt. Das fehlende „proof reading“ hat zur Folge, dass eine bis zu 10.000 mal höhere Replikationsfehlerrate im Vergleich zu DNA Polymerasen auftritt (Holland et al. 1982; Steinhauer und Holland 1987). Dies ist die Ursache für das jährliche Auftreten neuer Virus-Varianten, was man als „antigenic drift“ bezeichnet.
Ein anderer Faktor der viralen Anpassung an den Wirt stellt die virale Polymerase dar. So können Mutationen der aviären Polymerase zu einer erhöhten Aktivität in Säugetieren führen (Gabriel et al. 2005).

1.3. Morphologie und Vermehrungszyklus des Influenza A Virus

Das einzelsträngige, segmentierte (-) RNA Genom des Influenza A Virus ist aufgeteilt in acht Segmente und ist etwa 13 kB groß. Es codiert für bis zu elf Proteine, von denen neun die Struktur des Viruspartikels bilden und zwei, die nur in virusinfizierten Zellen exprimiert werden.

Das Genom des Influenza A Virus ist in so genannte Ribonukleoprotein-Komplexe (RNP-Komplexe) organisiert. Sie bestehen aus der viralen (-) RNA, an die das Nukleoprotein (NP) und die Polymeraseuntereinheiten PB1, PB2 und PA gebunden sind (siehe Abbildung 1.) Das Virion ist umgeben von einer von der Wirtszelle stammenden Lipidhülle, deren Bestandteile die Glykoproteine Hämagglutinin (HA) und Neuraminidase (NA) sowie das M2-Protein (ein pH-abhängiger Ionenkanal) sind (Abbildung 1). Es sind 16 HA- und 9 NA-Subtypen bekannt. Die Kombination aus HA und NA wird zur Bezeichnung eines

Abbildung 1: Schematische Darstellung des Influenza A Virions.

Influenza A Virus besitzt 11 Proteine codiert durch 8 einzelsträngige RNA. Segmente in negativer Orientierung, umhüllt von einer Lipid-Doppelschicht (verändert nach (Webster et al. 1992)).
NA: Neuraminidase
HA: Hämagglutinin
PB1, PB2, PA: Virales Polymerase-Komplex
(„polymerase basic protein” 1, 2 und „polymerase acidic protein“)
NP: RNA-bindendes Nukleoprotein
M1: Matrix-Protein
M2: integrales Membran-Protein (Ionenkanal)
NS1: nicht strukturelles Protein 1, Interferon-Antagonist
NEP/NS2: Nukleäres Export Protein, früher nicht strukturelles Protein 2
PB1-F2: Peptid vom alternativen ORF des PB1-Proteins

Abbildung 2: Schematischer Darstellung des Influenza A Virus Vermehrungszyklus

Einleitung

Glykoproteine, was wahrscheinlich einen Schutzmechanismus gegen Infektion der bereits infizierten Zelle mit neu gebildetem Virus darstellt (Webster et al. 1992).

Das Matrixprotein (M1) bildet das innere der Virushülle. Die viralen RNP-Komplexe sind an das M1-Protein gebunden. Das achte RNA-Segment codiert für das nicht-strukturelle Protein 1 (NS1) und das Nukleäre Export Protein (NEP), ein Kernexportprotein, welches früher als nicht-strukturelles Protein 2 bezeichnet wurde, da es nur in sehr kleinen Mengen im Viruspartikel vorkommt (Richardson und Akkina 1991; Yasuda et al. 1993). 2001 wurde ein elftes Influenza Protein PB1-F2 entdeckt (Chen et al. 2001), dessen nähere Beschreibung in Kapitel 1.5.1 erfolgt.

PB1, PB2 und PA bilden den viralen Polymerase-Komplex, der ausgehend von einer cRNA die Synthese sekundärer viraler RNA einleitet und auch für die mRNA Transkripte der späten viralen Strukturproteinen HA, NA, M1 und M2 zuständig ist. Für die Initiation der Transkription dienen dabei Promotor-ähnliche Strukturen, die an den 5’ und 3’ Enden der
Einleitung

viralen RNA-Segmente als Doppel-Strang Abschnitte entstehen. Sie ermöglichen die Bindung
der RNA-abhängigen RNA-Polymerase, die die virale RNA vervielfältigt (Flick et al. 1996).
Die Transkription viraler Influenza Gene weist eine Funktion auf, die man als „cap stealing“
bezeichnet. Damit ist das Abspalten von 5´Cap-Strukturenzellulärer pre-mRNA durch das
PB2 Protein gemeint, um diese als Primer für die Transkription viraler mRNA zu verwenden.
Dabei erkennt und bindet das PB2 Protein an 5´CapI-Gruppe von zelleigener mRNA und
spaltet diese ab (Bouloy et al. 1978; Krug et al. 1979; Plotch et al. 1979; Bouloy et al. 1980).
Der Vorgang ermöglicht die zelluläre Translation der viralen mRNA (Shapiro und Krug
1988). Zu Beginn der Infektion ist die Transkriptionsrate der viralen RNA sehr hoch, nimmt
aber im weiteren Verlauf der Infektion ab. Die Replikation bleibt dagegen während der
gesamten Infektion konstant hoch (Shapiro et al. 1987).

Von allen Proteinen des viralen RNP-Komplexes ist bekannt, dass sie eine nukleäre
Lokalisationssequenz (NLS) besitzen (Nath und Nayak 1990; Mukaigawa und Nayak 1991;
Nieto et al. 1994). Das NP-Protein besitzt zwei verschiedene NLS (O'Neill et al. 1995). Eine
unkonventionelle NLS am N-Terminus ist für den Import des Proteins, wie auch des RNP-
Komplexes verantwortlich (Cros et al. 2005). Große Proteine, wie die Proteine des RNP-
Komplexes, können nicht passiv in den Zellkern diffundieren. Sie werden aktiv in den
Zellkern importiert und benutzen dazu die zellulären Importmechanismen. Von Proteinen, die
eine NLS besitzen ist bekannt, dass sie direkt an Importin β, oder indirekt über Proteine aus
der Importin α-Familie, binden. Vom Influenza Nukleoprotein ist bekannt, dass es mit
verschiedenen Proteinen aus der Importin α-Familie interagiert (Melen et al. 2003). Für den
Import von PB1 scheint das Importin RanBP5 verantwortlich zu sein, das mit dem PB1, PB1-
PA-Komplexen, aber nicht PB1-PB2-Komplexen, interagiert (Deng et al. 2006).

Neugebildete RNP-Komplexe werden aktiv über Kernporen in das Zytoplasma transportiert
(Pleschka et al. 2001). Die M1-und NS2-Proteine spielen bei diesem Transportvorgang eine
wichtige Rolle. Sie binden im Kern an die RNP’s und unterstützen den Export (Avalos et al.
1997; O'Neill et al. 1998). Das M1-Protein hemmt dabei den Rücktransport der RNP’s in den
Zellkern (Bui et al. 1996). Diskutiert wird auch, dass das Nukleoprotein den Rücktransport
der RNP-Komplexe hemmt, indem es an die F-Aktin-Stressfibrillen bindet (Digard et al.
1999). Die Akkumulation von HA-Protein in der Zellmembran dient dabei als verstärkendes
Signal für den Export der RNP-Komplexe aus dem Zellkern, vermittelt durch virusinduzierte
Aktivierung der Mitogen-aktivierten Protein kinase-Kaskade (MAPK) (Marjuki et al. 2006).

Das NS1-Protein soll verschiedene regulatorische Funktionen ausüben; u.a. Apoptose-
Regulation (Schultz-Cherry et al. 2001; Zhirnov et al. 2002), Unterdrückung der antiviralen
Antwort (Garcia-Sastre et al. 1998; Garcia-Sastre 2001), Hemmung der Aktivierung von zellulären Signalwegen und durch Bindung an virale einzel- oder doppelsträngige RNA die Unterdrückung der dsRNA-aktivierten Kinase PKR (Enami et al. 1994). Die Aktivierung der PKR führt zur Phosphorylierung des Proteinsynthese-regulierenden Proteins eIF-2α (eukaryontischer Initiativs faktor 2α), was zum Abbruch der Proteinsynthese, als Folge einer antiviralen Reaktion führt (Lu et al. 1995). Ferner trägt NS1 zum Ausschalten der zellulären Proteinsynthese durch Inhibierung des Transports der mRNA aus dem Zellkern (Fortes et al. 1994; Qian et al. 1994) und durch Inhibition des Spleißens und der Polyadenylierung (Qiu und Krug 1994; Qiu et al. 1995) der mRNA bei.

1.4. Virusinduzierte Genexpression

Eine erste Abwehrlinie infolge von Influenza-Infektionen in Monocyten, Makrophagen und auch in Epithelzellen induziert (Julkunen et al. 2001).

1.4.1. Influenza Virus induzierte Signaltransduktion

Dabei ist die Virus-unterstützende Rolle der Raf/MEK/ERK Kaskade besonders evident. Dieser Signalweg wird von Influenza Viren für die Unterstützung des aktiven Transports der viralen RNP-Komplexe aus dem Zellkern benutzt. Eine Inhibierung des ERK-Signalweges führt zur Retention der RNP-Komplexe im Zellkern und folglich zu vermindriger Virusreplikation (Pleschka et al. 2001; Ludwig et al. 2004). Dabei wird die Kaskade biphasisch aktiviert, die Bedeutung der frühen Aktivierung ist noch unklar, die späte Aktivierung wird durch Protein Kinase C α (PKCα) vermittelt und durch die Akkumulierung neu gebildeter HA-Proteine in der Zellmembran ausgelöst (Marjuki et al. 2006).

Der p38 Signalweg wird durch Influenza aktiviert, seine Bedeutung für die Replikation des Influenza Virus ist jedoch unklar. Eine Hemmung des p38 Signalweges scheint allerdings die effiziente Virusreplikation zu beeinträchtigen (Labor Ludwig, unpubliziert).

Die ERK5-Kinase Kaskade wird ebenfalls durch das Influenza Virus aktiviert, analog zur Raf/MEK/ERK Kinasekaskade, eine Inhibierung dieses Signalweges zeigt aber keinerlei Einfluss auf die virale Replikation (Labor Ludwig, unpubliziert).

Das Influenza Virus induziert ferner die Aktivität der JNK-Kinase (c-Jun-NH₂-terminale Kinase) und AP-1 abhängige Genexpression. Die Aktivierung der JNK-Kinase scheint dabei durch die Akkumulierung viraler doppelsträngigen RNA-Intermediate zu geschehen (Chu et
Einleitung

Das Influenza Virus induziert zwar in der infizierten Zelle eine antivirale Antwort, hat aber gleichzeitig Mechanismen entwickelt, um diese Antwort zu umgehen. Das Virus kann dabei die Proteinsynthese des Wirtes unterbinden und die antiviralen Signalwege hemmen (Gale et al. 2000; Garcia-Sastre 2001). Die zentrale Rolle der Inhibition der Interferon-vermittelten antiviralen Antwort und der Proteinsynthese der Wirtszelle spielt dabei, das bereits im Kapitel 1.3 erwähnte NS1-Protein.

NS1 ist ein multifunktionelles Protein, das sowohl spezifisch an andere Proteine, wie auch unspezifisch an RNA binden kann (Lin et al. 2007). Dazu besitzt das NS1-Protein zwei Domänen. Zum einen die N-terminale RNA-bindende Domäne (BRD), welche das Virus vor antiviral IFN α/β Antwort, durch Blockierung der 2’5’-oligo(A) Synthetase, schützt. Zum anderen die C-terminale Domäne (Effektor-Domäne), welche durch Bindung an CPSF (cleavage and polyadenylation specifity factor) und PAB II (poly(A)-binding protein II) die Reifung und Export derzellären antiviralen mRNA’s inhibiert (Wang et al. 2002; Krug et al. 2003). Die Bindung von NS1 an RNA verhindert dabei die Aktivierung der PKR-Kinase und damit die Induktion der antiviralen Interferon-Antwort (Gale et al. 2000). NS1-Deletionsmutanten von Influenza sind nicht in der Lage sich effizient in Zellen oder Organismen mit intaktem Interferon-System zu vermehren (Garcia-Sastre et al. 1998).

Für die Aktivierung vieler Signalwege scheint die doppel- oder einzelsträngige RNA verantwortlich zu sein, was durch die Bindung an NS1 erschwert wird. Dabei spielen für die Aktivierung von Signalwegen freie Triphosphatgruppen am 5´Ende des vRNA-Stranges eine wichtige Rolle (Hornung et al. 2006; Pichlmair et al. 2006).

Für die Erkennung und Bekämpfung von Pathogenen durch das Einleiten einer frühen Immunantwort verfügt die Zelle über spezielle Rezeptoren. Diese wichtige Rolle erfüllen z.B. „Toll like“ Rezeptoren (TLR’s). Es handelt sich hierbei um Typ I Membranproteine, an deren N-terminalen Enden leucinreiche Repeats vorkommen, die die so genannten PAMP’s (pathogen-associated molecular patterns) erkennen. Von den bis jetzt identifizierten elf TLR’s spielen TLR3 und TLR7/8 für die Erkennung viraler Pathogene eine entscheidende Rolle.

Einleitung

zur Aktivierung von TBK1 („tank binding kinase 1“), was eine Phosphorylierung und Dimerisierung von IRF3 und 7 zur Folge hat. Diese Transkriptionsfaktoren sind für das Einleiten der antiviralen INFβ-Antwort verantwortlich.

Der in Endosomen vorkommende TLR7 ist hauptsächlich für die Erkennung einzelsträngiger RNA verantwortlich (Diebold et al. 2004; Heil et al. 2004). TLR7 aktiviert IRF7 über MyD88 (myeloid differentiation primary response protein 88) und TRAF6 (TNF-recepror associated factor 6), unter Beteiligung einer bis jetzt unbekannten Kinase (Kawai et al. 2004).

1.4.2. NF-κB Signalweg und Apoptose

NF-κB-Transkriptionsfaktoren sind dimere Moleküle aus der Rel-Familie (Ghosh et al. 1998). In Säugern findet man fünf Rel-Proteine aus zwei Klassen vor. Die Genprodukte der ersten Klasse: Rel A (oder p65), c-Rel und Rel B werden nicht proteolytisch gespalten, wohingegen die Molekül der zweiten Klasse p50 und p52 aus Vorläufermolekülen p105 und p100 proteolytisch prozessiert werden. Dimere, die p65 und c-Rel enthalten werden durch die Bindung an inhibitorische IκB-Moleküle (inhibitor of κB) im Zytoplasma festgehalten. Zur
IκB-Familie gehören die Moleküle IκBα, IκBβ, IκBε, IκBγ, und Bcl-2 in Vertebraten sowie cactus in Drosophila.

Eine Stimulation des Signalweges führt zur Aktivierung des IκB Kinase (IKK) -Komplexes, der seinerseits IκB-Moleküle phosphoryliert (siehe Abbildung 3) (Karin 1999; Karin 1999).

Die NF-κB-Aktivierung kann über die Kinase PKR eingeleitet werden. PKR phosphoryliert dabei die Protein Kinase IKK (Kumar et al. 1994). IKK besteht aus einer regulatorischen Untereinheit IKKγ und zwei katalytischen Untereinheiten α und β. Zytokine, wie TNFα und IL1 oder bakterielle Lipopolysaccharide (LPS) sowie Doppelstrang-RNA (dsRNA) induzieren die NF-κB-Aktivierung über IKKβ. IKKα wird dagegen durch Moleküle aus der TNF-Familie, wie Lymphotoxin β oder BLyS (B lymphocyte stimulator) aktiviert (Karin und Lin 2002).

Eine Phosphorylierung der IκB-Moleküle führt zu deren Ubiquitinierung und proteosomalem Abbau. Dadurch wird die Kernlokalisierungssequenz in der sog. RHD (Rel homology domain) frei und das NF-κB-Dimer in den Zellkern transportiert. Die 300 AS lange RHD enthält außer der Kernlokalisierungssequenz eine DNA-

Abbildung 3: Der NF-κB Signalweg

Der NF-κB Signalweg wird auf zwei Wegen induziert. Durch TNFα, IL-1, LPS oder dsRNA wird die Kinase IKKβ aktiviert, die ihrerseits IκBα, das inhibitorische Molekül von p50/p65, phosphoryliert. Die Phosphorylierung führt zur Ubiquitinierung und proteosomalem Abbau von IκBα. Die zweite Alternative wird z.B. über Lymphotoxin β aktiviert und führt zur Aktivierung von IKKα sowie zur Phosphorylierung und Prozessierung von p100 (Karin und Lin 2002).
Einleitung

Bindungssequenz, eine Dimerisierungsdomäne und eine IkB-Interaktionsdomäne (Ghosh et al. 1998; Karin und Delhase 2000).

Unter der Kontrolle von NF-κB befindet sich eine Reihe von Genprodukten, die antiapoptotisch wirken. Dazu gehören „cellular inhibitors of apoptosis“ (cIAP´s), Caspase-8-cFLIP (fllice inhibitory protein), A1, TRAF1 und TRAF2 (TNF-receptor associated factor). Zu cIAPs gehören cIAP 1 und 2 sowie XIAP (X-chromosome linked IAP). Die cIAPs binden an Pro-Caspase 3, 6 und 7 (Effektorcaspasen) und verhindern ihre proteolytische Prozessierung und Aktivierung (Deveraux et al. 1998).

Daneben wurde gezeigt, dass die Influenza-Infektion ein latentes Chaperon-aktiviertes Protein p58IPK induziert, welches mit der PKR-Dimerisierung und Aktivierung interferiert (Julkunen et al. 2001). P58IPK wurde als Inhibitor der Apoptose identifiziert und könnte eine Rolle in der influenza-induzierten Apoptose spielen (Tang et al. 1999).

1.5. Virusinduzierte Apoptose

Das Influenza Virus moduliert, neben vielen anderen Viren, wie z.B. HIV (Terai et al. 1991) oder Adenovirus (Rao et al. 1992), Apoptose-Signalwege. Influenza Virus-infizierte Zellen zeigen typische Apoptose-Merkmale (Takizawa et al. 1993; Hinshaw et al. 1994). Dazu gehören: Chromatin-Kondensation, DNA-Fragmentierung, Veränderungen in der Zellmorphologie (Schrumpfen) und Caspase-Aktivierung. Die Proteine NS1 und NA scheinen dabei eine größere Rolle in der Induktion der Apoptose zu spielen. NA aktiviert TGF-β (transforming growth factor β), was in einem auto- und parakrinen Mechanismus zur Induktion der Apoptose führen kann (Schultz-Cherry und Hinshaw 1996; Morris et al. 1999). Übergexpression von NS1 in MDCK- oder HeLa-Zellen ist ausreichend, um bereits Apoptose zu induzieren (Schultz-Cherry et al. 2001). Allerdings liegen auch Ergebnisse vor, die auf eine IFN-abhängige, antiapoptotische Funktion von NS1 deuten. Dabei wurde beobachtet, dass eine Influenza NS1-Deletionsmutante stärker Apoptose induzieren konnte als das wt Virus (Wildtyp Virus) (Zhirnov et al. 2002). Neuere Daten zeigen, dass Influenza Virus den PI3K/Akt (Phosphoinositid-3-Kinase/Protein Kinase B oder Akt) Signalweg durch Bindung von NS1 an PI3K aktiviert (Hale et al. 2006; Banet-Noach et al. 2007), was zu einer antiapoptotischen Antwort führen kann (Ehrhardt et al. 2007).

Eine antiapoptotische Rolle könnte auch das M-Protein spielen. So wurde gezeigt, dass das Matrix-Protein in der Lage ist Caspase 8 und auch schwach Caspase 7 zu binden. Die N-terminale Region von M1 zeigt dabei eine Ähnlichkeit mit der Anti-Caspase Domäne des
Einleitung

p35-Proteins vom Baculovirus, welche Caspase-inhibierende Funktion besitzt (Zhirnov et al. 2002).

Ein weiteres Influenza-Protein, das eine Rolle in der Apoptose spielen könnte, ist das erst 2001 entdeckte elfte Influenza-Protein PB1-F2.

1.5.1. Das PB1-F2 Protein

Das PB1-F2 Protein wurde als letztes Influenza-Genprodukt identifiziert und als proapoptotisch beschrieben (Chen et al. 2001). PB1-F2 ist ein etwa 14 kDa großes Peptid (zwischen 79 und 101 Aminosäuren, je nach Virus-Stamm variierend, meistens 87-90 Aminosäuren (Zell et al. 2006)), das vom +1 Leserahmen des PB1-Gens kodiert wird. Es wird angenommen, dass der alternative Leserahmen mit Hilfe eines Mechanismus exprimiert wird, den man als „ribosomales Scanning“ bezeichnet. Dabei „scannet“ die 40S Untereinheit des Ribosoms nach weiteren AUG Triplets, um die Translation zu initiieren (Jackson 2005).

Biochemisch zeigt das Peptid Ähnlichkeiten zu anderen viralen Genprodukten, die als proapoptotisch beschrieben wurden, wie HTLV Typ 1 Protein p13 (D'Agostino et al. 2002; Silic-Benussi et al. 2004) und HIV-1 Vpr (Muthumani et al. 2002; Sherman und Greene 2002).

Das Translationsprodukt des PB1-F2 Leserahmens aus infizierten Zellen migriert im Western-Blot in drei Banden (Chen et al. 2001). Exprimiert man PB1-F2 dagegen vom rekombinannten Vaccinia Virus oder von cDNA, so wurde nur eine Proteinspezies beobachtet, was auf posttranslationale Modifikationen während Influenzainfektion, wie Phosphorylierung, hinweist (Henklein et al. 2005).

Nicht alle Influenza-Stämme besitzen den (+1)Leserahmen für PB1-F2, es ist auch nicht nachgewiesen, ob die Influenza-Stämme, die über den Leserahmen verfügen, auch das Peptid exprimieren. Zudem ist das Peptid sehr variabel, d.h. es bestehen große Sequenzunterschiede zwischen den einzelnen Influenza A-Subtypen.

Eine Deletion des PB1-F2 Leserahmens zeigte, dass das Protein für das Influenza Virus nichtessentiell ist. Es wurden bis jetzt keine Effekte auf die Virusreplikation in der Zellkultur gezeigt. Die Infektion mit PB1-F2 Knockout Viren führte jedoch zu einer verminderten Pathogenität in der Maus (Zamarin et al. 2006). Diese Studie zeigte, dass die Virentiter in den Lungen der infizierten Mäuse im Vergleich zum wt Virus anfangs gleich hoch waren, im weiteren Verlauf der Infektion jedoch schneller zurückgingen, bzw. die Viren schneller vom Immunsystem eliminiert wurden. Diese Beobachtung könnte auf eine Rolle des PB1-F2 Proteins als Pathogenitätsfaktor hinweisen. Zudem wurde auch berichtet, dass PB1-F2 eine
Einleitung

verstärkende Rolle auf die Zerstörung von alveolaren Makrophagen haben kann (Chen et al. 2001).
Das PB1-F2 Protein konnte an Mitochondrien nachgewiesen werden, eine zytoplasmatische sowie nukleäre Lokalisierung wurde aber ebenfalls beobachtet (Chen et al. 2001; Gibbs et al. 2003). Das Protein besitzt eine „mitochondrial targeting sequence“ (MTS) in der Nähe des C-Terminus, die ausreichend für mitochondriale Lokalisierung ist. Das Protein ist in der Lage in vitro den Verlust des inneren Mitochondrienmembran-Potentials herbeizuführen, was zum apoptotischen Zelltod führen kann (Gibbs et al. 2003; Yamada et al. 2004). Biochemisch besitzt das Peptid verschiedene phosphorylierungsstellen mit Konsensusmotiven für die Kinase PKCα (Protein Kinase C) und CKII (Casein Kinase II) und kann multimere Spezies formen (Chen et al. 2001). Das Peptid verfügt über eine Interaktionsdomäne, die im Bereich des C-Terminus liegt und, einzeln exprimiert, mit dem Voll-Längenprotein interagieren kann. Interessanterweise wird in infizierten Zellen ebenfalls ein C-terminales ca. 57 kDa großes Peptid von einem alternativen Start-Codon in der PB1 Sequenz synthetisiert (Zamarin et al. 2006). Dabei ist es vollkommen unbekannt, ob dieses verkürzte Peptid eine biologische Funktion besitzt oder nur ein Zufallsprodukt ist.
Einleitung

Gleichwohl ist das Protein bis heute unzureichend erforscht und seine eigentliche Funktion im Kontext der viralen Infektion unbekannt. Die nukleäre Lokalisierung lässt aber auch auf andere, möglicherweise genregulierende Funktionen des Proteins schließen. Eine weitere Eigenschaft des PB1-F2 Proteins liegt darin, dass es einem hohen Selektionsdruck zu unterliegen scheint (Obenauer et al. 2006), die Ursache ist jedoch nicht ausreichend geklärt und umstritten (Holmes et al. 2006).

1.5.2. Die Rolle von NF-κB und Interferonen in der Apoptose

Eine Influenza Virus-Infektion führt zur Aktivierung von IRF-3 und NF-κB sowie Expression von Interferonen, als antivirale Antwort der Zelle. Eine Studie berichtet, dass die α- und β-Interferone Zellen gegenüber Apoptoseinduktion über den FADD/Caspase-8 Weg empfindlich machen (Balachandran et al. 2000). FADD- (Fas-associated death domain) vermittelte Apoptose wird durch die PKR Kinase vermittelt, die ihrerseits durch dsRNA oder Virus aktiviert wird (Balachandran et al. 1998). Eine weitere Studie zeigte, dass mit dsRNA transfizierte Zellen, die mit Interferonen behandelt wurden, Apoptose durchlaufen, wohingegen eine Interferonbehandlung alleine keine Induktion von Apoptose zur Folge hatte (Tanaka et al. 1998).

Ein wichtiges Interferon-induziertes proapoptotisches Molekül ist das Transmembranprotein TRAIL (TNF-related apoptosis inducing ligand) aus der TNF-Liganden Familie. TRAIL wird in Thymocyten über Typ I Interferone und in Fibroblasten über Typ II Interferone induziert. TRAIL ist in der Lage selektiv Apoptose in virusinfizierten Zellen zu induzieren (Sedger et al. 1999).

TRAIL gehört neben Fas-Ligand (FasL) zu den so genannten Todesliganden, die die Receptor-vermittelte Apoptose (im Unterschied zur Mitochondrien- und ER-vermittelten Apoptose) durch Bindung an einen so genannten Todesrezeptor auslösen. Zu den Todesrezeptoren gehören TRAIL Rezeptor 1 und 2 sowie CD95/Fas. Die Bindung des Liganden induziert eine Trimerisierung des Receptors. Dies führt zur Interaktion der intrazellulären Rezeptordomäne mit dem zytoplasmatischen Protein FADD und dessen Oligomerisierung. Über eine sog. „death effector domain“ werden die Initiatorcaspasen 8 und 10 rekruitiert, was zur Bildung eines Komplexes führt, den man als DISC (death inducing signalling complex) bezeichnet. Die DISC-Bildung ermöglicht die Aktivierung von Caspasen. Die Caspasen sind eine Gruppe von Zysteinylproteasen, welche für die Apoptose-Signalwege eine zentrale Rolle spielen. Man unterscheidet zwischen Initiatorcaspasen und Effektorcaspasen. Zu der ersten Gruppe gehören Caspase-8 und -9, zu der zweiten -3, -6 und -
Einleitung

NF-κB spielt eine wichtige antiapoptotische Rolle, es wurde aber auch berichtet, dass unter bestimmten Bedingungen, dieser Signalweg ebenfalls eine proapoptotische Funktion haben kann, z.B. durch die positive Regulierung von FasL und FasL-Rezeptor (Baichwal unb Baeuerle 1997; Barkett und Gilmore 1999). Über eine NF-κB–abhängige Fas und FasL Expression wurde bereits mehrfach berichtet (Matsui et al. 1998; Chan et al. 1999; Hsu et al. 1999). Von mit Influenza Virus infizierten Zellen ist bekannt, dass sie Fas und FasL auf ihrer Oberfläche koexprimieren (Fujimoto et al. 1998). Von anderen Viren, wie dem Dengue-Virus wurde gezeigt, dass sie Apoptose in Hepatoma-Zellen NF-κB-abhängig induzieren (Marianneau et al. 1997).

1.5.3. Die Rolle der NF-κB abhängigen Apoptoseinduktion im Vermehrungszyklus des Influenza A Virus

Sehr früh wurde gezeigt, dass eine Überexpression des antiapoptotischen Proteins Bcl-2 die Influenza Virus-Vermehrung negativ beeinflusst und zur Missglykosylierung von Hämagglutinin führt (Hinshaw et al. 1994; Olsen et al. 1996). Untersuchungen mit NS1-Deletionsmutanten wiesen auf eine antiapoptotische Rolle dieses Proteins hin (Zhirnov et al. 2002). Die Funktion des NS1-Proteins als Interferon-Antagonist ist bereits untersucht worden (Garcia-Sastre 2001) und da die Typ I Interferone als Simulatoren der virusinduzierter Apoptose angenommen werden (Balachandran et al. 2000), liegt die Vermutung nahe, dass der NF-κB Signalweg eine wichtige proapoptotische Rolle im Vermehrungszyklus des
Einleitung

Die Induktionen des NF-κB Signalwegs durch das Influenza Virus, wie auch seine antivirale Rolle, durch die transkriptionelle Regulation von IFNβ (Maniatis et al. 1998; Taniguchi und Takaoka 2002) sowie antiapoptotische Funktion sind bereits genau untersucht worden.

Einleitung
defizient, was durch eine Deletion im Casp3-Gen verursacht wird (Janicke et al. 1998; Kurokawa et al. 1999). Influenza kann sich nachweislich in MCF-7 Zellen nur schlecht replizieren. Transfiziert man jedoch MCF-7 Zellen mit Caspase-3, so werden sie für Influenza wieder permissiver (Wurzer et al. 2003).

1.6. Antivirale Therapeutika gegen Influenza Virus-Infektionen

Einleitung

Amantadin muss bereits sehr früh nach Infektion mit Influenza Viren eingesetzt werden und hat viele Nebenwirkungen, wie Durchfall, Depressionen, epileptische Anfälle und periphere Ödeme. Daher ist die Behandlung mit Amantadin recht problematisch und wird heute kaum angewandt.

Diese Daten zeigen deutlich, dass eine Notwendigkeit besteht, eine Strategie gegen Influenza-Infektionen zu entwickeln, die nicht auf der Hemmung von viralen Strukturen basiert. Es zeichnet sich ab, dass jede Strategie, die das Virus selbst betrifft über kurz oder lang aufgrund der schnellen Mutationsrate und des „antigenic shift“ vom Virus überwunden wird.

Neuere Erkenntnisse weisen auf eine neue Möglichkeit hin, die virale Vermehrung zu hemmen, indem man zelluläre Stoffwechselwege blockiert, die das Virus für die eigene Vermehrung „missbraucht“. Mit dieser Strategie könnte verhindert werden, dass Influenza Viren Resistenzen entwickeln, da das Virus das Fehlen dieser zellulären Faktoren und Mechanismen nicht einfach durch Mutationen kompensieren kann.
1.7. Zielsetzung der Arbeit

Ziel der vorliegenden Arbeit ist die Untersuchung verschiedener Aspekte des kontrollierten Zelltodes in Influenza Virus-infizierten Zellen. Speziell die Beteiligung des NF-κB-Signalweges im Hinblick auf eine antivirale Strategie und die Charakterisierung des als proapoptotisch beschriebenen Influenza Virus-Proteins PB1-F2 bilden den Kernpunkt dieser Arbeit.

Neuere Studien zeigten, dass virale Induktion von NF-κB-abhängigen proapoptotischen Faktoren und eine Aktivierung des NF-κB Signalweges für die Replikation des Influenza Virus von essentieller Bedeutung sind (Nimmerjahn et al. 2004; Wurzer et al. 2004).

Es stellt sich daher die Frage, ob man durch gezielte Hemmung des NF-κB Signalweges die Vermehrung des Influenza Virus inhibieren kann.

Abbildung 4: Inhibierung des NF-κB Signalweges durch Acetylsalicylsäure

Eine Möglichkeit den NF-κB Signalweg zu Hemmen stellt die direkte Inhibierung der IκBα-Phosphorylierung dar, eine andere die indirekte, durch Hemmung der IKK-Kinasenaktivität. Dies lässt sich mit verschiedenen Substanzen erreichen, gleichwohl scheinen die Salicylate wie Acetylsalicylsäure, die unter dem Namen Aspirin bekannt ist, eine besonders interessante Möglichkeit für therapeutische Ansätze darzustellen. Zum einen ist Aspirin seit der Entdeckung durch Arthur Eichgrün 1897 als Medikament großflächig im Einsatz und zum anderen zeigte Aspirin nur wenige Nebenwirkungen.

Das PB1-F2 Peptid, scheint an der Regulation der virusinduzierten Apoptose beteiligt zu sein. Das Protein wurde als Apoptose-verstärkender Faktor identifiziert, dessen Lokalisierung zytoplasmatisch bzw. mitochondrial ist (Chen et al. 2001). Gleichwohl wurde beobachtet, dass in einer bestimmten Zahl von Influenza Virus-infizierten Zellen das Protein auch im Nukleus lokalisiert ist. Weitere Untersuchungen zeigten, dass das Peptid alleine keine Induktion der Apoptose auslöst (Gibbs et al. 2003), sondern eher eine apoptoseverstärkende Eigenschaft besitzt (Zamarin et al. 2005). Diese Beobachtungen weisen auf eine andere Funktion des PB1-F2 Proteins.

Im Rahmen dieser Arbeit wird zu einem die Rolle die Rolle des NF-κB-Signalweges im Hinblick auf einen möglichen antiviralen Einsatz untersucht und zum anderen die Rolle des biologisch wenig charakterisierten Protein PB1-F2 im Replikationszyklus des Influenza Virus durchleuchtet.
Material und Methoden

2. Material

2.1. Chemikalien, Medien und Zellkulturzusätze

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Mercaptoethanol</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Aceton</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Acetylsalicylsäure (Aspirin)</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Acrylamid (30%), Bisacrylamid (0,8%)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Adenosin-5’Triphosphat (ATP)</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Agar (gereinigt)</td>
<td>Oxoid (Wesel)</td>
</tr>
<tr>
<td>Agarose</td>
<td>Difco (USA)/Gibco</td>
</tr>
<tr>
<td>Albumin (Protease frei)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Amantadin</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Ammoniumacetat</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Ammoniumperoxidsulfat (APS)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Aprotinin</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Avicell microcrystalline cellulose</td>
<td>FMC BioPolymer (Brüssel/Belgien)</td>
</tr>
<tr>
<td>BAY 11-7085</td>
<td>Calbiochem (Bad Soden)</td>
</tr>
<tr>
<td>Benamidinhydrochlorid Hydrat</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>BioRad Protein Assay-Stammlösung</td>
<td>BioRad (München)</td>
</tr>
<tr>
<td>Bovines Albumin 35%</td>
<td>MP Biomedicals</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Fluka (Buchs, Schweiz)</td>
</tr>
<tr>
<td>Coomassie-Brilliant Blue R-250</td>
<td>Fluka (Buchs, Schweiz)</td>
</tr>
<tr>
<td>DAPI (4,6-Diamidino-2-Phenylindol)</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>D-MEM (4500mg/l Glucose, GlutaMAX I)</td>
<td>Gibco/PAA (Paisley)</td>
</tr>
<tr>
<td>DEAE Dextran</td>
<td>Amersham (Little Chalfont)</td>
</tr>
<tr>
<td>DMSO (Dimethylsulfoxid)</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Dithiotreitol (DTT)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>EDTA (Na-Ethylendiamintetraacetat)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Ethanol, technisch (96 %)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>F12 (HAM’s) (+GlutaMAX I)</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>Fötale Kälberserum (FCS)</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>D(+)-Glucose</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Glycin</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>HEPES</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>Serva (Heidelberg)</td>
</tr>
<tr>
<td>Lipofectamin 2000</td>
<td>Gibco (Paisley)</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithiumacetat</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>D-Luciferin</td>
<td>Applichem (Darmstadt)</td>
</tr>
<tr>
<td>Luminol</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Magernmilchpulver</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Magnesiumchlorid-Hexahydrat</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>MEM (+GlutaMAX I)</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>MEM 10x (-L-Glutamin, -NaHCO₃)</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>Methanol</td>
<td>Fluka (Buchs, Schweiz)</td>
</tr>
<tr>
<td>MTT ((3-(4,5-Dimethylthiazol-2-yl) 2,5-</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>diphenytetrazyoliumbromid))</td>
<td></td>
</tr>
<tr>
<td>Natrium Bicarbonat</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>Natriumacetat</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumhydroxid</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumhydrogenphosphat</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Natriumorthovanadat</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Neutralrot</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>OptiMEM I</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>PBS 1x</td>
<td>PAA/Gibco (Linz/Paisley)</td>
</tr>
<tr>
<td>Pefablock</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>PAA/Gibco (Linz/Paisley)</td>
</tr>
<tr>
<td>Phorbol 12-myristat 13-acetat (PMA)</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>p-Coumarinsäure</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Polyethylen Glycol (PEG)</td>
<td>Fluka (Buchs, Schweiz)</td>
</tr>
<tr>
<td>Protein Ladder (PageRuler)</td>
<td>Fermentas (Litauen)</td>
</tr>
<tr>
<td>Protein A- / Protein G-Agarose</td>
<td>Roche</td>
</tr>
<tr>
<td>RPMI 1640</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>Salzsäure</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>SDS (Sodium Dodecylsulfat)</td>
<td>Applichem (Darmstadt)</td>
</tr>
<tr>
<td>Tris</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>TritonX 100</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>Gibco (Paisley)</td>
</tr>
<tr>
<td>Trypsin-EDTA 0,5%</td>
<td>PAA/Gibco (Linz/Paisley)</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Tumor Necrosis Factor α (TNFα), rekombinant</td>
<td>Sigma (St. Louis)</td>
</tr>
<tr>
<td>Wasserstoffperoxid 30%</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>X-Gal</td>
<td>Serva (Heidelberg)</td>
</tr>
</tbody>
</table>

2.1.2. Antikörper

<table>
<thead>
<tr>
<th>Antikörper/Antiserum</th>
<th>Referenz/Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor 488 chicken anti-mouse IgG</td>
<td>Invitrogen / Molecular Probes (Paisley/UK)</td>
</tr>
<tr>
<td>Alexa Fluor 488 chicken anti-rabbit IgG</td>
<td>Invitrogen / Molecular Probes (Paisley/UK)</td>
</tr>
<tr>
<td>Alexa Fluor 594 chicken anti-goat IgG</td>
<td>Invitrogen / Molecular Probes (Paisley/UK)</td>
</tr>
<tr>
<td>Alexa Fluor 594 chicken anti-mouse IgG</td>
<td>Invitrogen / Molecular Probes (Paisley/UK)</td>
</tr>
<tr>
<td>Alexa Fluor 594 chicken anti-rabbit IgG</td>
<td>Invitrogen / Molecular Probes (Paisley/UK)</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>R&D Systems (Wiesbaden)</td>
</tr>
</tbody>
</table>
Material und Methoden

#### Antikörper/Antiserum	Referenz/Herkunft
Cleaved Caspase-3 | Cell Signalling (Frankfurt a.M.)
Donkey anti-goat IgG-HRP | Santa Cruz (Heidelberg)
Donkey anti-rabbit IgG-HRP | Amersham (Little Chalfont)
ERK 2 (C-14) | Santa Cruz (Heidelberg)
IκBα (C-21) | Santa Cruz (Heidelberg)
Influenza A M | Serotec (Düsseldorf)
Influenza A NP 150 | Webster R. (Memphis/USA)
Influenza A NP | Serotec (Düsseldorf)
Influenza A PB1 | Santa Cruz (Heidelberg)
Influenza A PB1 rabbit | Garcia-Sastre A. (New York/USA)
Influenza A PA | Ortin J. (Madrid/Spanien)
Influenza A/PR8/34 PB1-F | Schubert U. (Erlangen)
JNK1 (C-17) | Santa Cruz (Heidelberg)
p65 (C-20) | Santa Cruz (Heidelberg)
p38 (N-20) | Santa Cruz (Heidelberg)
PARP | BD Transduction Laboratories (Heidelberg)
Phospho-ERK 1/2 (Thr202/Tyr204) | Cell Signalling (Frankfurt a.M.)
Phospho-JNK (Thr183/Tyr185) | BD Transduction Laboratories (Heidelberg)
Phospho-P38 (Thr180/Tyr182) | Cell Signalling (Frankfurt a.M.)
Sheep anti-mouse IgG-HRP | Amersham (Little Chalfont)

2.1.3. Plasmide

Plasmid	Herkunft
pCNA3 | Invitrogen (Karlsruhe), siehe Anhang Abbildung 45.
pSR-GFP/Neo | pSUPER RNAi System, Oligoengine (Seattle)
pSR-GFP/Neo p65/3 | Institut für Molekulare Medizin (Düsseldorf)
IFNA β luc | Hiscott, J. (Montreal), (Leblanc et al. 1990)
4xIRF-3 luc | (Ehrhardt et al. 2004), basierend auf pTATA LUC (Altschmied und Duschl 1997), siehe auch Anhang Abbildung 45
pACT2 | Clontech Matchmaker Two-Hybrid System 2, siehe Abbildung 6
pACT2 PB1-F2 | L.Wixler (Münster)
pACT2 PB1(ΔPB1-F2) | L.Wixler (Münster)
pAS2-1 | Clontech Matchmaker Two-Hybrid System 2, siehe Abbildung 6
pAS2-1 PB1 | L.Wixler (Münster)
pAS2-1 PB1(ΔPB1-F2) | L.Wixler (Münster)
pAS2-1 PB1-F2 | L.Wixler (Münster)
PHMG NP | Pleschka, S. (Giessen), (Pleschka et al. 1996)
PHMG PB1 | Pleschka, S. (Giessen), (Pleschka et al. 1996)
PHMG PB2 | Pleschka, S. (Giessen), (Pleschka et al. 1996)
PHMG PA | Pleschka, S. (Giessen), (Pleschka et al. 1996)
PHW2000 PB1 | (Hoffmann et al. 2000)
PHW2000 PB1 F2C | Anhlan Darisuren (Münster)
PHW2000 PB1 2xAF2 | Anhlan Darisuren (Münster)
PHW2000 PB2 | (Hoffmann et al. 2000)
PHW2000 PA | (Hoffmann et al. 2000)
PHW2000 NP | (Hoffmann et al. 2000)
pB12 CMV/PB1-F2 | Schubert, U. (Erlangen), siehe Anhang Abbildung 45.
2.1.4. Sonstige Materialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eppendorf Reaktionsgefäße</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Nitrocellulose</td>
<td>Schleicher & Schuell (Dassel)</td>
</tr>
<tr>
<td>Röntgenfilme</td>
<td>Amersham / Agfa</td>
</tr>
<tr>
<td>Whatman GB 002 Papier</td>
<td>Schleicher & Schuell (Dassel)</td>
</tr>
</tbody>
</table>

2.2. Stämme und Anzucht

2.2.1. Viren

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviäres Influenza A Virusisolat A/Bratislava/79(H7N7) (FPV)</td>
<td>Pleschka S. (Giessen)</td>
</tr>
<tr>
<td>Humanes Influenza A Virusisolat A/Puerto-Rico/8/34 (H1N1) (PR8)</td>
<td>Wolff T. (Berlin)</td>
</tr>
<tr>
<td>Rekombinantes Humanes Influenza A Virusisolat A/Puerto-Rico/8/34 (PR8) F2C (PB1-F2 ATG95→ACG)</td>
<td>Anhlan Darisuren (Münster)</td>
</tr>
<tr>
<td>Rekombinantes Humanes Influenza A Virusisolat A/Puerto-Rico/8/34 (PR8) F2C (PB1-F2 ATG95→ACG, TCA128→TGA)</td>
<td>Anhlan Darisuren (Münster)</td>
</tr>
<tr>
<td>Humanes Influenza A Virusisolat A/Thailand/1(KAN-1)/2004 (H5N1)</td>
<td>(Puthavathana et al. 2005)</td>
</tr>
</tbody>
</table>

2.2.1.1. Anzucht von Influenza-Viren

Humanopathogene Influenza Viren, wie PR8 wurden in bebrüteten Hühnereiern vermehrt. Dazu wurden bebruchte Hühnereier bei 37°C und 70% Luftfeuchtigkeit im Brutkasten 10 Tage inkubiert. Am 11. Tag wurden die Eier unter möglichst sterilen Bedingungen mit Influenza angeimpft. Die Kalkschale wurde mit einer sterilen Kanüle direkt über der Luftkammer durchbrochen und die Viruslösung (1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin mit 1x10⁻⁴ bis 1x10⁻⁵ Plaque Forming Units Virus) in die Allantoishöhle injiziert. Dabei musste beachtet werden, dass die Embryonen nicht verletzt werden. Die Eier wurden daher zuvor durchleuchtet und die Lage der Luftkammer und des Embryos eingzeichnet. Das Loch in der Kalkschale wurde zuletzt mit Holzleim versiegelt und die infizierten Eier für weitere 50 im Brutkasten Stunden inkubiert. Vor der Virusernte wurden die Embryonen durch Inkubation für 1,5 bis 2 h bei -20°C abgetötet, die Schalen aufgebrochen, die virushaltige Allantoisflüssigkeit abgesaugt und bei -70°C eingefroren. Die Bestimmung des Virustiters erfolgte mittels Plaque-Assay auf MDCK-Zellen.

Der aviäre Influenza A Virus-Stamm FPV wurde auf MDCK-Zellen vermehrt. Dazu wurde eine konfluente 175cm² Flasche Zellen mit 15ml Infektionsmedium (MEM, 1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin)
Material und Methoden

2.2.1.2. Virusinfektionen von Zellen

Vor einer Infektion wurden alle Zellen mit 1xPBS gewaschen, um Serum sowie Zelltrümmer zu entfernen. Die gewünschte Virus-Lösung wurde in PBS (mit 1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin) aufgenommen bzw. verdünnt. Die Zellen wurden mit 0,5 bis 1ml Infektionslösung (1xPBS supplementiert durch 1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin) überschichtet und für 30 min bei 37°C im CO₂-Brutschrank infiziert. Nach dieser Absorptionsphase wurde die Infektionslösung entfernt und durch serumfreies Medium (jeweiliges Zellmedium supplementiert mit 1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin) ersetzt. Danach wurden die infizierten Zellen, je nach Verwendungszweck, weiter behandelt.

2.2.1.3. Bestimmung von Virustitern mittels Plaque-Assay

Die Anzahl der infektiösen Virenpartikel wurde mittels eines sog. Plaque-Assays auf MDCK-Zellen bestimmt. Dazu wurde eine logarithmische Verdünnungsreihe der zu untersuchenden Virusüberstände erstellt. Die Viruslösungen für die Verdünnungsreihe wurden in PBS (mit 1mM MgCl₂, 0,9 mM CaCl₂, 100 Units/ml Penicillin, 0,1 mg/ml Streptomycin und 0,2% Bovines Albumin) verdünnt. Die MDCK Zellen wurden in 6-Well Näpfen mit 500 µl der jeweiligen Virusverdünnung 30 min lang bei 37°C im CO₂-Brutschrank inkubiert. Danach wurde die Viruslösung entfernt und mit einem Medium-Agar Gemisch (Zusammensetzung: 1% Dextran, 3 ml BA, 85 ml ddH₂O, 250ml 2xMEM, dazu wurden 15 ml 46°C warmen Oxoid-Agar auf 35 ml Medium zugegeben) überschichtet. Humane Influenza-Stämme benötigen außerdem Zugabe vom Trypsin (0,025% v/v), da das Hämagglutinin humanpathogener Influenzaviren tryptisch gespalten werden muss. Die Zellen wurden im Brutschrank für weitere 2-3 Tage, je nach Virus-Stamm inkubiert, bis zur sichtbaren Bildung von Plaques. Zuletzt wurden die Plaques mit Neutralrot (in PBS gelöst) oder Coomassie-Blau (0,1% Coomassie-Brilliant-Blue G-250 in 40% Methanol, 10% Essigsäure) angefärbt und ausgezählt.
2.2.1.4. Herstellung rekombinanter Influenza Viren

Die acht Plasmide (je 1 µg) wurden gleichzeitig in ein Gemisch aus MDCK II und HEK293-Zellen (im Verhältnis 1:3, 75-90% konfluent, kultiviert in 6 cm-Platten auf Opti-MEM Medium ohne Zusätze) transfiziert (siehe 2.2.2.4). 16-24 h nach Transfektion wurde das Transfectionmedium gegen neues Opti-MEM ausgetauscht. Nach weiteren 24 h wurde der Mediumüberstand abgenommen. Mit 1 ml des Überstands wurden neue MDCK-Zellen infiziert (6 cm Schale, siehe 2.2.1.2) und mit 3 ml Opti-MEM überschichtet. Danach wurden die Zellen solange inkubiert, bis der cytopathische Effekt des Virus auf die Zellen deutlich sichtbar wurde (ca. 3-4 Tage). Der Überstand wurde gesammelt, die Virustiter mittels Plaque-Assay bestimmt und für Experimente eingesetzt, oder in embrionierten Hühnereiern weiter vermehrt. Die Virusüberstände wurden bei -70°C gelagert.

2.2.2. Eukaryotische Zell-Linien

<table>
<thead>
<tr>
<th>Zell-Linie</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549</td>
<td>Human, epithelial, Lungenkarzinom</td>
</tr>
<tr>
<td>HeLa</td>
<td>Human, epithelial, Cervix Karzinom, entnommen 1951</td>
</tr>
<tr>
<td>HEK293</td>
<td>Human, embryonales Nierenepithelgewebe, immortalisiert mit Adenovirus 5 DNA</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Human, epithelial, Brust-Adenokarzinom, entnommen 1970</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madin Darby Canine Kidney“, Cocker spaniel, Nierenkarzinom, entnommen 1958</td>
</tr>
</tbody>
</table>

2.2.2.1. Zellkultur

Die Zellkulturen wurden unter der Sicherheitsbank TypII mit laminarem Luftstrom (BDK) mit autoklavierten oder sterillfiltrierten Lösungen, sterilen Kunststoffmaterialien oder
autoklavierten Glaswaren und unter Verwendung steriler Nährmedien durchgeführt. Alle Zell-Linien wurden bei 37°C, 5% CO₂ und gesättigter Luftfeuchtigkeit gehalten in HERACell 240 Brutschränken von Heraeus gehalten.

2.2.2.2. Kultivierung adhärenter Zell-Linien

HEK293, A549 und HeLa Zellen wurden in D-MEM, supplementiert mit 10% FCS und 100 µg/ml Penicillin/Streptomycin, kultiviert. MDCK Zellen wurden in 1x MEM supplementiert mit 10% FCS, und 100 µg/ml Penicillin/Streptomycin kultiviert. Zum Passagieren wurden die Zellen bei einem Konfluenzgrad von 70-90% einmal mit PBS gewaschen und durch Inkubation mit Trypsin/EDTA von der Kulturflasche bzw. Schale gelöst. Die abgelösten Zellen wurden im frischen Kulturmedium aufgenommen und in gewünschter Verdünnung wieder ausgesät.

2.2.2.3. Einfrieren und Lagerung eukaryotischer Zell-Linien

2.2.2.4. Transiente Transfektion mit Lipofectamin 2000

2.2.2.5. Nicoletti-Assay

DNA Gehalt <2n gekennzeichnet. Die Messung der Fluoreszenz im FACS ermöglicht eine Zellzyklusanalyse, da die Fluoreszenzintensität dem relativen DNA Gehalt direkt proportional ist.

Die Färbung der Zellen (1x10^6 Zellen / ml) erfolgte nach der gewünschten Stimulationsdauer mit Virus bzw. dem starken Apoptose-Induktor Staurosporin (positive Kontrolle) in dem hypotonem Nicoletti-Puffer (50 µg/ml PI, 0,1% Natrium-Citrat, 0,1% Triton X-100).

Dazu wurden die Zellen trypsinisiert, in FACS-Röhrchen überführt und 5 min bei 500 g und RT abzentrifugiert. Anschließend wurden die Zellen 1x mit PBS gewaschen und in 250 µl Nicoletti-Puffer resuspendiert. Die Zellen wurden im Nicoletti-Puffer für 4h bei 4°C inkubiert. Anschließend wurde die FACS-Analyse (Becton Dickinson FACSCalibur, Software: Cell Quest pro) durchgeführt. Gemessen wurde im Fluoreszenzkanal FL-2H (585 nm).

2.2.2.6. Propidiumiodid-Färbung

Dazu wurden die Zellen trypsinisiert, 1x mit PBS gewaschen und in einer PI-Lösung resuspendiert (50 µg/ml PI in PBS). Die Messung erfolgte, wie bereits beschrieben (2.2.2.5).
2.2.2.7. MTT-Assay

Mittels MTT-Assay (Mosmann 1983; Alley et al. 1988) kann man die Proliferationsrate und damit die Viabilität von Zellen ermitteln. Lebende Zellen können das gelbe Tetrazoliumsalz MTT (MTT: (3-(4,5-Dimethylthiazol-2-yl) 2,5-diphenytetrazoliumbromid)) aufnehmen und mit Hilfe mitochondrialer Dehydrogenasen, welche nur in proliferierenden Zellen aktiv sind, zu einem stark blauen, wasserunlöslichen Formazanfarbstoff umsetzen. Die Intensität der Blaufärbung korreliert mit der metabolischen Aktivität der Zellen.

Dazu wurden die Zellen in einer 96-Well Platte ausgesät (2,5x10⁴ Zellen je Well) und mit dem zu untersuchenden Inhibitor behandelt. Nach gewünschter Inkubationszeit wurden die Zellen 1x mit PBS gewaschen und 50µl (5 mg/ml) MTT je Well wurde zugegeben. Es folgte eine 2–4 h Inkubationszeit bei 37°C. Die Umsetzung wurde danach photometrisch bei 570 nm gemessen.

2.2.2.8. Immunfluoreszenz

bearbeitet.

2.2.3. *E. coli* Stamm

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Genotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>F- endA1 hsdR17 (rK-mK-) supE44 thi-1 λ- recA1 gyrA96 relA1 deoR Δ(lacZYA-argF)-U196 φ80dlacZΔM15</td>
</tr>
</tbody>
</table>

2.2.3.1. Medien für *Escherichia coli*

LB – Medium:
- 10 g Bacto Trypton
- 5 g Hefe Extrakt
- 5 g NaCl
- 13,5 g Hefe (bei Platten)
- auf 1000 ml mit ddH₂O auffüllen, lösen und autoklavieren.

LB + Amp: Zugabe von Ampicillin (Endkonzentration 50 µg/ml).

2.2.3.2. Anzucht von *Escherichia coli*

E. coli wurde in LB-Medium in aeroben Schüttel-Kulturen bei 37°C kultiviert. Plasmid-Transformanten wurden in einem Medium mit 50 µg/ml Ampicillin selektioniert.

2.2.4. *Saccharomyces cerevisiae* -Stamm

<table>
<thead>
<tr>
<th>Stammname</th>
<th>Genotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y190</td>
<td>MATa ura3-52, his3 Δ200, lys2-801, ade2-101, trp1-901, leu2-3, 112, gal4Δ, gal80Δ, cyh2, LYS2::GAL1::HIS3 TATA-HIS3, URA3::GAL1::GAL1 TATA-lacZ</td>
</tr>
</tbody>
</table>

2.2.4.1. Medien für *Saccharomyces cerevisiae*

YPD
- 10 g Hefe Extrakt
- 20 g Casein Hydrolysats (Pepton)
- 18 g Gibco Agar (bei Platten)
- auf 900 ml mit ddH₂O auffüllen, lösen und autoklavieren.

SD Minimalmedium:
- 20 g Glukose
- 15 g BiTek Agar (bei Platten)
- 6,7 g Yeast Nitrogen Base (YNB)
- auf 1000 ml mit ddH₂O auffüllen, pH-Wert auf 5,8 mit 1M NaOH einstellen, lösen und autoklavieren.
Material und Methoden

10xAminosäuren-Mix:
Das Aminosäurengemisch ist die Kombination der folgenden Aminosäuren und wird zum SD-Medium zugegeben (1:10), ggf. ohne Aminosäuren, die zum Selektionieren gewählt wurden.

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>Konzentration (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Isoleucin</td>
<td>300</td>
</tr>
<tr>
<td>L-Valin</td>
<td>1500</td>
</tr>
<tr>
<td>L-Adenin</td>
<td>200</td>
</tr>
<tr>
<td>L-Arginin</td>
<td>200</td>
</tr>
<tr>
<td>L-Leucin</td>
<td>1000</td>
</tr>
<tr>
<td>L-Lysin</td>
<td>300</td>
</tr>
<tr>
<td>L-Methionin</td>
<td>200</td>
</tr>
<tr>
<td>L-Phenylalanin</td>
<td>500</td>
</tr>
<tr>
<td>L-Threonin</td>
<td>2000</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>200</td>
</tr>
<tr>
<td>L-Tyrosin</td>
<td>300</td>
</tr>
<tr>
<td>L-Uracil</td>
<td>200</td>
</tr>
</tbody>
</table>

2.2.4.2. Anzucht von S. cerevisiae

* S. cerevisiae* Stämme wurden in aeroben Schüttelkulturen in YPD bei 30°C kultiviert. Transformierte Zellen wurden auf entsprechenden SD-Mangelmedien kultiviert.

2.2.4.3. Transformation von S. cerevisiae

Um Plasmide und Integrationskassetten in die Hefe zu transformieren, wurde eine hocheffiziente LiAc/Einzelstrang-DNA/PEG-Methode angewendet (Gietz et al. 1995).

- Eine 5 ml YPD Übernacht-Vorkultur wird bei 30°C inkubiert
- Pro Ansatz: 1 ml der Hefe-Kultur wird 5 min bei 3500 U/min und RT pelletiert. Der Überstand wird bis auf 50-100 µl verworfen und in dem Restvolumen resuspendiert.
- Zu den Zellen werden 2 µl Carrier-DNA (10 mg/ml Stocklösung) zugegeben und gemischt.
- 1 µg Plasmid-DNA wird zugegeben und der Ansatz gemischt (Vortex-Schüttler)
- Pro Transformationsansatz werden 0,5 ml des Transformations-Mixes zugegeben und gut gemischt (Vortex-Schüttler).
 - Transformations-Mix:
 - 90 ml PEG (45% w/v)
 - 10 ml 1M LiAc
 - 1 ml 1M Tris-Cl (pH 7,5)
- Pro Ansatz werden zusätzlich 20 µl 1 M DTT zugegeben und gevortext.
- Die Ansätze werden 6-8 h bei RT inkubiert.
- Anschließend erfolgt ein Hitzeschock: 10-30 min bei 42°C (im Heizblock).
- 50-100 µl wurden direkt aus den abgesetzten Zellen entnommen, direkt auf Selektiv-Medien ausgestrichen und bei 30°C inkubiert.
2.2.5. Molekularbiologische Methoden - DNA

2.2.5.1. Gelelektrophorese und Geldokumentation

Für die elektrophoretische Auftrennung von DNA-Molekülen wurde Agarose der Firma Cambrex (SeaKem) benutzt. Je nach Trennbereich kamen Gele zwischen 0,7 und 1,5% zum Einsatz. 1x TBE wurde als Laufpuffer verwendet. Zum Markieren und Beschweren der Proben wurde Blaumarker hinzugefügt. Die Elektrophorese wurde bei 60-110 V in horizontaler Anordnung durchgeführt.

Die Färbung der Gele erfolgte mit Hilfe von 5µl Ethidiumbromid (EtBr) bei 50 ml Gelen, das nach dem Aufkochen der Agarose in 1x TBE zugegeben wurde. EtBr ist eine Chemikalie, die in die DNA Doppelstränge interkaliert. Bei Anregung mit UV-Licht der Wellenlänge 366 nm fluoresziert EtBr. Die DNA Moleküle sind dadurch im Gel als distinkte Banden sichtbar.

Zur Dokumentation wurde ein Photodokumentationsgerät der Firma Decon ScienceTec verwendet.

10x TB Puffer: 1x TBE Puffer:
- 890 mM Borsäure (550 g) 1000 ml 10x TB
- 890 mM Tris-HCL (1050 g) 40 ml 0,5 M EDTA
- Auf 10 l mit dH2O auffüllen Auf 10 l mit dH2O auffüllen

2.2.5.2. Restriktionsenzymanalyse von Plasmid-DNA

Für die DNA-Spaltung mittels Restriktionsendonukleasen wurden Enzyme von Fermentas mit den, von der Firma dafür vorgesehenen, Reaktionspuffern eingesetzt. Für eine Standardreaktion wurden ca. 3U Enzym pro 1 µg DNA eingesetzt und der Ansatz für 1h bei 37°C (mit Ausnahme von Enzymen, die bei 30°C arbeiten) inkubiert.

Zur Überprüfung der Spaltung wird der Ansatz mit Blaumarker versetzt und auf ein Agarosegel geladen.

2.2.5.3. Transformation von Plasmid-DNA (E.coli)

50 µl kompetente E.coli Zellen DH5α wurden mit 1 µg DNA auf Eis gemischt. Der Ansatz wurde 1 min bei 42°C inkubiert (Hitzeschock). Danach wurden sofort 600 µl LB-Medium (ohne Antibiotika) zugegeben und anschließend 100 µl des Ansatzes auf LB+Amp-Medien ausplattiert. Die Platten wurden über Nacht bei 37°C inkubiert.
2.2.5.4. Isolierung von Plasmid-DNA aus *E. coli*

2.2.6. Molekularbiologische Methoden - Proteine

2.2.6.1. Luciferase-Assay

<table>
<thead>
<tr>
<th>Harvesting Puffer (Zell-Lyse):</th>
<th>Assay Puffer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mM Na-MES pH 7,8</td>
<td>125 mM Na-MES pH 7,8</td>
</tr>
<tr>
<td>50 mM Tris-HCl pH 7,8</td>
<td>125 mM Tris-HCl pH 7,8</td>
</tr>
<tr>
<td>10 mM DTT</td>
<td>25 mM MgAcetat</td>
</tr>
<tr>
<td>2% Triton-X 100</td>
<td>2 mg/ml ATP</td>
</tr>
</tbody>
</table>

Nach gewünschter Zeitspanne wurden die Zellen 1x mit kaltem PBS gewaschen und 30 min bei 4°C im Harvesting Puffer lysiert. (das darin enthaltene Detergenz Triton-X bindet an die Proteine der Zellmembranen und bricht diese auf). Die Zell-Lysate wurden in 1,5 ml ERGs überführt und die Zelltrümmer 5 min bei 13000 g und 4°C sedimentiert. Je 50 µl des Lysats zusammen mit 50 µl Assay-Puffer wurden für die Luciferase-aktivitätsmessung in eine 96-Well Platte überführt. Bei der Messung wurde zu dem Gemisch automatisch 50 µl Luciferinlösung (1mM Luciferin, 5mM KH₂PO₄ pH 7,8) je Well zugegeben. Die gemessene Lumineszenz ist in „relative light units“ (RLU) angegeben. Die Proteinkonzentration aller
Proben wurde mittels BioRad Proteinassay ermittelt und die Luziferase-Enzymaktivität in RLU auf den Proteingehalt aufeinander angeglichen.

2.2.6.2. Herstellung von Proteinextrakten und Bestimmung der Proteinkonzentration

Zellen für Western-Blot Analyse bzw. Immunpräzipitation wurden stets ein- bis zweimal mit kaltem PBS gewaschen und 30 min bis 1 h bei 4°C im „Triton Lysis Buffer“ (TLB, 20 mM Tris-HCl pH 7,4, 137 mM NaCl, 10% Glycerol, 1% Triton X-100, 2 mM EDTA, 50 mM Natrium-Glycerolphosphat, 20 mM Natrium-Pyrophosphat, 5µg/ml Aprotinin, 5µg/ml Leupeptin, 1mM Natrium-Vanadat, 5 mM Benzamidin) lysiert. Anschließend wurden die Lysate in 1,5 ml ERGs überführt und die Zelltrümmer 15–30 min bei 4°C und 13000 g sedimentiert. Die Überstände wurden in neue ERGs überführt und je nach Bedarf bei -70°C gelagert oder weiter verarbeitet.

Für die Lyse von membrangebundenen Proteinen wurde der RIPA-Lysepuffer verwendet (25 mM Tris pH 8, 137 mM NaCl, 10% Glycerol, 0,1% SDS, 0,5% NaDOC, 1% IgePal, 2 mM EDTA pH8).

Die Proteinkonzentration wurde mittels BioRad-Proteinassays ermittelt. Dabei wurden keine absoluten Proteinkonzentrationen der Proben bestimmt, sondern die optische Dichte bei 595 nm gemessen und die Probenvolumina in Relation zueinander eingesetzt.

Der BioRad Proteinassay basiert darauf, dass das Absorptionsmaximum einer sauren Coomassie Brilliant Blau Lösung von 465 nm (rotbraun) eine Verschiebung nach Bindung an ein Protein nach 595 nm (blau) zeigt. Dabei ist die Absorptionsamplitude bei 595 nm der Proteinmenge proportional.

2.2.6.3. Immunpräzipitation

Für die Immunpräzipitation wurden die Zellen, wie zuvor beschrieben (2.2.6.2) mit TLB lysiert und die Proteinkonzentration der einzelnen Proben aufeinander abgestimmt. Zu den

2.2.6.4. Hefe Two-Hybrid

Das Hefe Two-Hybrid System wurde entwickelt, um direkte Protein-Protein Interaktionen zu untersuchen (Fields und Song 1989). Dabei werden euakaryotische Transkriptionsfaktoren verwendet, z.B. das Gal4 Protein der Hefe *Saccharomyces cerevisiae*, das zwei räumlich und funktionell voneinander unabhängige Domänen besitzt; eine DNA-Bindedomäne (BD) und eine Aktivierungsdomäne (AD). Die Bindedomäne bindet dabei an „upstream activation sequences“ (UAS), die Aktivierungsdomäne veranlasst den RNA Polymerase II-Komplex zur Transkription von Genen, die abwärts der UAS lokализiert sind. Beide Domänen sind notwendig für die Transkription, müssen aber nicht kovalent verbunden sein. Dieses Prinzip macht sich der Two-Hybrid Test zunutze. Dabei wird die Bindedomäne des Transkriptionsfaktors als Fusionsprotein mit dem zu untersuchenden Protein zusammen mit der Aktivierungsdomäne als Fusionsprotein mit dem potentiellen Interaktionspartner in Hefe exprimiert. Eine Interaktion beider Proteine führt zur Transkription eines Reportergens, wie

Abbildung 6: Hefe Two-Hybrid Plasmide

Für die Untersuchung von Protein-Protein Interaktionen wurde die Plasmide pAS2-1 und pACT2 des MATCHMAKER Two-Hybrid System 2 von Clontech verwendet.
Material und Methoden

lacZ von E.coli. Das lacZ Genprodukt setzt das Substrat X-Gal um, was zu einer Blaufärbung führt und die Identifikation positiver Klone ermöglicht.

2.2.7. SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) und Western-Blot-Analyse

Die SDS-Polyacrylamid-Gelelektrophorese ist eine effiziente Methode zur Auftrennung von denaturierten Proteinen in einem elektrischen Feld, ihrem Molekulargewicht entsprechend (Laemmli 1970). Das Detergenz SDS bewirkt, dass die nicht kovalenten Wechselwirkungen der nativen Proteine aufgelöst werden. Das im Probenpuffer enthaltene β-Mercaptoethanol reduziert zudem Disulfidbrücken. SDS binden an die Proteinketten, die so gebildeten Komplexe besitzen eine starke negative Ladung, die der Masse der Protein-SDS Komplexe proportional ist. Damit ist sichergestellt, dass die negativ geladenen Protein-SDS Komplexe in einem elektrischen Feld in Richtung des Plus-Pols wandern. Da alle Proteine ungefähr die gleiche negative Ladung, aber unterschiedliche Größe haben, werden sie in einem Polyacrylamid-Gel ihrer Größe nach aufgetrennt.

Die Zell-Lysate wurden jeweils, wie unter 2.2.6.2 beschrieben vorbereitet und auf gleiche Proteinkonzentrationen eingestellt. Zu dem gewünschten Probenvolumen wurde 5xSDS Probenpuffer (155 mM Tris-HCl pH 6,8, 5% SDS, 50% Glycerin, 25% β-Mercaptoethanol) zugegeben. Die Proben wurden 5 min bei 95°C im Heizblock denaturiert und auf Gele aufgetragen.

2.2.7.1. Herstellung von denaturierenden SDS-Polyacrylamidgelen für die Auftrennung von Proteinen

Material und Methoden

Herstellung eines Trenngels

- Für die Herstellung des Trenngels wurde die Acrylamiddösung (Biorad) im Verhältnis Acrylamid zu Bisacrylamid 30% : 0,2% mit dem Trenngelpuffer (1,5M tris-HCl pH 9,0, 0,4% TEMED, 0,4% SDS) und ddH₂O vermischt. Zuletzt wurde vor dem Gießen der Gele Ammoniumpersulfat (10% w/v) zugegeben.
- Das Trenngel wurde so zwischen die vorbereiteten Glasplatten gegossen, dass am oberen Rand etwa 3 cm Platz für das Sammelgel bleibt. Das Trenngel wurde mit Isopropanol oder Ethanol überschichtet, um eine gleichmäßige Trennlinie zwischen Sammel- und Trenngel zu erreichen.

Herstellung eines Sammelgels

- Nach dem Auspolymerisieren des Trenngels wurde der Alkohol abgegossen. Alkoholreste wurden mit dH₂O ausgespült.
- Das Sammelgel (3,9%) setzte sich aus einer Acrylamid zu Bisacrylamid (30% : 0,2%) Lösung und Sammelgelpuffer (140 mM Tris-HCl pH 6,8, 0,11% TEMED, 0,11% SDS) zusammen. Die Polymerisation wurde ebenfalls mit Ammoniumpersulfat (10% w/v) gestartet.
- Das Sammelgel wurde auf das zuvor auspolymerisierte Trenngel gegossen und ein Kamm zwischen die Glasplatten in das Sammelgel gesteckt.
- Nach dem Auspolymerisieren des Sammelgels wird der Kamm vorsichtig gezogen. Das Gel wurde in die Gelelektrophoresekammer eingespannt und die Pufferkammern mit Laufpuffer (25 mM Tris-HCl pH 6,8, 50 mM Glycin, 0,1% SDS) aufgefüllt.
- Die ausgeformten Geltaschen wurden mit Puffer ausgespült.
- Der Gell-Lauf wurde für ca. 1,5 h bei einer Stromstärke von 50 mA durchgeführt. Das Gel wurde danach für die Westernblotanalyse benutzt.

2.2.7.2. Durchführung der Westernblotanalyse

Mit Hilfe der Westernblotanalyse (Burnette 1981) kann man Proteine, die über ein SDS-Polyacrylamid Gel aufgetrennt wurden, auf eine Nitrozellulose-Membran übertragen (Towbin et al. 1979) und dort spezifisch sichtbar machen. Dazu werden Antikörper verwendet, welche spezifisch das zu untersuchende Protein oder ein Epitop erkennen. Dieser erste Antikörper wird durch einen zweiten Antikörper spezifisch erkannt. Der zweite Antikörper ist kovalent an eine Peroxidase (horseradish peroxidase - HRP, Meerrettich-Peroxidase) gebunden. Das Enzym katalysiert dabei die Umsetzung von Luminol mit Wasserstoffperoxyd (H₂O₂) in eine
oxidierte Form. Dabei wird Lumineszenz freigesetzt, die auf Röntgenfilmen detektiert werden kann. Das zu untersuchende Protein erscheint als distinkte Bande auf dem entwickelten Film.

2.2.7.3. Elektrotransfer der aufgetrennten Proteine auf eine Nitrozellulose-Membran

Der Elektrotransfer der Proteine wurde in einer Nass-Elektroblotkammer von BioRad durchgeführt. Für den Elektrotransfer werden 4 Whatman-Papiere und eine Nitrocellulose-Membran auf Gelgröße zugeschnitten und in Blotting-Puffer (pH 8,2, 39 mM Glycin, 48 mM Tris-HCl, 0,037% SDS, 20% Methanol) getränkt. Die Nitrocellulose-Membran wurde luftblasenfrei auf das Gel gelegt und zwischen die feuchten Whatmanpapiere gebettet. Man muss dabei beachten, dass das gesamte Sandwich möglichst luftblasenfrei bleibt. Das Sandwich wurde seinerseits zwischen zwei Schwammpads gebettet und in dem Gehäuse der Kammer befestigt. Die Kammer wurde nun mit dem Blotting-Puffer gefüllt. Der Elektrotransfer erfolgte je nach Kammergröße bei 200 bis 300 mA für 1,5 h bis 3 h.

2.2.7.4. Western-Blot Analyse der an die Nitrozellulose-Membran gebundenen Proteine

Die Nitrocellulose-Membran wurde für mindestens 30 min bei Raumtemperatur in Blocking-Puffer (5% Milchpulver in PBS-T (1x PBS mit 0,1% Tween)) inkubiert, der Blocking-Puffer anschließend verworfen und die Membran in einer Primär-Antikörper-Lösung (gelöst meist in Blocking-Puffer oder 1x PBS-T, je nach Herstellerangaben) für 1-4 h bei RT oder über Nacht bei 4°C unter Schwenken inkubiert. Danach wurde die Membran dreimal für jeweils etwa 10 min in 1x PBS-T gewaschen um nicht-gebundene Antikörper zu entfernen. Die Inkubation der Membran mit dem Sekundär-Antikörper erfolgte analog unter Schwenken für 1-4 Stunden bei RT in der Sekundär-Antikörper-Lösung (gelöst in Blocking-Puffer). Nach der Inkubation wird die Membran erneut dreimal mit 1x PBS-T für jeweils mindestens 10 min gewaschen.

Nach dem Waschen wurde die Membran mit dem Chemolumineszenz-Substrat (2,5 mM Luminol, 0,45 mM p-Coumarsäure, 100 mM Tris-HCl pH 8,5, dazu wurden kurz vor der Benutzung 0,01% H2O2 zugegeben) für ca. 1 min inkubiert. Die Membran wurde in eine Detektionskassette gelegt und ein Röntgenfilm aufgelegt. Je nach Stärke des Signals bzw. Qualität der Antikörper erfolgte eine entsprechend lange Exposition des Films in der Kassette. Die Filme wurden anschließend in einem Röntgenfilm-Entwickler (AGFA Cervix 60) entwickelt.
3. Ergebnisse

Der erste Teil dieser Arbeit beschäftigt sich mit der Untersuchung der Hemmung des NF-κB-Signalweges auf die Vermehrung des Influenza A Virus.

3.1. Der NF-κB-Signalweg ist wichtig für die Vermehrung des Influenza A Virus

Bereits in früheren Arbeiten des Labors wurde gezeigt, dass die Hemmung des NF-κB-Signalweges eine negative Auswirkung auf die Replikation des Influenza A Virus hat (Wurzer et al. 2004). So wurde beispielsweise der Signalweg mit einer dominant-negativen Mutante von IKKβ bzw. einer nicht abbaubaren Mutante von IκBα unterbrochen. Zellen, die diese Mutanten exprimierten, wurden mit Influenza Virus infiziert und die Virentiter bestimmt. Es zeigte sich, dass sich das Virus im Vergleich zu Kontrollzellen schlechter repliziert hatte, was in geringeren Titern der Nachkommenviren resultierte. Eine Preaktivierung des NF-κB-Signalweges durch Expression einer aktiven Mutante von IKKβ

Im Rahmen der vorliegenden Arbeit wurden diese Ergebnisse mittels eines anderen Ansatzes bestätigt. Dieser bestand darin, die regulatorische NF-κB Untereinheit p65 mittels einer „small interferring RNA“ (siRNA) gegen die p65 mRNA zu eliminieren. Dazu wurden HEK293-Zellen transient mit einem Vektor transfiziert, der die siRNA gegen p65 kodierte. Ein Ansatz wurde 24h nach Transfektion lysiert und die Unterdrückung der p65 Expression mittels Western-Blot auf Proteinebene überprüft (siehe Abbildung 7 A). Ein zweiter Ansatz wurde mit 0,01 MOI (Multiplizität der Infektion) des Influenza Virus A/FPV/Bratislava/1979 (H1N1) (im Folgenden kurz FPV genannt) infiziert und die Virentiter mittels Plaque-Assay bestimmt (siehe Abbildung 7 B). Es zeigte sich, dass in den Zellen, die die siRNA gegen p65 exprimierten, die Virentiter geringer waren, als in Zellen, die mit einem Leervector transfiziert wurden. Dies zeigt, dass sich das Influenza Virus nur unzureichend in Zellen mit geringer NF-κB-Aktivität vermehren konnte. Damit wird bestätigt, dass das Influenza Virus die NF-κB Aktivität für die effiziente Vermehrung benötigt und dass die Hemmung dieses Signalweges als potentielle antivirale Strategie dienen könnte.

3.2. Acetylsalicylsäure als Mittel zur Hemmung des NF-κB-Signalweges

Die IKKβ-vermittelte Phosphorylierung und der damit einhergehende proteolytische Abbau von IκBα stellt einen zentralen Schritt in der Aktivierung des NF-κB-Signalweges dar. Wird die Phosphorylierung und folglich der Abbau dieses Moleküls verhindert, so findet keine Translokation des p50/p65-Komplexes in den Zellkern statt und die Transkription von NF-κB-abhängigen Genen wird unterbunden. Wie bereits in der Einleitung beschrieben, existieren verschiedene Wege um NF-κB zu hemmen. Acetylsalicylsäure (im Folgenden als ASA abgekürzt) ist ein bekannter Inhibitor der IKKβ-Kinase (Yin et al. 1998), seit langer Zeit in der klinischen Benutzung sowie sehr günstig in der Herstellung, was diese Substanz besonders attraktiv als potentiellen antivirales Mittel erscheinen lässt.

Um zu überprüfen, ob auch in unseren Ansätzen ASA den NF-κB-Signalweg hemmen kann wurde ein IκBα-Degradationsassay durchgeführt. Dabei wurden MDCK-Zellen mit Acetylsalicylsäure bzw. zur Kontrolle mit BAY 11-7085, einem kommerziell erhältlichen
Inhibitor der NF-κB Aktivierung, behandelt. Durch Zugabe von TNFα, einem starken Aktivator des NF-κB-Signalweges, wurde die IκB α-Degradation eingeleitet. Sind die Zellen mit einer Substanz behandelt, die den Signalweg hemmt, so ist auch der TNFα-induzierte Abbau von IκB α unterbunden. Wie in der Abbildung 8 zu sehen ist, hemmen beide Substanzen den TNFα-induzierten Abbau von IκB α. Dieses Ergebnis bestätigt, dass ASA in Konzentrationen zwischen 3 und 20 mM zur Hemmung des NF-κB-Signalweges eingesetzt werden kann.

Abbildung 8: Die NF-κB-Signalweg Inhibitoren ASA und BAY 11-7085 hemmen den TNFα-induzierten Abbau von IκB α

MDCK Zellen wurden mit verschiedenen Konzentrationen von ASA (A) bzw. BAY 11-7085 (B) behandelt. Die IκB α-Degradation wurde mit 30ng/ml TNFα induziert. Nach 1 min (A) bzw. 15 min (B) wurden die Zellen lysiert. Die Proteine wurden in einem PAGE-Gel separiert, geblottet und im Western-Blot auf die IκB α-Degradation mit einem spezifischen Antikörper untersucht. Als Ladekontrolle diente die Detektion einer unspezifischen Bande durch den IκB α-Antikörper.

Die Hemmung wurde ebenfalls auf transkriptioneller Ebene in einem Luciferase-Assay (mit einem 3xNF-κB Promotorbindestelle-Luciferase Reportergen Konstrukt) bestätigt. Das Experiment zeigte nach Stimulation mit TPA (Phorbol 12-Myristat 13-Aacetat, 100 ng/ml) und anschließender Inkubation mit 1-5 mM ASA eine geringere Stimulation der NF-κB-Promotoraktivität nach (Mazur et al. 2007).
3.3. Behandlung infizierter Zellen mit Acetylsalicylsäure hemmt die Replikation des Influenza Virus

Frühere Arbeiten, sowie die Experimente dieser Arbeit zeigten, dass die Inhibition des NF-κB-Signalweges einen hemmenden Einfluss auf die Replikation des Influenza A Virus hat. Im Folgenden wird untersucht, ob ASA, als Inhibitor des NF-κB Signalweges eine antivirale Kapazität besitzt.

Um dies zu untersuchen wurden Zellen mit Influenza Virus infiziert und mit ASA behandelt. Die Infektion von MDCK- oder A549-Zellen mit einem hochpathogenen, aviären Influenza Virus FPV (von Subtyp H7N7) führt nach 24h zu sichtbaren Zellsterben sowie zu Zellen mit veränderter Morphologie durch zytopathischen Effekt (CPE). Dazu gehören Zell-Lyse, Fusion

Abbildung 9: Zellmorphologie Influenza A Virus infizierter MDCK- und A549-Zellen, die mit ASA-behandelt wurden

(A) MDCK-Zellen wurden mit 0,001 MOI FPV infiziert. Nach der Infektion wurde zum Infektionsmedium 5 bzw. 7 mM ASA (in PBS gelöst, auf pH 7 eingestellt) zugegeben und für 24h inkubiert. (B) A549-Zellen wurden mit 0,01 MOI FPV infiziert. Nach der Infektion wurde zum Infektionsmedium 5 bzw. 7 mM ASA (in PBS gelöst, auf pH 7 eingestellt) zugegeben und für 24h inkubiert.
von mehreren Zellen sowie Bildung nadelförmiger Zellfortsätze (siehe Abbildung 9). Wurden die infizierten Zellen jedoch mit ASA behandelt, so erhöht sich sichtbar die Anzahl lebender sowie morphologisch intakter Zellen. Besonders deutlich ist dies nach Behandlung infizierter A549-Zellen mit 7mM ASA – die Anzahl der toten Zellen ist genauso gering, wie im Fall von uninfizierten Zellen (siehe Abbildung 9). Dieses recht einfache Experiment zeigte bereits, dass die Behandlung infizierter Zellen mit ASA die Zellen vor der Zerstörung durch die Virusvermehrung in A549- und MDCK-Zellen ganz oder teilweise schützen kann (bei A549-Zellen besonders deutlich sichtbar).

Die Frage war nun, ob die Hemmung von NF-κB durch ASA in Influenza Virus infizierten Zellen auch zu verminderten Titern von Nachkommenviren führen würde.

3.3.1. Auswirkung der NF-κB-Hemmung mittels Acetylsalicylsäure auf Virusreplikation

Es hat sich ebenfalls gezeigt, dass ASA nicht nur in der Zellkultur, sondern auch in vivo antiviral wirkt. Die Überlebensrate von Mäusen, die mit einer letalen Dosis FPV infiziert wurden, konnte nach anschließender intranasaler Behandlung mit ASA signifikant (bis 60%) gesteigert werden, ((Mazur et al. 2007), siehe Abbildung 11 B. Die Versuche wurden in
Kooperation mit Labor O. Planz, FLI, Tübingen durchgeführt). Nicht behandelte, bzw. mit der Kontrollsubstanz Indometacin (Cyclooxygenasen-Inhibitor) behandelte Mäuse starben dagegen spätestens nach 10 Tagen. Die Aufnahme von ASA aus dem Trinkwasser erwies sich

Abbildung 10: Virustiter aus Überständen von MDCK- und A549-Zellen, die mit verschiedenen Influenza A Virus-Stämmen infiziert und mit ASA behandelt wurden.

MDCK- bzw. A549-Zellen wurden mit dem Influenza Virus A/Puerto Rico/8/1934 (PR8) (A, B), A/Thailand/1(KAN-1)/2004 (C, D) sowie A/FPV/Bratislava/1979 (E, F) infiziert. Nach 30 min Infektion wurden zum Infektionsmedium 5 bzw. 7 mM ASA (in PBS gelöst, auf pH 7 eingestellt) zugegeben. 8, 24, und 36h nach Infektionsbeginn wurden Zellmedium-Überstände entnommen und daraus die Virustiter mittels Plaque-Assay bestimmt (siehe 2.2.1.3).
als weniger effektiv. Es wurde nur etwa eine 20% Überlebensrate erzielt, die jedoch signifikant war (siehe Abbildung 11 A).

Die Untersuchung von Virentitern aus Lungen infizierter Mäuse zeigte bereits 24 h nach Infektion und anschließender Behandlung mit 10 mM ASA einen Rückgang der neu gebildeten Viruspartikel im Vergleich zu unbehandelten Mäusen (siehe Abbildung 11 C). Dies ist ein gutes Indiz dafür, dass der antivirale Effekt auf der direkten Hemmung der Virusreplikation gründet und nicht auf einer Modulation der adaptiven Immunantwort.

3.3.2. Spezifität der NF-κB-Inhibition durch Acetylsalicylsäure

ASA zeigt eine sehr starke Wirkung auf die Replikation von Influenza A Viren. Es stellte sich daher die Frage, ob die Wirkung alleine auf der in der Literatur beschriebenen Inhibition von NF-κB beruht oder ob ASA einen Einfluss auf weitere Virus-induzierte zelluläre Signalwege hat.

Wichtige Influenza Virus-induzierte Signalwege sind z.B. die verschiedenen MAP Kinasen-Signalkaskaden, ERK1/2, p38 und JNK1, deren Beeinflussung ebenfalls zu einer Modulation der Virusreplikation führt (siehe 1.4.1).

In Abbildung 12 ist deutlich eine verstärkte Phosphorylierung und damit die Aktivierung von ERK, JNK und p38, sowie die Degradation von IκBα 4 und 8 h nach Virusinfektion in
Ergebnisse

unbehandelten Zellen zu sehen. Die Inkubation mit 5 oder 7 mM ASA hatte keinen Einfluss auf die virusinduzierte Aktivierung der ERK-, JNK- und p38-Signalwege. Während die IκBα-Degradation nach ASA-Zugabe selbst nach 8-stündiger Infektion mit einem aggressiven Virus, wie FPV (H7N7) immer noch gehemmt ist. Diese Ergebnisse zeigen, dass ASA keine Wirkung auf die virusinduzierte Aktivierung von MAP Kinasen hat, allerdings könnten noch andere zelluläre Vorgänge von ASA gehemmt sein, welche zum antiviralen Effekt beitragen.

\[
\begin{array}{cccccccc}
& 0h & 4h & 8h & 4h & 8h & 4h & 8h & 8h \\
\hline
\text{FPV} & - & - & - & + & + & + & + & + \\
5 \text{ mM ASA} & - & - & - & - & + & + & - & - \\
7 \text{ mM ASA} & - & - & - & - & - & - & + & + \\
\text{ERK-2} & & & & & & & & \\
\text{ERK-2} & & & & & & & & \\
\text{JNK-1} & & & & & & & & \\
\text{p38} & & & & & & & & \\
\text{IκBα} & & & & & & & & \\
\end{array}
\]

\textbf{Abbildung 12: Einfluss von ASA auf verschiedene virusaktivierte zelluläre Signalwege}

A549-Zellen wurden mit 5 bzw. 7 mM ASA inkubiert und mit FPV infiziert (5 MOI), bzw. ohne Zugabe von ASA oder uninfiiziert belassen (0h). Nach 4 und 8 h, wurden die Zellen mit PBS gewaschen und lysiert. Die Proteine wurden mittels SDS-PAGE (siehe 2.2.7) separiert und auf eine Nitrozellulose-Membran übertragen. Die Aktivierung der ERK1/2-, JNK1- und p38-Kinasen wurde mittels phosphospezifischer Antikörper sichtbar gemacht. Der Abbau von IκBα wurde mit einem IκBα-Antikörper detektiert. Die äquivalente Beladung wurde mit ERK-2, JNK-1 sowie p38 Antikörpern kontrolliert.

Um zu klären, ob die NF-κB-Hemmung durch ASA alleine die verminderte Virusreplikation determiniert, wurden Virustiter von infizierten Zellen bestimmt, in denen der Signalweg durch den spezifischen NF-κB-Inhibitor BAY 11-7085 gehemmt war. Es zeigte sich, dass die kombinierte Behandlung mit zwei NF-κB-Inhibitoren gleichzeitig zu keiner signifikanten synergistischen Reduktion der Virustiter führte (siehe Abbildung 13).
Dies bedeutet, dass der jeweilige Inhibitor in der eingesetzten Konzentration spezifisch den NF-κB-Signalweg hemmt und dass etwaige zusätzlich durch ASA gehemmte Faktoren keine wichtige Rolle für die beobachtete Hemmung der Virusreplikation spielen.

3.3.3. Acetylsalicylsäure hemmt Caspasen-Aktivität und Induktion des apoptotischen Zelltodes.

In früheren Arbeiten wurde bereits gezeigt, dass der NF-κB Signalweg die virusinduzierte Expression von TRAIL und Fas/Fas-Ligand reguliert (Wurzer et al. 2004). Andererseits ist die Aktivität der Caspase-3 für den Export der Ribonukleoprotein-Komplexe (RNP) aus dem Zellkern notwendig (Wurzer et al. 2003). Diese Beobachtungen legen den Schluss nahe, dass die Hemmung der Virusreplikation durch ASA auf Inhibition der spezifischen Induktion von NF-κB-abhängigen proapoptotischen Faktoren beruht. Es wurde bereits gezeigt, dass ASA die virusinduzierte Expression von TRAIL und Fas-Ligand hemmen kann, sowie, dass die bekannte Inhibierung der COX-2 (Cyclooxygenase-2) durch ASA keinen Einfluss auf die Virenreplikation oder virusinduzierte Apoptose hat (Mazur et al. 2007).

Eine Inkubation infizierter A549-Zellen mit 5 mM ASA führte zu einer Hemmung der Spaltung von Poly (ADP-Ribose) Polymerase-1 (PARP, siehe Abbildung 14). PARP ist ein

Abbildung 13: Antivirale Wirkung von ASA beruht prädominant auf der Hemmung von NF-κB

A549-Zellen wurden mit 0,01 MOI FPV infiziert und mit 7 mM ASA, 10 µM BAY 11-7085 oder ASA (7 mM) und BAY 11-7085 (10µM) zusammen bzw. DMSO (Lösungsmittelkontrolle) behandelt. Nach 8 h wurden die Zellkulturüberstände gesammelt und die Virenvertier im Plaque-Assay bestimmt.
Enzym der DNA-Reparatur und ein direktes Substrat für Caspasen. PARP wird in zwei Fragmente, 89 und 24 kDa, gespalten (Kaufmann et al. 1993; Soldani und Scovassi 2002). Eine Inhibierung der Spaltung, wie in Abbildung 14, ist somit ein Indiz für eine verminderte Caspasen Aktivität.

Abbildung 14: ASA hemmt virusinduzierte Caspasen-Aktivität

A,B) A549-Zellen wurden mit FPV infiziert (0,01 MOI) und mit 5 bzw. 7 mM ASA inkubiert, bzw. ohne Zugabe von ASA infiziert oder uninfiziert (0h) belassen. Nach den angezeigten Zeitpunkten wurden die Zellen mit PBS gewaschen und lysiert. Die Proteine wurden mittels SDS-PAGE separiert und auf eine Nitrozellulose-Membran übertragen. (A) Die Caspasen Aktivierung wurde mit einem Poly (ADP-Ribose) Polymerase-1 (PARP, 113 kDa) Antikörper, der ebenfalls ein 24 kDa Spaltfragment (zweites Spaltfragment: 89 kDa) des Proteins erkennt, nachgewiesen. Die Ladekontrolle wurde mit einem anti-ERK-2 Antiserum überprüft. (B,C) Die Caspase-3 Aktivierung wurde anhand der Spaltung, die bei der proteolytischen Aktivierung entsteht, mit einem entsprechenden Antiserum gegen die Pro-Form des Proteins (B) bzw. mit einem Antikörper gegen das Spaltfragment (C) nachgewiesen. Die Positivkontrolle erfolgte durch Inkubation mit 2,5 µM Staurosporin. Ladekontrolle wurde anhand einer unspezifischen Bindung des Serums (B) bzw. ERK-2 Serums (C) gezeigt.

Die aktive Form von Caspase-3 entsteht durch proteolytische Prozessierung. Die virusinduzierte Aktivierung von Caspase-3 konnte ebenfalls durch Inkubation mit ASA verhindert werden, was anhand der nicht abgebauter Pro-Caspase-3 festgestellt wurde (siehe Abbildung 14B) bzw. des Spaltfragments (siehe Abbildung 14C). Die Hemmung der
Ergebnisse

Caspasen-Aktivierung durch ASA beeinflusst resultiert schließlich in einer reduzierten DNA-Fragmentierung, die als Monitor für Apoptose diente (siehe Abbildung 15). Diese Experimente zeigen, dass die Hemmung des NF-κB-Signalweges und die damit einhergehende Hemmung der Virusreplikation die Ursache in der viralen Induktion des apoptotischen Zelltodes haben.

Abbildung 15: ASA hemmt virusinduzierte Apoptose

A549-Zellen wurden mit FPV infiziert (0,1 MOI) und mit 5 bzw. 7 mM ASA inkubiert. Nach 24h und 36h wurden die Überstände gesammelt, die Zellen mit PBS gewaschen, trypsinisiert und mit den Zellen aus dem Überstand zusammengeführt. Im Nicoletti-assay (siehe 2.2.2.5) wurde die DNA-Fragmentierung als Apoptosemarker quantifiziert. Als Negativkontrolle dienten unbehandelte Zellen, als Positivkontrolle mit 1 μM Staurosporin behandelte Zellen.

3.3.4. Acetylsalicylsäure hemmt den Export von Ribonukleoprotein-Komplexen aus dem Zellkern

Die Inhibierung des NF-κB-Signalweges durch ASA resultiert in geringeren Virustitern. Hat diese inhibitorische Wirkung auch einen Einfluss auf die Expression von Virusproteinen? Um diese wichtige Frage zu beantworten wurde die Expression verschiedener viraler Proteine in einer Zeitkinetik von infizierten A549-Zellen betrachtet. Dabei wurde die Menge der
Ergebnisse

jeweiligen viralen Proteine von infizierten Zellen, die mit ASA behandelt wurden, mit unbehandelten infizierten Zellen verglichen (siehe Abbildung 16). Der Vergleich lässt erkennen, dass ASA-Behandlung keinen essentiellen Einfluss auf die Akkumulation oder Prozessierung der viralen Proteine M, NS1, NP und PB1 nach Behandlung mit 5 mM ASA zeigte. Der Einsatz von 7 mM ASA führte allerdings zu einer leichten Beeinflussung der Proteinexpression von M1 und NS1. PB1 und NP, also Proteine des viralen RNP-Komplexes scheinen aber nicht betroffen zu sein. Dies könnte bedeuten, dass höhere ASA-Konzentrationen die Expression von manchen Virusproteinen hemmten. Die mehrfache Wiederholung dieses Experiments zeigte stets das gleiche Bild.

Das Experiment zeigt somit, dass die Inhibierung der Virusreplikation mit geringeren ASA-Konzentrationen nicht auf der Ebene der Proteinsynthese statt findet, sondern über einen anderen Mechanismus erfolgt. Dies ist ein wichtiges Ergebnis, denn wenn ASA einen direkten inhibitorischen Einfluss auf die Synthese von Virusproteinen gehabt hätte, wäre ein direkter oder gar zellschädigender Effekt nicht vollständig auszuschließen gewesen.

<table>
<thead>
<tr>
<th>5 mM ASA</th>
<th>0h</th>
<th>2h</th>
<th>4h</th>
<th>8h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-M</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>α-NS1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α-ERK1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-NP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-PB1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 mM ASA</th>
<th>0h</th>
<th>2h</th>
<th>4h</th>
<th>8h</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-M</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>α-NS1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-NP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-PB1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-ERK2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung 16: Einfluss von ASA auf die Synthese viraler Proteine

A549-Zellen wurden mit 5 (A) bzw. 7 mM ASA (B) inkubiert und mit FPV infiziert (5 MOI), bzw. ohne Zugabe von ASA und uninfiziert (0h) belassen. Nach 2, 4, 8, und 10 h, wurden die Zellen mit PBS gewaschen und in RIPA-Puffer lysiert. Die Proteine wurden mittels SDS-PAGE (siehe 2.2.7) separiert und auf eine Nitrozellulose-Membran übertragen. Die viralen Proteine M, NS1, NP und PB1 wurden mit entsprechenden Antikörpern bzw. Antiserum gegen diese Proteine nachgewiesen. Die Ladekontrollen wurden mit einem ERK-2 Antiserum überprüft.

Das Influenza Nukleoprotein besitzt nukleäre Lokalisierungssequenzen (NLS), die den Import in den Zellkern vermitteln (Davey et al. 1985). Diese Sequenzen werden in RNP-Komplexen maskiert, so dass diese aus dem Zellkern ins Zytoplasma heraustransportiert werden können.

Abbildung 17: Inhibierung des NF-κB Signalweges durch ASA beeinflusst den Kernexport von viralen RNP-Komplexen

A549-Zellen wurden mit FPV infiziert (5 MOI) und mit 5 mM ASA für 5 h bzw. 15 mM ASA für 8 h inkubiert, bzw. ohne Zugabe von ASA belassen. Ein Serum gegen das Influenza Nukleoprotein (NP) wurde benutzt um virale Ribonukleoprotein-Komplexe zu visualisieren. Zellkerne wurden mit DAPI gefärbt.
Ergebnisse

3.3.5. Untersuchung von antiviral-wirkenden Acetylsalicylsäure-Konzentrationen auf Zytotoxizität

Eine effektive antivirale Wirkung von ASA wurde in relativ hohen Konzentrationen beobachtet (5-7 mM), übereinstimmend mit den Literaturdaten für die NF-κB-hemmende

Abbildung 18: MTT-Proliferationsassay zur Untersuchung von Toxizität der antiviral agierenden ASA-Konzentrationen

A549-Zellen wurden mit 5 mM ASA bis 36h inkubiert. Nach 8, 24 sowie 36 h wurde der MTT-Test durchgeführt (siehe 2.2.2.7) durchgeführt. Der Farbumschlag wurde bei 560nM gemessen.
Wirkung. Sind die eingesetzten ASA-Konzentrationen bei diesen Konzentrationen toxisch für die Zellen? Rein optische Sichtung der behandelten Zellen zeigte keine Änderungen in der Zellmorphologie, wie man in der Abbildung 9 sehen kann, was jedoch nur ein sehr grobes Indiz darstellt. Um die Toxizität von ASA in antiviral agierenden Konzentrationen quantitativ zu untersuchen wurden MTT-Assay (siehe 2.2.2.7) und Propidiumiodid-Färbungen (siehe 2.2.2.6) durchgeführt.

Abbildung 19: Propidiumiodid Viabilitätstest von ASA behandelten MDCK- und A549-Zellen

(A) MDCK- und (B) A549-Zellen wurden mit antiviral wirkenden ASA-Konzentrationen 5 und 7 mM für 48h inkubiert. Nach jedem Zeitpunkt wurden die Zellen mit PBS gewaschen, trypsinisiert, abermals mit PBS gewaschen und für 15-30 min in einer 50 µg/ml Propidiumiodid-Lösung inkubiert (siehe 2.2.2.6). Anschließend wurden die Zellen einer FACS-Analyse unterzogen. Die Graphiken stellen die Anzahl der lebenden Zellen gemittelt aus zwei unabhängigen Experimenten dar.

Das Ergebnis aus diesen Experimenten bestätigt, dass die eingesetzte ASA-Konzentration von 5 mM keinen toxischen Effekt auf die benutzten Zell-Linien hat (siehe Abbildung 18 und Abbildung 19). Der Einsatz von 7 mM ASA scheint dagegen geringfügig toxisch zu sein,

Gleichwohl haben Konzentrationen über 10 mM ASA eine toxische Wirkung (nicht gezeigt) und sind in der Anwendung für Zellkultur-Experimente, die über längere Zeiträume hinausgehen ungeeignet.

3.3.6. Hemmung der Influenza A Virusreplikation mit Acetylsalicylsäure führt nicht zu Bildung resisterter Virus-Varianten

Das große Problem bei der Bekämpfung von Influenza Viren ist seine hohe genetische Variabilität, die durch die hohe Fehlerhäufigkeit der viralen RNA-Polymerase herbeigeführt wird und zu einer sehr schnellen Resistenzbildung gegen den direkten Angriff auf das Virus mit antiviralen Mitteln führt. So ist der M2-Inhibitor Amantadin heutzutage bereits gegen die meisten Virus-Subtypen unwirksam. Auch über die neuen Hemmer der Neuraminidase

![Abbildung 20: Behandlung mit 5 mM ASA führt zu keiner Bildung resisterter Virusvarianten in Multi-Passagierungsexperimenten](image)

MDCK-Zellen wurden mit 0,001 MOI FPV infiziert und mit 5 mM ASA bzw. zur Kontrolle 5 µM Amantadin inkubiert. Nach 24 h wurde der Zellmedium-Überstand abgenommen und die Virentiter im Plaque-Assay bestimmt. Mit dem Überstand wurden neue Zellen reinfiziert (wieder unter Zugabe von 5mM ASA bzw. 5 µM Amantadin). Die Viren wurden insgesamt über fünf Infektionsrunden passagiert. Das Diagramm zeigt die Virentiter als Prozentzahl bezogen auf die unbehandelte Kontrolle (auf 100% gesetzt). Alle Virentiter setzen sich aus jeweils zwei unabhängigen Infektionen zusammen.
wurden die ersten Resistenzfälle berichtet (Kiso et al. 2004). Kann sich das Influenza Virus ebenfalls an eine Hemmung von zellulären Faktoren anpassen, die für seine Replikation benötigt werden?

Um diese Problematik zu prüfen wurden Zellen mit FPV infiziert und fünf Infektionsrunden lang passagiert (siehe Abbildung 20) (Scholtissek und Muller 1991). Die infizierten Zellen wurden mit 5 mM ASA und als Vergleichskontrolle mit 5 µM Amantadin behandelt. Das Experiment zeigt deutlich, dass die Behandlung mit Amantadin zunächst erfolgreich die Virusreplikation hemmt, der Hemmeffekt nimmt aber raspe ab. Bereits nach der vierten Passage zeigt Amantadin keine virushemmenden Effekte. Dies bedeutet, dass das Influenza Virus unter Amantadin-Selektionsdruck innerhalb weniger Infektionsrunden Mutationen entwickelt hat, die das Pathogen gegen diese Substanz resistent macht. ASA-Behandlung führte dagegen nicht zur Bildung resisterter Virusvarianten. Eine Anpassung an eine Hemmung zellulärer Signalwege scheint damit für das Influenza Virus nicht möglich, bzw. scheint sich nicht so schnell entwickeln zu können.

3.3.7. Acetylsalicylsäure als inhalierbarer, anti-influenza Wirkstoff

Aufgrund der hohen benötigten antiviralen Wirkkonzentration von ASA, welche systemisch ohne toxische Nebenwirkungen im Körper wahrscheinlich nicht erreichbar sind, ist die Vergabe der Substanz in inhalierbarer Form zu präferieren, da dann der Wirkstoff das
Hierzu war zunächst zu untersuchen, ob die Substanzmischung das gleiche Wirkprofil zeigt und ob Furosemid-Beimischung zusätzliche, nicht gewünschte Effekte hat.
Eine Untersuchung auf Toxizität in Zellkultur zeigte keine Zell-schädigende Wirkung (PI-Staining bis 72 h nach Zugabe, Abbildung 21) von Furosemid alleine oder bei einer Kombination von 5 mM ASA und 150 µM Furosemid.

Abbildung 22: Furosemid besitzt kein inhibitorisches Potential auf die Vermehrung des Influenza Virus
A549-Zellen wurden mit 0,01 MOI FPV infiziert und mit 5 mM ASA, 150 µM Furosemid bzw. mit beiden Substanzen zusammen inkubiert. Nach 8, 24 und 36 h wurden die Zellmedium-Überstände abgenommen und die Virentiter im Plaque-Assay bestimmt. Alle graphisch dargestellten Werte setzen sich aus zwei unabhängigen Infektionen zusammen.
Zellen, die mit FPV infiziert wurden und mit ASA bzw. ASA/Furosemid behandelt wurden zeigen eine deutliche und in vergleichbarer Stärke eine Reduktion der Virustiter. Dabei zeigt Furosemid keinerlei antivirale Kapazität (siehe Abbildung 22).

Somit existiert bereits ein klinisch getestetes Medikament, das in klinischen Studien erfolgreich an Patienten für eine aerosolische Vergabe angewandt wurde. Eine solche Medikamentenformulierung würde, entsprechend des Wirkprofils in Zellkultur, sich auch für eine anti-Influenza Therapie eignen.
3.4. Das Influenza A Protein PB1-F2

3.4.1. PB1-F2 ist lokalisiert während der Influenza Infektion im Zytoplasma und im Zellkern

Infiziert man Zellen mit Influenza Virus A/Puerto Rico/8/34 (H1N1) (im Folgendem als PR8 abgekürzt) und verfolgt die Expression von PB1-F2 während der Infektion, so kann man beobachten, dass die Synthese von PB1-F2, wie auch der anderen frühen Influenza Virus Proteinen, bereits 2 h nach der Infektion detektierbar ist. Es erreicht aber anders als bei Proteinen wie PB1 oder NP ein Maximum nach ca. 8 h (bis 12 h, nicht gezeigt) und dann zu degradieren scheint (siehe Abbildung 23). Die Expression anderer viraler Proteine nimmt im weiteren Lauf der Infektion dagegen kontinuierlich zu.

Das PB1-F2 Peptid besitzt eine mitochondrialen Lokalisierung, ist jedoch nicht nur in Mitochondrien lokalisiert, sondern auch zytoplasmatisch und im Zellkern (Chen et al. 2001). Wird PB1-F2 rekombinant exprimiert, so ist die Lokalisierung ausschließlich

![Abbildung 23: Zeitaufgelöste Expression von PB1-F2 während einer Influenza Virus Infektion](image-url)
zytoplasmatisch bzw. mitochondrial (siehe Abbildung 24, erste Reihe). Wird PB1-F2 dagegen viral exprimiert, so ist das Protein nicht nur im Zytoplasma, sondern in einigen Zellen auch im Zellkern lokalisiert (siehe Abbildung 24, zweite und dritte Reihe). Die Kernlokalisierung während der Influenza-Infektion stellt einen deutlichen Hinweis auf eine neue, bislang unentdeckte mögliche Funktion des Proteins im Zellkern dar.

3.4.2. PB1-F2 Knockout-Mutanten

Um die biologische Relevanz von PB1-F2 zu untersuchen wurden mit Hilfe revers-genetischer Methoden zwei PR8-Virusmutanten erstellt, die das Protein nicht mehr exprimieren. Die Virusmutante PB1-F2C (im Folgenden mit F2C abgekürzt) besitzt eine Substitution im PB1-F2 Start-Codon. Eine zweite Mutante, genannt PB1-2xF2 (im Folgenden mit 2xF2 abgekürzt) besitzt zusätzlich zu der Startcodon-Mutation ein Stop-Codon nach 12 Aminosäuren (siehe Abbildung 25). Beide Mutanten wurden mit Hilfe des
von Hoffmann et al. eingeführten 8-Plasmid-Systems zur Herstellung rekombinanter Influenza Viren generiert (Hoffmann et al. 2000).

Abbildung 25: Genomische Organisation von PB1-F2 Leserahmen und der PB1-F2 Knockout-Mutanten

PB1-F2 wird von einem alternativen Start-Codon (ATG) im +1 Leserahmen des PB1-Gens (dargestellt ist die Sequenz des Influenza A/PR8/34) exprimiert. Um die Proteinexpression von PB1-F2 zu unterbinden wurden zwei Virus Knockout-Mutanten hergestellt. Eine Mutante (F2C) besitzt kein Start-Codon für PB1-F2 (ATG95→ACG), die zweite Mutante hat zusätzlich zu der Start-Codon Mutation ein eingebautes Stop-Codon (TCA128→TGA) nach 12 Aminosäuren.

Abb. 26: Genomische Organisation von PB1-F2 Leserahmen und der PB1-F2 Knockout-Mutanten

PB1-F2

- F2C: ATG95→ACG (kein Start-Codon)
- 2xΔF2: ATG95→ACG und TCA128→TGA (Stop)

Abbildung 26: Genomische Organisation von PB1-F2 Leserahmen und der PB1-F2 Knockout-Mutanten
Für einige Experimente wurden mutierte PB1-Segmente des 8-Plasmid Systems für das Influenza Virus A/WSN/33 (H1N1) (im Folgenden mit WSN abgekürzt) verwendet. Mit Hilfe dieses Systems für das WSN Virus wurden analog zum PR8, PB1-F2 Knockout-Mutanten cDNA sowie rekombinante Viren hergestellt. Das WSN-Virus verfügt wie auch das PR8-Virus, über einen voll funktionsfähigen Leserahmen für das PB1-F2 Protein. Die Sequenz unterscheidet sich vom PR8 nur um lediglich fünf Aminosäuren im überlappenden Leserahmen und drei zusätzlichen Aminosäuren am C-Terminus des Proteins. Es hat sich jedoch herausgestellt, dass der Nachweis vom WSN-PB1-F2 im Western-Blot mit dem zur Verfügung stehenden Antiserum (das spezifisch gegen das PR8 PB1-F2 hergestellt wurde), trotz hoher Sequenzähnlichkeit, nur mit sehr großen Proteinmengen aus infizierten Zellen gelang. Abbildung 26 (C) zeigt Western-Blots von MDCK-Zellen, die mit dem Wildtyp WSN sowie PB1-F2 Knockout Virussmutanten infiziert wurden. Während das Wildtyp-Virus PB1-F2 exprimiert, zeigen die Mutanten kein sichtbares Signal. Für die Detektion vom WSN PB1-F2 war allerdings die 4 bis 5-fache Proteinmenge im Vergleich zu PR8 infizierten Zellen nötig.

Abbildung 26: Expression von PB1-F2 nach Transfektion von Wildtyp oder mutierten Gensegmenten bzw. Infektion mit rekombinanten Wildtyp und Mutanten

(A) 293 Zellen wurden mit Plasmiden für die Expression der Polymeraseuntereinheiten PA, NP, PB2, PB1 sowie des NP-Proteins von PR8 Virus, bzw. statt Wildtyp PB1, PB1 F2C oder PB1 2xF2, transfiziert. 24 h nach Transfektion wurden die Zellen mit PBS gewaschen, lysiert, die Proteine denaturiert, mittels SDS-PAGE aufgetrennt und auf eine Nitrocellulosemembran transferiert. Die Expression von PB1 und PB1-F2 (vom gleichen cDNA Konstrukt) wurde mit speziellen Antisera sichtbar gemacht. Die Ladekontrolle wurde mit einem ERK2-Antiserum gemacht. (B) MDCK-Zellen wurden mit 5 MOI des rekombinanten wt PR8, bzw. den PB1-F2 Knockout-Mutanten F2C und 2xF2 infiziert. Nach 7 h wurden die Zellen mit PBS gewaschen, lysiert, die Proteine denaturiert, mittels SDS-PAGE aufgetrennt und auf eine Nitrocellulosemembran transferiert. Die Expression von PB1, PB1-F2, NP und PA wurde mit speziellen Antisera bzw. Antikörpern sichtbar gemacht. Die Ladekontrolle wurde mit einem ERK2-Antiserum gemacht. (C) MDCK-Zellen wurden mit 5 MOI WSN bzw. den PB1-F2 Knockout-Mutanten WSN 144 und WSN F2C infiziert und wie unter (B) beschrieben behandelt.
3.4.3. PB1-F2 kolokalisiert mit der viralen Polymeraseuntereinheit PB1 in Influenza Virus-infizierten Zellen

Exprimiert man exogenes PB1-F2 in Zellen, so wird ausschließlich eine zytoplasmatische Lokalisierung beobachtet. Um zu überprüfen, ob sich diese Lokalisierung ändert, wenn alle Proteine des Polymerasekomplexes von Influenza Viren in der Zelle vorhanden sind, wurden gleichzeitig Plasmide transfiziert, die die Proteine PB1, PB2, PA und NP exprimieren. Ebenfalls wurden in Kombination mit PB2, PA und NP die PB1-F2 Knockout-Mutanten von PB1 untersucht. Dabei wurde sowohl PB1-F2, das von der PB1-cDNA exprimiert wird betrachtet, wie auch zusätzlich in die Zellen transfizierte PB1-F2 cDNA. Die Immunfluoreszenz-Bilder zeigten keine Änderung der Lokalisierung von PB1-F2, PB1 oder NP im Vergleich zur Einzelexpression in transfizierten Zellen (nicht gezeigt). Auch die Kombination mit Knockout-Mutanten zeigte keine Änderung der Lokalisierung von PB1 und NP. Eine direkte Kolokaliesierung von PB1-F2 mit einem anderen Influenza Virus Protein konnte nicht festgestellt werden (nicht gezeigt).

Um dieses Ergebnis im Kontext einer Virusinfektion zu verifizieren, wurden Zellen mit PR8 infiziert und auf die Lokalisierung der Proteine PB1-F2 und PB1 untersucht. Dazu wurden Zellen sowohl mit einer hohen Multiplizität der Infektion (MOI=5) für 6h, wie auch mit einer niedrigen MOI (MOI=0,1) für 14 h infiziert. In diesem Ansatz betrachtet man bei einer hohen

Abbildung 27: PB1-F2 lokalisiert mit PB1 während der Virusinfektion

MDCK Zellen wurden mit dem PR8-Virus infiziert ((A) MOI=5, (B) MOI=0,1). 6 h (A) bzw. 14 h (B) nach Infektion wurden die Zellen fixiert, permeabilisiert und die Lokalisierung von PB1-F2 und PB1 mit entsprechenden Antisera vorgenommen. Zellkernfärbung erfolgte mit DAPI.
Ergebnisse

MOI bis ca. 8 – 10 h nach Beginn der Infektion synchronen Infektionsverlauf aller Zellen. Infiziert man dagegen mit einer geringen MOI, so hat man eine Zellpopulation, die verschiedene Stadien der Influenza Virus-Infektion zeigt.

Das Experiment zeigte, dass PB1-F2 mit dem PB1-Protein kolokalisieren kann. Die Kolokaliesierung konnte hauptsächlich im Zytoplasma, beobachtet werden (siehe Abbildung 27). Damit zeigt sich, dass eine bislang unerkannte weitere biologische Funktion von PB1-F2 möglicherweise mit dem viralen Polymerase-Komplex zusammenhängen könnte.

3.4.3.1. Knockout-Virusmutanten von PB1-F2 zeigen verringerte Polymeraseaktivität

Abbildung 28: Knockout von PB1-F2 hat einen Einfluss auf die Aktivität der viralen WSN Polymerase

koexprimiert, so kann dieses artifizielle RNA-Segment von der viralen Polymerase erkannt und transkribiert werden. Dies ist an der Expression des enthaltenen Reportergens Luciferase erkennbar, die nach Zugabe des Substrats Luciferin photometrisch erfasst werden kann. Die Höhe der gemessenen Substratumsetzung durch die Luciferase ist ein direktes Maß für die virale Polymeraseaktivität.

Verglichen wurde nun die Aktivität der viralen Polymerase mit Konstrukten, bei denen der Leserahmen von PB1-F2 mutiert wurde. Dabei wurden anstelle des wt PB1-Konstruks die Plasmide PB1 (F2 144) und PB1 (F2 120C) in die Zellen transfiziert. Die Mutation im WSN-Konstrukt PB1 (F2 120C) entspricht dem PB1 F2C aus dem rekombinanten PR8-System, es enthält also eine Substitution im PB1-F2 Start-Codon ohne eine Veränderung der Aminosäuresequenz des PB1-Proteins herbeizuführen (siehe Abbildung 25). Das Konstrukt PB1 (F2 144) enthält ein durch Mutagenese eingeführt zusätzlichtes Stop-Codon im PB1-F2 Leserahmen an der Position 144. Diese Mutation führt allerdings auch zu einem Aminosäureaustausch in der PB1 Aminosäure-Sequenz.

Wie man deutlich in der Abbildung 28 sehen kann, zeigten sich nach Transfektion des PB1 (F2 144) exprimierenden Konstruks ähnliche Basalwerte, wie die Kontrollansätze bei denen nur das Reportergenkonstrukt transfiziert wurde, wobei hier nicht zu unterscheiden ist, ob die Änderung von PB1 oder PB1-F2 die Ursache für diese verringerte Polymeraseaktivität darstellt. Überraschenderweise zeigte die Start-Codon Mutante von PB1-F2 ebenfalls eine

Abbildung 29: Knockout von PB1-F2 hat einen Einfluss auf die Aktivität des viralen Polymerasekomplexes

(A) HEK293-Zellen wurden mit Pol II Promotor Plasmiden transfiziert, die für die einzelnen Proteine des PR8-Polymerasekomplexes codieren, zusammen mit einem Pol I Luciferase-Reporterkonstruk. Um die Aktivität von PB1-F2 Knockout Mutanten mit dem Wildtyp zu vergleichen wurden anstelle des PB1wt Plasmids, PB1-Plasmide mit ausgeknocktem PB1-F2 ORF transfiziert (PB1 (F2C) und PB1 (2xF2)). Die Polymeraseaktivität der jeweiligen Konstrukte, gemessen an der Luciferaseaktivität entspricht, ist als X-Fache Stimulation im Vergleich zu Zellen, die nur mit dem Reporterkonstruk transfiziert wurden, dargestellt (B) A549-Zellen wurden mit einem Pol I Luciferase-Reporterkonstruk transfiziert und mit 5 MOI PR8 bzw. der PR8 PB1-F2 Knockout Mutante F2C sowie PR8 2xF2 infiziert. Die Polymeraseaktivität der Viren ist als x-fache Stimulation zur uninfizierten, mit Reporteren transfizierten Kontrolle dargestellt.
Ergebnisse

stark verminderte Polymeraseaktivität, wobei hier keine Veränderungen in der PB1-Sequenz zu verzeichnen war.

Dies bedeutet, dass der beobachtete Effekt alleine auf die Deletion des PB1-F2 Proteins zurück zu führen ist. Dadurch liegt der Schluss nahe, dass PB1-F2 ein Kofaktor des viralen Polymerasekomplexes ist, bzw. eine Rolle bei der Expression viraler Proteine spielt.

Um das Ergebnis zu verifizieren, wurde das Experiment mit der PR8-Polymerase, sowie im Kontext einer Infektion mit rekombinanten Viren wiederholt. Dabei zeigte sich das gleiche Bild. Die Aktivität der viralen Polymerase der Knockout Mutanten im Plasmid-System wie auch in virusinfizierten Zellen war mindestens über 50% geringer im Vergleich zum Wildtyp (siehe Abbildung 29 A und B).

3.4.3.2. PB1-F2 interagiert direkt mit der viralen Polymeraseuntereinheit PB1

Der Knockout von PB1-F2 zeigt im Minigenom-System einen Einfluss auf die Aktivität der viralen Polymerase. Damit stellt sich die interessante Frage, ob PB1-F2 mit dem viralen Polymerase-Komplex interferiert. Wenn dies der Fall ist, könnte PB1-F2 mit einem oder mehreren Proteinen aus dem Komplex direkt interagieren. Um diese Annahme zu überprüfen, wurden Koimmunpräzipitations-Experimente durchgeführt, um einen potentiellen Interaktionspartner primär unter den Proteinen des viralen Polymerasekomplexes, ferner unter weiteren Influenza Virus Proteinen zu identifizieren.

Um potentielle Interaktionspartner zu finden, wurden MDCK-Zellen mit PR8 infiziert (MOI=5) und 7 h nach Infektionsbeginn lysiert. Das PB1-F2 Kaninchen-Serum (gekoppelt an Protein G-Beads) wurde benutzt, um das Peptid zu präzipitieren. Als potentielle Interaktionspartner wurden im Western-Blot die Influenza Virus Proteine PA, PB1, NP, und M untersucht.

Das Ergebnis ist in der Abbildung 30 zusammengefasst. Wie man deutlich sehen kann, sind alle untersuchten Proteine in den Lysaten der infizierten Zellen in ausreichenden Mengen vorhanden. Von allen untersuchten Influenza Virus Proteinen konnte nur die Polymeraseuntereinheit PB1 zusammen mit PB1-F2 koimmunpräzipitiert werden.

Dieses Ergebnis ist überraschend, da PB1-F2 ein Produkt eines alternativen Leserahmens von PB1 ist und nur mit PB1 interagiert, aber nicht mit PA oder NP. Eine mögliche Erklärung ist, dass PB1-F2 nur mit dem freien PB1-Protein interagiert, aber nicht mit PB1, das in einem Komplex mit PA und PB2 die virale Polymerase darstellt. Dabei zeigen die Kontroll-Präzipitationen, dass die Proteine NP, PB1 und PA in einem Komplex vorliegen.
Um das Ergebnis zu verifizieren und um zu überprüfen, ob die Interaktion von PB1 und PB1-F2 direkt oder indirekt ist, wurden Hefe Two-Hybrid Tests durchgeführt. Dazu wurden die Proteine PB1 und PB1-F2 jeweils an eine Gal4-DNA-Bindedomäne (BD) und eine Gal4-Transaktivierungsdomäne (AD) fusioniert. Als Reportergen wurde das lacZ Gen benutzt. Findet eine Interaktion zwischen den Fusionsproteinen statt, so kann das lacZ Genprodukt β-Galactosidase das Substrat X-Gal umsetzen, was zu einer leicht erkennbaren Blaufärbung führt (siehe 2.2.6.4). Da vom PB1-Gen ebenfalls PB1-F2 exprimiert wird (siehe Abbildung 25) wurde ein BD- sowie AD-Konstrukt mit drei eingebauten Stop-Codons
Ergebnisse

(pACT2_PB1(ΔF2) und pAS2-1_PB1(ΔF2)) benutzt um eine Expression von unfusioniertem PB1-F2 zu unterbinden.

Abbildung 31: PB1-F2 interagiert direkt mit PB1 im Hefe Two-Hybrid Experiment

3.4.3.3. Knockout von PB1-F2 hat keinen Einfluss auf Virentiter

Abbildung 32: Knockout von PB1-F2 hat keinen Einfluss auf die Höhe der Virentiter
MDCK-, A549- und MCF-7-Zellen wurden mit den rekombinanten PR8 und den PB1-F2 Deletionsmutanten PR8 F2C sowie PR8 2xΔF2 infiziert (MDCK und A549, MOI=0,01; MCF-7, MOI=0,5). Nach 7, 24 und 36 h wurden die Überstände abgenommen und die Virustiter im Plaque-Assay auf MDCK-Zellen bestimmt.

3.4.3.4. Knockout PB1-F2 zeigt einen Einfluss auf die Plaques-Morphologie

Der Knockout von PB1-F2 beeinflusst die Aktivität der viralen Polymerase, scheint aber keinen Einfluss auf die Höhe der Virustiter zu besitzen. Um diese widersprüchlichen Befunde zu erklären, wurde zunächst die -Morphologie der Virus-Plaques im MDCK-Zellrasen
Ergebnisse

Um eine Auswirkung des PB1-F2-Knockouts auf die Morphologie der Virus-Plaques zu untersuchen, wurden jeweils MDCK-Zellen (Zellzahl je 4x10⁶) mit Verdünnungsstufen des rekombinanten PR8, sowie den PB1-F2 Knockout Mutanten F2C und 2xF2 infiziert. Nach

Abbildung 33: Knockout von PB1-F2 beeinflusst die Morphologie der Virus-Plaques auf MDCK-Zellrasen

MDCK-Zellen wurden mit verdünnten Virusüberständen der PR8 Stämme: PR8 Wildtyp, rekombinanter PR8 Wildtyp sowie den PB1-F2 Knockout-Mutanten PR8 F2C und PR8 2xF2 für 30 min bei 37°C infiziert, gewaschen und mit einem Agar-Overlay überschichtet. Nach 24 h wurde der Agar entfernt und die Zellen mit Coomassie-Blau gefärbt (die Bilder wurden zwecks besserer Übersicht invertiert). Die dargestellten Bilder zeigen nicht die gleiche Verdünnungsstufe der jeweiligen Viren.
Ergebnisse

Abbildung 33: Knockout von PB1-F2 beeinflusst nicht die Virus-verursachte Zell-Mortalität

MDCK-Zellen (jeweils 2x10⁶ Zellen) wurden mit den rekombinanten PR8 (PR8r) sowie den PB1-F2 Knockout-Mutanten PR8 F2C und PR8 2xΔF2 (jeweils 0,5 MOI) infiziert. Nach 14 bzw. 24 h wurden die Zellen gesammelt, mit PBS gewaschen und mit 50 µg/ml Propidiumiodid (in PBS gelöst) für 30 min inkubiert. Und im FACS gemessen. Die Graphik zeigt Mittelwerte und die dazugehörigen Standardabweichungen aus jeweils drei unabhängigen Infektionen.

Um zu überprüfen, ob der beobachtete Effekt darauf zurück zu führen ist, dass die Knockout-Mutanten die Zellen langsamer töten, als das wt Virus, wurden MDCK-Zellen mit den rekombinanten PR8-Virus sowie mit den PB1-F2 Knockout-Mutanten PR8 F2C und PR8 2xΔF2 (jeweils 0,5 MOI) infiziert. Nach 14 und 24 h wurde eine PI-Färbung vorgenommen, um die Anzahl der durch das Virus abgetöteten Zellen zu erfassen und miteinander zu vergleichen. Es zeigte sich aber, dass die Anzahl der durch die jeweiligen Viren abgetöteten Zellen keine signifikanten Unterschiede zeigte (siehe Abbildung 34).
Um nachzuweisen, ob die Zahl der infizierten Zellen nach Infektion mit den PB1-F2 Knockout-Viren größer ist, als die sichtbaren Bereiche lysierter Zellen, wurde eine NP-Immunfluoreszenz von Zellen, die mit Verdünnungsreihen der Virusüberstände infiziert wurden, durchgeführt. Dieses Experiment sollte geeignet sein, um zu erkennen, ob die infizierten Zellen im Randbereich der Plaques in der Knockout-Situation zu einem größeren Maß infiziert sind. Es zeigte sich aber, dass der durchschnittliche Durchmesser von infizierten Zell-Plaques bei den PB1-F2 Knockoutviren insgesamt geringer war, als beim rekombinanten wt PR8 (siehe Abbildung 35).

Diese Ergebnisse deuten darauf hin, dass entgegen der ursprünglichen Annahme, dass der Knockout den zytopatischen Effekt beeinflusst, eher direkt die Ausbreitung der PB1-F2 Knockout-Viren beeinflusst ist.

Abbildung 35: Knockout von PB1-F2 führt zu einer langsameren Ausbreitung des Virus

MDCK-Zellen wurden mit verdünnten Virusüberständen der rekombinanten PR8 (PR8r), sowie den PB1-F2 Knockout-Mutanten PR8 F2C und PR8 2xF2 für 30 min bei 37°C infiziert, gewaschen und mit einem Avicell-Plaquemedium-Overlay überschichtet. Nach 14 h wurde der Agar entfernt und die Zellen fixiert, permeabilisiert und mit einem Antikörper gegen das NP-Protein gefärbt. Zellkernfärbung erfolgte mit DAPI. Die Plaques wurden ausgezählt und der ungefähre Durchmesser ermittelt.
Ergebnisse

Die ersten Studien zu PB1-F2 zeigten, dass das Peptid an der virusinduzierten Apoptose beteiligt ist (Chen et al. 2001). Die unterschiedliche Plaques-Morphologie ist möglicherweise ein Effekt des Knockouts von PB1-F2 auf die Induktion der Apoptose.

Um diese Frage zu beantworten, wurde die Caspasen-Aktivität nach Virusinfektion mit rekombinanten PR8 und den PB1-F2 Knockout-Mutanten F2C, sowie 2xF2 anhand der PARP-Spaltung verglichen. Es zeigte sich, dass alle drei Viren gleich stark Caspasen-Aktivität bzw. Apoptose induzierten. Der direkte Vergleich zeigte keine relevanten Unterschiede in der Spaltung des Caspasen-Substrats PARP-1. Ebenfalls wurden in diesem Kontext keine Unterschiede in der Expression viraler Proteine PB1 und NP festgestellt, was zeigt, dass der Infektionsverlauf sowie Höhe der Proteinexpression aller drei Virusisolate annähernd gleich war (siehe Abbildung 36 und Abbildung 37).

Die Immunfluoreszenz-Kinetik in Abbildung 37 zeigt darüber hinaus deutlich, dass der Knockout von PB1-F2 keinerlei Auswirkung auf die Lokalisation des NP im zeitlichen Verlauf der Infektion hat.

Das NP wird ca. 2-3 h nach Infektionsbeginn gebildet und ist zunächst im Zytoplasma lokalisiert (nicht gezeigt). Danach wird es in den Zellkern transportiert, wo es zu Assemblierung und Akkumulierung von viralen RNP’s kommt. Nach ca. 7 h sind die RNP’s aus dem Zellkern heraustransportiert und in neue Viren verpackt – dieser Prozess wird durch den Knockout von PB1-F2 beeinflusst.
Knockout von PB1-F2 zeigt keinen Effekt auf den Verlauf einer Infektion mit PB1-F2 Knockoutviren im Vergleich zum wt Virus

MDCK-Zellen (1x10^6) wurden mit rekombinanten PR8 (PR8r), F2C und 2xF2 infiziert (jeweils mit MOI=40). 3 (nicht gezeigt), 5 und 7 h nach Infektion wurden die Zellen fixiert, permeabilisiert und die Lokalisierung von PB1-F2 und NP mit entsprechenden Antiseren bzw. Antikörpern vorgenommen. Zellkernfärbung erfolgte mit DAPI
PB1-F2 nicht gestört. Dies bedeutet, dass die auftretenden Unterschiede in der Plaque-Morphologie weder auf unterschiedlichen Infektionsverlauf bzw. ungleiche Ausgangs-MOI, noch auf unterschiedliche starke Induktion der Apoptose, noch auf einen verminderten zytopatischen Effekt, zurück zu führen sind.

3.4.3.5. Veränderte Lokalisierung des PB1-Proteins in mit den PB1-F2 Knockout-Viren infizierten Zellen

Die Akkumulation viraler Proteine in Zellen, die mit PB1-F2 Knockout-Viren infiziert wurden, scheint im Vergleich zum Wildtyp-Virus nicht verändert zu sein. Alle Viren verhielten sich in Bezug auf die virale Proteinsynthese und die Höhe der Virustiter gleich. Nichtsdestotrotz resultierte der Knockout von PB1-F2 in vermindriger Aktivität der viralen Polymerase (siehe Abbildung 28 und Abbildung 29). Ebenfalls zeigte sich, dass PB1-F2 mit

Abbildung 38: Die Lokalisierung von PB1 ist in Zellen, die mit PB1-F2 Knockout-Viren infiziert wurden im Vergleich zum wt Virus geändert

MDCK-Zellen (2x10^5) wurden mit rekombinanten PR8 (A) sowie den PB1-F2 Knockout-Viren F2C (B) und 2xΔF2 (C) infiziert (jeweils mit MOI=10). 5 und 7 h nach Infektion wurden die Zellen fixiert, permeabilisiert und die Lokalisierung von PB1 mit einem PB1-spezifischen Kanninchen-Serum überprüft. Zellkernfärbung erfolgte mit DAPI.
freiem PB1 interagieren kann (siehe Abbildung 30). Diese Befunde werfen die Frage auf, ob die Lokalisierung des PB1-Proteins in PB1-F2 Knockout-Viren infizierten Zellen im Vergleich zum wt Virus geändert ist.

Um dies zu überprüfen, wurden MDCK-Zellen mit dem rekombinanten PR8 Virus, sowie mit den PB1-F2 Knockout-Viren F2C und 2xF2 mit einer hohen MOI (=10) für 5 und 7 h infiziert und die Lokalisierung von PB1 in der Immunfluoreszenz überprüft (siehe Abbildung 38). Es zeigte sich, dass 5 h nach Infektion die Lokalisierung von PB1, wie auch NP (nicht gezeigt) bei allen Viren unverändert blieb. Dies bedeutet, dass die Akkumulation der neu gebildeten RNP-Komplexe in den Zellkernen infizierter Zellen bei allen drei Viren gleich war.

7 h nach Beginn der Infektion wurde allerdings eindeutig sichtbar, dass die Lokalisierung von PB1 in Zellen, die mit Viren infiziert wurden, die kein PB1-F2 exprimierten im Vergleich zum rekombinanten wt Virus verändert war. In Abbildung 38 ist eindeutig zu sehen, dass 7 h nach Beginn der Infektion das PB1 von wt Virus im Zellkern lokalisiert ist, während in Zellen, die mit den Knockout-Viren infiziert wurden, das PB1-Protein im Zytoplasma akkumuliert.

Dieses Ergebnis verdeutlicht, dass PB1-F2 eine Rolle für die nukleäre Lokalisierung bzw. für den Zellkern-Export von PB1 spielt. Diese Störung der PB1-Lokalisierung in den Knockout-Viren könnte somit auch die beobachtete Verminderung der viralen Polymeraseaktivität erklären, die darauf zurück zu führen ist, dass PB1, das die essentielle Polymeraseuntereinheit darstellt, zu früh aus dem Zellkern exportiert wird.

3.4.3.6. Überexpression von PB1-F2 führt zur starken IRF-3- und IFNβ-Promotoraktivität während Influenzainfektionen

Wird PB1-F2 in Zellen überexprimiert, so ist die Lokalisierung ausschließlich zytoplasmatisch bzw. mitochondrial (siehe Abbildung 24, 1.Reihe). Übereinstimmend mit neueren Literaturdaten zeigt die Überexpression vom exogenen PB1-F2 alleine keinen modulierenden Einfluss auf die virusinduzierte Apoptose (nicht gezeigt). Dennoch wurde ein überraschender Effekt der Überexpression auf einen anderen Signalweg beobachtet. Infizierte man PB1-F2 exprimierende Zellen mit Influenza Virus, so führte dies zu einer sehr starken Stimulation der IRF-3- und IFNβ-Promotoraktivitäten (siehe Abbildung 39).

PB1-F2 zu beobachten, die Deletion des PB1-F2 ORFs alleine führte zu keiner geänderten Stimulation von IFNβ. Zudem wurde in PB1-F2 exprimierenden und Virus-infizierten Zellen im Vergleich zu nicht transfizierten Zellen keine Änderung der Virustiter festgestellt (nicht gezeigt). Dennoch scheinen diese Daten auf eine bislang unbekannte zelluläre Funktion des Peptids hinzudeuten.

Abbildung 39: Überexpression von PB1-F2 führt in Influenza-infizierten Zellen zu starker Stimulation von IRF-3- und INFβ-Promotoraktivitäten.

MDCK- (A, C) (4x10⁵) bzw. A549-Zellen (B, D) (1x10⁵) wurden mit den Luciferase-Reporterkonstrukten IRF-3 (A, B) bzw. INF8 (C, D) transfiziert. Zusätzlich erfolgte eine Kotransfektion mit dem PB1-F2 Überexpressionskonstrukt pB12 CMV/PB1-F2 (wie angezeigt). 24 h nach Transfektion wurden die Zellen mit 5 MOI PR8 infiziert, bzw. uninfiziert belassen (wie dargestellt). Nach 7 h p.I. wurden die Zellen lysiert und die Zell-Lysate für Luciferase-Assay eingesetzt (siehe 2.2.6.1).
4. Diskussion

4.1. Acetylsalicylsäure blockiert Influenza Virus-Vermehrung über die Inhibition des NF-κB Signalweges

In dieser Arbeit wird eine neue Strategie zur Bekämpfung des Influenza Virus vorgeschlagen – die Hemmung zelleigener Faktoren, die das Virus für die eigene Replikation benötigt. Dieser neuartige antivirale Ansatz wurde gut in Hinsicht auf die Hemmung des Raf/MEK/ERK Signalweges untersucht (Pleschka et al. 2001; Ludwig et al. 2004).

Die Aktivierung des NF-κB-Signalweges lässt sich durch verschiedene Ansätze hemmen. Unterschiedliche Studien haben gezeigt, dass freie Radikale den NF-κB-Signalweg aktivieren

Als Ansatzpunkt kann auch der proteolytische Abbau des IκBα-Inhibitor-Moleküls durch Inhibierung des Proteasoms bzw. der Proteasen verwendet werden (Palombella et al. 1994; Higuchi et al. 1995).

Untersuchungen der Rolle des NF-κB-Signalweges bei der Influenza Virusreplikation zeigte überraschenderweise, dass der NF-κB Signalweg keine prädominant antivirale bei Influenza Virus hat, sondern notwendig für die Virusreplikation ist (Nimmerjahn et al. 2004; Wurzer et al. 2004).

in den eingesetzten Konzentrationen keinen Einfluss auf andere zelluläre Signalwege, wie ERK-1/2, JNK-1 und p38 (siehe Abbildung 12).

Mit der gegebenen Wirkung von ASA auf NF-κB zeigte sich in den durchgeführten Experimenten deutlich und übereinstimmend mit früheren Publikationen, dass der NF-κB-Signalweg eine sehr wichtige Rolle im Vermehrungzyklus des Influenza Virus spielt. Die Frage stellt sich aber: wie unterstützt dieser zelluläre, eigentlich antiviraler Signalweg die Replikation des Influenza Virus?

Die Experimente dieser Arbeit zeigen, dass die Hemmung von NF-κB mit ASA die Induktion virusinduzierter Apoptose vermindert. Dies belegt durch eine gehemmte Caspase-3 Aktivierung und PARP-Spaltung, welche Caspasen-Aktivität induziert. Gleichzeitig zeigt sich im Nicoletti-Assay, dass die virusinduzierte Apoptoserate insgesamt gehemmt wird. Ebenso führt die Hemmung von NF-κB durch ASA zu einer verminderten Expression von proapoptotischen Faktoren FasL und TRAIL, was die beobachteten Effekte auf die Apoptose erklärt (Mazur et al. 2007). Diese Daten belegen, dass der NF-κB-Signalweg in Zusammenhang mit Apoptose-Regulation eine Rolle bei der Influenzareplikation spielt. Welcher Schritt der Virusreplikation benötigt nun NF-κB-vermittelte Apoptose und Caspasen-Aktivität?

Die Hemmung von NF-κB mit ASA resultiert ebenfalls in einer Retention der RNP-Komplexe im Zellkern im Vergleich zu unbehandelten Zellen (siehe Abbildung 17). NF-κB-Hemmung durch ASA hatte keinen Einfluss auf die Synthese viraler Proteine (siehe Abbildung 16). Dies zeigt, dass der Signalweg nicht mit der Transkription oder Translation viraler Proteine interferiert, sondern alleine den RNP-Export aus dem Zellkern vermittelt.

Die Proteine des RNP-Komplexes besitzen keine nukleären Exportsequenzen (NES), einzig das NS2/NEP-Protein besitzt eine NES in der N-terminalen Region. NS2/NEP bindet an CRM1, einen zellulären Exportfaktor für Proteine mit leucinreichen, nukleären Exportsequenzen (Neumann et al. 2000). Dabei spielt das M1-Protein eine Rolle, es bindet mit der C-terminalen Region an die RNP-Komplexe, erst dann bindet das NS2/NEP mit seiner C-terminalen Region an M1-Protein, was eine Interaktion mit CRM1 ermöglicht. Die Bindung ist abhängig von RanGTP (Akarsu et al. 2003). Erst dieser Proteinkomplex wird aktiv aus dem Zellkern heraustransportiert, vermutlich vermittelt über das NES des NS2/NEP.

Möglicherweise ist dieser aktive Prozess in späteren Phasen der Influenzareplikation nicht mehr ausreichend, um die Masse der neu gebildeten RNP-Komplexe effizient aus dem Zellkern heraus

Abbildung 40: Model des NF-κB vermittelten Exports der Ribonukleoproteinin-Komplexe des Influenzavirus aus dem Zellkern.

zu transportieren. Der Caspasen-vermittelte, passive Transport könnte einen weiteren Mechanismus darstellen, mit dem das Virus sicherstellt, dass möglichst viele RNPs aus dem Zellkern herausgeschleust werden. Für diese Theorie spricht, dass Caspasen die Kernporen-Proteine zerstören, welche am aktiven Kernexport involviert sind (Ferrando-May et al. 2001; Patre et al. 2006).

4.2. Acetylsalicylsäure als antivirales Mittel in vitro und in vivo

Wie bereits mehrfach belegt wurde, benötigt das Influenza Virus den NF-κB Signalweg für die eigene Vermehrung. Mit Hilfe von ASA lässt sich der NF-κB Signalweg effizient hemmen, was in einer Reduktion der infektiösen Viruspartikel resultiert. ASA ist in der klinischen Anwendung, als Aspirin bekannt, seit über hundert Jahren in Gebrauch und zeigt nur wenige Nebenwirkungen. So ist durchaus vorstellbar diesen Wirkstoff gegen das Influenza Virus einzusetzen. Normalerweise wird ASA als COX-2 Inhibitor zur Linderung von Begleiterscheinungen viraler Infekte, wie Fieber, eingesetzt.

ASA wirkt effektiv antiviral im Konzentrationsbereich zwischen 5-7 mM. Diese relativ hohe Menge ist gleichzeitig übereinstimmend mit der aus der Literatur bekannten NF-κB inhibierenden Konzentration. Gleichzeitige Zugabe eines weiteren, spezifischen NF-κB Inhibitors BAY 11-7085 erhöht die Wirksamkeit gegen das Influenza Virus nicht signifikant
Diskussion

(siehe Abbildung 13), was auf ein identisches Wirkspktrum zu bekannten NF-κB Inhibitoren hinweist.

Die relativ hohe antiviral wirkende Konzentration wirft ein Problem der Applikation auf, da über die gängige orale Aufnahmeroute von ASA nicht genügend hohe Wirkstoffkonzentrationen im Blut zu erzielen sind. Hier bietet sich die aerorosolische Vergabe in vernebler Form direkt in die Lunge des Patienten an. In diesem Zusammenhang wurden bereits in therapeutischer Behandlung von Patienten Dosen von 720 mg ASA über längere Zeiträume hinweg in inhalierbarer Form appliziert, ohne dass dabei negative Nebenwirkungen aufraten (Bianco et al. 1995).

Die antivirale Wirkung wurde nicht nur in der Zellkultur beobachtet, sondern auch in vivo in C57Bl/6 Mäusen (FLI, Tübingen), die mit einer letalen Dosis des HPIAV-Stammes FPV/Bratislava H7N7 (pfu = 5x10³ - 5x10⁴) infiziert wurden. Eine Zugabe ASA zum Trinkwasser erhöhte bereits die Überlebensrate von Mäusen von 0 auf 20%. Als sehr effektiv erwies sich aber die intratracheale Applikation von vernebelter ASA-Lösung (2 bis 20 mM) direkt in die Lunge. Damit konnten 60% der infizierten Mäuse geheilt werden. Es konnte auch gezeigt werden, dass die Virentiter der infektiösen Viruspartikel aus der Lunge nach der ASA-Behandlung drastisch zurückgingen. Gleichzeitig zeigte die Kontrollsubstanz Indometacin (reiner COX-2 Inhibitor) keinerlei Wirkung auf das Überleben der infizierten Mäuse oder einen Hemmeffekt auf die Virusvermehrung in vivo wie auch in vitro (Mazur et al. 2007). Dies deutet darauf hin, dass nicht die COX-2 Inhibition, sondern der NF-κB-hemmende Effekt von ASA für die antivirale Wirkung verantwortlich ist.

Beschwerden führen kann. Ein Präparat aus ASA und Furosemid hätte den Vorteil, dass diese Nebenwirkung beseitigt wird.

ASA wird bereits sehr lange und vielseitig in klinischer Behandlung ohne größere Nebenwirkungen eingesetzt. Als die schwerwiegendste ist dabei das Reye-Syndrom zu erwähnen, eine Form von akuter Enzephalopathie bei Kindern, die in Verbindung mit Aspirin und Influenza B oder Varizella zoster Infektionen vorkommen kann (Davis et al. 1985; Larsen 1997). Die Ursache ist eine genetisch bedingte Fehlfunktion der Mitochondrien.

4.2.1. Antiviraler Einsatz von Acetylsalicylsäure zeigt keine Tendenz zur Bildung resisternder Virusvarianten

Zusammengefasst kann man sagen, dass ASA eine sehr billige, leicht herzustellende und lang erprobte Substanz ist, die wenig toxisch ist und kaum Nebenwirkungen zeigt. Eine zukünftige
Nutzung als Influenza-Medikament hätte den Vorteil, dass ASA schnell für diesen Ansatz entwickelbar und verfügbar ist, was besonders wichtig für den Fall einer Pandemie ist, und keine Bildung resisterter Virusvarianten induziert. Zudem ist ein inhalierbares Medikament auf Acetylsalicylsäure-Basis bereits verfügbar und wird in klinischen Studien getestet. Damit scheint ASA als ein Mittel für den baldigen Einsatz gegen Influenzainfektionen geeignet zu sein.
4.3. Die Rolle von PB1-F2 für die Pathogenität des Influenza Virus

Das Influenza-Peptid PB1-F2 wurde nach seiner Entdeckung als proapoptotisch wirkend beschrieben, diese Funktionsweise wird aber in letzter Zeit immer wieder relativiert. So wurde zuletzt berichtet, dass PB1-F2 nur eine apoptoseverstärkende Funktion bei gleichzeitiger Exposition von proapoptotischen Stimuli, besitzt (Zamarin et al. 2005).

4.3.1. Lokalisation von PB1-F2

PB1-F2 wird während des Influenza-Replikationszyklus, ähnlich wie andere frühe Influenza-Genprodukte, z.B. NP oder PB1 ca. 2 h nach Beginn der Infektion exprimiert. Aber anders als andere Proteine, erreicht die Expression von PB1-F2 einen Höhepunkt nach ca. 10-12 h. Danach wurde keine Expression mehr beobachtet. Die Expression anderer Proteine wie PB1, NP oder M verläuft dagegen kontinuierlich bis zum Tod der infizierten Zellen. Warum das Expressionsmuster sich von anderen Influenza Virus Proteinen so unterscheidet, ist völlig unklar.
Es wurde berichtet, dass das Peptid eine kurze Lebensdauer besitzt, die sich durch den Einsatz von Proteasominhibitoren verlängern lässt (Henklein et al. 2005). Dies würde den Abbau erklären, nicht aber den Expressionsabbruch nach ca. 12 h nach Infektion. Die Ursache dafür bleibt unbekannt.

Die Beobachtung, dass PB1-F2 nicht nur zytoplasmatisch bzw. mitochondrial während einer Influenzainfektion lokalisiert ist war ein erster Hinweis auf eine mögliche Funktion im Zellkern (Chen et al. 2001). Zudem ist es bemerkenswert, dass die nukleäre Lokalisierung von PB1-F2 ausschließlich während einer Influenzainfektion vorkommt. Wird PB1-F2 alleine in Zellen exprimiert, so wird ausschließlich eine zytoplasmatische bzw. mitochondriale Lokalisierung vorgefunden. Allerdings zeigt nur ein Teil der infizierten Zellen eine nukleäre Lokalisation von PB1-F2, ein bestimmter Zeitpunkt der Infektion, an dem PB1-F2 in den Zellkern transportiert wird, konnte nicht identifiziert werden, es scheint aber zu einem frühen Zeitpunkt der Infektion zu passieren.

Da das PB1-F2 Peptid keine bekannte nukleäre Lokalisierungssequenz besitzt (aber eine mitochondrial [Gibbs et al. 2003; Yamada et al. 2004]), kann man spekulieren, dass das Peptid möglicherweise im Komplex mit einem anderen influenzaviralen Genprodukt in den Zellkern transportiert wird.

Es ist unklar, ob die mitochondrial Lokalisierung von PB1-F2 eine biologische Funktion besitzt, einen Einfluss auf Apoptose oder andere Vorgänge in vivo konnte nicht nachgewiesen werden. Die mitochondrial Lokalisierung von PB1-F2 zeigt gewisse Parallelen zu PB2. Wie kürzlich in vivo und in vitro gezeigt wurde kann das Influenza Virus Protein PB2 iebenfalls in Mitochondrien lokalisieren (Carr et al. 2006). Das PB2-Protein besitzt eine MTS am N-Terminus, eine Mutation in diesem Bereich führte, anders als bei Deletionen von PB1-F2 zu verringerten Virustitern. Dabei wurde gezeigt, dass die Höhe der viralen Transkription, Replikation und Proteinexpression durch die Mutationen in der PB2 MTS nicht beeinflusst wurden. Dies wirft die Frage auf, welche Rolle Mitochondrien im Replikationszyklus des Influenza Virus spielen. Für die Polymerasefunktion dürften sie keine Rolle spielen, weil die virale Transkription und Replikation im Zellkern statt findet (Jackson et al. 1982). Da Mutationen in der PB2 MTS-Sequenz die Virentiter beeinflussen, scheint PB2 eine wichtige, von der Polymerasefunktion unterschiedliche Funktion in Mitochondrien zu besitzen. Eine vergleichbar essentielle Funktion gilt vermutlich nicht für PB1-F2, denn Knockout von PB1-F2 spielt keine Rolle für die Höhe der Virentiter in Zellkultur. Auch anders als PB1-F2 scheint PB2 weder eine pro- noch
antiapoptotische Rolle zu spielen und im Gegensatz zum wt PB1-F2 bewirken MTS-Mutanten von PB2, aber nicht das wt Virus einen erhöhten Zusammenbruch des Mitochondrien-Membranpotentials (Carr et al. 2006).

4.3.2. **PB1-F2 interagiert direkt mit PB1**

Falls PB1-F2 keine ungewöhnliche Kernlokalisierungs-Sequenz besitzt, muss das Peptid mit Hilfe eines anderen Proteins oder Mechanismus in den Kern gelangen. Immunfluoreszenz-Aufnahmen zeigten im Zytosol eine partielle Kolokalisation von PB1 und PB1-F2, aber nicht NP, was ein erster Hinweis darauf war, dass dieses Protein ein Bindepartner von PB1-F2 sein könnte. Eine Hefe Two-Hybrid Untersuchung bestätigte diesen Verdacht. PB1 und PB1-F2 können miteinander interagieren. Auch eine Wechselwirkung zwischen zwei PB1-F2 Molekülen wurde gezeigt, was Daten früherer Studien bestätigt, wonach PB1-F2 eine Kapazität zur Bildung von Dimeren wie auch Multibenen besitzt. Die positiven Ergebnisse der Two-Hybrid Studie deuten ferner an, dass die Interaktion von PB1 und PB1-F2 direkt ist.

Die Wechselwirkung von PB1-F2 und PB1 findet während einer Influenza Virus-Infektion statt. Beide Proteine konnten zusammen in infizierten Zellen koimmunpräzipitiert werden. Dabei ist zu beachten, dass PB1-F2 ausschließlich mit PB1, aber nicht mit PA oder NP koimmunpräzipitiert. PB1 selbst präzipitiert aber sowohl mit NP, wie auch mit PA. Dieses Ergebnis weist darauf hin, dass PB1-F2 mit freiem PB1-Protein im Zytosol interagiert, aber nicht mit dem viralen Polymerase-Komplex, der aus der viralen RNA und den Proteinen PB1, PB2, PA und NP besteht und im Zellkern assembliert.

Eine Kopräzipitation von PB1-F2 mit anti-PB1 Antiserum konnte nicht gezeigt werden (nicht gezeigt). Die Ursache könnte darin liegen, dass PB1-F2 nur mit freiem, aber nicht mit im Polymerase-Komplex vorliegendem PB1 interagiert. Da dies wahrscheinlich in größerer Menge in der Zelle vorkommt, als der PB1-PB1-F2 Komplex, wurde wahrscheinlich vorwiegend das PB1 aus dem Polymerase-Komplex präzipitiert.

Aufgrund dieser Befunde liegt die Vermutung nahe, dass PB1-F2 zusammen mit PB1 in den Zellkern gelangt. Der Sinn dieses Vorgangs bzw. die biologische Funktion von PB1-F2 bleibt aber unklar. Vorstellbar ist, dass PB1-F2 an PB1 bindet, um eine Assemblierung der viralen RNP’s im Zytosol zu verhindern und das es zusammen mit PB1 in den Zellkern gelangt, wo es anschließend degradiert.
Es ist ebenfalls vorstellbar, dass PB1-F2 ein Inhibitor für neusynthetisiertes PB1-Protein ist, bis es in den Zellkern transportiert wird, da PB1 alleine eine transkriptionelle Aktivität besitzt (Kobayashi et al. 1996). Auch über eine Förderung der basalen Aktivität von PB1 durch PB1-F2 lässt sich in diesem Zusammenhang spekulieren.

Abbildung 41: PB1-F2 als Interaktionspartner der viralen Polymeraseuntereinheit PB1

Einige *in vitro* Daten suggerieren eine Funktion, die mit der Immunantwort zusammenhängen könnte (siehe 3.4.3.6). Infiziert man PB1-F2 überexprimierende Zellen mit Influenza Virus, so führt dies zu einer sehr starken Stimulierung von IRF-3 abhängiger Promotoraktivität. Diese Aktivierung ist um ein Vielfaches stärker, als die, die das Virus alleine verursacht. PB1-F2 Überexpression alleine führte dagegen zu keiner signifikanten Stimulation des IFNβ-Promoters oder eines IRF-3 abhängigen Promotorsegments. Dieses Experiment weist auf eine weitere unbekannte Funktion von PB1-F2, die bei Überexpression des Peptids zu einer starken zellautonomen Immunantwort führt. Dies zeigt aber auch, dass dieses Influenza Virus Protein eine biologische Funktion in infizierten Zellen haben muss. Es wurde beobachtet, dass Wildtyp Viren im Vergleich zu PB1-F2 defizienten Viren eine stärkere Apoptose in Makrophagen auslösen (Chen et al. 2001). Dies könnte mit der beobachteten starken Induktion der Interferonantwort nach Virusinfektion in PB1-F2 überexprimierenden Zellen zusammenhängen, da Typ I Interferone Apoptose induzieren können.

4.3.3. PB1-F2-Defizienz beeinträchtigt die Aktivität der viralen Polymerase, führt aber zu keiner Virustiteränderung

Knockout von PB1-F2 zeigte *in vitro* eine geringere virale Polymeraseaktivität im Hintergrund rekombinanter WSN- und PR8-Viren. Dabei ist zu beachten, dass die Mutationen, die den Knockout im PB1-F2 ORF herbeiführten keine Änderung der Aminosäuresequenz im PB1-Protein verursachten sowie zu keiner Änderung der viralen Proteinexpression führten.

Ein Experiment zeigte, dass eine versehentlich eingebaute Mutation im PB1-Protein bereits zum vollständigen Zusammenbruch der Aktivität der viralen Polymerase führen kann (siehe Abbildung 28). Die Polymeraseuntereinheit PB1 stellt für das Influenza Virus einen wichtigen Pathogenitätsfaktor dar. Sie ist die essentielle Untereinheit für die virale Polymerase und kann auch alleine RNA synthetisieren (Kobayashi et al. 1996; Toyoda et al. 1996).

Das Protein ist im Vergleich zu anderen Influenza Virus Proteinen hoch konserviert, Mutationen können zum Zusammenbruch der Polymeraseaktivität führen (Biswas und Nayak 1994). Dies kann z.B. erfolgen, wenn die Interaktionsdomänen mit den anderen Polymeraseuntereinheiten PA und PB2 betroffen sind. Die Assemblierung aller drei Untereinheiten zu einem Komplex ist essentiell für die effiziente Funktionalität der viralen Polymerase (Hiromoto et al. 2000).

Die Lokalisations-Experimente zeigten, dass der Knockout von PB1-F2 in einer Änderung der Lokalisierung von PB1 in infizierten Zellen resultiert. Falls PB1-F2 am Transport des PB1-
Proteins in den Zellkern bzw. am Zurückhalten von PB1 im Zellkern beteiligt ist, könnte dies die geringere Polymeraseaktivität in PB1-F2 defizienten Viren erklären. Diese Änderung ist dann möglicherweise darauf zurück zu führen, dass der Kernimport von PB1 oder Export der RNP-Komplexe durch den Knockout gestört wird.

Die veränderte Größe der Virus-Plaques der PB1-F2 Knockout-Viren im Vergleich zum rekombinanten wt Virus auf MDCK-Zellrasen führte zunächst zu der Vermutung, dass der Knockout eine Auswirkung auf den zytopatischen Effekt hat. Viren, die kein PB1-F2 exprimieren bilden im MDCK-Zellrasen kleinere Plaques als das wt Virus. Dies kann bedeuten, dass diese Viren die infizierten Zellen entweder langsamer töten oder sich langsamer ausbreiten.

Die erste Möglichkeit hat sich jedoch nicht bestätigt. Weitere Experimente zeigten, dass die Knockout-Viren die Zellen nicht schneller töten, bzw. nicht zytopatischer sind als das wt Virus.

Um die Ausbreitung der Viren zu untersuchen wurde eine Immunfluoreszenz von Zellen durchgeführt, die mit einer Verdünnungsreihe des rekombinanten wt PR8 und den PB1-F2 Knockout-Mutanten infiziert wurden. Hier zeigte sich, dass sich die Knockout-Viren langsamer im Zellrasen ausbreiteten, als das wt Virus, was anhand des geringeren Durchmessers der infizierten Zell-Areale deutlich sichtbar wurde.

Da der PB1-F2 Knockout die Höhe der Virustiter nicht beeinflusst, könnte dies nur bedeuten, dass die Knockoutviren sich nicht weniger effektiv replizieren, aber da die Polymeraseaktivität beeinflusst ist, langsamer ausbreiten. Der Effekt scheint aber in der Zellkultur so gering zu sein, dass es zu keiner Beeinflussung der Virusvermehrung insgesamt kommt. Es besteht die Möglichkeit, dass das PB1-F2 Peptid im infizierten Organismus eine größere Rolle spielt, als in der Zellkultur, die ein auf Virusvermehrung optimiertes System darstellt. Möglich ist auch, dass sich die Funktion von PB1-F2 im genetischen Hintergrund der Laborvirus-Stämme WSN und PR8 nicht effizient manifestiert, da diese Viren bereits zu gut an Zellkuktursysteme angepasst sind.

100
Zusammenfassung

zeigt, dass PB1 und PB1-F2 im Zytoplasma kolokalisieren können, sowie dass eine Deletion des PB1-F2 Leserahmens (ohne Aminosäure-Substitutionen in der PB1-Sequenz) zu einer geringeren Polymeraseaktivität führt. Koimmunpräzipitation- sowie Hefe Two-Hybrid-Experimente zeigen, dass PB1 und PB1-F2 direkt miteinander interagieren können, was ein Hinweis auf die Beteiligung von PB1-F2 an der Regulation des viralen Polymerasekomplexes ist.
Summary

Activation of the transcription factor NF-κB is a hallmark of infections by viral pathogens, including influenza virus. Since gene expression of many proinflammatory and antiviral cytokines is controlled by this factor, it is a common belief that NF-κB and its upstream regulator IKK are essential components of the innate antiviral immune response. In contrast to this view the results in this work clearly demonstrate, that NF-κB activity is required for efficient influenza virus growth. On the molecular basis this is due to the NF-κB-dependent induction of apoptosis. The activation of apoptosis enhances virus propagation by the activation of caspases, which in turn appear to support export of the viral RNP complexes from the nucleus.

These results suggest that NF-κB inhibitors may be useful as efficient anti-influenza drugs. Indeed, several pharmacological NF-κB inhibitors, including acetylsalicylic acid (ASA, also known as Aspirin), an inhibitor of IKKβ, blocked virus propagation both in cell culture and in vitro and in vivo in infected mice. Consistent with the suggestion that caspases activity subsequently supports viral RNP export from the nucleus, a nuclear accumulation of RNPs in infected cells treated with ASA was observed, and these cells showed reduced caspases activity and impaired virus induced apoptosis.

Thus, ASA or other NF-κB inhibitors may be suitable as potent anti-influenza drugs. In favour for such an application, the virus showed no tendency to form resistant variants against NF-κB inhibitors, most likely because the virus cannot replace the missing cellular function.

The second part of this work sheds light on another apoptosis-related aspect of influenza virus replication. It characterizes a novel apoptosis promoting influenza protein PB1-F2. PB1-F2 was previously shown to be involved in the induction of apoptosis in infected cells in response to cytotoxic stimuli. The 87 amino acid protein, encoded by an alternative reading frame of the PB1 polymerase gene, was described as mitochondrial, however the localisation changes during influenza virus infection between cytoplasm and nucleus. A temporarily colocalization of PB1-F2 and PB1 in this study was observed in certain stages of influenza virus infection. In addition, deletion of PB1-F2 (without amino acid changes in the PB1 gene) showed a dramatical decrease in the viral polymerase activity. Moreover, PB1-F2 co-immunoprecipitates and colocalizes with the PB1 protein. According to these observations PB1-F2 may have a potential nuclear function. Taken together PB1-F2 may be a regulatory component of the influenza virus polymerase complex as well as have other regulatory functions.
Literatur

Anhang

Abbildung 42: pSR-GFP/Neo Vector und die p65 siRNA Zielsequenz

\textbf{p65 siRNA Zielsequenz: aacagtccgagctcaaga}

Abbildung 43: Rekombinantes Influenza pHW2000 8-Plasmid System

Das Plasmidsystem wurde zu Generierung von rekombinanten Influenza Viren vom Subtyp A/PR8/34 verwendet. Adaptiert vom (Hoffmann et al. 2000).
Das „reverse genetics“ Plasmidsystem pHMG (Gautier et al. 1989) wurde für die Untersuchung von Polymeraseaktivität verwendet. Das Reportergen-Plasmid besitzt dabei ein Luciferase ORF in negativer Orientierung und Pol I Promotorbindestellen. Die pHMG Plasmide exprimieren die Proteine PB1, PB2, PA und NP vom Influenza Subtyp A/WSN/33 von einem Hydromethylglutaryl-Coenzym A Reduktase Promotor (HMG). Diese Proteine bilden das Influenza A Polymerasekomplex und sind sodann in der Lage die „virusähnliche“ Luciferase RNA vom Reportergenplasmid zu amplifizieren und transkribieren, was photometrisch erfasst werden kann und Rückschlüsse auf die Aktivität der viralen Polymerase erlaubt (adaptiert nach Pleschka et al. 1996)).
Abbildung 45: Sonstige Vektorkarten
Veröffentlichungen

Danksagung

An dieser Stelle möchte ich all denen danken, die mir geholfen haben, diese Arbeit anzufertigen.

Mein besonderer Dank gilt …

Herrn Prof. Dr. Ludwig für die Überlassung des Themas, seine ständige Diskussions- und Hilfsbereitschaft, sowie die vielen Denkanstösse und Ideen.

Herrn Prof. Dr. Johannes Hegemann für die freundliche Bereitschaft sich als Gutachter und Prüfer bereit zu erklären.

Dr. Anhlan Darisuren für die Generierung rekombinanter Influenza Viren, gute Zusammenarbeit (und den außergewöhnlichen Genuss vom mongolischen Vodka und vergorener Stutenmilch), und Ludmilla Wixler für die Durchführung der Hefe Two-Hybrid Untersuchungen. Besten Dank an Mirko, Carina und Victor für’s 1A Korrekturlesen!

Der Deutschen Forschungsgemeinschaft für die Finanzierung dieser Arbeit und den Mitgliedern des Graduiertenkolleg 1045/1 für die ideenreichen Vorschläge und interessante Diskussionen.

Meinen Eltern, für ihre Unterstützung, möchte ich an dieser Stelle ganz besonders danken. Und vor allem Virginia für Ihre Geduld.
Erklärung

Düsseldorf, Juni 2007

(Igor Mazur)